Sample records for gamma rii inhibited

  1. Identification of the low affinity receptor for immunoglobulin E on mouse mast cells and macrophages as Fc gamma RII and Fc gamma RIII.

    PubMed

    Takizawa, F; Adamczewski, M; Kinet, J P

    1992-08-01

    In addition to their well characterized high affinity immunoglobulin E (IgE) receptors (Fc epsilon RI) mast cells have long been suspected to express undefined Fc receptors capable of binding IgE with low affinity. In this paper, we show that Fc gamma RII and Fc gamma RIII, but not Mac-2, on mouse mast cells and macrophages bind IgE-immune complexes. This binding is efficiently competed by 2.4G2, a monoclonal antibody against the extracellular homologous region of both Fc gamma RII and Fc gamma RIII. Furthermore, IgE-immune complexes bind specifically to Fc gamma RII or Fc gamma RIII transfected into COS-7 cells. The association constants of IgE binding estimated from competition experiments are about 3.1 x 10(5) M-1 for Fc gamma RII, and 4.8 x 10(5) M-1 for Fc gamma RIII. Engagement of Fc gamma RII and Fc gamma RIII with IgE-immune complexes (after blocking access to Fc epsilon RI) or with IgG-immune complexes triggers C57.1 mouse mast cells to release serotonin. This release is inhibited by 2.4G2, and at maximum, reaches 30-40% of the intracellular content, about half of the maximal release (60-80%) obtained after Fc epsilon RI engagement. These data demonstrate that mouse Fc gamma RII and Fc gamma RIII are not isotype specific, and that the binding of IgE-immune complexes to these receptors induces cell activation.

  2. Identification of the low affinity receptor for immunoglobulin E on mouse mast cells and macrophages as Fc gamma RII and Fc gamma RIII

    PubMed Central

    1992-01-01

    In addition to their well characterized high affinity immunoglobulin E (IgE) receptors (Fc epsilon RI) mast cells have long been suspected to express undefined Fc receptors capable of binding IgE with low affinity. In this paper, we show that Fc gamma RII and Fc gamma RIII, but not Mac-2, on mouse mast cells and macrophages bind IgE-immune complexes. This binding is efficiently competed by 2.4G2, a monoclonal antibody against the extracellular homologous region of both Fc gamma RII and Fc gamma RIII. Furthermore, IgE-immune complexes bind specifically to Fc gamma RII or Fc gamma RIII transfected into COS-7 cells. The association constants of IgE binding estimated from competition experiments are about 3.1 x 10(5) M-1 for Fc gamma RII, and 4.8 x 10(5) M-1 for Fc gamma RIII. Engagement of Fc gamma RII and Fc gamma RIII with IgE-immune complexes (after blocking access to Fc epsilon RI) or with IgG-immune complexes triggers C57.1 mouse mast cells to release serotonin. This release is inhibited by 2.4G2, and at maximum, reaches 30-40% of the intracellular content, about half of the maximal release (60-80%) obtained after Fc epsilon RI engagement. These data demonstrate that mouse Fc gamma RII and Fc gamma RIII are not isotype specific, and that the binding of IgE-immune complexes to these receptors induces cell activation. PMID:1386873

  3. Tyrosine phosphorylation and association of Syk with Fc gamma RII in monocytic THP-1 cells.

    PubMed Central

    Ghazizadeh, S; Bolen, J B; Fleit, H B

    1995-01-01

    Although the cytoplasmic portion of the low-affinity receptor for immunoglobulin G, Fc gamma RII, does not contain a kinase domain, rapid tyrosine phosphorylation of intracellular substrates occurs in response to aggregation of the receptor. The use of specific tyrosine kinase inhibitors has suggested that these phosphorylations are required for subsequent cellular responses. We previously demonstrated the coprecipitation of a tyrosine kinase activity with Fc gamma RII, suggesting that non-receptor tyrosine kinases might associate with the cytoplasmic domain of Fc gamma RII. Anti-receptor immune complex kinase assays revealed the coprecipitation of several phosphoproteins, most notably p56/53lyn, an Src-family protein tyrosine kinase (PTK), and a 72 kDa phosphoprotein. Here we identify the 72 kDa Fc gamma RII-associated protein as p72syk (Syk), a member of a newly described family of non-receptor PTKs. A rapid and transient tyrosine phosphorylation of Syk was observed following Fc gamma RII activation. Syk was also tyrosyl-phosphorylated following aggregation of the high-affinity Fc gamma receptor, Fc gamma RI. The Fc gamma RI activation did not result in association of Syk with Fc gamma RII, implying that distinct pools of Syk are activated upon aggregation of each receptor in a localized manner. These results demonstrate a physical association between Syk and Fc gamma RII and suggest that the molecules involved in Fc gamma RII signalling are very similar to the ones utilized by multichain immune recognition receptors such as the B-cell antigen receptor and the high-affinity IgE receptor. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:7530449

  4. Fc gamma RII/III and CD2 expression mark distinct subpopulations of immature CD4-CD8- murine thymocytes: in vivo developmental kinetics and T cell receptor beta chain rearrangement status.

    PubMed

    Rodewald, H R; Awad, K; Moingeon, P; D'Adamio, L; Rabinowitz, D; Shinkai, Y; Alt, F W; Reinherz, E L

    1993-04-01

    We have recently identified a dominant wave of CD4-CD8- (double-negative [DN]) thymocytes in early murine fetal development that express low affinity Fc gamma receptors (Fc gamma RII/III) and contain precursors for Ti alpha/beta lineage T cells. Here we show that Fc gamma RII/III is expressed in very immature CD4low single-positive (SP) thymocytes and that Fc gamma RII/III expression is downregulated within the DN subpopulation and before the CD3-CD8low SP stage in T cell receptor (TCR)-alpha/beta lineage-committed thymocytes. DN Fc gamma RII/III+ thymocytes also contain a small fraction of TCR-gamma/delta lineage cells in addition to TCR-alpha/beta progenitors. Fetal day 15.5 DN TCR-alpha/beta lineage progenitors can be subdivided into three major subpopulations as characterized by cell surface expression of Fc gamma RII/III vs. CD2 (Fc gamma RII/III+CD2-, Fc gamma RII/III+CD2+, Fc gamma RII/III-CD2+). Phenotypic analysis during fetal development as well as adoptive transfer of isolated fetal thymocyte subpopulations derived from C57B1/6 (Ly5.1) mice into normal, nonirradiated Ly5.2 congenic recipient mice identifies one early differentiation sequence (Fc gamma RII/III+CD2(-)-->Fc gamma RII/III+CD2(+)-->Fc gamma RII/III-CD2+) that precedes the entry of DN thymocytes into the CD4+CD8+ double-positive (DP) TCRlow/- stage. Unseparated day 15.5 fetal thymocytes develop into DP thymocytes within 2.5 d and remain at the DP stage for > 48 h before being selected into either CD4+ or CD8+ SP thymocytes. In contrast, Fc gamma RII/III+CD2- DN thymocytes follow this same developmental pathway but are delayed by approximately 24 h before entering the DP compartment, while Fc gamma RII/III-CD2+ display accelerated development by approximately 24 h compared with total day 15.5 thymocytes. Fc gamma RII/III-CD2+ are also more developmentally advanced than Fc gamma RII/III+CD2- fetal thymocytes with respect to their TCR beta chain V(D)J rearrangement. At day 15.5 in gestation, beta

  5. Genetic Diversity, Natural Selection and Haplotype Grouping of Plasmodium knowlesi Gamma Protein Region II (PkγRII): Comparison with the Duffy Binding Protein (PkDBPαRII)

    PubMed Central

    Fong, Mun Yik; Rashdi, Sarah A. A.; Yusof, Ruhani; Lau, Yee Ling

    2016-01-01

    Background Plasmodium knowlesi is a simian malaria parasite that has been reported to cause malaria in humans in Southeast Asia. This parasite invades the erythrocytes of humans and of its natural host, the macaque Macaca fascicularis, via interaction between the Duffy binding protein region II (PkDBPαRII) and the Duffy antigen receptor on the host erythrocytes. In contrast, the P. knowlesi gamma protein region II (PkγRII) is not involved in the invasion of P. knowlesi into humans. PkγRII, however, mediates the invasion of P. knowlesi into the erythrocytes of M. mulata, a non-natural host of P. knowlesi via a hitherto unknown receptor. The haplotypes of PkDBPαRII in P. knowlesi isolates from Peninsular Malaysia and North Borneo have been shown to be genetically distinct and geographically clustered. Also, the PkDBPαRII was observed to be undergoing purifying (negative) selection. The present study aimed to determine whether similar phenomena occur in PkγRII. Methods Blood samples from 78 knowlesi malaria patients were used. Forty-eight of the samples were from Peninsular Malaysia, and 30 were from Malaysia Borneo. The genomic DNA of the samples was extracted and used as template for the PCR amplification of the PkγRII. The PCR product was cloned and sequenced. The sequences obtained were analysed for genetic diversity and natural selection using MEGA6 and DnaSP (version 5.10.00) programmes. Genetic differentiation between the PkγRII of Peninsular Malaysia and North Borneo isolates was estimated using the Wright’s FST fixation index in DnaSP (version 5.10.00). Haplotype analysis was carried out using the Median-Joining approach in NETWORK (version 4.6.1.3). Results A total of 78 PkγRII sequences was obtained. Comparative analysis showed that the PkγRII have similar range of haplotype (Hd) and nucleotide diversity (π) with that of PkDBPαRII. Other similarities between PkγRII and PkDBPαRII include undergoing purifying (negative) selection, geographical

  6. Protein kinase C βII and TGFβRII in ω-3 fatty acid–mediated inhibition of colon carcinogenesis

    PubMed Central

    Murray, Nicole R.; Weems, Capella; Chen, Lu; Leon, Jessica; Yu, Wangsheng; Davidson, Laurie A.; Jamieson, Lee; Chapkin, Robert S.; Thompson, E. Aubrey; Fields, Alan P.

    2002-01-01

    Încreasing evidence demonstrates that protein kinase C βII (PKCβII) promotes colon carcinogenesis. We previously reported that colonic PKCβII is induced during colon carcinogenesis in rodents and humans, and that elevated expression of PKCβII in the colon of transgenic mice enhances colon carcinogenesis. Here, we demonstrate that PKCβII represses transforming growth factor β receptor type II (TGFβRII) expression and reduces sensitivity to TGF-β–mediated growth inhibition in intestinal epithelial cells. Transgenic PKCβII mice exhibit hyperproliferation, enhanced colon carcinogenesis, and marked repression of TGFβRII expression. Chemopreventive dietary ω-3 fatty acids inhibit colonic PKCβII activity in vivo and block PKCβII-mediated hyperproliferation, enhanced carcinogenesis, and repression of TGFβRII expression in the colonic epithelium of transgenic PKCβII mice. These data indicate that dietary ω-3 fatty acids prevent colon cancer, at least in part, through inhibition of colonic PKCβII signaling and restoration of TGF-β responsiveness. PMID:12058013

  7. Altered regulation of Fc gamma RII on aged follicular dendritic cells correlates with immunoreceptor tyrosine-based inhibition motif signaling in B cells and reduced germinal center formation.

    PubMed

    Aydar, Yüksel; Balogh, Péter; Tew, John G; Szakal, Andras K

    2003-12-01

    Aging is associated with reduced trapping of Ag in the form of in immune complexes (ICs) by follicular dendritic cells (FDCs). We postulated that this defect was due to altered regulation of IC trapping receptors. The level of FDC-M1, complement receptors 1 and 2, FcgammaRII, and FDC-M2 on FDCs was immunohistochemically quantitated in draining lymph nodes of actively immunized mice for 10 days after Ag challenge. Initially, FDC FcgammaRII levels were similar but by day 3 a drastic reduction in FDC-FcgammaRII expression was apparent in old mice. FDC-M2 labeling, reflecting IC trapping, was also reduced and correlated with a dramatic reduction in germinal center (GC) B cells as indicated by reduced GC size and number. Nevertheless, labeling of FDC reticula with FDC-M1 and anti-complement receptors 1 and 2 was preserved, indicating that FDCs were present. FDCs in active GCs normally express high levels of FcRs that are thought to bind Fc portions of Abs in ICs and minimize their binding to FcRs on B cells. Thus, cross-linking of B cell receptor and FcR via IC is minimized, thereby reducing signaling via the immunoreceptor tyrosine-based inhibition motif. Old FDCs taken at day 3, when they lack FcgammaRII, were incapable of preventing immunoreceptor tyrosine-based inhibition motif signaling in wild-type B cells but old FDCs stimulated B cells from FcgammaRIIB(-/-) mice to produce near normal levels of specific Ab. The present data support the concept that FcR are regulated abnormally on old FDCs. This abnormality correlates with a reduced IC retention and with a reduced capacity of FDCs to present ICs in a way that will activate GC B cells.

  8. Soluble and insoluble immune complexes activate human neutrophil NADPH oxidase by distinct Fc gamma receptor-specific mechanisms.

    PubMed

    Crockett-Torabi, E; Fantone, J C

    1990-11-01

    Signal transduction initiated by interaction of immune complexes (IC) with Fc gamma RII and Fc gamma RIII receptors on human neutrophils was studied by investigating the capacity of well-defined complexes to stimulate O2- generation in neutrophils. IC consisting of polyclonal rabbit antibody to human albumin were prepared at equivalence (insoluble complexes) and at five times Ag excess (soluble complexes). Stimulation of human neutrophils with soluble and insoluble IC caused a dose-dependent activation of the respiratory burst and O2- generation. Incubation of neutrophils with cytochalasin B significantly enhanced O2- generation in neutrophils stimulated with soluble IC. In contrast, cytochalasin B treatment had a minimal effect on O2- generation in neutrophils stimulated with insoluble IC. Treatment of neutrophils with PGE1 or pertussis toxin (PTx) significantly inhibited O2- generation by soluble IC-stimulated neutrophils. However, neither PGE1 nor PTx treatment significantly altered O2- generation in neutrophils stimulated with insoluble complexes. Although O2- generation induced by soluble IC was significantly inhibited by mAb against both Fc gamma RII and Fc gamma RIII receptor, insoluble IC stimulation of neutrophil O2- generation was significantly diminished only by mAb against Fc gamma RIII receptor. Cross-linking of either Fc gamma RII or Fc gamma RIII receptors on neutrophil surfaces induced O2- generation, and this activation was inhibited by both PGE1 and PTx treatment. These findings indicate that soluble and insoluble ICs induce O2- production in human neutrophils through distinct mechanisms. Soluble IC induce activation of neutrophils through a PTx- and PGE1-sensitive pathway that is dependent upon both Fc gamma RII and Fc gamma RIII receptors. Although insoluble IC induce O2- production through a PTx and PGE1 insensitive pathway mediated primarily through Fc gamma RIII receptor.

  9. Purification of Restriction Endonuclease EcoRII and its Co-Crystallization

    NASA Technical Reports Server (NTRS)

    Karpova, E. A.; Chen, L.; Meehan, E.; Pusey, M.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Restriction endonuclease EcoRII (EcoRII) is a homodimeric DNA-binding protein. It belongs to the type II family of restriction-modification enzymes (subclass IIe). EcoRII recognizes the nucleotide sequence 5'-CCWGG (W=A or T) and cleaves the phosphodiester bond preceding the first cytosine. Methylation at C5 of the second cytosine inhibits cleavage. The enzyme has a unique ability to search for the presence of two substrate sites before cleavage. To the best of our knowledge no other subclass IIe restriction endonuclease has been crystallized yet, without or with a DNA-substrate. We have recently grown and characterized the crystals of this enzyme (1) Here we report on the result of co-crystallization experiments of EcoRII with an 11 b.p. oligonucleotide substrate. The dissociation constant (Kd) EcoRII: 11 b.p. was determined earlier (unpublished results). The needle-like crystals of oligonucleotide-EcoRII protein complex were obtained with this substrate by the technique of vapor diffusion hanging drops. The crystals obtained were washed and dissolved in an aliquot of 10 mM Tris-HCl buffer, pH=7.5. Running a portion of this solution on the SDS-get indicated the presence of endonuclease in the solution. A UV-spectrophotometric test of a second portion confirmed the presence of DNA. We are now working on improvement of the DNA-EcoRII protein crystals. Results obtained from these and ongoing efforts will be reported.

  10. High resolution mapping of the binding site on human IgG1 for Fc gamma RI, Fc gamma RII, Fc gamma RIII, and FcRn and design of IgG1 variants with improved binding to the Fc gamma R.

    PubMed

    Shields, R L; Namenuk, A K; Hong, K; Meng, Y G; Rae, J; Briggs, J; Xie, D; Lai, J; Stadlen, A; Li, B; Fox, J A; Presta, L G

    2001-03-02

    Immunoglobulin G (IgG) Fc receptors play a critical role in linking IgG antibody-mediated immune responses with cellular effector functions. A high resolution map of the binding site on human IgG1 for human Fc gamma RI, Fc gamma RIIA, Fc gamma RIIB, Fc gamma RIIIA, and FcRn receptors has been determined. A common set of IgG1 residues is involved in binding to all Fc gamma R; Fc gamma RII and Fc gamma RIII also utilize residues outside this common set. In addition to residues which, when altered, abrogated binding to one or more of the receptors, several residues were found that improved binding only to specific receptors or simultaneously improved binding to one type of receptor and reduced binding to another type. Select IgG1 variants with improved binding to Fc gamma RIIIA exhibited up to 100% enhancement in antibody-dependent cell cytotoxicity using human effector cells; these variants included changes at residues not found at the binding interface in the IgG/Fc gamma RIIIA co-crystal structure (Sondermann, P., Huber, R., Oosthuizen, V., and Jacob, U. (2000) Nature 406, 267-273). These engineered antibodies may have important implications for improving antibody therapeutic efficacy.

  11. Writing with Light: Jacob Riis's Ambivalent Exposures

    ERIC Educational Resources Information Center

    Carter, Christopher

    2008-01-01

    The current interest in multimodal rhetoric was anticipated by Jacob Riis's social documentary texts and presentations during the late nineteenth and early twentieth centuries. In contrast with the socialist urban critiques presented by Friedrich Engels, Riis's work demonstrated profound ambivalence toward the city's poor. While calling for reform…

  12. ActRII blockade protects mice from cancer cachexia and prolongs survival in the presence of anti-cancer treatments.

    PubMed

    Hatakeyama, Shinji; Summermatter, Serge; Jourdain, Marie; Melly, Stefan; Minetti, Giulia C; Lach-Trifilieff, Estelle

    2016-01-01

    Cachexia affects the majority of patients with advanced cancer and is associated with reduced treatment tolerance, response to therapy, quality of life, and life expectancy. Cachectic patients with advanced cancer often receive anti-cancer therapies against their specific cancer type as a standard of care, and whether specific ActRII inhibition is efficacious when combined with anti-cancer agents has not been elucidated yet. In this study, we evaluated interactions between ActRII blockade and anti-cancer agents in CT-26 mouse colon cancer-induced cachexia model. CDD866 (murinized version of bimagrumab) is a neutralizing antibody against the activin receptor type II (ActRII) preventing binding of ligands such as myostatin and activin A, which are involved in cancer cachexia. CDD866 was evaluated in association with cisplatin as a standard cytotoxic agent or with everolimus, a molecular-targeted agent against mammalian target of rapamycin (mTOR). In the early studies, the treatment effect on cachexia was investigated, and in the additional studies, the treatment effect on progression of cancer and the associated cachexia was evaluated using body weight loss or tumor volume as interruption criteria. Cisplatin accelerated body weight loss and tended to exacerbate skeletal muscle loss in cachectic animals, likely due to some toxicity of this anti-cancer agent. Administration of CDD866 alone or in combination with cisplatin protected from skeletal muscle weight loss compared to animals receiving only cisplatin, corroborating that ActRII inhibition remains fully efficacious under cisplatin treatment. In contrast, everolimus treatment alone significantly protected the tumor-bearing mice against skeletal muscle weight loss caused by CT-26 tumor. CDD866 not only remains efficacious in the presence of everolimus but also showed a non-significant trend for an additive effect on reversing skeletal muscle weight loss. Importantly, both combination therapies slowed down time

  13. Mutual regulation of TGF-β1, TβRII and ErbB receptors expression in human thyroid carcinomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mincione, Gabriella, E-mail: g.mincione@unich.it; Center of Excellence on Aging, Ce.S.I., ‘G. d'Annunzio’ University Foundation, Chieti; Tarantelli, Chiara

    2014-09-10

    The role of EGF and TGF-β1 in thyroid cancer is still not clearly defined. TGF-β1 inhibited the cellular growth and migration of follicular (FTC-133) and papillary (B-CPAP) thyroid carcinoma cell lines. Co-treatments of TGF-β1 and EGF inhibited proliferation in both cell lines, but displayed opposite effect on their migratory capability, leading to inhibition in B-CPAP and promotion in FTC-133 cells, by a MAPK-dependent mechanism. TGF-β1, TβRII and EGFR expressions were evaluated in benign and malignant thyroid tumors. Both positivity (51.7% and 60.0% and 80.0% in FA and PTC and FTC) and overexpression (60.0%, 77.7% and 75.0% in FA, PTC andmore » FTC) of EGFR mRNA correlates with the aggressive tumor behavior. The moderate overexpression of TGF-β1 and TβRII mRNA in PTC tissues (61.5% and 62.5%, respectively), counteracted their high overexpression in FTC tissues (100% and 100%, respectively), while EGFR overexpression was similar in both carcinomas. Papillary carcinomas were positive to E-cadherin expression, while the follicular carcinomas lose E-cadherin staining. Our findings of TGF-β1/TβRII and EGFR overexpressions together with a loss of E-cadherin observed in human follicular thyroid carcinomas, and of increased migration ability MAPK-dependent after EGF/TGF-β1 treatments in the follicular thyroid carcinoma cell line, reinforced the hypothesis of a cross-talk between EGF and TGF-β1 systems in follicular thyroid carcinomas phenotype. - Highlights: • We reinforce the hypothesis of a cross talk between EGF and TGF-β1 in follicular thyroid carcinoma. • Increased migration MAPK-dependent is observed after EGF+TGF-β1 treatment in follicular thyroid carcinoma cells. • EGF and TGF-β1 caused opposite effect on the migratory ability in B-CPAP and in FTC-133 cells. • TGF-β1, TβRII and EGFR are overexpressed in follicular thyroid carcinoma.« less

  14. Impairment of neutrophil Fc gamma receptor mediated transmembrane signalling in active rheumatoid arthritis.

    PubMed Central

    Goulding, N J; Guyre, P M

    1992-01-01

    Neutrophil Fc gamma receptor (Fc gamma R) signalling responses were compared in healthy subjects, patients with definite rheumatoid arthritis (RA), ankylosing spondylitis, and osteoarthritis. The patients with A were subdivided into those with active synovitis and those with quiescent disease. Basal intracellular calcium ion concentrations in patients with inactive RA were significantly higher than in control subjects, which in turn were greater than in patients with active RA. Transient cytosolic calcium ion fluxes were observed after binding Fc gamma RII or Fc gamma RIII with specific monoclonal antibodies and cross linking with the F(ab')2 fragment of antimouse IgG. Response times were significantly faster for Fc gamma RII than for Fc gamma RIII. Peak concentrations of intracellular calcium ions after neutrophil stimulation were comparable for Fc gamma RII and RIII in healthy subjects. Neutrophils in patients with ankylosing spondylitis and osteoarthritis responded to Fc gamma R triggering, but in the group with active RA fluxes of calcium ions were severely depressed. Neutrophils isolated from patients with RA with quiescent disease showed exaggerated responses when compared with controls. Expression of all three Fc gamma R types on neutrophils from patients with active RA, as measured by monoclonal antibody binding, was comparable with control cells. Impairment of neutrophil Fc gamma R cytosolic signalling in active RA could reflect a receptor signalling defect with potential effects on Fc mediated functions, or a fundamental defect in calcium ion homeostasis within these cells. PMID:1535494

  15. Attenuation of corneal myofibroblast development through nanoparticle-mediated soluble transforming growth factor-β type II receptor (sTGFβRII) gene transfer.

    PubMed

    Sharma, Ajay; Rodier, Jason T; Tandon, Ashish; Klibanov, Alexander M; Mohan, Rajiv R

    2012-01-01

    /µg DNA and 1,640±100 pg/ml sTGFβRII protein during these assays. The PEI-mediated sTGFβRII delivery remarkably attenuated TGFβ1-induced transdifferentiation of corneal fibroblasts to myofibroblasts in cultures, as indicated by threefold lower levels of SMA mRNA (p<0.01) and significant inhibition of SMA protein (up to 96±3%; p<0.001 compared to no-gene-delivered cultures) in immunocytochemical staining and immunoblotting. The nanoparticle-mediated delivery of sTGFβRII showed significantly better antifibrotic effects than the Lipofectamine under similar experimental conditions. However, the inhibition of myofibroblast in HCF cultures by sTGFβRII overexpression by either method was significantly higher than the naked vector transfection. Furthermore, PEI- or Lipofectamine-mediated sTGFβRII delivery into HCF did not alter cellular proliferation or phenotype at 12 and 24 h post-treatment. Nanoparticles treated with HCF showed more than 90% cellular viability and very low cell death (2-6 TUNEL+ cells), suggesting that the tested doses of PEI-nanoparticles do not induce significant cell death. This study demonstrated that PEI-DNA nanoparticles are an attractive vector for the development of nonviral corneal gene therapy approaches and that the sTGFβRII gene delivery into keratocytes could be used to control corneal fibrosis in vivo.

  16. Inositol 1,4,5-trisphosphate receptor type II (InsP3R-II) is reduced in obese mice, but metabolic homeostasis is preserved in mice lacking InsP3R-II

    PubMed Central

    Feriod, Colleen N.; Nguyen, Lily; Jurczak, Michael J.; Kruglov, Emma A.; Nathanson, Michael H.; Shulman, Gerald I.; Bennett, Anton M.

    2014-01-01

    Inositol 1,4,5-trisphosphate receptor type II (InsP3R-II) is the most prevalent isoform of the InsP3R in hepatocytes and is concentrated under the canalicular membrane, where it plays an important role in bile secretion. We hypothesized that altered calcium (Ca2+) signaling may be involved in metabolic dysfunction, as InsP3R-mediated Ca2+ signals have been implicated in the regulation of hepatic glucose homeostasis. Here, we find that InsP3R-II, but not InsP3R-I, is reduced in the livers of obese mice. In our investigation of the functional consequences of InsP3R-II deficiency, we found that organic anion secretion at the canalicular membrane and Ca2+ signals were impaired. However, mice lacking InsP3R-II showed no deficits in energy balance, glucose production, glucose tolerance, or susceptibility to hepatic steatosis. Thus, our results suggest that reduced InsP3R-II expression is not sufficient to account for any disruptions in metabolic homeostasis that are observed in mouse models of obesity. We conclude that metabolic homeostasis is maintained independently of InsP3R-II. Loss of InsP3R-II does impair secretion of bile components; therefore, we suggest that conditions of obesity would lead to a decrease in this Ca2+-sensitive process. PMID:25315698

  17. Inhibiting post-translational core fucosylation protects against albumin-induced proximal tubular epithelial cell injury.

    PubMed

    Wang, Dapeng; Fang, Ming; Shen, Nan; Li, Longkai; Wang, Weidong; Wang, Lingyu; Lin, Hongli

    2017-01-01

    Albuminuria is an independent risk factor for renal interstitial fibrosis (RIF). Glomerular-filtered albumin in endocytic and non-endocytic pathways may injure proximal tubular epithelial cells (PTECs) via megalin and TGFβRII, respectively. Since megalin and TGFβRII are both modified by post-translational core fucosylation, which plays a critical role in RIF. Thus, we sought to identify whether core fucosylation is a potential target for reducing albumin-induced injury to PTECs. We constructed a human PTEC-derived cell line (HK-2 cells) and established an in vitro model of bovine serum albumin (BSA) injury. RNAi was used to inhibit the expression of megalin, TGFβRII, and Fut8. Western blotting, immunostaining, ELISA, lectin blotting, and fluorescence-activated cell sorting were used to identify BSA-induced endocytic and non-endocytic damage in HK-2 cells. Fut8 is a core fucosylation-related gene, which is significantly increased in HK-2 cells following an incubation with BSA. Fut8 siRNA significantly reduced the core fucosylation of megalin and TGFβRII and also inhibited the activation of the TGFβ/TGFβRII/Smad2/3 signaling pathway. Furthermore, Fut8 siRNA could reduce monocyte chemotactic protein-1, reactive oxygen species, and apoptosis, as well as significantly decrease the fibronectin and collagen I levels in BSA-overloaded HK-2 cells. Core fucosylation inhibition was more effective than inhibiting either megalin or TGFβRII for the prevention of albumin-induced injury to PTECs. Our findings indicate that post-translational core fucosylation is essential for the albumin-induced injury to PTECs. Thus, the inhibition of core fucosylation could effectively alleviate albumin-induced endocytic and non-endocytic injury to PTECs. Our study provides a potential therapeutic target for albuminuria-induced injury.

  18. Interferon-gamma inhibits HIV-induced invasiveness of monocytes.

    PubMed

    Dhawan, S; Wahl, L M; Heredia, A; Zhang, Y; Epstein, J S; Meltzer, M S; Hewlett, I K

    1995-12-01

    HIV-infected monocytes form highly invasive network on basement membrane matrix and secrete high levels of 92-kd metalloproteinase (MMP-9), an enzyme that degrades basement membrane proteins. In the present study, using matrigel as a model basement membrane system, we demonstrate that treatment of human immunodeficiency virus (HIV)-infected monocytes with interferon-gamma at 50 U/ml inhibited the ability of infected monocytes to form an invasive network on matrigel and their invasion through the matrigel matrix. These effects were associated with a significant reduction in the levels of MMP-9 produced by HIV-infected monocytes treated with interferon-gamma 1 day prior to infection with HIV as compared with that of untreated HIV-infected monocytes. Monocytes treated with interferon-gamma 1 day after HIV infection showed the presence of integrated HIV sequences; however, the levels of MMP-9 were substantially lower than those produced by monocytes inoculated with live HIV, heat-inactivated HIV, or even the control uninfected monocytes. Exposure of monocytes to heat-inactivated HIV did not result in increased invasiveness or high MMP-9 production, suggesting that regulation of metalloproteinase by monocytes was independent of CD4-gp120 interactions and required active virus infection. Furthermore, addition of interferon-gamma to monocytes on day 10 after infection inhibited MMP-9 production by more than threefold with no significant reduction of virus replication. These results indicate that the mechanism of interferon-gamma-induced down-regulation of MMP-9 levels and reduced monocyte invasiveness may be mediated by a mechanism independent of antiviral activity of IFN-gamma in monocytes. Down-regulation of MMP-9 in HIV-infected monocytes by interferon-gamma may play an important role in the control of HIV pathogenesis.

  19. Delta-9 tetrahydrocannabinol (THC) inhibits lytic replication of gamma oncogenic herpesviruses in vitro.

    PubMed

    Medveczky, Maria M; Sherwood, Tracy A; Klein, Thomas W; Friedman, Herman; Medveczky, Peter G

    2004-09-15

    The major psychoactive cannabinoid compound of marijuana, delta-9 tetrahydrocannabinol (THC), has been shown to modulate immune responses and lymphocyte function. After primary infection the viral DNA genome of gamma herpesviruses persists in lymphoid cell nuclei in a latent episomal circular form. In response to extracellular signals, the latent virus can be activated, which leads to production of infectious virus progeny. Therefore, we evaluated the potential effects of THC on gamma herpesvirus replication. Tissue cultures infected with various gamma herpesviruses were cultured in the presence of increasing concentrations of THC and the amount of viral DNA or infectious virus yield was compared to those of control cultures. The effect of THC on Kaposi's Sarcoma Associated Herpesvirus (KSHV) and Epstein-Barr virus (EBV) replication was measured by the Gardella method and replication of herpesvirus saimiri (HVS) of monkeys, murine gamma herpesvirus 68 (MHV 68), and herpes simplex type 1 (HSV-1) was measured by yield reduction assays. Inhibition of the immediate early ORF 50 gene promoter activity was measured by the dual luciferase method. Micromolar concentrations of THC inhibit KSHV and EBV reactivation in virus infected/immortalized B cells. THC also strongly inhibits lytic replication of MHV 68 and HVS in vitro. Importantly, concentrations of THC that inhibit virus replication of gamma herpesviruses have no effect on cell growth or HSV-1 replication, indicating selectivity. THC was shown to selectively inhibit the immediate early ORF 50 gene promoter of KSHV and MHV 68. THC specifically targets viral and/or cellular mechanisms required for replication and possibly shared by these gamma herpesviruses, and the endocannabinoid system is possibly involved in regulating gamma herpesvirus latency and lytic replication. The immediate early gene ORF 50 promoter activity was specifically inhibited by THC. These studies may also provide the foundation for the development

  20. Peculiarities of Crystallization of the Restriction Endonuclease EcoRII

    NASA Technical Reports Server (NTRS)

    Karpove, Elizaveta; Pusey, M.arc L.

    1998-01-01

    Nucleases interfere with most standard molecular biology procedures. We have purified and crystallized the restriction endonuclease EcoRII, which belongs to the type II of restriction- modification enzyme, to study the protein crystallization process using a "non standard" macromolecule. A procedure for the purification of EcoRII was developed and 99% pure protein as determined by SDS PAGE electrophoresis obtained. Light scattering experiments were performed to assist in screening protein suitable crystallization conditions. The second virial coefficient was determined as a function of precipitating salt concentration, using sodium chloride, ammonium sulfate, and sodium sulfate. Small (maximum size approximately 0.2 mm) well shaped crystals have been obtained. Larger poorly formed crystals (ca 0.5 mm) have also been obtained, but we have been unable to mount them for diff-raction analysis due to their extreme fragility. Crystallization experiments with PEG have shown that using this precipitant, the best crystals are obtained from slightly over-saturated solutions. Use of higher precipitant concentration leads to dendritic crystal formation. EcoRII is difficult to solubilize and meticulous attention must be paid to the presence of reducing agents.

  1. Direct Connection between the RII Chain and the Nonautonomous Discrete Modified KdV Lattice

    NASA Astrophysics Data System (ADS)

    Maeda, Kazuki; Tsujimoto, Satoshi

    2013-11-01

    The spectral transformation technique for symmetric RII polynomials is developed. Use of this technique reveals that the nonautonomous discrete modified KdV (nd-mKdV) lattice is directly connected with the RII chain. Hankel determinant solutions to the semi-infinite nd-mKdV lattice are also presented.

  2. Inhibition of gamma-secretase by the CK1 inhibitor IC261 does not depend on CK1delta.

    PubMed

    Höttecke, Nicole; Liebeck, Miriam; Baumann, Karlheinz; Schubenel, Robert; Winkler, Edith; Steiner, Harald; Schmidt, Boris

    2010-05-01

    CK1 and gamma-secretase are interesting targets for therapeutic intervention in the treatment of cancer and Alzheimer's disease. The CK1 inhibitor IC261 was reported to inhibit gamma-secretase activity. The question is: Does CK1 inhibition directly influence gamma-secretase activity? Therefore we analyzed the SAR of 15 analogues and their impact on gamma-secretase activity. The most active compounds were investigated on CK1delta activity. These findings exclude a direct influence of CK1delta on gamma-secretase, because any change in the substitution pattern of IC261 diminished CK1 inhibition, whereas gamma-secretase inhibition is still exerted by several analogues. 2010 Elsevier Ltd. All rights reserved.

  3. Shunting inhibition improves robustness of gamma oscillations in hippocampal interneuron networks by homogenizing firing rates.

    PubMed

    Vida, Imre; Bartos, Marlene; Jonas, Peter

    2006-01-05

    Networks of GABAergic neurons are key elements in the generation of gamma oscillations in the brain. Computational studies suggested that the emergence of coherent oscillations requires hyperpolarizing inhibition. Here, we show that GABA(A) receptor-mediated inhibition in mature interneurons of the hippocampal dentate gyrus is shunting rather than hyperpolarizing. Unexpectedly, when shunting inhibition is incorporated into a structured interneuron network model with fast and strong synapses, coherent oscillations emerge. In comparison to hyperpolarizing inhibition, networks with shunting inhibition show several advantages. First, oscillations are generated with smaller tonic excitatory drive. Second, network frequencies are tuned to the gamma band. Finally, robustness against heterogeneity in the excitatory drive is markedly improved. In single interneurons, shunting inhibition shortens the interspike interval for low levels of drive but prolongs it for high levels, leading to homogenization of neuronal firing rates. Thus, shunting inhibition may confer increased robustness to gamma oscillations in the brain.

  4. Inhibition of the archaeal beta-class (Cab) and gamma-class (Cam) carbonic anhydrases.

    PubMed

    Zimmerman, Sabrina A; Ferry, James G; Supuran, Claudiu T

    2007-01-01

    Five independently evolved classes (alpha-, beta-, gamma-, delta-, zeta-) of carbonic anhydrases facilitate the reversible hydration of carbon dioxide to bicarbonate of which the alpha-class is the most extensively studied. Detailed inhibition studies of the alpha-class with the two main classes of inhibitors, sulfonamides and metal-complexing anions, revealed many inhibitors that are used as therapeutic agents to prevent and treat many diseases. Recent inhibitor studies of the archaeal beta-class (Cab) and the gamma-class (Cam) carbonic anhydrases show differences in inhibition response to sulfonamides and metal-complexing anions, when compared to the alpha-class carbonic anhydrases. In addition, inhibition between Cab and Cam differ. These inhibition patterns are consistent with the idea that although, alpha-, beta-, and gamma-class carbonic anhydrases participate in the same two-step isomechanism, diverse active site architecture among these classes predicts variations on the catalytic mechanism. These inhibitor studies of the archaeal beta- and gamma-class carbonic anhydrases give insight to new applications of current day carbonic anhydrase inhibitors, as well as direct research to develop new compounds that may be specific inhibitors of prokaryotic carbonic anhydrases.

  5. Crystallization and preliminary X-ray diffraction analysis of restriction endonuclease EcoRII

    NASA Technical Reports Server (NTRS)

    Karpova, E. A.; Meehan, E.; Pusey, M. L.; Chen, L.

    1999-01-01

    Crystals of the restriction endonuclease EcoRII have been obtained by the vapor-diffusion technique in the presence of ammonium sulfate or polyethylene glycol. The best crystals were grown with ammonium sulfate as a precipitant. Crystals with dimensions of up to 0.6 x 0. 6 x 0.6 mm have been observed. The crystals diffract to about 4.0 A resolution at a cryo-temperature of 100 K using a rotating-anode X-ray source and a Rigaku R-AXIS IV imaging-plate detector. The space group has been determined to be either I23 or I2(1)3, with unit-cell parameters a = b = c = 160.3 A, alpha = beta = gamma = 90 degrees. The crystal asymmetric unit contains two protein molecules, and self-rotation function analysis shows a pseudo-twofold symmetry relating the two monomers. Attempts to improve the resolution of crystal diffraction and to search for heavy-atom derivatives are under way.

  6. Functions that Protect Escherichia coli from Tightly Bound DNA-Protein Complexes Created by Mutant EcoRII Methyltransferase.

    PubMed

    Henderson, Morgan L; Kreuzer, Kenneth N

    2015-01-01

    Expression of mutant EcoRII methyltransferase protein (M.EcoRII-C186A) in Escherichia coli leads to tightly bound DNA-protein complexes (TBCs), located sporadically on the chromosome rather than in tandem arrays. The mechanisms behind the lethality induced by such sporadic TBCs are not well studied, nor is it clear whether very tight binding but non-covalent complexes are processed in the same way as covalent DNA-protein crosslinks (DPCs). Using 2D gel electrophoresis, we found that TBCs induced by M.EcoRII-C186A block replication forks in vivo. Specific bubble molecules were detected as spots on the 2D gel, only when M.EcoRII-C186A was induced, and a mutation that eliminates a specific EcoRII methylation site led to disappearance of the corresponding spot. We also performed a candidate gene screen for mutants that are hypersensitive to TBCs induced by M.EcoRII-C186A. We found several gene products necessary for protection against these TBCs that are known to also protect against DPCs induced with wild-type M.EcoRII (after 5-azacytidine incorporation): RecA, RecBC, RecG, RuvABC, UvrD, FtsK, XerCD and SsrA (tmRNA). In contrast, the RecFOR pathway and Rep helicase are needed for protection against TBCs but not DPCs induced by M.EcoRII. We propose that stalled fork processing by RecFOR and RecA promotes release of tightly bound (but non-covalent) blocking proteins, perhaps by licensing Rep helicase-driven dissociation of the blocking M.EcoRII-C186A. Our studies also argued against the involvement of several proteins that might be expected to protect against TBCs. We took the opportunity to directly compare the sensitivity of all tested mutants to two quinolone antibiotics, which target bacterial type II topoisomerases and induce a unique form of DPC. We uncovered rep, ftsK and xerCD as novel quinolone hypersensitive mutants, and also obtained evidence against the involvement of a number of functions that might be expected to protect against quinolones.

  7. Effects of aberrant gamma frequency oscillations on prepulse inhibition.

    PubMed

    Jones, Nigel C; Anderson, Paul; Rind, Gil; Sullivan, Caley; van den Buuse, Maarten; O'Brien, Terence J

    2014-10-01

    Emerging literature implicates abnormalities in gamma frequency oscillations in the pathophysiology of schizophrenia, with hypofunction of N-methyl-D-aspartate (NMDA) receptors implicated as a key factor. Prepulse inhibition (PPI) is a behavioural measure of sensorimotor gating, which is disrupted in schizophrenia. We studied relationships between ongoing and sensory-evoked gamma oscillations and PPI using pharmacological interventions designed to increase gamma oscillations (ketamine, MK-801); reduce gamma oscillations (LY379268); or disrupt PPI (amphetamine). We predicted that elevating ongoing gamma power would lead to increased 'neural noise' in cortical circuits, dampened sensory-evoked gamma responses and disrupted behaviour. Wistar rats were implanted with EEG recording electrodes. They received ketamine (5 mg/kg), MK-801 (0.16 mg/kg), amphetamine (0.5 mg/kg), LY379268 (3 mg/kg) or vehicle and underwent PPI sessions with concurrent EEG recording. Ketamine and MK-801 increased the power of ongoing gamma oscillations and caused time-matched disruptions of PPI, while amphetamine marginally affected ongoing gamma power. In contrast, LY379268 reduced ongoing gamma power, but had no effect on PPI. The sensory gamma response evoked by the prepulse was reduced following treatment with all psychotomimetics, associating with disruptions in PPI. This was most noticeable following treatment with NMDA receptor antagonists. We found that ketamine and MK-801 increase ongoing gamma power and reduce evoked gamma power, both of which are related to disruptions in sensorimotor gating. This appears to be due to antagonism of NMDA receptors, since amphetamine and LY379268 differentially impacted these outcomes and possess different neuropharmacological substrates. Aberrant gamma frequency oscillations caused by NMDA receptor hypofunction may mediate the sensory processing deficits observed in schizophrenia.

  8. Increase in neutrophil Fc gamma receptor I expression following interferon gamma treatment in rheumatoid arthritis.

    PubMed Central

    Goulding, N J; Knight, S M; Godolphin, J L; Guyre, P M

    1992-01-01

    The therapeutic potential of interferon gamma (IFN gamma) in a number of disease states is still being explored, but progress is hampered by the lack of a suitable measure of in vivo biological activity. To assess the in vivo biological effects of recombinant human IFN gamma (rhIFN gamma), 14 patients were studied in a randomised, prospective, double blind, placebo controlled trial of this cytokine for the treatment of rheumatoid arthritis. The levels of Fc gamma receptors on peripheral blood neutrophils were measured at baseline and after 21 days of once daily, subcutaneous injections of rhIFN gamma or placebo. An induction of neutrophil Fc gamma receptor type I (Fc gamma RI) was seen in the group of patients receiving recombinant human rhIFN gamma but not in those receiving placebo. No change in the expression of Fc gamma RII or Fc gamma RIII was detected. The amount of induction of Fc gamma RI detected on the neutrophils of patients receiving rhIFN gamma did not correlate with clinical measures of response at either 21 days or at the end of the study (24 weeks). No significant clinical responses were observed in the rhIFN gamma group at these times. These data confirm that the reported in vitro effect of IFN gamma on human neutrophil Fc receptor expression can be reproduced in vivo. PMID:1534001

  9. Increase in neutrophil Fc gamma receptor I expression following interferon gamma treatment in rheumatoid arthritis.

    PubMed

    Goulding, N J; Knight, S M; Godolphin, J L; Guyre, P M

    1992-04-01

    The therapeutic potential of interferon gamma (IFN gamma) in a number of disease states is still being explored, but progress is hampered by the lack of a suitable measure of in vivo biological activity. To assess the in vivo biological effects of recombinant human IFN gamma (rhIFN gamma), 14 patients were studied in a randomised, prospective, double blind, placebo controlled trial of this cytokine for the treatment of rheumatoid arthritis. The levels of Fc gamma receptors on peripheral blood neutrophils were measured at baseline and after 21 days of once daily, subcutaneous injections of rhIFN gamma or placebo. An induction of neutrophil Fc gamma receptor type I (Fc gamma RI) was seen in the group of patients receiving recombinant human rhIFN gamma but not in those receiving placebo. No change in the expression of Fc gamma RII or Fc gamma RIII was detected. The amount of induction of Fc gamma RI detected on the neutrophils of patients receiving rhIFN gamma did not correlate with clinical measures of response at either 21 days or at the end of the study (24 weeks). No significant clinical responses were observed in the rhIFN gamma group at these times. These data confirm that the reported in vitro effect of IFN gamma on human neutrophil Fc receptor expression can be reproduced in vivo.

  10. Binding of phycoerythrin and its conjugates to murine low affinity receptors for immunoglobulin G.

    PubMed

    Takizawa, F; Kinet, J P; Adamczewski, M

    1993-06-18

    Conjugates of R-phycoerythrin are widely used for immunohistochemistry, especially for two-color flow cytometry. Their use is however limited by their apparent tendency to bind non-specifically. Using cells transfected with cDNAs for the murine low affinity receptors for immunoglobulin G (Fc gamma RII and -III) and cells naturally expressing these receptors, we demonstrate that R-phycoerythrin and its conjugates bind specifically and inhibitably to Fc gamma RII and -III. Immunofluorescence stainings of cells bearing these receptors, such as macrophages, monocytes, neutrophils, mast cells, subsets of T cells, and natural killer cells, may therefore not reflect the binding of antibody to antigen, but rather the binding of R-phycoerythrin to the receptors.

  11. IFN-gamma synergizes with LPS to induce nitric oxide biosynthesis through glycogen synthase kinase-3-inhibited IL-10.

    PubMed

    Lin, Chiou-Feng; Tsai, Cheng-Chieh; Huang, Wei-Ching; Wang, Chi-Yun; Tseng, Hsiang-Chi; Wang, Yi; Kai, Jui-In; Wang, Szu-Wen; Cheng, Yi-Lin

    2008-10-15

    Interferon-gamma (IFN-gamma) plays a crucial role in innate immunity and inflammation. It causes the synergistic effect on endotoxin lipopolysaccharide (LPS)-stimulated inducible nitric oxide synthase (iNOS)/NO biosynthesis; however, the mechanism remains unclear. In the present study, we investigated the effects of glycogen synthase kinase-3 (GSK-3)-mediated inhibition of anti-inflammatory interleukin-10 (IL-10). We found, in LPS-stimulated macrophages, that IFN-gamma increased iNOS expression and NO production in a time-dependent manner. In addition, ELISA analysis showed the upregulation of tumor necrosis factor-alpha and regulated on activation, normal T expressed and secreted, and the downregulation of IL-10. RT-PCR further showed changes in the IL-10 mRNA level as well. Treating cells with recombinant IL-10 showed a decrease in IFN-gamma/LPS-induced iNOS/NO biosynthesis, whereas anti-IL-10 neutralizing antibodies enhanced this effect, suggesting that IL-10 acts in an anti-inflammatory role. GSK-3-inhibitor treatment blocked IFN-gamma/LPS-induced iNOS/NO biosynthesis but upregulated IL-10 production. Inhibiting GSK-3 using short-interference RNA showed similar results. Additionally, treating cells with anti-IL-10 neutralizing antibodies blocked these effects. We further showed that inhibiting GSK-3 increased phosphorylation of transcription factor cyclic AMP response element binding protein. Inhibiting protein tyrosine kinase Pyk2, an upstream regulator of GSK-3beta, caused inhibition on IFN-gamma/LPS-induced GSK-3beta phosphorylation at tyrosine 216 and iNOS/NO biosynthesis. Taken together, these findings reveal the involvement of GSK-3-inhibited IL-10 on the induction of iNOS/NO biosynthesis by IFN-gamma synergized with LPS. (c) 2008 Wiley-Liss, Inc.

  12. Developmental inhibition of gamma irradiation on the peach fruit moth Carposina sasakii (Lepidoptera: Carposinidae)

    NASA Astrophysics Data System (ADS)

    Ryu, Jihoon; Ahn, Jun-Young; Sik Lee, Seung; Lee, Ju-Woon; Lee, Kyeong-Yeoll

    2015-01-01

    Ionizing irradiation is a useful technique for disinfestation under plant quarantine as well as post-harvest management. Effects of gamma irradiation treatment were tested on different developmental events of Carposina sasakii, which is a serious pest of various orchard crops. Apple fruits infested by C. sasakii were irradiated by gamma rays ranging from 0 to 300 Gy. Inhibition rates were determined on behavioral events related to development, including larval exit from apples, cocoon formation, adult eclosion, and oviposition. Failure rates of all these developmental events increased with increasing doses of irradiation. Rates of larval exit from apples and cocoon formation decreased to 13.2% and 1.7%, respectively, at 300 Gy. However, the adult eclosion rate decreased to 5.4% at 100 Gy and was completely inhibited at doses greater than 150 Gy. LD99 values for the inhibition of cocoon formation and adult emergence was estimated into 313.4 and 191.0 Gy. Furthermore, adults developed from irradiated larvae completely failed to lay eggs. Thus, irradiation of infested apples at doses of 200 Gy and higher completely inhibited the next generation of C. sasakii. Our results suggest that gamma irradiation treatment would be a promising technique for the control of C. sasakii.

  13. Total and partial sleep deprivation: Effects on plasma TNF-αRI, TNF-αRII, and IL-6, and reversal by caffeine operating through adenosine A2 receptor

    NASA Astrophysics Data System (ADS)

    Shearer, William T.; Reuben, James M.; Lee, Bang-Ning; Mullington, Janet; Price, Nicholas; Dinges, David F.

    2000-01-01

    Plasma levels of IL-6 and TNF-α are elevated in individuals who are deprived of sleep. TNF-α regulates expression of its soluble receptors, sTNF-αRI and sTNF-αRII. Sleep deprivation (SD) also increases extracellular adenosine that induces sedation and sleep. An antagonist of adenosine, caffeine, raises exogenous adenosine levels, stimulates the expression of IL-6 and inhibits the release of TNF-α. Our objective was to determine the effect of total SD (TSD) or partial SD (PSD) on the levels of these sleep regulatory molecules in volunteers who experienced SD with or without the consumption of caffeine. Plasma levels of IL-6, sTNF-αRI and sTNF-αRII were assayed by ELISA in samples collected at 90-min intervals from each subject over an 88-hour period. The results were analyzed by the repeated measures ANOVA. Whereas only TSD significantly increased sTNF-αRI over time, caffeine suppressed both sTNF-α receptors in TSD and PSD subjects. The selective increase in the expression of sTNF-αRI and not sTNF-αRII in subjects experiencing TSD with caffeine compared with others experiencing PSD with caffeine has not been previously reported. Moreover, caffeine significantly increased IL-6 in TSD subjects compared with those who did not receive caffeine. However, subjects who were permitted intermittent naps (PSD) ablated the effects of caffeine and reduced their level of IL-6 to that of the TSD group. These data further lend support to the hypothesis that the sTNF-αRI and not the sTNF-αRII plays a significant role in sleep regulation by TNF-α. .

  14. DNA polymerase gamma inhibition by vitamin K3 induces mitochondria-mediated cytotoxicity in human cancer cells.

    PubMed

    Sasaki, Ryohei; Suzuki, Yoko; Yonezawa, Yuko; Ota, Yosuke; Okamoto, Yoshiaki; Demizu, Yusuke; Huang, Peng; Yoshida, Hiromi; Sugimura, Kazuro; Mizushina, Yoshiyuki

    2008-05-01

    Among the vitamin K (VK) compounds, VK3 exhibits distinct cytotoxic activity in cancer cells and is thought to affect redox cycling; however, the underlying mechanisms remain unclear. Here we demonstrate that VK3 selectively inhibits DNA polymerase (pol) gamma, the key enzyme responsible for mitochondrial DNA replication and repair. VK3 at 30 microM inhibited pol gamma by more than 80%, caused impairment of mitochondrial DNA replication and repair, and induced a significant increase in reactive oxygen species (ROS), leading to apoptosis. At a lower concentration (3 microM), VK3 did not cause a significant increase in ROS, but was able to effectively inhibit cell proliferation, which could be reversed by supplementing glycolytic substrates. The cytotoxic action of VK3 was independent of p53 tumor suppressor gene status. Interestingly, VK3 only inhibited pol gamma but did not affect other pol including human pol alpha, pol beta, pol delta, and pol epsilon. VK1 and VK2 exhibited no inhibitory effect on any of the pol tested. These data together suggest that the inhibition of pol gamma by VK3 is relatively specific, and that this compound seems to exert its anticancer activity by two possible mechanisms in a concentration-dependent manner: (1) induction of ROS-mediated cell death at high concentrations; and (2) inhibition of cell proliferation at lower concentrations likely through the suppression of mitochondrial respiratory function. These findings may explain various cytotoxic actions induced by VK3, and may pave the way for the further use of VK3.

  15. Peroxisome proliferator-activated receptor-{gamma} agonists inhibit the replication of respiratory syncytial virus (RSV) in human lung epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnold, Ralf; Koenig, Wolfgang

    2006-07-05

    We have previously shown that peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}) agonists inhibited the inflammatory response of RSV-infected human lung epithelial cells. In this study, we supply evidence that specific PPAR{gamma} agonists (15d-PGJ{sub 2}, ciglitazone, troglitazone, Fmoc-Leu) efficiently blocked the RSV-induced cytotoxicity and development of syncytia in tissue culture (A549, HEp-2). All PPAR{gamma} agonists under study markedly inhibited the cell surface expression of the viral G and F protein on RSV-infected A549 cells. This was paralleled by a reduced cellular amount of N protein-encoding mRNA determined by real-time RT-PCR. Concomitantly, a reduced release of infectious progeny virus into the cell supernatants ofmore » human lung epithelial cells (A549, normal human bronchial epithelial cells (NHBE)) was observed. Similar results were obtained regardless whether PPAR{gamma} agonists were added prior to RSV infection or thereafter, suggesting that the agonists inhibited viral gene expression and not the primary adhesion or fusion process.« less

  16. PPAR{gamma} ligands induce growth inhibition and apoptosis through p63 and p73 in human ovarian cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Soyeon; Innovative Research Institute for Cell Therapy, Seoul National University College of Medicine and Hospital, Seoul; Lee, Jae-Jung

    2011-03-18

    Research highlights: {yields} PPAR{gamma} ligands increased the rate of apoptosis and inhibition of proliferation in ovarian cancer cells. {yields} PPAR{gamma} ligands induced p63 and p73 expression, but not p53. {yields} p63 and p73 leads to an increase in p21 expression and apoptosis in ovarian cancer cells with treatment PPAR{gamma} ligands. {yields} These findings suggest that PPAR{gamma} ligands suppressed growth of ovarian cancer cells through upregulation of p63 and p73. -- Abstract: Peroxisome proliferator-activated receptor gamma (PPAR{gamma}) agonists, including thiazolidinediones (TZDs), can induce anti-proliferation, differentiation, and apoptosis in various cancer cell types. This study investigated the mechanism of the anticancer effectmore » of TZDs on human ovarian cancer. Six human ovarian cancer cell lines (NIH:OVCAR3, SKOV3, SNU-251, SNU-8, SNU-840, and 2774) were treated with the TZD, which induced dose-dependent inhibition of cell growth. Additionally, these cell lines exhibited various expression levels of PPAR{gamma} protein as revealed by Western blotting. Flow cytometry showed that the cell cycle was arrested at the G1 phase, as demonstrated by the appearance of a sub-G1 peak. This observation was corroborated by the finding of increased levels of Bax, p21, PARP, and cleaved caspase 3 in TGZ-treated cells. Interestingly, when we determined the effect of p53-induced growth inhibition in these three human ovarian cancer cells, we found that they either lacked p53 or contained a mutant form of p53. Furthermore, TGZ induced the expression of endogenous or exogenous p63 and p73 proteins and p63- or p73-directed short hairpin (si) RNAs inhibited the ability of TGZ to regulate expression of p21 in these cells. Thus, our results suggest that PPAR{gamma} ligands can induce growth suppression of ovarian cancer cells and mediate p63 and p73 expression, leading to enhanced growth inhibition and apoptosis. The tumor suppressive effects of PPAR{gamma

  17. KSHV LANA inhibits TGF-β signaling through epigenetic silencing of the TGF-β type II receptor

    PubMed Central

    Di Bartolo, Daniel L.; Cannon, Mark; Liu, Yi-Fang; Renne, Rolf; Chadburn, Amy; Boshoff, Chris

    2008-01-01

    Signaling through the transforming growth factor–β (TGF-β) pathway results in growth inhibition and induction of apoptosis in various cell types. We show that this pathway is blocked in Kaposi sarcoma herpesvirus (KSHV)–infected primary effusion lymphoma through down-regulation of the TGF-β type II receptor (TβRII) by epigenetic mechanisms. Our data also suggest that KSHV infection may result in lower expression of TβRII in Kaposi sarcoma and multicentric Castleman disease. KSHV-encoded LANA associates with the promoter of TβRII and leads to its methylation and to the deacetylation of proximal histones. Reestablishment of signaling through this pathway reduces viability of these cells, inferring that KSHV-mediated blockage of TGF-β signaling plays a role in the establishment and progression of KSHV-associated neoplasia. These data suggest a mechanism whereby KSHV evades both the antiproliferative effects of TGF-β signaling by silencing TβRII gene expression and immune recognition by suppressing TGF-β–responsive immune cells through the elevated secretion of TGF-β1. PMID:18199825

  18. Transforming growth factor-{beta} inhibits CCAAT/enhancer-binding protein expression and PPAR{gamma} activity in unloaded bone marrow stromal cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahdjoudj, S.; Kaabeche, K.; Holy, X.

    2005-02-01

    The molecular mechanisms regulating the adipogenic differentiation of bone marrow stromal cells in vivo remain largely unknown. In this study, we investigated the regulatory effects of transforming growth factor beta-2 (TGF-{beta}2) on transcription factors involved in adipogenic differentiation induced by hind limb suspension in rat bone marrow stromal cells in vivo. Time course real-time quantitative reverse-transcription polymerase chain reaction (RT-PCR) analysis of gene expression showed that skeletal unloading progressively increases the expression of CCAAT/enhancer-binding protein (C/EBP){alpha} and C/EBP{beta} {alpha} at 5 days in bone marrow stromal cells resulting in increased peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}2) transcripts at 7 days. TGF-{beta}2more » administration in unloaded rats corrected the rise in C/EBP{alpha} and C/EBP{beta} transcripts induced by unloading in bone marrow stromal cells. This resulted in inhibition of PPAR{gamma}2 expression that was associated with increased Runx2 expression. Additionally, the inhibition of C/EBP{alpha} and C/EBP{beta} expression by TGF-{beta}2 was associated with increased PPAR{gamma} serine phosphorylation in bone marrow stromal cells, a mechanism that inhibits PPAR{gamma} transactivating activity. The sequential inhibitory effect of TGF-{beta}2 on C/EBP{alpha}, C/EBP{beta}, and PPAR{gamma}2 resulted in reduced LPL expression and abolition of bone marrow stromal cell adipogenic differentiation, which contributed to prevent bone loss induced by skeletal unloading. We conclude that TGF-{beta}2 inhibits the excessive adipogenic differentiation of bone marrow stromal cells induced by skeletal unloading by inhibiting C/EBP{alpha}, C/EBP{beta}, and PPAR{gamma} expression and activity, which provides a sequential mechanism by which TGF-{beta}2 regulates adipogenic differentiation of bone marrow stromal cells in vivo.« less

  19. Measles Virus (MV) Nucleoprotein Binds to a Novel Cell Surface Receptor Distinct from FcγRII via Its C-Terminal Domain: Role in MV-Induced Immunosuppression

    PubMed Central

    Laine, David; Trescol-Biémont, Marie-Claude; Longhi, Sonia; Libeau, Geneviève; Marie, Julien C.; Vidalain, Pierre-Olivier; Azocar, Olga; Diallo, Adama; Canard, Bruno; Rabourdin-Combe, Chantal; Valentin, Hélène

    2003-01-01

    During acute measles virus (MV) infection, an efficient immune response occurs, followed by a transient but profound immunosuppression. MV nucleoprotein (MV-N) has been reported to induce both cellular and humoral immune responses and paradoxically to account for immunosuppression. Thus far, this latter activity has been attributed to MV-N binding to human and murine FcγRII. Here, we show that apoptosis of MV-infected human thymic epithelial cells (TEC) allows the release of MV-N in the extracellular compartment. This extracellular N is then able to bind either to MV-infected or uninfected TEC. We show that recombinant MV-N specifically binds to a membrane protein receptor, different from FcγRII, highly expressed on the cell surface of TEC. This new receptor is referred to as nucleoprotein receptor (NR). In addition, different Ns from other MV-related morbilliviruses can also bind to FcγRII and/or NR. We show that the region of MV-N responsible for binding to NR maps to the C-terminal fragment (NTAIL). Binding of MV-N to NR on TEC triggers sustained calcium influx and inhibits spontaneous cell proliferation by arresting cells in the G0 and G1 phases of the cell cycle. Finally, MV-N binds to both constitutively expressed NR on a large spectrum of cells from different species and to human activated T cells, leading to suppression of their proliferation. These results provide evidence that MV-N, after release in the extracellular compartment, binds to NR and thereby plays a role in MV-induced immunosuppression. PMID:14557619

  20. The Odd Isotope Fractions of Barium in the Strongly r-process-enhanced (r-II) Stars

    NASA Astrophysics Data System (ADS)

    Wenyuan, Cui; Xiaohua, Jiang; Jianrong, Shi; Gang, Zhao; Bo, Zhang

    2018-02-01

    We determined the f odd,Ba values, 0.46 ± 0.08, 0.51 ± 0.09, 0.50 ± 0.13, and 0.48 ± 0.12, that correspond to the r-contribution 100% for four r-II stars, CS 29491-069, HE 1219-0312, HE 2327-5642, and HE 2252-4225, respectively. Our results suggest that almost all of the heavy elements (in the range from Ba to Pb) in r-II stars have a common origin, that is, from a single r-process (the main r-process). We found that the f odd,Ba has an intrinsic nature, and should keep a constant value of about 0.46 in the main r-process yields, which is responsible for the heavy element enhancement of r-II stars and of our Galaxy chemical enhancement. In addition, except for the abundance ratio [Ba/Eu] the f odd,Ba is also an important indicator, which can be used to study the relative contributions of the r- and s-processes during the chemical evolution history of the Milky Way and the enhancement mechanism in stars with peculiar abundances of heavy elements. Based on observations carried out at the European Southern Observatory, Paranal, Chile (Proposal number 170.D-0010 and 280.D-5011).

  1. Interferon-gamma inhibits intestinal restitution by preventing gap junction communication between enterocytes.

    PubMed

    Leaphart, Cynthia L; Qureshi, Faisal; Cetin, Selma; Li, Jun; Dubowski, Theresa; Baty, Catherine; Batey, Catherine; Beer-Stolz, Donna; Guo, Fengli; Murray, Sandra A; Hackam, David J

    2007-06-01

    Necrotizing enterocolitis (NEC) is characterized by interferon-gamma (IFN-gamma) release and inadequate intestinal restitution. Because enterocytes migrate together, mucosal healing may require interenterocyte communication via connexin 43-mediated gap junctions. We hypothesize that enterocyte migration requires interenterocyte communication, that IFN impairs migration by impairing connexin 43, and that impaired healing during NEC is associated with reduced gap junctions. NEC was induced in Swiss-Webster or IFN(-/-) mice, and restitution was determined in the presence of the gap junction inhibitor oleamide, or via time-lapse microscopy of IEC-6 cells. Connexin 43 expression, trafficking, and localization were detected in cultured or primary enterocytes or mouse or human intestine by confocal microscopy and (35)S-labeling, and gap junction communication was assessed using live microscopy with oleamide or connexin 43 siRNA. Enterocytes expressed connexin 43 in vitro and in vivo, and exchanged fluorescent dye via gap junctions. Gap junction inhibition significantly reduced enterocyte migration in vitro and in vivo. NEC was associated with IFN release and loss of enterocyte connexin 43 expression. IFN inhibited enterocyte migration by reducing gap junction communication through the dephosphorylation and internalization of connexin 43. Gap junction inhibition significantly increased NEC severity, whereas reversal of the inhibitory effects of IFN on gap junction communication restored enterocyte migration after IFN exposure. Strikingly, IFN(-/-) mice were protected from the development of NEC, and showed restored connexin 43 expression and intestinal restitution. IFN inhibits enterocyte migration by preventing interenterocyte gap junction communication. Connexin 43 loss may provide insights into the development of NEC, in which restitution is impaired.

  2. Sphingosine kinase inhibitor suppresses IL-18-induced interferon-gamma production through inhibition of p38 MAPK activation in human NK cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheon, Soyoung; Song, Seok Bean; Jung, Minkyung

    2008-09-12

    Natural killer (NK) cells play an important role in the innate immune response. Interleukin-18 (IL-18) is a well-known interferon-gamma (IFN-{gamma} inducing factor, which stimulates immune response in NK and T cells. Sphingosine kinase (SPHK) catalyzes the formation of sphingosine 1-phosphate (S1P), which acts as a second messenger to function as an anti-apoptotic factor and proliferation stimulator of immune cells. In this study, to elucidate whether SPHK is involved in IL-18-induced IFN-{gamma} production, we measured IL-18-induced IFN-{gamma} production after pre-treatment with SPHK inhibitor (SKI) in NK-92MI cells. We found that IL-18-induced IFN-{gamma} expression was blocked by SKI pre-treatment in both mRNAmore » and protein levels. In addition, the increased IFN-{gamma} production by stimulation with IL-18 is mediated through both SPHK and p38 MAPK. To determine the upstream signals of SKI and p38 MAPK in IL-18-induced IFN-{gamma} production, phosphorylation levels of p38 MAPK was measured after SKI pre-treatment. As a result, inhibition of SPHK by SKI blocked phosphorylation of p38 MAPK, showing that SPHK activation by IL-18 is an upstream signal of p38 MAPK activation. Inhibition of SPHK by SKI also inhibited IL-18-induced IFN-{gamma} production in human primary NK cells. In conclusion, SPHK activation is an essential factor for IL-18-induced IFN-{gamma} production via p38 MAPK.« less

  3. IL-4 inhibits the synthesis of IFN-gamma and induces the synthesis of IgE in human mixed lymphocyte cultures.

    PubMed

    Vercelli, D; Jabara, H H; Lauener, R P; Geha, R S

    1990-01-15

    The T cell-derived lymphokine IL-4 is essential for the induction of IgE synthesis by human lymphocytes. The IgE-inducing effect of IL-4 is antagonized by IFN-gamma. The secretion of IFN-gamma is vigorously triggered in MLC. Thus, IL-4-stimulated MLC represent a suitable model to characterize the functional antagonism between IL-4 and IFN-gamma. In this report, we show that rIL-4 consistently induced IgE synthesis when added to human primary MLC. IL-4-dependent IgE production required cognate T/B cell recognition, because it was inhibited by antibodies to CD3 and MHC class II (HlA-DR) Ag. A neutralizing anti-IFN-gamma mAb dramatically enhanced IL-4-dependent IgE synthesis by MLC, indicating that endogenous IFN-gamma is a major inhibitor of IgE production. More importantly, addition of rIL-4 markedly inhibited the release of IFN-gamma in supernatants of MLC and Con A-activated PBMC. The decrease in IFN-gamma protein was accompanied by a decreased expression of IFN-gamma mRNA transcripts. The downregulation of IFN-gamma by IL-4 is likely to play an important role in the IL-4-dependent induction of IgE synthesis.

  4. Kit signaling inhibits the sphingomyelin-ceramide pathway through PLC gamma 1: implication in stem cell factor radioprotective effect.

    PubMed

    Maddens, Stéphane; Charruyer, Alexandra; Plo, Isabelle; Dubreuil, Patrice; Berger, Stuart; Salles, Bernard; Laurent, Guy; Jaffrézou, Jean-Pierre

    2002-08-15

    Previous studies demonstrated that Kit activation confers radioprotection. However, the mechanism by which Kit signaling interferes with cellular response to ionizing radiation (IR) has not been firmly established. Based on the role of the sphingomyelin (SM) cycle apoptotic pathway in IR-induced apoptosis, we hypothesized that one of the Kit signaling components might inhibit IR-induced ceramide production or ceramide-induced apoptosis. Results show that, in both Ba/F3 and 32D murine cell lines transfected with wild-type c-kit, stem cell factor (SCF) stimulation resulted in a significant reduction of IR-induced apoptosis and cytotoxicity, whereas DNA repair remained unaffected. Moreover, SCF stimulation inhibited IR-induced neutral sphingomyelinase (N-SMase) stimulation and ceramide production. The SCF inhibitory effect on SM cycle was not influenced by wortmannin, a phosphoinositide-3 kinase (PI3K) inhibitor. The SCF protective effect was maintained in 32D-KitYF719 cells in which the PI3K/Akt signaling pathway is abolished due to mutation in Kit docking site for PI3K. In contrast, phospholipase C gamma (PLC gamma) inhibition by U73122 totally restored IR-induced N-SMase stimulation, ceramide production, and apoptosis in Kit-activated cells. Moreover, SCF did not protect 32D-KitYF728 cells (lacking a functional docking site for PLC gamma 1), from IR-induced SM cycle. Finally, SCF-induced radioprotection of human CD34(+) bone marrow cells was also inhibited by U73122. Altogether, these results suggest that SCF radioprotection is due to PLC gamma 1-dependent negative regulation of IR-induced N-SMase stimulation. Beyond the scope of Kit-expressing cells, it suggests that PLC gamma 1 status could greatly influence the post-DNA damage cellular response to IR, and perhaps, to other genotoxic agents.

  5. Inhibited interferon-gamma but normal interleukin-3 production from rats flown on the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Gould, Cheryl L.; Lyte, Mark; Williams, Joann; Mandel, Adrian D.; Sonnenfeld, Gerald

    1987-01-01

    Rats were flown on Space Shuttle SL-3 for one week. When spleen cells were removed from these rats and challenged with concanavalin-A, interferon-gamma production was severely inhibited, while interleukin-3 production was unaffected compared to ground-based control rats. These data indicate that there is a defect in interferon-gamma production in rats that have been exposed to spaceflight. This defect could contribute to, and be one reason for, immunosuppression observed after spaceflight.

  6. Synchronisation hubs in the visual cortex may arise from strong rhythmic inhibition during gamma oscillations.

    PubMed

    Folias, Stefanos E; Yu, Shan; Snyder, Abigail; Nikolić, Danko; Rubin, Jonathan E

    2013-09-01

    Neurons in the visual cortex exhibit heterogeneity in feature selectivity and the tendency to generate action potentials synchronously with other nearby neurons. By examining visual responses from cat area 17 we found that, during gamma oscillations, there was a positive correlation between each unit's sharpness of orientation tuning, strength of oscillations, and propensity towards synchronisation with other units. Using a computational model, we demonstrated that heterogeneity in the strength of rhythmic inhibitory inputs can account for the correlations between these three properties. Neurons subject to strong inhibition tend to oscillate strongly in response to both optimal and suboptimal stimuli and synchronise promiscuously with other neurons, even if they have different orientation preferences. Moreover, these strongly inhibited neurons can exhibit sharp orientation selectivity provided that the inhibition they receive is broadly tuned relative to their excitatory inputs. These results predict that the strength and orientation tuning of synaptic inhibition are heterogeneous across area 17 neurons, which could have important implications for these neurons' sensory processing capabilities. Furthermore, although our experimental recordings were conducted in the visual cortex, our model and simulation results can apply more generally to any brain region with analogous neuron types in which heterogeneity in the strength of rhythmic inhibition can arise during gamma oscillations. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  7. Ketamine Protects Gamma Oscillations by Inhibiting Hippocampal LTD

    PubMed Central

    Huang, Lanting; Yang, Xiu-Juan; Huang, Ying; Sun, Eve Y.

    2016-01-01

    NMDA receptors have been widely reported to be involved in the regulation of synaptic plasticity through effects on long-term potentiation (LTP) and long-term depression (LTD). LTP and LTD have been implicated in learning and memory processes. Besides synaptic plasticity, it is known that the phenomenon of gamma oscillations is critical in cognitive functions. Synaptic plasticity has been widely studied, however it is still not clear, to what degree synaptic plasticity regulates the oscillations of neuronal networks. Two NMDA receptor antagonists, ketamine and memantine, have been shown to regulate LTP and LTD, to promote cognitive functions, and have even been reported to bring therapeutic effects in major depression and Alzheimer’s disease respectively. These compounds allow us to investigate the putative interrelationship between network oscillations and synaptic plasticity and to learn more about the mechanisms of their therapeutic effects. In the present study, we have identified that ketamine and memantine could inhibit LTD, without impairing LTP in the CA1 region of mouse hippocampus, which may underlie the mechanism of these drugs’ therapeutic effects. Our results suggest that NMDA-induced LTD caused a marked loss in the gamma power, and pretreatment with 10 μM ketamine prevented the oscillatory loss via its inhibitory effect on LTD. Our study provides a new understanding of the role of NMDA receptors on hippocampal plasticity and oscillations. PMID:27467732

  8. Histaminergic regulation of interferon-gamma (IFN-gamma) production by human natural killer (NK) cells.

    PubMed

    Asea, A; Hansson, M; Czerkinsky, C; Houze, T; Hermodsson, S; Strannegård, O; Hellstrand, K

    1996-08-01

    Monocytes, recovered from human peripheral blood by counter-current centrifugal elutriation, effectively inhibit the production of IFN-gamma by CD3-/56+ NK cells in response to IL-2. This study aimed at defining the nature of the inhibitory signal, particularly the importance of monocyte-derived reactive metabolites of oxygen. It was found that monocytes recovered from patients with chronic granulomatous disease (CGD), a condition characterized by deficient NADPH-oxidase activity of phagocytes, did not inhibit IFN-gamma production by NK cells. Further, catalase, a scavenger of hydrogen peroxide, completely reversed the inhibitory signal whereas scavengers of the superoxide anion, hypohalous acids, the hydroxyl radical, or nitric oxide synthesis inhibitors such as L-NMMA were ineffective. Inhibition of IFN-gamma production was operating on a pretranslational level, as indicated by the inability of enriched NK cells to accumulate IFN-gamma mRNA in the presence of elutriated monocytes. Hydrogen peroxide, at micromolar concentrations, reconstituted the inhibition of IFN-gamma production when added to enriched NK cells. Histamine, a biogenic amine which inhibits the generation of reactive oxygen metabolites in monocytes, abrogated the inhibition of IFN-gamma production in NK cells; by this mechanism, histamine strongly synergized with IL-2 to induce IFN-gamma in mixtures of NK cells and monocytes. The synergizing effect of histamine was specifically mediated by H2-type histamine receptors. We conclude that: (i) the induction of IFN-gamma mRNA in NK cells is effectively down-regulated by products of the oxidative metabolism of monocytes; and (ii) histamine effectively enhances IFN-gamma production by preventing monocyte-induced oxidative damage to NK cells.

  9. Transient gamma-secretase inhibition accelerates and enhances fracture repair likely via Notch signaling modulation

    PubMed Central

    Wang, Cuicui; Shen, Jie; Yukata, Kiminori; Inzana, Jason A.; O'Keefe, Regis J.; Awad, Hani A.; Hilton, Matthew J.

    2014-01-01

    Approximately 10% of skeletal fractures result in healing complications and non-union, while most fractures repair with appropriate stabilization and without pharmacologic intervention. It is the latter injuries that cannot be underestimated as the expenses associated with their treatment and subsequent lost productivity are predicted to increase to over $74 billion by 2015. During fracture repair, local mesenchymal stem/progenitor cells (MSCs) differentiate to form new cartilage and bone, reminiscent of events during skeletal development. We previously demonstrated that permanent loss of gamma-secretase activity and Notch signaling accelerates bone and cartilage formation from MSC progenitors during skeletal development, leading to pathologic acquisition of bone and depletion of bone marrow derived MSCs. Here, we investigated whether transient and systemic gamma-secretase and Notch inhibition is capable of accelerating and enhancing fracture repair by promoting controlled MSC differentiation near the fracture site. Our radiographic, microCT, histological, cell and molecular analyses reveal that single and intermittent gamma-secretase inhibitor (GSI) treatments significantly enhance cartilage and bone callus formation via the promotion of MSC differentiation, resulting in only a moderate reduction of local MSCs. Biomechanical testing further demonstrates that GSI treated fractures exhibit superior strength earlier in the healing process, with single dose GSI treated fractures exhibiting bone strength approaching that of un-fractured tibiae. These data further establish that transient inhibition of gamma-secretase activity and Notch signaling temporarily increases osteoclastogenesis and accelerates bone remodeling, which coupled with the effects on MSCs likely explains the accelerated and enhanced fracture repair. Therefore, we propose that the Notch pathway serves as an important therapeutic target during skeletal fracture repair. PMID:25527421

  10. [Endometriosis: increasing concentrations of serum interleukin-1β and interleukin-1sRII is associated with the deep form of this pathology].

    PubMed

    Lambert, S; Santulli, P; Chouzenoux, S; Marcellin, L; Borghese, B; de Ziegler, D; Batteux, F; Chapron, C

    2014-11-01

    To assess interleukin-1β (IL-1β) and its inhibitory soluble interleukin-1 receptor type II (IL-1sRII) levels into the serum of patients with various forms of endometriosis and normal women, and investigate the correlation with disease activity. In this prospective laboratory study (2005-2010), 510 women with histologically proven endometriosis and 93 endometriosis-free controls have been enrolled. Laparoscopic complete exploration of the abdominopelvic cavity and blood samples have been performed in each patient. For each serum, IL-1β and IL-1sRII have been evaluated using Elisa. IL-1β and IL-1sRII have been respectively detectable in 64% and 54.6% of serum samples from all 603 women studied. IL-1β was higher in women with deep infiltrating endometriosis (DIE) (mean 10.0pg/mL [0.005-416.2]) than in endometriosis-free women (mean 0.5pg/mL [0.01-1.7], P<0.01) or in women with superficial endometriosis (SUP) (mean 0.6pg/mL [0.1-2.9], P<0.01). Also, IL-1sRII was higher in DIE (mean 236.7pg/mL [0.9-6975]) than in the witness group (mean 85.0pg/mL [1-235.2], P<0.05) or in SUP (mean 85.1pg/mL [0.6-302], P<0.01). This study highlights both a marked significant increase in serum IL-1β and IL-1sRII levels in DIE compared to SUP and normal women and suggests that a defect in the control of IL-1 can impact the pathophysiology of endometriosis. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  11. Inhibition of interferon-gamma expression by osmotic shrinkage of peripheral blood lymphocytes.

    PubMed

    Lang, K S; Weigert, C; Braedel, S; Fillon, S; Palmada, M; Schleicher, E; Rammensee, H-G; Lang, F

    2003-01-01

    A hypertonic environment, as it prevails in renal medulla or in hyperosmolar states such as hyperglycemia of diabetes mellitus, has been shown to impair the immune response, thus facilitating the development of infection. The present experiments were performed to test whether hypertonicity influences activation of T lymphocytes. To this end, peripheral blood lymphocytes (PBL) of cytomegalovirus (CMV)-positive donors were stimulated by human leukocyte antigen (HLA)-A2-restricted CMV epitope NLVPMVATV to produce interferon (IFN)-gamma at varying extracellular osmolarity. As a result, increasing extracellular osmolarity during exposure to the CMV antigen indeed decreased IFN-gamma formation. Addition of NaCl was more effective than urea. A 50% inhibition was observed at 350 mosM by addition of NaCl. The combined application of the Ca(2+) ionophore ionomycin (1 microg/ml) and the phorbol ester phorbol 12-myristate 13-acetate (PMA; 5 microg/ml) stimulated IFN-gamma production, an effect again reversed by hyperosmolarity. Moreover, hyperosmolarity abrogated the stimulating effect of ionomycin (1 microg/ml) and PMA (5 microg/ml) on the transcription factors activator protein (AP)-1, nuclear factor of activated T cells (NFAT), and NF-kappaB but not Sp1. In conclusion, osmotic cell shrinkage blunts the stimulatory action of antigen exposure on IFN-gamma production, an effect explained at least partially by suppression of transcription factor activation.

  12. Overcoming failure to repair demyelination in EAE: gamma-secretase inhibition of Notch signaling.

    PubMed

    Jurynczyk, Maciej; Jurewicz, Anna; Bielecki, Bartosz; Raine, Cedric S; Selmaj, Krzysztof

    2008-02-15

    In multiple sclerosis (MS), myelin destroyed by the immune attack is not effectively repaired by oligodendrocytes (OLs) and MS foci eventually undergo glial scarring. Although oligodendrocyte precursor cells (OPCs) are normally recruited to the lesion areas, they fail to mature and remyelinate the damaged fibers. Activation of the Notch pathway has been shown to inhibit OPC differentiation and to hamper their ability to produce myelin during CNS development. We have recently shown that inhibition of gamma-secretase within the CNS of SJL/J mice with experimental autoimmune encephalomyelitis (EAE) blocks Notch pathway activation in OLs, promotes remyelination, reduces axonal damage and significantly enhances clinical recovery from the disease. Our results suggest that inhibiting the non-myelin permissive environment maintained by Notch pathways within the mature CNS offers a new strategy for treating autoimmune demyelination, including MS.

  13. PPAR gamma partial agonist, KR-62776, inhibits adipocyte differentiation via activation of ERK.

    PubMed

    Kim, J; Han, D C; Kim, J M; Lee, S Y; Kim, S J; Woo, J R; Lee, J W; Jung, S-K; Yoon, K S; Cheon, H G; Kim, S S; Hong, S H; Kwon, B-M

    2009-05-01

    Indenone KR-62776 acts as an agonist of PPAR gamma without inducing obesity in animal models and cells. X-ray crystallography reveals that the indenone occupies the binding pocket in a different manner than rosiglitazone. 2-Dimensional gel-electrophoresis showed that the expression of 42 proteins was altered more than 2.0-fold between KR-62776- or rosiglitazone-treated adipocyte cells and control cells. Rosiglitazone down-regulated the expression of ERK1/2 and suppressed the phosphorylation of ERK1/2 in these cells. However, the expression of ERK1/2 was up-regulated in KR-62776-treated cells. Phosphorylated ERK1/2, activated by indenone, affects the localization of PPAR gamma, suggesting a mechanism for indenone-inhibition of adipogenesis in 3T3-L1 preadipocyte cells. The preadipocyte cells are treated with ERK1/2 inhibitor PD98059, a large amount of the cells are converted to adipocyte cells. These results support the conclusion that the localization of PPAR gamma is one of the key factors explaining the biological responses of the ligands.

  14. Isolation and characterization of mold fungi and insects infecting sawmill wood, and their inhibition by gamma radiation

    NASA Astrophysics Data System (ADS)

    Kalawate, Aparna; Mehetre, Sayaji

    2015-12-01

    This article describes the isolation, identification, and characterization of wood-rotting fungi and insects, and their inhibition was studied using gamma radiation. Products manufactured from plantation timber species are deteriorated by wood-rotting fungi such as Hypocrea lixii, Fusarium proliferatum, and Aspergillus flavus, and insects such as powderpost beetles. Proper preservation methods are necessary for ensuring a long service life of wood products. In this study, wood samples were treated with 2.5% copper ethanolamine boron (CEB) (10% w/v) and subsequently irradiated with gamma rays (10 kGy). It was observed that CEB-treated and gamma-irradiated samples controlled fungi and powderpost beetles significantly. As wood is a dead organic material, penetration of chemicals into it is very difficult. Gamma rays easily pass through wooden objects with hidden eggs and dormant spores of insects and fungi, respectively. Gamma irradiation was proved very effective in reducing damage caused by both fungi and insects.

  15. A model of EcoRII restriction endonuclease action: the active complex is most likely formed by one protein subunit and one DNA recognition site

    NASA Technical Reports Server (NTRS)

    Karpova, E. A.; Kubareva, E. A.; Shabarova, Z. A.

    1999-01-01

    To elucidate the mechanism of interaction of restriction endonuclease EcoRII with DNA, we studied by native gel electrophoresis the binding of this endonuclease to a set of synthetic DNA-duplexes containing the modified or canonical recognition sequence 5'-d(CCA/TGG)-3'. All binding substrate or substrate analogues tested could be divided into two major groups: (i) duplexes that, at the interaction with endonuclease EcoRII, form two types of stable complexes on native gel in the absence of Mg2+ cofactor; (ii) duplexes that form only one type of complex, observed both in the presence and absence of Mg2+. Unlike the latter, duplexes under the first group can be hydrolyzed by endonuclease. Data obtained suggest that the active complex is most likely formed by one protein subunit and one DNA recognition sequence. A model of EcoRII endonuclease action is presented.

  16. Inhibition of cystathionine-gamma-lyase leads to loss of glutathione and aggravation of mitochondrial dysfunction mediated by excitatory amino acid in the CNS.

    PubMed

    Diwakar, Latha; Ravindranath, Vijayalakshmi

    2007-01-01

    Oxidative stress has been implicated in the pathogenesis and progression of neurodegenerative disorders and antioxidants potentially have a major role in neuroprotection. Optimum levels of glutathione (gamma-glutamylcysteinyl glycine), an endogenous thiol antioxidant are required for the maintenance of the redox status of cells. Cystathionine gamma-lyase is the rate-limiting enzyme for the synthesis of cysteine from methionine and availability of cysteine is a critical factor in glutathione synthesis. In the present study, we have examined the role of cystathionine gamma-lyase in maintaining the redox homeostasis in brain, particularly with reference to mitochondrial function since the complex I of the electron transport chain is sensitive to redox perturbation. Inhibition of cystathionine gamma-lyase by l-propargylglycine caused loss of glutathione and decrease in complex I activity in the brain although the enzyme activity in mouse brain was 1% of the corresponding hepatic activity. We then examined the effect of this inhibition on the neurotoxicity mediated by the excitatory amino acid, l-beta-oxalyl amino-l-alanine, which is the causative factor of a type of motor neuron disease, neurolathyrism. l-beta-Oxalyl amino-l-alanine toxicity was exacerbated by l-propargylglycine measured as loss of complex I activity indicating the importance of cystathionine gamma-lyase in maintaining glutathione levels and in turn the mitochondrial function during excitotoxicity. Oxidative stress generated by l-beta-oxalyl amino-l-alanine itself inhibited cystathionine gamma-lyase, which could be prevented by prior treatment with thiol antioxidant. Thus, cystathionine gamma-lyase itself is susceptible to inactivation by oxidative stress and this can potentially exacerbate oxidant-induced damage. Cystathionine gamma-lyase is present in neuronal cells in human brain and its activity is several-fold higher compared to mouse brain. It could potentially play an important role in

  17. Peroxisome-proliferator-activated receptor-{gamma} agonists inhibit the release of proinflammatory cytokines from RSV-infected epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnold, Ralf; Koenig, Wolfgang

    2006-03-15

    The epithelial cells of the airways are the target cells for respiratory syncytial virus (RSV) infection and the site of the majority of the inflammation associated with the disease. Recently, peroxisome-proliferator-activated receptor {gamma} (PPAR{gamma}), a member of the nuclear hormone receptor superfamily, has been shown to possess anti-inflammatory properties. Therefore, we investigated the role of PPAR{gamma} agonists (15d-PGJ{sub 2}, ciglitazone and troglitazone) on the synthesis of RSV-induced cytokine release from RSV-infected human lung epithelial cells (A549). We observed that all PPAR{gamma} ligands inhibited dose-dependently the release of TNF-{alpha}, GM-CSF, IL-1{alpha}, IL-6 and the chemokines CXCL8 (IL-8) and CCL5 (RANTES) frommore » RSV-infected A549 cells. Concomitantly, the PPAR{gamma} ligands diminished the cellular amount of mRNA encoding for IL-6, CXCL8 and CCL5 and the RSV-induced binding activity of the transcription factors NF-{kappa}B (p65/p50) and AP-1 (c-fos), respectively. Our data presented herein suggest a potential application of PPAR{gamma} ligands in the anti-inflammatory treatment of RSV infection.« less

  18. The role of miR-370 in fibrosis after myocardial infarction

    PubMed Central

    Yuan, Hui; Gao, Jie

    2017-01-01

    In the present study, we investigated the expression of miR-370 in the border area of infarction after myocardial infarction and its role in the process of post-infarction fibrosis. A myocardial infarction model in Sprague-Dawley rats was established. After two weeks, the mRNA levels of transforming growth factor-β1 (TGFβ1), TGFβRII, ColIa1, ColIIIa1 and miR-370 and the expression of TGFβ1, TGFβRII and α-smooth muscle actin (α-SMA) proteins in the border area of infarction were detected by real-time fluorescence quantitative polymerase chain reaction (qRT-PCR) and western blot analysis. Cardiac fibroblasts in neonatal rat were isolated and cultured, and the changes in the above indicators were detected after AngII and miR-370 intervention. Luciferase reporter gene assay was conducted to verify whether TGFβRII was a target gene of miR-370. In the border area after myocardial infarction, the expression of miR-370 decreased, while mRNA levels of TGFβ1, TGFβRII, ColIa1 and ColIIIa1 and levels of TGFβ1, TGFβRII and α-SMA proteins were all increased. Luciferase reporter gene assay confirmed that TGFβRII was the target gene of miR-370. miR-370 reduced the expression of TGFβRII and inhibited the increased expression of TGFβRII and collagen protein caused by AngII. As well, its inhibited the differentiation effect of muscle fibroblasts while it did not inhibit the expression of TGFβ1. miR-370 inhibited the expression of TGFβRII protein by combining with TGFβRII mRNA. miR-370 also partially blocked TGFβ1-TGFβRII and induced the downstream signal transduction pathways, thus exerting anti-fibrotic effects. PMID:28350072

  19. Regulation of PPAR{gamma} function by TNF-{alpha}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye Jianping

    2008-09-26

    The nuclear receptor PPAR{gamma} is a lipid sensor that regulates lipid metabolism through gene transcription. Inhibition of PPAR{gamma} activity by TNF-{alpha} is involved in pathogenesis of insulin resistance, atherosclerosis, inflammation, and cancer cachexia. PPAR{gamma} activity is regulated by TNF-{alpha} at pre-translational and post-translational levels. Activation of serine kinases including IKK, ERK, JNK, and p38 may be involved in the TNF-regulation of PPAR{gamma}. Of the four kinases, IKK is a dominant signaling molecule in the TNF-regulation of PPAR{gamma}. IKK acts through at least two mechanisms: inhibition of PPAR{gamma} expression and activation of PPAR{gamma} corepressor. In this review article, literature is reviewedmore » with a focus on the mechanisms of PPAR{gamma} inhibition by TNF-{alpha}.« less

  20. The gamma cycle.

    PubMed

    Fries, Pascal; Nikolić, Danko; Singer, Wolf

    2007-07-01

    Activated neuronal groups typically engage in rhythmic synchronization in the gamma-frequency range (30-100 Hz). Experimental and modeling studies demonstrate that each gamma cycle is framed by synchronized spiking of inhibitory interneurons. Here, we review evidence suggesting that the resulting rhythmic network inhibition interacts with excitatory input to pyramidal cells such that the more excited cells fire earlier in the gamma cycle. Thus, the amplitude of excitatory drive is recoded into phase values of discharges relative to the gamma cycle. This recoding enables transmission and read out of amplitude information within a single gamma cycle without requiring rate integration. Furthermore, variation of phase relations can be exploited to facilitate or inhibit exchange of information between oscillating cell assemblies. The gamma cycle could thus serve as a fundamental computational mechanism for the implementation of a temporal coding scheme that enables fast processing and flexible routing of activity, supporting fast selection and binding of distributed responses. This review is part of the INMED/TINS special issue Physiogenic and pathogenic oscillations: the beauty and the beast, based on presentations at the annual INMED/TINS symposium (http://inmednet.com).

  1. Nifedipine inhibits advanced glycation end products (AGEs) and their receptor (RAGE) interaction-mediated proximal tubular cell injury via peroxisome proliferator-activated receptor-gamma activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsui, Takanori; Yamagishi, Sho-ichi, E-mail: shoichi@med.kurume-u.ac.jp; Takeuchi, Masayoshi

    2010-07-23

    Research highlights: {yields} Nifedipine inhibited the AGE-induced up-regulation of RAGE mRNA levels in tubular cells, which was prevented by GW9662, an inhibitor of peroxisome proliferator-activated receptor-{gamma}. {yields} GW9662 treatment alone increased RAGE mRNA levels in tubular cells. {yields} Nifedipine inhibited the AGE-induced reactive oxygen species generation, NF-{kappa}B activation and increases in intercellular adhesion molecule-1 and transforming growth factor-{beta} gene expression in tubular cells, all of which were blocked by GW9662. -- Abstract: There is a growing body of evidence that advanced glycation end products (AGEs) and their receptor (RAGE) interaction evokes oxidative stress generation and subsequently elicits inflammatory and fibrogenicmore » reactions, thereby contributing to the development and progression of diabetic nephropathy. We have previously found that nifedipine, a calcium-channel blocker (CCB), inhibits the AGE-induced mesangial cell damage in vitro. However, effects of nifedipine on proximal tubular cell injury remain unknown. We examined here whether and how nifedipine blocked the AGE-induced tubular cell damage. Nifedipine, but not amlodipine, a control CCB, inhibited the AGE-induced up-regulation of RAGE mRNA levels in tubular cells, which was prevented by the simultaneous treatment of GW9662, an inhibitor of peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}). GW9662 treatment alone was found to increase RAGE mRNA levels in tubular cells. Further, nifedipine inhibited the AGE-induced reactive oxygen species generation, NF-{kappa}B activation and increases in intercellular adhesion molecule-1 and transforming growth factor-beta gene expression in tubular cells, all of which were blocked by GW9662. Our present study provides a unique beneficial aspect of nifedipine on diabetic nephropathy; it could work as an anti-oxidative and anti-inflammatory agent against AGEs in tubular cells by suppressing RAGE

  2. Inhibition of gamma-radiation induced DNA damage in plasmid pBR322 by TMG, a water-soluble derivative of vitamin E.

    PubMed

    Rajagopalan, Rema; Wani, Khalida; Huilgol, Nagaraj G; Kagiya, Tsutomu V; Nair, Cherupally K Krishnan

    2002-06-01

    Alpha-tocopherol monoglucoside (TMG), a water-soluble derivative of alpha-tocopherol, has been examined for its ability to protect DNA against radiation-induced strand breaks. Gamma radiation, up to a dose of 6 Gy (dose rate, 0.7 Gy/minute), induced a dose-dependent increase in single strand breaks (SSBs) in plasmid pBR322 DNA. TMG inhibited the formation of gamma-radiation induced DNA single strand breaks (SSBs) in a concentration-dependent manner; 500 microM of TMG protected the single strand breaks completely. It also protected thymine glycol formation induced by gamma-radiation in a dose-dependent manner, based on an estimation of thymine glycol by HPLC.

  3. The R-Process Alliance: 2MASS J09544277+5246414, the Most Actinide-enhanced R-II Star Known

    NASA Astrophysics Data System (ADS)

    Holmbeck, Erika M.; Beers, Timothy C.; Roederer, Ian U.; Placco, Vinicius M.; Hansen, Terese T.; Sakari, Charli M.; Sneden, Christopher; Liu, Chao; Lee, Young Sun; Cowan, John J.; Frebel, Anna

    2018-06-01

    We report the discovery of a new actinide-boost star, 2MASS J09544277+5246414, originally identified as a very bright (V = 10.1), extremely metal-poor ([Fe/H] = ‑2.99) K giant in the LAMOST survey, and found to be highly r-process-enhanced (r-II; [Eu/Fe] = +1.28]), during the snapshot phase of the R-Process Alliance (RPA). Based on a high signal-to-noise ratio (S/N), high-resolution spectrum obtained with the Harlan J. Smith 2.7 m telescope, this star is the first confirmed actinide-boost star found by RPA efforts. With an enhancement of [Th/Eu] = +0.37, 2MASS J09544277+5246414 is also the most actinide-enhanced r-II star yet discovered, and only the sixth metal-poor star with a measured uranium abundance ([U/Fe] = +1.40). Using the Th/U chronometer, we estimate an age of 13.0 ± 4.7 Gyr for this star. The unambiguous actinide-boost signature of this extremely metal-poor star, combined with additional r-process-enhanced and actinide-boost stars identified by the RPA, will provide strong constraints on the nature and origin of the r-process at early times.

  4. The TF1-ATPase and ATPase activities of assembled alpha 3 beta 3 gamma, alpha 3 beta 3 gamma delta, and alpha 3 beta 3 gamma epsilon complexes are stimulated by low and inhibited by high concentrations of rhodamine 6G whereas the dye only inhibits the alpha 3 beta 3, and alpha 3 beta 3 delta complexes.

    PubMed

    Paik, S R; Yokoyama, K; Yoshida, M; Ohta, T; Kagawa, Y; Allison, W S

    1993-12-01

    The ATPase activity of the F1-ATPase from the thermophilic bacterium PS3 is stimulated at concentrations of rhodamine 6G up to about 10 microM where 70% stimulation is observed at 36 degrees C. Half maximal stimulation is observed at about 3 microM dye. At rhodamine 6G concentrations greater than 10 microM, ATPase activity declines with 50% inhibition observed at about 75 microM dye. The ATPase activities of the alpha 3 beta 3 gamma and alpha 3 beta 3 gamma delta complexes assembled from isolated subunits of TF1 expressed in E. coli deleted of the unc operon respond to increasing concentrations of rhodamine 6G nearly identically to the response of TF1. In contrast, the ATPase activities of the alpha 3 beta 3 and alpha 3 beta 3 delta complexes are only inhibited by rhodamine 6G with 50% inhibition observed, respectively, at 35 and 75 microM dye at 36 degrees C. The ATPase activity of TF1 is stimulated up to 4-fold by the neutral detergent, LDAO. In the presence of stimulating concentrations of LDAO, the ATPase activity of TF1 is no longer stimulated by rhodamine 6G, but rather, it is inhibited with 50% inhibition observed at about 30 microM dye at 30 degrees C. One interpretation of these results is that binding of rhodamine 6G to a high-affinity site on TF1 stimulates ATPase activity and unmasks a low-affinity, inhibitory site for the dye which is also exposed by LDAO.

  5. Membrane Properties and the Balance between Excitation and Inhibition Control Gamma-Frequency Oscillations Arising from Feedback Inhibition

    PubMed Central

    Economo, Michael N.; White, John A.

    2012-01-01

    Computational studies as well as in vivo and in vitro results have shown that many cortical neurons fire in a highly irregular manner and at low average firing rates. These patterns seem to persist even when highly rhythmic signals are recorded by local field potential electrodes or other methods that quantify the summed behavior of a local population. Models of the 30–80 Hz gamma rhythm in which network oscillations arise through ‘stochastic synchrony’ capture the variability observed in the spike output of single cells while preserving network-level organization. We extend upon these results by constructing model networks constrained by experimental measurements and using them to probe the effect of biophysical parameters on network-level activity. We find in simulations that gamma-frequency oscillations are enabled by a high level of incoherent synaptic conductance input, similar to the barrage of noisy synaptic input that cortical neurons have been shown to receive in vivo. This incoherent synaptic input increases the emergent network frequency by shortening the time scale of the membrane in excitatory neurons and by reducing the temporal separation between excitation and inhibition due to decreased spike latency in inhibitory neurons. These mechanisms are demonstrated in simulations and in vitro current-clamp and dynamic-clamp experiments. Simulation results further indicate that the membrane potential noise amplitude has a large impact on network frequency and that the balance between excitatory and inhibitory currents controls network stability and sensitivity to external inputs. PMID:22275859

  6. Relative importance index (RII) in ranking of procrastination factors among university students

    NASA Astrophysics Data System (ADS)

    Aziz, Nazrina; Zain, Zakiyah; Mafuzi, Raja Muhammad Zahid Raja; Mustapa, Aini Mastura; Najib, Nur Hasibah Mohd; Lah, Nik Fatihah Nik

    2016-08-01

    Procrastination is the action of delaying or postponing something such as making a decision or starting or completing some tasks or activities. According to previous studies, students who have a strong tendency to procrastinate get low scores in their tests, resulting in poorer academic performance compared to those who do not procrastinate. This study aims to identify the procrastination factors in completing assignments among three groups of undergraduate students. The relative importance of procrastination factors was quantified by the relative importance index (RII) method prior to ranking. A multistage sampling technique was used in selecting the sample. The findings revealed that `too many works in one time' is one of the top three factors contributing to procrastination in all groups.

  7. Thiazolidinediones inhibit REG I{alpha} gene transcription in gastrointestinal cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamauchi, Akiyo; Laboratory of Molecular Genetics, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai 980-8578; Department of Biochemistry, Nara Medical University, Kashihara 634-8521

    2009-02-13

    REG (Regenerating gene) I{alpha} protein functions as a growth factor for gastrointestinal cancer cells, and its mRNA expression is strongly associated with a poor prognosis in gastrointestinal cancer patients. We here demonstrated that PPAR{gamma}-agonist thiazolidinediones (TZDs) inhibited cell proliferation and REG I{alpha} protein/mRNA expression in gastrointestinal cancer cells. TZDs inhibited the REG I{alpha} gene promoter activity, via its cis-acting element which lacked PPAR response element and could not bind to PPAR{gamma}, in PPAR{gamma}-expressing gastrointestinal cancer cells. The inhibition was reversed by co-treatment with a specific PPAR{gamma}-antagonist GW9662. Although TZDs did not inhibit the REG I{alpha} gene promoter activity in PPAR{gamma}-non-expressingmore » cells, PPAR{gamma} overexpression in the cells recovered their inhibitory effect. Taken together, TZDs inhibit REG I{alpha} gene transcription through a PPAR{gamma}-dependent pathway. The TZD-induced REG I{alpha} mRNA reduction was abolished by cycloheximide, indicating the necessity of novel protein(s) synthesis. TZDs may therefore be a candidate for novel anti-cancer drugs for patients with gastrointestinal cancer expressing both REG I{alpha} and PPAR{gamma}.« less

  8. The cAMP signaling system inhibits the repair of {gamma}-ray-induced DNA damage by promoting Epac1-mediated proteasomal degradation of XRCC1 protein in human lung cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Eun-Ah; Juhnn, Yong-Sung, E-mail: juhnn@snu.ac.kr

    2012-06-01

    Highlights: Black-Right-Pointing-Pointer cAMP signaling system inhibits repair of {gamma}-ray-induced DNA damage. Black-Right-Pointing-Pointer cAMP signaling system inhibits DNA damage repair by decreasing XRCC1 expression. Black-Right-Pointing-Pointer cAMP signaling system decreases XRCC1 expression by promoting its proteasomal degradation. Black-Right-Pointing-Pointer The promotion of XRCC1 degradation by cAMP signaling system is mediated by Epac1. -- Abstract: Cyclic AMP is involved in the regulation of metabolism, gene expression, cellular growth and proliferation. Recently, the cAMP signaling system was found to modulate DNA-damaging agent-induced apoptosis by regulating the expression of Bcl-2 family proteins and inhibitors of apoptosis. Thus, we hypothesized that the cAMP signaling may modulate DNAmore » repair activity, and we investigated the effects of the cAMP signaling system on {gamma}-ray-induced DNA damage repair in lung cancer cells. Transient expression of a constitutively active mutant of stimulatory G protein (G{alpha}sQL) or treatment with forskolin, an adenylyl cyclase activator, augmented radiation-induced DNA damage and inhibited repair of the damage in H1299 lung cancer cells. Expression of G{alpha}sQL or treatment with forskolin or isoproterenol inhibited the radiation-induced expression of the XRCC1 protein, and exogenous expression of XRCC1 abolished the DNA repair-inhibiting effect of forskolin. Forskolin treatment promoted the ubiquitin and proteasome-dependent degradation of the XRCC1 protein, resulting in a significant decrease in the half-life of the protein after {gamma}-ray irradiation. The effect of forskolin on XRCC1 expression was not inhibited by PKA inhibitor, but 8-pCPT-2 Prime -O-Me-cAMP, an Epac-selective cAMP analog, increased ubiquitination of XRCC1 protein and decreased XRCC1 expression. Knockdown of Epac1 abolished the effect of 8-pCPT-2 Prime -O-Me-cAMP and restored XRCC1 protein level following {gamma

  9. The Critical Pedagogical Potential of Using Jacob A. Riis' Works about the Immigrant Poor in "Gilded Age" New York

    ERIC Educational Resources Information Center

    Templer, Bill

    2017-01-01

    The article seeks to contribute to working-class and social justice pedagogy by developing concrete angles on teaching/exploring some of the (a) short fiction, (b) journalistic-photographic work and (c) sociography of poverty by the Danish-born US immigrant, muckraker (http://goo.gl/6WeGtM) and social reformer Jacob A. Riis (1849-1914,…

  10. Neurochemical correlates of. gamma. -aminobutyrate (GABA) inhibition in cat visual cortex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balcar, V.J.; Dreher, B.

    1990-01-01

    High affinity binding of ({sup 3}H){gamma}-aminobutyric acid (GABA) to neuronal membranes from different parts of cat visual cortex was tested for sensitivity to GABA{sub A} agonists isoguvacine and THIP, GABA{sub A} antagonist SR95531 and GABA{sub B} agonist baclofen. Some of the GABA{sub A}-binding sites were found to have a very low affinity for THIP, suggesting the presence and, possibly, uneven distribution of non-synaptic GABA{sub A} receptors in cat visual cortex. There were no differences in K{sub m} and V{sub max} values of high affinity uptake of GABA and in the potency of K{sup +}-stimulated release of GABA, between primary andmore » association cortices. Consequently, the present results indicate that despite the anatomical and physiological differences between the primary and association feline visual cortices the neurochemical characteristics of GABAergic inhibition are very similar in the two regions.« less

  11. Novel agmatine analogue, {gamma}-guanidinooxypropylamine (GAPA) efficiently inhibits proliferation of Leishmania donovani by depletion of intracellular polyamine levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Sushma; Jhingran, Anupam; Sharma, Ankur

    2008-10-10

    The efficacy of {gamma}-guanidinooxypropylamine (GAPA), a novel agmatine analogue against protozoan parasite, Leishmaniadonovani was evaluated. Wild-type and ornithine decarboxylase-overexpressors of L. donovani were used to study the effect and mode of action of this inhibitor. GAPA inhibited the growth of both promastigotes and amastigotes. Ornithine decarboxylase (ODC) activity and polyamine levels were markedly lower in cells treated with GAPA and proliferation was rescued by addition of putrescine or spermidine. GAPA inhibited L. donovani recombinant ODC with K{sub i} value of {approx}60 {mu}M. The ODC-overexpressors showed significant resistance to GAPA. GAPA has pK{sub a} 6.71 and at physiological pH the analoguemore » can mimic protonated state of putrescine and can probably use putrescine transport system. Transport of putrescine in wild-type L. donovani promastigotes was inhibited by GAPA. We for the first time report that GAPA is a potential antileishmanial lead compound and it possibly inhibits L. donovani growth by depletion of intracellular polyamine levels.« less

  12. Interferon-γ Inhibits Ebola Virus Infection.

    PubMed

    Rhein, Bethany A; Powers, Linda S; Rogers, Kai; Anantpadma, Manu; Singh, Brajesh K; Sakurai, Yasuteru; Bair, Thomas; Miller-Hunt, Catherine; Sinn, Patrick; Davey, Robert A; Monick, Martha M; Maury, Wendy

    2015-01-01

    Ebola virus outbreaks, such as the 2014 Makona epidemic in West Africa, are episodic and deadly. Filovirus antivirals are currently not clinically available. Our findings suggest interferon gamma, an FDA-approved drug, may serve as a novel and effective prophylactic or treatment option. Using mouse-adapted Ebola virus, we found that murine interferon gamma administered 24 hours before or after infection robustly protects lethally-challenged mice and reduces morbidity and serum viral titers. Furthermore, we demonstrated that interferon gamma profoundly inhibits Ebola virus infection of macrophages, an early cellular target of infection. As early as six hours following in vitro infection, Ebola virus RNA levels in interferon gamma-treated macrophages were lower than in infected, untreated cells. Addition of the protein synthesis inhibitor, cycloheximide, to interferon gamma-treated macrophages did not further reduce viral RNA levels, suggesting that interferon gamma blocks life cycle events that require protein synthesis such as virus replication. Microarray studies with interferon gamma-treated human macrophages identified more than 160 interferon-stimulated genes. Ectopic expression of a select group of these genes inhibited Ebola virus infection. These studies provide new potential avenues for antiviral targeting as these genes that have not previously appreciated to inhibit negative strand RNA viruses and specifically Ebola virus infection. As treatment of interferon gamma robustly protects mice from lethal Ebola virus infection, we propose that interferon gamma should be further evaluated for its efficacy as a prophylactic and/or therapeutic strategy against filoviruses. Use of this FDA-approved drug could rapidly be deployed during future outbreaks.

  13. Oral administration of Uncariae rhynchophylla inhibits the development of DNFB-induced atopic dermatitis-like skin lesions via IFN-gamma down-regulation in NC/Nga mice.

    PubMed

    Kim, Dong-Young; Jung, Jung-A; Kim, Tae-Ho; Seo, Sang-Wan; Jung, Sung-Ki; Park, Cheung-Seog

    2009-04-21

    Uncariae rhynchophylla (UR) is an herb which has blood pressure lowering and anti-inflammatory effects and has been prescribed traditionally to treat stroke and vascular dementia. In the present study, we examined whether UR suppress Atopic dermatitis (AD)-like skin lesions in NC/Nga mice treated with 2, 4-dinitrofluorobenzene (DNFB) under SPF conditions. The effect of UR in DNFB- treated NC/Nga mice was determined by measuring the skin symptom severity, levels of serum IgE, and of the amounts of IL-4 and IFN-gamma secreted by activated T cells in draining lymph nodes. Oral administration of UR to DNFB-treated NC/Nga mice was found to inhibit ear thickness increases and the skin lesions induced by DNFB. IFN-gamma production by CD4+ T cells from the lymph nodes of DNFB-treated NC/Nga mice was significantly inhibited by UR treatment, although levels of IL-4 and total IgE in serum were not. UR may suppress the development of AD-like dermatitis in DNFB-treated NC/Nga mice by reducing IFN-gamma production.

  14. 15-deoxy-Delta12,14-prostaglandin J2 inhibits INF-gamma-induced JAK/STAT1 signalling pathway activation and IP-10/CXCL10 expression in mesangial cells.

    PubMed

    Panzer, Ulf; Zahner, Gunther; Wienberg, Ulrike; Steinmetz, Oliver M; Peters, Anett; Turner, Jan-Eric; Paust, Hans-Joachim; Wolf, Gunter; Stahl, Rolf A K; Schneider, André

    2008-12-01

    Activators of the peroxisome proliferator-activated receptor gamma (PPARgamma), originally found to be implicated in lipid metabolism and glucose homeostasis, have been shown to modulate inflammatory responses through interference with cytokine and chemokine production. Given the central role of mesangial cell-derived chemokines in glomerular leukocyte recruitment in human and experimental glomerulonephritis, we studied the influence of natural and synthetic PPARgamma activators on INF-gamma-induced expression of the T cell-attracting chemokines IP-10/CXCL10, Mig/CXCL9 and I-TAC/CXCL11 in mouse mesangial cells. INF-gamma-treated mesangial cells were cultured in the presence or absence of either the naturally occurring PPARgamma ligand 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)) or synthetic PPARgamma activators of the glitazone group. Chemokine mRNA and protein expression and activation of the JAK/STAT signalling pathway were analysed. The 15d-PGJ(2), but not synthetic PPARgamma ligands, dose-dependently inhibited INF-gamma-induced chemokine gene (mRNA and protein) expression. Combined results from EMSA and western blot analysis revealed the inhibitory ability of 15d-PGJ(2), but not of synthetic PPARgamma ligands, on IFN-gamma-induced tyrosine phosphorylation of JAK1, JAK2, STAT1 and nuclear STAT1 translocation and DNA binding. Our results demonstrate that 15d-PGJ(2) inhibits INF-gamma-induced chemokine expression in mesangial cells by targeting the JAK/STAT signalling pathway. This effect is independent of an interference with PPARgamma.

  15. IGFBP-3, hypoxia and TNF-{alpha} inhibit adiponectin transcription

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zappala, Giovanna, E-mail: zappalag@mail.nih.gov; Rechler, Matthew M.; Clinical Endocrinology Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD

    2009-05-15

    The thiazolidinedione rosiglitazone, an agonist ligand for the nuclear receptor PPAR-{gamma}, improves insulin sensitivity in part by stimulating transcription of the insulin-sensitizing adipokine adiponectin. It activates PPAR-{gamma}-RXR-{alpha} heterodimers bound to PPAR-{gamma} response elements in the adiponectin promoter. Rosiglitazone-stimulated adiponectin protein synthesis in 3T3-L1 mouse adipocytes has been shown to be inhibited by IGFBP-3, which can be induced by hypoxia and the proinflammatory cytokine, TNF-{alpha}, two inhibitors of adiponectin transcription. The present study demonstrates that IGFBP-3, the hypoxia-mimetic agent cobalt chloride, and TNF-{alpha} inhibit rosiglitazone-induced adiponectin transcription in mouse embryo fibroblasts that stably express PPAR-{gamma}2. Native IGFBP-3 can bind RXR-{alpha} andmore » inhibited rosiglitazone stimulated promoter activity, whereas an IGFBP-3 mutant that does not bind RXR-{alpha} did not. These results suggest that IGFBP-3 may mediate the inhibition of adiponectin transcription by hypoxia and TNF-{alpha}, and that IGFBP-3 binding to RXR-{alpha} may be required for the observed inhibition.« less

  16. Gamma irradiation reduces the immunological toxicity of doxorubicin, anticancer drug

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Hun; Sung, Nak-Yun; Raghavendran, H. Balaji; Yoon, Yohan; Song, Beom-Seok; Choi, Jong-il; Yoo, Young-Choon; Byun, Myung-Woo; Hwang, Young-Jeong; Lee, Ju-Woon

    2009-07-01

    Doxorubicin (DOX) is a widely used anticancer agent, but exhibits some immunological toxicity to patients during chemotherapy. The present study was conducted to evaluate the effect of gamma irradiation on the immunological response and the inhibition activity on in vivo tumor mass of DOX. The results showed that DOX irradiated at 10 and 20 kGy reduce the inhibition of mouse peritoneal macrophage proliferation and induce the release of cytokines (TNF-α and IL-6) when compared with non-irradiated DOX. The cytotoxicity against human breast (MCF-7), murine colon adenocarcinoma (Colon 26) and human monocytic (THP-1) tumor cell were not significantly different between non-irradiated and irradiated DOX ( P<0.05). In vivo study on the tumor mass inhibition, gamma-irradiated DOX showed a considerable inhibition of tumor mass and this effect was statistically non-significant as compared with non-irradiated DOX. In conclusion, gamma irradiation could be regarded as a potential method for reducing the immunological toxicity of DOX. Further researches is needed to reveal the formation and activity of radiolysis products by gamma irradiation.

  17. Annexin V Incorporated into Influenza Virus Particles Inhibits Gamma Interferon Signaling and Promotes Viral Replication

    PubMed Central

    Berri, Fatma; Haffar, Ghina; Lê, Vuong Ba; Sadewasser, Anne; Paki, Katharina; Lina, Bruno; Wolff, Thorsten

    2014-01-01

    ABSTRACT During the budding process, influenza A viruses (IAVs) incorporate multiple host cell membrane proteins. However, for most of them, their significance in viral morphogenesis and infectivity remains unknown. We demonstrate here that the expression of annexin V (A5) is upregulated at the cell surface upon IAV infection and that a substantial proportion of the protein is present in lipid rafts, the site of virus budding. Western blotting and immunogold analysis of highly purified IAV particles showed the presence of A5 in the virion. Significantly, gamma interferon (IFN-γ)-induced Stat phosphorylation and IFN-γ-induced 10-kDa protein (IP-10) production in macrophage-derived THP-1 cells was inhibited by purified IAV particles. Disruption of the IFN-γ signaling pathway was A5 dependent since downregulation of its expression or its blockage reversed the inhibition and resulted in decreased viral replication in vitro. The functional significance of these results was also observed in vivo. Thus, IAVs can subvert the IFN-γ antiviral immune response by incorporating A5 into their envelope during the budding process. IMPORTANCE Many enveloped viruses, including influenza A viruses, bud from the plasma membrane of their host cells and incorporate cellular surface proteins into viral particles. However, for the vast majority of these proteins, only the observation of their incorporation has been reported. We demonstrate here that the host protein annexin V is specifically incorporated into influenza virus particles during the budding process. Importantly, we showed that packaged annexin V counteracted the antiviral activity of gamma interferon in vitro and in vivo. Thus, these results showed that annexin V incorporated in the viral envelope of influenza viruses allow viral escape from immune surveillance. Understanding the role of host incorporated protein into virions may reveal how enveloped RNA viruses hijack the host cell machinery for their own purposes. PMID

  18. Strength of Gamma Rhythm Depends on Normalization

    PubMed Central

    Ray, Supratim; Ni, Amy M.; Maunsell, John H. R.

    2013-01-01

    Neuronal assemblies often exhibit stimulus-induced rhythmic activity in the gamma range (30–80 Hz), whose magnitude depends on the attentional load. This has led to the suggestion that gamma rhythms form dynamic communication channels across cortical areas processing the features of behaviorally relevant stimuli. Recently, attention has been linked to a normalization mechanism, in which the response of a neuron is suppressed (normalized) by the overall activity of a large pool of neighboring neurons. In this model, attention increases the excitatory drive received by the neuron, which in turn also increases the strength of normalization, thereby changing the balance of excitation and inhibition. Recent studies have shown that gamma power also depends on such excitatory–inhibitory interactions. Could modulation in gamma power during an attention task be a reflection of the changes in the underlying excitation–inhibition interactions? By manipulating the normalization strength independent of attentional load in macaque monkeys, we show that gamma power increases with increasing normalization, even when the attentional load is fixed. Further, manipulations of attention that increase normalization increase gamma power, even when they decrease the firing rate. Thus, gamma rhythms could be a reflection of changes in the relative strengths of excitation and normalization rather than playing a functional role in communication or control. PMID:23393427

  19. Evaluation of umbilical cord blood CD34+ hematopoietic stem cells expansion with inhibition of TGF-β receptorII in co-culture with bone marrow mesenchymal stromal cells.

    PubMed

    Sohrabi Akhkand, Saman; Amirizadeh, Naser; Nikougoftar, Mahin; Alizadeh, Javad; Zaker, Farhad; Sarveazad, Arash; Joghataei, Mohammad Taghi; Faramarzi, Mahmood

    2016-08-01

    Umbilical cord blood (UCB) is an important source of hematopoietic stem cells (HSCs). However, low number of HSCs in UCB has been an obstacle for adult hematopoietic stem cell transplantation. The expansion of HSCs in culture is one approach to overcome this problem. In this study, we investigated the expansion of UCB-HSCs by using human bone marrow mesenchymal stromal cells (MSCs) as feeder layer as well as inhibiting the TGF-β signaling pathway through reduction of TGF-βRII expression. CD34(+) cells were isolated from UCB and transfected by SiRNA targeting TGF-βRII mRNA. CD34(+) cells were expanded in four culture media with different conditions, including 1) expansion of CD34(+) cells in serum free medium containing growth factors, 2) expansion of cells transfected with SiRNA targeting TGF-βRII in medium containing growth factors, 3) expansion of cells in presence of growth factors and MSCs, 4) expansion of cells transfected with SiRNA targeting TGF-βRII on MSCs feeder layer in medium containing growth factors. These culture conditions were evaluated for the number of total nucleated cells (TNCs), CD34 surface marker as well as using CFU assay on 8th day after culture. The fold increase in CD34(+) cells, TNCs, and colony numbers (71.8±6.9, 93.2±10.2 and 128±10, respectively) was observed to be highest in fourth culture medium compared to other culture conditions. The difference between number of cells in four culture media in 8th day compared to unexpanded cells (0day) before expansion was statistically significant (P<0.05). The results showed that transfection of CD34(+) cells with SiRNA targeting TGF-βRII and their co-culture with MSCs could considerably increase the number of progenitors. Therefore, this method could be useful for UCB-HSCs expansion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. An Antibody Blocking Activin Type II Receptors Induces Strong Skeletal Muscle Hypertrophy and Protects from Atrophy

    PubMed Central

    Minetti, Giulia C.; Sheppard, KellyAnn; Ibebunjo, Chikwendu; Feige, Jerome N.; Hartmann, Steffen; Brachat, Sophie; Rivet, Helene; Koelbing, Claudia; Morvan, Frederic; Hatakeyama, Shinji

    2014-01-01

    The myostatin/activin type II receptor (ActRII) pathway has been identified to be critical in regulating skeletal muscle size. Several other ligands, including GDF11 and the activins, signal through this pathway, suggesting that the ActRII receptors are major regulatory nodes in the regulation of muscle mass. We have developed a novel, human anti-ActRII antibody (bimagrumab, or BYM338) to prevent binding of ligands to the receptors and thus inhibit downstream signaling. BYM338 enhances differentiation of primary human skeletal myoblasts and counteracts the inhibition of differentiation induced by myostatin or activin A. BYM338 prevents myostatin- or activin A-induced atrophy through inhibition of Smad2/3 phosphorylation, thus sparing the myosin heavy chain from degradation. BYM338 dramatically increases skeletal muscle mass in mice, beyond sole inhibition of myostatin, detected by comparing the antibody with a myostatin inhibitor. A mouse version of the antibody induces enhanced muscle hypertrophy in myostatin mutant mice, further confirming a beneficial effect on muscle growth beyond myostatin inhibition alone through blockade of ActRII ligands. BYM338 protects muscles from glucocorticoid-induced atrophy and weakness via prevention of muscle and tetanic force losses. These data highlight the compelling therapeutic potential of BYM338 for the treatment of skeletal muscle atrophy and weakness in multiple settings. PMID:24298022

  1. Exposure of luminous marine bacteria to low-dose gamma-radiation.

    PubMed

    Kudryasheva, N S; Petrova, A S; Dementyev, D V; Bondar, A A

    2017-04-01

    The study addresses biological effects of low-dose gamma-radiation. Radioactive 137 Cs-containing particles were used as model sources of gamma-radiation. Luminous marine bacterium Photobacterium phosphoreum was used as a bioassay with the bioluminescent intensity as the physiological parameter tested. To investigate the sensitivity of the bacteria to the low-dose gamma-radiation exposure (≤250 mGy), the irradiation conditions were varied as follows: bioluminescence intensity was measured at 5, 10, and 20°С for 175, 100, and 47 h, respectively, at different dose rates (up to 4100 μGy/h). There was no noticeable effect of gamma-radiation at 5 and 10°С, while the 20°С exposure revealed authentic bioluminescence inhibition. The 20°С results of gamma-radiation exposure were compared to those for low-dose alpha- and beta-radiation exposures studied previously under comparable experimental conditions. In contrast to ionizing radiation of alpha and beta types, gamma-emission did not initiate bacterial bioluminescence activation (adaptive response). As with alpha- and beta-radiation, gamma-emission did not demonstrate monotonic dose-effect dependencies; the bioluminescence inhibition efficiency was found to be related to the exposure time, while no dose rate dependence was found. The sequence analysis of 16S ribosomal RNA gene did not reveal a mutagenic effect of low-dose gamma radiation. The exposure time that caused 50% bioluminescence inhibition was suggested as a test parameter for radiotoxicity evaluation under conditions of chronic low-dose gamma irradiation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Application of gamma irradiation for inhibition of food allergy

    NASA Astrophysics Data System (ADS)

    Byun, Myung-Woo; Lee, Ju-Woon; Yook, Hong-Sun; Jo, Cheorun; Kim, Hee-Yun

    2002-03-01

    This study was carried out to evaluate the application of food irradiation technology as a method for reducing food allergy. Milk β-lactoglobulin, chicken egg albumin, and shrimp tropomyosin were used as model food allergens for experiments on allergenic and molecular properties by gamma irradiation. The amount of intact allergens in an irradiated solution was reduced by gamma irradiation depending upon the dose. These results showed that epitopes on the allergens were structurally altered by radiation treatment and that the irradiation technology can be applied to reduce allergenicity of allergic foods.

  3. Involvement of the dehydroleucodine alpha-methylene-gamma-lactone function in GVBD inhibition in Bufo arenarum oocytes.

    PubMed

    Sánchez Toranzo, G; López, L A; Martínez, J Zapata; Bühler, M C Gramajo; Bühler, M I

    2010-02-01

    Dehydroleucodine (DhL), a sesquiterpenic lactone, was isolated and purified from aerial parts of Artemisia douglasiana Besser, a medicinal herb used in Argentina. DhL is an alpha-methylene butyro-gamma-lactone ring connected to a seven-membered ring fused to an exocyclic alpha,beta-unsaturated cyclopentenone ring. It has been previously shown that DhL selectively induces a dose-dependent transient arrest in G2 of both meristematic cells and vascular smooth muscle cells. Treatment with DhL induces an inhibition of spontaneous and progesterone-induced maturation in a dose-dependent manner in Bufo arenarum fully grown oocytes arrested at G2, at the beginning of meiosis I. However, the nature of the mechanisms involved in the process is still unknown. The aim of this work was to analyse whether DhL's alpha-methylene-gamma-lactone function is responsible for the inhibition effect on meiosis reinitiation of Bufo arenarum oocytes as well as some of the transduction pathways that could be involved in this effect using a derivative of DhL inactivated for alpha-methylenelactone, the 11,13-dihydro-dehydroleucodine (2H-DhL). The use of 2H-DhL in the maturation promoting factor (MPF) amplification experiments by injection of both cytoplasm with active MPF and of germinal vesicle content showed results similar to the ones obtained with DhL, suggesting that the hydrogenated derivative would act in a similar way to DhL. Pretreatment with DhL or 2H-DhL did not affect the percentage of germinal vesicle breakdown (GVBD) induced by H89, a protein kinase A (PKA) inhibitor, which suggests that these lactones would act on another step of the signalling pathway that induces MPF activation. The fact that both DhL and 2H-Dhl inhibit GVBD induced by okadaic acid microinjection suggests that they could act on the activity of the Myt1 kinase. This idea is supported by the experiments of injection of GV contents in which an inhibitory effect of these lactones on GVBD was also observed. Our

  4. Transforming growth factor-β inhibits myocardial PPARγ expression in pressure overload-induced cardiac fibrosis and remodeling in mice

    PubMed Central

    Gong, Kaizheng; Chen, Yiu-Fai; Li, Peng; Lucas, Jason A.; Hage, Fadi G.; Yang, Qinglin; Nozell, Susan E.; Oparil, Suzanne; Xing, Dongqi

    2012-01-01

    Objectives Pharmacological activation of peroxisome proliferator-activated receptor gamma (PPARγ) has been shown to attenuate pressure overload-induced cardiac fibrosis, suggesting that PPARγ has an antifibrotic effect. This study tested the hypothesis that there is a functional interaction between transforming growth factor-β (TGF-β) signaling and endogenous PPARγ expression in cardiac fibroblasts and pressure overloaded heart. Methods and results We observed that, in response to pressure overload induced by transverse aortic constriction, left-ventricular PPARγ protein levels were decreased in wild-type mice, but increased in mice with an inducible overexpression of dominant negative mutation of the human TGF-β type II receptor (DnTGFβRII), in which TGF-β signaling is blocked. In isolated mouse cardiac fibroblasts, we demonstrated that TGF-β1 treatment decreased steady state PPARγ mRNA (−34%) and protein (−52%) levels, as well as PPARγ transcriptional activity (−53%). Chromatin immunoprecipitation analysis showed that TGF-β1 treatment increased binding of Smad2/3, Smad4 and histone deacetylase 1, and decreased binding of acetylated histone 3 to the PPARγ promoter in cardiac fibroblasts. Both pharmacological activation and overexpression of PPARγ significantly inhibited TGF-β1-induced extracellular matrix molecule expression in isolated cardiac fibroblasts, whereas treatment with the PPARγ agonist rosiglitazone inhibited, and treatment with the PPARγ antagonist T0070907 exacerbated chronic pressure overload-induced cardiac fibrosis and remodeling in wild-type mice in vivo. Conclusion These data provide strong evidence that TGF-β1 directly suppresses PPARγ expression in cardiac fibroblasts via a transcriptional mechanism and suggest that the down-regulation of endogenous PPARγ expression by TGF-β may be involved in pressure overload-induced cardiac fibrosis. PMID:21836474

  5. Hypothermia inhibits translocation of CaM kinase II and PKC-alpha, beta, gamma isoforms and fodrin proteolysis in rat brain synaptosome during ischemia-reperfusion.

    PubMed

    Harada, Kazuki; Maekawa, Tsuyoshi; Tsuruta, Ryosuke; Kaneko, Tadashi; Sadamitsu, Daikai; Yamashima, Tetsumori; Yoshida Ki, Ken-ichi

    2002-03-01

    To clarify the involvement of intracellular signaling pathway and calpain in the brain injury and its protection by mild hypothermia, immunoblotting analyses were performed in the rat brain after global forebrain ischemia and reperfusion. After 30 min of ischemia followed by 60 min of reperfusion, Ca2+/calmodulin-dependent kinase II (CaM kinase II) and protein kinase C (PKC)-alpha, beta, gamma isoforms translocated to the synaptosomal fraction, while mild hypothermia (32 degrees C) inhibited the translocation. The hypothermia also inhibited fodrin proteolysis caused by ischemia-reperfusion, indicating the inhibition of calpain. These effects of hypothermia may explain the mechanism of the protection against brain ischemia-reperfusion injury through modulating synaptosomal function.

  6. Telmisartan prevented cognitive decline partly due to PPAR-{gamma} activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mogi, Masaki; Li Jianmei; Tsukuda, Kana

    Telmisartan is a unique angiotensin receptor blocker (ARB) and partial agonist of peroxisome proliferator-activated receptor (PPAR)-{gamma}. Here, we investigated the preventive effect of telmisartan on cognitive decline in Alzheimer disease. In ddY mice, intracerebroventricular injection of A{beta} 1-40 significantly attenuated their cognitive function evaluated by shuttle avoidance test. Pretreatment with a non-hypotensive dose of telmisartan significantly inhibited such cognitive decline. Interestingly, co-treatment with GW9662, a PPAR-{gamma} antagonist, partially inhibited this improvement of cognitive decline. Another ARB, losartan, which has less PPAR-{gamma} agonistic effect, also inhibited A{beta}-injection-induced cognitive decline; however the effect was smaller than that of telmisartan and was notmore » affected by GW9662. Immunohistochemical staining for A{beta} showed the reduced A{beta} deposition in telmisartan-treated mice. However, this reduction was not observed in mice co-administered GW9662. These findings suggest that ARB has a preventive effect on cognitive impairment in Alzheimer disease, and telmisartan, with PPAR-{gamma} activation, could exert a stronger effect.« less

  7. Gamma irradiation preserves immunosuppressive potential and inhibits clonogenic capacity of human bone marrow-derived mesenchymal stromal cells

    PubMed Central

    de Andrade, Ana Valéria Gouveia; Riewaldt, Julia; Wehner, Rebekka; Schmitz, Marc; Odendahl, Marcus; Bornhäuser, Martin; Tonn, Torsten

    2014-01-01

    Mesenchymal stromal cells (MSCs) are promising candidates for the treatment of graft-versus-host and autoimmune diseases. Here, by virtue of their immunosuppressive effects, they are discussed to exhibit inhibitory actions on various immune effector cells, including T lymphocytes that promote the underlying pathology. While it becomes apparent that MSCs exhibit their therapeutic effect in a transient manner, they are usually transplanted from third party donors into heavily immunocompromised patients. However, little is known about potential late complications of persisting third party MSCs in these patients. We therefore analysed the effect of gamma irradiation on the potency and proliferation of MSCs to elucidate an irradiation dose, which would allow inhibition of MSC proliferation while at the same time preserving their immunosuppressive function. Bone marrow-derived MSCs (BM-MSCs) were gamma-irradiated at increasing doses of 5, 10 and 30 Gy and subsequently assessed by colony formation unit (CFU)-assay, Annexin V-staining and in a mixed lymphocyte reaction, to assess colony growth, apoptosis and the immunosuppressive capacity, respectively. Complete loss of proliferative capacity measured by colony formation was observed after irradiation with a dose equal to or greater than 10 Gy. No significant decrease of viable cells was detected, as compared to non-irradiated BM-MSCs. Notably, irradiated BM-MSCs remained highly immunosuppressive in vitro for at least 5 days after irradiation. Gamma irradiation does not impair the immunosuppressive capacity of BM-MSCs in vitro and thus might increase the safety of MSC-based cell products in clinical applications. PMID:24655362

  8. Inhibition of TGF–β signaling in subchondral bone mesenchymal stem cells attenuates osteoarthritis

    PubMed Central

    Zhen, Gehua; Wen, Chunyi; Jia, Xiaofeng; Li, Yu; Crane, Janet L.; Mears, Simon C.; Askin, Frederic B.; Frassica, Frank J.; Chang, Weizhong; Yao, Jie; Nayfeh, Tariq; Johnson, Carl; Artemov, Dmitri; Chen, Qianming; Zhao, Zhihe; Zhou, Xuedong; Cosgarea, Andrew; Carrino, John; Riley, Lee; Sponseller, Paul; Wan, Mei; Lu, William Weijia; Cao, Xu

    2013-01-01

    Osteoarthritis is a highly prevalent and debilitating joint disorder. There is no effective medical therapy for osteoarthritis due to limited understanding of osteoarthritis pathogenesis. We show that TGF–β1 is activated in the subchondral bone in response to altered mechanical loading in an anterior cruciate ligament transection (ACLT) osteoarthritis mouse model. TGF–β1 concentrations also increased in human osteoarthritis subchondral bone. High concentrations of TGF–β1 induced formation of nestin+ mesenchymal stem cell (MSC) clusters leading to aberrant bone formation accompanied by increased angiogenesis. Transgenic expression of active TGF–β1 in osteoblastic cells induced osteoarthritis. Inhibition of TGF–β activity in subchondral bone attenuated degeneration of osteoarthritis articular cartilage. Notably, knockout of the TGF–β type II receptor (TβRII) in nestin+ MSCs reduced development of osteoarthritis in ACLT mice. Thus, high concentrations of active TGF–β1 in the subchondral bone initiated the pathological changes of osteoarthritis, inhibition of which could be a potential therapeutic approach. PMID:23685840

  9. Fermentable metabolite of Zymomonas mobilis controls collagen reduction in photoaging skin by improving TGF-beta/Smad signaling suppression.

    PubMed

    Tanaka, Hiroshi; Yamaba, Hiroyuki; Kosugi, Nobuhiko; Mizutani, Hiroshi; Nakata, Satoru

    2008-04-01

    Solar ultraviolet (UV) irradiation causes damages on human skin and premature skin aging (photoaging). UV-induced reduction of type I collagen in dermis is widely considered primarily induction of wrinkled appearance of photoaging skin. Type I procollagen synthesis is reduced under UV irradiation by blocking transforming growth factor-beta (TGF-beta)/Smad signaling; more specifically, it is down-regulation of TGF-beta type II receptor (T beta RII). Therefore, preventing UV-induced loss of T beta RII results decreased type I collagen reduction in photoaging skin. Zymomonas mobilis is an alcohol fermentable, gram-negative facultative anaerobic bacterium whose effect on skin tissue is scarcely studied. We investigated the protective effects of fermentable metabolite of Z. mobilis (FM of Z. mobilis) against reduction of type I procollagen synthesis of UV-induced down-regulation of T beta RII in human dermal fibroblasts FM of Z. mobilis was obtained from lyophilization of bacterium culture supernatant. The levels of T beta RII and type I procollagen mRNA in human dermal fibroblasts were measured by quantitative real-time RT-PCR, and T beta RII protein levels were assayed by western blotting. T beta RII, type I procollagen, and type I collagen proteins in human dermal fibroblasts or hairless mouse skin were detected by immunostaining. FM of Z. mobilis inhibited down regulation of T beta RII mRNA, and protein levels in UVB irradiated human dermal fibroblasts consequently recover reduced type I procollagen synthesis. These results indicate UVB irradiation inhibits type I procollagen synthesis by suppression of TGF-beta/Smad signaling pathway, and FM of Z. mobilis has inhibitory effect on UVB-induced reduction of type I procollagen synthesis. While short period UVB irradiation decreased both T beta RII and type I procollagen protein levels in hairless mouse skin, topical application of FM of Z. mobilis prevented this decrease. Wrinkle formation in hairless mouse skin

  10. Peroxisome proliferator-activated receptor (PPAR)-gamma expression in human vascular smooth muscle cells: inhibition of growth, migration, and c-fos expression by the peroxisome proliferator-activated receptor (PPAR)-gamma activator troglitazone.

    PubMed

    Benson, S; Wu, J; Padmanabhan, S; Kurtz, T W; Pershadsingh, H A

    2000-01-01

    This study was conducted to determine whether cultured human coronary artery and aorta vascular smooth muscle (VSM) cells express the nuclear transcription factor peroxisome proliferator-activated receptor-gamma (PPARgamma); whether the thiazolidinedione troglitazone, a ligand for PPARgamma, would inhibit c-fos expression by these cells; and whether troglitazone would inhibit proliferation and migration induced in these cells by mitogenic growth factors. Using immunoblotting and reverse-transcriptase polymerase chain reaction (RT-PCR) techniques, we show that both human aorta and coronary artery VSM cell lines expressed PPARgamma protein and mRNA for both PPARgamma isoforms, PPARgamma1 and PPARgamma2. Immunocytochemical staining localized the PPARgamma protein primarily within the nucleus. Troglitazone inhibited basic fibroblast growth factor and platelet-derived growth factor-BB induced DNA synthesis in a dose-dependent manner and downregulated the growth-factor-induced expression of c-fos. Troglitazone also inhibited the migration of coronary artery VSM cells along a platelet-derived growth factor-BB concentration gradient. These findings demonstrate for the first time the expression and nuclear localization of PPARgamma in human coronary artery and aorta VSM cells. The data also suggest that the downregulation of c-fos expression, growth-factor-induced proliferation, and migration by VSM may, in part, be mediated by activation of the PPARgamma receptor.

  11. Effect of gamma-oryzanol on the bioaccessibility and synthesis of cholesterol.

    PubMed

    Mäkynen, K; Chitchumroonchokchai, C; Adisakwattana, S; Failla, M; Ariyapitipun, T

    2012-01-01

    Gamma-oryzanol (gamma-OR) is a unique mixture of triterpene alcohol and sterol ferulates present in rice bran oil. Hypocholesterolemic activity of gamma-OR has been reported in various animal and human studies. However, the mechanisms for this hypocholesterolemic activity of gamma-OR remain unclear. Therefore, the aim of this in vitro study was to examine the effect of gamma-OR on the bioaccessibility and synthesis of cholesterol. The effects of gamma-OR on the efficiency of incorporation of cholesterol into mixed micelles during digestion and apical uptake of cholesterol by Caco-2 human intestinal cells were determined using the coupled in vitro simulated digestion/Caco-2 human intestinal cell model. The impact of gamma-OR on the HMG-CoA reductase activity was also investigated. Although incorporation of cholesterol into synthetic micelles was significantly inhibited by 15-fold molar excess of gamma-OR, efficiency of micellarization of cholesterol during simulated digestion of the rice meal was not significantly altered by the presence of as high as 20-fold molar excess of gamma-OR. Nevertheless, 20-fold molar excess of gamma-OR significantly decreased apical uptake of cholesterol into Caco-2 intestinal cells. In addition, gamma-OR inhibited 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase activity. These findings suggest that the hypocholesterolemic activity of gamma-OR is due in part to impaired apical uptake of cholesterol into enterocytes and perhaps a decrease in HMG-CoA reductase activity.

  12. Peroxisome proliferator-activated receptor gamma overexpression suppresses proliferation of human colon cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsukahara, Tamotsu, E-mail: ttamotsu@shinshu-u.ac.jp; Haniu, Hisao

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer We examined the correlation between PPAR{gamma} expression and cell proliferation. Black-Right-Pointing-Pointer PPAR{gamma} overexpression reduces cell viability. Black-Right-Pointing-Pointer We show the synergistic effect of cell growth inhibition by a PPAR{gamma} agonist. -- Abstract: Peroxisome proliferator-activated receptor gamma (PPAR{gamma}) plays an important role in the differentiation of intestinal cells and tissues. Our previous reports indicate that PPAR{gamma} is expressed at considerable levels in human colon cancer cells. This suggests that PPAR{gamma} expression may be an important factor for cell growth regulation in colon cancer. In this study, we investigated PPAR{gamma} expression in 4 human colon cancer cell lines, HT-29, LOVO,more » DLD-1, and Caco-2. Real-time polymerase chain reaction (PCR) and Western blot analysis revealed that the relative levels of PPAR{gamma} mRNA and protein in these cells were in the order HT-29 > LOVO > Caco-2 > DLD-1. We also found that PPAR{gamma} overexpression promoted cell growth inhibition in PPAR{gamma} lower-expressing cell lines (Caco-2 and DLD-1), but not in higher-expressing cells (HT-29 and LOVO). We observed a correlation between the level of PPAR{gamma} expression and the cells' sensitivity for proliferation.« less

  13. Human Gamma Satellite Insulator Sequences to Prevent Gene Silencing | NCI Technology Transfer Center | TTC

    Cancer.gov

    This invention describes the use of chromatin insulators, or gamma satellite DNA, to inhibit gene silencing in a cell, which may have a significant impact on gene therapy across multiple diseases where gene silencing is the cause. Experimental data has demonstrated these gamma satellite DNAs overcome gene position effects and ultimately inhibit gene silencing.

  14. Induced expression of mRNA for IL-5, IL-6, TNF-alpha, MIP-2 and IFN-gamma in immunologically activated rat peritoneal mast cells: inhibition by dexamethasone and cyclosporin A.

    PubMed

    Williams, C M; Coleman, J W

    1995-10-01

    We examined the capacity of purified rat peritoneal connective tissue-type mast cells (PMC) to express mRNA for several cytokines. Stimulation of PMC with anti-IgE for 4 hr induced the expression of mRNA encoding interleukin-5 (IL-5), IL-6, tumour necrosis factor-alpha (TNF-alpha), macrophage inflammatory protein-2 (MIP-2) and interferon-gamma (IFN-gamma). Unstimulated PMC expressed detectable mRNA for TNF-alpha but not for the other four cytokines. Incubation of PMC with cyclosporin A (CsA) or dexamethasone (DEX), each at 10(-6) M for 24 hr, significantly inhibited the induced expression of mRNA for each of the five cytokines, and also inhibited release of biologically active TNF-alpha. Throughout these experiments mRNA levels of the housekeeping gene G3PDH were not altered by stimulation with anti-IgE or incubation with CsA or DEX. We conclude that immunological activation of rat PMC induces gene expression of several cytokines and that expression of these genes can be inhibited by immunosuppressive drugs.

  15. Induced expression of mRNA for IL-5, IL-6, TNF-alpha, MIP-2 and IFN-gamma in immunologically activated rat peritoneal mast cells: inhibition by dexamethasone and cyclosporin A.

    PubMed Central

    Williams, C M; Coleman, J W

    1995-01-01

    We examined the capacity of purified rat peritoneal connective tissue-type mast cells (PMC) to express mRNA for several cytokines. Stimulation of PMC with anti-IgE for 4 hr induced the expression of mRNA encoding interleukin-5 (IL-5), IL-6, tumour necrosis factor-alpha (TNF-alpha), macrophage inflammatory protein-2 (MIP-2) and interferon-gamma (IFN-gamma). Unstimulated PMC expressed detectable mRNA for TNF-alpha but not for the other four cytokines. Incubation of PMC with cyclosporin A (CsA) or dexamethasone (DEX), each at 10(-6) M for 24 hr, significantly inhibited the induced expression of mRNA for each of the five cytokines, and also inhibited release of biologically active TNF-alpha. Throughout these experiments mRNA levels of the housekeeping gene G3PDH were not altered by stimulation with anti-IgE or incubation with CsA or DEX. We conclude that immunological activation of rat PMC induces gene expression of several cytokines and that expression of these genes can be inhibited by immunosuppressive drugs. Images Figure 1 Figure 2 Figure 3 PMID:7490125

  16. High-frequency gamma oscillations coexist with low-frequency gamma oscillations in the rat visual cortex in vitro.

    PubMed

    Oke, Olaleke O; Magony, Andor; Anver, Himashi; Ward, Peter D; Jiruska, Premysl; Jefferys, John G R; Vreugdenhil, Martin

    2010-04-01

    Synchronization of neuronal activity in the visual cortex at low (30-70 Hz) and high gamma band frequencies (> 70 Hz) has been associated with distinct visual processes, but mechanisms underlying high-frequency gamma oscillations remain unknown. In rat visual cortex slices, kainate and carbachol induce high-frequency gamma oscillations (fast-gamma; peak frequency approximately 80 Hz at 37 degrees C) that can coexist with low-frequency gamma oscillations (slow-gamma; peak frequency approximately 50 Hz at 37 degrees C) in the same column. Current-source density analysis showed that fast-gamma was associated with rhythmic current sink-source sequences in layer III and slow-gamma with rhythmic current sink-source sequences in layer V. Fast-gamma and slow-gamma were not phase-locked. Slow-gamma power fluctuations were unrelated to fast-gamma power fluctuations, but were modulated by the phase of theta (3-8 Hz) oscillations generated in the deep layers. Fast-gamma was spatially less coherent than slow-gamma. Fast-gamma and slow-gamma were dependent on gamma-aminobutyric acid (GABA)(A) receptors, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and gap-junctions, their frequencies were reduced by thiopental and were weakly dependent on cycle amplitude. Fast-gamma and slow-gamma power were differentially modulated by thiopental and adenosine A(1) receptor blockade, and their frequencies were differentially modulated by N-methyl-D-aspartate (NMDA) receptors, GluK1 subunit-containing receptors and persistent sodium currents. Our data indicate that fast-gamma and slow-gamma both depend on and are paced by recurrent inhibition, but have distinct pharmacological modulation profiles. The independent co-existence of fast-gamma and slow-gamma allows parallel processing of distinct aspects of vision and visual perception. The visual cortex slice provides a novel in vitro model to study cortical high-frequency gamma oscillations.

  17. Peroxisome proliferator-activated receptor gamma and transforming growth factor-beta pathways inhibit intestinal epithelial cell growth by regulating levels of TSC-22.

    PubMed

    Gupta, Rajnish A; Sarraf, Pasha; Brockman, Jeffrey A; Shappell, Scott B; Raftery, Laurel A; Willson, Timothy M; DuBois, Raymond N

    2003-02-28

    Peroxisome proliferator-activated receptor gamma (PPARgamma) and transforming growth factor-beta (TGF-beta) are key regulators of epithelial cell biology. However, the molecular mechanisms by which either pathway induces growth inhibition and differentiation are incompletely understood. We have identified transforming growth factor-simulated clone-22 (TSC-22) as a target gene of both pathways in intestinal epithelial cells. TSC-22 is member of a family of leucine zipper containing transcription factors with repressor activity. Although little is known regarding its function in mammals, the Drosophila homolog of TSC-22, bunched, plays an essential role in fly development. The ability of PPARgamma to induce TSC-22 was not dependent on an intact TGF-beta1 signaling pathway and was specific for the gamma isoform. Localization studies revealed that TSC-22 mRNA is enriched in the postmitotic epithelial compartment of the normal human colon. Cells transfected with wild-type TSC-22 exhibited reduced growth rates and increased levels of p21 compared with vector-transfected cells. Furthermore, transfection with a dominant negative TSC-22 in which both repressor domains were deleted was able to reverse the p21 induction and growth inhibition caused by activation of either the PPARgamma or TGF-beta pathways. These results place TSC-22 as an important downstream component of PPARgamma and TGF-beta signaling during intestinal epithelial cell differentiation.

  18. Visualization of the post-Golgi vesicle-mediated transportation of TGF-β receptor II by quasi-TIRFM.

    PubMed

    Luo, Wangxi; Xia, Tie; Xu, Li; Chen, Ye-Guang; Fang, Xiaohong

    2014-10-01

    Transforming growth factor β receptor II (Tβ RII) is synthesized in the cytoplasm and then transported to the plasma membrane of cells to fulfil its signalling duty. Here, we applied live-cell fluorescence imaging techniques, in particular quasi-total internal reflection fluorescence microscopy, to imaging fluorescent protein-tagged Tβ RII and monitoring its secretion process. We observed punctuate-like Tβ RII-containing post-Golgi vesicles formed in MCF7 cells. Single-particle tracking showed that these vesicles travelled along the microtubules at an average speed of 0.51 μm/s. When stimulated by TGF-β ligand, these receptor-containing vesicles intended to move towards the plasma membrane. We also identified several factors that could inhibit the formation of such post-Golgi vesicles. Although the inhibitory mechanisms still remain unknown, the observed characteristics of Tβ RII-containing vesicles provide new information on intracellular Tβ RII transportation. It also renders Tβ RII a good model system for studying post-Golgi vesicle-trafficking and protein transportation. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Effect of Gamma Radiation on the Ripening of Bartlett Pears 1

    PubMed Central

    Maxie, E. C.; Sommer, N. F.; Muller, Carlos J.; Rae, Henry L.

    1966-01-01

    Gamma radiation at doses of 300 Krad or more inhibits the ripening of Bartlett pears (Pyrus communis L.). Immediately after irradiation there is a transitory burst of C2H4, which subsequently declines in fruits subjected to inhibitory doses. Ethylene production associated with ripening begins at the same time in unirradiated fruits and those subjected to noninhibitory doses, but the latter produces much more C2H4 at the climacteric peak. Fruits subjected to inhibitory doses produce low levels of C2H4 unless subjected to exogenously applied C2H4, whereupon they produce enough of the gas to induce ripening in unirradiated fruits. Pears subjected to 300 and 400 Krad of gamma rays did not ripen even when held in a flowing atmosphere containing 1000 ppm of C2H4 for 8 days at 20°. It is concluded that the action of gamma rays on Bartlett pears involves both an inhibition of C2H4 production and a decreased sensitivity of the fruit to the ripening action of the gas. Ripening of Bartlett pears is inhibited by gamma radiation only when applied to preclimacteric fruit. PMID:16656274

  20. The insecticide fipronil and its metabolite fipronil sulphone inhibit the rat alpha1beta2gamma2L GABA(A) receptor.

    PubMed

    Li, P; Akk, G

    2008-11-01

    Fipronil is the active ingredient in a number of widely used insecticides. Human exposure to fipronil leads to symptoms (headache, nausea and seizures) typically associated with the antagonism of GABA(A) receptors in the brain. In this study, we have examined the modulation of the common brain GABA(A) receptor subtype by fipronil and its major metabolite, fipronil sulphone. Whole-cell and single-channel recordings were made from HEK 293 cells transiently expressing rat alpha1beta2gamma2L GABA(A) receptors. The major effect of fipronil was to increase the rate of current decay in macroscopic recordings. In single-channel recordings, the presence of fipronil resulted in shorter cluster durations without affecting the intracluster open and closed time distributions or the single-channel conductance. The alpha1V256S mutation, previously shown alleviate channel inhibition by inhibitory steroids and several insecticides, had a relatively small effect on channel block by fipronil. The mode of action of fipronil sulphone was similar to that of its parent compound but the metabolite was less potent at inhibiting the alpha1beta2gamma2L receptor. We conclude that exposure to fipronil induces accumulation of receptors in a novel, long-lived blocked state. This process proceeds in parallel with and independently of, channel desensitization. The lower potency of fipronil sulphone indicates that the conversion serves as a detoxifying process in mammalian brain.

  1. Respiratory Francisella tularensis live vaccine strain infection induces Th17 cells and prostaglandin E2, which inhibits generation of gamma interferon-positive T cells.

    PubMed

    Woolard, Matthew D; Hensley, Lucinda L; Kawula, Thomas H; Frelinger, Jeffrey A

    2008-06-01

    Two key routes of Francisella tularensis infection are through the skin and airway. We wished to understand how the route of inoculation influenced the primary acute adaptive immune response. We show that an intranasal inoculation of the F. tularensis live vaccine strain (LVS) with a 1,000-fold-smaller dose than an intradermal dose results in similar growth kinetics and peak bacterial burdens. In spite of similar bacterial burdens, we demonstrate a difference in the quality, magnitude, and kinetics of the primary acute T-cell response depending on the route of inoculation. Further, we show that prostaglandin E(2) secretion in the lung is responsible for the difference in the gamma interferon (IFN-gamma) response. Intradermal inoculation led to a large number of IFN-gamma(+) T cells 7 days after infection in both the spleen and the lung. In contrast, intranasal inoculation induced a lower number of IFN-gamma(+) T cells in the spleen and lung but an increased number of Th17 cells in the lung. Intranasal infection also led to a significant increase of prostaglandin E(2) (PGE(2)) in the bronchoalveolar lavage fluid. Inhibition of PGE(2) production with indomethacin treatment resulted in increased numbers of IFN-gamma(+) T cells and decreased bacteremia in the lungs of intranasally inoculated mice. This research illuminates critical differences in acute adaptive immune responses between inhalational and dermal infection with F. tularensis LVS mediated by the innate immune system and PGE(2).

  2. The effect of omalizumab treatment on the low affinity immunoglobulin E receptor (CD23/fc epsilon RII) in patients with severe allergic asthma.

    PubMed

    Assayag, Miri; Moshel, Shabtai; Kohan, Martin; Berkman, Neville

    2018-01-01

    Omalizumab is an anti-immunoglobulin E (IgE) monoclonal antibody used in the treatment of severe asthma. Its therapeutic efficacy is primarily attributed to reduction of serum-free IgE and in the expression of high-affinity IgE receptor, fc epsilon RI. However, its effect on the low-affinity IgE receptor fc epsilon RII/CD23 in vivo has not been evaluated. To determine whether CD23 plays a role in the inflammatory process in severe uncontrolled asthma and whether anti-IgE therapy modulates fc epsilon RII/CD23 expression in these patients. We evaluated the expression of IgE receptors fc epsilon RI, fc epsilon RII/CD23, and soluble CD23 (sCD23), and the activation state of peripheral blood monocytes (tumor necrosis factor alpha, interleukin (IL) 1-beta, transforming growth factor (TGF) beta expression) in the patients with severe asthma before and after 24 weeks of omalizumab treatment and in the healthy controls. Cytokine expression of monocytes in response to different stimulation (IL-4, IL-4 plus IgE, IL-4 plus IgE plus anti-IgE, and IL-4 plus IgE plus anti-IgE plus anti-CD23 for 72 hours) was determined by enzyme-linked immunosorbent assay. Treatment with omalizumab (for 24 weeks) improved disease control and pulmonary function (forced expiratory volume in the first second of expiration, 64.5 versus 74%; p = 0.021). Mean ± SE expression of fc epsilon RI on monocytes was higher in the patients with asthma versus the controls (45.7 ± 12.2% versus 18.6 ± 5.8%; p = 0.04) and was reduced after omalizumab treatment (45.7 ± 12.2% versus 15.6 ± 4.4%; p = 0.027). Mean ± SE TGF-beta levels in supernatants from monocytes were reduced in the patients treated with omalizumab (211 ± 6 pg/mL versus 184 ± 9 pg/mL; p = 0.036). Modulation of the low affinity IgE receptor CD23 in severe asthma is complex, and sCD23 may inversely reflect disease activity. Treatment with omalizumab was associated with reduced monocyte activation.

  3. FcγRII-binding Centyrins mediate agonism and antibody-dependent cellular phagocytosis when fused to an anti-OX40 antibody

    PubMed Central

    Zhang, Di; Whitaker, Brian; Derebe, Mehabaw G.; Chiu, Mark L.

    2018-01-01

    ABSTRACT Immunostimulatory antibodies against the tumor necrosis factor receptors (TNFR) are emerging as promising cancer immunotherapies. The agonism activity of such antibodies depends on crosslinking to Fc gamma RIIB receptor (FcγRIIB) to enable the antibody multimerization that drives TNFR activation. Previously, Fc engineering was used to enhance the binding of such antibodies to Fcγ receptors. Here, we report the identification of Centyrins as alternative scaffold proteins with binding affinities to homologous FcγRIIB and FcγRIIA, but not to other types of Fcγ receptors. One Centyrin, S29, was engineered at distinct positions of an anti-OX40 SF2 antibody to generate bispecific and tetravalent molecules named as mAbtyrins. Regardless of the position of S29 on the SF2 antibody, SF2-S29 mAbtyrins could bind FcγRIIB and FcγRIIA specifically while maintaining binding to OX40 receptors. In a NFκB reporter assay, attachment of S29 Centyrin molecules at the C-termini, but not the N-termini, resulted in SF2 antibodies with increased agonism owing to FcγRIIB crosslinking. The mAbtyrins also showed agonism in T-cell activation assays with immobilized FcγRIIB and FcγRIIA, but this activity was confined to mAbtyrins with S29 specifically at the C-termini of antibody heavy chains. Furthermore, regardless of the position of the molecule, S29 Centyrin could equip an otherwise Fc-silent antibody with antibody-dependent cellular phagocytosis activity without affecting the antibody's intrinsic antibody-dependent cell-meditated cytotoxicity and complement-dependent cytotoxicity. In summary, the appropriate adoption FcγRII-binding Centyrins as functional modules represents a novel strategy to engineer therapeutic antibodies with improved functionalities. PMID:29359992

  4. TGF-beta1 inhibits expression and activity of hENT1 in a nitric oxide-dependent manner in human umbilical vein endothelium.

    PubMed

    Vega, José L; Puebla, Carlos; Vásquez, Rodrigo; Farías, Marcelo; Alarcón, Julio; Pastor-Anglada, Marçal; Krause, Bernardo; Casanello, Paola; Sobrevia, Luis

    2009-06-01

    We studied whether transforming growth factor beta1 (TGF-beta1) modulates human equilibrative nucleoside transporters 1 (hENT1) expression and activity in human umbilical vein endothelial cells (HUVECs). hENT1-mediated adenosine transport and expression are reduced in gestational diabetes and hyperglycaemia, conditions associated with increased synthesis and release of nitric oxide (NO) and TGF-beta1 in this cell type. TGF-beta1 increases NO synthesis via activation of TGF-beta receptor type II (TbetaRII), and NO inhibits hENT1 expression and activity in HUVECs. HUVECs (passage 2) were used for experiments. Total and hENT1-mediated adenosine transport was measured in the absence or presence of TGF-beta1, NG-nitro-L-arginine methyl ester (L-NAME, NO synthase inhibitor), S-nitroso-N-acetyl-L,D-penicillamine (SNAP, NO donor), and/or KT-5823 (protein kinase G inhibitor) in control cells and cells expressing a truncated form of TGF-beta1 receptor type II (TTbetaRII). Western blot and real-time PCR were used to determine hENT1 protein abundance and mRNA expression. SLC29A1 gene promoter and specific protein 1 (Sp1) transcription factor activity was assayed. Vascular reactivity was assayed in endothelium-intact or -denuded umbilical vein rings. TGF-beta1 reduced hENT1-mediated adenosine transport, hENT1 protein abundance, hENT1 mRNA expression, and SLC29A1 gene promoter activity, but increased Sp1 binding to DNA. TGF-beta1 effect was blocked by L-NAME and KT-5823 and mimicked by SNAP in control cells. However, TGF-beta1 was ineffective in cells expressing TTbetaRII or a mutated Sp1 consensus sequence. Vasodilatation in response to TGF-beta1 and S-(4-nitrobenzyl)-6-thio-inosine (an ENT inhibitor) was endothelium-dependent and blocked by KT-5823 and ZM-241385. hENT1 is down-regulated by activation of TbetaRII by TGF-beta1 in HUVECs, a phenomenon where NO and Sp1 play key roles. These findings comprise physiological mechanisms that could be important in diseases where TGF

  5. gamma-Glutamyl amino acids. Transport and conversion to 5-oxoproline in the kidney

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bridges, R.J.; Meister, A.

    1985-06-25

    Transport of gamma-glutamyl amino acids, a step in the proposed glutathione-gamma-glutamyl transpeptidase-mediated amino acid transport pathway, was examined in mouse kidney. The transport of gamma-glutamyl amino acids was demonstrated in vitro in studies on kidney slices. Transport was followed by measuring uptake of /sup 35/S after incubation of the slices in media containing gamma-glutamyl methionine (/sup 35/S)sulfone. The experimental complication associated with extracellular conversion of the gamma-glutamyl amino acid to amino acid and uptake of the latter by slices was overcome by using 5-oxoproline formation (catalyzed by intracellular gamma-glutamyl-cyclotransferase) as an indicator of gamma-glutamyl amino acid transport. This method wasmore » also successfully applied to studies on transport of gamma-glutamyl amino acids in vivo. Transport of gamma-glutamyl amino acids in vitro and in vivo is inhibited by several inhibitors of gamma-glutamyl transpeptidase and also by high extracellular levels of glutathione. This seems to explain urinary excretion of gamma-glutamylcystine by humans with gamma-glutamyl transpeptidase deficiency and by mice treated with inhibitors of this enzyme. Mice depleted of glutathione by treatment with buthionine sulfoximine (which inhibits glutathione synthesis) or by treatment with 2,6-dimethyl-2,5-heptadiene-4-one (which effectively interacts with tissue glutathione) exhibited significantly less transport of gamma-glutamyl amino acids than did untreated controls. The findings suggest that intracellular glutathione functions in transport of gamma-glutamyl amino acids. Evidence was also obtained for transport of gamma-glutamyl gamma-glutamylphenylalanine into kidney slices.« less

  6. Effects of TGF-β signaling blockade on human A549 lung adenocarcinoma cell lines.

    PubMed

    Xu, Cheng-Cheng; Wu, Lei-Ming; Sun, Wei; Zhang, Ni; Chen, Wen-Shu; Fu, Xiang-Ning

    2011-01-01

    Transforming growth factor β (TGF-β) is overexpressed in a wide variety of cancer types including lung adenocarcinoma (LAC), and the TGF-β signaling pathway plays an important role in tumor development. To determine whether blockade of the TGF-β signaling pathway can inhibit the malignant biological behavior of LAC, RNA interference (RNAi) technology was used to silence the expression of TGF-β receptor, type II (TGFβRII) in the LAC cell line, A549, and its effects on cell proliferation, invasion and metastasis were examined. Three specific small interfering RNAs (siRNAs) designed for targeting human TGFβRII were transfected into A549 cells. The expression of TGFβRII was detected by Western blot analysis. Cell proliferation was measured by MTT and clonogenic assays. Cell apoptosis was assessed by flow cytometry. The invasion and metastasis of A549 cells were investigated using the wound healing and Matrigel invasion assays. The expression of PI3K, phosphorylated Smad2, Smad4, Akt, Erk1/2, P38 and MMPs was detected by Western blot analysis. The TGFβRII siRNA significantly reduced the expression of TGFβRII in A549 cells. The knockdown of TGFβRII in A549 cells resulted in the suppression of cell proliferation, invasion and metastasis and induced cell apoptosis. In addition to the Smad-dependent pathway, independent pathways including the Erk MAPK, PI3K/Akt and p38 MAPK pathways, as well as the expression of MMPs and VEGF, were inhibited. In conclusion, TGF-β signaling is required for LAC progression. Therefore, the blockade of this signaling pathway by the down-regulation of TGFβRII using SiRNA may provide a potential gene therapy for LAC.

  7. GARP inhibits allergic airway inflammation in a humanized mouse model.

    PubMed

    Meyer-Martin, H; Hahn, S A; Beckert, H; Belz, C; Heinz, A; Jonuleit, H; Becker, C; Taube, C; Korn, S; Buhl, R; Reuter, S; Tuettenberg, A

    2016-09-01

    Regulatory T cells (Treg) represent a promising target for novel treatment strategies in patients with inflammatory/allergic diseases. A soluble derivate of the Treg surface molecule glycoprotein A repetitions predominant (sGARP) has strong anti-inflammatory and regulatory effects on human cells in vitro as well as in vivo through de novo induction of peripheral Treg. The aim of this study was to investigate the immunomodulatory function of sGARP and its possible role as a new therapeutic option in allergic diseases using a humanized mouse model. To analyze the therapeutic effects of sGARP, adult NOD/Scidγc(-/-) (NSG) mice received peripheral blood mononuclear cells (PBMC) derived from allergic patients with sensitization against birch allergen. Subsequently, allergic inflammation was induced in the presence of Treg alone or in combination with sGARP. In comparison with mice that received Treg alone, additional treatment with sGARP reduced airway hyperresponsiveness (AHR), influx of neutrophils and macrophages into the bronchoalveolar lavage (BAL), and human CD45(+) cells in the lungs. Furthermore, the numbers of mucus-producing goblet cells and inflammatory cell infiltrates were reduced. To elucidate whether the mechanism of action of sGARP involves the TGF-β receptor pathway, mice additionally received anti-TGF-β receptor II (TGF-βRII) antibodies. Blocking the signaling of TGF-β through TGF-βRII abrogated the anti-inflammatory effects of sGARP, confirming its essential role in inhibiting the allergic inflammation. Induction of peripheral tolerance via sGARP is a promising potential approach to treat allergic airway diseases. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Inhibitory effect of gamma irradiation and its application for control of postharvest green mold decay of Satsuma mandarins.

    PubMed

    Jeong, Rae-Dong; Chu, Eun-Hee; Lee, Gun Woong; Cho, Chuloh; Park, Hae-Jun

    2016-10-03

    Gamma irradiation has been shown to be effective for the control of postharvest fungi in vitro, but little is known regarding antifungal action, responses to gamma irradiation, and its application to fresh produce. Gamma irradiation was evaluated for its in vitro and in vivo antifungal activity against Penicillium digitatum on Satsuma mandarin fruits. Green mold was inhibited in a dose-dependent manner. Gamma irradiation showed a complete inhibition of spore germination, germ tube elongation, and mycelial growth of P. digitatum, particularly at 1.0kGy. To further investigate the mechanisms by which gamma irradiation inhibits fungal growth, the membrane integrity and cellular leakage of conidia were tested, indicating that gamma irradiation results in the loss of plasma membrane integrity, causing the release of intracellular contents such as soluble proteins. In vivo assays demonstrated that established doses can completely inhibit the growth of fungal pathogens, but such high doses cause severe fruit damage. Thus, to eliminate the negative impact on fruit quality, gamma irradiation at lower doses was evaluated for inhibition of P. digitatum, in combination with a chlorine donor, sodium dichloro-s-triazinetrione (NaDCC). Interestingly, only a combined treatment with 0.4kGy of gamma irradiation and 10ppm of NaDCC exhibited significant synergistic antifungal activity against green mold decay. The mechanisms by which the combined treatment decreased the green mold decay of mandarin fruits can be directly associated with the disruption of cell membrane of the fungal pathogen, which resulted in a loss of cytoplasmic material from the hyphae. These findings suggest that a synergistic effect of combining treatment with gamma irradiation with NaDCC has potential as an antifungal approach to reduce the severity of green mold in mandarin fruits. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. IFN-gamma-mediated inhibition of human IgE synthesis by IL-21 is associated with a polymorphism in the IL-21R gene.

    PubMed

    Pène, Jérôme; Guglielmi, Laurence; Gauchat, Jean-François; Harrer, Nathalie; Woisetschläger, Maximilian; Boulay, Vera; Fabre, Jean-Michel; Demoly, Pascal; Yssel, Hans

    2006-10-15

    IL-21 is a cytokine produced by CD4+ T cells that has been reported to regulate human, as well as, mouse T and NK cell function and to inhibit Ag-induced IgE production by mouse B cells. In the present study, we show that human rIL-21 strongly enhances IgE production by both CD19+ CD27- naive, and CD19+ CD27+ memory B cells, stimulated with anti-CD40 mAb and rIL-4 and that it promotes the proliferative responses of these cells. However, rIL-21 does not significantly affect anti-CD40 mAb and rIL-4-induced Cepsilon promoter activation in a gene reporter assay, nor germline Cepsilon mRNA expression in purified human spleen or peripheral blood B cells. In contrast, rIL-21 inhibits rIL-4-induced IgE production in cultures of PBMC or total splenocytes by an IFN-gamma-dependent mechanism. The presence of a polymorphism (T-83C), in donors heterozygous for this mutation was found to be associated not only with lower rIL-21-induced IFN-gamma production levels, but also with a lower sensitivity to the inhibitory effects of IL-21 on the production of IgE, compared with those in donors expressing the wild-type IL-21R. Taken together, these results show that IL-21 differentially regulates IL-4-induced human IgE production, via its growth- and differentiation-promoting capacities on isotype-, including IgE-, committed B cells, as well as via its ability to induce IFN-gamma production, most likely by T and NK cells, whereas the outcome of these IL-21-mediated effects is dependent on the presence of a polymorphism in the IL-21R.

  10. Evidence for a gamma-interferon receptor that regulates macrophage tumoricidal activity

    PubMed Central

    1984-01-01

    Gamma-interferon (IFN-gamma) is the macrophage-activating factor (MAF) produced by normal murine splenic cells and the murine T cell hybridoma 24/G1 that induces nonspecific tumoricidal activity in macrophages. Incubation of 24/G1 supernatants diluted to 8.3 IRU IFN-gamma/ml with 6 X 10(6) elicited peritoneal macrophages or bone marrow-derived macrophages for 4 h at 37 degrees C, resulted in removal of 80% of the MAF activity from the lymphokine preparation. Loss of activity appeared to result from absorption and not consumption because (a) 40% of the activity was removed after exposure to macrophage for 30 min at 4 degrees C, (b) no reduction of MAF activity was detected when the 24/G1 supernatant was incubated with macrophage culture supernatants, and (c) macrophage-treated supernatants showed a selective loss of MAF activity but not interleukin 2 (IL-2) activity. Absorption was dependent on the input of either IFN-gamma or macrophages and was time dependent at 37 degrees C but not at 4 degrees C. With four rodent species tested, absorption of murine IFN-gamma displayed species specificity. However, cultured human peripheral blood monocytes and the human histiocytic lymphoma cell line U937 were able to absorb the murine lymphokine. Although the majority of murine cell lines tested absorbed 24/G1 MAF activity, two murine macrophage cell lines, P388D1 and J774, were identified which absorbed significantly reduced amounts of natural IFN- gamma. Purified murine recombinant IFN-gamma was absorbed by elicited macrophages but not by P388D1. Normal macrophages but not P388D1 bound fluoresceinated microspheres coated with recombinant IFN-gamma and binding was inhibited by pretreatment of the normal cells with 24/G1 supernatants. Scatchard plot analysis showed that 12,000 molecules of soluble 125I-recombinant IFN-gamma bound per bone marrow macrophage with a Ka of 0.9 X 10(8) M-1. Binding was quantitatively inhibitable by natural IFN-gamma but not by murine IFN alpha. IFN

  11. Interferon-gamma exerts its negative regulatory effect primarily on the earliest stages of murine erythroid progenitor cell development.

    PubMed

    Wang, C Q; Udupa, K B; Lipschitz, D A

    1995-01-01

    Interferon-gamma (INF-gamma) has been shown to suppress erythropoiesis and perhaps to contribute to the anemia of chronic disease. In this study we demonstrated that the concentration of INF gamma required to suppress murine burst forming unit-erythroid (BFU-E) growth was significantly less than that required to suppress colony forming unit-erythroid (CFU-E) growth. INF gamma acted at the most primitive step in erythroid progenitor cell differentiation and proliferation, as inhibition was maximal when added at the time of BFU-E culture initiation. Inhibition was progressively less if INF gamma addition was delayed after culture initiation. The effects of INF gamma on BFU-E did not require the presence of interleukin-1 alpha (IL-1 alpha), tumor necrosis factor-alpha (TNF alpha), or granulocyte macrophage colony stimulating factor (GM-CSF), as its effects were not neutralized by monoclonal antibodies against IL-1 alpha, TNF alpha, or GM-CSF. This applied whether INF gamma was added to culture with individual antibodies or with a combination of all three antibodies. INF gamma was not required for IL-1 alpha- or TNF alpha-induced suppression of BFU-E, as their effects were not neutralized by a monoclonal anti-INF gamma antibody. In contrast, GM-CSF-induced suppression of BFU-E was negated by the simultaneous addition of anti-INF gamma. We have previously shown that the addition of TNF alpha does not suppress BFU-E growth in cultures from marrow depleted of macrophages. Suppression did occur, however, if a small concentration of INF gamma that does not inhibit and increasing concentration of TNF alpha were added to culture, suggesting a synergistic effect between INF-gamma and TNF alpha. These observations suggest that INF gamma is a potent direct inhibitor of erythroid colony growth in vitro. It exerts its negative regulatory effect primarily on the earliest stages of erythroid progenitor cell differentiation and proliferation, as much higher doses are required to

  12. l-Proline, GABA Synthesis and Gamma Oscillations in Schizophrenia.

    PubMed

    Volk, David W; Gonzalez-Burgos, Guillermo; Lewis, David A

    2016-12-01

    Altered inhibition from parvalbumin-containing GABA neurons is thought to contribute to impaired gamma frequency oscillations and cognitive deficits in schizophrenia. Crabtree and colleagues report that proline dehydrogenase deficits produce excessive cytosolic levels of the GABA-mimetic l-proline which impairs GABA synthesis and gamma oscillations in a manner that mimics schizophrenia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Modulators and inhibitors of gamma- and beta-secretases.

    PubMed

    Schmidt, Boris; Baumann, Stefanie; Narlawar, Rajeshwar; Braun, Hannes A; Larbig, Gregor

    2006-01-01

    Most gene mutations associated with Alzheimer's disease point to the metabolism of amyloid precursor protein as a potential cause. The beta- and gamma-secretases are two executioners of amyloid precursor protein processing resulting in amyloid-beta. Significant progress has been made in the selective inhibition of both proteases, regardless of structural information for gamma-secretase. Several peptidic and nonpeptidic leads were identified for both targets. Copyright 2006 S. Karger AG, Basel.

  14. [Aerosolized recombinant interferon-gamma prevent antigen-induced eosinophil recruitment in guinea pig trachea].

    PubMed

    Gao, Y; Chenping; Lin, X P

    1997-10-01

    In order to determine whether interferon-gamma (IFN-gamma) inhibits eosinphil infiltration in the trachea of asthmatic guinea pigs induced by Rhizopus nigricans. We had administered aerosolized rIFN-gamma in the tracheas of 30 sensitized guinea pigs which had been divided into six groups, then teated animal inhaled rIFN-gamma of 5 x 10(4), 20 x 10(4), and 40 x 10(4) concentration, BDP and normal saline respectively at 24 h, 12 h, 2 h before being challenged. (1) Provocation positive rates decreased in 40 x 10(4) rIFN-gamma and BDP group compared with that in normal saline group and before intervention (P < 0.05), airway resistence decreased (P < 0.01). (2) The administration of aerosolized rIFN-gamma (40 x 10(4)) and BDP also decreased fungus-induced eosnophils but not other cells infiltration in the trachea. (3) In BALF, Eos count and ECP level were obviously lower than those in other groups. However, eosinophil numbers did not show significant change in the peripheral blood. Local administration of rIFN-gamma (40 x 10(4)) may reduce airway inflammation and intervene asthmatic attack by inhibition of Eos, ECP infiltration in airways.

  15. Genetic progression in microsatellite instability high (MSI-H) colon cancers correlates with clinico-pathological parameters: A study of the TGRbetaRII, BAX, hMSH3, hMSH6, IGFIIR and BLM genes.

    PubMed

    Calin, G A; Gafà, R; Tibiletti, M G; Herlea, V; Becheanu, G; Cavazzini, L; Barbanti-Brodano, G; Nenci, I; Negrini, M; Lanza, G

    2000-05-20

    Colon carcinomas with microsatellite mutator phenotype exhibit specific genetic and clinico-pathological features. This report describes the analysis of 63 "microsatellite instability-high" (MSI-H) tumors for the presence of mutations in microsatellites located in the coding regions (CDRs) of 6 genes: TGFbetaRII, BAX, hMSH3, hMSH6, IGFIIR, and BLM. The following frequencies of mutations were detected: TGFbetaRII (70%), BAX (54%), hMSH3 (36.5%), IGFIIR (22%), hMSH6 (17.5%), and BLM (16%). The overall picture revealed combinations of mutations suggestive of a progressive order of accumulation, with mutations of TGFbetaRII and BAX first, followed by frameshifts in hMSH3, hMSH6, IGFIIR, and BLM. Correlations with 12 clinico-pathological parameters revealed that tumors with frameshifts in 1 or 2 CDRs were significantly better differentiated than tumors with frameshifts in more than 2 CDRs. We also found that mutations in the hMSH3 gene were significantly associated with decreased wall invasiveness and aneuploidy, and frameshifts in the BLM gene were significantly associated with the mucinous histotype. A trend toward an association between hMSH3 and IGFIIR with the medullary and conventional adenocarcinoma histotypes, respectively, was seen. Our results strengthen the concept that mutations in target genes have a role in the tumorigenic process of MSI-H tumors, and indicate that frameshifts in microsatellites located in CDRs occur in a limited number of combinations that could determine distinct clinico-pathological traits. Copyright 2000 Wiley-Liss, Inc.

  16. Interleukin-12- and interferon-gamma-mediated natural killer cell activation by Agaricus blazei Murill.

    PubMed

    Yuminamochi, Eri; Koike, Taisuke; Takeda, Kazuyoshi; Horiuchi, Isao; Okumura, Ko

    2007-06-01

    Dried fruiting bodies of Agaricus blazei Murill (A. blazei) and its extracts have generally used as complementary and alternative medicines (CAMs). Here, we report that the oral administration of A. blazei augmented cytotoxicity of natural killer (NK) cells in wild-type (WT) C57BL/6, C3H/HeJ, and BALB/c mice. Augmented cytotoxicity was demonstrated by purified NK cells from treated wild-type (WT) and RAG-2-deficient mice, but not from interferon-gamma (IFN-gamma) deficient mice. NK cell activation and IFN-gamma production was also observed in vitro when dendritic cell (DC)-rich splenocytes of WT mice were coincubation with an extract of A. blazei. Both parameters were largely inhibited by neutralizing anti-interleukin-12 (IL-12) monoclonal antibody (mAb) and completely inhibited when anti-IL-12 mAb and anti-IL-18 mAb were used in combination. An aqueous extract of the hemicellulase-digested compound of A. blazei particle; (ABPC) induced IFN-gamma production more effectively, and this was completely inhibited by anti-IL-12 mAb alone. NK cell cytotoxicty was augmented with the same extracts, again in an IL-12 and IFN-gamma-dependent manner. These results clearly demonstrated that A. blazei and ABPC augmented NK cell activation through IL-12-mediated IFN-gamma production.

  17. Ezrin is a cyclic AMP-dependent protein kinase anchoring protein.

    PubMed Central

    Dransfield, D T; Bradford, A J; Smith, J; Martin, M; Roy, C; Mangeat, P H; Goldenring, J R

    1997-01-01

    cAMP-dependent protein kinase (A-kinase) anchoring proteins (AKAPs) are responsible for the subcellular sequestration of the type II A-kinase. Previously, we identified a 78 kDa AKAP which was enriched in gastric parietal cells. We have now purified the 78 kDa AKAP to homogeneity from gastric fundic mucosal supernates using type II A-kinase regulatory subunit (RII) affinity chromatography. The purified 78 kDa AKAP was recognized by monoclonal antibodies against ezrin, the canalicular actin-associated protein. Recombinant ezrin produced in either Sf9 cells or bacteria also bound RII. Recombinant radixin and moesin, ezrin-related proteins, also bound RII in blot overlay. Analysis of recombinant truncations of ezrin mapped the RII binding site to a region between amino acids 373 and 439. This region contained a 14-amino-acid amphipathic alpha-helical putative RII binding region. A synthetic peptide containing the amphipathic helical region (ezrin409-438) blocked RII binding to ezrin, but a peptide with a leucine to proline substitution at amino acid 421 failed to inhibit RII binding. In mouse fundic mucosa, RII immunoreactivity redistributed from a predominantly cytosolic location in resting parietal cells, to a canalicular pattern in mucosa from animals stimulated with gastrin. These results demonstrate that ezrin is a major AKAP in gastric parietal cells and may function to tether type II A-kinase to a region near the secretory canaliculus. PMID:9009265

  18. Subthalamic nucleus gamma activity increases not only during movement but also during movement inhibition

    PubMed Central

    Fischer, Petra; Pogosyan, Alek; Herz, Damian M; Cheeran, Binith; Green, Alexander L; Fitzgerald, James; Aziz, Tipu Z; Hyam, Jonathan; Little, Simon; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Brown, Peter; Tan, Huiling

    2017-01-01

    Gamma activity in the subthalamic nucleus (STN) is widely viewed as a pro-kinetic rhythm. Here we test the hypothesis that rather than being specifically linked to movement execution, gamma activity reflects dynamic processing in this nucleus. We investigated the role of gamma during fast stopping and recorded scalp electroencephalogram and local field potentials from deep brain stimulation electrodes in 9 Parkinson’s disease patients. Patients interrupted finger tapping (paced by a metronome) in response to a stop-signal sound, which was timed such that successful stopping would occur only in ~50% of all trials. STN gamma (60–90 Hz) increased most strongly when the tap was successfully stopped, whereas phase-based connectivity between the contralateral STN and motor cortex decreased. Beta or theta power seemed less directly related to stopping. In summary, STN gamma activity may support flexible motor control as it did not only increase during movement execution but also during rapid action-stopping. DOI: http://dx.doi.org/10.7554/eLife.23947.001 PMID:28742498

  19. Gefitinib Radiosensitizes Stem-Like Glioma Cells: Inhibition of Epidermal Growth Factor Receptor-Akt-DNA-PK Signaling, Accompanied by Inhibition of DNA Double-Strand Break Repair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Khong Bee, E-mail: dmskkb@nccs.com.sg; Zhu Congju; Wong Yinling

    Purpose: We compared radiosensitivity of brain tumor stem cells (BTSCs) with matched nonstem glioma cells, and determined whether gefitinib enhanced BTSC radiosensitivity by inhibiting epidermal growth factor receptor (EGFR)-Akt-DNA-dependent protein kinase (DNA-PK) signaling, followed by enhanced DNA double-stand breaks (DSBs) and inhibition of DSB repair. Methods and Materials: Radiosensitivity of stem-like gliomaspheres and nonstem glioma cells (obtained at patient neurosurgical resection) were evaluated by clonogenic assays, {gamma}-H{sub 2}AX immunostaining and cell cycle distribution. Survival of irradiated and nonirradiated NOD-SCID mice intracranially implanted with stem-like gliomaspheres were monitored. Glioma cells treated with gefitinib, irradiation, or both were assayed for clonogenic survival,more » {gamma}-H{sub 2}AX immunostaining, DNA-PKcs expression, and phosphorylation of EGFR and Akt. Results: Stem-like gliomaspheres displayed BTSC characteristics of self-renewal; differentiation into lineages of neurons, oligodendrocytes, and astrocytes; and initiation of glioma growth in NOD-SCID mice. Irradiation dose-dependently reduced clonogenic survival, induced G{sub 2}/M arrest and increased {gamma}-H{sub 2}AX immunostaining of nonstem glioma cells, but not stem-like gliomaspheres. There was no difference in survival of irradiated and nonirradiated mice implanted with stem-like gliomaspheres. The addition of gefitinib significantly inhibited clonogenic survival, increased {gamma}-H{sub 2}AX immunostaining, and reduced DNA-PKcs expression of irradiated stem-like gliomaspheres, without affecting irradiated-nonstem glioma cells. Gefitinib alone, and when combined with irradiation, inhibited phosphorylation of EGFR (Y1068 and Y1045) and Akt (S473) in stem-like gliomaspheres. In nonstem glioma cells, gefitinib alone inhibited EGFR Y1068 phosphorylation, with further inhibition by combined gefitinib and irradiation. Conclusions: Stem-like gliomaspheres are

  20. Inhibitors and modulators of beta- and gamma-secretase.

    PubMed

    Schmidt, Boris; Baumann, Stefanie; Braun, Hannes A; Larbig, Gregor

    2006-01-01

    Most gene mutations associated with Alzheimer's disease point to the metabolism of amyloid precursor protein as potential cause. The beta- and gamma-secretases are two executioners of amyloid precursor protein processing resulting in amyloid beta. Significant progress has been made in the selective inhibition of both proteases, regardless of structural information for gamma-secretase. Several peptidic and non-peptidic leads were identified and first drug candidates are in clinical trials. This review focuses on the developments since 2003.

  1. Layer-specific excitation/inhibition balances during neuronal synchronization in the visual cortex.

    PubMed

    Adesnik, Hillel

    2018-05-01

    Understanding the balance between synaptic excitation and inhibition in cortical circuits in the brain, and how this contributes to cortical rhythms, is fundamental to explaining information processing in the cortex. This study used cortical layer-specific optogenetic activation in mouse cortex to show that excitatory neurons in any cortical layer can drive powerful gamma rhythms, while inhibition balances excitation. The net impact of this is to keep activity within each layer in check, but simultaneously to promote the propagation of activity to downstream layers. The data show that rhythm-generating circuits exist in all principle layers of the cortex, and provide layer-specific balances of excitation and inhibition that affect the flow of information across the layers. Rhythmic activity can synchronize neural ensembles within and across cortical layers. While gamma band rhythmicity has been observed in all layers, the laminar sources and functional impacts of neuronal synchronization in the cortex remain incompletely understood. Here, layer-specific optogenetic stimulation demonstrates that populations of excitatory neurons in any cortical layer of the mouse's primary visual cortex are sufficient to powerfully entrain neuronal oscillations in the gamma band. Within each layer, inhibition balances excitation and keeps activity in check. Across layers, translaminar output overcomes inhibition and drives downstream firing. These data establish that rhythm-generating circuits exist in all principle layers of the cortex, but provide layer-specific balances of excitation and inhibition that may dynamically shape the flow of information through cortical circuits. These data might help explain how excitation/inhibition (E/I) balances across cortical layers shape information processing, and shed light on the diverse nature and functional impacts of cortical gamma rhythms. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.

  2. Siglec-1 inhibits RSV-induced interferon gamma production by adult T cells in contrast to newborn T cells.

    PubMed

    Jans, Jop; Unger, Wendy W J; Vissers, Marloes; Ahout, Inge M L; Schreurs, Inge; Wickenhagen, Arthur; de Groot, Ronald; de Jonge, Marien I; Ferwerda, Gerben

    2018-04-01

    Interferon gamma (IFN-γ) plays an important role in the antiviral immune response during respiratory syncytial virus (RSV) infections. Monocytes and T cells are recruited to the site of RSV infection, but it is unclear whether cell-cell interactions between monocytes and T cells regulate IFN-γ production. In this study, micro-array data identified the upregulation of sialic acid-binding immunoglobulin-type lectin 1 (Siglec-1) in human RSV-infected infants. In vitro, RSV increased expression of Siglec-1 on healthy newborn and adult monocytes. RSV-induced Siglec-1 on monocytes inhibited IFN-γ production by adult CD4 + T cells. In contrast, IFN-γ production by RSV in newborns was not affected by Siglec-1. The ligand for Siglec-1, CD43, is highly expressed on adult CD4 + T cells compared to newborns. Our data show that Siglec-1 reduces IFN-γ release by adult T cells possibly by binding to the highly expressed CD43. The Siglec-1-dependent inhibition of IFN-γ in adults and the low expression of CD43 on newborn T cells provides a better understanding of the immune response against RSV in early life and adulthood. © 2017 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Pathophysiologic roles of the fibrinogen gamma chain.

    PubMed

    Farrell, David H

    2004-05-01

    Fibrinogen binds through its gamma chains to cell surface receptors, growth factors, and coagulation factors to perform its key roles in fibrin clot formation, platelet aggregation, and wound healing. However, these binding interactions can also contribute to pathophysiologic processes, including inflammation and thrombosis. This review summarizes the latest findings on the role of the fibrinogen gamma chain in these processes, and illustrates the potential for therapeutic intervention. Novel gamma chain epitopes that bind platelet integrin alpha IIbbeta3 and leukocyte integrin alphaMbeta2 have been characterized, leading to the revision of former dogma regarding the processes of platelet aggregation, clot retraction, inflammation, and thrombosis. A series of studies has shown that the gamma chain serves as a depot for fibroblast growth factor-2 (FGF-2), which is likely to play an important role in wound healing. Inhibition of gamma chain function with the monoclonal antibody 7E9 has been shown to interfere with multiple fibrinogen activities, including factor XIIIa crosslinking, platelet adhesion, and platelet-mediated clot retraction. The role of the enigmatic variant fibrinogen gamma chain has also become clearer. Studies have shown that gamma chain binding to thrombin and factor XIII results in clots that are mechanically stiffer and resistant to fibrinolysis, which may explain the association between gammaA/gamma' fibrinogen levels and cardiovascular disease. The identification of new interactions with gamma chains has revealed novel targets for the treatment of inflammation and thrombosis. In addition, several exciting studies have shown new functions for the variant gamma chain that may contribute to cardiovascular disease.

  4. Involvement of {gamma}-secretase in postnatal angiogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayashi, Hiroki; Nakagami, Hironori; Takami, Yoichi

    2007-11-23

    {gamma}-Secretase cleaves the transmembrane domains of several integral membrane proteins involved in vasculogenesis. Here, we investigated the role of {gamma}-secretase in the regulation of postnatal angiogenesis using {gamma}-secretase inhibitors (GSI). In endothelial cell (EC), {gamma}-secretase activity was up-regulated under hypoxia or the treatment of vascular endothelial growth factor (VEGF). The treatment of GSI significantly attenuated growth factor-induced EC proliferation and migration as well as c-fos promoter activity in a dose-dependent manner. In vascular smooth muscle cell (VSMC), treatment of GSI significantly attenuated growth factor-induced VEGF and fibroblast growth factor-2 (FGF-2) expression. Indeed, GSI attenuated VEGF-induced tube formation and inhibited FGF-2-inducedmore » angiogenesis on matrigel in mice as quantified by FITC-lectin staining of EC. Overall, we demonstrated that {gamma}-secretase may be key molecule in postnatal angiogenesis which may be downstream molecule of growth factor-induced growth and migration in EC, and regulate the expression of angiogenic growth factors in VSMC.« less

  5. Inhibition of gamma-secretase activity impedes uterine serous carcinoma growth in a human xenograft model.

    PubMed

    Groeneweg, Jolijn W; Hall, Tracilyn R; Zhang, Ling; Kim, Minji; Byron, Virginia F; Tambouret, Rosemary; Sathayanrayanan, Sriram; Foster, Rosemary; Rueda, Bo R; Growdon, Whitfield B

    2014-06-01

    Uterine serous carcinoma (USC) represents an aggressive subtype of endometrial cancer. We sought to understand Notch pathway activity in USC and determine if pathway inhibition has anti-tumor activity. Patient USC tissue blocks were obtained and used to correlate clinical outcomes with Notch1 expression. Three established USC cell lines were treated with gamma-secretase inhibitor (GSI) in vitro. Mice harboring cell line derived or patient derived USC xenografts (PDXs) were treated with vehicle, GSI, paclitaxel and carboplatin (P/C), or combination GSI and P/C. Levels of cleaved Notch1 protein and Hes1 mRNA were determined in GSI treated samples. Statistical analysis was performed using the Wilcoxon rank sum and Kaplan-Meier methods. High nuclear Notch1 protein expression was observed in 58% of USC samples with no correlation with overall survival. GSI induced dose-dependent reductions in cell number and decreased levels of cleaved Notch1 protein and Hes1 mRNA in vitro. Treatment of mice with GSI led to decreased Hes1 mRNA expression in USC xenografts. In addition, GSI impeded tumor growth of cell line xenografts as well as UT1 USC PDXs. When GSI and P/C were combined, synergistic anti-tumor activity was observed in UT1 xenografts. Notch1 is expressed in a large subset of USC. GSI-mediated Notch pathway inhibition led to both reduced cell numbers in vitro and decreased tumor growth of USC some xenograft models. When combined with conventional chemotherapy, GSI augmented anti-tumor activity in one USC PDX line suggesting that targeting of the Notch signaling pathway is a potential therapeutic strategy for future investigation. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Knockdown of hTERT and concurrent treatment with interferon-gamma inhibited proliferation and invasion of human glioblastoma cell lines

    PubMed Central

    George, Joseph; Banik, Naren L.; Ray, Swapan K.

    2011-01-01

    Human telomerase reverse transcriptase (hTERT) is the catalytic component of telomerase that facilitates tumor cell invasion and proliferation. Telomerase and hTERT are remarkably upregulated in majority of cancers including glioblastoma. Interferon-gamma (IFN-γ) modulates several cellular activities including cell cycle and multiplication through transcriptional regulation. The present investigation was designed to unravel the molecular mechanisms of the inhibition of cell proliferation, migration, and invasion of human glioblastoma SNB-19 and LN-18 cell lines after knockdown of hTERT using a plasmid vector based siRNA and concurrent treatment with IFN-γ. We observed more than 80% inhibition of cell proliferation, migration, and invasion of both cell lines after the treatment with combination of hTERT siRNA and IFN-γ. Our studies also showed accumulation of apoptotic cells in subG1 phase and an increase in cell population in G0/G1 with a reduction in G2/M phase indicating cell cycle arrest in G0/G1 phase for apoptosis. Semiquantitative and real-time RT-PCR analyses demonstrated significant downregulation of c- Myc and upregulation of p21 Waf1 and p27 Kip1. Western blotting confirmed the downregulation of the molecules involved in cell proliferation, migration, and invasion and also showed upregulation of cell cycle inhibitors. In conclusion, our study demonstrated that knockdown of hTERT siRNA and concurrent treatment with IFN-γ effectively inhibited cell proliferation, migration, and invasion in glioblastoma cells through downregulation of the molecules involved in these processes and cell cycle inhibition. Therefore, the combination of hTERT siRNA and IFN-γ offers a potential therapeutic strategy for controlling growth of human glioblastoma cells. PMID:20394835

  7. miR-502 inhibits cell proliferation and tumor growth in hepatocellular carcinoma through suppressing phosphoinositide 3-kinase catalytic subunit gamma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Suling, E-mail: suling_chen86@163.com; Li, Fang; Chai, Haiyun

    2015-08-21

    MicroRNAs (miRNAs) play a key role in carcinogenesis and tumor progression in hepatocellular carcinoma (HCC). In the present study, we demonstrated that miR-502 significantly inhibits HCC cell proliferation in vitro and tumor growth in vivo. G1/S cell cycle arrest and apoptosis of HCC cells were induced by miR-502. Phosphoinositide 3-kinase catalytic subunit gamma (PIK3CG) was identified as a direct downstream target of miR-502 in HCC cells. Notably, overexpression of PIK3CG reversed the inhibitory effects of miR-502 in HCC cells. Our findings suggest that miR-502 functions as a tumor suppressor in HCC via inhibition of PI3KCG, supporting its utility as a promising therapeuticmore » gene target for this tumor type. - Highlights: • miR-502 suppresses HCC cell proliferation in vitro and tumorigenicity in vivo. • miR-502 regulates cell cycle and apoptosis in HCC cells. • PIK3CG is a direct target of miR-502. • miR-502 and PIK3CG expression patterns are inversely correlated in HCC tissues.« less

  8. IFN-{gamma} sensitizes MIN6N8 insulinoma cells to TNF-{alpha}-induced apoptosis by inhibiting NF-{kappa}B-mediated XIAP upregulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hun Sik; Kim, Sunshin; Lee, Myung-Shik

    2005-10-28

    Although X-linked inhibitor of apoptosis protein (XIAP) is an important intracellular suppressor of apoptosis in a variety of cell types, its role in cytokine-induced pancreatic {beta}-cell apoptosis remains unclear. Here, we found that: (i) XIAP level was inversely correlated with tumor necrosis factor (TNF)-{alpha}-induced apoptosis in MIN6N8 insulinoma cells; (ii) adenoviral XIAP overexpression abrogated the TNF-{alpha}-induced apoptosis through inhibition of caspase activity; (iii) downregulation of XIAP by antisense oligonucleotide or Smac peptide sensitized MIN6N8 cells to TNF-{alpha}-induced apoptosis; (iv) XIAP expression was induced by TNF-{alpha} through a nuclear factor-{kappa}B (NF-{kappa}B)-dependent pathway, and interferon (IFN)-{gamma} prevented such an induction in amore » manner independent of NF-{kappa}B, which presents a potential mechanism underlying cytotoxic IFN-{gamma}/TNF-{alpha} synergism. Taken together, our results suggest that XIAP is an important modulator of TNF-{alpha}-induced apoptosis of MIN6N8 cells, and XIAP regulation in pancreatic {beta}-cells might play an important role in pancreatic {beta}-cell apoptosis and in the pathogenesis of type 1 diabetes.« less

  9. The immunomodulatory effects of interferon-gamma on mature B-lymphocyte responses.

    PubMed

    Jurado, A; Carballido, J; Griffel, H; Hochkeppel, H K; Wetzel, G D

    1989-06-15

    Interferon-gamma (IFN-gamma) exerts a broad spectrum of activities which affect the responses of mature B-cells. It strongly inhibits B-cell activation, acts as a B-cell growth factor (BCGF), and also induces final differentiation to immunoglobulin (Ig) production. IFN-gamma is deeply involved in the differential control of isotype expression, as it enhances IgG2a production and suppresses both IgG1 and IgE production. Although it is now possible to draw a general scheme of the effects of IFN-gamma on B-cells, a number of paradoxical results still exist in the field. In this manuscript, different experimental systems are analyzed in an attempt to explain these apparent paradoxes.

  10. Curcumin derivatives inhibit or modulate beta-amyloid precursor protein metabolism.

    PubMed

    Narlawar, Rajeshwar; Baumann, Karlheinz; Schubenel, Robert; Schmidt, Boris

    2007-01-01

    Curcumin-derived oxazoles and pyrazoles were synthesized in order to minimize the metal chelation properties of curcumin. The reduced rotational freedom and the absence of stereoisomers was anticipated to enhance the inhibition of gamma-secretase. Accordingly, the replacement of the 1,3-dicarbonyl moiety by isosteric heterocycles turned curcumin analogue oxazoles and pyrazoles into potent gamma-secretase inhibitors. Compounds 4a-i were found to be potent inhibitors of gamma-secretase and displayed activity in the low micromolar range. 2007 S. Karger AG, Basel

  11. Z{gamma}{gamma}{gamma} {yields} 0 Processes in SANC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bardin, D. Yu., E-mail: bardin@nu.jinr.ru; Kalinovskaya, L. V., E-mail: kalinov@nu.jinr.ru; Uglov, E. D., E-mail: corner@nu.jinr.ru

    2013-11-15

    We describe the analytic and numerical evaluation of the {gamma}{gamma} {yields} {gamma}Z process cross section and the Z {yields} {gamma}{gamma}{gamma} decay rate within the SANC system multi-channel approach at the one-loop accuracy level with all masses taken into account. The corresponding package for numeric calculations is presented. For checking of the results' correctness we make a comparison with the other independent calculations.

  12. Sneaky Gamma-Rays: Using Gravitational Lensing to Avoid Gamma-Gamma-Absorption

    NASA Astrophysics Data System (ADS)

    Boettcher, Markus; Barnacka, Anna

    2014-08-01

    It has recently been suggested that gravitational lensing studies of gamma-ray blazars might be a promising avenue to probe the location of the gamma-ray emitting region in blazars. Motivated by these prospects, we have investigated potential gamma-gamma absorption signatures of intervening lenses in the very-high-energy gamma-ray emission from lensedblazars. We considered intervening galaxies and individual stars within these galaxies. We find that the collective radiation field of galaxies acting as sources of macrolensing are not expected to lead to significant gamma-gamma absorption. Individual stars within intervening galaxies could, in principle, cause a significant opacity to gamma-gamma absorption for VHE gamma-rays if the impact parameter (the distance of closest approach of the gamma-ray to the center of the star) is small enough. However, we find that the curvature of the photon path due to gravitational lensing will cause gamma-ray photons to maintain a sufficiently large distance from such stars to avoid significant gamma-gamma absorption. This re-inforces the prospect of gravitational-lensing studies of gamma-ray blazars without interference due to gamma-gamma absorption due to the lensing objects.

  13. In vivo adenylate cyclase activity in ultraviolet- and gamma-irradiated Escherichia coli.

    PubMed

    Chatterjee, A; Bhattacharya, A K

    1988-06-01

    The incorporation of [14C]adenine into the cyclic AMP fraction by whole cells of Escherichia coli B/r was taken as a measure of the in vivo adenylate cyclase activity. This activity was significantly inhibited by irradiation of the cells either with 60Co gamma-rays or with UV light from a germicidal lamp, suggesting inhibition of cyclic AMP synthesis. The incubation of cells after irradiation with lower doses (50-100 Gy) of gamma-rays produced a significant increase of in vivo adenylate cyclase activity, whereas there was no significant change after higher doses (150 Gy and above). Dark incubation of cells after irradiation with UV light (54 J m-2) led to recovery of enzyme activity to the level measured in unirradiated cells. Thus it appears that the catabolite repression of L-arabinose isomerase induced by UV light, as well as gamma-irradiation, is due to reduced cyclic AMP synthesis in irradiated cells.

  14. Endogenous PKI gamma limits the duration of the anti-apoptotic effects of PTH and beta-adrenergic agonists in osteoblasts.

    PubMed

    Chen, Xin; Song, In-Hwan; Dennis, James E; Greenfield, Edward M

    2007-05-01

    PKI gamma knockdown substantially extended the anti-apoptotic effects of PTH and beta-adrenergic agonists, whereas PKI gamma overexpression decreased these effects. Therefore, inhibition of PKI gamma activity may provide a useful co-therapy in combination with intermittent PTH or beta-adrenergic agonists for bone loss in conditions such as osteoporosis. PTH has both catabolic and anabolic effects on bone, which are primarily caused by cAMP/protein kinase A (PKA) signaling and regulation of gene expression. We previously showed that protein kinase inhibitor-gamma (PKI gamma) is required for efficient termination of cAMP/PKA signaling and gene expression after stimulation with PTH or beta-adrenergic agonists. Inhibition of osteoblast apoptosis is thought to be an important, but transient, mechanism partly responsible for the anabolic effects of intermittent PTH. Therefore, we hypothesized that endogenous PKI gamma also terminates the anti-apoptotic effect of PTH. PKI gamma knockdown by antisense transfection or siRNA was used to examine the ability of endogenous PKI gamma to modulate the anti-apoptotic effects of PTH and beta-adrenergic agonists in ROS 17/2.8 cells. Knockdown of PKI gamma substantially extended the anti-apoptotic effects of PTH, whether apoptosis was induced by etoposide or dexamethasone. In contrast, overexpression of PKI gamma decreased the anti-apoptotic effect of PTH pretreatment. This study is also the first demonstration that beta-adrenergic agonists mimic the anti-apoptotic effects of PTH in osteoblasts. Moreover, PKI gamma knockdown also substantially extended this anti-apoptotic effect of beta-adrenergic agonists. Taken together, these results show that endogenous PKI gamma limits the duration of the anti-apoptotic effects of cAMP/PKA signaling in osteoblasts. Because significant individual variability exists in the anabolic responses to PTH therapy in current clinical treatment of osteoporosis, inhibition of PKI gamma activity may provide a

  15. Superior orientation discrimination and increased peak gamma frequency in autism spectrum conditions.

    PubMed

    Dickinson, Abigail; Bruyns-Haylett, Michael; Smith, Richard; Jones, Myles; Milne, Elizabeth

    2016-04-01

    While perception is recognized as being atypical in individuals with autism spectrum conditions (ASC), the underlying mechanisms for such atypicality are unclear. Here we test the hypothesis that individuals with ASC will show enhanced orientation discrimination compared with neurotypical observers. This prediction is based both on anecdotal report of superior discriminatory skills in ASC and also on evidence in the auditory domain that some individuals with ASC have superior pitch discrimination. In order to establish whether atypical perception might be mediated by an imbalance in the ratio of neural excitation and inhibition (E:I ratio), we also measured peak gamma frequency, which provides an indication of neural inhibition levels. Using a rigorous thresholding method, we found that orientation discrimination thresholds for obliquely oriented stimuli were significantly lower in participants with ASC. Using EEG to measure the visually induced gamma band response, we also found that peak gamma frequency was higher in participants with ASC, relative to a well-matched control group. These novel results suggest that neural inhibition may be increased in the occipital cortex of individuals with ASC. Implications for existing theories of an imbalance in the E:I ratio of ASC are discussed. (c) 2016 APA, all rights reserved).

  16. Antagonist of peroxisome proliferator-activated receptor {gamma} induces cerebellar amyloid-{beta} levels and motor dysfunction in APP/PS1 transgenic mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Jing; Sun, Bing; Chen, Kui

    2009-07-03

    Recent evidences show that peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) is involved in the modulation of the amyloid-{beta} (A{beta}) cascade causing Alzheimer's disease (AD) and treatment with PPAR{gamma} agonists protects against AD pathology. However, the function of PPAR{gamma} steady-state activity in A{beta} cascade and AD pathology remains unclear. In this study, an antagonist of PPAR{gamma}, GW9662, was injected into the fourth ventricle of APP/PS1 transgenic mice to inhibit PPAR{gamma} activity in cerebellum. The results show that inhibition of PPAR{gamma} significantly induced A{beta} levels in cerebellum and caused cerebellar motor dysfunction in APP/PS1 transgenic mice. Moreover, GW9662 treatment markedly decreased the cerebellarmore » levels of insulin-degrading enzyme (IDE), which is responsible for the cellular degradation of A{beta}. Since cerebellum is spared from significant A{beta} accumulation and neurotoxicity in AD patients and animal models, these findings suggest a crucial role of PPAR{gamma} steady-state activity in protection of cerebellum against AD pathology.« less

  17. Differences in gamma frequencies across visual cortex restrict their possible use in computation.

    PubMed

    Ray, Supratim; Maunsell, John H R

    2010-09-09

    Neuronal oscillations in the gamma band (30-80 Hz) have been suggested to play a central role in feature binding or establishing channels for neural communication. For these functions, the gamma rhythm frequency must be consistent across neural assemblies encoding the features of a stimulus. Here we test the dependence of gamma frequency on stimulus contrast in V1 cortex of awake behaving macaques and show that gamma frequency increases monotonically with contrast. Changes in stimulus contrast over time leads to a reliable gamma frequency modulation on a fast timescale. Further, large stimuli whose contrast varies across space generate gamma rhythms at significantly different frequencies in simultaneously recorded neuronal assemblies separated by as little as 400 microm, making the gamma rhythm a poor candidate for binding or communication, at least in V1. Instead, our results suggest that the gamma rhythm arises from local interactions between excitation and inhibition. 2010 Elsevier Inc. All rights reserved.

  18. Molecular Mechanism of Betaine on Hepatic Lipid Metabolism: Inhibition of Forkhead Box O1 (FoxO1) Binding to Peroxisome Proliferator-Activated Receptor Gamma (PPARγ).

    PubMed

    Kim, Dae Hyun; Lee, Bonggi; Kim, Min Jo; Park, Min Hi; An, Hye Jin; Lee, Eun Kyeong; Chung, Ki Wung; Park, June Whoun; Yu, Byung Pal; Choi, Jae Sue; Chung, Hae Young

    2016-09-14

    Betaine is a major water-soluble component of Lycium chinensis. Although there are reports about the protective effects of betaine on hepatic steatosis, the underlying mechanisms are unclear. We used db/db mice and HepG2 cells to examine the mechanism underlying betaine-mediated protection against hepatic steatosis. Here, we showed increased hepatic lipid accumulation in db/db mice, which is associated with increased activation of lipogenic transcription factors including forkhead box O1 (FoxO1) and peroxisome proliferator-activated receptor gamma (PPARγ), whereas betaine administration by oral gavage reversed these characteristics. We investigated whether betaine ameliorates hepatic steatosis by inhibiting FoxO1/PPARγ signaling in HepG2 cells. Although adenovirus-mediated FoxO1 overexpression notably increased mRNA expression levels of PPARγ and its target genes including FAS and ACC, betaine treatment reversed them. Furthermore, betaine inhibited FoxO1 binding to the PPARγ promoter and PPARγ transcriptional activity in HepG2 cells, which was previously shown to induce hepatic steatosis. We concluded that betaine ameliorates hepatic steatosis, at least in part, by inhibiting the FoxO1 binding to PPARγ and their downstream lipogenic signaling cascade.

  19. cAMP and forskolin decrease. gamma. -aminobutyric acid-gated chloride flux in rat brain synaptoneurosomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heuschneider, G.; Schwartz, R.D.

    1989-04-01

    The effects of the cyclic nucleotide cAMP on {gamma}-aminobutyric acid-gated chloride channel function were investigated. The membrane-permeant cAMP analog N{sup 6}, O{sup 2{prime}}-dibutyryladenosine 3{prime},5{prime}-cyclic monophosphate inhibited muscimol-induced {sup 36}Cl{sup {minus}} uptake into rat cerebral cortical synaptoneurosomes in a concentration-dependent manner. The inhibition was due to a decrease in the maximal effect of muscimol, with no change in potency. Similar effects were observed with 8-(4-chlorophenylthio)adenosine 3{prime},5{prime}-cyclic monophosphate, 8-bromoadenosine 3{prime},5{prime}-cyclic monophosphate, and the phosphodiesterase inhibitor isobutylmethylxanthine. The effect of endogenous cAMP accumulation on the {gamma}-aminobutyric acid-gated Cl{sup {minus}} channel was studied with forskolin, an activator of adenylate cyclase. Under identical conditions, inmore » the intact synaptoneurosomes, forskolin inhibited muscimol-induced {sup 36}Cl{sup {minus}} uptake and generated cAMP with similar potencies. Surprisingly, 1,9-dideoxyforskolin, which does not activate adenylate cyclase, also inhibited the muscimol response, suggesting that forskolin and its lipophilic derivatives may interact with the Cl{sup {minus}} channel directly. The data suggest that {gamma}-aminobutyric acid (GABA{sub A}) receptor function in brain can be regulated by cAMP-dependent phosphorylation.« less

  20. The Z {yields} cc-bar {yields} {gamma}{gamma}*, Z {yields} bb-bar {yields} {gamma}{gamma}* triangle diagrams and the Z {yields} {gamma}{psi}, Z {yields} {gamma}Y decays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achasov, N. N., E-mail: achasov@math.nsc.ru

    2011-03-15

    The approach to the Z {yields} {gamma}{psi} and Z {yields} {gamma}Y decay study is presented in detail, based on the sum rules for the Z {yields} cc-bar {yields} {gamma}{gamma}* and Z {yields} bb-bar {yields} {gamma}{gamma}* amplitudes and their derivatives. The branching ratios of the Z {yields} {gamma}{psi} and Z {yields} {gamma}Y decays are calculated for different hypotheses on saturation of the sum rules. The lower bounds of {Sigma}{sub {psi}} BR(Z {yields} {gamma}{psi}) = 1.95 Multiplication-Sign 10{sup -7} and {Sigma}{sub {upsilon}} BR(Z {yields} {gamma}Y) = 7.23 Multiplication-Sign 10{sup -7} are found. Deviations from the lower bounds are discussed, including the possibilitymore » of BR(Z {yields} {gamma}J/{psi}(1S)) {approx} BR(Z {yields} {gamma}Y(1S)) {approx} 10{sup -6}, that could be probably measured in LHC. The angular distributions in the Z {yields} {gamma}{psi} and Z {yields} {gamma}Y decays are also calculated.« less

  1. Gamma-Terpinene Modulates Acute Inflammatory Response in Mice.

    PubMed

    Ramalho, Theresa Raquel de Oliveira; Oliveira, Maria Talita Pacheco de; Lima, Ana Luisa de Araujo; Bezerra-Santos, Claudio Roberto; Piuvezam, Marcia Regina

    2015-09-01

    The monoterpene gamma-terpinene is a natural compound present in essential oils of a wide variety of plants, including the Eucalyptus genus, which has been reported to possess anti-inflammatory activity. The goal of this study was to evaluate the effect of gamma-terpinene on several in vivo experimental models of acute inflammation. Swiss mice were pretreated with gamma-terpinene and subjected to protocols of paw edema with different phlogistic agents such as carrageenan, prostaglandin-E2, histamine, or bradykinin. The microvascular permeability was measured by intraperitoneal injection of acetic acid and measuring the amount of protein extravasation. Carrageenan-induced peritonitis was used to analyze the effect of gamma-terpinene on inflammatory cell migration and cytokine production. We also developed an acute lung injury protocol to define the anti-inflammatory effect of gamma-terpinene. Mice pretreated with gamma-terpinene displayed reduced paw edema induced by carrageenan from 1-24 h after challenge. A similar reduction was observed when gamma-terpinene was administered after stimulation with PGE2, bradykinin, and histamine. Treatment with gamma-terpinene also inhibited fluid extravasation in the acetic acid model of microvascular permeability. In a carrageenan-induced peritonitis model, gamma-terpinene treatment reduced neutrophil migration as well as the production of interleukin-1β and tumor necrosis factor-α when compared to nontreated animals, and in the acute lung injury protocol, gamma-terpinene diminished the neutrophil migration into lung tissue independently of the total protein extravasation in the lung. These data demonstrate that, in different models of inflammation, treatment with gamma-terpinene alleviated inflammatory parameters such as edema and pro-inflammatory cytokine production, as well as cell migration into the inflamed site, and that this monoterpene has anti-inflammatory properties. Georg Thieme Verlag KG Stuttgart · New York.

  2. cAMP and forskolin decrease gamma-aminobutyric acid-gated chloride flux in rat brain synaptoneurosomes.

    PubMed Central

    Heuschneider, G; Schwartz, R D

    1989-01-01

    The effects of the cyclic nucleotide cAMP on gamma-aminobutyric acid-gated chloride channel function were investigated. The membrane-permeant cAMP analog N6,O2'-dibutyryladenosine 3',5'-cyclic monophosphate inhibited muscimol-induced 36Cl- uptake into rat cerebral cortical synaptoneurosomes in a concentration-dependent manner (IC50 = 1.3 mM). The inhibition was due to a decrease in the maximal effect of muscimol, with no change in potency. Similar effects were observed with 8-(4-chlorophenylthio)adenosine 3',5'-cyclic monophosphate, 8-bromoadenosine 3',5'-cyclic monophosphate, and the phosphodiesterase inhibitor isobutylmethylxanthine. The effect of endogenous cAMP accumulation on the gamma-aminobutyric acid-gated Cl- channel was studied with forskolin, an activator of adenylate cyclase. Under identical conditions, in the intact synaptoneurosomes, forskolin inhibited muscimol-induced 36Cl- uptake and generated cAMP with similar potencies (IC50 = 14.3 microM; EC50 = 6.2 microM, respectively). Surprisingly, 1,9-dideoxyforskolin, which does not activate adenylate cyclase, also inhibited the muscimol response, suggesting that forskolin and its lipophilic derivatives may interact with the Cl- channel directly. Indeed, forskolin inhibition of muscimol-induced 36Cl- uptake was extremely rapid (within 5 sec), preceding the accumulation of sufficient levels of cAMP. After 5 min, a slower phase of inhibition was seen, similar to the time course for cAMP accumulation. The data suggest that gamma-aminobutyric acid (GABAA) receptor function in brain can be regulated by cAMP-dependent phosphorylation. PMID:2468163

  3. The gamma-aminobutyric acid type B (GABAB) receptor agonist baclofen inhibits morphine sensitization by decreasing the dopamine level in rat nucleus accumbens

    PubMed Central

    2012-01-01

    Background Repeated morphine exposure can induce behavioral sensitization. There are evidences have shown that central gamma-aminobutyric acid (GABA) system is involved in morphine dependence. However, the effect of a GABAB receptor agonist baclofen on morphine-induced behavioral sensitization in rats is unclear. Methods We used morphine-induced behavioral sensitization model in rat to investigate the effects of baclofen on behavioral sensitization. Moreover, dopamine release in the shell of the nucleus accumbens was evaluated using microdialysis assay in vivo. Results The present study demonstrated that morphine challenge (3 mg/kg, s.c.) obviously enhanced the locomotor activity following 4-day consecutive morphine administration and 3-day withdrawal period, which indicated the expression of morphine sensitization. In addition, chronic treatment with baclofen (2.5, 5 mg/kg) significantly inhibited the development of morphine sensitization. It was also found that morphine challenge 3 days after repeated morphine administration produced a significant increase of extracellular dopamine release in nucleus accumbens. Furthermore, chronic treatment with baclofen decreased the dopamine release induced by morphine challenge. Conclusions Our results indicated that gamma-aminobutyric acid system plays an important role in the morphine sensitization in rat and suggested that behavioral sensitization is a promising model to study the mechanism underlying drug abuse. PMID:22559224

  4. A role for gamma-glutamyl transpeptidase and the amino acid transport system xc- in cystine transport by a human pancreatic duct cell line.

    PubMed Central

    Sweiry, J H; Sastre, J; Viña, J; Elsässer, H P; Mann, G E

    1995-01-01

    1. The roles of the gamma-glutamyl cycle and the anionic amino acid transport system xc- in mediating L-cystine uptake were investigated in cultured human pancreatic duct PaTu 8902 cells. This cell line exhibits morphological features of normal pancreatic duct cells and expresses gamma-glutamyl transpeptidase (gamma-GT, EC 2.3.2.2), an enzyme involved in the metabolism and regulation of intracellular glutathione (GSH). 2. Uptake of L-cystine (10 microM) was linear for up to 10 min, temperature dependent, Na+ independent, saturable (Michaelis-Menten constant (Km), 86 +/- 25 microM; maximal velocity (Vmax), 109 +/- 33 nmol (mg protein)-1 h-1) and reduced by 80-90% by a 50-fold excess concentration of L-glutamate and L-homocysteic acid, but not L-aspartate. These transport properties resemble those described for system xc-, which exchanges cystine for intracellular glutamate. 3. Acivicin, a known inhibitor of gamma-GT, decreased gamma-GT activity from 2.58 +/- 0.96 to 0.97 +/- 0.11 mU (mg protein)-1 and decreased the initial rates of L-cystine and L-glutamine uptake by 41-55%. Anthglutin (1-gamma-L-glutamyl-2-(2-carboxyphenylhyl)hydrazine), a structurally different inhibitor of gamma-GT, also caused a concentration-dependent (0.01-1 mM) decrease in gamma-GT activity and L-cystine uptake. 4. Neither acivicin nor anthglutin inhibited the uptake of L-glutamate, a poor substrate for gamma-GT. 5. In the presence of a 500-fold excess concentration of glutamate, which should abolish entry of cystine via system xc-, the remaining fraction of cystine transport was inhibited by 50% by acivicin, suggesting that transport is, in part, dependent on the activity of gamma-GT. 6. Cystine transport was also 60-80% inhibited by a series of gamma-glutamyl amino acids (5 mM) including gamma-glutamyl-glutamate, gamma-glutamyl-glutamine and gamma-glutamyl-glycine. alpha-Dipeptides inhibited cystine transport by only 6-22%. 7. These findings demonstrate that in human pancreatic duct Pa

  5. Activation of effector functions by immune complexes of mouse IgG2a with isotype-specific autoantibodies.

    PubMed Central

    Rajnavölgyi, E; Fazekas, G; Lund, J; Daeron, M; Teillaud, J L; Jefferis, R; Fridman, W H; Gergely, J

    1995-01-01

    Analysis of five monoclonal autoantibodies, rheumatoid factors produced by hybridomas generated from spleen cells of BALB/c mice repeatedly infected with A/PR/8/34 human influenza A virus, revealed that they recognized distinct but spatially related epitopes. The differing isoallotypic specificity of the IgM and IgA monoclonal antibodies correlated with the presence of Ile258 and Ala305, respectively. Although these data suggest that the epitopes recognized are within the CH2 domain, all antibodies failed to inhibit IgG antigen reactivity with Staphylococcus aureus protein A (SpA), C1q, mouse C3, human Fc gamma RI or mouse Fc gamma RII, activities known to be predominantly determined by CH2 domain structures. Reactivity of the IgA antibody, Z34, with IgG2b allowed further specificity studies using a panel of 26 mutant IgG2b proteins, each having single amino acid replacements over the surface of the CH2 domain. The only substitution that affected Z34 reactivity was Asn/Ala297, which destroyed the glycosylation sequon, resulting in secretion of an aglycosylated IgG molecule. The epitope recognized by Z34 therefore seems to be located outside of the Fc gamma R and C1q binding sites, but to be dependent on the presence of carbohydrate for expression. In contrast to the binding studies, complement activation by aggregated IgG2a, through classical or alternative pathways, was inhibited by the presence of autoantibodies. The functional significance of isotype-specific autoantibody in immune regulation is discussed. PMID:7540592

  6. Feedback inhibition of nitric oxide synthase activity by nitric oxide.

    PubMed Central

    Assreuy, J.; Cunha, F. Q.; Liew, F. Y.; Moncada, S.

    1993-01-01

    1. A murine macrophage cell line, J774, expressed nitric oxide (NO) synthase activity in response to interferon-gamma (IFN-gamma, 10 u ml-1) plus lipopolysaccharide (LPS, 10 ng ml-1). The enzyme activity was first detectable 6 h after incubation, peaked at 12 h and became undetectable after 48 h. 2. The decline in the NO synthase activity was not due to inhibition by stable substances secreted by the cells into the culture supernatant. 3. The decline in the NO synthase activity was significantly slowed down in cells cultured in a low L-arginine medium or with added haemoglobin, suggesting that NO may be involved in a feedback inhibitory mechanism. 4. The addition of NO generators, S-nitroso-acetyl-penicillamine (SNAP) or S-nitroso-glutathione (GSNO) markedly inhibited the NO synthase activity in a dose-dependent manner. The effect of NO on the enzyme was not due to the inhibition of de novo protein synthesis. 5. SNAP directly inhibited the inducible NO synthase extracted from activated J774 cells, as well as the constitutive NO synthase extracted from the rat brain. 6. The enzyme activity of J774 cells was not restored after the removal of SNAP by gel filtration, suggesting that NO inhibits NO synthase irreversibly. PMID:7682140

  7. New insight into mitochondrial changes in vascular endothelial cells irradiated by gamma ray.

    PubMed

    Hu, Shunying; Gao, Yajing; Zhou, Hao; Kong, Fanxuan; Xiao, Fengjun; Zhou, Pingkun; Chen, Yundai

    2017-05-01

    To investigate alterations of mitochondria in irradiated endothelial cells to further elucidate the mechanism underlying radiation-induced heart disease. Experiments were performed using human umbilical vein endothelial cells (HUVECs). HUVECs were irradiated with single gamma ray dose of 0, 5, 10 and 20 Gy, respectively. Apoptosis was assessed by flow cytometry at 24, 48 and 72 h post-irradiation, respectively. The intracellular reactive oxygen species (ROS) was measured with 2',7'-dichlorofluorescein-diacetate (DCFH-DA) at 24 h post-irradiation. Mitochondrial membrane potential (ΔΨm) by JC-1 and the opening of mitochondrial permeability transition pore (mPTP) by a calcein-cobalt quenching method were detected at 24 h post-irradiation in order to measure changes of mitochondria induced by gamma ray irradiation. Gamma ray irradiation increased HUVECs apoptosis in a dose-dependent and time-dependent manner. Irradiation also promoted ROS production in HUVECs in a dose-dependent manner. At 24 h post-irradiation, the results showed that irradiation decreases ΔΨm, however, paradoxically, flow cytometry showed green fluorescence instensity higher in irradiated HUVECs than in control HUVECs in an irradiation dose-dependent manner which indicated gamma ray irradiation inhibited mPTP opening in HUVECs. Gamma ray irradiation induces apoptosis and ROS production of endothelial cells, and decreases ΔΨm meanwhile contradictorily inhibiting the opening of mPTP.

  8. Eckol protects V79-4 lung fibroblast cells against gamma-ray radiation-induced apoptosis via the scavenging of reactive oxygen species and inhibiting of the c-Jun NH(2)-terminal kinase pathway.

    PubMed

    Zhang, Rui; Kang, Kyoung Ah; Piao, Mei Jing; Ko, Dong Ok; Wang, Zhi Hong; Lee, In Kyung; Kim, Bum Joon; Jeong, Il Yun; Shin, Taekyun; Park, Jae Woo; Lee, Nam Ho; Hyun, Jin Won

    2008-09-04

    The radioprotective effect of eckol against gamma-ray radiation-induced oxidative stress and its possible protective mechanisms were investigated. Eckol was found to reduce the intracellular reactive oxygen species generated by gamma-ray radiation. Moreover, eckol also protected against radiation-induced cellular DNA damage and membrane lipid peroxidation, which are the main targets of radiation-induced damage. In addition, eckol recovered the cell viability damaged by radiation via the inhibition of apoptosis. Irradiated cells with eckol treatment reduced the expression of bax, the activation of caspase 9 and caspase 3, which were induced by radiation. However, irradiated cells with eckol recovered the expression of bcl-2 and mitochondrial cytochrome c which were decreased by radiation. The anti-apoptotic effect of eckol exerted via the inhibition of mitogen-activated protein kinase kinase-4 (MKK4/SEK1)-c-Jun NH(2)-terminal kinase (JNK)-activator protein 1 (AP-1) cascades induced by radiation. In summary, the results suggest that eckol protects cells against the oxidative stress induced by radiation via the reduction of reactive oxygen species and the attenuation of activation in SEK1-JNK-AP-1 pathway.

  9. Regulation of the steady state level of Fc gamma RI mRNA by IFN-gamma and dexamethasone in human monocytes, neutrophils, and U-937 cells.

    PubMed

    Pan, L Y; Mendel, D B; Zurlo, J; Guyre, P M

    1990-07-01

    The high affinity IgG FcR Fc gamma RI, CD64, plays important roles in the immune response. Fc gamma RI is predominantly expressed on monocytes and macrophages, and barely detectable on neutrophils. rIFN-gamma markedly increases the expression of Fc gamma RI on neutrophils, monocytes, macrophages and myeloid cell lines such as U-937, HL-60, and THP-1. Glucocorticoids inhibit the augmentation of Fc gamma RI expression by rIFN-gamma on neutrophils and myeloid cell lines, but enhance the augmentation of Fc gamma RI expression by rIFN-gamma on monocytes. In this study, we examined the effect of rIFN-gamma and dexamethasone (Dex) on the steady state level of Fc gamma RI mRNA in U-937 cells, neutrophils, and monocytes by hybridizing total RNA with the Fc gamma RI cDNA probe, p135. We found that the amount of Fc gamma RI mRNA increased within 1 h of treatment with rIFN-gamma in all three cell types. This initial induction of Fc gamma RI mRNA by rIFN-gamma was completely blocked by an inhibitor of RNA synthesis, actinomycin D, suggesting that the rIFN-gamma-mediated induction of Fc gamma RI mRNA is dependent on gene transcription. Dex, used in combination with rIFN-gamma, partially blocked the induction of Fc gamma RI mRNA by rIFN-gamma in U-937 cells and neutrophils, but caused a synergistic increase in Fc gamma RI mRNA levels in monocytes. The inhibitory effect of Dex on the steady state level of Fc gamma RI mRNA in U-937 cells was blocked by an inhibitor of protein synthesis, cycloheximide, suggesting that Dex-induced proteins were involved in the regulation of Fc gamma RI expression. This study indicates that the regulation of Fc gamma RI expression on U-937 cells, neutrophils, and monocytes by rIFN-gamma and Dex occurs, at least in part, at the mRNA level. rIFN-gamma increases the steady state level of Fc gamma RI mRNA through a common pathway among U-937 cells, neutrophils, and monocytes, whereas the effect of Dex on rIFN-gamma-induced Fc gamma RI mRNA is cell

  10. N-Substituted carbazolyloxyacetic acids modulate Alzheimer associated gamma-secretase.

    PubMed

    Narlawar, Rajeshwar; Pérez Revuelta, Blanca I; Baumann, Karlheinz; Schubenel, Robert; Haass, Christian; Steiner, Harald; Schmidt, Boris

    2007-01-01

    N-Sulfonylated and N-alkylated carbazolyloxyacetic acids were investigated for the inhibition and modulation of the Alzheimer's disease associated gamma-secretase. The introduction of a lipophilic substituent, which may vary from arylsulfone to alkyl, turned 2-carbazolyloxyacetic acids into potent gamma-secretase modulators. This resulted in the selective reduction of Abeta(42) and an increase of the less aggregatory Abeta(38) fragment by several compounds (e.g., 7d and 8c). Introduction of an electron donating group at position 6 and 8 of N-substituted carbazolyloxyacetic acids either decreased the activity or inversed modulation. The most active compounds displayed activity on amyloid precursor protein (APP) overexpressing cell lines in the low micromolar range and little or no effect on the gamma-secretase cleavage at the epsilon-site.

  11. Deletion of the transforming growth factor β receptor type II gene in articular chondrocytes leads to a progressive osteoarthritis-like phenotype in mice.

    PubMed

    Shen, Jie; Li, Jia; Wang, Baoli; Jin, Hongting; Wang, Meina; Zhang, Yejia; Yang, Yunzhi; Im, Hee-Jeong; O'Keefe, Regis; Chen, Di

    2013-12-01

    While transforming growth factor β (TGFβ) signaling plays a critical role in chondrocyte metabolism, the TGFβ signaling pathways and target genes involved in cartilage homeostasis and the development of osteoarthritis (OA) remain unclear. Using an in vitro cell culture method and an in vivo mouse genetic approach, we undertook this study to investigate TGFβ signaling in chondrocytes and to determine whether Mmp13 and Adamts5 are critical downstream target genes of TGFβ signaling. TGFβ receptor type II (TGFβRII)-conditional knockout (KO) (TGFβRII(Col2ER)) mice were generated by breeding TGFβRII(flox/flox) mice with Col2-CreER-transgenic mice. Histologic, histomorphometric, and gene expression analyses were performed. In vitro TGFβ signaling studies were performed using chondrogenic rat chondrosarcoma cells. To determine whether Mmp13 and Adamts5 are critical downstream target genes of TGFβ signaling, TGFβRII/matrix metalloproteinase 13 (MMP-13)- and TGFβRII/ADAMTS-5-double-KO mice were generated and analyzed. Inhibition of TGFβ signaling (deletion of the Tgfbr2 gene in chondrocytes) resulted in up-regulation of Runx2, Mmp13, and Adamts5 expression in articular cartilage tissue and progressive OA development in TGFβRII(Col2ER) mice. Deletion of the Mmp13 or Adamts5 gene significantly ameliorated the OA-like phenotype induced by the loss of TGFβ signaling. Treatment of TGFβRII(Col2ER) mice with an MMP-13 inhibitor also slowed OA progression. Mmp13 and Adamts5 are critical downstream target genes involved in the TGFβ signaling pathway during the development of OA. Copyright © 2013 by the American College of Rheumatology.

  12. Driving Human Motor Cortical Oscillations Leads to Behaviorally Relevant Changes in Local GABAA Inhibition: A tACS-TMS Study

    PubMed Central

    van Ede, Freek

    2017-01-01

    Beta and gamma oscillations are the dominant oscillatory activity in the human motor cortex (M1). However, their physiological basis and precise functional significance remain poorly understood. Here, we used transcranial magnetic stimulation (TMS) to examine the physiological basis and behavioral relevance of driving beta and gamma oscillatory activity in the human M1 using transcranial alternating current stimulation (tACS). tACS was applied using a sham-controlled crossover design at individualized intensity for 20 min and TMS was performed at rest (before, during, and after tACS) and during movement preparation (before and after tACS). We demonstrated that driving gamma frequency oscillations using tACS led to a significant, duration-dependent decrease in local resting-state GABAA inhibition, as quantified by short interval intracortical inhibition. The magnitude of this effect was positively correlated with the magnitude of GABAA decrease during movement preparation, when gamma activity in motor circuitry is known to increase. In addition, gamma tACS-induced change in GABAA inhibition was closely related to performance in a motor learning task such that subjects who demonstrated a greater increase in GABAA inhibition also showed faster short-term learning. The findings presented here contribute to our understanding of the neurophysiological basis of motor rhythms and suggest that tACS may have similar physiological effects to endogenously driven local oscillatory activity. Moreover, the ability to modulate local interneuronal circuits by tACS in a behaviorally relevant manner provides a basis for tACS as a putative therapeutic intervention. SIGNIFICANCE STATEMENT Gamma oscillations have a vital role in motor control. Using a combined tACS-TMS approach, we demonstrate that driving gamma frequency oscillations modulates GABAA inhibition in the human motor cortex. Moreover, there is a clear relationship between the change in magnitude of GABAA inhibition induced

  13. Driving Human Motor Cortical Oscillations Leads to Behaviorally Relevant Changes in Local GABAA Inhibition: A tACS-TMS Study.

    PubMed

    Nowak, Magdalena; Hinson, Emily; van Ede, Freek; Pogosyan, Alek; Guerra, Andrea; Quinn, Andrew; Brown, Peter; Stagg, Charlotte J

    2017-04-26

    Beta and gamma oscillations are the dominant oscillatory activity in the human motor cortex (M1). However, their physiological basis and precise functional significance remain poorly understood. Here, we used transcranial magnetic stimulation (TMS) to examine the physiological basis and behavioral relevance of driving beta and gamma oscillatory activity in the human M1 using transcranial alternating current stimulation (tACS). tACS was applied using a sham-controlled crossover design at individualized intensity for 20 min and TMS was performed at rest (before, during, and after tACS) and during movement preparation (before and after tACS). We demonstrated that driving gamma frequency oscillations using tACS led to a significant, duration-dependent decrease in local resting-state GABA A inhibition, as quantified by short interval intracortical inhibition. The magnitude of this effect was positively correlated with the magnitude of GABA A decrease during movement preparation, when gamma activity in motor circuitry is known to increase. In addition, gamma tACS-induced change in GABA A inhibition was closely related to performance in a motor learning task such that subjects who demonstrated a greater increase in GABA A inhibition also showed faster short-term learning. The findings presented here contribute to our understanding of the neurophysiological basis of motor rhythms and suggest that tACS may have similar physiological effects to endogenously driven local oscillatory activity. Moreover, the ability to modulate local interneuronal circuits by tACS in a behaviorally relevant manner provides a basis for tACS as a putative therapeutic intervention. SIGNIFICANCE STATEMENT Gamma oscillations have a vital role in motor control. Using a combined tACS-TMS approach, we demonstrate that driving gamma frequency oscillations modulates GABA A inhibition in the human motor cortex. Moreover, there is a clear relationship between the change in magnitude of GABA A inhibition

  14. Gamma radiation combined with cinnamon oil to maintain fish quality

    NASA Astrophysics Data System (ADS)

    Lyu, Fei; Zhang, Jing; Wei, Qianqian; Gao, Fei; Ding, Yuting; Liu, Shulai

    2017-12-01

    Effects of gamma radiation combined with cinnamon oil on quality of Northern Snakehead fish fillets were observed during storage at 4 °C. Fish fillets were treated with 1-5 kGy gamma radiation, 0.05-0.5% cinnamon oil or the combination of radiation and cinnamon oil. The antimicrobial activity increased with radiation dose and cinnamon oil concentration. During storage, the combination of 1 kGy radiation and 0.5% cinnamon oil displayed better inhibiting activities on aerobic plate counts, total volatile basic nitrogen, thiobarbituric acid reaction substances than 1 kGy radiation or 0.5% cinnamon oil used alone. Moreover, the combination could arrive at the similar inhibiting activities of cinnamon oil with higher concentration of 0.5% or radiation with higher dose of 5 kGy. Thus, the combination could decrease the radiation dose and cinnamon oil concentration without decreasing the effect of them on maintaining fish quality.

  15. Gamma-ray irradiation enhanced boron-10 compound accumulation in murine tumors.

    PubMed

    Liu, Yong; Nagata, Kenji; Masunaga, Shin-ichiro; Suzuki, Minoru; Kashino, Genro; Kinashi, Yuko; Tanaka, Hiroki; Sakurai, Yoshinori; Maruhashi, Akira; Ono, Koji

    2009-11-01

    Previous studies have demonstrated that X-ray irradiation affects angiogenesis in tumors. Here, we studied the effects of gamma-ray irradiation on boron-10 compound accumulation in a murine tumor model. The mouse squamous cell carcinoma was irradiated with gamma-ray before BSH ((10)B-enriched borocaptate sodium) administration. Then, the boron-10 concentrations in tumor and normal muscle tissues were measured by prompt gamma-ray spectrometry (PGA). A tumor blood flow assay was performed, and cell killing effects of neutron irradiation with various combinations of BSH and gamma-rays were also examined. BSH concentrations of tumor tissues were 16.1 +/- 0.6 microg/g, 16.7 +/- 0.5 microg/g and 17.8 +/- 0.5 microg/g at 72 hours after gamma-ray irradiation at doses of 5, 10, and 20 Gy, compared with 13.1 +/- 0.5 microg/g in unirradiated tumor tissues. The enhancing inhibition of colony formation by neutron irradiation with BSH was also found after gamma-ray irradiation. In addition, increasing Hoechst 33342 perfusion was also observed. In this study, we demonstrated that gamma-ray irradiation enhances BSH accumulation in tumors. The present results suggest that the enhancement of (10)B concentration that occurs after gamma-ray irradiation may be due to the changes in the extracellular microenvironment, including in tumor vessels, induced by gamma-ray irradiation.

  16. Carcinostatic effects of platinum nanocolloid combined with gamma irradiation on human esophageal squamous cell carcinoma.

    PubMed

    Li, Qiang; Tanaka, Yoshiharu; Saitoh, Yasukazu; Tanaka, Hiroshi; Miwa, Nobuhiko

    2015-04-15

    To explore the carcinostatic effects of platinum nanocolloid (Pt-nc) combined with gamma rays on human esophageal squamous cell carcinoma (ESCC). ESCC-derived KYSE-70 cells were treated with various concentrations of Pt-nc and/or gamma irradiation, and subsequently cultured in phenol red free DMEM with 10% FBS for 48 h. The proliferative status of the KYSE-70 cells was evaluated using trypan blue dye exclusion and WST-8 assays. Cellular and nucleic morphological aspects were evaluated using crystal violet and Hoechst 33342 stainings, respectively. Radiosensitivity was quantified by a cell viability assay, and the activated form of caspase-3, a characteristic apoptosis-related protein, was detected by Western blotting. Although single treatment with either Pt-nc or gamma irradiation could slightly inhibit the growth of the KYSE-70 cells, their combination exerted remarkable carcinostatic effects in a manner dependent on either Pt-nc concentrations or gamma ray doses, compared with the effect of each treatment alone (p<0.05). By fluorescence micrographic observation, the KYSE-70 cells that were treated with Pt-nc and subsequently irradiated with gamma rays, were shown to undergo distinct apoptotic morphological changes. The carcinostatic effect of gamma rays at 7 Gy without Pt-nc was approximately equal to that when 3-Gy irradiation was combined with 100 ppm Pt-nc or that 5-Gy irradiation was combined with 50 ppm Pt-nc. Pt-nc in combination with gamma rays may exert a cooperative effect through platinum- or gamma ray-induced apoptosis resulting in the inhibition of growth of cancer cells, while concurrently enabling the lowering of the radiative dose. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. The Kinetics and Inhibition of Gamma-Glutamyl Transpeptidase: A Biochemistry Laboratory Experiment.

    ERIC Educational Resources Information Center

    Splittgerber, A. G.; Sohl, Julie

    1988-01-01

    Discusses an enzyme kinetics laboratory experiment involving a two substrate system for undergraduate biochemistry. Uses the enzyme gamma-glutamyl transpeptidase as this enzyme in blood serum is of clinical significance. Notes elevated levels are seen in liver disease, alcoholism, and epilepsy. Uses a spectrophotometer for the analysis. (MVL)

  18. Theta-Gamma Coding Meets Communication-through-Coherence: Neuronal Oscillatory Multiplexing Theories Reconciled.

    PubMed

    McLelland, Douglas; VanRullen, Rufin

    2016-10-01

    Several theories have been advanced to explain how cross-frequency coupling, the interaction of neuronal oscillations at different frequencies, could enable item multiplexing in neural systems. The communication-through-coherence theory proposes that phase-matching of gamma oscillations between areas enables selective processing of a single item at a time, and a later refinement of the theory includes a theta-frequency oscillation that provides a periodic reset of the system. Alternatively, the theta-gamma neural code theory proposes that a sequence of items is processed, one per gamma cycle, and that this sequence is repeated or updated across theta cycles. In short, both theories serve to segregate representations via the temporal domain, but differ on the number of objects concurrently represented. In this study, we set out to test whether each of these theories is actually physiologically plausible, by implementing them within a single model inspired by physiological data. Using a spiking network model of visual processing, we show that each of these theories is physiologically plausible and computationally useful. Both theories were implemented within a single network architecture, with two areas connected in a feedforward manner, and gamma oscillations generated by feedback inhibition within areas. Simply increasing the amplitude of global inhibition in the lower area, equivalent to an increase in the spatial scope of the gamma oscillation, yielded a switch from one mode to the other. Thus, these different processing modes may co-exist in the brain, enabling dynamic switching between exploratory and selective modes of attention.

  19. A novel mechanism for the Ca(2+)-sensitizing effect of protein kinase C on vascular smooth muscle: inhibition of myosin light chain phosphatase

    PubMed Central

    1994-01-01

    Mechanisms of Ca2+ sensitization of both myosin light chain (MLC) phosphorylation and force development by protein kinase C (PKC) were studied in permeabilized tonic smooth muscle obtained from the rabbit femoral artery. For comparison, the Ca2+ sensitizing effect of guanosine 5'-O-(gamma-thiotriphosphate) (GTP gamma S) was examined, which had been previously shown to inhibit MLC phosphatase in phasic vascular smooth muscle. We now report that PKC activators (phorbol esters, short chain synthetic diacylglycerols and a diacylglycerol kinase inhibitor) and GTP gamma S significantly increase both MLC phosphorylation and force development at constant [Ca2+]. Major phosphorylation site occurring in the presence of phorbol-12,13- dibutyrate (PDBu) or GTP gamma S at constant [Ca2+] is the same serine residue (Ser-19) as that phosphorylated by MLC kinase in response to increased Ca2+ concentrations. In an ATP- and Ca(2+)-free solution containing 1-(5-chloronaphthalene-1-sulfonyl)-1H-hexahydro-1,4- diazepine (ML-9), to avoid the kinase activity, both PDBu and GTP gamma S significantly decreased the rate of MLC dephosphorylation to half its control value. However, PDBu inhibited the relaxation rate more than did GTP gamma S. In the presence of microcystin-LR to inhibit the phosphatase activity, neither PDBu nor GTP gamma S affected MLC phosphorylation and force development. These results indicate that PKC, like activation of GTP binding protein, increases Ca2+ sensitivity of both MLC phosphorylation and force production through inhibition of MLC phosphatase. PMID:7807049

  20. Local inhibition of GABA affects precedence effect in the inferior colliculus

    PubMed Central

    Wang, Yanjun; Wang, Ningyu; Wang, Dan; Jia, Jun; Liu, Jinfeng; Xie, Yan; Wen, Xiaohui; Li, Xiaoting

    2014-01-01

    The precedence effect is a prerequisite for faithful sound localization in a complex auditory environment, and is a physiological phenomenon in which the auditory system selectively suppresses the directional information from echoes. Here we investigated how neurons in the inferior colliculus respond to the paired sounds that produce precedence-effect illusions, and whether their firing behavior can be modulated through inhibition with gamma-aminobutyric acid (GABA). We recorded extracellularly from 36 neurons in rat inferior colliculus under three conditions: no injection, injection with saline, and injection with gamma-aminobutyric acid. The paired sounds that produced precedence effects were two identical 4-ms noise bursts, which were delivered contralaterally or ipsilaterally to the recording site. The normalized neural responses were measured as a function of different inter-stimulus delays and half-maximal interstimulus delays were acquired. Neuronal responses to the lagging sounds were weak when the inter-stimulus delay was short, but increased gradually as the delay was lengthened. Saline injection produced no changes in neural responses, but after local gamma-aminobutyric acid application, responses to the lagging stimulus were suppressed. Application of gamma-aminobutyric acid affected the normalized response to lagging sounds, independently of whether they or the paired sounds were contralateral or ipsilateral to the recording site. These observations suggest that local inhibition by gamma-aminobutyric acid in the rat inferior colliculus shapes the neural responses to lagging sounds, and modulates the precedence effect. PMID:25206830

  1. Very low dose gamma irradiation stimulates gaseous exchange and carboxylation efficiency, but inhibits vascular sap flow in groundnut (Arachis hypogaea L.).

    PubMed

    Ahuja, Sumedha; Singh, Bhupinder; Gupta, Vijay Kumar; Singhal, R K; Venu Babu, P

    2014-02-01

    An experiment was carried out to determine the effect of low dose gamma radiation on germination, plant growth, nitrogen and carbon fixation and carbon flow and release characteristics of groundnut. Dry seeds of groundnut variety Trombay groundnut 37A (TG 37A), a radio mutant type developed by Bhabha Atomic Research Centre (BARC), Mumbai, India, were subjected to the pre-sowing treatment of gamma radiation within low to high dose physiological range, i.e., 0.0, 0.0082, 0.0164. 0.0328, 0.0656, 0.1312, 5, 25, 100, 500 Gray (Gy) from a cobalt source ((60)Co). Observations were recorded for the radiation effect on percentage germination, vigour, gas exchange attributes such as photosynthetic rate, stomatal conductance and transpiration rate, chlorophyll content, root exudation in terms of (14)C release, vascular sap flow rate and activities of rate defining carbon and nitrogen assimilating enzymes such as ribulose-1,5-bisphosphate carboxylase (rubisco) and nitrate reductase (NR). Seed germination was increased by 10-25% at the lower doses up to 5 Gy while the improvement in plant vigour in the same dose range was much higher (22-84%) than the unirradiated control. For radiation exposure above 5 Gy, a dose-dependent decline in germination and plant vigour was measured. No significant effect was observed on the photosynthesis at radiation exposure below 5 Gy but above 5 Gy dose there was a decline in the photosynthetic rate. Stomatal conductance and transpiration rate, however, were only inhibited at a high dose of 500 Gy. Leaf rubisco activity and NR activities remained unaffected at all the investigated doses of gamma irradiation. Mean root exudation and sap flow rate of the irradiated plants, irrespective of the dose, was reduced over the unirradiated control more so in a dose-dependent manner. Results indicated that a very low dose of gamma radiation, in centigray to gray range, did not pose any threat and in fact stimulated metabolic functions in such a way to aid

  2. [Adenovirus-mediated canine interferon-gamma expression and its antiviral activity against canine parvovirus].

    PubMed

    Zhang, Kao; Jin, Huijun; Zhong, Fei; Li, Xiujin; Neng, Changai; Chen, Huihui; Li, Wenyan; Wen, Jiexia

    2012-11-04

    To construct recombinant adenovirus containing canine interferon-gamma (cIFN-gamma) gene and to investigate its antiviral activity against canine parvovirus in Madin-Darby canine kidney cells (MDCK). [Methods] The cIFN-gamma gene was inserted into adenovirus shuttle plasmid to construct pShuttle3-cIFN-gamma expression vector, from which the cIFN-gamma expression cassette was transferred into the adenovirus genomic plasmid pAdeno-X by specific restriction sites to generate recombinant adenovirus genomic plasmid pAd-cIFN-gamma. The pAd-cIFN-gamma plasmid was linearized by digestion and transfected into human embryonic kidney (HEK) 293T cells to generate the replication-defective cIFN-gamma recombinant adenovirus (Ad-cIFN-gamma). To analyze its anti-canine parvovirus activity, the MDCK cells were pre-infected by Ad-cIFN-gamma recombinant adenovirus, and then infected by canine parvovirus. The antiviral activity of the Ad-cIFN-gamma recombinant adenovirus against parvovirus was analyzed. The recombinant adenovirus containing cIFN-gamma gene was constructed by the ligation method. The recombinant adenovirus could mediates recombinant cIFN-gamma secretory expression in MDCK cells. The Ad-cIFN-gamma recombinant adenovirus could significantly inhibit canine parvovirus replication in MDCK cells pre-infected with the recombinant adenovirus. These results indicate that the Ad-cIFN-gamma recombinant adenovirus has the potent antiviral activity against canine parvovirus. The Ad-cIFN-gamma recombinant adenovirus was successfully constructed by the ligation method and possessed a powerful antiviral activity against canine parvovirus.

  3. Down-regulation of common cytokine receptor gamma chain inhibits inflammatory responses in macrophages stimulated with Riemerella anatipestifer

    USDA-ARS?s Scientific Manuscript database

    Th17-cell-mediated inflammation is affected by the soluble form of common cytokine receptor gamma chain (gamma-c). We previously suggested that inflammatory cytokines including interleukin (IL)-17A are associated with Riemerella anatipestifer infection, which a harmful bacterial pathogen in ducks. H...

  4. Anticonvulsant properties of alpha, gamma, and alpha, gamma-substituted gamma-butyrolactones.

    PubMed

    Klunk, W E; Covey, D F; Ferrendelli, J A

    1982-09-01

    Derivatives of gamma-butyrolactone (GBL) substituted on the alpha- and/or gamma-positions were synthesized and tested for their effects on behavior in mice, on the electroencephalographs and blood pressure of paralyzed-ventilated guinea pigs, and on electrical activity of incubated hippocampal slices. Several compounds, including alpha-ethyl-alpha-methyl GBL (alpha-EMGBL), alpha, alpha-dimethyl GBL, alpha, gamma-diethyl-alpha, gamma-dimethyl GBL, and gamma-ethyl-gamma-methyl GBL, prevented seizures induced by pentylenetetrazol, beta-ethyl-beta-methyl-gamma-butyrolactone (beta-EMGBL), picrotoxin, or all three compounds in mice and guinea pigs but had no effect on seizures induced by maximal electroshock or bicuculline. Neither gamma-hydroxybutyrate (GHB) nor alpha-isopropylidine GBL had any anticonvulsant activity. The anticonvulsant alpha-substituted compounds had a potent hypotensive effect and antagonized the hypertensive effect of beta-EMGBL, alpha-EMGBL was tested in incubated hippocampal slices and was found to depress basal activity and antagonize excitation induced by beta-EMGBL. These results demonstrate that alpha-alkyl-substituted GBL and, to a lesser extent, gamma-substituted derivatives are anticonvulsant agents and that their effects are strikingly different from those of GHB or beta-alkyl-substituted GBLs, which are epileptogenic. Possibly beta- and alpha-substituted GBLs act at the same site as agonists and antagonists, respectively.

  5. First and second generation antipsychotics influence hippocampal gamma oscillations by interactions with 5-HT3 and D3 receptors

    PubMed Central

    Schulz, Steffen B; Heidmann, Karin E; Mike, Arpad; Klaft, Zin-Juan; Heinemann, Uwe; Gerevich, Zoltan

    2012-01-01

    BACKGROUND AND PURPOSE Disturbed cortical gamma band oscillations (30–80 Hz) have been observed in schizophrenia: positive symptoms of the disease correlate with an increase in gamma oscillation power, whereas negative symptoms are associated with a decrease. EXPERIMENTAL APPROACH Here we investigated the effects of first and second generation antipsychotics (FGAs and SGAs, respectively) on gamma oscillations. The FGAs haloperidol, flupenthixol, chlorpromazine, chlorprothixene and the SGAs clozapine, risperidone, ziprasidone, amisulpride were applied on gamma oscillations induced by acetylcholine and physostigmine in the CA3 region of rat hippocampal slices. KEY RESULTS Antipsychotics inhibited the power of gamma oscillations and increased the bandwidth of the gamma band. Haloperidol and clozapine had the highest inhibitory effects. To determine which receptor is responsible for the alterations in gamma oscillations, the effects of the antipsychotics were plotted against their pKi values for 19 receptors and analysed for correlation. Our results indicated that 5-HT3 receptors have an enhancing effect on gamma oscillations whereas dopamine D3 receptors inhibit them. To test this prediction, m-chlorophenylbiguanide, PD 128907 and CP 809101, selective agonists at 5-HT3, D3 and 5-HT2C receptors were applied and revealed that 5-HT3 receptors indeed enhanced the gamma power whereas D3 receptors reduced it. As predicted, 5-HT2C receptors had no effects on gamma oscillations. CONCLUSION AND IMPLICATIONS Our data suggest that antipsychotics alter hippocampal gamma oscillations by interacting with 5-HT3 and dopamine D3 receptors. Moreover, a correlation of receptor affinities with the biological effects can be used to predict targets for the pharmacological effects of multi-target drugs. PMID:22817643

  6. Pharmacological evidences for DFK167-sensitive presenilin-independent gamma-secretase-like activity.

    PubMed

    Sevalle, Jean; Ayral, Erwan; Hernandez, Jean-François; Martinez, Jean; Checler, Frédéric

    2009-07-01

    Amyloid-beta (Abeta) peptides production is thought to be a key event in the neurodegenerative process ultimately leading to Alzheimer's disease (AD) pathology. A bulk of studies concur to propose that the C-terminal moiety of Abeta is released from its precursor beta-amyloid precursor protein by a high molecular weight enzymatic complex referred to as gamma-secretase, that is composed of at least, nicastrin (NCT), Aph-1, Pen-2, and presenilins (PS) 1 or 2. They are thought to harbor the gamma-secretase catalytic activity. However, several lines of evidence suggest that additional gamma-secretase-like activities could potentially contribute to Abeta production. By means of a quenched fluorimetric substrate (JMV2660) mimicking the beta-amyloid precursor protein sequence targeted by gamma-secretase, we first show that as expected, this probe allows monitoring of an activity detectable in several cell systems including the neuronal cell line telencephalon specific murine neurons (TSM1). This activity is reduced by DFK167, N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT), and LY68458, three inhibitors known to functionally interact with PS. Interestingly, JMV2660 but not the unrelated peptide JMV2692, inhibits Abeta production in an in vitrogamma-secretase assay as expected from a putative substrate competitor. This activity is enhanced by PS1 and PS2 mutations known to be responsible for familial forms of AD and reduced by aspartyl mutations inactivating PS or in cells devoid of PS or NCT. However, we clearly establish that residual JMV2660-hydrolysing activity could be recovered in PS- and NCT-deficient fibroblasts and that this activity remained inhibited by DFK167. Overall, our study describes the presence of a proteolytic activity displaying gamma-secretase-like properties but independent of PS and still blocked by DFK167, suggesting that the PS-dependent complex could not be the unique gamma-secretase activity responsible for Abeta

  7. Effects of gamma radiation on cork wastewater: Antioxidant activity and toxicity.

    PubMed

    Madureira, Joana; Pimenta, Andreia I; Popescu, Larisa; Besleaga, Alexandra; Dias, Maria Inês; Santos, Pedro M P; Melo, Rita; Ferreira, Isabel C F R; Cabo Verde, Sandra; Margaça, Fernanda M A

    2017-02-01

    A comprehensive assessment of the toxicity and antioxidant activity of cork boiling wastewater and the effects of gamma radiation on these parameters was performed. Antioxidant activity was evaluated using different methodologies as DPPH radical scavenging activity, reducing power and inhibition of β-carotene bleaching. The results have shown that gamma radiation can induce an increase on the antioxidant activity of cork boiling wastewater. Toxicity tests were performed to access the potential added value of the irradiated wastewaters and/or minimization of the impact for discharge in the environment. Two different methods for toxicity evaluation were followed, bacterial growth inhibition test and cytotoxicity assay, in order to predict the behavior of different cells (prokaryotic and eukaryotic) in the presence of cork wastewater. Non-treated cork boiling wastewater seemed to be non-toxic for prokaryotic cells (Pseudomonas fluorescens and Bacillus subtilis) but toxic for eukaryotic cells (A549 human cells and RAW264.7 mouse cells). The gamma radiation treatment at doses of 100 kGy appeared to increase the toxicity of cork compounds for all tested cells, which could be related to a toxic effect of radiolytic products of cork compounds in the wastewaters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Spontaneous Gamma Activity in Schizophrenia.

    PubMed

    Hirano, Yoji; Oribe, Naoya; Kanba, Shigenobu; Onitsuka, Toshiaki; Nestor, Paul G; Spencer, Kevin M

    2015-08-01

    -100 Hz) gamma power was increased in patients with SZ compared with controls during steady-state stimulation (6.579 [3.783] vs 3.984 [1.843]; F1,46 = 9.128 [P = .004]; d = 0.87) but not during rest (0.006 [0.003] vs 0.005 [0.002]; F1,34 = 1.067 [P = .309]; d = 0.35). Induced gamma power in the left hemisphere of the patients with SZ during the 40-Hz stimulation was positively correlated with auditory hallucination symptoms (tangential, ρ = 0.587 [P = .031]; radial, ρ = 0.593 [P = .024]) and negatively correlated with the ASSR phase-locking factor (baseline: ρ = -0.572 [P = .024]; ASSR: ρ = -0.568 [P = .032]). Spontaneous gamma activity is increased during auditory steady-state stimulation in SZ, reflecting a disruption in the normal balance of excitation and inhibition. This phenomenon interacts with evoked oscillations, possibly contributing to the gamma ASSR deficit found in SZ. The similarity of increased spontaneous gamma power in SZ to the findings of increased spontaneous gamma power in animal models of NMDAR hypofunction suggests that spontaneous gamma power could serve as a biomarker for the integrity of NMDARs on parvalbumin-expressing inhibitory interneurons in humans and in animal models of neuropsychiatric disorders.

  9. Inhibition of deprivation-induced food intake by GABAA antagonists: roles of the hypothalamic, endocrine and alimentary mechanisms

    PubMed Central

    Kamatchi, Ganesan L.; Rathanaswami, Palaniswami

    2012-01-01

    The role of gamma amino butyric acid A receptors/neurons of the hypothalamic, endocrine and alimentary systems in the food intake seen in hunger was studied in 20 h food-deprived rats. Food deprivation decreased blood glucose, serum insulin and produced hyperphagia. The hyperphagia was inhibited by subcutaneous or ventromedial hypothalamic administration of gamma amino butyric acid A antagonists picrotoxin or bicuculline. Although results of blood glucose was variable, insulin level was increased by picrotoxin or bicuculline. In contrast, lateral hypothalamic administration of these agents failed to reproduce the above changes. Subcutaneous administration of picrotoxin or bicuculline increased gastric content, decreased gastric motility and small bowel transit. In contrast, ventromedial or lateral hypothalamic administration of picrotoxin or bicuculline failed to alter the gastric content but decreased the small bowel transit. The results of alimentary studies suggest that gamma amino butyric acid neurons of both ventromedial and lateral hypothalamus selectively regulate small bowel transit but not the gastric content. It may be concluded that ventromedial hypothalamus plays a dominant role in the regulation of food intake and that picrotoxin or bicuculline inhibited food intake by inhibiting gamma amino butyric acid receptors of the ventromedial hypothalamus, increasing insulin level and decreasing the gut motility. PMID:22798708

  10. The orphan nuclear receptor DAX-1 acts as a novel transcriptional corepressor of PPAR{gamma}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Gwang Sik; Lee, Gha Young; Nedumaran, Balachandar

    2008-05-30

    DAX-1 is an atypical nuclear receptor (NR) which functions primarily as a transcriptional corepressor of other NRs via heterodimerization. Peroxisome proliferator-activated receptor (PPAR) {gamma} is a ligand-dependent NR which performs a key function in adipogenesis. In this study, we evaluated a novel cross-talk mechanism between DAX-1 and PPAR{gamma}. Transient transfection assays demonstrated that DAX-1 inhibits the transactivity of PPAR{gamma} in a dose-dependent manner. DAX-1 directly competed with the PPAR{gamma} coactivator (PGC)-1{alpha} for binding to PPAR{gamma}. Endogenous levels of DAX-1 were significantly lower in differentiated 3T3-L1 adipocytes as compared to preadipocytes. Using a retroviral expression system, we demonstrated that DAX-1 overexpressionmore » downregulates the expression of PPAR{gamma} target genes, resulting in an attenuation of adipogenesis in 3T3-L1 cells. Our results suggest that DAX-1 acts as a corepressor of PPAR{gamma} and performs a potential function in the regulation of PPAR{gamma}-mediated cellular differentiation.« less

  11. Repeated irradiations with gamma-rays at a Dose of 0.5 Gy may exacerbate asthma.

    PubMed

    Fang, Su-ping; Tago, Fumitoshi; Tanaka, Takashi; Simura, Noriko; Muto, Yasuko; Goto, Resuke; Kojima, Shuji

    2005-06-01

    We previously showed that 0.5 Gy whole-body gamma-ray irradiation with a single or small number of repeated exposures inhibits tumor growth in mice, via elevation of the IFN-gamma/IL-4 ratio concomitantly with a decrease in the percentage of B cells. Here we examined whether repeated 0.5 Gy gamma-rays irradiation can improve asthma in an OVA-induced asthmatic mouse model. We found that repeated irradiation (10 times) with 0.5 Gy of gamma-rays significantly increased total IgE in comparison with the disease-control group. The levels of IL-4 and IL-5 were also significantly higher in the gamma-ray-irradiated group, while that of IFN-gamma was significantly lower, resulting in a further decrease of the IFN-gamma/IL-4 ratio from the normal value. These results indicate that the repeated irradiation with gamma-rays may exacerbate asthma, and may have opposite effects on different immune reactions unlike the irradiation with a single or small number of repeated exposures.

  12. Dibasic calcium phosphate dihydrate, USP material compatibility with gamma radiation

    NASA Astrophysics Data System (ADS)

    Betancourt Quiles, Maritza

    Gamma radiation is a commonly used method to reduce the microbial bioburden in compatible materials when it is applied at appropriate dose levels. Gamma irradiation kills bacteria and mold by breaking down the organism’s DNA and inhibiting cell division. The purpose of this study is to determine the radiation dosage to be used to treat Dibasic Calcium Phosphate Dihydrate, USP (DCPD) and to evaluate its physicochemical effects if any, on this material. This material will be submitted to various doses of gamma radiation that were selected based on literature review and existing regulations that demonstrate that this method is effective to reduce or eliminate microbial bioburden in natural source and synthetic materials. Analytical testing was conducted to the DCPD exposed material in order to demonstrate that gamma radiation does not alter the physicochemical properties and material still acceptable for use in the manufacture of pharmaceutical products. The results obtained through this study were satisfactory and demonstrated that the gamma irradiation dosages from 5 to 30 kGy can be applied to DCPD without altering its physicochemical properties. These are supported by the Assay test data evaluation of lots tested before and after gamma irradiation implementation that show no significant statistical difference between irradiated and non irradiated assay results. The results of this study represent an achievement for the industry since they provide as an alternative the use of Gamma irradiation technology to control the microbial growth in DCPD.

  13. Ablation of phosphoinositide 3-kinase-gamma reduces the severity of acute pancreatitis.

    PubMed

    Lupia, Enrico; Goffi, Alberto; De Giuli, Paolo; Azzolino, Ornella; Bosco, Ornella; Patrucco, Enrico; Vivaldo, Maria Cristina; Ricca, Marco; Wymann, Matthias P; Hirsch, Emilio; Montrucchio, Giuseppe; Emanuelli, Giorgio

    2004-12-01

    In pancreatic acini, the G-protein-activated phosphoinositide 3-kinase-gamma (PI3K gamma) regulates several key pathological responses to cholecystokinin hyperstimulation in vitro. Thus, using mice lacking PI3K gamma, we studied the function of this enzyme in vivo in two different models of acute pancreatitis. The disease was induced by supramaximal concentrations of cerulein and by feeding mice a choline-deficient/ethionine-supplemented diet. Although the secretive function of isolated pancreatic acini was identical in mutant and control samples, in both models, genetic ablation of PI3K gamma significantly reduced the extent of acinar cell injury/necrosis. In agreement with a protective role of apoptosis in pancreatitis, PI3K gamma-deficient pancreata showed an increased number of apoptotic acinar cells, as determined by terminal dUTP nick-end labeling and caspase-3 activity. In addition, neutrophil infiltration within the pancreatic tissue was also reduced, suggesting a dual action of PI3K gamma, both in the triggering events within acinar cells and in the subsequent neutrophil recruitment and activation. Finally, the lethality of the choline-deficient/ethionine-supplemented diet-induced pancreatitis was significantly reduced in mice lacking PI3K gamma. Our results thus suggest that inhibition of PI3K gamma may be of therapeutic value in acute pancreatitis.

  14. Pitting corrosion inhibition of aluminum 2024 by Bacillus biofilms secreting polyaspartate or gamma-polyglutamate.

    PubMed

    Ornek, D; Jayaraman, A; Syrett, B C; Hsu, C-H; Mansfeld, F B; Wood, T K

    2002-04-01

    Pitting corrosion of aluminum 2024 in Luria Bertani medium was reduced by the secretion of anionic peptides by engineered and natural Bacillus biofilms and was studied in continuous reactors using electrochemical impedance spectroscopy. Compared to sterile controls, pitting was reduced dramatically by the presence of the biofilms. The secretion of a 20 amino acid polyaspartate peptide by an engineered Bacillus subtilis WB600/pBE92-Asp biofilm slightly reduced the corrosion rate of the passive aluminum alloy at pH 6.5; however, the secretion of gamma-polyglutamate by a Bacillus licheniformis biofilm reduced the corrosion rate by 90% (compared to the B. subtilis WB600/pBE92 biofilm which did not secrete polyaspartate or gamma-polyglutamate). The corrosion potential ( E(corr)) of aluminum 2024 was increased by about 0.15-0.44 V due to the formation of B. subtilis and B. licheniformis biofilms as compared to sterile controls. The increase of E(corr) and the observed prevention of pitting indicate that the pitting potential ( E(pit)) had increased. This result and the further decrease of corrosion rates for the passive aluminum alloy suggest that the rate of the anodic metal dissolution reaction was reduced by an inhibitor produced by the biofilms. Purified gamma-polyglutamate also decreased the corrosion rates of aluminum 2024.

  15. Inhibition of deprivation-induced food intake by GABA(A) antagonists: roles of the hypothalamic, endocrine and alimentary mechanisms.

    PubMed

    Kamatchi, Ganesan L; Rathanaswami, Palaniswami

    2012-07-01

    The role of gamma amino butyric acid A receptors/neurons of the hypothalamic, endocrine and alimentary systems in the food intake seen in hunger was studied in 20 h food-deprived rats. Food deprivation decreased blood glucose, serum insulin and produced hyperphagia. The hyperphagia was inhibited by subcutaneous or ventromedial hypothalamic administration of gamma amino butyric acid A antagonists picrotoxin or bicuculline. Although results of blood glucose was variable, insulin level was increased by picrotoxin or bicuculline. In contrast, lateral hypothalamic administration of these agents failed to reproduce the above changes. Subcutaneous administration of picrotoxin or bicuculline increased gastric content, decreased gastric motility and small bowel transit. In contrast, ventromedial or lateral hypothalamic administration of picrotoxin or bicuculline failed to alter the gastric content but decreased the small bowel transit. The results of alimentary studies suggest that gamma amino butyric acid neurons of both ventromedial and lateral hypothalamus selectively regulate small bowel transit but not the gastric content. It may be concluded that ventromedial hypothalamus plays a dominant role in the regulation of food intake and that picrotoxin or bicuculline inhibited food intake by inhibiting gamma amino butyric acid receptors of the ventromedial hypothalamus, increasing insulin level and decreasing the gut motility.

  16. Direct evidence of macrophage differentiation from bone marrow cells in the liver: a possible origin of Kupffer cells.

    PubMed

    Takezawa, R; Watanabe, Y; Akaike, T

    1995-12-01

    Controversy has surrounded origin and differentiation of tissue macrophages. We directly demonstrate the differentiation of bone marrow cells into macrophages in the liver in vivo using a cell-labeling fluorescence dye, PKH-26. Bone marrow cells labeled with PKH26 were intravenously injected into syngenic mice, and these cells were tracked by flow cytometric analysis. The majority of the labeled cells were detected only in the liver after 4 days. Interestingly, antigens specific for macrophage lineage cells (F4/80, Fc gamma RII, and CD14) were detected on the liver-accumulated cells only 4 h after the injection. The pattern of the antigen expression changed to that of Kupffer cells (F4/80+, Fc gamma RII+, Mac-1-) after 4 days and remained so thereafter. These labeled cells in the liver were esterase staining-positive and showed phagocytic activity at day 7. The number of labeled cells among the Kupffer cells in the liver increased with days after injection. This indicates that bone marrow cells accumulate in the liver and differentiate into liver macrophages on site. Roles of factors secreted from hepatocytes are also discussed.

  17. Inhibited interferon production after space flight

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, G.; Gould, C. L.; Williams, J.; Mandel, A. D.

    1988-01-01

    Several studies have been performed in our laboratories indicating that interferon production may be impaired in rodents after space flight. Using an antiorthostatic suspension model that simulates some of the effects of microgravity seen during space flight, we have shown that interferon-alpha/beta production was inhibited. The inhibition was not due solely to the stress of suspension. The inhibited interferon production was transient, as suspended animals returned to normal caging recovered the ability to produce interferon. Antiorthostatic suspension of mice also resulted in a loss of resistance to infection with the diabetogenic strain of encephalomyocarditis virus, which correlated with the drop in interferon production. In rats flown in US Space Shuttle mission SL-3, interferon-gamma production was inhibited severely when spleen cells were challenged with concanavalin-A upon return to earth. In contrast, interleukin-3 production by these cells was normal. These results suggest that immune responses may be altered after antiorthostatic modeling or space flight, and the resistance to viral infections may be especially affected.

  18. Glutamyl-gamma-boronate inhibitors of bacterial Glu-tRNA(Gln) amidotransferase.

    PubMed

    Decicco, C P; Nelson, D J; Luo, Y; Shen, L; Horiuchi, K Y; Amsler, K M; Foster, L A; Spitz, S M; Merrill, J J; Sizemore, C F; Rogers, K C; Copeland, R A; Harpel, M R

    2001-09-17

    Analogues of glutamyl-gamma-boronate (1) were synthesized as mechanism-based inhibitors of bacterial Glu-tRNA(Gln) amidotransferase (Glu-AdT) and were designed to engage a putative catalytic serine nucleophile required for the glutaminase activity of the enzyme. Although 1 provides potent enzyme inhibition, structure-activity studies revealed a narrow range of tolerated chemical changes that maintained activity. Nonetheless, growth inhibition of organisms that require Glu-AdT by the most potent enzyme inhibitors appears to validate mechanism-based inhibitor design of Glu-AdT as an approach to antimicrobial development.

  19. Phospholipase C-gamma 1 binding to intracellular receptors for activated protein kinase C.

    PubMed

    Disatnik, M H; Hernandez-Sotomayor, S M; Jones, G; Carpenter, G; Mochly-Rosen, D

    1994-01-18

    Phospholipase C-gamma 1 (PLC-gamma 1; EC 3.1.4.11) hydrolyzes phosphatidylinositol 4,5-bisphosphate to generate diacylglycerol and inositol 1,4,5-trisphosphate and is activated in response to growth factor stimulation and tyrosine phosphorylation. Concomitantly, the enzyme translocates from the cytosol to the particulate cell fraction. A similar process of activation-induced translocation from the cytosol to the cell particulate fraction has also been described for protein kinase C (PKC). We have previously shown that activated PKC binds to specific receptor proteins, receptors for activated C kinase, or RACKs, of approximately 30 kDa. Here, we show that PLC-gamma 1 bound to these RACKs and inhibited subsequent PKC binding to RACKs. However, unlike PKC, the binding of PLC-gamma 1 to RACKs did not require phospholipids and calcium. After epidermal growth factor treatment of intact A-431 cells, the binding of PLC-gamma 1 to RACKs increased as compared with PLC-gamma 1 from control cells. This increase in PLC-gamma 1 binding to RACKs was due to the phosphorylation of PLC-gamma 1. Additional data indicated that PLC-gamma 1 binds to RACKs in solution; epidermal growth factor receptor-dependent PLC-gamma 1 phosphorylation and activation decreased in the presence of RACKs. It is possible that, in vivo, PLC-gamma 1 associates with RACKs or with other PLC-gamma 1-specific anchoring proteins in the particulate cell fraction. Since a PKC C2 homologous region is present in PLC-gamma 1, the C2 region may mediate the activation-induced translocation of the enzyme to the cell particulate fraction and the anchoring protein-PLC-gamma 1 complex may be the active translocated form of PLC-gamma 1.

  20. BMP9 induces EphrinB2 expression in endothelial cells through an Alk1-BMPRII/ActRII-ID1/ID3-dependent pathway: Implications for Hereditary Hemorrhagic Telangiectasia Type II

    PubMed Central

    Kim, Jai-Hyun; Peacock, Matthew R.; George, Steven C.; Hughes, Christopher C.W.

    2012-01-01

    ALK1 (ACVRL1) is a member of the TGFβ receptor family and is expressed predominantly by arterial endothelial cells (EC). Mutations in ACVRL1 are responsible for Hereditary Hemorrhagic Telangiectasia Type 2 (HHT2), a disease manifesting as fragile vessels, capillary overgrowth, and numerous arterio-venous malformations (AVMs). Arterial EC also express EphrinB2, which has multiple roles in vascular development and angiogenesis and is known to be reduced in ACVRL1 knockout mice. Using an in vitro angiogenesis model we find that the Alk1 ligand BMP9 induces EphrinB2 in EC, and this is entirely dependent on expression of Alk1 and at least one of the co-receptors BMPRII or ActRII. BMP9 induces both ID1 and ID3, and both are necessary for full induction of EphrinB2. Loss of Alk1 or EphrinB2 results in increased arterial-venous anastomosis, while loss of Alk1 but not EphrinB2 results in increased VEGFR2 expression and enhanced capillary sprouting. Conversely, BMP9 blocks EC sprouting and this is dependent on Alk1, BMPRII/ActRII and ID1/ID3. Finally, notch signaling overcomes the loss of Alk1 – restoring EphrinB2 expression in EC, and curbing excess sprouting. Thus, in an in vitro model of HHT2, loss of Alk1 blocks BMP9 signaling, resulting in reduced EphrinB2 expression, enhanced VEGFR2 expression, and misregulated EC sprouting and anastomosis. PMID:22622516

  1. Gamma-glutamylcysteinylethyl ester attenuates progression of carbon tetrachloride-induced acute liver injury in mice.

    PubMed

    Nishida, K; Ohta, Y; Ishiguro, I

    1998-02-20

    We examined the effect of gamma-glutamylcysteinylethyl ester (gamma-GCE), which is readily transported into hepatocytes and increases hepatocellular reduced glutathione (GSH) levels, on the progression of carbon tetrachloride (CCl4)-induced liver injury in mice in comparison with that of GSH. Administration of more than 160 micromol/kg of gamma-GCE, but not GSH, to mice at 3 h after intraperitoneal injection of CCl4 (1 ml/kg) significantly attenuated increases in serum aspartate aminotransferase and alanine aminotransferase activities at 24 h after the CCl4 injection. Increases in hepatic lipid peroxide (LPO) concentrations and decreases in hepatic GSH concentrations after the CCl4 injection were significantly diminished by the gamma-GCE (160 micromol/kg) administration, but not by the same dose of GSH. Gamma-GCE, gamma-glutamylcysteine, and cysteine acted as substrates for glutathione peroxidases much less efficiently than GSH in the post-mitochondrial fraction of normal mouse liver cells. These results indicate that gamma-GCE attenuates the progression of CCl4-induced acute liver injury in mice through the maintenance of hepatic GSH levels, leading to inhibition of hepatic LPO formation, which could be due to an efficient utilization of GSH converted from gamma-GCE in the liver cells.

  2. gamma-Hexachlorocyclohexane (gamma-HCH)

    Integrated Risk Information System (IRIS)

    gamma - Hexachlorocyclohexane ( gamma - HCH ) ; CASRN 58 - 89 - 9 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Asse

  3. Activation of peroxisome proliferator-activated receptor-gamma reverses squamous metaplasia and induces transitional differentiation in normal human urothelial cells.

    PubMed

    Varley, Claire Lucy; Stahlschmidt, Jens; Smith, Barbara; Stower, Michael; Southgate, Jennifer

    2004-05-01

    We observed that in urothelium, both cornifying and noncornifying forms of squamous metaplasia are accompanied by changes in the localization of the nuclear hormone receptors, peroxisome proliferator activated receptor gamma (PPAR-gamma) and retinoid X receptor (RXR-alpha). To obtain objective evidence for a role for PPAR-gamma-mediated signaling in urothelial differentiation, we examined expression of the cytokeratin isotypes CK13, CK20, and CK14 as indicators of transitional, terminal transitional, and squamous differentiation, respectively, in cultures of normal human urothelial cells. In control culture conditions, normal human urothelial cells showed evidence of squamous differentiation (CK14+, CK13-, CK20-). Treatment with the high-affinity PPAR-gamma agonist, troglitazone (TZ), resulted in gain of CK13 and loss of CK14 protein expression. The effect of TZ was significantly augmented when the autocrine-stimulated epidermal growth factor receptor pathway was inhibited and this resulted in induction of CK20 expression. The RXR-specific inhibitors PA452, HX531, and HX603 inhibited the TZ-induced CK13 expression, supporting a role for RXR in the induction of CK13 expression. Thus, signaling through PPAR-gamma can mediate transitional differentiation of urothelial cells and this is modulated by growth regulatory programs.

  4. Dual Gamma Rhythm Generators Control Interlaminar Synchrony in Auditory Cortex

    PubMed Central

    Ainsworth, Matthew; Lee, Shane; Cunningham, Mark O.; Roopun, Anita K.; Traub, Roger D.; Kopell, Nancy J.; Whittington, Miles A.

    2013-01-01

    Rhythmic activity in populations of cortical neurons accompanies, and may underlie, many aspects of primary sensory processing and short-term memory. Activity in the gamma band (30 Hz up to > 100 Hz) is associated with such cognitive tasks and is thought to provide a substrate for temporal coupling of spatially separate regions of the brain. However, such coupling requires close matching of frequencies in co-active areas, and because the nominal gamma band is so spectrally broad, it may not constitute a single underlying process. Here we show that, for inhibition-based gamma rhythms in vitro in rat neocortical slices, mechanistically distinct local circuit generators exist in different laminae of rat primary auditory cortex. A persistent, 30 – 45 Hz, gap-junction-dependent gamma rhythm dominates rhythmic activity in supragranular layers 2/3, whereas a tonic depolarization-dependent, 50 – 80 Hz, pyramidal/interneuron gamma rhythm is expressed in granular layer 4 with strong glutamatergic excitation. As a consequence, altering the degree of excitation of the auditory cortex causes bifurcation in the gamma frequency spectrum and can effectively switch temporal control of layer 5 from supragranular to granular layers. Computational modeling predicts the pattern of interlaminar connections may help to stabilize this bifurcation. The data suggest that different strategies are used by primary auditory cortex to represent weak and strong inputs, with principal cell firing rate becoming increasingly important as excitation strength increases. PMID:22114273

  5. Apoptosis of Trypanosoma musculi co-cultured with LPS activated macrophages: enhanced expression of nitric oxide synthase INF-gamma and caspase.

    PubMed

    Gugssa, A; Gebru, S; Lee, C M; Baccetti, B; Anderson, W

    2005-08-01

    Trypanosoma musculi-macrophage co-cultures were studied to investigate the biological role of lipopolysaccharide (LPS) induced cytokines in controlling the proliferation of parasites in vitro. Macrophages, isolated by peritoneal lavage, sustained the growth and proliferation of the parasites. Macrophages activated with LPS were characterized by up-regulation of nitric oxide synthase (iNOS) and phagocytosis of fluorescent latex spheres. Activated macrophages showed marked inhibition of the association and proliferation of the parasites. The LPS treated macrophages produced cytokines, especially interferon gamma (INF-gamma), which was detected by Western blot. Trypanosomes, inhibited from association with macrophages, did not proliferate and instead formed clusters held together by their flagella. Cells in these clusters were apoptotic, as demonstrated by the Apoptag reaction and gel fragmentation assay. In addition, high levels of caspase 8 and caspase 3 were shown in floating trypanosome clusters. The results would suggest that INF-gamma and other cytokines released by activated macrophages, possibly functioning through the INF-gammaR1, Fas ligand, CD95 or other death ligands in the trypanosome plasma membrane initiates the apoptosis cascade in trypanosomes.

  6. Unidentified Gamma-Ray Sources: Hunting Gamma-Ray Blazars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massaro, F.; D'Abrusco, R.; Tosti, G.

    2012-04-02

    One of the main scientific objectives of the ongoing Fermi mission is unveiling the nature of the unidentified {gamma}-ray sources (UGSs). Despite the large improvements of Fermi in the localization of {gamma}-ray sources with respect to the past {gamma}-ray missions, about one third of the Fermi-detected objects are still not associated to low energy counterparts. Recently, using the Wide-field Infrared Survey Explorer (WISE) survey, we discovered that blazars, the rarest class of Active Galactic Nuclei and the largest population of {gamma}-ray sources, can be recognized and separated from other extragalactic sources on the basis of their infrared (IR) colors. Basedmore » on this result, we designed an association method for the {gamma}-ray sources to recognize if there is a blazar candidate within the positional uncertainty region of a generic {gamma}-ray source. With this new IR diagnostic tool, we searched for {gamma}-ray blazar candidates associated to the UGS sample of the second Fermi {gamma}-ray catalog (2FGL). We found that our method associates at least one {gamma}-ray blazar candidate as a counterpart each of 156 out of 313 UGSs analyzed. These new low-energy candidates have the same IR properties as the blazars associated to {gamma}-ray sources in the 2FGL catalog.« less

  7. UNIDENTIFIED {gamma}-RAY SOURCES: HUNTING {gamma}-RAY BLAZARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massaro, F.; Ajello, M.; D'Abrusco, R.

    2012-06-10

    One of the main scientific objectives of the ongoing Fermi mission is unveiling the nature of unidentified {gamma}-ray sources (UGSs). Despite the major improvements of Fermi in the localization of {gamma}-ray sources with respect to the past {gamma}-ray missions, about one-third of the Fermi-detected objects are still not associated with low-energy counterparts. Recently, using the Wide-field Infrared Survey Explorer survey, we discovered that blazars, the rarest class of active galactic nuclei and the largest population of {gamma}-ray sources, can be recognized and separated from other extragalactic sources on the basis of their infrared (IR) colors. Based on this result, wemore » designed an association method for the {gamma}-ray sources to recognize if there is a blazar candidate within the positional uncertainty region of a generic {gamma}-ray source. With this new IR diagnostic tool, we searched for {gamma}-ray blazar candidates associated with the UGS sample of the second Fermi {gamma}-ray LAT catalog (2FGL). We found that our method associates at least one {gamma}-ray blazar candidate as a counterpart to each of 156 out of 313 UGSs analyzed. These new low-energy candidates have the same IR properties as the blazars associated with {gamma}-ray sources in the 2FGL catalog.« less

  8. From neural oscillations to reasoning ability: Simulating the effect of the theta-to-gamma cycle length ratio on individual scores in a figural analogy test.

    PubMed

    Chuderski, Adam; Andrelczyk, Krzysztof

    2015-02-01

    Several existing computational models of working memory (WM) have predicted a positive relationship (later confirmed empirically) between WM capacity and the individual ratio of theta to gamma oscillatory band lengths. These models assume that each gamma cycle represents one WM object (e.g., a binding of its features), whereas the theta cycle integrates such objects into the maintained list. As WM capacity strongly predicts reasoning, it might be expected that this ratio also predicts performance in reasoning tasks. However, no computational model has yet explained how the differences in the theta-to-gamma ratio found among adult individuals might contribute to their scores on a reasoning test. Here, we propose a novel model of how WM capacity constraints figural analogical reasoning, aimed at explaining inter-individual differences in reasoning scores in terms of the characteristics of oscillatory patterns in the brain. In the model, the gamma cycle encodes the bindings between objects/features and the roles they play in the relations processed. Asynchrony between consecutive gamma cycles results from lateral inhibition between oscillating bindings. Computer simulations showed that achieving the highest WM capacity required reaching the optimal level of inhibition. When too strong, this inhibition eliminated some bindings from WM, whereas, when inhibition was too weak, the bindings became unstable and fell apart or became improperly grouped. The model aptly replicated several empirical effects and the distribution of individual scores, as well as the patterns of correlations found in the 100-people sample attempting the same reasoning task. Most importantly, the model's reasoning performance strongly depended on its theta-to-gamma ratio in same way as the performance of human participants depended on their WM capacity. The data suggest that proper regulation of oscillations in the theta and gamma bands may be crucial for both high WM capacity and effective complex

  9. Postharvest Disease Control of Colletotrichum gloeosporioides and Penicillium expansum on Stored Apples by Gamma Irradiation Combined with Fumigation

    PubMed Central

    Cheon, Wonsu; Kim, Young Soo; Balaraju, Kotnala; Kim, Bong-Su; Lee, Byeong-Ho; Jeon, Yongho

    2016-01-01

    To study the control of postharvest decay caused by Colletotrichum gloeosporioides and Penicillium expansum, gamma irradiation alone or in combination with fumigation was evaluated to extend the shelf life of apples in South Korea. An irradiation dose of 2.0 kGy resulted in the maximum inhibition of C. gloeosporioides and P. expansum spore germination. The gamma irradiation dose required to reduce the spore germination by 90% was 0.22 and 0.35 kGy for C. gloeosporioides and P. expansum, respectively. Microscopic observations revealed that when the fungal spores were treated with gamma irradiation (4.0 kGy), conidial germination was stopped completely resulting in no germ tube formation in C. gloeosporioides. Treatment with the eco-friendly fumigant ethanedinitrile had a greater antifungal activity against C. gloeosporioides and P. expansum in comparison with the non-treated control under in vitro conditions. The in vitro antifungal effects of the gamma irradiation and fumigation treatments allowed us to further study the effects of the combined treatments to control postharvest decay on stored apples. Interestingly, when apples were treated with gamma irradiation in combined with fumigation, disease inhibition increased more at lower (< 0.4 kGy) than at higher doses of irradiation, suggesting that combined treatments reduced the necessary irradiation dose in phytosanitary irradiation processing under storage conditions. PMID:27721696

  10. Inhibition of human mast cell growth and differentiation by interferon gamma-1b.

    PubMed

    Kirshenbaum, A S; Worobec, A S; Davis, T A; Goff, J P; Semere, T; Metcalfe, D D

    1998-03-01

    In an effort to identify cytokines that inhibit human mast cell growth, we cultured HMC-1 cells and recombinant human stem cell factor (rhSCF)-dependent human bone marrow-derived mast cells (HBMCs) in the presence of interferon gamma (IFNgamma)-1b and interferon alpha (IFNalpha)-2b. HMC-1 cell numbers decreased in the presence of 1000 U/mL IFNgamma-1b but were unaffected by 1000 U/mL of IFNalpha-2b. HBMCs were then cultured for 0 to 7 days with 100 ng/mL rhSCF and 10 ng/mL recombinant human IL-3 (rhIL-3), followed by culture in rhSCF and administration of either 1000 U/mL IFNalpha-2b or 1000 U/mL IFNgamma-1b. HBMCs appearing in cultures with rhSCF alone or in combination with IFNalpha-2b were virtually identical in number through 8 weeks of culture. In cultures supplemented with IFNgamma-1b, HBMCs significantly decreased in number and incidence of granular metachromasia by 4 to 5 weeks (p<0.001). Similar results were obtained when human marrow was cultured from day 0 with rhSCF and IFNgamma-1b. Mature rhSCF-dependent HBMCs were also cultured at 5 weeks with rhSCF alone or in combination with IFNgamma-1b. Compared with cells cultured in rhSCF, mature 5-week HBMC cultures treated with rhSCF plus IFNgamma-1b revealed a decrease in mast cells, and those mast cells that remained had fewer toluidine blue- and tryptase-positive granules after 5 to 8 weeks. FACS analysis of rhSCF plus IFNgamma-1b-treated mature HBMCs revealed increased c-kit and Fc(epsilon)RI expression. Mast cell releasibility was not increased. IFNgamma-lb was thus able to suppress mast cell growth from CD34+ cells, suggesting that this agent should be considered as a candidate cytokine for the treatment of disorders of mast cell proliferation.

  11. Dauer-independent insulin/IGF-1-signalling implicates collagen remodelling in longevity.

    PubMed

    Ewald, Collin Y; Landis, Jess N; Porter Abate, Jess; Murphy, Coleen T; Blackwell, T Keith

    2015-03-05

    Interventions that delay ageing mobilize mechanisms that protect and repair cellular components, but it is unknown how these interventions might slow the functional decline of extracellular matrices, which are also damaged during ageing. Reduced insulin/IGF-1 signalling (rIIS) extends lifespan across the evolutionary spectrum, and in juvenile Caenorhabditis elegans also allows the transcription factor DAF-16/FOXO to induce development into dauer, a diapause that withstands harsh conditions. It has been suggested that rIIS delays C. elegans ageing through activation of dauer-related processes during adulthood, but some rIIS conditions confer robust lifespan extension unaccompanied by any dauer-like traits. Here we show that rIIS can promote C. elegans longevity through a program that is genetically distinct from the dauer pathway, and requires the Nrf (NF-E2-related factor) orthologue SKN-1 acting in parallel to DAF-16. SKN-1 is inhibited by IIS and has been broadly implicated in longevity, but is rendered dispensable for rIIS lifespan extension by even mild activity of dauer-related processes. When IIS is decreased under conditions that do not induce dauer traits, SKN-1 most prominently increases expression of collagens and other extracellular matrix genes. Diverse genetic, nutritional, and pharmacological pro-longevity interventions delay an age-related decline in collagen expression. These collagens mediate adulthood extracellular matrix remodelling, and are needed for ageing to be delayed by interventions that do not involve dauer traits. By genetically delineating a dauer-independent rIIS ageing pathway, our results show that IIS controls a broad set of protective mechanisms during C. elegans adulthood, and may facilitate elucidation of processes of general importance for longevity. The importance of collagen production in diverse anti-ageing interventions implies that extracellular matrix remodelling is a generally essential signature of longevity assurance

  12. PPAR{gamma} activates ABCA1 gene transcription but reduces the level of ABCA1 protein in HepG2 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mogilenko, Denis A., E-mail: denis@iem.sp.ru; Department of Embryology, St. Petersburg State University, 199034 St. Petersburg; Shavva, Vladimir S.

    Research highlights: {yields} PPAR{gamma} activates ABCA1 gene expression but decreases ABCA1 protein content in human hepatoma cell line HepG2. {yields} Treatment of HepG2 cells with PPAR{gamma} agonist GW1929 leads to dissociation of LXR{beta} from ABCA1-LXR{beta} complex. {yields} Inhibition of protein kinases MEK1/2 abolishes PPAR{gamma}-mediated dissociation of LXR{beta} from ABCA1/LXR{beta} complex. {yields} Activation of PPAR{gamma} leads to increasing of the level of LXR{beta} associated with LXRE within ABCA1 gene promoter. -- Abstract: Synthesis of ABCA1 protein in liver is necessary for high-density lipoproteins (HDL) formation in mammals. Nuclear receptor PPAR{gamma} is known as activator of ABCA1 expression, but details of PPAR{gamma}-mediatedmore » regulation of ABCA1 at both transcriptional and post-transcriptional levels in hepatocytes have not still been well elucidated. In this study we have shown, that PPAR{gamma} activates ABCA1 gene transcription in human hepatoma cells HepG2 through increasing of LXR{beta} binding with promoter region of ABCA1 gene. Treatment of HepG2 cells with PPAR{gamma} agonist GW1929 leads to dissociation of LXR{beta} from ABCA1/LXR{beta} complex and to nuclear translocation of this nuclear receptor resulting in reduction of ABCA1 protein level 24 h after treatment. Inhibition of protein kinases MEK1/2 abolishes PPAR{gamma}-mediated dissociation of LXR{beta} from ABCA1/LXR{beta} complex, but does not block PPAR{gamma}-dependent down-regulation of ABCA1 protein in HepG2 cells. These data suggest that PPAR{gamma} may be important for regulation of the level of hepatic ABCA1 protein and indicate the new interplays between PPAR{gamma}, LXR{beta} and MEK1/2 in regulation of ABCA1 mRNA and protein expression.« less

  13. Crosslinking of surface antibodies and Fc sub. gamma. receptors: Theory and application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wofsy, C.; Goldstein, B.

    1991-03-15

    In an immune response, the crosslinking of surface immunoglobulin (sIg) on B cells by multiply-bound ligand activates a range of cell responses, culminating in the production of antibody-secreting cells. However, when the crosslinking agent is itself an antibody, B cell activation is inhibited. Solution antibody (IgG) can bind simultaneously to sIg and to another cell surface receptor, Fc{sub {gamma}}R, co-crosslinking' the distinct receptors. Experiments point to co-crosslinking as the inhibitory signal. It is not clear how co-crosslinking inhibits B cell stimulation. The authors construct and analyze a mathematical model aimed at clarifying the nature and mechanisms of action of themore » separate cell signals controlling B cell responses to antibodies. Basophils and mast cells respond to the crosslinking of cell surface antibody by releasing histamine. Like B cells, basophils also express FC{sub {gamma}}R. They use their model to analyze new data on the effect of antibody-induced co-crosslinking of the two types of receptor on this family of cells. Predictions of the model indicate that an observed difference between the response patterns induced by antibodies and by antibody fragments that cannot bind to FC{sub {gamma}}R can be explained if co-crosslinking is neither inhibitory nor stimulatory in this system.« less

  14. Growth kinetics of gamma-prime precipitates in a directionally solidified eutectic, gamma/gamma-prime-delta

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.

    1976-01-01

    A directionally solidified eutectic alloy (DSEA), of those viewed as potential candidates for the next generation of aircraft gas turbine blade materials, is studied for the gamma-prime growth kinetics, in the system Ni-Nb-Cr-Al, specifically: Ni-20 w/o Nb-6 w/o Cr-2.5 w/o Al gamma/gamma-prime-delta DSEA. Heat treatment, polishing and etching, and preparation for electron micrography are described, and the size distribution of gamma-prime phase following various anneals is plotted, along with gamma-prime growth kinetics in this specific DSEA, and the cube of gamma-prime particle size vs anneal time. Activation energies and coarsening kinetics are studied.

  15. The neutron-gamma Feynman variance to mean approach: Gamma detection and total neutron-gamma detection (theory and practice)

    NASA Astrophysics Data System (ADS)

    Chernikova, Dina; Axell, Kåre; Avdic, Senada; Pázsit, Imre; Nordlund, Anders; Allard, Stefan

    2015-05-01

    Two versions of the neutron-gamma variance to mean (Feynman-alpha method or Feynman-Y function) formula for either gamma detection only or total neutron-gamma detection, respectively, are derived and compared in this paper. The new formulas have particular importance for detectors of either gamma photons or detectors sensitive to both neutron and gamma radiation. If applied to a plastic or liquid scintillation detector, the total neutron-gamma detection Feynman-Y expression corresponds to a situation where no discrimination is made between neutrons and gamma particles. The gamma variance to mean formulas are useful when a detector of only gamma radiation is used or when working with a combined neutron-gamma detector at high count rates. The theoretical derivation is based on the Chapman-Kolmogorov equation with the inclusion of general reactions and corresponding intensities for neutrons and gammas, but with the inclusion of prompt reactions only. A one energy group approximation is considered. The comparison of the two different theories is made by using reaction intensities obtained in MCNPX simulations with a simplified geometry for two scintillation detectors and a 252Cf-source. In addition, the variance to mean ratios, neutron, gamma and total neutron-gamma are evaluated experimentally for a weak 252Cf neutron-gamma source, a 137Cs random gamma source and a 22Na correlated gamma source. Due to the focus being on the possibility of using neutron-gamma variance to mean theories for both reactor and safeguards applications, we limited the present study to the general analytical expressions for Feynman-alpha formulas.

  16. Characterization of phospholipase C gamma enzymes with gain-of-function mutations.

    PubMed

    Everett, Katy L; Bunney, Tom D; Yoon, Youngdae; Rodrigues-Lima, Fernando; Harris, Richard; Driscoll, Paul C; Abe, Koichiro; Fuchs, Helmut; de Angelis, Martin Hrabé; Yu, Philipp; Cho, Wohnwa; Katan, Matilda

    2009-08-21

    Phospholipase C gamma isozymes (PLC gamma 1 and PLC gamma 2) have a crucial role in the regulation of a variety of cellular functions. Both enzymes have also been implicated in signaling events underlying aberrant cellular responses. Using N-ethyl-N-nitrosourea (ENU) mutagenesis, we have recently identified single point mutations in murine PLC gamma 2 that lead to spontaneous inflammation and autoimmunity. Here we describe further, mechanistic characterization of two gain-of-function mutations, D993G and Y495C, designated as ALI5 and ALI14. The residue Asp-993, mutated in ALI5, is a conserved residue in the catalytic domain of PLC enzymes. Analysis of PLC gamma 1 and PLC gamma 2 with point mutations of this residue showed that removal of the negative charge enhanced PLC activity in response to EGF stimulation or activation by Rac. Measurements of PLC activity in vitro and analysis of membrane binding have suggested that ALI5-type mutations facilitate membrane interactions without compromising substrate binding and hydrolysis. The residue mutated in ALI14 (Tyr-495) is within the spPH domain. Replacement of this residue had no effect on folding of the domain and enhanced Rac activation of PLC gamma 2 without increasing Rac binding. Importantly, the activation of the ALI14-PLC gamma 2 and corresponding PLC gamma 1 variants was enhanced in response to EGF stimulation and bypassed the requirement for phosphorylation of critical tyrosine residues. ALI5- and ALI14-type mutations affected basal activity only slightly; however, their combination resulted in a constitutively active PLC. Based on these data, we suggest that each mutation could compromise auto-inhibition in the inactive PLC, facilitating the activation process; in addition, ALI5-type mutations could enhance membrane interaction in the activated state.

  17. Effect of gamma irradiation and its convergent treatment for control of postharvest Botrytis cinerea of cut roses

    NASA Astrophysics Data System (ADS)

    Chu, Eun-Hee; Shin, Eun-Jung; Park, Hae-Jun; Jeong, Rae-Dong

    2015-10-01

    Postharvest diseases cause considerable losses to harvested crops. Among them, gray mold (Botrytis cinerea) is a major problem of exporting to cut rose flowers into Korea. Irradiation treatment is an alternative to phytosanitary purposes and a useful nonchemical approach to the control of postharvest diseases. Gamma irradiation was evaluated for its in vitro and in vivo antifungal activity against B. cinerea on cut rose varieties, 'Shooting Star' and 'Babe'. The irradiating dose required to reduce the population by 90%, D10, was 0.99 kGy. Gamma irradiation showed complete inhibition of spore germination and mycelial growth of B. cinerea, especially 4.0 kGy in vitro. Antifungal activity of gamma irradiation on rose B. cinerea is a dose-dependent manner. A significant phytotoxicity such as bent neck in cut rose quality was shown from gamma irradiation at over 0.4 kGy (p<0.05) in both varieties. Although there is no significant difference in both varieties for fresh weight, in the case of flower rate, 'Babe' shows more sensitivity than 'Shooting Star'. In vivo assays demonstrated that established doses in in vitro, over 4 kGy, could completely inactive fungal pathogens, but such high doses can cause severe flowers damage. Thus, to eliminate negative impact on their quality, gamma irradiation was evaluated at lower doses in combination with an eco-friendly chemical, sodium dichloroisocyanurate (NaDCC) to examine the inhibition of B. cinerea. Intriguingly, only the combined treatment with 0.2 kGy of gamma irradiation and 70 ppm of NaDCC exhibited significant synergistic antifungal activity against blue mold decay in both varieties. Together, these results suggest that a synergistic effect of the combined treatment with gamma irradiation and NaDCC can be efficiently used to control the postharvest diseases in cut rose flowers, and will provide a promising technology for horticulture products for exportation.

  18. Antioxidative activity of microencapsulated gamma-oryzanol on high cholesterol-fed rats.

    PubMed

    Suh, Mun-Hee; Yoo, Sang-Ho; Chang, Pahn-Shick; Lee, Hyeon Gyu

    2005-12-14

    The effectiveness of microencapsulated gamma-oryzanol (M-gamma-OZ) was evaluated as an antioxidant in Sprague-Dawley rats. Lard containing 100 ppm of gamma-OZ (HCD III) or 100 ppm of M-gamma-OZ (HCD IV) was heated in an oven for 7 days, and the heat-treated lard as an ingredient in a high cholesterol diet (HCD) formulation was tested for analyzing in vivo cholesterol and lipid profiles. The HCDs containing fresh lard (HCD I) and heat-treated lard (HCD II) were fed to the rats for 4 weeks as control groups A and B, respectively, in this experiment. The liver thiobarbituric acid reactive substances values of group C (fed with HCD III) and group D (with HCD IV) were significantly lower (p < 0.05) than that of negative control, group B. One of the cholesterol oxidation products, 7-ketocholesterol, was not detected from group D, indicating that microencapsulation preserved antioxidative activity effectively. The levels of serum total cholesterol and lipoproteins, high-density lipoprotein (HDL), low-density lipoprotein (LDL), and very low-density lipoprotein were also affected by heat-induced lipid oxidation.The M-gamma-OZ evidently decreased LDL-cholesterol content and increased HDL-cholesterol in blood samples of tested rats. These results suggested that the M-gamma-OZ was not only effective in inhibiting the hypercholesterolemia of serum and liver but also reduced the oxidation degree of lipids and cholesterol. Therefore, this microencapsulation can be a good potential technique to protect the antioxidant activity of gamma-OZ from heat-induced lipid oxidation.

  19. The right hippocampus leads the bilateral integration of gamma-parsed lateralized information

    PubMed Central

    Benito, Nuria; Martín-Vázquez, Gonzalo; Makarova, Julia; Makarov, Valeri A; Herreras, Oscar

    2016-01-01

    It is unclear whether the two hippocampal lobes convey similar or different activities and how they cooperate. Spatial discrimination of electric fields in anesthetized rats allowed us to compare the pathway-specific field potentials corresponding to the gamma-paced CA3 output (CA1 Schaffer potentials) and CA3 somatic inhibition within and between sides. Bilateral excitatory Schaffer gamma waves are generally larger and lead from the right hemisphere with only moderate covariation of amplitude, and drive CA1 pyramidal units more strongly than unilateral waves. CA3 waves lock to the ipsilateral Schaffer potentials, although bilateral coherence was weak. Notably, Schaffer activity may run laterally, as seen after the disruption of the connecting pathways. Thus, asymmetric operations promote the entrainment of CA3-autonomous gamma oscillators bilaterally, synchronizing lateralized gamma strings to converge optimally on CA1 targets. The findings support the view that interhippocampal connections integrate different aspects of information that flow through the left and right lobes. DOI: http://dx.doi.org/10.7554/eLife.16658.001 PMID:27599221

  20. Enzymatic characteristics of I213T mutant presenilin-1/gamma-secretase in cell models and knock-in mouse brains: familial Alzheimer disease-linked mutation impairs gamma-site cleavage of amyloid precursor protein C-terminal fragment beta.

    PubMed

    Shimojo, Masafumi; Sahara, Naruhiko; Mizoroki, Tatsuya; Funamoto, Satoru; Morishima-Kawashima, Maho; Kudo, Takashi; Takeda, Masatoshi; Ihara, Yasuo; Ichinose, Hiroshi; Takashima, Akihiko

    2008-06-13

    Presenilin (PS)/gamma-secretase-mediated intramembranous proteolysis of amyloid precursor protein produces amyloid beta (Abeta) peptides in which Abeta species of different lengths are generated through multiple cleavages at the gamma-, zeta-, and epsilon-sites. An increased Abeta42/Abeta40 ratio is a common characteristic of most cases of familial Alzheimer disease (FAD)-linked PS mutations. However, the molecular mechanisms underlying amyloid precursor protein proteolysis leading to increased Abeta42/Abeta40 ratios still remain unclear. Here, we report our findings on the enzymatic analysis of gamma-secretase derived from I213T mutant PS1-expressing PS1/PS2-deficient (PS(-/-)) cells and from the brains of I213T mutant PS1 knock-in mice. Kinetics analyses revealed that the FAD mutation reduced de novo Abeta generation, suggesting that mutation impairs the total catalytic rate of gamma-secretase. Analysis of each Abeta species revealed that the FAD mutation specifically reduced Abeta40 levels more drastically than Abeta42 levels, leading to an increased Abeta42/Abeta40 ratio. By contrast, the FAD mutation increased the generation of longer Abeta species such as Abeta43, Abeta45, and >Abeta46. These results were confirmed by analyses of gamma-secretase derived from I213T knock-in mouse brains, in which the reduction of de novo Abeta generation was mutant allele dose-dependent. Our findings clearly indicate that the mechanism underlying the increased Abeta42/Abeta40 ratio observed in cases of FAD mutations is related to the differential inhibition of gamma-site cleavage reactions, in which the reaction producing Abeta40 is subject to more inhibition than that producing Abeta42. Our results also provide novel insight into how enhancing the generation of longer Abetas may contribute to Alzheimer disease onset.

  1. Effects of {gamma}-secretase inhibition on the proliferation and vitamin D{sub 3} induced osteogenesis in adipose derived stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jing, Wei; Xiong, Zhonghua; Cai, Xiaoxiao

    2010-02-12

    As a {gamma}-secretase inhibitor, DAPT has been widely used to evaluate the biological behaviors and Notch signaling pathway in various cells. This study was aimed to examine the effects of DAPT on the growth and vitamin D{sub 3} induced osteogenesis in adipose derived stem cells (ASCs). The cells were treated with or without DAPT and induced to osteoblastic lineage in the presence of vitamin D{sub 3}. Alizarin red staining and real-time PCR results indicated that the addition of DAPT to vitamin D{sub 3} treatments enhanced osteogenesis in ASCs. According to the fold increase and colony-forming unit assay results, the cellsmore » cultured in DAPT exhibited lower proliferation rate than those cultured in control medium. Hey1, expressed in the nucleus of ASCs to act as a transcriptional repressor, was downregulated when Notch signaling was inhibited by DAPT. Whereas the expression of Runx2 increased in the nucleus of osteogenic induced ASCs after DAPT treatment. This study demonstrated that DAPT reduced the proliferation and enhanced the osteogenesis in ASCs via regulation of Notch and Runx2 expression.« less

  2. Very high-energy gamma rays from gamma-ray bursts.

    PubMed

    Chadwick, Paula M

    2007-05-15

    Very high-energy (VHE) gamma-ray astronomy has undergone a transformation in the last few years, with telescopes of unprecedented sensitivity having greatly expanded the source catalogue. Such progress makes the detection of a gamma-ray burst at the highest energies much more likely than previously. This paper describes the facilities currently operating and their chances for detecting gamma-ray bursts, and reviews predictions for VHE gamma-ray emission from gamma-ray bursts. Results to date are summarized.

  3. PPARγ antagonist attenuates mouse immune-mediated bone marrow failure by inhibition of T cell function

    PubMed Central

    Sato, Kazuya; Feng, Xingmin; Chen, Jichun; Li, Jungang; Muranski, Pawel; Desierto, Marie J.; Keyvanfar, Keyvan; Malide, Daniela; Kajigaya, Sachiko; Young, Neal S.

    2016-01-01

    Acquired aplastic anemia is an immune-mediated disease, in which T cells target hematopoietic cells; at presentation, the bone marrow is replaced by fat. It was reported that bone marrow adipocytes were negative regulators of hematopoietic microenvironment. To examine the role of adipocytes in bone marrow failure, we investigated peroxisomal proliferator-activated receptor gamma, a key transcription factor in adipogenesis, utilizing an antagonist of this factor called bisphenol-A-diglycidyl-ether. While bisphenol-A-diglycidyl-ether inhibited adipogenesis as expected, it also suppressed T cell infiltration of bone marrow, reduced plasma inflammatory cytokines, decreased expression of multiple inflammasome genes, and ameliorated marrow failure. In vitro, bisphenol-A-diglycidyl-ether suppressed activation and proliferation, and reduced phospholipase C gamma 1 and nuclear factor of activated T-cells 1 expression, as well as inhibiting calcium flux in T cells. The in vivo effect of bisphenol-A-diglycidyl-ether on T cells was confirmed in a second immune-mediated bone marrow failure model, using different strains and non-major histocompatibility antigen mismatched: bisphenol-A-diglycidyl-ether ameliorated marrow failure by inhibition of T cell infiltration of bone marrow. Our data indicate that peroxisomal proliferator-activated receptor gamma antagonists may attenuate murine immune-mediated bone marrow failure, at least in part, by suppression of T cell activation, which might hold implications in the application of peroxisomal proliferator-activated receptor gamma antagonists in immune-mediated pathophysiologies, both in the laboratory and in the clinic. Genetically “fatless” mice developed bone marrow failure with accumulation of marrow adipocytes in our model, even in the absence of body fat, suggesting different mechanisms of systematic and marrow adipogenesis and physiologic versus pathophysiologic fat accumulation. PMID:26589913

  4. The structure and function of Alzheimer's gamma secretase enzyme complex.

    PubMed

    Krishnaswamy, Sudarsan; Verdile, Giuseppe; Groth, David; Kanyenda, Limbikani; Martins, Ralph N

    2009-01-01

    The production and accumulation of the beta amyloid protein (Abeta) is a key event in the cascade of oxidative and inflammatory processes that characterizes Alzheimer's disease (AD). A multi-subunit enzyme complex, referred to as gamma (gamma) secretase, plays a pivotal role in the generation of Abeta from its parent molecule, the amyloid precursor protein (APP). Four core components (presenilin, nicastrin, aph-1, and pen-2) interact in a high-molecular-weight complex to perform intramembrane proteolysis on a number of membrane-bound proteins, including APP and Notch. Inhibitors and modulators of this enzyme have been assessed for their therapeutic benefit in AD. However, although these agents reduce Abeta levels, the majority have been shown to have severe side effects in pre-clinical animal studies, most likely due to the enzymes role in processing other proteins involved in normal cellular function. Current research is directed at understanding this enzyme and, in particular, at elucidating the roles that each of the core proteins plays in its function. In addition, a number of interacting proteins that are not components of gamma-secretase also appear to play important roles in modulating enzyme activity. This review will discuss the structural and functional complexity of the gamma-secretase enzyme and the effects of inhibiting its activity.

  5. IFN-gamma receptor-deficient mice generate antiviral Th1-characteristic cytokine profiles but altered antibody responses.

    PubMed

    Schijns, V E; Haagmans, B L; Rijke, E O; Huang, S; Aguet, M; Horzinek, M C

    1994-09-01

    The lymphokine IFN-gamma is a pleiotropic immunomodulator and possesses intrinsic antiviral activity. We studied its significance in the development of antiviral immune responses by using IFN-gamma receptor-deficient (IFN-gamma R-/-) mice. After inoculation with live attenuated pseudorabies virus (PRV), the mutant mice showed no infectivity titers in various tissues, and transient viral Ag expression only in the spleen, similar as in wild-type mice. However, the absence of the IFN-gamma R resulted in increased proliferative splenocyte responses. The PRV-immune animals showed a normal IFN-gamma and IL-2 production, without detectable IL-4, and with decreased IL-10 secretion in response to viral Ag or Con A. Immunohistochemically, an increased ratio of IFN-gamma:IL-4-producing spleen cells was found. After immunization with either live attenuated or inactivated PRV, IFN-gamma R-/- mice produced significantly less antiviral Ab, and more succumbed to challenge infection than the intact control animals. The reduction in Ab titers in the mutant mice correlated with lower protection by their sera in transfer experiments. Our data demonstrate that ablation of the IFN-gamma receptor surprisingly does not inhibit the generation of antiviral Th1-type and increase Th2-type cytokine responses. However, it profoundly impairs the generation of protective antiviral Ab.

  6. Induction of biliary cholangiocarcinoma cell apoptosis by 103Pd cholangial radioactive stent gamma-rays.

    PubMed

    He, Gui-jin; Sun, Dan-dan; Ji, Da-wei; Sui, Dong-ming; Yu, Fa-qiang; Gao, Qin-yi; Dai, Xian-wei; Gao, Hong; Jiang, Tao; Dai, Chao-liu

    2008-06-05

    In recent years, interventional tumor therapy, involving implantation of intra-cholangial metal stents through percutaneous trans-hepatic punctures, has provided a new method for treating cholangiocarcinoma. (103)Pd cholangial radioactive stents can concentrate high radioactive dosages into the malignant tumors and kill tumor cells effectively, in order to prevent re-stenosis of the lumen caused by a relapsed tumor. The aim of the present study was to investigate the efficacy of gamma-rays released by the (103)Pd biliary duct radioactive stent in treating cholangiocarcinoma via induction of biliary cholangiocarcinoma cell apoptosis. A group of biliary duct cancer cells was collectively treated with a dose of gamma-rays. Cells were then examined by the 3-(4, 5-dimethyl thiazol-2-yl)-2, 5-diphenyl terazolium-bromide (MTT) technique for determining the inhibition rate of the biliary duct cancer cells, as well as with other methods including electron microscopy, DNA agarose gel electrophoresis, and flow cytometry were applied for the evaluation of their morphological and biochemical characteristics. The growth curve and the growth inhibition rate of the cells were determined, and the changes in the ultrastructure of the cholangiocarcinoma cells and the DNA electrophoresis bands were examined under a UV-lamp. The gamma-ray released by (103)Pd inhibited cholangiocarcinoma cell growth, as demonstrated when the growth rate of the cells was stunned by a gamma-ray with a dosage larger than 197.321 MBq. Typical features of cholangiocarcinoma cell apoptosis were observed in the 197.321 MBq dosage group, while cell necrosis was observed when irradiated by a dosage above 245.865 MBq. DNA agarose gel electrophoresis results were different between the 197.321 MBq irradiation dosage group, the 245.865 MBq irradiation dosage group, and the control group. (103)Pd radioactive stents which provide a radioactive dosage of 197.321 MBq are effective in the treatment of cholangiocarcinoma

  7. Morphological changes induced by different doses of gamma irradiation in garlic sprouts

    NASA Astrophysics Data System (ADS)

    Pellegrini, C. N.; Croci, C. A.; Orioli, G. A.

    2000-03-01

    The objective of this work was to evaluate the effects of different doses of gamma rays applied in dormancy and post-dormancy on garlic bulbs in relation with some morphophysiological parameters. High (commercial) doses cause the complete inhibition of sprouting and mitosis (due to nuclear aberrations). Relatively low doses show no effects on bulbs but doses of 10 Gy applied in post-dormancy reduce sprouting and stop mitosis. This inhibition becomes noticeable from 150 days post-harvest onwards. Exogenous growth regulators can reverse these effects. Results may reinforce the good practice of radioinhibition processes in garlic.

  8. Multisensory stimuli elicit altered oscillatory brain responses at gamma frequencies in patients with schizophrenia

    PubMed Central

    Stone, David B.; Coffman, Brian A.; Bustillo, Juan R.; Aine, Cheryl J.; Stephen, Julia M.

    2014-01-01

    Deficits in auditory and visual unisensory responses are well documented in patients with schizophrenia; however, potential abnormalities elicited from multisensory audio-visual stimuli are less understood. Further, schizophrenia patients have shown abnormal patterns in task-related and task-independent oscillatory brain activity, particularly in the gamma frequency band. We examined oscillatory responses to basic unisensory and multisensory stimuli in schizophrenia patients (N = 46) and healthy controls (N = 57) using magnetoencephalography (MEG). Time-frequency decomposition was performed to determine regions of significant changes in gamma band power by group in response to unisensory and multisensory stimuli relative to baseline levels. Results showed significant behavioral differences between groups in response to unisensory and multisensory stimuli. In addition, time-frequency analysis revealed significant decreases and increases in gamma-band power in schizophrenia patients relative to healthy controls, which emerged both early and late over both sensory and frontal regions in response to unisensory and multisensory stimuli. Unisensory gamma-band power predicted multisensory gamma-band power differently by group. Furthermore, gamma-band power in these regions predicted performance in select measures of the Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) test battery differently by group. These results reveal a unique pattern of task-related gamma-band power in schizophrenia patients relative to controls that may indicate reduced inhibition in combination with impaired oscillatory mechanisms in patients with schizophrenia. PMID:25414652

  9. Input-dependent modulation of MEG gamma oscillations reflects gain control in the visual cortex.

    PubMed

    Orekhova, Elena V; Sysoeva, Olga V; Schneiderman, Justin F; Lundström, Sebastian; Galuta, Ilia A; Goiaeva, Dzerasa E; Prokofyev, Andrey O; Riaz, Bushra; Keeler, Courtney; Hadjikhani, Nouchine; Gillberg, Christopher; Stroganova, Tatiana A

    2018-05-31

    Gamma-band oscillations arise from the interplay between neural excitation (E) and inhibition (I) and may provide a non-invasive window into the state of cortical circuitry. A bell-shaped modulation of gamma response power by increasing the intensity of sensory input was observed in animals and is thought to reflect neural gain control. Here we sought to find a similar input-output relationship in humans with MEG via modulating the intensity of a visual stimulation by changing the velocity/temporal-frequency of visual motion. In the first experiment, adult participants observed static and moving gratings. The frequency of the MEG gamma response monotonically increased with motion velocity whereas power followed a bell-shape. In the second experiment, on a large group of children and adults, we found that despite drastic developmental changes in frequency and power of gamma oscillations, the relative suppression at high motion velocities was scaled to the same range of values across the life-span. In light of animal and modeling studies, the modulation of gamma power and frequency at high stimulation intensities characterizes the capacity of inhibitory neurons to counterbalance increasing excitation in visual networks. Gamma suppression may thus provide a non-invasive measure of inhibitory-based gain control in the healthy and diseased brain.

  10. Poricoic acid ZA, a novel RAS inhibitor, attenuates tubulo-interstitial fibrosis and podocyte injury by inhibiting TGF-β/Smad signaling pathway.

    PubMed

    Wang, Ming; Chen, Dan-Qian; Wang, Min-Chang; Chen, Hua; Chen, Lin; Liu, Dan; Zhao, Hui; Zhao, Ying-Yong

    2017-12-01

    The pathogenesis of tubulo-interstitial fibrosis and glomerulosclerosisis was characterized by cellular hypertrophy, extracellular matrix accumulation and podocyte detachment. Poricoic acid ZA (PZA) is a tetracyclic triterpenoid compound extracted from the surface layer of Poria cocos (LPC), which have been used extensively for diuretic and renoprotective effects. The anti-fibrotic effect of PZA is investigated in HK-2 cells and podocytes induced by TGF-β1 and angiotensin II (ANGII). qRT-PCR, siRNA, immunofluorescence staining, co-immunoprecipitation and Western blot analyses are used to evaluate the expression of RAS signaling, TGF-β/Smad pathway, epithelial-to-mesenchymal transition (EMT) and podocyte markers. PZA restores the mRNA and protein expression of EMT in HK-2 cells. Specific TGF-β1-siRNA efficiently blocks ANGII-induced protein expression of TGF-β1 and further inhibits activated Smad signaling. PZA significantly attenuates up-regulation of angiotensinogen, renin, ACE and AT1. Further, PZA reverses up-regulation of TGFβRII and suppresses Smad proteins. Simultaneously, PZA inhibits the protein interaction of TGF-β receptor and Smads and PZA also inhibits activated RAS and TGF-β/Smad signaling cascade and up-regulates protein expression of podocyte markers and mitigates podocyte injury. This study demonstrated the beneficial role of PZA in renal fibrosis and podocyte injury. Our study highlighted that PZA inhibits RAS and further suppresses TGF-β/Smad pathway through inhibiting Smad2/3 phosphorylation via blocking Smad2/3-TGFβRI protein interaction. PZA is implicated in activation of RAS/TGF-β/Smad axis in HK-2 cells and podocytes. PZA could be considered as a novel RAS inhibitor for treating CKD. Copyright © 2017 Elsevier GmbH. All rights reserved.

  11. IFN-gamma induction by SCG, 1,3-beta-D-glucan from Sparassis crispa, in DBA/2 mice in vitro.

    PubMed

    Harada, Toshie; Miura, Noriko N; Adachi, Yoshiyuki; Nakajima, Mitsuhiro; Yadomae, Toshiro; Ohno, Naohito

    2002-12-01

    Sparassis crispa Fr. in an edible mushroom recently cultivable in Japan. A branched beta-glucan from S. crispa (SCG) is a major 6-branched 1,3-beta-D-glucan showing antitumor activity. In this study, we examined interferon-gamma (IFN-gamma) induction by SCG from splenocytes in DBA/2 mice in vitro. In the splenocytes derived from almost all inbred strains of mice except for DBA/1 and DBA/2 mice, IFN-gamma production was not induced by SCG. The breeder and genders of DBA/2 mice showed no influence on IFN-gamma induction by SCG. On the other hand, the magnitude of IFN-gamma induction was lower in young mice than in their older counterparts. IFN-gamma was induced by SCG in adherent splenocytes, but IFN-gamma production was most significantly increased by SCG in instances involving coexistence of adherent and nonadherent splenocytes. In fact, inhibition of cell-cell contact reduced IFN-gamma induction by SCG. In addition, interleukin-12 p70 (IL-12p70) was induced by SCG in DBA/2 mice. It was suggested that soluble factors and cell-cell contact mediate synergistic effects on SCG-induced IFN-gamma production.

  12. Long-term effect of neonatal inhibition of APP gamma-secretase on hippocampal development in the Ts65Dn mouse model of Down syndrome.

    PubMed

    Stagni, Fiorenza; Raspanti, Alessandra; Giacomini, Andrea; Guidi, Sandra; Emili, Marco; Ciani, Elisabetta; Giuliani, Alessandro; Bighinati, Andrea; Calzà, Laura; Magistretti, Jacopo; Bartesaghi, Renata

    2017-07-01

    inhibition of gamma-secretase for the improvement of brain development in DS. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  13. gamma-tocopherol, but not alpha-tocopherol, potently inhibits neointimal formation induced by vascular injury in insulin resistant rats.

    PubMed

    Takahashi, Katsuaki; Komaru, Tatsuya; Takeda, Satoru; Takeda, Morihiko; Koshida, Ryoji; Nakayama, Masaharu; Kokusho, Yasunori; Kawakami, Yuki; Yamaguchi, Nobuhiro; Miyazawa, Teruo; Shimokawa, Hiroaki; Shirato, Kunio

    2006-09-01

    Insulin resistance may enhance the neointima formation via increased oxidative stress. However, clinical trials investigating the benefit of antioxidant therapy with alpha-tocopherol showed negative results. Recent studies showed that chemical characteristics of gamma-tocopherol are distinct from those of alpha-tocopherol. We hypothesized that gamma-tocopherol is superior to alpha-tocopherol in preventing the neointima growth after arterial injury in insulin resistance. Male rats were fed with standard chow or a high fructose diet for induction of insulin resistance. Thereafter, the left carotid artery was injured with a balloon catheter. After 2 weeks, the carotid arteries were harvested and histomorphometrically analyzed. The neointima-media ratio of the injured artery was significantly greater in insulin resistance group (n=8, 1.33+/-0.12) than in normal group (n=10, 0.76+/-0.11, p<0.01). gamma-Tocopherol (100 mg/kg/day) reduced the ratio (n=5, 0.55+/-0.21, p<0.01 vs. insulin resistance group), while alpha-tocopherol was without effect (n=7, 1.08+/-0.14). The quantification of plasma phosphatidylcholine hydroperoxide, an indicator of systemic oxidative stress, and dihydroethidium fluorescence staining of the carotid artery, an indicator of the local superoxide production, showed that oxidative stress in the systemic circulation and local arterial tissue was increased in insulin resistance. Both tocopherols decreased plasma phosphatidylcholine hydroperoxide, but failed to suppress the superoxide production in the carotid arteries. Increased 3-nitrotyrosine in neointima by insulin resistance was greatly reduced only by gamma-tocopherol. In conclusion, gamma-tocopherol, but not alpha-tocopherol, reduces the neointima proliferation in insulin resistance, independently of its effects on superoxide production. The beneficial effect may be related with its inhibitory effects on nitrosative stress.

  14. Bacterial DNA-induced NK cell IFN-gamma production is dependent on macrophage secretion of IL-12.

    PubMed

    Chace, J H; Hooker, N A; Mildenstein, K L; Krieg, A M; Cowdery, J S

    1997-08-01

    Bacterial DNA (bDNA) activates B cells and macrophages and can augment inflammatory responses by inducing release of proinflammatory cytokines. We found that bDNA stimulation of mouse spleen cells induced NK cell IFN-gamma production that was dependent upon the presence of unmethylated CpG motifs, and oligonucleotides with internal CpG motifs could also induce splenocytes to secrete IFN-gamma. The bDNA-induced IFN-gamma response was strictly macrophages dependent. While splenocytes from SCID mice secreted IFN-gamma in response to bDNA, depletion of macrophages eliminated this response. Additionally, purified NK cells did not respond to bDNA; however, addition of macrophages restored the NK cell IFN-gamma response. Coculture of NK cells with preactivated macrophages further increased bDNA-induced NK cell IFN-gamma production. Anti-IL-12 or IL-10 inhibited bDNA-induced IFN-gamma response. Treatment of purified macrophages with bDNA resulted in IL-12 secretion accompanied by an increase in IL-12 p40 mRNA level. Although isolated NK cells did not make IFN-gamma in response to bDNA, NK cells costimulated with IL-12 gained the ability to respond to bDNA. These experiments show that bDNA induces macrophage IL-12 production which, in turn, stimulates NK cell IFN-gamma production. Macrophage-derived IL-12 renders NK cells responsive to bDNA permitting an even greater IFN-gamma response to bDNA.

  15. Cyclic phosphatidic acid inhibits the secretion of vascular endothelial growth factor from diabetic human coronary artery endothelial cells through peroxisome proliferator-activated receptor gamma.

    PubMed

    Tsukahara, Tamotsu; Tsukahara, Ryoko; Haniu, Hisao; Matsuda, Yoshikazu; Murakami-Murofushi, Kimiko

    2015-09-05

    Atherosclerosis is a disease characterized by building up plaques formation and leads to a potentially serious condition in which arteries are clogged by fatty substances such as cholesterol. Increasing evidence suggests that atherosclerosis is accelerated in type 2 diabetes. Recent study reported that high level of alkyl glycerophosphate (AGP) was accumulated in atherosclerotic lesions. The presence of this phospholipid in mildly oxidized low-density lipoprotein (LDL) is likely to be involved in atherogenesis. It has been reported that the activation of peroxisome proliferator-activated receptor gamma plays a key role in developing atherosclerosis. Our previous result indicates that cyclic phosphatidic acid (cPA), one of bioactive lipids, potently suppresses neointima formation by inhibiting the activation of peroxisome proliferator-activated receptor gamma (PPARγ). However, the detailed mechanism is still unclear. In this study, to elucidate the mechanism of the cPA-PPARγ axis in the coronary artery endothelium, especially in patients with type 2 diabetes, we investigated the proliferation, migration, and secretion of VEGF in human coronary artery endothelial cells from diabetes patients (D-HCAECs). AGP induced cell growth and migration; however, cPA suppressed the AGP-elicited growth and migration in D-HCAECs. Moreover, AGP increased VEGF secretion from D-HCAECs, and this event was attenuated by cPA. Taken together, these results suggest that cPA suppresses VEGF-stimulated growth and migration in D-HCAECs. These findings could be important for regulatory roles of PPARγ and VEGF in the vascular processes associated with diabetes and atherosclerosis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Hippocampal gamma-slow oscillation coupling in macaques during sedation and sleep.

    PubMed

    Richardson, Andrew G; Liu, Xilin; Weigand, Pauline K; Hudgins, Eric D; Stein, Joel M; Das, Sandhitsu R; Proekt, Alexander; Kelz, Max B; Zhang, Milin; Van der Spiegel, Jan; Lucas, Timothy H

    2017-11-01

    Behavioral and neurophysiological evidence suggests that the slow (≤1 Hz) oscillation (SO) during sleep plays a role in consolidating hippocampal (HIPP)-dependent memories. The effects of the SO on HIPP activity have been studied in rodents and cats both during natural sleep and during anesthetic administration titrated to mimic sleep-like slow rhythms. In this study, we sought to document these effects in primates. First, HIPP field potentials were recorded during ketamine-dexmedetomidine sedation and during natural sleep in three rhesus macaques. Sedation produced regionally-specific slow and gamma (∼40 Hz) oscillations with strong coupling between the SO phase and gamma amplitude. These same features were seen in slow-wave sleep (SWS), but the coupling was weaker and the coupled gamma oscillation had a higher frequency (∼70 Hz) during SWS. Second, electrical stimuli were delivered to HIPP afferents in the parahippocampal gyrus (PHG) during sedation to assess the effects of sleep-like SO on excitability. Gamma bursts after the peak of SO cycles corresponded to periods of increased gain of monosynaptic connections between the PHG and HIPP. However, the two PHG-HIPP connectivity gains during sedation were both substantially lower than when the animal was awake. We conclude that the SO is correlated with rhythmic excitation and inhibition of the PHG-HIPP network, modulating connectivity and gamma generators intrinsic to this network. Ketamine-dexmedetomidine sedation produces a similar effect, but with a decreased contribution of the PHG to HIPP activity and gamma generation. © 2017 Wiley Periodicals, Inc.

  17. Interferon Gamma potentiates the injury caused by MPP(+) on SH-SY5Y cells, which is attenuated by the nitric oxide synthases inhibition.

    PubMed

    Titze-de-Almeida, Simoneide S; Lustosa, Cátia Faria; Horst, Camila Hillesheim; Bel, Elaine Del; Titze-de-Almeida, Ricardo

    2014-12-01

    This study examined whether the cytokine interferon (IFN) gamma plays a role in the injury of SH-SY5Y cells caused by MPP(+) (1-methyl-4-phenylpyridinium). First of all, IFN-gamma sensitized cells to the neurotoxin MPP(+), as determined by MTT (3-(4,5-dimethylthiazol-2-y1)-2,5-diphenyltetrazolium bromide) assay. MPP(+)-injured cells showed higher reactive oxygen species (ROS) levels, which was reinforced by IFN-gamma. The injury triggered a marked expression of the neuronal NOS (nNOS) enzyme. L-NAME [N(ω)-nitro-L-arginine methyl ester, a non-specific NOS inhibitor] reestablished the cell viability after IFN-gamma challenging, and recovered cells from MPP(+) injury (95.0 vs. 84.7 %; P < 0.05). Seven-NI (7-nitroindazole, a nNOS inhibitor) protected cells against the injury by MPP(+) co-administered with IFN-gamma. Both inhibitors restrained the apoptosis of SH-SY5Y cells caused by MPP(+)/IFN-gamma. Regarding oxidative stress, L-NAME and 7-NI attenuated the increase in ROS levels caused by MPP(+) (45.3 or 48.4 vs. 87.9 %, P < 0.05). Indeed, L-NAME was more effective than 7-NI for reducing oxidative stress caused by MPP(+) under IFN-gamma exposition. The nNOS gene silencing by small-interfering RNAs recovered cells challenged by IFN-gamma (24 h), or MPP(+) (8 h). In conclusion, IFN-gamma sensitizes cells to MPP(+)-induced injury, also causing an increase in ROS levels. Pretreating cells with L-NAME or 7-NI reverts both the oxidative stress and apoptosis triggered by the neurotoxin MPP(+). Taking together, our data reinforce that IFN-gamma and NOS enzymes play a role in oxidative stress and dopaminergic cell death triggered by MPP(+).

  18. Disruption of transforming growth factor-beta signaling by curcumin induces gene expression of peroxisome proliferator-activated receptor-gamma in rat hepatic stellate cells.

    PubMed

    Zheng, Shizhong; Chen, Anping

    2007-01-01

    Activation of hepatic stellate cells (HSC), the major effectors of hepatic fibrogenesis, is coupled with sequential alterations in gene expression, including an increase in receptors for transforming growth factor-beta (TGF-beta) and a dramatic reduction in the peroxisome proliferator-activated receptor-gamma (PPAR-gamma). The relationship between them remains obscure. We previously demonstrated that curcumin induced gene expression of PPAR-gamma in activated HSC, leading to reducing cell proliferation, inducing apoptosis and suppressing expression of extracellular matrix genes. The underlying molecular mechanisms are largely unknown. We recently observed that stimulation of PPAR-gamma activation suppressed gene expression of TGF-beta receptors in activated HSC, leading to the interruption of TGF-beta signaling. This observation supported our assumption of an antagonistic relationship between PPAR-gamma activation and TGF-beta signaling in HSC. In this study, we further hypothesize that TGF-beta signaling might negatively regulate gene expression of PPAR-gamma in activated HSC. The present report demonstrates that exogenous TGF-beta1 inhibits gene expression of PPAR-gamma in activated HSC, which is eliminated by the pretreatment with curcumin likely by interrupting TGF-beta signaling. Transfection assays further indicate that blocking TGF-beta signaling by dominant negative type II TGF-beta receptor increases the promoter activity of PPAR-gamma gene. Promoter deletion assays, site-directed mutageneses, and gel shift assays localize two Smad binding elements (SBEs) in the PPAR-gamma gene promoter, acting as curcumin response elements and negatively regulating the promoter activity in passaged HSC. The Smad3/4 protein complex specifically binds to the SBEs. Overexpression of Smad4 dose dependently eliminates the inhibitory effects of curcumin on the PPAR-gamma gene promoter and TGF-beta signaling. Taken together, these results demonstrate that the interruption of TGF

  19. Transcriptional corepressor SMILE recruits SIRT1 to inhibit nuclear receptor estrogen receptor-related receptor gamma transactivation.

    PubMed

    Xie, Yuan-Bin; Park, Jeong-Hoh; Kim, Don-Kyu; Hwang, Jung Hwan; Oh, Sangmi; Park, Seung Bum; Shong, Minho; Lee, In-Kyu; Choi, Hueng-Sik

    2009-10-16

    SMILE (small heterodimer partner interacting leucine zipper protein) has been identified as a corepressor of the glucocorticoid receptor, constitutive androstane receptor, and hepatocyte nuclear factor 4alpha. Here we show that SMILE also represses estrogen receptor-related receptor gamma (ERRgamma) transactivation. Knockdown of SMILE gene expression increases ERRgamma activity. SMILE directly interacts with ERRgamma in vitro and in vivo. Domain mapping analysis showed that SMILE binds to the AF2 domain of ERRgamma. SMILE represses ERRgamma transactivation partially through competition with coactivators PGC-1alpha, PGC-1beta, and GRIP1. Interestingly, the repression of SMILE on ERRgamma is released by SIRT1 inhibitors, a catalytically inactive SIRT1 mutant, and SIRT1 small interfering RNA but not by histone protein deacetylase inhibitor. In vivo glutathione S-transferase pulldown and coimmunoprecipitation assays validated that SMILE physically interacts with SIRT1. Furthermore, the ERRgamma inverse agonist GSK5182 enhances the interaction of SMILE with ERRgamma and SMILE-mediated repression. Knockdown of SMILE or SIRT1 blocks the repressive effect of GSK5182. Moreover, chromatin immunoprecipitation assays revealed that GSK5182 augments the association of SMILE and SIRT1 on the promoter of the ERRgamma target PDK4. GSK5182 and adenoviral overexpression of SMILE cooperate to repress ERRgamma-induced PDK4 gene expression, and this repression is released by overexpression of a catalytically defective SIRT1 mutant. Finally, we demonstrated that ERRgamma regulates SMILE gene expression, which in turn inhibits ERRgamma. Overall, these findings implicate SMILE as a novel corepressor of ERRgamma and recruitment of SIRT1 as a novel repressive mechanism for SMILE and ERRgamma inverse agonist.

  20. Gamma-sky.net: Portal to the gamma-ray sky

    NASA Astrophysics Data System (ADS)

    Voruganti, Arjun; Deil, Christoph; Donath, Axel; King, Johannes

    2017-01-01

    http://gamma-sky.net is a novel interactive website designed for exploring the gamma-ray sky. The Map View portion of the site is powered by the Aladin Lite sky atlas, providing a scalable survey image tesselated onto a three-dimensional sphere. The map allows for interactive pan and zoom navigation as well as search queries by sky position or object name. The default image overlay shows the gamma-ray sky observed by the Fermi-LAT gamma-ray space telescope. Other survey images (e.g. Planck microwave images in low/high frequency bands, ROSAT X-ray image) are available for comparison with the gamma-ray data. Sources from major gamma-ray source catalogs of interest (Fermi-LAT 2FHL, 3FGL and a TeV source catalog) are overlaid over the sky map as markers. Clicking on a given source shows basic information in a popup, and detailed pages for every source are available via the Catalog View component of the website, including information such as source classification, spectrum and light-curve plots, and literature references. We intend for gamma-sky.net to be applicable for both professional astronomers as well as the general public. The website started in early June 2016 and is being developed as an open-source, open data project on GitHub (https://github.com/gammapy/gamma-sky). We plan to extend it to display more gamma-ray and multi-wavelength data. Feedback and contributions are very welcome!

  1. Interferon-gamma regulates nucleoside transport systems in macrophages through signal transduction and activator of transduction factor 1 (STAT1)-dependent and -independent signalling pathways.

    PubMed Central

    Soler, Concepció; Felipe, Antonio; García-Manteiga, José; Serra, Maria; Guillén-Gómez, Elena; Casado, F Javier; MacLeod, Carol; Modolell, Manuel; Pastor-Anglada, Marçal; Celada, Antonio

    2003-01-01

    The expressions of CNT and ENT (concentrative and equilibrative nucleoside transporters) in macrophages are differentially regulated by IFN-gamma (interferon-gamma). This cytokine controls gene expression through STAT1-dependent and/or -independent pathways (where STAT1 stands for signal transduction and activator of transcription 1). In the present study, the role of STAT1 in the response of nucleoside transporters to IFN-gamma was studied using macrophages from STAT1 knockout mice. IFN-gamma triggered an inhibition of ENT1-related nucleoside transport activity through STAT1-dependent mechanisms. Such inhibition of macrophage growth and ENT1 activity by IFN-gamma is required for DNA synthesis. Interestingly, IFN-gamma led to an induction of the CNT1- and CNT2-related nucleoside transport activities independent of STAT1, thus ensuring the supply of extracellular nucleosides for the STAT1-independent RNA synthesis. IFN-gamma up-regulated CNT2 mRNA and CNT1 protein levels and down-regulated ENT1 mRNA in both wild-type and STAT1 knockout macrophages. This is consistent with a STAT1-independent, long-term-mediated, probably transcription-dependent, regulation of nucleoside transporter genes. Moreover, STAT1-dependent post-transcriptional mechanisms are implicated in the regulation of ENT1 activity. Although nitric oxide is involved in the regulation of ENT1 activity in B-cells at a post-transcriptional level, our results show that STAT1-dependent induction of nitric oxide by IFN-gamma is not implicated in the regulation of ENT1 activity in macrophages. Our results indicate that both STAT1-dependent and -independent pathways are involved in the regulation of nucleoside transporters by IFN-gamma in macrophages. PMID:12868960

  2. Specific Btk inhibition suppresses B cell- and myeloid cell-mediated arthritis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Paolo, Julie A.; Huang, Tao; Balazs, Mercedesz

    Bruton's tyrosine kinase (Btk) is a therapeutic target for rheumatoid arthritis, but the cellular and molecular mechanisms by which Btk mediates inflammation are poorly understood. Here we describe the discovery of CGI1746, a small-molecule Btk inhibitor chemotype with a new binding mode that stabilizes an inactive nonphosphorylated enzyme conformation. CGI1746 has exquisite selectivity for Btk and inhibits both auto- and transphosphorylation steps necessary for enzyme activation. Using CGI1746, we demonstrate that Btk regulates inflammatory arthritis by two distinct mechanisms. CGI1746 blocks B cell receptor-dependent B cell proliferation and in prophylactic regimens reduces autoantibody levels in collagen-induced arthritis. In macrophages, Btkmore » inhibition abolishes Fc{gamma}RIII-induced TNF{alpha}, IL-1{beta} and IL-6 production. Accordingly, in myeloid- and Fc{gamma}R-dependent autoantibody-induced arthritis, CGI1746 decreases cytokine levels within joints and ameliorates disease. These results provide new understanding of the function of Btk in both B cell- or myeloid cell-driven disease processes and provide a compelling rationale for targeting Btk in rheumatoid arthritis.« less

  3. Effect of gamma irradiation on the change of solubility and anti-inflammation activity of chrysin in macrophage cells and LPS-injected endotoxemic mice

    NASA Astrophysics Data System (ADS)

    Byun, Eui-Baek; Jang, Beom-Su; Byun, Eui-Hong; Sung, Nak-Yun

    2016-10-01

    This study evaluated the changes of solubility and anti-inflammatory properties of structurally modified gamma-irradiated chrysin. Chrysin was irradiated at various doses for a physical analysis and determining any structural changes and solubility. As shown through the physical analysis, the main peak of the chrysin was decreased as the irradiation dose increased, and it was concomitant with the appearance of several new peaks, which were highly increased in 50 kGy gamma-irradiated chrysin. The solubility was markedly increased in the gamma-irradiated groups. As shown through a physiological analysis, both gamma-irradiated- (15-50 kGy) and intact-chrysin (0 kGy) did not exert cytotoxicity to bone-marrow derived macrophages. The treatment of LPS-stimulated macrophages with 50 kGy gamma-irradiated chrysin resulted in a dose-dependent decrease in pro-inflammatory mediators, such as iNOS-mediated NO, PGE2, COX-2, and cell surface marker (CD80 and CD86), as well as pro-inflammatory cytokines (TNF-α and IL-6), when compared to the intact-chrysin treated group. Mechanically, we found that the inhibition of these pro-inflammatory mediators induced by gamma-irradiated chrysin occurred through an inhibition of MAPKs (ERK1/2 and p38) and the NF-κB signaling pathways. Furthermore, the anti-inflammatory activity remained in the LPS-injected animal model. In this model, gamma-irradiated chrysin treatment highly increased the mouse survival, and significantly decreased the serum cytokine (TNF-α, IL-6 and IL-1β) levels. From these findings, the anti-inflammatory action by gamma-irradiated chrysin may be closely mediated with structural modification. It seems likely that gamma irradiation can be an effective tool for improvement of the physical and physiological properties of polyphenols.

  4. Acetylcholine modulates gamma frequency oscillations in the hippocampus by activation of muscarinic M1 receptors.

    PubMed

    Betterton, Ruth T; Broad, Lisa M; Tsaneva-Atanasova, Krasimira; Mellor, Jack R

    2017-06-01

    Modulation of gamma oscillations is important for the processing of information and the disruption of gamma oscillations is a prominent feature of schizophrenia and Alzheimer's disease. Gamma oscillations are generated by the interaction of excitatory and inhibitory neurons where their precise frequency and amplitude are controlled by the balance of excitation and inhibition. Acetylcholine enhances the intrinsic excitability of pyramidal neurons and suppresses both excitatory and inhibitory synaptic transmission, but the net modulatory effect on gamma oscillations is not known. Here, we find that the power, but not frequency, of optogenetically induced gamma oscillations in the CA3 region of mouse hippocampal slices is enhanced by low concentrations of the broad-spectrum cholinergic agonist carbachol but reduced at higher concentrations. This bidirectional modulation of gamma oscillations is replicated within a mathematical model by neuronal depolarisation, but not by reducing synaptic conductances, mimicking the effects of muscarinic M1 receptor activation. The predicted role for M1 receptors was supported experimentally; bidirectional modulation of gamma oscillations by acetylcholine was replicated by a selective M1 receptor agonist and prevented by genetic deletion of M1 receptors. These results reveal that acetylcholine release in CA3 of the hippocampus modulates gamma oscillation power but not frequency in a bidirectional and dose-dependent manner by acting primarily through muscarinic M1 receptors. © 2017 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  5. G protein betagamma subunits interact with alphabeta- and gamma-tubulin and play a role in microtubule assembly in PC12 cells.

    PubMed

    Montoya, Valentina; Gutierrez, Christina; Najera, Omar; Leony, Denisse; Varela-Ramirez, Armando; Popova, Juliana; Rasenick, Mark M; Das, Siddhartha; Roychowdhury, Sukla

    2007-12-01

    The betagamma subunit of G proteins (Gbetagamma) is known to transfer signals from cell surface receptors to intracellular effector molecules. Recent results suggest that Gbetagamma also interacts with microtubules and is involved in the regulation of the mitotic spindle. In the current study, the anti-microtubular drug nocodazole was employed to investigate the mechanism by which Gbetagamma interacts with tubulin and its possible implications in microtubule assembly in cultured PC12 cells. Nocodazole-induced depolymerization of microtubules drastically inhibited the interaction between Gbetagamma and tubulin. Gbetagamma was preferentially bound to microtubules and treatment with nocodazole suggested that the dissociation of Gbetagamma from microtubules is an early step in the depolymerization process. When microtubules were allowed to recover after removal of nocodazole, the tubulin-Gbetagamma interaction was restored. Unlike Gbetagamma, however, the interaction between tubulin and the alpha subunit of the Gs protein (Gsalpha) was not inhibited by nocodazole, indicating that the inhibition of tubulin-Gbetagamma interactions during microtubule depolymerization is selective. We found that Gbetagamma also interacts with gamma-tubulin, colocalizes with gamma-tubulin in centrosomes, and co-sediments in centrosomal fractions. The interaction between Gbetagamma and gamma-tubulin was unaffected by nocodazole, suggesting that the Gbetagamma-gamma-tubulin interaction is not dependent on assembled microtubules. Taken together, our results suggest that Gbetagamma may play an important and definitive role in microtubule assembly and/or stability. We propose that betagamma-microtubule interaction is an important step for G protein-mediated cell activation. These results may also provide new insights into the mechanism of action of anti-microtubule drugs.

  6. Analysis of nonlocal neural fields for both general and gamma-distributed connectivities

    NASA Astrophysics Data System (ADS)

    Hutt, Axel; Atay, Fatihcan M.

    2005-04-01

    This work studies the stability of equilibria in spatially extended neuronal ensembles. We first derive the model equation from statistical properties of the neuron population. The obtained integro-differential equation includes synaptic and space-dependent transmission delay for both general and gamma-distributed synaptic connectivities. The latter connectivity type reveals infinite, finite, and vanishing self-connectivities. The work derives conditions for stationary and nonstationary instabilities for both kernel types. In addition, a nonlinear analysis for general kernels yields the order parameter equation of the Turing instability. To compare the results to findings for partial differential equations (PDEs), two typical PDE-types are derived from the examined model equation, namely the general reaction-diffusion equation and the Swift-Hohenberg equation. Hence, the discussed integro-differential equation generalizes these PDEs. In the case of the gamma-distributed kernels, the stability conditions are formulated in terms of the mean excitatory and inhibitory interaction ranges. As a novel finding, we obtain Turing instabilities in fields with local inhibition-lateral excitation, while wave instabilities occur in fields with local excitation and lateral inhibition. Numerical simulations support the analytical results.

  7. Resonance production in. gamma gamma. collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renard, F.M.

    1983-04-01

    The processes ..gamma gamma.. ..-->.. hadrons can be depicted as follows. One photon creates a q anti q pair which starts to evolve; the other photon can either (A) make its own q anti q pair and the (q anti q q anti q) system continue to evolve or (B) interact with the quarks of the first pair and lead to a modified (q anti q) system in interaction with C = +1 quantum numbers. A review of the recent theoretical activity concerning resonance production and related problems is given under the following headings: hadronic C = +1 spectroscopy (qmore » anti q, qq anti q anti q, q anti q g, gg, ggg bound states and mixing effects); exclusive ..gamma gamma.. processes (generalities, unitarized Born method, VDM and QCD); total cross section (soft and hard contributions); q/sup 2/ dependence of soft processes (soft/hard separation, 1/sup +- +/ resonances); and polarization effects. (WHK)« less

  8. L-Cysteine Administration Attenuates Pancreatic Fibrosis Induced by TNBS in Rats by Inhibiting the Activation of Pancreatic Stellate Cell

    PubMed Central

    Hu, GuoYong; Shen, Jie; Wang, Feng; Xu, Ling; Dai, WeiQi; Xiong, Jie; Ni, JianBo; Guo, ChuanYong; Wan, Rong; Wang, XingPeng

    2012-01-01

    Background and Aims Recent studies have shown that activated pancreatic stellate cells (PSCs) play a major role in pancreatic fibrogenesis. We aimed to study the effect of L-cysteine administration on fibrosis in chronic pancreatitis (CP) induced by trinitrobenzene sulfonic acid (TNBS) in rats and on the function of cultured PSCs. Methods CP was induced by TNBS infusion into rat pancreatic ducts. L-cysteine was administrated for the duration of the experiment. Histological analysis and the contents of hydroxyproline were used to evaluate pancreatic damage and fibrosis. Immunohistochemical analysis of α-SMA in the pancreas was performed to detect the activation of PSCs in vivo. The collagen deposition related proteins and cytokines were determined by western blot analysis. DNA synthesis of cultured PSCs was evaluated by BrdU incorporation. We also evaluated the effect of L-cysteine on the cell cycle and cell activation by flow cytometry and immunocytochemistry. The expression of PDGFRβ, TGFβRII, collagen 1α1 and α-SMA of PSCs treated with different concentrations of L-cysteine was determined by western blot. Parameters of oxidant stress were evaluated in vitro and in vivo. Nrf2, NQO1, HO-1, IL-1β expression were evaluated in pancreas tissues by qRT-PCR. Results The inhibition of pancreatic fibrosis by L-cysteine was confirmed by histological observation and hydroxyproline assay. α-SMA, TIMP1, IL-1β and TGF-β1 production decreased compared with the untreated group along with an increase in MMP2 production. L-cysteine suppressed the proliferation and extracellular matrix production of PSCs through down-regulating of PDGFRβ and TGFβRII. Concentrations of MDA+4-HNE were decreased by L-cysteine administration along with an increase in GSH levels both in tissues and cells. In addition, L-cysteine increased the mRNA expression of Nrf2, NQO1 and HO-1 and reduced the expression of IL-1β in L-cysteine treated group when compared with control group. Conclusion L

  9. Inhibition of CD23-mediated IgE transcytosis suppresses the initiation and development of airway allergic inflammation

    USDA-ARS?s Scientific Manuscript database

    The epithelium lining the airway tract and allergen-specific IgE are considered essential controllers of inflammatory responses to allergens. The human IgE receptor, CD23 (Fc'RII), is capable of transporting IgE or IgE-allergen complexes across the polarized human airway epithelial cell (AEC) monola...

  10. Antioxidant effects of gamma-oryzanol on human prostate cancer cells.

    PubMed

    Klongpityapong, Papavadee; Supabphol, Roongtawan; Supabphol, Athikom

    2013-01-01

    To assess the antioxidant effects of gamma-oryzanol on human prostate cancer cells. Cytotoxic activity of gamma-oryzanol on human DU145 and PC3 prostate cancer cells was determined by proliferation assay using 3-(4, 5-dimethylthiazol, 2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) reagent. mRNA levels of genes involved in the intracellular antioxidant system, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX) and glutathione reductase (GSR) were determined by reverse transcription-polymerase chain reaction (RT-PCR). Cancer cell lysates were used to measure lipid peroxidation using thiobarbituric acid reactive substance (TBARS). Glutathione contents of the cell lysates were estimated by the reaction between sulfhydryl group of 5, 5'-dithio (bis) nitrobenzoic acid (DTNB) to produce a yellow- color of 5-thio-2-nitrobenzoic acid using colorimetric assay. Catalase activity was also analysed by examining peroxidative function. Protein concentration was estimated by Bradford's assay. All concentrations of gamma-oryzanol, 0.1-2.0mg/ml, significantly inhibited cell growth in a dose- and time-dependent fashion in both prostate cancer cell lines, DU145 and PC3. Gene expression of catalase in DU145 and PC3 exposed to gamma-orizanol at 0.5mg/ml for 14 days was down regulated, while mRNA of GPX was also down regulated in PC3. The MDA and glutathione levels including catalase activity in the cell lysates of DU145 and PC3 treated with gamma-oryzanol 0.1 and 0.5mg/ml were generally decreased. This study highlighted effects of gamma-oryzanol via the down-regulation of antioxidant genes, catalase and GPX, not cytotoxic roles. This might be interesting for adjuvant chemotherapy to make prostate cancer cells more sensitive to free radicals. It might be useful for the reduction of cytotoxic agents and cancer chemoprevention.

  11. Inhibition of TGF-β1/Smad signal pathway is involved in the effect of Cordyceps sinensis against renal fibrosis in 5/6 nephrectomy rats.

    PubMed

    Pan, Ming-Ming; Zhang, Ming-Hui; Ni, Hai-Feng; Chen, Jun-Feng; Xu, Min; Phillips, Aled Owain; Liu, Bi-Cheng

    2013-08-01

    The present study aimed to investigate the effects of Cordyceps sinensis on renal fibrosis and its possible mechanisms. Sprague-Dawley rats were randomly divided into three groups: sham operation (SHAM) group, 5/6 subtotal nephrectomy (SNx) untreated group, and 5/6 subtotal nephrectomy treated with C. sinensis (2.0 g/kg d) (CS) group. Rats were studied 12 weeks after the surgery, and the CS group presented with significantly lower proteinuria, and better renal function compared with the SNx group (p<0.05). Pathological study showed that the glomerulosclerosis tubulointerstitial injury score was significantly reduced in the CS group compared with the SNx group. Furthermore, the mRNA expression of TGF-β1, Smad2 and Smad3 and the protein expression of TGF-β1, TβRI, TβRII and p-Smad2/3 were attenuated by the C. sinensis treatment. In constrast, the mRNA and protein expression of Smad7 was upregulated. Furthermore, the expression of α-SMA and FSP1 was also significantly attenuated, accompanied by the increasing expression of E-cadherin, suggesting the inhibition of the epithelial-mesenchymal transition (EMT). C. sinensis exerted its antifibrotic effect on the SNx rats through the inhibition of the TGF-β1/Smad pathway. Copyright © 2013. Published by Elsevier Ltd.

  12. Potential of carboxymethyl cellulose coating and low dose gamma irradiation to maintain storage quality, inhibit fungal growth and extend shelf-life of cherry fruit.

    PubMed

    Hussain, P R; Rather, S A; Suradkar, P; Parveen, S; Mir, M A; Shafi, F

    2016-07-01

    Carboxymethyl cellulose (CMC) coatings alone and in combination with gamma irradiation was tested for maintaining the storage quality, inhibiting fungal incidence and extending shelf-life of cherry fruit. Two commercial cherry varieties viz. Misri and Double after harvest at commercial maturity were coated with CMC at levels 0.5-1.0 % w/v and gamma irradiated at 1.2 kGy. The treated fruit including control was stored under ambient (temperature 25 ± 2 °C, RH 70 %) and refrigerated (temperature 3 ± 1 °C, RH 80 %) conditions for evaluation of various physico-chemical parameters. Fruits were evaluated after every 3 and 7 days under ambient and refrigerated conditions. CMC coating alone at levels 0.5 and 0.75 % w/v was not found effective with respect to mold growth inhibition under either of the two conditions. Individual treatment of CMC coating at 1.0 % w/v and 1.2 kGy irradiation proved helpful in delaying the onset of mold growth up to 5 and 8 days of ambient storage. During post-refrigerated storage at 25 ± 2 °C, RH 70 %, irradiation alone at 1.2 kGy gave further 4 days extension in shelf-life of cherry varieties following 28 days of refrigeration. All combinatory treatments of CMC coating and irradiation proved beneficial in maintaining the storage quality as well as delaying the decaying of cherry fruit during post-refrigerated storage at 25 ± 2 °C, RH 70 % but, combination of CMC at 1.0 % w/v and 1.2 kGy irradiation was found significantly ( p  ≤ 0.05) superior to all other treatments in maintaining the storage quality and delaying the decaying of cherry fruit. The above combinatory treatment besides maintaining storage quality resulted in extension of 6 days in shelf life of cherry varieties during post-refrigerated storage at 25 ± 2 °C, RH 80 % following 28 days of refrigeration. Above Combination treatment gave a maximum of 2.3 and 1.5 log reduction in yeast and mold count of cherry fruits after 9 and 28

  13. [Experimental study of IFN-alpha and IFN-gamma on reversing ATRA-resistance in MR2 cell line].

    PubMed

    He, Peng-Cheng; Zhang, Mei; Li, Jing; Cao, Yun-Xin; Cai, Rui-Bo; Liu, Ya-Lin

    2007-03-01

    To explore the possibility and the possible mechanism of reversing ATRA-resistance in MR2 cells by using IFN-alpha and IFN-gamma in combination with all-trans retinoic acid (ATRA). After MR2 cells(ATRA-resistance cell line) were treated with IFN-alpha, IFN-gamma and ATRA alone or IFN-alpha and IFN-gamma in combination with ATRA respectively, the cell proliferation was tested by MTT colorimetry, the cell differentiation was tested through light microscope, by NBT test and flow cytometry (FCM). The expression of promyelocytic leukemia (PML) protein was observed by indirect immunofluorescence staining. Both IFN-alpha and IFN-gamma could inhibit the proliferation of MR2 cells. The effects were more obviously in both IFN-alpha+ATRA group and IFN-gamma+ATRA group. But there were no significant difference between either IFN-alpha group and IFN-gamma group or IFN-alpha+ATRA group and IFN-gamma+ATRA group (P>0.05). Both IFN could also induce the differentiation of MR2 cells. The effects of IFN-alpha+ATRA group and IFN-gamma+ATRA group were more obvious. However, the differentiation of MR2 cells induced by IFN-gamma+ATRA group was more higher than that by IFN-alpha+ATRA group (P<0.05). Both IFN could induce the expression of PML protein. The reversing effcet of IFN-gamma+ATRA group on ATRA-resistence in MR2 cells are more powerful than that of IFN-alpha+ATRA group, which may be related to the different signal transduction pathway of IFN-alpha and IFN-gamma.

  14. A rapid, PPAR-gamma-dependent effect of pioglitazone on the phosphorylation of MYPT.

    PubMed

    Atkins, Kevin B; Irey, Brittany; Xiang, Nan; Brosius, Frank C

    2009-05-01

    Peroxisome proliferator-activated receptor (PPAR)-gamma ligands, thiazolidinediones, have been demonstrated to regulate vascular reactivity. We examined the effect of pioglitazone (PIO; 20 muM) in rat primary cultured aortic smooth muscle cells on constitutive phosphorylation of the regulatory subunit of myosin phosphatase (MYPT). PIO decreased the phosphorylation of Thr(697) on MYPT within 15 min, and the inhibition was maintained up to 6 h. The PPAR-gamma antagonist GW-9662 (5 microM) abrogated the inhibition of Thr(697) phosphorylation mediated by PIO. Because longer-term PIO treatment inhibits RhoA/Rho kinase (ROCK) signaling and Thr(697) phosphorylation, we tested the effect of the ROCK inhibitor Y-27632 (10 muM) on the inhibition of Thr(697) phosphorylation by PIO. Y-27632 alone inhibited Thr(697) phosphorylation, and there was an additive effect with PIO. In addition, up to 1 h of PIO treatment did not affect RhoA localization or decrease ROCK-dependent phosphorylation of Thr(855). These results suggest that the effect of PIO is independent of inhibition of RhoA/ROCK. PIO increased the phosphorylation of Ser(696) in the same time course as its effect on Thr(697). Ser(696) has been shown to be phosphorylated by PKA and PKG. PKA inhibitor H-89 (10 microM) and PKG inhibitor KT-5823 (0.5 microM) abrogated the effect of PIO on both Thr(697) and Ser(696) phosphorylation. The constitutive turnover of phosphorylation of Thr(697) is rapid, suggesting that the decreased phosphorylation of Thr(697) by PIO is due to enhanced phosphorylation of Ser(696). This is supported by the finding that PIO blocks ANG II-stimulated phosphorylation of Thr(697) but not ANG II-stimulated RhoA translocation. Therefore, the effect of shorter-term PIO apparently is to increase myosin light chain phosphatase activity, thereby desensitizing the vascular smooth muscle to agonist signaling.

  15. Sorafenib suppresses TGF-β responses by inducing caveolae/lipid raft-mediated internalization/degradation of cell-surface type II TGF-β receptors: Implications in development of effective adjunctive therapy for hepatocellular carcinoma.

    PubMed

    Chung, Chih-Ling; Wang, Shih-Wei; Sun, Wei-Chih; Shu, Chih-Wen; Kao, Yu-Chen; Shiao, Meng-Shin; Chen, Chun-Lin

    2018-04-18

    Sorafenib is the only FDA approved drug for the treatment of advanced hepatocellular carcinoma (HCC) and other malignancies. Studies indicate that TGF-β signalling is associated with tumour progression in HCC. Autocrine and paracrine TGF-β promotes tumour growth and malignancy by inducing epithelial-mesenchymal transition (EMT). Sorafenib is believed to antagonize tumour progression by inhibiting TGF-β-induced EMT. It improves survival of patients but HCC later develops resistance and relapses. The underlying mechanism of resistance is unknown. Understanding of the molecular mechanism of sorafenib inhibition of TGF-β-induced signalling or responses in HCC may lead to development of adjunctive effective therapy for HCC. In this study, we demonstrate that sorafenib suppresses TGF-β responsiveness in hepatoma cells, hepatocytes, and animal liver, mainly by downregulating cell-surface type II TGF-β receptors (TβRII) localized in caveolae/lipid rafts and non-lipid raft microdomains via caveolae/lipid rafts-mediated internalization and degradation. Furthermore, sorafenib-induced downregulation and degradation of cell-surface TβRII is prevented by simultaneous treatment with a caveolae disruptor or lysosomal inhibitors. On the other hand, sorafenib only downregulates cell-surface TβRII localized in caveolae/lipid rafts but not localized in non-lipid raft microdomains in hepatic stellate cells. These results suggest that sorafenib inhibits TGF-β signalling mainly by inducing caveolae/lipid raft-mediated internalization and degradation of cell-surface TβR-II in target cells. They may also imply that treatment with agents which promote formation of caveolae/lipid rafts, TGF-β receptor kinase inhibitors (e.g., LY2157299) or TGF-β peptide antagonists (by liver-targeting delivery) may be considered as effective adjunct therapy with sorafenib for HCC. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Dexamethasone but not indomethacin inhibits human phagocyte nicotinamide adenine dinucleotide phosphate oxidase activity by down-regulating expression of genes encoding oxidase components.

    PubMed

    Condino-Neto, A; Whitney, C; Newburger, P E

    1998-11-01

    We investigated the effects of dexamethasone or indomethacin on the NADPH oxidase activity, cytochrome b558 content, and expression of genes encoding the components gp91-phox and p47-phox of the NADPH oxidase system in the human monocytic THP-1 cell line, differentiated with IFN-gamma and TNF-alpha, alone or in combination, for up to 7 days. IFN-gamma and TNF-alpha, alone or in combination, caused a significant up-regulation of the NADPH oxidase system as reflected by an enhancement of the PMA-stimulated superoxide release, cytochrome b558 content, and expression of gp91-phox and p47-phox genes on both days 2 and 7 of cell culture. Noteworthy was the tremendous synergism between IFN-gamma and TNF-alpha for all studied parameters. Dexamethasone down-regulated the NADPH oxidase system of cytokine-differentiated THP-1 cells as assessed by an inhibition on the PMA-stimulated superoxide release, cytochrome b558 content, and expression of the gp91-phox and p47-phox genes. The nuclear run-on assays indicated that dexamethasone down-regulated the NADPH oxidase system at least in part by inhibiting the transcription of gp91-phox and p47-phox genes. Indomethacin inhibited only the PMA-stimulated superoxide release of THP-1 cells differentiated with IFN-gamma and TNF-alpha during 7 days. None of the other parameters was affected by indomethacin. We conclude that dexamethasone down-regulates the NADPH oxidase system at least in part by inhibiting the expression of genes encoding the gp91-phox and p47-phox components of the NADPH oxidase system.

  17. Activated AMPK inhibits PPAR-{alpha} and PPAR-{gamma} transcriptional activity in hepatoma cells.

    PubMed

    Sozio, Margaret S; Lu, Changyue; Zeng, Yan; Liangpunsakul, Suthat; Crabb, David W

    2011-10-01

    AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor-α (PPAR-α) are critical regulators of short-term and long-term fatty acid oxidation, respectively. We examined whether the activities of these molecules were coordinately regulated. H4IIEC3 cells were transfected with PPAR-α and PPAR-γ expression plasmids and a peroxisome-proliferator-response element (PPRE) luciferase reporter plasmid. The cells were treated with PPAR agonists (WY-14,643 and rosiglitazone), AMPK activators 5-aminoimidazole-4-carboxamide riboside (AICAR) and metformin, and the AMPK inhibitor compound C. Both AICAR and metformin decreased basal and WY-14,643-stimulated PPAR-α activity; compound C increased agonist-stimulated reporter activity and partially reversed the effect of the AMPK activators. Similar effects on PPAR-γ were seen, with both AICAR and metformin inhibiting PPRE reporter activity. Compound C increased basal PPAR-γ activity and rosiglitazone-stimulated activity. In contrast, retinoic acid receptor-α (RAR-α), another nuclear receptor that dimerizes with retinoid X receptor (RXR), was largely unaffected by the AMPK activators. Compound C modestly increased AM580 (an RAR agonist)-stimulated activity. The AMPK activators did not affect PPAR-α binding to DNA, and there was no consistent correlation between effects of the AMPK activators and inhibitor on PPAR and the nuclear localization of AMPK-α subunits. Expression of either a constitutively active or dominant negative AMPK-α inhibited basal and WY-14,643-stimulated PPAR-α activity and basal and rosiglitazone-stimulated PPAR-γ activity. We concluded that the AMPK activators AICAR and metformin inhibited transcriptional activities of PPAR-α and PPAR-γ, whereas inhibition of AMPK with compound C activated both PPARs. The effects of AMPK do not appear to be mediated through effects on RXR or on PPAR/RXR binding to DNA. These effects are independent of kinase activity and instead appear to

  18. Alpha-, gamma- and delta-tocopherols reduce inflammatory angiogenesis in human microvascular endothelial cells.

    PubMed

    Wells, Shannon R; Jennings, Merilyn H; Rome, Courtney; Hadjivassiliou, Vicky; Papas, Konstantinos A; Alexander, Jonathon S

    2010-07-01

    Vitamin E, a micronutrient (comprising alpha-, beta-, gamma- and delta-tocopherols, alpha-, beta-, gamma- and delta-tocotrienols), has documented antioxidant and non-antioxidant effects, some of which inhibit inflammation and angiogenesis. We compared the abilities of alpha-, gamma- and delta-tocopherols to regulate human blood cytotoxicity (BEC) and lymphatic endothelial cytotoxicity (LEC), proliferation, invasiveness, permeability, capillary formation and suppression of TNF-alpha-induced VCAM-1 as in vitro models of inflammatory angiogenesis. alpha-, gamma- and delta-tocopherols were not toxic to either cell type up to 40 microM. In BEC, confluent cell density was decreased by all concentrations of delta- and gamma-tocopherol (10-40 microM) but not by alpha-tocopherol. LEC showed no change in cell density in response to tocopherols. delta-Tocopherol (40 microM), but not other isomers, decreased BEC invasiveness. In LEC, all doses of gamma-tocopherol, as well as the highest dose of alpha-tocopherol (40 microM), decreased cell invasiveness. delta-Tocopherol had no effect on LEC invasiveness at any molarity. delta-Tocopherol dose dependently increased cell permeability at 48 h in BEC and LEC; alpha- and gamma-tocopherols showed slight effects. Capillary tube formation was decreased by high dose (40 microM) concentrations of alpha-, gamma- and delta-tocopherol, but showed no effects with smaller doses (10-20 microM) in BEC. gamma-Tocopherol (10-20 microM) and alpha-tocopherol (10 microM), but not delta-tocopherol, increased LEC capillary tube formation. Lastly, in BEC, alpha-, gamma- and delta-tocopherol each dose-dependently reduced TNF-alpha-induced expression of VCAM-1. In LEC, there was no significant change to TNF-alpha-induced VCAM-1 expression with any concentration of alpha-, gamma- or delta-tocopherol. These data demonstrate that physiological levels (0-40 microM) of alpha-, gamma- and delta-tocopherols are nontoxic and dietary tocopherols, especially delta

  19. Differential IFN-gamma stimulation of HLA-A gene expression through CRM-1-dependent nuclear RNA export.

    PubMed

    Browne, Sarah K; Roesser, James R; Zhu, Sheng Zu; Ginder, Gordon D

    2006-12-15

    IFNs regulate most MHC class I genes by stimulating transcription initiation. As shown previously, IFN-gamma controls HLA-A expression primarily at the posttranscriptional level. We have defined two 8-base sequences in a 39-nucleotide region in the 3'-transcribed region of the HLA-A gene that are required for the posttranscriptional response to IFN-gamma. Stimulation of HLA-A expression by IFN-gamma requires nuclear export of HLA-A mRNA by chromosome maintenance region 1 (CRM-1). Treatment of cells with leptomycin B, a specific inhibitor of CRM-1, completely inhibited IFN-gamma induction of HLA-A. Expression of a truncated, dominant-negative form of the nucleoporin NUP214/CAN, DeltaCAN, that specifically interacts with CRM-1, also prevented IFN-gamma stimulation of HLA-A, providing confirmation of the role of CRM-1. Increased expression of HLA-A induced by IFN-gamma also requires protein methylation, as shown by the fact that treatment of SK-N-MC cells or HeLa cells with the PRMT1 inhibitor 5'-methyl-5'-thioadenosine abolished the cellular response to IFN-gamma. In contrast with HLA-A, IFN-gamma-induced expression of the HLA class Ib gene, HLA-E, was not affected by either 5'-methyl-5'-thioadenosine or leptomycin B. These results provide proof of principle that it is possible to differentially modulate the IFN-gamma-induced expression of the HLA-E and HLA-A genes, whose products often mediate opposing effects on cellular immunity to tumor cells, pathogens, and autoantigens.

  20. Method of incident low-energy gamma-ray direction reconstruction in the GAMMA-400 gamma-ray space telescope

    NASA Astrophysics Data System (ADS)

    Kheymits, M. D.; Leonov, A. A.; Zverev, V. G.; Galper, A. M.; Arkhangelskaya, I. V.; Arkhangelskiy, A. I.; Suchkov, S. I.; Topchiev, N. P.; Yurkin, Yu T.; Bakaldin, A. V.; Dalkarov, O. D.

    2016-02-01

    The GAMMA-400 gamma-ray space-based telescope has as its main goals to measure cosmic γ-ray fluxes and the electron-positron cosmic-ray component produced, theoretically, in dark-matter-particles decay or annihilation processes, to search for discrete γ-ray sources and study them in detail, to examine the energy spectra of diffuse γ-rays — both galactic and extragalactic — and to study gamma-ray bursts (GRBs) and γ-rays from the active Sun. Scientific goals of GAMMA-400 telescope require fine angular resolution. The telescope is of a pair-production type. In the converter-tracker, the incident gamma-ray photon converts into electron-positron pair in the tungsten layer and then the tracks are detected by silicon- strip position-sensitive detectors. Multiple scattering processes become a significant obstacle in the incident-gamma direction reconstruction for energies below several gigaelectronvolts. The method of utilising this process to improve the resolution is proposed in the presented work.

  1. Inhibition of PKR activation by the proline-rich RNA binding domain of the herpes simplex virus type 1 Us11 protein.

    PubMed

    Poppers, J; Mulvey, M; Khoo, D; Mohr, I

    2000-12-01

    Upon activation by double-stranded RNA in virus-infected cells, the cellular PKR kinase phosphorylates the translation initiation factor eukaryotic initiation factor 2 (eIF2) and thereby inhibits protein synthesis. The gamma 34.5 and Us11 gene products encoded by herpes simplex virus type 1 (HSV-1) are dedicated to preventing the accumulation of phosphorylated eIF2. While the gamma 34.5 gene specifies a regulatory subunit for protein phosphatase 1 alpha, the Us11 gene encodes an RNA binding protein that also prevents PKR activation. gamma 34.5 mutants fail to grow on a variety of human cells as phosphorylated eIF2 accumulates and protein synthesis ceases prior to the completion of the viral life cycle. We demonstrate that expression of a 68-amino-acid fragment of Us11 containing a novel proline-rich basic RNA binding domain allows for sustained protein synthesis and enhanced growth of gamma 34.5 mutants. Furthermore, this fragment is sufficient to inhibit activation of the cellular PKR kinase in a cell-free system, suggesting that the intrinsic activities of this small fragment, notably RNA binding and ribosome association, may be required to prevent PKR activation.

  2. Interferon-alpha and interferon-gamma sensitize human tenon fibroblasts to mitomycin-C.

    PubMed

    Wang, Xiao Yang; Crowston, Jonathan G; Zoellner, Hans; Healey, Paul R

    2007-08-01

    To investigate the effect of interferon (IFN)-alpha and IFN-gamma pretreatment on mitomycin C (MMC)-induced cell death in human Tenon fibroblasts (HTFs) and the mechanisms by which IFN-alpha and IFN-gamma modulate the susceptibility of HTFs to MMC. HTFs were pretreated with IFN-alpha and IFN-gamma for 48 hours before 5-minute application of 0.4 mg/mL MMC. Cell death after 48 hours was determined by Annexin V/propidium iodide (PI) staining and lactate dehydrogenase (LDH) release assay. Fas, Fas-ligand, and Bcl-2 expression were determined by flow cytometry. Fas associated death domain (FADD), Bax, cytochrome c, and caspase expression were determined by Western blot analysis and immunofluorescence staining. MMC treatment increased cell death and upregulated Fas and FADD expression, but had no effect on Fas-Ligand, Bax, Bcl-2, or cytochrome c. Neither IFN-alpha nor IFN-gamma alone induced HTF death, but each increased cell death 2 days after MMC treatment in a dose-dependent fashion. Combination IFN-alpha and IFN-gamma had a synergistic effect. IFN-alpha and IFN-gamma pretreatment increased Fas expression. Fas upregulation was associated with increased sensitivity to MMC. IFN pretreatment increased procaspase-8, procaspase-9, and procaspase-3 expression, and caspase-3 activation. Caspase-8, caspase-3, and broad caspase inhibitors, but not caspase-9 inhibitor, inhibited MMC-induced cell death in nonpretreated and IFN-pretreated cells. IFN-alpha and IFN-gamma enhance the susceptibility of HTFs to MMC-induced cell death through a Fas-mediated and a caspase-3-dependent pathway. Pretreatment with IFN primed HTFs to MMC, providing a potential means for initially slowing the healing response with IFN and subsequently terminating fibroblast activity through MMC-induced cell death.

  3. A coupled-oscillator model of olfactory bulb gamma oscillations

    PubMed Central

    2017-01-01

    The olfactory bulb transforms not only the information content of the primary sensory representation, but also its underlying coding metric. High-variance, slow-timescale primary odor representations are transformed by bulbar circuitry into secondary representations based on principal neuron spike patterns that are tightly regulated in time. This emergent fast timescale for signaling is reflected in gamma-band local field potentials, presumably serving to efficiently integrate olfactory sensory information into the temporally regulated information networks of the central nervous system. To understand this transformation and its integration with interareal coordination mechanisms requires that we understand its fundamental dynamical principles. Using a biophysically explicit, multiscale model of olfactory bulb circuitry, we here demonstrate that an inhibition-coupled intrinsic oscillator framework, pyramidal resonance interneuron network gamma (PRING), best captures the diversity of physiological properties exhibited by the olfactory bulb. Most importantly, these properties include global zero-phase synchronization in the gamma band, the phase-restriction of informative spikes in principal neurons with respect to this common clock, and the robustness of this synchronous oscillatory regime to multiple challenging conditions observed in the biological system. These conditions include substantial heterogeneities in afferent activation levels and excitatory synaptic weights, high levels of uncorrelated background activity among principal neurons, and spike frequencies in both principal neurons and interneurons that are irregular in time and much lower than the gamma frequency. This coupled cellular oscillator architecture permits stable and replicable ensemble responses to diverse sensory stimuli under various external conditions as well as to changes in network parameters arising from learning-dependent synaptic plasticity. PMID:29140973

  4. Design and Performance of the GAMMA-400 Gamma-Ray Telescope for Dark Matter Searches

    NASA Technical Reports Server (NTRS)

    Galper, A.M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A.I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu. V.; hide

    2012-01-01

    The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons + positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is approx. 0.01 deg (E(sub gamma) > 100 GeV), the energy resolution approx. 1% (E(sub gamma) > 10 GeV), and the proton rejection factor approx 10(exp 6). GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.

  5. [Induction of glutathione and activation of immune functions by low-dose, whole-body irradiation with gamma-rays].

    PubMed

    Kojima, Shuji

    2006-10-01

    We first examined the relation between the induction of glutathione and immune functions in mice after low-dose gamma-ray irradiation. Thereafter, inhibition of tumor growth by radiation was confirmed in Ehrlich solid tumor (EST)-bearing mice. The total glutathione level of the splenocytes transiently increased soon after irradiation and reached a maximum at around 4 h postirradiation. Thereafter, the level reverted to the 0 h value by 24 h postirradiation. A significantly high splenocyte proliferative response was also recognized 4 h postirradiation. Natural killer (NK) activity was also increased significantly in a similar manner. The time at which the response reached the maximum coincided well with that of maximum total glutathione levels of the splenocytes in the gamma-ray-irradiated mice. Reduced glutathione exogenously added to splenocytes obtained from normal mice enhanced the proliferative response and NK activity in a dose-dependent manner. The inhibitory effects of radiation on tumor growth was then examined in EST-bearing mice. Repeated low-dose irradiation (0.5 Gy, four times, before and within an early time after inoculation) significantly delayed the tumor growth. Finally, the effect of single low-dose (0.5 Gy), whole-body gamma-ray irradiation on immune balance was examined to elucidate the mechanism underlying the antitumor immunity. The percentage of B cells in blood lymphocytes was selectively decreased after radiation, concomitant with an increase in that of the helper T cell population. The IFN-gamma level in splenocyte culture prepared from EST-bearing mice was significantly increased 48 h after radiation, although the level of IL-4 was unchanged. IL-12 secretion from macrophages was also enhanced by radiation. These results suggest that low-dose gamma-rays induce Th1 polarization and enhance the activities of tumoricidal effector cells, leading to an inhibition of tumor growth.

  6. Cosmic Gamma-Rays

    Science.gov Websites

    [Argonne Logo] [DOE Logo] Cosmic Gamma-Rays Home Publications Talks People Students Argonne > ; HEP > Cosmic Gamma-Rays Projects VERITAS Past Projects TrICE What's New CTA Cosmic Gamma-Rays The

  7. Design and Performance of the GAMMA-400 Gamma-Ray Telescope for Dark Matter Searches

    NASA Technical Reports Server (NTRS)

    Galper, A. M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu V.; hide

    2012-01-01

    The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons (+) positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is approximately 0.01deg (E(sub gamma) greater than 100 GeV), the energy resolution approximately 1% (E(sub gamma) greater than 10 GeV), and the proton rejection factor approximately 10(exp 6). GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.

  8. TRANSCRIPTIONAL INHIBITION OF INTERLEUKIN-12 PROMOTER ACTIVITY IN LEISHMANIA SPP.-INFECTED MACROPHAGES

    PubMed Central

    Jayakumar, Asha; Widenmaier, Robyn; Ma, Xiaojing; McDowell, Mary Ann

    2009-01-01

    To establish and persist within a host, Leishmania spp. parasites delay the onset of cell-mediated immunity by suppressing interleukin-12 (IL-12) production from host macrophages. Although it is established that Leishmania spp.-infected macrophages have impaired IL-12 production, the mechanisms that account for this suppression remain to be completely elucidated. Using a luciferase reporter assay assessing IL-12 transcription, we report here that Leishmania major, Leishmania donovani, and Leishmania chagasi inhibit IL-12 transcription in response to interferon-gamma, lipopolysaccharide, and CD40 ligand and that Leishmania spp. lipophosphoglycan, phosphoglycans, and major surface protein are not necessary for inhibition. In addition, all the Leishmania spp. strains and life-cycle stages tested inhibited IL-12 promoter activity. Our data further reveal that autocrine-acting host factors play no role in the inhibitory response and that phagocytosis signaling is necessary for inhibition of IL-12. PMID:18372625

  9. Mycophenolic acid induces ATP-binding cassette transporter A1 (ABCA1) expression through the PPAR{gamma}-LXR{alpha}-ABCA1 pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yanni; Lai, Fangfang; Xu, Yang

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Using an ABCA1p-LUC HepG2 cell line, we found that MPA upregulated ABCA1 expression. Black-Right-Pointing-Pointer MPA induced ABCA1 and LXR{alpha} protein expression in HepG2 cells. Black-Right-Pointing-Pointer PPAR{gamma} antagonist GW9662 markedly inhibited MPA-induced ABCA1 and LXR{alpha} protein expression. Black-Right-Pointing-Pointer The effect of MPA upregulating ABCA1 was due mainly to activation of the PPAR{gamma}-LXR{alpha}-ABCA1 pathway. -- Abstract: ATP-binding cassette transporter A1 (ABCA1) promotes cholesterol and phospholipid efflux from cells to lipid-poor apolipoprotein A-I and plays an important role in atherosclerosis. In a previous study, we developed a high-throughput screening method using an ABCA1p-LUC HepG2 cell line to find upregulators of ABCA1.more » Using this method in the present study, we found that mycophenolic acid (MPA) upregulated ABCA1 expression (EC50 = 0.09 {mu}M). MPA upregulation of ABCA1 expression was confirmed by real-time quantitative reverse transcription-PCR and Western blot analysis in HepG2 cells. Previous work has indicated that MPA is a potent agonist of peroxisome proliferator-activated receptor gamma (PPAR{gamma}; EC50 = 5.2-9.3 {mu}M). Liver X receptor {alpha} (LXR{alpha}) is a target gene of PPAR{gamma} and may directly regulate ABCA1 expression. Western blot analysis showed that MPA induced LXR{alpha} protein expression in HepG2 cells. Addition of PPAR{gamma} antagonist GW9662 markedly inhibited MPA-induced ABCA1 and LXR{alpha} protein expression. These data suggest that MPA increased ABCA1 expression mainly through activation of PPAR{gamma}. Thus, the effects of MPA on upregulation of ABCA1 expression were due mainly to activation of the PPAR{gamma}-LXR{alpha}-ABCA1 signaling pathway. This is the first report that the antiatherosclerosis activity of MPA is due to this mechanism.« less

  10. Sustained exogenous expression of therapeutic levels of IFN-gamma ameliorates atopic dermatitis in NC/Nga mice via Th1 polarization.

    PubMed

    Hattori, Kayoko; Nishikawa, Makiya; Watcharanurak, Kanitta; Ikoma, Akihiko; Kabashima, Kenji; Toyota, Hiroyasu; Takahashi, Yuki; Takahashi, Rei; Watanabe, Yoshihiko; Takakura, Yoshinobu

    2010-03-01

    The short in vivo half-life of IFN-gamma can prevent the cytokine from inducing immunological changes that are favorable for the treatment of Th2-dominant diseases, such as atopic dermatitis. To examine whether a sustained supply of IFN-gamma is effective in regulating the balance of Th lymphocyte subpopulations, plasmid vector encoding mouse IFN-gamma, pCpG-Mugamma, or pCMV-Mugamma was injected into the tail vein of NC/Nga mice, a model for human atopic dermatitis. A single hydrodynamic injection of a CpG motif reduced pCpG-Mugamma at a dose of 0.14 microg/mouse resulted in a sustained concentration of IFN-gamma in the serum, and the concentration was maintained at >300 pg/ml over 80 d. The pCpG-Mugamma-mediated IFN-gamma gene transfer was associated with an increase in the serum concentration of IL-12, reduced production of IgE, and inhibition of mRNA expression of IL-4, -5, -10, -13, and -17 and thymus and activation-regulated chemokine in the spleen. These immunological changes were not clearly observed in mice receiving two injections of 20 microg pCMV-Mugamma, a CpG-replete plasmid DNA, because of the transient nature of the expression from the vector. The mice receiving pCpG-Mugamma showed a significant reduction in the severity of skin lesions and in the intensity of their scratching behavior. Furthermore, high transepidermal water loss, epidermal thickening, and infiltration of lymphocytes and eosinophils, all of which were obvious in the untreated mice, were significantly inhibited. These results indicate that an extraordinary sustained IFN-gamma expression induces favorable immunological changes, leading to a Th1-dominant state in the atopic dermatitis model.

  11. Bruton's tyrosine kinase regulates B cell antigen receptor-mediated JNK1 response through Rac1 and phospholipase C-gamma2 activation.

    PubMed

    Inabe, Kazunori; Miyawaki, Toshio; Longnecker, Richard; Matsukura, Hiroyoshi; Tsukada, Satoshi; Kurosaki, Tomohiro

    2002-03-13

    Bruton's tyrosine kinase (Btk) is essential for B cell development and B cell antigen receptor (BCR) function. Recent studies have shown that Btk plays an important role in BCR-mediated c-Jun NH(2)-terminal kinase (JNK) 1 activation; however, the mechanism by which Btk participates in the JNK1 response remains elusive. Here we show that the BCR-mediated Rac1 activation is significantly inhibited by loss of Btk, while this Rac1 activation is not affected by loss of phospholipase C-gamma2 (PLC-gamma2). Since PLC-gamma2 is also required for BCR-mediated JNK1 response, our results suggest that Btk regulates Rac1 pathway as well as PLC-gamma2 pathway, both of which contribute to the BCR-mediated JNK1 response.

  12. Optical gamma thermometer

    DOEpatents

    Koster, Glen Peter; Xia, Hua; Lee, Boon Kwee

    2013-08-06

    An optical gamma thermometer includes a metal mass having a temperature proportional to a gamma flux within a core of a nuclear reactor, and an optical fiber cable for measuring the temperature of the heated metal mass. The temperature of the heated mass may be measured by using one or more fiber grating structures and/or by using scattering techniques, such as Raman, Brillouin, and the like. The optical gamma thermometer may be used in conjunction with a conventional reactor heat balance to calibrate the local power range monitors over their useful in-service life. The optical gamma thermometer occupies much less space within the in-core instrument tube and costs much less than the conventional gamma thermometer.

  13. Short-term variability of gamma radiation at the ARM Eastern North Atlantic facility (Azores).

    PubMed

    Barbosa, S M; Miranda, P; Azevedo, E B

    2017-06-01

    This work addresses the short-term variability of gamma radiation measured continuously at the Eastern North Atlantic (ENA) facility located in the Graciosa island (Azores, 39N; 28W), a fixed site of the Atmospheric Radiation Measurement programme (ARM). The temporal variability of gamma radiation is characterized by occasional anomalies over a slowly-varying signal. Sharp peaks lasting typically 2-4 h are coincident with heavy precipitation and result from the scavenging effect of precipitation bringing radon progeny from the upper levels to the ground surface. However the connection between gamma variability and precipitation is not straightforward as a result of the complex interplay of factors such as the precipitation intensity, the PBL height, the cloud's base height and thickness, or the air mass origin and atmospheric concentration of sub-micron aerosols, which influence the scavenging processes and therefore the concentration of radon progeny. Convective precipitation associated with cumuliform clouds forming under conditions of warming of the ground relative to the air does not produce enhancements in gamma radiation, since the drop growing process is dominated by the fast accretion of liquid water, resulting in the reduction of the concentration of radionuclides by dilution. Events of convective precipitation further contribute to a reduction in gamma counts by inhibiting radon release from the soil surface and by attenuating gamma rays from all gamma-emitting elements on the ground. Anomalies occurring in the absence of precipitation are found to be associated with a diurnal cycle of maximum gamma counts before sunrise decreasing to a minimum in the evening, which are observed in conditions of thermal stability and very weak winds enabling the build-up of near surface radon progeny during the night. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Implications of Gamma-Ray Transparency Constraints in Blazars: Minimum Distances and Gamma-Ray Collimation

    NASA Technical Reports Server (NTRS)

    Becker, Peter A.; Kafatos, Menas

    1995-01-01

    We develop a general expression for the gamma - gamma absorption coefficient, alpha(sub gamma(gamma)) for gamma-rays propagating in an arbitrary direction at an arbitrary point in space above an X-ray-emitting accretion disk. The X-ray intensity is assumed to vary as a power law in energy and radius between the outer disk radius, R(sub 0), and the inner radius, R(sub ms) which is the radius of marginal stability for a Schwarzschild black hole. We use our result for alpha(sub gamma(gamma)) to calculate the gamma - gamma optical depth, tau(sub gamma(gamma)) for gamma - rays created at height z and propagating at angle Phi relative to the disk axis, and we show that for Phi = 0 and z greater than or approx equal to R(sub 0), tau(sub gamma(gamma)) proportional to Epsilon(sup alpha)z(sup -2(alpha) - 3), where alpha is the X-ray spectral index and Epsilon is the gamma - ray energy. As an application, we use our formalism to compute the minimum distance between the central black hole and the site of production of the gamma-rays detected by EGRET during the 1991 June flare of 3C 279. In order to obtain an upper limit, we assume that all of the X-rays observed contemporaneously by Ginga were emitted by the disk. Our results suggest that the observed gamma - rays may have originated within less than or approx equal to 45 GM/sq c from a black hole of mass greater than or approx equal to 10(exp 9) solar mass, perhaps in active plasma located above the central funnel of the accretion disk. This raises the possibility of establishing a direct connection between the production of the observed gamma - rays and the accretion of material onto the black hole. We also consider the variation of the optical depth as a function of the angle of propagation Phi. Our results indicate that the "focusing" of the gamma - rays along the disk axis due to pair production is strong enough to explain the observed degree of alignment in blazar sources. If the gamma - rays are produced isotropically

  15. Design and performance of the GAMMA-400 gamma-ray telescope for dark matter searches

    NASA Astrophysics Data System (ADS)

    Galper, A. M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu. V.; Kaplin, V. A.; Kachanov, V. A.; Kheymits, M. D.; Leonov, A. A.; Longo, F.; Mazets, E. P.; Maestro, P.; Marrocchesi, P.; Mereminskiy, I. A.; Mikhailov, V. V.; Moiseev, A. A.; Mocchiutti, E.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu.; Papini, P.; Picozza, P.; Rodin, V. G.; Runtso, M. F.; Sparvoli, R.; Spillantini, P.; Suchkov, S. I.; Tavani, M.; Topchiev, N. P.; Vacchi, A.; Vannuccini, E.; Yurkin, Yu. T.; Zampa, N.; Zverev, V. G.; Zirakashvili, V. N.

    2013-02-01

    The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons + positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is ~0.01° (Eγ > 100 GeV), the energy resolution ~1% (Eγ > 10 GeV), and the proton rejection factor ~106. GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.

  16. [Effects of interferon-gamma on cytotoxicity of murine activated macrophages against murine glioma cells].

    PubMed

    Ohyama, K; Kikuchi, H; Oda, Y; Moritake, K; Yamasaki, T

    1993-06-01

    We studied the effects of mouse IFN-gamma on the cytotoxic activity of murine activated macrophages (M phi) against mouse VM-Glioma cells (H-2b). Activated M phi were obtained from peritoneal exudate cells of mice from four strains, C57BL/6 (H-2b), C3H/He(H-2k), DBA/2 (H-2d), and BALB/c (H-2d), following intraperitoneal injection of (1) LPS 200 micrograms, (2) BCG 200 micrograms, (3) C. parvum 200 micrograms, or (4) MDP 350 micrograms 7 days prior to 20-hr 51Cr release-assay. Of the various combination of mouse strains and activating agents tested, that of activated M phi of the C3H/He mouse with induction by LPS had the most tumoricidal effect against the glioma cells, which was not MHC restricted. Although LPS-activated M phi underwent marked loss of cytotoxicity following initiation of in vitro culture, this 24 hr pretreatment with IFN-gamma inhibited this reduction in tumoricidal effects in a dose-dependent fashion. On the other hand, 24 hr pretreatment of target cells with IFN-gamma did not increase their susceptibility to lysis by activated M phi. These findings suggest that IFN-gamma augments the in vitro tumoricidal activation of M phi; This effect appears to be unrelated to any influence of IFN-gamma on target sensitivity to lysis by macrophages.

  17. Antibody-mediated platelet phagocytosis by human macrophages is inhibited by siRNA specific for sequences in the SH2 tyrosine kinase, Syk.

    PubMed

    Lu, Ying; Wang, Weiming; Mao, Huiming; Hu, Hai; Wu, Yanling; Chen, Bing-Guan; Liu, Zhongmin

    2011-01-01

    Immune thrombocytopenia depends upon Fc receptor-mediated phagocytosis that involves signaling through the SH2 tyrosine kinase, Syk. We designed small interfering (siRNA) sequences complementary to Syk coding regions to decrease the expression of Syk in the human macrophage cell line, THP-1. To evaluate the functional effect of siRNA on phagocytosis, we developed a new in vitro assay for antibody-mediated platelet ingestion by THP-1 cells. Incubation of THP-1 cells at 37°C with fluorescence-labeled platelets and anti-platelet antibody promoted ingestion of platelets that could be quantitated by flow cytometry. Transfection of THP-1 cells with Syk-specific siRNA resulted in a reduction in the amount of FcγRII-associated Syk protein. Coincident with decreased Syk expression, we observed inhibition of antibody-mediated platelet ingestion. These results confirm a key role for Syk in antibody-mediated phagocytosis and suggest Syk-specific siRNA as a possible therapeutic candidate for immune thrombocytopenia. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Radiosensitivity and Induction of Apoptosis by High LET Carbon Ion Beam and Low LET Gamma Radiation: A Comparative Study

    PubMed Central

    Ghorai, Atanu; Bhattacharyya, Nitai P.; Sarma, Asitikantha; Ghosh, Utpal

    2014-01-01

    Cancer treatment with high LET heavy ion beam, especially, carbon ion beam (12C), is becoming very popular over conventional radiotherapy like low LET gamma or X-ray. Combination of Poly(ADP-ribose) polymerase (PARP) inhibitor with xenotoxic drugs or conventional radiation (gamma or X-ray) is the newer approach for cancer therapy. The aim of our study was to compare the radiosensitivity and induction of apoptosis by high LET 12C and low LET gamma radiation in HeLa and PARP-1 knocked down cells. We did comet assay to detect DNA breaks, clonogenic survival assay, and cell cycle analysis to measure recovery after DNA damage. We measured apoptotic parameters like nuclear fragmentation and caspase-3 activation. DNA damage, cell killing, and induction of apoptosis were significantly higher for 12C than gamma radiation in HeLa. Cell killing and apoptosis were further elevated upon knocking down of PARP-1. Both 12C and gamma induced G2/M arrest although the 12C had greater effect. Unlike the gamma, 12C irradiation affects DNA replication as detected by S-phase delay in cell cycle analysis. So, we conclude that high LET 12C has greater potential over low LET gamma radiation in killing cells and radiosensitization upon PARP-1 inhibition was several folds greater for 12C than gamma. PMID:25018892

  19. Effect of interferons and other biological response modifiers (BRMS) on macrophage-mediated inhibition of Listeria monocytogenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badger, A.M.; Swift, B.; Sung, C.P.

    1986-03-05

    Recombinant murine gamma interferon (IFN-..gamma..) activates oil elicited C57BL/6 peritoneal macrophages to inhibit the growth of Listeria. Maximum activity is obtained with 10-20 units/ml, can be demonstrated in the absence of antibiotics and is not due to LPS contamination. Studies of the kinetics of this phenomenon demonstrate that a 30 minute incubation with IFN-..gamma.. is sufficient to initiate the antiproliferative state and full activity can be obtained with a 4 hour incubation. Alpha/beta interferon (IFN-..cap alpha../..beta..) is also active but requires 100X more units to obtain equivalent activity. The evaluation of a number of other BRMS demonstrated that MDP andmore » LPS could stimulate phagocytosis of Listeria but could not inhibit their growth. Bestatin, tuftsin, Con A, A23187 and Poly I:C did not stimulate either phagocytosis or growth inhibitory activity. These compounds were also tested for their ability to enhance the release of superoxide anion from PMA stimulated macrophages. With the exception of tuftsin and bestatin all of the BRMS tested were able to enhance the production of oxidative burst products confirming the findings of others of the dissociation between the two functions.« less

  20. Effects of gamma irradiation on the performance of Jatropha (Jatropha curcas L.) accessions

    NASA Astrophysics Data System (ADS)

    Surahman, M.; Santosa, E.; Agusta, H.; Aisyah, S. I.; Nisya, F. N.

    2018-03-01

    This study aimed to assess the effects of mutation by using gamma ray on the performance of jatropha plants. The study was conducted at PAIR BATAN. Jatropha seeds obtained from the collection farm of SBRC LPPM IPB and PT Indocement Tunggal Prakarsa Tbk in Gunung Putri, Bogor, were irradiated. The irradiated seeds were grown in Jonggol Trial Farm of IPB. Gamma irradiation was conducted by using a GCM 4000A device. Treatments consisted of irradiation doses, irradiation methods, and accessions. Irradiation doses given were 175, 200, 225 Gy, and no irradiation (control). Irradiation methods consisted of acute, intermittent, and split-dose. Accessions used in this study were Dompu, Medan, Bima, Lombok, ITP II, IP2P, and Thailand. Results of the study were analysed until 5 months after planting showed that gamma ray mutation gave stimulating and inhibiting effects on similar traits. Irradiation dose of 225 Gy was good to be given in acute, intermittent, and split-dose methods. Irradiation effects were found to be significant in jatropha accessions. Effects of irradiation on production will be published soon.

  1. Salinomycin, a polyether ionophoric antibiotic, inhibits adipogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szkudlarek-Mikho, Maria; Saunders, Rudel A.; Yap, Sook Fan

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer Salinomycin inhibits preadipocyte differentiation into adipocytes. Black-Right-Pointing-Pointer Salinomycin inhibits transcriptional regulation of adipogenesis. Black-Right-Pointing-Pointer Pharmacological effects of salinomycin suggest toxicity in cancer therapy. -- Abstract: The polyether ionophoric antibiotics including monensin, salinomycin, and narasin, are widely used in veterinary medicine and as food additives and growth promoters in animal husbandry including poultry farming. Their effects on human health, however, are not fully understood. Recent studies showed that salinomycin is a cancer stem cell inhibitor. Since poultry consumption has risen sharply in the last three decades, we asked whether the consumption of meat tainted with growth promoting antibiotics mightmore » have effects on adipose cells. We showed in this report that the ionophoric antibiotics inhibit the differentiation of preadipocytes into adipocytes. The block of differentiation is not due to the induction of apoptosis nor the inhibition of cell proliferation. In addition, salinomycin also suppresses the transcriptional activity of the CCAAT/enhancer binding proteins and the peroxisome proliferator-activated receptor {gamma}. These results suggest that the ionophoric antibiotics can be exploited as novel anti-obesity therapeutics and as pharmacological probes for the study of adipose biology. Further, the pharmacological effects of salinomycin could be a harbinger of its toxicity on the adipose tissue and other susceptible target cells in cancer therapy.« less

  2. Gamma Knife

    MedlinePlus

    ... equipment? How is safety ensured? What is this equipment used for? The Gamma Knife® and its associated ... in size. top of page How does the equipment work? The Gamma Knife® utilizes a technique called ...

  3. Gamma-400 Science Objectives Built on the Current HE Gamma-Ray and CR Results

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander; Mitchell, John; Thompson, David

    2012-01-01

    The main scientific interest of the Russian Gamma-400 team: Observe gamma-rays above approximately 50 GeV with excellent energy and angular resolution with the goals of: (1) Studying the fine spectral structure of the isotropic high-energy gamma-radiation, (2) Attempting to identify the many still-unidentified Fermi-LAT gamma-ray sources. Gamma-400 will likely be the only space-based gamma-ray observatory operating at the end of the decade. In our proposed Gamma-400-LE version, it will substantially improve upon the capabilities of Fermi LAT and AGILE in both LE and HE energy range. Measuring gamma-rays from approx 20 MeV to approx 1 TeV for at least 7 years, Gamma-400-LE will address the topics of dark matter, cosmic ray origin and propagation, neutron stars, flaring pulsars, black holes, AGNs, GRBs, and actively participate in multiwavelength campaigns.

  4. Cycloartenyl ferulate, a component of rice bran oil-derived gamma-oryzanol, attenuates mast cell degranulation.

    PubMed

    Oka, T; Fujimoto, M; Nagasaka, R; Ushio, H; Hori, M; Ozaki, H

    2010-02-01

    IgE-targeting therapy could provide significant progress in the treatment of allergic inflammation. In this study, we examined the effect of cycloartenyl ferulate (cycloartenol ferulic acid ester; CAF), a natural product from rice bran oil-derived gamma-oryzanol, on allergic reaction. When CAF and gamma-oryzanol were injected intradermally with anti-DNP IgE into the dorsal skin of rats, the passive cutaneous anaphylaxis reaction induced by DNP-HSA was attenuated. CAF and gamma-oryzanol also inhibited the degranulation of DNP-IgE sensitized RBL-2H3 mast cells stimulated with anti-DNP-HSA. IgE conjugated with CAF could not be detected by anti-IgE antibody in the ELISA analysis. Although incubation of IgE with CAF did not decrease the amount of IgE, it was possible to precipitate IgE by centrifugation. These results demonstrate that CAF captures IgE, prevents it from binding to FcepsilonRI, and attenuates mast cell degranulation. Copyright 2009 Elsevier GmbH. All rights reserved.

  5. Genomic sequences of murine gamma B- and gamma C-crystallin-encoding genes: promoter analysis and complete evolutionary pattern of mouse, rat and human gamma-crystallins.

    PubMed

    Graw, J; Liebstein, A; Pietrowski, D; Schmitt-John, T; Werner, T

    1993-12-22

    The murine genes, gamma B-cry and gamma C-cry, encoding the gamma B- and gamma C-crystallins, were isolated from a genomic DNA library. The complete nucleotide (nt) sequences of both genes were determined from 661 and 711 bp, respectively, upstream from the first exon to the corresponding polyadenylation sites, comprising more than 2650 and 2890 bp, respectively. The new sequences were compared to the partial cDNA sequences available for the murine gamma B-cry and gamma C-cry, as well as to the corresponding genomic sequences from rat and man, at both the nt and predicted amino acid (aa) sequence levels. In the gamma B-cry promoter region, a canonical CCAAT-box, a TATA-box, putative NF-I and C/EBP sites were detected. An R-repeat is inserted 366 bp upstream from the transcription start point. In contrast, the gamma C-cry promoter does not contain a CCAAT-box, but some other putative binding sites for transcription factors (AP-2, UBP-1, LBP-1) were located by computer analysis. The promoter regions of all six gamma-cry from mouse, rat and human, except human psi gamma F-cry, were analyzed for common sequence elements. A complex sequence element of about 70-80 bp was found in the proximal promoter, which contains a gamma-cry-specific and almost invariant sequence (crygpel) of 14 nt, and ends with the also invariant TATA-box. Within the complex sequence element, a minimum of three further features specific for the gamma A-, gamma B- and gamma D/E/F-cry genes can be defined, at least two of which were recently shown to be functional. In addition to these four sequence elements, a subtype-specific structure of inverted repeats with different-sized spacers can be deduced from the multiple sequence alignment. A phylogenetic analysis based on the promoter region, as well as the complete exon 3 of all gamma-cry from mouse, rat and man, suggests separation of only five gamma-cry subtypes (gamma A-, gamma B-, gamma C-, gamma D- and gamma E/F-cry) prior to species separation.

  6. Predicting diffusion paths and interface motion in gamma/gamma + beta, Ni-Cr-Al diffusion couples

    NASA Technical Reports Server (NTRS)

    Nesbitt, J. A.; Heckel, R. W.

    1987-01-01

    A simplified model has been developed to predict Beta recession and diffusion paths in ternary gamma/gamma + beta diffusion couples (gamma:fcc, beta: NiAl structure). The model was tested by predicting beta recession and diffusion paths for four gamma/gamma + beta, Ni-Cr-Al couples annealed for 100 hours at 1200 C. The model predicted beta recession within 20 percent of that measured for each of the couples. The model also predicted shifts in the concentration of the gamma phase at the gamma/gamma + beta interface within 2 at. pct Al and 6 at. pct Cr of that measured in each of the couples. A qualitative explanation based on simple kinetic and mass balance arguments has been given which demonstrates the necessity for diffusion in the two-phase region of certain gamma/gamma + beta, Ni-Cr-Al couples.

  7. Memory Retrieval Time and Memory Capacity of the CA3 Network: Role of Gamma Frequency Oscillations

    ERIC Educational Resources Information Center

    de Almeida, Licurgo; Idiart, Marco; Lisman, John E.

    2007-01-01

    The existence of recurrent synaptic connections in CA3 led to the hypothesis that CA3 is an autoassociative network similar to the Hopfield networks studied by theorists. CA3 undergoes gamma frequency periodic inhibition that prevents a persistent attractor state. This argues against the analogy to Hopfield nets, in which an attractor state can be…

  8. Gamma-tocotrienol inhibits lipopolysaccharide-induced interlukin-6 and granulocyte-colony stimulating factor by suppressing C/EBP-β and NF-κB in macrophages

    PubMed Central

    Wang, Yun; Jiang, Qing

    2012-01-01

    Cytokines generated from macrophages contributes to pathogenesis of inflammation-associated diseases. Here we show that gamma-tocotrienol (γ-TE), a natural vitamin E form, inhibits lipopolysaccharide (LPS)-induced interleukin-6 (IL-6) production without affecting TNFα, IL-10 or cyclooxygenase-2 (COX-2) up-regulation in murine RAW267.4 macrophages. Mechanistic studies indicate that nuclear factor (NF)-κB, but not JNK, p38 or ERK MAP kinases, is important to IL-6 production and γ-TE treatment blocks NF-κB activation. In contrast, COX-2 appears to be regulated by p38 MAPK in RAW cells, but γ-TE has no effect on LPS-stimulated p38 phosphorylation. Despite necessary for IL-6, NF-κB activation by TNFα or other cytokines is not sufficient for IL-6 induction with exception of LPS. CCAAT-enhancer binding protein β (C/EBPβ) appears to be involved in IL-6 formation, because LPS induces C/EBPβ up-regulation, which parallels IL-6 production, and knockdown of C/EBPβ with siRNA results in diminished IL-6. LPS but not individual cytokines is capable of stimulating C/EBPβ and IL-6 in macrophages. Consistent with its dampening effect on IL-6, γ-TE blunts LPS-induced up-regulation of C/EBPβ without affecting C/EBPδ. γ-TE also decreases LPS-stimulated granulocyte-colony stimulating factor (G-CSF), a C/EBPβ target gene. Compared with RAW267.4 cells, γ-TE shows similar or stronger inhibitory effects on LPS-triggered activation of NF-κB, C/EPBβ and C/EBPδ, and more potently suppresses IL-6 and G-CSF in bone marrow-derived macrophages. Our study demonstrates that γ-TE has anti-inflammatory activities by inhibition of NF-κB and C/EBPs activation in macrophages. PMID:23246159

  9. Comparison of gamma-gamma Phase Coarsening Responses of Three Powder Metal Disk Superalloys

    NASA Technical Reports Server (NTRS)

    Gabb, T. P.; Gayda, J.; Johnson, D. F.; MacKay, R. A.; Rogers, R. B.; Sudbrack, C. K.; Garg, A.; Locci, I. E.; Semiatin, S. L.; Kang, E.

    2016-01-01

    The phase microstructures of several powder metal (PM) disk superalloys were quantitatively evaluated. Contents, chemistries, and lattice parameters of gamma and gamma strengthening phase were determined for conventionally heat treated Alloy 10, LSHR, and ME3 superalloys, after electrolytic phase extractions. Several of long term heat treatments were then performed, to allow quantification of the precipitation, content, and size distribution of gamma at a long time interval to approximate equilibrium conditions. Additional coarsening heat treatments were performed at multiple temperatures and shorter time intervals, to allow quantification of the precipitation, contents and size distributions of gamma at conditions diverging from equilibrium. Modest differences in gamma and gamma lattice parameters and their mismatch were observed among the alloys, which varied with heat treatment. Yet, gamma coarsening rates were very similar for all three alloys in the heat treatment conditions examined. Alloy 10 had higher gamma dissolution and formation temperatures than LSHR and ME3, but a lower lattice mismatch, which was slightly positive for all three alloys at room temperature. The gamma precipitates of Alloy 10 appeared to remain coherent at higher temperatures than for LSHR and ME3. Higher coarsening rates were observed for gamma precipitates residing along grain boundaries than for those within grains in all three alloys, during slow-moderate quenching from supersolvus solution heat treatments, and during aging at temperatures of 843 C and higher.

  10. Interferon-gamma alone triggers the production of nitric oxide from serum-starved BNL CL.2, murine embryonic liver cells.

    PubMed

    Pae, H O; Yoo, J C; Choi, B M; Paik, S G; Kim, Y H; Jin, H S; Chung, H T

    1999-01-01

    A previous study has demonstrated that both interferon-gamma (IFN-gamma) and lipopolysaccharide (LPS) were needed to induce the production of nitric oxide (NO) in BNL CL.2 cells, murine embryonic liver cells. We here demonstrate that when BNL CL.2 cells were cultured with serum-free medium, they were induced to produce NO by the stimulation of IFN-gamma alone. BNL CL.2 cells were cultured with serum-free or serum-containing medium for 1-3 days and then stimulated to synthesize NO by IFN-gamma. Surprisingly, only serum-starved cells showed significant amount of nitrite accumulation and iNOS protein expression in response to IFN-gamma in dose- and time-dependent manners, but serum-supplied cells did not. When the cells were stimulated with IFN-gamma, tumor necrosis factor-alpha (TNF-alpha), or LPS in combinations, only the combination of IFN-gamma and LPS produced more NO than that produced by IFN-gamma alone. The production of NO by the cells stimulated with IFN-gamma or IFN-gamma plus LPS was blocked by the addition of N(G)-monomethyl-L-arginine (N(G)MMA), a NO synthesis inhibitor. To address the intracellular signal pathway responsible for the production of NO by the cells stimulated with IFN-gamma aloneor IFN-gamma plus LPS, we examined the effects of several protein kinase inhibitors on the production of NO from the cells. The production of NO was significantly inhibited by protein tyrosine kinase (PTK) inhibitors, genistein and herbimycin A, but not by protein kinase A or C inhibitors. These results suggest that the deprivation of serum from BNL CL.2 cell culture medium might prime the cells to induce NO synthesis when the cells are triggered by IFN-gamma and the involvement of PTK signal transduction pathway in the expression of inducible NO synthase gene in murine hepatoma cells.

  11. Epidermal Growth Factor Receptor Signaling Enhances the Proinflammatory Effects of Staphylococcus aureus Gamma-Toxin on the Mucosa.

    PubMed

    Gillman, Aaron N; Breshears, Laura M; Kistler, Charles K; Finnegan, Patrick M; Torres, Victor J; Schlievert, Patrick M; Peterson, Marnie L

    2017-06-28

    Staphylococcus aureus ( S. aureus ) produces many different exotoxins including the gamma-toxins, HlgAB and HlgCB. Gamma-toxins form pores in both leukocyte and erythrocyte membranes, resulting in cell lysis. The genes encoding gamma-toxins are present in most strains of S. aureus, and are commonly expressed in clinical isolates recovered from menstrual Toxic Shock Syndrome (mTSS) patients. This study set out to investigate the cytotoxic and proinflammatory effects of gamma-toxins on vaginal epithelial surfaces. We found that both HlgAB and HlgCB were cytotoxic to cultured human vaginal epithelial cells (HVECs) and induced cytokine production at sub-cytotoxic doses. Cytokine production induced by gamma-toxin treatment of HVECs was found to involve epidermal growth factor receptor (EGFR) signaling and mediated by shedding of EGFR ligands from the cell surface. The gamma-toxin subunits displayed differential binding to HVECs (HlgA 93%, HlgB 97% and HlgC 28%) with both components (HlgAB or HlgCB) required for maximum detectable binding and significant stimulation of cytokine production. In studies using full thickness ex vivo porcine vaginal mucosa, HlgAB or HlgCB stimulated a dose-dependent cytokine response, which was reduced significantly by inhibition of EGFR signaling. The effects of gamma-toxins on porcine vaginal tissue and cultured HVECs were validated using ex vivo human ectocervical tissue. Collectively, these studies have identified the EGFR-signaling pathway as a key component in gamma-toxin-induced proinflammatory changes at epithelial surfaces and highlight a potential therapeutic target to diminish toxigenic effects of S. aureus infections.

  12. Interferon-gamma induces apoptosis and augments the expression of Fas and Fas ligand by microglia in vitro.

    PubMed

    Badie, B; Schartner, J; Vorpahl, J; Preston, K

    2000-04-01

    Activation of microglia by interferon-gamma (IFN-gamma) has been implicated in a number of central nervous system (CNS) inflammatory disease processes. Because IFN-gamma has also been shown to play a role in programmed cell death, we investigated its cytotoxicity and its effect on the Fas apoptotic pathway in microglia. Flow cytometry was used to quantify the IFN-gamma-mediated apoptotic response and Fas and Fas ligand (FasL) expression in two well-characterized murine microglia cell lines (BV-2 and N9). Nuclear fragmentation, suggestive of apoptosis, was noted within 24 h of incubation of microglia with IFN-gamma (10 U/ml). After a 72-h incubation, almost every BV-2 and N9 microglia, but not GL261 glioma cells, underwent cell death and detached from the culture plates. This cytotoxicity occurred even at low IFN-gamma concentrations (1 U/ml) and was inhibited by BAF, a pan-caspase inhibitor. Incubation of BV-2 and N9 microglia, but not GL261 glioma cells, with IFN-gamma also potentiated the expression of Fas and FasL in a similar dose-response and time-course manner, as seen for the apoptotic response. Whereas Fas expression increased by 100% in both microglia cells, FasL upregulation was more pronounced and increased by as much as 200% in the N9 cells. These findings suggest that in addition to its role as a microglia activator, IFN-gamma may also induce apoptosis of microglia, possibly through simultaneous upregulation of Fas and FasL. Interferon-gamma modulation of the Fas pathway and apoptosis in microglia may be important in the pathogenesis of inflammatory CNS disease processes. Copyright 2000 Academic Press.

  13. Novel time-dependent vascular actions of {delta}{sup 9}-tetrahydrocannabinol mediated by peroxisome proliferator-activated receptor gamma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Sullivan, Saoirse E.; Tarling, Elizabeth J.; Bennett, Andrew J.

    Cannabinoids have widespread effects on the cardiovascular system, only some of which are mediated via G-protein-coupled cell surface receptors. The active ingredient of cannabis, {delta}{sup 9}-tetrahydrocannabinol (THC), causes acute vasorelaxation in various arteries. Here we show for the first time that THC also causes slowly developing vasorelaxation through activation of peroxisome proliferator-activated receptors gamma (PPAR{gamma}). In vitro, THC (10 {mu}M) caused time-dependent vasorelaxation of rat isolated arteries. Time-dependent vasorelaxation to THC was similar to that produced by the PPAR{gamma} agonist rosiglitazone and was inhibited by the PPAR{gamma} antagonist GW9662 (1 {mu}M), but not the cannabinoid CB{sub 1} receptor antagonist AM251more » (1 {mu}M). Time-dependent vasorelaxation to THC requires an intact endothelium, nitric oxide, production of hydrogen peroxide, and de novo protein synthesis. In transactivation assays in cultured HEK293 cells, THC-activated PPAR{gamma}, transiently expressed in combination with retinoid X receptor {alpha} and a luciferase reporter gene, in a concentration-dependent manner (100 nM-10 {mu}M). In vitro incubation with THC (1 or 10 {mu}M, 8 days) stimulated adipocyte differentiation in cultured 3T3L1 cells, a well-accepted property of PPAR{gamma} ligands. The present results provide strong evidence that THC is a PPAR{gamma} ligand, stimulation of which causes time-dependent vasorelaxation, implying some of the pleiotropic effects of cannabis may be mediated by nuclear receptors.« less

  14. Boosting the LTP-like plasticity effect of intermittent theta-burst stimulation using gamma transcranial alternating current stimulation.

    PubMed

    Guerra, Andrea; Suppa, Antonio; Bologna, Matteo; D'Onofrio, Valentina; Bianchini, Edoardo; Brown, Peter; Di Lazzaro, Vincenzo; Berardelli, Alfredo

    2018-03-24

    Transcranial Alternating Current Stimulation (tACS) consists in delivering electric current to the brain using an oscillatory pattern that may entrain the rhythmic activity of cortical neurons. When delivered at gamma frequency, tACS modulates motor performance and GABA-A-ergic interneuron activity. Since interneuronal discharges play a crucial role in brain plasticity phenomena, here we co-stimulated the primary motor cortex (M1) in healthy subjects by means of tACS during intermittent theta-burst stimulation (iTBS), a transcranial magnetic stimulation paradigm known to induce long-term potentiation (LTP)-like plasticity. We measured and compared motor evoked potentials before and after gamma, beta and sham tACS-iTBS. While we delivered gamma-tACS, we also measured short-interval intracortical inhibition (SICI) to detect any changes in GABA-A-ergic neurotransmission. Gamma, but not beta and sham tACS, significantly boosted and prolonged the iTBS-induced after-effects. Interestingly, the extent of the gamma tACS-iTBS after-effects correlated directly with SICI changes. Overall, our findings point to a link between gamma oscillations, interneuronal GABA-A-ergic activity and LTP-like plasticity in the human M1. Gamma tACS-iTBS co-stimulation might represent a new strategy to enhance and prolong responses to plasticity-inducing protocols, thereby lending itself to future applications in the neurorehabilitation setting. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Gamma-secretase inhibitors reverse glucocorticoid resistance in T-ALL

    PubMed Central

    Real, Pedro J.; Tosello, Valeria; Palomero, Teresa; Castillo, Mireia; Hernando, Eva; de Stanchina, Elisa; Sulis, Maria Luisa; Barnes, Kelly; Sawai, Catherine; Homminga, Irene; Meijerink, Jules; Aifantis, Iannis; Basso, Giuseppe; Cordon-Cardo, Carlos; Ai, Walden; Ferrando, Adolfo

    2009-01-01

    Summary Gamma-secretase inhibitors (GSIs) block the activation of oncogenic NOTCH1 in T-cell acute lymphoblastic leukemia (T-ALL). However, limited antileukemic cytotoxicity and severe gastrointestinal toxicity have restricted the clinical application of these targeted drugs. Here we show that combination therapy with GSIs plus glucocorticoids can improve the antileukemic effects of GSIs and reduce their gut toxicity in vivo. Inhibition of NOTCH1 signaling in glucocorticoid-resistant T-ALL restored glucocorticoid receptor auto-up-regulation and induced apoptotic cell death through induction of BIM expression. GSI treatment resulted in cell cycle arrest and accumulation of goblet cells in the gut mediated by upregulation of Klf4, a negative regulator of cell cycle required for goblet cell differentiation. In contrast, glucocorticoid treatment induced transcriptional upregulation of Ccnd2 and protected mice from developing intestinal goblet cell metaplasia typically induced by inhibition of NOTCH signaling with GSIs. These results support a role for glucocorticoids plus GSIs in the treatment of glucocorticoid-resistant T-ALL. PMID:19098907

  16. Evidence for Human Fronto-Central Gamma Activity during Long-Term Memory Encoding of Word Sequences

    PubMed Central

    Meeuwissen, Esther Berendina; Takashima, Atsuko; Fernández, Guillén; Jensen, Ole

    2011-01-01

    Although human gamma activity (30–80 Hz) associated with visual processing is often reported, it is not clear to what extend gamma activity can be reliably detected non-invasively from frontal areas during complex cognitive tasks such as long term memory (LTM) formation. We conducted a memory experiment composed of 35 blocks each having three parts: LTM encoding, working memory (WM) maintenance and LTM retrieval. In the LTM encoding and WM maintenance parts, participants had to respectively encode or maintain the order of three sequentially presented words. During LTM retrieval subjects had to reproduce these sequences. Using magnetoencephalography (MEG) we identified significant differences in the gamma and beta activity. Robust gamma activity (55–65 Hz) in left BA6 (supplementary motor area (SMA)/pre-SMA) was stronger during LTM rehearsal than during WM maintenance. The gamma activity was sustained throughout the 3.4 s rehearsal period during which a fixation cross was presented. Importantly, the difference in gamma band activity correlated with memory performance over subjects. Further we observed a weak gamma power difference in left BA6 during the first half of the LTM rehearsal interval larger for successfully than unsuccessfully reproduced word triplets. In the beta band, we found a power decrease in left anterior regions during LTM rehearsal compared to WM maintenance. Also this suppression of beta power correlated with memory performance over subjects. Our findings show that an extended network of brain areas, characterized by oscillatory activity in different frequency bands, supports the encoding of word sequences in LTM. Gamma band activity in BA6 possibly reflects memory processes associated with language and timing, and suppression of beta activity at left frontal sensors is likely to reflect the release of inhibition directly associated with the engagement of language functions. PMID:21738641

  17. The gamma-ray observatory

    NASA Technical Reports Server (NTRS)

    1991-01-01

    An overview is given of the Gamma Ray Observatory (GRO) mission. Detection of gamma rays and gamma ray sources, operations using the Space Shuttle, and instruments aboard the GRO, including the Burst and Transient Source Experiment (BATSE), the Oriented Scintillation Spectrometer Experiment (OSSE), the Imaging Compton Telescope (COMPTEL), and the Energetic Gamma Ray Experiment Telescope (EGRET) are among the topics surveyed.

  18. A method to describe inelastic gamma field distribution in neutron gamma density logging.

    PubMed

    Zhang, Feng; Zhang, Quanying; Liu, Juntao; Wang, Xinguang; Wu, He; Jia, Wenbao; Ti, Yongzhou; Qiu, Fei; Zhang, Xiaoyang

    2017-11-01

    Pulsed neutron gamma density logging (NGD) is of great significance for radioprotection and density measurement in LWD, however, the current methods have difficulty in quantitative calculation and single factor analysis for the inelastic gamma field distribution. In order to clarify the NGD mechanism, a new method is developed to describe the inelastic gamma field distribution. Based on the fast-neutron scattering and gamma attenuation, the inelastic gamma field distribution is characterized by the inelastic scattering cross section, fast-neutron scattering free path, formation density and other parameters. And the contribution of formation parameters on the field distribution is quantitatively analyzed. The results shows the contribution of density attenuation is opposite to that of inelastic scattering cross section and fast-neutron scattering free path. And as the detector-spacing increases, the density attenuation gradually plays a dominant role in the gamma field distribution, which means large detector-spacing is more favorable for the density measurement. Besides, the relationship of density sensitivity and detector spacing was studied according to this gamma field distribution, therefore, the spacing of near and far gamma ray detector is determined. The research provides theoretical guidance for the tool parameter design and density determination of pulsed neutron gamma density logging technique. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Hepatitis B virus X protein modulates peroxisome proliferator-activated receptor gamma through protein-protein interaction.

    PubMed

    Choi, Youn-Hee; Kim, Ha-il; Seong, Je Kyung; Yu, Dae-Yeul; Cho, Hyeseong; Lee, Mi-Ock; Lee, Jae Myun; Ahn, Yong-ho; Kim, Se Jong; Park, Jeon Han

    2004-01-16

    Ligand activation of peroxisome proliferator-activated receptor gamma (PPARgamma) has been reported to induce growth inhibition and apoptosis in various cancers including hepatocellular carcinoma (HCC). However, the effect of hepatitis B virus X protein (HBx) on PPARgamma activation has not been characterized in hepatitis B virus (HBV)-associated HCC. Herein, we demonstrated that HBx counteracted growth inhibition caused by PPARgamma ligand in HBx-associated HCC cells. We found that HBx bound to DNA binding domain of PPARgamma and HBx/PPARgamma interaction blocked nuclear localization and binding to recognition site of PPARgamma. HBx significantly suppressed a PPARgamma-mediated transactivation. These results suggest that HBx modulates PPARgamma function through protein-protein interaction.

  20. Anesthetic Agent-Specific Effects on Synaptic Inhibition

    PubMed Central

    MacIver, M. Bruce

    2014-01-01

    Background Anesthetics enhance gamma-aminobutyric acid (GABA)-mediated inhibition in the central nervous system. Different agents have been shown to act on tonic versus synaptic GABA receptors to different degrees, but it remains unknown whether different forms of synaptic inhibition are also differentially engaged. With this in mind, we tested the hypothesis that different types of GABA-mediated synapses exhibit different anesthetic sensitivities. The present study compared effects produced by isoflurane, halothane, pentobarbital, thiopental and propofol on paired pulse GABAA receptor-mediated synaptic inhibition. Effects on glutamate-mediated facilitation were also studied. Methods Synaptic responses were measured in rat hippocampal brain slices. Orthodromic paired pulse stimulation was used to assess anesthetic effects on either glutamate-mediated excitatory inputs or GABA-mediated inhibitory inputs to CA1 neurons. Antidromic stimulation was used to assess anesthetic effects on CA1 background excitability. Agents were studied at equi-effective concentrations for population spike depression to compare their relative degree of effect on synaptic inhibition. Results Differing degrees of anesthetic effect on paired pulse facilitation at excitatory glutamate synapses were evident, and blocking GABA inhibition revealed a previously unseen presynaptic action for pentobarbital. Although all five anesthetics depressed synaptically evoked excitation of CA1 neurons, the involvement of enhanced GABA-mediated inhibition differed considerably among agents. Single pulse inhibition was enhanced by propofol, thiopental and pentobarbital, but only marginally by halothane and isoflurane. In contrast, isoflurane enhanced paired pulse inhibition strongly, as did thiopental, but propofol, pentobarbital and halothane were less effective. Conclusions These observations support the idea that different GABA synapses use receptors with differing subunit compositions, and that anesthetics

  1. Fucoxanthin exerts differing effects on 3T3-L1 cells according to differentiation stage and inhibits glucose uptake in mature adipocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Seong-Il; Ko, Hee-Chul; Shin, Hye-Sun

    2011-06-17

    Highlights: {yields} Fucoxanthin enhances 3T3-L1 adipocyte differentiation at an early stage. {yields} Fucoxanthin inhibits 3T3-L1 adipocyte differentiation at intermediate and late stages. {yields} Fucoxanthin attenuates glucose uptake by inhibiting the phosphorylation of IRS in mature 3T3-L1 adipocytes. {yields} Fucoxanthin exerts its anti-obesity effect by inhibiting the differentiation of adipocytes at both intermediate and late stages, as well as glucose uptake in mature adipocytes. -- Abstract: Progression of 3T3-L1 preadipocyte differentiation is divided into early (days 0-2, D0-D2), intermediate (days 2-4, D2-D4), and late stages (day 4 onwards, D4-). In this study, we investigated the effects of fucoxanthin, isolated from themore » edible brown seaweed Petalonia binghamiae, on adipogenesis during the three differentiation stages of 3T3-L1 preadipocytes. When fucoxanthin was applied during the early stage of differentiation (D0-D2), it promoted 3T3-L1 adipocyte differentiation, as evidenced by increased triglyceride accumulation. At the molecular level, fucoxanthin increased protein expression of peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}), CCAAT/enhancer-binding protein {alpha} (C/EBP{alpha}), sterol regulatory element-binding protein 1c (SREBP1c), and aP2, and adiponectin mRNA expression, in a dose-dependent manner. However, it reduced the expression of PPAR{gamma}, C/EBP{alpha}, and SREBP1c during the intermediate (D2-D4) and late stages (D4-D7) of differentiation. It also inhibited the uptake of glucose in mature 3T3-L1 adipocytes by reducing the phosphorylation of insulin receptor substrate 1 (IRS-1). These results suggest that fucoxanthin exerts differing effects on 3T3-L1 cells of different differentiation stages and inhibits glucose uptake in mature adipocytes.« less

  2. A Platinum-Enriched gamma+gamma' Two-Phase Bond Coat on Ni-Base Superalloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ying; Pint, Bruce A; Haynes, James A

    2005-01-01

    Pt-enriched {gamma} + {gamma}{prime} two-phase coating was applied to directionally-solidified Ni-based superalloy Ren{acute e} 142 substrates with three different Hf levels (0.02, 0.76, and 1.37 wt.%). The coating was prepared by electroplating a thin layer of Pt on the superalloy followed by a diffusion treatment. The as-deposited coating exhibited a {gamma} + {gamma}{prime} two-phase microstructure with a major composition of Ni-16Al-18Pt-7Cr-9Co (in at.%) along with some incorporation of refractory elements from the substrates. Cyclic oxidation testing at 1100 C in air indicated improved oxidation resistance of the Ren{acute e} 142 alloys with the Pt-enriched {gamma} + {gamma}{prime} coatings. In addition,more » the oxidation resistance of both uncoated and coated alloys was proportional to the Hf content in the substrate. Compared with the single-phase {beta}-(Ni,Pt)Al coating, slightly higher mass gains and localized spallation were observed on the {gamma} + {gamma}{prime} two-phase coating, which might be due to the segregation of refractory elements and high sulfur levels in these superalloy substrates.« less

  3. Gamma ray transients

    NASA Technical Reports Server (NTRS)

    Cline, Thomas L.

    1987-01-01

    The discovery of cosmic gamma ray bursts was made with systems designed at Los Alamos Laboratory for the detection of nuclear explosions beyond the atmosphere. HELIOS-2 was the first gamma ray burst instrument launched; its initial results in 1976, seemed to deepen the mystery around gamma ray transients. Interplanetary spacecraft data were reviewed in terms of explaining the behavior and source of the transients.

  4. Expression of peroxisome proliferator-activated receptor gamma (PPAR-gamma) in canine nasal carcinomas.

    PubMed

    Paciello, O; Borzacchiello, G; Varricchio, E; Papparella, S

    2007-10-01

    Peroxisome proliferator-activated receptor gamma (PPAR-gamma) is a ligand-activated transcriptional factor belonging to the steroid receptor superfamily. PPAR-gamma is expressed in multiple normal and neoplastic tissues, such as the breast, colon, lung, ovary and placenta. In addition to adipogenic and anti-inflammatory effects, PPAR-gamma activation has been shown to be anti-proliferative by its differentiation-promoting effect, suggesting that activation of PPAR-gamma may be useful in slowing or arresting the proliferation of de-differentiated tumour cells. In this study, we investigated the expression of PPAR-gamma in normal and neoplastic canine nasal epithelium. Twenty-five samples composed of five normal nasal epithelia and 20 canine nasal carcinomas, were immunohistochemically stained for PPAR-gamma. The specificity of the antibody was verified by Western Blot analysis. Confocal laser scanning microscopical investigation was also performed. In normal epithelium, the staining pattern was cytoplasmic and polarized at the cellular free edge. In carcinomas, the neoplastic cells showed mainly strong cytoplasmatic PPAR-gamma expression; moreover, perinuclear immunoreactivity was also detected and few neoplastic cells exhibited a nuclear positivity. Our results demonstrate different patterns of PPAR-gamma expression in normal canine nasal epithelium when compared with canine nasal carcinoma. The importance of this transcription factor in the pathophysiology of several different tumours has stimulated much research in this field and has opened new opportunities for the treatment of the tumours.

  5. Resonant Interneurons Can Increase Robustness of Gamma Oscillations.

    PubMed

    Tikidji-Hamburyan, Ruben A; Martínez, Joan José; White, John A; Canavier, Carmen C

    2015-11-25

    Gamma oscillations are believed to play a critical role in in information processing, encoding, and retrieval. Inhibitory interneuronal network gamma (ING) oscillations may arise from a coupled oscillator mechanism in which individual neurons oscillate or from a population oscillator in which individual neurons fire sparsely and stochastically. All ING mechanisms, including the one proposed herein, rely on alternating waves of inhibition and windows of opportunity for spiking. The coupled oscillator model implemented with Wang-Buzsáki model neurons is not sufficiently robust to heterogeneity in excitatory drive, and therefore intrinsic frequency, to account for in vitro models of ING. Similarly, in a tightly synchronized regime, the stochastic population oscillator model is often characterized by sparse firing, whereas interneurons both in vivo and in vitro do not fire sparsely during gamma, but rather on average every other cycle. We substituted so-called resonator neural models, which exhibit class 2 excitability and postinhibitory rebound (PIR), for the integrators that are typically used. This results in much greater robustness to heterogeneity that actually increases as the average participation in spikes per cycle approximates physiological levels. Moreover, dynamic clamp experiments that show autapse-induced firing in entorhinal cortical interneurons support the idea that PIR can serve as a network gamma mechanism. Furthermore, parvalbumin-positive (PV(+)) cells were much more likely to display both PIR and autapse-induced firing than GAD2(+) cells, supporting the view that PV(+) fast-firing basket cells are more likely to exhibit class 2 excitability than other types of inhibitory interneurons. Gamma oscillations are believed to play a critical role in information processing, encoding, and retrieval. Networks of inhibitory interneurons are thought to be essential for these oscillations. We show that one class of interneurons with an abrupt onset of firing

  6. Gamma Irradiation Upregulates B-cell Translocation Gene 2 to Attenuate Cell Proliferation of Lung Cancer Cells Through the JNK and NF-κB Pathways.

    PubMed

    Wang, Peihe; Cai, Yuanyuan; Lin, Dongju; Jiang, Yingxiao

    2017-08-07

    Gamma ray can promote cancer cell apoptosis and cell cycle arrest. It is often used in the clinical treatment of tumors, including lung cancer. In this study, we aimed to explore the role of gamma ray treatment and its correlation with BTG2 in cell proliferation, apoptosis, and cell cycle arrest regulation in a lung cancer cell line. A549 cell viability, apoptosis rate, and cell cycle were investigated after gamma ray treatment. We then used siRNA for BTG2 to detect the effect of BTG2 knockdown on the progress of gamma ray-treated lung cancer cells. Finally, we investigated the signaling pathway by which gamma ray might regulate BTG2. We found that gamma ray inhibited A549 cell viability and promoted apoptosis and cell cycle arrest, while BTG2 knockdown could relieve the effect caused by gamma ray on A549 cells. Moreover, we confirmed that the effect of BTG2 partly depends on p53 expression and gamma ray-promoting BTG2 expression through the JNK/NF-κB signaling pathway. Our study assessed the possible mechanism of gamma ray in tumor treatment and also investigated the role of BTG2 in gamma ray therapy. All these findings might give a deep understanding of the effect of gamma ray on the progression of lung cancer involving BTG2.

  7. Integrity of Proteins in Human Saliva after Sterilization by Gamma Irradiation▿

    PubMed Central

    Ruhl, Stefan; Berlenbach, Pereshia; Langenfelder, Sabine; Hörl, Dagmar; Lehn, Norbert; Hiller, Karl-Anton; Schmalz, Gottfried; Durchschlag, Helmut

    2011-01-01

    Microbial contamination of whole human saliva is unwanted for certain in vitro applications, e.g., when utilizing it as a growth substratum for biofilm experiments. The aim of this investigation was to test gamma irradiation for its suitability to sterilize saliva and to investigate the treatment's influence on the composition and integrity of salivary proteins in comparison to filter sterilization. For inhibition of bacterial growth by gamma irradiation, a sterility assurance level of 10−6 was determined to be reached at a dose of 3.5 kGy. At this dose, the integrity of proteins, as measured by fluorescence, circular dichroism, and gel electrophoretic banding pattern, and the enzymatic activities of salivary amylase and lysozyme were virtually unchanged. Filtration reduced the total protein concentration to about half of its original value and decreased lysozyme activity to about 10%. It can be concluded that irradiation is suitable for sterilizing whole saliva in its native form. PMID:21148692

  8. Distinguishing mechanisms of gamma frequency oscillations in human current source signals using a computational model of a laminar neocortical network

    PubMed Central

    Lee, Shane; Jones, Stephanie R.

    2013-01-01

    Gamma frequency rhythms have been implicated in numerous studies for their role in healthy and abnormal brain function. The frequency band has been described to encompass as broad a range as 30–150 Hz. Crucial to understanding the role of gamma in brain function is an identification of the underlying neural mechanisms, which is particularly difficult in the absence of invasive recordings in macroscopic human signals such as those from magnetoencephalography (MEG) and electroencephalography (EEG). Here, we studied features of current dipole (CD) signals from two distinct mechanisms of gamma generation, using a computational model of a laminar cortical circuit designed specifically to simulate CDs in a biophysically principled manner (Jones et al., 2007, 2009). We simulated spiking pyramidal interneuronal gamma (PING) whose period is regulated by the decay time constant of GABAA-mediated synaptic inhibition and also subthreshold gamma driven by gamma-periodic exogenous excitatory synaptic drive. Our model predicts distinguishable CD features created by spiking PING compared to subthreshold driven gamma that can help to disambiguate mechanisms of gamma oscillations in human signals. We found that gamma rhythms in neocortical layer 5 can obscure a simultaneous, independent gamma in layer 2/3. Further, we arrived at a novel interpretation of the origin of high gamma frequency rhythms (100–150 Hz), showing that they emerged from a specific temporal feature of CDs associated with single cycles of PING activity and did not reflect a separate rhythmic process. Last we show that the emergence of observable subthreshold gamma required highly coherent exogenous drive. Our results are the first to demonstrate features of gamma oscillations in human current source signals that distinguish cellular and circuit level mechanisms of these rhythms and may help to guide understanding of their functional role. PMID:24385958

  9. Cloning, sequencing and expression of white rhinoceros (Ceratotherium simum) interferon-gamma (IFN-gamma) and the production of rhinoceros IFN-gamma specific antibodies.

    PubMed

    Morar, D; Tijhaar, E; Negrea, A; Hendriks, J; van Haarlem, D; Godfroid, J; Michel, A L; Rutten, V P M G

    2007-01-15

    Bovine tuberculosis (BTB) is endemic in African buffalo (Syncerus caffer) in the Kruger National Park (KNP). In addition to buffalo, Mycobacterium bovis has been found in at least 14 other mammalian species in South Africa, including kudu (Tragelaphus strepsiceros), Chacma baboon (Papio ursinus) and lion (Panthera leo). This has raised concern about the spillover into other potentially susceptible species like rhinoceros, thus jeopardising breeding and relocation projects aiming at the conservation of biodiversity. Hence, procedures to screen for and diagnose BTB in black rhinoceros (Diceros bicornis) and white rhinoceros (Ceratotherium simum) need to be in place. The Interferon-gamma (IFN-gamma) assay is used as a routine diagnostic tool to determine infection of cattle and recently African buffalo, with M. bovis and other mycobacteria. The aim of the present work was to develop reagents to set up a rhinoceros IFN-gamma (RhIFN-gamma) assay. The white rhinoceros IFN-gamma gene was cloned, sequenced and expressed as a mature protein. Amino acid (aa) sequence analysis revealed that RhIFN-gamma shares a homology of 90% with equine IFN-gamma. Monoclonal antibodies, as well as polyclonal chicken antibodies (Yolk Immunoglobulin-IgY) with specificity for recombinant RhIFN-gamma were produced. Using the monoclonals as capture antibodies and the polyclonal IgY for detection, it was shown that recombinant as well as native white rhinoceros IFN-gamma was recognised. This preliminary IFN-gamma enzyme-linked immunosorbent assay (ELISA), has the potential to be developed into a diagnostic assay for M. bovis infection in rhinoceros.

  10. Measurements of the $$\\mathrm{ pp \\to W \\gamma\\gamma }$$ and $$\\mathrm{ pp \\to Z \\gamma\\gamma }$$ cross sections and limits on anomalous quartic gauge couplings at $$\\sqrt{s} =$$ 8 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.

    Here, measurements are presented ofmore » $$ \\mathrm{ W \\gamma\\gamma } $$ and $$ \\mathrm{ Z \\gamma\\gamma } $$ production in proton-proton collisions. Fiducial cross sections are reported based on a data sample corresponding to an integrated luminosity of 19.4 fb$$^{-1}$$ collected with the CMS detector at a center-of-mass energy of 8 TeV. Signal is identified through the $$\\mathrm{ W } \\to \\ell\

  11. Measurements of the $$\\mathrm{ pp \\to W \\gamma\\gamma }$$ and $$\\mathrm{ pp \\to Z \\gamma\\gamma }$$ cross sections and limits on anomalous quartic gauge couplings at $$\\sqrt{s} =$$ 8 TeV

    DOE PAGES

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.; ...

    2017-10-11

    Here, measurements are presented ofmore » $$ \\mathrm{ W \\gamma\\gamma } $$ and $$ \\mathrm{ Z \\gamma\\gamma } $$ production in proton-proton collisions. Fiducial cross sections are reported based on a data sample corresponding to an integrated luminosity of 19.4 fb$$^{-1}$$ collected with the CMS detector at a center-of-mass energy of 8 TeV. Signal is identified through the $$\\mathrm{ W } \\to \\ell\

  12. Effects of Platinum Nanocolloid in Combination with Gamma Irradiation on Normal Human Esophageal Epithelial Cells.

    PubMed

    Li, Qiang; Tanaka, Yoshiharu; Saitoh, Yasukazu; Miwa, Nobuhiko

    2016-05-01

    Our previous study demonstrated that platinum nanocolloid (Pt-nc), combined with lower-dose gamma irradiation at 3, 5, and 7 Gy significantly decreased proliferation and accelerated apoptosis of the human esophageal squamous cell carcinoma-derived cell line KYSE-70. The aim of the present study was to determine, under the same conditions as our previous study where gamma rays combined with Pt-nc were carcinostatic to KYSE-70 cells, if we could induce a radioprotective or the radiation-sensitizing effect on the human normal esophageal epithelial cells (HEEpiC). HEEpiC were treated with various Pt-nc concentrations and then irradiated with various gamma-ray doses. The proliferative status of HEEpiC was evaluated using trypan blue dye-exclusion and WST-8 assays. The cellular and nucleic morphological features were determined using crystal violet and Hoechst 33342 stainings, respectively. The intracellular level of reactive oxygen species (ROS) in HEEpiC was evaluated with a nitro blue tetrazolium (NBT) assay. The apoptotic status was detected with caspase-3, Bax, and Bcl-2 by Western blotting. Either Pt-nc or gamma irradiation could inhibit the growth of HEEpiC; however, their combined use exerted a significant proliferation-inhibitory effect in a Pt-nc dose-dependent manner than gamma irradiation alone. Pt-nc resulted in radiation sensitization rather than radiation protection on HEEpiC in vitro similar to KYSE-70 cells, when Pt-nc was administrated alone or combined with gamma irradiation. Thus, Pt-nc has an inhibitory effect on cell proliferation, a facilitative effect on apoptosis, and a certain degree of toxicity against HEEpiC.

  13. GABAergic modulation of visual gamma and alpha oscillations and its consequences for working memory performance.

    PubMed

    Lozano-Soldevilla, Diego; ter Huurne, Niels; Cools, Roshan; Jensen, Ole

    2014-12-15

    Impressive in vitro research in rodents and computational modeling has uncovered the core mechanisms responsible for generating neuronal oscillations. In particular, GABAergic interneurons play a crucial role for synchronizing neural populations. Do these mechanistic principles apply to human oscillations associated with function? To address this, we recorded ongoing brain activity using magnetoencephalography (MEG) in healthy human subjects participating in a double-blind pharmacological study receiving placebo, 0.5 mg and 1.5 mg of lorazepam (LZP; a benzodiazepine upregulating GABAergic conductance). Participants performed a demanding visuospatial working memory (WM) task. We found that occipital gamma power associated with WM recognition increased with LZP dosage. Importantly, the frequency of the gamma activity decreased with dosage, as predicted by models derived from the rat hippocampus. A regionally specific gamma increase correlated with the drug-related performance decrease. Despite the system-wide pharmacological intervention, gamma power drug modulations were specific to visual cortex: sensorimotor gamma power and frequency during button presses remained unaffected. In contrast, occipital alpha power modulations during the delay interval decreased parametrically with drug dosage, predicting performance impairment. Consistent with alpha oscillations reflecting functional inhibition, LZP affected alpha power strongly in early visual regions not required for the task demonstrating a regional specific occipital impairment. GABAergic interneurons are strongly implicated in the generation of gamma and alpha oscillations in human occipital cortex where drug-induced power modulations predicted WM performance. Our findings bring us an important step closer to linking neuronal dynamics to behavior by embracing established animal models. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Dominant-Negative TGF-β Receptor Enhances PSMA-Targeted Human CAR T Cell Proliferation And Augments Prostate Cancer Eradication.

    PubMed

    Kloss, Christopher C; Lee, Jihyun; Zhang, Aaron; Chen, Fang; Melenhorst, Jan Joseph; Lacey, Simon F; Maus, Marcela V; Fraietta, Joseph A; Zhao, Yangbing; June, Carl H

    2018-05-08

    Cancer has an impressive ability to evolve multiple processes to evade therapies. While immunotherapies and vaccines have shown great promise, particularly in certain solid tumors such as prostate cancer, they have been met with resistance from tumors that use a multitude of mechanisms of immunosuppression to limit effectiveness. Prostate cancer, in particular, secretes transforming growth factor β (TGF-β) as a means to inhibit immunity while allowing for cancer progression. Blocking TGF-β signaling in T cells increases their ability to infiltrate, proliferate, and mediate antitumor responses in prostate cancer models. We tested whether the potency of chimeric antigen receptor (CAR) T cells directed to prostate-specific membrane antigen (PSMA) could be enhanced by the co-expression of a dominant-negative TGF-βRII (dnTGF-βRII). Upon expression of the dominant-negative TGF-βRII in CAR T cells, we observed increased proliferation of these lymphocytes, enhanced cytokine secretion, resistance to exhaustion, long-term in vivo persistence, and the induction of tumor eradication in aggressive human prostate cancer mouse models. Based on our observations, we initiated a phase I clinical trial to assess these CAR T cells as a novel approach for patients with relapsed and refractory metastatic prostate cancer (ClinicalTrials.gov: NCT03089203). Copyright © 2018. Published by Elsevier Inc.

  15. C-reactive protein specifically binds to Fcgamma receptor type I on a macrophage-like cell line.

    PubMed

    Tron, Kyrylo; Manolov, Dimitar E; Röcker, Carlheinz; Kächele, Martin; Torzewski, Jan; Nienhaus, G Ulrich

    2008-05-01

    C-reactive protein (CRP) is a prototype acute-phase protein that may be intimately involved in human disease. Its cellular receptors are still under debate; the main candidates are FcR for immunoglobulin G, as CRP was shown to bind specifically to FcgammaRI and FcgammaRIIa. Using ultrasensitive confocal live-cell imaging, we have studied CRP binding to FcgammaR naturally expressed in the plasma membranes of cells from a human leukemia cell line (Mono Mac 6). These macrophage-like cells express high levels of FcgammaRI and FcgammaRII. They were shown to bind fluorescently labeled CRP with micromolar affinity, KD = (6.6 +/- 1.5) microM. CRP binding could be inhibited by pre-incubation with human but not mouse IgG and was thus FcgammaR-specific. Blocking of FcgammaRI by an FcgammaRI-specific antibody abolished CRP binding essentially completely, whereas application of antibodies against FcgammaRII did not have a noticeable effect. In fluorescence images of Mono Mac 6 cells, the intensity patterns of bound CRP were correlated with those of FcgammaRI, but not FcgammaRII. These results provide clear evidence of specific interactions between CRP and FcgammaR (predominantly FcgammaRI) naturally expressed on macrophage-like cells.

  16. TGFβ signaling supports survival and metastasis of endometrial cancer cells

    PubMed Central

    Lei, XiuFen; Wang, Long; Yang, Junhua; Sun, Lu-Zhe

    2009-01-01

    The association of mutation of the transforming growth factor beta (TGFβ) type II receptor (RII) with microsatellite instability revealed a significant molecular mechanism of tumorigenesis and tumor progression in gastrointestinal carcinomas with DNA replication error. However, mutation of RII is rare in other types of carcinomas with microsatellite instability including endometrial adenocarcinoma suggesting that TGFβ receptor signaling may be necessary for tumor progression. To test this hypothesis, we abrogated TGFβ signaling with ectopic expression of a dominant-negative RII (DNRII) in human endometrial carcinoma HEC-1-A cells with microsatellite instability. Our study showed that over-expression of DNRII blocked the TGFβ signaling, inhibited anchorage-dependent and -independent growth, and stimulated apoptosis in vitro. Interestingly, the expression of DNRII expression showed little effect on tumor growth of subcutaneously inoculated cells in vivo. On the other hand, the DNRII cells showed more epithelial features whereas the control cells showed more mesenchymal features suggesting a reversal of autocrine TGFβ-induced epithelial–mesenchymal transition (EMT). Consistent with these findings, DNRII cells were much less migratory and invasive in vitro and metastatic in vivo than the control cells. Therefore, an intact TGFβ signaling pathway appears necessary for the metastatic phenotypes of this carcinoma model. PMID:20622970

  17. Altered modulation of gamma oscillation frequency by speed of visual motion in children with autism spectrum disorders.

    PubMed

    Stroganova, Tatiana A; Butorina, Anna V; Sysoeva, Olga V; Prokofyev, Andrey O; Nikolaeva, Anastasia Yu; Tsetlin, Marina M; Orekhova, Elena V

    2015-01-01

    Recent studies link autism spectrum disorders (ASD) with an altered balance between excitation and inhibition (E/I balance) in cortical networks. The brain oscillations in high gamma-band (50-120 Hz) are sensitive to the E/I balance and may appear useful biomarkers of certain ASD subtypes. The frequency of gamma oscillations is mediated by level of excitation of the fast-spiking inhibitory basket cells recruited by increasing strength of excitatory input. Therefore, the experimental manipulations affecting gamma frequency may throw light on inhibitory networks dysfunction in ASD. Here, we used magnetoencephalography (MEG) to investigate modulation of visual gamma oscillation frequency by speed of drifting annular gratings (1.2, 3.6, 6.0 °/s) in 21 boys with ASD and 26 typically developing boys aged 7-15 years. Multitaper method was used for analysis of spectra of gamma power change upon stimulus presentation and permutation test was applied for statistical comparisons. We also assessed in our participants visual orientation discrimination thresholds, which are thought to depend on excitability of inhibitory networks in the visual cortex. Although frequency of the oscillatory gamma response increased with increasing velocity of visual motion in both groups of participants, the velocity effect was reduced in a substantial proportion of children with ASD. The range of velocity-related gamma frequency modulation correlated inversely with the ability to discriminate oblique line orientation in the ASD group, while no such correlation has been observed in the group of typically developing participants. Our findings suggest that abnormal velocity-related gamma frequency modulation in ASD may constitute a potential biomarker for reduced excitability of fast-spiking inhibitory neurons in a subset of children with ASD.

  18. Basics of Gamma Ray Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stinnett, Jacob; Venkataraman, Ram

    The objective of this training is to explain the origin of x-rays and gamma rays, gamma ray interactions with matter, detectors and electronics used in gamma ray-spectrometry, and features of a gamma-ray spectrum for nuclear material that is safeguarded.

  19. Dynamic gamma knife radiosurgery

    NASA Astrophysics Data System (ADS)

    Luan, Shuang; Swanson, Nathan; Chen, Zhe; Ma, Lijun

    2009-03-01

    Gamma knife has been the treatment of choice for various brain tumors and functional disorders. Current gamma knife radiosurgery is planned in a 'ball-packing' approach and delivered in a 'step-and-shoot' manner, i.e. it aims to 'pack' the different sized spherical high-dose volumes (called 'shots') into a tumor volume. We have developed a dynamic scheme for gamma knife radiosurgery based on the concept of 'dose-painting' to take advantage of the new robotic patient positioning system on the latest Gamma Knife C™ and Perfexion™ units. In our scheme, the spherical high dose volume created by the gamma knife unit will be viewed as a 3D spherical 'paintbrush', and treatment planning reduces to finding the best route of this 'paintbrush' to 'paint' a 3D tumor volume. Under our dose-painting concept, gamma knife radiosurgery becomes dynamic, where the patient moves continuously under the robotic positioning system. We have implemented a fully automatic dynamic gamma knife radiosurgery treatment planning system, where the inverse planning problem is solved as a traveling salesman problem combined with constrained least-square optimizations. We have also carried out experimental studies of dynamic gamma knife radiosurgery and showed the following. (1) Dynamic gamma knife radiosurgery is ideally suited for fully automatic inverse planning, where high quality radiosurgery plans can be obtained in minutes of computation. (2) Dynamic radiosurgery plans are more conformal than step-and-shoot plans and can maintain a steep dose gradient (around 13% per mm) between the target tumor volume and the surrounding critical structures. (3) It is possible to prescribe multiple isodose lines with dynamic gamma knife radiosurgery, so that the treatment can cover the periphery of the target volume while escalating the dose for high tumor burden regions. (4) With dynamic gamma knife radiosurgery, one can obtain a family of plans representing a tradeoff between the delivery time and the

  20. Galactic plane gamma-radiation

    NASA Technical Reports Server (NTRS)

    Hartman, R. C.; Kniffen, D. A.; Thompson, D. J.; Fichtel, C. E.; Ogelman, H. B.; Tumer, T.; Ozel, M. E.

    1979-01-01

    Analysis of the SAS 2 data together with the COS B results shows that the distribution of galactic gamma-radiation has several similarities to that of other large-scale tracers of galactic structure. The radiation is primarily confined to a thin disc which exhibits offsets from b = 0 degrees similar to warping at radio frequencies. The principal distinction of the gamma-radiation is a stronger contrast in intensity between the region from 310 to 45 degrees in longitude and the regions away from the center that can be attributed to a variation in cosmic-ray density as a function of position in Galaxy. The diffuse galactic gamma-ray energy spectrum shows no significant variation in direction, and the spectrum seen along the plane is the same as that for the galactic component of the gamma-radiation at high altitudes. The uniformity of the galactic gamma-ray spectrum, the smooth decrease in intensity as a function of altitude, and the absence of any galactic gamma-ray sources at high altitudes indicate a diffuse origin for bulk of the galactic gamma-radiation rather than a collection of localized sources.

  1. Gamma-ray burster recurrence timescales

    NASA Technical Reports Server (NTRS)

    Schaefer, B. E.; Cline, T. L.

    1984-01-01

    Three optical transients have been found which are associated with gamma-ray bursters (GRBs). The deduced recurrence timescale for these optical transients (tau sub opt) will depend on the minimum brightness for which a flash would be detected. A detailed analysis using all available data of tau sub opt as a function of E(gamma)/E(opt) is given. For flashes similar to those found in the Harvard archives, the best estimate of tau sub opt is 0.74 years, with a 99% confidence interval from 0.23 years to 4.7 years. It is currently unclear whether the optical transients from GRBs also give rise to gamma-ray events. One way to test this association is to measure the recurrence timescale of gamma-ray events tau sub gamma. A total of 210 gamma-ray error boxes were examined and it was found that the number of observed overlaps is not significantly different from the number expected from chance coincidence. This observation can be used to place limits on tau sub gamma for an assumed luminosity function. It was found that tau sub gamma is approx. 10 yr if bursts are monoenergetic. However, if GRBs have a power law luminosity function with a wide dynamic range, then the limit is tau sub gamma 0.5 yr. Hence, the gamma-ray data do not require tau sub gamma and tau sub opt to be different.

  2. Glitazones inhibit human monoamine oxidase but their anti-inflammatory actions are not mediated by VAP-1/semicarbazide-sensitive amine oxidase inhibition.

    PubMed

    Carpéné, Christian; Bizou, Mathilde; Tréguer, Karine; Hasnaoui, Mounia; Grès, Sandra

    2015-09-01

    Glitazones are peroxisome proliferator-activated receptor gamma (PPARγ) agonists widely used as antidiabetic drugs also known as thiazolidinediones. Most of them exert other effects such as anti-inflammatory actions via mechanisms supposed to be independent from PPARγ activation (e.g., decreased plasma monocyte chemoattractant protein-1 (MCP-1) levels). Recently, pioglitazone has been shown to inhibit the B form of monoamine oxidase (MAO) in mouse, while rosiglitazone and troglitazone were described as non-covalent inhibitors of both human MAO A and MAO B. Since molecules interacting with MAO might also inhibit semicarbazide-sensitive amine oxidase (SSAO), known as vascular adhesion protein-1 (VAP-1), and since VAP-1/SSAO inhibitors exhibit anti-inflammatory activity, our aim was to elucidate whether VAP-1/SSAO inhibition could be a mechanism involved in the anti-inflammatory behaviour of glitazones. To this aim, MAO and SSAO activities were measured in human subcutaneous adipose tissue biopsies obtained from overweight women undergoing plastic surgery. The production of hydrogen peroxide, an end-product of amine oxidase activity, was determined in tissue homogenates using a fluorometric method. The oxidation of 1 mM tyramine was inhibited by pargyline and almost resistant to semicarbazide, therefore predominantly MAO-dependent. Rosiglitazone was more potent than pioglitazone in inhibiting tyramine oxidation. By contrast, benzylamine oxidation was only abolished by semicarbazide: hence SSAO-mediated. Pioglitazone hampered SSAO activity only when tested at 1 mM while rosiglitazone was inefficient. However, rosiglitazone exhibited anti-inflammatory activity in human adipocytes by limiting MCP-1 expression. Our observations rule out any involvement of VAP-1/SSAO inhibition and subsequent limitation of leukocyte extravasation in the anti-inflammatory action of glitazones.

  3. Huperzine A prophylaxis against pentylenetetrazole-induced seizures in rats is associated with increased cortical inhibition.

    PubMed

    Gersner, R; Ekstein, D; Dhamne, S C; Schachter, S C; Rotenberg, A

    2015-11-01

    Huperzine A (HupA) is a naturally occurring compound found in the firmoss Huperzia serrata. While HupA is a potent acetylcholinesterase inhibitor, its full pharmacologic profile is incompletely described. Since previous works suggested a capacity for HupA to prophylax against seizures, we tested the HupA antiepileptic potential in pentylenetetrazole (PTZ) rat epilepsy model and explored its mechanism of action by spectral EEG analysis and by paired-pulse transcranial magnetic stimulation (ppTMS), a measure of GABA-mediated intracortical inhibition. We tested whether HupA suppresses seizures in the rat PTZ acute seizure model, and quantified latency to first myoclonus and to generalized tonic-clonic seizure, and spike frequency on EEG. Additionally, we measured power in the EEG gamma frequency band which is associated with GABAergic cortical interneuron activation. Then, as a step toward further examining the HupA antiepileptic mechanism of action, we tested long-interval intracortical inhibition (LICI) using ppTMS coupled with electromyography to assess whether HupA augments GABA-mediated paired-pulse inhibition of the motor evoked potential. We also tested whether the HupA effect on paired-pulse inhibition was central or peripheral by comparison of outcomes following administration of HupA or the peripheral acetylcholinesterase inhibitor pyridostigmine. We also tested whether the HupA effect was dependent on central muscarinic or GABAA receptors by co-administration of HupA and atropine or PTZ, respectively. In tests of antiepileptic potential, HupA suppressed seizures and epileptic spikes on EEG. Spectral EEG analysis also revealed enhanced gamma frequency band power with HupA treatment. By ppTMS we found that HupA increases intracortical inhibition and blocks PTZ-induced cortical excitation. Atropine co-administration with HupA did not alter HupA-induced intracortical inhibition suggesting independent of muscarinic acetylcholine receptors mechanism in this model

  4. [ERK activation effects on GABA secretion inhibition induced by SDF-1 in hippocampal neurons of rats].

    PubMed

    Zhang, Zi-juan; Guo, Mei-xia; Xing, Ying

    2015-09-01

    To investigate the effect of extracellular regulating kinase (ERK) signaling pathway on the secretion of gamma-aminobutyric acid (GABA) in cultured rat hippocampal neurons induced by stromal cell derived factor-1 (SDF-1). The hippocampal neurons of newborn SD rats were cultured and identified in vitro; the phosphorylation level of ERK1/2 was examined by Western blot; ELISA was used to detect the effect of PD98059, a ERK1/2 specific blocker on GABA secretion of cultured hippocampal neurons and Western blot were adopted to measure the protein expression levels of glutamate decarboxylase (GAD65/67) and gamma aminobutyric acid transporter (GAT); after blocking ERK1/2 signaling pathway with PD98059; RT-PCR was used to detect the mRNA expression levels of GAT-1 and GAD65 after treated with PD98059. The levels of ERKl/2 phosphorylation were increased significantly by SDF1 acting on hippocampal neurons, and CX-CR4 receptor blocker AMD3100, could inhibit SDF-1 induced ERK1/2 activation; SDF-1 could inhibit the secretion of GABA in cultured hippocampal neurons, and ERK1/2 specific inhibitor PD98059, could partly reverse the inhibition of GABA secretion by SDF-1. The effects of SDF-1 on cultured hippocampal neurons was to decrease the mRNA genesis of glutamic acid decarboxylase GAD65 and GABA transporter GAT-1, besides, ERK inhibitor PD98059 could effectively flip the effect of SDF-1. The results of Western blot showed that SDF-1 could inhibit the protein expression of GAT-1 and GAD65/67 in hippocampal neurons and the inhibition of GAT-1 and GAD65/67 protein expression could be partially restored by ERK1/2 blocker. SDF-1 acts on the CXCR4 of hippocampal neurons in vitro, and inhibits the expression of GAD by activating the ERK1/2 signaling pathway, and this may represent one possible pathway of GABA secretion inhibition.

  5. Gamma watermarking

    DOEpatents

    Ishikawa, Muriel Y.; Wood, Lowell L.; Lougheed, Ronald W.; Moody, Kenton J.; Wang, Tzu-Fang

    2004-05-25

    A covert, gamma-ray "signature" is used as a "watermark" for property identification. This new watermarking technology is based on a unique steganographic or "hidden writing" digital signature, implemented in tiny quantities of gamma-ray-emitting radioisotopic material combinations, generally covertly emplaced on or within an object. This digital signature may be readily recovered at distant future times, by placing a sensitive, high energy-resolution gamma-ray detecting instrument reasonably precisely over the location of the watermark, which location may be known only to the object's owner; however, the signature is concealed from all ordinary detection means because its exceedingly low level of activity is obscured by the natural radiation background (including the gamma radiation naturally emanating from the object itself, from cosmic radiation and material surroundings, from human bodies, etc.). The "watermark" is used in object-tagging for establishing object identity, history or ownership. It thus may serve as an aid to law enforcement officials in identifying stolen property and prosecuting theft thereof. Highly effective, potentially very low cost identification-on demand of items of most all types is thus made possible.

  6. The Gamma-ray Sky with Fermi

    NASA Technical Reports Server (NTRS)

    Thompson, David

    2012-01-01

    Gamma rays reveal extreme, nonthermal conditions in the Universe. The Fermi Gamma-ray Space Telescope has been exploring the gamma-ray sky for more than four years, enabling a search for powerful transients like gamma-ray bursts, novae, solar flares, and flaring active galactic nuclei, as well as long-term studies including pulsars, binary systems, supernova remnants, and searches for predicted sources of gamma rays such as dark matter annihilation. Some results include a stringent limit on Lorentz invariance derived from a gamma-ray burst, unexpected gamma-ray variability from the Crab Nebula, a huge gamma-ray structure associated with the center of our galaxy, surprising behavior from some gamma-ray binary systems, and a possible constraint on some WIMP models for dark matter.

  7. Gamma Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    2000-01-01

    The project has progressed successfully during this period of performance. The highlights of the Gamma Ray Astronomy teams efforts are: (1) Support daily BATSE data operations, including receipt, archival and dissemination of data, quick-look science analysis, rapid gamma-ray burst and transient monitoring and response efforts, instrument state-of-health monitoring, and instrument commanding and configuration; (2) On-going scientific analysis, including production and maintenance of gamma-ray burst, pulsed source and occultation source catalogs, gamma-ray burst spectroscopy, studies of the properties of pulsars and black holes, and long-term monitoring of hard x-ray sources; (3) Maintenance and continuous improvement of BATSE instrument response and calibration data bases; (4) Investigation of the use of solid state detectors for eventual application and instrument to perform all sky monitoring of X-Ray and Gamma sources with high sensitivity; and (5) Support of BATSE outreach activities, including seminars, colloquia and World Wide Web pages. The highlights of this efforts can be summarized in the publications and presentation list.

  8. Extract of Xylopia aethiopica (Annonaceae) protects against gamma-radiation induced testicular damage in Wistar rats.

    PubMed

    Adaramoye, Oluwatosin Adekunle; Adedara, Isaac Adegboyega; Popoola, Bosede; Farombi, Ebenezer Olatunde

    2010-01-01

    Ionizing radiation is an important environmental risk factor and, a major therapeutic agent for cancer treatment. This study was designed to evaluate the protective effect of extract of Xylopia aethiopica (XA) on gamma-radiation-induced testicular damage in rats. Vitamin C (VC) served as the reference antioxidant during the study. The study consists of 4 groups of 11 rats each. Group I received corn oil (vehicle), groups II and IV were pretreated with XA (250 mg/kg) and VC (250mg/kg) for 6 weeks before and 8 weeks after exposure to gamma-radiation; group III was exposed to a single dose of gamma-radiation (5 Gy). Biochemical analysis revealed that gamma-irradiation caused a significant increase (p < .05) in serum and testicular lipid peroxidation (LPO) levels by 217% and 221%, respectively. Irradiated rats had markedly decreased testicular catalase (CAT), superoxide dismutase (SOD), glutathione-S-transferase (GST), and reduced glutathione (GSH) levels. Irradiation resulted in 59% and 40% decreases in spermatozoa motility and live/dead sperm count, respectively, and a 161% increase in total sperm abnormalities. Histologically, testes of the irradiated rats showed extensive degenerative changes in the seminiferous tubules and defoliation of spermatocytes. Supplementation of XA and VC reversed the adverse effects of gamma-radiation on biochemical and histological indices of the rats. These findings demonstrated that Xylopia aethiopica has a protective effect by inhibiting oxidative damage in testes of irradiated rats.

  9. Gamma ray detector shield

    DOEpatents

    Ohlinger, R.D.; Humphrey, H.W.

    1985-08-26

    A gamma ray detector shield comprised of a rigid, lead, cylindrical-shaped vessel having upper and lower portions with an pneumatically driven, sliding top assembly. Disposed inside the lead shield is a gamma ray scintillation crystal detector. Access to the gamma detector is through the sliding top assembly.

  10. Orchid flowers tolerance to gamma-radiation

    NASA Astrophysics Data System (ADS)

    Kikuchi, Olivia Kimiko

    2000-03-01

    Cut flowers are fresh goods that may be treated with fumigants such as methyl bromide to meet the needs of the quarantine requirements of importing countries. Irradiation is a non-chemical alternative to substitute the methyl bromide treatment of fresh products. In this research, different cut orchids were irradiated to examine their tolerance to gamma-rays. A 200 Gy dose did inhibit the Dendrobium palenopsis buds from opening, but did not cause visible damage to opened flowers. Doses of 800 and 1000 Gy were damaging because they provoked the flowers to drop from the stem. Cattleya irradiated with 750 Gy did not show any damage, and were therefore eligible for the radiation treatment. Cymbidium tolerated up to 300 Gy and above this dose dropped prematurely. On the other hand, Oncydium did not tolerate doses above 150 Gy.

  11. Wetting characteristics and blood clotting on surfaces of copoly(gamma-Benzyl-L-glutamate, gamma-hydroxyethyl-L-glutamine).

    PubMed

    Yano, E; Komai, T; Kawasaki, T; Kaifu, K; Atsuta, T; Kubo, Y; Fujiwara, Y

    1985-09-01

    The film surface of poly(gamma-benzyl-L-glutamate) (PBLG) was modified with 2-aminoethanol to enhance its hydrophilicity. Controlling the reaction conditions of PBLG and 2-aminoethanol, various types of copoly(gamma-benzyl-L-glutamate, gamma-hydroxyethyl-L-glutamine) film surfaces were obtained. Surface free energy (gamma sv), the dispersive component of gamma sv (gamma dsv), the nondispersive component of gamma sv (gamma psv), and the interfacial free energy of polymer surface with water (gamma sw), which were obtained by using the contact angle measurement and calculation method proposed by Andrade et al., were changed remarkably by the aminolysis. The gamma sv value increased after 2 h of aminolysis from 48.2 (PBLG) to 65.3 dyn/cm and gradually increased to around 70 dyn/cm after 12 h reaction. (gamma dsv) and (gamma psv) changed from 31.0 and 17.2 dyn/cm (PBLG) to 26.5 and 44.3 dyn/cm, respectively. These parameters of the material surfaces, modified over 12 h reaction, were found to be similar to those of the surfaces of canine aorta, vein, and human fibrin membrane. Blood clotting times on these polymer surfaces were comparatively longer than on siliconized glass surfaces.

  12. An engineered transforming growth factor β (TGF-β) monomer that functions as a dominant negative to block TGF-β signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sun Kyung; Barron, Lindsey; Hinck, Cynthia S.

    The transforming growth factor β isoforms, TGF-β1, -β2, and -β3, are small secreted homodimeric signaling proteins with essential roles in regulating the adaptive immune system and maintaining the extracellular matrix. However, dysregulation of the TGF-β pathway is responsible for promoting the progression of several human diseases, including cancer and fibrosis. Despite the known importance of TGF-βs in promoting disease progression, no inhibitors have been approved for use in humans. Herein, we describe an engineered TGF-β monomer, lacking the heel helix, a structural motif essential for binding the TGF-β type I receptor (TβRI) but dispensable for binding the other receptor requiredmore » for TGF-β signaling, the TGF-β type II receptor (TβRII), as an alternative therapeutic modality for blocking TGF-β signaling in humans. As shown through binding studies and crystallography, the engineered monomer retained the same overall structure of native TGF-β monomers and bound TβRII in an identical manner. Cell-based luciferase assays showed that the engineered monomer functioned as a dominant negative to inhibit TGF-β signaling with a Ki of 20–70 nM. Investigation of the mechanism showed that the high affinity of the engineered monomer for TβRII, coupled with its reduced ability to non-covalently dimerize and its inability to bind and recruit TβRI, enabled it to bind endogenous TβRII but prevented it from binding and recruiting TβRI to form a signaling complex. Such engineered monomers provide a new avenue to probe and manipulate TGF-β signaling and may inform similar modifications of other TGF-β family members.« less

  13. Sensitivity Analysis of Cf-252 (sf) Neutron and Gamma Observables in CGMF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, Austin Lewis; Talou, Patrick; Stetcu, Ionel

    CGMF is a Monte Carlo code that simulates the decay of primary fission fragments by emission of neutrons and gamma rays, according to the Hauser-Feshbach equations. As the CGMF code was recently integrated into the MCNP6.2 transport code, great emphasis has been placed on providing optimal parameters to CGMF such that many different observables are accurately represented. Of these observables, the prompt neutron spectrum, prompt neutron multiplicity, prompt gamma spectrum, and prompt gamma multiplicity are crucial for accurate transport simulations of criticality and nonproliferation applications. This contribution to the ongoing efforts to improve CGMF presents a study of the sensitivitymore » of various neutron and gamma observables to several input parameters for Californium-252 spontaneous fission. Among the most influential parameters are those that affect the input yield distributions in fragment mass and total kinetic energy (TKE). A new scheme for representing Y(A,TKE) was implemented in CGMF using three fission modes, S1, S2 and SL. The sensitivity profiles were calculated for 17 total parameters, which show that the neutron multiplicity distribution is strongly affected by the TKE distribution of the fragments. The total excitation energy (TXE) of the fragments is shared according to a parameter RT, which is defined as the ratio of the light to heavy initial temperatures. The sensitivity profile of the neutron multiplicity shows a second order effect of RT on the mean neutron multiplicity. A final sensitivity profile was produced for the parameter alpha, which affects the spin of the fragments. Higher values of alpha lead to higher fragment spins, which inhibit the emission of neutrons. Understanding the sensitivity of the prompt neutron and gamma observables to the many CGMF input parameters provides a platform for the optimization of these parameters.« less

  14. Inhibition of autoimmune diabetes in NOD mice with serum from streptococcal preparation (OK-432)-injected mice.

    PubMed Central

    Seino, H; Satoh, J; Shintani, S; Takahashi, K; Zhu, X P; Masuda, T; Nobunaga, T; Saito, M; Terano, Y; Toyota, T

    1991-01-01

    We have recently reported that systemic and chronic administration of recombinant tumour necrosis factor alpha (TNF-alpha), as well as streptococcal preparation (OK-432), inhibits development of insulin-dependent diabetes mellitus (IDDM) in NOD mice and BB rats, models of IDDM. In this study we examined whether serum containing endogenous TNF induced by OK-432 injection could inhibit IDDM in NOD mice. Treatment twice a week from 4 weeks of age with OK-432-injected mouse serum, which contained endogenous TNF (75U), but not IL-1, IL-2 and interferon-gamma (IFN-gamma) activity, reduced the intensity of insulitis and significantly inhibited the cumulative incidence of diabetes by 28 weeks of age in NOD mice, as compared with the incidence in non-treated mice (P less than 0.01) and in mice treated with control serum (P less than 0.02). This inhibitory effect of the serum was diminished, although not significantly, by neutralization of serum TNF activity with anti-mouse TNF antibody. In the mice treated with the serum from OK-432-injected mice, Thy-1.2+ or CD8+ spleen cells decreased (P less than 0.01) and surface-Ig+ (S-Ig+) cells increased (P less than 0.05), whereas the proliferative response of spleen cells to concanavalin A (P less than 0.01) and lipopolysaccharide (P less than 0.05) increased. The results indicate that the inhibition by OK-432 treatment of IDDM in NOD mice was partially mediated by serum factors including endogenous TNF. PMID:1747949

  15. Activation of peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}) induces cell death through MAPK-dependent mechanism in osteoblastic cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sung Hun; Yoo, Chong Il; Medical Research Institute, College of Medicine, Pusan National University, Pusan, 602-739

    2006-09-01

    The present study was undertaken to determine the role of the mitogen-activated protein kinase (MAPK) subfamilies in cell death induced by PPAR{gamma} agonists in osteoblastic cells. Ciglitazone and troglitazone, PPAR{gamma} agonists, resulted in a concentration- and time-dependent cell death, which was largely attributed to apoptosis. But a PPAR{alpha} agonist ciprofibrate did not affect the cell death. Ciglitazone caused reactive oxygen species (ROS) generation and ciglitazone-induced cell death was prevented by antioxidants, suggesting an important role of ROS generation in the ciglitazone-induced cell death. ROS generation and cell death induced by ciglitazone were inhibited by the PPAR{gamma} antagonist GW9662. Ciglitazone treatmentmore » caused activation of extracellular signal-regulated kinase (ERK) and p38. Activation of ERK was dependent on epidermal growth factor receptor (EGFR) and that of p38 was independent. Ciglitazone-induced cell death was significantly prevented by PD98059, an inhibitor of ERK upstream kinase MEK1/2, and SB203580, a p38 inhibitor. Ciglitazone treatment increased Bax expression and caused a loss of mitochondrial membrane potential, and its effect was prevented by N-acetylcysteine, PD98059, and SB203580. Ciglitazone induced caspase activation, which was prevented by PD98059 and SB203580. The general caspase inhibitor z-DEVD-FMK and the specific inhibitor of caspases-3 DEVD-CHO exerted the protective effect against the ciglitazone-induced cell death. The EGFR inhibitors AG1478 and suramin protected against the ciglitazone-induced cell death. Taken together, these findings suggest that the MAPK signaling pathways play an active role in mediating the ciglitazone-induced cell death of osteoblasts and function upstream of a mitochondria-dependent mechanism. These data may provide a novel insight into potential therapeutic strategies for treatment of osteoporosis.« less

  16. Peroxisome proliferator-activated receptor {gamma} is expressed in hippocampal neurons and its activation prevents {beta}-amyloid neurodegeneration: role of Wnt signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inestrosa, Nibaldo C.; Godoy, Juan A.; MIFAB, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Santiago

    2005-03-10

    The molecular pathogenesis of Alzheimer's disease (AD) involves the participation of the amyloid-{beta}-peptide (A{beta}), which plays a critical role in the neurodegeneration that triggers the disease. Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors, which are members of the nuclear receptor family. We report here that (1) PPAR{gamma} is present in rat hippocampal neurons in culture. (2) Activation of PPAR{gamma} by troglitazone and rosiglitazone protects rat hippocampal neurons against A{beta}-induced neurodegeneration, as shown by the 3-[4,5 -2yl]-2,5-diphenyltetrazolium bromide (MTT) reduction assay, immunofluorescence using an anti-heavy neurofilament antibody, and quantitative electron microscopy. (3) Hippocampal neurons treated with several PPAR{gamma} agonists, includingmore » troglitazone, rosiglitazone, and ciglitazone, prevent the excitotoxic A{beta}-induced rise in bulk-free Ca{sup 2+}. (4) PPAR{gamma} activation results in the modulation of Wnt signaling components, including the inhibition of glycogen synthase kinase-3{beta} (GSK-3{beta}) and an increase of the cytoplasmic and nuclear {beta}-catenin levels. We conclude that the activation of PPAR{gamma} prevents A{beta}-induced neurodegeneration by a mechanism that may involve a cross talk between neuronal PPAR{gamma} and the Wnt signaling pathway. More important, the fact that the activation of PPAR{gamma} attenuated A{beta}-dependent neurodegeneration opens the possibility to fight AD from a new therapeutic perspective.« less

  17. Identification and characterization of novel peroxisome proliferator-activated receptor-gamma (PPAR-gamma) transcriptional variants in pig and human.

    PubMed

    Omi, T; Brenig, B; Spilar Kramer, S; Iwamoto, S; Stranzinger, G; Neuenschwander, S

    2005-04-01

    The peroxisome proliferator-activated receptor-gamma (PPAR-gamma) is a member of the steroid/thyroid/retinoid receptor superfamily, and is primarily expressed in fat tissue. To date, two major PPAR-gamma isoforms have been identified in pig, PPAR-gamma1 and PPAR-gamma2. Porcine PPAR-gamma1a consists of two leader exons, designated A1 and A2, followed by six exons containing the open reading frame. Here, we report the isolation and characterization of three novel PPAR-gamma1 transcripts. PPAR-gamma1b is derived from exon A1, with exon A2 spliced out. PPAR-gamma1c and PPAR-gamma1d are derived from the new exon, A', containing exon A2 (gamma1c) or without exon A2 (gamma1d). Based on PCR analysis of PAC clones that included sequences from the 5'-untranslated region of the PPAR-gamma gene, the new A' exon is located between the known exons A1 and A2. We also isolated the human homologue to exon A', as well as the two new PPAR-gamma1c and -gamma1d splice variants, from human adipose tissue. Studies of the expression of porcine PPAR-gamma by real time reverse transcription-polymerase chain reaction analysis show that transcripts derived from exon A1 were not expressed at significantly different levels in visceral fat (lamina subserosa) or subcutaneous fat (back fat, inner and outer layer). In contrast, exon A'-derived transcripts were expressed at progressively higher levels in the inner and outer layers of subcutaneous fat than in visceral fat. The same expression pattern was also observed for PPAR-gamma2. We hypothesize that there are three promoters, which differentially regulate PPAR-gamma1 and PPAR-gamma2 gene expression, depending on the specific localization of the fat tissue.

  18. Terrestrial Gamma-Ray Flashes (TGFs)

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    2010-01-01

    This slide presentation reviews the observation of Terrestrial Gamma Ray Flashes (TGFs) by Gamma-Ray Telescopes. These were: (1) BATSE /Compton Observatory, (2) Solar Spectroscopic Imager, (3) AGILE Gamma-ray Telescope, and (4) Gamma-ray Burst Monitor (GBM) on the Fermi Gamma-ray Space Telescope. It contains charts which display the counts over time, a map or the TGFs observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). and a map showing the latitude and longitude of 85 of the TGFs observed by the Fermi GBM.

  19. Gamma ray camera

    DOEpatents

    Perez-Mendez, Victor

    1997-01-01

    A gamma ray camera for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array.

  20. Study of the dual effect of gamma irradiation and strontium substitution on bioactivity, cytotoxicity, and antimicrobial properties of 45S5 bioglass.

    PubMed

    Farag, M M; Abd-Allah, W M; Ahmed, Hanaa Y A

    2017-06-01

    In this work, we studied simultaneous effect of gamma irradiation and SrO substitution for Na 2 O on bioactivity, cytotoxicity and antimicrobial properties of 45S5 glass. Gamma irradiation was mainly introduced in this work as an effective sterilizing technique, improvement of bulk properties and surface modification of glass. Where, gamma irradiation is considered a modifier for glass network due to generation of defects resulted from this irradiation. Furthermore, SrO was introduced into the glass structure in place of Na 2 O in order to reduce a probable toxic effect of Na 2 O for surrounding tissue by decreasing its percentage. Where, Sr 2+ is characterized by its antibacterial properties, as well as, it induces formation of bone tissue and inhibits its resorption. The cell viability was studied for selected samples using Vero cells. As well as, antimicrobial activity was evaluated against Bacillus subtilis, Staphylococcus pneumonia, and Escherichia coli and Pseudomonas aeruginosa bacteria. The results showed that substitution of Na 2 O by SrO in glass composition decreased the glass dissolution in SBF. However, the glass dissolution increased after irradiation of such glass due to generation of nonbridgingoxygens (NBOs) throughout glass network by gamma irradiation, and this effect was more obvious for Sr-contained glass. On the other hand, two selected Sr-containing glasses (gamma irradiated at 0 and 25 kGy) showed a good ability to stimulate cell proliferation of normal fibroblast cells, as well as, they represented a potential ability to inhibit the growth of or kill bacteria, which is considered an important issue commonly found in a clinical situation. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1646-1655, 2017. © 2017 Wiley Periodicals, Inc.

  1. Formation of gamma'-Ni3Al via the Peritectoid Reaction: gamma plus beta (+Al2O3) equals gamma'(+Al2O3)

    NASA Technical Reports Server (NTRS)

    Copland, Evan

    2008-01-01

    The activities of Al and Ni were measured using multi-cell Knudsen effusion-cell mass spectrometry (multi-cell KEMS), over the composition range 8 - 32 at.%Al and temperature range T = 1400 - 1750 K in the Ni-Al-O system. These measurements establish that equilibrium solidification of gamma'-Ni3Al-containing alloys occurs by the eutectic reaction, L (+ Al2O3) = gamma + beta (+ Al2O3), at 1640 plus or minus 1 K and a liquid composition of 24.8 plus or minus 0.2 at.%Al (at an unknown oxygen content). The {gamma + beta + Al2O3} phase field is stable over the temperature range 1633 - 1640 K, and gamma'-Ni3Al forms via the peritectiod, gamma + beta (+ Al2O3) = gamma'(+ Al2O3), at 1633 plus or minus 1 K. This behavior is inconsistent with the current Ni-Al phase diagram and a new diagram is proposed. This new Ni-Al phase diagram explains a number of unusual steady state solidification structures reported previously and provides a much simpler reaction scheme in the vicinity of the gamma'-Ni3Al phase field.

  2. Overexpression of Dyrk1A, a Down Syndrome Candidate, Decreases Excitability and Impairs Gamma Oscillations in the Prefrontal Cortex.

    PubMed

    Ruiz-Mejias, Marcel; Martinez de Lagran, Maria; Mattia, Maurizio; Castano-Prat, Patricia; Perez-Mendez, Lorena; Ciria-Suarez, Laura; Gener, Thomas; Sancristobal, Belen; García-Ojalvo, Jordi; Gruart, Agnès; Delgado-García, José M; Sanchez-Vives, Maria V; Dierssen, Mara

    2016-03-30

    The dual-specificity tyrosine phosphorylation-regulated kinase DYRK1A is a serine/threonine kinase involved in neuronal differentiation and synaptic plasticity and a major candidate of Down syndrome brain alterations and cognitive deficits. DYRK1A is strongly expressed in the cerebral cortex, and its overexpression leads to defective cortical pyramidal cell morphology, synaptic plasticity deficits, and altered excitation/inhibition balance. These previous observations, however, do not allow predicting how the behavior of the prefrontal cortex (PFC) network and the resulting properties of its emergent activity are affected. Here, we integrate functional, anatomical, and computational data describing the prefrontal network alterations in transgenic mice overexpressingDyrk1A(TgDyrk1A). Usingin vivoextracellular recordings, we show decreased firing rate and gamma frequency power in the prefrontal network of anesthetized and awakeTgDyrk1Amice. Immunohistochemical analysis identified a selective reduction of vesicular GABA transporter punctae on parvalbumin positive neurons, without changes in the number of cortical GABAergic neurons in the PFC ofTgDyrk1Amice, which suggests that selective disinhibition of parvalbumin interneurons would result in an overinhibited functional network. Using a conductance-based computational model, we quantitatively demonstrate that this alteration could explain the observed functional deficits including decreased gamma power and firing rate. Our results suggest that dysfunction of cortical fast-spiking interneurons might be central to the pathophysiology of Down syndrome. DYRK1Ais a major candidate gene in Down syndrome. Its overexpression results into altered cognitive abilities, explained by defective cortical microarchitecture and excitation/inhibition imbalance. An open question is how these deficits impact the functionality of the prefrontal cortex network. Combining functional, anatomical, and computational approaches, we identified

  3. Gamma-ray astrophysics

    NASA Technical Reports Server (NTRS)

    Stecker, F. W. (Editor); Trombka, J. I. (Editor)

    1973-01-01

    Conference papers on gamma ray astrophysics are summarized. Data cover the energy region from about 0.3 MeV to a few hundred GeV and theoretical models of production mechanisms that give rise to both galactic and extragalactic gamma rays.

  4. The Gamma-ray Universe through Fermi

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2012-01-01

    Gamma rays, the most powerful form of light, reveal extreme conditions in the Universe. The Fermi Gamma-ray Space Telescope and its smaller cousin AGILE have been exploring the gamma-ray sky for several years, enabling a search for powerful transients like gamma-ray bursts, novae, solar flares, and flaring active galactic nuclei, as well as long-term studies including pulsars, binary systems, supernova remnants, and searches for predicted sources of gamma rays such as dark matter annihilation. Some results include a stringent limit on Lorentz invariance derived from a gamma-ray burst, unexpected gamma-ray variability from the Crab Nebula, a huge ga.nuna-ray structure associated with the center of our galaxy, surprising behavior from some gamma-ray binary systems, and a possible constraint on some WIMP models for dark matter.

  5. Application of carbon-ion beams or gamma-rays on primary tumors does not change the expression profiles of metastatic tumors in an in vivo murine model.

    PubMed

    Tamaki, Tomoaki; Iwakawa, Mayumi; Ohno, Tatsuya; Imadome, Kaori; Nakawatari, Miyako; Sakai, Minako; Tsujii, Hirohiko; Nakano, Takashi; Imai, Takashi

    2009-05-01

    To clarify how carbon-ion radiotherapy (C-ion) on primary tumors affects the characteristics of subsequently arising metastatic tumor cells. Mouse squamous cell carcinomas, NR-S1, in synergic C3H/HeMsNrs mice were irradiated with a single dose of 5-50 Gy of C-ion (290 MeV per nucleon, 6-cm spread-out Bragg peak) or gamma-rays ((137)Cs source) as a reference beam. The volume of the primary tumors and the number of metastatic nodules in lung were studied, and histologic analysis and microarray analysis of laser-microdissected tumor cells were also performed. Including 5 Gy of C-ion and 8 Gy of gamma-rays, which did not inhibit the primary tumor growth, all doses used in this study inhibited lung metastasis significantly. Pathologic findings showed no difference among the metastatic tumor nodules in the nonirradiated, C-ion-irradiated, and gamma-ray-irradiated groups. Clustering analysis of expression profiles among metastatic tumors and primary tumors revealed a single cluster consisting of metastatic tumors different from their original primary tumors, indicating that the expression profiles of the metastatic tumor cells were not affected by the local application of C-ion or gamma-ray radiotherapy. We found no difference in the incidence and histology, and only small differences in expression profile, of distant metastasis between local C-ion and gamma-ray radiotherapy. The application of local radiotherapy per se or the type of radiotherapy applied did not influence the transcriptional changes caused by metastasis in tumor cells.

  6. Topics in gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Lingenfelter, R. E.

    1986-01-01

    Observations of gamma rays from solar flares, gamma ray bursts, the Galactic center, galactic nucleosynthesis, SS433, and Cygnus X-3, and their effects on astrophysical problems are discussed. It is observed that gamma ray spectra from solar flares are applicable to the study of particle acceleration and confinement and the determination of chemical abundances in the solar atmosphere. The gamma ray lines from the compact galactic object SS433 are utilized to examine the acceleration of jets, and analysis of the gamma ray lines of Cygnus X-3 reveal that particles can be accelerated in compact sources to ultrahigh energies.

  7. A study of interdiffusion in beta + gamma/gamma + gamma prime Ni-Cr-Al. M.S. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Carol, L. A.

    1985-01-01

    Ternary diffusion in the NiCrAl system at 1200 C was studied with beta + gamma/gamma + gamma prime infinite diffusion couples. Interdiffusion resulted in the formation of complex, multiphase diffusion zones. Concentration/distance profiles for Cr and Al in the phases present in the diffusion zone were measured after 200 hr. The Ni-rich portion of the NiCrAl phase diagram (1200 C) was also determined. From these data, bulk Cr and Al profiles were calculated and translated to diffusion paths on the ternary isotherm. Growth layer kinetics of the layers present in the diffusion zone were also measured.

  8. Neutron monitoring systems including gamma thermometers and methods of calibrating nuclear instruments using gamma thermometers

    DOEpatents

    Moen, Stephan Craig; Meyers, Craig Glenn; Petzen, John Alexander; Foard, Adam Muhling

    2012-08-07

    A method of calibrating a nuclear instrument using a gamma thermometer may include: measuring, in the instrument, local neutron flux; generating, from the instrument, a first signal proportional to the neutron flux; measuring, in the gamma thermometer, local gamma flux; generating, from the gamma thermometer, a second signal proportional to the gamma flux; compensating the second signal; and calibrating a gain of the instrument based on the compensated second signal. Compensating the second signal may include: calculating selected yield fractions for specific groups of delayed gamma sources; calculating time constants for the specific groups; calculating a third signal that corresponds to delayed local gamma flux based on the selected yield fractions and time constants; and calculating the compensated second signal by subtracting the third signal from the second signal. The specific groups may have decay time constants greater than 5.times.10.sup.-1 seconds and less than 5.times.10.sup.5 seconds.

  9. Paeonol attenuates TNBS-induced colitis by inhibiting NF-{kappa}B and STAT1 transactivation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishiguro, Kazuhiro; Ando, Takafumi; Maeda, Osamu

    2006-11-15

    Paeonol, a major phenolic component of Moutan Cortex, is known to have anti-inflammatory activity. However, the effect of Paeonol on colitis has not been evaluated and the molecular mechanism of its anti-inflammatory action remains unknown. The aim of this study was to determine if Paeonol enema attenuates trinitrobenzene sulfonic acid (TNBS)-induced colitis in mice. We also investigated the effects of Paeonol in colon cancer-derived CW-2 cells and T cell leukemia-derived Jurkat cells treated with tumor necrosis factor {alpha} (TNF{alpha}) and/or interferon {gamma} (IFN{gamma}), which play critical roles in TNBS-induced colitis. Paeonol enema attenuated TNBS-induced colitis judging by body weigh reduction,more » colon length and histological score. Myeloperoxidase activity and inducible nitric oxide synthase (iNOS) production in the colon were also reduced with Paeonol enema. In CW-2 cells, Paeonol inhibited iNOS protein and mRNA expression induced by costimulation of TNF{alpha} and IFN{gamma}. Furthermore, Paeonol reduced TNF{alpha}-induced NF-{kappa}B transactivation and IFN{gamma}-induced STAT1 transactivation in CW-2 cells and also in Jurkat cells. These findings suggest that Paeonol enema may be useful for the treatment of colitis.« less

  10. Gamma-ray astronomy

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Lingenfelter, R. E.

    1982-01-01

    Cosmic gamma rays, the physical processes responsible for their production and the astrophysical sites from which they were seen are reported. The bulk of the observed gamma ray emission is in the photon energy range from about 0.1 MeV to 1 GeV, where observations are carried out above the atmosphere. There are also, however, gamma ray observations at higher energies obtained by detecting the Cerenkov light produced by the high energy photons in the atmosphere. Gamma ray emission was observed from sources as close as the Sun and the Moon and as distant as the quasar 3C273, as well as from various other galactic and extragalactic sites. The radiation processes also range from the well understood, e.g. energetic particle interactions with matter, to the still incompletely researched, such as radiation transfer in optically thick electron positron plasmas in intense neutron star magnetic fields.

  11. The use of small interfering RNAs to inhibit adipocyte differentiation in human preadipocytes and fetal-femur-derived mesenchymal cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Y.; Mirmalek-Sani, S.-H.; Yang, X.

    2006-06-10

    RNA interference (RNAi) has been used in functional genomics and offers innovative approaches in the development of novel therapeutics. Human mesenchymal stem cells offer a unique cell source for tissue engineering/regeneration strategies. The current study examined the potential of small interfering RNAs (siRNA) against human peroxisome proliferator activated receptor gamma (PPAR{gamma}) to suppress adipocyte differentiation (adipogenesis) in human preadipocytes and fetal-femur-derived mesenchymal cells. Adipogenesis was investigated using cellular and biochemical analysis. Transient transfection with PPAR{gamma}-siRNA using a liposomal-based strategy resulted in a significant inhibition of adipogenesis in human preadipocytes and fetal-femur-derived mesenchymal cells, compared to controls (cell, liposomal and negativemore » siRNA). The inhibitory effect of PPAR{gamma}-siRNA was supported by testing human PPAR{gamma} mRNA and adipogenic associated genes using reverse transcription polymerase chain reaction (RT-PCR) to adiponectin receptor 1 and 2 as well as examination of fatty acid binding protein 3 (FABP{sub 3}) expression, an adipocyte-specific marker. The current studies indicate that PPAR{gamma}-siRNA is a useful tool to study adipogenesis in human cells, with potential applications both therapeutic and in the elucidation of mesenchymal cell differentiation in the modulation of cell differentiation in human mesenchymal cells.« less

  12. Simulated and measured neutron/gamma light output distribution for poly-energetic neutron/gamma sources

    NASA Astrophysics Data System (ADS)

    Hosseini, S. A.; Zangian, M.; Aghabozorgi, S.

    2018-03-01

    In the present paper, the light output distribution due to poly-energetic neutron/gamma (neutron or gamma) source was calculated using the developed MCNPX-ESUT-PE (MCNPX-Energy engineering of Sharif University of Technology-Poly Energetic version) computational code. The simulation of light output distribution includes the modeling of the particle transport, the calculation of scintillation photons induced by charged particles, simulation of the scintillation photon transport and considering the light resolution obtained from the experiment. The developed computational code is able to simulate the light output distribution due to any neutron/gamma source. In the experimental step of the present study, the neutron-gamma discrimination based on the light output distribution was performed using the zero crossing method. As a case study, 241Am-9Be source was considered and the simulated and measured neutron/gamma light output distributions were compared. There is an acceptable agreement between the discriminated neutron/gamma light output distributions obtained from the simulation and experiment.

  13. Measuring the charged pion polarizability in the gamma gamma -> pi+pi- reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence, David W.; Miskimen, Rory A.; Mushkarenkov, Alexander Nikolaevich

    2013-08-01

    Development has begun of a new experiment to measure the charged pion polarizabilitymore » $$\\alpha_{\\pi}-\\beta_{\\pi}$$. The charged pion polarizability ranks among the most important tests of low-energy QCD presently unresolved by experiment. Analogous to precision measurements of $$\\pi^{\\circ}\\rightarrow\\gamma\\gamma$$ that test the intrinsic odd-parity (anomalous) sector of QCD, the pion polarizability tests the intrinsic even-parity sector of QCD. The measurement will be performed using the $$\\gamma\\gamma\\rightarrow\\pi^{+{}}\\pi^{-{}}$$ cross section accessed via the Primakoff mechanism on nuclear targets using the GlueX detector in Hall D at Jefferson Lab. The linearly polarized photon source in Hall-D will be utilized to separate the Primakoff cross-section from coherent $$\\rho^{\\circ}$$ production.« less

  14. Future prospects for gamma-ray

    NASA Technical Reports Server (NTRS)

    Fichtel, C.

    1980-01-01

    Astrophysical phenomena discussed are: the very energetic and nuclear processes associated with compact objects; astrophysical nucleo-synthesis; solar particle acceleration; the chemical composition of the planets and other bodies of the solar system; the structure of our galaxy; the origin and dynamic pressure effects of the cosmic rays; the high energy particles and energetic processes in other galaxies, especially active ones; and the degree of matter antimater symmetry of the universe. The gamma ray results of GAMMA-I, the gamma ray observatory, the gamma ray burst network, solar polar, and very high energy gamma ray telescopes on the ground provide justification for more sophisticated telescopes.

  15. Gamma ray camera

    DOEpatents

    Perez-Mendez, V.

    1997-01-21

    A gamma ray camera is disclosed for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array. 6 figs.

  16. Gamma oscillations in a nonlinear regime: a minimal model approach using heterogeneous integrate-and-fire networks.

    PubMed

    Bathellier, Brice; Carleton, Alan; Gerstner, Wulfram

    2008-12-01

    Fast oscillations and in particular gamma-band oscillation (20-80 Hz) are commonly observed during brain function and are at the center of several neural processing theories. In many cases, mathematical analysis of fast oscillations in neural networks has been focused on the transition between irregular and oscillatory firing viewed as an instability of the asynchronous activity. But in fact, brain slice experiments as well as detailed simulations of biological neural networks have produced a large corpus of results concerning the properties of fully developed oscillations that are far from this transition point. We propose here a mathematical approach to deal with nonlinear oscillations in a network of heterogeneous or noisy integrate-and-fire neurons connected by strong inhibition. This approach involves limited mathematical complexity and gives a good sense of the oscillation mechanism, making it an interesting tool to understand fast rhythmic activity in simulated or biological neural networks. A surprising result of our approach is that under some conditions, a change of the strength of inhibition only weakly influences the period of the oscillation. This is in contrast to standard theoretical and experimental models of interneuron network gamma oscillations (ING), where frequency tightly depends on inhibition strength, but it is similar to observations made in some in vitro preparations in the hippocampus and the olfactory bulb and in some detailed network models. This result is explained by the phenomenon of suppression that is known to occur in strongly coupled oscillating inhibitory networks but had not yet been related to the behavior of oscillation frequency.

  17. Gamma ray astrophysics to the year 2000. Report of the NASA Gamma Ray Program Working Group

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Important developments in gamma-ray astrophysics up to energies of 100 GeV during the last decade are reviewed. Also, the report seeks to define the major current scientific goals of the field and proposes a vigorous program to pursue them, extending to the year 2000. The goals of gamma-ray astronomy include the study of gamma rays which provide the most direct means of studying many important problems in high energy astrophysics including explosive nucleosynthesis, accelerated particle interactions and sources, and high-energy processes around compact objects. The current research program in gamma-ray astronomy in the U.S. including the space program, balloon program and foreign programs in gamma-ray astronomy is described. The high priority recommendations for future study include an Explorer-class high resolution gamma-ray spectroscopy mission and a Get Away Special cannister (GAS-can) or Scout class multiwavelength experiment for the study of gamma-ray bursts. Continuing programs include an extended Gamma Ray Observatory mission, continuation of the vigorous program of balloon observations of the nearby Supernova 1987A, augmentation of the balloon program to provide for new instruments and rapid scientific results, and continuation of support for theoretical research. Long term recommendations include new space missions using advanced detectors to better study gamma-ray sources, the development of these detectors, continued study for the assembly of large detectors in space, collaboration with the gamma-ray astronomy missions initiated by other countries, and consideration of the Space Station attached payloads for gamma-ray experiments.

  18. The effect of alloying on gamma and gamma prime in nickel-base superalloys

    NASA Technical Reports Server (NTRS)

    Dreshfield, R. L.; Wallace, J. F.

    1972-01-01

    An investigation was conducted to determine the compositional limits of gamma and gamma prime phases in nickel-base superalloys. Fifty-one nickel-base alloys were melted under vacuum and heat treated for 4 hours at 1190 C followed by 1008 hours at 850 C. The alloys had the following composition ranges: A1 4.0 to 13 atomic percent, Cr 6.5 to 20.5 percent, Ti 0.25 to 4.75 percent, Mo 0.0 to 6.0 percent, and W 0.0 to 4.0 percent. The residues from the ammonium sulfate electrolytic extraction for the two-phase alloys were analyzed chemically and by X-ray diffraction. The results of the investigation were used to assemble a mathematical model of the gamma-gamma prime region of the Ni-Al-Cr-Ti-Mo-W system. A computer program was written to analyze the model of the phase diagram. Some of these results are also presented graphically. The resulting model is capable of satisfactorily predicting the compositions of conjugate gamma-gamma prime phases in the alloys investigated and twelve of fifteen commercial superalloys studied.

  19. Effect of gamma irradiation on lipoxygenases, trypsin inhibitor, raffinose family oligosaccharides and nutritional factors of different seed coat colored soybean (Glycine max L.)

    NASA Astrophysics Data System (ADS)

    Kumar Dixit, Amit; Kumar, Vineet; Rani, Anita; Manjaya, J. G.; Bhatnagar, Deepak

    2011-04-01

    Three soybean genotypes Kalitur, Hara soya and NRC37 with black, green and yellow seed coat color, respectively, were gamma irradiated at 0.5, 2.0 and 5.0 kGy and tested for antinutritional and nutritional factors. Gamma irradiation at all doses reduced the level of lipoxygenase isomers, trypsin inhibitor (TI) and ascorbic acid in all the 3 soybean genotypes as compared to the unirradiated control. However, irradiation dose of 5.0 kGy increased the sucrose content of the soybean genotypes. No significant change was observed in oil, protein fatty acids and total tocopherol content of the 3 genotypes at any irradiation dose. It is suggested that inhibition of lipoxygenase, reduction in TI and ascorbic acid may be due to the breakage or oxidation of protein structure by the gamma irradiation. Similarly, gamma irradiation at higher doses may break glycosidic linkages in oligosaccharides to produce more sucrose and decrease the content of flatulence causing oligosaccharides.

  20. Status of the GAMMA-400 Project

    NASA Technical Reports Server (NTRS)

    Galper, A. M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Gusakov, Yu. V.; Farber, M. O.; hide

    2013-01-01

    The preliminary design of the new space gamma-ray telescope GAMMA-400 for the energy range 100 MeV-3 TeV is presented. The angular resolution of the instrument, 1-2 deg at E(gamma) approximately 100 MeV and approximately 0.01 at E(gamma) greater than 100 GeV, its energy resolution is approximately 1% at E(gamma) greater than 100 GeV, and the proton rejection factor is approximately 10(exp 6) are optimized to address a broad range of science topics, such as search for signatures of dark matter, studies of Galactic and extragalactic gamma-ray sources, Galactic and extragalactic diffuse emission, gamma-ray bursts, as well as high-precision measurements of spectra of cosmic-ray electrons, positrons, and nuclei.

  1. Formation of fine {gamma} grain structure through fine {alpha}{sub 2}/{gamma} lamellar structure in Ti-rich TiAl alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumagai, T.; Abe, E.; Nakamura, M.

    1997-12-31

    Microstructural development of an extremely fine {alpha}{sub 2}-Ti{sub 32}Al/{gamma}-TiAl lamellar structure, which was formed by ice water quenching after solution-treatment in a high-temperature {alpha}-Ti phase field for a long period of time, was examined during isothermal treatment. In an as-quenched Ti-48at.%Al alloy, the massively transformed {gamma} ({gamma}{sub m}) and untransformed (meaning massively untransformed) fine {alpha}{sub 2}/{gamma} lamellar regions were observed. Fine {gamma} grains, which were similar to {gamma}{sub m}, were generated both within the fine {alpha}{sub 2}/{gamma} lamellae and at the boundary area between the {gamma}{sub m} and the fine {alpha}{sub 2}/{gamma} lamellar regions by aging at low-temperature (1,173 K)more » for a short time (180s). Further aging (1.8ks) caused the coarsening of these newly generated fine {gamma} grains. On the other hand, the coarsening of the {gamma} grains occurred by a high-temperature (1,323 K) aging treatment even for 180s. Fine {alpha}{sub 2} plates and particles, which were aligned to a particular direction, were observed in the {gamma} grain interiors, indicating that the newly generated {gamma} grains grew at the expense of the fine {alpha}{sub 2}/{gamma} lamellae. It can be considered that the {gamma} grain formation through the fine {alpha}{sub 2}/{gamma} lamellae is closely related to the {alpha}{sub 2}{yields}{gamma} reaction of the {alpha}{sub 2} plates sandwiched by the {gamma} plates, and needs the fast heating rate enough to overcome the {alpha}{sub 2}/{gamma}{yields}{gamma}/{gamma} lamellae reaction.« less

  2. Fusion gamma diagnostics

    NASA Astrophysics Data System (ADS)

    Medley, S. S.; Cecil, F. E.; Cole, D.; Conway, M. A.; Wilkinson, F. J., III

    1985-05-01

    Nuclear reactions of interest in fusion research often possess a branch yielding prompt emission of gamma radiation in excess of 15 MeV which can be exploited to provide a new fusion reaction diagnostic having applications similar to conventional neutron emission measurements. Conceptual aspects of fusion gamma diagnostics are discussed with emphasis on application to the Tokamak Fusion Test Reactor (TFTR) during deuterium neutral beam heating of D-T and D-3He plasmas. Recent measurements of the D (T, γ)5He, D(3He, γ)5Li, and D(D, γ)4He branching ratios at low center-of-mass energy (30-100 keV) and of the response of a large volume Ne226 detector for gamma detection in high neutron backgrounds are presented. Using a well-shielded Ne226 detector during 20 MW-120 kV deuterium beam heating of a tritium plasma in TFTR, the D(T, γ)5He gamma signal level is estimated to be 3.5×105 cps.

  3. A gamma beam profile imager for ELI-NP Gamma Beam System

    NASA Astrophysics Data System (ADS)

    Cardarelli, P.; Paternò, G.; Di Domenico, G.; Consoli, E.; Marziani, M.; Andreotti, M.; Evangelisti, F.; Squerzanti, S.; Gambaccini, M.; Albergo, S.; Cappello, G.; Tricomi, A.; Veltri, M.; Adriani, O.; Borgheresi, R.; Graziani, G.; Passaleva, G.; Serban, A.; Starodubtsev, O.; Variola, A.; Palumbo, L.

    2018-06-01

    The Gamma Beam System of ELI-Nuclear Physics is a high brilliance monochromatic gamma source based on the inverse Compton interaction between an intense high power laser and a bright electron beam with tunable energy. The source, currently being assembled in Magurele (Romania), is designed to provide a beam with tunable average energy ranging from 0.2 to 19.5 MeV, rms energy bandwidth down to 0.5% and flux of about 108 photons/s. The system includes a set of detectors for the diagnostic and complete characterization of the gamma beam. To evaluate the spatial distribution of the beam a gamma beam profile imager is required. For this purpose, a detector based on a scintillator target coupled to a CCD camera was designed and a prototype was tested at INFN-Ferrara laboratories. A set of analytical calculations and Monte Carlo simulations were carried out to optimize the imager design and evaluate the performance expected with ELI-NP gamma beam. In this work the design of the imager is described in detail, as well as the simulation tools used and the results obtained. The simulation parameters were tuned and cross-checked with the experimental measurements carried out on the assembled prototype using the beam from an x-ray tube.

  4. Ca2+-stabilized adhesin helps an Antarctic bacterium reach out and bind ice.

    PubMed

    Vance, Tyler D R; Olijve, Luuk L C; Campbell, Robert L; Voets, Ilja K; Davies, Peter L; Guo, Shuaiqi

    2014-07-04

    The large size of a 1.5-MDa ice-binding adhesin [MpAFP (Marinomonas primoryensis antifreeze protein)] from an Antarctic Gram-negative bacterium, M. primoryensis, is mainly due to its highly repetitive RII (Region II). MpAFP_RII contains roughly 120 tandem copies of an identical 104-residue repeat. We have previously determined that a single RII repeat folds as a Ca2+-dependent immunoglobulin-like domain. Here, we solved the crystal structure of RII tetra-tandemer (four tandem RII repeats) to a resolution of 1.8 Å. The RII tetra-tandemer reveals an extended (~190-Å × ~25-Å), rod-like structure with four RII-repeats aligned in series with each other. The inter-repeat regions of the RII tetra-tandemer are strengthened by Ca2+ bound to acidic residues. SAXS (small-angle X-ray scattering) profiles indicate the RII tetra-tandemer is significantly rigidified upon Ca2+ binding, and that the protein's solution structure is in excellent agreement with its crystal structure. We hypothesize that >600 Ca2+ help rigidify the chain of ~120 104-residue repeats to form a ~0.6 μm rod-like structure in order to project the ice-binding domain of MpAFP away from the bacterial cell surface. The proposed extender role of RII can help the strictly aerobic, motile bacterium bind ice in the upper reaches of the Antarctic lake where oxygen and nutrients are most abundant. Ca2+-induced rigidity of tandem Ig-like repeats in large adhesins might be a general mechanism used by bacteria to bind to their substrates and help colonize specific niches.

  5. Gamma-Ray Bursts: An Overview

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    1995-01-01

    A history and overview of the observed properties of gamma-ray bursts are presented. The phenomenon of gamma-ray bursts is without precedent in astronomy, having no observed property that would be a direct indicator of their distance and no counterpart object in another wavelength region. Their brief, random appearance only in the gamma-ray region has made their study difficult. The observed time profiles, spectral properties, and durations of gamma-ray bursts cover a wide range. All proposed models for their origin must be considered speculative. It is humbling to think that even after 25 years since their discovery, the distance scale of gamma-ray bursts is still very much debatable.

  6. High energy gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Fichtel, Carl E.

    1987-01-01

    High energy gamma ray astronomy has evolved with the space age. Nonexistent twenty-five years ago, there is now a general sketch of the gamma ray sky which should develop into a detailed picture with the results expected to be forthcoming over the next decade. The galactic plane is the dominant feature of the gamma ray sky, the longitude and latitude distribution being generally correlated with galactic structural features including the spiral arms. Two molecular clouds were already seen. Two of the three strongest gamma ray sources are pulsars. The highly variable X-ray source Cygnus X-3 was seen at one time, but not another in the 100 MeV region, and it was also observed at very high energies. Beyond the Milky Way Galaxy, there is seen a diffuse radiation, whose origin remains uncertain, as well as at least one quasar, 3C 273. Looking to the future, the satellite opportunities for high energy gamma ray astronomy in the near term are the GAMMA-I planned to be launched in late 1987 and the Gamma Ray Observatory, scheduled for launch in 1990. The Gamma Ray Observatory will carry a total of four instruments covering the entire energy range from 30,000 eV to 3 x 10 to the 10th eV with over an order of magnitude increase in sensitivity relative to previous satellite instruments.

  7. GammaM23K, gammaM232K, and gammaL77K single substitutions in the TF1-ATPase lower ATPase activity by disrupting a cluster of hydrophobic side chains.

    PubMed

    Bandyopadhyay, Sanjay; Allison, William S

    2004-07-27

    In crystal structures of the bovine F(1)-ATPase (MF(1)), the side chains of gammaMet(23), gammaMet(232), and gammaLeu(77) interact in a cluster. Substitution of the corresponding residues in the alpha(3)beta(3)gamma subcomplex of TF(1) with lysine lowers the ATPase activity to 2.3, 11, and 15%, respectively, of that displayed by wild-type. In contrast, TF(1) subcomplexes containing the gammaM(23)C, gammaM(232)C, and gammaL(77)C substitutions display 36, 36, and 130%, respectively, of the wild-type ATPase activity. The ATPase activity of the gammaM(23)C/gammaM(232)C double mutant subcomplex is 36% that of the wild-type subcomplex before and after cross-linking the introduced cysteines, whereas the ATPase activity of the gammaM(23)C/L(77)C double mutant increased from 50 to 85% that of wild-type after cross-linking the introduced cysteines. Only beta-beta cross-links formed when the alpha(3)(betaE(395)C)(3)gammaM(23)C double mutant was inactivated with CuCl(2). The overall results suggest that the attenuated ATPase of the mutant subcomplexes containing the gammaM(23)K, gammaL(77)K, and gammaM(232)K substitutions is caused by disruption of the cluster of hydrophobic amino acid side chains and that the midregion of the coiled-coil comprised of the amino- and carboxyl-terminal alpha helices of the gamma subunit does not undergo unwinding or major displacement from the side chain of gammaLeu(77) during ATP-driven rotation of the gamma subunit.

  8. Antimicrobial activity of silver nanoparticles synthesized using honey and gamma radiation against silver-resistant bacteria from wounds and burns

    NASA Astrophysics Data System (ADS)

    Hosny, A. M. S.; Kashef, M. T.; Rasmy, S. A.; Aboul-Magd, D. S.; El-Bazza, Z. E.

    2017-12-01

    Silver nanoparticles (AgNPs) are promising antimicrobial agents for treatment of wounds and burns. We synthesized AgNPs using honey at different pH values or with different gamma irradiation doses. The resulting nanoparticles were characterized by UV-vis spectroscopy, TEM, DLS and FTIR. Their antimicrobial activity, against standard bacterial strains and silver-resistant clinical isolates from infected wounds and burns, was evaluated in vitro through determination of their minimum inhibitory concentration (MIC). AgNPs prepared using 30 g of honey exposed to 5 kGy gamma radiation had the best physical characters regarding stability and uniformity of particle size and shape. They recorded the lowest MIC values against both the standard and silver-resistant isolates. In conclusion, honey and gamma radiation can be used in synthesis of highly stable pure AgNPs, without affecting the physico-chemical and antimicrobial activity of honey. This offered an advantage in terms of inhibition of silver-resistant bacteria isolates.

  9. Effect of gamma radiation on growth and survival of common seed-borne fungi in India

    NASA Astrophysics Data System (ADS)

    Maity, J. P.; Chakraborty, A.; Chanda, S.; Santra, S. C.

    2008-07-01

    The present work describes radiation-induced effects of major seeds like Oryza sativa Cv-2233, Oryza sativa Cv-Shankar, Cicer arietinum Cv-local and seed-borne fungi like Alternaria sp., Aspergillus sp., Trichoderma sp. and Curvularia sp. 60Co gamma source at 25 °C emitting gamma ray at 1173 and 1332 keV energy was used for irradiation. Dose of gamma irradiation up to 3 kGy (0.12 kGy/h) was applied for exposing the seed and fungal spores. Significant depletion of the fungal population was noted with irradiation at 1-2 kGy, whereas germinating potential of the treated grain did not alter significantly. However, significant differential radiation response in delayed seed germination, colony formation of the fungal spores and their depletion of growth were noticed in a dose-dependent manner. The depletion of the fungal viability (germination) was noted within the irradiation dose range of 1-2 kGy for Alternaria sp. and Aspergillus sp., while 0.5-1 kGy for Trichoderma sp. and Curvularia sp. However, complete inhibition of all the selected fungi was observed above 2.5 kGy.

  10. Compton Gamma-Ray Observatory

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This photograph shows the Compton Gamma-Ray Observatory (GRO) being deployed by the Remote Manipulator System (RMS) arm aboard the Space Shuttle Atlantis during the STS-37 mission in April 1991. The GRO reentered Earth atmosphere and ended its successful mission in June 2000. For nearly 9 years, the GRO Burst and Transient Source Experiment (BATSE), designed and built by the Marshall Space Flight Center (MSFC), kept an unblinking watch on the universe to alert scientists to the invisible, mysterious gamma-ray bursts that had puzzled them for decades. By studying gamma-rays from objects like black holes, pulsars, quasars, neutron stars, and other exotic objects, scientists could discover clues to the birth, evolution, and death of stars, galaxies, and the universe. The gamma-ray instrument was one of four major science instruments aboard the Compton. It consisted of eight detectors, or modules, located at each corner of the rectangular satellite to simultaneously scan the entire universe for bursts of gamma-rays ranging in duration from fractions of a second to minutes. In January 1999, the instrument, via the Internet, cued a computer-controlled telescope at Las Alamos National Laboratory in Los Alamos, New Mexico, within 20 seconds of registering a burst. With this capability, the gamma-ray experiment came to serve as a gamma-ray burst alert for the Hubble Space Telescope, the Chandra X-Ray Observatory, and major gound-based observatories around the world. Thirty-seven universities, observatories, and NASA centers in 19 states, and 11 more institutions in Europe and Russia, participated in the BATSE science program.

  11. Compton Gamma-Ray Observatory

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This photograph shows the Compton Gamma-Ray Observatory being released from the Remote Manipulator System (RMS) arm aboard the Space Shuttle Atlantis during the STS-35 mission in April 1991. The GRO reentered the Earth's atmosphere and ended its successful mission in June 2000. For nearly 9 years, GRO's Burst and Transient Source Experiment (BATSE), designed and built by the Marshall Space Flight Center, kept an unblinking watch on the universe to alert scientist to the invisible, mysterious gamma-ray bursts that had puzzled them for decades. By studying gamma-rays from objects like black holes, pulsars, quasars, neutron stars, and other exotic objects, scientists could discover clues to the birth, evolution, and death of star, galaxies, and the universe. The gamma-ray instrument was one of four major science instruments aboard the Compton. It consisted of eight detectors, or modules, located at each corner of the rectangular satellite to simultaneously scan the entire universe for bursts of gamma-rays ranging in duration from fractions of a second to minutes. In January 1999, the instrument, via the Internet, cued a computer-controlled telescope at Las Alamos National Laboratory in Los Alamos, New Mexico, within 20 seconds of registering a burst. With this capability, the gamma-ray experiment came to serve as a gamma-ray burst alert for the Hubble Space Telescope, the Chandra X-Ray Observatory, and major gound-based observatories around the world. Thirty-seven universities, observatories, and NASA centers in 19 states, and 11 more institutions in Europe and Russia, participated in BATSE's science program.

  12. Effect of Notch and PARP Pathways' Inhibition in Leukemic Cells.

    PubMed

    Horvat, Luka; Antica, Mariastefania; Matulić, Maja

    2018-06-14

    Differentiation of blood cells is one of the most complex processes in the body. It is regulated by the action of transcription factors in time and space which creates a specific signaling network. In the hematopoietic signaling system, Notch is one of the main regulators of lymphocyte development. The aim of this study was to get insight into the regulation of Notch signalization and the influence of poly(ADP-ribose)polymerase (PARP) activity on this process in three leukemia cell lines obtained from B and T cells. PARP1 is an enzyme involved in posttranslational protein modification and chromatin structure changes. B and T leukemia cells were treated with Notch and PARP inhibitors, alone or in combination, for a prolonged period. The cells did not show cell proliferation arrest or apoptosis. Analysis of gene and protein expression set involved in Notch and PARP pathways revealed increase in JAGGED1 expression after PARP1 inhibition in B cell lines and changes in Ikaros family members in both B and T cell lines after &gamma;-secretase inhibition. These data indicate that Notch and PARP inhibition, although not inducing differentiation in leukemia cells, induce changes in signaling circuits and chromatin modelling factors.

  13. Granule cell excitability regulates gamma and beta oscillations in a model of the olfactory bulb dendrodendritic microcircuit

    PubMed Central

    Osinski, Bolesław L.

    2016-01-01

    Odors evoke gamma (40–100 Hz) and beta (20–30 Hz) oscillations in the local field potential (LFP) of the mammalian olfactory bulb (OB). Gamma (and possibly beta) oscillations arise from interactions in the dendrodendritic microcircuit between excitatory mitral cells (MCs) and inhibitory granule cells (GCs). When cortical descending inputs to the OB are blocked, beta oscillations are extinguished whereas gamma oscillations become larger. Much of this centrifugal input targets inhibitory interneurons in the GC layer and regulates the excitability of GCs, which suggests a causal link between the emergence of beta oscillations and GC excitability. We investigate the effect that GC excitability has on network oscillations in a computational model of the MC-GC dendrodendritic network with Ca2+-dependent graded inhibition. Results from our model suggest that when GC excitability is low, the graded inhibitory current mediated by NMDA channels and voltage-dependent Ca2+ channels (VDCCs) is also low, allowing MC populations to fire in the gamma frequency range. When GC excitability is increased, the activation of NMDA receptors and other VDCCs is also increased, allowing the slow decay time constants of these channels to sustain beta-frequency oscillations. Our model argues that Ca2+ flow through VDCCs alone could sustain beta oscillations and that the switch between gamma and beta oscillations can be triggered by an increase in the excitability state of a subpopulation of GCs. PMID:27121582

  14. Gamma Oscillations and Visual Binding

    NASA Astrophysics Data System (ADS)

    Robinson, Peter A.; Kim, Jong Won

    2006-03-01

    At the root of visual perception is the mechanism the brain uses to analyze features in a scene and bind related ones together. Experiments show this process is linked to oscillations of brain activity in the 30-100 Hz gamma band. Oscillations at different sites have correlation functions (CFs) that often peak at zero lag, implying simultaneous firing, even when conduction delays are large. CFs are strongest between cells stimulated by related features. Gamma oscillations are studied here by modeling mm-scale patchy interconnections in the visual cortex. Resulting predictions for gamma responses to stimuli account for numerous experimental findings, including why oscillations and zero-lag synchrony are associated, observed connections with feature preferences, the shape of the zero-lag peak, and variations of CFs with attention. Gamma waves are found to obey the Schroedinger equation, opening the possibility of cortical analogs of quantum phenomena. Gamma instabilities are tied to observations of gamma activity linked to seizures and hallucinations.

  15. Space instrumentation for gamma-ray astronomy

    NASA Astrophysics Data System (ADS)

    Teegarden, B. J.

    1999-02-01

    The decade of the 1990s has witnessed a renaissance in the field of gamma-ray astronomy. The seminal event was the launch of the Compton Gamma-Ray Observatory (CGRO) in April 1991. There have been a flood of major discoveries from CGRO including breakthroughs in gamma-ray bursts, annihilation radiation, and blazars. The Italian SAX satellite was launched in April 1996. Although not primarily a gamma-ray mission, it has added a new dimension to our understanding of gamma-ray bursts. Along with these new discoveries a firm groundwork has been laid for missions and new technology development that should maintain a healthy and vigorous field throughout most of the next decade. These include the ESA INTEGRAL mission (INTErnational Gamma-Ray Astrophysics Laboratory, to be launched in mid-2001) and the NASA GLAST mission (Gamma-Ray Large Area Space Telescope) with a likely launch in the middle of the next decade. These two missions will extend the observational capabilities well beyond those of CGRO. New technologies (to gamma-ray astronomy), such as cooled germanium detectors, silicon strip detectors, and CdTe detectors are planned for these new missions. Additional promising new technologies such as CdZnTe strip detectors, scintillator fibers, and a gamma-ray lens for future gamma-ray astronomy missions are under development in laboratories around the world.

  16. A new measurement of the rare decay eta -> pi^0 gamma gamma with the Crystal Ball/TAPS detectors at the Mainz Microtron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nefkens, B M; Prakhov, S; Aguar-Bartolom��, P

    2014-08-01

    A new measurement of the rare, doubly radiative decay eta->pi^0 gamma gamma was conducted with the Crystal Ball and TAPS multiphoton spectrometers together with the photon tagging facility at the Mainz Microtron MAMI. New data on the dependence of the partial decay width, Gamma(eta->pi^0 gamma gamma), on the two-photon invariant mass squared, m^2(gamma gamma), as well as a new, more precise value for the decay width, Gamma(eta->pi^0 gamma gamma) = (0.33+/-0.03_tot) eV, are based on analysis of 1.2 x 10^3 eta->pi^0 gamma gamma decays from a total of 6 x 10^7 eta mesons produced in the gamma p -> etamore » p reaction. The present results for dGamma(eta->pi^0 gamma gamma)/dm^2(gamma gamma) are in good agreement with previous measurements and recent theoretical calculations for this dependence.« less

  17. In vivo degradation of polyethylene liners after gamma sterilization in air.

    PubMed

    Kurtz, Steven M; Rimnac, Clare M; Hozack, William J; Turner, Joseph; Marcolongo, Michele; Goldberg, Victor M; Kraay, Matthew J; Edidin, Avram A

    2005-04-01

    Ultra-high molecular weight polyethylene degrades during storage in air following gamma sterilization, but the extent of in vivo degradation remains unclear. The purpose of this study was to quantify the extent to which the mechanical properties and oxidation of conventional polyethylene acetabular liners treated with gamma sterilization in air change in vivo. Fourteen modular cementless acetabular liners were revised at an average of 10.3 years (range, 5.9 to 13.5 years) after implantation. All liners, which had been machined from GUR 415 resin, had been gamma-sterilized in air; the average shelf life was 0.3 year (range, 0.0 to 0.8 year). After removal, the components were expeditiously frozen to minimize ex vivo changes to the polyethylene prior to characterization. The average duration between freezing and testing was 0.6 year. Mechanical properties and oxidation were measured with use of the small-punch test and Fourier transform infrared spectroscopy, respectively, in the loaded and unloaded regions of the liners. There was substantial regional variation in the mechanical properties and oxidation of the retrieved liners. The ultimate load was observed to vary by >90% near the surface. On the average, the rim and the unloaded bearing showed evidence of severe oxidation near the surface after long-term in vivo aging, but these trends were not typically observed on the loaded bearing surface or near the backside of the liners. The mechanical properties of polyethylene that has been gamma-sterilized in air may decrease substantially in vivo, depending on the location in the liner. The most severe oxidation was observed at the rim, suggesting that the femoral head inhibits access of oxygen-containing body fluids to the bearing surface. This is perhaps why in vivo oxidation has not been associated with clinical performance to date.

  18. A stochastic model of input effectiveness during irregular gamma rhythms.

    PubMed

    Dumont, Grégory; Northoff, Georg; Longtin, André

    2016-02-01

    Gamma-band synchronization has been linked to attention and communication between brain regions, yet the underlying dynamical mechanisms are still unclear. How does the timing and amplitude of inputs to cells that generate an endogenously noisy gamma rhythm affect the network activity and rhythm? How does such "communication through coherence" (CTC) survive in the face of rhythm and input variability? We present a stochastic modelling approach to this question that yields a very fast computation of the effectiveness of inputs to cells involved in gamma rhythms. Our work is partly motivated by recent optogenetic experiments (Cardin et al. Nature, 459(7247), 663-667 2009) that tested the gamma phase-dependence of network responses by first stabilizing the rhythm with periodic light pulses to the interneurons (I). Our computationally efficient model E-I network of stochastic two-state neurons exhibits finite-size fluctuations. Using the Hilbert transform and Kuramoto index, we study how the stochastic phase of its gamma rhythm is entrained by external pulses. We then compute how this rhythmic inhibition controls the effectiveness of external input onto pyramidal (E) cells, and how variability shapes the window of firing opportunity. For transferring the time variations of an external input to the E cells, we find a tradeoff between the phase selectivity and depth of rate modulation. We also show that the CTC is sensitive to the jitter in the arrival times of spikes to the E cells, and to the degree of I-cell entrainment. We further find that CTC can occur even if the underlying deterministic system does not oscillate; quasicycle-type rhythms induced by the finite-size noise retain the basic CTC properties. Finally a resonance analysis confirms the relative importance of the I cell pacing for rhythm generation. Analysis of whole network behaviour, including computations of synchrony, phase and shifts in excitatory-inhibitory balance, can be further sped up by orders of

  19. Activin receptor ligand traps in chronic kidney disease.

    PubMed

    Jelkmann, Wolfgang

    2018-05-29

    Sotatercept and luspatercept are recombinant soluble activin type-II receptor-IgG-Fc fusion proteins that are tested in clinical trials for the treatment of various types of anemias, including renal anemia. The mechanism of the action of the novel drugs is incompletely understood, but it seems to be based on the inactivation of soluble proteins of the transforming growth factor-ß (TGFß) family. This review considers pros and cons of the clinical use of the drugs in reference to the current therapy with recombinant erythropoiesis-stimulating agents (ESAs). One or more activin type-II receptor (ActRII) ligands appear to inhibit erythroid precursors, for example growth and differentiation factor 11. Trapping of these ligands by the recombinant ActRII fusion proteins, sotatercept and luspatercept increases red blood cell numbers and hemoglobin levels in humans. Reportedly, the novel compounds were well tolerated in trials on healthy volunteers and patients suffering from anemia due to chronic kidney disease or malignancies. On approval, the drugs may prove particularly useful in patients suffering from ineffective erythropoiesis, such as in myelodysplastic syndrome, multiple myeloma or ß-thalassemia, where ESAs are of little use. Independent of their effect on erythropoiesis, ActRII ligand traps were found to exert beneficial effects on renal tissue in experimental animals. ESAs are likely to remain standard of care in renal anemia. There is a need for a better understanding of the effects of ActRII ligand traps on TGFß-like proteins. The novel drugs have not been approved for sale as therapeutics so far. Their long-term efficacy and safety still needs to be proven, particularly with respect to immunogenicity. Antifibrotic effects may be worthy to be investigated in humans.

  20. Formation of gamma(sup prime)-Ni3Al via the Peritectoid Reaction: gamma + beta (+ Al2O3)=gamma(sup prime)(+ Al2O3)

    NASA Technical Reports Server (NTRS)

    Copeland, Evan

    2008-01-01

    The activities of Al and Ni were measured using multi-cell Knudsen effusion-cell mass spectrometry (multi-cell KEMS), over the composition range 8-32 at.%Al and temperature range T=1400-1750 K in the Ni-Al-O system. These measurements establish that equilibrium solidification of gamma(sup prime)-Ni3Al-containing alloys occurs by the eutectic reaction, L (+ Al2O3)=gamma + Beta(+ Al2O3), at 1640 +/- 1 K and a liquid composition of 24.8 +/- 0.2 at.%al (at an unknown oxygen content). The {gamma + Beta (+Al2O3} phase field is stable over the temperature range 1633-1640 K, and gamma(sup prime)-Ni3Al forms via the peritectoid, gamma + Beta (+ Al2O3)=gamma(sup prime) (+ Al2O3), at 1633 +/- 1 K. This behavior is consistent with the current Ni-Al phase diagram and a new diagram is proposed. This new Ni-Al phase diagram explains a number of unusual steady-state solidification structures reported previously and provides a much simpler reaction scheme in the vicinity of the gamma(sup prime)-Ni2Al phase field.

  1. Interferon-gamma interferes with transforming growth factor-beta signaling through direct interaction of YB-1 with Smad3.

    PubMed

    Higashi, Kiyoshi; Inagaki, Yutaka; Fujimori, Ko; Nakao, Atsuhito; Kaneko, Hideo; Nakatsuka, Iwao

    2003-10-31

    Transforming growth factor-beta (TGF-beta) and interferon-gamma (IFN-gamma) exert antagonistic effects on collagen synthesis in human dermal fibroblasts. We have recently shown that Y box-binding protein YB-1 mediates the inhibitory effects of IFN-gamma on alpha2(I) procollagen gene (COL1A2) transcription through the IFN-gamma response element located between -161 and -150. Here we report that YB-1 counter-represses TGF-beta-stimulated COL1A2 transcription by interfering with Smad3 bound to the upstream sequence around -265 and subsequently by interrupting the Smad3-p300 interaction. Western blot and immunofluorescence analyses using inhibitors for Janus kinases or casein kinase II suggested that the casein kinase II-dependent signaling pathway mediates IFN-gamma-induced nuclear translocation of YB-1. Down-regulation of endogenous YB-1 expression by double-stranded YB-1-specific RNA abrogated the transcriptional repression of COL1A2 by IFN-gamma in the absence and presence of TGF-beta. In transient transfection assays, overexpression of YB-1 in human dermal fibroblasts exhibited antagonistic actions against TGF-beta and Smad3. Physical interaction between Smad3 and YB-1 was demonstrated by immunoprecipitation-Western blot analyses, and electrophoretic mobility shift assays using the recombinant Smad3 and YB-1 proteins indicated that YB-1 forms a complex with Smad3 bound to the Smad-binding element. Glutathione S-transferase pull-down assays showed that YB-1 binds to the MH1 domain of Smad3, whereas the central and carboxyl-terminal regions of YB-1 were required for its interaction with Smad3. YB-1 also interferes with the Smad3-p300 interaction by its preferential binding to p300. Altogether, the results provide a novel insight into the mechanism by which IFN-gamma/YB-1 counteracts TGF-beta/Smad3. They also indicate that IFN-gamma/YB-1 inhibits COL1A2 transcription by dual actions: via the IFN-gamma response element and through a cross-talk with the TGF

  2. Evaluation of gamma interferon (IFN-gamma)-induced protein 10 (IP-10) responses for detection of cattle infected with Mycobacterium bovis: comparisons to IFN-gamma responses

    USDA-ARS?s Scientific Manuscript database

    Gamma interferon (IFN-gamma)-induced protein 10 (IP-10) has recently shown promise as a diagnostic biomarker of Mycobacterium tuberculosis infection of humans. The aim of the current study was to compare IP-10 and IFN-gamma responses upon Mycobacterium bovis infection in cattle using archived sample...

  3. Cell death is induced by ciglitazone, a peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) agonist, independently of PPAR{gamma} in human glioma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Myoung Woo; Kim, Dae Seong; Kim, Hye Ryung

    Highlights: Black-Right-Pointing-Pointer Greater than 30 {mu}M ciglitazone induces cell death in glioma cells. Black-Right-Pointing-Pointer Cell death by ciglitazone is independent of PPAR{gamma} in glioma cells. Black-Right-Pointing-Pointer CGZ induces cell death by the loss of MMP via decreased Akt. -- Abstract: Peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) regulates multiple signaling pathways, and its agonists induce apoptosis in various cancer cells. However, their role in cell death is unclear. In this study, the relationship between ciglitazone (CGZ) and PPAR{gamma} in CGZ-induced cell death was examined. At concentrations of greater than 30 {mu}M, CGZ, a synthetic PPAR{gamma} agonist, activated caspase-3 and induced apoptosis inmore » T98G cells. Treatment of T98G cells with less than 30 {mu}M CGZ effectively induced cell death after pretreatment with 30 {mu}M of the PPAR{gamma} antagonist GW9662, although GW9662 alone did not induce cell death. This cell death was also observed when cells were co-treated with CGZ and GW9662, but was not observed when cells were treated with CGZ prior to GW9662. In cells in which PPAR{gamma} was down-regulated cells by siRNA, lower concentrations of CGZ (<30 {mu}M) were sufficient to induce cell death, although higher concentrations of CGZ ( Greater-Than-Or-Slanted-Equal-To 30 {mu}M) were required to induce cell death in control T98G cells, indicating that CGZ effectively induces cell death in T98G cells independently of PPAR{gamma}. Treatment with GW9662 followed by CGZ resulted in a down-regulation of Akt activity and the loss of mitochondrial membrane potential (MMP), which was accompanied by a decrease in Bcl-2 expression and an increase in Bid cleavage. These data suggest that CGZ is capable of inducing apoptotic cell death independently of PPAR{gamma} in glioma cells, by down-regulating Akt activity and inducing MMP collapse.« less

  4. Preparation and characterization of gamma irradiated Starch/PVA/ZnO nanocomposite films

    NASA Astrophysics Data System (ADS)

    Akhavan, Azam; Khoylou, Farah; Ataeivarjovi, Ebrahim

    2017-09-01

    In this study starch/PVA/ZnO nanocomposite films with antibacterial activity were prepared and modified using gamma irradiation for packaging applications. ZnO nanoparticles (NPs) were synthesized from Zn(OH)2 using hydrothermal process and characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The prepared ZnO NPs were incorporated into blend films of starch and poly (vinyl alcohol) (PVA) with different concentrations from 0.1 to 1 wt% using solution casting method. The results of SEM confirmed good dispersion of ZnO NPs into the films while FTIR spectroscopy showed interactions between ZnO particles and starch/PVA blend. The nanocomposite films were irradiated at the dose range of 1-5 kGy. It was found that gamma irradiation induces a significant reduction in water absorptions of the films at the dose of 3 kGy. Different trends were observed for the tensile and elongation properties of the irradiated films. Based on the results, the bacterial growth on the films was effectively inhibited when the dosage of ZnO NPs was only 0.5 wt%.

  5. Comparative gene expression profiles induced by PPAR{gamma} and PPAR{alpha}/{gamma} agonists in rat hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogue, Alexandra; Universite de Rennes 1, 35065 Rennes Cedex; Biologie Servier, 45520 Gidy

    2011-07-01

    Species-differential toxic effects have been described with PPAR{alpha} and PPAR{gamma} agonists between rodent and human liver. PPAR{alpha} agonists (fibrates) are potent hypocholesterolemic agents in humans while they induce peroxisome proliferation and tumors in rodent liver. By contrast, PPAR{gamma} agonists (glitazones) and even dual PPAR{alpha}/{gamma} agonists (glitazars) have caused idiosyncratic hepatic and nonhepatic toxicities in human without evidence of any damage in rodent during preclinical studies. The mechanisms involved in such differences remain largely unknown. Several studies have identified the major target genes of PPAR{alpha} agonists in rodent liver while no comprehensive analysis has been performed on gene expression changes inducedmore » by PPAR{gamma} and dual PPAR{alpha}/{gamma} agonists. Here, we investigated transcriptomes of rat hepatocytes after 24 h treatment with two PPAR{gamma} (troglitazone and rosiglitazone) and two PPAR{alpha}/{gamma} (muraglitazar and tesaglitazar) agonists. Although, hierarchical clustering revealed a gene expression profile characteristic of each PPAR agonist class, only a limited number of genes was specifically deregulated by glitazars. Functional analyses showed that many genes known as PPAR{alpha} targets were also modulated by both PPAR{gamma} and PPAR{alpha}/{gamma} agonists and quantitative differences in gene expression profiles were observed between these two classes. Moreover, most major genes modulated in rat hepatocytes were also found to be deregulated in rat liver after tesaglitazar treatment. Taken altogether, these results support the conclusion that differential toxic effects of PPAR{alpha} and PPAR{gamma} agonists in rodent liver do not result from transcriptional deregulation of major PPAR target genes but rather from qualitative and/or quantitative differential responses of a small subset of genes.« less

  6. Gamma Ray Pulsars: Multiwavelength Observations

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2004-01-01

    High-energy gamma rays are a valuable tool for studying particle acceleration and radiation in the magnetospheres of energetic pulsars. The seven or more pulsars seen by instruments on the Compton Gamma Ray Observatory (CGRO) show that: the light curves usually have double-peak structures (suggesting a broad cone of emission); gamma rays are frequently the dominant component of the radiated power; and all the spectra show evidence of a high-energy turnover. For all the known gamma-ray pulsars, multiwavelength observations and theoretical models based on such observations offer the prospect of gaining a broad understanding of these rotating neutron stars. The Gamma-ray Large Area Space Telescope (GLAST), now in planning for a launch in 2006, will provide a major advance in sensitivity, energy range, and sky coverage.

  7. Influence of gamma radiation on ethanol production from yeast.

    PubMed

    Del-Mastro, N L; Gimenes, J J; Villavicencio, A L

    1988-01-01

    The effect of up to 6,000 Gray (Gy; 1 Gy = 1 J/k) 60Co gamma irradiation on the fermentative capacity of two strains of yeast cells is reported. Ethanol production by the irradiated cells was unchanged for both strains at 3,000 Gy and reduced 43% for only one strain at 6,000 Gy in spite of a marked decrease in viability at higher doses (2-8% at 3,000 Gy and 0.01% at 6,000 Gy). These results suggest that the yeast fermentation system for converting sugar to alcohol is a relatively radioresistant process and not inhibited by the stable by-products produced during irradiation. Furthermore, these data indicate that radiation polymerization for immobilizing these cells should not interfere with their fermentation capacity.

  8. Chromosomal localization and partial genomic structure of the human peroxisome proliferator activated receptor-gamma (hPPAR gamma) gene.

    PubMed

    Beamer, B A; Negri, C; Yen, C J; Gavrilova, O; Rumberger, J M; Durcan, M J; Yarnall, D P; Hawkins, A L; Griffin, C A; Burns, D K; Roth, J; Reitman, M; Shuldiner, A R

    1997-04-28

    We determined the chromosomal localization and partial genomic structure of the coding region of the human PPAR gamma gene (hPPAR gamma), a nuclear receptor important for adipocyte differentiation and function. Sequence analysis and long PCR of human genomic DNA with primers that span putative introns revealed that intron positions and sizes of hPPAR gamma are similar to those previously determined for the mouse PPAR gamma gene[13]. Fluorescent in situ hybridization localized hPPAR gamma to chromosome 3, band 3p25. Radiation hybrid mapping with two independent primer pairs was consistent with hPPAR gamma being within 1.5 Mb of marker D3S1263 on 3p25-p24.2. These sequences of the intron/exon junctions of the 6 coding exons shared by hPPAR gamma 1 and hPPAR gamma 2 will facilitate screening for possible mutations. Furthermore, D3S1263 is a suitable polymorphic marker for linkage analysis to evaluate PPAR gamma's potential contribution to genetic susceptibility to obesity, lipoatrophy, insulin resistance, and diabetes.

  9. Structure and creep rupture properties of directionally solidified eutectic gamma/gamma-prime-alpha alloy

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.; Wirth, G.

    1982-01-01

    A simple ternary gamma/gamma-prime-alpha alloy of nominal composition (wt-%) Ni-32Mo-6Al has been directionally solidified at 17 mm/h and tested in creep rupture at 1073, 1173, and 1273 K. A uniform microstructure consisting of square-shaped Mo fibers in a gamma + gamma-prime matrix was found despite some variation in the molybdenum and aluminum concentrations along the growth direction. Although the steady-state creep rate is well described by the normal stress temperature equation, the stress exponent (12) and the activation energy (580 kJ/mol) are high. The rupture behavior is best characterized by the Larson-Miller parameter where the constant equals 20.

  10. The development of gamma-gamma-prime lamellar structures in a nickel-base superalloy during elevated temperature mechanical testing

    NASA Technical Reports Server (NTRS)

    Mackay, R. A.; Ebert, L. J.

    1985-01-01

    The kinetics of the formation and subsequent development of the directional coarsening of the gamma-prime precipitate in model Ni-Al-Mo-Ta superalloy single crystals are examined during tensile creep under various stress levels at 982 and 1038 C. Special attention is given to the gamma and gamma-prime relation to creep time and strain in order to trace the changing gamma-gamma-prime morphology. Directional coarsening of gamma-prime is found to begin during primary creep and its rate is shown to increase with an increase in temperature or stress level. The length of gamma-prime thickness increased linearly with time up to a plateau reached after the onset of steady state creep. The raft thickness, equal to the gamma-prime size, remained constant at this initial value up through the onset of the tertiary creep. The interlaminar spacing indicates the stability of directionally coarsened structure.

  11. Critical role of FcR gamma-chain, LAT, PLCgamma2 and thrombin in arteriolar thrombus formation upon mild, laser-induced endothelial injury in vivo.

    PubMed

    Kalia, Neena; Auger, Jocelyn M; Atkinson, Ben; Watson, Steve P

    2008-05-01

    The role of collagen receptor complex GPVI-FcR gamma-chain, PLCgamma2 and LAT in laser-induced thrombosis is unclear. Controversy surrounds whether collagen is exposed in this model or whether thrombosis is dependent on thrombin. This study hypothesized that collagen exposure plays a critical role in thrombus formation in this model, which was tested by investigating contributions of FcR gamma-chain, LAT, PLCgamma2 and thrombin. Thrombi were monitored using intravital microscopy in anesthetized wild-type and FcR gamma-chain, LAT and PLCgamma2 knockout mice. Hirudin (thrombin inhibitor) was administered to wild-type and FcR gamma-chain knockout mice. Significantly reduced thrombus formation was observed in FcR gamma-chain and PLCgamma2 knockouts with a greater decrease observed in LAT knockouts. Dramatic reduction was observed in wild-types treated with hirudin, with abolished thrombus formation only observed in FcR gamma-chain knockouts treated with hirudin. GPVI-FcR gamma-chain, LAT and PLCgamma2 are essential for thrombus generation and stability in this laser-induced model of injury. More importantly, a greater role for LAT was identified, which may reflect a role for it downstream of a second matrix protein receptor. However, inhibition of platelet activation by matrix proteins and thrombin generation are both required to maximally prevent thrombus formation.

  12. Gamma-hadron families and scaling violation

    NASA Technical Reports Server (NTRS)

    Gaisser, T. K.; Stanev, T.; Wrotniak, J. A.

    1985-01-01

    For three different interaction models we have simulated gamma-hadron families, including the detector (Pamir emulsion chamber) response. Rates of gamma families, hadrons, and hadron-gamma ratios were compared with experiments.

  13. Shelf life extension of minimally processed ready-to-cook (RTC) cabbage by gamma irradiation.

    PubMed

    Banerjee, Aparajita; Chatterjee, Suchandra; Variyar, Prasad S; Sharma, Arun

    2016-01-01

    Gamma irradiation (0.5-2.5 kGy) in combination with low temperature (4-15 °C) storage was attempted to increase shelf life of ready-to-cook shredded cabbage wrapped in cling films. A maximum extension in shelf life of 8 days, while retaining the microbial and sensory quality, was obtained with an irradiation dose of 2 kGy and storage at 10 °C. Gamma irradiation also inhibited browning of shredded cabbage at their cut edges resulting in enhanced visual appeal. An increase in total antioxidant activity was observed with respect to DPPH and hydroxyl radical scavenging ability while the nitric oxide radical scavenging activity and ferric reducing property remained unaffected with irradiation. Total phenolic, flavonoid and vitamin C content remained unchanged due to irradiation. No significant migration of additives from cling films into stimulant water was observed up to a radiation dose of 2 kGy thus demonstrating the feasibility of such films for above applications.

  14. The Gamma-Ray Imager GRI

    NASA Astrophysics Data System (ADS)

    Wunderer, Cornelia B.; GRI Collaboration

    2006-09-01

    Observations of the gamma-ray sky reveal the most powerful sources and the most violent events in the Universe. While at lower wavebands the observed emission is generally dominated by thermal processes, the gamma-ray sky provides us with a view on the non-thermal Universe. Here particles are accelerated to extreme relativistic energies by mechanisms which are still poorly understood, and nuclear reactions are synthesizing the basic constituents of our world. Cosmic accelerators and cosmic explosions are the major science themes that are addressed in the gamma-ray regime. With the INTEGRAL observatory, ESA has provided a unique tool to the astronomical community revealing hundreds of sources, new classes of objects, extraordinary views of antimatter annihilation in our Galaxy, and fingerprints of recent nucleosynthesis processes. While INTEGRAL provides the global overview over the soft gamma-ray sky, there is a growing need to perform deeper, more focused investigations of gamma-ray sources. In soft X-rays a comparable step was taken going from the Einstein and the EXOSAT satellites to the Chandra and XMM/Newton observatories. Technological advances in the past years in the domain of gamma-ray focusing using Laue diffraction and multilayer coated mirror techniques have paved the way towards a gamma-ray mission, providing major improvements compared to past missions regarding sensitivity and angular resolution. Such a future Gamma-Ray Imager will allow to study particle acceleration processes and explosion physics in unprecedented detail, providing essential clues on the innermost nature of the most violent and most energetic processes in the Universe.

  15. Arthritis is inhibited in Borrelia-primed and infected interleukin-17A-deficient mice after administration of anti-gamma-interferon, anti-tumor necrosis factor alpha and anti-interleukin-6 antibodies.

    PubMed

    Kuo, Joseph; Warner, Thomas F; Schell, Ronald F

    2017-08-31

    The role that cytokines play in the induction of Lyme arthritis is gradually being delineated. We showed previously that severe arthritis developed in a T-cell-driven murine model, even in mice lacking interleukin-17A (IL-17A) and administered anti-gamma-interferon (IFN-γ) antibody. Increased levels of tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6), two pro-inflammatory cytokines, were detected in cultures of popliteal lymph node cells obtained from these mice. We hypothesized that concomitantly administered anti-IL-6, anti-TNF-α and anti-IFN-γ antibodies would inhibit the development of arthritis in IL-17A-deficient mice. Our results showed that swelling of the hind paws and histopathological changes consistent with arthritis were significantly reduced in IL-17A-deficient mice that administered the three anti-cytokine antibodies. These results suggest that treatment with multiple anti-cytokine antibodies can abrogate the induction of Lyme arthritis in mice. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. The main source of ambient GABA responsible for tonic inhibition in the mouse hippocampus.

    PubMed

    Glykys, Joseph; Mody, Istvan

    2007-08-01

    The extracellular space of the brain contains gamma-aminobutyric acid (GABA) that activates extrasynaptic GABA(A) receptors mediating tonic inhibition. The source of this GABA is uncertain: it could be overspill of vesicular release, non-vesicular leakage, reverse transport, dying cells or glia. Using a novel approach, we simultaneously measured phasic and tonic inhibitory currents and assessed their correlation. Enhancing or diminishing vesicular GABA release in hippocampal neurons caused highly correlated changes in the two inhibitions. During high-frequency phasic inhibitory bursts, tonic current was also enhanced as shown by simulating the summation of IPSCs and by recordings in knockout mice devoid of tonic inhibitory current. When vesicular release was reduced by blocking action potentials or the vesicular GABA transporter, phasic and tonic currents decreased in a correlated fashion. Our results are consistent with most of hippocampal tonic inhibitory current being mediated by GABA released from the very vesicles responsible for activating phasic inhibition.

  17. The Andromeda galaxy in gamma-rays

    NASA Technical Reports Server (NTRS)

    Oezel, M. E.; Berkhuijsen, E. M.

    1987-01-01

    Implications of high-energy gamma-ray observations of the Andromeda galaxy with the next generation of satellites Gamma-1 and GRO are discussed in the context of the origin of cosmic rays and gamma-ray processes. The present estimate of the total gamma-ray flux of this galaxy at energies above 100 MeV is a factor of about three less than previous estimates.

  18. Morning nutrition and executive function processes in preadolescents: modulation of frontal event-related theta, beta and gamma EEG oscillations during a go/ no-go task

    USDA-ARS?s Scientific Manuscript database

    Executive functions (i.e., goal-directed behavior such as inhibition and flexibility of action) have been linked to frontal brain regions and to covariations in oscillatory brain activity, e.g., theta and gamma activity. We studied the effects of morning nutritional status on executive function rel...

  19. Notch inhibition counteracts Paneth cell death in absence of caspase-8.

    PubMed

    Jeon, M K; Kaemmerer, E; Schneider, U; Schiffer, M; Klaus, C; Hennings, J; Clahsen, T; Ackerstaff, T; Niggemann, M; Schippers, A; Longerich, T; Sellge, G; Trautwein, C; Wagner, N; Liedtke, C; Gassler, N

    2018-05-16

    Opposing activities of Notch and Wnt signaling regulate mucosal barrier homeostasis and differentiation of intestinal epithelial cells. Specifically, Wnt activity is essential for differentiation of secretory cells including Wnt3-producing Paneth cells, whereas Notch signaling strongly promotes generation of absorptive cells. Loss of caspase-8 in intestinal epithelium (casp8 ∆int ) is associated with fulminant epithelial necroptosis, severe Paneth cell death, secondary intestinal inflammation, and an increase in Notch activity. Here, we found that pharmacological Notch inhibition with dibenzazepine (DBZ) is able to essentially rescue the loss of Paneth cells, deescalate the inflammatory phenotype, and reduce intestinal permeability in casp8 ∆int mice. The secretory cell metaplasia in DBZ-treated casp8 ∆int animals is proliferative, indicating for Notch activities partially insensitive to gamma-secretase inhibition in a casp8 ∆int background. Our data suggest that casp8 acts in the intestinal Notch network.

  20. Biosynthesis and N-glycosylation of human interferon-gamma. Asn25 and Asn97 differ markedly in how efficiently they are glycosylated and in their oligosaccharide composition.

    PubMed

    Sareneva, T; Mørtz, E; Tölö, H; Roepstorff, P; Julkunen, I

    1996-12-01

    Interferon-gamma (IFN-gamma) is a secretory glycoprotein produced by T cells in response to antigenic or mitogenic stimuli. We studied the kinetics of the synthesis, N-glycosylation, and secretion of IFN-gamma in human CD8+ T lymphocytes stimulated via T-cell receptor. Highly elevated IFN-gamma mRNA levels were found as early as 1 h after stimulation. Maximal IFN-gamma protein synthesis was observed 2-4 h after induction and appeared to correlate to steady-state IFN-gamma mRNA levels. As analyzed by pulse/chase experiments, the secretion of IFN-gamma from T cells was very rapid, the secretion half-time being approximately 20-25 min. Inhibition of N-glycosylation by tunicamycin dramatically reduced the expression of IFN-gamma, but did not block its secretion. Natural IFN-gamma is heterogeneously glycosylated and doubly, singly, and unglycosylated forms exist. Experiments performed in a cell-free translation/glycosylation system with mutated IFN-gamma constructs lacking either one of the potential glycosylation sites suggested that Asn25 is more efficiently glycosylated than Asn97. Site-specific oligosaccharide analysis of natural IFN-gamma by glycosidase treatment followed by matrix-assisted-laser-desorption-ionization mass spectrometry revealed considerable variation in the carbohydrate structures, with more than 30 different forms. The glycans at Asn25 consisted of fucosylated, mainly complex-type oligosaccharides, whereas the glycans at Asn97 were more heterogeneous, with hybrid and high-mannose structures. Our results emphasize the essential role of N-linked glycans in the biology of IFN-gamma and show that there is a considerable heterogeneity in the individual sugar chains of this important human cytokine.

  1. Directional gamma detector

    DOEpatents

    LeVert, Francis E.; Cox, Samson A.

    1981-01-01

    An improved directional gamma radiation detector has a collector sandwiched etween two layers of insulation of varying thicknesses. The collector and insulation layers are contained within an evacuated casing, or emitter, which releases electrons upon exposure to gamma radiation. Delayed electrons and electrons entering the collector at oblique angles are attenuated as they pass through the insulation layers on route to the collector.

  2. TGF-β2 induces Grb2 to recruit PI3-K to TGF-RII that activates JNK/AP-1-signaling and augments invasiveness of Theileria-transformed macrophages

    PubMed Central

    Haidar, Malak; Whitworth, Jessie; Noé, Gaelle; Liu, Wang Qing; Vidal, Michel; Langsley, Gordon

    2015-01-01

    Theileria-infected macrophages display many features of cancer cells such as heightened invasive capacity; however, the tumor-like phenotype is reversible by killing the parasite. Moreover, virulent macrophages can be attenuated by multiple in vitro passages and so provide a powerful model to elucidate mechanisms related to transformed macrophage virulence. Here, we demonstrate that in two independent Theileria-transformed macrophage cell lines Grb2 expression is down-regulated concomitant with loss of tumor virulence. Using peptidimer-c to ablate SH2 and SH3 interactions of Grb2 we identify TGF-receptor II and the p85 subunit of PI3-K, as Grb2 partners in virulent macrophages. Ablation of Grb2 interactions reduces PI3-K recruitment to TGF-RII and decreases PIP3 production, and dampens JNK phosphorylation and AP-1-driven transcriptional activity down to levels characteristic of attenuated macrophages. Loss of TGF-R>PI3-K>JNK>AP-1 signaling negatively impacts on virulence traits such as reduced JAM-L/ITG4A and Fos-B/MMP9 expression that contribute to virulent macrophage adhesion and invasiveness. PMID:26511382

  3. Gamma ray pulsars

    NASA Technical Reports Server (NTRS)

    Oegelman, H.; Ayasli, S.; Hacinliyan, A.

    1976-01-01

    Recent data from the high energy gamma ray experiment have revealed the existence of four pulsars emitting photons above 35 MeV. An attempt is made to explain the gamma ray emission from these pulsars in terms of an electron-photon cascade that develops in the magnetosphere of the pulsar. Although there is very little material above the surface of the pulsar, the very intense magnetic fields correspond to many radiation lengths which cause electrons to emit photons via magnetic bremsstrahlung and these photons to pair produce. The cascade develops until the mean photon energy drops below the pair production threshold which happens to be in the gamma ray range; at this stage the photons break out from the source.

  4. Highlights of GeV Gamma-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2010-01-01

    Because high-energy gamma rays are primarily produced by high-energy particle interactions, the gamma-ray survey of the sky by the Fermi Gamma-ray Space Telescope offers a view of sites of cosmic ray production and interactions. Gamma-ray bursts, pulsars, pulsar wind nebulae, binary sources, and Active Galactic Nuclei are all phenomena that reveal particle acceleration through their gamma-ray emission. Diffuse Galactic gamma radiation, Solar System gamma-ray sources, and energetic radiation from supernova remnants are likely tracers of high-energy particle interactions with matter and photon fields. This paper will present a broad overview of the constantly changing sky seen with the Large Area Telescope (LAT) on the Fermi spacecraft.

  5. Hard gamma radiation background from coding collimator of gamma telescope under space experiment conditions

    NASA Astrophysics Data System (ADS)

    Aleksandrov, A. P.; Berezovoy, A. N.; Galper, A. M.; Grachev, V. M.; Dmitrenko, V. V.; Kirillov-Ugryumov, V. G.; Lebedev, V. V.; Lyakhov, V. A.; Moiseyev, A. A.; Ulin, S. Y.

    1985-09-01

    Coding collimators are used to improve the angular resolution of gamma-ray telescopes at energies above 50 MeV. However, the interaction of cosmic rays with the collimation material can lead to the appearance of a gamma-ray background flux which can have a deleterious effect on measurement efficiency. An experiment was performed on the Salyut-6-Soyuz spacecraft system with the Elena-F small-scale gamma-ray telescope in order to measure the magnitude of this background. It is shown that, even at a zenith angle of approximately zero degrees (the angle at which the gamma-ray observations are made), the coding collimator has only an insignificant effect on the background conditions.

  6. Chronic allograft nephropathy: expression and localization of PAI-1 and PPAR-gamma.

    PubMed

    Revelo, Monica P; Federspiel, Charles; Helderman, Harold; Fogo, Agnes B

    2005-12-01

    Chronic allograft nephropathy (CAN) is a major cause of loss of renal allografts. Mechanisms postulated to be involved include sequelae of rejection, warm ischaemia time, drug toxicity, ongoing hypertension and dyslipidaemia. Plasminogen activator inhibitor-1 (PAI-1) is implicated not only in thrombosis, but also in fibrosis, by inhibiting matrix degradation, and is expressed in renal parenchymal cells as well as in macrophages. Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) is a member of the steroid receptor superfamily, and plays a major beneficial role in lipid regulation, insulin sensitivity and macrophage function, factors that may play a role in CAN. We therefore studied the expression of these molecules in CAN. All renal biopsy/nephrectomy files from Vanderbilt and Nashville VAMC from a 6 year period were reviewed to identify all renal transplant biopsies or nephrectomies more than 6 months after transplant with CAN. CAN was defined as fibrosis in the graft, vascular, interstitial or glomerular. All cases were scored for severity of fibrosis in vasculature (0-3 scale), glomeruli (% affected with either segmental and/or global sclerosis) and interstitial fibrosis (% of sample affected). PAI-1 and PPAR-gamma immunostaining was assessed on a 0-3 scale in glomeruli, vessels and tubules. Eighty-two patients with a total of 106 samples met entry criteria. The population consisted of 59 Caucasians and 23 African-Americans; 49 males, 33 females with average age 37.9+/-1.7 years. Average time after transplant at time of biopsy was 60.5+/-4.9 months (range 7-229). Glomerulosclerosis extent in CAN was on average 26.5+/-2.4% compared with 3.6+/-1.2% in normal control kidneys from native kidney cancer nephrectomies and 0% in transplanted kidney biopsies from patients obtained > or =6 months after transplantation without CAN. Native control kidneys showed mild interstitial fibrosis (8.0+/-1.2%), whereas transplant controls showed very minimal fibrosis (2

  7. Near-infrared and gamma-ray monitoring of TANAMI gamma-ray bright sources

    DOE PAGES

    Nesci, R.; Tosti, G.; Pursimo, T.; ...

    2013-06-18

    Context. We present that spectral energy distribution and its variability are basic tools for understanding the physical processes operating in active galactic nuclei (AGN). Aims. In this paper we report the results of a one-year near-infrared (NIR) and optical monitoring of a sample of 22 AGN known to be gamma-ray emitters, aimed at discovering correlations between optical and gamma-ray emission. Methods. We observed our objects with the Rapid Eye Mount (REM) telescope in J,H,K, and R bands nearly twice every month during their visibility window and derived light curves and spectral indexes. We also analyzed the gamma-ray data from themore » Fermi gamma-ray Space Telescope, making weekly averages. Results. Six sources were never detected during our monitoring, proving to be fainter than their historical Two micron all sky survey (2MASS) level. All of the sixteen detected sources showed marked flux density variability, while the spectral indexes remained unchanged within our sensitivity limits. Steeper sources showed, on average, a larger variability. From the NIR light curves we also computed a variability speed index for each detected source. Only one source (PKS 0208-512) underwent an NIR flare during our monitoring. Half of the sources showed a regular flux density trend on a one-year time scale, but do not show any other peculiar characteristic. The broadband spectral index α ro appears to be a good proxy of the NIR spectral index only for BL Lac objects. No clear correlation between NIR and gamma-ray data is evident in our data, save for PKS 0537-441, PKS 0521-360, PKS 2155-304, and PKS 1424-418. In conclusion, the gamma-ray/NIR flux ratio showed a large spread, QSO being generally gamma-louder than BL Lac, with a marked correlation with the estimated peak frequency (ν peak) of the synchrotron emission.« less

  8. Digital gamma-gamma coincidence HPGe system for environmental analysis.

    PubMed

    Marković, Nikola; Roos, Per; Nielsen, Sven Poul

    2017-08-01

    The performance of a new gamma-gamma coincidence spectrometer system for environmental samples analysis at the Center for Nuclear Technologies of the Technical University of Denmark (DTU) is reported. Nutech Coincidence Low Energy Germanium Sandwich (NUCLeGeS) system consists of two HPGe detectors in a surface laboratory with a digital acquisition system used to collect the data in time-stamped list mode with 10ns time resolution. The spectrometer is used in both anticoincidence and coincidence modes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Interaction between synaptic inhibition and glial-potassium dynamics leads to diverse seizure transition modes in biophysical models of human focal seizures.

    PubMed

    Y Ho, E C; Truccolo, Wilson

    2016-10-01

    How focal seizures initiate and evolve in human neocortex remains a fundamental problem in neuroscience. Here, we use biophysical neuronal network models of neocortical patches to study how the interaction between inhibition and extracellular potassium ([K (+)] o ) dynamics may contribute to different types of focal seizures. Three main types of propagated focal seizures observed in recent intracortical microelectrode recordings in humans were modelled: seizures characterized by sustained (∼30-60 Hz) gamma local field potential (LFP) oscillations; seizures where the onset in the propagated site consisted of LFP spikes that later evolved into rhythmic (∼2-3 Hz) spike-wave complexes (SWCs); and seizures where a brief stage of low-amplitude fast-oscillation (∼10-20 Hz) LFPs preceded the SWC activity. Our findings are fourfold: (1) The interaction between elevated [K (+)] o (due to abnormal potassium buffering by glial cells) and the strength of synaptic inhibition plays a predominant role in shaping these three types of seizures. (2) Strengthening of inhibition leads to the onset of sustained narrowband gamma seizures. (3) Transition into SWC seizures is obtained either by the weakening of inhibitory synapses, or by a transient strengthening followed by an inhibitory breakdown (e.g. GABA depletion). This reduction or breakdown of inhibition among fast-spiking (FS) inhibitory interneurons increases their spiking activity and leads them eventually into depolarization block. Ictal spike-wave discharges in the model are then sustained solely by pyramidal neurons. (4) FS cell dynamics are also critical for seizures where the evolution into SWC activity is preceded by low-amplitude fast oscillations. Different levels of elevated [K (+)] o were important for transitions into and maintenance of sustained gamma oscillations and SWC discharges. Overall, our modelling study predicts that the interaction between inhibitory interneurons and [K (+)] o glial buffering under

  10. Pre-immune state induced by chicken interferon gamma inhibits the replication of H1N1 human and H9N2 avian influenza viruses in chicken embryo fibroblasts.

    PubMed

    Yuk, Seong-Su; Lee, Dong-Hun; Park, Jae-Keun; Tseren-Ochir, Erdene-Ochir; Kwon, Jung-Hoon; Noh, Jin-Yong; Lee, Joong-Bok; Park, Seung-Yong; Choi, In-Soo; Song, Chang-Seon

    2016-04-27

    Interferon gamma (IFN-γ), an immunoregulatory cytokine, is known to control many microbial infections. In a previous study, chicken interferon gamma (chIFN-γ) was found to be up-regulated following avian influenza virus (AIV) infection in specific pathogen-free chickens. We aimed to investigate whether the pre-immune state induced by chIFN-γ could generate an antiviral response against influenza virus. We generated a chIFN-γ-expressing plasmid and transfected it into chicken embryo fibroblasts (CEFs) and then infected the cells with human origin H1N1 or avian origin H9N2 influenza viruses. Viral titers of culture medium were evaluated in MDCK cell and the viral RNA and IFN-stimulated genes (ISGs) were then quantified by real-time reverse transcriptase polymerase. To further evaluate the role of the antiviral effect of chIFN-γ by using a backward approach, synthetic small interfering RNAs (siRNA) targeting chIFN-γ were used to suppress chIFN-γ. The chIFN-γ-stimulated CEFs inhibited the replication of viral RNA (vRNA) and showed a mild decrease in the infectious virus load released in the culture medium. Compared to the mock-transfected control, the messenger RNA (mRNA) levels of type I IFNs and IFN-stimulated genes were up-regulated in the cells expressing chIFN-γ. After treatment with the siRNA, we detected a higher expression of viral genes than that observed in the mock-transfected control. Our results suggest that apart from the important role played by chIFN-γ in the antiviral state generated against influenza virus infection, the pre-immune state induced by chIFN-γ can be helpful in mitigating the propagation of influenza virus.

  11. Attenuated atherosclerotic lesions in apoe-fc gamma-chain-deficient hyperlipidemic mouse model is associated with inhibition of Th17 cells and promotion of regulatory T cells

    USDA-ARS?s Scientific Manuscript database

    Though the presence of antioxidized low-density lipoprotein IgG is well documented in clinical and animal studies, the role for Fc gamma Rs to the progression of atherosclerosis has not been studied in detail. In the current study, we investigated the role for activating Fc gamma R in the progressio...

  12. Gamma-ray line astrophysics

    NASA Technical Reports Server (NTRS)

    Lingenfelter, R. E.; Ramaty, R.

    1986-01-01

    Recent observations of gamma-ray line emission from solar flares, gamma-ray bursts, the galactic center, the interstellar medium and the jets of SS433 are reviewed. The implications of these observations on high energy processes in these sources are discussed.

  13. Registered particles onboard identification in the various apertures of GAMMA-400 space gamma-telescope

    NASA Astrophysics Data System (ADS)

    Arkhangelskaja, Irene

    2016-07-01

    GAMMA-400 (Gamma Astronomical Multifunctional Modular Apparatus) will be the gamma-telescope onboard international satellite gamma-observatory designed for particle registration in the wide energy band. Its parameters are optimized for detection of gamma-quanta with the energy ˜ 100 GeV in the main aperture. The main scientific goals of GAMMA-400 are to investigate fluxes of γ-rays and the electron-positron cosmic ray component possibly generated by dark matter particles decay or annihilation and to search for and study in detail discrete γ-ray sources, to investigate the energy spectra of Galactic and extragalactic diffuse γ-rays, and to study γ-ray bursts and γ-emission from the active Sun. This article presents analysis of detected events identification procedures and energy resolution in three apertures provide particles registration both from upper and lateral directions based on GAMMA-400 modeling due special designed software. Time and segmentation methods are used to reject backsplash (backscattering particles created when high energy γ-rays interact with the calorimeter's matter and move in the opposite direction) in the main aperture while only energy deposition analysis allows to reject this effect in the additional and lateral ones. The main aperture provides the best angular (all strip layers information analysis) and energy (energy deposition in the all detectors studying) resolution in the energy range 0.1 - 3 × 10^{3} GeV. The energy resolution in this band is 1%. Triggers in the main aperture will be formed using information about particle direction provided by time of flight system and presence of charged particle or backsplash signal formed according to analysis of energy deposition in combination of all two-layers anticoincidence systems individual detectors. In the additional aperture gamma-telescope allows to register events in the energy band 10 × 10^{-3} - 3 × 10^{3} GeV. The additional aperture energy resolution provides due to

  14. Mitochondria-dependent and -independent mechanisms in tumour necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis are both regulated by interferon-gamma in human breast tumour cells.

    PubMed Central

    Ruiz-Ruiz, Carmen; López-Rivas, Abelardo

    2002-01-01

    Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL/APO-2L) induces apoptosis in a variety of tumour cells upon binding to death receptors TRAIL-R1 and TRAIL-R2. Here we describe the sensitization by interferon (IFN)-gamma to TRAIL-induced apoptosis in the breast tumour cell lines MCF-7 and MDA-MB231. IFN-gamma promoted TRAIL-mediated activation of caspase-8, Bcl-2 interacting domain death agonist (Bid) degradation, Bcl-2-associated X protein (Bax) translocation to mitochondria, cytochrome c release to the cytosol and activation of caspase-9 in these cell lines. No changes in the expression of TRAIL receptors were observed upon IFN-gamma treatment. Overexpression of Bcl-2 in MCF-7 cells completely inhibited IFN-gamma-induced sensitization to TRAIL-mediated cell death. Interestingly, TRAIL-induced apoptosis was also clearly enhanced by IFN-gamma in caspase-3-overexpressing MCF-7 cells, in the absence of Bax translocation to mitochondria and cytochrome c release to the cytosol. In summary, our results suggest that IFN-gamma facilitates TRAIL-induced activation of mitochondria-regulated as well as mitochondria-independent apoptotic pathways in breast tumour cells. PMID:11936954

  15. GRI: The Gamma-Ray Imager mission

    NASA Astrophysics Data System (ADS)

    Knödlseder, J.; Gri Consortium

    Observations of the gamma-ray sky reveal the most powerful sources and the most violent events in the Universe While at lower wavebands the observed emission is generally dominated by thermal processes the gamma-ray sky provides us with a view on the non-thermal Universe Here particles are accelerated to extreme relativistic energies by mechanisms which are still poorly understood and nuclear reactions are synthesizing the basic constituents of our world Cosmic accelerators and cosmic explosions are the major science themes that are addressed in the gamma-ray regime With the INTEGRAL observatory ESA has provided a unique tool to the astronomical community and has put Europe in the lead in the field of gamma-ray astronomy INTEGRAL provides an unprecedented survey of the soft gamma-ray sky revealing hundreds of sources new classes of objects extraordinary views of antimatter annihilation in our Galaxy and fingerprints of recent nucleosynthesis processes While INTEGRAL has provided the global overview over the soft gamma-ray sky there is a growing need to perform deeper more focused investigations of gamma-ray sources In soft X-rays a comparable step was taken going from the Einstein satellite to the XMM Newton observatory Technological advances in the past years in the domain of gamma-ray focusing using Laue diffraction and multilayer-coated mirror techniques have paved the way towards a gamma-ray mission providing major improvements compared to past missions regarding sensitivity and angular resolution Such a

  16. Disruption of alpha beta but not of gamma delta T cell development by overexpression of the helix-loop-helix protein Id3 in committed T cell progenitors.

    PubMed Central

    Blom, B; Heemskerk, M H; Verschuren, M C; van Dongen, J J; Stegmann, A P; Bakker, A Q; Couwenberg, F; Res, P C; Spits, H

    1999-01-01

    Enforced expression of Id3, which has the capacity to inhibit many basic helix-loop-helix (bHLH) transcription factors, in human CD34(+) hematopoietic progenitor cells that have not undergone T cell receptor (TCR) gene rearrangements inhibits development of the transduced cells into TCRalpha beta and gamma delta cells in a fetal thymic organ culture (FTOC). Here we document that overexpression of Id3, in progenitors that have initiated TCR gene rearrangements (pre-T cells), inhibits development into TCRalpha beta but not into TCRgamma delta T cells. Furthermore, Id3 impedes expression of recombination activating genes and downregulates pre-Talpha mRNA. These observations suggest possible mechanisms by which Id3 overexpression can differentially affect development of pre-T cells into TCRalpha beta and gamma delta cells. We also observed that cell surface CD4(-)CD8(-)CD3(-) cells with rearranged TCR genes developed from Id3-transduced but not from control-transduced pre-T cells in an FTOC. These cells had properties of both natural killer (NK) and pre-T cells. These findings suggest that bHLH factors are required to control T cell development after the T/NK developmental checkpoint. PMID:10329625

  17. Gamma rays from Centaurus A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Nayantara, E-mail: nayan@phy.iitb.ac.in

    2008-06-15

    Centaurus A, the cosmic ray accelerator a few Mpc away from us, is possibly one of the nearest sources of extremely high energy cosmic rays. We investigate whether the gamma ray data currently available from Centaurus A in the GeV-TeV energy band can be explained with only proton-proton interactions. We show that for a single power law proton spectrum, mechanisms of {gamma}-ray production other than proton-proton interactions are needed inside this radio-galaxy to explain the gamma ray flux observed by EGRET, upper limits from HESS/CANGAROO-III and the correlated extremely energetic cosmic ray events observed by the Pierre Auger experiment. Inmore » future, with better {gamma}-ray data, and simultaneous observation with {gamma}-ray and cosmic ray detectors, it will be possible to carry out such studies on different sources in more detail.« less

  18. Application of gamma imaging techniques for the characterisation of position sensitive gamma detectors

    NASA Astrophysics Data System (ADS)

    Habermann, T.; Didierjean, F.; Duchêne, G.; Filliger, M.; Gerl, J.; Kojouharov, I.; Li, G.; Pietralla, N.; Schaffner, H.; Sigward, M.-H.

    2017-11-01

    A device to characterize position-sensitive germanium detectors has been implemented at GSI. The main component of this so called scanning table is a gamma camera that is capable of producing online 2D images of the scanned detector by means of a PET technique. To calibrate the gamma camera Compton imaging is employed. The 2D data can be processed further offline to obtain depth information. Of main interest is the response of the scanned detector in terms of the digitized pulse shapes from the preamplifier. This is an important input for pulse-shape analysis algorithms as they are in use for gamma tracking arrays in gamma spectroscopy. To validate the scanning table, a comparison of its results with a second scanning table implemented at the IPHC Strasbourg is envisaged. For this purpose a pixelated germanium detector has been scanned.

  19. Simultaneous beta and gamma spectroscopy

    DOEpatents

    Farsoni, Abdollah T.; Hamby, David M.

    2010-03-23

    A phoswich radiation detector for simultaneous spectroscopy of beta rays and gamma rays includes three scintillators with different decay time characteristics. Two of the three scintillators are used for beta detection and the third scintillator is used for gamma detection. A pulse induced by an interaction of radiation with the detector is digitally analyzed to classify the type of event as beta, gamma, or unknown. A pulse is classified as a beta event if the pulse originated from just the first scintillator alone or from just the first and the second scintillator. A pulse from just the third scintillator is recorded as gamma event. Other pulses are rejected as unknown events.

  20. Portable compton gamma-ray detection system

    DOEpatents

    Rowland, Mark S [Alamo, CA; Oldaker, Mark E [Pleasanton, CA

    2008-03-04

    A Compton scattered gamma-ray detector system. The system comprises a gamma-ray spectrometer and an annular array of individual scintillators. The scintillators are positioned so that they are arrayed around the gamma-ray spectrometer. The annular array of individual scintillators includes a first scintillator. A radiation shield is positioned around the first scintillator. A multi-channel analyzer is operatively connected to the gamma-ray spectrometer and the annular array of individual scintillators.

  1. Very High-Energy Gamma-Ray Sources.

    ERIC Educational Resources Information Center

    Weekes, Trevor C.

    1986-01-01

    Discusses topics related to high-energy, gamma-ray astronomy (including cosmic radiation, gamma-ray detectors, high-energy gamma-ray sources, and others). Also considers motivation for the development of this field, the principal results to date, and future prospects. (JN)

  2. Polysaccharides from Tricholoma matsutake and Lentinus edodes enhance 5-fluorouracil-mediated H22 cell growth inhibition.

    PubMed

    Ren, Ming; Ye, Lingyan; Hao, Xiaoshi; Ren, Zhixing; Ren, Shuping; Xu, Kun; Li, Juan

    2014-06-01

    Few studies have investigated the effects produced by combinations of polysaccharides and chemotherapeutic drugs in cancer treatment. We hypothesized that a combination of polysaccharides (COP) from Lentinus edodes and Tricholoma matsutake would improve the efficacy of 5-fluorouracil (5-FU)-mediated inhibition of H22 cell growth. Mice were injected H22 cells and then treated with either 5-FU, polysaccharides from Tricholoma matsutake (PTM), polysaccharides from Lentinus edodes (PL), PTM+PL, 5-FU+PTM, 5-FU+ PL, or 5-FU + COP. The tumor weight and volume, and splenic CD4 + and CD8 + T cell frequencies, were determined. Additionally, splenic natural killer (NK) cell and cytotoxic T lymphocyte (CTL) activities were assessed and the serum levels of tumor necrosis factor-alpha (TNF-alpha), Interleukin-2 (IL-2), and Interferon-gamma (IFN-gamma) were measured. Compared with mice from the control, 5-FU, PL, PTM, PTM + PL, 5-FU + PL, and 5-FU + PTM groups, mice treated with 5-FU + COP showed: (a) significantly reduced tumor weight and volume (P < 0.05); (b) significantly higher serum levels of TNF-alpha, IL-2, and IFN-gamma (P < 0.05); (c) significantly increased CD4+ and CD8+ T cell frequencies in the spleen (P < 0.05); and (d) significantly increased splenic NK cell and CTL activities (P < 0.05). The tumor weight and volume in mice treated with 5-FU+PL or 5-FU+PTM were significantly reduced compared with mice treated with 5-FU alone (P < 0.05). Serum levels of TNF-alpha, IL-2, and IFN-gamma, frequencies of CD4 + and CD8+ T cells in the spleen, and splenic NK and CTL activities were also significantly increased in mice treated with 5-FU+PL or 5-FU+PTM compared with mice treated with 5-FU alone (P < 0.05). Polysaccharides from Lentinus edodes and Tricholoma matsutake could enhance the efficacy of 5-FU-mediated H22 cell growth inhibition.

  3. [Inhibition rate of gamma-aminolevulinic acid dehydratase activity in erythrocytes as a reliable index for individual workers of low lead exposure].

    PubMed

    Hirano, H; Omichi, M; Ohishi, H; Ishikawa, K; Hirashima, N

    1983-09-01

    As the delta-aminolevulinic acid dehydratase (ALAD) activity in erythrocytes is decreased by lead exposure, we considered that a net reduction of ALAD activity by lead in blood should be the difference between the activity fully activated with zinc (Zn2+) and dithiothreitol (DTT) and that without activation. The optimal condition of activation of ALAD was found by addition of 0.25 mM of Zn2+ and 10 mM of DTT in the reaction mixture. Judging from our previous results that the amount of inhibition of ALAD activity can be represented as the rate of inhibition and is closely correlated with the dose of lead administered to rabbits, the inhibition rate of ALAD activity and lead content in blood (Pb-B) of lead workers were measured. The scatter diagram obtained from the inhibition rate and lead content in blood has two groups being divided at 50 micrograms/ml of Pb-B. In one group less than 50 micrograms/100 ml of Pb-B, the inhibition rate has been closely related to Pb-B., the regression equation being Y = 1.82 X + 11.7, and the correlation coefficient + 0.926. In another group more than 50 micrograms/100 ml of Pb-B the inhibition rate remained constant at the 90% level. Measurement of the inhibition rate suggests to have practical validity for monitoring lead exposure in workers, and by means of a nomograph lead content in blood can be estimated from the inhibition rate.

  4. Short-Term Effects of gamma-Irradiation on 1-Aminocyclopropane-1-Carboxylic Acid Metabolism in Early Climacteric Cherry Tomatoes : Comparison with Wounding.

    PubMed

    Larrigaudière, C; Latché, A; Pech, J C; Triantaphylidès, C

    1990-03-01

    gamma-Irradiation of early climacteric (breaker) cherry tomatoes (Lycopersicon pimpinellifollium L.) caused a sharp burst in ethylene production during the first hour. The extent of ethylene production was dose dependent and was maximum at about 3 kilograys. The content of 1-aminocyclopropane-1-carboxylic acid (ACC), followed the same evolution as ethylene production, while malonyl ACC increased steadily with time in irradiated fruits. The burst in ethylene production was accompanied by a sharp stimulation of ACC synthase activity which began 15 minutes after irradiation. The stimulation was completely prevented by cycloheximide, but not by actinomycin d or cordycepin. In contrast with irradiation, mechanical wounding continuously stimulated ethylene production over several hours. gamma-Irradiation and cordycepin applied to wounded tissues both caused the cessation of this continuous increase, but the initial burst was still persisting. These data suggest that gamma-irradiation, like wounding, stimulates the translation of preexisting mRNAs. It also reduces, at least temporarily, the subsequent transcription-dependent stimulation of ethylene production. gamma-Irradiation greatly inhibited the activity of ethylene-forming enzyme at doses higher than 1 kilogray. Such sensitivity is in accordance with a highly integrated membranebound enzyme.

  5. Updated level scheme of 172Yb from 171Yb(nth, γ) reaction studied via gamma-gamma coincidence spectrometer

    NASA Astrophysics Data System (ADS)

    Nguyen, Ngoc Anh; Nguyen, Xuan Hai; Pham, Dinh Khang; Nguyen, Quang Hung; Ho, Huu Thang

    2017-08-01

    This paper provides the updated information on the level scheme of 172Yb nucleus studied via 171Yb(nth, γ) reaction using the gamma-gamma coincidence spectrometer at Dalat Nuclear Research Institute (Viet Nam). The latter is used because of its advantages in achieving the low Compton background as well as in identifying the correlated gamma transitions. We have detected in total the energies and intensities of 128 two-step gamma cascades corresponding to 79 primary transitions. By comparing the measured data with those extracted from the ENSDF library, 61 primary gamma transitions and corresponding energy levels together with 20 secondary gamma transitions are found to be the same as the ENSDF data. Beside that, 18 additional primary gamma transitions and corresponding energy levels plus 108 secondary ones are not found to currently exist in this library and they are therefore considered as the new data.

  6. Modulation of the allergen-induced human IgE response in Hu-SCID mice: inhibitory effect of human recombinant IFN-gamma and allergen-derived lipopeptide.

    PubMed

    Duez, C; Gras-Masse, H; Hammad, H; Akoum, H; Didierlaurent, A; André, C; Tonnel, A B; Pestel, J

    2001-01-01

    We have previously established a model to study the in vivo human IgE response using humanized SCID mice. Allergic SCID mice were obtained following intraperitoneal injection with mononuclear cells from Dermatophagoides pteronyssinus (Dpt)-sensitive patients, and sensitization by Dpt allergen intraperitoneal injection (immunization) or Dpt aerosol (inhalation). Human serum IgE was measured in allergic SCID mice after administration of human recombinant IFN-gamma or the lipopeptide LP 52-71 (derived from peptide p52-71 from Der p 1, Dpt major allergen, coupled to a lipophilic moiety), during the immunization or the inhalation phase. IFN-gamma inhibited human IgE production when given at the time of immunization, but not during inhalation. This effect was long-lasting as Dpt aerosol, given one month after immunization and IFN-gamma administration, failed to increase IgE levels. Unlike Dpt or p52-71, LP 52-71 failed to induce human IgE production at day 14 and 21 after its injection, but did inhibit the development of the IgE response after a secondary Dpt-challenge. Moreover, LP 52-71 administration 14 days after Dpt inhalation decreased IgE levels, in contrast to peptide 52-71, which increased IgE levels. Thus, taken together these results indicate that the development of the human IgE response in allergic SCID mice can be modulated by modified allergen and a Th1 cytokine.

  7. Measurement of the {sup 157}Gd(n,{gamma}) reaction with the DANCE {gamma} calorimeter array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chyzh, A.; Dashdorj, D.; Lawrence Livermore National Laboratory, Livermore, California 94551

    2011-07-15

    The {sup 157}Gd(n,{gamma}) reaction was measured with the DANCE {gamma} calorimeter (consisting of 160 BaF{sub 2} scintillation detectors) at the Los Alamos Neutron Science Center. The multiplicity distributions of the {gamma} decay were used to determine the resonance spins up to E{sub n}=300 eV. The {gamma}-ray energy spectra for different multiplicities were measured for the s-wave resonances. The shapes of these spectra were compared with simulations based on the use of the DICEBOX statistical model code. Simulations showed that the scissors mode is required not only for the ground-state transitions but also for transitions between excited states.

  8. Lunar occultations for gamma-ray source measurements

    NASA Technical Reports Server (NTRS)

    Koch, David G.; Hughes, E. B.; Nolan, Patrick L.

    1990-01-01

    The unambiguous association of discrete gamma-ray sources with objects radiating at other wavelengths, the separation of discrete sources from the extended emission within the Galaxy, the mapping of gamma-ray emission from nearby galaxies and the measurement of structure within a discrete source cannot presently be accomplished at gamma-ray energies. In the past, the detection processes used in high-energy gamma-ray astronomy have not allowed for good angular resolution. This problem can be overcome by placing gamma-ray detectors on the moon and using the horizon as an occulting edge to achieve arcsec resolution. For purposes of discussion, this concept is examined for gamma rays above 100 MeV for which pair production dominates the detection process and locally-generated nuclear gamma rays do not contribute to the background.

  9. Mercuric iodine room temperature gamma-ray detectors

    NASA Technical Reports Server (NTRS)

    Patt, Bradley E.; Markakis, Jeffrey M.; Gerrish, Vernon M.; Haymes, Robert C.; Trombka, Jacob I.

    1990-01-01

    high resolution mercuric iodide room temperature gamma-ray detectors have excellent potential as an essential component of space instruments to be used for high energy astrophysics. Mercuric iodide detectors are being developed both as photodetectors used in combination with scintillation crystals to detect gamma-rays, and as direct gamma-ray detectors. These detectors are highly radiation damage resistant. The list of applications includes gamma-ray burst detection, gamma-ray line astronomy, solar flare studies, and elemental analysis.

  10. About cosmic gamma ray lines

    NASA Astrophysics Data System (ADS)

    Diehl, Roland

    2017-06-01

    Gamma ray lines from cosmic sources convey the action of nuclear reactions in cosmic sites and their impacts on astrophysical objects. Gamma rays at characteristic energies result from nuclear transitions following radioactive decays or high-energy collisions with excitation of nuclei. The gamma-ray line from the annihilation of positrons at 511 keV falls into the same energy window, although of different origin. We present here the concepts of cosmic gamma ray spectrometry and the corresponding instruments and missions, followed by a discussion of recent results and the challenges and open issues for the future. Among the lessons learned are the diffuse radioactive afterglow of massive-star nucleosynthesis in 26Al and 60Fe gamma rays, which is now being exploited towards the cycle of matter driven by massive stars and their supernovae; large interstellar cavities and superbubbles have been recognised to be of key importance here. Also, constraints on the complex processes making stars explode as either thermonuclear or core-collapse supernovae are being illuminated by gamma-ray lines, in this case from shortlived radioactivities from 56Ni and 44Ti decays. In particular, the three-dimensionality and asphericities that have recently been recognised as important are enlightened in different ways through such gamma-ray line spectroscopy. Finally, the distribution of positron annihilation gamma ray emission with its puzzling bulge-dominated intensity disctribution is measured through spatially-resolved spectra, which indicate that annihilation conditions may differ in different parts of our Galaxy. But it is now understood that a variety of sources may feed positrons into the interstellar medium, and their characteristics largely get lost during slowing down and propagation of positrons before annihilation; a recent microquasar flare was caught as an opportunity to see positrons annihilate at a source.

  11. Stimulus-induced dissociation of neuronal firing rates and local field potential gamma power and its relationship to the blood oxygen level-dependent signal in macaque primary visual cortex

    PubMed Central

    Bartolo, M J; Gieselmann, M A; Vuksanovic, V; Hunter, D; Sun, L; Chen, X; Delicato, L S; Thiele, A

    2011-01-01

    The functional magnetic resonance imaging (fMRI) blood oxygenation level-dependent (BOLD) signal is regularly used to assign neuronal activity to cognitive function. Recent analyses have shown that the local field potential (LFP) gamma power is a better predictor of the fMRI BOLD signal than spiking activity. However, LFP gamma power and spiking activity are usually correlated, clouding the analysis of the neural basis of the BOLD signal. We show that changes in LFP gamma power and spiking activity in the primary visual cortex (V1) of the awake primate can be dissociated by using grating and plaid pattern stimuli, which differentially engage surround suppression and cross-orientation inhibition/facilitation within and between cortical columns. Grating presentation yielded substantial V1 LFP gamma frequency oscillations and significant multi-unit activity. Plaid pattern presentation significantly reduced the LFP gamma power while increasing population multi-unit activity. The fMRI BOLD activity followed the LFP gamma power changes, not the multi-unit activity. Inference of neuronal activity from the fMRI BOLD signal thus requires detailed a priori knowledge of how different stimuli or tasks activate the cortical network. PMID:22081989

  12. The relationship between gamma frequency and running speed differs for slow and fast gamma rhythms in freely behaving rats

    PubMed Central

    Zheng, Chenguang; Bieri, Kevin Wood; Trettel, Sean Gregory; Colgin, Laura Lee

    2015-01-01

    In hippocampal area CA1 of rats, the frequency of gamma activity has been shown to increase with running speed (Ahmed and Mehta, 2012). This finding suggests that different gamma frequencies simply allow for different timings of transitions across cell assemblies at varying running speeds, rather than serving unique functions. However, accumulating evidence supports the conclusion that slow (~25–55 Hz) and fast (~60–100 Hz) gamma are distinct network states with different functions. If slow and fast gamma constitute distinct network states, then it is possible that slow and fast gamma frequencies are differentially affected by running speed. In this study, we tested this hypothesis and found that slow and fast gamma frequencies change differently as a function of running speed in hippocampal areas CA1 and CA3, and in the superficial layers of the medial entorhinal cortex (MEC). Fast gamma frequencies increased with increasing running speed in all three areas. Slow gamma frequencies changed significantly less across different speeds. Furthermore, at high running speeds, CA3 firing rates were low, and MEC firing rates were high, suggesting that CA1 transitions from CA3 inputs to MEC inputs as running speed increases. These results support the hypothesis that slow and fast gamma reflect functionally distinct states in the hippocampal network, with fast gamma driven by MEC at high running speeds and slow gamma driven by CA3 at low running speeds. PMID:25601003

  13. GammaLib and ctools. A software framework for the analysis of astronomical gamma-ray data

    NASA Astrophysics Data System (ADS)

    Knödlseder, J.; Mayer, M.; Deil, C.; Cayrou, J.-B.; Owen, E.; Kelley-Hoskins, N.; Lu, C.-C.; Buehler, R.; Forest, F.; Louge, T.; Siejkowski, H.; Kosack, K.; Gerard, L.; Schulz, A.; Martin, P.; Sanchez, D.; Ohm, S.; Hassan, T.; Brau-Nogué, S.

    2016-08-01

    The field of gamma-ray astronomy has seen important progress during the last decade, yet to date no common software framework has been developed for the scientific analysis of gamma-ray telescope data. We propose to fill this gap by means of the GammaLib software, a generic library that we have developed to support the analysis of gamma-ray event data. GammaLib was written in C++ and all functionality is available in Python through an extension module. Based on this framework we have developed the ctools software package, a suite of software tools that enables flexible workflows to be built for the analysis of Imaging Air Cherenkov Telescope event data. The ctools are inspired by science analysis software available for existing high-energy astronomy instruments, and they follow the modular ftools model developed by the High Energy Astrophysics Science Archive Research Center. The ctools were written in Python and C++, and can be either used from the command line via shell scripts or directly from Python. In this paper we present the GammaLib and ctools software versions 1.0 that were released at the end of 2015. GammaLib and ctools are ready for the science analysis of Imaging Air Cherenkov Telescope event data, and also support the analysis of Fermi-LAT data and the exploitation of the COMPTEL legacy data archive. We propose using ctools as the science tools software for the Cherenkov Telescope Array Observatory.

  14. Thiazolidinedione, a peroxisome proliferator-activated receptor-gamma ligand, modulates the E-cadherin/beta-catenin system in a human pancreatic cancer cell line, BxPC-3.

    PubMed

    Ohta, Tetsuo; Elnemr, Ayman; Yamamoto, Miyuki; Ninomiya, Itasu; Fushida, Sachio; Nishimura, Gen-Ichi; Fujimura, Takashi; Kitagawa, Hirohisa; Kayahara, Masato; Shimizu, Koichi; Yi, Shuangqin; Miwa, Koichi

    2002-07-01

    Activation of peroxisome proliferator-activated receptor (PPAR)-gamma induces terminal differentiation and growth inhibition associated with G1 cell cycle arrest in some cancer cells. The multifunctional molecule beta-catenin performs important roles in intercellular adhesion and signal transduction. However, no report has focused on actions of PPAR-gamma in regulating the E-cadherin/beta-catenin system. We examined whether thiazolidinedione (TZD), a potent PPAR-gamma ligand, could modulate the E-cadherin/beta-catenin system in a human pancreatic cancer cell line, BxPC-3, that has been found to express PPAR-gamma. According to Western blotting, TZD markedly increased differentiation markers including E-cadherin and carcinoembryonic antigen, while beta-catenin did not change significantly. In untreated cells, fluorescence immunostaining demonstrated beta-catenin predominantly in the cytoplasm and/or nucleus; in TZD-treated cells, beta-catenin localization had dramatically shifted to the plasma membrane, in association with increased E-cadherin at this site. Thus, a PPAR-gamma ligand appears to participate not only in induction of differentiation in pancreatic cancer cells, but also in the regulation of the E-cadherin/beta-catenin system. Such ligands may prove clinically useful as cytostatic anticancer agents.

  15. Administration of the peroxisomal proliferator-activated receptor {gamma} agonist pioglitazone during fractionated brain irradiation prevents radiation-induced cognitive impairment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao Weiling; Payne, Valerie; Tommasi, Ellen

    2007-01-01

    Purpose: We hypothesized that administration of the anti-inflammatory peroxisomal proliferator-activated receptor {gamma} (PPAR{gamma}) agonist pioglitazone (Pio) to adult male rats would inhibit radiation-induced cognitive impairment. Methods and Materials: Young adult male F344 rats received one of the following: (1) fractionated whole brain irradiation (WBI); 40 or 45 Gy {gamma}-rays in 4 or 4.5 weeks, respectively, two fractions per week and normal diet; (2) sham-irradiation and normal diet; (3) WBI plus Pio (120 ppm) before, during, and for 4 or 54 weeks postirradiation; (4) sham-irradiation plus Pio; or (5) WBI plus Pio starting 24h after completion of WBI. Results: Administration ofmore » Pio before, during, and for 4 or 54 weeks after WBI prevented Radiation-induced cognitive impairment. Administration of Pio for 54 weeks starting after completion of fractionated WBI substantially but not significantly reduced Radiation-induced cognitive impairment. Conclusions: These findings offer the promise of improving the quality of life and increasing the therapeutic window for brain tumor patients.« less

  16. Melatonin inhibits the development of 2,4-dinitrofluorobenzene-induced atopic dermatitis-like skin lesions in NC/Nga mice.

    PubMed

    Kim, Tae-Ho; Jung, Jung-A; Kim, Gun-Dong; Jang, An-Hee; Ahn, Hyun-Jong; Park, Yong Seek; Park, Cheung-Seog

    2009-11-01

    Atopic dermatitis (AD) is a common disease in children, and epicutaneous treatment with a chemical hapten such as 2,4-dinitrofluorobenzene (DNFB) evokes an AD-like reaction in NC/Nga mice under specific pathogen-free conditions. Melatonin (N-acetyl-5-methoxytryptamine) is synthesized by the pineal gland, has several different physiologic functions, which include seasonal reproduction control, immune system modulation, free radical scavenging, and inflammatory suppression. In the present study, we investigated whether melatonin suppresses DNFB-induced AD-like skin lesions in NC/Nga mice. The topical administration of melatonin to DNFB-treated NC/Nga mice was found to inhibit ear thickness increases and the skin lesions induced by DNFB. Furthermore, interleukin (IL)-4 and interferon (IFN)-gamma secretion by activated CD4(+) T cells from the draining lymph nodes of DNFB-treated NC/Nga mice were significantly inhibited by melatonin, and total IgE levels in serum were reduced. Our findings suggest that melatonin suppresses the development of AD-like dermatitis in DNFB-treated NC/Nga mice by reducing total IgE in serum, and IL-4 and IFN-gamma production by activated CD4(+) T cells.

  17. Observation of gamma ray bursts and flares by the EGRET telescope on the Compton Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Schneid, E. J.; Bertsch, D. L.; Fichtel, C. E.; Hartman, R. C.; Hunter, S. D.; Kwok, P. W.; Mattox, J. R.; Sreekumar, P.; Thompson, D. J.; Kanbach, G.

    1992-01-01

    The Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory has observed energetic gamma ray bursts and flares. On May 3, 1991, EGRET detected a gamma ray burst both in the energy measuring NaI (Tl) scintillator and independently in the spark chamber imaging assembly. The NaI spectra were accumulated by a special BURST mode of EGRET. The spectra were measured over a range from 1 to 200 MeV, in three sequential spectra of 1,2, and 4 seconds. During the peak of the burst, six individual gamma rays were detected in the spark chamber, allowing a determination of the burst arrival direction. The intense flares of June were also detected. A solar flare on June 4 was observed to last for several minutes and for a brief time, less than a minute, had significant emission of gamma rays exceeding 150 MeV.

  18. A gamma-gamma coincidence/anticoincidence spectrometer for low-level cosmogenic (22)Na/(7)Be activity ratio measurement.

    PubMed

    Zhang, Weihua; Ungar, Kurt; Stukel, Matthew; Mekarski, Pawel

    2014-04-01

    In this study, a digital gamma-gamma coincidence/anticoincidence spectrometer was developed and examined for low-level cosmogenic (22)Na and (7)Be in air-filter sample monitoring. The spectrometer consists of two bismuth germanate scintillators (BGO) and an XIA LLC Digital Gamma Finder (DGF)/Pixie-4 software and card package. The spectrometer design allows a more selective measurement of (22)Na with a significant background reduction by gamma-gamma coincidence events processing. Hence, the system provides a more sensitive way to quantify trace amounts of (22)Na than normal high resolution gamma spectrometry providing a critical limit of 3 mBq within a 20 h count. The use of a list-mode data acquisition technique enabled simultaneous determination of (22)Na and (7)Be activity concentrations using a single measurement by coincidence and anticoincidence mode respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Gamma Ray Spectroscopy and SASSYER

    NASA Astrophysics Data System (ADS)

    Pauerstein, Benjamin; Bonniwell, Cain; Allmond, J. M.; Beausang, C. W.

    2009-10-01

    An experiment was performed to study the Gd and Tb nuclei resulting from a 27 MeV proton beam on a 156Gd target. This was conducted at Lawrence Berkeley National Laboratory using the STARS/LIBERACE array. The main focus of the experiment was on charged particle channels (p,d) into 155Gd and (p,t) into 154Gd. However, the trigger was either gamma-gamma or particle-gamma so new data was also obtained on 155Tb nuclei following fusion evaporation reactions. Preliminary analysis was conducted at Wright Nuclear Structure Lab where RADWARE programs were used to analyze the data and search for unknown gamma rays. A second, separate, experiment was conducted using the SASSYER (a gas-filled separator at Yale). In this experiment, fission fragments from a 252Cf source were focused to a DSSD and a Ge detector was used to search for either gamma-decay from long lived isomers in the fission fragments or to find gammas from recoil-beta-decay tagging on the fission fragments. The data collection seems to have gone smoothly, and the data is currently being sorted for analysis. This work was supported by the US Department of Energy under grant numbers DE-FG02-52NA26206 and DE-FG02-05ER41379.

  20. Gamma ray spectroscopy in astrophysics. [conferences

    NASA Technical Reports Server (NTRS)

    Cline, T. L. (Editor); Ramaty, R. (Editor)

    1978-01-01

    Experimental and theoretical aspects of gamma ray spectroscopy in high energy astrophysics are discussed. Line spectra from solar, stellar, planetary, and cosmic gamma rays are examined as well as HEAO investigations, the prospects of a gamma ray observatory, and follow-on X-ray experiments in space.

  1. Attrition resistant gamma-alumina catalyst support

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singleton, Alan H.; Oukaci, Rachid; Goodwin, James G.

    2006-03-14

    A .gamma.-alumina catalyst support having improved attrition resistance produced by a method comprising the steps of treating a particulate .gamma.-alumina material with an acidic aqueous solution comprising water and nitric acid and then, prior to adding any catalytic material thereto, calcining the treated .gamma.-alumina.

  2. Resistance of a gamma/gamma prime - delta directionally solidified eutectic alloy to recrystallization

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Scheuermann, C. M.; Andrews, C. W.

    1975-01-01

    The lamellar directionally solidified nickel-base eutectic alloy gamma/gamma prime-delta has potential as an advanced turbine blade material. The microstructural stability of this alloy was investigated. Specimens were plastically deformed by uniform compression or Brinell indentation, then annealed between 705 and 1120 C. Microstructural changes observed after annealing included gamma prime coarsening, pinch-off and spheroidization of delta lamellae, and the appearance of an unidentified blocky phase in surface layers. All but the first of these was localized in severely deformed regions, suggesting that microstructural instability is not a serious problem in the use of this alloy.

  3. Gamma-ray astronomy: From Fermi up to the HAWC high-energy {gamma}-ray observatory in Sierra Negra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carraminana, Alberto; Collaboration: HAWC Collaboration

    Gamma-rays represent the most energetic electromagnetic window for the study of the Universe. They are studied both from space at MeV and GeV energies, with instruments like the Fermi{gamma}-ray Space Telescope, and at TeV energies with ground based instruments profiting of particle cascades in the atmosphere and of the Cerenkov radiation of charged particles in the air or in water. The Milagro gamma-ray observatory represented the first instrument to successfully implement the water Cerenkov technique for {gamma}-ray astronomy, opening the ground for the more sensitive HAWC {gamma}-ray observatory, currently under development in the Sierra Negra site and already providing earlymore » science results.« less

  4. CCN5, a Novel Transcriptional Repressor of the Transforming Growth Factor β Signaling Pathway ▿

    PubMed Central

    Sabbah, Michèle; Prunier, Céline; Ferrand, Nathalie; Megalophonos, Virginie; Lambein, Kathleen; De Wever, Olivier; Nazaret, Nicolas; Lachuer, Joël; Dumont, Sylvie; Redeuilh, Gérard

    2011-01-01

    CCN5 is a member of the CCN (connective tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed) family and was identified as an estrogen-inducible gene in estrogen receptor-positive cell lines. However, the role of CCN5 in breast carcinogenesis remains unclear. We report here that the CCN5 protein is localized mostly in the cytoplasm and in part in the nucleus of human tumor breast tissue. Using a heterologous transcription assay, we demonstrate that CCN5 can act as a transcriptional repressor presumably through association with histone deacetylase 1 (HDAC1). Microarray gene expression analysis showed that CCN5 represses expression of genes associated with epithelial-mesenchymal transition (EMT) as well as expression of key components of the transforming growth factor β (TGF-β) signaling pathway, prominent among them TGF-βRII receptor. We show that CCN5 is recruited to the TGF-βRII promoter, thereby providing a mechanism by which CCN5 restricts transcription of the TGF-βRII gene. Consistent with this finding, CCN5, we found, functions to suppress TGF-β-induced transcriptional responses and invasion that is concomitant with EMT. Thus, our data uncovered CCN5 as a novel transcriptional repressor that plays an important role in regulating tumor progression functioning, at least in part, by inhibiting the expression of genes involved in the TGF-β signaling cascade that is known to promote EMT. PMID:21262769

  5. Vasodilator-stimulated phosphoprotein promotes activation of hepatic stellate cells by regulating Rab11-dependent plasma membrane targeting of transforming growth factor beta receptors.

    PubMed

    Tu, Kangsheng; Li, Jiachu; Verma, Vikas K; Liu, Chunsheng; Billadeau, Daniel D; Lamprecht, Georg; Xiang, Xiaoyu; Guo, Luyang; Dhanasekaran, Renumathy; Roberts, Lewis R; Shah, Vijay H; Kang, Ningling

    2015-01-01

    Liver microenvironment is a critical determinant for development and progression of liver metastasis. Under transforming growth factor beta (TGF-β) stimulation, hepatic stellate cells (HSCs), which are liver-specific pericytes, transdifferentiate into tumor-associated myofibroblasts that promote tumor implantation (TI) and growth in the liver. However, the regulation of this HSC activation process remains poorly understood. In this study, we tested whether vasodilator-stimulated phosphoprotein (VASP) of HSCs regulated the TGF-β-mediated HSC activation process and tumor growth. In both an experimental liver metastasis mouse model and cancer patients, colorectal cancer cells reaching liver sinusoids induced up-regulation of VASP and alpha-smooth muscle actin (α-SMA) in adjacent HSCs. VASP knockdown in HSCs inhibited TGF-β-mediated myofibroblastic activation of HSCs, TI, and growth in mice. Mechanistically, VASP formed protein complexes with TGF-β receptor II (TβRII) and Rab11, a Ras-like small GTPase and key regulator of recycling endosomes. VASP knockdown impaired Rab11 activity and Rab11-dependent targeting of TβRII to the plasma membrane, thereby desensitizing HSCs to TGF-β1 stimulation. Our study demonstrates a requirement of VASP for TGF-β-mediated HSC activation in the tumor microenvironment by regulating Rab11-dependent recycling of TβRII to the plasma membrane. VASP and its effector, Rab11, in the tumor microenvironment thus present therapeutic targets for reducing TI and metastatic growth in the liver. © 2014 by the American Association for the Study of Liver Diseases.

  6. RADIATION GENETICS IN WHEAT. VII. COMPARISON OF RADIATION EFFECTS OF BETA- AND GAMMA-RAYS ON DIPLOID WHEAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsumura, S.

    1962-01-01

    Seeds of Triticum monococcum flavescens were soaked in P/sup 32/ and I/ sup 131/solutions for 2 days before sowing, to compare the effects of beta and gamma radiations. Radioactive solutions of pH 6-7 contained 0.05-0.8 mc/gr P/sup 32/ and 0.2--0.8 mc/g I/sup 131/. For comparison, seeds soaked in water for 2 days were exposed to gamma radiation with Co/sup 60/ at the dosages 2.5, 5, 10, and 20 kr. The growth of seedlings, height of mature plants, single-spike fertility, and chromosome aberrations of treated plants in X/sub 1/ and chlorophyll mutations in X/sub 2/ were compared for beta and gammamore » irradiation. The higher the dosage of beta and gamma rays, the more delayed were emergence and growth of seedlings and the lower were survival rate, height of mature plants, and fertility. The relation between the inhibition of seedling growth and dosage of beta and gamma radiations coincides roughly with that between the decrease of survival rate or- fertility and dosage. There was no emergence of seedlings at 20 kr gamma radiation and 0.8 mc/g P/sup 32/ beta radiation. The effects of beta radiation from 0.15-0.2 mc/g P/sup 32/ and 0.8 mc/g I/sup 131/ solutions correspond roughly to those of 2.5 kr gamma radiation. As to chromosome aberrations and chlorophyll mutations, the effects of 2.5 kr gamma radiation coincide roughly with those of 0.1 mc/g P/sup 32/ and 0.6-0.8 mc/g I/sup 131/ solution. If it is assumed that the effects of beta radiation are confined only to the embryo, then a 0.2 mc/g P/sup 32/ solution equals about 2.4 krad. This will account for the present data. (auth)« less

  7. Interferon-gamma: biologic functions and HCV therapy (type I/II) (1 of 2 parts).

    PubMed

    Gattoni, A; Parlato, A; Vangieri, B; Bresciani, M; Derna, R

    2006-01-01

    This review is aimed at exhaustively presenting and discussing the interferon-gamma (IFN-gamma), a cytokine that plays an important role in inducing and modulating an array of immune responses. A review of the most significant and recent clinical trials was performed. Although IFN-gamma has some antiviral activity, it is much less active in this regard than type I IFNs. IFN-gamma is involved in the regulation of nearly all phases of the immune and inflammatory responses, including the activation and differentiation of T cells, B cells, NK cells, macrophages, and others. It is therefore best regarded as a distint immunoregulatory cytokine. IFN-gamma secretion is a hallmark of Th1 lymphocytes. It is also secreted by nearly all CD8 T cells, by some Th0 cells, and by NK cells. Each of these cell types secretes IFN-gamma only when activated, usually as part of immune response and especially in response to IL-2 and IL-12. IFN-gamma production is inhibited by IL-4, IL-10, TGFbeta, glucocorticoids, cyclosporin A and FK506. Nearly all cell types express the heterodimeric receptor for IFN-beta and respond to this cytokine by increasing the surface expression of class I MHC proteins. As a result, virtually any cell in the vicinity of an IFN-beta-secreting cell becomes more efficient at presenting endogenous antigens and hence a better target for cytotoxic killing if it harbors an intracellular pathogen. Unlike the type I IFNs, IFN-gamma also increases the expression of class II MHC proteins on professional APCs, and so promotes antigen presentation to helper T cells as well. It also induces de novo expression of class II MHC proteins on venular endothelial cells and on some other epithelial and connective tissue cells that do not otherwise express them, thus enabling these cell types to function as temporary APCs at sites of intense immune reactions. The effector functions of NK cells are to lyse virus-infected cells and to secrete IFN-gamma, which activates macrofages to

  8. Joining of Gamma Titanium Aluminides

    DTIC Science & Technology

    2002-09-01

    AFRL-ML-WP-TR-2003-4036 JOINING OF GAMMA TITANIUM ALUMINIDES LTC William A. Baeslack, III Metals Branch (AFRL/MLLM) Metals, Ceramics, and...GAMMA TITANIUM ALUMINIDES 5c. PROGRAM ELEMENT NUMBER 62102F 5d. PROJECT NUMBER MO2R 5e. TASK NUMBER 10 6. AUTHOR(S) LTC William A...comparatively discusses the results of research and development performed on the joining of gamma titanium aluminides during the past two decades. Although

  9. Gamma-Ray Astronomy Technology Needs

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Cannizzo, J. K.

    2012-01-01

    In recent decades gamma-ray observations have become a valuable tool for studying the universe. Progress made in diverse 8re1lS such as gamma-ray bursts (GRBs), nucleosynthesis, and active galactic nuclei (AGNs) has complimented and enriched our astrophysical understanding in many ways. We present an overview of current and future planned space y-ray missions and discussion technology needs for- the next generation of space gamma-ray instruments.

  10. Celecoxib Induced Tumor Cell Radiosensitization by Inhibiting Radiation Induced Nuclear EGFR Transport and DNA-Repair: A COX-2 Independent Mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dittmann, Klaus H.; Mayer, Claus; Ohneseit, Petra A.

    2008-01-01

    Purpose: The purpose of the study was to elucidate the molecular mechanisms mediating radiosensitization of human tumor cells by the selective cyclooxygenase (COX)-2 inhibitor celecoxib. Methods and Materials: Experiments were performed using bronchial carcinoma cells A549, transformed fibroblasts HH4dd, the FaDu head-and-neck tumor cells, the colon carcinoma cells HCT116, and normal fibroblasts HSF7. Effects of celecoxib treatment were assessed by clonogenic cell survival, Western analysis, and quantification of residual DNA damage by {gamma}H{sub 2}AX foci assay. Results: Celecoxib treatment resulted in a pronounced radiosensitization of A549, HCT116, and HSF7 cells, whereas FaDu and HH4dd cells were not radiosensitized. The observedmore » radiosensitization could neither be correlated with basal COX-2 expression pattern nor with basal production of prostaglandin E2, but was depended on the ability of celecoxib to inhibit basal and radiation-induced nuclear transport of epidermal growth factor receptor (EGFR). The nuclear EGFR transport was strongly inhibited in A549-, HSF7-, and COX-2-deficient HCT116 cells, which were radiosensitized, but not in FaDu and HH4dd cells, which resisted celecoxib-induced radiosensitization. Celecoxib inhibited radiation-induced DNA-PK activation in A549, HSF7, and HCT116 cells, but not in FaDu and HH4dd cells. Consequentially, celecoxib increased residual {gamma}H2AX foci after irradiation, demonstrating that inhibition of DNA repair has occurred in responsive A549, HCT116, and HSF7 cells only. Conclusions: Celecoxib enhanced radiosensitivity by inhibition of EGFR-mediated mechanisms of radioresistance, a signaling that was independent of COX-2 activity. This novel observation may have therapeutic implications such that COX-2 inhibitors may improve therapeutic efficacy of radiation even in patients whose tumor radioresistance is not dependent on COX-2.« less

  11. Sensitivity to Antibiotics of Bacteria Exposed to Gamma Radiation Emitted from Hot Soils of the High Background Radiation Areas of Ramsar, Northern Iran.

    PubMed

    Mortazavi, Seyed Mohammad Javad; Zarei, Samira; Taheri, Mohammad; Tajbakhsh, Saeed; Mortazavi, Seyed Alireza; Ranjbar, Sahar; Momeni, Fatemeh; Masoomi, Samaneh; Ansari, Leila; Movahedi, Mohammad Mehdi; Taeb, Shahram; Zarei, Sina; Haghani, Masood

    2017-04-01

    Over the past several years our laboratories have investigated different aspects of the challenging issue of the alterations in bacterial susceptibility to antibiotics induced by physical stresses. To explore the bacterial susceptibility to antibiotics in samples of Salmonella enterica subsp. enterica serovar Typhimurium ( S. typhimurium ), Staphylococcus aureus , and Klebsiella pneumoniae after exposure to gamma radiation emitted from the soil samples taken from the high background radiation areas of Ramsar, northern Iran. Standard Kirby-Bauer test, which evaluates the size of the zone of inhibition as an indicator of the susceptibility of different bacteria to antibiotics, was used in this study. The maximum alteration of the diameter of inhibition zone was found for K. pneumoniae when tested for ciprofloxacin. In this case, the mean diameter of no growth zone in non-irradiated control samples of K. pneumoniae was 20.3 (SD 0.6) mm; it was 14.7 (SD 0.6) mm in irradiated samples. On the other hand, the minimum changes in the diameter of inhibition zone were found for S. typhimurium and S. aureus when these bacteria were tested for nitrofurantoin and cephalexin, respectively. Gamma rays were capable of making significant alterations in bacterial susceptibility to antibiotics. It can be hypothesized that high levels of natural background radiation can induce adaptive phenomena that help microorganisms better cope with lethal effects of antibiotics.

  12. Prospects for future very high-energy gamma-ray sky survey: Impact of secondary gamma rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inoue, Yoshiyuki; Kalashev, Oleg E.; Kusenko, Alexander

    2014-02-01

    Very high-energy gamma-ray measurements of distant blazars can be well explained by secondary gamma rays emitted by cascades induced by ultra-high-energy cosmic rays. The secondary gamma rays will enable one to detect a large number of blazars with future ground based gamma-ray telescopes such as Cherenkov Telescope Array (CTA). We show that the secondary emission process will allow CTA to detect 100, 130, 150, 87, and 8 blazars above 30 GeV, 100 GeV, 300 GeV, 1 TeV, and 10 TeV, respectively, up to z~8 assuming the intergalactic magnetic field (IGMF) strength B=10-17 G and an unbiased all sky survey withmore » 0.5 h exposure at each field of view, where total observing time is ~540 h. These numbers will be 79, 96, 110, 63, and 6 up to z~5 in the case of B=10-15 G. This large statistics of sources will be a clear evidence of the secondary gamma-ray scenarios and a new key to studying the IGMF statistically. We also find that a wider and shallower survey is favored to detect more and higher redshift sources even if we take into account secondary gamma rays.« less

  13. The control and data acquisition structure for the GAMMA-400 space gamma-telescope

    NASA Astrophysics Data System (ADS)

    Arkhangelskiy, Andrey

    2016-07-01

    The GAMMA-400 space project is intended for precision investigation of the cosmic gamma-emission in the energy band from keV region up to several TeV, electrons and positrons fluxes from ˜~1~GeV up to ˜~10~TeV and high energy cosmic-ray nuclei fluxes. A description of the control and data acquisition structure for gamma-telescope involved in the GAMMA 400 space project is given. The technical capabilities of all specialized equipment providing the functioning of the scientific instrumentation and satellite support systems are unified in a single structure. Control of the scientific instruments is maintained using one-time pulse radio commands and program commands transmitted via onboard control system and scientific data acquisition system. Up to 100~GByte of data per day can be transferred to the ground segment of the project. The correctness of the proposed and implemented structure, engineering solutions and electronic elemental base selection has been verified experimentally with the scientific complex prototype in the laboratory conditions.

  14. Gamma-ray Output Spectra from 239 Pu Fission

    DOE PAGES

    Ullmann, John

    2015-05-25

    The gamma-ray multiplicities, individual gamma-ray energy spectra, and total gamma energy spectra following neutron-induced fission of 239Pu were measured using the DANCE detector at Los Alamos. Corrections for detector response were made using a forward-modeling technique based on propagating sets of gamma rays generated from a paramaterized model through a GEANT model of the DANCE array and adjusting the parameters for best fit to the measured spectra. The results for the gamma-ray spectrum and multiplicity are in general agreement with previous results, but the measured total gamma-ray energy is about 10% higher. We found that a dependence of the gamma-raymore » spectrum on the gamma-ray multplicity was also observed. Finally, global model calculations of the multiplicity and gamma energy distributions are in good agreement with the data, but predict a slightly softer total-energy distribution.« less

  15. Regeneration of Murine Hair Follicles is Inhibited by Low-Dose-Rate Gamma Irradiation.

    PubMed

    Sugaya, Kimihiko; Hirobe, Tomohisa; Ishihara, Yoshie; Inoue, Sonoe

    2016-10-01

    To determine whether the effects of low-dose-rate gamma (γ) irradiation are identifiable in the regeneration of murine hair follicles, we irradiated whole bodies of C57BL/10JHir mice in the first telogen phase of the hair cycle with 137 Cs γ-rays. The mice were examined for effects on hair follicles, including number, morphology, and pigmentation in the second anagen phase. Effects of γ-radiation on melanocyte stem cells were also investigated by the indirect immunolabeling of tyrosinase-related protein 2 (TRP2). Irradiated skin showed a decrease in hair follicle density and the induction of curved hair follicles along with the presence of white hairs and hypopigmented hair bulbs. There was a small, but not significant, change in the number of TRP2-positive melanocyte stem cells in the hair bulge region of the irradiated skin. These results suggest that low-dose rate γ-irradiation does not deplete melanocyte stem cells, but can damage stem cells and progenitors for both keratinocytes and melanocytes, thereby affecting the structure and pigmentation of regenerated hair follicles in the 2 nd anagen phase.

  16. Inactivation of avirulent Yersinia pestis in Butterfield's phosphate buffer and frankfurters by UVC (254 nm) and gamma radiation.

    PubMed

    Sommers, Christopher H; Cooke, Peter H

    2009-04-01

    Yersinia pestis is the causative agent of plague. Although rare, pharyngeal plague in humans has been associated with consumption or handling of meat prepared from infected animals. The risks of contracting plague from consumption of deliberately contaminated food are currently unknown. Gamma radiation is a penetrating form of electromagnetic radiation, and UVC radiation is used for decontamination of liquids or food surfaces. Gamma radiation D10-values (the radiation dose needed to inactivate 1 log unit pathogen) were 0.23 (+/-0.01) and 0.31 (+/-0.03) kGy for avirulent Y. pestis inoculated into Butterfield's phosphate buffer and onto frankfurter surfaces, respectively, at 0 degree C. A UVC radiation dose of 0.25 J/cm2 inactivated avirulent Y. pestis suspended in Butterfield's phosphate buffer. UVC radiation doses of 0.5 to 4.0 J/cm2 inactivated 0.97 to 1.20 log units of the Y. pestis surface inoculated onto frankfurters. A low gamma radiation dose of 1.6 kGy could provide a 5-log reduction and a UVC radiation dose of 1 to 4 J/cm2 would provide a 1-log reduction of Y. pestis surface inoculated onto frankfurters. Y. pestis was capable of growth on frankfurters during refrigerated storage (10 degrees C). Gamma radiation of frankfurters inhibited the growth of Y. pestis during refrigerated storage, and UVC radiation delayed the growth of Y. pestis.

  17. Gamma-Ray Pulsar Candidates for GLAST

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.

    2008-01-01

    The Gamma-ray Large Area Space Telescope (GLAST) will be launched this year, and its Large Area Telescope (LAT) is expected to discover scores to hundreds of gamma-ray pulsars. This poster discusses which of the over 1700 known pulsars, mostly visible only at radio frequencies, are likely to emit greater than 100 MeV gamma rays with intensities detectable by the LAT. The main figure of merit used to select gamma-ray pulsar candidates is sqrt(E-dot)/d2, where E-dot is the energy loss due to rotational spin-down, and d is the distance to the pulsar. The figure of merit incorporates spin-down flux at earth (proportional to E-dot/d2) times efficiency, assumed proportional to l/sqrt(E-dot). A few individual objects are cited to illustrate the issues. Since large E-dot pulsars also tend to have large timing noise and occasional glitches, their ephemerides can become inaccurate in weeks to months. To detect and study the gamma-ray emission the photons must be accurately tagged with the pulse phase. With hours to days between gamma-ray photon arrival times from a pulsar and months to years of LAT exposure needed for good detections, GLAST will rely on radio and X-ray timing measurements throughout the continuous gamma-ray observations. The poster will describe efforts to coordinate pulsar timing of the candidate gamma-ray pulsars.

  18. Gamma-Ray Pulsar Candidates for GLAST

    NASA Technical Reports Server (NTRS)

    Thompson, David J.; Smith, D. A.; Dumora, D.; Guillemot, L.; Parent, D.; Reposeur, T.; Grove, E.; Romani, R. W.; Thorsett, S. E.

    2007-01-01

    The Gamma-ray Large Area Space Telescope (GLAST) will be launched less than a year from now, and its Large Area Telescope (LAT) is expected to discover scores to hundreds of gamma-ray pulsars. This poster discusses which of the over 1700 known pulsars, mostly visible only at radio Erequencies, are likely to emit greater than l00 MeV gamma rays with intensities detectable by the LAT. The main figure of merit used to select gamma-ray pulsar candidates is sqrt(E-dot)/d^2, where E-dot is the energy loss due to rotational spindown, and d is the distance to the pulsar. The figure of merit incorporates spin-down flux at earth (proportional to E-dot/d^2) times efficiency, assumed proportional to 1/sqrt(E-dot). A few individual objects are cited to illustrate the issues. Since large E-dot pulsars also tend to have large timing noise and occasional glitches, their ephemerides can become inaccurate in weeks to months. To detect and study the gamma-ray emission the photons must be accurately tagged with the pulse phase. With hours to days between gamma-ray photon arrival times from a pulsar and months to years of LAT exposure needed for good detections, GLAST will need timing measurements throughout the continuous gamma-ray observations. The poster will describe efforts to coordinate pulsar timing of the candidate gamma-ray pulsars.

  19. The structure, logic of operation and distinctive features of the system of triggers and counting signals formation for gamma-telescope GAMMA-400

    NASA Astrophysics Data System (ADS)

    Topchiev, N. P.; Galper, A. M.; Arkhangelskiy, A. I.; Arkhangelskaja, I. V.; Kheymits, M. D.; Suchkov, S. I.; Yurkin, Y. T.

    2017-01-01

    Scientific project GAMMA-400 (Gamma Astronomical Multifunctional Modular Apparatus) relates to the new generation of space observatories intended to perform an indirect search for signatures of dark matter in the cosmic-ray fluxes, measurements of characteristics of diffuse gamma-ray emission and gamma-rays from the Sun during periods of solar activity, gamma-ray bursts, extended and point gamma-ray sources, electron/positron and cosmic-ray nuclei fluxes up to TeV energy region by means of the GAMMA-400 gamma-ray telescope represents the core of the scientific complex. The system of triggers and counting signals formation of the GAMMA-400 gamma-ray telescope constitutes the pipelined processor structure which collects data from the gamma-ray telescope subsystems and produces summary information used in forming the trigger decision for each event. The system design is based on the use of state-of-the-art reconfigurable logic devices and fast data links. The basic structure, logic of operation and distinctive features of the system are presented.

  20. Quantification of 235U and 238U activity concentrations for undeclared nuclear materials by a digital gamma-gamma coincidence spectroscopy.

    PubMed

    Zhang, Weihua; Yi, Jing; Mekarski, Pawel; Ungar, Kurt; Hauck, Barry; Kramer, Gary H

    2011-06-01

    The purpose of this study is to investigate the possibility of verifying depleted uranium (DU), natural uranium (NU), low enriched uranium (LEU) and high enriched uranium (HEU) by a developed digital gamma-gamma coincidence spectroscopy. The spectroscopy consists of two NaI(Tl) scintillators and XIA LLC Digital Gamma Finder (DGF)/Pixie-4 software and card package. The results demonstrate that the spectroscopy provides an effective method of (235)U and (238)U quantification based on the count rate of their gamma-gamma coincidence counting signatures. The main advantages of this approach over the conventional gamma spectrometry include the facts of low background continuum near coincident signatures of (235)U and (238)U, less interference from other radionuclides by the gamma-gamma coincidence counting, and region-of-interest (ROI) imagine analysis for uranium enrichment determination. Compared to conventional gamma spectrometry, the method offers additional advantage of requiring minimal calibrations for (235)U and (238)U quantification at different sample geometries. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  1. A link between prompt optical and prompt gamma-ray emission in gamma-ray bursts.

    PubMed

    Vestrand, W T; Wozniak, P R; Wren, J A; Fenimore, E E; Sakamoto, T; White, R R; Casperson, D; Davis, H; Evans, S; Galassi, M; McGowan, K E; Schier, J A; Asa, J W; Barthelmy, S D; Cummings, J R; Gehrels, N; Hullinger, D; Krimm, H A; Markwardt, C B; McLean, K; Palmer, D; Parsons, A; Tueller, J

    2005-05-12

    The prompt optical emission that arrives with the gamma-rays from a cosmic gamma-ray burst (GRB) is a signature of the engine powering the burst, the properties of the ultra-relativistic ejecta of the explosion, and the ejecta's interactions with the surroundings. Until now, only GRB 990123 had been detected at optical wavelengths during the burst phase. Its prompt optical emission was variable and uncorrelated with the prompt gamma-ray emission, suggesting that the optical emission was generated by a reverse shock arising from the ejecta's collision with surrounding material. Here we report prompt optical emission from GRB 041219a. It is variable and correlated with the prompt gamma-rays, indicating a common origin for the optical light and the gamma-rays. Within the context of the standard fireball model of GRBs, we attribute this new optical component to internal shocks driven into the burst ejecta by variations of the inner engine. The correlated optical emission is a direct probe of the jet isolated from the medium. The timing of the uncorrelated optical emission is strongly dependent on the nature of the medium.

  2. The solar gamma ray and neutron capabilities of COMPTEL on the Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Ryan, James M.; Lockwood, John A.

    1989-01-01

    The imaging Compton telescope COMPTEL on the Gamma Ray Observatory (GRO) has unusual spectroscopic capabilities for measuring solar gamma-ray and neutron emission. The launch of the GRO is scheduled for June 1990 near the peak of the sunspot cycle. With a 30 to 40 percent probability for the Sun being in the COMPTEL field-of-view during the sunlit part of an orbit, a large number of flares will be observed above the 800 keV gamma-ray threshold of the telescope. The telescope energy range extends to 30 MeV with high time resolution burst spectra available from 0.1 to 10 MeV. Strong Compton tail suppression of instrumental gamma-ray interactions will facilitate improved spectral analysis of solar flare emissions. In addition, the high signal to noise ratio for neutron detection and measurement will provide new neutron spectroscopic capabilities. Specifically, a flare similar to that of 3 June 1982 will provide spectroscopic data on greater than 1500 individual neutrons, enough to construct an unambiguous spectrum in the energy range of 20 to 200 MeV. Details of the instrument and its response to solar gamma-rays and neutrons will be presented.

  3. The Mystery of Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    2004-01-01

    Gamma-ray bursts remain one of the greatest mysteries in astrophysics. Observations of gamma-ray bursts made by the BATSE experiment on the Compton Gamma-Ray Observatory will be described. Most workers in the field now believe that they originate from cosmological distances. This view has been reinforced by observations this year of several optical afterglow counterparts to gamma-ray bursts. A summary of these recent discoveries will be presented, along with their implications for models of the burst emission mechanism and the energy source of the bursts.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramsland, Paul A.; Farrugia, William; Bradford, Tessa M.

    The interaction of Abs with their specific FcRs is of primary importance in host immune effector systems involved in infection and inflammation, and are the target for immune evasion by pathogens. Fc{gamma}RIIa is a unique and the most widespread activating FcR in humans that through avid binding of immune complexes potently triggers inflammation. Polymorphisms of Fc{gamma}RIIa (high responder/low responder [HR/LR]) are linked to susceptibility to infections, autoimmune diseases, and the efficacy of therapeutic Abs. In this article, we define the three-dimensional structure of the complex between the HR (arginine, R134) allele of Fc{gamma}RIIa (Fc{gamma}RIIa-HR) and the Fc region of amore » humanized IgG1 Ab, hu3S193. The structure suggests how the HR/LR polymorphism may influence Fc{gamma}RIIa interactions with different IgG subclasses and glycoforms. In addition, mutagenesis defined the basis of the epitopes detected by FcR blocking mAbs specific for Fc{gamma}RIIa (IV.3), Fc{gamma}RIIb (X63-21), and a pan Fc{gamma}RII Ab (8.7). The epitopes detected by these Abs are distinct, but all overlap with residues defined by crystallography to contact IgG. Finally, crystal structures of LR (histidine, H134) allele of Fc{gamma}RIIa and Fc{gamma}RIIa-HR reveal two distinct receptor dimers that may represent quaternary states on the cell surface. A model is presented whereby a dimer of Fc{gamma}RIIa-HR binds Ag-Ab complexes in an arrangement that possibly occurs on the cell membrane as part of a larger signaling assembly.« less

  5. Quality assurance for gamma knives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, E.D.; Banks, W.W.; Fischer, L.E.

    1995-09-01

    This report describes and summarizes the results of a quality assurance (QA) study of the Gamma Knife, a nuclear medical device used for the gamma irradiation of intracranial lesions. Focus was on the physical aspects of QA and did not address issues that are essentially medical, such as patient selection or prescription of dose. A risk-based QA assessment approach was used. Sample programs for quality control and assurance are included. The use of the Gamma Knife was found to conform to existing standards and guidelines concerning radiation safety and quality control of external beam therapies (shielding, safety reviews, radiation surveys,more » interlock systems, exposure monitoring, good medical physics practices, etc.) and to be compliant with NRC teletherapy regulations. There are, however, current practices for the Gamma Knife not covered by existing, formalized regulations, standards, or guidelines. These practices have been adopted by Gamma Knife users and continue to be developed with further experience. Some of these have appeared in publications or presentations and are slowly finding their way into recommendations of professional organizations.« less

  6. Effects of carotenoids on damage of biological lipids induced by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Saito, Takeshi; Fujii, Noriko

    2014-05-01

    Carotenoids are considered to be involved in the radioresistant mechanisms of radioresistant bacteria. In these bacterial cells, carotenoids are present in biological lipids, and therefore may be related to the radiation-induced damage of lipids. However, only limited data are available for the role of carotenoids in such damage. In this study, we irradiated an α-linolenic acid-benzene solution with gamma rays and analyzed the resulting oxidative degradation and peroxidation damage in the presence or absence of two typical carotenoids: β-carotene and astaxanthin. The analyses revealed that oxidative degradation and peroxidation of α-linolenic acid, as evaluated by the amount of malondialdehyde and conjugated diene formed, respectively, increased in a dose-dependent manner. Moreover, 8.5×10-3 M β-carotene inhibited gamma radiation-induced oxidative degradation of α-linolenic acid, whereas 5.0×10-5 and 5.0×10-6 M β-carotene, and 5.0×10-7 and 5.0×10-8 M astaxanthin promoted degradation. In contrast, neither β-carotene nor astaxanthin affected peroxidation of α-linolenic acid. These results suggest that an optimum concentration of carotenoids in radioresistant bacteria protects biological lipid structures from radiation-induced damage.

  7. Effects of gamma irradiation on the midgut ultrastructure of Glossina palpalis subspecies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stiles, J.K.; Molyneux, D.H.; Wallbanks, K.R.

    1989-05-01

    In the sterile insect technique, insects are sterilized prior to release in areas where they are pests. The sterile males compete for and with fertile wild individuals for mates, thus reducing the population's reproductive rate. Tsetse fly (Glossina spp.) populations have been eradicated after release of laboratory-bred flies sterilized by gamma irradiation. However, no studies exist on radiation-induced damage to the midgut morphology and function of the radiation-sterilized insects. After G. palpalis palpalis and G. p. gambiensis were subjected to 130 Gy gamma radiation, their midgut damage and recovery were monitored by electron microscopy. The first sign of damage wasmore » atrophy and loss of the microvillous border from epithelial cells. The rate of cell degeneration increased, with young as well as old cells being affected and cellular debris filling the ectoperitrophic space. Muscle cells were destroyed, patches of basal lamina were left bare, intracellular virus- and rickettsia-like organisms became more frequent, and many replacement cells became unusually large. Partial recovery occurred from the 10th day postirradiation. Such changes in midgut ultrastructure and the corresponding inhibition of functions may increase the susceptibility of the fly to trypanosome infection.« less

  8. Gamma-vinyl GABA inhibits cocaine-triggered reinstatement of drug-seeking behavior in rats by a non-dopaminergic mechanism

    PubMed Central

    Peng, Xiao-Qing; Li, Xia; Gilbert, Jeremy G.; Pak, Arlene C.; Ashby, Charles R.; Brodie, Jonathan D.; Dewey, Stephen L.; Gardner, Eliot L.; Xi, Zheng-Xiong

    2008-01-01

    Relapse to drug use is a core feature of addiction. Previous studies demonstrate that γ-vinyl GABA (GVG), an irreversible GABA transaminase inhibitor, attenuates the acute rewarding effects of cocaine and other addictive drugs. We here report that systemic administration of GVG (25–300 mg/kg) dose-dependently inhibits cocaine- or sucrose-induced reinstatement of reward-seeking behavior in rats. In vivo microdialysis data indicated that the same doses of GVG dose-dependently elevate extracellular GABA levels in the nucleus accumbens (NAc). However, GVG, when administered systemically or locally into the NAc, failed to inhibit either basal or cocaine-priming enhanced NAc dopamine in either naïve rats or cocaine extinction rats. These data suggest that: (1) GVG significantly inhibits cocaine- or sucrose-triggered reinstatement of reward-seeking behavior; and (2) a GABAergic-, but not dopaminergic-, dependent mechanism may underlie the antagonism by GVG of cocaine-triggered reinstatement of drug-seeking behavior, at least with respect to GVG's action on the NAc. PMID:18063319

  9. Further characterization of [3H]gamma-aminobutyric acid release from isolated neuronal growth cones: role of intracellular Ca2+ stores.

    PubMed

    Lockerbie, R O; Gordon-Weeks, P R

    1986-04-01

    We have recently shown that growth cones isolated from neonatal rat forebrain possess uptake and release mechanisms for the neurotransmitter gamma-aminobutyric acid. About half of the K+-induced release of [3H]gamma-aminobutyric acid from isolated growth cones is dependent on extracellular Ca2+. The remaining component of the [3H]gamma-aminobutyric acid release is unaffected by removal of extracellular Ca2+ and is resistant to blockade by the voltage-sensitive Ca2+-channel blocker methoxyverapamil. In the present series of experiments we have used caffeine to assess the possible role of intracellular stores of Ca2+ in supporting that component of the K+-induced release of [3H]gamma-aminobutyric acid from isolated growth cones that is independent of extracellular Ca2+. We have chosen caffeine because of its well established effect of releasing Ca2+ from smooth endoplasmic reticulum in muscle. We found that caffeine can release [3H]gamma-aminobutyric acid from isolated growth cones. This effect persists in Ca2+-free medium, in the presence of methoxyverapamil and in the absence of Na+. Furthermore, isobutylmethylxanthine could not substitute for caffeine suggesting that the caffeine effect is not due to phosphodiesterase inhibition and the subsequent rise in intracellular cyclic nucleotides. A combination of the mitochondrial poisons, Antimycin A and sodium azide had no effect on the release of [3H]gamma-aminobutyric acid induced either by caffeine or by high K+. We conclude that caffeine causes the release of Ca2+ from a non-mitochondrial store within the growth cone and that this Ca2+ store supports that component of the K+-induced release of [3H]gamma-aminobutyric acid that is independent of extracellular Ca2+.

  10. Studying the High Energy Gamma Ray Sky with Gamma Ray Large Area Space Telescope (GLAST)

    NASA Technical Reports Server (NTRS)

    Kamae, T.; Ohsugi, T.; Thompson, D. J.; Watanabe, K.

    1998-01-01

    Building on the success of the Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory, the Gamma Ray Large Area Space Telescope (GLAST) will make a major step in the study of such subjects as blazars, gamma Ray bursts, the search for dark matter, supernova remnants, pulsars, diffuse radiation, and unidentified high energy sources. The instrument will be built on new and mature detector technologies such as silicon strip detectors, low-power low-noise LSI, and a multilevel data acquisition system. GLAST is in the research and development phase, and one full tower (of 25 total) is now being built in collaborating institutes. The prototype tower will be tested thoroughly at Stanford Linear Accelerator Center (SLAC) in the fall of 1999.

  11. The Gamma-Ray Imager GRI

    NASA Astrophysics Data System (ADS)

    Wunderer, Cornelia B.; GRI Collaboration

    2008-03-01

    Observations of the gamma-ray sky reveal the most powerful sources and the most violent events in the Universe. While at lower wavebands the observed emission is generally dominated by thermal processes, the gamma-ray sky provides us with a view on the non-thermal Universe. Here particles are accelerated to extreme relativistic energies by mechanisms which are still poorly understood, and nuclear reactions are synthesizing the basic constituents of our world. Cosmic accelerators and cosmic explosions are major science themes that are addressed in the gamma-ray regime. ESA's INTEGRAL observatory currently provides the astronomical community with a unique tool to investigate the sky up to MeV energies and hundreds of sources, new classes of objects, extraordinary views of antimatter annihilation in our Galaxy, and fingerprints of recent nucleosynthesis processes have been discovered. NASA's GLAST mission will similarly take the next step in surveying the high-energy ( GeV) sky, and NuSTAR will pioneer focusing observations at hard X-ray energies (to 80 keV). There will be clearly a growing need to perform deeper, more focused investigations of gamma-ray sources in the 100-keV to MeV regime. Recent technological advances in the domain of gamma-ray focusing using Laue diffraction and multilayer-coated mirror techniques have paved the way towards a gamma-ray mission, providing major improvements compared to past missions regarding sensitivity and angular resolution. Such a future Gamma-Ray Imager will allow the study of particle acceleration processes and explosion physics in unprecedented detail, providing essential clues on the innermost nature of the most violent and most energetic processes in the Universe.

  12. Gamma Ray Bursts-Afterglows and Counterparts

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J

    1998-01-01

    Several breakthrough discoveries were made last year of x-ray, optical and radio afterglows and counterparts to gamma-ray bursts, and a redshift has been associated with at least one of these. These discoveries were made possible by the fast, accurate gamma-ray burst locations of the BeppoSAX satellite. It is now generally believed that the burst sources are at cosmological distances and that they represent the most powerful explosions in the Universe. These observations also open new possibilities for the study of early star formation, the physics of extreme conditions and perhaps even cosmology. This session will concentrate on recent x-ray, optical and radio afterglow observations of gamma-ray bursts, associated redshift measurements, and counterpart observations. Several review and theory talks will also be presented, along with a summary of the astrophysical implications of the observations. There will be additional poster contributions on observations of gamma-ray burst source locations at wavelengths other than gamma rays. Posters are also solicited that describe new observational capabilities for rapid follow-up observations of gamma-ray bursts.

  13. Fermi Gamma-Ray Space Telescope

    NASA Technical Reports Server (NTRS)

    McEnery, Julie E.; Michelson, Peter F.; Paclesas, William S.; Ritz, Steven

    2012-01-01

    The Fermi Gamma-ray Space Telescope, launched in June 2008, is an observatory designed to survey the high-energy gamma-ray sky. The primary instrument, the Large Area Telescope (LAT), provides observations from 20 MeV to greater than 300 GeV. A second instrument, the Gamma-ray Burst Monitor (GBM), provides observations of transients from less than 10 keV to 40 MeV. We describe the design and performance of the instruments and their subsystems, the spacecraft and the ground system.

  14. Cortical volume and sex influence visual gamma.

    PubMed

    van Pelt, Stan; Shumskaya, Elena; Fries, Pascal

    2018-06-05

    Visually induced gamma-band activity (GBA) has been implicated in several central cognitive functions, in particular perceptual binding, the feedforward routing of attended stimulus information and memory encoding. Several studies have documented that the strength and frequency of GBA are influenced by both subject-intrinsic factors like age, and subject-extrinsic factors such as stimulus contrast. Here, we investigated the relative contributions of previously tested factors, additional factors, and their interactions, in a cohort of 158 subjects recorded with magnetoencephalography (MEG). In agreement with previous studies, we found that gamma strength and gamma peak frequency increase with stimulus contrast and stimulus velocity. Also in confirmation of previous findings, we report that gamma peak frequency declines with subject age. In addition, we found that gamma peak frequency is higher for subjects with thicker occipital cortex, but lower for larger occipital cortices. Also, gamma peak frequency is higher in female than male subjects. Extrinsic factors (stimulus contrast and velocity) and intrinsic factors (age, cortical thickness and sex) together explained 21% of the variance in gamma peak frequency and 20% of the variance in gamma strength. These results can contribute to our understanding of the mechanisms, by which gamma is generated, and the mechanisms, through which it affects the cognitive performance of a given individual subject. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Effects of gamma irradiation and silver nano particles on microbiological characteristics of saffron, using hurdle technology.

    PubMed

    Hamid Sales, E; Motamedi Sedeh, F; Rajabifar, S

    2012-03-01

    Saffron, a plant from the Iridaceae family, is the world's most expensive spice. Gamma irradiation and silver nano particles whose uses are gradually increasing worldwide, have positive effects on preventing decay by sterilizing the microorganisms and by improving the safety without compromising the nutritional properties and sensory quality of the foods. In the present study combination effects of gamma irradiation and silver nano particles packaging on the microbial contamination of saffron were considered during storage. A combination of hurdles can ensure stability and microbial safety of foods. For this purpose, saffron samples were packaged by Poly Ethylene films that posses up to 300 ppm nano silver particles as antimicrobial agents and then irradiated in cobalt-60 irradiator (gamma cell PX30, dose rate 0.55 Gry/Sec) to 0, 1, 2,3 and 4 kGy at room temperature. The antimicrobial activities against Total Aerobic Mesophilic Bacteria, Entrobacteriace, Escherichia Coli and Clostridium Perfringines were higher in the irradiated samples, demonstrating the inhibition zone for their growth. Irradiation of the saffron samples packaged by Poly Ethylene films with nano silver particles showed the best results for decreasing microbial contamination at 2 kGy and for Poly Ethylene films without silver nano particles; it was 4 kGy.

  16. Emodin protects mice against radiation-induced mortality and intestinal injury via inhibition of apoptosis and modulation of p53.

    PubMed

    Wang, Jing; Zhang, Yue; Zhu, Qiuzhen; Liu, Yulan; Cheng, Hao; Zhang, Yuefan; Li, Tiejun

    2016-09-01

    The aim of this study was to explore the protective effect of emodin, a plant-derived anthraquinone, against gamma radiation-induced mortality and intestinal injury in mice, and to investigate the radioprotective molecular mechanism. C57BL/6 male mice were pre-treated with emodin for 7days via oral gavage before gamma radiation. We found that pretreatment with emodin prolonged mice survival time after 9Gy total body irradiation (TBI). Mice were sacrificed at 1 week after 7Gy TBI, we found that emodin attenuated intestinal morphological changes and increased villus height, crypt numbers, and reduced villus and crypt apoptosis as well as inhibited the expression of p53. MTT assay, flow cytometry, Hoechst 33258 staining, real-time PCR, and Western blotting indicated that emodin pretreatment can effectively increase human umbilical venous endothelial cells (HUVECs) viability and attenuate cell apoptosis; it also inhibited the expression of p53, Bax, and Caspase3 in HUVECs after irradiation. In summary, these results suggest the potential of emodin as an effective radioprotectant against radiation-induced intestinal injury. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. GRI: the gamma-ray imager mission

    NASA Astrophysics Data System (ADS)

    Knödlseder, Jürgen

    2006-06-01

    Observations of the gamma-ray sky reveal the most powerful sources and the most violent events in the Universe. While at lower wavebands the observed emission is generally dominated by thermal processes, the gamma-ray sky provides us with a view on the non-thermal Universe. Here particles are accelerated to extreme relativistic energies by mechanisms which are still poorly understood, and nuclear reactions are synthesizing the basic constituents of our world. Cosmic accelerators and cosmic explosions are the major science themes that are addressed in the gamma-ray regime. With the INTEGRAL observatory, ESA has provided a unique tool to the astronomical community revealing hundreds of sources, new classes of objects, extraordinary views of antimatter annihilation in our Galaxy, and fingerprints of recent nucleosynthesis processes. While INTEGRAL provides the global overview over the soft gamma-ray sky, there is a growing need to perform deeper, more focused investigations of gamma-ray sources. In soft X-rays a comparable step was taken going from the Einstein and the EXOSAT satellites to the Chandra and XMM/Newton observatories. Technological advances in the past years in the domain of gamma-ray focusing using Laue diffraction and multilayer-coated mirror techniques hav paved the way towards a gamma-ray mission, providing major improvements compared to past missions regarding sensitivity and angular resolution. Such a future Gamma-Ray Imager will allow to study particle acceleration processes and explosion physics in unprecedented detail, providing essential clues on the innermost nature of the most violent and most energetic processes in the Universe.

  18. Delayed Gamma Measurements in Different Nuclear Research Reactors Bringing Out the Importance of the Delayed Contribution in Gamma Flux Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fourmentel, D.; Radulovic, V.; Barbot, L.

    Neutron and gamma flux levels are key parameters in nuclear research reactors. In Material Testing Reactors, such as the future Jules Horowitz Reactor, under construction at the French Alternative Energies and Atomic Energy Commission (CEA Cadarache, France), the expected gamma flux levels are very high (nuclear heating is of the order of 20 W/g at 100 MWth). As gamma rays deposit their energy in the reactor structures and structural materials it is important to take them into account when designing irradiation devices. There are only a few sensors which allow measurements of the nuclear heating ; a recent development atmore » the CEA Cadarache allows measurements of the gamma flux using a miniature ionization chamber (MIC). The measured MIC response is often compared with calculation using modern Monte Carlo (MC) neutron and photon transport codes, such as TRIPOLI-4 and MCNP6. In these calculations only the production of prompt gamma rays in the reactor is usually modelled thus neglecting the delayed gamma rays. Hence calculations and measurements are usually in better accordance for the neutron flux than for the gamma flux. In this paper we study the contribution of delayed gamma rays to the total MIC signal in order to estimate the systematic error in gamma flux MC calculations. In order to experimentally determine the delayed gamma flux contributions to the MIC response, we performed gamma flux measurements with CEA developed MIC at three different research reactors: the OSIRIS reactor (MTR - 70 MWth at CEA Saclay, France), the TRIGA MARK II reactor (TRIGA - 250 kWth at the Jozef Stefan Institute, Slovenia) and the MARIA reactor (MTR - 30 MWth at the National Center for Nuclear Research, Poland). In order to experimentally assess the delayed gamma flux contribution to the total gamma flux, several reactor shut down (scram) experiments were performed specifically for the purpose of the measurements. Results show that on average about 30 % of the MIC signal is

  19. New Fermi-LAT event reconstruction reveals more high-energy gamma rays from gamma-ray bursts

    DOE PAGES

    Atwood, W. B.; Baldini, L.; Bregeon, J.; ...

    2013-08-19

    Here, based on the experience gained during the four and a half years of the mission, the Fermi-LAT Collaboration has undertaken a comprehensive revision of the event-level analysis going under the name of Pass 8. Although it is not yet finalized, we can test the improvements in the new event reconstruction with the special case of the prompt phase of bright gamma-ray bursts (GRBs), where the signal-to-noise ratio is large enough that loose selection cuts are sufficient to identify gamma rays associated with the source. Using the new event reconstruction, we have re-analyzed 10 GRBs previously detected by the Largemore » Area Telescope (LAT) for which an X-ray/optical follow-up was possible and found four new gamma rays with energies greater than 10 GeV in addition to the seven previously known. Among these four is a 27.4 GeV gamma ray from GRB 080916C, which has a redshift of 4.35, thus making it the gamma ray with the highest intrinsic energy (~147 GeV) detected from a GRB. We present here the salient aspects of the new event reconstruction and discuss the scientific implications of these new high-energy gamma rays, such as constraining extragalactic background light models, Lorentz invariance violation tests, the prompt emission mechanism, and the bulk Lorentz factor of the emitting region.« less

  20. Process gg{yields}h{sub 0}{yields}{gamma}{gamma} in the Lee-Wick standard model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krauss, F.; Underwood, T. E. J.; Zwicky, R.

    2008-01-01

    The process gg{yields}h{sub 0}{yields}{gamma}{gamma} is studied in the Lee-Wick extension of the standard model (LWSM) proposed by Grinstein, O'Connell, and Wise. In this model, negative norm partners for each SM field are introduced with the aim to cancel quadratic divergences in the Higgs mass. All sectors of the model relevant to gg{yields}h{sub 0}{yields}{gamma}{gamma} are diagonalized and results are commented on from the perspective of both the Lee-Wick and higher-derivative formalisms. Deviations from the SM rate for gg{yields}h{sub 0} are found to be of the order of 15%-5% for Lee-Wick masses in the range 500-1000 GeV. Effects on the rate formore » h{sub 0}{yields}{gamma}{gamma} are smaller, of the order of 5%-1% for Lee-Wick masses in the same range. These comparatively small changes may well provide a means of distinguishing the LWSM from other models such as universal extra dimensions where same-spin partners to standard model fields also appear. Corrections to determinations of Cabibbo-Kobayashi-Maskawa (CKM) elements |V{sub t(b,s,d)}| are also considered and are shown to be positive, allowing the possibility of measuring a CKM element larger than unity, a characteristic signature of the ghostlike nature of the Lee-Wick fields.« less

  1. The Influence of Primary Microenvironment on Prostate Cancer Osteoblastic Bone Lesion Development

    DTIC Science & Technology

    2015-09-01

    for inhibiting PCa bone lesion development: 3a. Basic fibroblast growth factor (bFGF) in PC3 bone metastasis: bFGF was identified by cytokine...II receptor (TβRII) knockout (Tgfbr2 KO) mouse models. Col1creERT/Tgfbr2 KO (Col/Tgfbr2 KO), which have TGF-β signaling specific KO in fibroblasts ... fibroblasts and osteoblasts in the bone by Colcre/Tgfbr2 KO, or in the myeloid lineage cells, including osteoclasts in the bone by LysMcre/Tgfbr2 KO

  2. Methionine biosynthesis in higher plants. I. Purification and characterization of cystathionine gamma-synthase from spinach chloroplasts.

    PubMed

    Ravanel, S; Droux, M; Douce, R

    1995-01-10

    Cystathionine gamma-synthase, the first enzyme specific for the methionine biosynthetic pathway, was purified to apparent homogeneity from spinach leaf chloroplasts. A nonradioactive assay based on O-phthaldialdehyde derivatization of L-cystathionine and fluorescence detection was developed to determine the cystathionine gamma-synthase activity. A unique cystathionine gamma-synthase activity was located in the stromal fraction of chloroplasts while cystathionine beta-lyase, the second enzyme of the transsulfuration pathway, was associated with both the chloroplastic and cytosolic compartments (see companion manuscript). The purified enzyme exhibited a specific activity of 13 U mg-1. As estimated by gel filtration and polyacrylamide gel electrophoresis (PAGE) under nondenaturing conditions followed by activity staining, the native enzyme had an apparent M(r) of 215,000. On the basis of sodium dodecyl sulfate-PAGE, purified cystathionine gamma-synthase migrated as two molecular species of M(r) 53,000 and 50,000 that are identical in their N-termini. The absorption spectrum obtained at pH 7.5 exhibited a peak at 425 nm due to pyridoxal 5'-phosphate (PLP). The purified enzyme catalyzed the formation of L-cystathionine or L-homocysteine depending on the sulfur-containing substrate, L-cysteine or sulfide. Maximal cystathionine gamma-synthase activity was found at pH 7.4. The apparent Km values for O-phospho-L-homoserine (the unique homoserine ester synthesized in the chloroplast), L-cysteine, and sulfide were 1.4, 0.18, and 0.6 mM, respectively. Inactivation of cystathionine gamma-synthase by DL-propargylglycine (PAG) showed pseudo-first-order kinetics and data were consistent with the existence of an intermediate reversible enzyme-inhibitor complex (Kappi = 140 microM) preceding the formation of a final enzyme-inhibitor complex (kd = 24 x 10(-3) s-1). The irreversibility of the inhibition and the partial restoration of the activity by pyridoxal-phosphate suggest that

  3. Nifedipine, a calcium channel blocker, inhibits advanced glycation end product (AGE)-elicited mesangial cell damage by suppressing AGE receptor (RAGE) expression via peroxisome proliferator-activated receptor-gamma activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsui, Takanori; Yamagishi, Sho-ichi, E-mail: shoichi@med.kurume-u.ac.jp; Takeuchi, Masayoshi

    2009-07-24

    The interaction between advanced glycation end products (AGE) and their receptor RAGE mediates the progressive alteration in renal architecture and loss of renal function in diabetic nephropathy. Oxidative stress generation and inflammation also play a central role in diabetic nephropathy. This study investigated whether and how nifedipine, a calcium channel blocker (CCB), blocked the AGE-elicited mesangial cell damage in vitro. Nifedipine, but not amlodipine, a control CCB, down-regulated RAGE mRNA levels and subsequently reduced reactive oxygen species (ROS) generation in AGE-exposed mesangial cells. AGE increased mRNA levels of vascular cell adhesion molecule-1 (VCAM-1) and induced monocyte chemoattractant protein-1 (MCP-1) productionmore » in mesangial cells, both of which were prevented by the treatment with nifedipine, but not amlodipine. The beneficial effects of nifedipine on AGE-exposed mesangial cells were blocked by the simultaneous treatment of GW9662, an inhibitor of peroxisome proliferator-activated receptor-{gamma} (PPAR-{gamma}). Although nifedipine did not affect expression levels of PPAR-{gamma}, it increased the PPAR-{gamma} transcriptional activity in mesangial cells. Our present study provides a unique beneficial aspect of nifedipine on diabetic nephropathy; it could work as an anti-inflammatory agent against AGE by suppressing RAGE expression in cultured mesangial cells via PPAR-{gamma} activation.« less

  4. Similar cholesterol-lowering properties of rice bran oil, with varied gamma-oryzanol, in mildly hypercholesterolemic men.

    PubMed

    Berger, Alvin; Rein, Dietrich; Schäfer, Angela; Monnard, Irina; Gremaud, Gérard; Lambelet, Pierre; Bertoli, Constantin

    2005-03-01

    The cholesterol lowering properties of rice bran oil (RBO) containing differing amounts of non-saponifiable components have not been studied in humans, to our knowledge. To evaluate cholesterol lowering effects of RBO, with low and high amounts of gamma-oryzanol (ferulated plant sterols) in mildly hypercholesterolemic men. Mildly hypercholesterolemic men, 38-64 y, starting cholesterol 4.9-8.4 mmol/l (n = 30), consumed 50 g/d peanut oil (PNO) in vehicles for 2 wks during a run-in period, then, without wash-out, were randomly equilibrated (based on initial level of cholesterol) into two groups to consume 50 g/d RBO low (0.05 g/d) or high (0.8 g/d) gamma-oryzanol for 4 wks, in a randomized, controlled, parallel design study. Subjects were free-living and consumed habitual diets with some restrictions. Plasma concentrations of total, LDL-,HDL-cholesterol and triacylglycerol were measured at base line and after 2, 4, and 6 wks. The two RBO types were not significantly different with respect to effects on various cholesterol parameters, at 2 and 4 wks, including total cholesterol, LDL-, HDL- and LDL/HDL cholesterol ratio. Low and high gamma-oryzanolcontaining RBO feeding for 4 wks lowered total plasma cholesterol (6.3 %), LDL-C (10.5 %) and the LDL-C/HDL-C ratio (18.9 %). RBO supplementation at ca. 50% total fat intake improved lipoprotein pattern in mildly hypercholesterolemic men. Methylated sterols in gamma-oryzanol are thought to be largely ineffective at inhibiting dietary cholesterol absorption, but could enhance cholesterol-lowering ability of 4-desmethylsterols. Assuming all ferulated sterols become de-ferulated in the gut, low and high gamma-oryzanolcontaining RBOs provided intestinal loads of 453 and 740 mg/d free 4-desmethylsterols, respectively. This intestinal load of 453-740 mg/d of efficacious free plant sterol equivalents had identical effects on lipoproteins.

  5. PPAR{gamma} agonist pioglitazone reduces matrix metalloproteinase-9 activity and neuronal damage after focal cerebral ischemia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Seong-Ryong; Chronic Disease Research Center and Institute for Medical Science, School of Medicine, Keimyung University, Taegu; Kim, Hahn-Young

    2009-02-27

    Pioglitazone, a peroxisome proliferator-activated receptor gamma (PPAR{gamma}) agonist, has shown protective effects against ischemic insult in various tissues. Pioglitazone is also reported to reduce matrix metalloproteinase (MMP) activity. MMPs can remodel extracellular matrix components in many pathological conditions. The current study was designed to investigate whether the neuroprotection of pioglitazone is related to its MMP inhibition in focal cerebral ischemia. Mice were subjected to 90 min focal ischemia and reperfusion. In gel zymography, pioglitazone reduced the upregulation of active form of MMP-9 after ischemia. In in situ zymograms, pioglitazone also reduced the gelatinase activity induced by ischemia. After co-incubation withmore » pioglitazone, in situ gelatinase activity was directly reduced. Pioglitazone reduced the infarct volume significantly compared with controls. These results demonstrate that pioglitazone may reduce MMP-9 activity and neuronal damage following focal ischemia. The reduction of MMP-9 activity may have a possible therapeutic effect for the management of brain injury after focal ischemia.« less

  6. Ionizing radiation potentiates the induction of nitric oxide synthase by interferon-gamma (Ifn-gamma) or Ifn-gamma and lipopolysaccharide in bnl cl.2 murine embryonic liver cells: role of hydrogen peroxide.

    PubMed

    Yoo, J C; Pae, H O; Choi, B M; Kim, W I; Kim, J D; Kim, Y M; Chung, H T

    2000-02-01

    The effects of ionizing irradiation on the nitric oxide (NO) production in murine embryonic liver cell line, BNL CL.2 cells, were investigated. Various doses (5-40 Gy) of radiation made BNL CL.2 cells responsive to interferon-gamma alone for the production of NO in a dose-dependent manner. Small amounts of lipopolysaccharide (LPS) or tumor necrosis factor-alpha (TNF-alpha) synergized with IFN-gamma in the production of NO from irradiated BNL CL.2 cells, even though LPS or TNF-alpha alone did not induce NO production from the same cells. Immunoblots showed parallel induction of inducible nitric oxide synthase (iNOS). NO production in irradiated BNL CL.2 cells by IFN-gamma or IFN-gamma plus LPS was decreased by the addition of catalase, suggesting that H(2)O(2) produced by ionizing irradiation primed the cells to trigger NO production in response to IFN-gamma or IFN-gamma plus LPS. Furthermore, the treatment of nongamma-irradiated BNL CL.2 cells with H(2)O(2) made the cells responsive to IFN-gamma or IFN-gamma plus LPS for the production of NO. This study shows that ionizing irradiation has the ability to induce iNOS gene expression in responsive to IFN-gamma via the formation of H(2)O(2) in BNL CL.2 murine embryonic liver cells.

  7. Simultaneous optical/gamma-ray observations of GRBs

    NASA Technical Reports Server (NTRS)

    Greiner, J.; Wenzel, W.; Hudec, R.; Moskalenko, E. I.; Metlov, V.; Chernych, N. S.; Getman, V. S.; Ziener, Rainer; Birkle, K.; Bade, N.

    1994-01-01

    Details on the project to search for serendipitous time correlated optical photographic observations of Gamma Ray Bursters (GRB's) are presented. The ongoing photographic observations at nine observatories are used to look for plates which were exposed simultaneously with a gamma ray burst detected by the gamma ray instrument team (BATSE) and contain the burst position. The results for the first two years of the gamma ray instrument team operation are presented.

  8. TEMPORAL EVOLUTION OF SUB-NANOMETER COMPOSITIONAL PROFILES ACROSS THE GAMMA/GAMMA' INTERFACE IN A MODEL Ni-Al-Cr SUPERALLOY

    NASA Technical Reports Server (NTRS)

    Sudbrack, Chantal K.; Noebe, Ronald D.; Seidman, David N.

    2005-01-01

    Early-stage phase separation in a Ni-5.2 Al-14.2 Cr at.% superalloy, isothermally decomposing at 873 K, is investigated with atom-probe tomography. Sub-nanometer scale compositional profiles across the gamma/gamma'(L12) interfaces demonstrate that both the gamma-matrix and the gamma'-precipitate compositions evolve with time. Observed chemical gradients of Al depletion and Cr enrichment adjacent to the gamma'-precipitates are transient, consistent with well-established model predictions for diffusion-limited growth, and mark the first detailed observation of this phenomenon. Furthermore, it is shown that Cr atoms are kinetically trapped in the growing precipitates.

  9. Interferon-gamma (INF-gamma) release test can detect cutaneous adverse effects to statins.

    PubMed

    Goldberg, Ilan; Isman, Gila; Shirazi, Idit; Brenner, Sarah

    2009-12-01

    An increasing number of cutaneous adverse effects are being reported as use of statins becomes more widespread. A study was undertaken to establish the relationship between statin and a cutaneous reaction by the in vitro interferon-gamma (INF-gamma) release test. The lymphocytes of 20 patients with suspected drug-induced skin reaction were incubated with and without the drug. The level of INF-gamma from the supernatant was measured by enzyme-linked immunosorbent assay (ELISA), and the increase calculated. Response was positive in 27 (21.43%) of the 126 drugs. Statin was the only drug with a positive response in 80% of those cases. Nine of 20 patients (45.0%) had complete resolution after discontinuation of the drug; 6 (30.0%) who replaced one drug by another statin had partial or no resolution; and 5 (20.0%) had no resolution despite cessation of statins of all kinds. A positive INF-gamma release test was found in patients who developed skin reactions while taking statins; the test's reliability was strengthened by prompt improvement following elimination of the suspected drug in the majority of patients.

  10. DSC studies on gamma irradiated poly(vinylidene fluoride) applied to high gamma dose dosimetry

    NASA Astrophysics Data System (ADS)

    Batista, Adriana S. M.; Faria, Luiz O.

    2017-11-01

    Poly(vinylidene fluoride) homopolymer (PVDF) was investigated for use on high gamma dose dosimetry. Samples were irradiated with gamma doses ranging from 100 kGy to 3000 kGy. Differential scanning calorimetry (DSC) was used to construct an unambiguous relationship between the melting transition latent heat (LM) and the absorbed dose (D). DSC thermograms were taken immediately, 1, 2 and 8 months after the irradiation process revealing that the LMx D relationship presented no change for doses ranging from 100 to 2750 kGy. FTIR and UV-Vis spectroscopy data revealed the radio-induction of C˭O and C˭C bonds. These radio-induced bonds were responsible by the chain stiffening and chain oxidation, respectively. SEM microscopy demonstrates that the spherulitic large crystalline structures present in pristine PVDF are destroyed with doses as low as 100 kGy. The DRX analysis revealed that the main effect of high gamma doses in the crystalline structure of PVDF is to provoke a change from the pristine PVDF α-phase to the γ-phase. Both the ability to detect gamma doses in a large dose range and the low fading features make PVDF homopolymers good candidates to be investigated as high gamma dose dosimeters.

  11. Human EEG gamma oscillations in neuropsychiatric disorders.

    PubMed

    Herrmann, C S; Demiralp, T

    2005-12-01

    Due to their small amplitude, the importance of high-frequency EEG oscillations with respect to cognitive functions and disorders is often underestimated as compared to slower oscillations. This article reviews the literature on the alterations of gamma oscillations (about 30-80 Hz) during the course of neuropsychiatric disorders and relates them to a model for the functional role of these oscillations for memory matching. The synchronous firing of neurons in the gamma-band has been proposed to bind multiple features of an object, which are coded in a distributed manner in the brain, and is modulated by cognitive processes such as attention and memory. In certain neuropsychiatric disorders the gamma activity shows significant changes. In schizophrenic patients, negative symptoms correlate with a decrease of gamma responses, whereas a significant increase in gamma amplitudes is observed during positive symptoms such as hallucinations. A reduction is also observed in Alzheimer's Disease (AD), whereas an increase is found in epileptic patients, probably reflecting both cortical excitation and perceptual distortions such as déjà vu phenomena frequently observed in epilepsy. ADHD patients also exhibit increased gamma amplitudes. A hypothesis of a gamma axis of these disorders mainly based on the significance of gamma oscillations for memory matching is formulated.

  12. Fatigue crack propagation behaviour of unidirectionally solidified gamma/gamma-prime-delta eutectic alloys. [Ni-Nb-Al alloys

    NASA Technical Reports Server (NTRS)

    Bretz, P. E.; Hertzberg, R. W.

    1979-01-01

    Fatigue crack propagation studies were carried out on unidirectionally solidified gamma/gamma-prime-delta (Ni-Nb-Al) alloys over an aluminum content range of 1.5-2.5% by weight. The variation of Al content of as-grown alloys did not significantly affect the crack growth behavior of these eutectic composites. The results indicate that the addition of Al to the eutectic dramatically improved the FCP behavior. The gamma/gamma-prime-delta alloy exhibited crack growth rates for a given stress intensity range that are an order of magnitude lower than those for the gamma-delta alloy. It is suggested that this difference in FCP behavior can be explained on the basis of stacking fault energy considerations. Extensive delaminations at the crack tip were also revealed, which contributed to the superior fatigue response. Delamination was predominantly intergranular in nature.

  13. Microstructural changes caused by thermal treatment and their effects on mechanical properties of a gamma/gamma prime - delta eutectic alloy

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Dreshfield, R. L.

    1976-01-01

    Microstructural changes due to thermal treatments of a directionally solidified gamma/gamma'-delta eutectic alloy were investigated. Aging treatments of 8 to 48 hours and ranging from 750 to 1120 C were given to the alloy in both its as directionally solidified condition and after gamma' solutioning. Aging resulted in gamma' coarsening gamma precipitates in delta, and delta and gamma'' precipitates in delta. The tensile strength was increased about 12 percent at temperatures up to 900 C by a heat treatment. Times to rupture were essentially the same or greater than for as directionally solidified material. Tensile and rupture ductility in the growth direction of the alloy were reduced by the heat treatment.

  14. Combination neutron-gamma ray detector

    DOEpatents

    Stuart, Travis P.; Tipton, Wilbur J.

    1976-10-26

    A radiation detection system capable of detecting neutron and gamma events and distinguishing therebetween. The system includes a detector for a photomultiplier which utilizes a combination of two phosphor materials, the first of which is in the form of small glass beads which scintillate primarily in response to neutrons and the second of which is a plastic matrix which scintillates in response to gammas. A combination of pulse shape and pulse height discrimination techniques is utilized to provide an essentially complete separation of the neutron and gamma events.

  15. Gamma ray astrophysics. [emphasizing processes and absorption

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1974-01-01

    Gamma ray production processes are reviewed, including Compton scattering, synchrotron radiation, bremsstrahlung interactions, meson decay, nucleon-antinucleon annihilations, and pion production. Gamma ray absorption mechanisms through interactions with radiation and with matter are discussed, along with redshifts and gamma ray fluxes.

  16. Delayed growth of EL4 lymphoma in SR-A-deficient mice is due to upregulation of nitric oxide and interferon-gamma production by tumor-associated macrophages.

    PubMed

    Komohara, Yoshihiro; Takemura, Kenichi; Lei, Xiao Feng; Sakashita, Naomi; Harada, Mamoru; Suzuki, Hiroshi; Kodama, Tatsuhiko; Takeya, Motohiro

    2009-11-01

    Class A scavenger receptors (SR-A, CD204) are highly expressed in tumor-associated macrophages (TAM). To investigate the function of SR-A in TAM, wild-type and SR-A-deficient (SR-A(-/-)) mice were injected with EL4 cells. Although these groups of mice did not differ in the numbers of infiltrating macrophages and lymphocytes and in neovascularization, SR-A(-/-) mice had delayed growth of EL4 tumors. Expression of inducible nitric oxide (NO) synthase and interferon (IFN)-gamma mRNA increased significantly in tumor tissues from SR-A(-/-) mice. Engulfment of necrotic EL4 cells induced upregulation of NO and IFN-gamma production by cultured macrophages, and production of NO and IFN-gamma increased in SR-A(-/-) macrophages in vitro. IFN-beta production by cultured macrophages was also elevated in SR-A(-/-) macrophages in vitro. These results suggested that the antitumor activity of macrophages increased in SR-A(-/-) mice because of upregulation of NO and IFN-gamma production. These data indicate an important role of SR-A in regulating TAM function by inhibiting toll-like receptor (TLR)4-IFN-beta signaling.

  17. PPARgamma agonists inhibit TGF-beta-PKA signaling in glomerulosclerosis.

    PubMed

    Zou, Rong; Xu, Gang; Liu, Xiao-cheng; Han, Min; Jiang, Jing-jing; Huang, Qian; He, Yong; Yao, Ying

    2010-01-01

    To study the probable mechanisms of the anti-glomerulosclerosis effects induced by peroxisome proliferator-activated receptor gamma (PPARgamma) agonists in rat intraglomerular mesangial cells (MCs). Cells were transfected with the pTAL-PPRE-tk-Luc(+) plasmid and then treated with different concentrations of PPARgamma agonist, either troglitazone or telmisartan, for the indicated times. Promega luciferase assays were subsequently used for the detection of PPARgamma activation. Protein expression levels were assessed by Western blot, and PepTag assays were used for the non-radioactive detection of protein kinase A (PKA) activity. The deposition of alpha-smooth muscle actin (alpha-SMA) and p-cyclic AMP responsive element binding protein (pCREB) were analyzed by confocal laser scanning. Both troglitazone and telmisartan remarkably inhibit the PKA activation and pCREB expression that is stimulated by TGF-beta. The PPARgamma agonists also inhibited alpha-SMA and collagen IV protein expression by blocking PKA activation. PPARgamma ligands effectively suppress the activation of MCs and the accumulation of collagen IV stimulated by TGF-beta in vitro. The renal protection provided by PPARgamma agonists is partly mediated via their blockade of TGF-beta/PKA signaling.

  18. Multiwavelength Study of Gamma-Ray Bright Blazars

    NASA Astrophysics Data System (ADS)

    Morozova, Daria; Larionov, V. M.; Hagen-Thorn, V. A.; Jorstad, S. G.; Marscher, A. P.; Troitskii, I. S.

    2011-01-01

    We investigate total intensity radio images of 6 gamma-ray bright blazars (BL Lac, 3C 279, 3C 273, W Com, PKS 1510-089, and 3C 66A) and their optical and gamma-ray light curves to study connections between gamma-ray and optical brightness variations and changes in the parsec-scale radio structure. We use high-resolution maps obtained by the BU group at 43 GHz with the VLBA, optical light curves constructed by the St.Petersburg State U. (Russia) team using measurements with the 0.4 m telescope of St.Petersburg State U. (LX200) and the 0.7 m telescope of the Crimean Astrophysical Observatory (AZT-8), and gamma-ray light curves, which we have constructed with data provided by the Fermi Large Area Telescope. Over the period from August 2008 to November 2009, superluminal motion is found in all 6 objects with apparent speed ranging from 2c to 40c. The blazars with faster apparent speeds, 3C 273, 3C 279, PKS 1510-089, and 3C 66A, exhibit stronger variability of the gamma-ray emission. There is a tendency for sources with sharply peaked gamma-ray flares to have faster jet speed than sources with gamma-ray light curves with no sharp peaks. Gamma-ray light curves with sharply peaked gamma-ray flares possess a stronger gamma-ray/optical correlations. The research at St.Petersburg State U. was funded by the Minister of Education and Science of the Russian Federation (state contract N#P123). The research at BU was funded in part by NASA Fermi Guest Investigator grant NNX08AV65G and by NSF grant AST-0907893. The VLBA is an instrument of the National Radio Astronomy Observatory, a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

  19. Accurate Wavelength Measurement of High-Energy Gamma Rays from the 35Cl(n,{gamma}) Reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belgya, T.; Molnar, G.L.; Mutti, P.

    2005-05-24

    The energies of eight gamma rays in the 36Cl level scheme have been measured with high precision using the 35Cl(n,{gamma}) reaction and the GAMS4 spectrometer. From these energies, a skeleton decay scheme for 36Cl was constructed, and the binding energy of 36Cl was determined to higher precision than previously. It is shown that using this new information, binding energy determination from Ge detector experiments for other nuclei can also be made with higher precision than now available. The measurement of additional weaker 36Cl gamma rays is continuing.

  20. Search of the energetic gamma-ray experiment telescope (EGRET) data for high-energy gamma-ray microsecond bursts

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Bertsch, D. L.; Dingus, B. L.; Esposito, J. A.; Hartman, R. C.; Hunter, S. D.; Kanbach, G.; Kniffen, D. A.; Lin, Y. C.; Mattox, J. R.

    1994-01-01

    Hawking (1974) and Page & Hawking (1976) investigated theoretically the possibility of detecting high-energy gamma rays produced by the quantum-mechanical decay of a small black hole created in the early universe. They concluded that, at the very end of the life of the small black hole, it would radiate a burst of gamma rays peaked near 250 MeV with a total energy of about 10(exp 34) ergs in the order of a microsecond or less. The characteristics of a black hole are determined by laws of physics beyond the range of current particle accelerators; hence, the search for these short bursts of high-energy gamma rays provides at least the possibility of being the first test of this region of physics. The Compton Observatory Energetic Gamma-Ray Experiment Telescope (EGRET) has the capability of detecting directly the gamma rays from such bursts at a much fainter level than SAS 2, and a search of the EGRET data has led to an upper limit of 5 x 10(exp -2) black hole decays per cu pc per yr, placing constraints on this and other theories predicting microsecond high-energy gamma-ray bursts.

  1. Gamma-ray transfer and energy deposition in supernovae

    NASA Technical Reports Server (NTRS)

    Swartz, Douglas A.; Sutherland, Peter G.; Harkness, Robert P.

    1995-01-01

    Solutions to the energy-independent (gray) radiative transfer equations are compared to results of Monte Carlo simulations of the Ni-56 and Co-56 decay gamma-ray energy deposition in supernovae. The comparison shows that an effective, purely absorptive, gray opacity, kappa(sub gamma) approximately (0. 06 +/- 0.01)Y(sub e) sq cm/g, where Y is the total number of electrons per baryon, accurately describes the interaction of gamma-rays with the cool supernova gas and the local gamma-ray energy deposition within the gas. The nature of the gamma-ray interaction process (dominated by Compton scattering in the relativistic regime) creates a weak dependence of kappa(sub gamma) on the optical thickness of the (spherically symmetric) supernova atmosphere: The maximum value of kappa(sub gamma) applies during optically thick conditions when individual gamma-rays undergo multiple scattering encounters and the lower bound is reached at the phase characterized by a total Thomson optical depth to the center of the atmosphere tau(sub e) approximately less than 1. Gamma-ray deposition for Type Ia supernova models to within 10% for the epoch from maximum light to t = 1200 days. Our results quantitatively confirm that the quick and efficient solution to the gray transfer problem provides an accurate representation of gamma-ray energy deposition for a broad range of supernova conditions.

  2. Role of CD28/B7 costimulation in the dexamethasone-induced suppression of IFN-gamma.

    PubMed

    Agarwal, S K; Marshall, G D

    2000-11-01

    In vitro exposure of peripheral blood mononuclear cells (PBMC) to glucocorticoids (GC), at concentrations observed during psychologic stress, induces a shift in the human type 1/type 2 cytokine balance toward a type 2 cytokine response. The mechanisms involved in these cytokine alterations are unknown but likely include modulation of regulatory cytokines or the interaction between the antigen-presenting cell (APC) and T lymphocyte or both. The CD28/B7 costimulation pathway has been reported to modulate the type 1/type 2 cytokine balance and may contribute to the GC-associated cytokine alterations. Therefore, we sought to determine the effect of dexamethasone (Dex) on the expression and function of the human CD28/B7 costimulatory pathway and whether these alterations contribute to the Dex-induced type 1/type 2 cytokine alterations. Dex inhibited the expression of both CD80 and CD86 on THP-1 cells, a human acute monocytic leukemia cell line, as determined by flow cytometry. Dex also inhibited the expression of CD28 and CTLA-4 on phytohemagglutinin (PHA)-stimulated CD3+ T lymphocytes, which was attenuated by the addition of interleukin-12 (IL-12). Lastly, activation of CD28 with anti-CD28 antibody attenuated the Dex-induced decrease in interferon-gamma (IFN-gamma) production by anti-CD3 antibody-stimulated PBMC. These data suggest that Dex induces a modulation of the CD28/B7 costimulatory pathway that contributes to the shift in the type 1/type 2 cytokine balance toward a predominant type 2 cytokine response.

  3. Escherichia coli K-12 can utilize an exogenous gamma-glutamyl peptide as an amino acid source, for which gamma-glutamyltranspeptidase is essential.

    PubMed

    Suzuki, H; Hashimoto, W; Kumagai, H

    1993-09-01

    Escherichia coli K-12 can utilize a gamma-glutamyl peptide as an amino acid source, for which gamma-glutamyltranspeptidase (EC 2.3.2.2) is essential. We suggest that the gamma-glutamyl linkage of a gamma-glutamyl peptide is hydrolyzed by gamma-glutamyltranspeptidase located in the periplasmic space, and the released amino acid is taken up and utilized by E. coli.

  4. Health protection and food preservation by gamma irradiation

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Results of several major studies on food systems for space missions beginning with Apollo 12 through Apollo-Soyuz and investigations of the application of irradiation to food for manned space flight are reported. The study of flight food systems involved the application of radurization (pasteurizing levels) doses of gamma irradiation to flour and bread supplied by Pepperidge Farms in advance of the missions. All flights from Apollo 12 through 17 carried irradiated fresh bread. On Apollo 17, cooperation with Natick Laboratories permitted the introduction of a ham sandwich using irradiated bread and irradiated sterile ham. Investigations centered on irradiated bread were conducted during the course of these missions. Studies were applied to the concept of improving fresh bread from the point of view of mold inhibition. The studies considered how irradiation could best be applied at what levels and on a variety of bread types. Throughout the studies of the application of gamma irradiation the emphasis was placed upon using low levels of irradiation in the pasteurizing or radurizing doses--under a Megarad. The primary goal was to determine if a public health benefit could be demonstrated using radurization along with food preservation and food quality improvements. The public health benefit would be parallel to that of pasteurization of milk as a concept. Publications are included providing the details of these observations, one dealing with the flour characteristics and the other dealing with the influence on fresh bread types. These demonstrate the major findings noted during the period of the studies examining bread.

  5. Technical Note: Relationships between gamma criteria and action levels: Results of a multicenter audit of gamma agreement index results.

    PubMed

    Crowe, Scott B; Sutherland, Bess; Wilks, Rachael; Seshadri, Venkatakrishnan; Sylvander, Steven; Trapp, Jamie V; Kairn, Tanya

    2016-03-01

    The aim of this work was to use a multicenter audit of modulated radiotherapy quality assurance (QA) data to provide a practical examination of gamma evaluation criteria and action level selection. The use of the gamma evaluation method for patient-specific pretreatment QA is widespread, with most commercial solutions implementing the method. Gamma agreement indices were calculated using the criteria 1%/1 mm, 2%/2 mm, 2%/3 mm, 3%/2 mm, 3%/3 mm, and 5%/3 mm for 1265 pretreatment QA measurements, planned at seven treatment centers, using four different treatment planning systems, delivered using three different delivery systems (intensity-modulated radiation therapy, volumetric-modulated arc therapy, and helical tomotherapy) and measured using three different dose measurement systems. The sensitivity of each pair of gamma criteria was evaluated relative to the gamma agreement indices calculated using 3%/3 mm. A linear relationship was observed for 2%/2 mm, 2%/3 mm, and 3%/2 mm. This result implies that most beams failing at 3%/3 mm would also fail for those criteria, if the action level was adjusted appropriately. Some borderline plans might be passed or failed depending on the relative priority (tighter tolerance) used for dose difference or distance to agreement evaluation. Dosimeter resolution and treatment modality were found to have a smaller effect on the results of QA measurements than the number of dimensions (2D or 3D) over which the gamma evaluation was calculated. This work provides a method (and a large sample of results) for calculating equivalent action levels for different gamma evaluation criteria. This work constitutes a valuable guide for clinical decision making and a means to compare published gamma evaluation results from studies using different evaluation criteria. More generally, the data provided by this work support the recommendation that gamma criteria that specifically prioritize the property of greatest clinical importance for each

  6. Characteristics of gamma-ray line flares

    NASA Technical Reports Server (NTRS)

    Bai, T.; Dennis, B.

    1983-01-01

    Observations of solar gamma rays by the Solar Maximum Mission (SMM) demonstrate that energetic protons and ions are rapidly accelerated during the impulsive phase. To understand the acceleration mechanisms for these particles, the characteristics of the gamma ray line flares observed by SMM were studied. Some very intense hard X-ray flares without detectable gamma ray lines were also investigated. Gamma ray line flares are distinguished from other flares by: (1) intense hard X-ray and microwave emissions; (2) delay of high energy hard X-rays; (3) emission of type 2 and/or type 4 radio bursts; and (4) flat hard X-ray spectra (average power law index: 3.1). The majority of the gamma ray line flares shared all these characteristics, and the remainder shared at least three of them. Positive correlations were found between durations of spike bursts and spatial sizes of flare loops as well as between delay times and durations of spike bursts.

  7. GRI: The Gamma-Ray Imager mission

    NASA Astrophysics Data System (ADS)

    Knödlseder, Jürgen; GRI Consortium

    With the INTEGRAL observatory ESA has provided a unique tool to the astronomical community revealing hundreds of sources, new classes of objects, extraordinary views of antimatter annihilation in our Galaxy, and fingerprints of recent nucleosynthesis processes. While INTEGRAL provides the global overview over the soft gamma-ray sky, there is a growing need to perform deeper, more focused investigations of gamma-ray sources. In soft X-rays a comparable step was taken going from the Einstein and the EXOSAT satellites to the Chandra and XMM/Newton observatories. Technological advances in the past years in the domain of gamma-ray focusing using Laue diffraction have paved the way towards a new gamma-ray mission, providing major improvements regarding sensitivity and angular resolution. Such a future Gamma-Ray Imager will allow studies of particle acceleration processes and explosion physics in unprecedented detail, providing essential clues on the innermost nature of the most violent and most energetic processes in the Universe.

  8. GRI: The Gamma-Ray Imager mission

    NASA Astrophysics Data System (ADS)

    Knödlseder, Jürgen; GRI Consortium

    2006-06-01

    With the INTEGRAL observatory, ESA has provided a unique tool to the astronomical community revealing hundreds of sources, new classes of objects, extraordinary views of antimatter annihilation in our Galaxy, and fingerprints of recent nucleosynthesis processes. While INTEGRAL provides the global overview over the soft gamma-ray sky, there is a growing need to perform deeper, more focused investigations of gamma-ray sources. In soft X-rays a comparable step was taken going from the Einstein and the EXOSAT satellites to the Chandra and XMM/Newton observatories. Technological advances in the past years in the domain of gamma-ray focusing using Laue diffraction have paved the way towards a new gamma-ray mission, providing major improvements regarding sensitivity and angular resolution. Such a future Gamma-Ray Imager will allow the study of particle acceleration processes and explosion physics in unprecedented detail, providing essential clues on the innermost nature of the most violent and most energetic processes in the Universe.

  9. Identification and characterization of gamma-glutamylamine cyclotransferase, an enzyme responsible for gamma-glutamyl-epsilon-lysine catabolism.

    PubMed

    Oakley, Aaron J; Coggan, Marjorie; Board, Philip G

    2010-03-26

    Gamma-glutamylamine cyclotransferase (GGACT) is an enzyme that converts gamma-glutamylamines to free amines and 5-oxoproline. GGACT shows high activity toward gamma-glutamyl-epsilon-lysine, derived from the breakdown of fibrin and other proteins cross-linked by transglutaminases. The enzyme adopts the newly identified cyclotransferase fold, observed in gamma-glutamylcyclotransferase (GGCT), an enzyme with activity toward gamma-glutamyl-alpha-amino acids (Oakley, A. J., Yamada, T., Liu, D., Coggan, M., Clark, A. G., and Board, P. G. (2008) J. Biol. Chem. 283, 22031-22042). Despite the absence of significant sequence identity, several residues are conserved in the active sites of GGCT and GGACT, including a putative catalytic acid/base residue (GGACT Glu(82)). The structure of GGACT in complex with the reaction product 5-oxoproline provides evidence for a common catalytic mechanism in both enzymes. The proposed mechanism, combined with the three-dimensional structures, also explains the different substrate specificities of these enzymes. Despite significant sequence divergence, there are at least three subfamilies in prokaryotes and eukaryotes that have conserved the GGCT fold and GGCT enzymatic activity.

  10. GLAST and Ground-Based Gamma-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    McEnery, Julie

    2008-01-01

    The launch of the Gamma-ray Large Area Space Telescope together with the advent of a new generation of ground-based gamma-ray detectors such as VERITAS, HESS, MAGIC and CANGAROO, will usher in a new era of high-energy gamma-ray astrophysics. GLAST and the ground based gamma-ray observatories will provide highly complementary capabilities for spectral, temporal and spatial studies of high energy gamma-ray sources. Joint observations will cover a huge energy range, from 20 MeV to over 20 TeV. The LAT will survey the entire sky every three hours, allowing it both to perform uniform, long-term monitoring of variable sources and to detect flaring sources promptly. Both functions complement the high-sensitivity pointed observations provided by ground-based detectors. Finally, the large field of view of GLAST will allow a study of gamma-ray emission on large angular scales and identify interesting regions of the sky for deeper studies at higher energies. In this poster, we will discuss the science returns that might result from joint GLAST/ground-based gamma-ray observations and illustrate them with detailed source simulations.

  11. RoboPol: the optical polarization of gamma-ray-loud and gamma-ray-quiet blazars

    NASA Astrophysics Data System (ADS)

    Angelakis, E.; Hovatta, T.; Blinov, D.; Pavlidou, V.; Kiehlmann, S.; Myserlis, I.; Böttcher, M.; Mao, P.; Panopoulou, G. V.; Liodakis, I.; King, O. G.; Baloković, M.; Kus, A.; Kylafis, N.; Mahabal, A.; Marecki, A.; Paleologou, E.; Papadakis, I.; Papamastorakis, I.; Pazderski, E.; Pearson, T. J.; Prabhudesai, S.; Ramaprakash, A. N.; Readhead, A. C. S.; Reig, P.; Tassis, K.; Urry, M.; Zensus, J. A.

    2016-12-01

    We present average R-band optopolarimetric data, as well as variability parameters, from the first and second RoboPol observing season. We investigate whether gamma-ray-loud and gamma-ray-quiet blazars exhibit systematic differences in their optical polarization properties. We find that gamma-ray-loud blazars have a systematically higher polarization fraction (0.092) than gamma-ray-quiet blazars (0.031), with the hypothesis of the two samples being drawn from the same distribution of polarization fractions being rejected at the 3σ level. We have not found any evidence that this discrepancy is related to differences in the redshift distribution, rest-frame R-band luminosity density, or the source classification. The median polarization fraction versus synchrotron-peak-frequency plot shows an envelope implying that high-synchrotron-peaked sources have a smaller range of median polarization fractions concentrated around lower values. Our gamma-ray-quiet sources show similar median polarization fractions although they are all low-synchrotron-peaked. We also find that the randomness of the polarization angle depends on the synchrotron peak frequency. For high-synchrotron-peaked sources, it tends to concentrate around preferred directions while for low-synchrotron-peaked sources, it is more variable and less likely to have a preferred direction. We propose a scenario which mediates efficient particle acceleration in shocks and increases the helical B-field component immediately downstream of the shock.

  12. 30 CFR 57.5047 - Gamma radiation surveys.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Gamma radiation surveys. 57.5047 Section 57..., Radiation, Physical Agents, and Diesel Particulate Matter Radiation-Underground Only § 57.5047 Gamma radiation surveys. (a) Gamma radiation surveys shall be conducted annually in all underground mines where...

  13. 30 CFR 57.5047 - Gamma radiation surveys.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Gamma radiation surveys. 57.5047 Section 57..., Radiation, Physical Agents, and Diesel Particulate Matter Radiation-Underground Only § 57.5047 Gamma radiation surveys. (a) Gamma radiation surveys shall be conducted annually in all underground mines where...

  14. Regulation of gamma-Secretase in Alzheimer's Disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Shuxia; Zhou, Hua; Walian, Peter

    2007-02-07

    The {gamma}-secretase complex is an intramembrane aspartyl protease that cleaves its substrates along their transmembrane regions. Sequential proteolytic processing of amyloid precursor protein by {beta}- and {gamma}-secretase produces amyloid {beta}-peptides, which are the major components of amyloid plaques in the brains of Alzheimer's disease patients. The {gamma}-secretase complex is therefore believed to be critical in the pathogenesis of Alzheimer's disease. Here we review the range of factors found to affect the nature and degree of {gamma}-secretase complex activity; these include {gamma}-secretase complex assembly and activation, the integral regulatory subunit CD147, transient or weak binding partners, the levels of cholesterol andmore » sphingolipids in cell membranes, and inflammatory cytokines. Integrated knowledge of the molecular mechanisms supporting the actions of these factors is expected to lead to a comprehensive understanding of the functional regulation of the {gamma}-secretase complex, and this, in turn, should facilitate the development of novel therapeutic strategies for the treatment of Alzheimer's disease.« less

  15. BRCA1 regulation on β-hCG: a mechanism for tumorigenicity in BRCA1 defective breast cancer.

    PubMed

    Sengodan, S K; Nadhan, R; Nair, R S; Hemalatha, S K; Somasundaram, V; Sushama, R R; Rajan, A; Latha, N R; Varghese, G R; Thankappan, R K; Kumar, J M; Chil, A; Anilkumar, T V; Srinivas, P

    2017-09-04

    Human chorionic gonadotropin β (β-hCG) has been implicated in breast tumorigenesis. However, the role of this hormone is highly controversial as certain studies suggest it has anti-tumor properties while others have found it to be pro-tumorigenic. To unveil the truth, we have analyzed the expression of β-hCG in breast cancer. We identified for the first time that β-hCG expression is linked to BRCA1 status and its overexpression is seen in BRCA1 mutated breast cancer cells, BRCA1 conditional knockout mouse breast cancer tissues and BRCA1 floxed basal cell carcinoma (BCC) tissues. An analysis of three large, transcriptomic data sets from TCGA (The Cancer Genome Atlas) expression profile confirmed the inverse correlation between BRCA1 and β-hCG in human breast cancer. Using ChIP and luciferase assays, we also demonstrated that the cancer cells with wild-type but not mutant BRCA1 directly repress the expression of β-hCG by binding to its promoter. Further, β-hCG promotes migration and invasion predominantly in BRCA1 mutant breast cancer cells. Interestingly, stable overexpression of β-hCG in BRCA1 mutant but not wild-type breast cancer cells results in the formation of spheres even on monolayer cultures. The cells of these spheres show high expression of both EMT and stem cell markers. Since β-hCG belongs to a cysteine knot family of proteins like TGFβ and TGFβ signaling is deregulated in BRCA1 defective tumors, we checked whether β-hCG can mediate signaling through TGFβRII in BRCA1 mutated cells. We found for the first time that β-hCG can bind and phosphorylate TGFβRII, irrespective of LHCGR status and induce proliferation in BRCA1 defective cells. Our results confirmed that there exists a transcriptional regulation of BRCA1 on β-hCG and BRCA1 mutation promotes β-hCG mediated tumorigenesis through TGFβRII signaling. Thus inhibiting β-hCG-TGFβRII could prove an effective treatment strategy for BRCA1 mutated tumors.

  16. DNA damage inhibits lateral root formation by up-regulating cytokinin biosynthesis genes in Arabidopsis thaliana.

    PubMed

    Davis, La Ode Muhammad Muchdar; Ogita, Nobuo; Inagaki, Soichi; Takahashi, Naoki; Umeda, Masaaki

    2016-11-01

    Lateral roots (LRs) are an important organ for water and nutrient uptake from soil. Thus, control of LR formation is crucial in the adaptation of plant growth to environmental conditions. However, the underlying mechanism controlling LR formation in response to external factors has remained largely unknown. Here, we found that LR formation was inhibited by DNA damage. Treatment with zeocin, which causes DNA double-strand breaks, up-regulated several DNA repair genes in the LR primordium (LRP) through the signaling pathway mediated by the transcription factor SUPPRESSOR OF GAMMA RESPONSE 1 (SOG1). Cell division was severely inhibited in the LRP of zeocin-treated sog1-1 mutant, which in turn inhibited LR formation. This result suggests that SOG1-mediated maintenance of genome integrity is crucial for proper cell division during LRP development. Furthermore, zeocin induced several cytokinin biosynthesis genes in a SOG1-dependent manner, thereby activating cytokinin signaling in the LRP. LR formation was less inhibited by zeocin in mutants defective in cytokinin biosynthesis or signaling, suggesting that elevated cytokinin signaling is crucial for the inhibition of LR formation in response to DNA damage. We conclude that SOG1 regulates DNA repair and cytokinin signaling separately and plays a key role in controlling LR formation under genotoxic stress. © 2016 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  17. Synchronous Chaos and Broad Band Gamma Rhythm in a Minimal Multi-Layer Model of Primary Visual Cortex

    PubMed Central

    Battaglia, Demian; Hansel, David

    2011-01-01

    Visually induced neuronal activity in V1 displays a marked gamma-band component which is modulated by stimulus properties. It has been argued that synchronized oscillations contribute to these gamma-band activity. However, analysis of Local Field Potentials (LFPs) across different experiments reveals considerable diversity in the degree of oscillatory behavior of this induced activity. Contrast-dependent power enhancements can indeed occur over a broad band in the gamma frequency range and spectral peaks may not arise at all. Furthermore, even when oscillations are observed, they undergo temporal decorrelation over very few cycles. This is not easily accounted for in previous network modeling of gamma oscillations. We argue here that interactions between cortical layers can be responsible for this fast decorrelation. We study a model of a V1 hypercolumn, embedding a simplified description of the multi-layered structure of the cortex. When the stimulus contrast is low, the induced activity is only weakly synchronous and the network resonates transiently without developing collective oscillations. When the contrast is high, on the other hand, the induced activity undergoes synchronous oscillations with an irregular spatiotemporal structure expressing a synchronous chaotic state. As a consequence the population activity undergoes fast temporal decorrelation, with concomitant rapid damping of the oscillations in LFPs autocorrelograms and peak broadening in LFPs power spectra. We show that the strength of the inter-layer coupling crucially affects this spatiotemporal structure. We predict that layer VI inactivation should induce global changes in the spectral properties of induced LFPs, reflecting their slower temporal decorrelation in the absence of inter-layer feedback. Finally, we argue that the mechanism underlying the emergence of synchronous chaos in our model is in fact very general. It stems from the fact that gamma oscillations induced by local delayed

  18. Gamma-ray Albedo of the Moon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moskalenko, Igor V.; Porter, Troy A.

    2007-06-14

    We use the GEANT4 Monte Carlo framework to calculate the gamma-ray albedo of the Moon due to interactions of cosmic ray (CR) nuclei with moon rock. Our calculation of the albedo spectrum agrees with the EGRET data. We show that the spectrum of gamma-rays from the Moon is very steep with an effective cutoff around 3 GeV (600 MeV for the inner part of the Moon disc). Since it is the only (almost) black spot in the gamma-ray sky, it provides a unique opportunity for calibration of gamma-ray telescopes, such as the forthcoming Gamma Ray Large Area Space Telescope (GLAST).more » The albedo flux depends on the incident CR spectrum which changes over the solar cycle. Therefore, it is possible to monitor the CR spectrum using the albedo gamma-ray flux. Simultaneous measurements of CR proton and helium spectra by the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA), and observations of the albedo -rays by the GLAST Large Area Telescope (LAT), can be used to test the model predictions and will enable the GLAST LAT to monitor the CR spectrum near the Earth beyond the lifetime of PAMELA.« less

  19. Measuring B to S Gamma, B to D Gamma and |V(Td)/V(Ts)| at BaBar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bard, Deborah; /SLAC

    2012-06-01

    Using a sample of 471 million B{bar B} events collected with the BaBar detector, we study the sum of seven exclusive final states b {yields} X{sub s(d)}{gamma}, where X{sub s(d)} is a strange (non-strange) hadronic system with a mass of up to 2.0 Gev/c{sup 2}. After correcting for unobserved decay modes, we obtain a branching fraction for b {yields} d{gamma} of (9.2 {+-} 2.0(stat.) {+-} 2.3(syst.)) x 10{sup -6} in this mass range, and a branching fraction for b {yields} s{gamma} of (23.0 {+-} 0.8(stat.) {+-} 3.0(syst.)) x 10{sup -5} in the same mass range. We find BF(b {yields} d{gamma})/BF(bmore » {yields} s{gamma}) = 0.040 {+-} 0.009(stat.) {+-} 0.010(syst.), from which we determine |V{sub td}/V{sub ts}| = 0.199 {+-} 0.022(stat.) {+-} 0.024(syst.) {+-} 0.002(th.).« less

  20. Hippocampal theta, gamma, and theta-gamma coupling: effects of aging, environmental change, and cholinergic activation

    PubMed Central

    Jacobson, Tara K.; Howe, Matthew D.; Schmidt, Brandy; Hinman, James R.; Escabí, Monty A.

    2013-01-01

    Hippocampal theta and gamma oscillations coordinate the timing of multiple inputs to hippocampal neurons and have been linked to information processing and the dynamics of encoding and retrieval. One major influence on hippocampal rhythmicity is from cholinergic afferents. In both humans and rodents, aging is linked to impairments in hippocampus-dependent function along with degradation of cholinergic function. Cholinomimetics can reverse some age-related memory impairments and modulate oscillations in the hippocampus. Therefore, one would expect corresponding changes in these oscillations and possible rescue with the cholinomimetic physostigmine. Hippocampal activity was recorded while animals explored a familiar or a novel maze configuration. Reexposure to a familiar situation resulted in minimal aging effects or changes in theta or gamma oscillations. In contrast, exploration of a novel maze configuration increased theta power; this was greater in adult than old animals, although the deficit was reversed with physostigmine. In contrast to the theta results, the effects of novelty, age, and/or physostigmine on gamma were relatively weak. Unrelated to the behavioral situation were an age-related decrease in the degree of theta-gamma coupling and the fact that physostigmine lowered the frequency of theta in both adult and old animals. The results indicate that age-related changes in gamma and theta modulation of gamma, while reflecting aging changes in hippocampal circuitry, seem less related to aging changes in information processing. In contrast, the data support a role for theta and the cholinergic system in encoding and that hippocampal aging is related to impaired encoding of new information. PMID:23303862