Sample records for gamma regulates thrombin-induced

  1. Critical role of FcR gamma-chain, LAT, PLCgamma2 and thrombin in arteriolar thrombus formation upon mild, laser-induced endothelial injury in vivo.

    PubMed

    Kalia, Neena; Auger, Jocelyn M; Atkinson, Ben; Watson, Steve P

    2008-05-01

    The role of collagen receptor complex GPVI-FcR gamma-chain, PLCgamma2 and LAT in laser-induced thrombosis is unclear. Controversy surrounds whether collagen is exposed in this model or whether thrombosis is dependent on thrombin. This study hypothesized that collagen exposure plays a critical role in thrombus formation in this model, which was tested by investigating contributions of FcR gamma-chain, LAT, PLCgamma2 and thrombin. Thrombi were monitored using intravital microscopy in anesthetized wild-type and FcR gamma-chain, LAT and PLCgamma2 knockout mice. Hirudin (thrombin inhibitor) was administered to wild-type and FcR gamma-chain knockout mice. Significantly reduced thrombus formation was observed in FcR gamma-chain and PLCgamma2 knockouts with a greater decrease observed in LAT knockouts. Dramatic reduction was observed in wild-types treated with hirudin, with abolished thrombus formation only observed in FcR gamma-chain knockouts treated with hirudin. GPVI-FcR gamma-chain, LAT and PLCgamma2 are essential for thrombus generation and stability in this laser-induced model of injury. More importantly, a greater role for LAT was identified, which may reflect a role for it downstream of a second matrix protein receptor. However, inhibition of platelet activation by matrix proteins and thrombin generation are both required to maximally prevent thrombus formation.

  2. Thrombin-induced Migration and Matrix Metalloproteinase-9 Expression Are Regulated by MAPK and PI3K Pathways in C6 Glioma Cells

    PubMed Central

    Kim, Jiyoung; Lee, Jae-Won; Kim, Song-In; Choi, Yong-Joon; Lee, Won-Ki; Jeong, Myung-Ja; Cha, Sang-Hoon; Lee, Hee Jae; Chun, Wanjoo

    2011-01-01

    Glioblastoma multiforme is one of the most common and aggressive tumors in central nervous system. It often possesses characteristic necrotic lesions with hemorrhages, which increase the chances of exposure to thrombin. Thrombin has been known as a regulator of MMP-9 expression and cancer cell migration. However, the effects of thrombin on glioma cells have not been clearly understood. In the present study, influences of thrombin on glioma cell migration were examined using Boyden chamber migration assay and thrombin-induced changes in MMP-9 expression were measured using zymography, semi-quantitative RT-PCR, and Western blotting. Furthermore, underlying signaling pathways by which thrombin induces MMP-9 expression were examined. Thrombin-induced migration and MMP-9 expression were significantly potentiated in the presence of wortmannin, a PI3K inhibitor, whereas MAPK inhibitors suppressed thrombin-induced migration and MMP-9 expression in C6 glioma cells. The present data strongly demonstrate that MAPK and PI3K pathways evidently regulate thrombin-induced migration and MMP-9 expression of C6 glioma cells. Therefore, the control of these pathways might be a beneficial therapeutic strategy for treatment of invasive glioblastoma multiforme. PMID:21994479

  3. Allosteric Partial Inhibition of Monomeric Proteases. Sulfated Coumarins Induce Regulation, not just Inhibition, of Thrombin

    PubMed Central

    Verespy III, Stephen; Mehta, Akul Y.; Afosah, Daniel; Al-Horani, Rami A.; Desai, Umesh R.

    2016-01-01

    Allosteric partial inhibition of soluble, monomeric proteases can offer major regulatory advantages, but remains a concept on paper to date; although it has been routinely documented for receptors and oligomeric proteins. Thrombin, a key protease of the coagulation cascade, displays significant conformational plasticity, which presents an attractive opportunity to discover small molecule probes that induce sub-maximal allosteric inhibition. We synthesized a focused library of some 36 sulfated coumarins to discover two agents that display sub-maximal efficacy (~50%), high potency (<500 nM) and high selectivity for thrombin (>150-fold). Michaelis-Menten, competitive inhibition, and site-directed mutagenesis studies identified exosite 2 as the site of binding for the most potent sulfated coumarin. Stern-Volmer quenching of active site-labeled fluorophore suggested that the allosteric regulators induce intermediate structural changes in the active site as compared to those that display ~80–100% efficacy. Antithrombin inactivation of thrombin was impaired in the presence of the sulfated coumarins suggesting that allosteric partial inhibition arises from catalytic dysfunction of the active site. Overall, sulfated coumarins represent first-in-class, sub-maximal inhibitors of thrombin. The probes establish the concept of allosteric partial inhibition of soluble, monomeric proteins. This concept may lead to a new class of anticoagulants that are completely devoid of bleeding. PMID:27053426

  4. Thrombin-induced activation of RhoA in platelet shape change.

    PubMed

    Bodie, S L; Ford, I; Greaves, M; Nixon, G F

    2001-09-14

    Thrombin-induced activation of RhoA and its involvement in the regulation of myosin II light chain(20) phosphorylation (MLC-P) in alpha-toxin permeabilized platelets was investigated. Permeabilized platelets, expressing normal levels of P-selectin, displayed a Ca(2+)-dependent increase in shape change and MLC-P. Thrombin activated RhoA as measured by a rhotekin-binding assay within 30 s of stimulation under conditions of constant [Ca(2+)](i). Under the same conditions and timecourse, thrombin or GTPgammaS induced an increase in MLC-P and platelet shape change which was not dependent on an increase in [Ca(2+)](i). The thrombin- and GTPgammaS-induced MLC-P in constant [Ca(2+)](i) was inhibited by the addition of Y27632, a Rho-kinase inhibitor. This study directly demonstrates that thrombin can activate RhoA in platelets in a timecourse compatible with a role in increasing MLC-P and shape change (not involving an increase in [Ca(2+)](i)). This is also Rho-kinase-dependent. Copyright 2001 Academic Press.

  5. Thrombin-induced contraction in alveolar epithelial cells probed by traction microscopy.

    PubMed

    Gavara, Núria; Sunyer, Raimon; Roca-Cusachs, Pere; Farré, Ramon; Rotger, Mar; Navajas, Daniel

    2006-08-01

    Contractile tension of alveolar epithelial cells plays a major role in the force balance that regulates the structural integrity of the alveolar barrier. The aim of this work was to study thrombin-induced contractile forces of alveolar epithelial cells. A549 alveolar epithelial cells were challenged with thrombin, and time course of contractile forces was measured by traction microscopy. The cells exhibited basal contraction with total force magnitude 55.0 +/- 12.0 nN (mean +/- SE, n = 12). Traction forces were exerted predominantly at the cell periphery and pointed to the cell center. Thrombin (1 U/ml) induced a fast and sustained 2.5-fold increase in traction forces, which maintained peripheral and centripetal distribution. Actin fluorescent staining revealed F-actin polymerization and enhancement of peripheral actin rim. Disruption of actin cytoskeleton with cytochalasin D (5 microM, 30 min) and inhibition of myosin light chain kinase with ML-7 (10 microM, 30 min) and Rho kinase with Y-27632 (10 microM, 30 min) markedly depressed basal contractile tone and abolished thrombin-induced cell contraction. Therefore, the contractile response of alveolar epithelial cells to the inflammatory agonist thrombin was mediated by actin cytoskeleton remodeling and actomyosin activation through myosin light chain kinase and Rho kinase signaling pathways. Thrombin-induced contractile tension might further impair alveolar epithelial barrier integrity in the injured lung.

  6. GDP beta S enhances the activation of phospholipase C caused by thrombin in human platelets: evidence for involvement of an inhibitory GTP-binding protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oberdisse, E.; Lapetina, E.G.

    1987-05-14

    Guanosine 5'-O-thiotriphosphate (GTP gamma S) and thrombin stimulate the activity of phospholipase C in platelets that have been permeabilized with saponin and whose inositol phospholipids have been prelabeled with (/sup 3/H)inositol. Ca/sup 2 +/ has opposite effects on the formation of (/sup 3/H)inositol phosphates induced by thrombin or GTP gamma S. While the action of GTP gamma S on the formation of (/sup 3/H)inositol phosphates is inhibited by Ca/sup 2 +/, action of thrombin is stimulated by Ca/sup 2 +/. Guanosine 5'-O-(2-thiodiphosphate) (GDP beta S), which inhibits the function of GTP-binding proteins, also inhibits the effect of GTP gamma Smore » on phospholipase C stimulation but, surprisingly, increases the effect of thrombin. Ca/sup 2 +/ increases the inhibitory effect of GDP beta S on GTP gamma S activation of phospholipase C, but Ca/sup 2 +/ further enhances the stimulatory effect of GDP beta S on the thrombin activation of phospholipase C. This indicates that two mechanisms are responsible for the activation of phospholipase C in platelets. A GTP-binding protein is responsible for regulation of phospholipase C induced by GTP gamma S, while the effect of thrombin on the stimulation of phospholipase C is independent of GTP-binding proteins. However, the effect of thrombin may be modulated by the action of an inhibitory GTP-binding protein.« less

  7. Thrombin impairs human endometrial endothelial angiogenesis; implications for progestin-only contraceptive-induced abnormal uterine bleeding.

    PubMed

    Shapiro, John P; Guzeloglu-Kayisli, Ozlem; Kayisli, Umit A; Semerci, Nihan; Huang, S Joseph; Arlier, Sefa; Larsen, Kellie; Fadda, Paolo; Schatz, Frederick; Lockwood, Charles J

    2017-06-01

    Progestin-only contraceptives induce abnormal uterine bleeding, accompanied by prothrombin leakage from dilated endometrial microvessels and increased thrombin generation by human endometrial stromal cell (HESC)-expressed tissue factor. Initial studies of the thrombin-treated HESC secretome identified elevated levels of cleaved chondroitin sulfate proteoglycan 4 (CSPG4), impairing pericyte-endothelial interactions. Thus, we investigated direct and CSPG4-mediated effects of thrombin in eliciting abnormal uterine bleeding by disrupting endometrial angiogenesis. Liquid chromatography/tandem mass spectrometry, enzyme-linked immunosorbent assay (ELISA) and quantitative real-time-polymerase chain reaction (PCR) evaluated conditioned medium supernatant and cell lysates from control versus thrombin-treated HESCs. Pre- and post-Depo medroxyprogesterone acetate (DMPA)-administered endometria were immunostained for CSPG4. Proliferation, apoptosis and tube formation were assessed in human endometrial endothelial cells (HEECs) incubated with recombinant human (rh)-CSPG4 or thrombin or both. Thrombin induced CSPG4 protein expression in cultured HESCs as detected by mass spectrometry and ELISA (p<.02, n=3). Compared to pre-DMPA endometria (n=5), stromal cells in post-DMPA endometria (n=5) displayed stronger CSPG4 immunostaining. In HEEC cultures (n=3), total tube-formed mesh area was significantly higher in rh-CSPG4 versus control (p<.05). However, thrombin disrupted HEEC tube formation by a concentration- and time-dependent reduction of angiogenic parameters (p<.05), whereas CSPG4 co-treatment did not reverse these thrombin-mediated effects. These results suggest that disruption of HEEC tube formation by thrombin induces aberrant angiogenesis and abnormal uterine bleeding in DMPA users. Mass spectrometry analysis identified several HESC-secreted proteins regulated by thrombin. Therapeutic agents blocking angiogenic effects of thrombin in HESCs can prevent or minimize progestin

  8. MicroRNA-146 inhibits thrombin-induced NF-κB activation and subsequent inflammatory responses in human retinal endothelial cells.

    PubMed

    Cowan, Colleen; Muraleedharan, Chithra K; O'Donnell, James J; Singh, Pawan K; Lum, Hazel; Kumar, Ashok; Xu, Shunbin

    2014-07-01

    Nuclear factor-κB (NF-κB), a key regulator of immune and inflammatory responses, plays important roles in diabetes-induced microvascular complications including diabetic retinopathy (DR). Thrombin activates NF-κB through protease-activated receptor (PAR)-1, a member of the G-protein-coupled receptor (GPCR) superfamily, and contributes to DR. The current study is to uncover the roles of microRNA (miRNA) in thrombin-induced NF-κB activation and retinal endothelial functions. Target prediction was performed using the TargetScan algorithm. Predicted target was experimentally validated by luciferase reporter assays. Human retinal endothelial cells (HRECs) were transfected with miRNA mimics or antimiRs and treated with thrombin. Expression levels of miR-146 and related protein-coding genes were analyzed by quantitative (q)RT-PCR. Functional changes of HRECs were analyzed by leukocyte adhesion assays. We identified that caspase-recruitment domain (CARD)-containing protein 10 (CARD10), an essential scaffold/adaptor protein of GPCR-mediated NF-κB activation pathway, is a direct target of miR-146. Thrombin treatment resulted in NF-κB-dependent upregulation of miR-146 in HRECs; while transfection of miR-146 mimics resulted in significant downregulation of CARD10 and prevented thrombin-induced NF-κB activation, suggest that a negative feedback regulation of miR-146 on thrombin-induced NF-κB through targeting CARD10. Furthermore, overexpression of miR-146 prevented thrombin-induced increased leukocyte adhesion to HRECs. We uncovered a novel negative feedback regulatory mechanism on thrombin-induced GPCR-mediated NF-κB activation by miR-146. In combination with the negative feedback regulation of miR-146 on the IL-1R/toll-like receptor (TLR)-mediated NF-κB activation in RECs that we reported previously, our results underscore a pivotal, negative regulatory role of miR-146 on multiple NF-κB activation pathways and related inflammatory processes in DR. Copyright 2014

  9. Thrombin-induced glucose transport via Src–p38 MAPK pathway in vascular smooth muscle cells

    PubMed Central

    Kanda, Yasunari; Watanabe, Yasuhiro

    2005-01-01

    Thrombin is a mitogen for vascular smooth muscle cells (VSMC) and has been implicated in the development in atherosclerosis. However, little is known about the role of thrombin in glucose transport in VSMC. In this study, we examined the effect of thrombin on glucose uptake in rat A10 VSMC. We found that thrombin induced glucose uptake in a dose-dependent manner while hirudin, a potent thrombin inhibitor, prevented glucose uptake in the cells. PP2, a selective inhibitor of Src, prevented the thrombin-induced glucose uptake, but did not affect insulin-induced uptake. We also examined whether mitogen-activated protein kinase (MAPK) inhibitors influenced thrombin-induced glucose uptake. The p38 MAPK inhibitor (SB203580) inhibited thrombin-induced glucose uptake, but the MEK inhibitor (PD98059) did not. In contrast to thrombin, SB203580 did not affect insulin-induced glucose uptake. Furthermore, thrombin failed to translocate the insulin-sensitive glucose transporter GLUT4. These findings suggest that thrombin stimulates glucose transport via Src and subsequent p38 MAPK activation in VSMC. PMID:15951827

  10. Thrombin Induces Inositol Trisphosphate-Mediated Spatially Extensive Responses in Lung Microvessels.

    PubMed

    Escue, Rachel; Kandasamy, Kathirvel; Parthasarathi, Kaushik

    2017-04-01

    Activation of plasma membrane receptors initiates compartmentalized second messenger signaling. Whether this compartmentalization facilitates the preferential intercellular diffusion of specific second messengers is unclear. Toward this, the receptor-mediated agonist, thrombin, was instilled into microvessels in a restricted region of isolated blood-perfused mouse lungs. Subsequently, the thrombin-induced increase in endothelial F-actin was determined using confocal fluorescence microscopy. Increased F-actin was evident in microvessels directly treated with thrombin and in those located in adjoining thrombin-free regions. This increase was abrogated by inhibiting inositol trisphosphate-mediated calcium release with Xestospongin C (XeC). XeC also inhibited the thrombin-induced increase in the amplitude of endothelial cytosolic Ca 2+ oscillations. Instillation of thrombin and XeC into adjacent restricted regions increased F-actin in microvessels in the thrombin-treated and adjacent regions but not in those in the XeC-treated region. Thus, inositol trisphosphate, and not calcium, diffused interendothelially to the spatially remote thrombin-free microvessels. Thus, activation of plasma membrane receptors increased the ambit of inflammatory responses via a second messenger different from that used by stimuli that induce cell-wide increases in second messengers. Thrombin however failed to induce the spatially extensive response in microvessels of mice lacking endothelial connexin43, suggesting a role for connexin43 gap junctions. Compartmental second messenger signaling and interendothelial communication define the specific second messenger involved in exacerbating proinflammatory responses to receptor-mediated agonists. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  11. Thrombin-induced apoptosis in neurons through activation of c-Jun-N-terminal kinase.

    PubMed

    Bao, Lei; Zu, Jie; He, Qianqian; Zhao, Hui; Zhou, Su; Ye, Xinchun; Yang, Xinxin; Zan, Kun; Zhang, Zuohui; Shi, Hongjuan; Cui, Guiyun

    2017-01-01

    Studies have shown that thrombin activation played a central role in cell injuries associated with intracerebral hemorrhage (ICH). Here, our study investigated the cytotoxicity of thrombin on neurons, and determined the involvement of JNK pathways in thrombin-induced neuronal apoptosis. Primary cultured neurons were treated with different doses of thrombin. Some neurons were given either SP600125 or vehicle. LDH release assay and flow cytometry were used to measure neuronal apoptosis caused by thrombin. The activation of JNK and capases-3 were measured by Western blot. Our results showed large doses of thrombin that increased the LDH release, the level of cleaved caspase-3 and apoptosis rate of neurons. JNK was activated by thrombin in a time-dependent manner. Administration of SP600125 protects neurons from thrombin-induced apoptosis. These data indicate that the activation of JNK is crucial for thrombin-induced neuronal apoptosis, and inhibition of JNK may be a potential therapeutic target for ICH.

  12. Platelet-derived microparticles regulates thrombin generation via phophatidylserine in abdominal sepsis.

    PubMed

    Wang, Yongzhi; Zhang, Su; Luo, Lingtao; Norström, Eva; Braun, Oscar Ö; Mörgelin, Matthias; Thorlacius, Henrik

    2018-02-01

    Sepsis is associated with dysfunctional coagulation. Recent data suggest that platelets play a role in sepsis by promoting neutrophil accumulation. Herein, we show that cecal ligation and puncture (CLP) triggered systemic inflammation, which is characterized by formation of IL-6 and CXC chemokines as well as neutrophil accumulation in the lung. Platelet depletion decreased neutrophil accumulation, IL-6, and CXC chemokines formation in septic lungs. Depletion of platelets increased peak thrombin formation and total thrombin generation (TG) in plasma from septic animals. CLP elevated circulating levels of platelet-derived microparticles (PMPs). In vitro generated PMPs were a potent inducer of TG. Interestingly, in vitro wild-type recombinant annexin V abolished PMP-induced thrombin formation whereas a mutant annexin V protein, which does not bind to phosphatidylserine (PS), had no effect. Administration of wild-type, but not mutant annexin V, significantly inhibited thrombin formation in septic animals. Moreover, CLP-induced formation of thrombin-antithrombin complexes were reduced in platelet-depleted mice and in animals pretreated with annexin V. PMP-induced TG attenuated in FXII- and FVII-deficient plasma. These findings suggest that sepsis-induced TG is dependent on platelets. Moreover, PMPs formed in sepsis are a potent inducer of TG via PS exposure, and activation of both the intrinsic and extrinsic pathway of coagulation. In conclusion, these observations suggest that PMPs and PS play an important role in dysfunctional coagulation in abdominal sepsis. © 2017 Wiley Periodicals, Inc.

  13. Matrix metalloproteinase-10 is upregulated by thrombin in endothelial cells and increased in patients with enhanced thrombin generation.

    PubMed

    Orbe, Josune; Rodríguez, José A; Calvayrac, Olivier; Rodríguez-Calvo, Ricardo; Rodríguez, Cristina; Roncal, Carmen; Martínez de Lizarrondo, Sara; Barrenetxe, Jaione; Reverter, Juan C; Martínez-González, José; Páramo, José A

    2009-12-01

    Thrombin is a multifunctional serine protease that promotes vascular proinflammatory responses whose effect on endothelial MMP-10 expression has not previously been evaluated. Thrombin induced endothelial MMP-10 mRNA and protein levels, through a protease-activated receptor-1 (PAR-1)-dependent mechanism, in a dose- and time-dependent manner. This effect was mimicked by a PAR-1 agonist peptide (TRAP-1) and antagonized by an anti-PAR-1 blocking antibody. MMP-10 induction was dependent on extracellular regulated kinase1/2 (ERK1/2) and c-jun N-terminal kinase (JNK) pathways. By serial deletion analysis, site-directed mutagenesis and electrophoretic mobility shift assay an AP-1 site in the proximal region of MMP-10 promoter was found to be critical for thrombin-induced MMP-10 transcriptional activity. Thrombin and TRAP-1 upregulated MMP-10 in murine endothelial cells in culture and in vivo in mouse aorta. This effect of thrombin was not observed in PAR-1-deficient mice. Interestingly, circulating MMP-10 levels (P<0.01) were augmented in patients with endothelial activation associated with high (disseminated intravascular coagulation) and moderate (previous acute myocardial infarction) systemic thrombin generation. Thrombin induces MMP-10 through a PAR-1-dependent mechanism mediated by ERK1/2, JNK, and AP-1 activation. Endothelial MMP-10 upregulation could be regarded as a new proinflammatory effect of thrombin whose pathological consequences in thrombin-related disorders and plaque stability deserve further investigation.

  14. Effect of Thrombin on Human Amnion Mesenchymal Cells, Mouse Fetal Membranes, and Preterm Birth*

    PubMed Central

    Mogami, Haruta; Keller, Patrick W.; Shi, Haolin; Word, R. Ann

    2014-01-01

    Here, we investigated the effects of thrombin on matrix metalloproteinases (MMPs) and prostaglandin (PG) synthesis in fetal membranes. Thrombin activity was increased in human amnion from preterm deliveries. Treatment of mesenchymal, but not epithelial, cells with thrombin resulted in increased MMP-1 and MMP-9 mRNA and enzymatic activity. Thrombin also increased COX2 mRNA and PGE2 in these cells. Protease-activated receptor-1 (PAR-1) was localized to amnion mesenchymal and decidual cells. PAR-1-specific inhibitors and activating peptides indicated that thrombin-induced up-regulation of MMP-9 was mediated via PAR-1. In contrast, thrombin-induced up-regulation of MMP-1 and COX-2 was mediated through Toll-like receptor-4, possibly through thrombin-induced release of soluble fetal fibronectin. In vivo, thrombin-injected pregnant mice delivered preterm. Mmp8, Mmp9, and Mmp13, and PGE2 content was increased significantly in fetal membranes from thrombin-injected animals. These results indicate that thrombin acts through multiple mechanisms to activate MMPs and PGE2 synthesis in amnion. PMID:24652285

  15. Novel Role for p21-activated Kinase 2 in Thrombin-induced Monocyte Migration*

    PubMed Central

    Gadepalli, Ravisekhar; Kotla, Sivareddy; Heckle, Mark R.; Verma, Shailendra K.; Singh, Nikhlesh K.; Rao, Gadiparthi N.

    2013-01-01

    To understand the role of thrombin in inflammation, we tested its effects on migration of THP-1 cells, a human monocytic cell line. Thrombin induced THP-1 cell migration in a dose-dependent manner. Thrombin induced tyrosine phosphorylation of Pyk2, Gab1, and p115 RhoGEF, leading to Rac1- and RhoA-dependent Pak2 activation. Downstream to Pyk2, Gab1 formed a complex with p115 RhoGEF involving their pleckstrin homology domains. Furthermore, inhibition or depletion of Pyk2, Gab1, p115 RhoGEF, Rac1, RhoA, or Pak2 levels substantially attenuated thrombin-induced THP-1 cell F-actin cytoskeletal remodeling and migration. Inhibition or depletion of PAR1 also blocked thrombin-induced activation of Pyk2, Gab1, p115 RhoGEF, Rac1, RhoA, and Pak2, resulting in diminished THP-1 cell F-actin cytoskeletal remodeling and migration. Similarly, depletion of Gα12 negated thrombin-induced Pyk2, Gab1, p115 RhoGEF, Rac1, RhoA, and Pak2 activation, leading to attenuation of THP-1 cell F-actin cytoskeletal remodeling and migration. These novel observations reveal that thrombin induces monocyte/macrophage migration via PAR1-Gα12-dependent Pyk2-mediated Gab1 and p115 RhoGEF interactions, leading to Rac1- and RhoA-targeted Pak2 activation. Thus, these findings provide mechanistic evidence for the role of thrombin and its receptor PAR1 in inflammation. PMID:24025335

  16. The pharmacological modulation of thrombin-induced cerebral thromboembolism in the rabbit.

    PubMed Central

    May, G. R.; Paul, W.; Crook, P.; Butler, K. D.; Page, C. P.

    1992-01-01

    1. Intracarotid (i.c.) administration of thrombin induced a marked accumulation of 111indium-labelled platelets and 125I-labelled fibrinogen within the cranial vasculature of anaesthetized rabbits. 2. Thrombin (100 iu kg-1, i.c.) - induced platelet accumulation was completely abolished by pretreatment with desulphatohirudin (CGP 39393; 1 mg kg-1 i.c., 1 min prior to thrombin). Administration of CGP 39393 1 or 20 min after thrombin produced a significant reduction in platelet accumulation. 3. Intravenous (i.v.) administration of the platelet activating factor (PAF) receptor antagonist BN 52021 (10 mg kg-1) 5 min prior to thrombin (100 iu kg-1, i.c.) had no effect on platelet accumulation. 4. An inhibitor of NO biosynthesis, L-NG-nitro arginine methyl ester (L-NAME; 100 mg kg-1, i.c.), had no significant effect on the cranial platelet accumulation response to thrombin (10 iu kg-1, i.c.) when administered 5 min prior to thrombin. 5. Defibrotide (32 or 64 mg kg-1 bolus i.c. followed by 32 or 64 mg kg-1 h-1, i.c., infusion for 45 min) treatment begun 20 min after thrombin (100 iu kg-1, i.c.) did not significantly modify the cranial platelet accumulation response. 6. Cranial platelet accumulation induced by thrombin (100 iu kg-1, i.c.) was significantly reversed by the fibrinolytic drugs urokinase (20 iu kg-1, i.c., infusion for 45 min), anisoylated plasminogen streptokinase activator complex (APSAC) (200 micrograms kg-1, i.v. bolus) or recombinant tissue plasminogen activator (rt-PA; 100 micrograms kg-1, i.c. bolus followed by 20 micrograms kg-1 min-1, i.c., infusion for 45 min) administered 20 min after thrombin.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1504722

  17. Macrophage Migration Inhibitory Factor-Induced Autophagy Contributes to Thrombin-Triggered Endothelial Hyperpermeability in Sepsis.

    PubMed

    Chao, Chiao-Hsuan; Chen, Hong-Ru; Chuang, Yung-Chun; Yeh, Trai-Ming

    2018-07-01

    Vascular leakage contributes to the high morbidity and mortality associated with sepsis. Exposure of the endothelium to inflammatory mediators, such as thrombin and cytokines, during sepsis leads to hyperpermeability. We recently observed that autophagy, a cellular process for protein turnover, is involved in macrophage migration inhibitory factor (MIF)-induced endothelial hyperpermeability. Even though it is known that thrombin induces endothelial cells to secrete MIF and to increase vascular permeability, the possible role of autophagy in this process is unknown. In this study, we proposed and tested the hypothesis that MIF-induced autophagy plays an important role in thrombin-induced endothelial hyperpermeability. We evaluated the effects of thrombin on endothelial permeability, autophagy induction, and MIF secretion in vitro using the human microvascular endothelial cell line-1 and human umbilical vein endothelial cells. Several mechanisms/read outs of endothelial permeability and autophagy formation were examined. We observed that blocking autophagy attenuated thrombin-induced endothelial hyperpermeability. Furthermore, thrombin-induced MIF secretion was involved in this process because MIF inhibition reduced thrombin-induced autophagy and hyperpermeability. Finally, we showed that blocking MIF or autophagy effectively alleviated vascular leakage and mortality in endotoxemic mice. Thus, MIF-induced autophagy may represent a common mechanism causing vascular leakage in sepsis.

  18. The possible involvement of protein phosphatase 1 in thrombin-induced Ca2+ influx of human platelets.

    PubMed

    Murata, K; Sakon, M; Kambayashi, J; Yukawa, M; Yano, Y; Fujitani, K; Kawasaki, T; Shiba, E; Mori, T

    1993-04-01

    Protein phosphatase 1 is considered to be involved in thrombin-induced platelet activation (Murata et al., Biochem Int 26:327-334, 1992). To clarify the mechanism, we examined the effects of protein phosphatase 1 and 2A inhibitors (calyculin A, tautomycin, okadaic acid) on Ca2+ influx. In the presence of 1 mM Ca2+, thrombin- (0.1 U/ml) induced platelet aggregation and ATP release were inhibited by calyculin A, while this inhibitory effect was abolished in the absence of Ca2+ (EGTA 1 mM). Furthermore, thrombin-induced Mn2+ influx but not intracellular Ca2+ mobilization was inhibited by calyculin A in a dose-related manner. Calyculin A also blocked the ongoing Ca2+ influx when added 3 min after thrombin stimulation. Similar inhibitory effects were observed with okadaic acid and tautomycin in the same potency sequence as the reported one for protein phosphatase 1 (calyculin A > tautomycin > okadaic acid). These results suggest that the anti-platelet effects of phosphatase inhibitors are due to the inhibition of Ca2+ influx and that protein phosphatase 1 plays a key role in the regulation of receptor operated Ca2+ channel of human platelets.

  19. Neuroprotective Effects of 17β-Estradiol against Thrombin-Induced Apoptosis in Primary Cultured Cortical Neurons.

    PubMed

    Bao, Lei; Zhou, Su; Zhao, Hui; Zu, Jie; He, Qianqian; Ye, Xinchun; Cui, Guiyun

    2015-01-01

    17β-estradiol (E2) is a powerful neuroprotective agent in the central nervous system; however, little is known about its effects on intracerebral hemorrhage. This study examined the effects of E2 on thrombin-induced apoptosis in vitro and investigated the potential mechanisms. Primary cultured cortical neurons were treated with E2 or vehicle and then the cells were exposed to thrombin. Neuronal apoptosis was assessed by flow cytometry. The phosphorylated c-Jun-N-terminal kinase (p-JNK), phosphorylated extracellular signal-regulated kinases 1/2 (p-ERK1/2), B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax) and caspase-3 were assayed by western blot. Consequently, we found that E2 has significantly reduced the apoptosis in thrombin-treated neurons. E2 also exhibited a downregulation in the ratio of Bax/Bcl-2, caspase-3 and p-JNK. However, E2 had little effect on p-ERK1/2 proteins activation. Taken together, E2 has shown neuroprotective effects on thrombin-induced neuronal apoptosis, and the molecular mechanisms may correlate with the inhibition of the JNK signaling pathway. © 2015 S. Karger AG, Basel.

  20. Thrombin promotes diet-induced obesity through fibrin-driven inflammation.

    PubMed

    Kopec, Anna K; Abrahams, Sara R; Thornton, Sherry; Palumbo, Joseph S; Mullins, Eric S; Divanovic, Senad; Weiler, Hartmut; Owens, A Phillip; Mackman, Nigel; Goss, Ashley; van Ryn, Joanne; Luyendyk, James P; Flick, Matthew J

    2017-08-01

    Obesity promotes a chronic inflammatory and hypercoagulable state that drives cardiovascular disease, type 2 diabetes, fatty liver disease, and several cancers. Elevated thrombin activity underlies obesity-linked thromboembolic events, but the mechanistic links between the thrombin/fibrin(ogen) axis and obesity-associated pathologies are incompletely understood. In this work, immunohistochemical studies identified extravascular fibrin deposits within white adipose tissue and liver as distinct features of mice fed a high-fat diet (HFD) as well as obese patients. Fibγ390-396A mice carrying a mutant form of fibrinogen incapable of binding leukocyte αMβ2-integrin were protected from HFD-induced weight gain and elevated adiposity. Fibγ390-396A mice had markedly diminished systemic, adipose, and hepatic inflammation with reduced macrophage counts within white adipose tissue, as well as near-complete protection from development of fatty liver disease and glucose dysmetabolism. Homozygous thrombomodulin-mutant ThbdPro mice, which have elevated thrombin procoagulant function, gained more weight and developed exacerbated fatty liver disease when fed a HFD compared with WT mice. In contrast, treatment with dabigatran, a direct thrombin inhibitor, limited HFD-induced obesity development and suppressed progression of sequelae in mice with established obesity. Collectively, these data provide proof of concept that targeting thrombin or fibrin(ogen) may limit pathologies in obese patients.

  1. Thrombin promotes diet-induced obesity through fibrin-driven inflammation

    PubMed Central

    Kopec, Anna K.; Abrahams, Sara R.; Thornton, Sherry; Palumbo, Joseph S.; Mullins, Eric S.; Weiler, Hartmut; Mackman, Nigel; Goss, Ashley; van Ryn, Joanne; Luyendyk, James P.; Flick, Matthew J.

    2017-01-01

    Obesity promotes a chronic inflammatory and hypercoagulable state that drives cardiovascular disease, type 2 diabetes, fatty liver disease, and several cancers. Elevated thrombin activity underlies obesity-linked thromboembolic events, but the mechanistic links between the thrombin/fibrin(ogen) axis and obesity-associated pathologies are incompletely understood. In this work, immunohistochemical studies identified extravascular fibrin deposits within white adipose tissue and liver as distinct features of mice fed a high-fat diet (HFD) as well as obese patients. Fibγ390–396A mice carrying a mutant form of fibrinogen incapable of binding leukocyte αMβ2-integrin were protected from HFD-induced weight gain and elevated adiposity. Fibγ390–396A mice had markedly diminished systemic, adipose, and hepatic inflammation with reduced macrophage counts within white adipose tissue, as well as near-complete protection from development of fatty liver disease and glucose dysmetabolism. Homozygous thrombomodulin-mutant ThbdPro mice, which have elevated thrombin procoagulant function, gained more weight and developed exacerbated fatty liver disease when fed a HFD compared with WT mice. In contrast, treatment with dabigatran, a direct thrombin inhibitor, limited HFD-induced obesity development and suppressed progression of sequelae in mice with established obesity. Collectively, these data provide proof of concept that targeting thrombin or fibrin(ogen) may limit pathologies in obese patients. PMID:28737512

  2. Effects of Aerobic Capacity on Thrombin-Induced Hydrocephalus and White Matter Injury.

    PubMed

    Ni, Wei; Gao, Feng; Zheng, Mingzhe; Koch, Lauren G; Britton, Steven L; Keep, Richard F; Xi, Guohua; Hua, Ya

    2016-01-01

    We have previously shown that intracerebral hemorrhage-induced brain injury is less in rats bred for high aerobic capacity (high capacity runners; HCR) compared with those bred for low aerobic capacity (low capacity runners; LCRs). Thrombin, an essential component in the coagulation cascade, is produced after cerebral hemorrhage. Intraventricular injection of thrombin causes significant hydrocephalus and white matter damage. In the present study, we examined the effect of exercise capacity on thrombin-induced hydrocephalus and white matter damage. Mid-aged (13-month-old) female LCRs (n = 13) and HCRs (n = 12) rats were used in this study. Rats received an intraventricular injection of thrombin (3 U, 50 μl). All rats underwent magnetic resonance imaging (MRI) at 24 h and were then euthanized for brain histology and Western blot. The mortalities were 20 % in LCRs and 33 % in HCRs after thrombin injection (p > 0.05). No rats died after saline injection. Intraventricular thrombin injection resulted in hydrocephalus and periventricular white matter damage as determined on MRI. In LCR rats, thrombin induced significant ventricle enlargement (23.0 ± 2.3 vs12.8 ± 1.9 mm(3) in LCR saline group; p < 0.01) and white matter lesion (9.3 ± 7.6 vs 0.6 ± 0.5 mm(3) in LCR saline group, p < 0.05). In comparison, in HCR rats thrombin induced less ventricular enlargement (17.3 ± 3.9 vs 23.0 ± 2.3 mm(3) in LCRs, p < 0.01) and smaller white matter lesions (2.6 ± 1.2 mm(3) vs 9.3 ± 7.6 mm(3) in LCRs, p < 0.05). In LCR rats, there was also upregulation of heat shock protein-32, a stress marker, and microglial activation in the periventricular white matter. These changes were significantly reduced in HCR rats. Intraventricular injection of thrombin caused more white matter damage and hydrocephalus in rats with low aerobic capacity. A differential effect of thrombin may contribute to differences in the effects of cerebral

  3. Phloretin suppresses thrombin-mediated leukocyte-platelet-endothelial interactions.

    PubMed

    Kim, Min Soo; Park, Sin-Hye; Han, Seon-Young; Kim, Yun-Ho; Lee, Eun-Jung; Yoon Park, Jung Han; Kang, Young-Hee

    2014-04-01

    Thrombin playing a pivotal role in coagulation cascade may influence the onset and progression of atherosclerosis as a pro-inflammatory mediator. This study investigated whether phloretin found in apple tree leaves, severed a linkage between thrombosis and atherosclerosis by thrombin. Human endothelial cells were pre-treated with 1-20 μM phloretin and stimulated with 10 U/mL thrombin. Phloretin attenuated adhesion of THP-1 monocytes and platelets to thrombin-inflamed endothelial cells with concurrent inhibition of protease-activated receptor (PAR-1) induction. The thrombin induction of endothelial CD40, endothelial integrin β3 and P-selectin, and monocytic CD40L was dampened by phloretin. Additionally, phloretin inhibited monocyte secretion of MCP-1, IL-6 and IL-8 responsible for pro-inflammatory activity of thrombin inducing endothelial CD40. The monocyte COX-2 induction and PGE2 secretion due to thrombin were down-regulated by phloretin, deterring endothelial CD40 expression. Thrombin promoted production of PAI-1 and tissue factor in monocytes was attenuated by phloretin through blocking PAR-1 and CD40. Thrombin up-regulated the induction of endothelial connective tissue growth factor independent of PAR-1 activation, which was reversed by phloretin. Phloretin disturbed tethering and stable adhesion of monocytes and platelets onto endothelium during increased thrombosis by thrombin. Phloretin would be a potent agent preventing thrombosis and atherosclerosis. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Thrombin-induced p38 mitogen-activated protein kinase activation is mediated by epidermal growth factor receptor transactivation pathway

    PubMed Central

    Kanda, Yasunari; Mizuno, Katsushige; Kuroki, Yasutomi; Watanabe, Yasuhiro

    2001-01-01

    Thrombin is a potent mitogen for vascular smooth muscle cells (VSMC) and has been implicated its pathogenic role in vascular remodelling. However, the signalling pathways by which thrombin mediates its mitogenic response are not fully understood.We have previously reported that thrombin activates p38 mitogen-activated protein kinase (p38 MAPK) by a tyrosine kinase-dependent mechanism, and that p38 MAPK has a role in thrombin-induced mitogenic response in rat VSMC.In the present study, we examine the involvement of epidermal growth factor (EGF) receptor in thrombin-induced p38 MAPK activation. We found that thrombin induced EGF receptor tyrosine phosphorylation (transactivation) in A10 cells, a clonal VSMC cell line. A selective inhibitor of EGF receptor kinase (AG1478) inhibited the p38 MAPK activation in a dose-dependent manner, whereas it had no effect on the response to platelet-derived growth factor (PDGF). EGF receptor phosphorylation induced by thrombin was inhibited by BAPTA-AM and GF109203X, which suggest a requirement for intracellular Ca2+ increase and protein kinase C.We next examined the effect of AG1478 on thrombin-induced DNA synthesis. AG1478 inhibited thrombin-induced DNA synthesis in a dose-dependent manner. In contrast, PDGF-induced DNA synthesis was not affected by AG1478.In conclusion, these data suggest that the EGF receptor transactivation and subsequent p38 MAPK activation is required for thrombin-induced proliferation of VSMC. PMID:11309236

  5. Thrombin-induced microglial activation impairs hippocampal neurogenesis and spatial memory ability in mice.

    PubMed

    Yang, Yuan; Zhang, Meikui; Kang, Xiaoni; Jiang, Chen; Zhang, Huan; Wang, Pei; Li, Jingjing

    2015-09-26

    To investigate the effects of microglia/macrophages activation induced by intrastriatal thrombin injection on dentate gyrus neurogenesis and spatial memory ability in mice. The male C57BL/6 mice were divided into 4 groups of 10: sham, intracerebral hemorrhage (ICH), ICH + hirudin (thrombin inhibitor), and ICH + indometacin (Indo, an anti-inflammation drug). ICH model was created by intrastriatal thrombin (1U) injection. BrdU (50 mg/kg) was administrated on the same day after surgery for 6 consecutive days. Motor functions were evaluated with rotarod and beam walking tests. The spatial memory deficit was measured with Morris water maze (MWM). Cell quantification was performed for doublecortin (DCX, immature neuron), BrdU (S-phase proliferating cell population) and CD68 (activated microglia/macrophage) immune-reactive cells. Microglia/macrophages activation induced by intrastriatal thrombin injection reduced hippocampal neurogenesis and impaired spatial memory ability, but did not affect the motor function at 3 and 5 days post-injury. Both hirudin and indometacin reduced microglia/macrophages activation, enhanced hippocampal neurogenesis, and improved spatial memory ability in mice. Microglia/macrophages activation induced by intrastriatal thrombin injection might be responsible for the spatial memory deficit. Targeting both thrombin and inflammation systems in acute phase of ICH might be important in alleviating the significant spatial memory deficits.

  6. Essential Role of Cofilin-1 in Regulating Thrombin-induced RelA/p65 Nuclear Translocation and Intercellular Adhesion Molecule 1 (ICAM-1) Expression in Endothelial Cells*

    PubMed Central

    Fazal, Fabeha; Bijli, Kaiser M.; Minhajuddin, Mohd; Rein, Theo; Finkelstein, Jacob N.; Rahman, Arshad

    2009-01-01

    Activation of RhoA/Rho-associated kinase (ROCK) pathway and the associated changes in actin cytoskeleton induced by thrombin are crucial for activation of NF-κB and expression of its target gene ICAM-1 in endothelial cells. However, the events acting downstream of RhoA/ROCK to mediate these responses remain unclear. Here, we show a central role of cofilin-1, an actin-binding protein that promotes actin depolymerization, in linking RhoA/ROCK pathway to dynamic alterations in actin cytoskeleton that are necessary for activation of NF-κB and thereby expression of ICAM-1 in these cells. Stimulation of human umbilical vein endothelial cells with thrombin resulted in Ser3 phosphorylation/inactivation of cofilin and formation of actin stress fibers in a ROCK-dependent manner. RNA interference knockdown of cofilin-1 stabilized the actin filaments and inhibited thrombin- and RhoA-induced NF-κB activity. Similarly, constitutively inactive mutant of cofilin-1 (Cof1-S3D), known to stabilize the actin cytoskeleton, inhibited NF-κB activity by thrombin. Overexpression of wild type cofilin-1 or constitutively active cofilin-1 mutant (Cof1-S3A), known to destabilize the actin cytoskeleton, also impaired thrombin-induced NF-κB activity. Additionally, depletion of cofilin-1 was associated with a marked reduction in ICAM-1 expression induced by thrombin. The effect of cofilin-1 depletion on NF-κB activity and ICAM-1 expression occurred downstream of IκBα degradation and was a result of impaired RelA/p65 nuclear translocation and consequently, RelA/p65 binding to DNA. Together, these data show that cofilin-1 occupies a central position in RhoA-actin pathway mediating nuclear translocation of RelA/p65 and expression of ICAM-1 in endothelial cells. PMID:19483084

  7. Essential role of cofilin-1 in regulating thrombin-induced RelA/p65 nuclear translocation and intercellular adhesion molecule 1 (ICAM-1) expression in endothelial cells.

    PubMed

    Fazal, Fabeha; Bijli, Kaiser M; Minhajuddin, Mohd; Rein, Theo; Finkelstein, Jacob N; Rahman, Arshad

    2009-07-31

    Activation of RhoA/Rho-associated kinase (ROCK) pathway and the associated changes in actin cytoskeleton induced by thrombin are crucial for activation of NF-kappaB and expression of its target gene ICAM-1 in endothelial cells. However, the events acting downstream of RhoA/ROCK to mediate these responses remain unclear. Here, we show a central role of cofilin-1, an actin-binding protein that promotes actin depolymerization, in linking RhoA/ROCK pathway to dynamic alterations in actin cytoskeleton that are necessary for activation of NF-kappaB and thereby expression of ICAM-1 in these cells. Stimulation of human umbilical vein endothelial cells with thrombin resulted in Ser(3) phosphorylation/inactivation of cofilin and formation of actin stress fibers in a ROCK-dependent manner. RNA interference knockdown of cofilin-1 stabilized the actin filaments and inhibited thrombin- and RhoA-induced NF-kappaB activity. Similarly, constitutively inactive mutant of cofilin-1 (Cof1-S3D), known to stabilize the actin cytoskeleton, inhibited NF-kappaB activity by thrombin. Overexpression of wild type cofilin-1 or constitutively active cofilin-1 mutant (Cof1-S3A), known to destabilize the actin cytoskeleton, also impaired thrombin-induced NF-kappaB activity. Additionally, depletion of cofilin-1 was associated with a marked reduction in ICAM-1 expression induced by thrombin. The effect of cofilin-1 depletion on NF-kappaB activity and ICAM-1 expression occurred downstream of IkappaBalpha degradation and was a result of impaired RelA/p65 nuclear translocation and consequently, RelA/p65 binding to DNA. Together, these data show that cofilin-1 occupies a central position in RhoA-actin pathway mediating nuclear translocation of RelA/p65 and expression of ICAM-1 in endothelial cells.

  8. Pulsatile equibiaxial stretch inhibits thrombin-induced RhoA and NF-{kappa}B activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haga, Jason H.; Kaunas, Roland; Radeff-Huang, Julie

    2008-07-18

    This study investigated interactions between the effects of mechanical stretch and thrombin on RhoA activation in rat aortic smooth muscle cells (RASMC). Equibiaxial, pulsatile stretch, or thrombin produced a significant increase in RhoA activation. Surprisingly, in combination, 30 min of stretch inhibited the ability of thrombin to activate RhoA. NO donors and 8-bromo-cGMP significantly inhibited thrombin-induced RhoA activation. Interestingly, the nitric oxide synthase (NOS) inhibitor L-NAME increased basal RhoA activity, suggesting that NOS activity exerts a tonic inhibition on RhoA. Stretching RASMC increases nitrite production, consistent with the idea that NO contributes to the inhibitory effects of stretch. Thrombin stimulatesmore » MAP kinase and NF-{kappa}B pathways through Rho and these responses were blocked by 8-bromo-cGMP or stretch and restored by L-NAME. These data suggest that stretch, acting through NO and cGMP, can prevent the ability of thrombin to stimulate Rho signaling pathways that contribute to pathophysiological proliferative and inflammatory responses.« less

  9. Retro-binding thrombin active site inhibitors: identification of an orally active inhibitor of thrombin catalytic activity.

    PubMed

    Iwanowicz, Edwin J; Kimball, S David; Lin, James; Lau, Wan; Han, W-C; Wang, Tammy C; Roberts, Daniel G M; Schumacher, W A; Ogletree, Martin L; Seiler, Steven M

    2002-11-04

    A series of retro-binding inhibitors of human alpha-thrombin was prepared to elucidate structure-activity relationships (SAR) and optimize in vivo performance. Compounds 9 and 11, orally active inhibitors of thrombin catalytic activity, were identified to be efficacious in a thrombin-induced lethality model in mice.

  10. Baicalin protects against thrombin induced cell injury in SH-SY5Y cells

    PubMed Central

    Ju, Xiao-Ning; Mu, Wei-Na; Liu, Yuan-Tao; Wang, Mei-Hong; Kong, Feng; Sun, Chao; Zhou, Qing-Bo

    2015-01-01

    Baicalin, an extract from the dried root of Scutellaria baicalensis Georgi, was shown to be neuroprotective. However, the precise mechanisms are incompletely known. In this study, we determined the effect of baicalin on thrombin induced cell injury in SH-SY5Y cells, and explored the possible mechanisms. SH-SY5Y cells was treated with thrombin alone or pre-treated with baicalin (5, 10, 20 μM) for 2 h followed by thrombin treatment. Cells without thrombin and baicalin treatment were used as controls. Cell viability was detected by MTT assay. Cell apoptosis was analyzed by flow cytometry. Real-time PCR was performed to determine the mRNA expression of protease-activated receptor-1 (PAR-1). Western blotting was conducted to determine the protein expression of PAR-1, Caspase-3 and NF-κB. Baicalin reduced cell death following thrombin treatment in a dose-dependent manner, with concomitant inhibition of NF-κB activation and suppression of PAR-1 expression. In addition, baicalin reduced Caspase-3 expression. The above findings indicated that baicalin prevents against cell injury after thrombin stimulation possibly through inhibition of PAR-1 expression and NF-κB activation. PMID:26823714

  11. Anticoagulants and the propagation phase of thrombin generation.

    PubMed

    Orfeo, Thomas; Gissel, Matthew; Butenas, Saulius; Undas, Anetta; Brummel-Ziedins, Kathleen E; Mann, Kenneth G

    2011-01-01

    The view that clot time-based assays do not provide a sufficient assessment of an individual's hemostatic competence, especially in the context of anticoagulant therapy, has provoked a search for new metrics, with significant focus directed at techniques that define the propagation phase of thrombin generation. Here we use our deterministic mathematical model of tissue-factor initiated thrombin generation in combination with reconstructions using purified protein components to characterize how the interplay between anticoagulant mechanisms and variable composition of the coagulation proteome result in differential regulation of the propagation phase of thrombin generation. Thrombin parameters were extracted from computationally derived thrombin generation profiles generated using coagulation proteome factor data from warfarin-treated individuals (N = 54) and matching groups of control individuals (N = 37). A computational clot time prolongation value (cINR) was devised that correlated with their actual International Normalized Ratio (INR) values, with differences between individual INR and cINR values shown to derive from the insensitivity of the INR to tissue factor pathway inhibitor (TFPI). The analysis suggests that normal range variation in TFPI levels could be an important contributor to the failure of the INR to adequately reflect the anticoagulated state in some individuals. Warfarin-induced changes in thrombin propagation phase parameters were then compared to those induced by unfractionated heparin, fondaparinux, rivaroxaban, and a reversible thrombin inhibitor. Anticoagulants were assessed at concentrations yielding equivalent cINR values, with each anticoagulant evaluated using 32 unique coagulation proteome compositions. The analyses showed that no anticoagulant recapitulated all features of warfarin propagation phase dynamics; differences in propagation phase effects suggest that anticoagulants that selectively target fXa or thrombin may

  12. Ethanol inhibits thrombin-induced secretion by human platelets at a site distinct from phospholipase C or protein kinase C.

    PubMed Central

    Benistant, C; Rubin, R

    1990-01-01

    Ethanol is known to inhibit the activation of platelets in response to several physiological agonists, but the mechanism of this action is unclear. The addition of physiologically relevant concentrations of ethanol (25-150 mM) to suspensions of washed human platelets resulted in the inhibition of thrombin-induced secretion of 5-hydroxy[14C]tryptamine. Indomethacin was included in the incubation buffer to prevent feedback amplification by arachidonic acid metabolites. Ethanol had no effect on the activation of phospholipase C by thrombin, as determined by the formation of inositol phosphates and the mobilization of intracellular Ca2+. Moreover, ethanol did not interfere with the thrombin-induced formation of diacylglycerol or phosphatidic acid. Stimulation of platelets with phorbol ester (5-50 nM) resulted in 5-hydroxy[14C]tryptamine release comparable with those with threshold doses of thrombin. However, ethanol did not inhibit phorbol-ester-induced secretion. Ethanol also did not interfere with thrombin- or phorbol-ester-induced phosphorylation of myosin light chain (20 kDa) or a 47 kDa protein, a known substrate for protein kinase C. By electron microscopy, ethanol had no effect on thrombin-induced shape change and pseudopod formation, but prevented granule centralization and fusion. The results indicate that ethanol does not inhibit platelet secretion by interfering with the activation of phosphoinositide-specific phospholipase C or protein kinase C by thrombin. Rather, the data demonstrate an inhibition of a Ca2(+)-mediated event such as granule centralization. Images p495-a PMID:2117442

  13. Dabigatran Etexilate Reduces Thrombin-Induced Inflammation and Thrombus Formation in Experimental Ischemic Stroke.

    PubMed

    Dittmeier, Melanie; Wassmuth, Kathrin; Schuhmann, Michael K; Kraft, Peter; Kleinschnitz, Christoph; Fluri, Felix

    2016-01-01

    Dabigatran etexilate (DE), a direct-acting, oral inhibitor of thrombin, significantly reduces the risk of stroke compared with traditional anticoagulants, without increasing the risk of major bleeding. However, studies on the fate of cerebral tissue after ischemic stroke in patients receiving DE are sparse and the role of dabigatran-mediated reduction of thrombin in this context has not yet been investigated. Here, we investigated whether pretreatment with DE reduces thrombin-mediated pro-inflammatory mechanisms and leakage of the blood-brain barrier (BBB) following ischemic stroke in rats. Male Wistar rats received DE (15 mg/kg) or a vehicle solution 1 hour before transient middle cerebral artery occlusion (tMCAO) for 90 minutes. Infarct volume, neurologic outcome and intracranial hemorrhage (ICH) were determined after tMCAO. Thrombin generation was indirectly assessed by measuring thrombin/antithrombin III complex. Microvascular patency was evaluated histologically. Cytokine expression and immunoreactivity of cluster of differentiation (CD) 68 were examined to characterize inflammatory processes after pretreatment with DE. BBB integrity was examined by quantifying brain edema. Rats given DE revealed a significant reduction in infarct size without an increase in ICH and significant recovery of neurologic deficits compared to controls. Administration of DE decreased thrombin generation and thrombus formation, dampened the CD68-immunoreactivity and attenuated pro-inflammatory cytokine expression in the cerebral parenchyma ipsilateral to the ischemic lesion. BBB permeability was unaltered following treatment with DE. In summary, prophylactic anticoagulation with DE improves stroke outcome by reducing thrombin-induced inflammation and thrombus formation without increasing the rate of ICH.

  14. Intracellular Ascorbate Prevents Endothelial Barrier Permeabilization by Thrombin*

    PubMed Central

    Parker, William H.; Qu, Zhi-chao; May, James M.

    2015-01-01

    Intracellular ascorbate (vitamin C) has previously been shown to tighten the endothelial barrier and maintain barrier integrity during acute inflammation in vitro. However, the downstream effectors of ascorbate in the regulation of endothelial permeability remain unclear. In this study, we evaluated ascorbate as a mediator of thrombin-induced barrier permeabilization in human umbilical vein endothelial cells and their immortalized hybridoma line, EA.hy926. We found that the vitamin fully prevented increased permeability to the polysaccharide inulin by thrombin in a dose-dependent manner, and it took effect both before and after subjection to thrombin. Thrombin exposure consumed intracellular ascorbate but not the endogenous antioxidant GSH. Likewise, the antioxidants dithiothreitol and tempol did not reverse permeabilization. We identified a novel role for ascorbate in preserving cAMP during thrombin stimulation, resulting in two downstream effects. First, ascorbate maintained the cortical actin cytoskeleton in a Rap1- and Rac1-dependent manner, thus preserving stable adherens junctions between adjacent cells. Second, ascorbate prevented actin polymerization and formation of stress fibers by reducing the activation of RhoA and phosphorylation of myosin light chain. Although ascorbate and thrombin both required calcium for their respective effects, ascorbate did not prevent thrombin permeabilization by obstructing calcium influx. However, preservation of cAMP by ascorbate was found to depend on both the production of nitric oxide by endothelial nitric-oxide synthase, which ascorbate is known to activate, and the subsequent generation cGMP by guanylate cyclase. Together, these data implicate ascorbate in the prevention of inflammatory endothelial barrier permeabilization and explain the underlying signaling mechanism. PMID:26152729

  15. Thrombin-induced phosphorylation of the regulatory light chain of myosin II in cultured bovine corneal endothelial cells.

    PubMed

    Satpathy, M; Gallagher, P; Lizotte-Waniewski, M; Srinivas, S P

    2004-10-01

    Phosphorylation of the regulatory light chain of myosin II (referred to as myosin light chain or MLC) leads to a loss of barrier integrity in cellular monolayers by an increase in the contractility of the cortical actin cytoskeleton. This effect has been examined in corneal endothelial (CE) cells. Experiments were performed using cultured bovine CE cells (BCEC). MLC phosphorylation was induced by a thrombin-mediated activation of the proteinase-activated receptor-1 (PAR-1). Expression of MLC kinase (MLCK), a Ca2+/calmodulin-dependent protein kinase that phosphorylates MLC at its Ser-19 and Thr-18 residues, was determined by RT-PCR and Western blotting. Expression of PAR-1, RhoA, and Rho kinase-1 (effector of RhoA) was ascertained by RT-PCR. MLC phosphorylation was assessed by urea-glycerol gel electrophoresis followed by immunoblotting. The effects of Rho kinase-1 and PKC were characterized by using their selective inhibitors, Y-27632 and chelerythrine, respectively. Reorganization of the cytoskeleton was evaluated by the phalloidin staining of actin. [Ca2+]i was measured using Fura-2. The barrier integrity was assayed as permeability of BCEC monolayers to horseradish peroxidase (HRP; 44 kDa). RT-PCR showed expression of MLCK, PAR-1, Rho kinase-1, and RhoA. Western blotting indicated expression of the non-muscle and smooth muscle isoforms of MLCK. Exposure to thrombin induced an increase in [Ca2+]i with the peak unaffected by an absence of extracellular Ca2+. Pre-exposure to thrombin (2 U ml(-1); 2 min) led to mono- and di-phosphorylation of MLC. Under both basal conditions and in the presence of thrombin, MLC phosphorylation was prevented by chelerythrine (10 microm) and Y-27632 (<25 microm). Thrombin led to inter-endothelial gaps secondary to the disruption of the cortical actin cytoskeleton, which under resting conditions was organized as a perijunctional actomyosin ring (PAMR). These responses were blocked by pre-treatment with Y-27632. Thrombin also increased

  16. Thrombin-receptor agonist peptides, in contrast to thrombin itself, are not full agonists for activation and signal transduction in human platelets in the absence of platelet-derived secondary mediators.

    PubMed Central

    Lau, L F; Pumiglia, K; Côté, Y P; Feinstein, M B

    1994-01-01

    Synthetic thrombin receptor peptides (TRPs), comprising the first 6-14 amino acids of the new N-terminus tethered ligand of the thrombin receptor that is generated by thrombin's proteolytic activity, were reported to activate platelets equally with thrombin itself and are considered to be full agonists [Vu et al. (1991) Cell 64, 1057-1068]. Using aspirin plus ADP-scavengers or the ADP-receptor antagonist adenosine 5'-[alpha-thio]triphosphate to prevent the secondary effects of the potent agonists that are normally released from stimulated platelets (i.e. ADP and thromboxane A2), we assessed the direct actions of thrombin and TRPs (i.e. TRP42-47 and TRP42-55). Compared with thrombin, under these conditions, TRPs: (1) failed to aggregate platelets completely; (2) produced less activation of glycoprotein (GP)IIb-IIIa; (3) did not cause association of GPIIb and pp60c-src with the cytoskeleton; and (4) caused less alpha-granule secretion, phosphorylation of cytoplasmic phospholipase A2, arachidonic acid release and phosphatidyl inositol (PtdOH) production. Furthermore, TRPs induced transient increases in protein phosphorylation mediated by protein kinase C and protein tyrosine phosphorylation, whereas these same responses to thrombin were greater and more sustained. Hirudin added after thrombin accelerated protein dephosphorylation, thereby mimicking the rate of spontaneous dephosphorylation seen after stimulation by TRPs. Platelets totally desensitized to very high concentrations of TRPs, by prior exposure to maximally effective concentrations of the peptides, remained responsive to alpha- and gamma-thrombins. Thrombin-stimulated PtdOH production in permeabilized platelets desensitized to TRPs was abolished by guanosine 5'-[beta-thio]diphosphate (GDP[beta S]), as in normal platelets. These results are discussed in terms of the allosteric Ternary Complex Model for G-protein linked receptors [Samama et al. (1993) J. Biol. Chem. 268, 4625-4636]. We conclude that: (1) TRPs

  17. Intracellular Ascorbate Prevents Endothelial Barrier Permeabilization by Thrombin.

    PubMed

    Parker, William H; Qu, Zhi-chao; May, James M

    2015-08-28

    Intracellular ascorbate (vitamin C) has previously been shown to tighten the endothelial barrier and maintain barrier integrity during acute inflammation in vitro. However, the downstream effectors of ascorbate in the regulation of endothelial permeability remain unclear. In this study, we evaluated ascorbate as a mediator of thrombin-induced barrier permeabilization in human umbilical vein endothelial cells and their immortalized hybridoma line, EA.hy926. We found that the vitamin fully prevented increased permeability to the polysaccharide inulin by thrombin in a dose-dependent manner, and it took effect both before and after subjection to thrombin. Thrombin exposure consumed intracellular ascorbate but not the endogenous antioxidant GSH. Likewise, the antioxidants dithiothreitol and tempol did not reverse permeabilization. We identified a novel role for ascorbate in preserving cAMP during thrombin stimulation, resulting in two downstream effects. First, ascorbate maintained the cortical actin cytoskeleton in a Rap1- and Rac1-dependent manner, thus preserving stable adherens junctions between adjacent cells. Second, ascorbate prevented actin polymerization and formation of stress fibers by reducing the activation of RhoA and phosphorylation of myosin light chain. Although ascorbate and thrombin both required calcium for their respective effects, ascorbate did not prevent thrombin permeabilization by obstructing calcium influx. However, preservation of cAMP by ascorbate was found to depend on both the production of nitric oxide by endothelial nitric-oxide synthase, which ascorbate is known to activate, and the subsequent generation cGMP by guanylate cyclase. Together, these data implicate ascorbate in the prevention of inflammatory endothelial barrier permeabilization and explain the underlying signaling mechanism. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Modeling thrombin generation: plasma composition based approach.

    PubMed

    Brummel-Ziedins, Kathleen E; Everse, Stephen J; Mann, Kenneth G; Orfeo, Thomas

    2014-01-01

    Thrombin has multiple functions in blood coagulation and its regulation is central to maintaining the balance between hemorrhage and thrombosis. Empirical and computational methods that capture thrombin generation can provide advancements to current clinical screening of the hemostatic balance at the level of the individual. In any individual, procoagulant and anticoagulant factor levels together act to generate a unique coagulation phenotype (net balance) that is reflective of the sum of its developmental, environmental, genetic, nutritional and pharmacological influences. Defining such thrombin phenotypes may provide a means to track disease progression pre-crisis. In this review we briefly describe thrombin function, methods for assessing thrombin dynamics as a phenotypic marker, computationally derived thrombin phenotypes versus determined clinical phenotypes, the boundaries of normal range thrombin generation using plasma composition based approaches and the feasibility of these approaches for predicting risk.

  19. Plasma membrane associated phospholipase C from human platelets: Synergistic stimulation of phosphatidylinositol 4,5-bisphosphate hydrolysis by thrombin and guanosine 5 prime -O-(3-thiotriphosphate)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldassare, J.J.; Henderson, P.A.; Fisher, G.J.

    1989-01-10

    The effects of thrombin and GTP{gamma}S on the hydrolysis of phosphoinositides by membrane-associated phospholipase C (PLC) from human platelets were examined with endogenous ({sup 3}H)inositol-labeled membranes or with lipid vesicles containing either ({sup 3}H)phosphatidylinositol or ({sup 3}H)phosphatidylinositol 4,5-bisphosphate. GTP{gamma}S (1 {mu}M) or thrombin (1 unit/mL) did not stimulate release of inositol trisphosphate (IP{sub 3}), inositol bisphosphate (IP{sub 2}), or inositol phosphate (IP) from ({sup 3}H)inositol-labeled membranes. IP{sub 2} and IP{sub 3}, but not IP, from ({sup 3}H)inositol-labeled membranes were, however, stimulated 3-fold by GTP{gamma}S (1 {mu}M) plus thrombin (1 unit/mL). A higher concentration of GTP{gamma}S (100 {mu}M) alone also stimulatedmore » IP{sub 2} and IP{sub 3}, but not IP, release. In the presence of 1 mM calcium, release of IP{sub 2} and IP{sub 3} was increased 6-fold over basal levels; however, formation of IP was not observed. At submicromolar calcium concentration, hydrolysis of exogenous phosphatidylinositol 4,5-bisphosphate (PIP{sub 2}) by platelet membrane associated PLC was also markedly enhanced by GTP{gamma}S (100 {mu}M) or GTP{gamma}S (1 {mu}M) plus thrombin (1 unit/mL). Under identical conditions, exogenous phosphatidylinositol (PI) was not hydrolyzed. The same substrate specificity was observed when the membrane-associated PLC was activated with 1 mM calcium. Thrombin-induced hydrolysis of PIP{sub 2} was inhibited by treatment of the membranes with pertussis toxin or pretreatment of intact platelets with 12-O-tetradecanoyl-13-acetate (TPA) prior to preparation of membranes. Pertussis toxin did not inhibit GTP{gamma}S (100 {mu}M) or calcium (1 mM) dependent PIP{sub 2} breakdown, while TPA inhibited GTP{gamma}S-dependent but not calcium-dependent phospholipase C activity.« less

  20. Key role of integrin α(IIb)β (3) signaling to Syk kinase in tissue factor-induced thrombin generation.

    PubMed

    van der Meijden, Paola E J; Feijge, Marion A H; Swieringa, Frauke; Gilio, Karen; Nergiz-Unal, Reyhan; Hamulyák, Karly; Heemskerk, Johan W M

    2012-10-01

    The fibrin(ogen) receptor, integrin α(IIb)β(3), has a well-established role in platelet spreading, aggregation and clot retraction. How α(IIb)β(3) contributes to platelet-dependent coagulation is less well resolved. Here, we demonstrate that the potent suppressing effect of clinically used α(IIb)β(3) blockers on tissue factor-induced thrombin generation is linked to diminished platelet Ca(2+) responses and phosphatidylserine (PS) exposure. The same blockers suppress these responses in platelets stimulated with collagen and thrombin receptor agonists, whereas added fibrinogen potentiates these responses. In platelets spreading on fibrinogen, outside-in α(IIb)β(3) signaling similarly enhances thrombin-induced Ca(2+) rises and PS exposure. These responses are reduced in α(IIb)β(3)-deficient platelets from patients with Glanzmann's thrombasthenia. Furthermore, the contribution of α(IIb)β(3) to tissue factor-induced platelet Ca(2+) rises, PS exposure and thrombin generation in plasma are fully dependent on Syk kinase activity. Tyrosine phosphorylation analysis confirms a key role of Syk activation, which is largely but not exclusively dependent on α(IIb)β(3) activation. It is concluded that the majority of tissue factor-induced procoagulant activity of platelets relies on Syk activation and ensuing Ca(2+) signal generation, and furthermore that a considerable part of Syk activation relies on α(IIb)β(3) signaling. These results hence point to a novel role of Syk in integrin-dependent thrombin generation.

  1. Cell death is induced by ciglitazone, a peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) agonist, independently of PPAR{gamma} in human glioma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Myoung Woo; Kim, Dae Seong; Kim, Hye Ryung

    Highlights: Black-Right-Pointing-Pointer Greater than 30 {mu}M ciglitazone induces cell death in glioma cells. Black-Right-Pointing-Pointer Cell death by ciglitazone is independent of PPAR{gamma} in glioma cells. Black-Right-Pointing-Pointer CGZ induces cell death by the loss of MMP via decreased Akt. -- Abstract: Peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) regulates multiple signaling pathways, and its agonists induce apoptosis in various cancer cells. However, their role in cell death is unclear. In this study, the relationship between ciglitazone (CGZ) and PPAR{gamma} in CGZ-induced cell death was examined. At concentrations of greater than 30 {mu}M, CGZ, a synthetic PPAR{gamma} agonist, activated caspase-3 and induced apoptosis inmore » T98G cells. Treatment of T98G cells with less than 30 {mu}M CGZ effectively induced cell death after pretreatment with 30 {mu}M of the PPAR{gamma} antagonist GW9662, although GW9662 alone did not induce cell death. This cell death was also observed when cells were co-treated with CGZ and GW9662, but was not observed when cells were treated with CGZ prior to GW9662. In cells in which PPAR{gamma} was down-regulated cells by siRNA, lower concentrations of CGZ (<30 {mu}M) were sufficient to induce cell death, although higher concentrations of CGZ ( Greater-Than-Or-Slanted-Equal-To 30 {mu}M) were required to induce cell death in control T98G cells, indicating that CGZ effectively induces cell death in T98G cells independently of PPAR{gamma}. Treatment with GW9662 followed by CGZ resulted in a down-regulation of Akt activity and the loss of mitochondrial membrane potential (MMP), which was accompanied by a decrease in Bcl-2 expression and an increase in Bid cleavage. These data suggest that CGZ is capable of inducing apoptotic cell death independently of PPAR{gamma} in glioma cells, by down-regulating Akt activity and inducing MMP collapse.« less

  2. Induction of HO-1 by carbon monoxide releasing molecule-2 attenuates thrombin-induced COX-2 expression and hypertrophy in primary human cardiomyocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chien, Peter Tzu-Yu; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan; Lin, Chih-Chung

    Carbon monoxide (CO) is one of the cytoprotective byproducts of heme oxygenase (HO)-1 and exerts anti-inflammatory action in various models. However, the detailed mechanisms underlying CO-induced HO-1 expression in primary human cardiomyocytes remain largely unidentified. We used primary left ventricle myocytes as a model and applied CO releasing molecule (CORM)-2 to investigate the relationship of CO and HO-1 expression. We herein used Western blot, real-time PCR, promoter activity and EIA to investigate the role of HO-1 expression protecting against thrombin-mediated responses. We found that thrombin-induced COX-2 expression, PGE{sub 2} release and cardiomyocyte hypertrophy markers (increase in ANF/BNP, α-actin expression andmore » cell surface area) was attenuated by pretreatment with CORM-2 which was partially reversed by hemoglobin (Hb) or ZnPP (an inhibitor of HO-1 activity), suggesting that HO-1/CO system may be of clinical importance to ameliorate heart failure through inhibition of inflammatory responses. CORM-2-induced HO-1 protein expression, mRNA and promoter was attenuated by pretreatment with the inhibitors of Pyk2 (PF431396), PDGFR (AG1296), PI3K (LY294002), Akt (SH-5), p38 (SB202530), JNK1/2 (SP600125), FoxO1 (AS1842856) and Sp1 (mithramycin A). The involvement of these signaling components was further confirmed by transfection with respective siRNAs, consistent with those of pharmacological inhibitors. These results suggested that CORM-2-induced HO-1 expression is mediated through a Pyk2/PDGFR/PI3K/Akt/FoxO1/Sp1-dependent manner and exerts a cytoprotective effect in human cardiomyocytes. - Graphical abstract: In summary, CORM-2 treatment induces Pyk2 transactivated PDGFR, which induces PI3K/Akt/MAPK activation, and then recruits Sp1/Foxo1 transcriptional factors to regulate HO-1 gene expression in primary human cardiomyocytes. - Highlights: • CORM-2 induces HO-1 expression. • Pyk2-dependent PDGFR activates PI3K/Akt/MAPK pathway in CORM-2

  3. Glycoprotein Ib activation by thrombin stimulates the energy metabolism in human platelets

    PubMed Central

    Corona de la Peña, Norma; Gutiérrez-Aguilar, Manuel; Hernández-Reséndiz, Ileana; Marín-Hernández, Álvaro

    2017-01-01

    Thrombin-induced platelet activation requires substantial amounts of ATP. However, the specific contribution of each ATP-generating pathway i.e., oxidative phosphorylation (OxPhos) versus glycolysis and the biochemical mechanisms involved in the thrombin-induced activation of energy metabolism remain unclear. Here we report an integral analysis on the role of both energy pathways in human platelets activated by several agonists, and the signal transducing mechanisms associated with such activation. We found that thrombin, Trap-6, arachidonic acid, collagen, A23187, epinephrine and ADP significantly increased glycolytic flux (3–38 times vs. non-activated platelets) whereas ristocetin was ineffective. OxPhos (33 times) and mitochondrial transmembrane potential (88%) were increased only by thrombin. OxPhos was the main source of ATP in thrombin-activated platelets, whereas in platelets activated by any of the other agonists, glycolysis was the principal ATP supplier. In order to establish the biochemical mechanisms involved in the thrombin-induced OxPhos activation in platelets, several signaling pathways associated with mitochondrial activation were analyzed. Wortmannin and LY294002 (PI3K/Akt pathway inhibitors), ristocetin and heparin (GPIb inhibitors) as well as resveratrol, ATP (calcium-release inhibitors) and PP1 (Tyr-phosphorylation inhibitor) prevented the thrombin-induced platelet activation. These results suggest that thrombin activates OxPhos and glycolysis through GPIb-dependent signaling involving PI3K and Akt activation, calcium mobilization and protein phosphorylation. PMID:28817667

  4. Fibrinogen Bastia (gamma 318 Asp-->Tyr) a novel abnormal fibrinogen characterized by defective fibrin polymerization.

    PubMed

    Lounes, K C; Soria, C; Valognes, A; Turchini, M F; Soria, J; Koopman, J

    1999-12-01

    A new congenital dysfibrinogen, Fibrinogen Bastia, was discovered in a 20-year-old woman with no clinical symptoms. The plasma thrombin-clotting time was severely prolonged. The functional plasma fibrinogen concentration was low (0.2 mg/ml), whereas the immunological concentration was normal (2.9 mg/ml). Purified fibrinogen Bastia displayed a markedly prolonged thrombin-clotting time related to a delayed thrombin-induced fibrin polymerization. Both the thrombin-clotting time and the fibrin polymerization were partially corrected by the addition of calcium ions. The anomaly of fibrinogen Bastia was found to be located in the gamma-chain since by SDS-PAGE performed according to the method of Laemmli two gamma-chains were detected, one normal and one with an apparently lower molecular weight. Furthermore, analysis of plasmin degradation products demonstrated that calcium ions only partially protect fibrinogen Bastia gamma-chain against plasmin digestion, suggesting that the anomaly is located in the C-terminal part of the gamma-chain. Sequence analysis of PCR-amplified genomic DNA fragments of the propositus demonstrated a single base substitution (G-->T) in the exon VIII of the gamma chain gene, resulting in the amino acid substitution 318 Asp (GAC)-->Tyr (TAC). The PCR clones were recloned and 50% of them contained the mutation, indicating that the patient was heterozygous. These data indicate that residue Asp 318 is important for normal fibrin polymerization and the protective effect of calcium ions against plasmin degradation of the C-terminal part of the gamma-chain.

  5. Mitochondria-dependent and -independent mechanisms in tumour necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis are both regulated by interferon-gamma in human breast tumour cells.

    PubMed Central

    Ruiz-Ruiz, Carmen; López-Rivas, Abelardo

    2002-01-01

    Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL/APO-2L) induces apoptosis in a variety of tumour cells upon binding to death receptors TRAIL-R1 and TRAIL-R2. Here we describe the sensitization by interferon (IFN)-gamma to TRAIL-induced apoptosis in the breast tumour cell lines MCF-7 and MDA-MB231. IFN-gamma promoted TRAIL-mediated activation of caspase-8, Bcl-2 interacting domain death agonist (Bid) degradation, Bcl-2-associated X protein (Bax) translocation to mitochondria, cytochrome c release to the cytosol and activation of caspase-9 in these cell lines. No changes in the expression of TRAIL receptors were observed upon IFN-gamma treatment. Overexpression of Bcl-2 in MCF-7 cells completely inhibited IFN-gamma-induced sensitization to TRAIL-mediated cell death. Interestingly, TRAIL-induced apoptosis was also clearly enhanced by IFN-gamma in caspase-3-overexpressing MCF-7 cells, in the absence of Bax translocation to mitochondria and cytochrome c release to the cytosol. In summary, our results suggest that IFN-gamma facilitates TRAIL-induced activation of mitochondria-regulated as well as mitochondria-independent apoptotic pathways in breast tumour cells. PMID:11936954

  6. Critical Role for CD38-mediated Ca2+ Signaling in Thrombin-induced Procoagulant Activity of Mouse Platelets and Hemostasis*

    PubMed Central

    Mushtaq, Mazhar; Nam, Tae-Sik; Kim, Uh-Hyun

    2011-01-01

    CD38, a multifunctional enzyme that catalyzes the synthesis of intracellular Ca2+ messengers, cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP), is known to be expressed on platelets. However, the role of CD38 in platelets remains unclear. Our present results show that treatment of platelets with thrombin results in a rapid and sustained Ca2+ signal, resulting from a coordinated interplay of Ca2+-mobilizing messengers, inositol 1,4,5-trisphosphate, cADPR, and NAADP. By dissecting the signaling pathway using various agents, we delineated that cADPR and NAADP are sequentially produced through CD38 internalization by protein kinase C via myosin heavy chain IIA following phospholipase C activation in thrombin-induced platelets. An inositol 1,4,5-trisphosphate receptor antagonist blocked the thrombin-induced formation of cADPR and NAADP as well as Ca2+ signals. An indispensable response of platelets relying on cytosolic calcium is the surface exposure of phosphatidylserine (PS), which implicates platelet procoagulant activity. Scrutinizing this parameter reveals that CD38+/+ platelets fully express PS on the surface when stimulated with thrombin, whereas this response was decreased on CD38−/− platelets. Similarly, PS exposure and Ca2+ signals were attenuated when platelets were incubated with 8-bromo-cADPR, bafilomycin A1, and a PKC inhibitor. Furthermore, in vivo, CD38-deficient mice exhibited longer bleeding times and unstable formation of thrombus than wild type mice. These results demonstrate that CD38 plays an essential role in thrombin-induced procoagulant activity of platelets and hemostasis via Ca2+ signaling mediated by its products, cADPR and NAADP. PMID:21339289

  7. Synergism between thrombin and adrenaline (epinephrine) in human platelets. Marked potentiation of inositol phospholipid metabolism.

    PubMed Central

    Steen, V M; Tysnes, O B; Holmsen, H

    1988-01-01

    We have studied synergism between adrenaline (epinephrine) and low concentrations of thrombin in gel-filtered human platelets prelabelled with [32P]Pi. Suspensions of platelets, which did not contain added fibrinogen, were incubated at 37 degrees C to measure changes in the levels of 32P-labelled phosphatidylinositol 4,5-bisphosphate (PIP2), phosphatidylinositol 4-phosphate (PIP) and phosphatidate (PA), aggregation and dense-granule secretion after stimulation. Adrenaline alone (3.5-4.0 microM) did not cause a change in any parameter (phosphoinositide metabolism, aggregation and dense-granule secretion), but markedly enhanced the thrombin-induced responses over a narrow range of thrombin concentrations (0.03-0.08 units/ml). The thrombin-induced hydrolysis of inositol phospholipids by phospholipase C, which was measured as the formation of [32P]PA, was potentiated by adrenaline, as was the increase in the levels of [32P]PIP2 and [32P]PIP. The presence of adrenaline caused a shift to the left for the thrombin-induced changes in the phosphoinositide metabolism, without affecting the maximal levels of 32P-labelled compounds obtained. A similar shift by adrenaline in the dose-response relationship was previously demonstrated for thrombin-induced aggregation and dense-granule secretion. Also, the narrow range of concentrations of thrombin over which adrenaline potentiates thrombin-induced platelet responses is the same for changes in phosphoinositide metabolism and physiological responses (aggregation and dense-granule secretion). Our observations clearly indicate that adrenaline directly or indirectly influences thrombin-induced changes in phosphoinositide metabolism. PMID:2845924

  8. Spirostanol saponins and esculin from Rusci rhizoma reduce the thrombin-induced hyperpermeability of endothelial cells.

    PubMed

    Barbič, M; Willer, E A; Rothenhöfer, M; Heilmann, J; Fürst, R; Jürgenliemk, G

    2013-06-01

    Rusci rhizoma extracts are traditionally used against chronic venous disorders (CVD). To determine the effect of its secondary plant metabolites on the endothelium, phenolic compounds and saponins from Butcher's broom were isolated from a methanolic extract, and their activity on the thrombin-induced hyperpermeability of human microvascular endothelial cells (HMEC-1) was investigated in vitro. In addition to the six known spirostanol saponins deglucoruscin (5), 22-O-methyl-deglucoruscoside (6), deglucoruscoside (7), ruscin (8), ruscogenin-1-O-(α-l-rhamnopyranosyl-(1→2)-β-d-galactopyranoside (9) and 1-O-sulpho-ruscogenin (10), three new spirostanol derivatives were isolated and identified: 3'-O-acetyl-4'-O-sulphodeglucoruscin (1), 4'-O-(2-hydroxy-3-methylpentanoyl)-deglucoruscin (2) and 4'-O-acetyl-deglucoruscin (3). Furthermore, the coumarin esculin (4), which is also prominently present in other medicinal plants used in the treatment of CVD, was isolated for the first time from Rusci rhizoma. Five of the isolated steroid derivatives (2, 5, 8, 9 and 10) and esculin (4) were tested for their ability to reduce the thrombin-induced hyperpermeability of endothelial cells in vitro, and the results were compared to those of the aglycone neoruscogenin (11). The latter compound showed a slight but concentration-dependent reduction in hyperpermeability to 71.8% at 100μM. The highest activities were observed for the spirostanol saponins 5 and 8 and for esculin (4) at 10μM, and these compounds resulted in a reduction of the thrombin-induced hyperpermeability to 41.9%, 42.6% and 53.3%, respectively. For 2, 5 and 8, the highest concentration tested (100μM) resulted in a drastic increase of the thrombin effect. The effect of esculin observed at a concentration of 10μM was diminished at 100μM. These in vitro data provide insight into the pharmacological mechanism by which the genuine spirostanol saponins and esculin can contribute to the efficacy of Butcher's broom

  9. Thrombin mediated transcriptional regulation using DNA aptamers in DNA based cell free protein synthesis

    PubMed Central

    Iyer, Sukanya

    2013-01-01

    Realizing the potential of cell free systems will require development of ligand sensitive gene promoters that control gene expression in response to a ligand of interest. Here, we describe an approach to designing ligand sensitive transcriptional control in cell free systems that is based on the combination of a DNA aptamer that binds thrombin and the T7 bacteriophage promoter. Placement of the aptamer near the T7 promoter, and using a primarily single stranded template, results in up to a five-fold change in gene expression in a ligand concentration dependent manner. We further demonstrate that the sensitivity to thrombin concentration and the fold change in expression can be tuned by altering the position of the aptamer. The results described here pave the way for the use of DNA aptamers to achieve modular regulation of transcription in response to a wide variety of ligands in cell free systems. PMID:24059754

  10. Thrombin selectively engages LIM kinase 1 and slingshot-1L phosphatase to regulate NF-κB activation and endothelial cell inflammation

    PubMed Central

    Leonard, Antony; Marando, Catherine; Rahman, Arshad

    2013-01-01

    Endothelial cell (EC) inflammation is a central event in the pathogenesis of many pulmonary diseases such as acute lung injury and its more severe form acute respiratory distress syndrome. Alterations in actin cytoskeleton are shown to be crucial for NF-κB regulation and EC inflammation. Previously, we have described a role of actin binding protein cofilin in mediating cytoskeletal alterations essential for NF-κB activation and EC inflammation. The present study describes a dynamic mechanism in which LIM kinase 1 (LIMK1), a cofilin kinase, and slingshot-1Long (SSH-1L), a cofilin phosphatase, are engaged by procoagulant and proinflammatory mediator thrombin to regulate these responses. Our data show that knockdown of LIMK1 destabilizes whereas knockdown of SSH-1L stabilizes the actin filaments through modulation of cofilin phosphorylation; however, in either case thrombin-induced NF-κB activity and expression of its target genes (ICAM-1 and VCAM-1) is inhibited. Further mechanistic analyses reveal that knockdown of LIMK1 or SSH-1L each attenuates nuclear translocation and thereby DNA binding of RelA/p65. In addition, LIMK1 or SSH-1L depletion inhibited RelA/p65 phosphorylation at Ser536, a critical event conferring transcriptional competency to the bound NF-κB. However, unlike SSH-1L, LIMK1 knockdown also impairs the release of RelA/p65 by blocking IKKβ-dependent phosphorylation/degradation of IκBα. Interestingly, LIMK1 or SSH-1L depletion failed to inhibit TNF-α-induced RelA/p65 nuclear translocation and proinflammatory gene expression. Thus this study provides evidence for a novel role of LIMK1 and SSH-1L in selectively regulating EC inflammation associated with intravascular coagulation. PMID:24039253

  11. Thrombin selectively engages LIM kinase 1 and slingshot-1L phosphatase to regulate NF-κB activation and endothelial cell inflammation.

    PubMed

    Leonard, Antony; Marando, Catherine; Rahman, Arshad; Fazal, Fabeha

    2013-11-01

    Endothelial cell (EC) inflammation is a central event in the pathogenesis of many pulmonary diseases such as acute lung injury and its more severe form acute respiratory distress syndrome. Alterations in actin cytoskeleton are shown to be crucial for NF-κB regulation and EC inflammation. Previously, we have described a role of actin binding protein cofilin in mediating cytoskeletal alterations essential for NF-κB activation and EC inflammation. The present study describes a dynamic mechanism in which LIM kinase 1 (LIMK1), a cofilin kinase, and slingshot-1Long (SSH-1L), a cofilin phosphatase, are engaged by procoagulant and proinflammatory mediator thrombin to regulate these responses. Our data show that knockdown of LIMK1 destabilizes whereas knockdown of SSH-1L stabilizes the actin filaments through modulation of cofilin phosphorylation; however, in either case thrombin-induced NF-κB activity and expression of its target genes (ICAM-1 and VCAM-1) is inhibited. Further mechanistic analyses reveal that knockdown of LIMK1 or SSH-1L each attenuates nuclear translocation and thereby DNA binding of RelA/p65. In addition, LIMK1 or SSH-1L depletion inhibited RelA/p65 phosphorylation at Ser(536), a critical event conferring transcriptional competency to the bound NF-κB. However, unlike SSH-1L, LIMK1 knockdown also impairs the release of RelA/p65 by blocking IKKβ-dependent phosphorylation/degradation of IκBα. Interestingly, LIMK1 or SSH-1L depletion failed to inhibit TNF-α-induced RelA/p65 nuclear translocation and proinflammatory gene expression. Thus this study provides evidence for a novel role of LIMK1 and SSH-1L in selectively regulating EC inflammation associated with intravascular coagulation.

  12. Adrenaline potentiates PI 3-kinase in platelets stimulated with thrombin and SFRLLN: role of secreted ADP.

    PubMed

    Selheim, F; Frøyset, A K; Strand, I; Vassbotn, F S; Holmsen, H

    2000-11-17

    Adrenaline significantly potentiated late thrombin- and SFRLLN-induced PtdIns(3,4)P(2) production. Furthermore, the potentiating effect of adrenaline on thrombin-induced PtdIns(3, 4)P(2) production was independent on secreted ADP, whereas, the effect of adrenaline on SFRLLN-induced PtdIns(3,4)P(2) production was completely dependent of secreted ADP. However, the ADP-dependent accumulation of PtdIns(3,4)P(2) was not required for irreversible platelet aggregation induced by SFRLLN in the presence of adrenaline. It is concluded that adrenaline can replace secreted ADP to potentiate PtdIns(3,4)P(2) production in thrombin-stimulated but not in SFRLLN-stimulated platelets, thus demonstrating a qualitative difference between platelet stimulation by thrombin and the thrombin receptor activating peptide SFRLLN.

  13. Carbonic anhydrase III regulates peroxisome proliferator-activated receptor-{gamma}2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitterberger, Maria C.; Kim, Geumsoo; Rostek, Ursula

    2012-05-01

    Carbonic anhydrase III (CAIII) is an isoenzyme of the CA family. Because of its low specific anhydrase activity, physiological functions in addition to hydrating CO{sub 2} have been proposed. CAIII expression is highly induced in adipogenesis and CAIII is the most abundant protein in adipose tissues. The function of CAIII in both preadipocytes and adipocytes is however unknown. In the present study we demonstrate that adipogenesis is greatly increased in mouse embryonic fibroblasts (MEFs) from CAIII knockout (KO) mice, as demonstrated by a greater than 10-fold increase in the induction of fatty acid-binding protein-4 (FABP4) and increased triglyceride formation inmore » CAIII{sup -/-} MEFs compared with CAIII{sup +/+} cells. To address the underlying mechanism, we investigated the expression of the two adipogenic key regulators, peroxisome proliferator-activated receptor-{gamma}2 (PPAR{gamma}2) and CCAAT/enhancer binding protein-{alpha}. We found a considerable (approximately 1000-fold) increase in the PPAR{gamma}2 expression in the CAIII{sup -/-} MEFs. Furthermore, RNAi-mediated knockdown of endogenous CAIII in NIH 3T3-L1 preadipocytes resulted in a significant increase in the induction of PPAR{gamma}2 and FABP4. When both CAIII and PPAR{gamma}2 were knocked down, FABP4 was not induced. We conclude that down-regulation of CAIII in preadipocytes enhances adipogenesis and that CAIII is a regulator of adipogenic differentiation which acts at the level of PPAR{gamma}2 gene expression. -- Highlights: Black-Right-Pointing-Pointer We discover a novel function of Carbonic anhydrase III (CAIII). Black-Right-Pointing-Pointer We show that CAIII is a regulator of adipogenesis. Black-Right-Pointing-Pointer We demonstrate that CAIII acts at the level of PPAR{gamma}2 gene expression. Black-Right-Pointing-Pointer Our data contribute to a better understanding of the role of CAIII in fat tissue.« less

  14. Evidence for a hyperglycaemia-dependent decrease of antithrombin III-thrombin complex formation in humans.

    PubMed

    Ceriello, A; Giugliano, D; Quatraro, A; Marchi, E; Barbanti, M; Lefèbvre, P

    1990-03-01

    In the presence of increased levels of fibrinopeptide A, decreased antithrombin III biological activity, and thrombin-antithrombin III complex levels are seen in diabetic patients. Induced-hyperglycaemia in diabetic and normal subjects decreased antithrombin III activity and thrombin-antithrombin III levels, and increased fibrinopeptide A plasma levels, while antithrombin III concentration did not change; heparin was shown to reduced these phenomena. In diabetic patients, euglycaemia induced by insulin infusion restored antithrombin III activity, thrombin-antithrombin III complex and fibrinopeptide A concentrations; heparin administration had the same effects. These data stress the role of a hyperglycaemia-dependent decrease of antithrombin III activity in precipitating thrombin hyperactivity in diabetes mellitus.

  15. Kinetic modeling sheds light on the mode of action of recombinant factor VIIa on thrombin generation.

    PubMed

    Mitrophanov, Alexander Y; Reifman, Jaques

    2011-10-01

    The therapeutic potential of a hemostatic agent can be assessed by investigating its effects on the quantitative parameters of thrombin generation. For recombinant activated factor VII (rFVIIa)--a promising hemostasis-inducing biologic--experimental studies addressing its effects on thrombin generation yielded disparate results. To elucidate the inherent ability of rFVIIa to modulate thrombin production, it is necessary to identify rFVIIa-induced effects that are compatible with the available biochemical knowledge about thrombin generation mechanisms. The existing body of knowledge about coagulation biochemistry can be rigorously represented by a computational model that incorporates the known reactions and parameter values constituting the biochemical network. We used a thoroughly validated numerical model to generate activated factor VII (FVIIa) titration curves in the cases of normal blood composition, hemophilia A and B blood, blood lacking factor VII, blood lacking tissue factor pathway inhibitor, and diluted blood. We utilized the generated curves to perform systematic fold-change analyses for five quantitative parameters characterizing thrombin accumulation. The largest fold changes induced by increasing FVIIa concentration were observed for clotting time, thrombin peak time, and maximum slope of the thrombin curve. By contrast, thrombin peak height was much less affected by FVIIa titrations, and the area under the thrombin curve stayed practically unchanged. Comparisons with experimental data demonstrated that the computationally derived patterns can be observed in vitro. rFVIIa modulates thrombin generation primarily by accelerating the process, without significantly affecting the total amount of generated thrombin. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Kinetic Modeling Sheds Light on the Mode of Action of Recombinant Factor VIIa on Thrombin Generation

    DTIC Science & Technology

    2011-01-01

    Regular Article Kinetic modeling sheds light on the mode of action of recombinant factor VIIa on thrombin generation Alexander Y. Mitrophanov...its effects on the quantitative parameters of thrombin generation. For recombinant activated factor VII (rFVIIa) ― a promising hemostasis-inducing...modulate thrombin production , it is necessary to identify rFVIIa-induced effects that are compatible with the available biochemical knowledge about

  17. Activation of PAR-1/NADPH oxidase/ROS signaling pathways is crucial for the thrombin-induced sFlt-1 production in extravillous trophoblasts: possible involvement in the pathogenesis of preeclampsia.

    PubMed

    Huang, Qi-Tao; Chen, Jian-Hong; Hang, Li-Lin; Liu, Shi-San; Zhong, Mei

    2015-01-01

    Preeclampsia was characterized by excessive thrombin generation in placentas and previous researches showed that thrombin could enhance soluble Fms-like tyrosine kinase 1 (sFlt-1) expression in first trimester trophoblasts. However, the detailed mechanism for the sFlt-1 over-production induced by thrombin was largely unknown. The purpose of this study was to explore the possible signaling pathway of thrombin-induced sFlt-1 production in extravillous trophoblasts (EVT). An EVT cell line (HRT-8/SVneo) was treated with various concentrations of thrombin. The mRNA expression and protein secretion of sFlt-1 in EVT were detected with real-time polymerase chain reaction and ELISA, respectively. The levels of intracellular reactive oxygen species (ROS) production were determined by DCFH-DA. Exposure of EVT to thrombin induced increased intracellular ROS generation and overexpression of sFlt-1 at both mRNA and protein levels in a dose dependent manner. Short interfering RNA (siRNA) directed against PAR-1 or apocynin (an inhibitor of NADPH oxidase) could decrease the intracellular ROS generation and subsequently suppressed the production of sFlt-1 at mRNA and protein levels. Our results suggested that thrombin increased sFlt-1 production in EVT via the PAR-1 /NADPH oxidase /ROS signaling pathway. This also highlights the PAR-1 / NADPH oxidase / ROS pathway might be a potential therapeutic target for the prevention of preeclampsia in the future. © 2015 S. Karger AG, Basel.

  18. Thrombostatin FM compounds: direct thrombin inhibitors - mechanism of action in vitro and in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nieman, M T; Burke, F; Warnock, M

    2008-04-29

    Novel pentapeptides called Thrombostatin FM compounds consisting mostly of D-isomers and unusual amino acids were prepared based upon the stable angiotensin converting enzyme breakdown product of bradykinin - RPPGF. These peptides are direct thrombin inhibitors prolonging the thrombin clotting time, activated partial thromboplastin time, and prothrombin time at ≥0.78, 1.6, and 1.6 μm, respectively. They competitively inhibit α-thrombin-induced cleavage of a chromogenic substrate at 4.4--8.2 μm. They do not significantly inhibit plasma kallikrein, factor (F) XIIa, FXIa, FIXa, FVIIa-TF, FXa, plasmin or cathepsin G. One form, FM19 [rOicPaF(p-Me)], blocks α-thrombin-induced calcium flux in fibroblasts with an IC 50 of 6.9more » ± 1.2 μm. FM19 achieved 100% inhibition of threshold α- or γ-thrombin-induced platelet aggregation at 8.4 ± 4.7 μm and 16 ± 4 μm, respectively. The crystal structure of thrombin in complex with FM19 shows that the N-terminal D-Arg retrobinds into the S1 pocket, its second residue Oic interacts with His-57, Tyr-60a and Trp-60d, and its C-terminal p-methyl Phe engages thrombin's aryl binding site composed of Ile-174, Trp-215, and Leu-99. When administered intraperitoneal, intraduodenal, or orally to mice, FM19 prolongs thrombin clotting times and delays carotid artery thrombosis. FM19, a low affinity reversible direct thrombin inhibitor, might be useful as an add-on agent to address an unmet need in platelet inhibition in acute coronary syndromes in diabetics and others who with all current antiplatelet therapy still have reactive platelets.« less

  19. New synthetic thrombin inhibitors: molecular design and experimental verification.

    PubMed

    Sinauridze, Elena I; Romanov, Alexey N; Gribkova, Irina V; Kondakova, Olga A; Surov, Stepan S; Gorbatenko, Aleksander S; Butylin, Andrey A; Monakov, Mikhail Yu; Bogolyubov, Alexey A; Kuznetsov, Yuryi V; Sulimov, Vladimir B; Ataullakhanov, Fazoyl I

    2011-01-01

    The development of new anticoagulants is an important goal for the improvement of thromboses treatments. The design, synthesis and experimental testing of new safe and effective small molecule direct thrombin inhibitors for intravenous administration. Computer-aided molecular design of new thrombin inhibitors was performed using our original docking program SOL, which is based on the genetic algorithm of global energy minimization in the framework of a Merck Molecular Force Field. This program takes into account the effects of solvent. The designed molecules with the best scoring functions (calculated binding energies) were synthesized and their thrombin inhibitory activity evaluated experimentally in vitro using a chromogenic substrate in a buffer system and using a thrombin generation test in isolated plasma and in vivo using the newly developed model of hemodilution-induced hypercoagulation in rats. The acute toxicities of the most promising new thrombin inhibitors were evaluated in mice, and their stabilities in aqueous solutions were measured. New compounds that are both effective direct thrombin inhibitors (the best K(I) was <1 nM) and strong anticoagulants in plasma (an IC(50) in the thrombin generation assay of approximately 100 nM) were discovered. These compounds contain one of the following new residues as the basic fragment: isothiuronium, 4-aminopyridinium, or 2-aminothiazolinium. LD(50) values for the best new inhibitors ranged from 166.7 to >1111.1 mg/kg. A plasma-substituting solution supplemented with one of the new inhibitors prevented hypercoagulation in the rat model of hemodilution-induced hypercoagulation. Activities of the best new inhibitors in physiological saline (1 µM solutions) were stable after sterilization by autoclaving, and the inhibitors remained stable at long-term storage over more than 1.5 years at room temperature and at 4°C. The high efficacy, stability and low acute toxicity reveal that the inhibitors that were developed

  20. Concizumab, an anti-tissue factor pathway inhibitor antibody, induces increased thrombin generation in plasma from haemophilia patients and healthy subjects measured by the thrombin generation assay.

    PubMed

    Waters, E K; Sigh, J; Friedrich, U; Hilden, I; Sørensen, B B

    2017-09-01

    Concizumab, a humanized monoclonal antibody against tissue factor pathway inhibitor (TFPI), is being developed as a subcutaneously (s.c.) administered treatment for haemophilia. It demonstrated a concentration-dependent procoagulant effect in functional TFPI assays; however, global haemostatic assays, such as the thrombin generation assay (TGA), offer a more complete picture of coagulation. We investigated how concizumab affects thrombin generation following ex vivo spiking in plasma from haemophilia patients using the TGA, and if the assay can detect the effect of multiple s.c. concizumab doses in healthy subjects. For the ex vivo spiking study, platelet-poor plasma (PPP) from 18 patients with severe haemophilia was spiked with 0.001-500 nm concizumab. For the multiple-dosing study, four healthy males received concizumab 250 μg kg -1 s.c. every other day for eight doses; blood was collected before and after dosing and processed into PPP. In both studies, thrombin generation was measured using a Calibrated Automated Thrombogram ® system with 1 pm tissue factor. In spiked samples from haemophilia patients, peak thrombin and endogenous thrombin potential (ETP) increased concentration dependently, reaching near-normal levels at concizumab concentrations >10 nm. Repeated s.c. doses of concizumab in healthy subjects increased both peak thrombin and ETP; these effects were sustained throughout the dosing interval. Thrombin generation assay demonstrated increased thrombin generation with concizumab after ex vivo spiking of haemophilia plasma and multiple s.c. doses in healthy subjects, supporting both the utility of the TGA in evaluating concizumab treatment and the potential of s.c. concizumab as a novel haemophilia therapy. © 2017 The Authors. Haemophilia Published by John Wiley & Sons Ltd.

  1. Evaluation of Potential Thrombin Inhibitors from the White Mangrove (Laguncularia racemosa (L.) C.F. Gaertn.)

    PubMed Central

    Rodrigues, Caroline Fabri Bittencourt; Gaeta, Henrique Hessel; Belchor, Mariana Novo; Ferreira, Marcelo José Pena; Pinho, Marcus Vinícius Terashima; de Oliveira Toyama, Daniela; Toyama, Marcos Hikari

    2015-01-01

    The aim of this work was to verify the effects of methanol (MeOH) and hydroalcoholic (HA) extracts and their respective partition phases obtained from white mangrove (Laguncularia racemosa (L.) C.F. Gaertn.) leaves on human thrombin activity. Among the extracts and phases tested, only the ethyl acetate and butanolic partitions significantly inhibited human thrombin activity and the coagulation of plasma in the presence of this enzyme. Chromatographic analyses of the thrombin samples incubated with these phases revealed that different compounds were able to interact with thrombin. The butanolic phase of the MeOH extract had the most potent inhibitory effects, reducing enzymatic activity and thrombin-induced plasma coagulation. Two glycosylated flavonoids in this partition were identified as the most potent inhibitors of human thrombin activity, namely quercetin-3-O-arabinoside (QAra) and quercetin-3-O-rhamnoside (Qn). Chromatographic analyses of thrombin samples incubated with these flavonoids demonstrated the chemical modification of this enzyme, suggesting that the MeOH extract contained other compounds that both induced structural changes in thrombin and diminished its activity. In this article, we show that despite the near absence of the medical use of mangrove compounds, this plant contains natural compounds with potential therapeutic applications. PMID:26197325

  2. Thrombin like activity of Asclepias curassavica L. latex: action of cysteine proteases.

    PubMed

    Shivaprasad, H V; Rajesh, R; Nanda, B L; Dharmappa, K K; Vishwanath, B S

    2009-05-04

    To validate the scientific basis of plant latex to stop bleeding on fresh cuts. Cysteine protease(s) from Asclepias curassavica (Asclepiadaceae) plant latex was assessed for pro-coagulant and thrombin like activities. A waxy material from the latex of Asclepias curassavica latex was removed by freezing and thawing. The resulted latex enzyme fraction was assayed for proteolytic activity using denatured casein as substrate. Its coagulant activity and thrombin like activity were determined using citrated plasma and pure fibrinogen, respectively. Inhibition studies were performed using specific protease inhibitors to know the type of protease. The latex enzyme fraction exhibited strong proteolytic activity when compared to trypsin and exerted pro-coagulant action by reducing plasma clotting time from 195 to 58 s whereas trypsin reduced clotting time marginally from 195 to 155 s. The pro-coagulant activity of this enzyme fraction was exerted by selectively hydrolyzing A alpha and B beta subunits of fibrinogen to form fibrin clot when pure fibrinogen was used as substrate as assessed by fibrinogen-agarose plate method and fibrinogen polymerization assay. Trypsin failed to induce any fibrin clot under similar conditions. The electrophoretic pattern of latex enzyme fraction-induced fibrin clot was very much similar to that of thrombin-induced fibrin clot and mimic thrombin like action. The proteolytic activity including thrombin like activity of Asclepias curassavica latex enzyme fraction was completely inhibited by iodoaceticacid (IAA). Cysteine proteases from Asclepias curassavica latex exhibited strong pro-coagulant action and were found to be specific in its action (Thrombin like). This could be the basis for the use of plant latex in pharmacological applications that justify their use as folk medicine.

  3. Critical role of non-muscle myosin light chain kinase in thrombin-induced endothelial cell inflammation and lung PMN infiltration.

    PubMed

    Fazal, Fabeha; Bijli, Kaiser M; Murrill, Matthew; Leonard, Antony; Minhajuddin, Mohammad; Anwar, Khandaker N; Finkelstein, Jacob N; Watterson, D Martin; Rahman, Arshad

    2013-01-01

    The pathogenesis of acute lung injury (ALI) involves bidirectional cooperation and close interaction between inflammatory and coagulation pathways. A key molecule linking coagulation and inflammation is the procoagulant thrombin, a serine protease whose concentration is elevated in plasma and lavage fluids of patients with ALI and acute respiratory distress syndrome (ARDS). However, little is known about the mechanism by which thrombin contributes to lung inflammatory response. In this study, we developed a new mouse model that permits investigation of lung inflammation associated with intravascular coagulation. Using this mouse model and in vitro approaches, we addressed the role of non-muscle myosin light chain kinase (nmMLCK) in thrombin-induced endothelial cell (EC) inflammation and lung neutrophil (PMN) infiltration. Our in vitro experiments revealed a key role of nmMLCK in ICAM-1 expression by its ability to control nuclear translocation and transcriptional capacity of RelA/p65 in EC. When subjected to intraperitoneal thrombin challenge, wild type mice showed a marked increase in lung PMN infiltration via expression of ICAM-1. However, these responses were markedly attenuated in mice deficient in nmMLCK. These results provide mechanistic insight into lung inflammatory response associated with intravascular coagulation and identify nmMLCK as a critical target for modulation of lung inflammation.

  4. Critical Role of Non-Muscle Myosin Light Chain Kinase in Thrombin-Induced Endothelial Cell Inflammation and Lung PMN Infiltration

    PubMed Central

    Fazal, Fabeha; Bijli, Kaiser M.; Murrill, Matthew; Leonard, Antony; Minhajuddin, Mohammad; Anwar, Khandaker N.; Finkelstein, Jacob N.; Watterson, D. Martin; Rahman, Arshad

    2013-01-01

    The pathogenesis of acute lung injury (ALI) involves bidirectional cooperation and close interaction between inflammatory and coagulation pathways. A key molecule linking coagulation and inflammation is the procoagulant thrombin, a serine protease whose concentration is elevated in plasma and lavage fluids of patients with ALI and acute respiratory distress syndrome (ARDS). However, little is known about the mechanism by which thrombin contributes to lung inflammatory response. In this study, we developed a new mouse model that permits investigation of lung inflammation associated with intravascular coagulation. Using this mouse model and in vitro approaches, we addressed the role of non-muscle myosin light chain kinase (nmMLCK) in thrombin-induced endothelial cell (EC) inflammation and lung neutrophil (PMN) infiltration. Our in vitro experiments revealed a key role of nmMLCK in ICAM-1 expression by its ability to control nuclear translocation and transcriptional capacity of RelA/p65 in EC. When subjected to intraperitoneal thrombin challenge, wild type mice showed a marked increase in lung PMN infiltration via expression of ICAM-1. However, these responses were markedly attenuated in mice deficient in nmMLCK. These results provide mechanistic insight into lung inflammatory response associated with intravascular coagulation and identify nmMLCK as a critical target for modulation of lung inflammation. PMID:23555849

  5. Histaminergic regulation of interferon-gamma (IFN-gamma) production by human natural killer (NK) cells.

    PubMed

    Asea, A; Hansson, M; Czerkinsky, C; Houze, T; Hermodsson, S; Strannegård, O; Hellstrand, K

    1996-08-01

    Monocytes, recovered from human peripheral blood by counter-current centrifugal elutriation, effectively inhibit the production of IFN-gamma by CD3-/56+ NK cells in response to IL-2. This study aimed at defining the nature of the inhibitory signal, particularly the importance of monocyte-derived reactive metabolites of oxygen. It was found that monocytes recovered from patients with chronic granulomatous disease (CGD), a condition characterized by deficient NADPH-oxidase activity of phagocytes, did not inhibit IFN-gamma production by NK cells. Further, catalase, a scavenger of hydrogen peroxide, completely reversed the inhibitory signal whereas scavengers of the superoxide anion, hypohalous acids, the hydroxyl radical, or nitric oxide synthesis inhibitors such as L-NMMA were ineffective. Inhibition of IFN-gamma production was operating on a pretranslational level, as indicated by the inability of enriched NK cells to accumulate IFN-gamma mRNA in the presence of elutriated monocytes. Hydrogen peroxide, at micromolar concentrations, reconstituted the inhibition of IFN-gamma production when added to enriched NK cells. Histamine, a biogenic amine which inhibits the generation of reactive oxygen metabolites in monocytes, abrogated the inhibition of IFN-gamma production in NK cells; by this mechanism, histamine strongly synergized with IL-2 to induce IFN-gamma in mixtures of NK cells and monocytes. The synergizing effect of histamine was specifically mediated by H2-type histamine receptors. We conclude that: (i) the induction of IFN-gamma mRNA in NK cells is effectively down-regulated by products of the oxidative metabolism of monocytes; and (ii) histamine effectively enhances IFN-gamma production by preventing monocyte-induced oxidative damage to NK cells.

  6. Identification of berberine as a direct thrombin inhibitor from traditional Chinese medicine through structural, functional and binding studies

    NASA Astrophysics Data System (ADS)

    Wang, Xing; Zhang, Yuxin; Yang, Ying; Wu, Xia; Fan, Hantian; Qiao, Yanjiang

    2017-03-01

    Thrombin acts as a key enzyme in the blood coagulation cascade and represents a potential drug target for the treatment of several cardiovascular diseases. The aim of this study was to identify small-molecule direct thrombin inhibitors from herbs used in traditional Chinese medicine (TCM). A pharmacophore model and molecular docking were utilized to virtually screen a library of chemicals contained in compositions of traditional Chinese herbs, and these analyses were followed by in vitro bioassay validation and binding studies. Berberine (BBR) was first confirmed as a thrombin inhibitor using an enzymatic assay. The BBR IC50 value for thrombin inhibition was 2.92 μM. Direct binding studies using surface plasmon resonance demonstrated that BBR directly interacted with thrombin with a KD value of 16.39 μM. Competitive binding assay indicated that BBR could bind to the same argartroban/thrombin interaction site. A platelet aggregation assay demonstrated that BBR had the ability to inhibit thrombin-induced platelet aggregation in washed platelets samples. This study proved that BBR is a direct thrombin inhibitor that has activity in inhibiting thrombin-induced platelet aggregation. BBR may be a potential candidate for the development of safe and effective thrombin-inhibiting drugs.

  7. Thrombin stimulates increased plasminogen activator inhibitor-1 release from liver compared to lung endothelium.

    PubMed

    Huebner, Benjamin R; Moore, Ernest E; Moore, Hunter B; Gonzalez, Eduardo; Kelher, Marguerite R; Sauaia, Angela; Banerjee, Anirban; Silliman, Christopher C

    2018-05-01

    Plasminogen activator inhibitor-1 (PAI-1) is a major regulator of the fibrinolytic system, covalently binding to tissue plasminogen activator and blocking its activity. Fibrinolysis shutdown is evident in the majority of severely injured patients in the first 24 h and is thought to be due to PAI-1. The source of this PAI-1 is thought to be predominantly endothelial cells, but there are known organ-specific differences, with higher levels thought to be in the liver. Thrombin generation is also elevated in injured patients and is a potent stimulus for PAI-1 release in human umbilical endothelial cells. We hypothesize that thrombin induces liver endothelial cells to release increased amounts of PAI-1, versus pulmonary endothelium, consisting of both stored PAI-1 and a larger contribution from de novo PAI-1 synthesis. Human liver sinusoidal endothelial cells (LSECs) and human microvascular lung endothelial cells (HMVECs) were stimulated in vitro ± thrombin (1 and 5 IU/mL) for 15-240 min, the supernatants were collected, and PAI-1 was measured by enzyme-linked immunosorbent assays. To elucidate the PAI-1 contribution from storage versus de novo synthesis, cycloheximide (10 μg/mL) was added before thrombin in separate experiments. While both LSECs and HMVECs rapidly stimulated PAI-1 release, LSECs released more PAI-1 than HMVECs in response to high-dose thrombin, whereas low-dose thrombin did not provoke immediate release. LSECs continued to release PAI-1 over the ensuing 240 min, whereas HMVECs did not. Cycloheximide did not inhibit early PAI-1 release from LSECs but did at the later time points (30-240 min). Thrombin elicits increased amounts of PAI-1 release from liver endothelium compared with lung, with a small presynthesized stored contribution and a later, larger increase in PAI-1 release via de novo synthesis. This study suggests that the liver may be an important therapeutic target for inhibition of the hypercoagulable surgical patient and the

  8. Regulation of PPAR{gamma} function by TNF-{alpha}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye Jianping

    2008-09-26

    The nuclear receptor PPAR{gamma} is a lipid sensor that regulates lipid metabolism through gene transcription. Inhibition of PPAR{gamma} activity by TNF-{alpha} is involved in pathogenesis of insulin resistance, atherosclerosis, inflammation, and cancer cachexia. PPAR{gamma} activity is regulated by TNF-{alpha} at pre-translational and post-translational levels. Activation of serine kinases including IKK, ERK, JNK, and p38 may be involved in the TNF-regulation of PPAR{gamma}. Of the four kinases, IKK is a dominant signaling molecule in the TNF-regulation of PPAR{gamma}. IKK acts through at least two mechanisms: inhibition of PPAR{gamma} expression and activation of PPAR{gamma} corepressor. In this review article, literature is reviewedmore » with a focus on the mechanisms of PPAR{gamma} inhibition by TNF-{alpha}.« less

  9. Bombesin and thrombin affect discrete pools of intracellular calcium through different G-proteins.

    PubMed

    Wang, J L; Kalyanaraman, S; Vivo, M D; Gautam, N

    1996-11-15

    In mouse NIH 3T3 cells, the mitogens bombesin and thrombin induced Ca2+ release from intracellular stores. Ca2+ release induced by bombesin was inhibited by the Ca(2+)-ATPase inhibitor thapsigargin, while Ca2+ release induced by thrombin was unaffected by this agent. The Ca(2+)-release response to bombesin was not affected by pertussis toxin, but the response to thrombin was abolished by the toxin. Stable transfectants overexpressing the G-protein subunit type alpha 9 showed an accentuated response to bombesin, indicating that the bombesin receptor was coupled to a Gq-like G-protein. Together, these results show that the two mitogenic receptors are coupled to distinct G-proteins that affect functionally different pools of Ca2+. Organization of signalling pathways in this manner may allow cells to differentially encode information from different signals.

  10. Bombesin and thrombin affect discrete pools of intracellular calcium through different G-proteins.

    PubMed Central

    Wang, J L; Kalyanaraman, S; Vivo, M D; Gautam, N

    1996-01-01

    In mouse NIH 3T3 cells, the mitogens bombesin and thrombin induced Ca2+ release from intracellular stores. Ca2+ release induced by bombesin was inhibited by the Ca(2+)-ATPase inhibitor thapsigargin, while Ca2+ release induced by thrombin was unaffected by this agent. The Ca(2+)-release response to bombesin was not affected by pertussis toxin, but the response to thrombin was abolished by the toxin. Stable transfectants overexpressing the G-protein subunit type alpha 9 showed an accentuated response to bombesin, indicating that the bombesin receptor was coupled to a Gq-like G-protein. Together, these results show that the two mitogenic receptors are coupled to distinct G-proteins that affect functionally different pools of Ca2+. Organization of signalling pathways in this manner may allow cells to differentially encode information from different signals. PMID:8947471

  11. Thrombin enhances herpes simplex virus infection of cells involving protease-activated receptor 1.

    PubMed

    Sutherland, M R; Friedman, H M; Pryzdial, E L G

    2007-05-01

    We have previously shown that the surface of purified herpes family viruses can initiate thrombin production by expressing host-encoded and virus-encoded procoagulant factors. These enable the virus to bypass the normal cell-regulated mechanisms for initiating coagulation, and provide a link between infection and vascular disease. In the current study we investigated why these viruses may have evolved to generate thrombin. Using cytolytic viral plaque assays, the current study examines the effect of thrombin on human umbilical vein endothelial cell (HUVEC) or human foreskin fibroblast (HFF) infection by purified herpes simplex virus type 1 (HSV1) and type 2 (HSV2). Demonstrating that the availability of thrombin is an advantage to the virus, purified thrombin added to serum-free inoculation media resulted in up to a 3-fold enhancement of infection depending on the virus strain and cell type. The effect of thrombin on HUVEC infection was generally greater than its effect on HFF. To illustrate the involvement of thrombin produced during inoculation, hirudin was shown to inhibit the infection of each HSV strain, but only when serum containing clotting factors for thrombin production was present in media. The involvement of protease-activated receptor 1 (PAR1) was supported using PAR1-activating peptides in place of thrombin and PAR1-specific antibodies to inhibit the effects of thrombin. These data show that HSV1 and HSV2 initiate thrombin production to increase the susceptibility of cells to infection through a mechanism involving PAR1-mediated cell modulation.

  12. Mechanisms of pertussis toxin-induced barrier dysfunction in bovine pulmonary artery endothelial cell monolayers.

    PubMed

    Patterson, C E; Stasek, J E; Schaphorst, K L; Davis, H W; Garcia, J G

    1995-06-01

    We have previously characterized several G proteins in endothelial cells (EC) as substrates for the ADP-ribosyltransferase activity of both pertussis (PT) and cholera toxin and described the modulation of key EC physiological responses, including gap formation and barrier function, by these toxins. In this study, we investigated the mechanisms involved in PT-mediated regulation of bovine pulmonary artery endothelial cells barrier function. PT caused a dose-dependent increase in albumin transfer, dependent upon action of the holotoxin, since neither the heat-inactivated PT, the isolated oligomer, nor the protomer induced EC permeability. PT-induced gap formation and barrier dysfunction were additive to either thrombin- or thrombin receptor-activating peptide-induced permeability, suggesting that thrombin and PT utilize distinct mechanisms. PT did not result in Ca2+ mobilization or alter either basal or thrombin-induced myosin light chain phosphorylation. However, PT stimulated protein kinase C (PKC) activation, and both PKC downregulation and PKC inhibition attenuated PT-induced permeability, indicating that PKC activity is involved in PT-induced barrier dysfunction. Like thrombin-induced permeability, the PT effect was blocked by prior increases in adenosine 3',5'-cyclic monophosphate. Thus PT-catalyzed ADP-ribosylation of a G protein (possibly other than Gi) may regulate cytoskeletal protein interactions, leading to EC barrier dysfunction.

  13. Thrombin Receptors and Protease-Activated Receptor-2 in Human Placentation

    PubMed Central

    O’Brien, Peter J.; Koi, Hideki; Parry, Samuel; Brass, Lawrence F.; Strauss, Jerome F.; Wang, Li-Peng; Tomaszewski, John E.; Christenson, Lane K.

    2003-01-01

    Proteolysis of the thrombin receptor, protease activated receptor-1 (PAR1), may enhance normal and pathological cellular invasion, and indirect evidence suggests that activation of PAR1 expressed by invasive extravillous trophoblasts (EVTs) influences human placentation. Here we describe PAR1, PAR2, and PAR3 protein distribution in the developing human placenta and implicate PAR1 and PAR2 activation in functions central to EVT invasion. PAR1, PAR2, and PAR3 are expressed in cultured 8- to 13-week-old EVTs, and in situ in 18- to 20-week-old placental syncytiotrophoblasts and invasive trophoblasts. Thrombin, but not the PAR2 agonist peptide SLIGKV, inhibited proliferation in cultured EVTs, although both agonists stimulated phosphoinositide hydrolysis and EVT invasion through Matrigel barriers. Thrombin-induced phosphoinositide hydrolysis was completely inhibited and the thrombin effect on proliferation was prevented when PAR1 cleavage was first blocked with specific monoclonal antibodies, indicating that PAR1 is the predominant thrombin receptor on EVTs. Together these results support a role for PAR1, and potentially PAR2 and PAR3 in the invasive phase of human placentation. PMID:14507634

  14. Thrombin specificity. Requirement for apolar amino acids adjacent to the thrombin cleavage site of polypeptide substrate.

    PubMed

    Chang, J Y

    1985-09-02

    alpha-Thrombin cleavage of 30 polypeptide hormones and their derivatives were analysed by quantitative amino-terminal analysis. The polypeptides included secretin, vasoactive intestinal polypeptide, cholecystokinin fragment, dynorphin A, somatostatins, gastrin-releasing peptide, calcitonins and human parathyroid hormone fragment. Most of them were selected mainly on the ground that they contain sequence structures homologous to the well known tripeptide substrates of alpha-thrombin. All selected polypeptides have one single major cleavage site and both Arg-Xaa and Lys-Xaa bonds were found to be selectively cleaved by alpha-thrombin. Under fixed conditions (1 nmol polypeptide/0.5 NIH unit alpha-thrombin in 20 microliters of 50 mM ammonium bicarbonate at 25 degrees C), the time required for 50% cleavage ranges from less than 1 min to longer than 24 h. Heparin invariably enhanced thrombin cleavage on all polypeptide analysed. The optimum cleavage site for alpha-thrombin has the structures of (a) P4-P3-Pro-Arg-P1'-P2', where P3 and P4 are hydrophobic amino acid and P1', P2' are nonacidic amino acids and (b) P2-Arg-P1', where P2 or P1' are Gly. The requirement for hydrophobic P3 and P4 was further demonstrated by the drastic decrease of thrombin cleavage rates in both gastrin-releasing peptide and calcitonins after chemical removal of hydrophobic P3 and P4 residues. The requirement for nonacidic P1' and P2' residues was demonstrated by the drastic increase of thrombin cleavage rates in both calcitonin and parathyroid hormone fragments, after specific chemical modification of acidic P1' and P2' residues. These findings confirm the importance of hydrophobic P2-P4 residues for thrombin specificity and provide new evidence to indicate that apolar P1' and P2' residues are also crucial for thrombin specificity. It is concluded that specific cleavage of polypeptides by alpha-thrombin can be reasonably predicted and that chemical modification can be a useful tool in enhancing

  15. Selective albumin-binding surfaces modified with a thrombin-inhibiting peptide.

    PubMed

    Freitas, Sidónio C; Maia, Sílvia; Figueiredo, Ana C; Gomes, Paula; Pereira, Pedro J B; Barbosa, Mário A; Martins, M Cristina L

    2014-03-01

    Blood-contacting medical devices have been associated with severe clinical complications, such as thrombus formation, triggered by the activation of the coagulation cascade due to the adsorption of certain plasma proteins on the surface of biomaterials. Hence, the coating of such surfaces with antithrombotic agents has been used to increase biomaterial haemocompatibility. Biomaterial-induced clotting may also be decreased by albumin adsorption from blood plasma in a selective and reversible way, since this protein is not involved in the coagulation cascade. In this context, this paper reports that the immobilization of the thrombin inhibitor D-Phe-Pro-D-Arg-D-Thr-CONH2 (fPrt) onto nanostructured surfaces induces selective and reversible adsorption of albumin, delaying the clotting time when compared to peptide-free surfaces. fPrt, synthesized with two glycine residues attached to the N-terminus (GGfPrt), was covalently immobilized onto self-assembled monolayers (SAMs) having different ratios of carboxylate-hexa(ethylene glycol)- and tri(ethylene glycol)-terminated thiols (EG6-COOH/EG3) that were specifically designed to control GGfPrt orientation, exposure and density at the molecular level. In solution, GGfPrt was able to inactivate the enzymatic activity of thrombin and to delay plasma clotting time in a concentration-dependent way. After surface immobilization, and independently of its concentration, GGfPrt lost its selectivity to thrombin and its capacity to inhibit thrombin enzymatic activity against the chromogenic substrate n-p-tosyl-Gly-Pro-Arg-p-nitroanilide. Nevertheless, surfaces with low concentrations of GGfPrt could delay the capacity of adsorbed thrombin to cleave fibrinogen. In contrast, GGfPrt immobilized in high concentrations was found to induce the procoagulant activity of the adsorbed thrombin. However, all surfaces containing GGfPrt have a plasma clotting time similar to the negative control (empty polystyrene wells), showing resistance to

  16. Time-dependent inhibitory effects of cGMP-analogues on thrombin-induced platelet-derived microparticles formation, platelet aggregation, and P-selectin expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nygaard, Gyrid; Department of Biomedicine, University of Bergen, Bergen; Herfindal, Lars

    Highlights: • We investigated the impact of cyclic nucleotide analogues on platelet activation. • Different time dependence were found for inhibition of platelet activation. • Additive effect was found using PKA- and PKG-activating analogues. • Our results may explain some of the discrepancies reported for cNMP signalling. - Abstract: In platelets, nitric oxide (NO) activates cGMP/PKG signalling, whereas prostaglandins and adenosine signal through cAMP/PKA. Cyclic nucleotide signalling has been considered to play an inhibitory role in platelets. However, an early stimulatory effect of NO and cGMP-PKG signalling in low dose agonist-induced platelet activation have recently been suggested. Here, we investigatedmore » whether different experimental conditions could explain some of the discrepancy reported for platelet cGMP-PKG-signalling. We treated gel-filtered human platelets with cGMP and cAMP analogues, and used flow cytometric assays to detect low dose thrombin-induced formation of small platelet aggregates, single platelet disappearance (SPD), platelet-derived microparticles (PMP) and thrombin receptor agonist peptide (TRAP)-induced P-selectin expression. All four agonist-induced platelet activation phases were blocked when platelets were costimulated with the PKG activators 8-Br-PET-cGMP or 8-pCPT-cGMP and low-doses of thrombin or TRAP. However, extended incubation with 8-Br-PET-cGMP decreased its inhibition of TRAP-induced P-selectin expression in a time-dependent manner. This effect did not involve desensitisation of PKG or PKA activity, measured as site-specific VASP phosphorylation. Moreover, PKG activators in combination with the PKA activator Sp-5,6-DCL-cBIMPS revealed additive inhibitory effect on TRAP-induced P-selectin expression. Taken together, we found no evidence for a stimulatory role of cGMP/PKG in platelets activation and conclude rather that cGMP/PKG signalling has an important inhibitory function in human platelet activation.« less

  17. Formation of PI 3-kinase products in platelets by thrombin, but not collagen, is dependent on synergistic autocrine stimulation, particularly through secreted ADP.

    PubMed

    Selheim, F; Idsøe, R; Fukami, M H; Holmsen, H; Vassbotn, F S

    1999-10-05

    Platelet activation by thrombin or collagen results in secretion and synthesis of several platelet agonists that enhance the responses to the primary agonists (autocrine stimulation). To disclose the effects of thrombin and collagen on the phosphorylation of 3-phosphoinositides per se we incubated platelets with five inhibitors of platelet autocrine stimulation (IAS) that act extracellularly. We found that IAS almost totally blocked thrombin-induced production of phosphatidylinositol 3,4-bisphosphate [PtdIns(3,4)P(2)] and phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P(3)]. In contrast, collagen induced massive production of PtdIns(3,4)P(2) and PtdIns(3,4,5)P(3) in the presence of IAS. When testing the effect of each inhibitor individually we found the strongest inhibition of thrombin-induced PtdIns(3,4)P(2) production with the ADP scavenger system CP/CPK. Furthermore, we found a strong synergistic effect between exogenously added ADP and thrombin on production of PtdIns(3,4)P(2). In contrast to the results from 3-phosphorylated phosphoinositides, CP/CPK had little effect on thrombin-induced protein tyrosine phosphorylation. Our results show the importance of autocrine stimulation in thrombin-induced accumulation of 3-phosphorylated phosphoinositides and raise the question as to whether thrombin by itself is capable of inducing PI 3-K activation. In marked contrast to thrombin, collagen per se appears to be able to trigger increased production of PtdIns(3,4)P(2) and PtdIns(3,4,5)P(3). Copyright 1999 Academic Press.

  18. Dabigatran affects thrombin-dependent platelet aggregation after a week-long therapy.

    PubMed

    Sokol, Juraj; Nehaj, Frantisek; Ivankova, Jela; Mokan, Michal; Mokan, Marian; Stasko, Jan

    2018-05-29

    Dabigatran is a direct thrombin inhibitor. As the main adverse event is bleeding, it is relevant whether dabigatran has additional effects on platelet function. If so, it could affect the bleeding risk. We aimed to assess in vitro aggregation in patients with atrial fibrillation (AF) receiving dabigatran. We evaluated 32 AF patients treated with dabigatran (study group) and 18 non-anticoagulated non-AF blood donors (control group). We assessed light transmittance platelet aggregation (LTA) with 100 nmol/L γ-thrombin in both groups. The LTA was performed at two time-points in our dabigatran group of patients. The thrombin-induced platelet aggregation was significantly lower two hours after dabigatran was taken compared to baseline measurement (9% ± 6% vs. 29% ± 21%) in our study group. Moreover, we observed that the baseline value of platelet aggregation in patients on dabigatran treatment was significantly lower compared to healthy volunteers (29% ± 21% vs. 89 ± 8). However, one subanalysis showed that this significant reduction in platelet aggregation at baseline was only observed in patients who received dabigatran for over a week. The thrombin-induced platelet aggregation is reduced in non-valvular AF patients receiving dabigatran after a week-long therapy.

  19. Low-dose gamma-ray irradiation induces translocation of Nrf2 into nuclear in mouse macrophage RAW264.7 cells.

    PubMed

    Tsukimoto, Mitsutoshi; Tamaishi, Nana; Homma, Takujiro; Kojima, Shuji

    2010-01-01

    The transcription factor nuclear erythroid-derived 2-related factor 2 (Nrf2) regulates expression of genes encoding antioxidant proteins involved in cellular redox homeostasis, while gamma-ray irradiation is known to induce reactive oxygen species in vivo. Although activation of Nrf2 by various stresses has been studied, it has not yet been determined whether ionizing irradiation induces activation of Nrf2. Therefore, we investigated activation of Nrf2 in response to gamma-irradiation in mouse macrophage RAW264.7 cells. Irradiation of cells with gamma-rays induced an increase of Nrf2 expression. Even 0.1 Gy of gamma-irradiation induced a translocation of Nrf2 from cytoplasm to the nucleus, indicating the activation of Nrf2 by low-dose irradiation. Expression of heme oxygenase-1, which is regulated by Nrf2, was also increased at 24 h after irradiation with more than 0.1 Gy of gamma-rays. Furthermore, the activation of Nrf2 was suppressed by U0126, which is an inhibitor of the extracellular signal regulated protein kinase 1/2 (ERK1/2) pathway, suggesting involvement of ERK1/2-dependent pathway in the irradiation-induced activation of Nrf2. Our results indicate that low-dose gamma-irradiation induces activation of Nrf2 through ERK1/2-dependent pathways.

  20. Interferon-gamma inhibits HIV-induced invasiveness of monocytes.

    PubMed

    Dhawan, S; Wahl, L M; Heredia, A; Zhang, Y; Epstein, J S; Meltzer, M S; Hewlett, I K

    1995-12-01

    HIV-infected monocytes form highly invasive network on basement membrane matrix and secrete high levels of 92-kd metalloproteinase (MMP-9), an enzyme that degrades basement membrane proteins. In the present study, using matrigel as a model basement membrane system, we demonstrate that treatment of human immunodeficiency virus (HIV)-infected monocytes with interferon-gamma at 50 U/ml inhibited the ability of infected monocytes to form an invasive network on matrigel and their invasion through the matrigel matrix. These effects were associated with a significant reduction in the levels of MMP-9 produced by HIV-infected monocytes treated with interferon-gamma 1 day prior to infection with HIV as compared with that of untreated HIV-infected monocytes. Monocytes treated with interferon-gamma 1 day after HIV infection showed the presence of integrated HIV sequences; however, the levels of MMP-9 were substantially lower than those produced by monocytes inoculated with live HIV, heat-inactivated HIV, or even the control uninfected monocytes. Exposure of monocytes to heat-inactivated HIV did not result in increased invasiveness or high MMP-9 production, suggesting that regulation of metalloproteinase by monocytes was independent of CD4-gp120 interactions and required active virus infection. Furthermore, addition of interferon-gamma to monocytes on day 10 after infection inhibited MMP-9 production by more than threefold with no significant reduction of virus replication. These results indicate that the mechanism of interferon-gamma-induced down-regulation of MMP-9 levels and reduced monocyte invasiveness may be mediated by a mechanism independent of antiviral activity of IFN-gamma in monocytes. Down-regulation of MMP-9 in HIV-infected monocytes by interferon-gamma may play an important role in the control of HIV pathogenesis.

  1. Anti-inflammatory and anti-fibrinolytic effects of thrombomodulin alfa through carboxypeptidase B2 in the presence of thrombin.

    PubMed

    Tawara, Shunsuke; Sakai, Takumi; Matsuzaki, Osamu

    2016-11-01

    Thrombomodulin (TM) alfa, a recombinant human soluble TM, enhances activation of pro-carboxypeptidase B2 (pro-CPB2) by thrombin. Activated pro-CPB2 (CPB2) exerts anti-inflammatory and anti-fibrinolytic activities. Therefore, TM alfa may also have anti-inflammatory and anti-fibrinolytic effects through CPB2. However, these effects of TM alfa have not been elucidated. In the present study, we investigated the effects of TM alfa on inactivation of complement component C5a as an anti-inflammatory effect and prolongation of clot lysis time as an anti-fibrinolytic effect via CPB2 in vitro. CPB2 activity and tissue factor-induced thrombin generation was examined by a chromogenic assay. C5a inactivation was evaluated by C-terminal cleavage of C5a and inhibition of C5a-induced human neutrophil migration. Clot lysis time prolongation was examined by a tissue-type plasminogen activator-induced clot lysis assay. CPB2 activity in human plasma was increased by TM alfa and thrombin in a concentration-dependent manner. TM alfa inhibited tissue factor-induced thrombin generation and enhanced pro-CPB2 activation in human plasma simultaneously. The mass spectrum of C5a treated with TM alfa, thrombin, and pro-CPB2 was decreased at 156m/z, indicating that TM alfa enhanced the processing of C5a to C-terminal-cleaved C5a, an inactive form of C5a. C5a-induced human neutrophil migration was decreased after C5a treatment with TM alfa, thrombin, and pro-CPB2. TM alfa prolonged the clot lysis time in human plasma, and this effect was completely abolished by addition of a CPB2 inhibitor. TM alfa exerts anti-inflammatory and anti-fibrinolytic effects through CPB2 in the presence of thrombin in vitro. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Homologous desensitization of HEL cell thrombin receptors. Distinguishable roles for proteolysis and phosphorylation.

    PubMed

    Brass, L F

    1992-03-25

    , but not TRP42/55, involves proteolysis and requires protein synthesis for recovery. The second, which occurs with TRP42/55 and TPA, as well as with thrombin, involves phosphorylation, possibly of the receptor itself. Although protien kinase C is activated by thrombin and is presumably responsible for the desensitization caused by TPA, it does not appear to play a major role in receptor desensitization caused by thrombin and TRP42/55. This suggests that other kinases, such as those which inactivate adrenergic receptors and rhodopsin, are involved in the down-regulation of thrombin receptor function.

  3. Thrombin Cleavage of Plasmodium falciparum Erythrocyte Membrane Protein 1 Inhibits Cytoadherence

    PubMed Central

    Gillrie, Mark R.; Renaux, Bernard; Russell-Goldman, Eleanor; Avril, Marion; Brazier, Andrew J.; Mihara, Koichiro; Di Cera, Enrico; Milner, Danny A.; Hollenberg, Morley D.; Smith, Joseph D.

    2016-01-01

    ABSTRACT Plasmodium falciparum malaria remains one of the most deadly infections worldwide. The pathogenesis of the infection results from the sequestration of infected erythrocytes (IRBC) in vital organs, including the brain, with resulting impairment of blood flow, hypoxia, and lactic acidosis. Sequestration occurs through the adhesion of IRBC to host receptors on microvascular endothelium by Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), a large family of variant surface antigens, each with up to seven extracellular domains that can bind to multiple host receptors. Consequently, antiadhesive therapies directed at single endothelial adhesion molecules may not be effective. In this study, we demonstrated that the serine protease thrombin, which is pivotal in the activation of the coagulation cascade, cleaved the major parasite adhesin on the surface of IRBC. As a result, adhesion under flow was dramatically reduced, and already adherent IRBC were detached. Thrombin cleavage sites were mapped to the Duffy binding-like δ1 (DBLδ1) domain and interdomains 1 and 2 in the PfEMP1 of the parasite line IT4var19. Furthermore, we observed an inverse correlation between the presence of thrombin and IRBC in cerebral malaria autopsies of children. We investigated a modified (R67A) thrombin and thrombin inhibitor, hirugen, both of which inhibit the binding of substrates to exosite I, thereby reducing its proinflammatory properties. Both approaches reduced the barrier dysfunction induced by thrombin without affecting its proteolytic activity on PfEMP1, raising the possibility that thrombin cleavage of variant PfEMP1 may be exploited as a broadly inhibitory antiadhesive therapy. PMID:27624125

  4. Induction of apoptosis by thrombin in the cultured neurons of dorsal motor nucleus of the vagus.

    PubMed

    Wu, X; Zhang, W; Li, J-Y; Chai, B-X; Peng, J; Wang, H; Mulholland, M W

    2011-03-01

    A previous study demonstrated the presence of protease-activated receptor (PAR) 1 and 2 in the dorsal motor nucleus of vagus (DMV). The aim of this study is to characterize the effect of thrombin on the apoptosis of DMV neurons. The dorsal motor nucleus of vagus neurons were isolated from neonatal rat brainstems using micro-dissection and enzymatic digestion and cultured. Apoptosis of DMV neurons were examined in cultured neurons. Apoptotic neuron was examined by TUNEL and ELISA. Data were analyzed using anova and Student's t-test. Exposure of cultured DMV neurons to thrombin (0.1 to 10 U mL(-1)) for 24 h significantly increased apoptosis. Pretreatment of DMV neurons with hirudin attenuated the apoptotic effect of thrombin. Similar induction of apoptosis was observed for the PAR1 receptor agonist SFLLR, but not for the PAR3 agonist TFRGAP, nor for the PAR4 agonist YAPGKF. Protease-activated receptors 1 receptor antagonist Mpr(Cha) abolished the apoptotic effect of thrombin, while YPGKF, a specific antagonist for PAR4, demonstrated no effect. After administration of thrombin, phosphorylation of JNK and P38 occurred as early as 15 min, and remained elevated for up to 45 min. Pretreatment of DMV neurons with SP600125, a specific inhibitor for JNK, or SB203580, a specific inhibitor for P38, significantly inhibited apoptosis induced by thrombin. Thrombin induces apoptosis in DMV neurons through a mechanism involving the JNK and P38 signaling pathways. © 2010 Blackwell Publishing Ltd.

  5. Negative feedback regulation of human platelets via autocrine activation of the platelet-derived growth factor alpha-receptor.

    PubMed

    Vassbotn, F S; Havnen, O K; Heldin, C H; Holmsen, H

    1994-05-13

    Human platelets contain platelet-derived growth factor (PDGF) in their alpha-granules which is released during platelet exocytosis. We show by immunoprecipitation and 125I-PDGF binding experiments that human platelets have functionally active PDGF alpha-receptors, but not beta-receptors. The PDGF alpha-receptor (PDGFR-alpha) was identified as a 170-kDa glycosylated protein-tyrosine kinase as found in other cell types. Stimulation of platelets with 0.1 unit/ml thrombin resulted in a significant increase (2-5-fold) of the tyrosine phosphorylation of the PDGFR-alpha, as determined by immunoprecipitation with phosphotyrosine antiserum as well as with PDGFR-alpha antiserum. The observed thrombin-induced autophosphorylation of the PDGFR-alpha was inhibited by the addition of a neutralizing monoclonal PDGF antibody. Thus, our results suggest that the platelet PDGFR-alpha is stimulated in an autocrine manner by PDGF secreted during platelet activation. Preincubation of platelets with PDGF inhibited thrombin-induced platelet aggregation and secretion of ATP + ADP and beta-hexosaminidase. Thrombin-induced platelet aggregation was also reversed when PDGF was added 30 s after thrombin stimulation. Inhibition of the autocrine PDGF pathway during platelet activation by the PDGF antibody led to a potentiation of thrombin-induced beta-hexosaminidase secretion. Thus, the PDGFR-alpha takes part in a negative feedback regulation during platelet activation. Our demonstration of PDGF alpha-receptors on human platelets and its inhibitory function during platelet activation identifies a new possible role of PDGF in the regulation of thrombosis.

  6. Aptamer-based SERRS Sensor for Thrombin Detection

    PubMed Central

    Cho, Hansang; Baker, Brian R.; Wachsmann-Hogiu, Sebastian; Pagba, Cynthia V.; Laurence, Ted A.; Lane, Stephen M.; Lee, Luke P.; Tok, Jeffrey B.-H.

    2012-01-01

    We describe an aptamer-based Surface Enhanced Resonance Raman Scattering (SERRS) sensor with high sensitivity, specificity, and stability for the detection of a coagulation protein, human α-thrombin. The sensor achieves high sensitivity and a limit of detection of 100 pM by monitoring the SERRS signal change upon the single step of thrombin binding to immobilized thrombin binding aptamer. The selectivity of the sensor is demonstrated by the specific discrimination of thrombin from other protein analytes. The specific recognition and binding of thrombin by the thrombin binding aptamer is essential to the mechanism of the aptamer-based sensor, as shown through measurements using negative control oligonucleotides. In addition, the sensor can detect 1 nM thrombin in the presence of complex biofluids, such as 10% fetal calf serum, demonstrating that the immobilized, 5'-capped, 3'-capped aptamer is sufficiently robust for clinical diagnostic applications. Furthermore, the proposed sensor may be implemented for multiplexed detection using different aptamer-Raman probe complexes. PMID:19367849

  7. Increased thrombin generation after acute versus chronic coronary disease as assessed by the thrombin generation test.

    PubMed

    Orbe, Josune; Zudaire, Maite; Serrano, Rosario; Coma-Canella, Isabel; Martínez de Sizarrondo, Sara; Rodríguez, Jose A; Páramo, Jose A

    2008-02-01

    Atherosclerosis is the most common pathophysiologic substrate of coronary artery disease (CAD). Whereas plaque progression and arterial remodeling are critical components in chronic CAD, intracoronary thrombosis over plaque disruption is causally related to acute CAD. It was the objective of this study to investigate the differences between prior acute CAD and chronic CAD by a simple global coagulation assay measuring thrombin generation. A cross-sectional study involving 15 healthy controls, 35 patients with chronic stable CAD, and 60 patients after an episode of acute myocardial infarction (AMI) was performed. Thrombin generation was measured between three and 11 months after the initial diagnosis (mean 6 months) by a commercially available fluorogenic assay (Technothrombin TGA). In each patient the lag phase, velocity index and peak thrombin were obtained from the thrombogram profile. Traditional cardiovascular risk factors were recorded, and the inflammatory markers, fibrinogen and hs-C-reactive protein were determined. Compared with stable CAD patients, showing normal thrombograms, those with previous AMI showed earlier lag phase (p < 0.05) and significant increase of both the velocity index (p < 0.001) and peak thrombin (p < 0.05), indicating faster and higher thrombin generation in the AMI group. Differences in thrombin generation between stable and acute CAD patients remained significant (p < 0.001) after adjusting for conventional CAD risk factors (age, gender, diabetes, hypertension, smoking, and hypercholesterolemia). In conclusion, patients with a previous history of acute CAD showed earlier, faster and higher thrombin generation than stable chronic CAD patients. The thrombin generation test may be of clinical value to monitor hypercoagulable/vulnerable blood and/or guide therapy in CAD.

  8. Role of the thrombin receptor in restenosis and atherosclerosis.

    PubMed

    Baykal, D; Schmedtje, J F; Runge, M S

    1995-02-23

    Thrombus generation is central to thrombosis at vascular lesion sites, including post-PCTA acute reocclusion and chronic restenosis. Thrombin stimulates platelet activation, monocyte and neutrophil chemotaxis, and endothelial production of prothrombotic factors. The varied physiologic effects of thrombin are due to the widespread presence of thrombin receptors in many cell types. The receptor is uniquely activated: thrombin binds to the receptor at the thrombin anion-binding exosite, the receptor ligand ("tethered ligand") apparently being a sequence of 6 amino acids (SFLLRN). Thus, peptides corresponding to the sequence of the tethered ligand can stimulate almost all functions of native thrombin itself. Several intracellular signaling pathways have been identified as important in the restenosis process: the G protein-related pathway, cyclic adenosine monophosphate (cAMP) mediator pathway, and tyrosine kinase activation pathway. In situ hybridization has demonstrated an increase in thrombin receptor mRNA throughout the period of neointimal and vascular lesion development. The mechanism of this increase is unknown, but may be mediated by multiple inflammatory modulators. Several strategies have been tested in animal models for inhibiting thrombin: (1) Hirudin not only prevents thrombin from cleaving fibrinogen, but also prevents thrombin receptor activation. (2) Thrombin receptor antagonist peptides block platelet aggregation effects of thrombin. (3) Mono- and polyclonal antibodies inhibit thrombin receptor activation. (4) Antisense oligonucleotides block thrombin receptor expression.

  9. A systems approach to hemostasis: 3. Thrombus consolidation regulates intrathrombus solute transport and local thrombin activity

    PubMed Central

    Welsh, John D.; Tomaiuolo, Maurizio; Wu, Jie; Colace, Thomas V.; Diamond, Scott L.

    2014-01-01

    Hemostatic thrombi formed after a penetrating injury have a distinctive structure in which a core of highly activated, closely packed platelets is covered by a shell of less-activated, loosely packed platelets. We have shown that differences in intrathrombus molecular transport emerge in parallel with regional differences in platelet packing density and predicted that these differences affect thrombus growth and stability. Here we test that prediction in a mouse vascular injury model. The studies use a novel method for measuring thrombus contraction in vivo and a previously characterized mouse line with a defect in integrin αIIbβ3 outside-in signaling that affects clot retraction ex vivo. The results show that the mutant mice have a defect in thrombus consolidation following vascular injury, resulting in an increase in intrathrombus transport rates and, as predicted by computational modeling, a decrease in thrombin activity and platelet activation in the thrombus core. Collectively, these data (1) demonstrate that in addition to the activation state of individual platelets, the physical properties of the accumulated mass of adherent platelets is critical in determining intrathrombus agonist distribution and platelet activation and (2) define a novel role for integrin signaling in the regulation of intrathrombus transport rates and localization of thrombin activity. PMID:24951426

  10. Mechanism of thrombin-induced vasodilation in human coronary arterioles.

    PubMed

    Bosnjak, John J; Terata, Ken; Miura, Hiroto; Sato, Atsushi; Nicolosi, Alfred C; McDonald, Monica; Manthei, Sara A; Saito, Takashi; Hatoum, Ossama A; Gutterman, David D

    2003-04-01

    Thrombin (Thromb), activated as part of the clotting cascade, dilates conduit arteries through an endothelial pertussis toxin (PTX)-sensitive G-protein receptor and releases nitric oxide (NO). Thromb also acts on downstream microvessels. Therefore, we examined whether Thromb dilates human coronary arterioles (HCA). HCA from right atrial appendages were constricted by 30-50% with endothelin-1. Dilation to Thromb (10(-4)-1 U/ml) was assessed before and after inhibitors with videomicroscopy. There was no tachyphylaxis to Thromb dilation (maximum dilation = 87.0%, ED(50) = 1.49 x 10(-2)). Dilation to Thromb was abolished with either hirudin or denudation but was not affected by PTX. Neither N(omega)-nitro-l-arginine methyl ester (n = 7), indomethacin (n = 9), (1)H-[1,2,4] oxadiazolo-[4,3-a]quinoxalin-1-one (n = 6), tetraethylammonium chloride (n = 5), nor iberiotoxin (n = 4) reduced dilation to Thromb. However, KCl (maximum dilation = 89 +/- 5 vs. 20 +/- 10%; P < 0.05; n = 7), tetrabutylammonium chloride (maximum dilation = 79 +/- 7 vs. 21 +/- 4%; P < 0.05; n = 5), and charybdotoxin (maximum dilation = 89 +/- 4 vs. 10 +/- 2%; P < 0.05; n = 4) attenuated dilation to Thromb. In contrast to animal models, Thromb-induced dilation in human arterioles is independent of G(i)-protein activation and NO release. However, Thromb dilation is endothelium dependent, is maintained on consecutive applications, and involves activation of K(+) channels. We speculate that an endothelium-derived hyperpolarizing factor contributes to Thromb-induced dilation in HCA.

  11. Thrombin/Matrix Metalloproteinase-9-Dependent SK-N-SH Cell Migration is Mediated Through a PLC/PKC/MAPKs/NF-κB Cascade.

    PubMed

    Yang, Chien-Chung; Lin, Chih-Chung; Chien, Peter Tzu-Yu; Hsiao, Li-Der; Yang, Chuen-Mao

    2016-11-01

    Thrombin has been known to activate inflammatory genes including matrix metalloproteinases (MMPs). The elevated expression of MMP-9 has been observed in patients with neuroinflammatory diseases and may contribute to the pathology of brain diseases. However, the mechanisms underlying thrombin-induced MMP-9 expression in SK-N-SH cells remain unknown. The effects of thrombin on MMP-9 expression were examined in SK-N-SH cells by gelatin zymography, Western blot, real-time PCR, promoter activity assay, and cell migration assay. The detailed mechanisms were analyzed by using pharmacological inhibitors and small intefering RNA (siRNA) transfection. Here, we demonstrated that thrombin induced the expression of proform MMP-9 and migration of SK-N-SH cells, which were attenuated by pretreatment with the inhibitor of thrombin (PPACK), Gq (GPA2A), PC-PLC (D609), PI-PLC (ET-18-OCH 3 ), nonselective protien kinase C (PKC, GF109203X), PKCα/βII (Gö6983), PKCδ (Rottlerin), p38 mitogen-activated protein kinases (MAPK) (SB202190), JNK1/2 (SP600125), or NF-κB (Bay11-7082 or Helenalin) and transfection with siRNA of Gq, PKCα, PKCβ, PKCδ, p38, JNK1/2, IKKα, IKKβ, or p65. Moreover, thrombin-stimulated PKCα/βII, PKCδ, p38 MAPK, JNK1/2, or p65 phosphorylation was abrogated by their respective inhibitor of PPACK, GPA2A, D609, ET-18-OCH 3 , Gö6983, Rottlerin, SB202190, SP600125, Bay11-7082, or Helenalin. Pretreatment with these inhibitors or transfection with MMP-9 siRNA also blocked thrombin-induced SK-N-SH cell migration. Our results show that thrombin stimulates a Gq/PLC/PKCs/p38 MAPK and JNK1/2 cascade, which in turn triggers NF-κB activation and ultimately induces MMP-9 expression and cell migration in SK-N-SH cells.

  12. Localization and characterization of an alpha-thrombin-binding site on platelet glycoprotein Ib alpha.

    PubMed

    De Marco, L; Mazzucato, M; Masotti, A; Ruggeri, Z M

    1994-03-04

    Glycoprotein (GP) Ib alpha is required for expression of the highest affinity alpha-thrombin-binding site on platelets, possibly contributing to platelet activation through a pathway involving cleavage of a specific receptor. This function may be important for the initiation of hemostasis and may also play a role in the development of pathological vascular occlusion. We have now identified a discrete sequence in the extracytoplasmic domain of GP Ib alpha, including residues 271-284 of the mature protein, which appears to be part of the high affinity alpha-thrombin-binding site. Synthetic peptidyl mimetics of this sequence inhibit alpha-thrombin binding to GP Ib as well as platelet activation and aggregation induced by subnanomolar concentrations of the agonist; they also inhibit alpha-thrombin binding to purified glycocalicin, the isolated extracytoplasmic portion of GP Ib alpha. The inhibitory peptides interfere with the clotting of fibrinogen by alpha-thrombin but not with the amidolytic activity of the enzyme on a small synthetic substrate, a finding compatible with the concept that the identified GP Ib alpha sequence interacts with the anion-binding exosite of alpha-thrombin but not with its active proteolytic site. The crucial structural elements of this sequence necessary for thrombin binding appear to be a cluster of negatively charged residues as well as three tyrosine residues that, in the native protein, may be sulfated. GP Ib alpha has no significant overall sequence homology with the thrombin inhibitor, hirudin, nor with the specific thrombin receptor on platelets; all three molecules, however, possess a distinct region rich in negatively charged residues that appear to be involved in thrombin binding. This may represent a case of convergent evolution of unrelated proteins for high affinity interaction with the same ligand.

  13. Aptamer Based Microsphere Biosensor for Thrombin Detection

    PubMed Central

    Zhu, Hongying; Suter, Jonathan D.; White, Ian M.; Fan, Xudong

    2006-01-01

    We have developed an optical microsphere resonator biosensor using aptamer as receptor for the measurement of the important biomolecule thrombin. The sphere surface is modified with anti-thrombin aptamer, which has excellent binding affinity and selectivity for thrombin. Binding of the thrombin at the sphere surface is monitored by the spectral position of the microsphere's whispering gallery mode resonances. A detection limit on the order of 1 NIH Unit/mL is demonstrated. Control experiments with non-aptamer oligonucleotide and BSA are also carried out to confirm the specific binding between aptamer and thrombin. We expect that this demonstration will lead to the development of highly sensitive biomarker sensors based on aptamer with lower cost and higher throughput than current technology.

  14. The protease thrombin is an endogenous mediator of hippocampal neuroprotection against ischemia at low concentrations but causes degeneration at high concentrations

    NASA Astrophysics Data System (ADS)

    Striggow, Frank; Riek, Monika; Breder, Jörg; Henrich-Noack, Petra; Reymann, Klaus G.; Reiser, Georg

    2000-02-01

    We have considered the extracellular serine protease thrombin and its receptor as endogenous mediators of neuronal protection against brain ischemia. Exposure of gerbils to prior mild ischemic insults, here two relatively short-lasting occlusions (2 min) of both common carotid arteries applied at 1-day intervals 2 days before a severe occlusion (6 min), caused a robust ischemic tolerance of hippocampal CA1 neurons. This resistance was impaired if the specific thrombin inhibitor hirudin was injected intracerebroventricularly before each short-lasting insult. Thus, efficient native neuroprotective mechanisms exist and endogenous thrombin seems to be involved therein. In vitro experiments using organotypic slice cultures of rat hippocampus revealed that thrombin can have protective but also deleterious effects on hippocampal CA1 neurons. Low concentrations of thrombin (50 pM, 0.01 unit/ml) or of a synthetic thrombin receptor agonist (10 μM) induced significant neuroprotection against experimental ischemia. In contrast, 50 nM (10 units/ml) thrombin decreased further the reduced neuronal survival that follows the deprivation of oxygen and glucose, and 500 nM even caused neuronal cell death by itself. Degenerative thrombin actions also might be relevant in vivo, because hirudin increased the number of surviving neurons when applied before a 6-min occlusion. Among the thrombin concentrations tested, 50 pM induced intracellular Ca2+ spikes in fura-2-loaded CA1 neurons whereas higher concentrations caused a sustained Ca2+ elevation. Thus, distinct Ca2+ signals may define whether or not thrombin initiates protection. Taken together, in vivo and in vitro data suggest that thrombin can determine neuronal cell death or survival after brain ischemia.

  15. Effect of BAX499 aptamer on tissue factor pathway inhibitor function and thrombin generation in models of hemophilia

    PubMed Central

    Gissel, Matthew; Orfeo, Thomas; Foley, Jonathan H; Butenas, Saulius

    2012-01-01

    Summary Introduction In hemophilia, thrombin generation is significantly suppressed due to decreased factor (F)X activation. Clinical studies and experiments with transgenic mice have suggested that the severity of hemophilia is substantially reduced by tissue factor pathway inhibitor (TFPI) deficiency. Methods We evaluated the effect of TFPI antagonist aptamer BAX499 (formerly ARC19499) on TFPI function in purified systems and on thrombin generation and clot formation in plasma and blood. Results BAX499 effectively neutralized TFPI inhibition of FXa and FXa dependent inhibition of TF/FVIIa by TFPI. BAX499 did not inhibit FXa or TF/FVIIa when used up to 500 nM. In the synthetic coagulation proteome with TFPI at its mean physiologic concentration, BAX499 at 1 – 10 nM increased thrombin generation triggered with 5 pM relipidated TF in a concentration-dependent manner. In severe hemophilia A or B models using the synthetic coagulation proteome, the addition of BAX499 at 5 nM increased thrombin generation to the levels observed in normal control. Thrombin generation measured in induced hemophilia B plasma required ~100 nM BAX499 to restore thrombin levels to those seen in untreated plasma. In induced hemophilia B whole blood, BAX499 repaired the clotting time but failed to appreciably impact the propagation phase of thrombin generation. Conclusion These data suggest that inhibition of TFPI by BAX499 may have potential for hemophilia treatment but requires further study in blood-based hemophilia systems. PMID:22951415

  16. A review of three stand-alone topical thrombins for surgical hemostasis.

    PubMed

    Cheng, Christine M; Meyer-Massetti, Carla; Kayser, Steven R

    2009-01-01

    Topical thrombins are active hemostatic agents that can be used to minimize blood loss during surgery. Before 2007, the only topical thrombins available were derived from bovine plasma. Antibody formation to bovine thrombin and/or factor V, with subsequent risk of cross-reactivity with human factor V, and hemorrhagic complications associated with human factor-V deficiencies have been described in case reports of surgeries in which bovine thrombins were used. This risk is now included in the boxed warning section of the bovine thrombin prescribing information. In 2007 and 2008, 2 new topical thrombins from nonbovine sources received approval for use from the US Food and Drug Administration. The 3 active topical thrombins that are currently marketed are bovine plasma-derived thrombin, human plasma-derived thrombin, and human recombinant thrombin. The purpose of this review was to evaluate the literature on the efficacy and safety of topical thrombins and discuss the pharmacoeconomic considerations associated with their use. PubMed, EMBASE, and International Pharmaceutical Abstracts were searched for relevant papers published in English through October 10,2008, using the terms thrombin, human recombinant thrombin, bovine thrombin, plasma derived thrombin, and topical thrombin. Manufacturer-provided materials were also reviewed. Abstracts and unpublished data, as well as evaluations of sealants, adhesives, glues, and other hemostats that contain thrombin mixed with fibrinogen and other clotting factors, were excluded. Four randomized, double-blind studies involving the active, stand-alone topical thrombins were found. The bovine thrombin involved in these studies was the predecessor to the currently marketed, highly purified bovine formulation. No studies comparing the human products, studies involving the highly purified bovine preparation, or placebo-controlled studies involving bovine thrombin were found. In a Phase III comparison of human recombinant thrombin and

  17. Favorable 2'-substitution in the loop region of a thrombin-binding DNA aptamer.

    PubMed

    Awachat, Ragini; Wagh, Atish A; Aher, Manisha; Fernandes, Moneesha; Kumar, Vaijayanti A

    2018-06-01

    Simple 2'-OMe-chemical modification in the loop region of the 15mer G-rich DNA sequence GGTTGGTGTGGTTGG is reported. The G-quadruplex structure of this thrombin-binding aptamer (TBA), is stabilized by single modifications (T → 2'-OMe-U), depending on the position of the modification. The structural stability also renders significantly increased inhibition of thrombin-induced fibrin polymerization, a process closely associated with blood-clotting. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. PPAR{gamma} activation abolishes LDL-induced proliferation of human aortic smooth muscle cells via SOD-mediated down-regulation of superoxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heo, Kyung-Sun; Department of Pharmacy, Chungnam National University, Yuseong, Daejeon; Kim, Dong-Uk

    Native LDL would be a mitogenic and chemotactic stimulus of VSMC proliferation and differentiation in the atherosclerotic lesion where endothelial disruption occurred. In previous studies, our group investigated the molecular mechanisms by which LDL induces IL-8 production and by which PPAR{alpha} activation abolishes LDL effects in human aortic SMCs (hAoSMCs). Herein is the first report of PPAR{gamma} activation by troglitazone (TG) exerting its inhibitory effects on LDL-induced cell proliferation via generation not of H{sub 2}O{sub 2}, but of O2?-, and the subsequent activation of Erk1/2 in hAoSMCs. Moreover, in this study TG abolished the LDL-accelerated G{sub 1}-S progression to controlmore » levels via down-regulation of active cyclinD1/CDK4 and cyclinE/CDK2 complexes and up-regulation of p21{sup Cip1} expression. TG exerted its anti-proliferative effects through the up-regulation of basal superoxide dismutase (SOD) expression. This data suggests that the regulation of O2?- is located at the crossroads between LDL signaling and cell proliferation.« less

  19. Regulation of the steady state level of Fc gamma RI mRNA by IFN-gamma and dexamethasone in human monocytes, neutrophils, and U-937 cells.

    PubMed

    Pan, L Y; Mendel, D B; Zurlo, J; Guyre, P M

    1990-07-01

    The high affinity IgG FcR Fc gamma RI, CD64, plays important roles in the immune response. Fc gamma RI is predominantly expressed on monocytes and macrophages, and barely detectable on neutrophils. rIFN-gamma markedly increases the expression of Fc gamma RI on neutrophils, monocytes, macrophages and myeloid cell lines such as U-937, HL-60, and THP-1. Glucocorticoids inhibit the augmentation of Fc gamma RI expression by rIFN-gamma on neutrophils and myeloid cell lines, but enhance the augmentation of Fc gamma RI expression by rIFN-gamma on monocytes. In this study, we examined the effect of rIFN-gamma and dexamethasone (Dex) on the steady state level of Fc gamma RI mRNA in U-937 cells, neutrophils, and monocytes by hybridizing total RNA with the Fc gamma RI cDNA probe, p135. We found that the amount of Fc gamma RI mRNA increased within 1 h of treatment with rIFN-gamma in all three cell types. This initial induction of Fc gamma RI mRNA by rIFN-gamma was completely blocked by an inhibitor of RNA synthesis, actinomycin D, suggesting that the rIFN-gamma-mediated induction of Fc gamma RI mRNA is dependent on gene transcription. Dex, used in combination with rIFN-gamma, partially blocked the induction of Fc gamma RI mRNA by rIFN-gamma in U-937 cells and neutrophils, but caused a synergistic increase in Fc gamma RI mRNA levels in monocytes. The inhibitory effect of Dex on the steady state level of Fc gamma RI mRNA in U-937 cells was blocked by an inhibitor of protein synthesis, cycloheximide, suggesting that Dex-induced proteins were involved in the regulation of Fc gamma RI expression. This study indicates that the regulation of Fc gamma RI expression on U-937 cells, neutrophils, and monocytes by rIFN-gamma and Dex occurs, at least in part, at the mRNA level. rIFN-gamma increases the steady state level of Fc gamma RI mRNA through a common pathway among U-937 cells, neutrophils, and monocytes, whereas the effect of Dex on rIFN-gamma-induced Fc gamma RI mRNA is cell

  20. Therapeutic Correction of Thrombin Generation in Dilution-Induced Coagulopathy: Computational Analysis Based on a Data Set of Healthy Subjects

    DTIC Science & Technology

    2012-01-01

    Factor VIIa tended to primarily impact clotting time, thrombin peak time, and maximum slope of the thrombin curve, whereas in the case of PCC- FVII ...constituents of existing PCCs are the four coagulation factors (F) II (prothrombin), FVII , FIX, and FX.3 Notably, FVII inhibits thrombin generation by...proposed PCC composition (coagulation factors [F] II, IX, and X and the anticoagulant antithrombin), designated PCC-AT, was compared with that of

  1. Thrombin Time

    MedlinePlus

    ... Testing Leptin Levetiracetam Lipase Lipid Panel Lipoprotein (a) Lithium Liver Panel Lp-PLA2 Lupus Anticoagulant Testing Luteinizing ... thrombin time is just one component of the battery of tests typically required to evaluate a bleeding ...

  2. Thrombin and factor Xa link the coagulation system with liver fibrosis.

    PubMed

    Dhar, Ameet; Sadiq, Fouzia; Anstee, Quentin M; Levene, Adam P; Goldin, Robert D; Thursz, Mark R

    2018-05-08

    Thrombin activates hepatic stellate cells via protease-activated receptor-1. The role of Factor Xa (FXa) in hepatic fibrosis has not been elucidated. We aimed to evaluate the impact of FXa and thrombin in vitro on stellate cells and their respective inhibition in vivo using a rodent model of hepatic fibrosis. HSC-LX2 cells were incubated with FXa and/or thrombin in cell culture, stained for αSMA and relative gene expression and gel contraction calculated. C57BL/6 J mice were administered thioacetamide (TAA) for 8 weeks with Rivaroxaban (n = 15) or Dabigatran (n = 15). Control animals received TAA alone (n = 15). Fibrosis was scored and quantified using digital image analysis and hepatic tissue hydroxyproline estimated. Stellate cells treated with FXa and thrombin demonstrated upregulation of procollagen, TGF-beta, αSMA and significant cell contraction (43.48%+/- 4.12) compared to culturing with FXa or thrombin alone (26.90%+/- 8.90, p = 0.02; 13.1%+/- 9.84, p < 0.001). Mean fibrosis score, percentage area of fibrosis and hepatic hydroxyproline content (2.46 vs 4.08, p = 0.008; 2.02% vs 3.76%, p = 0.012; 276.0 vs 651.3, p = 0.0001) were significantly reduced in mice treated with the FXa inhibitor compared to control mice. FXa inhibition was significantly more effective than thrombin inhibition in reducing percentage area of fibrosis and hepatic hydroxyproline content (2.02% vs 3.70%,p = 0.031; 276.0 vs 413.1,p = 0.001). FXa promotes stellate cell contractility and activation. Early inhibition of coagulation using a FXa inhibitor significantly reduces TAA induced murine liver fibrosis and may be a viable treatment for liver fibrosis in patients.

  3. The Ras-related Protein, Rap1A, Mediates Thrombin-stimulated, Integrin-dependent Glioblastoma Cell Proliferation and Tumor Growth*

    PubMed Central

    Sayyah, Jacqueline; Bartakova, Alena; Nogal, Nekeisha; Quilliam, Lawrence A.; Stupack, Dwayne G.; Brown, Joan Heller

    2014-01-01

    Rap1 is a Ras family GTPase with a well documented role in ERK/MAP kinase signaling and integrin activation. Stimulation of the G-protein-coupled receptor PAR-1 with thrombin in human 1321N1 glioblastoma cells led to a robust increase in Rap1 activation. This response was sustained for up to 6 h and mediated through RhoA and phospholipase D (PLD). Thrombin treatment also induced a 5-fold increase in cell adhesion to fibronectin, which was blocked by down-regulating PLD or Rap1A or by treatment with a β1 integrin neutralizing antibody. In addition, thrombin treatment led to increases in phospho-focal adhesion kinase (tyrosine 397), ERK1/2 phosphorylation and cell proliferation, which were significantly inhibited in cells treated with β1 integrin antibody or Rap1A siRNA. To assess the role of Rap1A in tumor formation in vivo, we compared growth of 1321N1 cells stably expressing control, Rap1A or Rap1B shRNA in a mouse xenograft model. Deletion of Rap1A, but not of Rap1B, reduced tumor mass by >70% relative to control. Similar observations were made with U373MG glioblastoma cells in which Rap1A was down-regulated. Collectively, these findings implicate a Rap1A/β1 integrin pathway, activated downstream of G-protein-coupled receptor stimulation and RhoA, in glioblastoma cell proliferation. Moreover, our data demonstrate a critical role for Rap1A in glioblastoma tumor growth in vivo. PMID:24790104

  4. Thrombin increases hyposmotic taurine efflux and accelerates ICI-swell and RVD in 3T3 fibroblasts by a src-dependent EGFR transactivation.

    PubMed

    Vázquez-Juárez, E; Ramos-Mandujano, G; Lezama, R A; Cruz-Rangel, S; Islas, L D; Pasantes-Morales, H

    2008-02-01

    The present study in Swiss3T3 fibroblasts examines the effect of thrombin on hyposmolarity-induced osmolyte fluxes and RVD, and the contribution of the src/EGFR pathway. Thrombin (5 U/ml) added to a 30% hyposmotic medium markedly increased hyposmotic 3H-taurine efflux (285%), accelerated the volume-sensitive Cl- current (ICI-swell) and increased RVD rate. These effects were reduced (50-65%) by preventing the thrombin-induced intracellular Ca2+ [Ca2+]i rise with EGTA-AM, or with the phospholipase C (PLC) blocker U73122. Ca2+calmodulin (CaM) and calmodulin kinase II (CaMKII) also participate in this Ca2+-dependent pathway. Thrombin plus hyposmolarity increased src and EGFR phosphorylation, whose blockade by PP2 and AG1478, decreased by 30-50%, respectively, the thrombin effects on hyposmotic taurine efflux, ICI-swell and RVD. Ca2+- and src/EGFR-mediated pathways operate independently as shown by (1) the persistence of src and EGFR activation when [Ca2+]i rise is prevented and (2) the additive effect on taurine efflux, ICI-swell or RVD by simultaneous inhibition of the two pathways, which essentially suppressed these events. PLC-Ca2+- and src/EGFR-signaling pathways operate in the hyposmotic condition and because thrombin per se failed to increase taurine efflux and ICI-swell under isosmotic condition it seems that it is merely amplifying these previously activated mechanisms. The study shows that thrombin potentiates hyposmolarity-induced osmolyte fluxes and RVD by increasing src/EGFR-dependent signaling, in addition to the Ca2+-dependent pathway.

  5. Tissue thrombin is associated with the pathogenesis of dilated cardiomyopathy.

    PubMed

    Ito, Keiichi; Hongo, Kenichi; Date, Taro; Ikegami, Masahiro; Hano, Hiroshi; Owada, Mamiko; Morimoto, Satoshi; Kashiwagi, Yusuke; Katoh, Daisuke; Yoshino, Takuya; Yoshii, Akira; Kimura, Haruka; Nagoshi, Tomohisa; Kajimura, Ichige; Kusakari, Yoichiro; Akaike, Toru; Minamisawa, Susumu; Ogawa, Kazuo; Minai, Kosuke; Ogawa, Takayuki; Kawai, Makoto; Yajima, Junji; Matsuo, Seiichiro; Yamane, Teiichi; Taniguchi, Ikuo; Morimoto, Sachio; Yoshimura, Michihiro

    2017-02-01

    Thrombin is a serine protease known to be the final product of the coagulation cascade. However, thrombin plays other physiological roles in processes such as gastric contractions and vessel wound healing, and a state of coagulability is increased in patients with dilated cardiomyopathy (DCM). In this study, we investigate the role of thrombin in the pathogenesis of DCM. The purpose of this study is to clarify the role of thrombin in the pathogenesis of DCM and investigate the possibility of treatment against DCM by thrombin inhibition. We investigated the expression of thrombin in the left ventricles of five patients with DCM who underwent the Batista operation and four patients without heart disease. Furthermore, we investigated the involvement of thrombin in the development of DCM using knock-in mice with a deletion mutation of cardiac troponin T that causes human DCM (∆K210 knock-in mouse) (B6;129-Tnnt2 tm2Mmto ) and assessed the effects of a direct thrombin inhibitor, dabigatran on ∆K210 knock-in mice using echocardiographic examinations, the Kaplan-Meier method and Western blotting. The immunohistochemical analysis showed a strong thrombin expression in the DCM patients compared to the patients without heart disease. In immunohistochemical analysis, a strong thrombin expression was observed in the heart tissues analysis in the ∆K210 knock-in mice. Dabigatran administration significantly improved fractional shortening according to the echocardiographic examination and the survival outcomes in ∆K210 knock-in mice. Tissue thrombin is involved in the pathogenesis of DCM and thrombin inhibition can be beneficial for the treatment of DCM. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Screening cleavage of Factor XIII V34X Activation Peptides by thrombin mutants: A strategy for controlling fibrin architecture.

    PubMed

    Jadhav, Madhavi A; Goldsberry, Whitney N; Zink, Sara E; Lamb, Kelsey N; Simmons, Katelyn E; Riposo, Carmela M; Anokhin, Boris A; Maurer, Muriel C

    2017-10-01

    In blood coagulation, thrombin converts fibrinogen into fibrin monomers that polymerize into a clot network. Thrombin also activates Factor XIII by cleaving the R37-G38 peptide bond of the Activation Peptide (AP) segment. The resultant transglutaminase introduces covalent crosslinks into the fibrin clot. A strategy to modify clot architecture would be to design FXIII AP sequences that are easier or more difficult to be thrombin-cleaved thus controlling initiation of crosslinking. To aid in this design process, FXIII V34X (28-41) Activation Peptides were kinetically ranked for cleavage by wild-type thrombin and several anticoagulant mutants. Thrombin-catalyzed hydrolysis of aromatic FXIII F34, W34, and Y34 APs was compared with V34 and L34. Cardioprotective FXIII L34 remained the variant most readily cleaved by wild-type thrombin. The potent anticoagulant thrombins W215A and W215A/E217A (missing a key substrate platform for binding fibrinogen) were best able to hydrolyze FXIII F34 and W34 APs. Thrombin I174A and L99A could effectively accommodate FXIII W34 and Y34 APs yielding kinetic parameters comparable to FXIII AP L34 with wild-type thrombin. None of the aromatic FXIII V34X APs could be hydrolyzed by thrombin Y60aA. FXIII F34 and W34 are promising candidates for FXIII - anticoagulant thrombin systems that could permit FXIII-catalyzed crosslinking in the presence of reduced fibrin formation. By contrast, FXIII Y34 with thrombin (Y60aA or W215A/E217A) could help assure that both fibrin clot formation and protein crosslinking are hindered. Regulating the activation of FXIII is predicted to be a strategy for helping to control fibrin clot architecture and its neighboring environments. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Quantitative Glycoproteomic Analysis Identifies Platelet-Induced Increase of Monocyte Adhesion via the Up-Regulation of Very Late Antigen 5.

    PubMed

    Huang, Jiqing; Kast, Juergen

    2015-08-07

    Physiological stimuli, such as thrombin, or pathological stimuli, such as lysophosphatidic acid (LPA), activate platelets circulating in blood. Once activated, platelets bind to monocytes via P-selectin-PSGL-1 interactions but also release the stored contents of their granules. These platelet releasates, in addition to direct platelet binding, activate monocytes and facilitate their recruitment to atherosclerotic sites. Consequently, understanding the changes platelet releasates induce in monocyte membrane proteins is critical. We studied the glyco-proteome changes of THP-1 monocytic cells affected by LPA- or thrombin-induced platelet releasates. We employed lectin affinity chromatography combined with filter aided sample preparation to achieve high glyco- and membrane protein and protein sequence coverage. Using stable isotope labeling by amino acids in cell culture, we quantified 1715 proteins, including 852 membrane and 500 glycoproteins, identifying the up-regulation of multiple proteins involved in monocyte extracellular matrix binding and transendothelial migration. Flow cytometry indicated expression changes of integrin α5, integrin β1, PECAM-1, and PSGL-1. The observed increase in monocyte adhesion to fibronectin was determined to be mediated by the up-regulation of very late antigen 5 via a P-selectin-PSGL-1 independent mechanism. This novel aspect could be validated on CD14+ human primary monocytes, highlighting the benefits of the improved enrichment method regarding high membrane protein coverage and reliable quantification.

  8. A quantum dot-aptamer beacon using a DNA intercalating dye as the FRET reporter: application to label-free thrombin detection.

    PubMed

    Chi, Chun-Wei; Lao, Yeh-Hsing; Li, Yi-Shan; Chen, Lin-Chi

    2011-03-15

    A new quantum dot (QD)-aptamer (apt) beacon that acts by folding-induced dissociation of a DNA intercalating dye, BOBO-3(B), is demonstrated with label-free thrombin detection. The beacon, denoted as QD-apt:B, is constructed by (1) coupling of a single-stranded thrombin aptamer to Qdot 565 via EDC/Sulfo-NHS chemistry and (2) staining the duplex regions of the aptamer on QD with excess BOBO-3 before thrombin binding. When mixing a thrombin sample with QD-apt:B, BOBO-3 is competed away from the beacon due to target-induced aptamer folding, which then causes a decrease in QD fluorescence resonance energy transfer (FRET)-mediated BOBO-3 emission and achieves thrombin quantitation. In this work, the effects of Mg(2+), coupling time, and aptamer type on the beacon's performances are investigated and discussed thoroughly with various methods, including transmission electron microscopy (TEM), dynamic light scattering (DLS), and two-color differential gel electrophoresis. Using the best aptamer beacon (HTQ37), we attain highly specific and wide-range detection (from nM to μM) of thrombin in buffer, and the beacon can sense nM-range thrombin in 15% diluted serum. Compared to the reported QD aptamer assays, our method is advantageous from the aspect of using a simple sensory unit design without losing the detection sensitivity. Therefore, we consider the QD-apt:B beacon a potential alternative to immuno-reagents and an effective tool to study nucleic acid folding on QD as well. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. The Ras-related protein, Rap1A, mediates thrombin-stimulated, integrin-dependent glioblastoma cell proliferation and tumor growth.

    PubMed

    Sayyah, Jacqueline; Bartakova, Alena; Nogal, Nekeisha; Quilliam, Lawrence A; Stupack, Dwayne G; Brown, Joan Heller

    2014-06-20

    Rap1 is a Ras family GTPase with a well documented role in ERK/MAP kinase signaling and integrin activation. Stimulation of the G-protein-coupled receptor PAR-1 with thrombin in human 1321N1 glioblastoma cells led to a robust increase in Rap1 activation. This response was sustained for up to 6 h and mediated through RhoA and phospholipase D (PLD). Thrombin treatment also induced a 5-fold increase in cell adhesion to fibronectin, which was blocked by down-regulating PLD or Rap1A or by treatment with a β1 integrin neutralizing antibody. In addition, thrombin treatment led to increases in phospho-focal adhesion kinase (tyrosine 397), ERK1/2 phosphorylation and cell proliferation, which were significantly inhibited in cells treated with β1 integrin antibody or Rap1A siRNA. To assess the role of Rap1A in tumor formation in vivo, we compared growth of 1321N1 cells stably expressing control, Rap1A or Rap1B shRNA in a mouse xenograft model. Deletion of Rap1A, but not of Rap1B, reduced tumor mass by >70% relative to control. Similar observations were made with U373MG glioblastoma cells in which Rap1A was down-regulated. Collectively, these findings implicate a Rap1A/β1 integrin pathway, activated downstream of G-protein-coupled receptor stimulation and RhoA, in glioblastoma cell proliferation. Moreover, our data demonstrate a critical role for Rap1A in glioblastoma tumor growth in vivo. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Grape intake reduces thrombin generation and enhances plasma fibrinolysis. Potential role of circulating procoagulant microparticles.

    PubMed

    Ammollo, Concetta T; Semeraro, Fabrizio; Milella, Rosa Anna; Antonacci, Donato; Semeraro, Nicola; Colucci, Mario

    2017-12-01

    Phytochemicals contained in grapes down-regulate several prothrombotic pathways in vitro. We evaluated the effect of grape consumption on coagulation and fibrinolysis in healthy volunteers. Thirty subjects were enrolled: 20 were given grape (5 g/kg body weight/day for 3 weeks), while 10 served as controls. Blood samples were taken at baseline (T0), at the end of the grape diet (T1) and after 4-week wash-out (T2). Grape intake caused a significant decrease of the procoagulant and inflammatory responses of whole blood and/or mononuclear cells to bacterial lipopolysaccharide at both T1 and T2. At plasma level, grape diet decreased thrombin generation at T1 and T2, largely through a reduction in the number and/or activity of procoagulant microparticles. This anticoagulant effect resulted in the formation of clots that were more susceptible to fibrinolysis, mainly because of a lesser activation of thrombin activatable fibrinolysis inhibitor. No difference in any variables was detected in controls at the time points considered. In conclusion, chronic grape consumption induces sustained anticoagulant and profibrinolytic effects with potential benefits for human health. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Gamma rays induce a p53-independent mitochondrial biogenesis that is counter-regulated by HIF1α

    PubMed Central

    Bartoletti-Stella, A; Mariani, E; Kurelac, I; Maresca, A; Caratozzolo, M F; Iommarini, L; Carelli, V; Eusebi, L H; Guido, A; Cenacchi, G; Fuccio, L; Rugolo, M; Tullo, A; Porcelli, A M; Gasparre, G

    2013-01-01

    Mitochondrial biogenesis is an orchestrated process that presides to the regulation of the organelles homeostasis within a cell. We show that γ-rays, at doses commonly used in the radiation therapy for cancer treatment, induce an increase in mitochondrial mass and function, in response to a genotoxic stress that pushes cells into senescence, in the presence of a functional p53. Although the main effector of the response to γ-rays is the p53-p21 axis, we demonstrated that mitochondrial biogenesis is only indirectly regulated by p53, whose activation triggers a murine double minute 2 (MDM2)-mediated hypoxia-inducible factor 1α (HIF1α) degradation, leading to the release of peroxisome-proliferator activated receptor gamma co-activator 1β inhibition by HIF1α, thus promoting mitochondrial biogenesis. Mimicking hypoxia by HIF1α stabilization, in fact, blunts the mitochondrial response to γ-rays as well as the induction of p21-mediated cell senescence, indicating prevalence of the hypoxic over the genotoxic response. Finally, we also show in vivo that post-radiotherapy mitochondrial DNA copy number increase well correlates with lack of HIF1α increase in the tissue, concluding this may be a useful molecular tool to infer the trigger of a hypoxic response during radiotherapy, which may lead to failure of activation of cell senescence. PMID:23764844

  12. Real-time measurement of free thrombin: evaluation of the usability of a new thrombin assay for coagulation monitoring during extracorporeal circulation.

    PubMed

    Krajewski, Stefanie; Krauss, Sabrina; Kurz, Julia; Neumann, Bernd; Schlensak, Christian; Wendel, Hans P

    2014-03-01

    In patients undergoing cardiac surgery with heart-lung machine support, adequate anticoagulation to mitigate blood clotting caused by the artificial surfaces of the extracorporeal circulation (ECC) system is essential. These patients routinely receive heparin, whose effectiveness is monitored by measurements of the activated clotting time (ACT). However, ACT values only poorly correlate with the actual hemostatic status. The aim of our study was to evaluate the detection of free thrombin in heparinized human blood as a monitor of anticoagulation during ECC. Human whole blood was anticoagulated with different concentrations of heparin (0.75, 1, 2 or 3 IU/ml) and circulated in the Chandler-loop model for up to 240 min at 37 °C. Next to ACT, ECC-mediated changes in free active thrombin, prothrombin fragment 1+2 (F1+2) and thrombin-antithrombin-III (TAT) levels were measured before and during circulation. Platelet activation and cell count parameters were further investigated. Our study shows that detection of ECC-mediated changes in free thrombin is possible in blood anticoagulated with 0.75 or 1 IU/ml heparin, whereas no thrombin was detectable at higher heparin concentrations. Thrombin generation during 240 min of ECC is comparable to F 1+2 and TAT plasma levels during ECC. Thrombin is the key enzyme in the coagulation cascade and hence represents a promising marker for monitoring the coagulation status of patients. Although detection of free thrombin was not feasible at high heparin concentrations, the employed test represents an additional test to current laboratory methods investigating blood coagulation at low heparin concentrations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Role of thrombin signalling in platelets in haemostasis and thrombosis

    NASA Astrophysics Data System (ADS)

    Sambrano, Gilberto R.; Weiss, Ethan J.; Zheng, Yao-Wu; Huang, Wei; Coughlin, Shaun R.

    2001-09-01

    Platelets are critical in haemostasis and in arterial thrombosis, which causes heart attacks and other events triggered by abnormal clotting. The coagulation protease thrombin is a potent activator of platelets ex vivo. However, because thrombin also mediates fibrin deposition and because multiple agonists can trigger platelet activation, the relative importance of platelet activation by thrombin in haemostasis and thrombosis is unknown. Thrombin triggers cellular responses at least in part through protease-activated receptors (PARs). Mouse platelets express PAR3 and PAR4 (ref. 9). Here we show that platelets from PAR4-deficient mice failed to change shape, mobilize calcium, secrete ATP or aggregate in response to thrombin. This result demonstrates that PAR signalling is necessary for mouse platelet activation by thrombin and supports the model that mouse PAR3 (mPAR3) does not by itself mediate transmembrane signalling but instead acts as a cofactor for thrombin cleavage and activation of mPAR4 (ref. 10). Importantly, PAR4-deficient mice had markedly prolonged bleeding times and were protected in a model of arteriolar thrombosis. Thus platelet activation by thrombin is necessary for normal haemostasis and may be an important target in the treatment of thrombosis.

  14. Diluted thrombin time reliably measures low to intermediate plasma dabigatran concentrations.

    PubMed

    Božič-Mijovski, Mojca; Malmström, Rickard E; Malovrh, Petra; Antovic, Jovan P; Vene, Nina; Šinigoj, Petra; Mavri, Alenka

    2016-07-01

    Direct oral anticoagulant dabigatran was first introduced as a fixed-dose drug without routine coagulation monitoring, but current recommendations suggest that diluted thrombin time can be used to estimate plasma drug level. The aim of this study was to assess a diluted thrombin time assay based on the same thrombin reagent already used for traditional thrombin time measurements that reliably measure low to intermediate plasma dabigatran levels. We included 44 patients with atrial fibrillation who started treatment with dabigatran 150 mg (23 patients) or 110 mg (21 patients) twice a day. Blood samples were collected at baseline (no dabigatran) and 2-4 weeks after the beginning of dabigatran therapy at trough and at peak. Plasma dabigatran levels were measured with diluted thrombin time and compared to liquid chromatography with tandem mass spectrometry as the reference method. The performance of the diluted thrombin time was compared to Hemoclot® Thrombin Inhibitor and Ecarin Chromogenic Assay. In ex vivo plasma samples, diluted thrombin time highly correlated with the liquid chromatography with tandem mass spectrometry (Pearson's R = 0.9799). In the low to intermediate range (dabigatran concentration ≤ 100 µg/L) diluted thrombin time correlated significantly more closely to the liquid chromatography with tandem mass spectrometry (R = 0.964) than Hemoclot® Thrombin Inhibitor (R = 0.935, p = 0.05) or Ecarin Chromogenic Assay (R = 0.915, p < 0.01). It was also the only functional assay without any significant bias in the low to intermediate range. Both trough and peak diluted thrombin time values were similar to liquid chromatography with tandem mass spectrometry. We conclude that the diluted thrombin time assay presented in this study reliably detects dabigatran and that it is superior to the Hemoclot® Thrombin Inhibitor assay in the low to intermediate range. © The Author(s) 2015.

  15. Involvement of {gamma}-secretase in postnatal angiogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayashi, Hiroki; Nakagami, Hironori; Takami, Yoichi

    2007-11-23

    {gamma}-Secretase cleaves the transmembrane domains of several integral membrane proteins involved in vasculogenesis. Here, we investigated the role of {gamma}-secretase in the regulation of postnatal angiogenesis using {gamma}-secretase inhibitors (GSI). In endothelial cell (EC), {gamma}-secretase activity was up-regulated under hypoxia or the treatment of vascular endothelial growth factor (VEGF). The treatment of GSI significantly attenuated growth factor-induced EC proliferation and migration as well as c-fos promoter activity in a dose-dependent manner. In vascular smooth muscle cell (VSMC), treatment of GSI significantly attenuated growth factor-induced VEGF and fibroblast growth factor-2 (FGF-2) expression. Indeed, GSI attenuated VEGF-induced tube formation and inhibited FGF-2-inducedmore » angiogenesis on matrigel in mice as quantified by FITC-lectin staining of EC. Overall, we demonstrated that {gamma}-secretase may be key molecule in postnatal angiogenesis which may be downstream molecule of growth factor-induced growth and migration in EC, and regulate the expression of angiogenic growth factors in VSMC.« less

  16. A host-guest-recognition-based electrochemical aptasensor for thrombin detection.

    PubMed

    Fan, Hao; Li, Hui; Wang, Qingjiang; He, Pingang; Fang, Yuzhi

    2012-05-15

    A sensitive electrochemical aptasensor for thrombin detection is presented based on the host-guest recognition technique. In this sensing protocol, a 15 based thrombin aptamer (ab. TBA) was dually labeled with a thiol at its 3' end and a 4-((4-(dimethylamino)phenyl)azo) benzoic acid (dabcyl) at its 5' end, respectively, which was previously immobilized on one Au electrode surface by AuS bond and used as the thrombin probe during the protein sensing procedure. One special electrochemical marker was prepared by modifying CdS nanoparticle with β-cyclodextrins (ab. CdS-CDs), which employed as electrochemical signal provider and would conjunct with the thrombin probe modified electrode through the host-guest recognition of CDs to dabcyl. In the absence of thrombin, the probe adopted linear structure to conjunct with CdS-CDs. In present of thrombin, the TBA bond with thrombin and transformed into its special G-quarter structure, which forced CdS-CDs into the solution. Therefore, the target-TBA binding event can be sensitively transduced via detecting the electrochemical oxidation current signal of Cd of CdS nanoparticles in the solution. Using this method, as low as 4.6 pM thrombin had been detected. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Dabigatran abrogates brain endothelial cell permeability in response to thrombin

    PubMed Central

    Hawkins, Brian Thomas; Gu, Yu-Huan; Izawa, Yoshikane; del Zoppo, Gregory John

    2015-01-01

    Atrial fibrillation (AF) increases the risk and severity of thromboembolic stroke. Generally, antithrombotic agents increase the hemorrhagic risk of thromboembolic stroke. However, significant reductions in thromboembolism and intracerebral hemorrhage have been shown with the antithrombin dabigatran compared with warfarin. As thrombin has been implicated in microvessel injury during cerebral ischemia, we hypothesized that dabigatran decreases the risk of intracerebral hemorrhage by direct inhibition of the thrombin-mediated increase in cerebral endothelial cell permeability. Primary murine brain endothelial cells (mBECs) were exposed to murine thrombin before measuring permeability to 4-kDa fluorescein isothiocyanate-dextran. Thrombin increased mBEC permeability in a concentration-dependent manner, without significant endothelial cell death. Pretreatment of mBECs with dabigatran completely abrogated the effect of thrombin on permeability. Neither the expressions of the endothelial cell β1-integrins nor the tight junction protein claudin-5 were affected by thrombin exposure. Oxygen-glucose deprivation (OGD) also increased permeability; this effect was abrogated by treatment with dabigatran, as was the additive effect of thrombin and OGD on permeability. Taken together, these results indicate that dabigatran could contribute to a lower risk of intracerebral hemorrhage during embolism-associated ischemia from AF by protection of the microvessel permeability barrier from local thrombin challenge. PMID:25669912

  18. Peroxisome proliferator-activated receptor-gamma agonist rosiglitazone attenuates postincisional pain by regulating macrophage polarization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasegawa-Moriyama, Maiko, E-mail: hase-mai@m3.kufm.kagoshima-u.ac.jp; Ohnou, Tetsuya; Godai, Kohei

    Highlights: Black-Right-Pointing-Pointer Rosiglitazone attenuated postincisional pain. Black-Right-Pointing-Pointer Rosiglitazone alters macrophage polarization to F4/80{sup +}CD206{sup +} M2 macrophages at the incisional sites. Black-Right-Pointing-Pointer Transplantation of rosiglitazone-treated macrophages produced analgesic effects. -- Abstract: Acute inflammation triggered by macrophage infiltration to injured tissue promotes wound repair and may induce pain hypersensitivity. Peroxisome proliferator-activated receptor {gamma} (PPAR){gamma} signaling is known to regulate heterogeneity of macrophages, which are often referred to as classically activated (M1) and alternatively activated (M2) macrophages. M1 macrophages have considerable antimicrobial activity and produce a wide variety of proinflammatory cytokines. In contrast, M2 macrophages are involved in anti-inflammatory and homeostatic functionsmore » linked to wound healing and tissue repair. Although it has been suggested that PPAR{gamma} agonists attenuate pain hypersensitivity, the molecular mechanism of macrophage-mediated effects of PPAR{gamma} signaling on pain development has not been explored. In this study, we investigated the link between the phenotype switching of macrophage polarization induced by PPAR{gamma} signaling and the development of acute pain hypersensitivity. Local administration of rosiglitazone significantly ameliorated hypersensitivity to heat and mechanical stimuli, and paw swelling. Consistent with the down-regulation of nuclear factor {kappa}B (NF{kappa}B) phosphorylation by rosiglitazone at the incisional sites, the number of F4/80{sup +}iNOS{sup +} M1 macrophages was decreased whereas numbers of F4/80{sup +}CD206{sup +} M2 macrophages were increased in rosiglitazone-treated incisional sites 24 h after the procedure. In addition, gene induction of anti-inflammatory M2-macrophage-associated markers such as arginase1, FIZZ1 and interleukin (IL)-10 were significantly increased

  19. Activation of peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}) induces cell death through MAPK-dependent mechanism in osteoblastic cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sung Hun; Yoo, Chong Il; Medical Research Institute, College of Medicine, Pusan National University, Pusan, 602-739

    2006-09-01

    The present study was undertaken to determine the role of the mitogen-activated protein kinase (MAPK) subfamilies in cell death induced by PPAR{gamma} agonists in osteoblastic cells. Ciglitazone and troglitazone, PPAR{gamma} agonists, resulted in a concentration- and time-dependent cell death, which was largely attributed to apoptosis. But a PPAR{alpha} agonist ciprofibrate did not affect the cell death. Ciglitazone caused reactive oxygen species (ROS) generation and ciglitazone-induced cell death was prevented by antioxidants, suggesting an important role of ROS generation in the ciglitazone-induced cell death. ROS generation and cell death induced by ciglitazone were inhibited by the PPAR{gamma} antagonist GW9662. Ciglitazone treatmentmore » caused activation of extracellular signal-regulated kinase (ERK) and p38. Activation of ERK was dependent on epidermal growth factor receptor (EGFR) and that of p38 was independent. Ciglitazone-induced cell death was significantly prevented by PD98059, an inhibitor of ERK upstream kinase MEK1/2, and SB203580, a p38 inhibitor. Ciglitazone treatment increased Bax expression and caused a loss of mitochondrial membrane potential, and its effect was prevented by N-acetylcysteine, PD98059, and SB203580. Ciglitazone induced caspase activation, which was prevented by PD98059 and SB203580. The general caspase inhibitor z-DEVD-FMK and the specific inhibitor of caspases-3 DEVD-CHO exerted the protective effect against the ciglitazone-induced cell death. The EGFR inhibitors AG1478 and suramin protected against the ciglitazone-induced cell death. Taken together, these findings suggest that the MAPK signaling pathways play an active role in mediating the ciglitazone-induced cell death of osteoblasts and function upstream of a mitochondria-dependent mechanism. These data may provide a novel insight into potential therapeutic strategies for treatment of osteoporosis.« less

  20. IFN-gamma synergizes with LPS to induce nitric oxide biosynthesis through glycogen synthase kinase-3-inhibited IL-10.

    PubMed

    Lin, Chiou-Feng; Tsai, Cheng-Chieh; Huang, Wei-Ching; Wang, Chi-Yun; Tseng, Hsiang-Chi; Wang, Yi; Kai, Jui-In; Wang, Szu-Wen; Cheng, Yi-Lin

    2008-10-15

    Interferon-gamma (IFN-gamma) plays a crucial role in innate immunity and inflammation. It causes the synergistic effect on endotoxin lipopolysaccharide (LPS)-stimulated inducible nitric oxide synthase (iNOS)/NO biosynthesis; however, the mechanism remains unclear. In the present study, we investigated the effects of glycogen synthase kinase-3 (GSK-3)-mediated inhibition of anti-inflammatory interleukin-10 (IL-10). We found, in LPS-stimulated macrophages, that IFN-gamma increased iNOS expression and NO production in a time-dependent manner. In addition, ELISA analysis showed the upregulation of tumor necrosis factor-alpha and regulated on activation, normal T expressed and secreted, and the downregulation of IL-10. RT-PCR further showed changes in the IL-10 mRNA level as well. Treating cells with recombinant IL-10 showed a decrease in IFN-gamma/LPS-induced iNOS/NO biosynthesis, whereas anti-IL-10 neutralizing antibodies enhanced this effect, suggesting that IL-10 acts in an anti-inflammatory role. GSK-3-inhibitor treatment blocked IFN-gamma/LPS-induced iNOS/NO biosynthesis but upregulated IL-10 production. Inhibiting GSK-3 using short-interference RNA showed similar results. Additionally, treating cells with anti-IL-10 neutralizing antibodies blocked these effects. We further showed that inhibiting GSK-3 increased phosphorylation of transcription factor cyclic AMP response element binding protein. Inhibiting protein tyrosine kinase Pyk2, an upstream regulator of GSK-3beta, caused inhibition on IFN-gamma/LPS-induced GSK-3beta phosphorylation at tyrosine 216 and iNOS/NO biosynthesis. Taken together, these findings reveal the involvement of GSK-3-inhibited IL-10 on the induction of iNOS/NO biosynthesis by IFN-gamma synergized with LPS. (c) 2008 Wiley-Liss, Inc.

  1. Dual Regulation of Glycogen Synthase Kinase 3 (GSK3)α/β by Protein Kinase C (PKC)α and Akt Promotes Thrombin-mediated Integrin αIIbβ3 Activation and Granule Secretion in Platelets*

    PubMed Central

    Moore, Samantha F.; van den Bosch, Marion T. J.; Hunter, Roger W.; Sakamoto, Kei; Poole, Alastair W.; Hers, Ingeborg

    2013-01-01

    Glycogen synthase kinase-3 is a Ser/Thr kinase, tonically active in resting cells but inhibited by phosphorylation of an N-terminal Ser residue (Ser21 in GSK3α and Ser9 in GSK3β) in response to varied external stimuli. Recent work suggests that GSK3 functions as a negative regulator of platelet function, but how GSK3 is regulated in platelets has not been examined in detail. Here, we show that early thrombin-mediated GSK3 phosphorylation (0–30 s) was blocked by PKC inhibitors and largely absent in platelets from PKCα knock-out mice. In contrast, late (2–5 min) GSK3 phosphorylation was dependent on the PI3K/Akt pathway. Similarly, early thrombin-mediated inhibition of GSK3 activity was blocked in PKCα knock-out platelets, whereas the Akt inhibitor MK2206 reduced late thrombin-mediated GSK3 inhibition and largely prevented GSK3 inhibition in PKCα knock-out platelets. More importantly, GSK3 phosphorylation contributes to platelet function as knock-in mice where GSK3α Ser21 and GSK3β Ser9 were mutated to Ala showed a significant reduction in PAR4-mediated platelet aggregation, fibrinogen binding, and P-selectin expression, whereas the GSK3 inhibitor CHIR99021 enhanced these responses. Together, these results demonstrate that PKCα and Akt modulate platelet function by phosphorylating and inhibiting GSK3α/β, thereby relieving the negative effect of GSK3α/β on thrombin-mediated platelet activation. PMID:23239877

  2. Dynamic Consequences of Mutation of Tryptophan 215 in Thrombin.

    PubMed

    Peacock, Riley B; Davis, Jessie R; Markwick, Phineus R L; Komives, Elizabeth A

    2018-05-08

    Thrombin normally cleaves fibrinogen to promote coagulation; however, binding of thrombomodulin to thrombin switches the specificity of thrombin toward protein C, triggering the anticoagulation pathway. The W215A thrombin mutant was reported to have decreased activity toward fibrinogen without significant loss of activity toward protein C. To understand how mutation of Trp215 may alter thrombin specificity, hydrogen-deuterium exchange experiments (HDXMS), accelerated molecular dynamics (AMD) simulations, and activity assays were carried out to compare the dynamics of Trp215 mutants with those of wild type (WT) thrombin. Variation in NaCl concentration had no detectable effect on the sodium-binding (220s CT ) loop, but appeared to affect other surface loops. Trp215 mutants showed significant increases in amide exchange in the 170s CT loop consistent with a loss of H-bonding in this loop identified by the AMD simulations. The W215A thrombin showed increased amide exchange in the 220s CT loop and in the N-terminus of the heavy chain. The AMD simulations showed that a transient conformation of the W215A thrombin has a distorted catalytic triad. HDXMS experiments revealed that mutation of Phe227, which engages in a π-stacking interaction with Trp215, also caused significantly increased amide exchange in the 170s CT loop. Activity assays showed that only the F227V mutant had wild type catalytic activity, whereas all other mutants showed markedly lower activity. Taken together, the results explain the reduced pro-coagulant activity of the W215A mutant and demonstrate the allosteric connection between Trp215, the sodium-binding loop, and the active site.

  3. 21 CFR 864.7875 - Thrombin time test.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Thrombin time test. 864.7875 Section 864.7875 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7875 Thrombin time test. (a...

  4. 21 CFR 864.7875 - Thrombin time test.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Thrombin time test. 864.7875 Section 864.7875 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7875 Thrombin time test. (a...

  5. 21 CFR 864.7875 - Thrombin time test.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Thrombin time test. 864.7875 Section 864.7875 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7875 Thrombin time test. (a...

  6. 21 CFR 864.7875 - Thrombin time test.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Thrombin time test. 864.7875 Section 864.7875 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7875 Thrombin time test. (a...

  7. 21 CFR 864.7875 - Thrombin time test.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Thrombin time test. 864.7875 Section 864.7875 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7875 Thrombin time test. (a...

  8. Regulation of gamma-Secretase in Alzheimer's Disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Shuxia; Zhou, Hua; Walian, Peter

    2007-02-07

    The {gamma}-secretase complex is an intramembrane aspartyl protease that cleaves its substrates along their transmembrane regions. Sequential proteolytic processing of amyloid precursor protein by {beta}- and {gamma}-secretase produces amyloid {beta}-peptides, which are the major components of amyloid plaques in the brains of Alzheimer's disease patients. The {gamma}-secretase complex is therefore believed to be critical in the pathogenesis of Alzheimer's disease. Here we review the range of factors found to affect the nature and degree of {gamma}-secretase complex activity; these include {gamma}-secretase complex assembly and activation, the integral regulatory subunit CD147, transient or weak binding partners, the levels of cholesterol andmore » sphingolipids in cell membranes, and inflammatory cytokines. Integrated knowledge of the molecular mechanisms supporting the actions of these factors is expected to lead to a comprehensive understanding of the functional regulation of the {gamma}-secretase complex, and this, in turn, should facilitate the development of novel therapeutic strategies for the treatment of Alzheimer's disease.« less

  9. The effect of cigarette smoke extract on thrombomodulin-thrombin binding: an atomic force microscopy study.

    PubMed

    Wei, Yujie; Zhang, Xuejie; Xu, Li; Yi, Shaoqiong; Li, Yi; Fang, Xiaohong; Liu, Huiliang

    2012-10-01

    Cigarette smoking is a well-known risk factor for cardiovascular disease. Smoking can cause vascular endothelial dysfunction and consequently trigger haemostatic activation and thrombosis. However, the mechanism of how smoking promotes thrombosis is not fully understood. Thrombosis is associated with the imbalance of the coagulant system due to endothelial dysfunction. As a vital anticoagulation cofactor, thrombomodulin (TM) located on the endothelial cell surface is able to regulate intravascular coagulation by binding to thrombin, and the binding results in thrombosis inhibition. This work focused on the effects of cigarette smoke extract (CSE) on TM-thrombin binding by atomic force microscopy (AFM) based single-molecule force spectroscopy. The results from both in vitro and live-cell experiments indicated that CSE could notably reduce the binding probability of TM and thrombin. This study provided a new approach and new evidence for studying the mechanism of thrombosis triggered by cigarette smoking.

  10. In vitro effects of recombinant activated factor VII on thrombin generation and coagulation following inhibition of platelet procoagulant activity by prasugrel.

    PubMed

    Mazzeffi, Michael; Szlam, Fania; Jakubowski, Joseph A; Tanaka, Kenichi A; Sugidachi, Atsuhiro; Levy, Jerrold H

    2013-07-01

    Prasugrel is a thienopyridyl P2Y12 antagonist with potent antiplatelet effects. At present, little is known about its effects on thrombin generation or what strategies may emergently reverse its anticoagulant effects. In the current study we evaluated whether recombinant activated factor VII may reverse prasugrel induced effects and increase thrombin generation in an in vitro model. The effect of prasugrel active metabolite, PAM (R-138727), was evaluated on platelet aggregation, thrombin generation, and rotational thromboelastometry parameters using blood from 20 healthy volunteers. Additionally, we evaluated the effects of adenosine diphosphate (ADP) and recombinant activated factor VII on restoring these parameters towards baseline values. PAM reduced maximum platelet aggregation and led to platelet disaggregation. It also decreased peak thrombin, increased lag time, and increased time to peak thrombin. Treatment with recombinant activated factor VII restored all three parameters of thrombin generation towards baseline. ADP decreased lag time and time to peak thrombin, but had no effect on peak thrombin. When recombinant activated factor VII and ADP were combined they had a greater effect on thrombin parameters than either drug alone. PAM also increased thromboelastometric clotting time and clot formation time, but had no effect on maximum clot firmness. Treatment with either recombinant activated factor VII or ADP restored these values towards baseline. Recombinant activated factor VII restores thrombin generation in the presence of PAM. In patients taking prasugrel with life-threatening refractory bleeding it has the potential to be a useful therapeutic approach. Additional clinical studies are needed to validate our findings. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Thrombin-inhibiting nanoparticles rapidly constitute versatile and detectable anticlotting surfaces

    NASA Astrophysics Data System (ADS)

    Wheatley Myerson, Jacob; He, Li; Allen, John Stacy; Williams, Todd; Lanza, Gregory; Tollefsen, Douglas; Caruthers, Shelton; Wickline, Samuel

    2014-09-01

    Restoring an antithrombotic surface to suppress ongoing thrombosis is an appealing strategy for treatment of acute cardiovascular disorders such as erosion of atherosclerotic plaque. An antithrombotic surface would present an alternative to systemic anticoagulation with attendant risks of bleeding. We have designed thrombin-targeted nanoparticles (NPs) that bind to sites of active clotting to extinguish local thrombin activity and inhibit platelet deposition while exhibiting only transient systemic anticoagulant effects. Perfluorocarbon nanoparticles (PFC NP) were functionalized with thrombin inhibitors (either D-phenylalanyl-L-prolyl-L-arginyl-chloromethyl ketone or bivalirudin) by covalent attachment of more than 15 000 inhibitors to each PFC NP. Fibrinopeptide A (FPA) ELISA demonstrated that thrombin-inhibiting NPs prevented cleavage of fibrinogen by both free and clot-bound thrombin. Magnetic resonance imaging (MRI) confirmed that a layer of thrombin-inhibiting NPs prevented growth of clots in vitro. Thrombin-inhibiting NPs were administered in vivo to C57BL6 mice subjected to laser injury of the carotid artery. NPs significantly delayed thrombotic occlusion of the artery, whereas an equivalent bolus of free inhibitor was ineffective. For thrombin-inhibiting NPs, only a short-lived (˜10 min) systemic effect on bleeding time was observed, despite prolonged clot inhibition. Imaging and quantification of in vivo antithrombotic NP layers was demonstrated by MRI of the PFC NP. 19F MRI confirmed colocalization of particles with arterial thrombi, and quantitative 19F spectroscopy demonstrated specific binding and retention of thrombin-inhibiting NPs in injured arteries. The ability to rapidly form and image a new antithrombotic surface in acute vascular syndromes while minimizing risks of bleeding would permit a safer method of passivating active lesions than current systemic anticoagulant regimes.

  12. Thrombin-inhibiting perfluorocarbon nanoparticles provide a novel strategy for treatment and magnetic resonance imaging of acute thrombosis

    PubMed Central

    Myerson, J.; He, L.; Lanza, G.; Tollefsen, D.; Wickline, S.

    2013-01-01

    Background As a regulator of the penultimate step in the coagulation cascade, thrombin represents a principal target of direct and specific anticoagulants. Objective A potent thrombin inhibitor complexed with a colloidal nanoparticle was devised as a first-in-class anticoagulant with prolonged and highly localized therapeutic impact conferred by its multivalent thrombin-absorbing particle surface. Methods PPACK (Phe(D)-Pro-Arg-Chloromethylketone) was secured covalently to the surface of perfluorocarbon-core nanoparticle structures. PPACK and PPACK nanoparticle inhibition of thrombin were assessed in vitro via thrombin activity against a chromogenic substrate. In vivo antithrombotic activity of PPACK, heparin, non-functionalized nanoparticles, and PPACK nanoparticles was assessed through IV administration prior to acute photochemical injury of the common carotid artery. Perfluorocarbon particle retention in extracted carotid arteries from injured mice was assessed via 19F magnetic resonance spectroscopy (MRS) and imaging (MRI) at 11.7 T. APTT measurements determined the systemic effects of the PPACK nanoparticles at various times after injection. Results Optical assay verified that PPACK nanoparticles exceeded PPACK’s intrinsic activity against thrombin. Application of the an in vivo acute arterial thrombosis model demonstrated that PPACK nanoparticles outperformed both heparin (p=.001) and uncomplexed PPACK (p=.0006) in inhibiting thrombosis. 19F MRS confirmed that PPACK nanoparticles specifically bound to sites of acute thrombotic injury. APTT normalized within twenty minutes of PPACK nanoparticles injection. Conclusions PPACK nanoparticles present thrombin-inhibiting surfaces at sites of acutely forming thrombi that continue to manifest local clot inhibition even as systemic effects rapidly diminish and thus represent a new platform for localized control of acute thrombosis. PMID:21605330

  13. Immunization by bovine thrombin used with fibrin glue during cardiovascular operations. Development of thrombin and factor V inhibitors.

    PubMed

    Berruyer, M; Amiral, J; Ffrench, P; Belleville, J; Bastien, O; Clerc, J; Kassir, A; Estanove, S; Dechavanne, M

    1993-05-01

    Brief case histories of three patients aged 58, 38, and 44 years are reported. All underwent cardiovascular operations. Subsequently hemostasis test abnormalities developed between the seventh and eighth postoperative days after exposure to bovine thrombin used with fibrin glue. These were characterized by an increased activated partial thromboplastin time (64 to 147 seconds), prothrombin time (19 to 24 seconds), bovine thrombin time (> 120 seconds) and a markedly reduced factor V level (< 10% in two patients and 16% in the third patient). A patient plasma dilution of 1 in 200 with a normal plasma pool was necessary to correct bovine thrombin time. No fast-acting or progressive inhibitor against factor V could be detected by coagulation tests, and fresh frozen plasma perfusion had no effect. Plasmapheresis was performed preventatively to avoid bleeding, and factor V levels stabilized at around 50% after two to four exchanges. Immunologic studies showed that the inhibitors were directed not only against bovine factors but also against human ones. Therefore factor V decrease could have been the result of rapid clearance from the circulation of complexes formed with a nonneutralizing inhibitor that is not detected by clotting tests. These antibodies were purified by standard methods and immunoaffinity. Fast immunization could be explained by a prior sensitization to bovine thrombin exposure during previous operations. It is suggested that bovine thrombin used with fibrin glue contains small amounts of factor V and may be responsible for these abnormalities. This is in agreement with previous literature reports. However, these described neutralizing factor V inhibitors, which were easily detected.

  14. Antiplatelet Agents Can Promote Two-Peaked Thrombin Generation in Platelet Rich Plasma: Mechanism and Possible Applications

    PubMed Central

    Tarandovskiy, Ivan D.; Artemenko, Elena O.; Panteleev, Mikhail A.; Sinauridze, Elena I.; Ataullakhanov, Fazoil I.

    2013-01-01

    Background Thrombin generation assay is a convenient and widely used method for analysis of the blood coagulation system status. Thrombin generation curve (TGC) is usually bell-shaped with a single peak, but there are exceptions. In particular, TGC in platelet-rich plasma (PRP) can sometimes have two peaks. Objective We sought to understand the mechanism underlying the occurrence of two peaks in the PRP thrombin generation curve. Methods Tissue factor-induced thrombin generation in PRP and platelet-poor plasma (PPP) was monitored using continuous measurement of the hydrolysis rate of the thrombin-specific fluorogenic substrate Z-Gly-Gly-Arg-AMC. Expression of phosphatidylserine (PS) and CD62P on the surface of activated platelets was measured by flow cytometry using corresponding fluorescently labeled markers. Results The addition of the P2Y12 receptor antagonist MeS-AMP (160 µM), 83 nM prostaglandin E1 (PGE1), or 1.6% DMSO to PRP caused the appearance of two peaks in the TGC. The PS exposure after thrombin activation on washed platelets in a suspension supplemented with DMSO, PGE1 or MeS-AMP was delayed, which could indicate mechanism of the second peak formation. Supplementation of PRP with 1.6% DMSO plus 830 nM PGE1 mediated the disappearance of the second peak and decreased the amplitude of the first peak. Increasing the platelet concentration in the PRP promoted the consolidation of the two peaks into one. Conclusions Procoagulant tenase and prothrombinase complexes in PRP assemble on phospholipid surfaces containing PS of two types - plasma lipoproteins and the surface of activated platelets. Thrombin generation in the PRP can be two-peaked. The second peak appears in the presence of platelet antagonists as a result of delayed PS expression on platelets, which leads to delayed assembly of the membrane-dependent procoagulant complexes and a second wave of thrombin generation. PMID:23405196

  15. Regulation of long-term repopulating hematopoietic stem cells by EPCR/PAR1 signaling

    PubMed Central

    Gur-Cohen, Shiri; Kollet, Orit; Graf, Claudine; Esmon, Charles T.; Ruf, Wolfram; Lapidot, Tsvee

    2016-01-01

    The common developmental origin of endothelial and hematopoietic cells is manifested by coexpression of several cell surface receptors. Adult murine bone marrow (BM) long-term repopulating hematopoietic stem cells (LT-HSCs), endowed with the highest repopulation and self-renewal potential, express endothelial protein C receptor (EPCR), which is used as a marker to isolate them. EPCR/PAR1 signaling in endothelial cells has anticoagulant and anti-inflammatory roles, while thrombin/PAR1 signaling induces coagulation and inflammation. Recent studies define two new PAR1-mediated signaling cascades that regulate EPCR+ LT-HSC BM retention and egress. EPCR/PAR1 signaling facilitates LT-HSC BM repopulation, retention, survival, and chemotherapy resistance by restricting nitric oxide (NO) production, maintaining NOlow LT-HSC BM retention with increased VLA4 expression, affinity, and adhesion. Conversely, acute stress and clinical mobilization upregulate thrombin generation and activate different PAR1 signaling which overcomes BM EPCR+ LT-HSC retention, inducing their recruitment to the bloodstream. Thrombin/PAR1 signaling induces NO generation, TACE-mediated EPCR shedding, and upregulation of CXCR4 and PAR1, leading to CXCL12-mediated stem and progenitor cell mobilization. This review discusses new roles for factors traditionally viewed as coagulation related, which independently act in the BM to regulate PAR1 signaling in bone- and blood-forming progenitor cells, navigating their fate by controlling NO production. PMID:26928241

  16. Structure-activity analysis of synthetic alpha-thrombin-receptor-activating peptides.

    PubMed

    Van Obberghen-Schilling, E; Rasmussen, U B; Vouret-Craviari, V; Lentes, K U; Pavirani, A; Pouysségur, J

    1993-06-15

    , second or third N-terminal residue leads to a loss of activity, suggesting that a defined spacing of more than one structural component may be important for ligand-receptor interaction. Finally, we did not observe an antagonistic effect of the inactive peptides on phospholipase C activation or DNA synthesis induced by alpha-thrombin (1 nM) or SFLLRNP (3 microM).

  17. Structure-activity analysis of synthetic alpha-thrombin-receptor-activating peptides.

    PubMed Central

    Van Obberghen-Schilling, E; Rasmussen, U B; Vouret-Craviari, V; Lentes, K U; Pavirani, A; Pouysségur, J

    1993-01-01

    , second or third N-terminal residue leads to a loss of activity, suggesting that a defined spacing of more than one structural component may be important for ligand-receptor interaction. Finally, we did not observe an antagonistic effect of the inactive peptides on phospholipase C activation or DNA synthesis induced by alpha-thrombin (1 nM) or SFLLRNP (3 microM). PMID:7686363

  18. A sensitive HIV-1 envelope induced fusion assay identifies fusion enhancement of thrombin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, De-Chun; Zhong, Guo-Cai; Su, Ju-Xiang

    2010-01-22

    To evaluate the interaction between HIV-1 envelope glycoprotein (Env) and target cell receptors, various cell-cell-fusion assays have been developed. In the present study, we established a novel fusion system. In this system, the expression of the sensitive reporter gene, firefly luciferase (FL) gene, in the target cells was used to evaluate cell fusion event. Simultaneously, constitutively expressed Renilla luciferase (RL) gene was used to monitor effector cell number and viability. FL gave a wider dynamic range than other known reporters and the introduction of RL made the assay accurate and reproducible. This system is especially beneficial for investigation of potentialmore » entry-influencing agents, for its power of ruling out the false inhibition or enhancement caused by the artificial cell-number variation. As a case study, we applied this fusion system to observe the effect of a serine protease, thrombin, on HIV Env-mediated cell-cell fusion and have found the fusion enhancement activity of thrombin over two R5-tropic HIV strains.« less

  19. A direct thrombin inhibitor suppresses protein C activation and factor Va degradation in human plasma: Possible mechanisms of paradoxical enhancement of thrombin generation.

    PubMed

    Kamisato, Chikako; Furugohri, Taketoshi; Morishima, Yoshiyuki

    2016-05-01

    We have demonstrated that antithrombin (AT)-independent thrombin inhibitors paradoxically increase thrombin generation (TG) in human plasma in a thrombomodulin (TM)- and protein C (PC)-dependent manner. We determined the effects of AT-independent thrombin inhibitors on the negative-feedback system, activation of PC and production and degradation of factor Va (FVa), as possible mechanisms underlying the paradoxical enhancement of TG. TG in human plasma containing 10nM TM was assayed by means of the calibrated automated thrombography. As an index of PC activation, plasma concentration of activated PC-PC inhibitor complex (aPC-PCI) was measured. The amounts of FVa heavy chain and its degradation product (FVa(307-506)) were examined by western blotting. AT-independent thrombin inhibitors, melagatran and dabigatran (both at 25-600nM) and 3-30μg/ml active site-blocked thrombin (IIai), increased peak levels of TG. Melagatran, dabigatran and IIai significantly decreased plasma concentration of aPC-PCI complex at 25nM or more, 75nM or more, and 10 and 30μg/ml, respectively. Melagatran (300nM) significantly increased FVa and decreased FVa(307-506). In contrast, a direct factor Xa inhibitor edoxaban preferentially inhibited thrombin generation (≥25nM), and higher concentrations were required to inhibit PC activation (≥150nM) and FVa degradation (300nM). The present study suggests that the inhibitions of protein C activation and subsequent degradation of FVa and increase in FVa by antithrombin-independent thrombin inhibitors may contribute to the paradoxical TG enhancement, and edoxaban may inhibit PC activation and FVa degradation as a result of TG suppression. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Changes in amniotic fluid concentration of thrombin-antithrombin III complexes in patients with preterm labor: evidence of an increased thrombin generation

    PubMed Central

    Erez, Offer; Romero, Roberto; Vaisbuch, Edi; Chaiworapongsa, Tinnakorn; Kusanovic, Juan Pedro; Mazaki-Tovi, Shali; Gotsch, Francesca; Gomez, Ricardo; Maymon, Eli; Pacora, Percy; Edwin, Samuel S.; Kim, Chong Jai; Than, Nandor Gabor; Mittal, Pooja; Yeo, Lami; Dong, Zhong; Yoon, Bo Hyun; Hassan, Sonia S; Mazor, Moshe

    2012-01-01

    Objective Preterm labor is associated with excessive maternal thrombin generation as evidenced by increased circulating thrombin–antithrombin (TAT) III complexes concentration. In addition to its hemostatic functions, thrombin has uterotonic properties that may participate in the mechanism leading to preterm birth in cases of intrauterine bleeding. Thrombin also has a proinflammatory role, and inflammation is associated with increased thrombin generation. The aim of this study was to determine whether intra-amniotic infection/inflammation (IAI) is associated with increased amniotic fluid (AF) thrombin generation in women with preterm and term deliveries. Study design This cross-sectional study included the following groups: 1) mid-trimester (n=74); 2) term not in labor (n=39); 3) term in labor (n=25); 4) term in labor with IAI (n=22); 5) spontaneous preterm labor (PTL) who delivered at term (n=62); 6) PTL without IAI who delivered preterm (n=59); 7) PTL with IAI (n=71). The AF TAT III complexes concentration was measured by ELISA. Non-parametric statistics were used for analysis. Results 1) TAT III complexes were identified in all AF samples; 2) patients with PTL who delivered preterm, with and without IAI, had a significantly higher median AF TAT III complexes concentration than those with an episode of PTL who delivered at term (p<0.001, p=0.03, respectively); 3) among patients with preterm labor without IAI, elevated AF TAT III complexes concentration were independently associated with a shorter amniocentesis-to-delivery interval (hazard ratio- 1.5, 95%CI, 1.07–2.1); 4) among patients at term, those with IAI had a higher median AF TAT III complexes concentration than those without IAI, whether in labor or not in labor (p=0.02); 5) there was no significant difference between the median AF TAT III complexes concentration of patients at term with and without labor; and 6) patients who had a mid-trimester amniocentesis had a lower median AF TAT III complexes

  1. The Effects of Thrombin on Adenyl Cyclase Activity and a Membrane Protein from Human Platelets

    PubMed Central

    Brodie, G. N.; Baenziger, Nancy Lewis; Chase, Lewis R.; Majerus, Philip W.

    1972-01-01

    Washed human platelets were incubated with 0.1-1.0 U/ml human thrombin and the effects on adenyl cyclase activity and on a platelet membrane protein (designated thrombin-sensitive protein) were studied. Adenyl cyclase activity was decreased 70-90% when intact platelets were incubated with thrombin. The T½ for loss of adenyl cyclase activity was less than 15 sec at 1 U/ml thrombin. There was no decrease of adenyl cyclase activity when sonicated platelets or isolated membranes were incubated with these concentrations of thrombin. Loss of adenyl cyclase activity was relatively specific since the activities of other platelet membrane enzymes were unaffected by thrombin. Prior incubation of platelets with dibutyryl cyclic adenosine monophosphate (AMP), prostaglandin E1, or theophylline protected adenyl cyclase from inhibition by thrombin. Incubation of intact but not disrupted platelets with thrombin resulted in the release of thrombin-sensitive protein from the platelet membrane. The rapid release of this protein (T½ < 15 sec) at low concentrations of thrombin suggested that removal of thrombin-sensitive protein from the platelet membrane is an integral part of the platelet release reaction. This hypothesis is supported by the parallel effects of thrombin on adenyl cyclase activity and thrombin-sensitive protein release in the presence of dibutyryl cyclic AMP, prostaglandin E1, and theophylline at varying concentrations of thrombin. Images PMID:4331802

  2. Crystallization and preliminary X-ray analysis of the complex of human α-thrombin with a modified thrombin-binding aptamer

    PubMed Central

    Russo Krauss, Irene; Merlino, Antonello; Randazzo, Antonio; Mazzarella, Lelio; Sica, Filomena

    2010-01-01

    The thrombin-binding aptamer (TBA) is a consensus DNA 15-mer that binds specifically to human α-thrombin at nanomolar concentrations and inhibits its procoagulant functions. Recently, a modified TBA (mTBA) containing a 5′–5′ inversion-of-polarity site has been shown to be more stable and to possess a higher thrombin affinity than its unmodified counterpart. The structure of the thrombin–TBA complex has previously been determined at low resolution, but did not provide a detailed picture of the aptamer conformation or of the protein–DNA assembly, while that of the complex with mTBA is unknown. Crystallographic analysis of the thrombin–mTBA complex has been attempted. The crystals diffracted to 2.15 Å resolution and belonged to space group I222. PMID:20693681

  3. Structure of a retro-binding peptide inhibitor complexed with human alpha-thrombin.

    PubMed

    Tabernero, L; Chang, C Y; Ohringer, S L; Lau, W F; Iwanowicz, E J; Han, W C; Wang, T C; Seiler, S M; Roberts, D G; Sack, J S

    1995-02-10

    The crystallographic structure of the ternary complex between human alpha-thrombin, hirugen and the peptidyl inhibitor Phe-alloThr-Phe-O-CH3, which is acylated at its N terminus with 4-guanidino butanoic acid (BMS-183507), has been determined at 2.6 A resolution. The structure reveals a unique "retro-binding" mode for this tripeptide active site inhibitor. The inhibitor binds with its alkyl-guanidine moiety in the primary specificity pocket and its two phenyl rings occupying the hydrophobic proximal and distal pockets of the thrombin active site. In this arrangement the backbone of the tripeptide forms a parallel beta-strand to the thrombin main-chain at the binding site. This is opposite to the orientation of the natural substrate, fibrinogen, and all the small active site-directed thrombin inhibitors whose bound structures have been previously reported. BMS-183507 is the first synthetic inhibitor proved to bind in a retro-binding fashion to thrombin, in a fashion similar to that of the N-terminal residues of the natural inhibitor hirudin. Furthermore, this new potent thrombin inhibitor (Ki = 17.2 nM) is selective for thrombin over other serine proteases tested and may be a template to be considered in designing hirudin-based thrombin inhibitors with interactions at the specificity pocket.

  4. Histamine and thrombin modulate endothelial focal adhesion through centripetal and centrifugal forces.

    PubMed Central

    Moy, A B; Van Engelenhoven, J; Bodmer, J; Kamath, J; Keese, C; Giaever, I; Shasby, S; Shasby, D M

    1996-01-01

    We examined the contribution of actin-myosin contraction to the modulation of human umbilical vein endothelial cell focal adhesion caused by histamine and thrombin. Focal adhesion was measured as the electrical resistance across a cultured monolayer grown on a microelectrode. Actin-myosin contraction was measured as isometric tension of cultured monolayers grown on a collagen gel. Histamine immediately decreased electrical resistance but returned to basal levels within 3-5 min. Histamine did not increase isometric tension. Thrombin also immediately decreased electrical resistance, but, however, resistance did not return to basal levels for 40-60 min. Thrombin also increased isometric tension, ML-7, an inhibitor of myosin light chain kinase, prevented increases in myosin light chain phosphorylation and increases in tension development in cells exposed to thrombin. ML-7 did not prevent a decline in electrical resistance in cells exposed to thrombin. Instead, ML-7 restored the electrical resistance to basal levels in a shorter period of time (20 min) than cells exposed to thrombin alone. Also, histamine subsequently increased electrical resistance to above basal levels, and thrombin initiated an increase in resistance during the time of peak tension development. Hence, histamine and thrombin modulate endothelial cell focal adhesion through centripetal and centrifugal forces. PMID:8613524

  5. Investigation of the heparin-thrombin interaction by dynamic force spectroscopy.

    PubMed

    Wang, Congzhou; Jin, Yingzi; Desai, Umesh R; Yadavalli, Vamsi K

    2015-06-01

    The interaction between heparin and thrombin is a vital step in the blood (anti)coagulation process. Unraveling the molecular basis of the interactions is therefore extremely important in understanding the mechanisms of this complex biological process. In this study, we use a combination of an efficient thiolation chemistry of heparin, a self-assembled monolayer-based single molecule platform, and a dynamic force spectroscopy to provide new insights into the heparin-thrombin interaction from an energy viewpoint at the molecular scale. Well-separated single molecules of heparin covalently attached to mixed self-assembled monolayers are demonstrated, whereby interaction forces with thrombin can be measured via atomic force microscopy-based spectroscopy. Further these interactions are studied at different loading rates and salt concentrations to directly obtain kinetic parameters. An increase in the loading rate shows a higher interaction force between the heparin and thrombin, which can be directly linked to the kinetic dissociation rate constant (koff). The stability of the heparin/thrombin complex decreased with increasing NaCl concentration such that the off-rate was found to be driven primarily by non-ionic forces. These results contribute to understanding the role of specific and nonspecific forces that drive heparin-thrombin interactions under applied force or flow conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Activation of platelet-rich plasma using thrombin receptor agonist peptide.

    PubMed

    Landesberg, Regina; Burke, Andrea; Pinsky, David; Katz, Ronald; Vo, Jennifer; Eisig, Sidney B; Lu, Helen H

    2005-04-01

    This study proposes an alternative preparation method of platelet-rich plasma (PRP). Specifically, we compare the use of thrombin receptor agonist peptide-6 (TRAP) and bovine thrombin as a clotting agent in the preparation of PRP. PRP was prepared by centrifugation and clotted with thrombin or TRAP. In vitro clotting times were monitored as a function of TRAP concentration, and clot retraction was determined by measuring clot diameter over time. Following the optimization of TRAP concentration, experiments were repeated with the addition of several commercially available bone substitutes. The release of PRP-relevant growth factors as a function of PRP preparation was also determined. The most rapid polymerization of PRP takes place with the addition of thrombin, followed by TRAP/Allogro (Ceramed, Lakewood, CO), TRAP/BioGlass (Mo-Sci, Rolla, MN), TRAP/BioOss (Osteohealth, Shirley, NY), and TRAP alone. Thrombin caused considerable clot retraction (43%), whereas TRAP alone resulted in only 15% retraction. TRAP/Allogro, TRAP/BioOss, and TRAP/BioGlass all exhibited minimal retraction (8%). The use of TRAP to activate clot formation in the preparation of PRP may be a safe alternative to bovine thrombin. It results in an excellent working time and significantly less clot retraction than the currently available methods of PRP production.

  7. Thrombin Generating Capacity and Phenotypic Association in ABO Blood Groups.

    PubMed

    Kremers, Romy M W; Mohamed, Abdulrahman B O; Pelkmans, Leonie; Hindawi, Salwa; Hemker, H Coenraad; de Laat, H Bas; Huskens, Dana; Al Dieri, Raed

    2015-01-01

    Individuals with blood group O have a higher bleeding risk than non-O blood groups. This could be explained by the lower levels of FVIII and von Willebrand Factor (VWF) levels in O individuals. We investigated the relationship between blood groups, thrombin generation (TG), prothrombin activation and thrombin inactivation. Plasma levels of VWF, FVIII, antithrombin, fibrinogen, prothrombin and α2Macroglobulin (α2M) levels were determined. TG was measured in platelet rich (PRP) and platelet poor plasma (PPP) of 217 healthy donors and prothrombin conversion and thrombin inactivation were calculated. VWF and FVIII levels were lower (75% and 78%) and α2M levels were higher (125%) in the O group. TG is 10% lower in the O group in PPP and PRP. Less prothrombin was converted in the O group (86%) and the thrombin decay capacity was lower as well. In the O group, α2M plays a significantly larger role in the inhibition of thrombin (126%). In conclusion, TG is lower in the O group due to lower prothrombin conversion, and a larger contribution of α2M to thrombin inactivation. The former is unrelated to platelet function because it is similar in PRP and PPP, but can be explained by the lower levels of FVIII.

  8. Thrombin Generating Capacity and Phenotypic Association in ABO Blood Groups

    PubMed Central

    Hindawi, Salwa; Hemker, H. Coenraad; de Laat, H. Bas; Huskens, Dana; Al Dieri, Raed

    2015-01-01

    Individuals with blood group O have a higher bleeding risk than non-O blood groups. This could be explained by the lower levels of FVIII and von Willebrand Factor (VWF) levels in O individuals. We investigated the relationship between blood groups, thrombin generation (TG), prothrombin activation and thrombin inactivation. Plasma levels of VWF, FVIII, antithrombin, fibrinogen, prothrombin and α2Macroglobulin (α2M) levels were determined. TG was measured in platelet rich (PRP) and platelet poor plasma (PPP) of 217 healthy donors and prothrombin conversion and thrombin inactivation were calculated. VWF and FVIII levels were lower (75% and 78%) and α2M levels were higher (125%) in the O group. TG is 10% lower in the O group in PPP and PRP. Less prothrombin was converted in the O group (86%) and the thrombin decay capacity was lower as well. In the O group, α2M plays a significantly larger role in the inhibition of thrombin (126%). In conclusion, TG is lower in the O group due to lower prothrombin conversion, and a larger contribution of α2M to thrombin inactivation. The former is unrelated to platelet function because it is similar in PRP and PPP, but can be explained by the lower levels of FVIII. PMID:26509437

  9. A chemiluminescence biosensor for the detection of thrombin based on the aptamer composites

    NASA Astrophysics Data System (ADS)

    Lin, Yanna; Li, Jianbo; Wang, Yanhui; Sun, Yuanling; Ding, Chaofan; Sun, Weiyan; Luo, Chuannan

    2018-03-01

    An efficient, rapid, simple and ultrasensitive chemiluminescence (CL) approach was proposed for thrombin detection based on the aptamer-thrombin recognition. The aptamer composites were synthesized in this work using graphene oxide (GO) as the backing material. The thrombin was adsorbed on the aptamer composites based on the aptamer-thrombin recognition. Thus, thrombin could be quantified by the difference value of the CL intensity between supernate of the sample and the mixture which composed of thrombin and coexisted substances. The CL intensity exhibits a stable response to thrombin over a concentration range from 2.5 × 10- 10 to 1 × 10- 9 mol·L- 1 with a detection limit as low as 8.3 × 10- 11 mol·L- 1, the relative standard deviation (RSD) was found to be 4.9% for 11 determinations of 1.25 × 10- 9 mol·L- 1 thrombin. Finally, the applicability of the method was verified by applying to serum samples. The recoveries were in the range of 90.3-101.0% with RSD of 2.6-3.2%.

  10. Gamma Delta T-Cells Regulate Inflammatory Cell Infiltration of the Lung after Trauma-Hemorrhage

    DTIC Science & Technology

    2015-06-01

    suggesting a role for this T- cell subset in both innate and acquired immunity (7, 8). Studies have shown that +% T cells are required for both controlled...increased infiltration of both lymphoid and myeloid cells in WT mice after TH-induced ALI. In parallel to +% T cells , myeloid cells (i.e., monocytes...GAMMA DELTA T CELLS REGULATE INFLAMMATORY CELL INFILTRATION OF THE LUNG AFTER TRAUMA-HEMORRHAGE Meenakshi Rani,* Qiong Zhang,* Richard F. Oppeltz

  11. Application of 2-dimensional difference gel electrophoresis (2D-DIGE) to the study of thrombin-activated human platelet secretome.

    PubMed

    Della Corte, Anna; Maugeri, Norma; Pampuch, Agnieszka; Cerletti, Chiara; de Gaetano, Giovanni; Rotilio, Domenico

    2008-02-01

    Thrombin is an agonist inducing platelet activation. We combined two-dimensional difference gel electrophoresis (2D-DIGE) and mass spectrometry (MALDI-TOF MS) to analyse differentially expressed proteins secreted from thrombin-stimulated platelets. Human washed platelets, from healthy volunteers, were stimulated with thrombin 0.5 U/ml at 37 degrees C without stirring and the secreted proteins were resolved by 2D-DIGE. By image analysis, 1094 spots were detected in the 2D gel. The spots whose mean intensity showed at least a five-fold change intensity increase or decrease in the thrombin-activated platelet gel in comparison with unstimulated control were digested by trypsin and subjected to MALDI-TOF MS analysis. Peptides from mass spectra of in-gel digest samples were matched against available databases, using the Mascot search engine (Matrix Science) for peptide mass fingerprint. In the activated platelet secretome, transferrin, glutathione-transferase, WD repeat protein, ER-60, thrombospondin-1 precursor and thrombospondin were the most abundant. Also lamin A, a nuclear protein, not previously identified in platelets, appeared to be released. The novel strategy to combine 2D-DIGE with MALDI-TOF MS is a useful approach for a quantitative analysis of the effect of thrombin on the secretome profile of human platelets.

  12. Crystal Structure of Thrombin Bound to the Uncleaved Extracellular Fragment of PAR1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gandhi, Prafull S.; Chen, Zhiwei; Di Cera, Enrico

    2010-05-11

    Abundant structural information exists on how thrombin recognizes ligands at the active site or at exosites separate from the active site region, but remarkably little is known about how thrombin recognizes substrates that bridge both the active site and exosite I. The case of the protease-activated receptor PAR1 is particularly relevant in view of the plethora of biological effects associated with its activation by thrombin. Here, we present the 1.8 {angstrom} resolution structure of thrombin S195A in complex with a 30-residue long uncleaved extracellular fragment of PAR1 that documents for the first time a productive binding mode bridging the activemore » site and exosite I. The structure reveals two unexpected features of the thrombin-PAR1 interaction. The acidic P3 residue of PAR1, Asp{sup 39}, does not hinder binding to the active site and actually makes favorable interactions with Gly{sup 219} of thrombin. The tethered ligand domain shows a considerable degree of disorder even when bound to thrombin. The results fill a significant gap in our understanding of the molecular mechanisms of recognition by thrombin in ways that are relevant to other physiological substrates.« less

  13. Outcomes of Ultrasound-Guided Thrombin Injection of Nongroin Arterial Pseudoaneurysms.

    PubMed

    Valesano, Johnathan C; Schmitz, John J; Kurup, A Nicholas; Schmit, Grant D; Moynagh, Michael R; Atwell, Thomas D; Lewis, Bradley D; Lee, Robert A; Callstrom, Matthew R

    2017-08-01

    To evaluate success and complication rates of percutaneous ultrasound-guided thrombin injection of nongroin pseudoaneurysms (PSAs). Retrospective review of a prospectively maintained institutional database yielded 39 cases of arterial PSAs occurring at nongroin sites that were treated with percutaneous ultrasound-guided thrombin injection between 2000 and 2016 (average patient age 69.2 y ± 14.0). Of PSAs, 74.4% (29/39) arose in the upper extremities, and 92.3% (36/39) were iatrogenic. The brachial artery was the most commonly affected vessel (51.3% [20/39]), and arterial access was the most common cause (56.4% [22/39]). Average overall PSA size was 2.4 cm (range, 0.5-7.2 cm); average amount of thrombin injected was 320 IU (range, 50-2,000 IU). Technical success was defined as absence of flow within the PSA immediately after thrombin injection. Treatment success was defined as sustained thrombosis on follow-up imaging obtained at 1-3 days after treatment. Technical and treatment success rates of thrombin injections were 100% (39/39) and 84.8% (28/33), respectively. Longer term follow-up imaging (average 71 d; range, 12-201 d) was available for 7 of the treatment successes with 100% (7/7) showing sustained thrombosis. Comparing treatment successes and failures, there was no significant difference in average PSA size (2.3 cm vs 2.0 cm, P = .51) or average amount of thrombin injected (360 IU vs 180 IU, P = .14). There were no complications. Ultrasound-guided thrombin injection is a safe, efficacious treatment option for PSAs arising in nongroin locations. Copyright © 2017 SIR. Published by Elsevier Inc. All rights reserved.

  14. Participation of the hypophyseal-adrenal cortex system in thrombin clearance during immobilization stress

    NASA Technical Reports Server (NTRS)

    Kudryashov, B. A.; Uljanov, A. M.; Shapiro, F. B.; Bazazyan, G. G.

    1981-01-01

    Thrombin marked with I-131 resulted in a considerable increase of the thrombined clearance rate in healthy male rats during stress caused by an immobilization lasting 30 minutes, and in an increase of thrombin clearance occurred by a combination of immobilization and administration of adrenocorticotropin (ACTH). Contrary to ACTH, the thrombin clearance is not stimulated in healthy animals by hydrocortisone. The results of the examination are presented.

  15. Radiation-induced cyclooxygenase 2 up-regulation is dependent on redox status in prostate cancer cells.

    PubMed

    Li, Lingyun; Steinauer, Kirsten K; Dirks, Amie J; Husbeck, Bryan; Gibbs, Iris; Knox, Susan J

    2003-12-01

    Cyclooxygenase 2 (COX2) is the inducible isozyme of COX, a key enzyme in arachidonate metabolism and the conversion of arachidonic acid (AA) to prostaglandins (PGs) and other eicosanoids. Previous studies have demonstrated that the COX2 protein is up-regulated in prostate cancer cells after irradiation and that this results in elevated levels of PGE(2). In the present study, we further investigated whether radiation-induced COX2 up-regulation is dependent on the redox status of cells from the prostate cancer cell line PC-3. l-Buthionine sulfoximine (BSO), which inhibits gamma glutamyl cysteine synthetase (gammaGCS), and the antioxidants alpha-lipoic acid and N-acetyl-l-cysteine (NAC) were used to modulate the cellular redox status. BSO decreased the cellular GSH level and increased cellular reactive oxygen species (ROS) in PC-3 cells, whereas alpha-lipoic acid and NAC increased the GSH level and decreased cellular ROS. Both radiation and the oxidant H(2)O(2) had similar effects on COX2 up-regulation and PGE(2) production in PC-3 cells, suggesting that radiation-induced COX2 up-regulation is secondary to the production of ROS. The relative increases in COX2 expression and PGE(2) production induced by radiation and H(2)O(2) were even greater when PC-3 cells were pretreated with BSO. When the cells were pretreated with alpha-lipoic acid or NAC for 24 h, both radiation- and H(2)O(2)-induced COX2 up-regulation and PGE(2) production were markedly inhibited. These results demonstrate that radiation-induced COX2 up-regulation in prostate cancer cells is modulated by the cellular redox status. Radiation-induced increases in ROS levels contribute to the adaptive response of PC-3 cells, resulting in elevated levels of COX2.

  16. Gamma-ray background induced by atmospheric neutrons

    NASA Astrophysics Data System (ADS)

    Ma, Y.-Q.

    1984-03-01

    A small piggyback detector system is used to study the reduction of gamma-ray background induced by atmospheric neutrons in the type of actively shielded gamma-ray spectroscopes. The system consists of two 1.5 x 1.5 arcsec NaI crystal units, one of which is surrounded by some neutron shield material. The results of a balloon flight in 1981 are presented. The data show that a shield of 3 cm-thick pure paraffin cannot reduce the gamma-ray background. On the contrary, it may even cause some enhancement.

  17. A novel histochemical method for the visualization of thrombin activity in the nervous system.

    PubMed

    Bushi, D; Gera, O; Kostenich, G; Shavit-Stein, E; Weiss, R; Chapman, J; Tanne, D

    2016-04-21

    Although thrombin has an important role in both central and peripheral nerve diseases, characterization of the anatomical distribution of its proteolytic activity has been limited by available methods. This study presents the development, challenges, validation and implementation of a novel histochemical method for visualization of thrombin activity in the nervous system. The method is based on the cleavage of the substrate, Boc-Asp(OBzl)-Pro-Arg-4MβNA by thrombin to liberate free 4-methoxy-2-naphthylamine (4MβNA). In the presence of 5-nitrosalicylaldehyde, free 4MβNA is captured, yielding an insoluble yellow fluorescent precipitate which marks the site of thrombin activity. The sensitivity of the method was determined in vitro using known concentrations of thrombin while the specificity was verified using a highly specific thrombin inhibitor. Using this method we determined the spatial distribution of thrombin activity in mouse brain following transient middle cerebral artery occlusion (tMCAo) and in mouse sciatic nerve following crush injury. Fluorescence microscopy revealed well-defined thrombin activity localized to the right ischemic hemisphere in cortical areas and in the striatum compared to negligible thrombin activity contralaterally. The histochemical localization of thrombin activity following tMCAo was in good correlation with the infarct areas per triphenyltetrazolium chloride staining and to thrombin activity measured biochemically in tissue punches (85 ± 35 and 20 ± 3 mU/ml, in the cortical and striatum areas respectively, compared to 7 ± 2 and 13 ± 2 mU/ml, in the corresponding contralateral areas; mean ± SEM; p<0.05). In addition, 24 h following crush injury, focal areas of highly elevated thrombin activity were detected in teased sciatic fibers. This observation was supported by the biochemical assay and western blot technique. The histochemical method developed in this study can serve as an important tool for studying the role of thrombin

  18. A Novel Photoelectrochemical Biosensor for Tyrosinase and Thrombin Detection

    PubMed Central

    Chen, Jiexia; Liu, Yifan; Zhao, Guang-Chao

    2016-01-01

    A novel photoelectrochemical biosensor for step-by-step assay of tyrosinase and thrombin was fabricated based on the specific interactions between the designed peptide and the target enzymes. A peptide chain with a special sequence which contains a positively charged lysine-labeled terminal, tyrosine at the other end and a cleavage site recognized by thrombin between them was designed. The designed peptide can be fixed on surface of the CdTe quantum dots (QDs)-modified indium-tin oxide (ITO) electrode through electrostatic attraction to construct the photoelectrochemical biosensor. The tyrosinase target can catalyze the oxidization of tyrosine by oxygen into ortho-benzoquinone residues, which results in a decrease in the sensor photocurrent. Subsequently, the cleavage site could be recognized and cut off by another thrombin target, restoring the sensor photocurrent. The decrease or increase of photocurrent in the sensor enables us to assay tyrosinase and thrombin. Thus, the detection of tyrosinase and thrombin can be achieved in the linear range from 2.6 to 32 μg/mL and from 4.5 to 100 μg/mL with detection limits of 1.5 μg/mL and 1.9 μg/mL, respectively. Most importantly, this strategy shall allow us to detect different classes of enzymes simultaneously by designing various enzyme-specific peptide substrates. PMID:26805846

  19. Computational Analysis of Intersubject Variability and Thrombin Generation in Dilutional Coagulopathy

    DTIC Science & Technology

    2012-11-01

    proteins: Factor (F)II, FV, FVII , FVIII, F IX, and FX, as well as the anticoagulants antithrombin (AT) and TF pathway inhibi- tor (TFPI). The results...coagulation factors FII, FV, FVII , FVIIa, FVIII, F IX and FX, as well as the anticoagulants TFPI and AT and the throm- bin generation inducer TF. The model...scenario and tissue factor concentration. CONCLUSION: Dilutional effects on thrombin genera- tion in a human population can be predicted from trends

  20. Gamma-oryzanol rich fraction regulates the expression of antioxidant and oxidative stress related genes in stressed rat's liver.

    PubMed

    Ismail, Maznah; Al-Naqeeb, Ghanya; Mamat, Wan Abd Aziz Bin; Ahmad, Zalinah

    2010-03-24

    Gamma-oryzanol (OR), a phytosteryl ferulate mixture extracted from rice bran oil, has a wide spectrum of biological activities in particular, it has antioxidant properties. The regulatory effect of gamma-oryzanol rich fraction (ORF) extracted and fractionated from rice bran using supercritical fluid extraction (SFE) in comparison with commercially available OR on 14 antioxidant and oxidative stress related genes was determined in rat liver. Rats were subjected to a swimming exercise program for 10 weeks to induce stress and were further treated with either ORF at 125, 250 and 500 mg/kg or OR at 100 mg/kg in emulsion forms for the last 5 weeks of the swimming program being carried out. The GenomeLab Genetic Analysis System (GeXPS) was used to study the multiplex gene expression of the selected genes. Upon comparison of RNA expression levels between the stressed and untreated group (PC) and the unstressed and untreated group (NC), seven genes were found to be down-regulated, while seven genes were up-regulated in PC group compared to NC group. Further treatment of stressed rats with ORF at different doses and OR resulted in up-regulation of 10 genes and down regulation of four genes compared to the PC group. Gamma-oryzanol rich fraction showed potential antioxidant activity greater than OR in the regulation of antioxidants and oxidative stress gene markers.

  1. Gamma-oryzanol rich fraction regulates the expression of antioxidant and oxidative stress related genes in stressed rat's liver

    PubMed Central

    2010-01-01

    Background Gamma-oryzanol (OR), a phytosteryl ferulate mixture extracted from rice bran oil, has a wide spectrum of biological activities in particular, it has antioxidant properties. Methods The regulatory effect of gamma-oryzanol rich fraction (ORF) extracted and fractionated from rice bran using supercritical fluid extraction (SFE) in comparison with commercially available OR on 14 antioxidant and oxidative stress related genes was determined in rat liver. Rats were subjected to a swimming exercise program for 10 weeks to induce stress and were further treated with either ORF at 125, 250 and 500 mg/kg or OR at 100 mg/kg in emulsion forms for the last 5 weeks of the swimming program being carried out. The GenomeLab Genetic Analysis System (GeXPS) was used to study the multiplex gene expression of the selected genes. Results Upon comparison of RNA expression levels between the stressed and untreated group (PC) and the unstressed and untreated group (NC), seven genes were found to be down-regulated, while seven genes were up-regulated in PC group compared to NC group. Further treatment of stressed rats with ORF at different doses and OR resulted in up-regulation of 10 genes and down regulation of four genes compared to the PC group. Conclusions Gamma-oryzanol rich fraction showed potential antioxidant activity greater than OR in the regulation of antioxidants and oxidative stress gene markers. PMID:20331906

  2. Aptamer-crosslinked microbubbles: smart contrast agents for thrombin-activated ultrasound imaging.

    PubMed

    Nakatsuka, Matthew A; Mattrey, Robert F; Esener, Sadik C; Cha, Jennifer N; Goodwin, Andrew P

    2012-11-27

    Thrombosis, or malignant blood clotting, is associated with numerous cardiovascular diseases and cancers. A microbubble contrast agent is presented that produces ultrasound harmonic signal only when exposed to elevated thrombin levels. Initially silent microbubbles are activated in the presence of both thrombin-spiked and freshly clotting blood in three minutes with detection limits of 20 nM thrombin and 2 aM microbubbles. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Tyrosine sulfation modulates activity of tick-derived thrombin inhibitors

    NASA Astrophysics Data System (ADS)

    Thompson, Robert E.; Liu, Xuyu; Ripoll-Rozada, Jorge; Alonso-García, Noelia; Parker, Benjamin L.; Pereira, Pedro José Barbosa; Payne, Richard J.

    2017-09-01

    Madanin-1 and chimadanin are two small cysteine-free thrombin inhibitors that facilitate blood feeding in the tick Haemaphysalis longicornis. Here, we report a post-translational modification—tyrosine sulfation—of these two proteins that is critical for potent anti-thrombotic and anticoagulant activity. Inhibitors produced in baculovirus-infected insect cells displayed heterogeneous sulfation of two tyrosine residues within each of the proteins. One-pot ligation-desulfurization chemistry enabled access to homogeneous samples of all possible sulfated variants of the proteins. Tyrosine sulfation of madanin-1 and chimadanin proved crucial for thrombin inhibitory activity, with the doubly sulfated variants three orders of magnitude more potent than the unmodified inhibitors. The three-dimensional structure of madanin-1 in complex with thrombin revealed a unique mode of inhibition, with the sulfated tyrosine residues binding to the basic exosite II of the protease. The importance of tyrosine sulfation within this family of thrombin inhibitors, together with their unique binding mode, paves the way for the development of anti-thrombotic drug leads based on these privileged scaffolds.

  4. BjussuSP-I: a new thrombin-like enzyme isolated from Bothrops jararacussu snake venom.

    PubMed

    Sant' Ana, Carolina D; Ticli, Fabio K; Oliveira, Leandro L; Giglio, Jose R; Rechia, Carem G V; Fuly, André L; Selistre de Araújo, Heloisa S; Franco, João J; Stabeli, Rodrigo G; Soares, Andreimar M; Sampaio, Suely V

    2008-11-01

    A thrombin-like enzyme named BjussuSP-I, isolated from B. jararacussu snake venom, is an acidic single chain glycoprotein with approximately 6% sugar, Mr=61,000 under reducing conditions and pI approximately 3.8, representing 1.09% of the chromatographic A(280) recovery. BjussuSP-I is a glycosylated serine protease containing both N-linked carbohydrates and sialic acid in its structure. BjussuSP-I showed a high clotting activity upon human plasma, which was inhibited by PMSF, leupeptin, heparin and 1,10-phenantroline. This enzyme showed high stability regarding coagulant activity when analyzed at different temperatures (-70 to 37 degrees C), pHs (4.5 to 8.0), and presence of two divalent metal ions (Ca(2+) and Mg(2+)). It also displayed TAME esterase and proteolytic activities toward natural (fibrinogen and fibrin) and synthetic (BAPNA) substrates, respectively, being also inhibited by PMSF and leupeptin. BjussuSP-I can induce production of polyclonal antibodies able to inhibit its clotting activity, but unable to inhibit its proteolytic activity on fibrinogen. The enzyme also showed crossed immunoreactivity against 11 venom samples of Bothrops, 1 of Crotalus, and 1 of Calloselasma snakes, in addition of LAAO isolated from B. moojeni venom. It displayed neither hemorrhagic, myotoxic, edema-inducing profiles nor proteolytic activity on casein. BjussuSP-I showed an N-terminal sequence (VLGGDECDINEHPFLA FLYS) similar to other thrombin-like enzymes from snake venoms. Based on its biochemical, enzymatic and pharmacological characteristics, BjussuSP-I was identified as a new thrombin-like enzyme isoform from Bothrops jararacussu snake venom.

  5. A balance between TFPI and thrombin-mediated platelet activation is required for murine embryonic development

    PubMed Central

    Ellery, Paul E. R.; Maroney, Susan A.; Cooley, Brian C.; Luyendyk, James P.; Zogg, Mark; Weiler, Hartmut

    2015-01-01

    Tissue factor pathway inhibitor (TFPI) is a critical anticoagulant protein present in endothelium and platelets. Mice lacking TFPI (Tfpi−/−) die in utero from disseminated intravascular coagulation. They are rescued by concomitant tissue factor (TF) deficiency, demonstrating that TFPI modulates TF function in vivo. Recent studies have found TFPI inhibits prothrombinase activity during the initiation of coagulation and limits platelet accumulation during thrombus formation, implicating TFPI in modulating platelet procoagulant activity. To examine whether altered platelet function would compensate for the lack of TFPI and rescue TFPI-null embryonic lethality, Tfpi+/− mice lacking the platelet thrombin receptor, protease activated receptor 4 (PAR4; Par4−/−), or its coreceptor, PAR3, were mated. PAR3 deficiency did not rescue Tfpi−/− embryos, but >40% of expected Tfpi−/−:Par4−/− offspring survived to adulthood. Adult Tfpi−/−:Par4−/− mice did not exhibit overt thrombosis. However, they had focal sterile inflammation with fibrin(ogen) deposition in the liver and elevated plasma thrombin-antithrombin complexes, indicating activation of coagulation at baseline. Tfpi−/−:Par4−/− mice have platelet and fibrin accumulation similar to Par4−/− mice following venous electrolytic injury but were more susceptible than Par4−/− mice to TF-induced pulmonary embolism. In addition, ∼30% of the Tfpi−/−:Par4−/− mice were born with short tails. Tfpi−/−:Par4−/− mice are the first adult mice described that lack TFPI with unaltered TF. They demonstrate that TFPI physiologically modulates thrombin-dependent platelet activation in a manner that is required for successful embryonic development and identify a role for TFPI in dampening intravascular procoagulant stimuli that lead to thrombin generation, even in the absence of thrombin-mediated platelet activation. PMID:25954015

  6. THROMBIN GENERATION AND BLEEDING IN HEMOPHILIA A

    PubMed Central

    Brummel-Ziedins, Kathleen E.; Whelihan, Matthew F.; Gissel, Matthew; Mann, Kenneth G.; Rivard, Georges E.

    2012-01-01

    Introduction Hemophilia A displays phenotypic heterogeneity with respect to clinical severity. Aim To determine if tissue factor (TF)-initiated thrombin generation profiles in whole blood in the presence of corn trypsin inhibitor (CTI) are predictive of bleeding risk in hemophilia A. Methods We studied factor(F) VIII deficient individuals (11 mild, 4 moderate and 12 severe) with a well-characterized five-year bleeding history that included hemarthrosis, soft tissue hematoma and annual FVIII concentrate usage. This clinical information was used to generate a bleeding score. The bleeding scores (range 0–32) were separated into three groups (bleeding score groupings: 0, 0 and ≤9.6, >9.6), with the higher bleeding tendency having a higher score. Whole blood collected by phlebotomy and contact pathway suppressed by 100μg/mL CTI was stimulated to react by the addition of 5pM TF. Reactions were quenched at 20min by inhibitors. Thrombin generation, determined by ELISA for thrombin – antithrombin was evaluated in terms of clot time (CT), maximum level (MaxL) and maximum rate (MaxR) and compared to the bleeding score. Results Data are shown as the mean±SD. MaxL was significantly different (p<0.001) between the groups: 504±114nM, 315±117nM, and 194±91nM; with higher thrombin concentrations in the groups with lower bleeding scores. MaxR was higher in the groups with a lower bleeding score; 97±51nM/min, 86±60nM/min and 39±16nM/min (p=0.09). No significant difference was detected in CT among the groups, 5.6±1.3min, 4.7±0.7min, 5.6±1.3min. Conclusions Our empirical study in CTI-inhibited whole blood shows that the MaxL of thrombin generation appears to correlate with the bleeding phenotype of hemophilia A. PMID:19563500

  7. Identification and Mechanistic Analysis of a Novel Tick-Derived Inhibitor of Thrombin

    PubMed Central

    Jablonka, Willy; Kotsyfakis, Michalis; Mizurini, Daniella M.; Monteiro, Robson Q.; Lukszo, Jan; Drake, Steven K.; Ribeiro, José M. C.; Andersen, John F.

    2015-01-01

    A group of peptides from the salivary gland of the tick Hyalomma marginatum rufipes, a vector of Crimean Congo hemorrhagic fever show weak similarity to the madanins, a group of thrombin-inhibitory peptides from a second tick species, Haemaphysalis longicornis. We have evaluated the anti-serine protease activity of one of these H. marginatum peptides that has been given the name hyalomin-1. Hyalomin-1 was found to be a selective inhibitor of thrombin, blocking coagulation of plasma and inhibiting S2238 hydrolysis in a competitive manner with an inhibition constant (Ki) of 12 nM at an ionic strength of 150 mM. It also blocks the thrombin-mediated activation of coagulation factor XI, thrombin-mediated platelet aggregation, and the activation of coagulation factor V by thrombin. Hyalomin-1 is cleaved at a canonical thrombin cleavage site but the cleaved products do not inhibit coagulation. However, the C-terminal cleavage product showed non-competitive inhibition of S2238 hydrolysis. A peptide combining the N-terminal parts of the molecule with the cleavage region did not interact strongly with thrombin, but a 24-residue fragment containing the cleavage region and the C-terminal fragment inhibited the enzyme in a competitive manner and also inhibited coagulation of plasma. These results suggest that the peptide acts by binding to the active site as well as exosite I or the autolysis loop of thrombin. Injection of 2.5 mg/kg of hyalomin-1 increased arterial occlusion time in a mouse model of thrombosis, suggesting this peptide could be a candidate for clinical use as an antithrombotic. PMID:26244557

  8. Electrostatic interaction based approach to thrombin detection by surface-enhanced Raman spectroscopy.

    PubMed

    Hu, Juan; Zheng, Peng-Cheng; Jiang, Jian-Hui; Shen, Guo-Li; Yu, Ru-Qin; Liu, Guo-Kun

    2009-01-01

    We have developed an electrostatic interaction based biosensor for thrombin detection using surface-enhanced Raman spectroscopy (SERS). This method utilized the electrostatic interaction between capture (thrombin aptamer) and probe (crystal violet, CV) molecules. The specific interaction between thrombin and aptamer could weaken the electrostatic barrier effect from the negative charged aptamer SAMs to the diffusion process of the positively charged CV from the bulk solution to the Au nanoparticle surface. Therefore, the more the bound thrombin, the more the CV molecules near the Au nanoparticle surface and the stronger the observed Raman signal of CV, provided the Raman detections were set at the same time point for each case. This procedure presented a highly specific selectivity and a linear detection of thrombin in the range from 0.1 nM to 10 nM with a detection limit of about 20 pM and realized the thrombin detection in human blood serum solution directly. The electrostatic interaction based technique provides an easy and fast-responding optical platform for a "signal-on" detection of proteins, which might be applicable for the real time assay of proteins.

  9. Southern Analysis of Genomic Alterations in Gamma-Ray-Induced Aprt- Hamster Cell Mutants

    PubMed Central

    Grosovsky, Andrew J.; Drobetsky, Elliot A.; deJong, Pieter J.; Glickman, Barry W.

    1986-01-01

    The role of genomic alterations in mutagenesis induced by ionizing radiation has been the subject of considerable speculation. By Southern blotting analysis we show here that 9 of 55 (approximately 1/6) gamma-ray-induced mutants at the adenine phosphoribosyl transferase (aprt) locus of Chinese hamster ovary (CHO) cells have a detectable genomic rearrangement. These fall into two classes: intragenic deletions and chromosomal rearrangements. In contrast, no major genomic alterations were detected among 67 spontaneous mutants, although two restriction site loss events were observed. Three gamma-ray-induced mutants were found to be intragenic deletions; all may have identical break-points. The remaining six gamma-ray-induced mutants demonstrating a genomic alteration appear to be the result of chromosomal rearrangements, possibly translocation or inversion events. None of the remaining gamma-ray-induced mutants showed any observable alteration in blotting pattern indicating a substantial role for point mutation in gamma-ray-induced mutagenesis at the aprt locus. PMID:3013724

  10. High-resolution structures of two complexes between thrombin and thrombin-binding aptamer shed light on the role of cations in the aptamer inhibitory activity

    PubMed Central

    Russo Krauss, Irene; Merlino, Antonello; Randazzo, Antonio; Novellino, Ettore; Mazzarella, Lelio; Sica, Filomena

    2012-01-01

    The G-quadruplex architecture is a peculiar structure adopted by guanine-rich oligonucleotidic sequences, and, in particular, by several aptamers, including the thrombin-binding aptamer (TBA) that has the highest inhibitory activity against human α-thrombin. A crucial role in determining structure, stability and biological properties of G-quadruplexes is played by ions. In the case of TBA, K+ ions cause an enhancement of the aptamer clotting inhibitory activity. A detailed picture of the interactions of TBA with the protein and with the ions is still lacking, despite the importance of this aptamer in biomedical field for detection and inhibition of α-thrombin. Here, we fill this gap by presenting a high-resolution crystallographic structural characterization of the thrombin–TBA complex formed in the presence of Na+ or K+ and a circular dichroism study of the structural stability of the aptamer both free and complexed with α-thrombin, in the presence of the two ionic species. The results indicate that the different effects exerted by Na+ and K+ on the inhibitory activity of TBA are related to a subtle perturbation of a few key interactions at the protein–aptamer interface. The present data, in combination with those previously obtained on the complex between α-thrombin and a modified aptamer, may allow the design of new TBA variants with a pharmacological performance enhancement. PMID:22669903

  11. Disruption of transforming growth factor-beta signaling by curcumin induces gene expression of peroxisome proliferator-activated receptor-gamma in rat hepatic stellate cells.

    PubMed

    Zheng, Shizhong; Chen, Anping

    2007-01-01

    Activation of hepatic stellate cells (HSC), the major effectors of hepatic fibrogenesis, is coupled with sequential alterations in gene expression, including an increase in receptors for transforming growth factor-beta (TGF-beta) and a dramatic reduction in the peroxisome proliferator-activated receptor-gamma (PPAR-gamma). The relationship between them remains obscure. We previously demonstrated that curcumin induced gene expression of PPAR-gamma in activated HSC, leading to reducing cell proliferation, inducing apoptosis and suppressing expression of extracellular matrix genes. The underlying molecular mechanisms are largely unknown. We recently observed that stimulation of PPAR-gamma activation suppressed gene expression of TGF-beta receptors in activated HSC, leading to the interruption of TGF-beta signaling. This observation supported our assumption of an antagonistic relationship between PPAR-gamma activation and TGF-beta signaling in HSC. In this study, we further hypothesize that TGF-beta signaling might negatively regulate gene expression of PPAR-gamma in activated HSC. The present report demonstrates that exogenous TGF-beta1 inhibits gene expression of PPAR-gamma in activated HSC, which is eliminated by the pretreatment with curcumin likely by interrupting TGF-beta signaling. Transfection assays further indicate that blocking TGF-beta signaling by dominant negative type II TGF-beta receptor increases the promoter activity of PPAR-gamma gene. Promoter deletion assays, site-directed mutageneses, and gel shift assays localize two Smad binding elements (SBEs) in the PPAR-gamma gene promoter, acting as curcumin response elements and negatively regulating the promoter activity in passaged HSC. The Smad3/4 protein complex specifically binds to the SBEs. Overexpression of Smad4 dose dependently eliminates the inhibitory effects of curcumin on the PPAR-gamma gene promoter and TGF-beta signaling. Taken together, these results demonstrate that the interruption of TGF

  12. Rho Associated Coiled-Coil Kinase-1 Regulates Collagen-Induced Phosphatidylserine Exposure in Platelets

    PubMed Central

    Dasgupta, Swapan K.; Le, Anhquyen; Haudek, Sandra B.; Entman, Mark L.; Rumbaut, Rolando E.; Thiagarajan, Perumal

    2013-01-01

    Background The transbilayer movement of phosphatidylserine mediates the platelet procoagulant activity during collagen stimulation. The Rho-associated coiled-coil kinase (ROCK) inhibitor Y-27632 inhibits senescence induced but not activation induced phosphatidylserine exposure. To investigate further the specific mechanisms, we now utilized mice with genetic deletion of the ROCK1 isoform. Methods and Results ROCK1-deficient mouse platelets expose significantly more phosphatidylserine and generate more thrombin upon activation with collagen compared to wild-type platelets. There were no significant defects in platelet shape change, aggregation, or calcium response compared to wild-type platelets. Collagen-stimulated ROCK1-deficient platelets also displayed decreased phosphorylation levels of Lim Kinase-1 and cofilin-1. However, there was no reduction in phosphorylation levels of myosin phosphatase subunit-1 (MYPT1) or myosin light chain (MLC). In an in vivo light/dye-induced endothelial injury/thrombosis model, ROCK1-deficient mice presented a shorter occlusion time in cremasteric venules when compared to wild-type littermates (3.16 ± 1.33 min versus 6.6 ± 2.6 min; p = 0.01). Conclusions These studies define ROCK1 as a new regulator for collagen-induced phosphatidylserine exposure in platelets with functional consequences on thrombosis. This effect was downstream of calcium signaling and was mediated by Lim Kinase-1 / cofilin-1-induced cytoskeletal changes. PMID:24358370

  13. Optogenetically induced spatiotemporal gamma oscillations and neuronal spiking activity in primate motor cortex.

    PubMed

    Lu, Yao; Truccolo, Wilson; Wagner, Fabien B; Vargas-Irwin, Carlos E; Ozden, Ilker; Zimmermann, Jonas B; May, Travis; Agha, Naubahar S; Wang, Jing; Nurmikko, Arto V

    2015-06-01

    Transient gamma-band (40-80 Hz) spatiotemporal patterns are hypothesized to play important roles in cortical function. Here we report the direct observation of gamma oscillations as spatiotemporal waves induced by targeted optogenetic stimulation, recorded by intracortical multichannel extracellular techniques in macaque monkeys during their awake resting states. Microelectrode arrays integrating an optical fiber at their center were chronically implanted in primary motor (M1) and ventral premotor (PMv) cortices of two subjects. Targeted brain tissue was transduced with the red-shifted opsin C1V1(T/T). Constant (1-s square pulses) and ramp stimulation induced narrowband gamma oscillations during awake resting states. Recordings across 95 microelectrodes (4 × 4-mm array) enabled us to track the transient gamma spatiotemporal patterns manifested, e.g., as concentric expanding and spiral waves. Gamma oscillations were induced well beyond the light stimulation volume, via network interactions at distal electrode sites, depending on optical power. Despite stimulation-related modulation in spiking rates, neuronal spiking remained highly asynchronous during induced gamma oscillations. In one subject we examined stimulation effects during preparation and execution of a motor task and observed that movement execution largely attenuated optically induced gamma oscillations. Our findings demonstrate that, beyond previously reported induced gamma activity under periodic drive, a prolonged constant stimulus above a certain threshold may carry primate motor cortex network dynamics into gamma oscillations, likely via a Hopf bifurcation. More broadly, the experimental capability in combining microelectrode array recordings and optogenetic stimulation provides an important approach for probing spatiotemporal dynamics in primate cortical networks during various physiological and behavioral conditions.

  14. PPAR{gamma} ligands induce growth inhibition and apoptosis through p63 and p73 in human ovarian cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Soyeon; Innovative Research Institute for Cell Therapy, Seoul National University College of Medicine and Hospital, Seoul; Lee, Jae-Jung

    2011-03-18

    Research highlights: {yields} PPAR{gamma} ligands increased the rate of apoptosis and inhibition of proliferation in ovarian cancer cells. {yields} PPAR{gamma} ligands induced p63 and p73 expression, but not p53. {yields} p63 and p73 leads to an increase in p21 expression and apoptosis in ovarian cancer cells with treatment PPAR{gamma} ligands. {yields} These findings suggest that PPAR{gamma} ligands suppressed growth of ovarian cancer cells through upregulation of p63 and p73. -- Abstract: Peroxisome proliferator-activated receptor gamma (PPAR{gamma}) agonists, including thiazolidinediones (TZDs), can induce anti-proliferation, differentiation, and apoptosis in various cancer cell types. This study investigated the mechanism of the anticancer effectmore » of TZDs on human ovarian cancer. Six human ovarian cancer cell lines (NIH:OVCAR3, SKOV3, SNU-251, SNU-8, SNU-840, and 2774) were treated with the TZD, which induced dose-dependent inhibition of cell growth. Additionally, these cell lines exhibited various expression levels of PPAR{gamma} protein as revealed by Western blotting. Flow cytometry showed that the cell cycle was arrested at the G1 phase, as demonstrated by the appearance of a sub-G1 peak. This observation was corroborated by the finding of increased levels of Bax, p21, PARP, and cleaved caspase 3 in TGZ-treated cells. Interestingly, when we determined the effect of p53-induced growth inhibition in these three human ovarian cancer cells, we found that they either lacked p53 or contained a mutant form of p53. Furthermore, TGZ induced the expression of endogenous or exogenous p63 and p73 proteins and p63- or p73-directed short hairpin (si) RNAs inhibited the ability of TGZ to regulate expression of p21 in these cells. Thus, our results suggest that PPAR{gamma} ligands can induce growth suppression of ovarian cancer cells and mediate p63 and p73 expression, leading to enhanced growth inhibition and apoptosis. The tumor suppressive effects of PPAR{gamma

  15. Optogenetically induced spatiotemporal gamma oscillations and neuronal spiking activity in primate motor cortex

    PubMed Central

    Lu, Yao; Truccolo, Wilson; Wagner, Fabien B.; Vargas-Irwin, Carlos E.; Ozden, Ilker; Zimmermann, Jonas B.; May, Travis; Agha, Naubahar S.; Wang, Jing

    2015-01-01

    Transient gamma-band (40–80 Hz) spatiotemporal patterns are hypothesized to play important roles in cortical function. Here we report the direct observation of gamma oscillations as spatiotemporal waves induced by targeted optogenetic stimulation, recorded by intracortical multichannel extracellular techniques in macaque monkeys during their awake resting states. Microelectrode arrays integrating an optical fiber at their center were chronically implanted in primary motor (M1) and ventral premotor (PMv) cortices of two subjects. Targeted brain tissue was transduced with the red-shifted opsin C1V1(T/T). Constant (1-s square pulses) and ramp stimulation induced narrowband gamma oscillations during awake resting states. Recordings across 95 microelectrodes (4 × 4-mm array) enabled us to track the transient gamma spatiotemporal patterns manifested, e.g., as concentric expanding and spiral waves. Gamma oscillations were induced well beyond the light stimulation volume, via network interactions at distal electrode sites, depending on optical power. Despite stimulation-related modulation in spiking rates, neuronal spiking remained highly asynchronous during induced gamma oscillations. In one subject we examined stimulation effects during preparation and execution of a motor task and observed that movement execution largely attenuated optically induced gamma oscillations. Our findings demonstrate that, beyond previously reported induced gamma activity under periodic drive, a prolonged constant stimulus above a certain threshold may carry primate motor cortex network dynamics into gamma oscillations, likely via a Hopf bifurcation. More broadly, the experimental capability in combining microelectrode array recordings and optogenetic stimulation provides an important approach for probing spatiotemporal dynamics in primate cortical networks during various physiological and behavioral conditions. PMID:25761956

  16. An electrochemical label-free and sensitive thrombin aptasensor based on graphene oxide modified pencil graphite electrode.

    PubMed

    Ahour, F; Ahsani, M K

    2016-12-15

    In this work, we tactfully constructed a novel label-free electrochemical aptasensor for rapid and facile detection of thrombin using graphene oxide (GO) and thrombin binding aptamer (TBA). The strategy relies on the preferential adsorption of single-stranded DNA (ssDNA) to GO over aptamer-target complexes. The TBA-thrombin complex formation was monitored by differential pulse voltammetry (DPV) using the guanine oxidation signal. In the absence of thrombin, the aptamers adsorbed onto the surface of GO leading to a strong background guanine oxidation signal. Conversely, in the presence of thrombin, the conformational transformation of TBA after incubating with the thrombin solution and formation of the aptamer-thrombin complexes which had weak binding ability to GO, leads to the desorption of TBA-thrombin complex from electrode surface and significant oxidation signal decrease. The selectivity of the biosensor was studied using other biological substances. The biosensor's signal was proportional to the thrombin concentration from 0.1 to 10nM with a detection limit of 0.07nM. Particularly, the proposed method could be widely applied to the aptamer-based determination of other target analytes. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Dual inhibition of HY023016 based on binding properties of platelet membrane receptor subunit glycoprotein Ibα and thrombin exosites.

    PubMed

    Chen, Qiu-Fang; Cui, Shuang; Shen, Hui-Liang; Chen, Xiang; Li, Yun-Zhan; Wu, Qian; Xu, Yun-Gen; Gong, Guo-Qing

    2018-03-05

    Thrombin has long been suggested as a desirable antithrombotic target, but anti-thrombin therapy without anti-platelet thereby has never achieved the ideal effect. HY023016 is a novel compound, in our previous study, it exerted better anti-thrombotic than dabigatran etexilate. The present study aims to illustrate the excess anti-thrombotic molecular mechanisms of HY023016 through thrombin anion exosites and the platelet membrane receptor subunit glycoprotein Ibα (GPIbα). HY023016 strongly inhibited the conversion of fibrinogen to fibrous may via blocking thrombin exosite I. We also discovered that HY023016 remarkably inhibited exosite II by a loss of affinity for the γ'-peptide of fibrinogen and for heparin. Furthermore, a solid phase binding assay revealed that HY023016 inhibited ristocetin-induced washed platelets bind to von Willebrand factor (vWF). In GST pull-down assay, HY023016 decreased the binding of recombinant vWF-A1 to GPIbα N-terminal. Thus, HY023016 provides an innovative idea for designing multi-targeted anti-thrombotic drugs and laying a scientific foundation for reducing "total thrombosis risk" in a clinical drug treatment. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Effect of SanOrg123781A, a synthetic hexadecasaccharide, on clot-bound thrombin and factor Xa in vitro and in vivo.

    PubMed

    Hérault, J-P; Cappelle, M; Bernat, A; Millet, L; Bono, F; Schaeffer, P; Herbert, J-M

    2003-09-01

    Factor (F)Xa and thrombin bound to the clot during its formation contribute to the propensity of thrombi to activate the coagulation system. The aim of this work was to study the inhibition of clot-bound FXa and clot-bound thrombin by SanOrg123781A, a synthetic hexadecasaccharide that enhances the inhibition of thrombin and FXa by antithrombin (AT). SanOrg123781A, designed to exhibit low non-specific binding to proteins other than AT, was compared with heparin. In buffer, heparin and SanOrg123781A inhibited FXa and thrombin at similar concentrations [concentration inhibiting 50% (IC50) of Xa and IIa activity were, respectively: heparin 120 +/- 7 and 3 +/- 1 ng mL-1; SanOrg123781A 77 +/- 5 and 4 +/- 1 ng mL-1]. In human plasma, the activity of both compounds was reduced, although the activity of heparin was much more affected than that of SanOrg123781A (IC50 values for inhibition of FXa and FIIa activity were, respectively: heparin 100 +/- 5 and 800 +/- 40 ng mL-1; SanOrg123781A 10 +/- 5 and 30 +/- 3 ng mL-1). We demonstrated, in agreement with our previous results, that the procoagulant activity of the clot is essentially due to clot-bound FXa and to some extent to clot-bound thrombin. We showed that heparin and SanOrg123781A were able to inhibit fragment F1+2 generation induced by clot-bound FXa with IC50 values of 2 +/- 0.5 micro g mL-1 and 0.6 +/- 0.2 micro g mL-1, respectively. Both compounds also inhibited clot-bound thrombin activity, the IC50 values of heparin and SanOrg123781A being 1 +/- 0.01 micro g mL-1 and 0.1 +/- 0.1 micro g mL-1, respectively. Moreover, both heparin and SanOrg123781A significantly inhibited fibrinopeptide A generated by the action of clot-bound thrombin on fibrinogen but also by free thrombin generated from prothrombin by clot-bound FXa with IC50 values of 4 +/- 0.6 and 1 +/- 0.1 micro g mL-1, respectively. As with clot-bound enzymatic activities, SanOrg123781A was three times more active than heparin in vivo on fibrinogen accretion

  19. Binding of thrombin-activated platelets to a fibrin scaffold through α(IIb)β₃ evokes phosphatidylserine exposure on their cell surface.

    PubMed

    Brzoska, Tomasz; Suzuki, Yuko; Mogami, Hideo; Sano, Hideto; Urano, Tetsumei

    2013-01-01

    Recently, by employing intra-vital confocal microscopy, we demonstrated that platelets expose phosphatidylserine (PS) and fibrin accumulate only in the center of the thrombus but not in its periphery. To address the question how exposure of platelet anionic phospholipids is regulated within the thrombus, an in-vitro experiment using diluted platelet-rich plasma was employed, in which the fibrin network was formed in the presence of platelets, and PS exposure on the platelet surface was analyzed using Confocal Laser Scanning Microscopy. Almost all platelets exposed PS after treatment with tissue factor, thrombin or ionomycin. Argatroban abrogated fibrin network formation in all samples, however, platelet PS exposure was inhibited only in tissue factor- and thrombin-treated samples but not in ionomycin-treated samples. FK633, an α(IIb)β₃ antagonist, and cytochalasin B impaired platelet binding to the fibrin scaffold and significantly reduced PS exposure evoked by thrombin. Gly-Pro-Arg-Pro amide abrogated not only fibrin network formation, but also PS exposure on platelets without suppressing platelet binding to fibrin/fibrinogen. These results suggest that outside-in signals in platelets generated by their binding to the rigid fibrin network are essential for PS exposure after thrombin treatment.

  20. Platelet-targeting sensor reveals thrombin gradients within blood clots forming in microfluidic assays and in mouse.

    PubMed

    Welsh, J D; Colace, T V; Muthard, R W; Stalker, T J; Brass, L F; Diamond, S L

    2012-11-01

    Thrombin undergoes convective and diffusive transport, making it difficult to visualize during thrombosis. We developed the first sensor capable of revealing inner clot thrombin dynamics. An N-terminal-azido thrombin-sensitive fluorescent peptide (ThS-P) with a thrombin-releasable quencher was linked to anti-CD41 using click chemistry to generate a thrombin-sensitive platelet binding sensor (ThS-Ab). Rapid thrombin cleavage of ThS-P (K(m) = 40.3 μm, k(cat) = 1.5 s(-1) ) allowed thrombin monitoring by ThS-P or ThS-Ab in blood treated with 2-25 pm tissue factor (TF). Individual platelets had > 20-fold more ThS-Ab fluorescence after clotting. In a microfluidic assay of whole blood perfusion over collagen ± linked TF (wall shear rate = 100 s(-1) ), ThS-Ab fluorescence increased between 90 and 450 s for 0.1-1 molecule-TF μm(-2) and co-localized with platelets near fibrin. Without TF, neither thrombin nor fibrin was detected on the platelet deposits by 450 s. Using a microfluidic device to control the pressure drop across a thrombus forming on a porous collagen/TF plug (521 s(-1) ), thrombin and fibrin were detected at the thrombus-collagen interface at a zero pressure drop, whereas 80% less thrombin was detected at 3200 Pa in concert with fibrin polymerizing within the collagen. With anti-mouse CD41 ThS-Ab deployed in a mouse laser injury model, the highest levels of thrombin arose between 40 and 160 s nearest the injury site where fibrin co-localized and where the thrombus was most mechanically stable. ThS-Ab reveals thrombin locality, which depends on surface TF, flow and intrathrombus pressure gradients. © 2012 International Society on Thrombosis and Haemostasis.

  1. Evaluation of gamma interferon (IFN-gamma)-induced protein 10 (IP-10) responses for detection of cattle infected with Mycobacterium bovis: comparisons to IFN-gamma responses

    USDA-ARS?s Scientific Manuscript database

    Gamma interferon (IFN-gamma)-induced protein 10 (IP-10) has recently shown promise as a diagnostic biomarker of Mycobacterium tuberculosis infection of humans. The aim of the current study was to compare IP-10 and IFN-gamma responses upon Mycobacterium bovis infection in cattle using archived sample...

  2. The Organophosphate Paraoxon and Its Antidote Obidoxime Inhibit Thrombin Activity and Affect Coagulation In Vitro

    PubMed Central

    Golderman, Valery; Shavit-Stein, Efrat; Tamarin, Ilia; Rosman, Yossi; Shrot, Shai; Rosenberg, Nurit

    2016-01-01

    Organophosphates (OPs) are potentially able to affect serine proteases by reacting with their active site. The potential effects of OPs on coagulation factors such as thrombin and on coagulation tests have been only partially characterized and potential interactions with OPs antidotes such as oximes and muscarinic blockers have not been addressed. In the current study, we investigated the in vitro interactions between coagulation, thrombin, the OP paraoxon, and its antidotes obidoxime and atropine. The effects of these substances on thrombin activity were measured in a fluorescent substrate and on coagulation by standard tests. Both paraoxon and obidoxime but not atropine significantly inhibited thrombin activity, and prolonged prothrombin time, thrombin time, and partial thromboplastin time. When paraoxon and obidoxime were combined, a significant synergistic effect was found on both thrombin activity and coagulation tests. In conclusion, paraoxon and obidoxime affect thrombin activity and consequently alter the function of the coagulation system. Similar interactions may be clinically relevant for coagulation pathways in the blood and possibly in the brain. PMID:27689805

  3. Methods of Treating or Preventing Demyelation Using Thrombin Inhibitors | NCI Technology Transfer Center | TTC

    Cancer.gov

    Researchers at the Eunice Kennedy Shriver National Institute of Child Health and Human Development (“NICHD”), seek CRADA partner or collaboration for development of agents to treat multiple sclerosis or other conditions associated with myelin remodeling by administering an agent that inhibits cleavage of Neurofascin 155 or Caspr1. The agent could be a thrombin inhibitor, an agent that inhibits thrombin expression, an anti-thrombin antibody that specifically inhibits thrombin mediated cleavage of Neurofascin 155, a mutated version or fragment of Neurofascin 155 or Caspr1, or antibodies to Neurofascin 155 or Caspr1.

  4. Structural Characterization of a Thrombin-Aptamer Complex by High Resolution Native Top-Down Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Zhang, Jiang; Loo, Rachel R. Ogorzalek; Loo, Joseph A.

    2017-09-01

    Native mass spectrometry (MS) with electrospray ionization (ESI) has evolved as an invaluable tool for the characterization of intact native proteins and non-covalently bound protein complexes. Here we report the structural characterization by high resolution native top-down MS of human thrombin and its complex with the Bock thrombin binding aptamer (TBA), a 15-nucleotide DNA with high specificity and affinity for thrombin. Accurate mass measurements revealed that the predominant form of native human α-thrombin contains a glycosylation mass of 2205 Da, corresponding to a sialylated symmetric biantennary oligosaccharide structure without fucosylation. Native MS showed that thrombin and TBA predominantly form a 1:1 complex under near physiological conditions (pH 6.8, 200 mM NH4OAc), but the binding stoichiometry is influenced by the solution ionic strength. In 20 mM ammonium acetate solution, up to two TBAs were bound to thrombin, whereas increasing the solution ionic strength destabilized the thrombin-TBA complex and 1 M NH4OAc nearly completely dissociated the complex. This observation is consistent with the mediation of thrombin-aptamer binding through electrostatic interactions and it is further consistent with the human thrombin structure that contains two anion binding sites on the surface. Electron capture dissociation (ECD) top-down MS of the thrombin-TBA complex performed with a high resolution 15 Tesla Fourier transform ion cyclotron resonance (FTICR) mass spectrometer showed the primary binding site to be at exosite I located near the N-terminal sequence of the heavy chain, consistent with crystallographic data. High resolution native top-down MS is complementary to traditional structural biology methods for structurally characterizing native proteins and protein-DNA complexes. [Figure not available: see fulltext.

  5. Anticoagulant Activity of a Unique Sulfated Pyranosic (1→3)-β-l-Arabinan through Direct Interaction with Thrombin*

    PubMed Central

    Fernández, Paula V.; Quintana, Irene; Cerezo, Alberto S.; Caramelo, Julio J.; Pol-Fachin, Laercio; Verli, Hugo; Estevez, José M.; Ciancia, Marina

    2013-01-01

    A highly sulfated 3-linked β-arabinan (Ab1) with arabinose in the pyranose form was obtained from green seaweed Codium vermilara (Bryopsidales). It comprised major amounts of units sulfated on C-2 and C-4 and constitutes the first polysaccharide of this type isolated in the pure form and fully characterized. Ab1 showed anticoagulant activity by global coagulation tests. Less sulfated arabinans obtained from the same seaweed have less or no activity. Ab1 exerts its activity through direct and indirect (antithrombin- and heparin cofactor II-mediated) inhibition of thrombin. Direct thrombin inhibition was studied in detail. By native PAGE, it was possible to detect formation of a complex between Ab1 and human thrombin (HT). Ab1 binding to HT was measured by fluorescence spectroscopy. CD spectra of the Ab1 complex suggested that ligand binding induced a small conformational change on HT. Ab1-thrombin interactions were studied by molecular dynamic simulations using the persulfated octasaccharide as model compound. Most carbohydrate-protein contacts would occur by interaction of sulfate groups with basic amino acid residues on the surface of the enzyme, more than 60% of them being performed by the exosite 2-composing residues. In these interactions, the sulfate groups on C-2 were shown to interact more intensely with the thrombin structure. In contrast, the disulfated oligosaccharide does not promote major conformational modifications at the catalytic site when complexed to exosite 1. These results show that this novel pyranosic sulfated arabinan Ab1 exerts its anticoagulant activity by a mechanism different from those found previously for other sulfated polysaccharides and glycosaminoglycans. PMID:23161548

  6. Mentha piperita as a pivotal neuro-protective agent against gamma irradiation induced DNA fragmentation and apoptosis : Mentha extract as a neuroprotective against gamma irradiation.

    PubMed

    Hassan, Hanaa A; Hafez, Hani S; Goda, Mona S

    2013-01-01

    Ionizing radiation is classified as a potent carcinogen, and its injury to living cells, in particular to DNA, is due to oxidative stress enhancing apoptotic cell death. Our present study aimed to characterize and semi-quantify the radiation-induced apoptosis in CNS and the activity of Mentha extracts as neuron-protective agent. Our results through flow cytometry exhibited the significant disturbance and arrest in cell cycle in % of M1: SubG1 phase, M2: G0/1 phase of diploid cycle, M3: S phase and M4: G2/M phase of cell cycle in brain tissue (p < 0.05). Significant increase in % of apoptosis and P53 protein expression as apoptotic biomarkers were coincided with significant decrease in Bcl(2) as an anti-apoptotic marker. The biochemical analysis recorded a significant decrease in the levels of reduced glutathione, superoxide dismutase, deoxyribonucleic acid (DNA) and ribonucleic acid contents. Moreover, numerous histopathological alterations were detected in brain tissues of gamma irradiated mice such as signs of chromatolysis in pyramidal cells of cortex, nuclear vacuolation, numerous apoptotic cell, and neural degeneration. On the other hand, gamma irradiated mice pretreated with Mentha extract showed largely an improvement in all the above tested parameters through a homeostatic state for the content of brain apoptosis and stabilization of DNA cycle with a distinct improvement in cell cycle analysis and antioxidant defense system. Furthermore, the aforementioned effects of Mentha extracts through down-regulation of P53 expression and up-regulation of Bcl(2) domain protected brain structure from extensive damage. Therefore, Mentha extract seems to have a significant role to ameliorate the neuronal injury induced by gamma irradiation.

  7. Structure-activity studies and therapeutic potential of host defense peptides of human thrombin.

    PubMed

    Kasetty, Gopinath; Papareddy, Praveen; Kalle, Martina; Rydengård, Victoria; Mörgelin, Matthias; Albiger, Barbara; Malmsten, Martin; Schmidtchen, Artur

    2011-06-01

    Peptides of the C-terminal region of human thrombin are released upon proteolysis and identified in human wounds. In this study, we wanted to investigate minimal determinants, as well as structural features, governing the antimicrobial and immunomodulating activity of this peptide region. Sequential amino acid deletions of the peptide GKYGFYTHVFRLKKWIQKVIDQFGE (GKY25), as well as substitutions at strategic and structurally relevant positions, were followed by analyses of antimicrobial activity against the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, the Gram-positive bacterium Staphylococcus aureus, and the fungus Candida albicans. Furthermore, peptide effects on lipopolysaccharide (LPS)-, lipoteichoic acid-, or zymosan-induced macrophage activation were studied. The thrombin-derived peptides displayed length- and sequence-dependent antimicrobial as well as immunomodulating effects. A peptide length of at least 20 amino acids was required for effective anti-inflammatory effects in macrophage models, as well as optimal antimicrobial activity as judged by MIC assays. However, shorter (>12 amino acids) variants also displayed significant antimicrobial effects. A central K14 residue was important for optimal antimicrobial activity. Finally, one peptide variant, GKYGFYTHVFRLKKWIQKVI (GKY20) exhibiting improved selectivity, i.e., low toxicity and a preserved antimicrobial as well as anti-inflammatory effect, showed efficiency in mouse models of LPS shock and P. aeruginosa sepsis. The work defines structure-activity relationships of C-terminal host defense peptides of thrombin and delineates a strategy for selecting peptide epitopes of therapeutic interest.

  8. Genetic Determinants of Thrombin Generation and Their Relation to Venous Thrombosis: Results from the GAIT-2 Project

    PubMed Central

    Martin-Fernandez, Laura; Ziyatdinov, Andrey; Carrasco, Marina; Millon, Juan Antonio; Martinez-Perez, Angel; Vilalta, Noelia; Brunel, Helena; Font, Montserrat; Hamsten, Anders; Souto, Juan Carlos; Soria, José Manuel

    2016-01-01

    Background Venous thromboembolism (VTE) is a common disease where known genetic risk factors explain only a small portion of the genetic variance. Then, the analysis of intermediate phenotypes, such as thrombin generation assay, can be used to identify novel genetic risk factors that contribute to VTE. Objectives To investigate the genetic basis of distinct quantitative phenotypes of thrombin generation and its relationship to the risk of VTE. Patients/Methods Lag time, thrombin peak and endogenous thrombin potential (ETP) were measured in the families of the Genetic Analysis of Idiopathic Thrombophilia 2 (GAIT-2) Project. This sample consisted of 935 individuals in 35 extended families selected through a proband with idiopathic thrombophilia. We performed also genome wide association studies (GWAS) with thrombin generation phenotypes. Results The results showed that 67% of the variation in the risk of VTE is attributable to genetic factors. The heritabilities of lag time, thrombin peak and ETP were 49%, 54% and 52%, respectively. More importantly, we demonstrated also the existence of positive genetic correlations between thrombin peak or ETP and the risk of VTE. Moreover, the major genetic determinant of thrombin generation was the F2 gene. However, other suggestive signals were observed. Conclusions The thrombin generation phenotypes are strongly genetically determined. The thrombin peak and ETP are significantly genetically correlated with the risk of VTE. In addition, F2 was identified as a major determinant of thrombin generation. We reported suggestive signals that might increase our knowledge to explain the variability of this important phenotype. Validation and functional studies are required to confirm GWAS results. PMID:26784699

  9. Bacterial DNA-induced NK cell IFN-gamma production is dependent on macrophage secretion of IL-12.

    PubMed

    Chace, J H; Hooker, N A; Mildenstein, K L; Krieg, A M; Cowdery, J S

    1997-08-01

    Bacterial DNA (bDNA) activates B cells and macrophages and can augment inflammatory responses by inducing release of proinflammatory cytokines. We found that bDNA stimulation of mouse spleen cells induced NK cell IFN-gamma production that was dependent upon the presence of unmethylated CpG motifs, and oligonucleotides with internal CpG motifs could also induce splenocytes to secrete IFN-gamma. The bDNA-induced IFN-gamma response was strictly macrophages dependent. While splenocytes from SCID mice secreted IFN-gamma in response to bDNA, depletion of macrophages eliminated this response. Additionally, purified NK cells did not respond to bDNA; however, addition of macrophages restored the NK cell IFN-gamma response. Coculture of NK cells with preactivated macrophages further increased bDNA-induced NK cell IFN-gamma production. Anti-IL-12 or IL-10 inhibited bDNA-induced IFN-gamma response. Treatment of purified macrophages with bDNA resulted in IL-12 secretion accompanied by an increase in IL-12 p40 mRNA level. Although isolated NK cells did not make IFN-gamma in response to bDNA, NK cells costimulated with IL-12 gained the ability to respond to bDNA. These experiments show that bDNA induces macrophage IL-12 production which, in turn, stimulates NK cell IFN-gamma production. Macrophage-derived IL-12 renders NK cells responsive to bDNA permitting an even greater IFN-gamma response to bDNA.

  10. [Pancreatic tail pseudoaneurysm: percutaneous treatment by thrombin injection].

    PubMed

    Pacheco Jiménez, M; Moreno Sánchez, T; Moreno Rodríguez, F; Guillén Rico, M

    2014-01-01

    Visceral artery pseudoaneurysms secondary to acute and/or chronic pancreatitis are a relatively common and potentially serious complication. Endovascular techniques are the most currently accepted techniques, given the higher morbidity-mortality of surgery. The thrombosis of the pseudoaneurysm using an ultrasound-guided percutaneous thrombin injection is emerging as a useful option in those cases in which endovascular embolisation is not possible. We present the case of a patient with a pseudoaneurysm of the transverse pancreatic artery secondary to chronic pancreatitis, and successfully treated by administering percutaneous thrombin. Copyright © 2011 SERAM. Published by Elsevier Espana. All rights reserved.

  11. T-Cell Mineralocorticoid Receptor Controls Blood Pressure by Regulating Interferon-Gamma.

    PubMed

    Sun, Xue-Nan; Li, Chao; Liu, Yuan; Du, Lin-Juan; Zeng, Meng-Ru; Zheng, Xiao-Jun; Zhang, Wu-Chang; Liu, Yan; Zhu, Mingjiang; Kong, Deping; Zhou, Li; Lu, Limin; Shen, Zhu-Xia; Yi, Yi; Du, Lili; Qin, Mu; Liu, Xu; Hua, Zichun; Sun, Shuyang; Yin, Huiyong; Zhou, Bin; Yu, Ying; Zhang, Zhiyuan; Duan, Sheng-Zhong

    2017-05-12

    Hypertension remains to be a global public health burden and demands novel intervention strategies such as targeting T cells and T-cell-derived cytokines. Mineralocorticoid receptor (MR) antagonists have been clinically used to treat hypertension. However, the function of T-cell MR in blood pressure (BP) regulation has not been elucidated. We aim to determine the role of T-cell MR in BP regulation and to explore the mechanism. Using T-cell MR knockout mouse in combination with angiotensin II-induced hypertensive mouse model, we demonstrated that MR deficiency in T cells strikingly decreased both systolic and diastolic BP and attenuated renal and vascular damage. Flow cytometric analysis showed that T-cell MR knockout mitigated angiotensin II-induced accumulation of interferon-gamma (IFN-γ)-producing T cells, particularly CD8 + population, in both kidneys and aortas. Similarly, eplerenone attenuated angiotensin II-induced elevation of BP and accumulation of IFN-γ-producing T cells in wild-type mice. In cultured CD8 + T cells, T-cell MR knockout suppressed IFN-γ expression whereas T-cell MR overexpression and aldosterone both enhanced IFN-γ expression. At the molecular level, MR interacted with NFAT1 (nuclear factor of activated T-cells 1) and activator protein-1 in T cells. Finally, T-cell MR overexpressing mice manifested more elevated BP compared with control mice after angiotensin II infusion and such difference was abolished by IFN-γ-neutralizing antibodies. MR may interact with NFAT1 and activator protein-1 to control IFN-γ in T cells and to regulate target organ damage and ultimately BP. Targeting MR in T cells specifically may be an effective novel approach for hypertension treatment. © 2017 American Heart Association, Inc.

  12. Binding of Thrombin-Activated Platelets to a Fibrin Scaffold through αIIbβ3 Evokes Phosphatidylserine Exposure on Their Cell Surface

    PubMed Central

    Brzoska, Tomasz; Suzuki, Yuko; Mogami, Hideo; Sano, Hideto; Urano, Tetsumei

    2013-01-01

    Recently, by employing intra-vital confocal microscopy, we demonstrated that platelets expose phosphatidylserine (PS) and fibrin accumulate only in the center of the thrombus but not in its periphery. To address the question how exposure of platelet anionic phospholipids is regulated within the thrombus, an in-vitro experiment using diluted platelet-rich plasma was employed, in which the fibrin network was formed in the presence of platelets, and PS exposure on the platelet surface was analyzed using Confocal Laser Scanning Microscopy. Almost all platelets exposed PS after treatment with tissue factor, thrombin or ionomycin. Argatroban abrogated fibrin network formation in all samples, however, platelet PS exposure was inhibited only in tissue factor- and thrombin-treated samples but not in ionomycin-treated samples. FK633, an αIIbβ3 antagonist, and cytochalasin B impaired platelet binding to the fibrin scaffold and significantly reduced PS exposure evoked by thrombin. Gly-Pro-Arg-Pro amide abrogated not only fibrin network formation, but also PS exposure on platelets without suppressing platelet binding to fibrin/fibrinogen. These results suggest that outside-in signals in platelets generated by their binding to the rigid fibrin network are essential for PS exposure after thrombin treatment. PMID:23383331

  13. Gamma-tocopherol supplementation ameliorated hyper-inflammatory response during the early cutaneous wound healing in alloxan-induced diabetic mice

    PubMed Central

    Shin, Jihyun; Yang, Soo Jin

    2016-01-01

    Delayed wound healing is one of the major diabetic complications. During wound healing process, the early inflammatory stage is important for better prognosis. One of antioxidant nutrient, gamma-tocopherol (GT) is considered to regulate inflammatory conditions. This study investigated the effect of GT supplementation on mechanism associated with inflammation, oxidative stress, and apoptosis during early cutaneous wound healing in diabetic mice. Diabetes was induced by alloxan injection in ICR mice. All mice were divided into three groups: non-diabetic control mice (CON), diabetic control mice (DMC), and diabetic mice supplemented with GT (GT). After two weeks of GT supplementation, excisional wounds were made by biopsy punches (4 mm). Diabetic mice showed increases in fasting blood glucose (FBG) level, hyper-inflammatory response, oxidative stress, and delayed wound closure rate compared to non-diabetic mice. However, GT supplementation reduced FBG level and accelerated wound closure rate by regulation of inflammatory response-related proteins such as nuclear factor kappa B, interleukin-1β, tumor necrosis factor-α, and c-reactive protein, and oxidative stress-related markers including nuclear factor (erythroid derived 2)-like 2, NAD(P)H dehydrogenase quinone1, heme oxygenase-1, manganese superoxide dismutase, catalase and glutathione peroxidase and apoptosis-related markers such as sirtuin-1, peroxisome proliferator-activated receptor gamma coactivator 1-α, and p53 in diabetic mice. Taken together, GT would be a potential therapeutic to prevent diabetes-induced delayed wound healing by regulation of inflammatory response, apoptosis, and oxidative stress. Impact statement Gamma tocopherol has shown ameliorative effect on diabetic wound healing by regulation of inflammation, oxidative stress, and apoptosis demonstrated by nuclear factor kappa B, nuclear factor (erythroid derived 2)-like 2, and sirtuin-1. PMID:28211759

  14. Gamma-tocopherol supplementation ameliorated hyper-inflammatory response during the early cutaneous wound healing in alloxan-induced diabetic mice.

    PubMed

    Shin, Jihyun; Yang, Soo Jin; Lim, Yunsook

    2017-03-01

    Delayed wound healing is one of the major diabetic complications. During wound healing process, the early inflammatory stage is important for better prognosis. One of antioxidant nutrient, gamma-tocopherol (GT) is considered to regulate inflammatory conditions. This study investigated the effect of GT supplementation on mechanism associated with inflammation, oxidative stress, and apoptosis during early cutaneous wound healing in diabetic mice. Diabetes was induced by alloxan injection in ICR mice. All mice were divided into three groups: non-diabetic control mice (CON), diabetic control mice (DMC), and diabetic mice supplemented with GT (GT). After two weeks of GT supplementation, excisional wounds were made by biopsy punches (4 mm). Diabetic mice showed increases in fasting blood glucose (FBG) level, hyper-inflammatory response, oxidative stress, and delayed wound closure rate compared to non-diabetic mice. However, GT supplementation reduced FBG level and accelerated wound closure rate by regulation of inflammatory response-related proteins such as nuclear factor kappa B, interleukin-1β, tumor necrosis factor-α, and c-reactive protein, and oxidative stress-related markers including nuclear factor (erythroid derived 2)-like 2, NAD(P)H dehydrogenase quinone1, heme oxygenase-1, manganese superoxide dismutase, catalase and glutathione peroxidase and apoptosis-related markers such as sirtuin-1, peroxisome proliferator-activated receptor gamma coactivator 1- α, and p53 in diabetic mice. Taken together, GT would be a potential therapeutic to prevent diabetes-induced delayed wound healing by regulation of inflammatory response, apoptosis, and oxidative stress. Impact statement Gamma tocopherol has shown ameliorative effect on diabetic wound healing by regulation of inflammation, oxidative stress, and apoptosis demonstrated by nuclear factor kappa B, nuclear factor (erythroid derived 2)-like 2, and sirtuin-1.

  15. Dynamics of Thrombin Generation and Flux from Clots during Whole Human Blood Flow over Collagen/Tissue Factor Surfaces.

    PubMed

    Zhu, Shu; Lu, Yichen; Sinno, Talid; Diamond, Scott L

    2016-10-28

    Coagulation kinetics are well established for purified blood proteases or human plasma clotting isotropically. However, less is known about thrombin generation kinetics and transport within blood clots formed under hemodynamic flow. Using microfluidic perfusion (wall shear rate, 200 s -1 ) of corn trypsin inhibitor-treated whole blood over a 250-μm long patch of type I fibrillar collagen/lipidated tissue factor (TF; ∼1 TF molecule/μm 2 ), we measured thrombin released from clots using thrombin-antithrombin immunoassay. The majority (>85%) of generated thrombin was captured by intrathrombus fibrin as thrombin-antithrombin was largely undetectable in the effluent unless Gly-Pro-Arg-Pro (GPRP) was added to block fibrin polymerization. With GPRP present, the flux of thrombin increased to ∼0.5 × 10 -12 nmol/μm 2 -s over the first 500 s of perfusion and then further increased by ∼2-3-fold over the next 300 s. The increased thrombin flux after 500 s was blocked by anti-FXIa antibody (O1A6), consistent with thrombin-feedback activation of FXI. Over the first 500 s, ∼92,000 molecules of thrombin were generated per surface TF molecule for the 250-μm-long coating. A single layer of platelets (obtained with α IIb β 3 antagonism preventing continued platelet deposition) was largely sufficient for thrombin production. Also, the overall thrombin-generating potential of a 1000-μm-long coating became less efficient on a per μm 2 basis, likely due to distal boundary layer depletion of platelets. Overall, thrombin is robustly generated within clots by the extrinsic pathway followed by late-stage FXIa contributions, with fibrin localizing thrombin via its antithrombin-I activity as a potentially self-limiting hemostatic mechanism. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Interferon-gamma enhances radiation-induced cell death via downregulation of Chk1

    PubMed Central

    Kim, Kwang Seok; Choi, Kyu Jin; Bae, Sangwoo

    2012-01-01

    Interferon-gamma (IFNγ) is a cytokine with roles in immune responses as well as in tumor control. Interferon is often used in cancer treatment together with other therapies. Here we report a novel approach to enhancement of cancer cell killing by combined treatment of IFNγ with ionizing radiation. We found that IFNγ treatment alone in HeLa cells induced phosphorylation of Chk1 in a time- and dose-dependent manner, and resulted in cell arrest. Moreover IFNγ treatment was correlated with attenuation of Chk1 as the treatment shortened protein half-life of Chk1. As Chk1 is an essential cell cycle regulator for viability after DNA damage, attenuation of Chk1 by IFNγ pre-treatment in HeLa cells resulted in increased cell death following ionizing radiation about 2-folds than ionizing radiation treatment alone whereas IFNγ treatment alone had little effect on cell death. X-linked inhibitor of apoptosis-associated factor 1 (XAF1), an IFN-induced gene, seems to partly regulate IFNγ-induced Chk1 destabilization and radiation sensitivity because transient depletion of XAF1 by siRNA prevented IFNγ-induced Chk1 attenuation and partly protected cells from IFNγ-enhanced radiation cell killing. Therefore the results provide a novel rationale to combine IFNγ pretreatment and DNA-damaging anti-cancer drugs such as ionizing radiation to enhance cancer cell killing. PMID:22825336

  17. Cation Coordination Alters the Conformation of a Thrombin-Binding G-Quadruplex DNA Aptamer That Affects Inhibition of Thrombin.

    PubMed

    Zavyalova, Elena; Tagiltsev, Grigory; Reshetnikov, Roman; Arutyunyan, Alexander; Kopylov, Alexey

    2016-10-01

    Thrombin-binding aptamers are promising anticoagulants. HD1 is a monomolecular antiparallel G-quadruplex with two G-quartets linked by three loops. Aptamer-thrombin interactions are mediated with two TT-loops that bind thrombin exosite I. Several cations were shown to be coordinated inside the G-quadruplex, including K + , Na + , NH 4 + , Ba 2+ , and Sr 2+ ; on the contrary, Mn 2+ was coordinated in the grooves, outside the G-quadruplex. K + or Na + coordination provides aptamer functional activity. The effect of other cations on aptamer functional activity has not yet been described, because of a lack of relevant tests. Interactions between aptamer HD1 and a series of cations were studied. A previously developed enzymatic method was applied to evaluate aptamer inhibitory activity. The structure-function correlation was studied using the characterization of G-quadruplex conformation by circular dichroism spectroscopy. K + coordination provided the well-known high inhibitory activity of the aptamer, whereas Na + coordination supported low activity. Although NH 4 + coordination yielded a typical antiparallel G-quadruplex, no inhibitory activity was shown; a similar effect was observed for Ba 2+ and Sr 2+ coordination. Mn 2+ coordination destabilized the G-quadruplex that drastically diminished aptamer inhibitory activity. Therefore, G-quadruplex existence per se is insufficient for aptamer inhibitory activity. To elicit the nature of these effects, we thoroughly analyzed nuclear magnetic resonance (NMR) and X-ray data on the structure of the HD1 G-quadruplex with various cations. The most reasonable explanation is that cation coordination changes the conformation of TT-loops, affecting thrombin binding and inhibition. HD1 counterparts, aptamers 31-TBA and NU172, behaved similarly with some distinctions. In 31-TBA, an additional duplex module stabilized antiparallel G-quadruplex conformation at high concentrations of divalent cations; whereas in NU172, a different

  18. Automatic and integrated micro-enzyme assay (AIμEA) platform for highly sensitive thrombin analysis via an engineered fluorescence protein-functionalized monolithic capillary column.

    PubMed

    Lin, Lihua; Liu, Shengquan; Nie, Zhou; Chen, Yingzhuang; Lei, Chunyang; Wang, Zhen; Yin, Chao; Hu, Huiping; Huang, Yan; Yao, Shouzhuo

    2015-04-21

    Nowadays, large-scale screening for enzyme discovery, engineering, and drug discovery processes require simple, fast, and sensitive enzyme activity assay platforms with high integration and potential for high-throughput detection. Herein, a novel automatic and integrated micro-enzyme assay (AIμEA) platform was proposed based on a unique microreaction system fabricated by a engineered green fluorescence protein (GFP)-functionalized monolithic capillary column, with thrombin as an example. The recombinant GFP probe was rationally engineered to possess a His-tag and a substrate sequence of thrombin, which enable it to be immobilized on the monolith via metal affinity binding, and to be released after thrombin digestion. Combined with capillary electrophoresis-laser-induced fluorescence (CE-LIF), all the procedures, including thrombin injection, online enzymatic digestion in the microreaction system, and label-free detection of the released GFP, were integrated in a single electrophoretic process. By taking advantage of the ultrahigh loading capacity of the AIμEA platform and the CE automatic programming setup, one microreaction column was sufficient for many times digestion without replacement. The novel microreaction system showed significantly enhanced catalytic efficiency, about 30 fold higher than that of the equivalent bulk reaction. Accordingly, the AIμEA platform was highly sensitive with a limit of detection down to 1 pM of thrombin. Moreover, the AIμEA platform was robust and reliable to detect thrombin in human serum samples and its inhibition by hirudin. Hence, this AIμEA platform exhibits great potential for high-throughput analysis in future biological application, disease diagnostics, and drug screening.

  19. Screening of benzamidine-based thrombin inhibitors via a linear interaction energy in continuum electrostatics model

    NASA Astrophysics Data System (ADS)

    Nicolotti, Orazio; Giangreco, Ilenia; Miscioscia, Teresa Fabiola; Convertino, Marino; Leonetti, Francesco; Pisani, Leonardo; Carotti, Angelo

    2010-02-01

    A series of 27 benzamidine inhibitors covering a wide range of biological activity and chemical diversity was analysed to derive a Linear Interaction Energy in Continuum Electrostatics (LIECE) model for analysing the thrombin inhibitory activity. The main interactions occurring at the thrombin binding site and the preferred binding conformations of inhibitors were explicitly biased by including into the LIECE model 10 compounds extracted from X-ray solved thrombin-inhibitor complexes available from the Protein Data Bank (PDB). Supported by a robust statistics ( r 2 = 0.698; q 2 = 0.662), the LIECE model was successful in predicting the inhibitory activity for about 76% of compounds ( r ext 2 ≥ 0.600) from a larger external test set encompassing 88 known thrombin inhibitors and, more importantly, in retrieving, at high sensitivity and with better performance than docking and shape-based methods, active compounds from a thrombin combinatorial library of 10240 mimetic chemical products. The herein proposed LIECE model has the potential for successfully driving the design of novel thrombin inhibitors with benzamidine and/or benzamidine-like chemical structure.

  20. Over-expression of C/EBP-{alpha} induces apoptosis in cultured rat hepatic stellate cells depending on p53 and peroxisome proliferator-activated receptor-{gamma}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Xueqing; Huang Guangcun; Mei Shuang

    2009-03-06

    Hepatic stellate cells (HSCs) play a key role in the pathogenesis of hepatic fibrosis. In our previous studies, CCAAT enhancer binding protein-{alpha} (C/EBP-{alpha}) has been shown to be involved in the activation of HSCs and to have a repression effect on hepatic fibrosis in vivo. However, the mechanisms are largely unknown. In this study, we show that the infection of adenovirus vector expressing C/EBP-{alpha} gene (Ad-C/EBP-{alpha}) could induce HSCs apoptosis in a dose- and time-dependent manner by Annexin V/PI staining, caspase-3 activation assay, and flow cytometry. Also, over-expression of C/EBP-{alpha} resulted in the up-regulation of peroxisome proliferator-activated receptor-{gamma} (PPAR-{gamma}) andmore » P53, while P53 expression was regulated by PPAR-{gamma}. In addition, Fas, FasL, DR4, DR5, and TRAIL were studied. The results indicated that the death receptor pathway was mainly involved and regulated by PPAR-{gamma} and p53 in the process of apoptosis triggered by C/EBP-{alpha} in HSCs.« less

  1. EMBOLIC MIDDLE CEREBRAL ARTERY OCCLUSION MODEL USING THROMBIN AND FIBRINOGEN COMPOSED CLOTS IN RAT

    PubMed Central

    Ren, Ming; Lin, Zi-Jing; Qian, Hai; Gourav, Choudhury Roy; liu, Ran; Liu, Hanli; Yang, Shao-Hua

    2012-01-01

    Ischemic stroke accounts for over 80% in total human stroke which mostly affect middle cerebral artery (MCA) territory. Embolic stroke models induced by injection of homologous clots into the internal carotid artery and MCA closely mimic human stroke and have been commonly used in stroke research. Studies indicate that the size and composition of clots are critical for the reproducibility of the stroke model. In the present study, we modified the homologous clots formation by addition of thrombin and fibrinogen which produced even distribution of fibrin with tight cross linkage of red blood cells. We optimized the embolic MCA occlusion model in rats using different size of the mixed clots. A precise lodgment of the clots at the MCA bifurcation and highly reproducible ischemic lesion in the MCA territory were demonstrated in the embolic MCA occlusion model induced by injection of 10 pieces of 1-mm long mixed clots made in PE-60 catheter. We further tested the effect of recombinant tissue plasminogen activator (rtPA) in this embolic MCA occlusion model. rtPA induced thrombolysis, improved neurological outcome, and significantly reduced ischemic lesion volume when administered at 1 hour after embolism as compared with control. In summary, we have established a reproducible embolic MCA occlusion model using clots made of homologous blood, thrombin and fibrinogen. The mixed clots enable precise lodgment at the MCA bifurcation which is responsive to thrombolytic therapy of rtPA. PMID:22985597

  2. Embolic middle cerebral artery occlusion model using thrombin and fibrinogen composed clots in rat.

    PubMed

    Ren, Ming; Lin, Zi-Jing; Qian, Hai; Choudhury, Gourav Roy; Liu, Ran; Liu, Hanli; Yang, Shao-Hua

    2012-11-15

    Ischemic stroke accounts for over 80% in total human stroke which mostly affect middle cerebral artery (MCA) territory. Embolic stroke models induced by injection of homologous clots into the internal carotid artery and MCA closely mimic human stroke and have been commonly used in stroke research. Studies indicate that the size and composition of clots are critical for the reproducibility of the stroke model. In the present study, we modified the homologous clots formation by addition of thrombin and fibrinogen which produced even distribution of fibrin with tight cross linkage of red blood cells. We optimized the embolic MCA occlusion model in rats using different size of the mixed clots. A precise lodgment of the clots at the MCA bifurcation and highly reproducible ischemic lesion in the MCA territory were demonstrated in the embolic MCA occlusion model induced by injection of 10 pieces of 1-mm long mixed clots made in PE-60 catheter. We further tested the effect of recombinant tissue plasminogen activator (rtPA) in this embolic MCA occlusion model. rtPA induced thrombolysis, improved neurological outcome, and significantly reduced ischemic lesion volume when administered at 1h after embolism as compared with control. In summary, we have established a reproducible embolic MCA occlusion model using clots made of homologous blood, thrombin and fibrinogen. The mixed clots enable precise lodgment at the MCA bifurcation which is responsive to thrombolytic therapy of rtPA. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Interferon-Gamma and Fas Are Involved in Porphyromonas gingivalis-Induced Apoptosis of Human Extravillous Trophoblast-Derived HTR8/SVneo Cells via Extracellular Signal-Regulated Kinase 1/2 Pathway.

    PubMed

    Ren, Hongyu; Li, Yuhong; Jiang, Han; Du, Minquan

    2016-11-01

    A number of studies recently revealed a link between periodontal disease and preterm birth (PTB). PTB can be induced by dental infection with Porphyromonas gingivalis (Pg), a periodontopathic bacterium. This study aims to investigate responses of human extravillous trophoblast-derived HTR8/SVneo cells to Pg infection. Cell apoptosis, cell viability, protein expression, and cytokine production in HTR8 cells were measured via: 1) flow cytometry, 2) CCK-8 assay, 3) western blot, and 4) enzyme-linked immunosorbent assay methods, respectively. Pg decreased cell viability and increased cell apoptosis, active caspase-3 and Fas expression, and interferon-gamma (IFN-γ) secretion in HTR8 cells. Extracellular signal-regulated kinase (ERK) 1/2 inhibitor U0126 and FasL neutralizing antibody NOK1 that blocks FasL/Fas interaction both significantly suppressed Pg-induced apoptosis. U0126 also inhibited IFN-γ secretion and Fas expression close to control levels. Moreover, treatment with recombinant IFN-γ also significantly decreased number of viable HTR8 cells and increased Fas expression, suggesting IFN-γ may play an important role in Pg-induced apoptosis of HTR8 cells, at least partially through regulation of Fas expression. To the best of the authors' knowledge, this is the first study to demonstrate Pg induces IFN-γ secretion, Fas expression, and apoptosis in human extravillous trophoblast-derived HTR8/SVneo cells in an ERK1/2-dependent manner, and IFN-γ (explored by recombinant IFN-γ) and Fas are involved in Pg-induced apoptosis. The finding that Pg infection abnormally regulates inflammation and apoptosis of human trophoblasts may give new insights into the possible link of PTB with maternal periodontal disease and periodontal pathogens.

  4. Lack of phosphoinositide 3-kinase-gamma attenuates ventilator-induced lung injury.

    PubMed

    Lionetti, Vincenzo; Lisi, Alberto; Patrucco, Enrico; De Giuli, Paolo; Milazzo, Maria Giovanna; Ceci, Simone; Wymann, Matthias; Lena, Annalisa; Gremigni, Vittorio; Fanelli, Vito; Hirsch, Emilio; Ranieri, V Marco

    2006-01-01

    G protein-coupled receptors may up-regulate the inflammatory response elicited by ventilator-induced lung injury but also regulate cell survival via protein kinase B (Akt) and extracellular signal regulated kinases 1/2 (ERK1/2). The G protein-sensitive phosphoinositide-3-kinase gamma (PI3Kgamma) regulates several cellular functions including inflammation and cell survival. We explored the role of PI3Kgamma on ventilator-induced lung injury. Prospective, randomized, experimental study. University animal research laboratory. Wild-type (PI3Kgamma), knock-out (PI3Kgamma ), and kinase-dead (PI3Kgamma) mice. Three ventilatory strategies (no stretch, low stretch, high stretch) were studied in an isolated, nonperfused model of acute lung injury (lung lavage) in PI3Kgamma, PI3Kgamma, and PI3Kgamma mice. Reduction in lung compliance, hyaline membrane formation, and epithelial detachment with high stretch were more pronounced in PI3Kgamma than in PI3Kgamma and PI3Kgamma (p < .01). Inflammatory cytokines and IkBalpha phosphorylation with high stretch did not differ among PI3Kgamma, PI3Kgamma, and PI3Kgamma. Apoptotic index (terminal deoxynucleotidyl transferase-mediated biotin-dUTP nick-end labeling) and caspase-3 (immunohistochemistry) with high stretch were larger (p < .01) in PI3Kgamma and PI3Kgamma than in PI3Kgamma. Electron microscopy showed that high stretch caused apoptotic changes in alveolar cells of PI3Kgamma mice whereas PI3Kgamma mice showed necrosis. Phosphorylation of Akt and ERK1/2 with high stretch was more pronounced in PI3Kgamma than in PI3Kgamma and PI3Kgamma (p < .01). Silencing PI3Kgamma seems to attenuate functional and morphological consequences of ventilator-induced lung injury independently of inhibitory effects on cytokines release but through the enhancement of pulmonary apoptosis.

  5. Synthesis and biochemical evaluation of triazole/tetrazole-containing sulfonamides against thrombin and related serine proteases

    PubMed Central

    Siles, Rogelio; Kawasaki, Yuko; Ross, Patrick; Freire, Ernesto

    2011-01-01

    A small library of 25 triazole/tetrazole-based sulfonamides have been synthesized and further evaluated for their inhibitory activity against thrombin, trypsin, tryptase and chymase. In general, the triazole-based sulfonamides inhibited thrombin more efficiently than the tetrazole counterparts. Particularly, compound 26 showed strong thrombin inhibition (Ki =880 nM) and significant selectivity against other human related serine proteases like trypsin (Ki =729 µM). Thrombin binding affinity of the same compound was determined by ITC and demonstrated that the binding of this new triazole-based scaffold is enthalpically driven, making it a good candidate for further development. PMID:21807511

  6. Coincident regulation of PKCδ in human platelets by phosphorylation of Tyr311 and Tyr565 and phospholipase C signalling

    PubMed Central

    Hall, Kellie J.; Jones, Matthew L.; Poole, Alastair W.

    2007-01-01

    PKC (protein kinase C)δ plays a complex role in platelets, having effects on both positive and negative signalling functions. It is phosphorylated on tyrosine residues in response to thrombin and collagen, and it has recently been shown that Tyr311 is phosphorylated in response to PAR (protease-activated receptor) 1 and PAR4 receptor activation. In the present study, we show that Tyr311 and Tyr565 are phosphorylated in response to thrombin, and have examined the interplay between phosphorylation and the classical lipid-mediated activation of PKCδ. Phosphorylation of both Tyr311 and Tyr565 is dependent on Src kinase and PLC (phospholipase C) activity in response to thrombin. Importantly, direct allosteric activation of PKCδ with PMA also induced phosphorylation of Tyr311 and Tyr565, and this was dependent on the activity of Src kinases, but not PLC. Membrane recruitment of PKCδ is essential for phosphorylation of this tyrosine residue, but tyrosine phosphorylation is not required for membrane recruitment of PKCδ. Both thrombin and PMA induce recruitment of PKCδ to the membrane, and for thrombin, this recruitment is a PLC-dependent process. In order to address the functional role of tyrosine residue phosphorylation of PKCδ, we demonstrate that phosphorylation can potentiate the activity of the kinase, although phosphorylation does not play a role in membrane recruitment of the kinase. PKCδ is therefore regulated in a coincident fashion, PLC-dependent signals recruiting it to the plasma membrane and by phosphorylation on tyrosine residues, potentiating its activity. PMID:17570831

  7. Construction of photoelectrochemical thrombin aptasensor via assembling multilayer of graphene-CdS nanocomposites.

    PubMed

    Shangguan, Li; Zhu, Wei; Xue, Yanchun; Liu, Songqin

    2015-02-15

    A photoelectrochemical (PEC) aptasensor for highly sensitive and specific detection of thrombin was developed by using graphene–CdS nanocomposites multilayer as photoactive species and electroactive mediator hexaammineruthenium(III) chloride (Ru(NH(3))(6)(3+)) as signal enhancer. Graphene–CdS nanocomposites (G–CdS) were synthesized by one-pot reduction of oxide graphene and CdCl2 with thioacetamide. The photoactive multilayer was prepared by alternative assembly of the negatively charged 3-mercaptopropionic acid modified graphene–CdS nanocomposites (MPA-G–CdS) and the positively charged polyethylenimine (PEI) on ITO electrode. This layer-by-layer assembly method enhanced the stability and homogeneity of the photocurrent readout of G–CdS. Thrombin aptamer was covalently bound to the multilayer by using glutaraldehyde as cross-linking. Electroactive mediator (Ru(NH(3))(6)(3+)) could interact with the DNA phosphate backbone and thus facilitated the electron transfer between G–CdS multilayer and electrode and enhanced the photocurrent. Hybridizing of a long complementary DNA with thrombin aptamer could increase the adsorption amount of (Ru(NH(3))(6)(3+)), which in turn boosted the signal readout. In the presence of target thrombin, the affinity interaction between thrombin and its aptamer resulted in the long complementary DNA releasing from the G–CdS multilayer and decreasing of photocurrent signal. On the basis of G–CdS multilayer as the photoactive species, (Ru (NH(3))(6)(3+)) as an electroactive mediator, and aptamer as a recognition module, a high sensitive PEC aptasensor for thrombin detection was proposed. The thrombin aptasensor displayed a linear range from 2.0 pM to 600.0 pM and a detection limit of 1.0 pM. The present strategy provided a promising ideology for the future development of PEC biosensor. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. The 29-kDa proteins phosphorylated ion thrombin-activated human platelets are forms of the estrogen receptor-related 27-kDa heat shock protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendelsohn, M.E.; Yan Zhu; O'Neill, S.

    Thrombin plays a critical role in platelet activation, hemostasis, and thrombosis. Cellular activation by thrombin leads to the phosphorylation of multiple proteins, most of which are unidentified. The authors have characterized several 29-kDa proteins that are rapidly phosphorylated following exposure of intact human platelets to thrombin. A murine monoclonal antibody raised to an unidentified estrogen receptor-related 29-kDa protein selectively recognized these proteins as well as a more basic, unphosphorylated 27-kDa protein. Cellular activation by thrombin led to a marked shift in the proportion of protein from the 27-kDa unphosphorylated form to the 29-kDa phosphoprotein species. Using this antibody, they isolatedmore » and sequenced a human cDNA clone encoding a protein that was identical to the mammalian 27-kDa heat shock protein (HSP27), a protein of uncertain function that is known to be phosphorylated to several forms and to be transcriptionally induced by estrogen. The 29-kDa proteins were confirmed to be phosphorylated forms of HSP27 by immunoprecipitation studies. Thus, the estrogen receptor-related protein is HSP27, and the three major 20-kDa proteins phosphorylated in thrombin-activated platelets are forms of HSP27. These data suggest a role for HSP27 in the signal transduction events of platelet activation.« less

  9. Reactivity of mouse antibodies against bromelain-treated mouse erythrocytes with thrombin-treated mouse platelets.

    PubMed Central

    Kawaguchi, S

    1989-01-01

    The reactivity of mouse antibodies against bromelain-treated mouse erythrocytes (BrMRBC) with mouse platelets before and after thrombin treatment was assessed by flow cytometry. Anti-BrMRBC antibodies could bind to thrombin-treated platelets, although normal platelets were also weakly reactive with the antibodies. The binding of anti-BrMRBC antibodies to platelets was confirmed by complement-dependent lysis. It is suggested that thrombin-activated platelets may be a real target for anti-BrMRBC antibodies. PMID:2467876

  10. A multifunctional label-free electrochemical impedance biosensor for Hg(2+), adenosine triphosphate and thrombin.

    PubMed

    Chen, Lifen; Chen, Zhong-Ning

    2015-01-01

    A multifunctional label-free biosensor for the detection of Hg(2+), adenosine triphosphate and thrombin has been developed based on the changing of the electrochemical impedance spectroscopy (EIS) from the modified electrodes when nucleic acid subunits interacting with different targets. The modified electrode consists of three interaction sections, including DNA with T-T mismatch recognizing Hg(2+) to form T-Hg(2+)-T complex, split DNA chip against ATP, and DNA domin against thrombin to form G-quadruplex. Upon DNA interaction with thrombin or ATP, an increased charge transfer resistance (Rct) had been detected. However, a decreased Rct against Hg(2+) was obtained. The Rct difference (ΔRct) has relationship with the concentration of the different targets, Hg(2+), ATP and thrombin can be selectively detected with the detection limit of 0.03, 0.25, and 0.20 nmol L(-1), respectively. To separately detect the three analytes existing in the same sample, ATP aptamer, G-rich DNA strands and EDTA were applied to mask ATP, Hg(2+) or thrombin separately. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Changes in thrombin-stimulated platelet malondialdehyde production during the menstrual cycle.

    PubMed Central

    Tindall, H; Zuzel, M; Paton, R C; McNicol, G P

    1981-01-01

    Forty normal women had thrombin-stimulated platelet malondialdehyde (MDA) production measured during their menstrual cycle. Twenty women in this group were taking the combined oral contraceptive pill (OCP). Platelet MDA production was found to fall by 30% during normal menstruation and the week when the subjects were not taking a combined OCP, but it remained constant throughout the remainder of the cycle. No significant change in initial platelet aggregation response to stimulation by thrombin, change in plasma thrombin clotting time, plasma heparin neutralising activity (HNA), or plasma antithrombin III (AT-III) activity was seen when the platelet MDA production was reduced. The bleeding time results showed some variation throughout the menstrual cycle but these did not appear to be related to the variation in platelet MDA production. PMID:7251901

  12. Bovine thrombin safety reporting: an example of study design and publication bias.

    PubMed

    Crean, Sheila; Michels, Shannon L; Moschella, Kevin; Reynolds, Matthew W

    2010-01-01

    Bovine thrombin, a popular hemostat and sealant since 1945, has recently been subjected to clinical trial testing due to reformulations in 1998. We sought to compare adverse event rates of early observational studies with those of later interventional trials. A MEDLINE-based literature search in publications that report safety in bovine thrombin exposed surgical patients was extracted and reviewed. In 38 studies, about half were case reports and 31.5% were interventional trials. In case reports, 41% of authors reported severe coagulopathic adverse events. In contrast, whereas blood complications were common in large trials, no association of harm was established for bovine thrombin product exposure and/or immunization. In this review, later clinical trials failed to reproduce the common and severe coagulopathy predicted by earlier observational studies in bovine exposed patients. This example illustrates that perceptions of safety can change as a function of study design, even for a widely adopted, well established biologic such as thrombin. Caution must be exercised in interpreting evidence from observational studies alone.

  13. Thrombin generation and fibrin formation under flow on biomimetic tissue factor-rich surfaces.

    PubMed

    Onasoga-Jarvis, A A; Puls, T J; O'Brien, S K; Kuang, L; Liang, H J; Neeves, K B

    2014-01-01

    Blood flow regulates coagulation and fibrin assembly by controlling the rate of transport of zymogens, enzymes and plasma proteins to and from the site of an injury. The objective of this work was to define the hemodynamic conditions under which fibrin can form under flow on tissue factor (TF)-rich substrates. TF-coated silica beads (~ 800 nm) were patterned into 18-85-μm spots. Normal pooled plasma and factors VIII, IX and XI deficient plasmas were perfused over the beads coated with 0.08, 0.8 and 8 molecules-TF μm(-2) at shear rates of 50-1000 s(-1) . Fibrin deposition and thrombin generation were measured by fluorescence microscopy in a hydrodynamic focusing microfluidic device. Fibrin deposition was supported on patterned bead spots, but not planar TF substrates at the same surface TF concentration. There was a threshold spot size and a shear rate dependent TF concentration that was necessary to support fibrin polymerization. FVIII and FIX had minor effects on fibrin dynamics at 8 molecules-TF μm(-2) , but were essential at 0.8 molecules-TF μm(-2) . The absence of FXI influenced thrombin generation and fibrin deposition at both 0.8 and 8 molecules-TF μm(-2) . These results show that fibrin deposition requires perturbations in the flow field that protect reactions from dilution by flow under venous and arterial conditions. FVIII and FIX have a modest effect on fibrin deposition at high TF concentrations, but are necessary for fibrin deposition at low TF concentrations. FXI amplifies thrombin generation under flow at both low and high TF concentrations. © 2013 International Society on Thrombosis and Haemostasis.

  14. Mycophenolic acid induces ATP-binding cassette transporter A1 (ABCA1) expression through the PPAR{gamma}-LXR{alpha}-ABCA1 pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yanni; Lai, Fangfang; Xu, Yang

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Using an ABCA1p-LUC HepG2 cell line, we found that MPA upregulated ABCA1 expression. Black-Right-Pointing-Pointer MPA induced ABCA1 and LXR{alpha} protein expression in HepG2 cells. Black-Right-Pointing-Pointer PPAR{gamma} antagonist GW9662 markedly inhibited MPA-induced ABCA1 and LXR{alpha} protein expression. Black-Right-Pointing-Pointer The effect of MPA upregulating ABCA1 was due mainly to activation of the PPAR{gamma}-LXR{alpha}-ABCA1 pathway. -- Abstract: ATP-binding cassette transporter A1 (ABCA1) promotes cholesterol and phospholipid efflux from cells to lipid-poor apolipoprotein A-I and plays an important role in atherosclerosis. In a previous study, we developed a high-throughput screening method using an ABCA1p-LUC HepG2 cell line to find upregulators of ABCA1.more » Using this method in the present study, we found that mycophenolic acid (MPA) upregulated ABCA1 expression (EC50 = 0.09 {mu}M). MPA upregulation of ABCA1 expression was confirmed by real-time quantitative reverse transcription-PCR and Western blot analysis in HepG2 cells. Previous work has indicated that MPA is a potent agonist of peroxisome proliferator-activated receptor gamma (PPAR{gamma}; EC50 = 5.2-9.3 {mu}M). Liver X receptor {alpha} (LXR{alpha}) is a target gene of PPAR{gamma} and may directly regulate ABCA1 expression. Western blot analysis showed that MPA induced LXR{alpha} protein expression in HepG2 cells. Addition of PPAR{gamma} antagonist GW9662 markedly inhibited MPA-induced ABCA1 and LXR{alpha} protein expression. These data suggest that MPA increased ABCA1 expression mainly through activation of PPAR{gamma}. Thus, the effects of MPA on upregulation of ABCA1 expression were due mainly to activation of the PPAR{gamma}-LXR{alpha}-ABCA1 signaling pathway. This is the first report that the antiatherosclerosis activity of MPA is due to this mechanism.« less

  15. Correlation between Interleukin-6 and Thrombin-Antithrombin III Complex Levels in Retinal Diseases.

    PubMed

    Ehrlich, Rita; Zahavi, Alon; Axer-Siegel, Ruth; Budnik, Ivan; Dreznik, Ayelet; Dahbash, Mor; Nisgav, Yael; Megiddo, Elinor; Kenet, Gili; Weinberger, Dov; Livnat, Tami

    2017-09-01

    This study aims to evaluate and correlate the levels of interleukin-6 (IL-6) and thrombin-antithrombin III complex (TAT) in the vitreous of patients with different vitreoretinal pathologies. Vitreous samples were collected from 78 patients scheduled for pars plana vitrectomy at a tertiary medical center. Patients were divided by the underlying vitreoretinal pathophysiology, as follows: macular hole (MH)/epiretinal membrane (ERM) (n = 26); rhegmatogenous retinal detachment (RRD) (n = 32); and proliferative diabetic retinopathy (PDR) (n = 20). Levels of IL-6 and TAT were measured by enzyme-linked immunosorbent assay and compared among the groups. A significant difference was found in the vitreal IL-6 and TAT levels between the MH/ERM group and both the PDR and RRD groups (P < 0.001 for all). Diabetes was associated with higher IL-6 levels in the RRD group. Different relationships between the IL-6 and TAT levels were revealed in patients with different ocular pathologies. Our results imply that variations in vitreal TAT level may be attributable not only to an inflammatory reaction or blood-retinal barrier breakdown, but also to intraocular tissue-dependent regulation of thrombin.

  16. Positron Annihilation Induced Auger and Gamma Spectroscopy of Catalytically Important Surfaces

    NASA Astrophysics Data System (ADS)

    Weiss, A. H.; Nadesalingam, M. P.; Sundaramoorthy, R.; Mukherjee, S.; Fazleev, N. G.

    2006-10-01

    The annihilation of positrons with core electrons results in unique signatures in the spectra of Auger-electron and annihilation-gamma rays that can be used to make clear chemical identification of atoms at the surface. Because positrons implanted at low energies are trapped with high efficiency in the image-correlation well where they are localized just outside the surface it is possible to use annihilation induced Auger and Gamma signals to probe the surfaces of solids with single atomic layer depth resolution. In this talk we will report recent applications of Positron Annihilation Induced Auger Electron Spectroscopy (PAES) and Auger-Gamma Coincidence Spectroscopy (AGCS) to the study of surface structure and surface chemistry. Our research has demonstrated that PAES spectra can provide new information regarding the composition of the top-most atomic layer. Applications of PAES to the study of catalytically important surfaces of oxides and wide band-gap semiconductors including TiO2, SiO2,Cu2O, and SiC will be presented. We conclude with a discussion of the use of Auger-Gamma and Gamma-Gamma coincidence spectroscopy for the study of surfaces at pressures closer to those found in practical chemical reactors. Research supported by the Welch Foundation Grant Number Y-1100.

  17. Protein kinase C and P2Y12 take center stage in thrombin-mediated activation of mammalian target of rapamycin complex 1 in human platelets.

    PubMed

    Moore, S F; Hunter, R W; Hers, I

    2014-05-01

    Rapamycin, an inhibitor of mammalian target of rapamycin complex-1 (mTORC1), reduces platelet spreading, thrombus stability, and clot retraction. Despite an important role of mTORC1 in platelet function, little is known about how it is regulated. The objective of this study was to determine the signaling pathways that regulate mTORC1 in human platelets. Mammalian target of rapamycin complex-1 activation was assessed by measuring the phosphorylation of its downstream substrate ribosomal S6 kinase 1 (p70S6K). Thrombin or the protein kinase C (PKC) activator phorbal 12-myristate 13-acetate stimulated activation of mTORC1 in a PKC-dependent, Akt-independent manner that correlated with phosphorylation of tuberin/tuberous sclerosis 2 (TSC2) (Ser939 and Thr1462). In contrast, insulin-like growth factor 1 (IGF-1)-stimulated TSC2 phosphorylation was completely dependent on phosphoinositide 3 kinase (PI3 kinase)/Akt but did not result in any detectable mTORC1 activation. Early (Ser939 and Thr1462) and late (Thr1462) TSC2 phosphorylation in response to thrombin were directly PKC dependent, whereas later TSC2 (Ser939) and p70S6K phosphorylation were largely dependent on paracrine signaling through P2Y(12). PKC-mediated adenosine diphosphate (ADP) secretion was essential for thrombin-stimulated mTORC1 activation, as (i) ADP rescued p70S6K phosphorylation in the presence of a PKC inhibitor and (ii) P2Y(12) antagonism prevented thrombin-mediated mTORC1 activation. Rescue of mTORC1 activation with exogenous ADP was completely dependent on the Src family kinases but independent of PI3 kinase/Akt. Interestingly, although inhibition of Src blocked the ADP rescue, it had little effect on thrombin-stimulated p70S6K phosphorylation under conditions where PKC was not inhibited. These results demonstrate that thrombin activates the mTORC1 pathway in human platelets through PKC-mediated ADP secretion and subsequent activation of P2Y(12), in a manner largely independent of the canonical PI3

  18. Protein kinase C and P2Y12 take center stage in thrombin-mediated activation of mammalian target of rapamycin complex 1 in human platelets

    PubMed Central

    Moore, S F; Hunter, R W; Hers, I

    2014-01-01

    Background Rapamycin, an inhibitor of mammalian target of rapamycin complex-1 (mTORC1), reduces platelet spreading, thrombus stability, and clot retraction. Despite an important role of mTORC1 in platelet function, little is known about how it is regulated. The objective of this study was to determine the signaling pathways that regulate mTORC1 in human platelets. Methods Mammalian target of rapamycin complex-1 activation was assessed by measuring the phosphorylation of its downstream substrate ribosomal S6 kinase 1 (p70S6K). Results Thrombin or the protein kinase C (PKC) activator phorbal 12-myristate 13-acetate stimulated activation of mTORC1 in a PKC-dependent, Akt-independent manner that correlated with phosphorylation of tuberin/tuberous sclerosis 2 (TSC2) (Ser939 and Thr1462). In contrast, insulin-like growth factor 1 (IGF-1)–stimulated TSC2 phosphorylation was completely dependent on phosphoinositide 3 kinase (PI3 kinase)/Akt but did not result in any detectable mTORC1 activation. Early (Ser939 and Thr1462) and late (Thr1462) TSC2 phosphorylation in response to thrombin were directly PKC dependent, whereas later TSC2 (Ser939) and p70S6K phosphorylation were largely dependent on paracrine signaling through P2Y12. PKC-mediated adenosine diphosphate (ADP) secretion was essential for thrombin-stimulated mTORC1 activation, as (i) ADP rescued p70S6K phosphorylation in the presence of a PKC inhibitor and (ii) P2Y12 antagonism prevented thrombin-mediated mTORC1 activation. Rescue of mTORC1 activation with exogenous ADP was completely dependent on the Src family kinases but independent of PI3 kinase/Akt. Interestingly, although inhibition of Src blocked the ADP rescue, it had little effect on thrombin-stimulated p70S6K phosphorylation under conditions where PKC was not inhibited. Conclusion These results demonstrate that thrombin activates the mTORC1 pathway in human platelets through PKC-mediated ADP secretion and subsequent activation of P2Y12, in a manner

  19. SNF4Agamma, the Drosophila AMPK gamma subunit is required for regulation of developmental and stress-induced autophagy.

    PubMed

    Lippai, Mónika; Csikós, György; Maróy, Péter; Lukácsovich, Tamás; Juhász, Gábor; Sass, Miklós

    2008-05-01

    In holometabolous insects including Drosophila melanogaster a wave of autophagy triggered by 20-hydroxyecdysone is observed in the larval tissues during the third larval stage of metamorphosis. We used this model system to study the genetic regulation of autophagy. We performed a genetic screen to select P-element insertions that affect autophagy in the larval fat body. Light and electron microscopy of one of the isolated mutants (l(3)S005042) revealed the absence of autophagic vesicles in their fat body cells during the third larval stage. We show that formation of autophagic vesicles cannot be induced by 20-hydroxyecdysone in the tissues of mutant flies and represent evidence demonstrating that the failure to form autophagic vesicles is due to the insertion of a P-element into the gene coding SNF4Agamma, the Drosophila homologue of the AMPK (AMP-activated protein kinase) gamma subunit. The ability to form autophagic vesicles (wild-type phenotype) can be restored by remobilization of the P-element in the mutant. Silencing of SNF4Agamma by RNAi suppresses autophagic vesicle formation in wild-type flies. We raised an antibody against SNF4Agamma and showed that this gene product is constitutively present in the wild-type larval tissues during postembryonal development. SNF4Agamma is nearly absent from the cells of homozygous mutants. SNF4Agamma translocates into the nuclei of fat body cells at the onset of the wandering stage concurrently with the beginning of the autophagic process. Our results demonstrate that SNF4Agamma has an essential role in the regulation of autophagy in Drosophila larval fat body cells.

  20. Modification of tissue-factor mRNA and protein response to thrombin and interleukin 1 by high glucose in cultured human endothelial cells.

    PubMed

    Boeri, D; Almus, F E; Maiello, M; Cagliero, E; Rao, L V; Lorenzi, M

    1989-02-01

    Because diabetic vascular disease is accompanied by a state of hypercoagulability, manifested by increased thrombin activity and foci of intravascular coagulation, we investigated whether a specific procoagulant property of the endothelium--production and surface expression of tissue factor--is modified by elevated glucose concentrations. In unperturbed human vascular endothelial cells, tissue factor mRNA and expression of the functional protein were undetectable and were not induced by 10-12 days of exposure to 30 mM glucose. In thrombin-stimulated cultures, tissue-factor expression was related inversely to cellular density, with confluent cultures producing (per 10(5) cells) half the amount of tissue factor measured in sparse cultures. Cells exposed to high glucose and studied when cell number and thymidine incorporation were identical to control cells manifested increased tissue-factor mRNA level and functional protein production in response to thrombin (P = .002). This effect was not attributable to hypertonicity and was not observed after short exposure to high glucose. In contrast, the tissue-factor response to interleukin 1, a modulator of endothelial function in the context of host defense, was decreased in cells cultured in high glucose (P = .04). These findings indicate that exposure to high glucose can alter tissue-factor gene expression in perturbed vascular endothelium. The reciprocal effects of high glucose on the tissue-factor response to thrombin and interleukin 1 points to different pathways of tissue-factor stimulation by the two agents and suggests functional consequences pertinent to the increased thrombin activity and compromised host-defense mechanisms observed in diabetes.

  1. Rigidification of the autolysis loop enhances Na[superscript +] binding to thrombin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pozzi, Nicola; Chen, Raymond; Chen, Zhiwei

    2011-09-20

    Binding of Na{sup +} to thrombin ensures high activity toward physiological substrates and optimizes the procoagulant and prothrombotic roles of the enzyme in vivo. Under physiological conditions of pH and temperature, the binding affinity of Na{sup +} is weak due to large heat capacity and enthalpy changes associated with binding, and the K{sub d} = 80 mM ensures only 64% saturation of the site at the concentration of Na{sup +} in the blood (140 mM). Residues controlling Na{sup +} binding and activation have been identified. Yet, attempts to improve the interaction of Na{sup +} with thrombin and possibly increase catalyticmore » activity under physiological conditions have so far been unsuccessful. Here we report how replacement of the flexible autolysis loop of human thrombin with the homologous rigid domain of the murine enzyme results in a drastic (up to 10-fold) increase in Na{sup +} affinity and a significant improvement in the catalytic activity of the enzyme. Rigidification of the autolysis loop abolishes the heat capacity change associated with Na{sup +} binding observed in the wild-type and also increases the stability of thrombin. These findings have general relevance to protein engineering studies of clotting proteases and trypsin-like enzymes.« less

  2. [Chlorophyll mutations induced by gamma radiation in Phaseolus vulgaris L].

    PubMed

    Meoño, M E

    1975-07-01

    In a study of chlorophyll mutants of Phaseolus vulgaris L. through Co60 gamma radiation, five types of mutants, classified as albino, cream, yellow, yellow-green and light green were obtained; all were lethal; their segregation was always proportionally lower than the Mendelian. Gamma radiation-induced mutations in black beans do not depart significantly from those obtained elsewhere in barley and wheat.

  3. Design and characterization of hirulogs: A novel class of bivalent peptide inhibitors of thrombin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maraganore, J.M.; Bourdon, P.; Jablonski, J.

    1990-07-31

    A novel class of synthetic peptides has been designed that inhibit the thrombin catalytic site and exhibit specificity for the anion-binding exosite (ABE) of {alpha}-thrombin. These peptides, called hirulogs, consist of (i) an active-site specificity sequence with a restricted Arg-Pro scissile bond, (ii) a polymeric linker of glycyl residues from 6 to 18 {angstrom} in length, and (iii) an ABE recognition sequence such as that in the hirudin C-terminus. Hirulog-1 ((D-Phe)-Pro-Arg-Pro-(Gly){sub 4}-Asn-Gly-Asp-Phe-Glu-Glu-Ile-Pro-Glu-Tyr-Leu) inhibits the thrombin-catalyzed hydrolysis of a tripeptide p-nitroanilide substrate with K{sub i} = 2.3 nM. In contrast, the synthetic C-terminal hirudin peptide S-Hir{sub 53-64}, which binds to themore » thrombin ABE, blocked the fibrinogen clotting activity of the enzyme with K{sub i} = 144 nM but failed to inhibit the hydrolysis of p-nitroanilide substrates at concentrations as high as 1 mM. Hirulog-1, but not S-Hir{sub 53-64}, was found to inhibit the incorporation of ({sup 14}C)diisopropyl fluorophosphate in thrombin. Hirulog-1 appears specific for thrombin as it lacks inhibitory activities toward human factor Xa, human plasmin, and bovine trypsin at inhibitor:enzyme concentrations 3 orders of magnitude higher than those required to inhibit thrombin. The optimal inhibitory activity of hirulog-1 depends upon all three components of its structure. Comparison of anticoagulant activities of hirulog-1, hirudin, and S-Hir{sub 53-64} showed that the synthetic hirulog-1 is 2-fold more potent than hirudin and 100-fold more active than S-Hir{sub 53-64} in increasing the activated partial thromboplastin time of normal human plasma.« less

  4. Inhibition of thrombin action ameliorates insulin resistance in type 2 diabetic db/db mice.

    PubMed

    Mihara, Masatomo; Aihara, Ken-ichi; Ikeda, Yasumasa; Yoshida, Sumiko; Kinouchi, Mizuho; Kurahashi, Kiyoe; Fujinaka, Yuichi; Akaike, Masashi; Matsumoto, Toshio

    2010-02-01

    The binding of thrombin to its receptor stimulates inflammatory cytokines including IL-6 and monocyte chemoattractant protein-1 (MCP-1); both are associated with the development of insulin resistance. Because increased adiposity enhanced the expression of coagulation factor VII that stimulates the coagulation pathway in adipose tissue, we tested whether the inhibition of thrombin action ameliorates insulin resistance in obese diabetic (Lpr(-/-):db/db) mice. The 4-wk administration of argatroban, a selective thrombin inhibitor, reduced fasting plasma glucose and ameliorated insulin resistance in these mice. It also reduced adipocyte size and macrophage infiltration into adipose tissue. The aberrant gene expression of MCP-1, IL-6, adiponectin, and factor VII and suppressed insulin receptor substrate-1-Akt signaling in adipose tissue of db/db mice were reversed by argatroban treatment. These results demonstrate that increased adiposity enhances the production of thrombin in adipose tissue by stimulating factor VII expression and suggest that increased thrombin activity in adipose tissue plays an important role in the development of insulin resistance via enhancing MCP-1 production, leading to macrophage infiltration and insulin receptor substrate-1-Akt pathway inactivation.

  5. Reversible thrombin detection by aptamer functionalized STING sensors

    PubMed Central

    Actis, Paolo; Rogers, Adam; Nivala, Jeff; Vilozny, Boaz; Seger, R. Adam; Jejelowo, Olufisayo; Pourmand, Nader

    2011-01-01

    Signal Transduction by Ion NanoGating (STING) is a label-free technology based on functionalized quartz nanopipettes. The nanopipette pore can be decorated with a variety of recognition elements and the molecular interaction is transduced via a simple electrochemical system. A STING sensor can be easily and reproducibly fabricated and tailored at the bench starting from inexpensive quartz capillaries. The analytical application of this new biosensing platform, however, was limited due to the difficult correlation between the measured ionic current and the analyte concentration in solution. Here we show that STING sensors functionalized with aptamers allow the quantitative detection of thrombin. The binding of thrombin generates a signal that can be directly correlated to its concentration in the bulk solution. PMID:21636261

  6. Risk of bleeding in surgical patients treated with topical bovine thrombin sealants: a review of the literature

    PubMed Central

    Reynolds, Matthew W; Clark, John; Crean, Sheila; Samudrala, Srinath

    2008-01-01

    Background One of the most anticipated, but potentially serious complications during or after surgery are bleeding events. Among the many potential factors associated with bleeding complications in surgery, the use of bovine thrombin has been anecdotally identified as a possible cause of increased bleeding risk. Most of these reports of bleeding events in association with the use of topical bovine thrombin have been limited to case reports lacking clear cause and effect relationship determination. Recent studies have failed to establish significant differences in the rates of bleeding events between those treated with bovine thrombin and those treated with either human or recombinant thrombin. Methods We conducted a search of MEDLINE for the most recent past 10 years (1997–2007) and identified all published studies that reported a study of surgical patients with a clear objective to examine the risk of bleeding events in surgical patients. We also specifically noted the reporting of any topical bovine thrombin used during surgical procedures. We aimed to examine whether there were any differences in the risk of bleeds in general surgical populations as compared to those studies that reported exposure to topical bovine thrombin. Results We identified 21 clinical studies that addressed the risk of bleeding in surgery. Of these, 5 studies analyzed the use of bovine thrombin sealants in surgical patients. There were no standardized definitions for bleeding events employed across these studies. The rates of bleeds in the general surgery studies ranged from 0.1%–20.2%, with most studies reporting rates between 2.6%–4%. The rates of bleeding events ranged from 0.0%–13% in the bovine thrombin studies with most studies reporting between a 2%–3% rate. Conclusion The risk of bleeds was not clearly different in those studies reporting use of bovine thrombin in all patients compared to the other surgical populations studied. A well-designed and well-controlled study

  7. Enhanced electrochemiluminescence quenching of CdS:Mn nanocrystals by CdTe QDs-doped silica nanoparticles for ultrasensitive detection of thrombin.

    PubMed

    Shan, Yun; Xu, Jing-Juan; Chen, Hong-Yuan

    2011-07-01

    This work reports an aptasensor for ultrasensitive detection of thrombin based on remarkably efficient energy-transfer induced electrochemiluminescence (ECL) quenching from CdS:Mn nanocrystals (NCs) film to CdTe QDs-doped silica nanoparticles (CdTe/SiO(2) NPs). CdTe/SiO(2) NPs were synthesized via the Stöber method and showed black bodies' strong absorption in a wide spectral range without excitonic emission, which made them excellent ECL quenchers. Within the effective distance of energy scavenging, the ECL quenching efficiency was dependent on the number of CdTe QDs doped into the silica NPs. Using ca. 200 CdTe QDs doped silica NPs on average of 40 nm in diameter as ECL quenching labels, attomolar detection of thrombin was successfully realized. The protein detection involves a competition binding event, based on thrombin replacing CdTe/SiO(2) NPs labeled probing DNA which is hybridized with capturing aptamer immobilized on a CdS:Mn NCs film modified glassy carbon electrode surface by specific aptamer-protein affinity interactions. It results in the displacement of ECL quenching labels from CdS:Mn NCs film and concomitant ECL signal recovery. Owing to the high-content CdTe QDs in silica NP, the increment of ECL intensity (ΔI(ECL)) and the concentration of thrombin showed a double logarithmic linear correlation in the range of 5.0 aM∼5.0 fM with a detection limit of 1aM. And, the aptasensor hardly responded to antibody, bovine serum albumin (BSA), haemoglobin (Hb) and lysozyme, showing good detection selectivity for thrombin. This long-distance energy scavenging could have a promising application perspective in the detection of biological recognition events on a molecular level.

  8. Nuclear receptor ERR alpha and coactivator PGC-1 beta are effectors of IFN-gamma-induced host defense.

    PubMed

    Sonoda, Junichiro; Laganière, Josée; Mehl, Isaac R; Barish, Grant D; Chong, Ling-Wa; Li, Xiangli; Scheffler, Immo E; Mock, Dennis C; Bataille, Alain R; Robert, Francois; Lee, Chih-Hao; Giguère, Vincent; Evans, Ronald M

    2007-08-01

    Macrophage activation by the proinflammatory cytokine interferon-gamma (IFN-gamma) is a critical component of the host innate response to bacterial pathogenesis. However, the precise nature of the IFN-gamma-induced activation pathway is not known. Here we show using genome-wide expression and chromatin-binding profiling that IFN-gamma induces the expression of many nuclear genes encoding mitochondrial respiratory chain machinery via activation of the nuclear receptor ERR alpha (estrogen-related receptor alpha, NR3B1). Studies with macrophages lacking ERR alpha demonstrate that it is required for induction of mitochondrial reactive oxygen species (ROS) production and efficient clearance of Listeria monocytogenes (LM) in response to IFN-gamma. As a result, mice lacking ERR alpha are susceptible to LM infection, a phenotype that is localized to bone marrow-derived cells. Furthermore, we found that IFN-gamma-induced activation of ERR alpha depends on coactivator PGC-1 beta (peroxisome proliferator-activated receptor gamma coactivator-1 beta), which appears to be a direct target for the IFN-gamma/STAT-1 signaling cascade. Thus, ERR alpha and PGC-1 beta act together as a key effector of IFN-gamma-induced mitochondrial ROS production and host defense.

  9. Correcting thrombin generation ex vivo using different haemostatic agents following cardiac surgery requiring the use of cardiopulmonary bypass.

    PubMed

    Percy, Charles L; Hartmann, Rudolf; Jones, Rhidian M; Balachandran, Subramaniam; Mehta, Dheeraj; Dockal, Michael; Scheiflinger, Friedrich; O'Donnell, Valerie B; Hall, Judith E; Collins, Peter W

    2015-06-01

    Recently, lower thrombin generation has been associated with excess bleeding post-cardiopulmonary bypass (CPB). Therefore, treatment to correct thrombin generation is a potentially important aspect of management of bleeding in this group of patients. The objective of the present study was to investigate the effects of fresh frozen plasma (FFP), recombinant factor VIIa (rFVIIa), prothrombin complex concentrate (PCC) and tissue factor pathway inhibitor (TFPI) inhibition on thrombin generation when added ex vivo to the plasma of patients who had undergone cardiac surgery requiring CPB. Patients undergoing elective cardiac surgery were recruited. Blood samples were collected before administration of heparin and 30 min after its reversal. Thrombin generation was measured in the presence and absence of different concentrations of FFP, rFVIIa, PCC and an anti-TFPI antibody. A total of 102 patients were recruited. Thrombin generation following CPB was lower compared with pre-CPB (median endogenous thrombin potential pre-CPB 339 nmol/l per min, post-CPB 155 nmol/l per min, P < 0.0001; median peak thrombin pre-CPB 35 nmol/l, post-CPB 11 nmol/l, P < 0.0001). Coagulation factors and anticoagulants decreased, apart from total TFPI, which increased (55-111 ng/ml, P < 0.0001), and VWF (144-170 IU/dl, P < 0.0001). Thrombin generation was corrected to pre-CPB levels by the equivalent of 15 ml/kg FFP, 45 μg/kg rFVIIa and 25 U/kg of PCC. Inhibition of TFPI resulted in an enhancement of thrombin generation significantly beyond pre-CPB levels. This study shows that FFP, rFVIIa, PCC and inhibition of TFPI correct thrombin generation in the plasma of patients who have undergone surgery requiring CPB. Inhibition of TFPI may be a further potential therapeutic strategy for managing bleeding in this group of patients.

  10. Pathophysiologic roles of the fibrinogen gamma chain.

    PubMed

    Farrell, David H

    2004-05-01

    Fibrinogen binds through its gamma chains to cell surface receptors, growth factors, and coagulation factors to perform its key roles in fibrin clot formation, platelet aggregation, and wound healing. However, these binding interactions can also contribute to pathophysiologic processes, including inflammation and thrombosis. This review summarizes the latest findings on the role of the fibrinogen gamma chain in these processes, and illustrates the potential for therapeutic intervention. Novel gamma chain epitopes that bind platelet integrin alpha IIbbeta3 and leukocyte integrin alphaMbeta2 have been characterized, leading to the revision of former dogma regarding the processes of platelet aggregation, clot retraction, inflammation, and thrombosis. A series of studies has shown that the gamma chain serves as a depot for fibroblast growth factor-2 (FGF-2), which is likely to play an important role in wound healing. Inhibition of gamma chain function with the monoclonal antibody 7E9 has been shown to interfere with multiple fibrinogen activities, including factor XIIIa crosslinking, platelet adhesion, and platelet-mediated clot retraction. The role of the enigmatic variant fibrinogen gamma chain has also become clearer. Studies have shown that gamma chain binding to thrombin and factor XIII results in clots that are mechanically stiffer and resistant to fibrinolysis, which may explain the association between gammaA/gamma' fibrinogen levels and cardiovascular disease. The identification of new interactions with gamma chains has revealed novel targets for the treatment of inflammation and thrombosis. In addition, several exciting studies have shown new functions for the variant gamma chain that may contribute to cardiovascular disease.

  11. Metabolic plasticity in resting and thrombin activated platelets.

    PubMed

    Ravi, Saranya; Chacko, Balu; Sawada, Hirotaka; Kramer, Philip A; Johnson, Michelle S; Benavides, Gloria A; O'Donnell, Valerie; Marques, Marisa B; Darley-Usmar, Victor M

    2015-01-01

    Platelet thrombus formation includes several integrated processes involving aggregation, secretion of granules, release of arachidonic acid and clot retraction, but it is not clear which metabolic fuels are required to support these events. We hypothesized that there is flexibility in the fuels that can be utilized to serve the energetic and metabolic needs for resting and thrombin-dependent platelet aggregation. Using platelets from healthy human donors, we found that there was a rapid thrombin-dependent increase in oxidative phosphorylation which required both glutamine and fatty acids but not glucose. Inhibition of fatty acid oxidation or glutamine utilization could be compensated for by increased glycolytic flux. No evidence for significant mitochondrial dysfunction was found, and ATP/ADP ratios were maintained following the addition of thrombin, indicating the presence of functional and active mitochondrial oxidative phosphorylation during the early stages of aggregation. Interestingly, inhibition of fatty acid oxidation and glutaminolysis alone or in combination is not sufficient to prevent platelet aggregation, due to compensation from glycolysis, whereas inhibitors of glycolysis inhibited aggregation approximately 50%. The combined effects of inhibitors of glycolysis and oxidative phosphorylation were synergistic in the inhibition of platelet aggregation. In summary, both glycolysis and oxidative phosphorylation contribute to platelet metabolism in the resting and activated state, with fatty acid oxidation and to a smaller extent glutaminolysis contributing to the increased energy demand.

  12. Selective recognition of parallel and anti-parallel thrombin-binding aptamer G-quadruplexes by different fluorescent dyes

    PubMed Central

    Zhao, Dan; Dong, Xiongwei; Jiang, Nan; Zhang, Dan; Liu, Changlin

    2014-01-01

    G-quadruplexes (G4) have been found increasing potential in applications, such as molecular therapeutics, diagnostics and sensing. Both Thioflavin T (ThT) and N-Methyl mesoporphyrin IX (NMM) become fluorescent in the presence of most G4, but thrombin-binding aptamer (TBA) has been reported as the only exception of the known G4-forming oligonucleotides when ThT is used as a high-throughput assay to identify G4 formation. Here, we investigate the interactions between ThT/NMM and TBA through fluorescence spectroscopy, circular dichroism and molecular docking simulation experiments in the absence or presence of cations. The results display that a large ThT fluorescence enhancement can be observed only when ThT bind to the parallel TBA quadruplex, which is induced to form by ThT in the absence of cations. On the other hand, great promotion in NMM fluorescence can be obtained only in the presence of anti-parallel TBA quadruplex, which is induced to fold by K+ or thrombin. The highly selective recognition of TBA quadruplex with different topologies by the two probes may be useful to investigate the interactions between conformation-specific G4 and the associated proteins, and could also be applied in label-free fluorescent sensing of other biomolecules. PMID:25245945

  13. The PPAR{gamma} coding region and its role in visceral obesity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boon Yin, Khoo; Institute for Research in Molecular Medicine; Najimudin, Nazalan

    Peroxisome proliferator-activated receptor gamma (PPAR{gamma}) is a ligand activated transcription factor, plays many essential roles of biological function in higher organisms. The PPAR{gamma} is mainly expressed in adipose tissue. It regulates the transcriptional activity of genes by binding with other transcription factor. The PPAR{gamma} coding region has been found to be closest to that of monkey in ours and other research groups. Thus, monkey is a more suitable animal model for future PPAR{gamma} studying, although mice and rat are frequently being used. The PPAR{gamma} is involved in regulating alterations of adipose tissue masses result from changes in mature adipocyte sizemore » and/or number through a complex interplay process called adipogenesis. However, the role of PPAR{gamma} in negatively regulating the process of adipogenesis remains unclear. This review may help we investigate the differential expression of key transcription factor in adipose tissue in response to visceral obesity-induced diet in vivo. The study may also provide valuable information to define a more appropriate physiological condition in adipogenesis which may help to prevent diseases cause by negative regulation of the transcription factors in adipose tissue.« less

  14. Thrombin generation correlates with disease duration in multiple sclerosis (MS): Novel insights into the MS-associated prothrombotic state.

    PubMed

    Parsons, Martin Em; O'Connell, Karen; Allen, Seamus; Egan, Karl; Szklanna, Paulina B; McGuigan, Christopher; Ní Áinle, Fionnuala; Maguire, Patricia B

    2017-01-01

    Thrombin is well recognised for its role in the coagulation cascade but it also plays a role in inflammation, with enhanced thrombin generation observed in several inflammatory disorders. Although patients with multiple sclerosis (MS) have a higher incidence of thrombotic disease, thrombin generation has not been studied to date. The aim of this study was to characterise calibrated automated thrombography parameters in patients with relapsing-remitting MS (RRMS) and primary progressive MS (PPMS) in comparison to healthy controls (HCs). Calibrated automated thrombography was performed on platelet poor plasma from 15 patients with RRMS, 15 with PPMS and 19 HCs. We found that patients with RRMS generate thrombin at a significantly faster rate than the less inflammatory subtype, PPMS or HCs. In addition, the speed of thrombin generation was significantly correlated with time from clinical diagnosis in both subtypes. However, in RRMS the rate of thrombin generation was increased with increased time from clinical diagnosis, while in PPMS the rate of thrombin generation decreased with increased time from clinical diagnosis. These data likely reflect the differential active proinflammatory states in each MS subtype and provide novel mechanistic insights into the clinically relevant prothrombotic state observed in these patients.

  15. Comparison of sea turtle thrombocyte aggregation to human platelet aggregation in whole blood.

    PubMed

    Soslau, Gerald; Prest, Phillip J; Class, Reiner; George, Robert; Paladino, Frank; Violetta, Gary

    2005-11-01

    The endangered sea turtles are living "fossils" that afford us an opportunity to study the hemostatic process as it likely existed millions of years ago. There are essentially no data about turtle thrombocyte aggregation prior to our studies. Thrombocytes are nucleated cells that serve the same hemostatic functions as the anucleated mammalian platelet. Sea turtle thrombocytes aggregate in response to collagen and beta-thrombin. Ristocetin induces an agglutination/aggregation response indicating the presence of a von Willebrand-like receptor, GPIb, found in all mammalian platelets. Samples treated with alpha-thrombin plus gamma-thrombin followed by ristocetin results in a rapid, stronger response than ristocetin alone. These responses are inhibited by the RGDS peptide that blocks fibrinogen cross-linking of mammalian platelets via the fibrinogen receptor, GPIIb/IIIa. Three platelet-like proteins, GPIb, GPIIb/IIIa and P-selection are detected in sea turtle thrombocytes by fluorescence activated cell sorting. Turtle thrombocytes do not respond to ADP, epinephrine, serotonin, thromboxane A2 mimetic, U46619, trypsin, or alpha-thrombin and gamma-thrombin added alone. Comparison of hemostasis in sea turtles to other vertebrates could provide a framework for understanding the structure/function and evolution of these pathways and their individual components.

  16. 15-Deoxy-{delta}{sup 12,14}-prostaglandin J{sub 2} down-regulates CXCR4 on carcinoma cells through PPAR{gamma}- and NF{kappa}B-mediated pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richard, Cynthia Lee; Lowthers, Erica Lauren; Blay, Jonathan

    2007-10-01

    The chemokine receptor CXCR4 plays a key role in the metastasis of colorectal cancer and its growth at metastatic sites. Here, we have investigated the mechanisms by which CXCR4 on cancer cells might be regulated by eicosanoids present within the colorectal tumor microenvironment. We show that prostaglandins PGE{sub 2}, PGA{sub 2}, PGD{sub 2}, PGJ{sub 2} and 15dPGJ{sub 2} each down-regulates CXCR4 receptor expression on human colorectal carcinoma cells to differing degrees. The most potent of these were PGD{sub 2} and its metabolites PGJ{sub 2} and 15dPGJ{sub 2}. Down-regulation was most rapid with the end-product 15dPGJ{sub 2} and was accompanied bymore » a marked reduction in CXCR4 mRNA. 15dPGJ{sub 2} is known to be a ligand for the nuclear receptor PPAR{gamma}. Down-regulation of CXCR4 was also observed with the PPAR{gamma} agonist rosiglitazone, while 15dPGJ{sub 2}-induced CXCR4 down-regulation was substantially diminished by the PPAR{gamma} antagonists GW9662 and T0070907. These data support the involvement of PPAR{gamma}. However, the 15dPGJ{sub 2} analogue CAY10410, which can act on PPAR{gamma} but which lacks the intrinsic cyclopentenone structure found in 15dPGJ{sub 2}, down-regulated CXCR4 substantially less potently than 15dPGJ{sub 2}. The cyclopentenone grouping is known to inhibit the activity of NF{kappa}B. Consistent with an additional role for NF{kappa}B, we found that the cyclopentenone prostaglandin PGA{sub 2} and cyclopentenone itself could also down-regulate CXCR4. Immunolocalization studies showed that the cellular context was sufficient to trigger a focal nuclear pattern of NF{kappa}B p50 and that 15dPGJ{sub 2} interfered with this p50 nuclear localization. These data suggest that 15dPGJ{sub 2} can down-regulate CXCR4 on cancer cells through both PPAR{gamma} and NF{kappa}B. 15dPGJ{sub 2}, present within the tumor microenvironment, may act to down-regulate CXCR4 and impact upon the overall process of tumor expansion.« less

  17. Enzyme-guided plasmonic biosensor based on dual-functional nanohybrid for sensitive detection of thrombin.

    PubMed

    Yan, Jing; Wang, Lida; Tang, Longhua; Lin, Lei; Liu, Yang; Li, Jinghong

    2015-08-15

    Rapid and sensitive methodologies for the detection of protein are in urgent requirement for clinic diagnostics. Localized surface plasmon resonance (LSPR) of metal nanostructures has the potential to circumvent this problem due to its sensitive optical properties and strong electromagnetic near-field enhancements. In this work, an enzyme mediated plasmonic biosensor on the basis of a dual-functional nanohybrid was developed for the detection of thrombin. By utilizing LSPR-responsive nanohybrid and anaptamer-enzyme conjugated reporting probe, the sensing platform brings enhanced signal, stability as well as simplicity. Enzymatic reaction catalyzed the reduction of Au(3+) to Au° in situ, further leading to the rapid crystal growth of gold nanoparticles (AuNPs). The LSPR absorbance band and color changed company with the nanoparticle generation, which can be real-time monitoring by UV-visible spectrophotometer and naked eye. Nanohybrid constructed by gold and magnetic nanoparticles acts as a dual functional plasmonic unit, which not only plays the role of signal production, but also endows the sensor with the function of magnetic separation. Simultaneously, the introduction of enzyme effectively regulates the programming crystal growth of AuNPs. In addition, enzyme also serves as signal amplifier owing to its high catalysis efficiency. The response of the plasmonic sensor varies linearly with the logarithmic thrombin concentration up to 10nM with a limit of detection of 200 pM. The as-proposed strategy shows good analytical performance for thrombin determination. This simple, disposable method is promising in developing universal platforms for protein monitoring, drug discovery and point-of-care diagnostics. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Thrombin products: economic impact of immune-mediated coagulopathies and practical formulary considerations.

    PubMed

    Voils, Stacy A

    2009-07-01

    Thrombin has demonstrated utility in aiding surgical hemostasis since its introduction more than 60 years ago. It is used across a wide variety of surgical procedures by virtually every specialty. Only recently have new equally effective and safe products entered the market, causing decision makers to evaluate formulary selection among products with otherwise modest differences. This evaluation includes identifying costs beyond those of acquisition and storage, as well as indirect factors such as monitoring or specialized distribution requirements. One factor to consider specifically in selection of topical thrombin products is the potential for patients to develop an immune-mediated coagulopathy (IMC) after exposure to bovine-derived thrombin. Costs due to adverse drug events fall into the category of indirect costs and, in some instances, can be substantial if bleeding due to IMC occurs.

  19. [Aerosolized recombinant interferon-gamma prevent antigen-induced eosinophil recruitment in guinea pig trachea].

    PubMed

    Gao, Y; Chenping; Lin, X P

    1997-10-01

    In order to determine whether interferon-gamma (IFN-gamma) inhibits eosinphil infiltration in the trachea of asthmatic guinea pigs induced by Rhizopus nigricans. We had administered aerosolized rIFN-gamma in the tracheas of 30 sensitized guinea pigs which had been divided into six groups, then teated animal inhaled rIFN-gamma of 5 x 10(4), 20 x 10(4), and 40 x 10(4) concentration, BDP and normal saline respectively at 24 h, 12 h, 2 h before being challenged. (1) Provocation positive rates decreased in 40 x 10(4) rIFN-gamma and BDP group compared with that in normal saline group and before intervention (P < 0.05), airway resistence decreased (P < 0.01). (2) The administration of aerosolized rIFN-gamma (40 x 10(4)) and BDP also decreased fungus-induced eosnophils but not other cells infiltration in the trachea. (3) In BALF, Eos count and ECP level were obviously lower than those in other groups. However, eosinophil numbers did not show significant change in the peripheral blood. Local administration of rIFN-gamma (40 x 10(4)) may reduce airway inflammation and intervene asthmatic attack by inhibition of Eos, ECP infiltration in airways.

  20. Reversible thrombin detection by aptamer functionalized STING sensors.

    PubMed

    Actis, Paolo; Rogers, Adam; Nivala, Jeff; Vilozny, Boaz; Seger, R Adam; Jejelowo, Olufisayo; Pourmand, Nader

    2011-07-15

    Signal Transduction by Ion NanoGating (STING) is a label-free technology based on functionalized quartz nanopipettes. The nanopipette pore can be decorated with a variety of recognition elements and the molecular interaction is transduced via a simple electrochemical system. A STING sensor can be easily and reproducibly fabricated and tailored at the bench starting from inexpensive quartz capillaries. The analytical application of this new biosensing platform, however, was limited due to the difficult correlation between the measured ionic current and the analyte concentration in solution. Here we show that STING sensors functionalized with aptamers allow the quantitative detection of thrombin. The binding of thrombin generates a signal that can be directly correlated to its concentration in the bulk solution. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Anticonvulsant properties of alpha, gamma, and alpha, gamma-substituted gamma-butyrolactones.

    PubMed

    Klunk, W E; Covey, D F; Ferrendelli, J A

    1982-09-01

    Derivatives of gamma-butyrolactone (GBL) substituted on the alpha- and/or gamma-positions were synthesized and tested for their effects on behavior in mice, on the electroencephalographs and blood pressure of paralyzed-ventilated guinea pigs, and on electrical activity of incubated hippocampal slices. Several compounds, including alpha-ethyl-alpha-methyl GBL (alpha-EMGBL), alpha, alpha-dimethyl GBL, alpha, gamma-diethyl-alpha, gamma-dimethyl GBL, and gamma-ethyl-gamma-methyl GBL, prevented seizures induced by pentylenetetrazol, beta-ethyl-beta-methyl-gamma-butyrolactone (beta-EMGBL), picrotoxin, or all three compounds in mice and guinea pigs but had no effect on seizures induced by maximal electroshock or bicuculline. Neither gamma-hydroxybutyrate (GHB) nor alpha-isopropylidine GBL had any anticonvulsant activity. The anticonvulsant alpha-substituted compounds had a potent hypotensive effect and antagonized the hypertensive effect of beta-EMGBL, alpha-EMGBL was tested in incubated hippocampal slices and was found to depress basal activity and antagonize excitation induced by beta-EMGBL. These results demonstrate that alpha-alkyl-substituted GBL and, to a lesser extent, gamma-substituted derivatives are anticonvulsant agents and that their effects are strikingly different from those of GHB or beta-alkyl-substituted GBLs, which are epileptogenic. Possibly beta- and alpha-substituted GBLs act at the same site as agonists and antagonists, respectively.

  2. Comparative gene expression profiles induced by PPAR{gamma} and PPAR{alpha}/{gamma} agonists in rat hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogue, Alexandra; Universite de Rennes 1, 35065 Rennes Cedex; Biologie Servier, 45520 Gidy

    2011-07-01

    Species-differential toxic effects have been described with PPAR{alpha} and PPAR{gamma} agonists between rodent and human liver. PPAR{alpha} agonists (fibrates) are potent hypocholesterolemic agents in humans while they induce peroxisome proliferation and tumors in rodent liver. By contrast, PPAR{gamma} agonists (glitazones) and even dual PPAR{alpha}/{gamma} agonists (glitazars) have caused idiosyncratic hepatic and nonhepatic toxicities in human without evidence of any damage in rodent during preclinical studies. The mechanisms involved in such differences remain largely unknown. Several studies have identified the major target genes of PPAR{alpha} agonists in rodent liver while no comprehensive analysis has been performed on gene expression changes inducedmore » by PPAR{gamma} and dual PPAR{alpha}/{gamma} agonists. Here, we investigated transcriptomes of rat hepatocytes after 24 h treatment with two PPAR{gamma} (troglitazone and rosiglitazone) and two PPAR{alpha}/{gamma} (muraglitazar and tesaglitazar) agonists. Although, hierarchical clustering revealed a gene expression profile characteristic of each PPAR agonist class, only a limited number of genes was specifically deregulated by glitazars. Functional analyses showed that many genes known as PPAR{alpha} targets were also modulated by both PPAR{gamma} and PPAR{alpha}/{gamma} agonists and quantitative differences in gene expression profiles were observed between these two classes. Moreover, most major genes modulated in rat hepatocytes were also found to be deregulated in rat liver after tesaglitazar treatment. Taken altogether, these results support the conclusion that differential toxic effects of PPAR{alpha} and PPAR{gamma} agonists in rodent liver do not result from transcriptional deregulation of major PPAR target genes but rather from qualitative and/or quantitative differential responses of a small subset of genes.« less

  3. A Linear Temporal Increase in Thrombin Activity and Loss of Its Receptor in Mouse Brain following Ischemic Stroke.

    PubMed

    Bushi, Doron; Stein, Efrat Shavit; Golderman, Valery; Feingold, Ekaterina; Gera, Orna; Chapman, Joab; Tanne, David

    2017-01-01

    Brain thrombin activity is increased following acute ischemic stroke and may play a pathogenic role through the protease-activated receptor 1 (PAR1). In order to better assess these factors, we obtained a novel detailed temporal and spatial profile of thrombin activity in a mouse model of permanent middle cerebral artery occlusion (pMCAo). Thrombin activity was measured by fluorescence spectroscopy on coronal slices taken from the ipsilateral and contralateral hemispheres 2, 5, and 24 h following pMCAo ( n  = 5, 6, 5 mice, respectively). Its spatial distribution was determined by punch samples taken from the ischemic core and penumbra and further confirmed using an enzyme histochemistry technique ( n  = 4). Levels of PAR1 were determined using western blot. Two hours following pMCAo, thrombin activity in the stroke core was already significantly higher than the contralateral area (11 ± 5 vs. 2 ± 1 mU/ml). At 5 and 24 h, thrombin activity continued to rise linearly ( r  = 0.998, p  = 0.001) and to expand in the ischemic hemisphere beyond the ischemic core reaching deleterious levels of 271 ± 117 and 123 ± 14 mU/ml (mean ± SEM) in the basal ganglia and ischemic cortex, respectively. The peak elevation of thrombin activity in the ischemic core that was confirmed by fluorescence histochemistry was in good correlation with the infarcts areas. PAR1 levels in the ischemic core decreased as stroke progressed and thrombin activity increased. In conclusion, there is a time- and space-related increase in brain thrombin activity in acute ischemic stroke that is closely related to the progression of brain damage. These results may be useful in the development of therapeutic strategies for ischemic stroke that involve the thrombin-PAR1 pathway in order to prevent secondary thrombin related brain damage.

  4. Thrombin-activatable fluorescent peptide incorporated gold nanoparticles for dual optical/computed tomography thrombus imaging.

    PubMed

    Kwon, Sung-Pil; Jeon, Sangmin; Lee, Sung-Hoon; Yoon, Hong Yeol; Ryu, Ju Hee; Choi, Dayil; Kim, Jeong-Yeon; Kim, Jiwon; Park, Jae Hyung; Kim, Dong-Eog; Kwon, Ick Chan; Kim, Kwangmeyung; Ahn, Cheol-Hee

    2018-01-01

    Thrombosis is an important pathophysiologic phenomenon in various cardiovascular diseases, which can lead to oxygen deprivation and infarction of tissues by generation of a thrombus. Thus, direct thrombus imaging can provide beneficial in diagnosis and therapy of thrombosis. Herein, we developed thrombin-activatable fluorescent peptide (TAP) incorporated silica-coated gold nanoparticles (TAP-SiO 2 @AuNPs) for direct imaging of thrombus by dual near-infrared fluorescence (NIRF) and micro-computed tomography (micro-CT) imaging, wherein TAP molecules were used as targeted thrombin-activatable peptide probes for thrombin-specific NIRF imaging. The freshly prepared TAP-SiO 2 @AuNPs had an average diameter of 39.8 ± 2.55 nm and they showed the quenched NIRF signal in aqueous condition, due to the excellent quenching effect of TAP molecules on the silica-gold nanoparticle surface. However, 30.31-fold higher NIRF intensity was rapidly recovered in the presence of thrombin in vitro, due to the thrombin-specific cleavage of quenched TAP molecules on the gold particle surface. Furthermore, TAP-SiO 2 @AuNPs were successfully accumulated in thrombus by their particle size-dependent capturing property, and they presented a potential X-ray absorption property in a dose-dependent manner. Finally, thrombotic lesion was clearly distinguished from peripheral tissues by dual NIRF/micro-CT imaging after intravenous injection of TAP-SiO 2 @AuNPs in the in situ thrombotic mouse model, simultaneously. This study showed that thrombin-activatable fluorescent peptide incorporated silica-coated gold nanoparticles can be potentially used as a dual imaging probe for direct thrombus imaging and therapy in clinical applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Contact system activation and high thrombin generation in hyperthyroidism.

    PubMed

    Kim, Namhee; Gu, Ja-Yoon; Yoo, Hyun Ju; Han, Se Eun; Kim, Young Il; Nam-Goong, Il Sung; Kim, Eun Sook; Kim, Hyun Kyung

    2017-05-01

    Hyperthyroidism is associated with increased thrombotic risk. As contact system activation through formation of neutrophil extracellular traps (NET) has emerged as an important trigger of thrombosis, we hypothesized that the contact system is activated along with active NET formation in hyperthyroidism and that their markers correlate with disease severity. In 61 patients with hyperthyroidism and 40 normal controls, the levels of coagulation factors (fibrinogen, and factor VII, VIII, IX, XI and XII), D-dimer, thrombin generation assay (TGA) markers, NET formation markers (histone-DNA complex, double-stranded DNA and neutrophil elastase) and contact system markers (activated factor XII (XIIa), high-molecular-weight kininogen (HMWK), prekallikrein and bradykinin) were measured. Patients with hyperthyroidism showed higher levels of fibrinogen (median (interquartile range), 315 (280-344) vs 262 (223-300), P  = 0.001), D-dimer (103.8 (64.8-151.5) vs 50.7 (37.4-76.0), P  < 0.001), peak thrombin (131.9 (102.2-159.4) vs 31.6 (14.8-83.7), P  < 0.001) and endogenous thrombin potential (649 (538-736) vs 367 (197-1147), P  = 0.021) in TGA with 1 pM tissue factor, neutrophil elastase (1.10 (0.39-2.18) vs 0.23 (0.20-0.35), P  < 0.001), factor XIIa (66.9 (52.8-87.0) vs 73.0 (57.1-86.6), P  < 0.001), HMWK (6.11 (4.95-7.98) vs 3.83 (2.60-5.68), P  < 0.001), prekallikrein (2.15 (1.00-6.36) vs 1.41 (0.63-2.22), P  = 0.026) and bradykinin (152.4 (137.6-180.4) vs 118.3 (97.1-137.9), P  < 0.001) than did normal controls. In age- and sex-adjusted logistic regression analysis, fibrinogen, factor VIII, IX and XIIa, D-dimer, peak thrombin, neutrophil elastase, HMWK and bradykinin showed significant odds ratios representing hyperthyroidism's contribution to coagulation and contact system activation. Free T4 was significantly correlated with factors VIII and IX, D-dimer, double-stranded DNA and bradykinin. This study demonstrated that contact system

  6. Imbalance in the pro-hepatocyte growth factor activation system in bleomycin-induced lung fibrosis in mice.

    PubMed

    Phin, Sophie; Marchand-Adam, Sylvain; Fabre, Aurélie; Marchal-Somme, Joëlle; Bantsimba-Malanda, Claudie; Kataoka, Hiroaki; Soler, Paul; Crestani, Bruno

    2010-03-01

    Hepatocyte growth factor (HGF) is a growth factor for alveolar epithelial cells. Activation of pro-HGF to HGF is regulated by the HGF activator (HGFA), a serine protease, and a specific inhibitor (HGFA inhibitor-1, HAI-1). An imbalance in the HGFA/HAI-1 system might contribute to lung fibrosis. Pro-HGF activation capacity from bronchoalveolar lavage (BAL) fluid was evaluated 3, 7, and 14 days after the intratracheal bleomycin injection (Bleo) in mice with or without thrombin. BAL fluid from naïve mice was used as control. HGFA and HAI-1 mRNA were evaluated by QPCR in the whole lung or by Western blot in BAL fluid. BAL fluid from control mice and Bleo mice activated pro-HGF in vitro at a similar degree. Thrombin accelerated proHGF activation by Bleo BAL on Day 3 and Day 7, but not on Day 14, or in control BAL. Incubation of pro-HGF with BAL from Bleo Day 3 and Day 7 mice increased phosphorylation of HGFR on A549 cells. Thrombin-induced pro-HGF activation was inhibited by an anti-HGFA antibody and accelerated by an anti-HAI-1 antibody. Active HGFA was not detected in control BAL and was strongly induced in Bleo BAL. HGFA concentrations were higher on Day 3 and Day 7 than on Day 14. HAI-1 was detected at low levels in control BAL and increased strongly by Day 3 with stable concentrations until Day 14. By demonstrating an imbalance between HGFA and HAI-1 expression in BAL fluid, our results highlight a defective thrombin-dependent proHGF activation system at the fibrotic phase of bleomycin-induced pulmonary fibrosis.

  7. Improved Stability of Proline-Derived Direct Thrombin Inhibitors through Hydroxyl to Heterocycle Replacement.

    PubMed

    Chobanian, Harry R; Pio, Barbara; Guo, Yan; Shen, Hong; Huffman, Mark A; Madeira, Maria; Salituro, Gino; Terebetski, Jenna L; Ormes, James; Jochnowitz, Nina; Hoos, Lizbeth; Zhou, Yuchen; Lewis, Dale; Hawes, Brian; Mitnaul, Lyndon; O'Neill, Kim; Ellsworth, Kenneth; Wang, Liangsu; Biftu, Tesfaye; Duffy, Joseph L

    2015-05-14

    Modification of the previously disclosed (S)-N-(2-(aminomethyl)-5-chlorobenzyl)-1-((R)-2-hydroxy-3,3-dimethylbutanoyl)pyrrolidine-2-carboxamide 2 by optimization of the P3 group afforded novel, low molecular weight thrombin inhibitors. Heterocycle replacement of the hydroxyl functional group helped maintain thrombin in vitro potency while improving the chemical stability and pharmacokinetic profile. These modifications led to the identification of compound 10, which showed excellent selectivity over related serine proteases as well as in vivo efficacy in the rat arteriovenous shunt. Compound 10 exhibited significantly improved chemical stability and pharmacokinetic properties over 2 and may be utilized as a structurally differentiated preclinical tool comparator to dabigatran etexilate (Pro-1) to interrogate the on- and off-target effects of oral direct thrombin inhibitors.

  8. Detection of Thrombin Based on Fluorescence Energy Transfer between Semiconducting Polymer Dots and BHQ-Labelled Aptamers.

    PubMed

    Liu, Yizhang; Jiang, Xuekai; Cao, Wenfeng; Sun, Junyong; Gao, Feng

    2018-02-14

    Carboxyl-functionalized semiconducting polymer dots (Pdots) were synthesized as an energy donor by the nanoprecipitation method. A black hole quenching dye (BHQ-labelled thrombin aptamers) was used as the energy acceptor, and fluorescence resonance energy transfer between the aptamers and Pdots was used for fluorescence quenching of the Pdots. The addition of thrombin restored the fluorescence intensity. Under the optimized experimental conditions, the fluorescence of the system was restored to the maximum when the concentration of thrombin reached 130 nM, with a linear range of 0-50 nM (R² = 0.990) and a detection limit of 0.33 nM. This sensor was less disturbed by impurities, showing good specificity and signal response to thrombin, with good application in actual samples. The detection of human serum showed good linearity in the range of 0-30 nM (R² = 0.997), with a detection limit of 0.56 nM and a recovery rate of 96.2-104.1%, indicating that this fluorescence sensor can be used for the detection of thrombin content in human serum.

  9. Roles of platelet STIM1 and Orai1 in glycoprotein VI- and thrombin-dependent procoagulant activity and thrombus formation.

    PubMed

    Gilio, Karen; van Kruchten, Roger; Braun, Attila; Berna-Erro, Alejandro; Feijge, Marion A H; Stegner, David; van der Meijden, Paola E J; Kuijpers, Marijke J E; Varga-Szabo, David; Heemskerk, Johan W M; Nieswandt, Bernhard

    2010-07-30

    In platelets, STIM1 has been recognized as the key regulatory protein in store-operated Ca(2+) entry (SOCE) with Orai1 as principal Ca(2+) entry channel. Both proteins contribute to collagen-dependent arterial thrombosis in mice in vivo. It is unclear whether STIM2 is involved. A key platelet response relying on Ca(2+) entry is the surface exposure of phosphatidylserine (PS), which accomplishes platelet procoagulant activity. We studied this response in mouse platelets deficient in STIM1, STIM2, or Orai1. Upon high shear flow of blood over collagen, Stim1(-/-) and Orai1(-/-) platelets had greatly impaired glycoprotein (GP) VI-dependent Ca(2+) signals, and they were deficient in PS exposure and thrombus formation. In contrast, Stim2(-/-) platelets reacted normally. Upon blood flow in the presence of thrombin generation and coagulation, Ca(2+) signals of Stim1(-/-) and Orai1(-/-) platelets were partly reduced, whereas the PS exposure and formation of fibrin-rich thrombi were normalized. Washed Stim1(-/-) and Orai1(-/-) platelets were deficient in GPVI-induced PS exposure and prothrombinase activity, but not when thrombin was present as co-agonist. Markedly, SKF96365, a blocker of (receptor-operated) Ca(2+) entry, inhibited Ca(2+) and procoagulant responses even in Stim1(-/-) and Orai1(-/-) platelets. These data show for the first time that: (i) STIM1 and Orai1 jointly contribute to GPVI-induced SOCE, procoagulant activity, and thrombus formation; (ii) a compensating Ca(2+) entry pathway is effective in the additional presence of thrombin; (iii) platelets contain two mechanisms of Ca(2+) entry and PS exposure, only one relying on STIM1-Orai1 interaction.

  10. Protein Z efficiently depletes thrombin generation in disseminated intravascular coagulation with poor prognosis.

    PubMed

    Lee, Nuri; Kim, Ji-Eun; Gu, Ja-Yoon; Yoo, Hyun Ju; Kim, Inho; Yoon, Sung-Soo; Park, Seonyang; Han, Kyou-Sup; Kim, Hyun Kyung

    2016-01-01

    Disseminated intravascular coagulation (DIC) is characterized by consumption of coagulation factors and anticoagulants. Thrombin generation assay (TGA) gives useful information about global hemostatic status. We developed a new TGA system that anticoagulant addition can deplete thrombin generation in plasma, which may reflect defective anticoagulant system in DIC. TGAs were measured on the calibrated automated thrombogram with and without thrombomodulin or protein Z in 152 patients who were suspected of having DIC, yielding four parameters including lag time, endogenous thrombin potential, peak thrombin and time-to-peak in each experiment. Nonsurvivors showed significantly prolonged lag time and time-to-peak in TGA-protein Z system, which was performed with added protein Z. In multivariate Cox regression analysis, lag time and time-to-peak in TGA system were significant independent prognostic factors. In TGA-protein Z system, lag time and time-to-peak were revealed as independent prognostic factors of DIC. Protein Z addition could potentiate its anticoagulant effect in DIC with poor prognosis, suggesting the presence of defective protein Z system. The prolonged lag time and time-to-peak in both TGA and TGA-protein Z systems are expected to be used as independent prognostic factors of DIC.

  11. Stabilization of the E* Form Turns Thrombin into an Anticoagulant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bah, Alaji; Carrell, Christopher J.; Chen, Zhiwei

    2009-07-31

    Previous studies have shown that deletion of nine residues in the autolysis loop of thrombin produces a mutant with an anticoagulant propensity of potential clinical relevance, but the molecular origin of the effect has remained unresolved. The x-ray crystal structure of this mutant solved in the free form at 1.55 {angstrom} resolution reveals an inactive conformation that is practically identical (root mean square deviation of 0.154 {angstrom}) to the recently identified E* form. The side chain of Trp215 collapses into the active site by shifting >10 {angstrom} from its position in the active E form, and the oxyanion hole ismore » disrupted by a flip of the Glu192-Gly193 peptide bond. This finding confirms the existence of the inactive form E* in essentially the same incarnation as first identified in the structure of the thrombin mutant D102N. In addition, it demonstrates that the anticoagulant profile often caused by a mutation of the thrombin scaffold finds its likely molecular origin in the stabilization of the inactive E* form that is selectively shifted to the active E form upon thrombomodulin and protein C binding.« less

  12. Pericellular Ca2+ recycling potentiates thrombin-evoked Ca2+ signals in human platelets

    PubMed Central

    Sage, Stewart O; Pugh, Nicholas; Farndale, Richard W; Harper, Alan G S

    2013-01-01

    We have previously demonstrated that Na+/Ca2+ exchangers (NCXs) potentiate Ca2+ signaling evoked by thapsigargin in human platelets, via their ability to modulate the secretion of autocoids from dense granules. This link was confirmed in platelets stimulated with the physiological agonist, thrombin, and experiments were performed to examine how Ca2+ removal by the NCX modulates platelet dense granule secretion. In cells loaded with the near-membrane indicator FFP-18, thrombin stimulation was observed to elicit an NCX-dependent accumulation of Ca2+ in a pericellular region around the platelets. To test whether this pericellular Ca2+ accumulation might be responsible for the influence of NCXs over platelet function, platelets were exposed to fast Ca2+ chelators or had their glycocalyx removed. Both manipulations of the pericellular Ca2+ rise reduced thrombin-evoked Ca2+ signals and dense granule secretion. Blocking Ca2+-permeable ion channels had a similar effect, suggesting that Ca2+ exported into the pericellular region is able to recycle back into the platelet cytosol. Single cell imaging with extracellular Fluo-4 indicated that thrombin-evoked rises in extracellular [Ca2+] occurred within the boundary described by the cell surface, suggesting their presence within the open canalicular system (OCS). FFP-18 fluorescence was similarly distributed. These data suggest that upon thrombin stimulation, NCX activity creates a rise in [Ca2+] within the pericellular region of the platelet from where it recycles back into the platelet cytosol, acting to both accelerate dense granule secretion and maintain the initial rise in cytosolic [Ca2+]. PMID:24303163

  13. IFN-{gamma} sensitizes MIN6N8 insulinoma cells to TNF-{alpha}-induced apoptosis by inhibiting NF-{kappa}B-mediated XIAP upregulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hun Sik; Kim, Sunshin; Lee, Myung-Shik

    2005-10-28

    Although X-linked inhibitor of apoptosis protein (XIAP) is an important intracellular suppressor of apoptosis in a variety of cell types, its role in cytokine-induced pancreatic {beta}-cell apoptosis remains unclear. Here, we found that: (i) XIAP level was inversely correlated with tumor necrosis factor (TNF)-{alpha}-induced apoptosis in MIN6N8 insulinoma cells; (ii) adenoviral XIAP overexpression abrogated the TNF-{alpha}-induced apoptosis through inhibition of caspase activity; (iii) downregulation of XIAP by antisense oligonucleotide or Smac peptide sensitized MIN6N8 cells to TNF-{alpha}-induced apoptosis; (iv) XIAP expression was induced by TNF-{alpha} through a nuclear factor-{kappa}B (NF-{kappa}B)-dependent pathway, and interferon (IFN)-{gamma} prevented such an induction in amore » manner independent of NF-{kappa}B, which presents a potential mechanism underlying cytotoxic IFN-{gamma}/TNF-{alpha} synergism. Taken together, our results suggest that XIAP is an important modulator of TNF-{alpha}-induced apoptosis of MIN6N8 cells, and XIAP regulation in pancreatic {beta}-cells might play an important role in pancreatic {beta}-cell apoptosis and in the pathogenesis of type 1 diabetes.« less

  14. Apixaban decreases brain thrombin activity in a male mouse model of acute ischemic stroke.

    PubMed

    Bushi, Doron; Chapman, Joab; Wohl, Anton; Stein, Efrat Shavit; Feingold, Ekaterina; Tanne, David

    2018-05-14

    Factor Xa (FXa) plays a critical role in the coagulation cascade by generation of thrombin. During focal ischemia thrombin levels increase in the brain tissue and cause neural damage. This study examined the hypothesis that administration of the FXa inhibitor, apixaban, following focal ischemic stroke may have therapeutic potential by decreasing brain thrombin activity and infarct volume. Male mice were divided into a treated groups that received different doses of apixaban (2, 20, 100 mg/kg administered I.P.) or saline (controls) immediately after blocking the middle cerebral artery (MCA). Thrombin activity was measured by a fluorescence assay on fresh coronal slices taken from the mice brains 24 hr following the MCA occlusion. Infarct volume was assessed using triphenyltetrazolium chloride staining. A high dose of apixaban (100 mg/kg) significantly decreased thrombin activity levels in the ipsilateral hemisphere compared to the control group (Slice#5, p = .016; Slice#6, p = .016; Slice#7, p = .016; Slice#8, p = .036; by the nonparametric Mann-Whitney test). In addition, treatment with apixaban doses of both 100 mg/kg (32 ± 8% vs. 76 ± 7% in the treatment vs. control groups respectively; p = .005 by the nonparametric Mann-Whitney test) and 20 mg/kg (43 ± 7% vs. 76 ± 7% in the treatment vs. control groups respectively; p = .019 by the nonparametric Mann-Whitney test) decreased infarct volumes in areas surrounding the ischemic core (Slices #3 and #8). No brain hemorrhages were observed either in the treated or control groups. In summary, I.P. administration of high dose of apixaban immediately after MCA occlusion decreases brain thrombin activity and reduces infarct size. © 2018 Wiley Periodicals, Inc.

  15. In vivo fluorescence imaging of atherosclerotic plaques with activatable cell-penetrating peptides targeting thrombin activity†

    PubMed Central

    Olson, Emilia S.; Whitney, Michael A.; Friedman, Beth; Aguilera, Todd A.; Crisp, Jessica L.; Baik, Fred M.; Jiang, Tao; Baird, Stephen M.; Tsimikas, Sotirios; Tsien, Roger Y.

    2012-01-01

    Thrombin and other coagulation enzymes have been shown to be important during atherosclerotic disease development. Study of these proteases is currently limited because of lack of robust molecular imaging agents for imaging protease activity in vivo. Activatable cell penetrating peptides (ACPPs) have been used to monitor MMP activity in tumors and, in principle, can be modified to detect other proteases. We have developed a probe that incorporates the peptide sequence DPRSFL from the proteinase activated receptor 1 (PAR-1) into an ACPP and shown that it is preferentially cleaved by purified thrombin. Active thrombin in serum cleaves DPRSFL–ACPP with >90% inhibition by lepirudin or argatroban. The DPRSFL–ACPP cleavage product accumulated in advanced atherosclerotic lesions in living mice, with 85% reduction in retention upon pre-injection of mice with hirudin. Uptake of the ACPP cleavage product was highest in plaques with histological features associated with more severe disease. Freshly resected human atheromas bathed in DPRSFL–ACPP retained 63% greater cleavage product compared to control ACPP. In conclusion, DPRSFL–ACPP can be used to study thrombin activity in coagulation and atherosclerosis with good spatial and temporal resolution. Thrombin-sensitive ACPPs may be developed into probes for early detection and intraoperative imaging of high risk atherosclerotic plaques. PMID:22534729

  16. In vivo fluorescence imaging of atherosclerotic plaques with activatable cell-penetrating peptides targeting thrombin activity.

    PubMed

    Olson, Emilia S; Whitney, Michael A; Friedman, Beth; Aguilera, Todd A; Crisp, Jessica L; Baik, Fred M; Jiang, Tao; Baird, Stephen M; Tsimikas, Sotirios; Tsien, Roger Y; Nguyen, Quyen T

    2012-06-01

    Thrombin and other coagulation enzymes have been shown to be important during atherosclerotic disease development. Study of these proteases is currently limited because of lack of robust molecular imaging agents for imaging protease activity in vivo. Activatable cell penetrating peptides (ACPPs) have been used to monitor MMP activity in tumors and, in principle, can be modified to detect other proteases. We have developed a probe that incorporates the peptide sequence DPRSFL from the proteinase activated receptor 1 (PAR-1) into an ACPP and shown that it is preferentially cleaved by purified thrombin. Active thrombin in serum cleaves DPRSFL-ACPP with >90% inhibition by lepirudin or argatroban. The DPRSFL-ACPP cleavage product accumulated in advanced atherosclerotic lesions in living mice, with 85% reduction in retention upon pre-injection of mice with hirudin. Uptake of the ACPP cleavage product was highest in plaques with histological features associated with more severe disease. Freshly resected human atheromas bathed in DPRSFL-ACPP retained 63% greater cleavage product compared to control ACPP. In conclusion, DPRSFL-ACPP can be used to study thrombin activity in coagulation and atherosclerosis with good spatial and temporal resolution. Thrombin-sensitive ACPPs may be developed into probes for early detection and intraoperative imaging of high risk atherosclerotic plaques.

  17. A Reusable Impedimetric Aptasensor for Detection of Thrombin Employing a Graphite-Epoxy Composite Electrode

    PubMed Central

    Ocaña, Cristina; Pacios, Mercè; del Valle, Manel

    2012-01-01

    Here, we report the application of a label-free electrochemical aptasensor based on a graphite-epoxy composite electrode for the detection of thrombin; in this work, aptamers were immobilized onto the electrodes surface using wet physical adsorption. The detection principle is based on the changes of the interfacial properties of the electrode; these were probed in the presence of the reversible redox couple [Fe(CN)6]3−/[Fe(CN)6]4− using impedance measurements. The electrode surface was partially blocked due to formation of aptamer-thrombin complex, resulting in an increase of the interfacial electron-transfer resistance detected by Electrochemical Impedance Spectroscopy (EIS). The aptasensor showed a linear response for thrombin in the range of 7.5 pM to 75 pM and a detection limit of 4.5 pM. The aptasensor was regenerated by breaking the complex formed between the aptamer and thrombin using 2.0 M NaCl solution at 42 °C, showing its operation for different cycles. The interference response caused by main proteins in serum has been characterized. PMID:22736991

  18. Modulation of induced gamma band activity in the human EEG by attention and visual information processing.

    PubMed

    Müller, M M; Gruber, T; Keil, A

    2000-12-01

    Here we present a series of four studies aimed to investigate the link between induced gamma band activity in the human EEG and visual information processing. We demonstrated and validated the modulation of spectral gamma band power by spatial selective visual attention. When subjects attended to a certain stimulus, spectral power was increased as compared to when the same stimulus was ignored. In addition, we showed a shift in spectral gamma band power increase to the contralateral hemisphere when subjects shifted their attention to one visual hemifield. The following study investigated induced gamma band activity and the perception of a Gestalt. Ambiguous rotating figures were used to operationalize the law of good figure (gute Gestalt). We found increased gamma band power at posterior electrode sites when subjects perceived an object. In the last experiment we demonstrated a differential hemispheric gamma band activation when subjects were confronted with emotional pictures. Results of the present experiments in combination with other studies presented in this volume are supportive for the notion that induced gamma band activity in the human EEG is closely related to visual information processing and attentional perceptual mechanisms.

  19. Gamma-glutamylcysteinylethyl ester attenuates progression of carbon tetrachloride-induced acute liver injury in mice.

    PubMed

    Nishida, K; Ohta, Y; Ishiguro, I

    1998-02-20

    We examined the effect of gamma-glutamylcysteinylethyl ester (gamma-GCE), which is readily transported into hepatocytes and increases hepatocellular reduced glutathione (GSH) levels, on the progression of carbon tetrachloride (CCl4)-induced liver injury in mice in comparison with that of GSH. Administration of more than 160 micromol/kg of gamma-GCE, but not GSH, to mice at 3 h after intraperitoneal injection of CCl4 (1 ml/kg) significantly attenuated increases in serum aspartate aminotransferase and alanine aminotransferase activities at 24 h after the CCl4 injection. Increases in hepatic lipid peroxide (LPO) concentrations and decreases in hepatic GSH concentrations after the CCl4 injection were significantly diminished by the gamma-GCE (160 micromol/kg) administration, but not by the same dose of GSH. Gamma-GCE, gamma-glutamylcysteine, and cysteine acted as substrates for glutathione peroxidases much less efficiently than GSH in the post-mitochondrial fraction of normal mouse liver cells. These results indicate that gamma-GCE attenuates the progression of CCl4-induced acute liver injury in mice through the maintenance of hepatic GSH levels, leading to inhibition of hepatic LPO formation, which could be due to an efficient utilization of GSH converted from gamma-GCE in the liver cells.

  20. Effect of Locked-Nucleic Acid on a Biologically Active G-Quadruplex. A Structure-Activity Relationship of the Thrombin Aptamer

    PubMed Central

    Bonifacio, Laura; Church, Frank C.; Jarstfer, Michael B.

    2008-01-01

    Here we tested the ability to augment the biological activity of the thrombin aptamer, d(GGTTGGTGTGGTTGG), by using locked nucleic acid (LNA) to influence its G-quadruplex structure. Compared to un-substituted control aptamer, LNA-containing aptamers displayed varying degrees of thrombin inhibition. Aptamers with LNA substituted in either positions G5, T7, or G8 showed decreased thrombin inhibition, whereas LNA at position G2 displayed activity comparable to un-substituted control aptamer. Interestingly, the thermal stability of the substituted aptamers does not correlate to activity – the more stable aptamers with LNA in position G5, T7, or G8 showed the least thrombin inhibition, while a less stable aptamer with LNA at G2 was as active as the un-substituted aptamer. These results suggest that LNA substitution at sites G5, T7, and G8 directly perturbs aptamer-thrombin affinity. This further implies that for the thrombin aptamer, activity is not dictated solely by the stability of the G-quadruplex structure, but by specific interactions between the central TGT loop and thrombin and that LNA can be tolerated in a biologically active nucleic acid structure albeit in a position dependent fashion. PMID:19325759

  1. Aptamer based label free thrombin assay based on the use of silver nanoparticles incorporated into self-polymerized dopamine.

    PubMed

    Xu, Qingjun; Wang, Guixiang; Zhang, Mingming; Xu, Guiyun; Lin, Jiehua; Luo, Xiliang

    2018-04-13

    The authors describe an electrochemical aptasensor for thrombin that is based on the use of a glassy carbon electrode (GCE) modified with polydopamine that is loaded with silver nanoparticles (PDA/AgNPs). The use of AgNPs improves the conductivity of the film and increases the surface area of the GCE. PDA was deposited on the GCE via self-polymerization, and the thrombin binding aptamer was grafted onto the PDA-modified GCE by a single step reaction. Residual electrode surface was blocked with 6-mercapto-1-hexanol. On exposure to thrombin, the electrochemical impedance of the modified electrode increases gradually. Response is linear in the 0.1 pM to 5.0 nM thrombin concentration range, and the limit of detection is as low as 36 fM. The method is selective and capable of detecting thrombin in diluted human serum. In our perception, such a GCE modified with AgNP in a PDA matrix may be applied to many other analytes for which appropriate aptamers are available. Graphical abstract Schematic of an electrochemical aptasensor for sensitive and selective thrombin detection based on the use of a self-polymerized polydopamine film loaded with silver nanoparticles.

  2. Gelatin-thrombin hemostatic matrix in neurosurgical procedures: hemostasis effectiveness and economic value of clinical and surgical procedure-related benefits.

    PubMed

    Esposito, Felice; Cappabianca, Paolo; Angileri, Filippo F; Cavallo, Luigi M; Priola, Stefano M; Crimi, Salvatore; Solari, Domenico; Germanò, Antonino F; Tomasello, Francesco

    2016-07-26

    Gelatin-thrombin hemostatic matrix (FloSeal®) use is associated with shorter surgical times and less blood loss, parameters that are highly valued in neurosurgical procedures. We aimed to assess the effectiveness of gelatin-thrombin in neurosurgical procedures and estimate its economic value. In a 6-month retrospective evaluation at 2 hospitals, intraoperative and postoperative information were collected from patients undergoing neurosurgical procedures where bleeding was controlled with gelatin-thrombin matrix or according to local bleeding control guidelines (control group). Study endpoints were: length of surgery, estimated blood loss, hospitalization duration, blood units utilized, intensive care unit days, postoperative complications, and time-to-recovery. Statistical methods compared endpoints between the gelatin-thrombin and control groups and resource utilization costs were estimated. Seventy-eight patients (38 gelatin-thrombin; 40 control) were included. Gelatin-thrombin was associated with a shorter surgery duration than control 166±40 versus 185±55, p=0.0839); a lower estimated blood loss (185±80 versus 250±95ml; p=0.0017); a shorter hospital stay (10±3 versus 13±3 days; p<0.001); fewer intensive care unit days (10 days/3 patients and 20 days/4 patients); and shorter time-to-recovery (3±2.2 versus 4±2.8 weeks; p=0861). Fewer gelatin-thrombin patients experienced postoperative complications (3 minor) than the control group (5 minor; 3 major). No gelatin-thrombin patient required blood transfusion; 5 units were administered in the control group. The cost of gelatin-thrombin (€268.40/unit) was offset by the shorter surgery duration (difference of 19 minutes at €858 per hour) and the economic value of improved the other endpoint outcomes (ie, shorter hospital stay, less blood loss/lack of need for transfusion, fewer intensive care unit days, and complications). Gelatin-thrombin hemostatic matrix use in patients undergoing neurosurgical

  3. Random Forests Are Able to Identify Differences in Clotting Dynamics from Kinetic Models of Thrombin Generation.

    PubMed

    Arumugam, Jayavel; Bukkapatnam, Satish T S; Narayanan, Krishna R; Srinivasa, Arun R

    2016-01-01

    Current methods for distinguishing acute coronary syndromes such as heart attack from stable coronary artery disease, based on the kinetics of thrombin formation, have been limited to evaluating sensitivity of well-established chemical species (e.g., thrombin) using simple quantifiers of their concentration profiles (e.g., maximum level of thrombin concentration, area under the thrombin concentration versus time curve). In order to get an improved classifier, we use a 34-protein factor clotting cascade model and convert the simulation data into a high-dimensional representation (about 19000 features) using a piecewise cubic polynomial fit. Then, we systematically find plausible assays to effectively gauge changes in acute coronary syndrome/coronary artery disease populations by introducing a statistical learning technique called Random Forests. We find that differences associated with acute coronary syndromes emerge in combinations of a handful of features. For instance, concentrations of 3 chemical species, namely, active alpha-thrombin, tissue factor-factor VIIa-factor Xa ternary complex, and intrinsic tenase complex with factor X, at specific time windows, could be used to classify acute coronary syndromes to an accuracy of about 87.2%. Such a combination could be used to efficiently assay the coagulation system.

  4. Development of an Efficient G-Quadruplex-Stabilised Thrombin-Binding Aptamer Containing a Three-Carbon Spacer Molecule.

    PubMed

    Aaldering, Lukas J; Poongavanam, Vasanthanathan; Langkjaer, Niels; Murugan, N Arul; Jørgensen, Per Trolle; Wengel, Jesper; Veedu, Rakesh N

    2017-04-18

    The thrombin-binding aptamer (TBA), which shows anticoagulant properties, is one of the most studied G-quadruplex-forming aptamers. In this study, we investigated the impact of different chemical modifications such as a three-carbon spacer (spacer-C 3 ), unlocked nucleic acid (UNA) and 3'-amino-modified UNA (amino-UNA) on the structural dynamics and stability of TBA. All three modifications were incorporated at three different loop positions (T3, T7, T12) of the TBA G-quadruplex structure to result in a series of TBA variants and their stability was studied by thermal denaturation; folding was studied by circular dichroism spectroscopy and thrombin clotting time. The results showed that spacer-C 3 introduction at the T7 loop position (TBA-SP7) significantly improved stability and thrombin clotting time while maintaining a similar binding affinity as TBA to thrombin. Detailed molecular modelling experiments provided novel insights into the experimental observations, further supporting the efficacy of TBA-SP7. The results of this study could provide valuable information for future designs of TBA analogues with superior thrombin inhibition properties. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  5. Marine Diterpenes: Molecular Modeling of Thrombin Inhibitors with Potential Biotechnological Application as an Antithrombotic

    PubMed Central

    Pereira, Rebeca Cristina Costa; Lourenço, André Luiz; Terra, Luciana; Abreu, Paula Alvarez; Laneuville Teixeira, Valéria; Castro, Helena Carla

    2017-01-01

    Thrombosis related diseases are among the main causes of death and incapacity in the world. Despite the existence of antithrombotic agents available for therapy, they still present adverse effects like hemorrhagic risks which justify the search for new options. Recently, pachydictyol A, isopachydictyol A, and dichotomanol, three diterpenes isolated from Brazilian marine brown alga Dictyota menstrualis were identified as potent antithrombotic molecules through inhibition of thrombin, a key enzyme of coagulation cascade and a platelet agonist. Due to the biotechnological potential of these marine metabolites, in this work we evaluated their binding mode to thrombin in silico and identified structural features related to the activity in order to characterize their molecular mechanism. According to our theoretical studies including structure-activity relationship and molecular docking analysis, the highest dipole moment, polar surface area, and lowest electronic density of dichotomanol are probably involved in its higher inhibition percentage towards thrombin catalytic activity compared to pachydictyol A and isopachydictyol A. Interestingly, the molecular docking studies also revealed a good shape complementarity of pachydictyol A and isopachydictyol A and interactions with important residues and regions (e.g., H57, S195, W215, G216, and loop-60), which probably justify their thrombin inhibitor effects demonstrated in vitro. Finally, this study explored the structural features and binding mode of these three diterpenes in thrombin which reinforced their potential to be further explored and may help in the design of new antithrombotic agents. PMID:28335516

  6. Marine Diterpenes: Molecular Modeling of Thrombin Inhibitors with Potential Biotechnological Application as an Antithrombotic.

    PubMed

    Pereira, Rebeca Cristina Costa; Lourenço, André Luiz; Terra, Luciana; Abreu, Paula Alvarez; Laneuville Teixeira, Valéria; Castro, Helena Carla

    2017-03-20

    Thrombosis related diseases are among the main causes of death and incapacity in the world. Despite the existence of antithrombotic agents available for therapy, they still present adverse effects like hemorrhagic risks which justify the search for new options. Recently, pachydictyol A, isopachydictyol A, and dichotomanol, three diterpenes isolated from Brazilian marine brown alga Dictyota menstrualis were identified as potent antithrombotic molecules through inhibition of thrombin, a key enzyme of coagulation cascade and a platelet agonist. Due to the biotechnological potential of these marine metabolites, in this work we evaluated their binding mode to thrombin in silico and identified structural features related to the activity in order to characterize their molecular mechanism. According to our theoretical studies including structure-activity relationship and molecular docking analysis, the highest dipole moment, polar surface area, and lowest electronic density of dichotomanol are probably involved in its higher inhibition percentage towards thrombin catalytic activity compared to pachydictyol A and isopachydictyol A. Interestingly, the molecular docking studies also revealed a good shape complementarity of pachydictyol A and isopachydictyol A and interactions with important residues and regions (e.g., H57, S195, W215, G216, and loop-60), which probably justify their thrombin inhibitor effects demonstrated in vitro. Finally, this study explored the structural features and binding mode of these three diterpenes in thrombin which reinforced their potential to be further explored and may help in the design of new antithrombotic agents.

  7. Functional assembly of intrinsic coagulation proteases on monocytes and platelets. Comparison between cofactor activities induced by thrombin and factor Xa

    PubMed Central

    1992-01-01

    Generation of coagulation factor Xa by the intrinsic pathway protease complex is essential for normal activation of the coagulation cascade in vivo. Monocytes and platelets provide membrane sites for assembly of components of this protease complex, factors IXa and VIII. Under biologically relevant conditions, expression of functional activity by this complex is associated with activation of factor VIII to VIIIa. In the present studies, autocatalytic regulatory pathways operating on monocyte and platelet membranes were investigated by comparing the cofactor function of thrombin-activated factor VIII to that of factor Xa-activated factor VIII. Reciprocal functional titrations with purified human factor VIII and factor IXa were performed at fixed concentrations of human monocytes, CaCl2, factor X, and either factor IXa or factor VIII. Factor VIII was preactivated with either thrombin or factor Xa, and reactions were initiated by addition of factor X. Rates of factor X activation were measured using chromogenic substrate specific for factor Xa. The K1/2 values, i.e., concentration of factor VIIIa at which rates were half maximal, were 0.96 nM with thrombin- activated factor VIII and 1.1 nM with factor Xa-activated factor VIII. These values are close to factor VIII concentration in plasma. The Vsat, i.e., rates at saturating concentrations of factor VIII, were 33.3 and 13.6 nM factor Xa/min, respectively. The K1/2 and Vsat values obtained in titrations with factor IXa were not significantly different from those obtained with factor VIII. In titrations with factor X, the values of Michaelis-Menten coefficients (Km) were 31.7 nM with thrombin- activated factor VIII, and 14.2 nM with factor Xa-activated factor VIII. Maximal rates were 23.4 and 4.9 nM factor Xa/min, respectively. The apparent catalytic efficiency was similar with either form of factor VIIIa. Kinetic profiles obtained with platelets as a source of membrane were comparable to those obtained with monocytes

  8. A novel "signal-on/off" sensing platform for selective detection of thrombin based on target-induced ratiometric electrochemical biosensing and bio-bar-coded nanoprobe amplification strategy.

    PubMed

    Wang, Lanlan; Ma, Rongna; Jiang, Liushan; Jia, Liping; Jia, Wenli; Wang, Huaisheng

    2017-06-15

    A novel dual-signal ratiometric electrochemical aptasensor for highly sensitive and selective detection of thrombin has been designed on the basis of signal-on and signal-off strategy. Ferrocene labeled hairpin probe (Fc-HP), thrombin aptamer and methyl blue labeled bio-bar-coded AuNPs (MB-P3-AuNPs) were rationally introduced for the construction of the assay platform, which combined the advantages of the recognition of aptamer, the amplification of bio-bar-coded nanoprobe, and the ratiometric signaling readout. In the presence of thrombin, the interaction between thrombin and the aptamer leads to the departure of MB-P3-AuNPs from the sensing interface, and the conformation of the single stranded Fc-HP to a hairpin structure to take the Fc confined near the electrode surface. Such conformational changes resulted in the oxidation current of Fc increased and that of MB decreased. Therefore, the recognition event of the target can be dual-signal ratiometric electrochemical readout in both the "signal-off" of MB and the "signal-on" of Fc. The proposed strategy showed a wide linear detection range from 0.003 to 30nM with a detection limit of 1.1 pM. Moreover, it exhibits good performance of excellent selectivity, good stability, and acceptable fabrication reproducibility. By changing the recognition probe, this protocol could be easily expanded into the detection of other targets, showing promising potential applications in disease diagnostics and bioanalysis. Copyright © 2016. Published by Elsevier B.V.

  9. Differential expression of largemouth bass (Micropterus salmoides) estrogen receptor isotypes alpha, beta, and gamma by estradiol.

    PubMed

    Sabo-Attwood, Tara; Kroll, Kevin J; Denslow, Nancy D

    2004-04-15

    The expression levels of three estrogen receptor (ER) isotypes alpha, beta, and gamma were quantified in female largemouth bass (Micropterus salmoides) (LMB) liver, ovary, brain, and pituitary tissues. ER alpha and beta expression predominated in the liver, while ERs beta and gamma predominated in the other tissues. Temporally in females, ER alpha was highly up-regulated, ER gamma was slightly up-regulated, and ER beta levels remained unchanged in the liver when plasma 17-beta estradiol (E2) and vitellogenin (Vtg) levels were elevated in the spring. In ovarian tissue from these same fish, all three ERs were maximally expressed in the fall, during early oocyte development and prior to peak plasma E2 levels. When males were injected with E2, ER alpha was highly inducible, ER gamma was moderately up-regulated, and ER beta levels were not affected. None of the ER isotypes were induced by E2 in gonadal tissues. These results combined suggest that the ERs themselves are not regulated in the same manner by E2, and furthermore, do not contribute equally to the transcriptional regulation of genes involved in fish reproduction such as Vtg.

  10. Improved thrombin binding aptamer by incorporation of a single unlocked nucleic acid monomer

    PubMed Central

    Pasternak, Anna; Hernandez, Frank J.; Rasmussen, Lars M.; Vester, Birte; Wengel, Jesper

    2011-01-01

    A 15-mer DNA aptamer (named TBA) adopts a G-quadruplex structure that strongly inhibits fibrin-clot formation by binding to thrombin. We have performed thermodynamic analysis, binding affinity and biological activity studies of TBA variants modified by unlocked nucleic acid (UNA) monomers. UNA-U placed in position U3, U7 or U12 increases the thermodynamic stability of TBA by 0.15–0.50 kcal/mol. In contrast, modification of any position within the two G-quartet structural elements is unfavorable for quadruplex formation. The intramolecular folding of the quadruplexes is confirmed by Tm versus ln c analysis. Moreover, circular dichroism and thermal difference spectra of the modified TBAs displaying high thermodynamic stability show bands that are characteristic for antiparallel quadruplex formation. Surface plasmon resonance studies of the binding of the UNA-modified TBAs to thrombin show that a UNA monomer is allowed in many positions of the aptamer without significantly changing the thrombin-binding properties. The biological effect of a selection of the modified aptamers was tested by a thrombin time assay and showed that most of the UNA-modified TBAs possess anticoagulant properties, and that the construct with a UNA-U monomer in position 7 is a highly potent inhibitor of fibrin-clot formation. PMID:20870750

  11. Non-enzymatic glycation reduces heparin cofactor II anti-thrombin activity.

    PubMed

    Ceriello, A; Marchi, E; Barbanti, M; Milani, M R; Giugliano, D; Quatraro, A; Lefebvre, P

    1990-04-01

    The effects of non-enzymatic glycation on heparin cofactor II activity, at glucose concentrations which might be expected in physiological or diabetic conditions have been evaluated in this study. Radiolabelled glucose incorporation was associated with a loss of heparin cofactor anti-thrombin activity. The heparin cofactor heparin and dermatan sulfate-dependent inhibition of thrombin was significantly reduced, showing a remarkable decrease of the maximum second order rate constant. This study shows that heparin cofactor can be glycated at glucose concentrations found in the blood, and that this phenomenon produces a loss of heparin cofactor-antithrombin activity. These data suggest, furthermore, a possible link between heparin cofactor glycation and the pathogenesis of thrombosis in diabetes mellitus.

  12. Vitamin K antagonists and direct thrombin inhibitors: present and future.

    PubMed

    Pineo, Graham F; Hull, Russell D

    2005-02-01

    Warfarin and related compounds are efficacious and safe in a variety of clinical thrombotic disorders; however, these drugs have a narrow therapeutic window, whereby inadequate therapy is associated with an increased thrombotic risk and overanticoagulation is associated with bleeding. Therefore, attempts have been made to develop alternatives to warfarin. Ximelagatran, an oral direct thrombin inhibitor, has been shown to be as efficacious and safe as warfarin for the prevention and treatment of different thrombotic disorders. This article reviews the pharmacology of the coumarins, the most commonly used vitamin K antagonists, and the practical aspects regarding their use in the management of thrombotic disorders. The future role of the oral direct thrombin inhibitor ximelagatran also is reviewed.

  13. PPAR-gamma pathways attenuate pulmonary granuloma formation in a carbon nanotube induced murine model of sarcoidosis.

    PubMed

    McPeek, Matthew; Malur, Anagha; Tokarz, Debra A; Murray, Gina; Barna, Barbara P; Thomassen, Mary Jane

    2018-06-15

    Peroxisome proliferator activated receptor gamma (PPARγ), a ligand activated nuclear transcription factor, is constitutively expressed in alveolar macrophages of healthy individuals. PPARγ deficiencies have been noted in several lung diseases including the alveolar macrophages of pulmonary sarcoidosis patients. We have previously described a murine model of multiwall carbon nanotubes (MWCNT) induced pulmonary granulomatous inflammation which bears striking similarities to pulmonary sarcoidosis, including the deficiency of alveolar macrophage PPARγ. Further studies demonstrate alveolar macrophage PPARγ deficiency exacerbates MWCNT-induced pulmonary granulomas. Based on these observations we hypothesized that activation of PPARγ via administration of the PPARγ-specific ligand rosiglitazone would limit MWCNT-induced granuloma formation and promote PPARγ-dependent pathways. Results presented here show that rosiglitazone significantly limits the frequency and severity of MWCNT-induced pulmonary granulomas. Furthermore, rosiglitazone attenuates alveolar macrophage NF-κB activity and downregulates the expression of the pro-inflammatory mediators, CCL2 and osteopontin. PPARγ activation via rosiglitazone also prevents the MWCNT-induced deficiency of PPARγ-regulated ATP-binding cassette lipid transporter-G1 (ABCG1) expression. ABCG1 is crucial to pulmonary lipid homeostasis. ABCG1 deficiency results in lipid accumulation which promotes pro-inflammatory macrophage activation. Our results indicate that restoration of homeostatic ABCG1 levels by rosiglitazone correlates with both reduced pulmonary lipid accumulation, and decreased alveolar macrophage activation. These data confirm and further support our previous observations that PPARγ pathways are critical in regulating MWCNT-induced pulmonary granulomatous inflammation. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. G protein-coupled receptor 56 regulates mechanical overload-induced muscle hypertrophy.

    PubMed

    White, James P; Wrann, Christiane D; Rao, Rajesh R; Nair, Sreekumaran K; Jedrychowski, Mark P; You, Jae-Sung; Martínez-Redondo, Vicente; Gygi, Steven P; Ruas, Jorge L; Hornberger, Troy A; Wu, Zhidan; Glass, David J; Piao, Xianhua; Spiegelman, Bruce M

    2014-11-04

    Peroxisome proliferator-activated receptor gamma coactivator 1-alpha 4 (PGC-1α4) is a protein isoform derived by alternative splicing of the PGC1α mRNA and has been shown to promote muscle hypertrophy. We show here that G protein-coupled receptor 56 (GPR56) is a transcriptional target of PGC-1α4 and is induced in humans by resistance exercise. Furthermore, the anabolic effects of PGC-1α4 in cultured murine muscle cells are dependent on GPR56 signaling, because knockdown of GPR56 attenuates PGC-1α4-induced muscle hypertrophy in vitro. Forced expression of GPR56 results in myotube hypertrophy through the expression of insulin-like growth factor 1, which is dependent on Gα12/13 signaling. A murine model of overload-induced muscle hypertrophy is associated with increased expression of both GPR56 and its ligand collagen type III, whereas genetic ablation of GPR56 expression attenuates overload-induced muscle hypertrophy and associated anabolic signaling. These data illustrate a signaling pathway through GPR56 which regulates muscle hypertrophy associated with resistance/loading-type exercise.

  15. The complete N-terminal extension of heparin cofactor II is required for maximal effectiveness as a thrombin exosite 1 ligand

    PubMed Central

    2013-01-01

    Background Heparin cofactor II (HCII) is a circulating protease inhibitor, one which contains an N-terminal acidic extension (HCII 1-75) unique within the serpin superfamily. Deletion of HCII 1-75 greatly reduces the ability of glycosaminoglycans (GAGs) to accelerate the inhibition of thrombin, and abrogates HCII binding to thrombin exosite 1. While a minor portion of HCII 1-75 can be visualized in a crystallized HCII-thrombin S195A complex, the role of the rest of the extension is not well understood and the affinity of the HCII 1-75 interaction has not been quantitatively characterized. To address these issues, we expressed HCII 1-75 as a small, N-terminally hexahistidine-tagged polypeptide in E. coli. Results Immobilized purified HCII 1-75 bound active α-thrombin and active-site inhibited FPR-ck- or S195A-thrombin, but not exosite-1-disrupted γT-thrombin, in microtiter plate assays. Biotinylated HCII 1-75 immobilized on streptavidin chips bound α-thrombin and FPR-ck-thrombin with similar KD values of 330-340 nM. HCII 1-75 competed thrombin binding to chip-immobilized HCII 1-75 more effectively than HCII 54-75 but less effectively than the C-terminal dodecapeptide of hirudin (mean Ki values of 2.6, 8.5, and 0.29 μM, respectively). This superiority over HCII 54-75 was also demonstrated in plasma clotting assays and in competing the heparin-catalysed inhibition of thrombin by plasma-derived HCII; HCII 1-53 had no effect in either assay. Molecular modelling of HCII 1-75 correctly predicted those portions of the acidic extension that had been previously visualized in crystal structures, and suggested that an α-helix found between residues 26 and 36 stabilizes one found between residues 61-67. The latter region has been previously shown by deletion mutagenesis and crystallography to play a crucial role in the binding of HCII to thrombin exosite 1. Conclusions Assuming that the KD value for HCII 1-75 of 330-340 nM faithfully predicts that of this region in intact

  16. Roles of Platelet STIM1 and Orai1 in Glycoprotein VI- and Thrombin-dependent Procoagulant Activity and Thrombus Formation*

    PubMed Central

    Gilio, Karen; van Kruchten, Roger; Braun, Attila; Berna-Erro, Alejandro; Feijge, Marion A. H.; Stegner, David; van der Meijden, Paola E. J.; Kuijpers, Marijke J. E.; Varga-Szabo, David; Heemskerk, Johan W. M.; Nieswandt, Bernhard

    2010-01-01

    In platelets, STIM1 has been recognized as the key regulatory protein in store-operated Ca2+ entry (SOCE) with Orai1 as principal Ca2+ entry channel. Both proteins contribute to collagen-dependent arterial thrombosis in mice in vivo. It is unclear whether STIM2 is involved. A key platelet response relying on Ca2+ entry is the surface exposure of phosphatidylserine (PS), which accomplishes platelet procoagulant activity. We studied this response in mouse platelets deficient in STIM1, STIM2, or Orai1. Upon high shear flow of blood over collagen, Stim1−/− and Orai1−/− platelets had greatly impaired glycoprotein (GP) VI-dependent Ca2+ signals, and they were deficient in PS exposure and thrombus formation. In contrast, Stim2−/− platelets reacted normally. Upon blood flow in the presence of thrombin generation and coagulation, Ca2+ signals of Stim1−/− and Orai1−/− platelets were partly reduced, whereas the PS exposure and formation of fibrin-rich thrombi were normalized. Washed Stim1−/− and Orai1−/− platelets were deficient in GPVI-induced PS exposure and prothrombinase activity, but not when thrombin was present as co-agonist. Markedly, SKF96365, a blocker of (receptor-operated) Ca2+ entry, inhibited Ca2+ and procoagulant responses even in Stim1−/− and Orai1−/− platelets. These data show for the first time that: (i) STIM1 and Orai1 jointly contribute to GPVI-induced SOCE, procoagulant activity, and thrombus formation; (ii) a compensating Ca2+ entry pathway is effective in the additional presence of thrombin; (iii) platelets contain two mechanisms of Ca2+ entry and PS exposure, only one relying on STIM1-Orai1 interaction. PMID:20519511

  17. Turn-on fluorescence sensor based on single-walled-carbon-nanohorn-peptide complex for the detection of thrombin.

    PubMed

    Zhu, Shuyun; Liu, Zhongyuan; Hu, Lianzhe; Yuan, Yali; Xu, Guobao

    2012-12-14

    Proteases play a central role in several widespread diseases. Thus, there is a great need for the fast and sensitive detection of various proteolytic enzymes. Herein, we have developed a carbon nanotube (CNT)-based protease biosensing platform that uses peptides as a fluorescence probe for the first time. Single-walled carbon nanohorns (SWCNHs) and thrombin were used to demonstrate this detection strategy. SWCNHs can adsorb a fluorescein-based dye (FAM)-labeled peptide (FAM-pep) and quench the fluorescence of FAM. In contrast, thrombin can cleave FAM-pep on SWCNHs and recover the fluorescence of FAM, which allows the sensitive detection of thrombin. This biosensor has a high sensitivity and selectivity toward thrombin, with a detection limit of 100 pM. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Short-Latency Median-Nerve Somatosensory-Evoked Potentials and Induced Gamma-Oscillations in Humans

    ERIC Educational Resources Information Center

    Fukuda, Miho; Nishida, Masaaki; Juhasz, Csaba; Muzik, Otto; Sood, Sandeep; Chugani, Harry T.; Asano, Eishi

    2008-01-01

    Recent studies have suggested that cortical gamma-oscillations are tightly linked with various forms of physiological activity. In the present study, the dynamic changes of intracranially recorded median-nerve somatosensory-evoked potentials (SEPs) and somatosensory-induced gamma-oscillations were animated on a three-dimensional MR image, and the…

  19. Incidence of thromboembolic events after use of gelatin-thrombin-based hemostatic matrix during intracranial tumor surgery.

    PubMed

    Gazzeri, Roberto; Galarza, Marcelo; Conti, Carlo; De Bonis, Costanzo

    2018-01-01

    Association between the use of hemostatic agents made from collagen/gelatin mixed with thrombin and thromboembolic events in patients undergoing tumor resection has been suggested. This study evaluates the relationship between flowable hemostatic matrix and deep vein thrombosis in a large cohort of patients treated for brain tumor removal. The authors conducted a retrospective, multicenter, clinical review of all craniotomies for tumor removal performed between 2013 and 2014. Patients were classified in three groups: group I (flowable gelatin hemostatic matrix with thrombin), group II (gelatin hemostatic without thrombin), and group III (classical hemostatic). A total of 932 patients were selected: tumor pathology included 441 gliomas, 296 meningiomas, and 195 metastases. Thromboembolic events were identified in 4.7% of patients in which gelatin matrix with thrombin was applied, in 8.4% of patients with gelatin matrix without thrombin, and in 3.6% of cases with classical methods of hemostasis. Patients with venous thromboembolism had an increased proportion of high-grade gliomas (7.2%). Patients receiving a greater dose than 10 ml gelatin hemostatic had a higher rate of thromboembolic events. Intracranial hematoma requiring reintervention occurred in 19 cases: 4.5% of cases of group III, while reoperation was performed in 1.3 and 1.6% of patients in which gelatin matrix with or without thrombin was applied. Gelatin matrix hemostat is an efficacious tool for neurosurgeons in cases of difficult intraoperative bleeding during cranial tumor surgery. This study may help to identify those patients at high risk for developing thromboembolism and to treat them accordingly.

  20. [Intragenic mitotic recombination induced by ultraviolet and gamma rays in radiosensitive mutants of Saccharomyces cerevisiae yeasts].

    PubMed

    Zakharov, I A; Kasinova, G V; Koval'tsova, S V

    1983-01-01

    The effect of UV- and gamma-irradiation on the survival and intragenic mitotic recombination (gene conversion) of 5 radiosensitive mutants was studied in comparison with the wild type. The level of spontaneous conversion was similar for RAD, rad2 and rad15, mutations xrs2 and xrs4 increasing and rad54 significantly decreasing it. The frequency of conversion induced by UV-light was greater in rad2, rad15 and xrs2 mutants and lower in xrs4, as compared to RAD. Gamma-irradiation caused induction of gene conversion with an equal frequency in RAD, rad2, rad15. Xrs2 and xrs4 mutations slightly decreased gamma-induced conversion. In rad54 mutant, UV-and gamma-induced conversion was practically absent. In the wild type yeast, a diploid strain is more resistant than a haploid, whereas in rad54 a diploid strain has the same or an increased sensitivity, as compared to a haploid strain (the "inverse ploidy effect"). This effect and also the block of induced mitotic recombination caused by rad54 indicate the presence in the yeast Saccharomyces cerevisiae of repair pathways of UV- and gamma-induced damages acting in diploid cells and realised by recombination. The data obtained as a result of many years' investigation of genetic effects in radiosensitive mutants of yeast are summarised and considered.

  1. Catheter-directed Endovascular Application of Thrombin: Report of 3 Cases and Review of the Literature

    PubMed Central

    Maybody, Majid; Madoff, David C.; Thornton, Raymond H; Morales, Steven A; Moskowitz, Chaya S; Hsu, Meier; Brody, Lynn A; Brown, Karen T; Covey, Anne M

    2017-01-01

    Purpose To report 3 new cases of catheter-directed endovascular application of thrombin and explore trends by analysis of published case series. Materials and Methods Institutional Review Board approved this retrospective study. All cases of non-tumoral arterial embolization performed from January 2003 to January 2015 at our institution were retrospectively reviewed. Thrombin was used in 7 of 589 cases. In 3 cases intra arterial thrombin was injected via catheter to treat active hemorrhage. Four cases were excluded due to percutaneous injection into visceral pseudoaneurysms (n=3) and making ex vivo autologous clot to be injected via catheter (n=1). Fisher’s exact and the Wilcoxon rank sum tests were used to assess for association with acute nontarget thrombosis. Results Catheter-directed thrombin was used in 3/589 (0.5%) cases at our institution. All three cases were technically successful with no further bleeding (100%). Nontarget thrombosis of proximal branches occurred in 2 patients (67%) with no significant clinical consequences. Including our 3 cases, a total of 28 cases were reviewed. Of the variables examined - location (p=0.99), size (p=0.66) and etiology of vascular lesion (p=0.92), pseudoaneurysm neck anatomy (p=0.14), thrombin units (p=0.47), volume (p=0.76) or technique of use of small doses (p=0.99), use of other embolic material (p=0.67) and use of adjunct techniques (p=0.99) - none were found to be significantly associated with acute nontarget thrombosis. Technical success was 96% with no reports of reperfusion after treatment. Conclusions Catheter-directed endovascular thrombin can be an additional tool to treat pseudoaneurysms not amenable to conventional embolization. Further studies are required to optimize technique and outcomes. PMID:27936421

  2. Only minor changes in thrombin generation of children and adolescents with type 1 diabetes mellitus - A case-control study.

    PubMed

    Cimenti, Christina; Schlagenhauf, Axel; Leschnik, Bettina; Fröhlich-Reiterer, Elke; Jasser-Nitsche, Hildegard; Haidl, Harald; Suppan, Elisabeth; Weinhandl, Gudrun; Leberl, Maximilian; Borkenstein, Martin; Muntean, Wolfgang E

    2016-12-01

    Micro- and macrovascular diseases are frequent complications in patients with diabetes. Hypercoagulability may contribute to microvascular alterations. In this study, we investigated whether type 1 diabetes in children is associated with a hypercoagulable state by performing a global function test of coagulation - the thrombin generation assay. 75 patients with type 1 diabetes aged between 2 and 19years were compared to an age-matched healthy control group. Diabetes patients were divided into high-dose and low-dose insulin cohorts with a cut-off at 0.8Ukg -1 d -1 . Measurements were performed with platelet poor plasma using Calibrated Automated Thrombography and 1 pM or 5 pM tissue factor. Additionally, we quantified prothrombin fragments F1+2, thrombin-antithrombin complex, prothrombin, tissue factor pathway inhibitor, and antithrombin. Patients with type 1 diabetes exhibited a significantly shorter of lag time as well as decreased thrombin peak and endogenous thrombin potential compared to control subjects with 5 pM but not with 1 pM tissue factor. In high-dose insulin patients peak thrombin generation was higher and time to peak shorter than in low-dose patients. Thrombin-antithrombin complex was decreased in patients with type 1 diabetes, whereas prothrombin fragments F1+2 was comparable in both groups. Thrombin generation parameters did not correlate with parameters of metabolic control and the duration of diabetes. Taken together, we found only minor changes of thrombin generation in children and adolescents with type 1 diabetes which - in contrast to type 2 diabetes - do not argue for a hypercoagulable state. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Ratiometric activatable cell-penetrating peptides provide rapid in vivo readout of thrombin activation.

    PubMed

    Whitney, Michael; Savariar, Elamprakash N; Friedman, Beth; Levin, Rachel A; Crisp, Jessica L; Glasgow, Heather L; Lefkowitz, Roy; Adams, Stephen R; Steinbach, Paul; Nashi, Nadia; Nguyen, Quyen T; Tsien, Roger Y

    2013-01-02

    In real time: thrombin activation in vivo can be imaged in real time with ratiometric activatable cell penetrating peptides (RACPPs). RACPPs are designed to combine 1) dual-emission ratioing, 2) far red to infrared wavelengths for in vivo mammalian imaging, and 3) cleavage-dependent spatial localization. The most advanced RACPP uses norleucine (Nle)-TPRSFL as a linker that increases sensitivity to thrombin by about 90-fold. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Platelet glycoprotein VI binds to polymerized fibrin and promotes thrombin generation.

    PubMed

    Mammadova-Bach, Elmina; Ollivier, Véronique; Loyau, Stéphane; Schaff, Mathieu; Dumont, Bénédicte; Favier, Rémi; Freyburger, Geneviève; Latger-Cannard, Véronique; Nieswandt, Bernhard; Gachet, Christian; Mangin, Pierre H; Jandrot-Perrus, Martine

    2015-07-30

    Fibrin, the coagulation end product, consolidates the platelet plug at sites of vascular injury and supports the recruitment of circulating platelets. In addition to integrin αIIbβ3, another as-yet-unidentified receptor is thought to mediate platelet interaction with fibrin. Platelet glycoprotein VI (GPVI) interacts with collagen and several other adhesive macromolecules. We evaluated the hypothesis that GPVI could be a functional platelet receptor for fibrin. Calibrated thrombin assays using platelet-rich plasma (PRP) showed that tissue factor-triggered thrombin generation was impaired in GPVI-deficient patients and reduced by the anti-GPVI Fab 9O12. Assays on reconstituted PRP and PRP from fibrinogen-deficient patients revealed a fibrinogen-dependent enhancement of thrombin generation, which relied on functional GPVI. The effect of GPVI was found to depend on fibrin polymerization. A binding assay showed a specific interaction between GPVI-Fc and fibrin, inhibited by the Fab 9O12. This Fab also reduced platelet adhesion to fibrin at low (300 s(-1)) and high (1500 s(-1)) wall shear rates. Platelets adherent to fibrin displayed shape change, exposure of procoagulant phospholipids, and the formation of small clots. When hirudinated blood was perfused at 1500 s(-1) over preformed fibrin-rich clots, the Fab 9O12 decreased the recruitment of platelets by up to 85%. This study identifies GPVI as a platelet receptor for polymerized fibrin with 2 major functions: (1) amplification of thrombin generation and (2) recruitment of circulating platelets to clots. These so-far-unrecognized properties of GPVI confer on it a key role in thrombus growth and stabilization. © 2015 by The American Society of Hematology.

  5. Thrombin immobilization to methacrylic acid grafted poly(3-hydroxybutyrate) and its in vitro application.

    PubMed

    Akkaya, Alper; Pazarlioglu, Nurdan

    2013-01-01

    Poly(3-hydroxybutyrate) is nontoxic and biodegradable, with good biocompatibility and potential support for long-term implants. For this reason, it is a good support for enzyme immobilization. Enzyme immobilization could not be done directly because poly(3-hydroxybutyrate) has no functional groups. Therefore, modification should be done for enzyme immobilization. In this study, methacrylic acid was graft polymerized to poly(3-hydroxybutyrate) and thrombin was immobilized to polymethacrylic acid grafted poly(3-hydroxybutyrate). In fact, graft polymerization of methacrylic acid to poly(3-hydroxybutyrate) and thrombin immobilization was a model study. Biomolecule immobilized poly(3-hydroxybutyrate) could be used as an implant. Thrombin was selected as a biomolecule for this model study and it was immobilized to methacrylic acid grafted poly(3-hydroxybutyrate). Then the developed product was used to stop bleeding.

  6. Two heads are better than one: crystal structure of the insect derived double domain Kazal inhibitor rhodniin in complex with thrombin.

    PubMed

    van de Locht, A; Lamba, D; Bauer, M; Huber, R; Friedrich, T; Kröger, B; Höffken, W; Bode, W

    1995-11-01

    Rhodniin is a highly specific inhibitor of thrombin isolated from the assassin bug Rhodnius prolixus. The 2.6 Angstrum crystal structure of the non-covalent complex between recombinant rhodniin and bovine alpha-thrombin reveals that the two Kazal-type domains of rhodniin bind to different sites of thrombin. The amino-terminal domain binds in a substrate-like manner to the narrow active-site cleft of thrombin; the imidazole group of the P1 His residue extends into the S1 pocket to form favourable hydrogen/ionic bonds with Asp189 at its bottom, and additionally with Glu192 at its entrance. The carboxy-terminal domain, whose distorted reactive-site loop cannot adopt the canonical conformation, docks to the fibrinogen recognition exosite via extensive electrostatic interactions. The rather acidic polypeptide linking the two domains is displaced from the thrombin surface, with none of its residues involved in direct salt bridges with thrombin. The tight (Ki = 2 x 10(-13) M) binding of rhodniin to thrombin is the result of the sum of steric and charge complementarity of the amino-terminal domain towards the active-site cleft, and of the electrostatic interactions between the carboxy-terminal domain and the exosite.

  7. Aptamer-based turn-on fluorescent four-branched quaternary ammonium pyrazine probe for selective thrombin detection.

    PubMed

    Yan, Shengyong; Huang, Rong; Zhou, Yangyang; Zhang, Ming; Deng, Minggang; Wang, Xiaolin; Weng, Xiaocheng; Zhou, Xiang

    2011-01-28

    In this thrombin detection system, the bright fluorescence of TASPI is almost eliminated by the DNA aptamer TBA (turn-off); however, in the presence of thrombin, it specifically binds to TBA by folding unrestricted TBA into an anti-parallel G-quadruplex structure and then releasing TASPI molecules, resulting in vivid and facile fluorescence recovery (turn-on).

  8. Interferon-gamma regulates nucleoside transport systems in macrophages through signal transduction and activator of transduction factor 1 (STAT1)-dependent and -independent signalling pathways.

    PubMed Central

    Soler, Concepció; Felipe, Antonio; García-Manteiga, José; Serra, Maria; Guillén-Gómez, Elena; Casado, F Javier; MacLeod, Carol; Modolell, Manuel; Pastor-Anglada, Marçal; Celada, Antonio

    2003-01-01

    The expressions of CNT and ENT (concentrative and equilibrative nucleoside transporters) in macrophages are differentially regulated by IFN-gamma (interferon-gamma). This cytokine controls gene expression through STAT1-dependent and/or -independent pathways (where STAT1 stands for signal transduction and activator of transcription 1). In the present study, the role of STAT1 in the response of nucleoside transporters to IFN-gamma was studied using macrophages from STAT1 knockout mice. IFN-gamma triggered an inhibition of ENT1-related nucleoside transport activity through STAT1-dependent mechanisms. Such inhibition of macrophage growth and ENT1 activity by IFN-gamma is required for DNA synthesis. Interestingly, IFN-gamma led to an induction of the CNT1- and CNT2-related nucleoside transport activities independent of STAT1, thus ensuring the supply of extracellular nucleosides for the STAT1-independent RNA synthesis. IFN-gamma up-regulated CNT2 mRNA and CNT1 protein levels and down-regulated ENT1 mRNA in both wild-type and STAT1 knockout macrophages. This is consistent with a STAT1-independent, long-term-mediated, probably transcription-dependent, regulation of nucleoside transporter genes. Moreover, STAT1-dependent post-transcriptional mechanisms are implicated in the regulation of ENT1 activity. Although nitric oxide is involved in the regulation of ENT1 activity in B-cells at a post-transcriptional level, our results show that STAT1-dependent induction of nitric oxide by IFN-gamma is not implicated in the regulation of ENT1 activity in macrophages. Our results indicate that both STAT1-dependent and -independent pathways are involved in the regulation of nucleoside transporters by IFN-gamma in macrophages. PMID:12868960

  9. Receptor-selective retinoids implicate retinoic acid receptor alpha and gamma in the regulation of bmp-2 and bmp-4 in F9 embryonal carcinoma cells.

    PubMed

    Rogers, M B

    1996-01-01

    The effect of retinoids on malignant cells and embryos indicates that retinoids influence the expression of growth factors or alter the response of cells to growth factors. The bone morphogenetic proteins, Bmp-2 and Bmp-4, are candidates for such growth factors because retinoic acid (RA) treatment of F9 embryonal carcinoma cells induced Bmp-2 mRNA, while simultaneously repressing Bmp-4 levels. Also, recombinant Bmp-2 affected the growth and differentiation of these cells. Regulation of each gene was concentration dependent and required continuous RA treatment. The short half-lives of the Bmp-2 (75 +/- 11 min) and Bmp-4 (70 +/- 4 min) mRNAs suggest that their abundance is primarily controlled at the transcriptional level. To determine which RA receptor (RAR) controls bmp-2 and bmp-4 expression, F9 cells were exposed to various receptor-selective retinoids. RAR alpha- and gamma-selective retinoids induced Bmp-2 and repressed Bmp-4 equally as well as all-trans RA. In contrast, a RAR beta-selective retinoid had little effect on Bmp-2 induction but repressed Bmp-4. A RAR alpha-selective antagonist inhibited all-trans RA stimulation of Bmp-2, although not as dramatically as a RAR beta gamma-selective antagonist. No differences were observed between Bmp levels in all-trans RA and 9-cis RA-treated cells, indicating that the RXRs play little part in controlling these genes. The results are consistent with RAR alpha and gamma-controlled Bmp-2 and Bmp-4 regulation.

  10. Representation of Cognitive Reappraisal Goals in Frontal Gamma Oscillations

    PubMed Central

    Kang, Jae-Hwan; Jeong, Ji Woon; Kim, Hyun Taek; Kim, Sang Hee; Kim, Sung-Phil

    2014-01-01

    Recently, numerous efforts have been made to understand the neural mechanisms underlying cognitive regulation of emotion, such as cognitive reappraisal. Many studies have reported that cognitive control of emotion induces increases in neural activity of the control system, including the prefrontal cortex and the dorsal anterior cingulate cortex, and increases or decreases (depending upon the regulation goal) in neural activity of the appraisal system, including the amygdala and the insula. It has been hypothesized that information about regulation goals needs to be processed through interactions between the control and appraisal systems in order to support cognitive reappraisal. However, how this information is represented in the dynamics of cortical activity remains largely unknown. To address this, we investigated temporal changes in gamma band activity (35–55 Hz) in human electroencephalograms during a cognitive reappraisal task that was comprised of three reappraisal goals: to decease, maintain, or increase emotional responses modulated by affect-laden pictures. We examined how the characteristics of gamma oscillations, such as spectral power and large-scale phase synchronization, represented cognitive reappraisal goals. We found that left frontal gamma power decreased, was sustained, or increased when the participants suppressed, maintained, or amplified their emotions, respectively. This change in left frontal gamma power appeared during an interval of 1926 to 2453 ms after stimulus onset. We also found that the number of phase-synchronized pairs of gamma oscillations over the entire brain increased when participants regulated their emotions compared to when they maintained their emotions. These results suggest that left frontal gamma power may reflect cortical representation of emotional states modulated by cognitive reappraisal goals and gamma phase synchronization across whole brain regions may reflect emotional regulatory efforts to achieve these goals

  11. Representation of cognitive reappraisal goals in frontal gamma oscillations.

    PubMed

    Kang, Jae-Hwan; Jeong, Ji Woon; Kim, Hyun Taek; Kim, Sang Hee; Kim, Sung-Phil

    2014-01-01

    Recently, numerous efforts have been made to understand the neural mechanisms underlying cognitive regulation of emotion, such as cognitive reappraisal. Many studies have reported that cognitive control of emotion induces increases in neural activity of the control system, including the prefrontal cortex and the dorsal anterior cingulate cortex, and increases or decreases (depending upon the regulation goal) in neural activity of the appraisal system, including the amygdala and the insula. It has been hypothesized that information about regulation goals needs to be processed through interactions between the control and appraisal systems in order to support cognitive reappraisal. However, how this information is represented in the dynamics of cortical activity remains largely unknown. To address this, we investigated temporal changes in gamma band activity (35-55 Hz) in human electroencephalograms during a cognitive reappraisal task that was comprised of three reappraisal goals: to decease, maintain, or increase emotional responses modulated by affect-laden pictures. We examined how the characteristics of gamma oscillations, such as spectral power and large-scale phase synchronization, represented cognitive reappraisal goals. We found that left frontal gamma power decreased, was sustained, or increased when the participants suppressed, maintained, or amplified their emotions, respectively. This change in left frontal gamma power appeared during an interval of 1926 to 2453 ms after stimulus onset. We also found that the number of phase-synchronized pairs of gamma oscillations over the entire brain increased when participants regulated their emotions compared to when they maintained their emotions. These results suggest that left frontal gamma power may reflect cortical representation of emotional states modulated by cognitive reappraisal goals and gamma phase synchronization across whole brain regions may reflect emotional regulatory efforts to achieve these goals

  12. Gamma-tubulin-containing abnormal centrioles are induced by insufficient Plk4 in human HCT116 colorectal cancer cells.

    PubMed

    Kuriyama, Ryoko; Bettencourt-Dias, Monica; Hoffmann, Ingrid; Arnold, Marc; Sandvig, Lisa

    2009-06-15

    Cancer cells frequently induce aberrant centrosomes, which have been implicated in cancer initiation and progression. Human colorectal cancer cells, HCT116, contain aberrant centrioles composed of disorganized cylindrical microtubules and displaced appendages. These cells also express unique centrosome-related structures associated with a subset of centrosomal components, including gamma-tubulin, centrin and PCM1. During hydroxyurea treatment, these abnormal structures become more abundant and undergo a change in shape from small dots to elongated fibers. Although gamma-tubulin seems to exist as a ring complex, the abnormal structures do not support microtubule nucleation. Several lines of evidence suggest that the fibers correspond to a disorganized form of centriolar microtubules. Plk4, a mammalian homolog of ZYG-1 essential for initiation of centriole biogenesis, is not associated with the gamma-tubulin-specific abnormal centrosomes. The amount of Plk4 at each centrosome was less in cells with abnormal centrosomes than cells without gamma-tubulin-specific abnormal centrosomes. In addition, the formation of abnormal structures was abolished by expression of exogenous Plk4, but not SAS6 and Cep135/Bld10p, which are downstream regulators required for the organization of nine-triplet microtubules. These results suggest that HCT116 cells fail to organize the ninefold symmetry of centrioles due to insufficient Plk4.

  13. Evidence for a gamma-interferon receptor that regulates macrophage tumoricidal activity

    PubMed Central

    1984-01-01

    Gamma-interferon (IFN-gamma) is the macrophage-activating factor (MAF) produced by normal murine splenic cells and the murine T cell hybridoma 24/G1 that induces nonspecific tumoricidal activity in macrophages. Incubation of 24/G1 supernatants diluted to 8.3 IRU IFN-gamma/ml with 6 X 10(6) elicited peritoneal macrophages or bone marrow-derived macrophages for 4 h at 37 degrees C, resulted in removal of 80% of the MAF activity from the lymphokine preparation. Loss of activity appeared to result from absorption and not consumption because (a) 40% of the activity was removed after exposure to macrophage for 30 min at 4 degrees C, (b) no reduction of MAF activity was detected when the 24/G1 supernatant was incubated with macrophage culture supernatants, and (c) macrophage-treated supernatants showed a selective loss of MAF activity but not interleukin 2 (IL-2) activity. Absorption was dependent on the input of either IFN-gamma or macrophages and was time dependent at 37 degrees C but not at 4 degrees C. With four rodent species tested, absorption of murine IFN-gamma displayed species specificity. However, cultured human peripheral blood monocytes and the human histiocytic lymphoma cell line U937 were able to absorb the murine lymphokine. Although the majority of murine cell lines tested absorbed 24/G1 MAF activity, two murine macrophage cell lines, P388D1 and J774, were identified which absorbed significantly reduced amounts of natural IFN- gamma. Purified murine recombinant IFN-gamma was absorbed by elicited macrophages but not by P388D1. Normal macrophages but not P388D1 bound fluoresceinated microspheres coated with recombinant IFN-gamma and binding was inhibited by pretreatment of the normal cells with 24/G1 supernatants. Scatchard plot analysis showed that 12,000 molecules of soluble 125I-recombinant IFN-gamma bound per bone marrow macrophage with a Ka of 0.9 X 10(8) M-1. Binding was quantitatively inhibitable by natural IFN-gamma but not by murine IFN alpha. IFN

  14. Sequence and structure insights of kazal type thrombin inhibitor protein: Studied with phylogeny, homology modeling and dynamic MM/GBSA studies.

    PubMed

    Jadhav, Aparna; Dash, RadhaCharan; Hirwani, Raj; Abdin, Malik

    2018-03-01

    Despite the wide medical importance of serine protease inhibitors, many of kazal type proteins are still to be explored. These thrombin inhibiting proteins are found in the digestive system of hematophagous organisms mainly Arthropods. We studied one of such protein i.e. Kazal type-1 protein from sand-fly Phlebotomus papatasi as its structure and interaction with thrombin is unclear. Initially, Dipetalin a kazal-follistasin domain protein was run through PSI-BLAST to retrieve related sequences. Using this set of sequence a phylogenetic tree was constructed, which identified a distantly related kazal type-1 protein. A three-dimensional structure was predicted for this protein and was aligned with Rhodniin for further evaluation. To have a comparative understanding of it's binding at the thrombin active site, the aligned kazal model-thrombin and rhodniin-thrombin complexes were subjected to molecular dynamics simulations. Dynamics analysis with reference to main chain RMSD, H-chain residue RMSF and total energy showed rhodniin-thrombin complex as a more stable system. Further, the MM/GBSA method was applied that calculated the binding free energy (ΔG binding ) for rhodniin and kazal model as -220.32kcal/Mol and -90.70kcal/Mol, respectively. Thus, it shows that kazal model has weaker bonding with thrombin, unlike rhodniin. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Probing light chain mutation effects on thrombin via molecular dynamics simulations and machine learning.

    PubMed

    Xiao, Jiajie; Melvin, Ryan L; Salsbury, Freddie R

    2018-03-02

    Thrombin is a key component for chemotherapeutic and antithrombotic therapy development. As the physiologic and pathologic roles of the light chain still remain vague, here, we continue previous efforts to understand the impacts of the disease-associated single deletion of LYS9 in the light chain. By combining supervised and unsupervised machine learning methodologies and more traditional structural analyses on data from 10 μs molecular dynamics simulations, we show that the conformational ensemble of the ΔK9 mutant is significantly perturbed. Our analyses consistently indicate that LYS9 deletion destabilizes both the catalytic cleft and regulatory functional regions and result in some conformational changes that occur in tens to hundreds of nanosecond scaled motions. We also reveal that the two forms of thrombin each prefer a distinct binding mode of a Na + ion. We expand our understanding of previous experimental observations and shed light on the mechanisms of the LYS9 deletion associated bleeding disorder by providing consistent but more quantitative and detailed structural analyses than early studies in literature. With a novel application of supervised learning, i.e. the decision tree learning on the hydrogen bonding features in the wild-type and ΔK9 mutant forms of thrombin, we predict that seven pairs of critical hydrogen bonding interactions are significant for establishing distinct behaviors of wild-type thrombin and its ΔK9 mutant form. Our calculations indicate the LYS9 in the light chain has both localized and long-range allosteric effects on thrombin, supporting the opinion that light chain has an important role as an allosteric effector.

  16. Aspirin Inhibits Platelet-Derived Sphingosine-1-Phosphate Induced Endothelial Cell Migration.

    PubMed

    Polzin, Amin; Knoop, Betül; Böhm, Andreas; Dannenberg, Lisa; Zurek, Mark; Zeus, Tobias; Kelm, Malte; Levkau, Bodo; Rauch, Bernhard H

    2018-01-01

    Aspirin plays a crucial role in the prevention of cardiovascular diseases. We previously described that aspirin has effects beyond inhibition of platelet aggregation, as it inhibited thrombin-mediated release of sphingosine-1-phosphate (S1P) from human platelets. S1P is a bioactive lipid with important functions on inflammation and apoptosis. In endothelial cells (EC), S1P is a key regulator of cell migration. In this study, we aimed to analyze the effects of aspirin on platelet-induced EC migration. Human umbilical EC migration was measured by Boyden chamber assay. EC migration was induced by platelet supernatants of thrombin receptor-activating peptide-1 (AP1) stimulated platelets. To investigate the S1P receptor subtype that promotes EC migration, specific inhibitors of S1P receptor subtypes were applied. S1P induced EC migration in a concentration-dependent manner. EC migration induced by AP1-stimulated platelet supernatants was reduced by aspirin. S1P1 receptor inhibition almost completely abolished EC migration induced by activated platelets. The inhibition of S1P2 or S1P3 receptor had no effect. Aspirin inhibits EC migration induced by activated platelets that is in part due to S1P and mediated by the endothelial S1P1 receptor. The clinical significance of this novel mechanism of aspirin action has to be investigated in future studies. © 2017 S. Karger AG, Basel.

  17. The effect of trans-ferulic acid and gamma-oryzanol on ethanol-induced liver injury in C57BL mouse.

    PubMed

    Chotimarkorn, Chatchawan; Ushio, Hideki

    2008-11-01

    The effects of the oral administration of trans-ferulic acid and gamma-oryzanol (mixture of steryl ferulates) with ethanol (5.0 g per kg) for 30 days to c57BL mice on ethanol-induced liver injury were investigated. Preventions of ethanol-induced liver injury by trans-ferulic acid and gamma-oryzanol were reflected by markedly decreased serum activities of plasma aspartate aminotransferase, alanine aminotransferase and significant decreases in hepatic lipid hydroperoxide and TBARS levels. Furthermore, the trans-ferulic acid- and gamma-oryzanol-treated mice recovered ethanol-induced decrease in hepatic glutathione level together with enhancing superoxide dismutase activity. These results demonstrate that both trans-ferulic acid and gamma-oryzanol exert a protective action on liver injury induced by chronic ethanol ingestion.

  18. [Regulating human interferon-gamma gene expression in marrow stromal cells in mice by Tet-off system].

    PubMed

    Qin, Xin-Tian; Lu, Yue; Tan, Yin-Duo; Chen, Xiao-Qin; Gen, Qi-Rong

    2008-01-01

    We have constructed plasmid "pTre-IFN-gamma" and proved that the Tet-off system could regulate the expression of human interferon-gamma (IFN-gamma) gene in murine marrow stromal cells in vitro. This study was to investigate the regulatory reversibility of Tet-off system and its effect on the expression of human IFN-gamma gene in murine marrow stromal cells in mice. Plasmids pTet-off and pTre-IFN-gamma were co-transfected into murine marrow stromal cells. The expression of IFN-gamma in marrow stromal cells was detected with ELISA. The marrow stromal cells were transfused into BABL/c naked mice after co-transfection. The expression of IFN-gamma mRNA in the spleen was detected by real-time fluorescent quantitative reverse transcription-polymerase chain reaction (RT-PCR). IFN-gamma protein was detected in the culture solution of marrow stromal cells after co-transfection. The secretion peak appeared within the first 72 h. The protein level of IFN-gamma was significantly lower in 300 ng/ml tetracycline hydrochloride-treated marrow stroma cells than in untreated cells [(67.11+/-22.14) pg/1 x 10(7) cells vs. (319.96+/-29.04) pg/1 x 10(7) cells, P<0.001]; its expression was increased when removed tetracycline hydrochloride (P=0.032). The expression of human IFN-gamma mRNA was detected in the spleen. The mRNA level of IFN-gamma was significantly higher in untreated group than in continuous tetracycline hydrochloride-treated group [(1.5+/-0.7)x10(5) copies . (100 mg)(-1) vs. (6.9+/-5.3)x10(2) copies . (100 mg)(-1), P<0.001]; its expression in the mice received tetracycline hydrochloride for one single time lay between the above two groups with significant difference. In mice, Tet-off system could rapidly, efficiently and reversibly regulate the expression of human IFN-gamma gene in marrow stromal cells in vitro and in vivo.

  19. Sea Buckthorn Leaf Extract Protects Jejunum and Bone Marrow of (60)Cobalt-Gamma-Irradiated Mice by Regulating Apoptosis and Tissue Regeneration.

    PubMed

    Bala, Madhu; Gupta, Manish; Saini, Manu; Abdin, M Z; Prasad, Jagdish

    2015-01-01

    A single dose (30 mg/kg body weight) of standardized sea buckthorn leaf extract (SBL-1), administered 30 min before whole body (60)Co-gamma-irradiation (lethal dose, 10 Gy), protected >90% of mice population. The purpose of this study was to investigate the mechanism of action of SBL-1 on jejunum and bone marrow, quantify key bioactive compounds, and analyze chemical composition of SBL-1. Study with 9-week-old inbred male Swiss albino Strain 'A' mice demonstrated that SBL-1 treatment before (60)Co-gamma-irradiation (10 Gy) significantly (p < 0.05) countered radiation induced decreases in jejunum crypts (1.27-fold), villi number (1.41-fold), villus height (1.25-fold), villus cellularity (2.27-fold), cryptal Paneth cells (1.89-fold), and Bcl2 level (1.54-fold). It countered radiation induced increases in cryptal apoptotic cells (1.64-fold) and Bax levels (1.88-fold). It also countered radiation (2 Gy and 3 Gy) induced bone marrow apoptosis (1.59-fold and 1.85-fold) and micronuclei frequency (1.72-fold and 2.6-fold). SBL-1 rendered radiation protection by promoting cryptal stem cells proliferation, by regulating apoptosis, and by countering radiation induced chromosomal damage. Quercetin, Ellagic acid, Gallic acid, high contents polyphenols, tannins, and thiols detected in SBL-1 may have contributed to radiation protection by neutralization of radiation induced oxidative species, supporting stem cell proliferation and tissue regeneration.

  20. Sea Buckthorn Leaf Extract Protects Jejunum and Bone Marrow of 60Cobalt-Gamma-Irradiated Mice by Regulating Apoptosis and Tissue Regeneration

    PubMed Central

    Gupta, Manish; Saini, Manu; Abdin, M. Z.; Prasad, Jagdish

    2015-01-01

    A single dose (30 mg/kg body weight) of standardized sea buckthorn leaf extract (SBL-1), administered 30 min before whole body 60Co-gamma-irradiation (lethal dose, 10 Gy), protected >90% of mice population. The purpose of this study was to investigate the mechanism of action of SBL-1 on jejunum and bone marrow, quantify key bioactive compounds, and analyze chemical composition of SBL-1. Study with 9-week-old inbred male Swiss albino Strain ‘A' mice demonstrated that SBL-1 treatment before 60Co-gamma-irradiation (10 Gy) significantly (p < 0.05) countered radiation induced decreases in jejunum crypts (1.27-fold), villi number (1.41-fold), villus height (1.25-fold), villus cellularity (2.27-fold), cryptal Paneth cells (1.89-fold), and Bcl2 level (1.54-fold). It countered radiation induced increases in cryptal apoptotic cells (1.64-fold) and Bax levels (1.88-fold). It also countered radiation (2 Gy and 3 Gy) induced bone marrow apoptosis (1.59-fold and 1.85-fold) and micronuclei frequency (1.72-fold and 2.6-fold). SBL-1 rendered radiation protection by promoting cryptal stem cells proliferation, by regulating apoptosis, and by countering radiation induced chromosomal damage. Quercetin, Ellagic acid, Gallic acid, high contents polyphenols, tannins, and thiols detected in SBL-1 may have contributed to radiation protection by neutralization of radiation induced oxidative species, supporting stem cell proliferation and tissue regeneration. PMID:26421051

  1. Sphingosine kinase inhibitor suppresses IL-18-induced interferon-gamma production through inhibition of p38 MAPK activation in human NK cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheon, Soyoung; Song, Seok Bean; Jung, Minkyung

    2008-09-12

    Natural killer (NK) cells play an important role in the innate immune response. Interleukin-18 (IL-18) is a well-known interferon-gamma (IFN-{gamma} inducing factor, which stimulates immune response in NK and T cells. Sphingosine kinase (SPHK) catalyzes the formation of sphingosine 1-phosphate (S1P), which acts as a second messenger to function as an anti-apoptotic factor and proliferation stimulator of immune cells. In this study, to elucidate whether SPHK is involved in IL-18-induced IFN-{gamma} production, we measured IL-18-induced IFN-{gamma} production after pre-treatment with SPHK inhibitor (SKI) in NK-92MI cells. We found that IL-18-induced IFN-{gamma} expression was blocked by SKI pre-treatment in both mRNAmore » and protein levels. In addition, the increased IFN-{gamma} production by stimulation with IL-18 is mediated through both SPHK and p38 MAPK. To determine the upstream signals of SKI and p38 MAPK in IL-18-induced IFN-{gamma} production, phosphorylation levels of p38 MAPK was measured after SKI pre-treatment. As a result, inhibition of SPHK by SKI blocked phosphorylation of p38 MAPK, showing that SPHK activation by IL-18 is an upstream signal of p38 MAPK activation. Inhibition of SPHK by SKI also inhibited IL-18-induced IFN-{gamma} production in human primary NK cells. In conclusion, SPHK activation is an essential factor for IL-18-induced IFN-{gamma} production via p38 MAPK.« less

  2. Prefrontal gamma-aminobutyric acid type A receptor insertion controls cue-induced relapse to nicotine seeking.

    PubMed

    Lubbers, Bart R; van Mourik, Yvar; Schetters, Dustin; Smit, August B; De Vries, Taco J; Spijker, Sabine

    2014-11-01

    Current smoking cessation therapies offer limited success, as relapse rates remain high. Nicotine, which is the major component of tobacco smoke, is thought to be primarily responsible for the addictive properties of tobacco. However, little is known about the molecular mechanisms underlying nicotine relapse, hampering development of more effective therapies. The objective of this study was to elucidate the role of medial prefrontal cortex (mPFC) glutamatergic and gamma-aminobutyric acid (GABA)ergic receptors in controlling relapse to nicotine seeking. Using an intravenous self-administration model, we studied glutamate and gamma-aminobutyric acid receptor regulation in the synaptic membrane fraction of the rat mPFC following extinction and cue-induced relapse to nicotine seeking. Subsequently, we locally intervened at the level of GABAergic signaling by using a mimetic peptide of the GABA receptor associated protein-interacting domain of GABA type A (GABAA) receptor subunit γ2 (TAT-GABAγ2) and muscimol, a GABAA receptor agonist. Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid and N-methyl-D-aspartate receptors were not regulated after the 30-min relapse test. However, GABAA receptor subunits α1 and γ2 were upregulated, and interference with GABAA receptor insertion in the cell membrane using the TAT-GABAγ2 peptide in the dorsal mPFC, but not the ventral mPFC, significantly increased responding during relapse. Increasing GABAA transmission with muscimol in the dorsal and ventral mPFC attenuated relapse. These data indicate that cue-induced relapse entails a GABAergic plasticity mechanism that limits nicotine seeking by restoring inhibitory control in the dorsal mPFC. GABAA receptor-mediated neurotransmission in the dorsal mPFC constitutes a possible future therapeutic target for maintaining smoking abstinence. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  3. Reaching Higher Gamma in Ultracold Neutral Plasmas Through Disorder-Induced Heating Control

    DTIC Science & Technology

    2016-06-27

    shielding ,” Phys. Rev. E 87, 033101 (2013) 4 Sequential ionization of ultracold plasma ions A simulation published in 2007 by Michael Murillo showed...AFRL-AFOSR-VA-TR-2017-0031 Reaching higher Gamma in ultracold neutral plasmas through disorder-induced heating control Scott Bergeson BRIGHAM YOUNG...TYPE Final Report 3. DATES COVERED (From - To) 01 June 2012 - 31 May 2016 4. TITLE AND SUBTITLE Reaching higher Gamma in ultracold neutral plasmas

  4. Inhibition of thrombin by functionalized C60 nanoparticles revealed via in vitro assays and in silico studies.

    PubMed

    Liu, Yanyan; Fu, Jianjie; Pan, Wenxiao; Xue, Qiao; Liu, Xian; Zhang, Aiqian

    2018-01-01

    The studies on the human toxicity of nanoparticles (NPs) are far behind the rapid development of engineered functionalized NPs. Fullerene has been widely used as drug carrier skeleton due to its reported low risk. However, different from other kinds of NPs, fullerene-based NPs (C 60 NPs) have been found to have an anticoagulation effect, although the potential target is still unknown. In the study, both experimental and computational methods were adopted to gain mechanistic insight into the modulation of thrombin activity by nine kinds of C 60 NPs with diverse surface chemistry properties. In vitro enzyme activity assays showed that all tested surface-modified C 60 NPs exhibited thrombin inhibition ability. Kinetic studies coupled with competitive testing using 3 known inhibitors indicated that six of the C 60 NPs, of greater hydrophobicity and hydrogen bond (HB) donor acidity or acceptor basicity, acted as competitive inhibitors of thrombin by directly interacting with the active site of thrombin. A simple quantitative nanostructure-activity relationship model relating the surface substituent properties to the inhibition potential was then established for the six competitive inhibitors. Molecular docking analysis revealed that the intermolecular HB interactions were important for the specific binding of C 60 NPs to the active site canyon, while the additional stability provided by the surface groups through van der Waals interaction also play a key role in the thrombin binding affinity of the NPs. Our results suggest that thrombin is a possible target of the surface-functionalized C 60 NPs relevant to their anticoagulation effect. Copyright © 2017. Published by Elsevier B.V.

  5. FcγRIIa ligation induces platelet hypersensitivity to thrombotic stimuli.

    PubMed

    Berlacher, Mark D; Vieth, Joshua A; Heflin, Brittany C; Gay, Steven R; Antczak, Adam J; Tasma, Brian E; Boardman, Holly J; Singh, Navinderjit; Montel, Angela H; Kahaleh, M Bashar; Worth, Randall G

    2013-01-01

    Platelets are known for their important role in hemostasis, however their significance in other functions, including inflammation and infection, are becoming more apparent. Patients with systemic lupus erythematosus (SLE) are known to have circulating IgG complexes in their blood and are highly susceptible to thrombotic events. Because platelets express a single receptor for IgG, we tested the hypothesis that ligation of this receptor (FcγRIIa) induces platelet hypersensitivity to thrombotic stimuli. Platelets from SLE patients were considerably more sensitive to thrombin compared to healthy volunteers, and this correlated with elevated levels of surface IgG on SLE platelets. To test whether FcγRIIa ligation stimulated thrombin hypersensitivity, platelets from healthy volunteers were incubated with buffer or heat-aggregated IgG, then stimulated with increasing concentrations of thrombin. Interestingly, heat-aggregated IgG-stimulated platelets, but not buffer-treated platelets, were hypersensitive to thrombin, and hypersensitivity was blocked by an anti-FcγRIIa monoclonal antibody (mAb). Thrombin hypersensitivity was not due to changes in thrombin receptor expression (GPIbα or PAR1) but is dependent on activation of shared signaling molecules. These observations suggest that ligation of platelet FcγRIIa by IgG complexes induces a hypersensitive state whereby small changes in thrombotic stimuli may result in platelet activation and subsequent vascular complications such as transient ischemic attacks or stroke. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  6. Impaired thrombin generation and fibrin clot formation in patients with dilutional coagulopathy during major surgery.

    PubMed

    Schols, S E M; Lancé, M D; Feijge, M A H; Damoiseaux, J; Marcus, M A; Hamulyák, K; Ten Cate, H; Heemskerk, J W M; van Pampus, E C M

    2010-02-01

    Patients subjected to haemodilution during surgery are at increased risk of bleeding. We hypothesised that, in the acquired dilutional coagulopathy, insufficient haemostasis is due to either insufficient thrombin generation or insufficient fibrin clot formation. In tissue factor-activated plasmas from patients with coagulation deficiency, we measured time curves of thrombin generation and fibrin clot formation (thromboelastography). Investigated were in study A: 10 patients treated with vitamin K antagonist and five healthy subjects; in study B: 30 patients undergoing cardiopulmonary bypass (CPB) surgery and infused with on average 2,000 ml crystalloids and colloids (no major bleeding); in study C: 58 patients undergoing major general surgery, and transfused with >5,000 ml crystalloids, colloids and red cell concentrates, who experienced major bleeding and were post-transfused with fresh frozen plasma. The treatment with vitamin K antagonist led to a progressive reduction in thrombin generation but not fibrin clot formation. In CPB patients, plasma factor levels post-surgery were 53-60% of normal. This was accompanied by moderate reduction in both haemostatic processes. In plasmas from patients undergoing major surgery, factor levels were 38-41% of normal, and these levels increased after plasma transfusion. Taking preset thresholds for normal thrombin generation and fibrin clot formation, at least one of these processes was low in 88-93% of the patients with (persistent) bleeding, but only in 40-53% of the patients without bleeding. In conclusion, the ability of thrombin generation and fibrin clot formation is independently reduced in acquired dilutional coagulopathy, while minimal levels of both are required for adequate haemostasis.

  7. Reproducibility, stability, and biological variability of thrombin generation using calibrated automated thrombography in healthy dogs.

    PubMed

    Cuq, Benoît; Blois, Shauna L; Wood, R Darren; Monteith, Gabrielle; Abrams-Ogg, Anthony C; Bédard, Christian; Wood, Geoffrey A

    2018-06-01

    Thrombin plays a central role in hemostasis and thrombosis. Calibrated automated thrombography (CAT), a thrombin generation assay, may be a useful test for hemostatic disorders in dogs. To describe CAT results in a group of healthy dogs, and assess preanalytical variables and biological variability. Forty healthy dogs were enrolled. Lag time (Lag), time to peak (ttpeak), peak thrombin generation (peak), and endogenous thrombin potential (ETP) were measured. Direct jugular venipuncture and winged-needle catheter-assisted saphenous venipuncture were used to collect samples from each dog, and results were compared between methods. Sample stability at -80°C was assessed over 12 months in a subset of samples. Biological variability of CAT was assessed via nested ANOVA using samples obtained weekly from a subset of 9 dogs for 4 consecutive weeks. Samples for CAT were stable at -80°C over 12 months of storage. Samples collected via winged-needle catheter venipuncture showed poor repeatability compared to direct venipuncture samples; there was also poor agreement between the 2 sampling methods. Intra-individual variability of CAT parameters was below 25%; inter-individual variability ranged from 36.9% to 78.5%. Measurement of thrombin generation using CAT appears to be repeatable in healthy dogs, and samples are stable for at least 12 months when stored at -80°C. Direct venipuncture sampling is recommended for CAT. Low indices of individuality suggest that subject-based reference intervals are more suitable when interpreting CAT results. © 2018 American Society for Veterinary Clinical Pathology.

  8. G protein-coupled receptor 56 regulates mechanical overload-induced muscle hypertrophy

    PubMed Central

    White, James P.; Wrann, Christiane D.; Rao, Rajesh R.; Nair, Sreekumaran K.; Jedrychowski, Mark P.; You, Jae-Sung; Martínez-Redondo, Vicente; Gygi, Steven P.; Ruas, Jorge L.; Hornberger, Troy A.; Wu, Zhidan; Glass, David J.; Piao, Xianhua; Spiegelman, Bruce M.

    2014-01-01

    Peroxisome proliferator-activated receptor gamma coactivator 1-alpha 4 (PGC-1α4) is a protein isoform derived by alternative splicing of the PGC1α mRNA and has been shown to promote muscle hypertrophy. We show here that G protein-coupled receptor 56 (GPR56) is a transcriptional target of PGC-1α4 and is induced in humans by resistance exercise. Furthermore, the anabolic effects of PGC-1α4 in cultured murine muscle cells are dependent on GPR56 signaling, because knockdown of GPR56 attenuates PGC-1α4–induced muscle hypertrophy in vitro. Forced expression of GPR56 results in myotube hypertrophy through the expression of insulin-like growth factor 1, which is dependent on Gα12/13 signaling. A murine model of overload-induced muscle hypertrophy is associated with increased expression of both GPR56 and its ligand collagen type III, whereas genetic ablation of GPR56 expression attenuates overload-induced muscle hypertrophy and associated anabolic signaling. These data illustrate a signaling pathway through GPR56 which regulates muscle hypertrophy associated with resistance/loading-type exercise. PMID:25336758

  9. Characterization of a potent platelet aggregation inducer from Cerastes cerastes (Egyptian sand viper) venom.

    PubMed

    Basheer, A R; el-Asmar, M F; Soslau, G

    1995-07-03

    A potent, proteinaceous inducer of platelet aggregation designated as IVa, has been purified to homogeneity from Cerastes cerastes venom by molecular sieve and ion exchange chromatography. It is composed of 2 subunits with total M(r) of 62,000 as shown by native gel chromatography and chemical cross-linking with disuccinimidyl suberate. It is not clear at the present time whether both subunits are identical gene products, however, both have identical N-terminal sequences for the first 15 amino acids. The protein has a pI above 9.6. IVa (0.1 micrograms/ml) could aggregate platelets up to 80% and was inhibited by p-APMSF, leupeptin, iodoacetamide, protein kinase C inhibitor, phosphatase inhibitor, ATP and PGE1, while it was insensitive to acetylsalicylic acid, ADP scavenger system, protein kinase A inhibitor and hirudin. Protein IVa is a serine proteinase with thrombin-like activity as it hydrolysed thrombin chromogenic substrate CBS 34.47, its aggregatory activity was partially inhibited by monoclonal antibodies against GPIb and the thrombin receptor, as was the thrombin, and its ability to induce intracellular Ca2+ release was blocked by pretreating platelets with thrombin. Unlike thrombin, the IVa protein showed very weak coagulant activity as indicated by plasma recalcification time and fibrinogen clotting time although it could hydrolyse fibrinogen alpha-chains.

  10. Macrocyclic Prodrugs of a Selective Nonpeptidic Direct Thrombin Inhibitor Display High Permeability, Efficient Bioconversion but Low Bioavailability.

    PubMed

    Andersson, Vincent; Bergström, Fredrik; Brånalt, Jonas; Grönberg, Gunnar; Gustafsson, David; Karlsson, Staffan; Polla, Magnus; Bergman, Joakim; Kihlberg, Jan

    2016-07-28

    The only oral direct thrombin inhibitors that have reached the market, ximelagatran and dabigatran etexilat, are double prodrugs with low bioavailability in humans. We have evaluated an alternative strategy: the preparation of a nonpeptidic, polar direct thrombin inhibitor as a single, macrocyclic esterase-cleavable (acyloxy)alkoxy prodrug. Two homologous prodrugs were synthesized and displayed high solubilities and Caco-2 cell permeabilities, suggesting high absorption from the intestine. In addition, they were rapidly and completely converted to the active zwitterionic thrombin inhibitor in human hepatocytes. Unexpectedly, the most promising prodrug displayed only moderately higher oral bioavailability in rat than the polar direct thrombin inhibitor, most likely due to rapid metabolism in the intestine or the intestinal wall. To the best of our knowledge, this is the first in vivo ADME study of macrocyclic (acyloxy)alkoxy prodrugs, and it remains to be established if the modest increase in bioavailability is a general feature of this category of prodrugs or not.

  11. Neuronal correlates of ketamine and walking induced gamma oscillations in the medial prefrontal cortex and mediodorsal thalamus.

    PubMed

    Furth, Katrina E; McCoy, Alex J; Dodge, Caroline; Walters, Judith R; Buonanno, Andres; Delaville, Claire

    2017-01-01

    Alterations in the function of the medial prefrontal cortex (mPFC) and its major thalamic source of innervation, the mediodorsal (MD) thalamus, have been hypothesized to contribute to the symptoms of schizophrenia. The NMDAR antagonist ketamine, used to model schizophrenia, elicits a brain state resembling early stage schizophrenia characterized by cognitive deficits and increases in cortical low gamma (40-70 Hz) power. Here we sought to determine how ketamine differentially affects spiking and gamma local field potential (LFP) activity in the rat mPFC and MD thalamus. Additionally, we investigated the ability of drugs targeting the dopamine D4 receptor (D4R) to modify the effects of ketamine on gamma activity as a measure of potential cognitive therapeutic efficacy. Rats were trained to walk on a treadmill to reduce confounds related to hyperactivity after ketamine administration (10 mg/kg s.c.) while recordings were obtained from electrodes chronically implanted in the mPFC and MD thalamus. Ketamine increased gamma LFP power in mPFC and MD thalamus in a similar frequency range, yet did not increase thalamocortical synchronization. Ketamine also increased firing rates and spike synchronization to gamma oscillations in the mPFC but decreased both measures in MD thalamus. Conversely, walking alone increased both firing rates and spike-gamma LFP correlations in both mPFC and MD thalamus. The D4R antagonist alone (L-745,870) had no effect on gamma LFP power during treadmill walking, although it reversed increases induced by the D4R agonist (A-412997) in both mPFC and MD thalamus. Neither drug altered ketamine-induced changes in gamma power or firing rates in the mPFC. However, in MD thalamus, the D4R agonist increased ketamine-induced gamma power and prevented ketamine's inhibitory effect on firing rates. Results provide new evidence that ketamine differentially modulates spiking and gamma power in MD thalamus and mPFC, supporting a potential role for both areas in

  12. Neuronal correlates of ketamine and walking induced gamma oscillations in the medial prefrontal cortex and mediodorsal thalamus

    PubMed Central

    McCoy, Alex J.; Dodge, Caroline; Walters, Judith R.; Buonanno, Andres; Delaville, Claire

    2017-01-01

    Alterations in the function of the medial prefrontal cortex (mPFC) and its major thalamic source of innervation, the mediodorsal (MD) thalamus, have been hypothesized to contribute to the symptoms of schizophrenia. The NMDAR antagonist ketamine, used to model schizophrenia, elicits a brain state resembling early stage schizophrenia characterized by cognitive deficits and increases in cortical low gamma (40–70 Hz) power. Here we sought to determine how ketamine differentially affects spiking and gamma local field potential (LFP) activity in the rat mPFC and MD thalamus. Additionally, we investigated the ability of drugs targeting the dopamine D4 receptor (D4R) to modify the effects of ketamine on gamma activity as a measure of potential cognitive therapeutic efficacy. Rats were trained to walk on a treadmill to reduce confounds related to hyperactivity after ketamine administration (10 mg/kg s.c.) while recordings were obtained from electrodes chronically implanted in the mPFC and MD thalamus. Ketamine increased gamma LFP power in mPFC and MD thalamus in a similar frequency range, yet did not increase thalamocortical synchronization. Ketamine also increased firing rates and spike synchronization to gamma oscillations in the mPFC but decreased both measures in MD thalamus. Conversely, walking alone increased both firing rates and spike-gamma LFP correlations in both mPFC and MD thalamus. The D4R antagonist alone (L-745,870) had no effect on gamma LFP power during treadmill walking, although it reversed increases induced by the D4R agonist (A-412997) in both mPFC and MD thalamus. Neither drug altered ketamine-induced changes in gamma power or firing rates in the mPFC. However, in MD thalamus, the D4R agonist increased ketamine-induced gamma power and prevented ketamine’s inhibitory effect on firing rates. Results provide new evidence that ketamine differentially modulates spiking and gamma power in MD thalamus and mPFC, supporting a potential role for both areas

  13. The cAMP signaling system inhibits the repair of {gamma}-ray-induced DNA damage by promoting Epac1-mediated proteasomal degradation of XRCC1 protein in human lung cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Eun-Ah; Juhnn, Yong-Sung, E-mail: juhnn@snu.ac.kr

    2012-06-01

    Highlights: Black-Right-Pointing-Pointer cAMP signaling system inhibits repair of {gamma}-ray-induced DNA damage. Black-Right-Pointing-Pointer cAMP signaling system inhibits DNA damage repair by decreasing XRCC1 expression. Black-Right-Pointing-Pointer cAMP signaling system decreases XRCC1 expression by promoting its proteasomal degradation. Black-Right-Pointing-Pointer The promotion of XRCC1 degradation by cAMP signaling system is mediated by Epac1. -- Abstract: Cyclic AMP is involved in the regulation of metabolism, gene expression, cellular growth and proliferation. Recently, the cAMP signaling system was found to modulate DNA-damaging agent-induced apoptosis by regulating the expression of Bcl-2 family proteins and inhibitors of apoptosis. Thus, we hypothesized that the cAMP signaling may modulate DNAmore » repair activity, and we investigated the effects of the cAMP signaling system on {gamma}-ray-induced DNA damage repair in lung cancer cells. Transient expression of a constitutively active mutant of stimulatory G protein (G{alpha}sQL) or treatment with forskolin, an adenylyl cyclase activator, augmented radiation-induced DNA damage and inhibited repair of the damage in H1299 lung cancer cells. Expression of G{alpha}sQL or treatment with forskolin or isoproterenol inhibited the radiation-induced expression of the XRCC1 protein, and exogenous expression of XRCC1 abolished the DNA repair-inhibiting effect of forskolin. Forskolin treatment promoted the ubiquitin and proteasome-dependent degradation of the XRCC1 protein, resulting in a significant decrease in the half-life of the protein after {gamma}-ray irradiation. The effect of forskolin on XRCC1 expression was not inhibited by PKA inhibitor, but 8-pCPT-2 Prime -O-Me-cAMP, an Epac-selective cAMP analog, increased ubiquitination of XRCC1 protein and decreased XRCC1 expression. Knockdown of Epac1 abolished the effect of 8-pCPT-2 Prime -O-Me-cAMP and restored XRCC1 protein level following {gamma

  14. Curcumin Regulates Low-Linear Energy Transfer {gamma}-Radiation-Induced NF{kappa}B-Dependent Telomerase Activity in Human Neuroblastoma Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aravindan, Natarajan, E-mail: naravind@ouhsc.ed; Veeraraghavan, Jamunarani; Madhusoodhanan, Rakhesh

    2011-03-15

    Purpose: We recently reported that curcumin attenuates ionizing radiation (IR)-induced survival signaling and proliferation in human neuroblastoma cells. Also, in the endothelial system, we have demonstrated that NF{kappa}B regulates IR-induced telomerase activity (TA). Accordingly, we investigated the effect of curcumin in inhibiting IR-induced NF{kappa}B-dependent hTERT transcription, TA, and cell survival in neuroblastoma cells. Methods and Materials: SK-N-MC or SH-SY5Y cells exposed to IR and treated with curcumin (10-100 nM) with or without IR were harvested after 1 h through 24 h. NF{kappa}B-dependent regulation was investigated either by luciferase reporter assays using pNF{kappa}B-, pGL3-354-, pGL3-347-, or pUSE-I{kappa}B{alpha}-Luc, p50/p65, or RelA siRNA-transfectedmore » cells. NF{kappa}B activity was analyzed using an electrophoretic mobility shift assay and hTERT expression using the quantitative polymerase chain reaction. TA was determined using the telomerase repeat amplification protocol assay and cell survival using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltertrazolium bromide and clonogenic assay. Results: Curcumin profoundly inhibited IR-induced NF{kappa}B. Consequently, curcumin significantly inhibited IR-induced TA and hTERT mRNA at all points investigated. Furthermore, IR-induced TA is regulated at the transcriptional level by triggering telomerase reverse transcriptase (TERT) promoter activation. Moreover, NF{kappa}B becomes functionally activated after IR and mediates TA upregulation by binding to the {kappa}B-binding region in the promoter region of the TERT gene. Consistently, elimination of the NF{kappa}B-recognition site on the telomerase promoter or inhibition of NF{kappa}B by the I{kappa}B{alpha} mutant compromises IR-induced telomerase promoter activation. Significantly, curcumin inhibited IR-induced TERT transcription. Consequently, curcumin inhibited hTERT mRNA and TA in NF{kappa}B overexpressed cells. Furthermore, curcumin

  15. A brain-computer interface based on self-regulation of gamma-oscillations in the superior parietal cortex

    NASA Astrophysics Data System (ADS)

    Grosse-Wentrup, Moritz; Schölkopf, Bernhard

    2014-10-01

    Objective. Brain-computer interface (BCI) systems are often based on motor- and/or sensory processes that are known to be impaired in late stages of amyotrophic lateral sclerosis (ALS). We propose a novel BCI designed for patients in late stages of ALS that only requires high-level cognitive processes to transmit information from the user to the BCI. Approach. We trained subjects via EEG-based neurofeedback to self-regulate the amplitude of gamma-oscillations in the superior parietal cortex (SPC). We argue that parietal gamma-oscillations are likely to be associated with high-level attentional processes, thereby providing a communication channel that does not rely on the integrity of sensory- and/or motor-pathways impaired in late stages of ALS. Main results. Healthy subjects quickly learned to self-regulate gamma-power in the SPC by alternating between states of focused attention and relaxed wakefulness, resulting in an average decoding accuracy of 70.2%. One locked-in ALS patient (ALS-FRS-R score of zero) achieved an average decoding accuracy significantly above chance-level though insufficient for communication (55.8%). Significance. Self-regulation of gamma-power in the SPC is a feasible paradigm for brain-computer interfacing and may be preserved in late stages of ALS. This provides a novel approach to testing whether completely locked-in ALS patients retain the capacity for goal-directed thinking.

  16. Molecular cloning, characterization and expression analysis of PPAR gamma in the orange-spotted grouper (Epinephelus coioides) after the Vibrio alginolyticus challenge.

    PubMed

    Luo, Shengwei; Huang, Youhua; Xie, Fuxing; Huang, Xiaohong; Liu, Yuan; Wang, Weina; Qin, Qiwei

    2015-04-01

    PPAR gamma was a key nuclear receptor, playing an important role in the immune defense and the anti-inflammatory mechanism. In this study, the full-length PPAR gamma (EcPPAR gamma) was obtained, containing a 5'UTR of 133 bp, an ORF of 1602 bp and a 3'UTR of 26 bp besides the poly (A) tail. The EcPPAR gamma gene encoded a protein of 533 amino acids with an estimated molecular mass of 60.02 KDa and a predicted isoelectric point (pI) of 6.26. The deduced amino acid sequence showed that EcPPAR gamma consisted of the conserved residues and the domains known to be critical for the PPAR gamma function. The quantitative real-time PCR analysis revealed that EcPPAR gamma transcript was expressed in all the examined tissue, while the strong expression was observed in intestine, followed by the expression in liver, gill, spleen heart, kidney and muscle. Vibrio challenge could stimulate the inflammatory response in grouper and induce a sharp increase of pro-inflammatory cytokines expression, lipid peroxidation and DNA damage, while the up-regulation of vibrio-induced inflammation could also increase the non-specific immune defense. The groupers challenged with Vibrio alginolyticus showed a sharp increase of EcPPAR gamma transcript in immune tissues. Subcellular localization analysis revealed that EcPPAR gamma was distributed in the nucleus. Furthermore, overexpression of EcPPAR gamma could down-regulated the expression of IL1b, IL6, TNF1 and TNF2. In addition, the administration of PPAR gamma antagonist, GW9662, could up-regulate the expression of pro-inflammatory genes, including IL1b, IL6, TNF1 and TNF2. Together, these results indicated that EcPPAR gamma serving as a negative regulator of pro-inflammatory cytokines may play an important role in the immune defense against vibrio-induced inflammation in grouper. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Protocol for obtaining platelet-rich plasma (PRP), platelet-poor plasma (PPP), and thrombin for autologous use.

    PubMed

    Franco, Diogo; Franco, Talita; Schettino, Angélica Maria; Filho, João Medeiros Tavares; Vendramin, Fabiel Spani

    2012-10-01

    Plasma has been widely studied and used in many different situations to speed up healing with better tissue adherence and hemostasis. Research projects are now attempting to isolate platelet-rich plasma (PRP) and platelet-poor plasma (PPP), making better use of their properties, particularly during operations and for wounds that are slow to heal. In view of the wide diversity of industrial machines and extraction protocols, together with the variety of industrially produced biologic glues, this article suggests an option for obtaining PRP, PPP, and human thrombin for autologous use. A way of obtaining PRP, PPP, and thrombin is reproduced through a protocol defined and established by the authors. Autologous thrombin and plasma were obtained through the collection and successive centrifugation of ten whole blood samples, until the desired hemocomponents were isolated, followed by quantitative and qualitative analyses of the elements obtained. The mean platelet concentration obtained was 6.03 × 10(8) platelets/ml, with a mean thrombin concentration of 33.54 nM, both values compatible with reports in the literature when different protocols are applied. The protocol described is a good option for the preparation and application of PRP, PPP, and autologous thrombin, particularly as they can be obtained simultaneously, eliminating the possibilities of viral contamination and allergic reactions. Moreover, the cost of this procedure is low, it is easy to perform, and replicable. This journal requires that authors assign a level of evidence to each article.

  18. Mutant N143P Reveals How Na[superscript +] Activates Thrombin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niu, Weiling; Chen, Zhiwei; Bush-Pelc, Leslie A.

    2010-01-12

    The molecular mechanism of thrombin activation by Na{sup +} remains elusive. Its kinetic formulation requires extension of the classical Botts-Morales theory for the action of a modifier on an enzyme to correctly account for the contribution of the E*, E, and E:Na{sup +} forms. The extended scheme establishes that analysis of k{sub cat} unequivocally identifies allosteric transduction of Na{sup +} binding into enhanced catalytic activity. The thrombin mutant N143P features no Na{sup +}-dependent enhancement of k{sub cat} yet binds Na{sup +} with an affinity comparable to that of wild type. Crystal structures of the mutant in the presence and absencemore » of Na{sup +} confirm that Pro{sup 143} abrogates the important H-bond between the backbone N atom of residue 143 and the carbonyl O atom of Glu{sup 192}, which in turn controls the orientation of the Glu{sup 192}-Gly{sup 193} peptide bond and the correct architecture of the oxyanion hole. We conclude that Na{sup +} activates thrombin by securing the correct orientation of the Glu{sup 192}-Gly{sup 193} peptide bond, which is likely flipped in the absence of cation. Absolute conservation of the 143-192 H-bond in trypsin-like proteases and the importance of the oxyanion hole in protease function suggest that this mechanism of Na{sup +} activation is present in all Na{sup +}-activated trypsin-like proteases.« less

  19. Dysfibrinogen Kagoshima with the amino acid substitution gammaThr-314 to Ile: analyses of molecular abnormalities and thrombophilic nature of this abnormal molecule.

    PubMed

    Niwa, Kazuki; Mimuro, Jun; Miyata, Masaaki; Sugo, Teruko; Ohmori, Tsukasa; Madoiwa, Seiji; Tei, Chuwa; Sakata, Yoichi

    2008-01-01

    Emerging lines of evidence have suggested that certain dysfibrinogens present a significant risk of thrombosis. The thrombophilic nature of a new-type of dysfibrinogen Kagoshima identified in a 36-year-old female with deep vein thrombosis during the postpartum period was studied. Based on the analyses of the patient fibrinogen and the fibrinogen genes, fibrinogen Kagoshima was shown to have the amino acid substitution of gammaThr-314 to Ile that resulted in impaired function and hypofibrinogenemia. Polymerization of fibrin monomers derived from patient fibrinogen was severely impaired with a partial correction in the presence of calcium ions, causing very low clottability and delayed cross-linking of patient fibrin catalyzed by activated factor XIII. Because of the low clottability, a large amount of soluble fibrin was formed upon thrombin treatment, resulting in an increase of thrombin in the soluble fraction. Additionally, tPA-mediated plasmin generation on fibrin was impaired and calcium-ion-dependent integrity of the gamma-chain D domain of Kagoshima fibrinogen was perturbed. The presence of many tapered-fiber ends inside the tangled fibrin networks, observed by scanning electron microscopy, suggested early termination of fibrin polymerization and the structural alteration. These data suggest that fibrinogen Kagoshima is dysfunctional, giving rise to formation of fibrinolysis-resistant soluble fibrin polymers and entrance of soluble fibrin associating with thrombin to the circulation, partly accounting for the thrombophilic nature of the affected fibrinogen and fibrin molecules.

  20. Toehold strand displacement-driven assembly of G-quadruplex DNA for enzyme-free and non-label sensitive fluorescent detection of thrombin.

    PubMed

    Xu, Yunying; Zhou, Wenjiao; Zhou, Ming; Xiang, Yun; Yuan, Ruo; Chai, Yaqin

    2015-02-15

    Based on a new signal amplification strategy by the toehold strand displacement-driven cyclic assembly of G-quadruplex DNA, the development of an enzyme-free and non-label aptamer sensing approach for sensitive fluorescent detection of thrombin is described. The target thrombin associates with the corresponding aptamer of the partial dsDNA probes and liberates single stranded initiation sequences, which trigger the toehold strand displacement assembly of two G-quadruplex containing hairpin DNAs. This toehold strand displacement reaction leads to the cyclic reuse of the initiation sequences and the production of DNA assemblies with numerous G-quadruplex structures. The fluorescent dye, N-Methyl mesoporphyrin IX, binds to these G-quadruplex structures and generates significantly amplified fluorescent signals to achieve highly sensitive detection of thrombin down to 5 pM. Besides, this method shows high selectivity towards the target thrombin against other control proteins. The developed thrombin sensing method herein avoids the modification of the probes and the involvement of any enzyme or nanomaterial labels for signal amplification. With the successful demonstration for thrombin detection, our approach can be easily adopted to monitor other target molecules in a simple, low-cost, sensitive and selective way by choosing appropriate aptamer/ligand pairs. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Host defense peptides of thrombin modulate inflammation and coagulation in endotoxin-mediated shock and Pseudomonas aeruginosa sepsis.

    PubMed

    Kalle, Martina; Papareddy, Praveen; Kasetty, Gopinath; Mörgelin, Matthias; van der Plas, Mariena J A; Rydengård, Victoria; Malmsten, Martin; Albiger, Barbara; Schmidtchen, Artur

    2012-01-01

    Gram-negative sepsis is accompanied by a disproportionate innate immune response and excessive coagulation mainly induced by endotoxins released from bacteria. Due to rising antibiotic resistance and current lack of other effective treatments there is an urgent need for new therapies. We here present a new treatment concept for sepsis and endotoxin-mediated shock, based on host defense peptides from the C-terminal part of human thrombin, found to have a broad and inhibitory effect on multiple sepsis pathologies. Thus, the peptides abrogate pro-inflammatory cytokine responses to endotoxin in vitro and in vivo. Furthermore, they interfere with coagulation by modulating contact activation and tissue factor-mediated clotting in vitro, leading to normalization of coagulation responses in vivo, a previously unknown function of host defense peptides. In a mouse model of Pseudomonas aeruginosa sepsis, the peptide GKY25, while mediating a modest antimicrobial effect, significantly inhibited the pro-inflammatory response, decreased fibrin deposition and leakage in the lungs, as well as reduced mortality. Taken together, the capacity of such thrombin-derived peptides to simultaneously modulate bacterial levels, pro-inflammatory responses, and coagulation, renders them attractive therapeutic candidates for the treatment of invasive infections and sepsis.

  2. Transforming growth factor-beta controls T helper type 1 cell development through regulation of natural killer cell interferon-gamma.

    PubMed

    Laouar, Yasmina; Sutterwala, Fayyaz S; Gorelik, Leonid; Flavell, Richard A

    2005-06-01

    Interferon-gamma and interleukin 12 produced by the innate arm of the immune system are important regulators of T helper type 1 (T(H)1) cell development, but signals that negatively regulate their expression remain controversial. Here we show that transforming growth factor-beta (TGF-beta) controlled T(H)1 differentiation through the regulation of interferon-gamma produced by natural killer (NK) cells. Blockade of TGF-beta signaling in NK cells caused the accumulation of a large pool of NK cells secreting copious interferon-gamma, responsible for T(H)1 differentiation and protection from leishmania infection. In contrast, blockade of TGF-beta signaling in dendritic cells did not affect dendritic cell homeostasis or interleukin 12 production, thus indicating a previously undescribed demarcation of the function of TGF-beta in NK cells versus dendritic cells.

  3. In-Vivo Animation of Auditory-Language-Induced Gamma-Oscillations in Children with Intractable Focal Epilepsy

    PubMed Central

    Brown, Erik C.; Rothermel, Robert; Nishida, Masaaki; Juhász, Csaba; Muzik, Otto; Hoechstetter, Karsten; Sood, Sandeep; Chugani, Harry T.; Asano, Eishi

    2008-01-01

    We determined if high-frequency gamma-oscillations (50- to 150-Hz) were induced by simple auditory communication over the language network areas in children with focal epilepsy. Four children (ages: 7, 9, 10 and 16 years) with intractable left-hemispheric focal epilepsy underwent extraoperative electrocorticography (ECoG) as well as language mapping using neurostimulation and auditory-language-induced gamma-oscillations on ECoG. The audible communication was recorded concurrently and integrated with ECoG recording to allow for accurate time-lock upon ECoG analysis. In three children, who successfully completed the auditory-language task, high-frequency gamma-augmentation sequentially involved: i) the posterior superior temporal gyrus when listening to the question, ii) the posterior lateral temporal region and the posterior frontal region in the time interval between question completion and the patient’s vocalization, and iii) the pre- and post-central gyri immediately preceding and during the patient’s vocalization. The youngest child, with attention deficits, failed to cooperate during the auditory-language task, and high-frequency gamma-augmentation was noted only in the posterior superior temporal gyrus when audible questions were given. The size of language areas suggested by statistically-significant high-frequency gamma-augmentation was larger than that defined by neurostimulation. The present method can provide in-vivo imaging of electrophysiological activities over the language network areas during language processes. Further studies are warranted to determine whether recording of language-induced gamma-oscillations can supplement language mapping using neurostimulation in presurgical evaluation of children with focal epilepsy. PMID:18455440

  4. Dual-colored graphene quantum dots-labeled nanoprobes/graphene oxide: functional carbon materials for respective and simultaneous detection of DNA and thrombin

    NASA Astrophysics Data System (ADS)

    Qian, Zhao Sheng; Shan, Xiao Yue; Chai, Lu Jing; Chen, Jian Rong; Feng, Hui

    2014-10-01

    Convenient and simultaneous detection of multiple biomarkers such as DNA and proteins with biocompatible materials and good analytical performance still remains a challenge. Herein, we report the respective and simultaneous detection of DNA and bovine α-thrombin (thrombin) entirely based on biocompatible carbon materials through a specially designed fluorescence on-off-on process. Colorful fluorescence, high emission efficiency, good photostability and excellent compatibility enables graphene quantum dots (GQDs) as the best choice for fluorophores in bioprobes, and thus two-colored GQDs as labeling fluorophores were chemically bonded with specific oligonucleotide sequence and aptamer to prepare two probes targeting the DNA and thrombin, respectively. Each probe can be assembled on the graphene oxide (GO) platform spontaneously by π-π stacking and electrostatic attraction; as a result, fast electron transfer in the assembly efficiently quenches the fluorescence of probe. The presence of DNA or thrombin can trigger the self-recognition between capturing a nucleotide sequence and its target DNA or between thrombin and its aptamer due to their specific hybridization and duplex DNA structures or the formation of apatamer-substrate complex, which is taken advantage of in order to achieve a separate quantitative analysis of DNA and thrombin. A dual-functional biosensor for simultaneous detection of DNA and thrombin was also constructed by self-assembly of two probes with distinct colors and GO platform, and was further evaluated with the presence of various concentrations of DNA and thrombin. Both biosensors serving as a general detection model for multiple species exhibit outstanding analytical performance, and are expected to be applied in vivo because of the excellent biocompatibility of their used materials.

  5. Preparation of chondroitin sulfate libraries containing disulfated disaccharide units and inhibition of thrombin by these chondroitin sulfates.

    PubMed

    Numakura, Mario; Kusakabe, Noriko; Ishige, Kazuya; Ohtake-Niimi, Shiori; Habuchi, Hiroko; Habuchi, Osami

    2010-07-01

    Chondroitin sulfate (CS) containing GlcA-GalNAc(4,6-SO(4)) (E unit) and CS containing GlcA(2SO(4))-GalNAc(6SO(4)) (D unit) have been implicated in various physiological functions. However, it has been poorly understood how the structure and contents of disulfated disaccharide units in CS contribute to these functions. We prepared CS libraries containing E unit or D unit in various proportions by in vitro enzymatic reactions using recombinant GalNAc 4-sulfate 6-O-sulfotransferase and uronosyl 2-O-sulfotransferase, and examined their inhibitory activity toward thrombin. The in vitro sulfated CSs containing disulfated disaccharide units showed concentration-dependent direct inhibition of thrombin when the proportion of E unit or D unit in the CSs was above 15-17%. The CSs containing both E unit and D unit exhibited higher inhibitory activity toward thrombin than the CSs containing either E unit or D unit alone, if the proportion of the total disulfated disaccharide units of these CSs was comparable. The thrombin-catalyzed degradation of fibrinogen, a physiological substrate for thrombin, was also inhibited by the CS containing both E unit and D unit. These observations indicate that the enzymatically prepared CS libraries containing various amounts of disulfated disaccharide units appear to be useful for elucidating the physiological function of disulfated disaccharide units in CS.

  6. Comparison of laser-activated tissue solders and thrombin-activated cryoprecipitate for wound closure

    NASA Astrophysics Data System (ADS)

    Kayton, Mark L.; Libutti, Steven K.; Bessler, Marc; Allendorf, John D. F.; Eiref, Simon D.; Marx, Gerard; Mou, Xiaode; Morales, Alfredo M.; Treat, Michael R.; Nowygrod, Roman

    1994-09-01

    To determine the relative strengths of various biologic adhesives at several timepoints, we compared thrombin-activated SD (solvent-detergent treated) cryoprecipitate with laser- activated SD cryoprecipitate and a laser-activated, albumin-based glue. Male Sprague-Dawley rats (n equals 79) received four, 3-cm, dorsal skin incisions which were closed with either laser- activated cryoprecipitate, laser-activated albumin solder, thrombin-activated cryoprecipitate, or standard skin staples. The cryoprecipitate was derived from pooled human plasma and was treated with a solvent-detergent process, rendering it free of envelope-coated viruses (i.e., HBV, HIV). An 808-nm diode laser was used to activate each solder with an average duration of exposure of 75 seconds per incision. Animals were sacrificed for evaluation of wound tensile strength and histology at 0 hours, 2 hours, 4 hours, and 4 days. At all timepoints tested, laser-activated solders were significantly stronger than thrombin-activated cryoprecipitate (p < 0.03) and control wounds (p < 0.003). There was no significant difference in tensile strength between the two types of laser-activated solder at any timepoint.

  7. Interleukin-5 regulates genes involved in B-cell terminal maturation.

    PubMed

    Horikawa, Keisuke; Takatsu, Kiyoshi

    2006-08-01

    Interleukin (IL)-5 induces CD38-activated splenic B cells to differentiate into immunoglobulin M-secreting cells and undergo micro to gamma 1 class switch recombination (CSR) at the DNA level, resulting in immunoglobulin G1 (IgG1) production. Interestingly, IL-4, a well-known IgG1-inducing factor does not induce immunoglobulin production or micro to gamma 1 CSR in CD38-activated B cells. In the present study, we implemented complementary DNA microarrays to investigate the contribution of IL-5-induced gene expression in CD38-stimulated B cells to immunoglobulin-secreting cell differentiation and micro to gamma 1 CSR. IL-5 and IL-4 stimulation of CD38-activated B cells induced the expression of 418 and 289 genes, respectively, that consisted of several clusters. Surprisingly, IL-5-inducible 78 genes were redundantly regulated by IL-4. IL-5 and IL-4 also suppressed the gene expression of 319 and 325 genes, respectively, 97 of which were overlapped. Genes critically regulated by IL-5 include immunoglobulin-related genes such as J chain and immunoglobulinkappa, and genes involved in B-cell maturation such as BCL6, activation-induced cytidine deaminase (Aid) and B lymphocyte-induced maturation protein-1 (Blimp-1) and tend to be induced slowly after IL-5 stimulation. Intriguingly, among genes, the retroviral induction of Blimp-1 and Aid in CD38-activated B cells could induce IL-4-dependent maturation to Syndecan-1+ antibody-secreting cells and micro to gamma 1 CSR, respectively, in CD38-activated B cells. Taken together, preferential Aid and Blimp-1 expression plays a critical role in IL-5-induced immunoglobulin-secreting cell differentiation and micro to gamma 1 CSR in CD38-activated B cells.

  8. Modeling the microscopic electrical properties of thrombin binding aptamer (TBA) for label-free biosensors.

    PubMed

    Alfinito, Eleonora; Reggiani, Lino; Cataldo, Rosella; De Nunzio, Giorgio; Giotta, Livia; Guascito, Maria Rachele

    2017-02-10

    Aptamers are chemically produced oligonucleotides, able to bind a variety of targets such as drugs, proteins and pathogens with high sensitivity and selectivity. Therefore, aptamers are largely employed for producing label-free biosensors (aptasensors), with significant applications in diagnostics and drug delivery. In particular, the anti-thrombin aptamers are biomolecules of high interest for clinical use, because of their ability to recognize and bind the thrombin enzyme. Among them, the DNA 15-mer aptamer (TBA), has been widely explored around the possibility of using it in aptasensors. This paper proposes a microscopic model of the electrical properties of TBA and of the aptamer-thrombin complex, combining information from both structure and function, following the issues addressed in an emerging branch of electronics known as proteotronics. The theoretical results are compared and validated with measurements reported in the literature. Finally, the model suggests resistance measurements as a novel tool for testing aptamer-target affinity.

  9. Modeling the microscopic electrical properties of thrombin binding aptamer (TBA) for label-free biosensors

    NASA Astrophysics Data System (ADS)

    Alfinito, Eleonora; Reggiani, Lino; Cataldo, Rosella; De Nunzio, Giorgio; Giotta, Livia; Guascito, Maria Rachele

    2017-02-01

    Aptamers are chemically produced oligonucleotides, able to bind a variety of targets such as drugs, proteins and pathogens with high sensitivity and selectivity. Therefore, aptamers are largely employed for producing label-free biosensors (aptasensors), with significant applications in diagnostics and drug delivery. In particular, the anti-thrombin aptamers are biomolecules of high interest for clinical use, because of their ability to recognize and bind the thrombin enzyme. Among them, the DNA 15-mer aptamer (TBA), has been widely explored around the possibility of using it in aptasensors. This paper proposes a microscopic model of the electrical properties of TBA and of the aptamer-thrombin complex, combining information from both structure and function, following the issues addressed in an emerging branch of electronics known as proteotronics. The theoretical results are compared and validated with measurements reported in the literature. Finally, the model suggests resistance measurements as a novel tool for testing aptamer-target affinity.

  10. The long term immunological response of swine after two exposures to a salmon thrombin and fibrinogen hemostatic bandage

    PubMed Central

    Rothwell, Stephen W.; Settle, Timothy; Wallace, Shannon; Dorsey, Jennifer; Simpson, David; Bowman, James R.; Janmey, Paul; Sawyer, Evelyn

    2014-01-01

    Experimental salmon thrombin/fibrinogen dressings have been shown to provide effective hemostasis in severe hemorrhage situations. The hypothesis for this study was that swine would still remain healthy without coagulopathy six months after exposure to salmon thrombin/fibrinogen dressings. Initial exposure was by insertion of the salmon dressing into the peritoneal cavity. Three months after the initial exposure, the same animals were subjected to two full thickness dermal wounds on the dorsal surface. One wound was bandaged with the salmon thrombin/fibrinogen bandage and the other wound was dressed with a standard bandage. The animals were monitored for an additional three months. Blood was drawn every 14 days over the six months for immunological and coagulation function analysis. All of the animals (8 pigs) remained healthy during the six month period and the dermal wounds healed without incidence. Lymph nodes and spleen showed signs of normal immune response and Western blots showed development of antibodies against salmon fibrinogen, but none of the animals made antibodies that recognized any species of thrombin. Coagulation parameters (fibrinogen concentration, thrombin time, PT and aPTT) and hematological parameters remained normal over the course of the study when compared to initial values of the subject swine. PMID:20705479

  11. Constitutive production and thrombin-induced release of vascular endothelial growth factor by human megakaryocytes and platelets

    PubMed Central

    Möhle, Robert; Green, David; Moore, Malcolm A. S.; Nachman, Ralph L.; Rafii, Shahin

    1997-01-01

    We have shown that coculture of bone marrow microvascular endothelial cells with hematopoietic progenitor cells results in proliferation and differentiation of megakaryocytes. In these long-term cultures, bone marrow microvascular endothelial cell monolayers maintain their cellular integrity in the absence of exogenous endothelial growth factors. Because this interaction may involve paracrine secretion of cytokines, we evaluated megakaryocytic cells for secretion of vascular endothelial growth factor (VEGF). Megakaryocytes (CD41a+) were generated by ex vivo expansion of hematopoietic progenitor cells with kit-ligand and thrombopoietin for 10 days and further purified with immunomagnetic microbeads. Using reverse transcription–PCR, we showed that megakaryocytic cell lines (Dami, HEL) and purified megakaryocytes expressed mRNA of the three VEGF isoforms (121, 165, and 189 amino acids). Large quantities of VEGF (>1 ng/106 cells/3 days) were detected in the supernatant of Dami cells, ex vivo-generated megakaryocytes, and CD41a+ cells isolated from bone marrow. The constitutive secretion of VEGF by CD41a+ cells was stimulated by growth factors of the megakaryocytic lineage (interleukin 3, thrombopoietin). Western blotting of heparin–Sepharose-enriched supernatant mainly detected the isoform VEGF165. In addition, immunohistochemistry showed intracytoplasmic VEGF in polyploid megakaryocytes. Thrombin stimulation of megakaryocytes and platelets resulted in rapid release of VEGF within 30 min. We conclude that human megakaryocytes produce and secrete VEGF in an inducible manner. Within the bone marrow microenvironment, VEGF secreted by megakaryocytes may contribute to the proliferation of endothelial cells. VEGF delivered to sites of vascular injury by activated platelets may initiate angiogenesis. PMID:9012841

  12. Opiate-induced motor stimulation is regulated by gamma-aminobutyric acid type B receptors found in the ventral tegmental area in mice.

    PubMed

    Leite-Morris, Kimberly A; Fukudome, Eugene Y; Kaplan, Gary B

    2002-01-14

    Recent studies suggest that gamma-aminobutyric acid type B (GABA(B)) receptors located on dopaminergic cells in the ventral tegmental area (VTA) regulate mesolimbic dopaminergic (A10) activity. In the current study, we identified GABA(B) receptor subtypes in the area of the VTA and examined their role in modulating acute opiate actions. We studied the effects of intra-VTA infusions of the selective GABA(B) agonist baclofen on morphine-induced locomotor stimulation and A10 neuronal activation. Drug treatments were followed by ambulatory activity monitoring for 180 min. Intra-VTA baclofen treatment produced a 70% inhibition of morphine-stimulated locomotor activity. Furthermore, functional activation of A10 neurons was assessed by immunohistochemical staining of c-Fos in the nucleus accumbens (NAc), where A10 neurons terminate. We found that morphine treatment increased the levels of Fos-positive nuclei in the NAc, while intra-VTA baclofen treatment reversed morphine's effects. Finally, GABA(B) receptor subtypes and isoforms were identified in the ventromedial mesencephalon using immunoblotting. We demonstrated the presence of GABA(B)R1a (130 kDa), GABA(B)R1b (100 kDa), and GABA(B)R2 (120 kDa) receptor subtypes in this region. These results suggest that GABA(B) receptor isoforms are found in the VTA and their activation results in the blockade of behavioral effects of opiates via inhibition of dopaminergic neurotransmission.

  13. Normal pregnancy is associated with an increase in thrombin generation from the very early stages of the first trimester.

    PubMed

    Bagot, C N; Leishman, E; Onyiaodike, C C; Jordan, F; Freeman, D J

    2017-09-01

    Pregnancy is a hypercoagulable state associated with an increased risk of venous thrombosis, which begins during the first trimester, but the exact time of onset is unknown. Thrombin generation, a laboratory marker of thrombosis risk, increases during normal pregnancy but it is unclear exactly how early this increase occurs. We assessed thrombin generation by Calibrated Automated Thrombography in women undergoing natural cycle in vitro fertilization, who subsequently gave birth at term following a normal pregnancy (n=22). Blood samples were taken just prior to conception and repeated five times during very early pregnancy, up to Day 59 estimated gestation. Mean Endogenous Thrombin Potential (ETP), peak thrombin generation and Velocity Index (VI) increased significantly from pre-pregnancy to Day 43 gestation (p=0.024-0.0004). This change persisted to Day 59 gestation. The mean of the percentage change from baseline, accounting for inter-individual variation, in ETP, peak thrombin and VI increased significantly from pre-pregnancy to Day 32 gestation (p=0.0351-<0.0001) with the mean increase from baseline persisting to Day 59 gestation. Thrombin generation increases significantly during the very early stages of normal pregnancy when compared to the pre-pregnancy state. The increased risk of venous thrombosis therefore likely begins very early in a woman's pregnancy, suggesting that women considered clinically to be at high thrombotic risk should start thromboprophylaxis as early as possible after a positive pregnancy test. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. PAR-1 and thrombin: the ties that bind the microenvironment to melanoma metastasis.

    PubMed

    Zigler, Maya; Kamiya, Takafumi; Brantley, Emily C; Villares, Gabriel J; Bar-Eli, Menashe

    2011-11-01

    Progression of melanoma is dependent on cross-talk between tumor cells and the adjacent microenvironment. The thrombin receptor, protease-activated receptor-1 (PAR-1), plays a key role in exerting this function during melanoma progression. PAR-1 and its activating factors, which are expressed on tumor cells and the surrounding stroma, induce not only coagulation but also cell signaling, which promotes the metastatic phenotype. Several adhesion molecules, cytokines, growth factors, and proteases have recently been identified as downstream targets of PAR-1 and have been shown to modulate interactions between tumor cells and the microenvironment in the process of melanoma growth and metastasis. Inhibiting such interactions by targeting PAR-1 could potentially be a useful therapeutic modality for melanoma patients. ©2011 AACR.

  15. Gamma knife surgery-induced ependymoma after the treatment of meningioma - a case report.

    PubMed

    Wang, Ke; Pan, Li; Che, Xiaoming; Lou, Meiqing

    2012-01-01

    Gamma knife surgery is widely used for a number of neurological disorders. However, little is known about its long-term complications such as carcinogenic risks. Here, we present a case of a radiosurgery-induced ependymoma by gamma knife surgery for the treatment of a spinal meningioma in a 7-year-old patient. In light of reviewing the previous reports, we advocate high caution in making young patients receive this treatment.

  16. Regulation of the substance P-induced contraction via the release of acetylcholine and gamma-aminobutyric acid in the guinea-pig urinary bladder.

    PubMed Central

    Shirakawa, J.; Nakanishi, T.; Taniyama, K.; Kamidono, S.; Tanaka, C.

    1989-01-01

    1. The action of substance P (SP) on the release of gamma-aminobutyric acid (GABA) and acetylcholine (ACh) and on contraction were studied in strips of the guinea-pig urinary bladder. Substance P induced a dose-dependent contraction of strips of guinea-pig urinary bladder (EC50 = 1.2 x 10(-9) M). This contraction was not altered by tetrodotoxin, but with a dose of 10(-9) M and less, there was a complete inhibition by 10(-6) M) atropine. Contractions initiated by 3 x 10(-9) M) SP or more were partly inhibited by atropine. The EC50 value of substance P in the presence of atropine was 7.0 x 10(-9) M. 2. Substance P induced a Ca2+-dependent and tetrodotoxin-resistant release of [3H]-acetylcholine (ACh) from strips of urinary bladder preloaded with [3H]-choline (EC50 = 4.9 x 10(-10) M), and this release was antagonized by [D-Pro2,D-Trp7,9] substance P. 3. Bicuculline increased the substance P-induced contraction and the release of [3H]-ACh from the strips. 4. Substance P induced a Ca2+-dependent and tetrodotoxin-sensitive release of [3H]-gamma-aminobutyric acid (GABA) from strips preloaded with [3H]-GABA (EC50 = 2.6 x 10(-9) M), and this release was antagonized by [D-Pro2,D-Trp7,9] substance P. 5. Therefore, substance P appears to exert excitatory effects on the contractility of urinary bladder predominantly by stimulating its own receptor located on the cholinergic nerve terminals. GABA released by substance P inhibits stimulation of the cholinergic neurone. However, the direct action of substance P on the cholinergic neurone is more potent that the indirect action via GABA release. PMID:2479440

  17. The mechanisms how heparin affects the tumor cell induced VEGF and chemokine release from platelets to attenuate the early metastatic niche formation

    PubMed Central

    Ponert, Jan Moritz; Schwarz, Svenja; Haschemi, Reza; Müller, Jens; Pötzsch, Bernd; Bendas, Gerd

    2018-01-01

    Metastasis is responsible for the majority of cancer associated fatalities. Tumor cells leaving the primary tumor and entering the blood flow immediately interact with platelets. Activated platelets contribute in different ways to cancer cell survival and proliferation, e.g. in formation of the early metastatic niche by release of different growth factors and chemokines. Here we show that a direct interaction between platelets and MV3 melanoma or MCF7 breast cancer cells induces platelet activation and a VEGF release in citrated plasma that cannot be further elevated by the coagulation cascade and generated thrombin. In contrast, the release of platelet-derived chemokines CXCL5 and CXCL7 depends on both, a thrombin-mediated platelet activation and a direct interaction between tumor cells and platelets. Preincubation of platelets with therapeutic concentrations of unfractionated heparin reduces the tumor cell initiated VEGF release from platelets. In contrast, tumor cell induced CXCL5 and CXCL7 release from platelets was not impacted by heparin pretreatment in citrated plasma. In defibrinated, recalcified plasma, on the contrary, heparin is able to reduce CXCL5 and CXCL7 release from platelets by thrombin inhibition. Our data indicate that different chemokines and growth factors in diverse platelet granules are released in tightly regulated processes by various trigger mechanisms. We show for the first time that heparin is able to reduce the mediator release induced by different tumor cells both in a contact and coagulation dependent manner. PMID:29346400

  18. Potential Protective Effects of Ursolic Acid against Gamma Irradiation-Induced Damage Are Mediated through the Modulation of Diverse Inflammatory Mediators

    PubMed Central

    Wang, Hong; Sim, Meng-Kwoon; Loke, Weng Keong; Chinnathambi, Arunachalam; Alharbi, Sulaiman Ali; Tang, Feng Ru; Sethi, Gautam

    2017-01-01

    This study was aimed to evaluate the possible protective effects of ursolic acid (UA) against gamma radiation induced damage both in vitro as well as in vivo. It was observed that the exposure to gamma radiation dose- and time-dependently caused a significant decrease in the cell viability, while the treatment of UA attenuated this cytotoxicity. The production of free radicals including reactive oxygen species (ROS) and NO increased significantly post-irradiation and further induced lipid peroxidation and oxidative DNA damage in cells. These deleterious effects could also be effectively blocked by UA treatment. In addition, UA also reversed gamma irradiation induced inflammatory responses, as indicated by the decreased production of TNF-α, IL-6, and IL-1β. NF-κB signaling pathway has been reported to be a key mediator involved in gamma radiation-induced cellular damage. Our results further demonstrated that gamma radiation dose- and time-dependently enhanced NF-κB DNA binding activity, which was significantly attenuated upon UA treatment. The post-irradiation increase in the expression of both phospho-p65, and phospho-IκBα was also blocked by UA. Moreover, the treatment of UA was found to significantly prolong overall survival in mice exposed to whole body gamma irradiation, and reduce the excessive inflammatory responses. Given its radioprotective efficacy as described here, UA as an antioxidant and NF-κB pathway blocker, may function as an important pharmacological agent in protecting against gamma irradiation-induced injury. PMID:28670276

  19. INDUCED EEG GAMMA OSCILLATION ALIGNMENT IMPROVES DIFFERENTIATION BETWEEN AUTISM AND ADHD GROUP RESPONSES IN A FACIAL CATEGORIZATION TASK.

    PubMed

    Gross, Eric; El-Baz, Ayman S; Sokhadze, Guela E; Sears, Lonnie; Casanova, Manuel F; Sokhadze, Estate M

    2012-01-01

    INTRODUCTION: Children diagnosed with an autism spectrum disorder (ASD) often lack the ability to recognize and properly respond to emotional stimuli. Emotional deficits also characterize children with attention deficit/hyperactivity disorder (ADHD), in addition to exhibiting limited attention span. These abnormalities may effect a difference in the induced EEG gamma wave burst (35-45 Hz) peaked approximately 300-400 milliseconds following an emotional stimulus. Because induced gamma oscillations are not fixed at a definite point in time post-stimulus, analysis of averaged EEG data with traditional methods may result in an attenuated gamma burst power. METHODS: We used a data alignment technique to improve the averaged data, making it a better representation of the individual induced EEG gamma oscillations. A study was designed to test the response of a subject to emotional stimuli, presented in the form of emotional facial expression images. In a four part experiment, the subjects were instructed to identify gender in the first two blocks of the test, followed by differentiating between basic emotions in the final two blocks (i.e. anger vs. disgust). EEG data was collected from ASD (n=10), ADHD (n=9), and control (n=11) subjects via a 128 channel EGI system, and processed through a continuous wavelet transform and bandpass filter to isolate the gamma frequencies. A custom MATLAB code was used to align the data from individual trials between 200-600 ms post-stimulus, EEG site, and condition by maximizing the Pearson product-moment correlation coefficient between trials. The gamma power for the 400 ms window of maximum induced gamma burst was then calculated and compared between subject groups. RESULTS AND CONCLUSION: Condition (anger/disgust recognition, gender recognition) × Alignment × Group (ADHD, ASD, Controls) interaction was significant at most of parietal topographies (e.g., P3-P4, P7-P8). These interactions were better manifested in the aligned data set

  20. Enhancement of aptamer immobilization using egg shell-derived nano-sized spherical hydroxyapatite for thrombin detection in neuroclinic.

    PubMed

    Derkus, Burak; Arslan, Yavuz Emre; Emregul, Kaan C; Emregul, Emel

    2016-09-01

    In the present study, we describe the sonochemical isolation of nano-sized spherical hydroxyapatite (nHA) from egg shell and application towards thrombin aptasensing. In addition to the sonochemical method, two conventional methods present in literature were carried out to perform a comparative study. Various analysis methods including Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Energy-Dispersive Analysis of X-Rays (EDAX), and Thermal Gravimetric Analysis (TGA) have been applied for the characterization of nHA and its nanocomposite with marine-derived collagen isolated from Rhizostoma pulmo jellyfish. TEM micrographs revealed the sonochemically synthesized nHA nanoparticles to have a unique porous spherical shape with a diameter of approximately 60-80nm when compared to hydroxyapatite nanoparticles synthesized using the other two methods which had a typical needle shaped morphology. EDAX, XRD and FTIR results demonstrated that the obtained patterns belonged to hydroxyapatite. Electrochemical impedance spectroscopy (EIS) is the main analyzing technique of the developed thrombin aptasensor. The proposed aptasensor has a detection limit of 0.25nM thrombin. For clinical application of the developed aptasensor, thrombin levels in blood and cerebrospinal fluid (CSF) samples obtained from patients with Multiple Sclerosis, Myastenia Gravis, Epilepsy, Parkinson, polyneuropathy and healthy donors were analyzed using both the aptasensor and commercial ELISA kit. The results showed that the proposed system is a promising candidate for clinical analysis of thrombin. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Neutron induced background in the COMPTEL detector on the Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Morris, D. J.; Aarts, H.; Bennett, K.; Busetta, M.; Byrd, R.; Collmar, W.; Connors, A.; Diehl, R.; Eymann, G.; Foster, C.

    1992-01-01

    Interactions of neutrons in a prototype of the Compton imaging telescope (COMPTEL) gamma ray detector for the Gamma Ray Observatory were studied to determine COMPTEL's sensitivity as a neutron telescope and to estimate the gamma ray background resulting from neutron interactions. The IUCF provided a pulsed neutron beam at five different energies between 18 and 120 MeV. These measurements showed that the gamma ray background from neutron interactions is greater than previously expected. It was thought that most such events would be due to interactions in the upper detector modules of COMPTEL and could be distinguished by pulse shape discrimination. Rather, the bulk of the gamma ray background appears to be due to interactions in passive material, primarily aluminum, surrounding the D1 modules. In a considerable fraction of these interactions, two or more gamma rays are produced simultaneously, with one interacting in the D1 module and the other interacting in the module of the lower (D2) detector. If the neutron interacts near the D1 module, the D1 D2 time of flight cannot distinguish such an event from a true gamma ray event. In order to assess the significance of this background, the flux of neutrons in orbit has been estimated based on observed events with neutron pulse shape signature in D1. The strength of this neutron induced background is estimated. This is compared with the rate expected from the isotropic cosmic gamma ray flux.

  2. In vivo increase in thrombin generation by four-factor prothrombin complex concentrate in apixaban-treated healthy volunteers.

    PubMed

    Cheung, Y W; Barco, S; Hutten, B A; Meijers, J C M; Middeldorp, S; Coppens, M

    2015-10-01

    Four-factor prothrombin complex concentrate (PCC) (Cofact; Sanquin Blood Supply) 50 IU kg(-1) increased thrombin generation beyond baseline values in healthy, rivaroxaban-treated subjects. To assess whether infusion with doses of 37.5 IU kg(-1) and 25 IU kg(-1) PCC reverses the anticoagulant effect of high-dose apixaban, another oral direct factor Xa inhibitor. In a randomized, double-blind, placebo-controlled, crossover study, six healthy subjects received twice-daily apixaban 10 mg for 3.5 days followed by a single bolus of 37.5 IU kg(-1) PCC, 25 IU kg(-1) PCC, or placebo. The primary outcome was the effect of PCC 15 min after infusion on thrombin generation (endogenous thrombin potential [ETP]); secondary outcomes were the immediate effect of PCC on prothrombin time (PT) and the effect of PCC as compared with placebo over a period of 24 h on ETP and PT. Fifteen minutes after infusion of 37.5 IU kg(-1) and 25 IU kg(-1) PCC, ETP increased from 41% ± 11% to 56% ± 23% (P = 0.06) and from 44% ± 12% to 51% ± 15% (P = 0.03), respectively. ETP significantly differed over time between 37.5 IU kg(-1) PCC and placebo during 24 h after infusion (P < 0.01). Both PCC doses restored apixaban-induced PT prolongation after 15 min (P < 0.01), and this was sustained over a period of 24 h. Both 37.5 IU kg(-1) PCC and 25 IU/kg PCC improved coagulation parameters in healthy subjects, suggesting partial reversal of the anticoagulant effect of apixaban. This implies that PCC might be considered in patients with apixaban-associated bleeding. However, ETP was not immediately restored to pre-apixaban levels, suggesting that these doses are too low to instantly and fully restore hemostasis at peak apixaban levels. © 2015 International Society on Thrombosis and Haemostasis.

  3. 4-(4-Hydroxy-3-methoxyphenyl)-2-butanone modulates redox signal in gamma-irradiation-induced nephrotoxicity in rats.

    PubMed

    Abozaid, Omayma A R; Moawed, Fatma S M; Farrag, Mostafa A; Abdel Aziz, Abdel Aziz A

    2017-12-01

    Cellular exposure to ionising radiation leads to oxidative stress events, which refer to elevated intracellular levels of reactive oxygen species (ROS). The elevated levels of ROS significantly contributed to γ-radiation (IR) induced cytotoxicity. In an attempt to minimise these cytotoxic effects, antioxidant compounds have been identified to counteract radiation- associated toxicities. We mainly aimed to study the protective effect of 4-(4-hydroxy-3-methoxyphenyl)-2-butanone (HMB) on IR-induced nephrotoxicity, whereas it was previously shown to have anti-inflammatory effects in different inflammation models. Animals were treated orally with HMB (25 mg/kg b.wt daily) then performed by whole-body gamma-irradiation of animals with 6 Gy; a single dose applied on the 15th day and animals were sacrificed at the end of the 23rd day. It was found that IR exposure significantly induced renal oxidative injury that accompanied by inflammatory disturbance. Also, NADPH oxidase and iNOS gene expressions were significantly up-regulated, while the mitochondrial enzymes (complex I & II) were significantly down-regulated in IR exposed animals. Additionally, Western immunoblotting analysis of signalling growth factor protein; p38 MAPK was significantly overexpressed. Interestingly, HMB treatment showed statistically significant amelioration in parameters with an improved histological structure upon the IR-induced nephrotoxicity. It can be concluded that modulation of NADPH-oxidase, iNOS and mitochondrial enzymes by HMB might be responsible for the amendment of the antioxidant status and impairment of p38 MAPK signal, thus attenuate the nephrotoxicity induced post IR exposure.

  4. Thermodynamic compensation upon binding to exosite 1 and the active site of thrombin

    PubMed Central

    Treuheit, Nicholas A.; Beach, Muneera A.; Komives, Elizabeth A.

    2011-01-01

    Several lines of experimental evidence including amide exchange and NMR suggest that ligands binding to thrombin cause reduced backbone dynamics. Binding of the covalent inhibitor dPhe-Pro-Arg chloromethylketone to the active site serine, as well as non-covalent binding of a fragment of the regulatory protein, thrombomodulin, to exosite 1 on the back side of the thrombin molecule both cause reduced dynamics. However, the reduced dynamics do not appear to be accompanied by significant conformational changes. In addition, binding of ligands to the active site does not change the affinity of thrombomodulin fragments binding to exosite 1, however, the thermodynamic coupling between exosite 1 and the active site has not been fully explored. We present isothermal titration calorimetry experiments that probe changes in enthalpy and entropy upon formation of binary ligand complexes. The approach relies on stringent thrombin preparation methods and on the use of dansyl-L-arginine-(3-methyl-1,5-pantanediyl) amide and a DNA aptamer as ligands with ideal thermodynamic signatures for binding to the active site and to exosite 1. Using this approach, the binding thermodynamic signatures of each ligand alone as well as the binding signatures of each ligand when the other binding site was occupied were measured. Different exosite 1 ligands with widely varied thermodynamic signatures cause the same reduction in ΔH and a concomitantly lower entropy cost upon DAPA binding at the active site. The results suggest a general phenomenon of enthalpy-entropy compensation consistent with reduction of dynamics/increased folding of thrombin upon ligand binding to either the active site or to exosite 1. PMID:21526769

  5. Thermodynamic compensation upon binding to exosite 1 and the active site of thrombin.

    PubMed

    Treuheit, Nicholas A; Beach, Muneera A; Komives, Elizabeth A

    2011-05-31

    Several lines of experimental evidence including amide exchange and NMR suggest that ligands binding to thrombin cause reduced backbone dynamics. Binding of the covalent inhibitor dPhe-Pro-Arg chloromethyl ketone to the active site serine, as well as noncovalent binding of a fragment of the regulatory protein, thrombomodulin, to exosite 1 on the back side of the thrombin molecule both cause reduced dynamics. However, the reduced dynamics do not appear to be accompanied by significant conformational changes. In addition, binding of ligands to the active site does not change the affinity of thrombomodulin fragments binding to exosite 1; however, the thermodynamic coupling between exosite 1 and the active site has not been fully explored. We present isothermal titration calorimetry experiments that probe changes in enthalpy and entropy upon formation of binary ligand complexes. The approach relies on stringent thrombin preparation methods and on the use of dansyl-l-arginine-(3-methyl-1,5-pantanediyl)amide and a DNA aptamer as ligands with ideal thermodynamic signatures for binding to the active site and to exosite 1. Using this approach, the binding thermodynamic signatures of each ligand alone as well as the binding signatures of each ligand when the other binding site was occupied were measured. Different exosite 1 ligands with widely varied thermodynamic signatures cause a similar reduction in ΔH and a concomitantly lower entropy cost upon DAPA binding at the active site. The results suggest a general phenomenon of enthalpy-entropy compensation consistent with reduction of dynamics/increased folding of thrombin upon ligand binding to either the active site or exosite 1.

  6. Molecular modeling studies of novel retro-binding tripeptide active-site inhibitors of thrombin.

    PubMed

    Lau, W F; Tabernero, L; Sack, J S; Iwanowicz, E J

    1995-08-01

    A novel series of retro-binding tripeptide thrombin active-site inhibitors was recently developed (Iwanowicz, E. I. et al. J. Med. Chem. 1994, 37, 2111(1)). It was hypothesized that the binding mode for these inhibitors is similar to that of the first three N-terminal residues of hirudin. This binding hypothesis was subsequently verified when the crystal structure of a member of this series, BMS-183,507 (N-[N-[N-[4-(Aminoiminomethyl)amino[-1-oxobutyl]-L- phenylalanyl]-L-allo-threonyl]-L-phenylalanine, methyl ester), was determined (Taberno, L.J. Mol. Biol. 1995, 246, 14). The methodology for developing the binding models of these inhibitors, the structure-activity relationships (SAR) and modeling studies that led to the elucidation of the proposed binding mode is described. The crystal structure of BMS-183,507/human alpha-thrombin is compared with the crystal structure of hirudin/human alpha-thrombin (Rydel, T.J. et al. Science 1990, 249,227; Rydel, T.J. et al. J. Mol Biol. 1991, 221, 583; Grutter, M.G. et al. EMBO J. 1990, 9, 2361) and with the computational binding model of BMS-183,507.

  7. A cascade signal amplification strategy for surface enhanced Raman spectroscopy detection of thrombin based on DNAzyme assistant DNA recycling and rolling circle amplification.

    PubMed

    Gao, Fenglei; Du, Lili; Tang, Daoquan; Lu, Yao; Zhang, Yanzhuo; Zhang, Lixian

    2015-04-15

    A sensitive protocol for surface enhanced Raman spectroscopy (SERS) detection of thrombin is designed with R6G-Ag NPs as a signal tag by combining DNAzyme assistant DNA recycling and rolling circle amplification (RCA). Molecular beacon (MB) as recognition probe immobilizes on the glass slides and performs the amplification procedure. After thrombin-induced structure-switching DNA hairpins of probe 1, the DNAzyme is liberated from the caged structure, which hybridizes with the MB for cleavage of the MB in the presence of cofactor Zn(2+) and initiates the DNA recycling process, leading to the cleavage of a large number of MB and the generation of numerous primers for triggering RCA reaction. The long amplified RCA product which contained hundreds of tandem-repeat sequences, which can bind with oligonucleotide functionalized Ag NPs reporters. The attached signal tags can be easily read out by SERS. Because of the cascade signal amplification, these newly designed protocols provides a sensitive SERS detection of thrombin down to the femolar level (2.3fM) with a linear range of 5 orders of magnitude (from 10(-14) to 10(-9)M) and have high selectivity toward its target protein. The proposed method is expected to be a good clinical tool for the diagnosis of a thrombotic disease. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Agonists of proteinase-activated receptor 1 induce plasma extravasation by a neurogenic mechanism.

    PubMed

    de Garavilla, L; Vergnolle, N; Young, S H; Ennes, H; Steinhoff, M; Ossovskaya, V S; D'Andrea, M R; Mayer, E A; Wallace, J L; Hollenberg, M D; Andrade-Gordon, P; Bunnett, N W

    2001-08-01

    Thrombin, generated in the circulation during injury, cleaves proteinase-activated receptor 1 (PAR1) to stimulate plasma extravasation and granulocyte infiltration. However, the mechanism of thrombin-induced inflammation in intact tissues is unknown. We hypothesized that thrombin cleaves PAR1 on sensory nerves to release substance P (SP), which interacts with the neurokinin 1 receptor (NK1R) on endothelial cells to cause plasma extravasation. PAR1 was detected in small diameter neurons known to contain SP in rat dorsal root ganglia by immunohistochemistry and in situ hybridization. Thrombin and the PAR1 agonist TFLLR-NH(2) (TF-NH(2)) increased [Ca(2+)](i) >50% of cultured neurons (EC(50)s 24 mu ml(-1) and 1.9 microM, respectively), assessed using Fura-2 AM. The PAR1 agonist completely desensitized responses to thrombin, indicating that thrombin stimulates neurons through PAR1. Injection of TF-NH(2) into the rat paw stimulated a marked and sustained oedema. An NK1R antagonist and ablation of sensory nerves with capsaicin inhibited oedema by 44% at 1 h and completely by 5 h. In wild-type but not PAR1(-/-) mice, TF-NH(2) stimulated Evans blue extravasation in the bladder, oesophagus, stomach, intestine and pancreas by 2 - 8 fold. Extravasation in the bladder, oesophagus and stomach was abolished by an NK1R antagonist. Thus, thrombin cleaves PAR1 on primary spinal afferent neurons to release SP, which activates the NK1R on endothelial cells to stimulate gap formation, extravasation of plasma proteins, and oedema. In intact tissues, neurogenic mechanisms are predominantly responsible for PAR1-induced oedema.

  9. Photon-induced positron annihilation lifetime spectroscopy using ultrashort laser-Compton-scattered gamma-ray pulses

    NASA Astrophysics Data System (ADS)

    Taira, Y.; Toyokawa, H.; Kuroda, R.; Yamamoto, N.; Adachi, M.; Tanaka, S.; Katoh, M.

    2013-05-01

    High-energy ultrashort gamma-ray pulses can be generated via laser Compton scattering with 90° collisions at the UVSOR-II electron storage ring. As an applied study of ultrashort gamma-ray pulses, a new photon-induced positron annihilation lifetime spectroscopy approach has been developed. Ultrashort gamma-ray pulses with a maximum energy of 6.6 MeV and pulse width of 2.2 ps created positrons throughout bulk lead via pair production. Annihilation gamma rays were detected by a BaF2 scintillator mounted on a photomultiplier tube. A positron lifetime spectrum was obtained by measuring the time difference between the RF frequency of the electron storage ring and the detection time of the annihilation gamma rays. We calculated the response of the BaF2 scintillator and the time jitter caused by the variation in the total path length of the ultrashort gamma-ray pulses, annihilation gamma rays, and scintillation light using a Monte Carlo simulation code. The positron lifetime for bulk lead was successfully measured.

  10. Analysis of Nuclear Lifetimes Using the Gamma-ray Induced Doppler Shift Attenuation Method

    NASA Astrophysics Data System (ADS)

    Crespi, F. C. L.

    2018-05-01

    Lifetime measurements allow extraction of fundamental information on the nature of the excited states of a nuclear system. Since nuclear lifetimes cover many orders of magnitude, a number of experimental techniques and detection setups have been developed depending on the range of the lifetime of interest. The Gamma-ray Induced Doppler Shift Attenuation (GRIDSA) Method presented here is applied to the measurement of very short lifetimes, in the femtosecond range. It allows determining the nuclear lifetime by measuring the Doppler shift of a gamma ray emitted from the state of interest, in different directions with respect to a coincident preceding gamma ray, populating the same state and inducing a recoil of the nucleus in the target material with velocities of the order of 104-105 m/s. We realized an experiment in order to test the GRIDSA technique for the measurement of fs lifetimes after (n,γ) reactions. The measurement was performed at the Institut Laue-Langevin (ILL) with the 8 Ge-clover detectors of the FIPPS array. Preliminary results are discussed.

  11. Crystal structures of thrombin in complex with chemically modified thrombin DNA aptamers reveal the origins of enhanced affinity.

    PubMed

    Dolot, Rafal; Lam, Curtis H; Sierant, Malgorzata; Zhao, Qiang; Liu, Feng-Wu; Nawrot, Barbara; Egli, Martin; Yang, Xianbin

    2018-05-18

    Thrombin-binding aptamer (TBA) is a DNA 15-mer of sequence 5'-GGT TGG TGT GGT TGG-3' that folds into a G-quadruplex structure linked by two T-T loops located on one side and a T-G-T loop on the other. These loops are critical for post-SELEX modification to improve TBA target affinity. With this goal in mind we synthesized a T analog, 5-(indolyl-3-acetyl-3-amino-1-propenyl)-2'-deoxyuridine (W) to substitute one T or a pair of Ts. Subsequently, the affinity for each analog was determined by biolayer interferometry. An aptamer with W at position 4 exhibited about 3-fold increased binding affinity, and replacing both T4 and T12 with W afforded an almost 10-fold enhancement compared to native TBA. To better understand the role of the substituent's aromatic moiety, an aptamer with 5-(methyl-3-acetyl-3-amino-1-propenyl)-2'-deoxyuridine (K; W without the indole moiety) in place of T4 was also synthesized. This K4 aptamer was found to improve affinity 7-fold relative to native TBA. Crystal structures of aptamers with T4 replaced by either W or K bound to thrombin provide insight into the origins of the increased affinities. Our work demonstrates that facile chemical modification of a simple DNA aptamer can be used to significantly improve its binding affinity for a well-established pharmacological target protein.

  12. A Universal Base in a Specific Role: Tuning up a Thrombin Aptamer with 5-Nitroindole

    NASA Astrophysics Data System (ADS)

    Tsvetkov, Vladimir B.; Varizhuk, Anna M.; Pozmogova, Galina E.; Smirnov, Igor P.; Kolganova, Natalia A.; Timofeev, Edward N.

    2015-11-01

    In this study we describe new modified analogs of the thrombin binding aptamer (TBA) containing 5-nitroindole residues. It has been shown that all modified TBAs form an anti-parallel G-quadruplex structure and retain the ability to inhibit thrombin. The most advanced TBA variant (TBA-N8) has a substantially increased clotting time and two-fold lower IC50 value compared to the unmodified prototype. Molecular modelling studies suggest that the improved anticoagulant properties of TBA-N8 result from changes in the binding mode of the analog. A modified central loop in TBA-N8 is presumed to participate in the binding of the target protein. Studies of FAM labelled TBA and TBA-N8 showed an improved binding affinity of the modified aptamer and provided evidence of a direct interaction between the modified central loop and thrombin. Our findings have implications for the design of new aptamers with improved binding affinities.

  13. A Universal Base in a Specific Role: Tuning up a Thrombin Aptamer with 5-Nitroindole

    PubMed Central

    Tsvetkov, Vladimir B.; Varizhuk, Anna M.; Pozmogova, Galina E.; Smirnov, Igor P.; Kolganova, Natalia A.; Timofeev, Edward N.

    2015-01-01

    In this study we describe new modified analogs of the thrombin binding aptamer (TBA) containing 5-nitroindole residues. It has been shown that all modified TBAs form an anti-parallel G-quadruplex structure and retain the ability to inhibit thrombin. The most advanced TBA variant (TBA-N8) has a substantially increased clotting time and two-fold lower IC50 value compared to the unmodified prototype. Molecular modelling studies suggest that the improved anticoagulant properties of TBA-N8 result from changes in the binding mode of the analog. A modified central loop in TBA-N8 is presumed to participate in the binding of the target protein. Studies of FAM labelled TBA and TBA-N8 showed an improved binding affinity of the modified aptamer and provided evidence of a direct interaction between the modified central loop and thrombin. Our findings have implications for the design of new aptamers with improved binding affinities.

  14. An electrochemical aptasensor based on TiO2/MWCNT and a novel synthesized Schiff base nanocomposite for the ultrasensitive detection of thrombin.

    PubMed

    Heydari-Bafrooei, Esmaeil; Amini, Maryam; Ardakani, Mehdi Hatefi

    2016-11-15

    A sensitive aptasensor based on a robust nanocomposite of titanium dioxide nanoparticles, multiwalled carbon nanotubes (MWCNT), chitosan and a novel synthesized Schiff base (SB) (TiO2/MWCNT/CHIT/SB) on the surface of a glassy carbon electrode (GCE) was developed for thrombin detection. The resultant nanocomposite can provide a large surface area, excellent electrocatalytic activity, and high stability, which would improve immobilization sites for biological molecules, allow remarkable amplification of the electrochemical signal and contribute to improved sensitivity. Thrombin aptamers were simply immobilized onto the TiO2-MWCNT/CHIT-SB nanocomposite matrix through simple π - π stacking and electrostatic interactions between CHIT/SB and aptamer strands. The electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used to analyze the surface characterization of unmodified GCE and TiO2-MWCNT/CHIT-SB modified GCE, and also the interaction between aptamer and thrombin. In the presence of thrombin, the aptamer on the adsorbent layer captures the target on the electrode interface, which makes a barrier for electrons and inhibits electron transfer, thereby resulting in decreased DPV and increased impedance signals of the TiO2-MWCNT/CHIT-SB modified GCE. Furthermore, the proposed aptasensor has a very low LOD of 1.0fmolL(-1) thrombin within the detection range of 0.00005-10nmolL(-1). The aptasensor also presents high specificity and reproducibility for thrombin, which is unaffected by the coexistence of other proteins. Clinical application was performed with analysis of the thrombin levels in blood and CSF samples obtained from patients with MS, Parkinson, Epilepsy and Polyneuropathy using both the aptasensor and commercial ELISA kit. The results revealed the proposed system to be a promising candidate for clinical analysis of thrombin. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Endocrine regulation of predator-induced phenotypic plasticity.

    PubMed

    Dennis, Stuart R; LeBlanc, Gerald A; Beckerman, Andrew P

    2014-11-01

    Elucidating the developmental and genetic control of phenotypic plasticity remains a central agenda in evolutionary ecology. Here, we investigate the physiological regulation of phenotypic plasticity induced by another organism, specifically predator-induced phenotypic plasticity in the model ecological and evolutionary organism Daphnia pulex. Our research centres on using molecular tools to test among alternative mechanisms of developmental control tied to hormone titres, receptors and their timing in the life cycle. First, we synthesize detail about predator-induced defenses and the physiological regulation of arthropod somatic growth and morphology, leading to a clear prediction that morphological defences are regulated by juvenile hormone and life-history plasticity by ecdysone and juvenile hormone. We then show how a small network of genes can differentiate phenotype expression between the two primary developmental control pathways in arthropods: juvenoid and ecdysteroid hormone signalling. Then, by applying an experimental gradient of predation risk, we show dose-dependent gene expression linking predator-induced plasticity to the juvenoid hormone pathway. Our data support three conclusions: (1) the juvenoid signalling pathway regulates predator-induced phenotypic plasticity; (2) the hormone titre (ligand), rather than receptor, regulates predator-induced developmental plasticity; (3) evolution has favoured the harnessing of a major, highly conserved endocrine pathway in arthropod development to regulate the response to cues about changing environments (risk) from another organism (predator).

  16. Continuous versus pulse neutron induced gamma spectroscopy for soil carbon analysis

    USDA-ARS?s Scientific Manuscript database

    Neutron induced gamma spectra analysis (NGA) provides a means of measuring carbon in large soil volumes without destructive sampling. Calibration of the NGA system must account for system background and the interference of other nuclei on the carbon peak at 4.43 MeV. Accounting for these factors pro...

  17. The combined effect of uranium and gamma radiation on biological responses and oxidative stress induced in Arabidopsis thaliana.

    PubMed

    Vanhoudt, Nathalie; Vandenhove, Hildegarde; Horemans, Nele; Wannijn, Jean; Van Hees, May; Vangronsveld, Jaco; Cuypers, Ann

    2010-11-01

    Uranium never occurs as a single pollutant in the environment, but always in combination with other stressors such as ionizing radiation. As effects induced by multiple contaminants can differ markedly from the effects induced by the individual stressors, this multiple pollution context should not be neglected. In this study, effects on growth, nutrient uptake and oxidative stress induced by the single stressors uranium and gamma radiation are compared with the effects induced by the combination of both stressors. By doing this, we aim to better understand the effects induced by the combined stressors but also to get more insight in stressor-specific response mechanisms. Eighteen-day-old Arabidopsis thaliana seedlings were exposed for 3 days to 10 muM uranium and 3.5 Gy gamma radiation. Gamma radiation interfered with uranium uptake, resulting in decreased uranium concentrations in the roots, but with higher transport to the leaves. This resulted in a better root growth but increased leaf lipid peroxidation. For the other endpoints studied, effects under combined exposure were mostly determined by uranium presence and only limited influenced by gamma presence. Furthermore, an important role is suggested for CAT1/2/3 gene expression under uranium and mixed stressor conditions in the leaves.

  18. Locus coeruleus phasic discharge is essential for stimulus-induced gamma oscillations in the prefrontal cortex.

    PubMed

    Neves, Ricardo M; van Keulen, Silvia; Yang, Mingyu; Logothetis, Nikos K; Eschenko, Oxana

    2018-03-01

    The locus coeruleus (LC) noradrenergic (NE) neuromodulatory system is critically involved in regulation of neural excitability via its diffuse ascending projections. Tonic NE release in the forebrain is essential for maintenance of vigilant states and increases the signal-to-noise ratio of cortical sensory responses. The impact of phasic NE release on cortical activity and sensory processing is less explored. We previously reported that LC microstimulation caused a transient desynchronization of population activity in the medial prefrontal cortex (mPFC), similar to noxious somatosensory stimuli. The LC receives nociceptive information from the medulla and therefore may mediate sensory signaling to its forebrain targets. Here we performed extracellular recordings in LC and mPFC while presenting noxious stimuli in urethane-anesthetized rats. A brief train of foot shocks produced a robust phasic response in the LC and a transient change in the mPFC power spectrum, with the strongest modulation in the gamma (30-90 Hz) range. The LC phasic response preceded prefrontal gamma power increase, and cortical modulation was proportional to the LC excitation. We also quantitatively characterized distinct cortical states and showed that sensory responses in both LC and mPFC depend on the ongoing cortical state. Finally, cessation of the LC firing by bilateral local iontophoretic injection of clonidine, an α 2 -adrenoreceptor agonist, completely eliminated sensory responses in the mPFC without shifting cortex to a less excitable state. Together, our results suggest that the LC phasic response induces gamma power increase in the PFC and is essential for mediating sensory information along an ascending noxious pathway. NEW & NOTEWORTHY Our study shows linear relationships between locus coeruleus phasic excitation and the amplitude of gamma oscillations in the prefrontal cortex. Results suggest that the locus coeruleus phasic response is essential for mediating sensory information

  19. IFN-gamma priming up-regulates IFN-stimulated gene factor 3 (ISGF3) components, augmenting responsiveness of IFN-resistant melanoma cells to type I IFNs.

    PubMed

    Wong, L H; Hatzinisiriou, I; Devenish, R J; Ralph, S J

    1998-06-01

    IFN-stimulated gene factor 3 (ISGF3) mediates transcriptional activation of IFN-sensitive genes (ISGs). The component subunits of ISGF3, STAT1alphabeta, STAT2, and p48-ISGF3gamma, are tyrosine phosphorylated before their assembly into a complex. Subsequently, the ISGF3 complex is translocated to the nucleus. We have recently established that the responsiveness of human melanoma cell lines to type I IFNs correlates directly with their intracellular levels of ISGF3 components, particularly STAT1. In the present study, we show that pretreating IFN-resistant melanoma cell lines with IFN-gamma (IFN-gamma priming) before stimulation with type I IFN also results in increased levels of ISGF3 components and enhanced DNA-binding activation of ISGF3. In addition, IFN-gamma priming of IFN-resistant melanoma cell lines increased expression of type I IFN-induced ISG products, including ISG54, 2'-5'-oligoadenylate synthase, HLA class I, B7-1, and ICAM-1 Ags. Furthermore, IFN-gamma priming enhanced the antiviral effect of IFN-beta on the IFN-resistant melanoma cell line, MM96. These results support a role for IFN-gamma priming in up-regulating ISGF3, thereby augmenting the responsiveness of IFN-resistant melanoma cell lines to type I IFN and providing a molecular basis and justification for using sequential IFN therapy, as proposed by others, to enhance the use of IFNs in the treatment of melanoma.

  20. INDUCED EEG GAMMA OSCILLATION ALIGNMENT IMPROVES DIFFERENTIATION BETWEEN AUTISM AND ADHD GROUP RESPONSES IN A FACIAL CATEGORIZATION TASK

    PubMed Central

    Gross, Eric; El-Baz, Ayman S.; Sokhadze, Guela E.; Sears, Lonnie; Casanova, Manuel F.; Sokhadze, Estate M.

    2012-01-01

    Introduction Children diagnosed with an autism spectrum disorder (ASD) often lack the ability to recognize and properly respond to emotional stimuli. Emotional deficits also characterize children with attention deficit/hyperactivity disorder (ADHD), in addition to exhibiting limited attention span. These abnormalities may effect a difference in the induced EEG gamma wave burst (35–45 Hz) peaked approximately 300–400 milliseconds following an emotional stimulus. Because induced gamma oscillations are not fixed at a definite point in time post-stimulus, analysis of averaged EEG data with traditional methods may result in an attenuated gamma burst power. Methods We used a data alignment technique to improve the averaged data, making it a better representation of the individual induced EEG gamma oscillations. A study was designed to test the response of a subject to emotional stimuli, presented in the form of emotional facial expression images. In a four part experiment, the subjects were instructed to identify gender in the first two blocks of the test, followed by differentiating between basic emotions in the final two blocks (i.e. anger vs. disgust). EEG data was collected from ASD (n=10), ADHD (n=9), and control (n=11) subjects via a 128 channel EGI system, and processed through a continuous wavelet transform and bandpass filter to isolate the gamma frequencies. A custom MATLAB code was used to align the data from individual trials between 200–600 ms post-stimulus, EEG site, and condition by maximizing the Pearson product-moment correlation coefficient between trials. The gamma power for the 400 ms window of maximum induced gamma burst was then calculated and compared between subject groups. Results and Conclusion Condition (anger/disgust recognition, gender recognition) × Alignment × Group (ADHD, ASD, Controls) interaction was significant at most of parietal topographies (e.g., P3–P4, P7–P8). These interactions were better manifested in the aligned

  1. Inhibition of gamma-radiation induced DNA damage in plasmid pBR322 by TMG, a water-soluble derivative of vitamin E.

    PubMed

    Rajagopalan, Rema; Wani, Khalida; Huilgol, Nagaraj G; Kagiya, Tsutomu V; Nair, Cherupally K Krishnan

    2002-06-01

    Alpha-tocopherol monoglucoside (TMG), a water-soluble derivative of alpha-tocopherol, has been examined for its ability to protect DNA against radiation-induced strand breaks. Gamma radiation, up to a dose of 6 Gy (dose rate, 0.7 Gy/minute), induced a dose-dependent increase in single strand breaks (SSBs) in plasmid pBR322 DNA. TMG inhibited the formation of gamma-radiation induced DNA single strand breaks (SSBs) in a concentration-dependent manner; 500 microM of TMG protected the single strand breaks completely. It also protected thymine glycol formation induced by gamma-radiation in a dose-dependent manner, based on an estimation of thymine glycol by HPLC.

  2. Gamma radiation induced changes in nuclear waste glass containing Eu

    NASA Astrophysics Data System (ADS)

    Mohapatra, M.; Kadam, R. M.; Mishra, R. K.; Kaushik, C. P.; Tomar, B. S.; Godbole, S. V.

    2011-10-01

    Gamma radiation induced changes were investigated in sodium-barium borosilicate glasses containing Eu. The glass composition was similar to that of nuclear waste glasses used for vitrifying Trombay research reactor nuclear waste at Bhabha Atomic Research Centre, India. Photoluminescence (PL) and electron paramagnetic resonance (EPR) techniques were used to study the speciation of the rare earth (RE) ion in the matrix before and after gamma irradiation. Judd-Ofelt ( J- O) analyses of the emission spectra were done before and after irradiation. The spin counting technique was employed to quantify the number of defect centres formed in the glass at the highest gamma dose studied. PL data suggested the stabilisation of the trivalent RE ion in the borosilicate glass matrix both before and after irradiation. It was also observed that, the RE ion distributes itself in two different environments in the irradiated glass. From the EPR data it was observed that, boron oxygen hole centre based radicals are the predominant defect centres produced in the glass after irradiation along with small amount of E’ centres. From the spin counting studies the concentration of defect centres in the glass was calculated to be 350 ppm at 900 kGy. This indicated the fact that bulk of the glass remained unaffected after gamma irradiation up to 900 kGy.

  3. Oral administration of Uncariae rhynchophylla inhibits the development of DNFB-induced atopic dermatitis-like skin lesions via IFN-gamma down-regulation in NC/Nga mice.

    PubMed

    Kim, Dong-Young; Jung, Jung-A; Kim, Tae-Ho; Seo, Sang-Wan; Jung, Sung-Ki; Park, Cheung-Seog

    2009-04-21

    Uncariae rhynchophylla (UR) is an herb which has blood pressure lowering and anti-inflammatory effects and has been prescribed traditionally to treat stroke and vascular dementia. In the present study, we examined whether UR suppress Atopic dermatitis (AD)-like skin lesions in NC/Nga mice treated with 2, 4-dinitrofluorobenzene (DNFB) under SPF conditions. The effect of UR in DNFB- treated NC/Nga mice was determined by measuring the skin symptom severity, levels of serum IgE, and of the amounts of IL-4 and IFN-gamma secreted by activated T cells in draining lymph nodes. Oral administration of UR to DNFB-treated NC/Nga mice was found to inhibit ear thickness increases and the skin lesions induced by DNFB. IFN-gamma production by CD4+ T cells from the lymph nodes of DNFB-treated NC/Nga mice was significantly inhibited by UR treatment, although levels of IL-4 and total IgE in serum were not. UR may suppress the development of AD-like dermatitis in DNFB-treated NC/Nga mice by reducing IFN-gamma production.

  4. Minimally invasive therapy of pseudoaneurysms of the trunk: application of thrombin.

    PubMed

    Schellhammer, Frank; Steinhaus, Daniele; Cohnen, Mathias; Hoppe, Jonas; Mödder, Ulrich; Fürst, Günter

    2008-01-01

    Thrombin injection has been proven to be successful in postcatheterization pseudoaneurysms. However, there are only a few reports on the treatment of pseudoaneurysms of the trunk. We report our first experiences using a percutaneous as well as an endovascular access. Eight iatrogenic pseudoaneurysms of the trunk (aorta, n = 4; pulmonary artery, n = 1; gastroduodenal artery, n = 1; left gastric artery, n = 1, renal artery, n = 1) were treated either percutaneously using CT guidance (n = 3) or via an endovascular access (n = 5). Noninvasive control angiograms were performed at day 1 and weeks 1 and 3 by either CT or MR angiography. The total volume of the pseudoaneurysms was 31.2 +/- 23.1 ml on average, with a mean volume of the perfused aneurysmal lumen of 12.9 +/- 7.2 ml. The maximum diameter was 4.1 +/- 1.39 cm on average. In each case, the aneurysmal neck was not wider than 2 mm. One pseudoaneurysm occluded spontaneously following selective catheterization. The remaining pseudoaneurysms were successfully treated by injection of 765 +/- 438.1 IU thrombin. In one individual, a nontarget embolization occurred, as well as an intervention-associated rupture of a pseudoaneurysm. High-grade stenoses of the donor artery were found in a different case. Only once was the endoluminal access converted to a percutaneous one. Thrombin injection might be a future first-line treatment of vascular lesions such as pseudoaneurysms of the trunk. In our experience both percutanous and endoluminal access are technically feasible and safe. However, further experiences are mandatory, especially concerning the question of dosage and long-term results.

  5. Fluorescence detection of thrombin using autocatalytic strand displacement cycle reaction and a dual-aptamer DNA sandwich assay.

    PubMed

    Niu, Shuyan; Qu, Lijing; Zhang, Qing; Lin, Jiehua

    2012-02-15

    A sensitive and specific sandwich assay for the detection of thrombin is described. Two affiliative aptamers were used to increase the assay specificity through sandwich recognition. Recognition DNA loaded on gold nanoparticles (AuNPs) partially hybridized with the initiator DNA, which was displaced by surviving DNA. After the initiator DNA was released into the solution, one hairpin structure was opened, which in turn opened another hairpin structure. The initiator DNA was displaced and released into the solution again by another hairpin structure because of the hybridized reaction. Then the released initiator DNA initiated another autocatalytic strand displacement reaction. A sophisticated network of three such duplex formation cycles was designed to amplify the fluorescence signal. Other proteins, such as bovine serum albumin and lysozyme, did not interfere with the detection of thrombin. This approach enables rapid and specific thrombin detection with reduced costs and minimized material consumption compared with traditional assay processes. The detection limit of thrombin was as low as 4.3 × 10⁻¹³ M based on the AuNP amplification and the autocatalytic strand displacement cycle reaction. This method could be used in biological samples with excellent selectivity. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Glutathione redox regulates airway hyperresponsiveness and airway inflammation in mice.

    PubMed

    Koike, Yoko; Hisada, Takeshi; Utsugi, Mitsuyoshi; Ishizuka, Tamotsu; Shimizu, Yasuo; Ono, Akihiro; Murata, Yukie; Hamuro, Junji; Mori, Masatomo; Dobashi, Kunio

    2007-09-01

    Glutathione is the major intracellular redox buffer. We have shown that glutathione redox status, which is the balance between intracellular reduced (GSH) and oxidized (GSSG) glutathione, in antigen-presenting cells (APC) regulates the helper T cell type 1 (Th1)/Th2 balance due to the production of IL-12. Bronchial asthma is a typical Th2 disease. Th2 cells and Th2 cytokines are characteristic of asthma and trigger off an inflammation. Accordingly, we studied the effects of the intracellular glutathione redox status on airway hyperresponsiveness (AHR) and allergen-induced airway inflammation in a mouse model of asthma. We used gamma-Glutamylcysteinylethyl ester (gamma-GCE), which is a membrane-permeating GSH precursor, to elevate the intracellular GSH level and GSH/GSSG ratio of mice. In vitro, gamma-GCE pretreatment of human monocytic THP-1 cells elevated the GSH/GSSG ratio and enhanced IL-12(p70) production induced by LPS. In the mouse asthma model, intraperitoneal injection of gamma-GCE elevated the GSH/GSSG ratio of lung tissue and reduced AHR. gamma-GCE reduced levels of IL-4, IL-5, IL-10, and the chemokines eotaxin and RANTES (regulated on activation, normal T cell expressed and secreted) in bronchoalveolar lavage fluid, whereas it enhanced the production of IL-12 and IFN-gamma. Histologically, gamma-GCE suppressed eosinophils infiltration. Interestingly, we also found that gamma-GCE directly inhibited chemokine-induced eosinophil chemotaxis without affecting eotaxin receptor chemokine receptor 3 (CCR3) expressions. Taken together, these findings suggest that changing glutathione redox balance, increase in GSH level, and the GSH/GSSG ratio by gamma-GCE, ameliorate bronchial asthma by altering the Th1/Th2 imbalance through IL-12 production from APC and suppressing chemokine production and eosinophil migration itself.

  7. Induced parthenogenesis by gamma-irradiated pollen in loquat for haploid production.

    PubMed

    Blasco, Manuel; Badenes, María Luisa; Del Mar Naval, María

    2016-09-01

    Successful haploid induction in loquat ( Eriobotrya japonica (Thunb.) Lindl.) through in situ-induced parthenogenesis with gamma-ray irradiated pollen has been achieved. Female flowers of cultivar 'Algerie' were pollinated using pollen of cultivars 'Changhong-3', 'Cox' and 'Saval Brasil' irradiated with two doses of gamma rays, 150 and 300 Gy. The fruits were harvested 90, 105 and 120 days after pollination (dap). Four haploid plants were obtained from 'Algerie' pollinated with 300-Gy-treated pollen of 'Saval Brasil' from fruits harvested 105 dap. Haploidy was confirmed by flow cytometry and chromosome count. The haploids showed a very weak development compared to the diploid plants. This result suggests that irradiated pollen can be used to obtain parthenogenetic haploids.

  8. Flow cytometry analysis reveals different activation profiles of thrombin- or TRAP-stimulated platelets in db/db mice. The regulatory role of PAR-3.

    PubMed

    Kassassir, Hassan; Siewiera, Karolina; Talar, Marcin; Przygodzki, Tomasz; Watala, Cezary

    2017-06-01

    Recent studies have shown that it may be the concentration of thrombin, which is discriminative in determining of the mechanism of platelet activation via protease activated receptors (PARs). Whether the observed phenomenon of differentiated responses of mouse platelets to various thrombin concentrations in non-diabetic db/+ and diabetic db/db mice depends upon the concerted action of various PARs, remains to be established. We found elevated reactivity of platelets, as well as the enhanced PAR-3 expression in response to both the used concentrations of AYPGKF in db/db mice, as compared to db/+ heterozygotes. At low concentration of thrombin platelets from diabetic mice demonstrated hyperreactivity, reflected by higher expression of PAR-3. For higher thrombin concentration, blood platelets from db/db mice appeared hyporeactive, compared to db/+ animals, while no significant differences in PAR-3 expression were observed between diabetic and non-diabetic mice. The novel and previously unreported finding resulting from our study is that the increased expression of PAR-3 in response to either TRAP for PAR-4 or low thrombin (when PAR-4 is not the efficient thrombin receptor) may be one of the key events contributing to higher reactivity of platelets in db/db mice. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. GammadeltaT cells positively regulate contact sensitivity (CS) reaction via modulation of INF-gamma, IL-12 and TNF-alpha production.

    PubMed

    Strzepa, Anna; Majewska-Szczepanik, Monika; Szczepanik, Marian

    2013-01-01

    The gammadeltaT cells were identified as positive as well as negative regulators of immune responses. They take part in pathogen clearance, modulation of innate and adaptive immunity as well as in healing and tissue maintenance. The course of many pathological conditions such as collagen induced arthritis (CIA), experimental autoimmune encephalomyelitis (EAE) and airway hyperresponsiveness is positively regulated by gammadeltaT cells. It was shown previously that contact sensitivity (CS), an example of antigen-specific cell-mediated immune response, is also positively regulated by gammadeltaT cells. The current work confirmed the regulatory function of gammadeltaT cells in CS response as their depletion with anti-TCRdelta monoclonal antibody and complement significantly decreased adoptive transfer of the CS reaction. In vitro study showed that removal of gammadeltaT cells with magnetic beads significantly decreased the production of the proinflammatory cytokines IFN-gamma, IL-12 and TNF-alpha. Reconstitution of gammadeltaT-depleted cells with gammadeltaT-enriched cells restored cytokine production, proving the reversibility of the investigated process. In summary, gammadeltaT cells positively regulate the CS reaction via modulation of proinflammatory cytokine production.

  10. Dual role of SLP-76 in mediating T cell receptor-induced activation of phospholipase C-gamma1.

    PubMed

    Beach, Dvora; Gonen, Ronnie; Bogin, Yaron; Reischl, Ilona G; Yablonski, Deborah

    2007-02-02

    Phospholipase C-gamma1 (PLC-gamma1) activation depends on a heterotrimeric complex of adaptor proteins composed of LAT, Gads, and SLP-76. Upon T cell receptor stimulation, a portion of PLC-gamma1 is recruited to a detergent-resistant membrane fraction known as the glycosphingolipid-enriched membrane microdomains (GEMs), or lipid rafts, to which LAT is constitutively localized. In addition to LAT, PLC-gamma1 GEM recruitment depended on SLP-76, and, in particular, required the Gads-binding domain of SLP-76. The N-terminal tyrosine phosphorylation sites and P-I region of SLP-76 were not required for PLC-gamma1 GEM recruitment, but were required for PLC-gamma1 phosphorylation at Tyr(783). Thus, GEM recruitment can be insufficient for full activation of PLC-gamma1 in the absence of a second SLP-76-mediated event. Indeed, a GEM-targeted derivative of PLC-gamma1 depended on SLP-76 for T cell receptor-induced phosphorylation at Tyr783 and subsequent NFAT activation. On a biochemical level, SLP-76 inducibly associated with both Vav and catalytically active ITK, which efficiently phosphorylated a PLC-gamma1 fragment at Tyr783 in vitro. Both associations were disrupted upon mutation of the N-terminal tyrosine phosphorylation sites of SLP-76. The P-I region deletion disrupted Vav association and reduced SLP-76-associated kinase activity. A smaller deletion within the P-I region, which does not impair PLC-gamma1 activation, did not impair the association with Vav, but reduced SLP-76-associated kinase activity. These results provide new insight into the multiple roles of SLP-76 and the functional importance of its interactions with other signaling proteins.

  11. Graft-versus-host disease causes failure of donor hematopoiesis and lymphopoiesis in interferon-gamma receptor-deficient hosts.

    PubMed

    Delisle, Jean-Sébastien; Gaboury, Louis; Bélanger, Marie-Pier; Tassé, Eliane; Yagita, Hideo; Perreault, Claude

    2008-09-01

    The immunopathologic condition known as graft-versus-host disease (GVHD) results from a type I T-cell process. However, a prototypical type I cytokine, interferon-gamma (IFN-gamma), can protect against several manifestations of GVHD in recipients of major histocompatibility complex (MHC)-mismatched hematopoietic cells. We transplanted hematopoietic cells from C3H.SW donors in wild-type (wt) and IFN-gamma-receptor-deficient (IFN-gammaRKO) MHC-matched C57BL/6 recipients. In IFN-gammaRKO recipients, host cells were unresponsive to IFN-gamma, whereas wt donor cells were exposed to exceptionally high levels of IFN-gamma. From an IFN-gamma perspective, we could therefore evaluate the impact of a loss-of-function on host cells and gain-of-function on donor cells. We found that lack of IFN-gammaR prevented up-regulation of MHC proteins on host cells but did not mitigate damage to most target organs. Two salient phenotypes in IFN-gammaRKO recipients involved donor cells: lymphoid hypoplasia and hematopoietic failure. Lymphopenia was due to FasL-induced apoptosis and decreased cell proliferation. Bone marrow aplasia resulted from a decreased proliferation of hematopoietic stem/progenitor cells that was associated with down-regulation of 2 genes negatively regulated by IFN-gamma: Ccnd1 and Myc. We conclude that IFN-gamma produced by alloreactive T cells may entail a severe graft-versus-graft reaction and could be responsible for cytopenias that are frequently observed in subjects with GVHD.

  12. Peroxisome proliferator-activated receptor-gamma agonist rosiglitazone reverses the adverse effects of diet-induced obesity on oocyte quality.

    PubMed

    Minge, Cadence E; Bennett, Brenton D; Norman, Robert J; Robker, Rebecca L

    2008-05-01

    Obesity and its physiological consequences are increasingly prevalent among women of reproductive age and are associated with infertility. To investigate, female mice were fed a high-fat diet until the onset of insulin resistance, followed by assessments of ovarian gene expression, ovulation, fertilization, and oocyte developmental competence. We report defects to ovarian function associated with diet-induced obesity (DIO) that result in poor oocyte quality, subsequently reduced blastocyst survival rates, and abnormal embryonic cellular differentiation. To identify critical cellular mediators of ovarian responses to obesity induced insulin resistance, DIO females were treated for 4 d before mating with an insulin-sensitizing pharmaceutical: glucose and lipid-lowering AMP kinase activator, 5-aminoimidazole 4-carboxamide-riboside, 30 mg/kg.d; sodium salicylate, IkappaK inhibitor that reverses insulin resistance, 50 mg/kg.d; or peroxisome proliferator activated receptor-gamma agonist rosiglitazone, 10 mg/kg.d. 5-aminoimidazole 4-carboxamide-riboside or sodium salicylate treatment did not have significant effects on the reproductive parameters examined. However, embryonic development to the blastocyst stage was significantly improved when DIO mice were treated with rosiglitazone, effectively repairing development rates. Rosiglitazone also normalized DIO-associated abnormal blastomere allocation to the inner cell mass. Such improvements to oocyte quality were coupled with weight loss, improved glucose metabolism, and changes in ovarian mRNA expression of peroxisome proliferator activated receptor-regulated genes, Cd36, Scarb1, and Fabp4 cholesterol transporters. These studies demonstrate that peri-conception treatment with select insulin-sensitizing pharmaceuticals can directly influence ovarian functions and ultimately exert positive effects on oocyte developmental competence. Improved blastocyst quality in obese females treated with rosiglitazone before mating

  13. Effects of carotenoids on damage of biological lipids induced by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Saito, Takeshi; Fujii, Noriko

    2014-05-01

    Carotenoids are considered to be involved in the radioresistant mechanisms of radioresistant bacteria. In these bacterial cells, carotenoids are present in biological lipids, and therefore may be related to the radiation-induced damage of lipids. However, only limited data are available for the role of carotenoids in such damage. In this study, we irradiated an α-linolenic acid-benzene solution with gamma rays and analyzed the resulting oxidative degradation and peroxidation damage in the presence or absence of two typical carotenoids: β-carotene and astaxanthin. The analyses revealed that oxidative degradation and peroxidation of α-linolenic acid, as evaluated by the amount of malondialdehyde and conjugated diene formed, respectively, increased in a dose-dependent manner. Moreover, 8.5×10-3 M β-carotene inhibited gamma radiation-induced oxidative degradation of α-linolenic acid, whereas 5.0×10-5 and 5.0×10-6 M β-carotene, and 5.0×10-7 and 5.0×10-8 M astaxanthin promoted degradation. In contrast, neither β-carotene nor astaxanthin affected peroxidation of α-linolenic acid. These results suggest that an optimum concentration of carotenoids in radioresistant bacteria protects biological lipid structures from radiation-induced damage.

  14. Phage display of the serpin alpha-1 proteinase inhibitor randomized at consecutive residues in the reactive centre loop and biopanned with or without thrombin.

    PubMed

    Scott, Benjamin M; Matochko, Wadim L; Gierczak, Richard F; Bhakta, Varsha; Derda, Ratmir; Sheffield, William P

    2014-01-01

    In spite of the power of phage display technology to identify variant proteins with novel properties in large libraries, it has only been previously applied to one member of the serpin superfamily. Here we describe phage display of human alpha-1 proteinase inhibitor (API) in a T7 bacteriophage system. API M358R fused to the C-terminus of T7 capsid protein 10B was directly shown to form denaturation-resistant complexes with thrombin by electrophoresis and immunoblotting following exposure of intact phages to thrombin. We therefore developed a biopanning protocol in which thrombin-reactive phages were selected using biotinylated anti-thrombin antibodies and streptavidin-coated magnetic beads. A library consisting of displayed API randomized at residues 357 and 358 (P2-P1) yielded predominantly Pro-Arg at these positions after five rounds of thrombin selection; in contrast the same degree of mock selection yielded only non-functional variants. A more diverse library of API M358R randomized at residues 352-356 (P7-P3) was also probed, yielding numerous variants fitting a loose consensus of DLTVS as judged by sequencing of the inserts of plaque-purified phages. The thrombin-selected sequences were transferred en masse into bacterial expression plasmids, and lysates from individual colonies were screening for API-thrombin complexing. The most active candidates from this sixth round of screening contained DITMA and AAFVS at P7-P3 and inhibited thrombin 2.1-fold more rapidly than API M358R with no change in reaction stoichiometry. Deep sequencing using the Ion Torrent platform confirmed that over 800 sequences were significantly enriched in the thrombin-panned versus naïve phage display library, including some detected using the combined phage display/bacterial lysate screening approach. Our results show that API joins Plasminogen Activator Inhibitor-1 (PAI-1) as a serpin amenable to phage display and suggest the utility of this approach for the selection of "designer

  15. Phage Display of the Serpin Alpha-1 Proteinase Inhibitor Randomized at Consecutive Residues in the Reactive Centre Loop and Biopanned with or without Thrombin

    PubMed Central

    Scott, Benjamin M.; Matochko, Wadim L.; Gierczak, Richard F.; Bhakta, Varsha; Derda, Ratmir; Sheffield, William P.

    2014-01-01

    In spite of the power of phage display technology to identify variant proteins with novel properties in large libraries, it has only been previously applied to one member of the serpin superfamily. Here we describe phage display of human alpha-1 proteinase inhibitor (API) in a T7 bacteriophage system. API M358R fused to the C-terminus of T7 capsid protein 10B was directly shown to form denaturation-resistant complexes with thrombin by electrophoresis and immunoblotting following exposure of intact phages to thrombin. We therefore developed a biopanning protocol in which thrombin-reactive phages were selected using biotinylated anti-thrombin antibodies and streptavidin-coated magnetic beads. A library consisting of displayed API randomized at residues 357 and 358 (P2–P1) yielded predominantly Pro-Arg at these positions after five rounds of thrombin selection; in contrast the same degree of mock selection yielded only non-functional variants. A more diverse library of API M358R randomized at residues 352–356 (P7–P3) was also probed, yielding numerous variants fitting a loose consensus of DLTVS as judged by sequencing of the inserts of plaque-purified phages. The thrombin-selected sequences were transferred en masse into bacterial expression plasmids, and lysates from individual colonies were screening for API-thrombin complexing. The most active candidates from this sixth round of screening contained DITMA and AAFVS at P7–P3 and inhibited thrombin 2.1-fold more rapidly than API M358R with no change in reaction stoichiometry. Deep sequencing using the Ion Torrent platform confirmed that over 800 sequences were significantly enriched in the thrombin-panned versus naïve phage display library, including some detected using the combined phage display/bacterial lysate screening approach. Our results show that API joins Plasminogen Activator Inhibitor-1 (PAI-1) as a serpin amenable to phage display and suggest the utility of this approach for the selection of

  16. An Investigation of the Characteristics of the Enzyme Thrombin, Suitable for Classwork

    ERIC Educational Resources Information Center

    Blofield, B. Ann

    1972-01-01

    Shows how a simple investigation of the enzyme, thrombin, can provide a series of experiments giving information on enzyme characteristics. The results also provide a basis for discussion of the coagulation mechanism and related phenomena. (Author/AL)

  17. Characterization of the thrombin generation profile in systemic lupus erythematosus.

    PubMed

    Kern, A; Barabás, E; Balog, A; Burcsár, Sz; Kiszelák, M; Vásárhelyi, B

    2017-03-01

    Systemic lupus erythematosus (SLE) is a multisystemic inflammatory autoimmune disorder. Thrombotic events occur at a higher incidence among SLE patients. The investigation of thrombin generation (TG) with calibrated automated thrombogram (CAT) test as a global hemostasis assay is applicable for the overall functional assessment of the hemostasis. The aim of this study was to characterize the hemostatic alterations observed in SLE by CAT assay. In this study, CAT parameters and basic coagulation parameters of SLE patients (n = 22) and healthy control subjects (n = 34) were compared. CAT area under the curve (i.e., endogenous thrombin potential) was lower than normal in SLE (807 vs. 1,159 nM*min, respectively), whereas other CAT parameters (peak, lag time, time to peak, and velocity index) and the basic coagulation tests were within the normal range. The presence of anti-phospholipid antibodies and the applied therapy was not associated with hemostasis parameters in SLE. We concluded that the reported high risk of thrombosis is not related to TG potential.

  18. Regulation of platelet activating factor receptor coupled phosphoinositide-specific phospholipase C activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrison, W.J.

    1988-01-01

    The major objectives of this study were two-fold. The first was to establish whether binding of platelet activating factor (PAF) to its receptor was integral to the stimulation of polyphosphoinositide-specific phospholipase C (PLC) in rabbit platelets. The second was to determine regulatory features of this receptor-coupled mechanism. ({sup 3}H)PAF binding demonstrated two binding sites, a high affinity site with a inhibitory constant (Ki) of 2.65 nM and a low affinity site with a Ki of 0.80 {mu}M. PAF receptor coupled activation of phosphoinositide-specific PLC was studied in platelets which were made refractory, by short term pretreatments, to either PAF ormore » thrombin. Saponin-permeabilized rabbit platelets continue to regulate the mechanism(s) coupling PAF receptors to PLC stimulation. However, TRP{gamma}S and GDP{beta}S, which affect guanine nucleotide regulatory protein functions, were unable to modulate the PLC activity to any appreciable extent as compared to PAF. The possible involvement of protein kinase C (PKC) activation in regulating PAF-stimulated PLC activity was studied in rabbit platelets pretreated with staurosporine followed by pretreatments with PAF or phorbol 12-myristate 13-acetate (PMA).« less

  19. The thrombin inhibitor argatroban does not influence the endothelium-dependent relaxant and contractile responses of isolated rabbit carotid arteries.

    PubMed

    Schrödter, Hans-Martin; Glusa, Erika

    2003-06-01

    Atherosclerotic endothelial dysfunctions are associated with a reduced NO production, which is probably due to impaired NO synthase (eNOS) activity or a deficiency of the substrate L-arginine. In the present studies, the influence of argatroban on isolated rabbit carotid arteries was investigated to determine whether the arginine derivative argatroban can improve the endothelium-dependent relaxation. Rings from rabbit carotid arteries were placed in 10 ml organ baths for isometric tension recording. Endothelial integrity was assessed by the acetylcholine-induced relaxation of PGF2alpha-precontracted rings; after mechanical removal of the endothelium the relaxation was abolished. Preincubation of the vessels in vitro with L-NAME, an inhibitor of the eNOS, diminished significantly the acetylcholine-induced relaxation by more than 50%. After i.v. application of L-NAME (100 mg/kg) in rabbits, relaxation in response to acetylcholine was significantly reduced compared to the control when the vessels were studied ex vivo in an organ bath. The contractile effects of phenylephrine and 5-HT were slightly enhanced. Argatroban is a selective, potent, synthetic thrombin inhibitor; after i.v. application at doses of 0.5 and 1.0 mg/kg, a significant prolongation of the plasma coagulation time (measured as thrombin time and a PTT) of up to 60 min was found in rabbits. In vitro argatroban did not affect the acetylcholine-induced relaxation or the contractile response to phenylephrine and 5-HT. After i.v. application, the ex vivo experiments in the organ bath showed that after 30 min the relaxant responses of the carotid arteries to acetylcholine and the contractile effects of phenylephrine and 5-HT were not influenced by pretreatment with argatroban. The present studies suggest that argatroban has no vascular effects in vitro and ex vivo in normal rabbits.

  20. Ablation of phosphoinositide 3-kinase-gamma reduces the severity of acute pancreatitis.

    PubMed

    Lupia, Enrico; Goffi, Alberto; De Giuli, Paolo; Azzolino, Ornella; Bosco, Ornella; Patrucco, Enrico; Vivaldo, Maria Cristina; Ricca, Marco; Wymann, Matthias P; Hirsch, Emilio; Montrucchio, Giuseppe; Emanuelli, Giorgio

    2004-12-01

    In pancreatic acini, the G-protein-activated phosphoinositide 3-kinase-gamma (PI3K gamma) regulates several key pathological responses to cholecystokinin hyperstimulation in vitro. Thus, using mice lacking PI3K gamma, we studied the function of this enzyme in vivo in two different models of acute pancreatitis. The disease was induced by supramaximal concentrations of cerulein and by feeding mice a choline-deficient/ethionine-supplemented diet. Although the secretive function of isolated pancreatic acini was identical in mutant and control samples, in both models, genetic ablation of PI3K gamma significantly reduced the extent of acinar cell injury/necrosis. In agreement with a protective role of apoptosis in pancreatitis, PI3K gamma-deficient pancreata showed an increased number of apoptotic acinar cells, as determined by terminal dUTP nick-end labeling and caspase-3 activity. In addition, neutrophil infiltration within the pancreatic tissue was also reduced, suggesting a dual action of PI3K gamma, both in the triggering events within acinar cells and in the subsequent neutrophil recruitment and activation. Finally, the lethality of the choline-deficient/ethionine-supplemented diet-induced pancreatitis was significantly reduced in mice lacking PI3K gamma. Our results thus suggest that inhibition of PI3K gamma may be of therapeutic value in acute pancreatitis.

  1. Prolyl endopeptidase and thrombin inhibitory diterpenoids from the bark of Xylopia aethiopica.

    PubMed

    Diderot, Noungoue Tchamo; Silvere, Ngouela; Yasin, Amsha; Zareen, Seema; Fabien, Zelefack; Etienne, Tsamo; Choudhary, M Iqbal; Atta-Ur-Rahman

    2005-09-01

    The inhibitory effects of seven diterpenes, belonging to three different structural classes and isolated from the bark of Xylopia aethiopica, were investigated against the enzymes prolyl endopeptidase (PEP) and alpha-thrombin. Five compounds exhibited inhibitory activity against them.

  2. Spectral analysis of paramagnetic centers induced in human tooth enamel by x-rays and gamma radiation

    NASA Astrophysics Data System (ADS)

    Kirillov, V. A.; Kuchuro, I. I.

    2010-03-01

    Based on study of spectral and relaxation characteristics, we have established that paramagnetic centers induced in tooth enamel by x-rays and gamma radiation are identical in nature. We show that for the same exposure dose, the intensity of the electron paramagnetic resonance (EPR) signal induced by x-radiation with effective energy 34 keV is about an order of magnitude higher than the amplitude of the signal induced by gamma radiation. We have identified a three-fold attenuation of the EPR signal along the path of the x-radiation from the buccal to the lingual side of a tooth, which is evidence that the individual had undergone diagnostic x-ray examination of the dentition or skull. We have shown that the x-ray exposure doses reconstructed from the EPR spectra are an order of magnitude higher than the applied doses, while the dose loads due to gamma radiation are equal to the applied doses. The data obtained indicate that for adequate reconstruction of individual absorbed doses from EPR spectra of tooth enamel in the population subjected to the combined effect of x-radiation and accidental external gamma radiation as a result of the disaster at the Chernobyl nuclear power plant, we need to take into account the contribution to the dose load from diagnostic x-rays in examination of the teeth, jaw, or skull.

  3. Akt interaction with PLC(gamma) regulates the G(2)/M transition triggered by FGF receptors from MDA-MB-231 breast cancer cells.

    PubMed

    Browaeys-Poly, Edith; Perdereau, Dominique; Lescuyer, Arlette; Burnol, Anne-Françoise; Cailliau, Katia

    2009-12-01

    Estrogen-independent breast cancer cell growth is under the control of fibroblast growth factors receptors (FGFRs), but the role of phospholipase C gamma (PLC(gamma)) and Akt, the downstream effectors activated by FGFRs, in cell proliferation is still unresolved. FGFRs from highly invasive MDA-MB-231 cells were expressed in Xenopus oocyte, a powerful model system to assess the G(2)/M checkpoint regulation. Under FGF1 stimulation, an analysis of the progression in the M-phase of the cell cycle and of the Akt signaling cascades were performed using the phosphatidylinositol-3-kinase inhibitor, LY294002, and a mimetic peptide of the SH3 domain of PLC(gamma). Activated Akt binds and phosphorylates PLC(gamma) before Akt targets the tumor suppressor Chfr. Disruption of the Akt-PLC(gamma) interaction directs Akt binding to Chfr and accelerates the alleviation of the G(2)/M checkpoint. The PLC(gamma)-Akt interaction, triggered by FGF receptors from estrogen-independent breast cancer cells MDA-MB-231, regulates progression in the M-phase of the cell cycle.

  4. Tumor necrosis factor alpha induces gamma-glutamyltransferase expression via nuclear factor-kappaB in cooperation with Sp1.

    PubMed

    Reuter, Simone; Schnekenburger, Michael; Cristofanon, Silvia; Buck, Isabelle; Teiten, Marie-Hélène; Daubeuf, Sandrine; Eifes, Serge; Dicato, Mario; Aggarwal, Bharat B; Visvikis, Athanase; Diederich, Marc

    2009-02-01

    Gamma-glutamyltransferase (GGT) cleaves the gamma-glutamyl moiety of glutathione (GSH), an endogenous antioxidant, and is involved in mercapturic acid metabolism and in cancer drug resistance when overexpressed. Moreover, GGT converts leukotriene (LT) C4 into LTD4 implicated in various inflammatory pathologies. So far the effect of inflammatory stimuli on regulation of GGT expression and activity remained to be addressed. We found that the proinflammatory cytokine tumor necrosis factor alpha (TNFalpha) induced GGT promoter transactivation, mRNA and protein synthesis, as well as enzymatic activity. Remicade, a clinically used anti-TNFalpha antibody, small interfering RNA (siRNA) against p50 and p65 nuclear factor-kappaB (NF-kappaB) isoforms, curcumin, a well characterized natural NF-kappaB inhibitor, as well as a dominant negative inhibitor of kappaB alpha (IkappaBalpha), prevented GGT activation at various levels, illustrating the involvement of this signaling pathway in TNFalpha-induced stimulation. Over-expression of receptor of TNFalpha-1 (TNFR1), TNFR-associated factor-2 (TRAF2), TNFR-1 associated death domain (TRADD), dominant negative (DN) IkappaBalpha or NF-kappaB p65 further confirmed GGT promoter activation via NF-kappaB. Linker insertion mutagenesis of 536 bp of the proximal GGT promoter revealed NF-kappaB and Sp1 binding sites at -110 and -78 relative to the transcription start site, responsible for basal GGT transcription. Mutation of the NF-kappaB site located at -110 additionally inhibited TNFalpha-induced promoter induction. Chromatin immunoprecipitation (ChIP) assays confirmed mutagenesis results and further demonstrated that TNFalpha treatment induced in vivo binding of both NF-kappaB and Sp1, explaining increased GGT expression, and led to RNA polymerase II recruitment under inflammatory conditions.

  5. Fusion of the C-terminal triskaidecapeptide of hirudin variant 3 to alpha1-proteinase inhibitor M358R increases the serpin-mediated rate of thrombin inhibition

    PubMed Central

    2013-01-01

    Background Alpha-1 proteinase inhibitor (API) is a plasma serpin superfamily member that inhibits neutrophil elastase; variant API M358R inhibits thrombin and activated protein C (APC). Fusing residues 1-75 of another serpin, heparin cofactor II (HCII), to API M358R (in HAPI M358R) was previously shown to accelerate thrombin inhibition over API M358R by conferring thrombin exosite 1 binding properties. We hypothesized that replacing HCII 1-75 region with the 13 C-terminal residues (triskaidecapeptide) of hirudin variant 3 (HV354-66) would further enhance the inhibitory potency of API M358R fusion proteins. We therefore expressed HV3API M358R (HV354-66 fused to API M358R) and HV3API RCL5 (HV354-66 fused to API F352A/L353V/E354V/A355I/I356A/I460L/M358R) API M358R) as N-terminally hexahistidine-tagged polypeptides in E. coli. Results HV3API M358R inhibited thrombin 3.3-fold more rapidly than API M358R; for HV3API RCL5 the rate enhancement was 1.9-fold versus API RCL5; neither protein inhibited thrombin as rapidly as HAPI M358R. While the thrombin/Activated Protein C rate constant ratio was 77-fold higher for HV3API RCL5 than for HV3API M358R, most of the increased specificity derived from the API F352A/L353V/E354V/A355I/I356A/I460L API RCL 5 mutations, since API RCL5 remained 3-fold more specific than HV3API RCL5. An HV3 54-66 peptide doubled the Thrombin Clotting Time (TCT) and halved the binding of thrombin to immobilized HCII 1-75 at lower concentrations than free HCII 1-75. HV3API RCL5 bound active site-inhibited FPR-chloromethyl ketone-thrombin more effectively than HAPI RCL5. Transferring the position of the fused HV3 triskaidecapeptide to the C-terminus of API M358R decreased the rate of thrombin inhibition relative to that mediated by HV3API M358R by 11-to 14-fold. Conclusions Fusing the C-terminal triskaidecapeptide of HV3 to API M358R-containing serpins significantly increased their effectiveness as thrombin inhibitors, but the enhancement was less than that

  6. Induced parthenogenesis by gamma-irradiated pollen in loquat for haploid production

    PubMed Central

    Blasco, Manuel; Badenes, María Luisa; del Mar Naval, María

    2016-01-01

    Successful haploid induction in loquat (Eriobotrya japonica (Thunb.) Lindl.) through in situ-induced parthenogenesis with gamma-ray irradiated pollen has been achieved. Female flowers of cultivar ‘Algerie’ were pollinated using pollen of cultivars ‘Changhong-3’, ‘Cox’ and ‘Saval Brasil’ irradiated with two doses of gamma rays, 150 and 300 Gy. The fruits were harvested 90, 105 and 120 days after pollination (dap). Four haploid plants were obtained from ‘Algerie’ pollinated with 300-Gy-treated pollen of ‘Saval Brasil’ from fruits harvested 105 dap. Haploidy was confirmed by flow cytometry and chromosome count. The haploids showed a very weak development compared to the diploid plants. This result suggests that irradiated pollen can be used to obtain parthenogenetic haploids. PMID:27795686

  7. Oral thrombin inhibitor aggravates platelet adhesion and aggregation during arterial thrombosis.

    PubMed

    Petzold, Tobias; Thienel, Manuela; Konrad, Ildiko; Schubert, Irene; Regenauer, Ron; Hoppe, Boj; Lorenz, Michael; Eckart, Annekathrin; Chandraratne, Sue; Lennerz, Carsten; Kolb, Christof; Braun, Daniel; Jamasbi, Janina; Brandl, Richard; Braun, Siegmund; Siess, Wolfgang; Schulz, Christian; Massberg, Steffen

    2016-11-30

    In patients with atrial fibrillation, oral anticoagulation with oral thrombin inhibitors (OTIs), in contrast to vitamin K antagonists (VKAs), associates with a modest increase in acute coronary syndromes (ACSs). Whether this observation is causatively linked to OTI treatment and, if so, whether OTI action is the result of a lower antithrombotic efficacy of OTI compared to VKA or reflects a yet undefined prothrombotic activity of OTI remain unclear. We analyzed platelet function in patients receiving OTI or dose-adapted VKA under static and flow conditions. In vivo, we studied arterial thrombosis in OTI-, VKA-, and vehicle-treated mice using carotid ligation and wire injury models. Further, we examined thrombus formation on human atherosclerotic plaque homogenates under arterial shear to address the relevance to human pathology. Under static conditions, aggregation in the presence of ristocetin was increased in OTI-treated blood, whereas platelet reactivity and aggregation to other agonists were only marginally affected. Under flow conditions, firm platelet adhesion and thrombus formation on von Willebrand factor, collagen, and human atherosclerotic plaque were increased in the presence of OTI in comparison to VKA. OTI treatment was associated with increased thrombus formation in injured carotid arteries of mice. Inhibition or ablation of GPIbα-thrombin interactions abolished the effect of OTI on thrombus formation, suggesting a mechanistic role of the platelet receptor GPIbα and its thrombin-binding site. The effect of OTI was also abrogated in the presence of aspirin. In summary, OTI treatment has prothrombotic activity that might contribute to the increase in ACS observed clinically in patients. Copyright © 2016, American Association for the Advancement of Science.

  8. Efficacy and safety of closing postcatheterisation pseudoaneurysms with ultrasound-guided thrombin injections using two approaches: bolus versus slow injection. A prospective randomised trial.

    PubMed

    Lewandowski, Paweł; Maciejewski, Paweł; Wąsek, Wojciech; Pasierski, Tomasz; Budaj, Andrzej

    2011-01-01

    Thrombin injection is a widely accepted treatment of an iatrogenic arterial pseudoaneurysm. However, the optimal mode of injection and type of pseudoaneurysm amenable to this therapy have yet been established. To compare efficacy and safety of two approaches to ultrasound-guided thrombin injections into a femoral artery pseudoaneurysm with or without long neck that developed as an iatrogenic complication of cardiac catheterisation. Patients were randomised to thrombin administration in a bolus or slow injection. The length and width of aneurysm neck and blood flow velocity in the neck were measured with color Doppler ultrasonography before the closure procedure. Thrombin dose, time to thrombotic occlusion, blood oxygen saturation in a toe of the extremity with the pseudoaneurysm (a marker of silent microembolisation), and clinical signs of distal embolisation were recorded. Between 2006 and 2009, 73 consecutive patients (33 males; mean age 67.8 ± 11.9 years) with femoral pseudoaneurysms complicating cardiac catheterisation were randomised into two groups that were treated with thrombin bolus (n = 40) or slow injection (n = 33). The efficacy of aneurysm closure with either method was similarly high (100% vs 96.8%, NS, respectively) and did not depend on the length and width of the aneurysm neck. Independent risk factors for distal embolisation were: thrombin dose (OR 4.2; 95% CI 0.92-19.3), the length of aneurysm neck (OR 4.66; 95% CI 1.1-19.9), age above 80 years (OR 10.9; 95% CI 1.0-116.8), and bolus treatment (OR 7.6; 95% CI 1.3-44.9). We observed silent microembolisation phenomenon that was common (occurring in 38% of patients in the bolus group vs 33% of patients in the slow injection group) but in most cases asymptomatic. Femoral pseudoaneurysm closure with a low dose of thrombin is a valid and beneficial treatment. Either method (bolus or slow injection) was similarly efficacious and safe even in the subgroup of patients with neckless aneurysms. We observed

  9. IL-4 inhibits the synthesis of IFN-gamma and induces the synthesis of IgE in human mixed lymphocyte cultures.

    PubMed

    Vercelli, D; Jabara, H H; Lauener, R P; Geha, R S

    1990-01-15

    The T cell-derived lymphokine IL-4 is essential for the induction of IgE synthesis by human lymphocytes. The IgE-inducing effect of IL-4 is antagonized by IFN-gamma. The secretion of IFN-gamma is vigorously triggered in MLC. Thus, IL-4-stimulated MLC represent a suitable model to characterize the functional antagonism between IL-4 and IFN-gamma. In this report, we show that rIL-4 consistently induced IgE synthesis when added to human primary MLC. IL-4-dependent IgE production required cognate T/B cell recognition, because it was inhibited by antibodies to CD3 and MHC class II (HlA-DR) Ag. A neutralizing anti-IFN-gamma mAb dramatically enhanced IL-4-dependent IgE synthesis by MLC, indicating that endogenous IFN-gamma is a major inhibitor of IgE production. More importantly, addition of rIL-4 markedly inhibited the release of IFN-gamma in supernatants of MLC and Con A-activated PBMC. The decrease in IFN-gamma protein was accompanied by a decreased expression of IFN-gamma mRNA transcripts. The downregulation of IFN-gamma by IL-4 is likely to play an important role in the IL-4-dependent induction of IgE synthesis.

  10. Suppressing effect of low-dose gamma-ray irradiation on collagen-induced arthritis.

    PubMed

    Nakatsukasa, Hiroko; Tsukimoto, Mitsutoshi; Ohshima, Yasuhiro; Tago, Fumitoshi; Masada, Ayako; Kojima, Shuji

    2008-07-01

    We previously reported attenuation of autoimmune disease by low-dose gamma-ray irradiation in MRL-lpr/lpr mice. Here, we studied the effect of low-dose gamma-ray irradiation on collagen-induced arthritis (CIA) in DBA/1J mice. Mice were immunized with type II collagen, and exposed to low-dose gamma-rays (0.5 Gy per week for 5 weeks). Paw swelling, redness, and bone degradation were suppressed by irradiation, which also delayed the onset of pathological change and reduced the severity of the arthritis. Production of tumor necrosis factor-alpha, interferon-gamma, and interleukin-6, which play important roles in the onset of CIA, was suppressed by the irradiation. The level of anti-type II collagen antibody, which is essential for the onset of CIA, was also lower in irradiated CIA mice. The population of plasma cells was increased in CIA mice, but irradiation blocked this increase. Since regulatory T cells are known to be involved in suppression of autoimmune disease, the population of CD4(+)CD25(+)Foxp3(+) regulatory T cells was measured. Intriguingly, a significant increase of these regulatory T cells was found in irradiated CIA mice. Overall, our data suggest that low-dose gamma-ray irradiation could attenuate CIA through suppression of pro-inflammatory cytokines and autoantibody production, and induction of regulatory T cells.

  11. ER stress and genomic instability induced by gamma radiation in mice primary cultured glial cells.

    PubMed

    Chatterjee, Jit; Nairy, Rajesha K; Langhnoja, Jaldeep; Tripathi, Ashutosh; Patil, Rajashekhar K; Pillai, Prakash P; Mustak, Mohammed S

    2018-06-01

    Ionizing radiation induces various pathophysiological conditions by altering central nervous system (CNS) homeostasis, leading to neurodegenerative diseases. However, the potential effect of ionizing radiation response on cellular physiology in glial cells is unclear. In the present study, micronucleus test, comet assay, and RT-PCR were performed to investigate the potential effect of gamma radiation in cultured oligodendrocytes and astrocytes with respect to genomic instability, Endoplasmic Reticulum (ER) stress, and inflammation. Further, we studied the effect of alteration in ER stress specific gene expression in cortex post whole body radiation in mice. Results showed that exposure of gamma radiation of 2Gy in-vitro cultured astrocytes and oligodendrocytes and 7Gy in-vivo induced ER stress and Inflammation along with profuse DNA damage and Chromosomal abnormality. Additionally, we observed downregulation of myelin basic protein levels in cultured oligodendrocytes exposed to radiation. The present data suggests that ER stress and pro inflammatory cytokines serve as the major players in inducing glial cell dysfunction post gamma irradiation along with induction of genomic instability. Taken together, these results indicate that ER stress, DNA damage, and inflammatory pathways may be critical events leading to glial cell dysfunction and subsequent cell death following exposure to ionizing radiation.

  12. Endothelial permeability is controlled by spatially defined cytoskeletal mechanics: atomic force microscopy force mapping of pulmonary endothelial monolayer.

    PubMed

    Birukova, Anna A; Arce, Fernando T; Moldobaeva, Nurgul; Dudek, Steven M; Garcia, Joe G N; Lal, Ratnesh; Birukov, Konstantin G

    2009-03-01

    Actomyosin contraction directly regulates endothelial cell (EC) permeability, but intracellular redistribution of cytoskeletal tension associated with EC permeability is poorly understood. We used atomic force microscopy (AFM), EC permeability assays, and fluorescence microscopy to link barrier regulation, cell remodeling, and cytoskeletal mechanical properties in EC treated with barrier-protective as well as barrier-disruptive agonists. Thrombin, vascular endothelial growth factor, and hydrogen peroxide increased EC permeability, disrupted cell junctions, and induced stress fiber formation. Oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine, hepatocyte growth factor, and iloprost tightened EC barriers, enhanced peripheral actin cytoskeleton and adherens junctions, and abolished thrombin-induced permeability and EC remodeling. AFM force mapping and imaging showed differential distribution of cell stiffness: barrier-disruptive agonists increased stiffness in the central region, and barrier-protective agents decreased stiffness in the center and increased it at the periphery. Attenuation of thrombin-induced permeability correlates well with stiffness changes from the cell center to periphery. These results directly link for the first time the patterns of cell stiffness with specific EC permeability responses.

  13. Influence of UV and Gamma radiations on the induced birefringence of stretched poly(vinyl) alcohol foils

    NASA Astrophysics Data System (ADS)

    Nechifor, Cristina-Delia; Zelinschi, Carmen Beatrice; Dorohoi, Dana-Ortansa

    2014-03-01

    The aim of our paper is to evidence the influence of Gamma and UV radiations on the induced birefringence of poly(vinyl alcohol) stretched foils. Thin foils of PVA were prepared and dried without modifying their surfaces. The polymeric foils were irradiated from 15 min to 6 h using UV and Gamma radiations. The induced by stretching under heating birefringence of PVA films was measured at λ = 589.3 nm with a Babinet Compensator. Physico-chemical processes (photo stabilization, photo degradation, oxidation) induced by irradiation of polymer matrix influence both the stretching degree and the anisotropy of etired foils. An increase of birefringence versus the stretching ratio of the PVA foils was evidenced for all studied samples. The dependence of the birefringence on the exposure time, stretching ratio and nature of radiation was also confirmed.

  14. Fruit extracts of Momordica charantia potentiate glucose uptake and up-regulate Glut-4, PPAR gamma and PI3K.

    PubMed

    Kumar, Ramadhar; Balaji, S; Uma, T S; Sehgal, P K

    2009-12-10

    Momordica charantia fruit is a widely used traditional medicinal herb as, anti-diabetic, anti-HIV, anti-ulcer, anti-inflammatory, anti-leukemic, anti-microbial, and anti-tumor. The present study is undertaken to investigate the possible mode of action of fruit extracts derived from Momordica charantia (MC) and study its pharmacological effects for controlling diabetic mellitus. Effects of aqueous and chloroform extracts of Momordica charantia fruit on glucose uptake and up-regulation of glucose transporter (Glut-4), peroxisome proliferator activator receptor gamma (PPAR gamma) and phosphatidylinositol-3 kinase (PI3K), were investigated to show its efficacy as a hypoglycaemic agent. Dose dependent glucose uptake assay was performed on L6 myotubes using 2-deoxy-D-[1-(3)H] glucose. Up-regulatory effects of the extracts on the mRNA expression level of Glut-4, PPAR gamma and PI3K have been studied. The association of Momordica charantia with the aqueous and chloroform extracts of Momordica charantia fruit at 6 microg/ml has shown significant up-regulatory effect, respectively, by 3.6-, 2.8- and 3.8-fold on the battery of targets Glut-4, PPAR gamma and PI3K involved in glucose transport. The up-regulation of glucose uptake was comparable with insulin and rosiglitazone which was approximately 2-fold over the control. Moreover, the inhibitory effect of the cyclohexamide on Momordica charantia fruit extract mediated glucose uptake suggested the requirement of new protein synthesis for the enhanced glucose uptake. This study demonstrated the significance of Glut-4, PPAR gamma and PI3K up-regulation by Momordica charantia in augmenting the glucose uptake and homeostasis.

  15. Phosphorylation of Nephrin Triggers Ca2+ Signaling by Recruitment and Activation of Phospholipase C-{gamma}1.

    PubMed

    Harita, Yutaka; Kurihara, Hidetake; Kosako, Hidetaka; Tezuka, Tohru; Sekine, Takashi; Igarashi, Takashi; Ohsawa, Ikuroh; Ohta, Shigeo; Hattori, Seisuke

    2009-03-27

    A specialized intercellular junction between podocytes, known as the slit diaphragm (SD), forms the essential structural frame-work for glomerular filtration in the kidney. In addition, mounting evidence demonstrates that the SD also plays a crucial role as a signaling platform in physiological and pathological states. Nephrin, the major component of the SD, is tyrosine-phosphorylated by a Src family tyrosine kinase, Fyn, in developing or injured podocytes, recruiting Nck to Nephrin via its Src homology 2 domain to regulate dynamic actin remodeling. Dysregulated Ca(2+) homeostasis has also been implicated in podocyte damage, but the mechanism of how podocytes respond to injury is largely unknown. Here we have identified phospholipase C-gamma1 (PLC-gamma1) as a novel phospho-Nephrin-binding protein. When HEK293T cells expressing a chimeric protein consisting of CD8 and Nephrin cytoplasmic domain (CD) were treated with anti-CD8 and anti-mouse antibodies, clustering of Nephrin and phosphorylation of Nephrin-CD were induced. Upon this clustering, PLC-gamma1 was bound to phosphorylated Nephrin Tyr-1204, which induced translocation of PLC-gamma1 from cytoplasm to the CD8/Nephrin cluster on the plasma membrane. The recruitment of PLC-gamma1 to Nephrin activated PLC-gamma1, as detected by phosphorylation of PLC-gamma1 Tyr-783 and increase in inositol 1,4,5-trisphosphate level. We also found that Nephrin Tyr-1204 phosphorylation triggers the Ca(2+) response in a PLC-gamma1-dependent fashion. Furthermore, PLC-gamma1 is significantly phosphorylated in injured podocytes in vivo. Given the profound effect of PLC-gamma in diverse cellular functions, regulation of the Ca(2+) signaling by Nephrin may be important in modulating the glomerular filtration barrier function.

  16. [Chinese medicinal monomer and compound for 60Co-gamma-induced spermatogenic disturbance in mice].

    PubMed

    Zhang, Wei-xing; Wang, Hua-li; Wang, Rui; Li, Rui; He, Wei; Zhang, Tian-biao

    2010-05-01

    To explore the effects of the monomer and compound of the Chinese herbal drugs resveratrol, lycium barbarum polysaccharide (LBP) and icariin on 60Co-gamma-induced spermatogenic disturbance in mice based on the theory of modern Chinese medicine. A total of 105 male Kunming mice were randomly divided into seven groups, with 15 in each. Group A were normally raised and Groups B, C, D, E, F and G irradiated by 60Co-gamma 6 Gy followed by 60Co-gamma 4 Gy at the interval of 7 days. A week later, Groups C, D, E, F and G received intragastrically the suspension of resveratrol, resveratrol + LBP, resveratrol + icariin, resveratrol + LBP + icariin and resveratrol + LBP + icariin + L-carnitine, respectively, at the dose of 80 mg/(kg x d) for 60 days. The general condition, physical signs and body weight changes of the mice were recorded, and 24 hours after the intragastric medication, their testes were harvested to obtain the testicular weight and indexes, the levels of FSH, LH, T and E2 determined by ELISA, the T/E2 ratio calculated, and the histology of the testis tissues observed under the microscope. The testicular indexes of the mice were decreased by radiation-induced damage, but restored to some extent after intragastric medication, especially in Groups E, F and G. The levels of FSH, LH and T were obviously improved by LBP. The T level and testis weight were increased by Icariin. The level of T/E2 was elevated in Groups E, F and G. The best results were achieved in Group F, which exhibited almost complete recovery from reproductive endocrine disorder and spermatogenic damage. The Chinese medicinal monomer is effective for 60Co-gamma-induced spermatogenic disturbance in mice, and the compound suspension of resveratrol + LBP + icariin produces the best result.

  17. HCV core protein induces hepatic lipid accumulation by activating SREBP1 and PPAR{gamma}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kook Hwan; Hong, Sung Pyo; Kim, KyeongJin

    2007-04-20

    Hepatic steatosis is a common feature in patients with chronic hepatitis C virus (HCV) infection. HCV core protein plays an important role in the development of hepatic steatosis in HCV infection. Because SREBP1 (sterol regulatory element binding protein 1) and PPAR{gamma} (peroxisome proliferators-activated receptor {gamma}) are involved in the regulation of lipid metabolism of hepatocyte, we sought to determine whether HCV core protein may impair the expression and activity of SREBP1 and PPAR{gamma}. In this study, it was demonstrated that HCV core protein increases the gene expression of SREBP1 not only in Chang liver, Huh7, and HepG2 cells transiently transfectedmore » with HCV core protein expression plasmid, but also in Chang liver-core stable cells. Furthermore, HCV core protein enhanced the transcriptional activity of SREBP1. In addition, HCV core protein elevated PPAR{gamma} transcriptional activity. However, HCV core protein had no effect on PPAR{gamma} gene expression. Finally, we showed that HCV core protein stimulates the genes expression of lipogenic enzyme and fatty acid uptake associated protein. Therefore, our finding provides a new insight into the mechanism of hepatic steatosis by HCV infection.« less

  18. Rapid Detection of Thrombin and Other Protease Activity Directly in Whole Blood

    NASA Astrophysics Data System (ADS)

    Yu, Johnson Chung Sing

    Thrombin is a serine protease that plays a key role in the clotting cascade to promote hemostasis following injury to the endothelium. From a clinical diagnostic perspective, in-vivo thrombin activity is linked to various blood clotting disorders, as well as cardiovascular disease (DVT, arteriosclerosis, etc). Thus, the ability to rapidly measure protease activity directly in whole blood will provide important new diagnostics, and clinical researchers with a powerful tool to further elucidate the relationship between circulating protease levels and disease. The ultimate goal is to design novel point of care (POC) diagnostic devices that are capable of monitoring protease activities directly in whole blood and biological sample. A charge-changing substrate specific to the thrombin enzyme was engineered and its functionality was confirmed by a series of experiments. This led to the preliminary design, construction, and testing of two device platforms deemed fully functional for the electrophoretic separation and focusing of charged peptide fragments. The concept of using the existing charge-changing substrate platform for bacterial protease detection was also investigated. Certain strains of E coli are associated with severe symptoms such as abdominal cramps, bloody diarrhea, and vomiting. The OmpT protease is expressed on the outer membrane of E coli and plays a role in the cleavage of antimicrobial peptides, the degradation of recombinant heterologous proteins, and the activation of plasminogen in the host. Thus, a synthetic peptide substrate specific to the OmpT protease was designed and modeled for the purpose of detecting E coli in biological sample.

  19. Self-Propelled Dressings Containing Thrombin and Tranexamic Acid Improve Short-Term Survival in a Swine Model of Lethal Junctional Hemorrhage.

    PubMed

    Baylis, James R; St John, Alexander E; Wang, Xu; Lim, Esther B; Statz, Matthew L; Chien, Diana; Simonson, Eric; Stern, Susan A; Liggins, Richard T; White, Nathan J; Kastrup, Christian J

    2016-09-01

    Hemorrhage is the leading cause of preventable death in trauma, and hemorrhage from noncompressible junctional anatomic sites is particularly difficult to control. The current standard is QuikClot Combat Gauze packing, which requires 3 min of compression. We have created a novel dressing with calcium carbonate microparticles that can disperse and self-propel upstream against flowing blood. We loaded these microparticles with thrombin and tranexamic acid and tested their efficacy in a swine arterial bleeding model without wound compression. Anesthetized immature female swine received 5 mm femoral arteriotomies to induce severe junctional hemorrhage. Wounds were packed with kaolin-based QuikClot Combat Gauze (KG), propelled thrombin-microparticles with protonated tranexamic acid (PTG), or a non-propelling formulation of the same thrombin-microparticles with non-protonated tranexamic acid (NPTG). Wounds were not compressed after packing. Each animal then received one 15 mL/kg bolus of hydroxyethyl starch solution followed by Lactated Ringer as needed for hypotension (maximum: 100 mL/kg) for up to 3 h. Survival was improved with PTG (3-h survival: 8/8, 100%) compared with KG (3/8, 37.5%) and NPTG (2/8, 25%) (P <0.01). PTG animals maintained lower serum lactate and higher hemoglobin concentrations than NPTG (P <0.05) suggesting PTG decreased severity of subsequent hemorrhagic shock. However, total blood loss, Lactated Ringer infusion volumes, and mean arterial pressures of surviving animals were not different between groups (P >0.05). Thus, in this swine model of junctional arterial hemorrhage, gauze with self-propelled, prothrombotic microparticles improved survival and 2 indicators of hemorrhagic shock when applied without compression, suggesting this capability may enable better treatment of non-compressible junctional wounds.

  20. Transforming growth factor-{beta} inhibits CCAAT/enhancer-binding protein expression and PPAR{gamma} activity in unloaded bone marrow stromal cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahdjoudj, S.; Kaabeche, K.; Holy, X.

    2005-02-01

    The molecular mechanisms regulating the adipogenic differentiation of bone marrow stromal cells in vivo remain largely unknown. In this study, we investigated the regulatory effects of transforming growth factor beta-2 (TGF-{beta}2) on transcription factors involved in adipogenic differentiation induced by hind limb suspension in rat bone marrow stromal cells in vivo. Time course real-time quantitative reverse-transcription polymerase chain reaction (RT-PCR) analysis of gene expression showed that skeletal unloading progressively increases the expression of CCAAT/enhancer-binding protein (C/EBP){alpha} and C/EBP{beta} {alpha} at 5 days in bone marrow stromal cells resulting in increased peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}2) transcripts at 7 days. TGF-{beta}2more » administration in unloaded rats corrected the rise in C/EBP{alpha} and C/EBP{beta} transcripts induced by unloading in bone marrow stromal cells. This resulted in inhibition of PPAR{gamma}2 expression that was associated with increased Runx2 expression. Additionally, the inhibition of C/EBP{alpha} and C/EBP{beta} expression by TGF-{beta}2 was associated with increased PPAR{gamma} serine phosphorylation in bone marrow stromal cells, a mechanism that inhibits PPAR{gamma} transactivating activity. The sequential inhibitory effect of TGF-{beta}2 on C/EBP{alpha}, C/EBP{beta}, and PPAR{gamma}2 resulted in reduced LPL expression and abolition of bone marrow stromal cell adipogenic differentiation, which contributed to prevent bone loss induced by skeletal unloading. We conclude that TGF-{beta}2 inhibits the excessive adipogenic differentiation of bone marrow stromal cells induced by skeletal unloading by inhibiting C/EBP{alpha}, C/EBP{beta}, and PPAR{gamma} expression and activity, which provides a sequential mechanism by which TGF-{beta}2 regulates adipogenic differentiation of bone marrow stromal cells in vivo.« less

  1. Thrombin generation, ProC(®)Global, prothrombin time and activated partial thromboplastin time in thawed plasma stored for seven days and after methylene blue/light pathogen inactivation.

    PubMed

    Thiele, Thomas; Hron, Gregor; Kellner, Sarah; Wasner, Christina; Westphal, Antje; Warkentin, Theodore E; Greinacher, Andreas; Selleng, Kathleen

    2016-01-01

    Methylene blue pathogen inactivation and storage of thawed plasma both lead to changes in the activity of several clotting factors. We investigated how this translates into a global loss of thrombin generation potential and alterations in the protein C pathway. Fifty apheresis plasma samples were thawed and each divided into three subunits. One subunit was stored for 7 days at 4 °C, one was stored for 7 days at 22 °C and one was stored at 4 °C after methylene blue/light treatment. Thrombin generation parameters, ProC(®)Global-NR, prothrombin time and activated partial thromboplastin time were assessed on days 0 and 7. The velocity of thrombin generation increased significantly after methylene blue treatment (increased thrombin generation rate; time to peak decreased) and decreased after storage (decreased thrombin generation rate and peak thrombin; increased lag time and time to peak). The endogenous thrombin generation potential remained stable after methylene blue treatment and storage at 4 °C. Methylene blue treatment and 7 days of storage at 4 °C activated the protein C pathway, whereas storage at room temperature and storage after methylene blue treatment decreased the functional capacity of the protein C pathway. Prothrombin time and activated partial thromboplastin time showed only modest alterations. The global clotting capacity of thawed plasma is maintained at 4 °C for 7 days and directly after methylene blue treatment of thawed plasma. Thrombin generation and ProC(®)Global are useful tools for investigating the impact of pathogen inactivation and storage on the clotting capacity of therapeutic plasma preparations.

  2. Differential response of normal human fibroblasts to bombesin versus thrombin.

    PubMed

    Hendey, B; Mamrack, M D

    1988-09-01

    Normal human diploid fibroblasts (WS-1 cells) were growth-arrested under serum-free conditions for 48 hr. The addition of fetal bovine serum (10% final concentration) to these cells stimulated [3H]-thymidine incorporation into DNA and phosphoinositide breakdown over nine-fold. Thrombin, at concentrations above 0.1 unit/ml (u/ml), was also effective at stimulating DNA synthesis and phosphoinositide breakdown as well as causing a rise in intracellular pH. In contrast, the peptide bombesin (concentrations ranging from 1 nM to 100 nM) stimulated phosphoinositide breakdown but did not enhance DNA synthesis or cause an increase in cytoplasmic pH. The time course of accumulation of inositol phosphates differed in response to these agents. The thrombin effect peaked rapidly and leveled off after 5 min while the bombesin effect showed a constant increase for 30 min. Serum showed an intermediate response. The different rates of inositol phosphate accumulation observed with the two growth factors is viewed as representing a difference in the mechanism of phosphoinositide turnover. The relationship between the difference in phosphoinositide turnover and the initiation of DNA synthesis is also discussed.

  3. Regulation by CD45 of the tyrosine phosphorylation of high affinity IgE receptor beta- and gamma-chains.

    PubMed

    Adamczewski, M; Numerof, R P; Koretzky, G A; Kinet, J P

    1995-04-01

    Previous studies using tyrosine phosphatase inhibitors have implicated tyrosine phosphatases in the signal transduction pathway initiated by aggregation of Fc epsilon RI, the high affinity receptor for IgE. To define more precisely a role for the tyrosine phosphatase CD45 in Fc epsilon RI-mediated signaling, we have transfected the three subunits of Fc epsilon RI into wild-type Jurkat and a CD45-deficient Jurkat derivative. Here we demonstrate that CD45 is necessary for the initiation of calcium flux through the transfected Fc epsilon RI. In contrast to the effect of phosphatase inhibitors, the tyrosine phosphorylation levels of beta and gamma after aggregation of Fc epsilon RI are surprisingly reduced, relative to wild-type Jurkat, in the CD45-deficient cells. After reconstitution of the CD45-deficient cells with a chimeric molecule containing the cytoplasmic phosphatase domains of CD45, both the base line and activation-induced tyrosine phosphorylation levels are increased. By examining Lck autophosphorylation, we find that Fc epsilon RI aggregation induces an increase in Lck enzymatic activity only in wild-type Jurkat and the CD45-deficient Jurkat reconstituted with chimeric CD45. This regulation of src-family tyrosine kinase activity may be the means by which CD45 controls aggregation-induced receptor phosphorylation.

  4. Detection of pulsed bremsstrahlung-induced prompt neutron capture gamma rays with a HPGe detector

    NASA Astrophysics Data System (ADS)

    Jones, James L.

    1997-02-01

    The Idaho National Engineering Laboratory (INEL) is developing a novel photoneutron-based nondestructive evaluation technique which uses a pulsed, high-energy electron accelerator and gamma-ray spectrometry. Highly penetrating pulses of bremsstrahlung photons are produced by each pulse of electrons. Interrogating neutrons are generated by the bremsstrahlung photons interacting within a photoneutron source material. The interactions of the neutrons within a target result in the emission of elemental characteristic gamma-rays. Spectrometry is performed by analyzing the photoneutron-induced, prompt gama-rays acquired between accelerator pulses with a unique, high- purity germanium gamma-ray detection system using a modified transistor reset preamplifier. The detection system, the experimental configuration, and the accelerator operation used to characterize the detection systems performance are described. Using a 6.5-MeV electron accelerator and a beryllium metal photoneutron source, gamma-ray spectra were successfully acquired for Al, Cu, polyethylene, NaCl, and depleted uranium targets as soon as 30 microsecond(s) after each bremsstrahlung flash.

  5. Role of NADP+-dependent isocitrate dehydrogenase (NADP+-ICDH) on cellular defence against oxidative injury by gamma-rays.

    PubMed

    Lee, S H; Jo, S H; Lee, S M; Koh, H J; Song, H; Park, J W; Lee, W H; Huh, T L

    2004-09-01

    To investigate the regulation of NADPH-producing isocitrate dehydrogenase (ICDH) in cytosol (IDPc) and mitochondria (IDPm) upon gamma-ray irradiation, and the roles of IDPc and IDPm in the protection against cellular damage induced by gamma-ray irradiation. Changes of IDPc and IDPm proteins upon gamma-ray irradiation to NIH3T3 cells were analysed by immunoblotting. To increase or decrease the expression of IDPc or IDPm, NIH3T3 cells were stably transfected with mouse IDPc or IDPm cDNA in either the sense or the antisense direction. The transfected cells with either increased or decreased IDPc or IDPm were exposed to gamma-rays, and the levels of reactive oxygen species generation, protein oxidation and lipid peroxidation were measured. Both IDPc and IDPm activities were induced by gamma-ray in NIH3T3 cells. Cells with decreased expression of IDPc or IDPm had elevated reactive oxygen species generation, lipid peroxidation and protein oxidation. Conversely, overproduction of IDPc or IDPm protein partially protected the cells from oxidative damage induced by gamma-ray irradiation. The protective role of IDPc and IDPm against gamma-ray-induced cellular damage can be attributed to elevated NADPH, reducing equivalents needed for recycling reduced glutathione in the cytosol and mitochondria. Thus, a primary biological function of the ICDHs may be production of NADPH, which is a prerequisite for some cellular defence systems against oxidative damage.

  6. Killing of Human Melanoma Cells Induced by Activation of Class I Interferon–Regulated Signaling Pathways via MDA-7/IL-24

    PubMed Central

    Ekmekcioglu, Suhendan; Mumm, John B.; Udtha, Malini; Chada, Sunil; Grimm, Elizabeth A.

    2008-01-01

    Restoration of the tumor-suppression function by gene transfer of the melanoma differentiation-associated gene 7 (MDA7)/interleukin 24 (IL-24) successfully induces apoptosis in melanoma tumors in vivo. To address the molecular mechanisms involved, we previously revealed that MDA7/IL-24 treatment of melanoma cells down-regulates interferon regulatory factor (IRF)-1 expression and concomitantly up-regulates IRF-2 expression, which competes with the activity of IRF-1 and reverses the induction of IRF-1–regulated inducible nitric oxide synthase (iNOS). Interferons (IFNs) influence melanoma cell survival by modulating apoptosis. A class I IFN (IFN alfa) has been approved for the treatment of advanced melanoma with some limited success. A class II IFN (IFN gamma), on the other hand, supports melanoma cell survival, possibly through constitutive activation of iNOS expression. We therefore conducted this study to explore the molecular pathways of MDA7/IL-24 regulation of apoptosis via the intracellular induction of IFNs in melanoma. We hypothesized that the restoration of the MDA7/IL-24 axis leads to upregulation of Class I IFNs and induction of the apoptotic cascade. We found that MDA7/IL-24 induces the secretion of endogenous IFN beta, another class I IFN, leading to the arrest of melanoma cell growth and apoptosis. We also identified a series of apoptotic markers that play a role in this pathway, including the regulation of tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) and Fas-FasL. In summary, we described a novel pathway of MDA7/IL-24 regulation of apoptosis in melanoma tumors via endogenous IFN beta induction followed by IRF regulation and TRAIL/FasL system activation. PMID:18511292

  7. Ultrasound-guided thrombin injection of genicular artery pseudoaneurysm.

    PubMed

    Rachakonda, Aditya; Qato, Khalil; Khaddash, Tamim; Carroccio, Alfio; Pamoukian, Vicken; Giangola, Gary

    2015-07-01

    Pseudoaneurysm is a rare complication after arthroscopic procedures involving the knee. A 38-year-old man presented 1 month after right-knee arthroscopy with a 2-cm pulsating mass on the medial side of the right knee. Duplex ultrasound evaluation revealed 2.5 × 2.1-cm pseudoaneurysm just distal to the patella with arterialized flow communicating with the inferior medial genicular artery. Ultrasound-guided thrombin injection was performed in an office setting, and the resolution of active flow within the pseudoaneurysm was confirmed with duplex ultrasonography. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Peroxisome proliferator-activated receptor gamma and transforming growth factor-beta pathways inhibit intestinal epithelial cell growth by regulating levels of TSC-22.

    PubMed

    Gupta, Rajnish A; Sarraf, Pasha; Brockman, Jeffrey A; Shappell, Scott B; Raftery, Laurel A; Willson, Timothy M; DuBois, Raymond N

    2003-02-28

    Peroxisome proliferator-activated receptor gamma (PPARgamma) and transforming growth factor-beta (TGF-beta) are key regulators of epithelial cell biology. However, the molecular mechanisms by which either pathway induces growth inhibition and differentiation are incompletely understood. We have identified transforming growth factor-simulated clone-22 (TSC-22) as a target gene of both pathways in intestinal epithelial cells. TSC-22 is member of a family of leucine zipper containing transcription factors with repressor activity. Although little is known regarding its function in mammals, the Drosophila homolog of TSC-22, bunched, plays an essential role in fly development. The ability of PPARgamma to induce TSC-22 was not dependent on an intact TGF-beta1 signaling pathway and was specific for the gamma isoform. Localization studies revealed that TSC-22 mRNA is enriched in the postmitotic epithelial compartment of the normal human colon. Cells transfected with wild-type TSC-22 exhibited reduced growth rates and increased levels of p21 compared with vector-transfected cells. Furthermore, transfection with a dominant negative TSC-22 in which both repressor domains were deleted was able to reverse the p21 induction and growth inhibition caused by activation of either the PPARgamma or TGF-beta pathways. These results place TSC-22 as an important downstream component of PPARgamma and TGF-beta signaling during intestinal epithelial cell differentiation.

  9. Graft Product for Autologous Peripheral Blood Stem Cell Transplantation Enhances Thrombin Generation and Expresses Procoagulant Microparticles and Tissue Factor.

    PubMed

    Sidibe, Fatoumata; Spanoudaki, Anastasia; Vanneaux, Valerie; Mbemba, Elisabeth; Larghero, Jerome; Van Dreden, Patrick; Lotz, Jean-Pierre; Elalamy, Ismail; Larsen, Annette K; Gerotziafas, Grigoris T

    2018-05-01

    The beneficial effect of autologous peripheral blood stem cell transplantation (APBSCT) may be compromised by acute vascular complications related to hypercoagulability. We studied the impact of graft product on thrombin generation of normal plasma and the expression of tissue factor (TF) and procoagulant platelet-derived procoagulant microparticles (Pd-MPs) in samples of graft products. Graft products from 10 patients eligible for APBSCT were mixed with platelet-poor plasma (PPP) or platelet-rich plasma (PRP) from healthy volunteers and assessed for in vitro thrombin generation. In control experiments, thrombin generation was assessed in (1) PPP and PRP without any exogenous TF and/or procoagulant phospholipids, (2) PPP with the addition of TF (5 pM) and procoagulant phospholipids (4 μM), (3) in PRP with the addition of TF (5 pM). Graft products were assessed with Western blot assay for TF expression, with a specific clotting assay for TF activity and with flow cytometry assay for Pd-MPs. The graft product enhanced thrombin generation and its procoagulant activity was related to the presence of Pd-MPs and TF. The concentration of Pd-MPs in the graft product was characterized by a significant interindividual variability. The present study reveals the need for a thorough quality control of the graft products regarding their procoagulant potential.

  10. 17Beta-estradiol protects against oxidative stress-induced cell death through the glutathione/glutaredoxin-dependent redox regulation of Akt in myocardiac H9c2 cells.

    PubMed

    Urata, Yoshishige; Ihara, Yoshito; Murata, Hiroaki; Goto, Shinji; Koji, Takehiko; Yodoi, Junji; Inoue, Satoshi; Kondo, Takahito

    2006-05-12

    The GSH/glutaredoxin (GRX) system is involved in the redox regulation of certain enzyme activities, and this system protects cells from H2O2-induced apoptosis by regulating the redox state of Akt (Murata, H., Ihara, Y., Nakamura, H., Yodoi, J., Sumikawa, K., and Kondo, T. (2003) J. Biol. Chem. 278, 50226-50233). Estrogens, such as 17beta-estradiol (E2), play an important role in development, growth, and differentiation and appear to have protective effects on oxidative stress mediated by estrogen receptor alpha (ERalpha). However, the role of the ERbeta-mediated pathway in this cytoprotection and the involvement of E2 in the redox regulation are not well understood. In the present study, we demonstrated that E2 protected cardiac H9c2 cells, expressing ERbeta from H2O2-induced apoptosis concomitant with an increase in the activity of Akt. E2 induced the expression of glutaredoxin (GRX) as well as gamma-glutamylcysteine synthetase, a rate-limiting enzyme for the synthesis of GSH. Inhibitors for both gamma-glutamylcysteine synthetase and GRX and ICI182,780, a specific inhibitor of ERs, abolished the protective effect of E2 on cell survival as well as the activity of Akt, suggesting that ERbeta is involved in the cytoprotection and redox regulation by E2. Transcription of the GRX gene was enhanced by E2. The promoter activity of GRX was up-regulated by an ERbeta-dependent element. These results suggest that the GRX/GSH system is involved in the cytoprotective and genomic effects of E2 on the redox state of Akt, a pathway that is mediated, at least in part, by ERbeta. This mechanism may also play an antiapoptotic role in cancer cells during carcinogenesis or chemotherapy.

  11. PPAR{alpha} deficiency augments a ketogenic diet-induced circadian PAI-1 expression possibly through PPAR{gamma} activation in the liver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oishi, Katsutaka, E-mail: k-ooishi@aist.go.jp; Uchida, Daisuke; Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki

    Research highlights: {yields} PPAR{alpha} deficiency augments a ketogenic diet-induced circadian PAI-1 expression. {yields} Hepatic expressions of PPAR{gamma} and PCG-1{alpha} are induced by a ketogenic diet. {yields} PPAR{gamma} antagonist attenuates a ketogenic diet-induced PAI-1 expression. {yields} Ketogenic diet advances the phase of circadian clock in a PPAR{alpha}-independent manner. -- Abstract: An increased level of plasminogen activator inhibitor-1 (PAI-1) is considered a risk factor for cardiovascular diseases, and PAI-1 gene expression is under the control of molecular circadian clocks in mammals. We recently showed that PAI-1 expression is augmented in a phase-advanced circadian manner in mice fed with a ketogenic diet (KD).more » To determine whether peroxisome proliferator-activated receptor {alpha} (PPAR{alpha}) is involved in hypofibrinolytic status induced by a KD, we examined the expression profiles of PAI-1 and circadian clock genes in PPAR{alpha}-null KD mice. Chronic administration of bezafibrate induced the PAI-1 gene expression in a PPAR{alpha}-dependent manner. Feeding with a KD augmented the circadian expression of PAI-1 mRNA in the hearts and livers of wild-type (WT) mice as previously described. The KD-induced mRNA expression of typical PPAR{alpha} target genes such as Cyp4A10 and FGF21 was damped in PPAR{alpha}-null mice. However, plasma PAI-1 concentrations were significantly more elevated in PPAR{alpha}-null KD mice in accordance with hepatic mRNA levels. These observations suggest that PPAR{alpha} activation is dispensable for KD-induced PAI-1 expression. We also found that hyperlipidemia, fatty liver, and the hepatic expressions of PPAR{gamma} and its coactivator PCG-1{alpha} were more effectively induced in PPAR{alpha}-null, than in WT mice on a KD. Furthermore, KD-induced hepatic PAI-1 expression was significantly suppressed by supplementation with bisphenol A diglycidyl ether, a PPAR{gamma} antagonist, in both WT and PPAR

  12. An ultrasensitive chemiluminescence aptasensor for thrombin detection based on iron porphyrin catalyzing luminescence desorbed from chitosan modified magnetic oxide graphene composite.

    PubMed

    Sun, Yuanling; Wang, Yanhui; Li, Jianbo; Ding, Chaofan; Lin, Yanna; Sun, Weiyan; Luo, Chuannan

    2017-11-01

    In this work, an ultrasensitive chemiluminescence (CL) aptasensor was prepared for thrombin detection based on iron porphyrin catalyzing luminol - hydrogen peroxide luminescence under alkaline conditions, and iron porphyrin was desorbed from chitosan modified magnetic oxide graphene composite (CS@Fe 3 O 4 @GO). Firstly, CS@Fe 3 O 4 @GO was prepared. CS@Fe 3 O 4 @GO has advantages of the good biocompatibility and positively charged on its surface of CS, the large specific surface area of GO and the easy separation characteristics of Fe 3 O 4 . GO, Fe 3 O 4 and CS@Fe 3 O 4 @GO were confirmed by transmission electron microscopy (TEM), scanning electron microscope (SEM), fourier transform infrared (FTIR) and X-ray powder diffraction (XRD). Then, thrombin aptamer (T-Apt) and hemin (HM, an iron porphyrin) were sequentially modified on the surface of CS@Fe 3 O 4 @GO to form CS@Fe 3 O 4 @GO@T-Apt@HM. The immobilization properties of CS@Fe 3 O 4 @GO to T-Apt and adsorption properties of CS@Fe 3 O 4 @GO@T-Apt to HM were sequentially researched through the curves of kinetics and the curves of thermodynamics. When thrombin existed in solutions, HM was desorbed from the surface of CS@Fe 3 O 4 @GO@T-Apt@HM owing to the strong specific recognition ability between thrombin and T-Apt, causing the changes of CL signal. Under optimized CL conditions, thrombin could be measured with the linear concentration range of 5.0×10 -15 -2.5×10 -10 mol/L. The detection limit was 1.5×10 -15 mol/L (3δ) while the relative standard deviation (RSD) was 3.2%. Finally, the CS@Fe 3 O 4 @GO@T-Apt@HM-CL aptasensor was used for the determination of thrombin in practical serum samples and recoveries ranged from 95% to 103%. Those satisfactory results revealed potential application of the CS@Fe 3 O 4 @GO@T-Apt@HM-CL aptasensor for thrombin detection in monitoring and diagnosis of human blood diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Molecular design and structure--activity relationships leading to the potent, selective, and orally active thrombin active site inhibitor BMS-189664.

    PubMed

    Das, Jagabandhu; Kimball, S David; Hall, Steven E; Han, Wen Ching; Iwanowicz, Edwin; Lin, James; Moquin, Robert V; Reid, Joyce A; Sack, John S; Malley, Mary F; Chang, Chiehying Y; Chong, Saeho; Wang-Iverson, David B; Roberts, Daniel G M; Seiler, Steven M; Schumacher, William A; Ogletree, Martin L

    2002-01-07

    A series of structurally novel small molecule inhibitors of human alpha-thrombin was prepared to elucidate their structure-activity relationships (SARs), selectivity and activity in vivo. BMS-189664 (3) is identified as a potent, selective, and orally active reversible inhibitor of human alpha-thrombin which is efficacious in vivo in a mouse lethality model, and at inhibiting both arterial and venous thrombosis in cynomolgus monkey models.

  14. PGC-1α and fasting-induced PDH regulation in mouse skeletal muscle.

    PubMed

    Gudiksen, Anders; Pilegaard, Henriette

    2017-04-01

    The purpose of the present study was to examine whether lack of skeletal muscle peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1 α ) affects the switch in substrate utilization from a fed to fasted state and the fasting-induced pyruvate dehydrogenase (PDH) regulation in skeletal muscle. Skeletal muscle-specific PGC-1 α knockout (MKO) mice and floxed littermate controls were fed or fasted for 24 h. Fasting reduced PDHa activity, increased phosphorylation of all four known sites on PDH-E1 α and increased pyruvate dehydrogenase kinase (PDK4) and sirtuin 3 (SIRT3) protein levels, but did not alter total acetylation of PDH-E1 α Lack of muscle PGC-1 α did not affect the switch from glucose to fat oxidation in the transition from the fed to fasted state, but was associated with lower and higher respiratory exchange ratio (RER) in the fed and fasted state, respectively. PGC-1 α MKO mice had lower skeletal muscle PDH-E1 α , PDK1, 2, 4, and pyruvate dehydrogenase phosphatase (PDP1) protein content than controls, but this did not prevent the fasting-induced increase in PDH-E1 α phosphorylation in PGC-1 α MKO mice. However, lack of skeletal muscle PGC-1 α reduced SIRT3 protein content, increased total lysine PDH-E1 α acetylation in the fed state, and prevented a fasting-induced increase in SIRT3 protein. In conclusion, skeletal muscle PGC-1 α is required for fasting-induced upregulation of skeletal muscle SIRT3 and maintaining high fat oxidation in the fasted state, but is dispensable for preserving the capability to switch substrate during the transition from the fed to the fasted state and for fasting-induced PDH regulation in skeletal muscle. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  15. Low-ω3 Fatty Acid and Soy Protein Attenuate Alcohol-Induced Fatty Liver and Injury by Regulating the Opposing Lipid Oxidation and Lipogenic Signaling Pathways

    PubMed Central

    Reyes-Gordillo, Karina; Shah, Ruchi; Varatharajalu, Ravi; Garige, Mamatha; Leckey, Leslie C.

    2016-01-01

    Chronic ethanol-induced downregulation of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) and upregulation of peroxisome proliferator-activated receptor gamma coactivator 1-beta (PGC1β) affect hepatic lipid oxidation and lipogenesis, respectively, leading to fatty liver injury. Low-ω3 fatty acid (Low-ω3FA) that primarily regulates PGC1α and soy protein (SP) that seems to have its major regulatory effect on PGC1β were evaluated for their protective effects against ethanol-induced hepatosteatosis in rats fed with Lieber-deCarli control or ethanol liquid diets with high or low ω3FA fish oil and soy protein. Low-ω3FA and SP opposed the actions of chronic ethanol by reducing serum and liver lipids with concomitant decreased fatty liver. They also prevented the downregulation of hepatic Sirtuin 1 (SIRT1) and PGC1α and their target fatty acid oxidation pathway genes and attenuated the upregulation of hepatic PGC1β and sterol regulatory element-binding protein 1c (SREBP1c) and their target lipogenic pathway genes via the phosphorylation of 5′ adenosine monophosphate-activated protein kinase (AMPK). Thus, these two novel modulators attenuate ethanol-induced hepatosteatosis and consequent liver injury potentially by regulating the two opposing lipid oxidation and lipogenic pathways. PMID:28074114

  16. Thrombin generation in mesalazine refractory ulcerative colitis and the influence of low molecular weight heparin.

    PubMed

    Vrij, Anton A; Oberndorff-Klein-Woolthuis, Ardi; Dijkstra, Gerard; de Jong, Andrea E; Wagenvoord, Rob; Hemker, Hendrik C; Stockbrügger, Reinhold W

    2007-10-01

    In ulcerative colitis (UC), a state of hypercoagulation has frequently been observed. Low molecular weight heparin (LMWH) has shown beneficial effects as an adjuvant treatment of steroid refractory UC in open trials. We assessed potential therapeutic effects of the LMWH reviparin in hospitalised patients with mesalazine refractory UC, as well as its influence on haemostasis factors. Twenty-nine patients with mild-to-moderately active UC were included in a double-blind placebo controlled trial. All patients had a flare-up of disease under mesalazine treatment. Reviparin (Clivarin) 3,436 IU anti-Xa/0.6 ml or placebo s.c. was added, and self-administered twice daily for 8 weeks. Patients were monitored for possible adverse events and changes in clinical symptoms. Endoscopical, histological, biochemical and haemostasis parameters were analysed. Tolerability and compliance were excellent and no serious adverse events occurred. No significant differences were observed on the clinical, endoscopical and histological outcome, as compared to placebo. A high intrinsic and extrinsic thrombin potential was found before LMWH therapy. However, the significant reduction in the thrombin generation by LMWH was not related to the reduction in disease activity. The LMWH reviparine reduces thrombin generation in patients with mild-to-moderately active, mesalazine refractory UC, but is not associated with a reduction in disease activity.

  17. Differential IFN-gamma stimulation of HLA-A gene expression through CRM-1-dependent nuclear RNA export.

    PubMed

    Browne, Sarah K; Roesser, James R; Zhu, Sheng Zu; Ginder, Gordon D

    2006-12-15

    IFNs regulate most MHC class I genes by stimulating transcription initiation. As shown previously, IFN-gamma controls HLA-A expression primarily at the posttranscriptional level. We have defined two 8-base sequences in a 39-nucleotide region in the 3'-transcribed region of the HLA-A gene that are required for the posttranscriptional response to IFN-gamma. Stimulation of HLA-A expression by IFN-gamma requires nuclear export of HLA-A mRNA by chromosome maintenance region 1 (CRM-1). Treatment of cells with leptomycin B, a specific inhibitor of CRM-1, completely inhibited IFN-gamma induction of HLA-A. Expression of a truncated, dominant-negative form of the nucleoporin NUP214/CAN, DeltaCAN, that specifically interacts with CRM-1, also prevented IFN-gamma stimulation of HLA-A, providing confirmation of the role of CRM-1. Increased expression of HLA-A induced by IFN-gamma also requires protein methylation, as shown by the fact that treatment of SK-N-MC cells or HeLa cells with the PRMT1 inhibitor 5'-methyl-5'-thioadenosine abolished the cellular response to IFN-gamma. In contrast with HLA-A, IFN-gamma-induced expression of the HLA class Ib gene, HLA-E, was not affected by either 5'-methyl-5'-thioadenosine or leptomycin B. These results provide proof of principle that it is possible to differentially modulate the IFN-gamma-induced expression of the HLA-E and HLA-A genes, whose products often mediate opposing effects on cellular immunity to tumor cells, pathogens, and autoantigens.

  18. Lymphocytes from wasted mice express enhanced spontaneous and {gamma}-ray-induced apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woloschak, G.E.; Chang-Liu, Chin-Mei; Chung, Jen

    1993-09-01

    Mice bearing the autosomal recessive mutation wasted (wst/wst) display a disease pattern including faulty repair of DNA damage in lymphocytes after radiation exposure, neurologic abnormalities, and immunodeficiency. Many of the features of this mouse model have suggested a premature or increased spontaneous frequency of apoptosis in thymocytes; past work has shown an inability to establish cultured T cell lines, an abnormally high death rate of stimulated T cells in culture, and an increased sensitivity of T cells to the killing effects of ionizing radiations in wst/wst mice relative to controls. The experiments reported here were designed to examine splenic andmore » thymic lymphocytes from wasted and control mice for signs of early apoptosis. Our results revealed enhanced expression of Rp-8 mRNA (associated with apoptosis) in thymic lymphocytes and reduced expression in splenic lymphocytes of wst/wst mice relative to controls; expression of Rp-2 and Td-30 mRNA (induced during apoptosis) were not detectable in spleen or thymus. Higher spontaneous DNA fragmentation was observed in wasted mice than in controls; however, {gamma}-ray-induced DNA fragmentation peaked at a lower dose and occurred to a greater extent in wasted mice relative to controls. These results provide evidence for high spontaneous and {gamma}-ray-induced apoptosis in T cells of wasted mice as a mechanism underlying the observed lymphocyte and DNA repair abnormalities.« less

  19. A novel fibrinogen variant--Liberec: dysfibrinogenaemia associated with gamma Tyr262Cys substitution.

    PubMed

    Kotlín, Roman; Sobotková, Alzbeta; Suttnar, Jirí; Salaj, Peter; Walterová, Lenka; Riedel, Tomás; Reicheltová, Zuzana; Dyr, Jan Evangelista

    2008-08-01

    A 22-yr-old woman had abnormal preoperative coagulation test results and congenital dysfibrinogenaemia was suspected. The patient from Liberec (Czech Republic) had a low fibrinogen plasma level as determined by Clauss method, normal fibrinogen level as determined by immunoturbidimetrical method, and prolonged thrombin time. To identify the genetic mutation responsible for this dysfibrinogen, genomic DNA extracted from the blood was analysed. Fibrin polymerisation measurement, kinetics of fibrinopeptide release, fibrinogen clottability measurement and scanning electron microscopy were performed. DNA sequencing showed the heterozygous fibrinogen gamma Y262C mutation. Kinetics of fibrinopeptide release was normal, however fibrin polymerisation was impaired. Fibrinogen clottability measurement showed that only about 45% molecules of fibrinogen are involved in the clot formation. Scanning electron microscopy revealed thicker fibres, which were significantly different from the normal control. A case of dysfibrinogenaemia, found by routine coagulation testing, was genetically identified as a novel fibrinogen variant (gamma Y262C) that has been named Liberec.

  20. Immunological unresponsiveness in mice. II. Cellular basis of immunological unresponsiveness induced in foetal and neonatal mice by transfer of human gamma-globulin by the maternal route.

    PubMed Central

    Shinka, S; Komatsu, T; Dohi, Y; Amano, T

    1979-01-01

    The cellular basis of the mechanism of immunological tolerance to human gamma-globulin (H gamma G) induced in foetal and neonatal mice by materno-foetal or materno-neonatal transfer after a single injection of tolerogen (deaggregated H gamma G) into the mothers was investigated using a cell transfer system and assays of passive haemagglutinating antibodies and plaque-forming cells to H gamma G. The results demonstrated that B cells are mainly involved in the tolerance induced on the fourteenth day of gestation, whereas inactivation of T cells may account for the tolerance induced on the eighteenth day of gestation and in the neonatal stage. Treatment of the mothers with tolerogen and then anti-H gamma G serum reduced the tolerance induced on the fourteenth day of gestation, but did not affect that induced on the eighteenth day of gestation and in the neonatal stage. Cell transfer experiments showed that B-cell tolerance induced on the fourteenth day of gestation was prevented by passive antibody, while T-cell tolerance induced on the eighteenth day of gestation and in the neonatal stage was not affected by passive antibody. Assay of the anti-DNP antibody response after immunization with DNP10-H gamma G showed that treatment of mice with the tolerogen on the eighteenth day of gestation, but not the fourteenth day of gestation, inactivated H gamma G-reactive helper cells. The significance of these results is discussed in relation to the results of the cell transfer experiments described as above. PMID:89080

  1. Metabolic modulation of neuronal gamma-band oscillations.

    PubMed

    Vodovozov, Wadim; Schneider, Justus; Elzoheiry, Shehabeldin; Hollnagel, Jan-Oliver; Lewen, Andrea; Kann, Oliver

    2018-05-28

    Gamma oscillations (30-100 Hz) represent a physiological fast brain rhythm that occurs in many cortex areas in awake mammals, including humans. They associate with sensory perception, voluntary movement, and memory formation and require precise synaptic transmission between excitatory glutamatergic neurons and inhibitory GABAergic interneurons such as parvalbumin-positive basket cells. Notably, gamma oscillations are exquisitely sensitive to shortage in glucose and oxygen supply (metabolic stress), with devastating consequences for higher cognitive functions. Herein, we explored the robustness of gamma oscillations against changes in the availability of alternative energy substrates and amino acids, which is partially regulated by glial cells such as astrocytes. We used organotypic slice cultures of the rat hippocampus expressing acetylcholine-induced persistent gamma oscillations under normoxic recording conditions (20% oxygen fraction). Our main findings are (1) partial substitution of glucose with pyruvate and the ketone body β-hydroxybutyrate increases the frequency of gamma oscillations, even at different stages of neuronal tissue development. (2) Supplementation with the astrocytic neurotransmitter precursor glutamine has no effect on the properties of gamma oscillations. (3) Supplementation with glycine increases power, frequency, and inner coherence of gamma oscillations in a dose-dependent manner. (4) During these treatments switches to other frequency bands or pathological network states such as neural burst firing or synchronized epileptic activity are absent. Our study indicates that cholinergic gamma oscillations show general robustness against these changes in nutrient and amino acid composition of the cerebrospinal fluid; however, modulation of their properties may impact on cortical information processing under physiological and pathophysiological conditions.

  2. Management of major bleedings during anticoagulant treatment with the oral direct thrombin inhibitor ximelagatran or warfarin.

    PubMed

    Fernlöf, Gunilla; Sjöström, Britta M; Lindell, Klas M; Wall, Ulrika E

    2009-12-01

    Several new oral anticoagulants are currently investigated in phase III programmes, mainly with inhibition of factor Xa or thrombin as their pharmacological target. Advantages are expected with these new drugs compared with vitamin K antagonists, but one potential drawback is the lack of specific antidotes. During the clinical studies with ximelagatran, an oral direct thrombin inhibitor withdrawn due to hepatic side effects, investigators were instructed to manage bleedings with routine measures. We have retrospectively tried to assess whether this was sufficient or whether there was a need for reversal strategies. The study population consisted of patients with major bleedings in three long-term studies (104 ximelagatran, 155 warfarin). All individual patient narratives were reviewed with respect to management of the bleeding. Complementary data were retrieved from the data-based case report forms. Approximately, two of three of the patients in both groups were subject to some kind of treatment. One-third (1/3) in both groups had transfusions documented and/or received specific medication. Vitamin K was given more often to warfarin patients. Two ximelagatran patients received prothrombin complex (four-factor concentrate), but one was a patient with a severe hepatopathy suspected to be drug-induced. Overall, the case descriptions did not reveal any apparent differences in the course of events between groups. We found no indications that the lack of an antidote posed a clinical problem in patients treated with ximelagatran as compared with warfarin. The relatively short half-life of melagatran, the active metabolite of ximelagatran, may have contributed to these results.

  3. SH2 domain-containing protein tyrosine phosphatase 2 and focal adhesion kinase protein interactions regulate pulmonary endothelium barrier function.

    PubMed

    Chichger, Havovi; Braza, Julie; Duong, Huetran; Harrington, Elizabeth O

    2015-06-01

    Enhanced protein tyrosine phosphorylation is associated with changes in vascular permeability through formation and dissolution of adherens junctions and regulation of stress fiber formation. Inhibition of the protein tyrosine phosphorylase SH2 domain-containing protein tyrosine phosphatase 2 (SHP2) increases tyrosine phosphorylation of vascular endothelial cadherin and β-catenin, resulting in disruption of the endothelial monolayer and edema formation in the pulmonary endothelium. Vascular permeability is a hallmark of acute lung injury (ALI); thus, enhanced SHP2 activity offers potential therapeutic value for the pulmonary vasculature in diseases such as ALI, but this has not been characterized. To assess whether SHP2 activity mediates protection against edema in the endothelium, we assessed the effect of molecular activation of SHP2 on lung endothelial barrier function in response to the edemagenic agents LPS and thrombin. Both LPS and thrombin reduced SHP2 activity, correlated with decreased focal adhesion kinase (FAK) phosphorylation (Y(397) and Y(925)) and diminished SHP2 protein-protein associations with FAK. Overexpression of constitutively active SHP2 (SHP2(D61A)) enhanced baseline endothelial monolayer resistance and completely blocked LPS- and thrombin-induced permeability in vitro and significantly blunted pulmonary edema formation induced by either endotoxin (LPS) or Pseudomonas aeruginosa exposure in vivo. Chemical inhibition of FAK decreased SHP2 protein-protein interactions with FAK concomitant with increased permeability; however, overexpression of SHP2(D61A) rescued the endothelium and maintained FAK activity and FAK-SHP2 protein interactions. Our data suggest that SHP2 activation offers the pulmonary endothelium protection against barrier permeability mediators downstream of the FAK signaling pathway. We postulate that further studies into the promotion of SHP2 activation in the pulmonary endothelium may offer a therapeutic approach for patients

  4. Requirement of 8-mercaptoguanosine as a costimulus for IL-4-dependent mu to gamma1 class switch recombination in CD38-activated B cells.

    PubMed

    Tsukamoto, Yumiko; Uehara, Shoji; Mizoguchi, Chieko; Sato, Atsushi; Horikawa, Keisuke; Takatsu, Kiyoshi

    2005-10-21

    Mature B-2 cells expressing surface IgM and IgD proliferate upon stimulation by CD38, CD40 or lipopolysaccharide (LPS) and differentiate into IgG1-producing plasma cells in the presence of cytokines. The process of class switch recombination (CSR) from IgM to other isotypes is highly regulated by cytokines and activation-induced cytidine deaminase (AID). Blimp-1 and XBP-1 play an essential role in the terminal differentiation of switched B-2 cells to Ig-producing plasma cells. IL-5 induces AID and Blimp-1 expression in CD38- and CD40-activated B-2 cells, leading to mu to gamma1 CSR at DNA level and IgG1 production. IL-4, a well-known IgG1-inducing factor, does not induce mu to gamma1 CSR in CD38-activated B-2 cells or Blimp-1, while IL-4 induces mu to gamma1 CSR, XBP-1 expression, and IgG1 production expression in CD40-activated B-2 cells. Interestingly, the addition of 8-mercaptoguanosine (8-SGuo) with IL-4 to the culture of CD38-activated B cells can induce mu to gamma1 CSR, Blimp-1 expression, and IgG1 production. Intriguingly, 8-SGuo by itself induces AID expression in CD38-activated B cells. However, it does not induce mu to gamma1 CSR. These results imply that the mode of B-cell activation for extracellular stimulation affects the outcome of cytokine stimulation with respect to the efficiency and direction of CSR, and the requirements of the transcriptional regulator and the generation of antibody-secreting cells. Furthermore, our data suggest the requirement of additional molecules in addition to AID for CSR.

  5. Evaluation of the cosmic-ray induced background in coded aperture high energy gamma-ray telescopes

    NASA Technical Reports Server (NTRS)

    Owens, Alan; Barbier, Loius M.; Frye, Glenn M.; Jenkins, Thomas L.

    1991-01-01

    While the application of coded-aperture techniques to high-energy gamma-ray astronomy offers potential arc-second angular resolution, concerns were raised about the level of secondary radiation produced in a thick high-z mask. A series of Monte-Carlo calculations are conducted to evaluate and quantify the cosmic-ray induced neutral particle background produced in a coded-aperture mask. It is shown that this component may be neglected, being at least a factor of 50 lower in intensity than the cosmic diffuse gamma-rays.

  6. Pharmacological dissection of the cellular mechanisms associated to the spontaneous and the mechanically stimulated ATP release by mesentery endothelial cells: roles of thrombin and TRPV.

    PubMed

    Verónica Donoso, M; Hernández, Felipe; Villalón, Tania; Acuña-Castillo, Claudio; Pablo Huidobro-Toro, J

    2018-06-01

    Endothelial cells participate in extracellular ATP release elicited by mechanosensors. To characterize the dynamic interactions between mechanical and chemical factors that modulate ATP secretion by the endothelium, we assessed and compared the mechanisms participating in the spontaneous (basal) and mechanically stimulated secretion using primary cultures of rat mesentery endothelial cells. ATP/metabolites were determined in the cell media prior to (basal) and after cell media displacement or a picospritzer buffer puff used as mechanical stimuli. Mechanical stimulation increased extracellular ATP that peaked within 1 min, and decayed to basal values in 10 min. Interruption of the vesicular transport route consistently blocked the spontaneous ATP secretion. Cells maintained in media lacking external Ca 2+ elicited a spontaneous rise of extracellular ATP and adenosine, but failed to elicit a further extracellular ATP secretion following mechanical stimulation. 2-APB, a TRPV agonist, increased the spontaneous ATP secretion, but reduced the mechanical stimulation-induced nucleotide release. Pannexin1 or connexin blockers and gadolinium, a Piezo1 blocker, reduced the mechanically induced ATP release without altering spontaneous nucleotide levels. Moreover, thrombin or related agonists increased extracellular ATP secretion elicited by mechanical stimulation, without modifying spontaneous release. In sum, present results allow inferring that the spontaneous, extracellular nucleotide secretion is essentially mediated by ATP containing vesicles, while the mechanically induced secretion occurs essentially by connexin or pannexin1 hemichannel ATP transport, a finding fully supported by results from Panx1 -/- rodents. Only the latter component is modulated by thrombin and related receptor agonists, highlighting a novel endothelium-smooth muscle signaling role of this anticoagulant.

  7. Ways of making-sense: Local gamma synchronization reveals differences between semantic processing induced by music and language.

    PubMed

    Barraza, Paulo; Chavez, Mario; Rodríguez, Eugenio

    2016-01-01

    Similar to linguistic stimuli, music can also prime the meaning of a subsequent word. However, it is so far unknown what is the brain dynamics underlying the semantic priming effect induced by music, and its relation to language. To elucidate these issues, we compare the brain oscillatory response to visual words that have been semantically primed either by a musical excerpt or by an auditory sentence. We found that semantic violation between music-word pairs triggers a classical ERP N400, and induces a sustained increase of long-distance theta phase synchrony, along with a transient increase of local gamma activity. Similar results were observed after linguistic semantic violation except for gamma activity, which increased after semantic congruence between sentence-word pairs. Our findings indicate that local gamma activity is a neural marker that signals different ways of semantic processing between music and language, revealing the dynamic and self-organized nature of the semantic processing. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Neurofeedback Effects on Evoked and Induced EEG Gamma Band Reactivity to Drug-related Cues in Cocaine Addiction

    PubMed Central

    Horrell, Timothy; El-Baz, Ayman; Baruth, Joshua; Tasman, Allan; Sokhadze, Guela; Stewart, Christopher; Sokhadze, Estate

    2010-01-01

    Introduction Preoccupation with drug and drug-related items is a typical characteristic of cocaine addicted individuals. It has been shown in multiple accounts that prolonged drug use has a profound effect on the EEG recordings of drug addicts when compared to controls during cue reactivity tests. Cue reactivity refers to a phenomenon in which individuals with a history of drug abuse exhibit excessive psychophysiological responses to cues associated with their drug of choice. One of the aims of this pilot study was to determine the presence of an attentional bias to preferentially process drug-related cues using evoked and induced gamma reactivity measures in cocaine addicts before and after biobehavioral treatment based on neurofeedback. Another aim was to show that central SMR amplitude increase and frontal theta control is possible in an experimental outpatient drug users group over 12 neurofeedback sessions. Method Ten current cocaine abusers participated in this pilot research study using neurofeedback combined with Motivational Interviewing sessions. Eight of them completed all planned pre- and post –neurofeedback cue reactivity tests with event-related EEG recording and clinical evaluations. Cue reactivity test represented a visual oddball task with images from the International Affective Picture System and drug-related pictures. Evoked and induced gamma responses to target and non-target drug cues were analyzed using wavelet analysis. Results Outpatient subjects with cocaine addiction completed the biobehavioral intervention and successfully increased SMR while keeping theta practically unchanged in 12 sessions of neurofeedback training. The addition of Motivational Interviewing helped retain patients in the study. Clinical evaluations immediately after completion of the treatment showed decreased self-reports on depression and stress scores, and urine tests collaborated reports of decreased use of cocaine and marijuana. Effects of neurofeedback resulted

  9. Thrombin Receptor-Activating Protein (TRAP)-Activated Akt Is Involved in the Release of Phosphorylated-HSP27 (HSPB1) from Platelets in DM Patients

    PubMed Central

    Tokuda, Haruhiko; Kuroyanagi, Gen; Tsujimoto, Masanori; Matsushima-Nishiwaki, Rie; Akamatsu, Shigeru; Enomoto, Yukiko; Iida, Hiroki; Otsuka, Takanobu; Ogura, Shinji; Iwama, Toru; Kojima, Kumi; Kozawa, Osamu

    2016-01-01

    It is generally known that heat shock protein 27 (HSP27) is phosphorylated through p38 mitogen-activated protein (MAP) kinase. We have previously reported that HSP27 is released from human platelets associated with collagen-induced phosphorylation. In the present study, we conducted an investigation into the effect of thrombin receptor-activating protein (TRAP) on the release of HSP27 in platelets in type 2 diabetes mellitus (DM) patients. The phosphorylated-HSP27 levels induced by TRAP were directly proportional to the aggregation of platelets. The levels of phosphorylated-HSP27 (Ser-78) were correlated with the levels of phosphorylated-p38 MAP kinase and phosphorylated-Akt in the platelets stimulated by 10 µM TRAP but not with those of phosphorylated-p44/p42 MAP kinase. The levels of HSP27 released from the TRAP (10 µM)-stimulated platelets were correlated with the levels of phosphorylated-HSP27 in the platelets. The released platelet-derived growth factor-AB (PDGF-AB) levels were in parallel with the HSP27 levels released from the platelets stimulated by 10 µM TRAP. Although the area under the curve (AUC) of small aggregates (9–25 µm) induced by 10 µM TRAP showed no significant correlation with the released HSP27 levels, AUC of medium aggregates (25–50 µm), large aggregates (50–70 µm) and light transmittance were significantly correlated with the released HSP27 levels. TRAP-induced phosphorylation of HSP27 was truly suppressed by deguelin, an inhibitor of Akt, in the platelets from a healthy subject. These results strongly suggest that TRAP-induced activation of Akt in addition to p38 MAP kinase positively regulates the release of phosphorylated-HSP27 from human platelets, which is closely related to the platelet hyper-aggregation in type 2 DM patients. PMID:27187380

  10. Thrombin Receptor-Activating Protein (TRAP)-Activated Akt Is Involved in the Release of Phosphorylated-HSP27 (HSPB1) from Platelets in DM Patients.

    PubMed

    Tokuda, Haruhiko; Kuroyanagi, Gen; Tsujimoto, Masanori; Matsushima-Nishiwaki, Rie; Akamatsu, Shigeru; Enomoto, Yukiko; Iida, Hiroki; Otsuka, Takanobu; Ogura, Shinji; Iwama, Toru; Kojima, Kumi; Kozawa, Osamu

    2016-05-14

    It is generally known that heat shock protein 27 (HSP27) is phosphorylated through p38 mitogen-activated protein (MAP) kinase. We have previously reported that HSP27 is released from human platelets associated with collagen-induced phosphorylation. In the present study, we conducted an investigation into the effect of thrombin receptor-activating protein (TRAP) on the release of HSP27 in platelets in type 2 diabetes mellitus (DM) patients. The phosphorylated-HSP27 levels induced by TRAP were directly proportional to the aggregation of platelets. The levels of phosphorylated-HSP27 (Ser-78) were correlated with the levels of phosphorylated-p38 MAP kinase and phosphorylated-Akt in the platelets stimulated by 10 µM TRAP but not with those of phosphorylated-p44/p42 MAP kinase. The levels of HSP27 released from the TRAP (10 µM)-stimulated platelets were correlated with the levels of phosphorylated-HSP27 in the platelets. The released platelet-derived growth factor-AB (PDGF-AB) levels were in parallel with the HSP27 levels released from the platelets stimulated by 10 µM TRAP. Although the area under the curve (AUC) of small aggregates (9-25 µm) induced by 10 µM TRAP showed no significant correlation with the released HSP27 levels, AUC of medium aggregates (25-50 µm), large aggregates (50-70 µm) and light transmittance were significantly correlated with the released HSP27 levels. TRAP-induced phosphorylation of HSP27 was truly suppressed by deguelin, an inhibitor of Akt, in the platelets from a healthy subject. These results strongly suggest that TRAP-induced activation of Akt in addition to p38 MAP kinase positively regulates the release of phosphorylated-HSP27 from human platelets, which is closely related to the platelet hyper-aggregation in type 2 DM patients.

  11. Sphingosine kinase inhibition alleviates endothelial permeability induced by thrombin and activated neutrophils.

    PubMed

    Itagaki, Kiyoshi; Zhang, Qin; Hauser, Carl J

    2010-04-01

    Inflammation and microvascular thrombosis are interrelated causes of acute lung injury in the systemic inflammatory response syndrome. Neutrophils (polymorphonuclear neutrophil [PMN]) and endothelial cells (EC) activated by systemic inflammatory response syndrome interact to increase pulmonary vascular permeability, but the interactions between PMN and EC are difficult to study. Recently, we reported that sphingosine 1-phosphate is a second messenger eliciting store-operated calcium entry (SOCE) in response to inflammatory agonists in both PMN and EC. Store-operated calcium entry is therefore a target mechanism for the therapeutic modulation of inflammatory PMN-EC interactions. Here, we isolated, modeled, and studied the effects of pharmacologic SOCE inhibition using real-time systems to monitor EC permeability after exposure to activated PMN. We created systems to continuously assess permeability of human pulmonary artery endothelial cells and human microvascular endothelial cells from lung. Endothelial cells show increased permeability after challenge by activated PMN. Such permeability increases can be attenuated by exposure of the cocultures to sphingosine kinase (SK) inhibitors (SKI-2, N,N-dimethylsphingosine [DMS]) or Ca2+ entry inhibitors (Gd3+, MRS-1845). Human microvascular endothelial cells from lung pretreated with SKI-2 or DMS showed decreased permeability when later exposed to activated PMN. Likewise, when PMNs were activated with thapsigargin (TG) in the presence of SKI-2, DMS, Gd, or MRS-1845, their ability to cause EC permeability subsequently was reduced. SKI-2 also inhibited the activation of human pulmonary artery ECs by thrombin. These studies will provide a firm mechanistic foundation for understanding how systemic SOCE inhibition may be used to prevent acute lung injury in vivo.

  12. In vivo ultrasound visualization of non-occlusive blood clots with thrombin-sensitive contrast agents.

    PubMed

    Nakatsuka, Matthew A; Barback, Christopher V; Fitch, Kirsten R; Farwell, Alexander R; Esener, Sadik C; Mattrey, Robert F; Cha, Jennifer N; Goodwin, Andrew P

    2013-12-01

    The use of microbubbles as ultrasound contrast agents is one of the primary methods to diagnose deep venous thrombosis. However, current microbubble imaging strategies require either a clot sufficiently large to produce a circulation filling defect or a clot with sufficient vascularization to allow for targeted accumulation of contrast agents. Previously, we reported the design of a microbubble formulation that modulated its ability to generate ultrasound contrast from interaction with thrombin through incorporation of aptamer-containing DNA crosslinks in the encapsulating shell, enabling the measurement of a local chemical environment by changes in acoustic activity. However, this contrast agent lacked sufficient stability and lifetime in blood to be used as a diagnostic tool. Here we describe a PEG-stabilized, thrombin-activated microbubble (PSTA-MB) with sufficient stability to be used in vivo in circulation with no change in biomarker sensitivity. In the presence of actively clotting blood, PSTA-MBs showed a 5-fold increase in acoustic activity. Specificity for the presence of thrombin and stability under constant shear flow were demonstrated in a home-built in vitro model. Finally, PSTA-MBs were able to detect the presence of an active clot within the vena cava of a rabbit sufficiently small as to not be visible by current non-specific contrast agents. By activating in non-occlusive environments, these contrast agents will be able to detect clots not diagnosable by current contrast agents. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Gamma delta T cells promote inflammation and insulin resistance during high fat diet-induced obesity in mice

    USDA-ARS?s Scientific Manuscript database

    Gamma delta T cells are resident in adipose tissue and increase during diet-induced obesity. Their possible contribution to the inflammatory response that accompanies diet-induced obesity was investigated in mice after a 5-10 week high milk fat diet. The high milk fat diet resulted in significant in...

  14. Designing of interferon-gamma inducing MHC class-II binders

    PubMed Central

    2013-01-01

    Background The generation of interferon-gamma (IFN-γ) by MHC class II activated CD4+ T helper cells play a substantial contribution in the control of infections such as caused by Mycobacterium tuberculosis. In the past, numerous methods have been developed for predicting MHC class II binders that can activate T-helper cells. Best of author’s knowledge, no method has been developed so far that can predict the type of cytokine will be secreted by these MHC Class II binders or T-helper epitopes. In this study, an attempt has been made to predict the IFN-γ inducing peptides. The main dataset used in this study contains 3705 IFN-γ inducing and 6728 non-IFN-γ inducing MHC class II binders. Another dataset called IFNgOnly contains 4483 IFN-γ inducing epitopes and 2160 epitopes that induce other cytokine except IFN-γ. In addition we have alternate dataset that contains IFN-γ inducing and equal number of random peptides. Results It was observed that the peptide length, positional conservation of residues and amino acid composition affects IFN-γ inducing capabilities of these peptides. We identified the motifs in IFN-γ inducing binders/peptides using MERCI software. Our analysis indicates that IFN-γ inducing and non-inducing peptides can be discriminated using above features. We developed models for predicting IFN-γ inducing peptides using various approaches like machine learning technique, motifs-based search, and hybrid approach. Our best model based on the hybrid approach achieved maximum prediction accuracy of 82.10% with MCC of 0.62 on main dataset. We also developed hybrid model on IFNgOnly dataset and achieved maximum accuracy of 81.39% with 0.57 MCC. Conclusion Based on this study, we have developed a webserver for predicting i) IFN-γ inducing peptides, ii) virtual screening of peptide libraries and iii) identification of IFN-γ inducing regions in antigen (http://crdd.osdd.net/raghava/ifnepitope/). Reviewers This article was reviewed by Prof Kurt

  15. Endogenous Thrombin Potential Changes during the First Cycle of Oral Contraceptive Use

    PubMed Central

    Westhoff, Carolyn L.; Pike, Malcolm C.; Cremers, Serge; Eisenberger, Andrew; Thomassen, Stella; Rosing, Jan

    2017-01-01

    Objectives Venous thromboembolism (VTE) risk increases within months of combination oral contraceptive (COC) initiation. Because elevated endogenous thrombin potential (ETP) has been found in several studies to be a VTE risk factor, we evaluated the extent of ETP changes during the initial cycle of an ethinyl estradiol (EE) and levonorgestrel (LNG) COC. We also assessed the relationship between ETP changes and systemic EE and LNG concentrations. Study Design Participants provided multiple blood samples during a first 21-day cycle of a 30 µg EE/150 µg LNG COC and after a further 7 days without an active COC. Thrombin generation measured with and without addition of activated protein C (APC) yielded ETP+APC and ETP−APC and the normalized APC sensitivity ratio (nAPCsr). EE and LNG pharmacokinetic analyses were conducted over 24 hours after the first COC tablet and again at steady state. Results Thrombin generation was determined in 16 of the 17 women who completed the study. Mean ETP−APC increased steadily to 21% above baseline at 24 hours after the 6th COC tablet (COC624; p < 0.001) and to 28% above baseline at steady state (COC21; p < 0.001). Mean ETP+APC increased considerably more – by 54% at COC624 and by 79% at steady state. Mean nAPCsr increased by 28% at COC624 and by 41% at steady state. Higher concentrations of EE or LNG were not correlated with greater increases in ETP. Conclusions ETP increases during the first COC cycle were substantial. Implications The early increases in ETP may provide biological support for the rapid increase in VTE risk during initial COC use. The lack of association between this clotting system perturbation and the systemic EE concentration is surprising and deserves further study. PMID:28088496

  16. Gamma Interferon-Induced Guanylate Binding Protein 1 Is a Novel Actin Cytoskeleton Remodeling Factor

    PubMed Central

    Ostler, Nicole; Britzen-Laurent, Nathalie; Liebl, Andrea; Naschberger, Elisabeth; Lochnit, Günter; Ostler, Markus; Forster, Florian; Kunzelmann, Peter; Ince, Semra; Supper, Verena; Praefcke, Gerrit J. K.; Schubert, Dirk W.; Stockinger, Hannes; Herrmann, Christian

    2014-01-01

    Gamma interferon (IFN-γ) regulates immune defenses against viruses, intracellular pathogens, and tumors by modulating cell proliferation, migration, invasion, and vesicle trafficking processes. The large GTPase guanylate binding protein 1 (GBP-1) is among the cellular proteins that is the most abundantly induced by IFN-γ and mediates its cell biologic effects. As yet, the molecular mechanisms of action of GBP-1 remain unknown. Applying an interaction proteomics approach, we identified actin as a strong and specific binding partner of GBP-1. Furthermore, GBP-1 colocalized with actin at the subcellular level and was both necessary and sufficient for the extensive remodeling of the fibrous actin structure observed in IFN-γ-exposed cells. These effects were dependent on the oligomerization and the GTPase activity of GBP-1. Purified GBP-1 and actin bound to each other, and this interaction was sufficient to impair the formation of actin filaments in vitro, as demonstrated by atomic force microscopy, dynamic light scattering, and fluorescence-monitored polymerization. Cosedimentation and band shift analyses demonstrated that GBP-1 binds robustly to globular actin and slightly to filamentous actin. This indicated that GBP-1 may induce actin remodeling via globular actin sequestering and/or filament capping. These results establish GBP-1 as a novel member within the family of actin-remodeling proteins specifically mediating IFN-γ-dependent defense strategies. PMID:24190970

  17. Gamma interferon-induced guanylate binding protein 1 is a novel actin cytoskeleton remodeling factor.

    PubMed

    Ostler, Nicole; Britzen-Laurent, Nathalie; Liebl, Andrea; Naschberger, Elisabeth; Lochnit, Günter; Ostler, Markus; Forster, Florian; Kunzelmann, Peter; Ince, Semra; Supper, Verena; Praefcke, Gerrit J K; Schubert, Dirk W; Stockinger, Hannes; Herrmann, Christian; Stürzl, Michael

    2014-01-01

    Gamma interferon (IFN-γ) regulates immune defenses against viruses, intracellular pathogens, and tumors by modulating cell proliferation, migration, invasion, and vesicle trafficking processes. The large GTPase guanylate binding protein 1 (GBP-1) is among the cellular proteins that is the most abundantly induced by IFN-γ and mediates its cell biologic effects. As yet, the molecular mechanisms of action of GBP-1 remain unknown. Applying an interaction proteomics approach, we identified actin as a strong and specific binding partner of GBP-1. Furthermore, GBP-1 colocalized with actin at the subcellular level and was both necessary and sufficient for the extensive remodeling of the fibrous actin structure observed in IFN-γ-exposed cells. These effects were dependent on the oligomerization and the GTPase activity of GBP-1. Purified GBP-1 and actin bound to each other, and this interaction was sufficient to impair the formation of actin filaments in vitro, as demonstrated by atomic force microscopy, dynamic light scattering, and fluorescence-monitored polymerization. Cosedimentation and band shift analyses demonstrated that GBP-1 binds robustly to globular actin and slightly to filamentous actin. This indicated that GBP-1 may induce actin remodeling via globular actin sequestering and/or filament capping. These results establish GBP-1 as a novel member within the family of actin-remodeling proteins specifically mediating IFN-γ-dependent defense strategies.

  18. Thrombin generation during cardiopulmonary bypass: the possible role of retransfusion of blood aspirated from the surgical field

    PubMed Central

    Weerwind, Patrick W; Lindhout, Theo; Caberg, Nicole EH; de Jong, Dick S

    2003-01-01

    Background In spite of using heparin-coated extracorporeal circuits, cardiopulmonary bypass (CPB) is still associated with an extensive thrombin generation, which is only partially suppressed by the use of high dosages of heparin. Recent studies have focused on the origins of this thrombotic stimulus and the possible role of retransfused suctioned blood from the thoracic cavities on the activation of the extrinsic coagulation pathway. The present study was designed to find during CPB an association between retransfusion of suctioned blood from the pericardium and pleural space, containing activated factor VIIa and systemic thrombin generation. Methods Blood samples taken from 12 consenting patients who had elective cardiac surgery were assayed for plasma factor VIIa, prothrombin fragment 1+2 (F1+2), and thrombin-antithrombin (TAT) concentrations. Blood aspirated from the pericardium and pleural space was collected separately, assayed for F1+2, TAT, and factor VIIa and retransfused to the patient after the aorta occlusion. Results After systemic heparinization and during CPB thrombin generation was minimal, as indicated by the lower than base line plasma levels of F1+2, and TAT after correction for hemodilution. In contrast, blood aspirated from the thoracic cavities had significantly higher levels of factor VIIa, F1+2, and TAT compared to the simultaneous samples from the blood circulation (P < 0.05). Furthermore, after retransfusion of the suctioned blood (range, 200–1600 mL) circulating levels of F1+2, and TAT rose significantly from 1.6 to 2.9 nmol/L (P = 0.002) and from 5.1 to 37.5 μg/L (P = 0.01), respectively. The increase in both F1+2, and TAT levels correlated significantly with the amount of retransfused suctioned blood (r = 0.68, P = 0.021 and r = 0.90, P = 0.001, respectively). However, the circulating factor VIIa levels did not correlate with TAT and F1+2 levels. Conclusions These data suggest that blood aspirated from the thoracic cavities during

  19. Cigarette Smoke–Induced CXCR3 Receptor Up-Regulation Mediates Endothelial Apoptosis

    PubMed Central

    Green, Linden A.; Petrusca, Daniela; Rajashekhar, Gangaraju; Gianaris, Tom; Schweitzer, Kelly S.; Wang, Liang; Justice, Matthew J.; Petrache, Irina

    2012-01-01

    Endothelial monocyte–activating polypeptide II (EMAP II) and interferon-inducible protein (IP)–10 are proinflammatory mediators, which in addition to their chemokine activities, selectively induce apoptosis in endothelial cells and are up-regulated in the lungs of cigarette smoke–exposed humans. Previously, we showed that EMAP II is an essential mediator of cigarette smoke–induced lung emphysema in mice linking endothelial cell apoptosis with inflammation. Here we addressed the role of the CXCR3 receptor in EMAP II–induced and IP-10–induced apoptosis in endothelial cells and its regulation by cigarette smoke. We found that both neutralizing antibodies and small inhibitory RNA to CXCR3 abrogated EMAP II–induced and IP-10–induced endothelial caspase-3 activation and DNA fragmentation. CXCR3 receptor surface expression in human lung microvascular endothelial cells and in lung tissue endothelium was up-regulated by exposure to cigarette smoke. In tissue culture conditions, EMAP II–induced and IP-10–induced apoptosis was enhanced by preincubation with cigarette smoke extract. Interestingly, serum starvation also induced CXCR3 up-regulation and enhanced EMAP II–induced endothelial apoptosis. Signal transduction via p38 mitogen-activated protein kinase activation was essential for CXCR3-induced cell death, but not for CXCR3 receptor up-regulation by cigarette smoke. In turn, protein nitration was required for CXCR3 receptor up-regulation by cigarette smoke and consequently for subsequent CXCR3-induced cell death. In conclusion, the concerted up-regulation of proinflammatory EMAP II, IP-10, and CXCR3 by cigarette smoke could sustain a cascade of cell death that may promote the alveolar tissue loss noted in human emphysema. PMID:22936405

  20. St. John's wort attenuates irinotecan-induced diarrhea via down-regulation of intestinal pro-inflammatory cytokines and inhibition of intestinal epithelial apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu Zeping; Yang Xiaoxia; Chan Suiyung

    Diarrhea is a common dose-limiting toxicity associated with cancer chemotherapy, in particular for drugs such as irinotecan (CPT-11), 5-fluouracil, oxaliplatin, capecitabine and raltitrexed. St. John's wort (Hypericum perforatum, SJW) has anti-inflammatory activity, and our preliminary study in the rat and a pilot study in cancer patients found that treatment of SJW alleviated irinotecan-induced diarrhea. In the present study, we investigated whether SJW modulated various pro-inflammatory cytokines including interleukins (IL-1{beta}, IL-2, IL-6), interferon (IFN-{gamma}) and tumor necrosis factor-{alpha} (TNF-{alpha}) and intestinal epithelium apoptosis in rats. The rats were treated with irinotecan at 60 mg/kg for 4 days in combination with oralmore » SJW or SJW-free control vehicle at 400 mg/kg for 8 days. Diarrhea, tissue damage, body weight loss, various cytokines including IL-1{beta}, IL-2, IL-6, IFN-{gamma} and TNF-{alpha} and intestinal epithelial apoptosis were monitored over 11 days. Our studies demonstrated that combined SJW markedly reduced CPT-11-induced diarrhea and intestinal lesions. The production of pro-inflammatory cytokines such as IL-1{beta}, IFN-{gamma} and TNF-{alpha} was significantly up-regulated in intestine. In the mean time, combined SJW significantly suppressed the intestinal epithelial apoptosis induced by CPT-11 over days 5-11. In particular, combination of SJW significantly inhibited the expression of TNF-{alpha} mRNA in the intestine over days 5-11. In conclusion, inhibition of pro-inflammatory cytokines and intestinal epithelium apoptosis partly explained the protective effect of SJW against the intestinal toxicities induced by irinotecan. Further studies are warranted to explore the potential for STW as an agent in combination with chemotherapeutic drugs to lower their dose-limiting toxicities.« less

  1. Gamma-secretase inhibitors reverse glucocorticoid resistance in T-ALL

    PubMed Central

    Real, Pedro J.; Tosello, Valeria; Palomero, Teresa; Castillo, Mireia; Hernando, Eva; de Stanchina, Elisa; Sulis, Maria Luisa; Barnes, Kelly; Sawai, Catherine; Homminga, Irene; Meijerink, Jules; Aifantis, Iannis; Basso, Giuseppe; Cordon-Cardo, Carlos; Ai, Walden; Ferrando, Adolfo

    2009-01-01

    Summary Gamma-secretase inhibitors (GSIs) block the activation of oncogenic NOTCH1 in T-cell acute lymphoblastic leukemia (T-ALL). However, limited antileukemic cytotoxicity and severe gastrointestinal toxicity have restricted the clinical application of these targeted drugs. Here we show that combination therapy with GSIs plus glucocorticoids can improve the antileukemic effects of GSIs and reduce their gut toxicity in vivo. Inhibition of NOTCH1 signaling in glucocorticoid-resistant T-ALL restored glucocorticoid receptor auto-up-regulation and induced apoptotic cell death through induction of BIM expression. GSI treatment resulted in cell cycle arrest and accumulation of goblet cells in the gut mediated by upregulation of Klf4, a negative regulator of cell cycle required for goblet cell differentiation. In contrast, glucocorticoid treatment induced transcriptional upregulation of Ccnd2 and protected mice from developing intestinal goblet cell metaplasia typically induced by inhibition of NOTCH signaling with GSIs. These results support a role for glucocorticoids plus GSIs in the treatment of glucocorticoid-resistant T-ALL. PMID:19098907

  2. Process for gamma ray induced degradation of polychlorinated biphenyls

    DOEpatents

    Meikrantz, David H.; Mincher, Bruce J.; Arbon, Rodney E.

    1998-01-01

    The invention is a process for the in-situ destruction of polychlorinated biphenyl (PCB) compounds in transformer oils and transformers. These compounds are broken down selectively by irradiation of the object or mixture using spent nuclear fuel or any isotopic source of high energy gamma radiation. For example, the level of applied dose required to decompose 400 ppm of polychlorinated biphenyl in transformer oil to less than 50 ppm is 500 kilogray. Destruction of polychlorinated biphenyls to levels of less than 50 ppm renders the transformer oil or transformer non-PCB contaminated under current regulations. Therefore, this process can be used to treat PCB contaminated oil and equipment to minimize or eliminate the generation of PCB hazardous waste.

  3. Radiation-induced degradation of cyclohexanebutyric acid in aqueous solutions by gamma ray irradiation

    NASA Astrophysics Data System (ADS)

    Jia, Wenbao; He, Yanquan; Ling, Yongsheng; Hei, Daqian; Shan, Qing; Zhang, Yan; Li, Jiatong

    2015-04-01

    The radiation-induced degradation of cyclohexanebutyric acid under gamma ray irradiation was investigated. Degradation experiments were performed with 100 mL sealed Pyrex glass vessels loaded with 80 mL of cyclohexanebutyric acid solutions at various initial concentrations of 10, 20, and 40 mg L-1. The absorbed doses were controlled at 0, 0.65, 1.95, 3.25, 6.5, 9.75, and 13 kGy. The results showed that gamma ray irradiation could effectively degrade cyclohexanebutyric acid in aqueous solutions. The removal rate of cyclohexanebutyric acid increased significantly with the increase of absorbed dose and the decrease of its initial concentration. At the same time, the removal of chemical oxygen demand (COD) was as effective as that of cyclohexanebutyric acid. The kinetic studies showed that the degradation of cyclohexanebutyric acid followed pseudo first-order reaction. Above all, the proposed mechanism obtained when NaNO2, NaNO3 and tert-butanol were added showed that the •OH radical played a major role in the gamma degradation process of cyclohexanebutyric acid, while •H and eaq- played a minor role in the gamma degradation process. The degradation products were identified by Fourier transform infrared spectroscopy (FTIR) and gas chromatography/mass spectrometry (GC/MS) during cyclohexanebutyric acid degradation.

  4. Effects of calcium binding and of EDTA and CaEDTA on the clotting of bovine fibrinogen by thrombin.

    PubMed

    Perizzolo, K E; Sullivan, S; Waugh, D F

    1985-03-01

    Studies were carried out at pH 7.0 and gamma/2 0.15 before addition of CaCl2 or EDTA. Clotting time, tau, at 3.03 microM fibrinogen and 0.91 u/ml thrombin was determined for equilibrium systems. With added Ca2+, tau decreases, from tau 0 at 0 added Ca2+ (mean, 29.7 +/- 3 s), by approximately 3 s at 5 mM added Ca2+. With added EDTA, tau increases sigmoidally from tau 0 at 0 EDTA to a maximum (mean tau m = 142 +/- 23 s) at approximately 200 microM EDTA. tau then decreases slightly to a minimum at approximately 1.3 mM and finally increases to infinity at approximately 10 mM EDTA. Between 0 and 1.3 mM EDTA, effects on clotting time are completely reversed by adding Ca2+ and, after equilibration at 400 microM EDTA, tau is independent of EDTA concentration. Thus, up to 400 microM EDTA, effects on clotting time are attributed to decreasing fibrinogen bound Ca2+. Between 5 mM Ca2+ and 200 microM EDTA it is assumed that an equilibrium distribution of fibrinogen species having 3, 2, 1, or 0 bound calcium ions is established and that a clotting time is determined by the sum of products of species fractional abundance and pure species clotting time. Analysis indicates that pure species clotting times increase proportionately with decreasing Ca2+ binding, binding sites are nearly independent, and the microscopic association constant for the first bound Ca2+ is approximately 4.9 X 10(6) M-1. Effects of adding Ca2+ at times t1 after thrombin addition to systems initially equilibrated at 200 microM EDTA were determined. Analysis of the relation between tau and t1 indicates that as Ca2+ binding decreases, rate constants for release of B peptides decrease less than those for release of A peptides. As EDTA concentration is increased above 1.3 mM, inhibitory effects of EDTA and CaEDTA progressively increase.

  5. Fermi large area telescope observations of the cosmic-ray induced {gamma}-ray emission of the Earth's atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdo, A. A.; National Academy of Sciences, Washington, D.C. 20001; Ackermann, M.

    We report on measurements of the cosmic-ray induced {gamma}-ray emission of Earth's atmosphere by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The Large Area Telescope has observed the Earth during its commissioning phase and with a dedicated Earth limb following observation in September 2008. These measurements yielded {approx}6.4x10{sup 6} photons with energies >100 MeV and {approx}250 hours total live time for the highest quality data selection. This allows the study of the spatial and spectral distributions of these photons with unprecedented detail. The spectrum of the emission--often referred to as Earth albedo gamma-ray emission--has a power-lawmore » shape up to 500 GeV with spectral index {gamma}=2.79{+-}0.06.« less

  6. Administration of the peroxisomal proliferator-activated receptor {gamma} agonist pioglitazone during fractionated brain irradiation prevents radiation-induced cognitive impairment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao Weiling; Payne, Valerie; Tommasi, Ellen

    2007-01-01

    Purpose: We hypothesized that administration of the anti-inflammatory peroxisomal proliferator-activated receptor {gamma} (PPAR{gamma}) agonist pioglitazone (Pio) to adult male rats would inhibit radiation-induced cognitive impairment. Methods and Materials: Young adult male F344 rats received one of the following: (1) fractionated whole brain irradiation (WBI); 40 or 45 Gy {gamma}-rays in 4 or 4.5 weeks, respectively, two fractions per week and normal diet; (2) sham-irradiation and normal diet; (3) WBI plus Pio (120 ppm) before, during, and for 4 or 54 weeks postirradiation; (4) sham-irradiation plus Pio; or (5) WBI plus Pio starting 24h after completion of WBI. Results: Administration ofmore » Pio before, during, and for 4 or 54 weeks after WBI prevented Radiation-induced cognitive impairment. Administration of Pio for 54 weeks starting after completion of fractionated WBI substantially but not significantly reduced Radiation-induced cognitive impairment. Conclusions: These findings offer the promise of improving the quality of life and increasing the therapeutic window for brain tumor patients.« less

  7. Comparative biochemical studies of fresh frozen plasma and pooled solvent/detergent-treated plasma (octaplasLG® ) with focus on protein S and its impact in different thrombin generation assay set-ups.

    PubMed

    Heger, A; Janisch, S; Pock, K; Römisch, J

    2016-10-01

    The solvent/detergent treatment enables effective and robust inactivation of all lipid-enveloped viruses, but also inactivates partly sensitive plasma proteins such as protein S. The aim of this study was to investigate the thrombin generation capacity of octaplasLG ® , in particular focusing on the function of protein S in thrombin generation assay and the impact of assay settings. Sixteen octaplasLG ® batches and 32 units of single donor fresh frozen plasma (FFP) were investigated. For protein S, both functional activity and free antigen levels were measured. Thrombin generation assay was performed using two fluorogenic tests with different triggers. Finally, rotational thromboelastometry was performed. Mean protein S levels were lower in octaplasLG ® , but a wider range of values was found for FFP. Clotting parameters and thrombin generation capacities overlapped between the two plasma groups as demonstrated using both thrombin generation assays and different triggers. Spiking studies with protein S-depleted plasma, human purified protein S or antibodies against protein S confirmed a correlation between protein S and thrombin generation capacity under specific assay conditions, especially in an assay with low tissue factor concentration. Correlation between protein S and thrombin generation capacity was demonstrated in the TGA. Due to higher variability in protein S content in the FFP group, overlapping haemostatic potentials of the two plasma groups were found. © 2016 International Society of Blood Transfusion.

  8. 15-Deoxy-{delta}{sup 12,14}-prostaglandin J{sub 2}-induced down-regulation of endothelial nitric oxide synthase in association with HSP70 induction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Jinah; Lee, Hyun-Il; Chang, Young-Sun

    2007-05-25

    A natural ligand of peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}), 15-deoxy-{delta}{sup 12,14}-prostaglandin J{sub 2} (15d-PGJ{sub 2}), decreases endothelial nitric oxide synthase (eNOS) expression by an unknown mechanism. Here we found that 15d-PGJ{sub 2}-induced eNOS reduction is inversely associated with heat shock protein 70 (HSP70) induction in endothelial cells. Treatment of cells with 15d-PGJ{sub 2} decreased eNOS protein expression in a concentration- and time-dependent manner, but independently of PPAR{gamma} with no effect on mRNA levels. Although 15d-PGJ{sub 2} elicited endothelial apoptosis, inhibition of both pan-caspases and cathepsins failed to reverse reduction of eNOS protein. Interestingly, we observed that 15d-PGJ{sub 2} induced HSP70more » in a dose-dependent manner. Immunoprecipitation and heat shock treatment demonstrated that eNOS reduction was strongly related to HSP70 induction. Cellular fractionation revealed that treatment with 15d-PGJ{sub 2} increased eNOS distribution 2.5-fold from soluble to insoluble fractions. These findings provide new insights into mechanisms whereby eNOS regulation by 15d-PGJ{sub 2} is related to HSP70 induction.« less

  9. Self-induced intracerebral gamma oscillations in the human cortex.

    PubMed

    Corlier, Juliana; Rimsky-Robert, Daphné; Valderrama, Mario; Lehongre, Katia; Adam, Claude; Clémenceau, Stéphane; Charpier, Stéphane; Bastin, Julien; Kahane, Philippe; Lachaux, Jean-Philippe; Navarro, Vincent; Le Van Quyen, Michel

    2016-12-01

    Gamma oscillations play a pivotal role in multiple cognitive functions. They enable coordinated activity and communication of local assemblies, while abnormalities in gamma oscillations exist in different neurological and psychiatric diseases. Thus, a specific rectification of gamma synchronization could potentially compensate the deficits in pathological conditions. Previous experiments have shown that animals can voluntarily modulate their gamma power through operant conditioning. Using a closed-loop experimental setup, we show in six intracerebrally recorded epileptic patients undergoing presurgical evaluation that intracerebral power spectrum can be increased in the gamma frequency range (30-80 Hz) at different fronto-temporal cortical sites in human subjects. Successful gamma training was accompanied by increased gamma power at other cortical locations and progressively enhanced cross-frequency coupling between gamma and slow oscillations (3-12 Hz). Finally, using microelectrode targets in two subjects, we report that upregulation of gamma activities is possible also in spatial micro-domains, without the spread to macroelectrodes. Overall, our findings indicate that intracerebral gamma modulation can be achieved rapidly, beyond the motor system and with high spatial specificity, when using micro targets. These results are especially significant because they pave the way for use of high-resolution therapeutic approaches for future clinical applications. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Alpha-, gamma- and delta-tocopherols reduce inflammatory angiogenesis in human microvascular endothelial cells.

    PubMed

    Wells, Shannon R; Jennings, Merilyn H; Rome, Courtney; Hadjivassiliou, Vicky; Papas, Konstantinos A; Alexander, Jonathon S

    2010-07-01

    Vitamin E, a micronutrient (comprising alpha-, beta-, gamma- and delta-tocopherols, alpha-, beta-, gamma- and delta-tocotrienols), has documented antioxidant and non-antioxidant effects, some of which inhibit inflammation and angiogenesis. We compared the abilities of alpha-, gamma- and delta-tocopherols to regulate human blood cytotoxicity (BEC) and lymphatic endothelial cytotoxicity (LEC), proliferation, invasiveness, permeability, capillary formation and suppression of TNF-alpha-induced VCAM-1 as in vitro models of inflammatory angiogenesis. alpha-, gamma- and delta-tocopherols were not toxic to either cell type up to 40 microM. In BEC, confluent cell density was decreased by all concentrations of delta- and gamma-tocopherol (10-40 microM) but not by alpha-tocopherol. LEC showed no change in cell density in response to tocopherols. delta-Tocopherol (40 microM), but not other isomers, decreased BEC invasiveness. In LEC, all doses of gamma-tocopherol, as well as the highest dose of alpha-tocopherol (40 microM), decreased cell invasiveness. delta-Tocopherol had no effect on LEC invasiveness at any molarity. delta-Tocopherol dose dependently increased cell permeability at 48 h in BEC and LEC; alpha- and gamma-tocopherols showed slight effects. Capillary tube formation was decreased by high dose (40 microM) concentrations of alpha-, gamma- and delta-tocopherol, but showed no effects with smaller doses (10-20 microM) in BEC. gamma-Tocopherol (10-20 microM) and alpha-tocopherol (10 microM), but not delta-tocopherol, increased LEC capillary tube formation. Lastly, in BEC, alpha-, gamma- and delta-tocopherol each dose-dependently reduced TNF-alpha-induced expression of VCAM-1. In LEC, there was no significant change to TNF-alpha-induced VCAM-1 expression with any concentration of alpha-, gamma- or delta-tocopherol. These data demonstrate that physiological levels (0-40 microM) of alpha-, gamma- and delta-tocopherols are nontoxic and dietary tocopherols, especially delta

  11. [THROMBIN-MEDIATED EFFECTS OF BLOOD MICROPARTICLES ON FORMATION, STRUCTURE, AND STABILITY OF FIBRIN CLOTS].

    PubMed

    Nabiullina, R M; Mustafin, I G; Ataullakhanov, F I; Litvinov, R I; Zubairova, L D

    2015-07-01

    The effects of blood microparticles (MPs) on the dynamics of fibrin polymerization, clot structure and susceptibility to fibrinolysis were studied. Kinetics of fibrin polymerization, fibrinolysis, thrombin generation in platelet-free, microparticle-depleted and microparticle-depleted plasma replenished with cephalin, from healthy donors were analyzed in parallel. MPs have profound effects on all stages of fibrin formation, decrease its turbidity. All parameters obtained in the absence of MPs were recovered after reconstitution of phospholipids. Thrombin generation rates were reduced in the absence of MPs. In the presence of MPs the fibrin networks had less poro us structures with thinner fibers, while clots formed in the absence of MPs had larger pores and were built of thicker fibers. Clots formed in the presence of MPs were significantly more resistant to fibrinolysis. Results show that normally circulating MPs can support the formation of stable clots at the sites of vascular injury.

  12. Genome-wide survey of artificial mutations induced by ethyl methanesulfonate and gamma rays in tomato.

    PubMed

    Shirasawa, Kenta; Hirakawa, Hideki; Nunome, Tsukasa; Tabata, Satoshi; Isobe, Sachiko

    2016-01-01

    Genome-wide mutations induced by ethyl methanesulfonate (EMS) and gamma irradiation in the tomato Micro-Tom genome were identified by a whole-genome shotgun sequencing analysis to estimate the spectrum and distribution of whole-genome DNA mutations and the frequency of deleterious mutations. A total of ~370 Gb of paired-end reads for four EMS-induced mutants and three gamma-ray-irradiated lines as well as a wild-type line were obtained by next-generation sequencing technology. Using bioinformatics analyses, we identified 5920 induced single nucleotide variations and insertion/deletion (indel) mutations. The predominant mutations in the EMS mutants were C/G to T/A transitions, while in the gamma-ray mutants, C/G to T/A transitions, A/T to T/A transversions, A/T to G/C transitions and deletion mutations were equally common. Biases in the base composition flanking mutations differed between the mutagenesis types. Regarding the effects of the mutations on gene function, >90% of the mutations were located in intergenic regions, and only 0.2% were deleterious. In addition, we detected 1,140,687 spontaneous single nucleotide polymorphisms and indel polymorphisms in wild-type Micro-Tom lines. We also found copy number variation, deletions and insertions of chromosomal segments in both the mutant and wild-type lines. The results provide helpful information not only for mutation research, but also for mutant screening methodology with reverse-genetic approaches. © 2015 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  13. Peroxisome proliferator-activated receptor gamma signaling in human sperm physiology

    PubMed Central

    Liu, Li-Li; Xian, Hua; Cao, Jing-Chen; Zhang, Chong; Zhang, Yong-Hui; Chen, Miao-Miao; Qian, Yi; Jiang, Ming

    2015-01-01

    Peroxisome proliferator-activated receptor gamma (PPARγ) is a member of the PPARs, which are transcription factors of the steroid receptor superfamily. PPARγ acts as an important molecule for regulating energy homeostasis, modulates the hypothalamic-pituitary-gonadal (HPG) axis, and is reciprocally regulated by HPG. In the human, PPARγ protein is highly expressed in ejaculated spermatozoa, implying a possible role of PPARγ signaling in regulating sperm energy dissipation. PPARγ protein is also expressed in Sertoli cells and germ cells (spermatocytes). Its activation can be induced during capacitation and the acrosome reaction. This mini-review will focus on how PPARγ signaling may affect fertility and sperm quality and the potential reversibility of these adverse effects. PMID:25851655

  14. Kit signaling inhibits the sphingomyelin-ceramide pathway through PLC gamma 1: implication in stem cell factor radioprotective effect.

    PubMed

    Maddens, Stéphane; Charruyer, Alexandra; Plo, Isabelle; Dubreuil, Patrice; Berger, Stuart; Salles, Bernard; Laurent, Guy; Jaffrézou, Jean-Pierre

    2002-08-15

    Previous studies demonstrated that Kit activation confers radioprotection. However, the mechanism by which Kit signaling interferes with cellular response to ionizing radiation (IR) has not been firmly established. Based on the role of the sphingomyelin (SM) cycle apoptotic pathway in IR-induced apoptosis, we hypothesized that one of the Kit signaling components might inhibit IR-induced ceramide production or ceramide-induced apoptosis. Results show that, in both Ba/F3 and 32D murine cell lines transfected with wild-type c-kit, stem cell factor (SCF) stimulation resulted in a significant reduction of IR-induced apoptosis and cytotoxicity, whereas DNA repair remained unaffected. Moreover, SCF stimulation inhibited IR-induced neutral sphingomyelinase (N-SMase) stimulation and ceramide production. The SCF inhibitory effect on SM cycle was not influenced by wortmannin, a phosphoinositide-3 kinase (PI3K) inhibitor. The SCF protective effect was maintained in 32D-KitYF719 cells in which the PI3K/Akt signaling pathway is abolished due to mutation in Kit docking site for PI3K. In contrast, phospholipase C gamma (PLC gamma) inhibition by U73122 totally restored IR-induced N-SMase stimulation, ceramide production, and apoptosis in Kit-activated cells. Moreover, SCF did not protect 32D-KitYF728 cells (lacking a functional docking site for PLC gamma 1), from IR-induced SM cycle. Finally, SCF-induced radioprotection of human CD34(+) bone marrow cells was also inhibited by U73122. Altogether, these results suggest that SCF radioprotection is due to PLC gamma 1-dependent negative regulation of IR-induced N-SMase stimulation. Beyond the scope of Kit-expressing cells, it suggests that PLC gamma 1 status could greatly influence the post-DNA damage cellular response to IR, and perhaps, to other genotoxic agents.

  15. Discovery of potent peptide-mimetic antagonists for the human thrombin receptor, protease-activated receptor-1 (PAR-1).

    PubMed

    Maryanoff, Bruce E; Zhang, Han-Cheng; Andrade-Gordon, Patricia; Derian, Claudia K

    2003-03-01

    Protease-activated receptors (PARs) represent a unique family of seven-transmembrane G-protein-coupled receptors, which are enzymatically cleaved to expose a new extracellular N-terminus that acts as a tethered activating ligand. PAR-1 is cleaved and activated by the serine protease alpha-thrombin, is expressed in various tissues (e.g. platelets and vascular cells), and is involved in cellular responses associated with hemostasis, proliferation, and tissue injury. By using a de novo design approach, we have discovered a series of potent heterocycle-based peptide-miimetic antagonists of PAR-1, exemplified by advanced leads RWJ-56110 (22) and RWJ-58259 (32). These compounds are potent, selective PAR-1 antagonists, devoid of PAR-1 agonist and thrombin inhibitory activity: they bind to PAR-1, interfere with calcium mobilization and cellular functions associated with PAR-1, and do not affect PAR-2, PAR-3, or PAR-4. RWJ-56110 was determined to be a direct inhibitor of PAR-1 activation and internalization, without affecting PAR-1 N-terminal cleavage. At high concentrations of alpha-thrombin, RWJ-56110 fully blocked activation responses in human vascular cells, but not in human platelets; whereas, at high concentrations of TRAP-6, RWJ-56110 blocked activation responses in both cell types. This result is consistent with the presence of another thrombin receptor on human platelets, namely PAR-4. RWJ-56110 and RWJ-58259 clearly interrupt the binding of a tethered ligand to its receptor. RWJ-58259 demonstrated antirestenotic activity in a rat balloon angioplasty model and antithrombotic activity in a cynomolgus monkey arterial injury model. Such PAR-1 antagonists should not only serve as useful tools to delineate the physiological and pathophysiological roles of PAR-1, but also may have therapeutic potential for treating thrombosis and restenosis in humans.

  16. Effects of {gamma}-secretase inhibition on the proliferation and vitamin D{sub 3} induced osteogenesis in adipose derived stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jing, Wei; Xiong, Zhonghua; Cai, Xiaoxiao

    2010-02-12

    As a {gamma}-secretase inhibitor, DAPT has been widely used to evaluate the biological behaviors and Notch signaling pathway in various cells. This study was aimed to examine the effects of DAPT on the growth and vitamin D{sub 3} induced osteogenesis in adipose derived stem cells (ASCs). The cells were treated with or without DAPT and induced to osteoblastic lineage in the presence of vitamin D{sub 3}. Alizarin red staining and real-time PCR results indicated that the addition of DAPT to vitamin D{sub 3} treatments enhanced osteogenesis in ASCs. According to the fold increase and colony-forming unit assay results, the cellsmore » cultured in DAPT exhibited lower proliferation rate than those cultured in control medium. Hey1, expressed in the nucleus of ASCs to act as a transcriptional repressor, was downregulated when Notch signaling was inhibited by DAPT. Whereas the expression of Runx2 increased in the nucleus of osteogenic induced ASCs after DAPT treatment. This study demonstrated that DAPT reduced the proliferation and enhanced the osteogenesis in ASCs via regulation of Notch and Runx2 expression.« less

  17. Process for gamma ray induced degradation of polychlorinated biphenyls

    DOEpatents

    Meikrantz, D.H.; Mincher, B.J.; Arbon, R.E.

    1998-08-25

    The invention is a process for the in-situ destruction of polychlorinated biphenyl (PCB) compounds in transformer oils and transformers. These compounds are broken down selectively by irradiation of the object or mixture using spent nuclear fuel or any isotopic source of high energy gamma radiation. For example, the level of applied dose required to decompose 400 ppm of polychlorinated biphenyl in transformer oil to less than 50 ppm is 500 kilograms. Destruction of polychlorinated biphenyls to levels of less than 50 ppm renders the transformer oil or transformer non-PCB contaminated under current regulations. Therefore, this process can be used to treat PCB contaminated oil and equipment to minimize or eliminate the generation of PCB hazardous waste. 5 figs.

  18. Cell cycle perturbations and genotoxic effects in human primary fibroblasts induced by low-energy protons and X/gamma-rays.

    PubMed

    Antoccia, Antonio; Sgura, Antonella; Berardinelli, Francesco; Cavinato, Maria; Cherubini, Roberto; Gerardi, Silvia; Tanzarella, Caterina

    2009-09-01

    The effect of graded doses of high-linear energy transfer (LET) low-energy protons to induce cycle perturbations and genotoxic damage was investigated in normal human fibroblasts. Furthermore, such effects were compared with those produced by low-LET radiations. HFFF2, human primary fibroblasts were exposed to either protons (LET = 28.5 keV/microm) or X/gamma-rays, and endpoints related to cell cycle kinetics and DNA damage analysed. Following both type of irradiations, unsynchronized cells suffered an inhibition to entry into S-phase for doses of 1-4 Gy and remained arrested in the G(1)-phase for several days. The levels of induction of regulator proteins, such as TP53 and CDKN1A showed a clear LET-dependence. DSB induction and repair as measured by scoring for gamma-H2AX foci indicated that protons, with respect to X-rays, yielded a lower number of DSBs per Gy, which showed a slower kinetics of disappearance. Such result was in agreement with the extent of MN induction in binucleated cells after X-irradiation. No significant differences between the two types of radiations were observed with the clonogenic assay, resulting anyway the slope of gamma-ray curve higher than that the proton one. In conclusion, in normal human primary fibroblasts cell cycle arrest at the G(1)/S transition can be triggered shortly after irradiation and maintained for several hours post-irradiation of both protons and X-rays. DNA damage produced by protons appears less amenable to be repaired and could be transformed in cytogenetic damage in the form of MN.

  19. PPAR gamma partial agonist, KR-62776, inhibits adipocyte differentiation via activation of ERK.

    PubMed

    Kim, J; Han, D C; Kim, J M; Lee, S Y; Kim, S J; Woo, J R; Lee, J W; Jung, S-K; Yoon, K S; Cheon, H G; Kim, S S; Hong, S H; Kwon, B-M

    2009-05-01

    Indenone KR-62776 acts as an agonist of PPAR gamma without inducing obesity in animal models and cells. X-ray crystallography reveals that the indenone occupies the binding pocket in a different manner than rosiglitazone. 2-Dimensional gel-electrophoresis showed that the expression of 42 proteins was altered more than 2.0-fold between KR-62776- or rosiglitazone-treated adipocyte cells and control cells. Rosiglitazone down-regulated the expression of ERK1/2 and suppressed the phosphorylation of ERK1/2 in these cells. However, the expression of ERK1/2 was up-regulated in KR-62776-treated cells. Phosphorylated ERK1/2, activated by indenone, affects the localization of PPAR gamma, suggesting a mechanism for indenone-inhibition of adipogenesis in 3T3-L1 preadipocyte cells. The preadipocyte cells are treated with ERK1/2 inhibitor PD98059, a large amount of the cells are converted to adipocyte cells. These results support the conclusion that the localization of PPAR gamma is one of the key factors explaining the biological responses of the ligands.

  20. Proteasome phosphorylation regulates cocaine-induced sensitization.

    PubMed

    Gonzales, Frankie R; Howell, Kristin K; Dozier, Lara E; Anagnostaras, Stephan G; Patrick, Gentry N

    2018-04-01

    Repeated exposure to cocaine produces structural and functional modifications at synapses from neurons in several brain regions including the nucleus accumbens. These changes are thought to underlie cocaine-induced sensitization. The ubiquitin proteasome system plays a crucial role in the remodeling of synapses and has recently been implicated in addiction-related behavior. The ATPase Rpt6 subunit of the 26S proteasome is phosphorylated by Ca 2+ /calmodulin-dependent protein kinases II alpha at ser120 which is thought to regulate proteasome activity and distribution in neurons. Here, we demonstrate that Rpt6 phosphorylation is involved in cocaine-induced locomotor sensitization. Cocaine concomitantly increases proteasome activity and Rpt6 S120 phosphorylation in cultured neurons and in various brain regions of wild type mice including the nucleus accumbens and prefrontal cortex. In contrast, cocaine does not increase proteasome activity in Rpt6 phospho-mimetic (ser120Asp) mice. Strikingly, we found a complete absence of cocaine-induced locomotor sensitization in the Rpt6 ser120Asp mice. Together, these findings suggest a critical role for Rpt6 phosphorylation and proteasome function in the regulation cocaine-induced behavioral plasticity. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. PI3K{gamma} activation by CXCL12 regulates tumor cell adhesion and invasion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monterrubio, Maria; Mellado, Mario; Carrera, Ana C.

    Tumor dissemination is a complex process, in which certain steps resemble those in leukocyte homing. Specific chemokine/chemokine receptor pairs have important roles in both processes. CXCL12/CXCR4 is the most commonly expressed chemokine/chemokine receptor pair in human cancers, in which it regulates cell adhesion, extravasation, metastatic colonization, angiogenesis, and proliferation. All of these processes require activation of signaling pathways that include G proteins, phosphatidylinositol-3 kinase (PI3K), JAK kinases, Rho GTPases, and focal adhesion-associated proteins. We analyzed these pathways in a human melanoma cell line in response to CXCL12 stimulation, and found that PI3K{gamma} regulates tumor cell adhesion through mechanisms different frommore » those involved in cell invasion. Our data indicate that, following CXCR4 activation after CXCL12 binding, the invasion and adhesion processes are regulated differently by distinct downstream events in these signaling cascades.« less

  2. Phosphoinositide 3-kinase gamma regulates airway smooth muscle contraction by modulating calcium oscillations.

    PubMed

    Jiang, Haihong; Abel, Peter W; Toews, Myron L; Deng, Caishu; Casale, Thomas B; Xie, Yan; Tu, Yaping

    2010-09-01

    Phosphoinositide 3-kinase gamma (PI3Kgamma) has been implicated in the pathogenesis of asthma, but its mechanism has been considered indirect, through release of inflammatory cell mediators. Because airway smooth muscle (ASM) contractile hyper-responsiveness plays a critical role in asthma, the aim of the present study was to determine whether PI3Kgamma can directly regulate contractility of ASM. Immunohistochemistry staining indicated expression of PI3Kgamma protein in ASM cells of mouse trachea and lung, which was confirmed by Western blot analysis in isolated mouse tracheal ASM cells. PI3Kgamma inhibitor II inhibited acetylcholine (ACh)-stimulated airway contraction of cultured precision-cut mouse lung slices in a dose-dependent manner with 75% inhibition at 10 muM. In contrast, inhibitors of PI3Kalpha, PI3Kbeta, or PI3Kdelta, at concentrations 40-fold higher than their reported IC(50) values for their primary targets, had no effect. It is noteworthy that airways in lung slices pretreated with PI3Kgamma inhibitor II still exhibited an ACh-induced initial contraction, but the sustained contraction was significantly reduced. Furthermore, the PI3Kgamma-selective inhibitor had a small inhibitory effect on the ACh-stimulated initial Ca(2+) transient in ASM cells of mouse lung slices or isolated mouse ASM cells but significantly attenuated the sustained Ca(2+) oscillations that are critical for sustained airway contraction. This report is the first to show that PI3Kgamma directly controls contractility of airways through regulation of Ca(2+) oscillations in ASM cells. Thus, in addition to effects on airway inflammation, PI3Kgamma inhibitors may also exert direct effects on the airway contraction that contribute to pathologic airway hyper-responsiveness.

  3. Effect of gamma-ray irradiation on the device process-induced defects in 4H-SiC epilayers

    NASA Astrophysics Data System (ADS)

    Miyazaki, T.; Makino, T.; Takeyama, A.; Onoda, S.; Ohshima, T.; Tanaka, Y.; Kandori, M.; Yoshie, T.; Hijikata, Y.

    2016-11-01

    We investigated the gamma-ray irradiation effect on 4H-SiC device process-induced defects by photoluminescence (PL) imaging and deep level transient spectroscopy (DLTS). We found that basal plane dislocations (BPDs) that were present before the irradiation were eliminated by gamma-ray irradiation of 1 MGy. The reduction mechanism of BPD was discussed in terms of BPD-threading edge dislocation (TED) transformation and shrinkage of stacking faults. In addition, the entire PL image was gradually darkened with increasing absorbed dose, which is presumably due to the point defects generated by gamma-ray irradiation. We obtained DLTS peaks that could be assigned to complex defects, termed RD series, and found that the peaks increased with absorbed dose.

  4. Novel isoguanine derivative of unlocked nucleic acid-Investigations of thermodynamics and biological potential of modified thrombin binding aptamer.

    PubMed

    Kotkowiak, Weronika; Czapik, Tomasz; Pasternak, Anna

    2018-01-01

    Thrombin binding aptamer (TBA), is a short DNA 15-mer that forms G-quadruplex structure and possesses anticoagulant properties. Some chemical modifications, including unlocked nucleic acids (UNA), 2'-deoxy-isoguanosine and 2'-deoxy-4-thiouridine were previously found to enhance the biological activity of TBA. In this paper, we present thermodynamic and biological characteristics of TBA variants that have been modified with novel isoguanine derivative of UNA as well as isoguanosine. Additionally, UNA-4-thiouracil and 4-thiouridine were also introduced simultaneously with isoguanine derivatives. Thermodynamic analysis indicates that the presence of isoguanosine in UNA or RNA series significantly decreases the stability of G-quadruplex structure. The highest destabilization is observed for substitution at one of the G-tetrad position. Addition of 4-thiouridine in UNA or RNA series usually decreases the unfavorable energetic cost of the presence of UNA or RNA isoguanine. Circular dichroism and thermal denaturation spectra in connection with thrombin time assay indicate that the introduction of UNA-isoguanine or isoguanosine into TBA negatively affects G-quadruplex folding and TBA anticoagulant properties. These findings demonstrate that the highly-ordered structure of TBA is essential for inhibition of thrombin activity.

  5. Ferulic acid (FA) abrogates γ-radiation induced oxidative stress and DNA damage by up-regulating nuclear translocation of Nrf2 and activation of NHEJ pathway.

    PubMed

    Das, Ujjal; Manna, Krishnendu; Khan, Amitava; Sinha, Mahuya; Biswas, Sushobhan; Sengupta, Aaveri; Chakraborty, Anindita; Dey, Sanjit

    2017-01-01

    The present study was aimed to evaluate the radioprotective effect of ferulic acid (FA), a naturally occurring plant flavonoid in terms of DNA damage and damage related alterations of repair pathways by gamma radiation. FA was administered at a dose of 50 mg/kg body weight for five consecutive days prior to exposing the swiss albino mice to a single dose of 10 Gy gamma radiation. Ionising radiation induces oxidative damage manifested by decreased expression of Cu, Zn-SOD (SOD stands for super oxide dismutase), Mn-SOD and catalase. Gamma radiation promulgated reactive oxygen species (ROS) mediated DNA damage and modified repair pathways. ROS enhanced nuclear translocation of p53, activated ATM (ataxia telangiectasia-mutated protein), increased expression of GADD45a (growth arrest and DNA-damage-inducible protein) gene and inactivated Non homologous end joining (NHEJ) repair pathway. The comet formation in irradiated mice peripheral blood mononuclear cells (PBMC) reiterated the DNA damage in IR exposed groups. FA pretreatment significantly prevented the comet formation and regulated the nuclear translocation of p53, inhibited ATM activation and expression of GADD45a gene. FA promoted the nuclear translocation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and activated NHEJ repair pathway to overcome ROS mediated oxidative stress and DNA damage. Therefore, the current study stated that FA can challenge the oxidative stress by (i) inducing nuclear translocation of Nrf2, (ii) scavenging ROS, and (iii) activating NHEJ DNA repair process.

  6. New Insights in Thrombin Inhibition Structure-Activity Relationships by Characterization of Octadecasaccharides from Low Molecular Weight Heparin.

    PubMed

    Mourier, Pierre A J; Guichard, Olivier Y; Herman, Fréderic; Sizun, Philippe; Viskov, Christian

    2017-03-08

    Low Molecular Weight Heparins (LMWH) are complex anticoagulant drugs that mainly inhibit the blood coagulation cascade through indirect interaction with antithrombin. While inhibition of the factor Xa is well described, little is known about the polysaccharide structure inhibiting thrombin. In fact, a minimal chain length of 18 saccharides units, including an antithrombin (AT) binding pentasaccharide, is mandatory to form the active ternary complex for LMWH obtained by alkaline β-elimination (e.g., enoxaparin). However, the relationship between structure of octadecasaccharides and their thrombin inhibition has not been yet assessed on natural compounds due to technical hurdles to isolate sufficiently pure material. We report the preparation of five octadecasaccharides by using orthogonal separation methods including size exclusion, AT affinity, ion pairing and strong anion exchange chromatography. Each of these octadecasaccharides possesses two AT binding pentasaccharide sequences located at various positions. After structural elucidation using enzymatic sequencing and NMR, in vitro aFXa and aFIIa were determined. The biological activities reveal the critical role of each pentasaccharide sequence position within the octadecasaccharides and structural requirements to inhibit thrombin. Significant differences in potency, such as the twenty-fold magnitude difference observed between two regioisomers, further highlights the importance of depolymerisation process conditions on LMWH biological activity.

  7. Combination of FVIII and by-passing agent potentiates in vitro thrombin production in haemophilia A inhibitor plasma.

    PubMed

    Klintman, Jenny; Astermark, Jan; Berntorp, Erik

    2010-11-01

    The by-passing agents, recombinant activated factor VII (rFVIIa) and activated prothrombin complex concentrate (APCC), are important tools in the treatment of patients with haemophilia A and high-responding inhibitory antibodies. It has been observed clinically that in some patients undergoing immune tolerance induction the bleeding frequency decreases, hypothetically caused by a transient haemostatic effect of infused FVIII not measurable ex vivo. We evaluated how by-passing agents and factor VIII (FVIII) affect thrombin generation (TG) in vitro using plasma from 11 patients with severe haemophilia A and high titre inhibitors. Samples were spiked with combinations of APCC, rFVIIa and five different FVIII products. Combination of APCC and FVIII showed a synergistic effect in eliciting TG (P<0·005) for four FVIII products. When rFVIIa and FVIII were combined the interaction between the preparations was found to be additive. APCC and rFVIIa were then combined without FVIII, resulting in an additive effect on thrombin production. Each product separately increased TG above baseline. In conclusion, the amount of thrombin formed in vitro by adding a by-passing agent, was higher in the presence of FVIII. Our findings support the use of FVIII in by-passing therapy to optimize the haemostatic effect. © 2010 Blackwell Publishing Ltd.

  8. The use of argatroban for carotid endarterectomy in heparin-induced thrombocytopenia.

    PubMed

    Hallman, Sarah E; Hebbar, Latha; Robison, Jay; Uber, Walter E

    2005-04-01

    Heparin-induced thrombocytopenia (HIT) is a major obstacle in cardiovascular surgeries. In this case report, we used argatroban, a direct thrombin inhibitor, to achieve and maintain anticoagulation for carotid endarterectomy. Unlike heparin, the direct thrombin inhibitors bind directly to thrombin, bypassing antithrombin III and the potential to precipitate HIT. A bolus of argatroban 150 microg/kg followed by an infusion of 5 microg . kg(-1) . min(-1) was used, and adequate anticoagulation was demonstrated with multiple laboratory tests (at 28 min, prothrombin time = 29.8 s, partial thromboplastin time = 69.1 s, international normalized ratio = 3.52 s, and activated clotting time = 220 s). The surgery was successful, and the patient was discharged the next day with no postoperative neurologic sequelae or other complications. We conclude that argatroban can be used safely and successfully for carotid endarterectomy in a patient with a history of HIT.

  9. Thrombin-activatable fibrinolysis inhibitor is degraded by Salmonella enterica and Yersinia pestis.

    PubMed

    Valls Serón, M; Haiko, J; DE Groot, P G; Korhonen, T K; Meijers, J C M

    2010-10-01

     Pathogenic bacteria modulate the host coagulation system to evade immune responses or to facilitate dissemination through extravascular tissues. In particular, the important bacterial pathogens Salmonella enterica and Yersinia pestis intervene with the plasminogen/fibrinolytic system. Thrombin-activatable fibrinolysis inhibitor (TAFI) has anti-fibrinolytic properties as the active enzyme (TAFIa) removes C-terminal lysine residues from fibrin, thereby attenuating accelerated plasmin formation.  Here, we demonstrate inactivation and cleavage of TAFI by homologous surface proteases, the omptins Pla of Y. pestis and PgtE of S. enterica. We show that omptin-expressing bacteria decrease TAFI activatability by thrombin-thrombomodulin and that the anti-fibrinolytic potential of TAFIa was reduced by recombinant Escherichia coli expressing Pla or PgtE. The functional impairment resulted from C-terminal cleavage of TAFI by the omptins.  Our results indicate that TAFI is degraded directly by the omptins PgtE of S. enterica and Pla of Y. pestis. This may contribute to the ability of PgtE and Pla to damage tissue barriers, such as fibrin, and thereby to enhance spread of S. enterica and Y. pestis during infection. © 2010 International Society on Thrombosis and Haemostasis.

  10. Isolation of methyl gamma linolenate from Spirulina platensis using flash chromatography and its apoptosis inducing effect.

    PubMed

    Jubie, S; Dhanabal, S P; Chaitanya, M V N L

    2015-08-04

    Isolation of methyl gamma linolenate from Spirulina platensis using flash chromatography and its apoptosis inducing effect against human lung carcinoma A- 549 cell lines. Gamma linolenic acid is an important omega-6 polyunsaturated fatty acid (PUFA) of medicinal interest was isolated from microalgae Spirulina platensis using flash chromatography system (Isolera system) as its methyl ester. The isolated methyl gamma linolenate was characterized by IR, (1)H NMR, (13)C NMR and mass spectral analysis and the data were consistent with the structure. The percentage yield of isolated methyl gamma linolenate is found to be 71% w/w, which is a very good yield in comparison to other conventional methods. It was subjected to in-vitro cytotoxic screening on A-549 lung cancer cell lines using SRB assay and result was compared with standard rutin. It may be concluded that the Flash chromatography system plays a major role in improving the yield for the isolation of methyl gamma linoleate from Spirulina platensis and the isolated molecule is a potent cytotoxic agent towards human lung carcinoma cell lines, however it may be further taken up for an extensive study.

  11. Possible protective effect of the algae spirulina against nephrotoxicity induced by cyclosporine A and/or gamma radiation in rats.

    PubMed

    Aziz, Maha M; Eid, Nihad I; Nada, Ahmed S; Amin, Nour El-Din; Ain-Shoka, Afaf A

    2018-03-01

    The present study was conducted to evaluate the possible protective role of the algae spirulina (Sp) against nephrotoxicity and oxidative stress which are the main secondary effects induced by the immunosuppressant drug CSA and/or ionizing radiation. In this study, male rats were given Sp (1 g/kg) either for 15 days before irradiation (6.5 Gy) or 5 days before and 10 days concomitant with CSA (25 mg/kg). Markers used to assess renal injury included serum creatinine, urea, glucose, albumin, protein, and lipid profile as well as kidney content of reduced glutathione (GSH); lipid peroxidation (thiobarbituric acid reactive substances (TBARS)); nitrite and superoxide dismutase (SOD) activity. In addition, some trace elements (Zn and Mg) were estimated in kidney. Apoptosis was assessed by immunohistochemical estimation of caspase-3 expression in addition to histopathological examination. Results revealed that gamma radiation and/or CSA induced elevation in urea, creatinine, lipids, and glucose while decreasing albumin and protein levels. There was a noticeable increase in kidney content of GSH, TBARS, and nitrite. Meanwhile, profound decrease in kidney SOD activity was observed. Treatment with Sp significantly reversed the changes induced by CSA and/or gamma radiation in renal function tests. Spirulina also ameliorated kidney oxidative stress through decreasing GSH, TBARS, and nitrite kidney content while increasing SOD activity. Histopathological examination further confirmed Sp protective efficacy. Moreover, kidney caspase-3 expression that was triggered by CSA and/or gamma radiation was decreased. In conclusion, spirulina can be regarded as a promising renoprotective natural agent against renal injury induced by CSA and/or gamma radiation.

  12. Duplex/quadruplex oligonucleotides: Role of the duplex domain in the stabilization of a new generation of highly effective anti-thrombin aptamers.

    PubMed

    Russo Krauss, Irene; Napolitano, Valeria; Petraccone, Luigi; Troisi, Romualdo; Spiridonova, Vera; Mattia, Carlo Andrea; Sica, Filomena

    2018-02-01

    Recently, mixed duplex/quadruplex oligonucleotides have attracted great interest for use as biomedical aptamers. In the case of anti-thrombin aptamers, the addition of duplex-forming sequences to a G-quadruplex module identical or very similar to the best-known G-quadruplex of the Thrombin Binding Aptamer (HD1) results in new or improved biological properties, such as higher activity or different recognition properties with respect to HD1. Remarkably, this bimodular fold was hypothesized, based on its sequence, for the only anti-thrombin aptamer in advanced clinical trial, NU172. Whereas cation modulation of G-quadruplex conformation and stability is well characterized, only few data from similar analysis on duplex/quadruplex oligonucleotides exist. Here we have performed a characterization of structure and stability of four different duplex/quadruplex anti-thrombin aptamers, including NU172, in the presence of different cations and in physiological-mimicking conditions in comparison to HD1, by means of spectroscopic techniques (UV and circular dichroism) and differential scanning calorimetry. Our data show a strong reciprocal influence of each domain on the stability of the other and in particular suggest a stabilizing effect of the duplex region in the presence of solutions mimicking the physiological conditions, strengthening the idea that bimodular aptamers present better therapeutic potentialities than those containing a single G-quadruplex domain. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Sulfated, low-molecular-weight lignins are potent inhibitorsof plasmin, in addition to thrombin and factor Xa: Novel opportunity for controlling complex pathologies.

    PubMed

    Henry, Brian L; Abdel Aziz, May; Zhou, Qibing; Desai, Umesh R

    2010-03-01

    Recently we prepared sulfated, low-molecular-weight lignins (LMWLs) to mimic the biological activities of heparin and heparan sulfate. Chemo-enzymatically prepared sulfated LMWLs represent a library of diverse non-sugar, aromatic molecules with structures radically different from the heparins, and have been found to potently inhibit thrombin and factor Xa. To assess their effect on the fibrinolytic system, we studied the interaction of LMWLs with human plasmin. Enzyme inhibition studies indicate that the three sulfated LMWLs studied inhibit plasmin with IC50 values in the range of 0.24 and 1.3 mM, which are marginally affected in the presence of antithrombin. Similarly, plasmin degradation of polymeric fibrin is also inhibited by sulfated LMWLs. Michaelis-Menten kinetic studies indicate that maximal velocity of hydrolysis of chromogenic substrates decreases nearly 70% in the presence of LMWLs, while the effect on Michaelis constant is dependent on the nature of the substrate. Competitive binding studies indicate that the sulfated LMWLs compete with full-length heparin. Comparison with thrombin-heparin crystal structure identifies an anionic region on plasmin as a plausible sulfated LMWL binding site. Overall, the chemo-enzymatic origin coupled with coagulation and fibrinolysis inhibition properties of sulfated LMWLs present novel opportunities for designing new pharmaceutical agents that regulate complex pathologies in which both systems are known to play important roles such as disseminated intravascular coagulation.

  14. Short bouts of vocalization induce long lasting fast gamma oscillations in a sensorimotor nucleus

    PubMed Central

    Lewandowski, Brian; Schmidt, Marc

    2011-01-01

    Performance evaluation is a critical feature of motor learning. In the vocal system, it requires the integration of auditory feedback signals with vocal motor commands. The network activity that supports such integration is unknown, but it has been proposed that vocal performance evaluation occurs offline. Recording from NIf, a sensorimotor structure in the avian song system, we show that short bouts of singing in adult male zebra finches (Taeniopygia guttata) induce persistent increases in firing activity and coherent oscillations in the fast gamma range (90–150 Hz). Single units are strongly phase-locked to these oscillations, which can last up to 30 s, often outlasting vocal activity by an order of magnitude. In other systems, oscillations often are triggered by events or behavioral tasks but rarely outlast the event that triggered them by more than 1 second. The present observations are the longest reported gamma oscillations triggered by an isolated behavioral event. In mammals, gamma oscillations have been associated with memory consolidation and are hypothesized to facilitate communication between brain regions. We suggest that the timing and persistent nature of NIf’s fast gamma oscillations make them well suited to facilitate the integration of auditory and vocal motor traces associated with vocal performance evaluation. PMID:21957255

  15. Bruton's tyrosine kinase regulates B cell antigen receptor-mediated JNK1 response through Rac1 and phospholipase C-gamma2 activation.

    PubMed

    Inabe, Kazunori; Miyawaki, Toshio; Longnecker, Richard; Matsukura, Hiroyoshi; Tsukada, Satoshi; Kurosaki, Tomohiro

    2002-03-13

    Bruton's tyrosine kinase (Btk) is essential for B cell development and B cell antigen receptor (BCR) function. Recent studies have shown that Btk plays an important role in BCR-mediated c-Jun NH(2)-terminal kinase (JNK) 1 activation; however, the mechanism by which Btk participates in the JNK1 response remains elusive. Here we show that the BCR-mediated Rac1 activation is significantly inhibited by loss of Btk, while this Rac1 activation is not affected by loss of phospholipase C-gamma2 (PLC-gamma2). Since PLC-gamma2 is also required for BCR-mediated JNK1 response, our results suggest that Btk regulates Rac1 pathway as well as PLC-gamma2 pathway, both of which contribute to the BCR-mediated JNK1 response.

  16. Ionizing radiation potentiates the induction of nitric oxide synthase by interferon-gamma (Ifn-gamma) or Ifn-gamma and lipopolysaccharide in bnl cl.2 murine embryonic liver cells: role of hydrogen peroxide.

    PubMed

    Yoo, J C; Pae, H O; Choi, B M; Kim, W I; Kim, J D; Kim, Y M; Chung, H T

    2000-02-01

    The effects of ionizing irradiation on the nitric oxide (NO) production in murine embryonic liver cell line, BNL CL.2 cells, were investigated. Various doses (5-40 Gy) of radiation made BNL CL.2 cells responsive to interferon-gamma alone for the production of NO in a dose-dependent manner. Small amounts of lipopolysaccharide (LPS) or tumor necrosis factor-alpha (TNF-alpha) synergized with IFN-gamma in the production of NO from irradiated BNL CL.2 cells, even though LPS or TNF-alpha alone did not induce NO production from the same cells. Immunoblots showed parallel induction of inducible nitric oxide synthase (iNOS). NO production in irradiated BNL CL.2 cells by IFN-gamma or IFN-gamma plus LPS was decreased by the addition of catalase, suggesting that H(2)O(2) produced by ionizing irradiation primed the cells to trigger NO production in response to IFN-gamma or IFN-gamma plus LPS. Furthermore, the treatment of nongamma-irradiated BNL CL.2 cells with H(2)O(2) made the cells responsive to IFN-gamma or IFN-gamma plus LPS for the production of NO. This study shows that ionizing irradiation has the ability to induce iNOS gene expression in responsive to IFN-gamma via the formation of H(2)O(2) in BNL CL.2 murine embryonic liver cells.

  17. Effect of two oral doses of 17beta-estradiol associated with dydrogesterone on thrombin generation in healthy menopausal women: a randomized double-blind placebo-controlled study.

    PubMed

    Rousseau, Alexandra; Robert, Annie; Gerotziafas, Grigoris; Torchin, Dahlia; Zannad, Faiez; Lacut, Karine; Libersa, Christian; Dasque, Eric; Démolis, Jean-Louis; Elalamy, Ismail; Simon, Tabassome

    2010-04-01

    Oral hormone therapy is associated with an increased risk of venous thrombosis. Drug agencies recommend the use of the lowest efficient dose to treat menopausal symptoms for a better risk/ratio profile, although this profile has not been totally investigated yet. The aim of the study was to compare the effect of the standard dose of 17beta-estradiol to a lower one on thrombin generation (TG). In a 2-month study, healthy menopausal women were randomized to receive daily 1mg or 2 mg of 17beta-estradiol (E1, n = 24 and E2, n = 26; respectively) with 10 mg dydrogesterone or placebo (PL, n = 22). Plasma levels factors VII, X, VIII and II were assessed before and after treatment as well as Tissue factor triggered TG, which allows the investigation of the different phases of coagulation process. The peak of thrombin was higher in hormone therapy groups (E1: 42.39 +/- 50.23 nm, E2: 31.08 +/- 85.86 nm vs. 10.52 +/- 40.63 nm in PL, P = 0.002 and P = 0.01). Time to reach the peak was also shortened (PL: 0.26 +/- 0.69 min vs. E1: -0.26 +/- 0.80 min, E2: -0.55 +/- 0.79 min, P <10(-3) for both comparisons) and mean rate index of the propagation phase of TG was significantly increased. Among the studied clotting factors, only the levels of FVII were significantly increased after treatment administration. The two doses of 17beta-estradiol induced in a similar degree an acceleration of the initiation and propagation phase of tissue factor triggered thrombin generation and a significant increase of FVII coagulant activity.

  18. Global measurement of coagulation in plasma from normal and haemophilia dogs using a novel modified thrombin generation test – Demonstrated in vitro and ex vivo

    PubMed Central

    Madsen, Daniel Elenius; Nichols, Timothy C.; Merricks, Elizabeth P.; Waters, Emily K.; Wiinberg, Bo

    2017-01-01

    Introduction Canine models of severe haemophilia resemble their human equivalents both regarding clinical bleeding phenotype and response to treatment. Therefore pre-clinical studies in haemophilia dogs have allowed researchers to make valuable translational predictions regarding the potency and efficacy of new anti-haemophilia drugs (AHDs) in humans. To refine in vivo experiments and reduce number of animals, such translational studies are ideally preceded by in vitro prediction of compound efficacy using a plasma based global coagulation method. One such widely used method is the thrombin generation test (TGT). Unfortunately, commercially available TGTs are incapable of distinguishing between normal and haemophilia canine plasma, and therefore in vitro prediction using TGT has so far not been possible in canine plasma material. Aim Establish a modified TGT capable of: 1) distinguishing between normal and haemophilia canine plasma, 2) monitoring correlation between canine plasma levels of coagulation factor VIII (FVIII) and IX (FIX) and thrombin generation, 3) assessing for agreement between compound activity and thrombin generation in ex vivo samples. Methods A modified TGT assay was established where coagulation was triggered using a commercially available activated partial thromboplastin time reagent. Results With the modified TGT a significant difference was observed in thrombin generation between normal and haemophilia canine plasma. A dose dependent thrombin generation was observed when assessing haemophilia A and B plasma spiked with dilution series of FVIII and FIX, respectively. Correlation between FVIII activity and thrombin generation was observed when analyzing samples from haemophilia A dogs dosed with canine FVIII. Limit of detection was 0.1% (v/v) FVIII or FIX. Conclusion A novel modified TGT suitable for monitoring and prediction of replacement therapy efficacy in plasma from haemophilia A and B dogs was established. PMID:28384182

  19. Correlation to FVIII:C in Two Thrombin Generation Tests: TGA-CAT and INNOVANCE ETP.

    PubMed

    Ljungkvist, Marcus; Berndtsson, Maria; Holmström, Margareta; Mikovic, Danijela; Elezovic, Ivo; Antovic, Jovan P; Zetterberg, Eva; Berntorp, Erik

    2017-01-01

    Several thrombin-generation tests are available, but few have been directly compared. Our primary aim was to investigate the correlation of two thrombin generation tests, thrombin generation assay-calibrated automated thrombogram (TGA-CAT) and INNOVANCE ETP, to factor VIII levels (FVIII:C) in a group of patients with hemophilia A. The secondary aim was to investigate inter-laboratory variation for the TGA-CAT method. Blood samples were taken from 45 patients with mild, moderate and severe hemophilia A. The TGA-CAT method was performed at both centers while the INNOVANCE ETP was only performed at the Stockholm center. Correlation between parameters was evaluated using Spearman's rank correlation test. For determination of the TGA-CAT inter-laboratory variability, Bland-Altman plots were used. The correlation for the INNOVANCE ETP and TGA-CAT methods with FVIII:C in persons with hemophilia (PWH) was r=0.701 and r=0.734 respectively.The correlation between the two methods was r=0.546.When dividing the study material into disease severity groups (mild, moderate and severe) based on FVIII levels, both methods fail to discriminate between them.The variability of the TGA-CAT results performed at the two centers was reduced after normalization; before normalization, 29% of values showed less than ±10% difference while after normalization the number increased to 41%. Both methods correlate in an equal manner to FVIII:C in PWH but show a poor correlation with each other. The level of agreement for the TGA-CAT method was poor though slightly improved after normalization of data. Further improvement of standardization of these methods is warranted.

  20. Quality assurance for gamma knives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, E.D.; Banks, W.W.; Fischer, L.E.

    1995-09-01

    This report describes and summarizes the results of a quality assurance (QA) study of the Gamma Knife, a nuclear medical device used for the gamma irradiation of intracranial lesions. Focus was on the physical aspects of QA and did not address issues that are essentially medical, such as patient selection or prescription of dose. A risk-based QA assessment approach was used. Sample programs for quality control and assurance are included. The use of the Gamma Knife was found to conform to existing standards and guidelines concerning radiation safety and quality control of external beam therapies (shielding, safety reviews, radiation surveys,more » interlock systems, exposure monitoring, good medical physics practices, etc.) and to be compliant with NRC teletherapy regulations. There are, however, current practices for the Gamma Knife not covered by existing, formalized regulations, standards, or guidelines. These practices have been adopted by Gamma Knife users and continue to be developed with further experience. Some of these have appeared in publications or presentations and are slowly finding their way into recommendations of professional organizations.« less

  1. Simulations of Multi-Gamma Coincidences From Neutron-Induced Fission in Special Nuclear Materials

    NASA Astrophysics Data System (ADS)

    Kane, Steven; Gozani, Tsahi; King, Michael J.; Kwong, John; Brown, Craig; Gary, Charles; Firestone, Murray I.; Nikkel, James A.; McKinsey, Daniel N.

    2013-04-01

    A study is presented on the detection of illicit special nuclear materials (SNM) in cargo containers using a conceptual neutron-based inspection system with xenon-doped liquefied argon (LAr(Xe)) scintillation detectors for coincidence gamma-ray detection. For robustness, the system is envisioned to exploit all fission signatures, namely both prompt and delayed neutron and gamma emissions from fission reactions induced in SNM. However, this paper focuses exclusively on the analysis of the prompt gamma ray emissions. The inspection system probes a container using neutrons produced either by (d, D) or (d, T) in pulsed form or from an associated particle neutron generator to exploit the associated particle imaging (API) technique, thereby achieving background reduction and imaging. Simulated signal and background estimates were obtained in MCNPX (2.7) for a 2 kg sphere of enriched uranium positioned at the center of a 1m × 1m × 1m container, which is filled uniformly with wood or iron cargos at 0.1 g/cc or 0.4 g/cc. Detection time estimates are reported assuming probabilities of detection of 95% and false alarm of 0.5%.

  2. DNA polymerase gamma inhibition by vitamin K3 induces mitochondria-mediated cytotoxicity in human cancer cells.

    PubMed

    Sasaki, Ryohei; Suzuki, Yoko; Yonezawa, Yuko; Ota, Yosuke; Okamoto, Yoshiaki; Demizu, Yusuke; Huang, Peng; Yoshida, Hiromi; Sugimura, Kazuro; Mizushina, Yoshiyuki

    2008-05-01

    Among the vitamin K (VK) compounds, VK3 exhibits distinct cytotoxic activity in cancer cells and is thought to affect redox cycling; however, the underlying mechanisms remain unclear. Here we demonstrate that VK3 selectively inhibits DNA polymerase (pol) gamma, the key enzyme responsible for mitochondrial DNA replication and repair. VK3 at 30 microM inhibited pol gamma by more than 80%, caused impairment of mitochondrial DNA replication and repair, and induced a significant increase in reactive oxygen species (ROS), leading to apoptosis. At a lower concentration (3 microM), VK3 did not cause a significant increase in ROS, but was able to effectively inhibit cell proliferation, which could be reversed by supplementing glycolytic substrates. The cytotoxic action of VK3 was independent of p53 tumor suppressor gene status. Interestingly, VK3 only inhibited pol gamma but did not affect other pol including human pol alpha, pol beta, pol delta, and pol epsilon. VK1 and VK2 exhibited no inhibitory effect on any of the pol tested. These data together suggest that the inhibition of pol gamma by VK3 is relatively specific, and that this compound seems to exert its anticancer activity by two possible mechanisms in a concentration-dependent manner: (1) induction of ROS-mediated cell death at high concentrations; and (2) inhibition of cell proliferation at lower concentrations likely through the suppression of mitochondrial respiratory function. These findings may explain various cytotoxic actions induced by VK3, and may pave the way for the further use of VK3.

  3. Gamma-tocotrienol inhibits lipopolysaccharide-induced interlukin-6 and granulocyte-colony stimulating factor by suppressing C/EBP-β and NF-κB in macrophages

    PubMed Central

    Wang, Yun; Jiang, Qing

    2012-01-01

    Cytokines generated from macrophages contributes to pathogenesis of inflammation-associated diseases. Here we show that gamma-tocotrienol (γ-TE), a natural vitamin E form, inhibits lipopolysaccharide (LPS)-induced interleukin-6 (IL-6) production without affecting TNFα, IL-10 or cyclooxygenase-2 (COX-2) up-regulation in murine RAW267.4 macrophages. Mechanistic studies indicate that nuclear factor (NF)-κB, but not JNK, p38 or ERK MAP kinases, is important to IL-6 production and γ-TE treatment blocks NF-κB activation. In contrast, COX-2 appears to be regulated by p38 MAPK in RAW cells, but γ-TE has no effect on LPS-stimulated p38 phosphorylation. Despite necessary for IL-6, NF-κB activation by TNFα or other cytokines is not sufficient for IL-6 induction with exception of LPS. CCAAT-enhancer binding protein β (C/EBPβ) appears to be involved in IL-6 formation, because LPS induces C/EBPβ up-regulation, which parallels IL-6 production, and knockdown of C/EBPβ with siRNA results in diminished IL-6. LPS but not individual cytokines is capable of stimulating C/EBPβ and IL-6 in macrophages. Consistent with its dampening effect on IL-6, γ-TE blunts LPS-induced up-regulation of C/EBPβ without affecting C/EBPδ. γ-TE also decreases LPS-stimulated granulocyte-colony stimulating factor (G-CSF), a C/EBPβ target gene. Compared with RAW267.4 cells, γ-TE shows similar or stronger inhibitory effects on LPS-triggered activation of NF-κB, C/EPBβ and C/EBPδ, and more potently suppresses IL-6 and G-CSF in bone marrow-derived macrophages. Our study demonstrates that γ-TE has anti-inflammatory activities by inhibition of NF-κB and C/EBPs activation in macrophages. PMID:23246159

  4. Combined Treatment With Peroxisome Proliferator-Activated Receptor (PPAR) Gamma Ligands and Gamma Radiation Induces Apoptosis by PPARγ-Independent Up-Regulation of Reactive Oxygen Species-Induced Deoxyribonucleic Acid Damage Signals in Non-Small Cell Lung Cancer Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Eun Jong; Im, Chang-Nim; Park, Seon Hwa

    2013-04-01

    Purpose: To investigate possible radiosensitizing activities of the well-known peroxisome proliferator-activated receptor (PPAR)γ ligand ciglitazone and novel PPARγ ligands CAY10415 and CAY10506 in non-small cell lung cancer (NSCLC) cells. Methods and Materials: Radiosensitivity was assessed using a clonogenic cell survival assay. To investigate the mechanism underlying PPARγ ligand-induced radiosensitization, the subdiploid cellular DNA fraction was analyzed by flow cytometry. Activation of the caspase pathway by combined PPARγ ligands and γ-radiation treatment was detected by immunoblot analysis. Reactive oxygen species (ROS) were measured using 2,7-dichlorodihydrofluorescein diacetate and flow cytometry. Results: The 3 PPARγ ligands induced cell death and ROS generation inmore » a PPARγ-independent manner, enhanced γ-radiation–induced apoptosis and caspase-3–mediated poly (ADP-ribose) polymerase (PARP) cleavage in vitro. The combined PPARγ ligand/γ-radiation treatment triggered caspase-8 activation, and this initiator caspase played an important role in the combination-induced apoptosis. Peroxisome proliferator-activated receptor-γ ligands may enhance the γ-radiation-induced DNA damage response, possibly by increasing γ-H2AX expression. Moreover, the combination treatment significantly increased ROS generation, and the ROS scavenger N-acetylcysteine inhibited the combined treatment-induced ROS generation and apoptotic cell death. Conclusions: Taken together, these results indicated that the combined treatment of PPARγ ligands and γ-radiation synergistically induced DNA damage and apoptosis, which was regulated by ROS.« less

  5. Leukotriene E4 activates peroxisome proliferator-activated receptor gamma and induces prostaglandin D2 generation by human mast cells.

    PubMed

    Paruchuri, Sailaja; Jiang, Yongfeng; Feng, Chunli; Francis, Sanjeev A; Plutzky, Jorge; Boyce, Joshua A

    2008-06-13

    Cysteinyl leukotrienes (cys-LTs) are potent inflammatory lipid mediators, of which leukotriene (LT) E(4) is the most stable and abundant in vivo. Although only a weak agonist of established G protein-coupled receptors (GPCRs) for cys-LTs, LTE(4) potentiates airway hyper-responsiveness (AHR) by a cyclooxygenase (COX)-dependent mechanism and induces bronchial eosinophilia. We now report that LTE(4) activates human mast cells (MCs) by a pathway involving cooperation between an MK571-sensitive GPCR and peroxisome proliferator-activated receptor (PPAR)gamma, a nuclear receptor for dietary lipids. Although LTD(4) is more potent than LTE(4) for inducing calcium flux by the human MC sarcoma line LAD2, LTE(4) is more potent for inducing proliferation and chemokine generation, and is at least as potent for upregulating COX-2 expression and causing prostaglandin D(2) (PGD(2)) generation. LTE(4) caused phosphorylation of extracellular signal-regulated kinase (ERK), p90RSK, and cyclic AMP-regulated-binding protein (CREB). ERK activation in response to LTE(4), but not to LTD(4), was resistant to inhibitors of phosphoinositol 3-kinase. LTE(4)-mediated COX-2 induction, PGD(2) generation, and ERK phosphorylation were all sensitive to interference by the PPARgamma antagonist GW9662 and to targeted knockdown of PPARgamma. Although LTE(4)-mediated PGD(2) production was also sensitive to MK571, an antagonist for the type 1 receptor for cys-LTs (CysLT(1)R), it was resistant to knockdown of this receptor. This LTE(4)-selective receptor-mediated pathway may explain the unique physiologic responses of human airways to LTE(4) in vivo.

  6. PARP-1 regulates the expression of caspase-11

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Lang; Hong, Seokheon; Shin, Ki Soon

    2011-05-13

    Highlights: {yields} Knockdown of PARP-1 suppresses the LPS-induced expression of caspase-11. {yields} Knockdown of PARP-1 suppresses the caspase-11 promoter activity following LPS stimulation. {yields} PARP-1 is recruited to the caspase-11 promoter region containing NF-{kappa}B-binding sites following LPS stimulation. {yields} PARP-1 inhibitors cannot suppress the caspase-11 induction. {yields} PARP-1 does not suppress IFN-{gamma}-induced expression of caspase-11. -- Abstract: Poly(ADP-ribose) polymerase-1 (PARP-1) is a multifunctional enzyme that regulates DNA repair, cell death and transcription of inflammatory proteins. In the present study, we present evidence that PARP-1 regulates the expression of caspase-11 following lipopolysaccharide (LPS) stimulation. Knockdown of PARP-1 suppressed the LPS-induced expressionmore » of caspase-11 at both mRNA and protein levels as well as caspase-11 promoter activity. Importantly, PARP-1 was recruited to the caspase-11 promoter region containing predicted nuclear factor (NF)-{kappa}B-binding sites when examined by chromatin immunoprecipitation assay. However, knockdown of PARP-1 did not suppress the expression of caspase-11 induced by interferon-{gamma} that activates signal transducer and activator of transcription 1 but not NF-{kappa}B. PARP-1 enzymatic activity was not required for the caspase-11 upregulation since pharmacological inhibitors of PARP-1 did not suppress the induction of caspase-11. Our results suggest that PARP-1, as a transcriptional cofactor for NF-{kappa}B, regulates the induction of caspase-11 at a transcriptional level.« less

  7. Constitutive Smad signaling and Smad-dependent collagen gene expression in mouse embryonic fibroblasts lacking peroxisome proliferator-activated receptor-{gamma}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Asish K; Wei, Jun; Wu, Minghua

    2008-09-19

    Transforming growth factor-{beta} (TGF-{beta}), a potent inducer of collagen synthesis, is implicated in pathological fibrosis. Peroxisome proliferator-activated receptor-{gamma} (PPAR-{gamma}) is a nuclear hormone receptor that regulates adipogenesis and numerous other biological processes. Here, we demonstrate that collagen gene expression was markedly elevated in mouse embryonic fibroblasts (MEFs) lacking PPAR-{gamma} compared to heterozygous control MEFs. Treatment with the PPAR-{gamma} ligand 15d-PGJ{sub 2} failed to down-regulate collagen gene expression in PPAR-{gamma} null MEFs, whereas reconstitution of these cells with ectopic PPAR-{gamma} resulted in their normalization. Compared to control MEFs, PPAR-{gamma} null MEFs displayed elevated levels of the Type I TGF-{beta} receptor (T{beta}RI),more » and secreted more TGF-{beta}1 into the media. Furthermore, PPAR-{gamma} null MEFs showed constitutive phosphorylation of cellular Smad2 and Smad3, even in the absence of exogenous TGF-{beta}, which was abrogated by the ALK5 inhibitor SB431542. Constitutive Smad2/3 phosphorylation in PPAR-{gamma} null MEFs was associated with Smad3 binding to its cognate DNA recognition sequences, and interaction with coactivator p300 previously implicated in TGF-{beta} responses. Taken together, these results indicate that loss of PPAR-{gamma} in MEFs is associated with upregulation of collagen synthesis, and activation of intracellular Smad signal transduction, due, at least in part, to autocrine TGF-{beta} stimulation.« less

  8. Invasive ability of human renal cell carcinoma cell line Caki-2 is accelerated by gamma-aminobutyric acid, via sustained activation of ERK1/2 inducible matrix metalloproteinases.

    PubMed

    Inamoto, Teruo; Azuma, Haruhito; Sakamoto, Takeshi; Kiyama, Satoshi; Ubai, Takanobu; Kotake, Yatsugu; Watanabe, Masahito; Katsuoka, Yoji

    2007-10-01

    Gamma-aminobutyric acid (GABA) was first discovered as an inhibitory neurotransmitter in the central nervous system (CNS) and has been reported to have a variety of functions, including regulation of cell division, cell differentiation and maturation, and to be involved in the development of certain cancers outside the CNS. In the present study, using the human renal cell carcinoma cell line Caki-2, we demonstrated that GABA stimulation significantly increased the expression of MMP-2 and -9 and subsequently increased the invasive activity of the cancer cells. Because MAPK signaling is one of the key regulators of MMP expression, we further evaluated MAPK signaling after stimulation with GABA. It was found that GABA stimulation promoted the phosphorylation of MAPKs, including ERK1/2, JNK, and p38. ERK1/2 phosphorylation was sustained for up to 12 h, while phosphorylation of JNK and p38 returned to the endogenous level by 30 min. It was noteworthy that the ras/raf/MEK/ERK pathway inhibitor PD98059 attenuated GABA-induced MMP-9 expression and that both PD98059 and MMP inhibitors attenuated the GABA-induced invasive activity of Caki-2 cells. Moreover, data obtained by depletion of the MEK/ERK pathway using interfering RNA transfection of Caki-2 cells clearly corroborated the above results, as both MMP-9 expression and GABA-induced invasive ability were decreased significantly. We also demonstrated that the GABA-induced increase in invasive ability via ERK1/2 up-regulation was mediated mainly through the GABA-B receptor. These results indicate that GABA stimulation promotes cancer cell invasion and that the effect is partly due to ERK1/2-dependent up-regulation of MMPs.

  9. Meta-review of protein network regulating obesity between validated obesity candidate genes in the white adipose tissue of high-fat diet-induced obese C57BL/6J mice.

    PubMed

    Kim, Eunjung; Kim, Eun Jung; Seo, Seung-Won; Hur, Cheol-Goo; McGregor, Robin A; Choi, Myung-Sook

    2014-01-01

    Worldwide obesity and related comorbidities are increasing, but identifying new therapeutic targets remains a challenge. A plethora of microarray studies in diet-induced obesity models has provided large datasets of obesity associated genes. In this review, we describe an approach to examine the underlying molecular network regulating obesity, and we discuss interactions between obesity candidate genes. We conducted network analysis on functional protein-protein interactions associated with 25 obesity candidate genes identified in a literature-driven approach based on published microarray studies of diet-induced obesity. The obesity candidate genes were closely associated with lipid metabolism and inflammation. Peroxisome proliferator activated receptor gamma (Pparg) appeared to be a core obesity gene, and obesity candidate genes were highly interconnected, suggesting a coordinately regulated molecular network in adipose tissue. In conclusion, the current network analysis approach may help elucidate the underlying molecular network regulating obesity and identify anti-obesity targets for therapeutic intervention.

  10. Does thrombin stimulation of human platelets proceed via a simultaneous Na/sup +/-H/sup +/ exchange

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davies, T.A.; Katona, E.; Vasilescu, V.

    1986-03-05

    Thrombin stimulation of human platelets initiates a membrane depolarization attributable to a Na/sup +/ influx into, and an alkalinization of, the cytoplasm, both of which follow a similar rapid time scale and thrombin dose dependence. These responses precede secretion of the contents of dense granules (serotonin) and, after 1 min, of lysosomes (..beta..-glucuronidase). These markers have been used to determine whether the Na/sup +/ influx and H/sup +/ efflux are sequential or simultaneous. They have examined these parameters in D/sub 2/O-Hepes buffers. NMR evidence indicates that equilibration is rapid, and virtually complete within the 3 minute pre-stimulation platelets equilibration period.more » The rate of depolarization is 70-80% slower in D/sub 2/O than in H/sub 2/O. The time to reach maximal depolarization is 5-10 sec longer, the extent of depolarization 60% inhibited, and the (H/sup +/) change 85-100% inhibited. The serotonin secretion is unaltered, and the ..beta..-glucuronidase secretion is 130-180% enhanced. 10/sup -4/ M amiloride inhibits Na/sup +/ influx, i.e. depolarization, and the pH change completely. Adjustment to pH/sub i/ 7.3 with NH/sub 4/Cl led to a 30-80% enhanced ..beta..-glucuronidase release upon thrombin exposure. These results suggest that the Na/sup +/ and H/sup +/ fluxes across the platelet membrane occur sequentially, the Na/sup +/ occurring first. Furthermore, granule secretion, previously shown by us to be independent of the existent Na/sup +/ gradient, depends on the cytoplasmic K/sup +/ and H/sup +/ concentrations.« less

  11. OVER-EXPRESSION OF THE THROMBIN RECEPTOR (PAR-1) IN THE PLACENTA IN PREECLAMPSIA: A MECHANISM FOR THE INTERSECTION OF COAGULATION AND INFLAMMATION

    PubMed Central

    EREZ, OFFER; ROMERO, ROBERTO; KIM, SUNG-SU; KIM, JUNG-SUN; KIM, YEON MEE; WILDMAN, DEREK E; THAN, NANDOR GABOR; MAZAKI-TOVI, SHALI; GOTSCH, FRANCESCA; PINELES, BETH; KUSANOVIC, JUAN PEDRO; ESPINOZA, JIMMY; MITTAL, POOJA; MAZOR, MOSHE; HASSAN, SONIA S.; KIM, CHONG JAI

    2008-01-01

    Objective Preeclampsia (PE) is characterized by excessive thrombin generation that has been implicated in the multiple organ damage associated with the disease. The biological effects of thrombin on coagulation and inflammation are mediated by protease activated receptor-1 (PAR-1), a G-protein coupled receptor. The aim of this study was to determine whether preterm preeclampsia (PE) is associated with changes in placental expression of PAR-1. Study design This cross-sectional study included two groups matched for gestational age at delivery: 1) patients with preterm PE (<37 weeks of gestation; n=26) and 2) a control group of patients with preterm labor without intraamniotic infection (n=26). Placental tissue microarrays were immunostained for PAR-1. Immunoreactivity of PAR-1 in the villous trophoblasts was graded as negative, weak-positive, or strong-positive. Results 1) The proportion of cases with strong PAR-1 immunoreactivity was significantly higher in placentas of patients with preeclampsia than in placentas from the control group [37.5% (9/24) vs. 8.7% (2/23); p=0.036, respectively]. 2) PAR-1 immunoreactivity was found in the cellular compartments of the placental villous tree, mainly in villous trophoblasts and stromal endothelial cells. 3) PAR-1 was detected in 92.3% (24/26) of the placentas of women with preeclampsia and in 88.5% (23/26) of the placentas from the control group (p=1). Conclusion Placentas from pregnancies complicated by preterm PE had a significantly higher frequency of strong PAR-1 expression than placentas from women with spontaneous PTL. This observation is consistent with a role for PAR-1 as a mediator of the effect of thrombin on coagulation and inflammation in preeclampsia. We propose that the effects of thrombin in PE are due to increased thrombin generation and higher expression of PAR-1, the major receptor for this enzyme. PMID:18570113

  12. Chlamydia muridarum evades growth restriction by the IFN-gamma-inducible host resistance factor Irgb10.

    PubMed

    Coers, Jörn; Bernstein-Hanley, Isaac; Grotsky, David; Parvanova, Iana; Howard, Jonathan C; Taylor, Gregory A; Dietrich, William F; Starnbach, Michael N

    2008-05-01

    Chlamydiae are obligate intracellular bacterial pathogens that exhibit a broad range of host tropism. Differences in host tropism between Chlamydia species have been linked to host variations in IFN-gamma-mediated immune responses. In mouse cells, IFN-gamma can effectively restrict growth of the human pathogen Chlamydia trachomatis but fails to control growth of the closely related mouse pathogen Chlamydia muridarum. The ability of mouse cells to resist C. trachomatis replication is largely dependent on the induction of a family of IFN-gamma-inducible GTPases called immunity-related GTPases or IRGs. In this study we demonstrate that C. muridarum can specifically evade IRG-mediated host resistance. It has previously been suggested that C. muridarum inactivates the IRG protein Irga6 (Iigp1) to dampen the murine immune response. However, we show that Irga6 is dispensable for the control of C. trachomatis replication. Instead, an effective IFN-gamma response to C. trachomatis requires the IRG proteins Irgm1 (Lrg47), Irgm3 (Igtp), and Irgb10. Ectopic expression of Irgb10 in the absence of IFN-gamma is sufficient to reduce intracellular growth of C. trachomatis but fails to restrict growth of C. muridarum, indicating that C. muridarum can specifically evade Irgb10-driven host responses. Importantly, we find that Irgb10 protein intimately associates with inclusions harboring C. trachomatis but is absent from inclusions formed by C. muridarum. These data suggest that C. muridarum has evolved a mechanism to escape the murine IFN-gamma response by restricting access of Irgb10 and possibly other IRG proteins to the inclusion.

  13. In vitro comparison of the effect of two factor XI (FXI) concentrates on thrombin generation in major FXI deficiency.

    PubMed

    Pike, G N; Cumming, A M; Hay, C R M; Sempasa, B; Sutherland, M; Thachil, J; Burthem, J; Bolton-Maggs, P H B

    2016-05-01

    Bleeding risk in factor XI (FXI) deficiency following surgery may be reduced by treatment with either of two FXI concentrates, but indications for their use are unclear and treatment has been associated with thrombosis. To quantify and compare the effects of two different FXI concentrates on thrombin generation (TG) in major FXI deficiency (FXI:C < 15 IU dL(-1) ). Thrombin generation was measured in controls (n = 50), FXI-deficient individuals pre and post in vitro spiking with FXI concentrates (n = 10), and in ex vivo samples following treatment with FXI concentrate (n = 3). Thrombin generation was significantly impaired in FXI deficiency but improved following FXI replacement in vitro and in vivo. LFB Hemoleven(®) had greater effect on TG than BPL FXI concentrate in vitro (equivalent in vivo doses 10, 20 and 30 U kg(-1) ): higher endogenous thrombin potential (ETP) (P < 0.0001), peak height (P < 0.01) velocity (P < 0.0002) and shorter lag time and time to peak (both P < 0.003). Some measurements with LFB Hemoleven(®) exceeded the reference range. At lower dose (5 U kg(-1) ), BPL FXI concentrate normalized all TG parameters and LFB Hemoleven(®) normalized the ETP but exceeded the reference range with other parameters. Both FXI concentrates improve TG in vitro in major FXI deficiency but differ in dose response, and for both products, doses lower than previously recommended normalized TG in vitro. Comparison of in vitro spiked and ex vivo samples suggest that in vitro results could be used to estimate an expected in vivo response to FXI replacement. © 2015 John Wiley & Sons Ltd.

  14. A novel fibrinogen variant--Praha I: hypofibrinogenemia associated with gamma Gly351Ser substitution.

    PubMed

    Kotlín, Roman; Chytilová, Martina; Suttnar, Jirí; Salaj, Peter; Riedel, Tomás; Santrůcek, Jirí; Klener, Pavel; Dyr, Jan Evangelista

    2007-05-01

    A 25-yr-old man from Prague had abnormal bleeding after several surgical operations with low fibrinogen level and hypofibrinogenemia was suspected. The patient, 25 yr-old male had a low fibrinogen concentration as determined by the thrombin time and immunoturbidimetrical method. His 48-yr-old mother presented with normal coagulation tests, normal fibrinogen level and reported no history of bleeding. To identify the genetic mutation responsible for this hypofibrinogen, genomic DNA extracted from the blood was analyzed. Fibrin polymerization measurement, kinetics of fibrinopeptide release, fibrinogen clottability measurement, mass spectroscopy, and scanning electron microscopy were performed. DNA sequencing showed heterogeneous fibrinogen gammaG351S mutation in the propositus. The mutant chain was found not to be expressed to the circulation by matrix-assisted laser desorption/ionization time of flight mass spectrometry. Scanning electron micrographs of the patient's fibrin clot as well as kinetics of fibrinopeptide release and fibrin polymerization were found to be normal. A case of hypofibrinogenemia gammaG351S was found by routine coagulation testing and was genetically identified.

  15. Interferon-gamma: biologic functions and HCV therapy (type I/II) (1 of 2 parts).

    PubMed

    Gattoni, A; Parlato, A; Vangieri, B; Bresciani, M; Derna, R

    2006-01-01

    This review is aimed at exhaustively presenting and discussing the interferon-gamma (IFN-gamma), a cytokine that plays an important role in inducing and modulating an array of immune responses. A review of the most significant and recent clinical trials was performed. Although IFN-gamma has some antiviral activity, it is much less active in this regard than type I IFNs. IFN-gamma is involved in the regulation of nearly all phases of the immune and inflammatory responses, including the activation and differentiation of T cells, B cells, NK cells, macrophages, and others. It is therefore best regarded as a distint immunoregulatory cytokine. IFN-gamma secretion is a hallmark of Th1 lymphocytes. It is also secreted by nearly all CD8 T cells, by some Th0 cells, and by NK cells. Each of these cell types secretes IFN-gamma only when activated, usually as part of immune response and especially in response to IL-2 and IL-12. IFN-gamma production is inhibited by IL-4, IL-10, TGFbeta, glucocorticoids, cyclosporin A and FK506. Nearly all cell types express the heterodimeric receptor for IFN-beta and respond to this cytokine by increasing the surface expression of class I MHC proteins. As a result, virtually any cell in the vicinity of an IFN-beta-secreting cell becomes more efficient at presenting endogenous antigens and hence a better target for cytotoxic killing if it harbors an intracellular pathogen. Unlike the type I IFNs, IFN-gamma also increases the expression of class II MHC proteins on professional APCs, and so promotes antigen presentation to helper T cells as well. It also induces de novo expression of class II MHC proteins on venular endothelial cells and on some other epithelial and connective tissue cells that do not otherwise express them, thus enabling these cell types to function as temporary APCs at sites of intense immune reactions. The effector functions of NK cells are to lyse virus-infected cells and to secrete IFN-gamma, which activates macrofages to

  16. Gamma/delta T cells are the predominant source of interleukin-17 in affected joints in collagen-induced arthritis, but not in rheumatoid arthritis.

    PubMed

    Ito, Yoshinaga; Usui, Takashi; Kobayashi, Shio; Iguchi-Hashimoto, Mikiko; Ito, Hiromu; Yoshitomi, Hiroyuki; Nakamura, Takashi; Shimizu, Masakazu; Kawabata, Daisuke; Yukawa, Naoichiro; Hashimoto, Motomu; Sakaguchi, Noriko; Sakaguchi, Shimon; Yoshifuji, Hajime; Nojima, Takaki; Ohmura, Koichiro; Fujii, Takao; Mimori, Tsuneyo

    2009-08-01

    Although interleukin-17 (IL-17)-producing gamma/delta T cells were reported to play pathogenic roles in collagen-induced arthritis (CIA), their characteristics remain unknown. The aim of this study was to clarify whether gamma/delta T cells or CD4+ T cells are the predominant IL-17-producing cells, and to determine what stimulates gamma/delta T cells to secret IL-17 in mice with CIA. The involvement of IL-17-producing gamma/delta T cells in SKG mice with autoimmune arthritis and patients with rheumatoid arthritis (RA) was also investigated. IL-17-producing cells in the affected joints of mice with CIA were counted by intracellular cytokine staining during 6 distinct disease phases, and these cells were stimulated with various combinations of cytokines or specific antigens to determine the signaling requirements. Similar studies were performed using SKG mice with arthritis and patients with RA. Gamma/delta T cells were the predominant population in IL-17-producing cells in the swollen joints of mice with CIA, and the absolute numbers of these cells increased in parallel with disease activity. IL-17-producing gamma/delta T cells expressed CC chemokine receptor 6, were maintained by IL-23 but not by type II collagen in vitro, and were induced antigen independently in vivo. Furthermore, IL-17 production by gamma/delta T cells was induced by IL-1beta plus IL-23 independently of T cell receptor. In contrast to what was observed in mice with CIA, IL-17-producing gamma/delta T cells were nearly absent in the affected joints of SKG mice and patients with RA, and Th1 cells were predominant in the joints of patients with RA. Gamma/delta T cells were antigen independently stimulated by inflammation at affected joints and produced enhanced amounts of IL-17 to exacerbate arthritis in mice with CIA but not in SKG mice with arthritis or patients with RA.

  17. PPAR-{gamma} agonist protects against intestinal injury during necrotizing enterocolitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baregamian, Naira; Mourot, Joshua M.; Ballard, Amie R.

    2009-02-06

    Necrotizing enterocolitis (NEC) remains a lethal condition for many premature infants. Peroxisome proliferator-activated receptor-{gamma} (PPAR-{gamma}), a member of the nuclear hormone receptor family, has been shown to play a protective role in cellular inflammatory responses; however, its role in NEC is not clearly defined. We sought to examine the expression of PPAR-{gamma} in the intestine using an ischemia-reperfusion (I/R) model of NEC, and to assess whether PPAR-{gamma} agonist treatment would ameliorate I/R-induced gut injury. Swiss-Webster mice were randomized to receive sham (control) or I/R injury to the gut induced by transient occlusion of superior mesenteric artery for 45 min withmore » variable periods of reperfusion. I/R injury resulted in early induction of PPAR-{gamma} expression and activation of NF-{kappa}B in small intestine. Pretreatment with PPAR-{gamma} agonist, 15d-PGJ{sub 2}, attenuated intestinal NF-{kappa}B response and I/R-induced gut injury. Activation of PPAR-{gamma} demonstrated a protective effect on small bowel during I/R-induced gut injury.« less

  18. Importins α and β signaling mediates endothelial cell inflammation and barrier disruption.

    PubMed

    Leonard, Antony; Rahman, Arshad; Fazal, Fabeha

    2018-04-01

    Nucleocytoplasmic shuttling via importins is central to the function of eukaryotic cells and an integral part of the processes that lead to many human diseases. In this study, we addressed the role of α and β importins in the mechanism of endothelial cell (EC) inflammation and permeability, important pathogenic features of many inflammatory diseases such as acute lung injury and atherosclerosis. RNAi-mediated knockdown of importin α4 or α3 each inhibited NF-κB activation, proinflammatory gene (ICAM-1, VCAM-1, and IL-6) expression, and thereby endothelial adhesivity towards HL-60 cells, upon thrombin challenge. The inhibitory effect of α4 and α3 knockdown was associated with impaired nuclear import and consequently, DNA binding of RelA/p65 subunit of NF-κB and occurred independently of IκBα degradation. Intriguingly, knockdown of importins α4 and α3 also inhibited thrombin-induced RelA/p65 phosphorylation at Ser 536 , showing a novel role of α importins in regulating transcriptional activity of RelA/p65. Similarly, knockdown of importin β1, but not β2, blocked thrombin-induced activation of RelA/p65 and its target genes. In parallel studies, TNFα-mediated inflammatory responses in EC were refractory to knockdown of importins α4, α3 or β1, indicating a stimulus-specific regulation of RelA/p65 and EC inflammation by these importins. Importantly, α4, α3, or β1 knockdown also protected against thrombin-induced EC barrier disruption by inhibiting the loss of VE-cadherin at adherens junctions and by regulating actin cytoskeletal rearrangement. These results identify α4, α3 and β1 as critical mediators of EC inflammation and permeability associated with intravascular coagulation. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Granule cell excitability regulates gamma and beta oscillations in a model of the olfactory bulb dendrodendritic microcircuit

    PubMed Central

    Osinski, Bolesław L.

    2016-01-01

    Odors evoke gamma (40–100 Hz) and beta (20–30 Hz) oscillations in the local field potential (LFP) of the mammalian olfactory bulb (OB). Gamma (and possibly beta) oscillations arise from interactions in the dendrodendritic microcircuit between excitatory mitral cells (MCs) and inhibitory granule cells (GCs). When cortical descending inputs to the OB are blocked, beta oscillations are extinguished whereas gamma oscillations become larger. Much of this centrifugal input targets inhibitory interneurons in the GC layer and regulates the excitability of GCs, which suggests a causal link between the emergence of beta oscillations and GC excitability. We investigate the effect that GC excitability has on network oscillations in a computational model of the MC-GC dendrodendritic network with Ca2+-dependent graded inhibition. Results from our model suggest that when GC excitability is low, the graded inhibitory current mediated by NMDA channels and voltage-dependent Ca2+ channels (VDCCs) is also low, allowing MC populations to fire in the gamma frequency range. When GC excitability is increased, the activation of NMDA receptors and other VDCCs is also increased, allowing the slow decay time constants of these channels to sustain beta-frequency oscillations. Our model argues that Ca2+ flow through VDCCs alone could sustain beta oscillations and that the switch between gamma and beta oscillations can be triggered by an increase in the excitability state of a subpopulation of GCs. PMID:27121582

  20. Effect of mood stabilizing agents on agonist-induced calcium mobilization in human platelets.

    PubMed Central

    Kusumi, I; Koyama, T; Yamashita, I

    1994-01-01

    The effect of mood stabilizing agents such as lithium, carbamazepine, valproic acid and clonazepam on serotonin(5-HT)- or thrombin-induced intracellular calcium (Ca) mobilization was studied in the platelets of healthy subjects using the fluorescent Ca indicator fura-2. After incubating platelet-rich plasma with these drugs for one or four hours, there was no significant difference in either basal Ca2+ concentration or 5-HT-stimulated Ca response between each agent treatment and control. 5-HT- or thrombin-induced Ca mobilization was not altered by four weeks of lithium carbonate administration in healthy volunteers. These results indicate that these mood stabilizers fail to affect the agonist-stimulated intracellular Ca mobilizing pathway either in vitro or ex vivo in the platelets of healthy subjects. Images Fig. 1 PMID:8031747