Sample records for gamma spectroscopy application

  1. Applications of LaBr3(Ce) Gamma-ray Spectrometer Arrays for Nuclear Spectroscopy and Radionuclide Assay

    NASA Astrophysics Data System (ADS)

    Regan, PH; Shearman, R.; Daniel, T.; Lorusso, G.; Collins, SM; Judge, SM; Bell; Pearce, AK; Gurgi, LA; Rudigier, M.; Podolyák, Zs; Mărginean, N.; Mărginean, R.; Kisyov, S.

    2016-10-01

    An overview of the use of discrete energy gamma-ray detectors based on cerium- doped LaBr3 scintillators for use in nuclear spectroscopy is presented. This review includes recent applications of such detectors in mixed, 'hybrid' gamma-ray coincidence detection arrays such ROSPHERE at IFIN-HH, Bucharest; EXILL+FATIMA at ILL Grenoble, France; GAMMASPHERE+FATIMA at Argonne National Laboratory, USA; FATIMA + EURICA, at RIKEN, Japan; and the National Nuclear Array (NANA) at the UK's National Physical Laboratory. This conference paper highlights the capabilities and limitations of using these sub-nanosecond 'fast-timing', medium-resolution gamma-ray detectors for both nuclear structure research and radionuclide standardisation. Potential future application of such coincidence scintillator arrays in measurements of civilian nuclear fuel waste evaluation and assay is demonstrated using coincidence spectroscopy of a mixed 134,7Cs source.

  2. Delayed Gamma-ray Spectroscopy for Safeguards Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mozin, Vladimir

    The delayed gamma-ray assay technique utilizes an external neutron source (D-D, D-T, or electron accelerator-driven), and high-resolution gamma-ray spectrometers to perform characterization of SNM materials behind shielding and in complex configurations such as a nuclear fuel assembly. High-energy delayed gamma-rays (2.5 MeV and above) observed following the active interrogation, provide a signature for identification of specific fissionable isotopes in a mixed sample, and determine their relative content. Potential safeguards applications of this method are: 1) characterization of fresh and spent nuclear fuel assemblies in wet or dry storage; 2) analysis of uranium enrichment in shielded or non-characterized containers or inmore » the presence of a strong radioactive background and plutonium contamination; 3) characterization of bulk and waste and product streams at SNM processing plants. Extended applications can include warhead confirmation and warhead dismantlement confirmation in the arms control area, as well as SNM diagnostics for the emergency response needs. In FY16 and prior years, the project has demonstrated the delayed gamma-ray measurement technique as a robust SNM assay concept. A series of empirical and modeling studies were conducted to characterize its response sensitivity, develop analysis methodologies, and analyze applications. Extensive experimental tests involving weapons-grade Pu, HEU and depleted uranium samples were completed at the Idaho Accelerator Center and LLNL Dome facilities for various interrogation time regimes and effects of the neutron source parameters. A dedicated delayed gamma-ray response modeling technique was developed and its elements were benchmarked in representative experimental studies, including highresolution gamma-ray measurements of spent fuel at the CLAB facility in Sweden. The objective of the R&D effort in FY17 is to experimentally demonstrate the feasibility of the delayed gamma-ray interrogation of shielded

  3. Positron Annihilation Induced Auger and Gamma Spectroscopy of Catalytically Important Surfaces

    NASA Astrophysics Data System (ADS)

    Weiss, A. H.; Nadesalingam, M. P.; Sundaramoorthy, R.; Mukherjee, S.; Fazleev, N. G.

    2006-10-01

    The annihilation of positrons with core electrons results in unique signatures in the spectra of Auger-electron and annihilation-gamma rays that can be used to make clear chemical identification of atoms at the surface. Because positrons implanted at low energies are trapped with high efficiency in the image-correlation well where they are localized just outside the surface it is possible to use annihilation induced Auger and Gamma signals to probe the surfaces of solids with single atomic layer depth resolution. In this talk we will report recent applications of Positron Annihilation Induced Auger Electron Spectroscopy (PAES) and Auger-Gamma Coincidence Spectroscopy (AGCS) to the study of surface structure and surface chemistry. Our research has demonstrated that PAES spectra can provide new information regarding the composition of the top-most atomic layer. Applications of PAES to the study of catalytically important surfaces of oxides and wide band-gap semiconductors including TiO2, SiO2,Cu2O, and SiC will be presented. We conclude with a discussion of the use of Auger-Gamma and Gamma-Gamma coincidence spectroscopy for the study of surfaces at pressures closer to those found in practical chemical reactors. Research supported by the Welch Foundation Grant Number Y-1100.

  4. The goals of gamma-ray spectroscopy in high energy astrophysics

    NASA Technical Reports Server (NTRS)

    Lingenfelter, Richard E.; Higdon, James C.; Leventhal, Marvin; Ramaty, Reuven; Woosley, Stanford E.

    1990-01-01

    The use of high resolution gamma-ray spectroscopy in astrophysics is discussed with specific attention given to the application of the Nuclear Astrophysics Explorer (NAE). The gamma-ray lines from nuclear transitions in radionucleic decay and positron annihilation permits the study of current sites, rates and models of nucleosynthesis, and galactic structure. Diffuse galactic emission is discussed, and the high-resolution observations of gamma-ray lines from discrete sites are also described. Interstellar mixing and elemental abundances can also be inferred from high-resolution gamma-ray spectroscopy of nucleosynthetic products. Compact objects can also be examined by means of gamma-ray emissions, allowing better understanding of neutron stars and the accreting black hole near the galactic center. Solar physics can also be investigated by examining such features as solar-flare particle acceleration and atmospheric abundances.

  5. Nuclear Forensics using Gamma-ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Norman, E. B.

    2016-09-01

    Much of George Dracoulis's research career was devoted to utilising gamma-ray spectroscopy in fundamental studies in nuclear physics. This same technology is useful in a wide range of applications in the area of nuclear forensics. Over the last several years, our research group has made use of both high- and low-resolution gamma-ray spectrometers to: identify the first sample of plutonium large enough to be weighed; determine the yield of the Trinity nuclear explosion; measure fission fragment yields as a function of target nucleus and neutron energy; and observe fallout in the U. S. from the Fukushima nuclear reactor accident.

  6. Coupled multi-group neutron photon transport for the simulation of high-resolution gamma-ray spectroscopy applications

    NASA Astrophysics Data System (ADS)

    Burns, Kimberly Ann

    The accurate and efficient simulation of coupled neutron-photon problems is necessary for several important radiation detection applications. Examples include the detection of nuclear threats concealed in cargo containers and prompt gamma neutron activation analysis for nondestructive determination of elemental composition of unknown samples. In these applications, high-resolution gamma-ray spectrometers are used to preserve as much information as possible about the emitted photon flux, which consists of both continuum and characteristic gamma rays with discrete energies. Monte Carlo transport is the most commonly used modeling tool for this type of problem, but computational times for many problems can be prohibitive. This work explores the use of coupled Monte Carlo-deterministic methods for the simulation of neutron-induced photons for high-resolution gamma-ray spectroscopy applications. RAdiation Detection Scenario Analysis Toolbox (RADSAT), a code which couples deterministic and Monte Carlo transport to perform radiation detection scenario analysis in three dimensions [1], was used as the building block for the methods derived in this work. RADSAT was capable of performing coupled deterministic-Monte Carlo simulations for gamma-only and neutron-only problems. The purpose of this work was to develop the methodology necessary to perform coupled neutron-photon calculations and add this capability to RADSAT. Performing coupled neutron-photon calculations requires four main steps: the deterministic neutron transport calculation, the neutron-induced photon spectrum calculation, the deterministic photon transport calculation, and the Monte Carlo detector response calculation. The necessary requirements for each of these steps were determined. A major challenge in utilizing multigroup deterministic transport methods for neutron-photon problems was maintaining the discrete neutron-induced photon signatures throughout the simulation. Existing coupled neutron

  7. Gamma ray spectroscopy in astrophysics. [conferences

    NASA Technical Reports Server (NTRS)

    Cline, T. L. (Editor); Ramaty, R. (Editor)

    1978-01-01

    Experimental and theoretical aspects of gamma ray spectroscopy in high energy astrophysics are discussed. Line spectra from solar, stellar, planetary, and cosmic gamma rays are examined as well as HEAO investigations, the prospects of a gamma ray observatory, and follow-on X-ray experiments in space.

  8. Application of neuro-fuzzy methods to gamma spectroscopy

    NASA Astrophysics Data System (ADS)

    Grelle, Austin L.

    Nuclear non-proliferation activities are an essential part of national security activities both domestic and abroad. The safety of the public in densely populated environments such as urban areas or large events can be compromised if devices using special nuclear materials are present. Therefore, the prompt and accurate detection of these materials is an important topic of research, in which the identification of normal conditions is also of importance. With gamma-ray spectroscopy, these conditions are identified as the radiation background, which though being affected by a multitude of factors is ever present. Therefore, in nuclear non-proliferation activities the accurate identification of background is important. With this in mind, a method has been developed to utilize aggregate background data to predict the background of a location through the use of an Artificial Neural Network (ANN). After being trained on background data, the ANN is presented with nearby relevant gamma-ray spectroscopy data---as identified by a Fuzzy Inference System - to create a predicted background spectra to compare to a measured spectra. If a significant deviation exists between the predicted and measured data, the method alerts the user such that a more thorough investigation can take place. Research herein focused on data from an urban setting in which the number of false positives was observed to be 28 out of a total of 987, representing 2.94% error. The method therefore currently shows a high rate of false positives given the current configuration, however there are promising steps that can be taken to further minimize this error. With this in mind, the method stands as a potentially significant tool in urban nuclear nonproliferation activities.

  9. A phoswich detector for simultaneous alpha-gamma spectroscopy

    NASA Astrophysics Data System (ADS)

    Moghadam, S. Rajabi; Feghhi, S. A. H.; Safari, M. J.

    2015-11-01

    Phoswich detectors are of value for radiation spectroscopy, especially in cases where a low-cost solution for a mixed radiation field is desired. Meanwhile, simultaneous spectroscopy of alpha particles and gamma-rays has many applications in quantification and distinguishing the alpha-emitting radionuclides which usually occur in the analysis of environmental solid samples. Here, we have developed a system for detection of radioactive actinides (e.g., 241Am) based on the alpha-gamma coincidence technique. The underlying concept, is to assemble two appropriately selected scintillators (i.e., a fast and a slow one) together with a discriminating unit for analysis of their data. Detailed Monte Carlo simulation procedure has been developed using the GEANT4 toolkit to design and find enough knowledge about the response of the system in the studied radiation field. Various comparisons were made between experimental and simulation data which showed appropriate agreement between them. The calibration was performed and the MDA was estimated as 60 mBq for the phoswich system.

  10. Simultaneous beta and gamma spectroscopy

    DOEpatents

    Farsoni, Abdollah T.; Hamby, David M.

    2010-03-23

    A phoswich radiation detector for simultaneous spectroscopy of beta rays and gamma rays includes three scintillators with different decay time characteristics. Two of the three scintillators are used for beta detection and the third scintillator is used for gamma detection. A pulse induced by an interaction of radiation with the detector is digitally analyzed to classify the type of event as beta, gamma, or unknown. A pulse is classified as a beta event if the pulse originated from just the first scintillator alone or from just the first and the second scintillator. A pulse from just the third scintillator is recorded as gamma event. Other pulses are rejected as unknown events.

  11. Statistical Methods Applied to Gamma-ray Spectroscopy Algorithms in Nuclear Security Missions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fagan, Deborah K.; Robinson, Sean M.; Runkle, Robert C.

    2012-10-01

    In a wide range of nuclear security missions, gamma-ray spectroscopy is a critical research and development priority. One particularly relevant challenge is the interdiction of special nuclear material for which gamma-ray spectroscopy supports the goals of detecting and identifying gamma-ray sources. This manuscript examines the existing set of spectroscopy methods, attempts to categorize them by the statistical methods on which they rely, and identifies methods that have yet to be considered. Our examination shows that current methods effectively estimate the effect of counting uncertainty but in many cases do not address larger sources of decision uncertainty—ones that are significantly moremore » complex. We thus explore the premise that significantly improving algorithm performance requires greater coupling between the problem physics that drives data acquisition and statistical methods that analyze such data. Untapped statistical methods, such as Bayes Modeling Averaging and hierarchical and empirical Bayes methods have the potential to reduce decision uncertainty by more rigorously and comprehensively incorporating all sources of uncertainty. We expect that application of such methods will demonstrate progress in meeting the needs of nuclear security missions by improving on the existing numerical infrastructure for which these analyses have not been conducted.« less

  12. Quantification of 235U and 238U activity concentrations for undeclared nuclear materials by a digital gamma-gamma coincidence spectroscopy.

    PubMed

    Zhang, Weihua; Yi, Jing; Mekarski, Pawel; Ungar, Kurt; Hauck, Barry; Kramer, Gary H

    2011-06-01

    The purpose of this study is to investigate the possibility of verifying depleted uranium (DU), natural uranium (NU), low enriched uranium (LEU) and high enriched uranium (HEU) by a developed digital gamma-gamma coincidence spectroscopy. The spectroscopy consists of two NaI(Tl) scintillators and XIA LLC Digital Gamma Finder (DGF)/Pixie-4 software and card package. The results demonstrate that the spectroscopy provides an effective method of (235)U and (238)U quantification based on the count rate of their gamma-gamma coincidence counting signatures. The main advantages of this approach over the conventional gamma spectrometry include the facts of low background continuum near coincident signatures of (235)U and (238)U, less interference from other radionuclides by the gamma-gamma coincidence counting, and region-of-interest (ROI) imagine analysis for uranium enrichment determination. Compared to conventional gamma spectrometry, the method offers additional advantage of requiring minimal calibrations for (235)U and (238)U quantification at different sample geometries. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  13. Gamma ray spectroscopy with Arduino UNO

    NASA Astrophysics Data System (ADS)

    Lavelle, C. M.

    2018-05-01

    We review a simple gamma ray spectrometer constructed on a solderless breadboard. The spectrometer's detector consists of a CsI(Tl) scintillator and silicon photomultiplier (SiPM) and its readout is facilitated by an Arduino UNO. The system is low cost and utilizes a minimum of components while still achieving satisfactory charge linearity and noise levels. This instrument can be used in instructional laboratories to introduce both radiation detection and analog signal processing concepts. We also expect it will be of interest to those seeking to introduce gamma spectroscopy to the expanding ecosystem of Arduino hardware.

  14. Experimental review of light quark spectroscopy from e/sup +/e/sup -/ production and. gamma gamma. collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toki, W.H.

    1987-07-01

    This is an experimental review of light quark spectroscopy from e/sup +/e/sup -/ production and ..gamma gamma.. collision results presented at the 2nd International Conference on Hadron Spectroscopy at KEK, Japan. The recent results in ..gamma gamma.. production have evidence for the J/sup PC/ = 1/sup + +/, E/f/sub 1/(1420) and D/f/sub 1/(1285), mesons from the TPC and Mark II collaborations and upper limits for pseudoscalar resonances from the Crystal Ball collaboration. The results in J/psi reactions include D/f/sub 1/(1285) meson production in radiative decays and a complete measurement of the hadronic decays into pseudoscalar-vector pairs from the DM2 collaborationmore » and evidence for phi phi production in radiative decays and a study of the iota line shape from the Mark III collaboration. A short review of simple theoretical ideas is presented.« less

  15. Gamma Ray Spectroscopy: Some highlights from the past, present and future

    NASA Astrophysics Data System (ADS)

    Beausang, Cornelius

    2007-04-01

    The early implementation stages of the current generation of large scale gamma-ray spectrometers, EUROGAM Phase 1 closely followed by Gammasphere Early Implementation, came online in the early 1990's. Last August the tenth anniversary of the full Gammasphere Array was celebrated. Large arrays of Compton suppressed Ge detectors, such as Gammasphere, Eurogam/Euroball/Jurosphere operated in both stand alone mode and, more recently, when coupled to highly selective and sensitive channel selection devices, such as the Fragment Mass Analyzer or RITU, or auxiliary detectors, such as Microball and Chico, have led to an unprecedented increase in our knowledge of the properties of the atomic nucleus when stressed by the application of high angular momentum, large proton or neutron imbalance, high temperatures etc. Gamma-ray spectroscopy is now routinely carried out at the limits of nuclear existence, either in terms of mass or in nuclei on, or beyond, the drip-lines. This talk will touch upon some of the classic results obtained with such arrays, will review the current state of the art in gamma-ray spectroscopy and consider some potentials for the future of the field with new arrays such as GRETA in the US and AGATA in Europe. This work is supported by the US Department of Energy under grant numbers DE-FG52-06NA26206 and DE-FG02-05ER41379.

  16. Delayed Gamma-Ray Spectroscopy for Non-Destructive Assay of Nuclear Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ludewigt, Bernhard; Mozin, Vladimir; Campbell, Luke

    2015-06-01

    High-­energy, beta-delayed gamma-­ray spectroscopy is a potential, non-­destructive assay techniques for the independent verification of declared quantities of special nuclear materials at key stages of the fuel cycle and for directly assaying nuclear material inventories for spent fuel handling, interim storage, reprocessing facilities, repository sites, and final disposal. Other potential applications include determination of MOX fuel composition, characterization of nuclear waste packages, and challenges in homeland security and arms control verification. Experimental measurements were performed to evaluate fission fragment yields, to test methods for determining isotopic fractions, and to benchmark the modeling code package. Experimental measurement campaigns were carried outmore » at the IAC using a photo-­neutron source and at OSU using a thermal neutron beam from the TRIGA reactor to characterize the emission of high-­energy delayed gamma rays from 235U, 239Pu, and 241Pu targets following neutron induced fission. Data were collected for pure and combined targets for several irradiation/spectroscopy cycle times ranging from 10/10 seconds to 15/30 minutes.The delayed gamma-ray signature of 241Pu, a significant fissile constituent in spent fuel, was measured and compared to 239Pu. The 241Pu/ 239Pu ratios varied between 0.5 and 1.2 for ten prominent lines in the 2700-­3600 keV energy range. Such significant differences in relative peak intensities make it possible to determine relative fractions of these isotopes in a mixed sample. A method for determining fission product yields by fitting the energy and time dependence of the delayed gamma-­ray emission was developed and demonstrated on a limited 235U data set. De-­convolution methods for determining fissile fractions were developed and tested on the experimental data. The use of high count-­rate LaBr 3 detectors was investigated as a potential alternative to HPGe detectors. Modeling capabilities

  17. Solar X-Ray and Gamma-Ray Imaging Spectroscopy

    NASA Astrophysics Data System (ADS)

    Dennis, B. R.; Christe, S. D.; Shih, A. Y.; Holman, G. D.; Emslie, A. G.; Caspi, A.

    2018-02-01

    X-ray and gamma-ray Sun observations from a lunar-based observatory would provide unique information on solar atmosphere thermal and nonthermal processes. EUV and energetic neutral atom imaging spectroscopy would augment the scientific value.

  18. Gamma ray spectroscopy monitoring method and apparatus

    DOEpatents

    Stagg, William R; Policke, Timothy A

    2017-05-16

    The present invention relates generally to the field of gamma ray spectroscopy monitoring and a system for accomplishing same to monitor one or more aspects of various isotope production processes. In one embodiment, the present invention relates to a monitoring system, and method of utilizing same, for monitoring one or more aspects of an isotope production process where the monitoring system comprises: (A) at least one sample cell; (B) at least one measuring port; (C) at least one adjustable collimator device; (D) at least one shutter; and (E) at least one high resolution gamma ray spectrometer.

  19. First On-Site True Gamma-Ray Imaging-Spectroscopy of Contamination near Fukushima Plant

    PubMed Central

    Tomono, Dai; Mizumoto, Tetsuya; Takada, Atsushi; Komura, Shotaro; Matsuoka, Yoshihiro; Mizumura, Yoshitaka; Oda, Makoto; Tanimori, Toru

    2017-01-01

    We have developed an Electron Tracking Compton Camera (ETCC), which provides a well-defined Point Spread Function (PSF) by reconstructing a direction of each gamma as a point and realizes simultaneous measurement of brightness and spectrum of MeV gamma-rays for the first time. Here, we present the results of our on-site pilot gamma-imaging-spectroscopy with ETCC at three contaminated locations in the vicinity of the Fukushima Daiichi Nuclear Power Plants in Japan in 2014. The obtained distribution of brightness (or emissivity) with remote-sensing observations is unambiguously converted into the dose distribution. We confirm that the dose distribution is consistent with the one taken by conventional mapping measurements with a dosimeter physically placed at each grid point. Furthermore, its imaging spectroscopy, boosted by Compton-edge-free spectra, reveals complex radioactive features in a quantitative manner around each individual target point in the background-dominated environment. Notably, we successfully identify a “micro hot spot” of residual caesium contamination even in an already decontaminated area. These results show that the ETCC performs exactly as the geometrical optics predicts, demonstrates its versatility in the field radiation measurement, and reveals potentials for application in many fields, including the nuclear industry, medical field, and astronomy. PMID:28155883

  20. Evaluation of Multi-Channel ADCs for Gamma-Ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Tan, Hui; Hennig, Wolfgang; Walby, Mark D.; Breus, Dimitry; Harris, Jackson

    2013-04-01

    As nuclear physicists increasingly design large scale experiments with hundreds or thousands of detector channels, there are growing needs for high density readout electronics with good timing and energy resolution that at the same time offer lower cost per channel compared to existing commercial solutions. Recent improvements in the design of commercial analog to digital converters (ADCs) have resulted in a variety of multi-channel ADCs that are natural choice for designing such high density readout modules. However, multi-channel ADCs typically are designed for medical imaging/ultrasound applications and therefore are not rated for their spectroscopic characteristics. In this work, we evaluated the gamma-ray spectroscopic performance of several multi-channel ADCs, including their energy resolution, nonlinearity, and timing resolution. Some of these ADCs demonstrated excellent energy resolution, 2.66% FWHM at 662 keV with a LaBr3 or 1.78 keV FWHM at 1332.5 keV with a high purity germanium (HPGe) detector, and sub-nanosecond timing resolution with LaBr 3. We present results from these measurements to illustrate their suitability for gamma-ray spectroscopy.

  1. Applications of the low-background gamma spectroscopy to the geographical origin of marine salts and prunes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perrot, F.

    The low background gamma spectroscopy has been applied to try to sign the geographical origin of the French atlantic marine salts and of the prunes from Agen. Most of the activity measurements have been done using low background Ge spectrometers located in Bordeaux. Results have shown that a clear signature exists in the case of the French atlantic salts using the 40K, 137Cs and 226Ra isotopes but not in the case of the prunes.

  2. Homogeneity of Gd-based garnet transparent ceramic scintillators for gamma spectroscopy

    NASA Astrophysics Data System (ADS)

    Seeley, Z. M.; Cherepy, N. J.; Payne, S. A.

    2013-09-01

    Transparent polycrystalline ceramic scintillators based on the composition Gd1.49Y1.49Ce0.02Ga2.2Al2.8O12 are being developed for gamma spectroscopy detectors. Scintillator light yield and energy resolution depend on the details of various processing steps, including powder calcination, green body formation, and sintering atmosphere. We have found that gallium sublimation during vacuum sintering creates compositional gradients in the ceramic and can degrade the energy resolution. While sintering in oxygen produces ceramics with uniform composition and little afterglow, light yields are reduced, compared to vacuum sintering. By controlling the atmosphere during the various process steps, we were able to minimize the gallium sublimation, resulting in a more homogeneous composition and improved gamma spectroscopy performance.

  3. A novel liquid-Xenon detector concept for combined fast-neutrons and gamma imaging and spectroscopy

    NASA Astrophysics Data System (ADS)

    Breskin, A.; Israelashvili, I.; Cortesi, M.; Arazi, L.; Shchemelinin, S.; Chechik, R.; Dangendorf, V.; Bromberger, B.; Vartsky, D.

    2012-06-01

    A new detector concept is presented for combined imaging and spectroscopy of fast-neutrons and gamma rays. It comprises a liquid-Xenon (LXe) converter and scintillator coupled to a UV-sensitive gaseous imaging photomultiplier (GPM). Radiation imaging is obtained by localization of the scintillation-light from LXe with the position-sensitive GPM. The latter comprises a cascade of Thick Gas Electron Multipliers (THGEM), where the first element is coated with a CsI UV-photocathode. We present the concept and provide first model-simulation results of the processes involved and the expected performances of a detector having a LXe-filled capillaries converter. The new detector concept has potential applications in combined fast-neutron and gamma-ray screening of hidden explosives and fissile materials with pulsed sources.

  4. Elemental analysis using natural gamma-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Aksoy, A.; Naqvi, A. A.; Khiari, F. Z.; Abujarad, F.; Al-Ohali, M.; Sumani, M.

    1994-12-01

    A gamma-ray spectroscopy setup has been recently established to measure the natural gamma-ray activity from potassium ( 40K), uranium ( 238U), and thorium ( 232Th) isotopes in rock samples of oil well-logs. The setup mainly consists of a shielded 135 cm 3 Hyper Pure Germanium (HPGe) detector, a 5 in. × 5 in. NaT(Tl) detector and a PC based data acquisition system. The core samples, with 70-100 g weight, have cylindrical geometry and are sealed such that radon gas from 238U decay would not escape from the sample. For room background subtraction, pure quartz samples identical to core samples were used. The sample is first counted with the HPGe detector to identify the elements through its characteristics gamma rays. Then the elemental concentration is determined by counting the sample with a NaI detector. In order to determine the absolute concentrations, the sample activity is compared with the activities of standards supplied by NIST and IAEA. The concentration of 238U and 232Th has been determined in ppm range with that of 40K in wt.%.

  5. Gamma-ray spectroscopy measurements and simulations for uranium mining

    NASA Astrophysics Data System (ADS)

    Marchais, T.; Pérot, B.; Carasco, C.; Allinei, P.-G.; Chaussonnet, P.; Ma, J.-L.; Toubon, H.

    2018-01-01

    AREVA Mines and the Nuclear Measurement Laboratory of CEA Cadarache are collaborating to improve the sensitivity and precision of uranium concentration evaluation by means of gamma measurements. This paper reports gamma-ray spectra, recorded with a high-purity coaxial germanium detector, on standard cement blocks with increasing uranium content, and the corresponding MCNP simulations. The detailed MCNP model of the detector and experimental setup has been validated by calculation vs. experiment comparisons. An optimization of the detector MCNP model is presented in this paper, as well as a comparison of different nuclear data libraries to explain missing or exceeding peaks in the simulation. Energy shifts observed between the fluorescence X-rays produced by MCNP and atomic data are also investigated. The qualified numerical model will be used in further studies to develop new gamma spectroscopy approaches aiming at reducing acquisition times, especially for ore samples with low uranium content.

  6. Particle-Induced Gamma-ray Emission Spectroscopy Over a Broad Range of Elements

    NASA Astrophysics Data System (ADS)

    Olds, Hannah; Wilkinson, John; Tighe, Meghanne; McLallen, Walter; McGuire, Patrick

    2017-09-01

    Ion beam analysis is a common application of nuclear physics that allows elemental and isotopic information about materials to be determined from accelerated light ion beams One of the best know ion beam analysis techniques is Particle-Induced Gamma-ray Emission (PIGE) spectroscopy, which can be used ex vacuo to identify the elements of interest in almost any solid target. The energies of the gamma-rays emitted by excited nuclei will be unique to each element and depend on its nuclear structure. For the most sensitivity, the accelerated ions should exceed the Coulomb barrier of the target, but many isotopes are known to be accessible to PIGE even below the Coulomb barrier. To explore the sensitivity of PIGE across the periodic table, PIGE measurements were made on elements with Z = 5, 9, 11-15, 17, 19-35, 37, 42, 44-48, 53, 56, 60, 62, 73, and 74 using 3.4 MeV protons. These measurements will be compared with literature values and be used as a basis for comparison with higher-energy proton beams available at the University of Notre Dame's St. Andre accelerator when it comes online this Fall. The beam normalization technique of using atmospheric argon and its 1459 keV gamma-ray to better estimate the integrated beam on target will also be discussed. Funded by the NSF REU program and the University of Notre Dame.

  7. Exploitation of Geometric Occlusion and Covariance Spectroscopy in a Gamma Sensor Array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukhopadhyay, Sanjoy; Maurer, Richard; Wolff, Ronald

    2013-09-01

    The National Security Technologies, LLC, Remote Sensing Laboratory has recently used an array of six small-footprint (1-inch diameter by 3-inch long) cylindrical crystals of thallium-doped sodium iodide scintillators to obtain angular information from discrete gamma ray–emitting point sources. Obtaining angular information in a near-field measurement for a field-deployed gamma sensor is a requirement for radiological emergency work. Three of the sensors sit at the vertices of a 2-inch isosceles triangle, while the other three sit on the circumference of a 3-inch-radius circle centered in this triangle. This configuration exploits occlusion of sensors, correlation from Compton scattering within a detector array,more » and covariance spectroscopy, a spectral coincidence technique. Careful placement and orientation of individual detectors with reference to other detectors in an array can provide improved angular resolution for determining the source position by occlusion mechanism. By evaluating the values of, and the uncertainties in, the photopeak areas, efficiencies, branching ratio, peak area correction factors, and the correlations between these quantities, one can determine the precise activity of a particular radioisotope from a mixture of radioisotopes that have overlapping photopeaks that are ordinarily hard to deconvolve. The spectral coincidence technique, often known as covariance spectroscopy, examines the correlations and fluctuations in data that contain valuable information about radiation sources, transport media, and detection systems. Covariance spectroscopy enhances radionuclide identification techniques, provides directional information, and makes weaker gamma-ray emission—normally undetectable by common spectroscopic analysis—detectable. A series of experimental results using the concept of covariance spectroscopy are presented.« less

  8. Application of gamma imaging techniques for the characterisation of position sensitive gamma detectors

    NASA Astrophysics Data System (ADS)

    Habermann, T.; Didierjean, F.; Duchêne, G.; Filliger, M.; Gerl, J.; Kojouharov, I.; Li, G.; Pietralla, N.; Schaffner, H.; Sigward, M.-H.

    2017-11-01

    A device to characterize position-sensitive germanium detectors has been implemented at GSI. The main component of this so called scanning table is a gamma camera that is capable of producing online 2D images of the scanned detector by means of a PET technique. To calibrate the gamma camera Compton imaging is employed. The 2D data can be processed further offline to obtain depth information. Of main interest is the response of the scanned detector in terms of the digitized pulse shapes from the preamplifier. This is an important input for pulse-shape analysis algorithms as they are in use for gamma tracking arrays in gamma spectroscopy. To validate the scanning table, a comparison of its results with a second scanning table implemented at the IPHC Strasbourg is envisaged. For this purpose a pixelated germanium detector has been scanned.

  9. Coupled multi-group neutron photon transport for the simulation of high-resolution gamma-ray spectroscopy applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burns, Kimberly A.

    2009-08-01

    The accurate and efficient simulation of coupled neutron-photon problems is necessary for several important radiation detection applications. Examples include the detection of nuclear threats concealed in cargo containers and prompt gamma neutron activation analysis for nondestructive determination of elemental composition of unknown samples.

  10. EP-DRAFT-1.1 2014-01-19 OSI-GAM-SOP-00x In Situ High-resolution Gamma Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wimer, N. G.; Kreek, S. A.

    2014-01-27

    The standard operating procedure is described for in situ high-resolution gamma spectroscopy, including operational readiness, planning, preparation, conduct, and reporting. Data analysis of in situ gamma spectrum files will be performed together with those of other gamma assay methods by a dedicated Data Analysis process, documented in companion OSI procedures.

  11. SIFTER: Scintillating Fiber Telescopes for Energetic Radiation, Gamma-Ray Applications

    NASA Technical Reports Server (NTRS)

    Paciesas, William S.

    2002-01-01

    The research project "SIFTER: Scintillating Fiber Telescopes for Energetic Radiation, Gamma-Ray Applications" approved under the NASA High Energy Astrophysics Research Program. The principal investigator of the proposal was Prof. Geoffrey N. Pendleton, who is currently on extended leave from UAH. Prof. William S. Paciesas administered the grant during Dr. Pendleton's absence. The project was originally funded for one year from 6/8/2000 to 6/7/2001. Due to conflicts with other commitments by the PI, the period of performance was extended at no additional cost until 6/30/2002. The goal of this project was to study scintillating fiber pair-tracking gamma-ray telescope configurations specifically designed to perform imaging and spectroscopy in the 5 - 250 MeV energy range. The main efforts were concentrated in two areas: 1) development of tracking techniques and event reconstruction algorithms, with particular emphasis on angular resolution; and 2) investigation of coded apertures as a means to improve the instrument angular resolution at low energies.

  12. A Modular Pipelined Processor for High Resolution Gamma-Ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Veiga, Alejandro; Grunfeld, Christian

    2016-02-01

    The design of a digital signal processor for gamma-ray applications is presented in which a single ADC input can simultaneously provide temporal and energy characterization of gamma radiation for a wide range of applications. Applying pipelining techniques, the processor is able to manage and synchronize very large volumes of streamed real-time data. Its modular user interface provides a flexible environment for experimental design. The processor can fit in a medium-sized FPGA device operating at ADC sampling frequency, providing an efficient solution for multi-channel applications. Two experiments are presented in order to characterize its temporal and energy resolution.

  13. Near-infrared spectroscopy for burning plasma diagnostic applications.

    PubMed

    Soukhanovskii, V A

    2008-10-01

    Ultraviolet and visible (UV-VIS, 200-750 nm) atomic spectroscopy of neutral and ionized fuel species (H, D, T, and Li) and impurities (e.g., He, Be, C, and W) is a key element of plasma control and diagnosis on International Thermonuclear Experimental Reactor and future magnetically confined burning plasma experiments (BPXs). Spectroscopic diagnostic implementation and performance issues that arise in the BPX harsh nuclear environment in the UV-VIS range, e.g., degradation of first mirror reflectivity under charge-exchange atom bombardment (erosion) and impurity deposition, permanent and dynamic loss of window, and optical fiber transmission under intense neutron and gamma-ray fluxes, are either absent or not as severe in the near-infrared (NIR, 750-2000 nm) range. An initial survey of NIR diagnostic applications has been undertaken on the National Spherical Torus Experiment. It is demonstrated that NIR spectroscopy can be used for machine protection and plasma control applications, as well as contribute to plasma performance evaluation and physics studies. Emission intensity estimates demonstrate that NIR measurements are possible in the BPX plasma operating parameter range. Complications in the NIR range due to the parasitic background emissions are expected to occur at very high plasma densities, low impurity densities, and at high plasma-facing component temperatures.

  14. Photon-induced positron annihilation lifetime spectroscopy using ultrashort laser-Compton-scattered gamma-ray pulses

    NASA Astrophysics Data System (ADS)

    Taira, Y.; Toyokawa, H.; Kuroda, R.; Yamamoto, N.; Adachi, M.; Tanaka, S.; Katoh, M.

    2013-05-01

    High-energy ultrashort gamma-ray pulses can be generated via laser Compton scattering with 90° collisions at the UVSOR-II electron storage ring. As an applied study of ultrashort gamma-ray pulses, a new photon-induced positron annihilation lifetime spectroscopy approach has been developed. Ultrashort gamma-ray pulses with a maximum energy of 6.6 MeV and pulse width of 2.2 ps created positrons throughout bulk lead via pair production. Annihilation gamma rays were detected by a BaF2 scintillator mounted on a photomultiplier tube. A positron lifetime spectrum was obtained by measuring the time difference between the RF frequency of the electron storage ring and the detection time of the annihilation gamma rays. We calculated the response of the BaF2 scintillator and the time jitter caused by the variation in the total path length of the ultrashort gamma-ray pulses, annihilation gamma rays, and scintillation light using a Monte Carlo simulation code. The positron lifetime for bulk lead was successfully measured.

  15. Camel molar tooth enamel response to gamma rays using EPR spectroscopy.

    PubMed

    El-Faramawy, N A; El-Somany, I; Mansour, A; Maghraby, A M; Eissa, H; Wieser, A

    2018-03-01

    Tooth enamel samples from molar teeth of camel were prepared using a combined procedure of mechanical and chemical tooth treatment. Based on electron paramagnetic resonance (EPR) spectroscopy, the dose response of tooth enamel samples was examined and compared to that of human enamel. The EPR dose response of the tooth enamel samples was obtained through irradiation to gamma doses from 1 Gy up to 100 kGy. It was found that the radiation-induced EPR signal increased linearly with gamma dose for all studied tooth enamel samples, up to about 15 kGy. At higher doses, the dose response curve leveled off. The results revealed that the location of the native signal of camel tooth enamel was similar to that of enamel from human molars at 2.00644, but different from that of enamel from cows and goats. In addition, the peak-to-peak width (ΔH pp ) for human and camel molar teeth was similar. It was also found that the response of camel enamel to gamma radiation was 36% lower than that of human enamel. In conclusion, the results indicate the suitability of camel teeth for retrospective gamma dosimetry.

  16. Gamma-ray spectroscopy at MHz counting rates with a compact LaBr3 detector and silicon photomultipliers for fusion plasma applications.

    PubMed

    Nocente, M; Rigamonti, D; Perseo, V; Tardocchi, M; Boltruczyk, G; Broslawski, A; Cremona, A; Croci, G; Gosk, M; Kiptily, V; Korolczuk, S; Mazzocco, M; Muraro, A; Strano, E; Zychor, I; Gorini, G

    2016-11-01

    Gamma-ray spectroscopy measurements at MHz counting rates have been carried out, for the first time, with a compact spectrometer based on a LaBr 3 scintillator and silicon photomultipliers. The instrument, which is also insensitive to magnetic fields, has been developed in view of the upgrade of the gamma-ray camera diagnostic for α particle measurements in deuterium-tritium plasmas of the Joint European Torus. Spectra were measured up to 2.9 MHz with a projected energy resolution of 3%-4% in the 3-5 MeV range, of interest for fast ion physics studies in fusion plasmas. The results reported here pave the way to first time measurements of the confined α particle profile in high power plasmas of the next deuterium-tritium campaign at the Joint European Torus.

  17. A gamma-ray spectroscopy survey of Omani meteorites

    NASA Astrophysics Data System (ADS)

    Weber, Patrick; Hofmann, Beda A.; Tolba, Tamer; Vuilleumier, Jean-Luc

    2017-06-01

    The gamma-ray activities of 33 meteorite samples (30 ordinary chondrites, 1 Mars meteorite, 1 iron, 1 howardite) collected during Omani-Swiss meteorite search campaigns 2001-2008 were nondestructively measured using an ultralow background gamma-ray detector. The results provide several types of information: Potassium and thorium concentrations were found to range within typical values for the meteorite types. Similar mean 26Al activities in groups of ordinary chondrites with (1) weathering degrees W0-1 and low 14C terrestrial age and (2) weathering degree W3-4 and high 14C terrestrial age are mostly consistent with activities observed in recent falls. The older group shows no significant depletion in 26Al. Among the least weathered samples, one meteorite (SaU 424) was found to contain detectable 22Na identifying it as a recent fall close to the year 2000. Based on an estimate of the surface area searched, the corresponding fall rate is 120 events/106 km2*a, consistent with other estimations. Twelve samples from the large JaH 091 strewn field (total mass 4.5 t) show significant variations of 26Al activities, including the highest values measured, consistent with a meteoroid radius of 115 cm. Activities of 238U daughter elements demonstrate terrestrial contamination with 226Ra and possible loss of 222Rn. Recent contamination with small amounts of 137Cs is ubiquitous. We conclude that gamma-ray spectroscopy of a selection of meteorites with low degrees of weathering is particularly useful to detect recent falls among meteorites collected in hot deserts.

  18. Solid state structural investigations of the bis(chalcone) compound with single crystal X-ray crystallography, DFT, gamma-ray spectroscopy and chemical spectroscopy methods

    NASA Astrophysics Data System (ADS)

    Yakalı, Gül; Biçer, Abdullah; Eke, Canel; Cin, Günseli Turgut

    2018-04-01

    A bis(chalcone), (2E,6E)-2,6-bis((E)-3phenylallidene)cyclohexanone, was characterized by 1H NMR, 13C NMR, FTIR, UV-Vis spectroscopy, gamma-ray spectroscopy and single crystal X- ray structural analysis. The optimized molecular structure of the compound is calculated using DFT/B3LYP with 6-31G (d,p) level. The calculated geometrical parameters are in good agreement with the experimental data obtained from our reported X-ray structure. The powder and single crystal compounds were gama-irradiated using clinical electron linear accelerator and 60Co gamma-ray source, respectively. Spectral studies (1H NMR, 13C NMR, FTIR and UV-Vis) of powder chalcone compound were also investigated before and after irradiation. Depending on the irradiation notable changes were observed in spectral features powder sample. Single crystal X-ray diffraction investigation shows that both unirradiated and irradiated single crystal samples crystallizes in a orthorhombic crystal system in the centrosymmetric space group Pbcn and exhibits an C-H..O intramolecular and intermolecular hydrogen bonds. The crystal packing is stabilised by strong intermolecular bifurcate C-H..O hydrogen bonds and π…π stacking interactions. The asymmetric unit of the title compound contains one-half of a molecule. The other half of the molecule is generated with (1-x,y,-3/2-z) symmetry operator. The molecule is almost planar due to having π conjugated system of chalcones. However, irradiated single crystal compound showed significant changes lattice parameters, crystal volume and density. According to results of gamma-ray spectroscopy, radioactive elements of powder compound which are 123Sb(n,g),124Sb,57Fe(g,p),56Mn, 55Mn(g,n), and 54Mn were determined using photoactivation analysis. However, the most intensive gamma-ray energy signals are 124Sb.

  19. Gamma Ray Spectroscopy and SASSYER

    NASA Astrophysics Data System (ADS)

    Pauerstein, Benjamin; Bonniwell, Cain; Allmond, J. M.; Beausang, C. W.

    2009-10-01

    An experiment was performed to study the Gd and Tb nuclei resulting from a 27 MeV proton beam on a 156Gd target. This was conducted at Lawrence Berkeley National Laboratory using the STARS/LIBERACE array. The main focus of the experiment was on charged particle channels (p,d) into 155Gd and (p,t) into 154Gd. However, the trigger was either gamma-gamma or particle-gamma so new data was also obtained on 155Tb nuclei following fusion evaporation reactions. Preliminary analysis was conducted at Wright Nuclear Structure Lab where RADWARE programs were used to analyze the data and search for unknown gamma rays. A second, separate, experiment was conducted using the SASSYER (a gas-filled separator at Yale). In this experiment, fission fragments from a 252Cf source were focused to a DSSD and a Ge detector was used to search for either gamma-decay from long lived isomers in the fission fragments or to find gammas from recoil-beta-decay tagging on the fission fragments. The data collection seems to have gone smoothly, and the data is currently being sorted for analysis. This work was supported by the US Department of Energy under grant numbers DE-FG02-52NA26206 and DE-FG02-05ER41379.

  20. Gamma Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    2000-01-01

    The project has progressed successfully during this period of performance. The highlights of the Gamma Ray Astronomy teams efforts are: (1) Support daily BATSE data operations, including receipt, archival and dissemination of data, quick-look science analysis, rapid gamma-ray burst and transient monitoring and response efforts, instrument state-of-health monitoring, and instrument commanding and configuration; (2) On-going scientific analysis, including production and maintenance of gamma-ray burst, pulsed source and occultation source catalogs, gamma-ray burst spectroscopy, studies of the properties of pulsars and black holes, and long-term monitoring of hard x-ray sources; (3) Maintenance and continuous improvement of BATSE instrument response and calibration data bases; (4) Investigation of the use of solid state detectors for eventual application and instrument to perform all sky monitoring of X-Ray and Gamma sources with high sensitivity; and (5) Support of BATSE outreach activities, including seminars, colloquia and World Wide Web pages. The highlights of this efforts can be summarized in the publications and presentation list.

  1. Gamma-Ray Pulse Tube Cooler Development and Testing

    NASA Technical Reports Server (NTRS)

    Ross, R.; Johnson, D.; Kotsubo, V.; Evtimov, B.; Olson, J.; Nast, T.; Rawlings, R.

    2000-01-01

    For a variety of space-science applications, such as gamma-ray spectroscopy, the introduction of cryogenic cooling via a cryocooler can greatly increase the potential science return by allowing the use of more sensitive and lower noise detectors.

  2. Identification of lunar rock types and search for polar ice by gamma ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Metzger, A. E.; Drake, D. M.

    1990-01-01

    This paper examines the possibility of mapping the surface composition of the moon from an orbiting spin-stabilized spacecraft, using gamma ray spectroscopy and a cooled germanium solid-state device as a detector. A design for accommodating the germanium detector gamma ray spectrometer was devised, and the detection sensitivity was applied to typical lunar-rock compositions. For sets comprising nine highland and 16 mare types, the most useful elements were found to be Mg, Al, K, Ti, Fe, U, and Th. An analysis of the expected instrument response to the gamma ray and neutron fluxes of water ice indicated that a neutron mode added to the spectrometer will be more sensitive than the gamma ray mode to the possible presence of polar ice. It was calculated that, with a pair of selected neutron absorbers and a model which provides that 2.5 percent of the area above 75-deg latitude is occupied by trapping sites, the instrument will provide a 1-yr mission detection limit of 0.056 percent H2O by weight for each polar region.

  3. Study and application of new Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Qiushi; Zhang, Xiaohua

    2016-03-01

    Spatially Offset Raman Spectroscopy (SORS) is a new type of Raman Spectroscopy technology, which can detect the medium concealed in the opaque or sub-transparent material fast and nondestructively. The article summarized Spatially Offset Raman Spectroscopy`s international and domestic study and application progress on contraband detecting, medical science (bone ingredient, cancer diagnose etc.), agricultural products, historical relic identification etc. and stated the technology would become an effective measurement which had wide application prospect.

  4. Proximal Gamma-Ray Spectroscopy to Predict Soil Properties Using Windows and Full-Spectrum Analysis Methods

    PubMed Central

    Mahmood, Hafiz Sultan; Hoogmoed, Willem B.; van Henten, Eldert J.

    2013-01-01

    Fine-scale spatial information on soil properties is needed to successfully implement precision agriculture. Proximal gamma-ray spectroscopy has recently emerged as a promising tool to collect fine-scale soil information. The objective of this study was to evaluate a proximal gamma-ray spectrometer to predict several soil properties using energy-windows and full-spectrum analysis methods in two differently managed sandy loam fields: conventional and organic. In the conventional field, both methods predicted clay, pH and total nitrogen with a good accuracy (R2 ≥ 0.56) in the top 0–15 cm soil depth, whereas in the organic field, only clay content was predicted with such accuracy. The highest prediction accuracy was found for total nitrogen (R2 = 0.75) in the conventional field in the energy-windows method. Predictions were better in the top 0–15 cm soil depths than in the 15–30 cm soil depths for individual and combined fields. This implies that gamma-ray spectroscopy can generally benefit soil characterisation for annual crops where the condition of the seedbed is important. Small differences in soil structure (conventional vs. organic) cannot be determined. As for the methodology, we conclude that the energy-windows method can establish relations between radionuclide data and soil properties as accurate as the full-spectrum analysis method. PMID:24287541

  5. Ultraviolet-visible and fluorescence spectroscopy can be used as a diagnostic tool for gamma irradiation detection in vivo.

    PubMed

    K-Abdelhalim, Mohamed Anwar; Moussa, Sherif A-Abdelmottaleb

    2016-09-01

    The spectroscopic properties can indicate important features about the nature and severity of the disease. However, no earlier studies have been used the spectroscopic properties as a diagnostic tool for radiation detection. This study was aimed to use ultraviolet-visible and fluorescence spectroscopy as a diagnostic tool for gamma irradiation detection in rats in vivo. Adult male rats were exposed to 25, 50, 75 and 100 Gray as single dose, using Cobalt-60 (Co-60) source with a dose rate of 0.883 centi Gray/sec (cGy/s). Ultraviolet and fluorescence spectroscopy of rat's blood serum were measured. After gamma irradiation of rats in vivo, the blood serum absorbance peaks for 25, 50, 75 and 100 Gray (Gy) decreased and shifted towards the ultra violet wavelength. A maximal change in fluorescence intensity of blood serum at 350 nm was obtained when exciting light at 194 nm after irradiation. The fluorescence intensity also decreased with the dose. The highest radiation gamma dose might be accompanied with the highest oxidative stress. This study suggests that at the above mentioned gamma radiation doses, the blood is highly fragmented; with low aggregation at 25 Gy and with high aggregation at 50-100 Gy.

  6. Digitized detection of gamma-ray signals concentrated in narrow time windows for transient positron annihilation lifetime spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinomura, A., E-mail: a.kinomura@aist.go.jp; Suzuki, R.; Oshima, N.

    2014-12-15

    A pulsed slow-positron beam generated by an electron linear accelerator was directly used for positron annihilation lifetime spectroscopy without any positron storage devices. A waveform digitizer was introduced to simultaneously capture multiple gamma-ray signals originating from positron annihilation events during a single accelerator pulse. The positron pulse was chopped and bunched with the chopper signals also sent to the waveform digitizer. Time differences between the annihilation gamma-ray and chopper peaks were calculated and accumulated as lifetime spectra in a computer. The developed technique indicated that positron annihilation lifetime spectroscopy can be performed in a 20 μs time window at amore » pulse repetition rate synchronous with the linear accelerator. Lifetime spectra of a Kapton sheet and a thermally grown SiO{sub 2} layer on Si were successfully measured. Synchronization of positron lifetime measurements with pulsed ion irradiation was demonstrated by this technique.« less

  7. Digitized detection of gamma-ray signals concentrated in narrow time windows for transient positron annihilation lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Kinomura, A.; Suzuki, R.; Oshima, N.; O'Rourke, B. E.; Nishijima, T.; Ogawa, H.

    2014-12-01

    A pulsed slow-positron beam generated by an electron linear accelerator was directly used for positron annihilation lifetime spectroscopy without any positron storage devices. A waveform digitizer was introduced to simultaneously capture multiple gamma-ray signals originating from positron annihilation events during a single accelerator pulse. The positron pulse was chopped and bunched with the chopper signals also sent to the waveform digitizer. Time differences between the annihilation gamma-ray and chopper peaks were calculated and accumulated as lifetime spectra in a computer. The developed technique indicated that positron annihilation lifetime spectroscopy can be performed in a 20 μs time window at a pulse repetition rate synchronous with the linear accelerator. Lifetime spectra of a Kapton sheet and a thermally grown SiO2 layer on Si were successfully measured. Synchronization of positron lifetime measurements with pulsed ion irradiation was demonstrated by this technique.

  8. Characterizing near-surface elemental layering on Mars using gamma-ray spectroscopy: A proof-of-principle experiment

    NASA Astrophysics Data System (ADS)

    Peplowski, Patrick N.; Wilson, Jack T.; Beck, Andrew W.; Burks, Morgan; Goldsten, John O.; Lawrence, David J.

    2018-01-01

    Gamma-ray spectroscopy investigations characterize the chemical composition of planetary surfaces by measuring element-characteristic gamma rays with energies of ∼100 keV to ∼9 MeV. Over this energy range, the mean free path of a gamma ray varies from about 1 to 25 cm, therefore gamma-ray measurements sample subsurface composition. Many elements emit gamma rays at multiple, often widely spaced energies, so gamma-ray measurements can in principle also be used to identify depth-dependent variations in subsurface composition. We report results from laboratory measurements and radiation transport modeling designed to demonstrate this capability. The laboratory measurements verified the presence of depth-dependent gamma-ray signatures, and were then used to benchmark radiation transport simulations that were used to model realistic Mars-like scenarios. The models indicate that compositionally distinct subsurface deposits, buried to depths of ∼80 cm (125 g/cm2), can be identified using gamma-ray measurements. Going beyond identification to characterization (burial depth, relative composition of the layers) of the deposits requires knowledge of the vertical and horizontal variability in the water content of the near-surface surface materials, the local Galactic Cosmic Ray environment (magnitude and energy distribution), the depth-dependent neutron flux, gamma-ray production cross sections, and knowledge of the composition and column density of the atmosphere. The results of our experiments and models provided a basis for examining the utility of using orbiter- and lander-based gamma-ray measurements to identify subsurface deposits on Mars.

  9. A Multi-Contact, Low Capacitance HPGe Detector for High Rate Gamma Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, Christopher

    2014-12-04

    The detection, identification and non-destructive assay of special nuclear materials and nuclear fission by-products are critically important activities in support of nuclear non-proliferation programs. Both national and international nuclear safeguard agencies recognize that current accounting methods for spent nuclear fuel are inadequate from a safeguards perspective. Radiation detection and analysis by gamma-ray spectroscopy is a key tool in this field, but no instrument exists that can deliver the required performance (energy resolution and detection sensitivity) in the presence of very high background count rates encountered in the nuclear safeguards arena. The work of this project addresses this critical need bymore » developing a unique gamma-ray detector based on high purity germanium that has the previously unachievable property of operating in the 1 million counts-per-second range while achieving state-of-the-art energy resolution necessary to identify and analyze the isotopes of interest. The technical approach was to design and fabricate a germanium detector with multiple segmented electrodes coupled to multi-channel high rate spectroscopy electronics. Dividing the germanium detector’s signal electrode into smaller sections offers two advantages; firstly, the energy resolution of the detector is potentially improved, and secondly, the detector is able to operate at higher count rates. The design challenges included the following; determining the optimum electrode configuration to meet the stringent energy resolution and count rate requirements; determining the electronic noise (and therefore energy resolution) of the completed system after multiple signals are recombined; designing the germanium crystal housing and vacuum cryostat; and customizing electronics to perform the signal recombination function in real time. In this phase I work, commercial off-the-shelf electrostatic modeling software was used to develop the segmented germanium crystal

  10. Distance dependent quenching and gamma-ray spectroscopy in tin-loaded polystyrene scintillators

    DOE PAGES

    Feng, Patrick L; Mengesha, Wondwosen; Anstey, Mitchell R.; ...

    2016-02-01

    In this study, we report the synthesis and inclusion of rationally designed organotin compounds in polystyrene matrices as a route towards plastic scintillators capable of gamma-ray spectroscopy. Tin loading ratios of up to 15% w/w have been incorporated, resulting in photopeak energy resolution values as low as 10.9% for 662 keV gamma-rays. Scintillator constituents were selected based upon a previously reported distance-dependent quenching mechanism. Data obtained using UV-Vis and photoluminescence measurements are consistent with this phenomenon and are correlated with the steric and electronic properties of the respective organotin complexes. We also report fast scintillation decay behavior that is comparablemore » to the quenched scintillators 0.5% trans-stilbene doped bibenzyl and the commercial plastic scintillator BC-422Q-1%. These observations are discussed in the context of practical considerations such as optical transparency, ease-of-preparation/scale-up, and total scintillator cost.« less

  11. ZnO Luminescence and scintillation studied via photoexcitation, X-ray excitation, and gamma-induced positron spectroscopy.

    PubMed

    Ji, J; Colosimo, A M; Anwand, W; Boatner, L A; Wagner, A; Stepanov, P S; Trinh, T T; Liedke, M O; Krause-Rehberg, R; Cowan, T E; Selim, F A

    2016-08-23

    The luminescence and scintillation properties of ZnO single crystals were studied by photoluminescence and X-ray-induced luminescence (XRIL) techniques. XRIL allowed a direct comparison to be made between the near-band emission (NBE) and trap emissions providing insight into the carrier recombination efficiency in the ZnO crystals. It also provided bulk luminescence measurements that were not affected by surface states. The origin of a green emission, the dominant trap emission in ZnO, was then investigated by gamma-induced positron spectroscopy (GIPS) - a unique defect spectroscopy method that enables positron lifetime measurements to be made for a sample without contributions from positron annihilation in the source materials. The measurements showed a single positron decay curve with a 175 ps lifetime component that was attributed to Zn vacancies passivated by hydrogen. Both oxygen vacancies and hydrogen-decorated Zn vacancies were suggested to contribute to the green emission. By combining scintillation measurements with XRIL, the fast scintillation in ZnO crystals was found to be strongly correlated with the ratio between the defect luminescence and NBE. This study reports the first application of GIPS to semiconductors, and it reveals the great benefits of the XRIL technique for the study of emission and scintillation properties of materials.

  12. ZnO Luminescence and scintillation studied via photoexcitation, X-ray excitation, and gamma-induced positron spectroscopy

    NASA Astrophysics Data System (ADS)

    Ji, J.; Colosimo, A. M.; Anwand, W.; Boatner, L. A.; Wagner, A.; Stepanov, P. S.; Trinh, T. T.; Liedke, M. O.; Krause-Rehberg, R.; Cowan, T. E.; Selim, F. A.

    2016-08-01

    The luminescence and scintillation properties of ZnO single crystals were studied by photoluminescence and X-ray-induced luminescence (XRIL) techniques. XRIL allowed a direct comparison to be made between the near-band emission (NBE) and trap emissions providing insight into the carrier recombination efficiency in the ZnO crystals. It also provided bulk luminescence measurements that were not affected by surface states. The origin of a green emission, the dominant trap emission in ZnO, was then investigated by gamma-induced positron spectroscopy (GIPS) - a unique defect spectroscopy method that enables positron lifetime measurements to be made for a sample without contributions from positron annihilation in the source materials. The measurements showed a single positron decay curve with a 175 ps lifetime component that was attributed to Zn vacancies passivated by hydrogen. Both oxygen vacancies and hydrogen-decorated Zn vacancies were suggested to contribute to the green emission. By combining scintillation measurements with XRIL, the fast scintillation in ZnO crystals was found to be strongly correlated with the ratio between the defect luminescence and NBE. This study reports the first application of GIPS to semiconductors, and it reveals the great benefits of the XRIL technique for the study of emission and scintillation properties of materials.

  13. ZnO Luminescence and scintillation studied via photoexcitation, X-ray excitation, and gamma-induced positron spectroscopy

    PubMed Central

    Ji, J.; Colosimo, A. M.; Anwand, W.; Boatner, L. A.; Wagner, A.; Stepanov, P. S.; Trinh, T. T.; Liedke, M. O.; Krause-Rehberg, R.; Cowan, T. E.; Selim, F. A.

    2016-01-01

    The luminescence and scintillation properties of ZnO single crystals were studied by photoluminescence and X-ray-induced luminescence (XRIL) techniques. XRIL allowed a direct comparison to be made between the near-band emission (NBE) and trap emissions providing insight into the carrier recombination efficiency in the ZnO crystals. It also provided bulk luminescence measurements that were not affected by surface states. The origin of a green emission, the dominant trap emission in ZnO, was then investigated by gamma-induced positron spectroscopy (GIPS) - a unique defect spectroscopy method that enables positron lifetime measurements to be made for a sample without contributions from positron annihilation in the source materials. The measurements showed a single positron decay curve with a 175 ps lifetime component that was attributed to Zn vacancies passivated by hydrogen. Both oxygen vacancies and hydrogen-decorated Zn vacancies were suggested to contribute to the green emission. By combining scintillation measurements with XRIL, the fast scintillation in ZnO crystals was found to be strongly correlated with the ratio between the defect luminescence and NBE. This study reports the first application of GIPS to semiconductors, and it reveals the great benefits of the XRIL technique for the study of emission and scintillation properties of materials. PMID:27550235

  14. Determination of dosimetric and kinetic features of gamma irradiated solid calcium ascorbate dihydrate using ESR spectroscopy

    NASA Astrophysics Data System (ADS)

    Tuner, H.

    2013-01-01

    Effects of gamma radiation on solid calcium ascorbate dihydrate were studied using electron spin resonance (ESR) spectroscopy. Irradiated samples were found to present two specific ESR lines with shoulder at low and high magnetic field sides. Structural and kinetic features of the radicalic species responsible for experimental ESR spectrum were explored through the variations of the signal intensities with applied microwave power, variable temperature, high-temperature annealing and room temperature storage time studies. Dosimetric potential of the sample was also determined using spectrum area and measured signal intensity measurements. It was concluded that three radicals with different spectroscopic and kinetic features were produced upon gamma irradiation.

  15. Application of mobile gamma-ray spectrometry for soil mapping

    NASA Astrophysics Data System (ADS)

    Werban, Ulrike; Lein, Claudia; Pohle, Marco; Dietrich, Peter

    2017-04-01

    Gamma-ray measurements have a long tradition for geological surveys and deposit exploration using airborne and borehole logging systems. For these applications, the relationships between the measured physical parameter - the concentration of natural gamma emitters 40K, 238U and 232Th - and geological origin or sedimentary developments are well described. Thus, Gamma-ray spectrometry seems a useful tool for carrying out spatial mapping of physical parameters related to soil properties. The isotope concentration in soils depends on different soil parameters (e.g. geochemical composition, grain size fractions), which are a result of source rock properties and processes during soil geneses. There is a rising interest in the method for application in Digital Soil Mapping or as input data for environmental, ecological or hydrological modelling, e.g. as indicator for clay content. However, the gamma-ray measurement is influenced by endogenous factors and processes like soil moisture variation, erosion and deposition of material or cultivation. We will present results from a time series of car borne gamma-ray measurements to observe heterogeneity of soil on a floodplain area in Central Germany. The study area is characterised by high variations in grain size distribution and occurrence of flooding events. For the survey, we used a 4 l NaI(Tl) detector with GPS connection mounted on a sledge, which is towed across the field sites by a four-wheel-vehicle. The comparison of data from different dates shows similar structures with small variation between the data ranges and shape of structures. We will present our experiences concerning the application of gamma-ray measurements under variable field conditions and their impacts on data quality.

  16. Emerging technology: applications of Raman spectroscopy for prostate cancer.

    PubMed

    Kast, Rachel E; Tucker, Stephanie C; Killian, Kevin; Trexler, Micaela; Honn, Kenneth V; Auner, Gregory W

    2014-09-01

    There is a need in prostate cancer diagnostics and research for a label-free imaging methodology that is nondestructive, rapid, objective, and uninfluenced by water. Raman spectroscopy provides a molecular signature, which can be scaled from micron-level regions of interest in cells to macroscopic areas of tissue. It can be used for applications ranging from in vivo or in vitro diagnostics to basic science laboratory testing. This work describes the fundamentals of Raman spectroscopy and complementary techniques including surface enhanced Raman scattering, resonance Raman spectroscopy, coherent anti-Stokes Raman spectroscopy, confocal Raman spectroscopy, stimulated Raman scattering, and spatially offset Raman spectroscopy. Clinical applications of Raman spectroscopy to prostate cancer will be discussed, including screening, biopsy, margin assessment, and monitoring of treatment efficacy. Laboratory applications including cell identification, culture monitoring, therapeutics development, and live imaging of cellular processes are discussed. Potential future avenues of research are described, with emphasis on multiplexing Raman spectroscopy with other modalities.

  17. Ultrafast Laser-Based Spectroscopy and Sensing: Applications in LIBS, CARS, and THz Spectroscopy

    PubMed Central

    Leahy-Hoppa, Megan R.; Miragliotta, Joseph; Osiander, Robert; Burnett, Jennifer; Dikmelik, Yamac; McEnnis, Caroline; Spicer, James B.

    2010-01-01

    Ultrafast pulsed lasers find application in a range of spectroscopy and sensing techniques including laser induced breakdown spectroscopy (LIBS), coherent Raman spectroscopy, and terahertz (THz) spectroscopy. Whether based on absorption or emission processes, the characteristics of these techniques are heavily influenced by the use of ultrafast pulses in the signal generation process. Depending on the energy of the pulses used, the essential laser interaction process can primarily involve lattice vibrations, molecular rotations, or a combination of excited states produced by laser heating. While some of these techniques are currently confined to sensing at close ranges, others can be implemented for remote spectroscopic sensing owing principally to the laser pulse duration. We present a review of ultrafast laser-based spectroscopy techniques and discuss the use of these techniques to current and potential chemical and environmental sensing applications. PMID:22399883

  18. OVERVIEW OF MONO-ENERGETIC GAMMA-RAY SOURCES & APPLICATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartemann, F V; Albert, F; Anderson, G G

    2010-05-18

    Recent progress in accelerator physics and laser technology have enabled the development of a new class of tunable gamma-ray light sources based on Compton scattering between a high-brightness, relativistic electron beam and a high intensity laser pulse produced via chirped-pulse amplification (CPA). A precision, tunable Mono-Energetic Gamma-ray (MEGa-ray) source driven by a compact, high-gradient X-band linac is currently under development and construction at LLNL. High-brightness, relativistic electron bunches produced by an X-band linac designed in collaboration with SLAC NAL will interact with a Joule-class, 10 ps, diode-pumped CPA laser pulse to generate tunable {gamma}-rays in the 0.5-2.5 MeV photon energymore » range via Compton scattering. This MEGa-ray source will be used to excite nuclear resonance fluorescence in various isotopes. Applications include homeland security, stockpile science and surveillance, nuclear fuel assay, and waste imaging and assay. The source design, key parameters, and current status are presented, along with important applications, including nuclear resonance fluorescence. In conclusion, we have optimized the design of a high brightness Compton scattering gamma-ray source, specifically designed for NRF applications. Two different parameters sets have been considered: one where the number of photons scattered in a single shot reaches approximately 7.5 x 10{sup 8}, with a focal spot size around 8 {micro}m; in the second set, the spectral brightness is optimized by using a 20 {micro}m spot size, with 0.2% relative bandwidth.« less

  19. Monitoring of the interconversion of gamma-butyrolactone (GBL) to gamma hydroxybutyric acid (GHB) by Raman spectroscopy.

    PubMed

    Munshi, Tasnim; Brewster, Victoria L; Edwards, Howell G M; Hargreaves, Michael D; Jilani, Shelina K; Scowen, Ian J

    2013-08-01

    Gamma-hydroxybutyric acid (GHB) is a drug-of-abuse that has recently become associated with drug-facilitated sexual assault, known as date rape. For this reason the drug is commonly found 'spiked' in alcoholic beverages. When GHB is in solution it may undergo conversion into the corresponding lactone, Gamma-butyrolactone (GBL). Studies have been carried out to determine the detection limits of GHB and GBL in various solutions by Raman spectroscopy and to monitor the interconversion of GHB and GBL in solution with different pH conditions and temperature. In this study, a portable Raman spectrometer was used to study the interconversion of GHB and GBL in water and ethanol solutions as a function of pH, time, and temperature. The aim of this was to determine the optimum pH range for conversion in order to relate this to the pH ranges that the drug is likely to be subjected to, first in spiked beverages and secondly after ingestion in the digestive system. The aim was also to identify a timescale for this conversion in relation to possible scenarios, for example if GHB takes a number of hours to convert to GBL, it is likely for the beverage to be ingested before esterification can take place. GHB and GBL were then spiked into a selection of beverages of known pH in order to study the stability of GHB and GBL in real systems. Copyright © 2012 John Wiley & Sons, Ltd.

  20. Lu1-xI3:Cex--A Scintillator for gamma ray spectroscopy and time-of-flight PET

    DOEpatents

    Shah, Kanai S [Newton, MA

    2009-03-17

    The present invention concerns very fast scintillator materials comprising lutetium iodide doped with Cerium Lu.sub.1-xI.sub.3:Ce.sub.x; LuI.sub.3:Ce). The LuI.sub.3 scintillator material has surprisingly good characteristics including high light output, high gamma ray stopping efficiency, fast response, low cost, good proportionality, and minimal afterglow that the material is useful for gamma ray spectroscopy, medical imaging, nuclear and high energy physics research, diffraction, non-destructive testing, nuclear treaty verification and safeguards, and geological exploration. The timing resolution of the scintillators of the present invention provide compositions capable of resolving the position of an annihilation event within a portion of a human body cross-section.

  1. Characterization of a tin-loaded liquid scintillator for gamma spectroscopy and neutron detection

    NASA Astrophysics Data System (ADS)

    Wen, Xianfei; Harvey, Taylor; Weinmann-Smith, Robert; Walker, James; Noh, Young; Farley, Richard; Enqvist, Andreas

    2018-07-01

    A tin-loaded liquid scintillator has been developed for gamma spectroscopy and neutron detection. The scintillator was characterized in regard to energy resolution, pulse shape discrimination, neutron light output function, and timing resolution. The loading of tin into scintillators with low effective atomic number was demonstrated to provide photopeaks with acceptable energy resolution. The scintillator was shown to have reasonable neutron/gamma discrimination capability based on the charge comparison method. The effect on the discrimination quality of the total charge integration time and the initial delay time for tail charge integration was studied. To obtain the neutron light output function, the time-of-flight technique was utilized with a 252Cf source. The light output function was validated with the MCNPX-PoliMi code by comparing the measured and simulated pule height spectra. The timing resolution of the developed scintillator was also evaluated. The tin-loading was found to have negligible impact on the scintillation decay times. However, a relatively large degradation of timing resolution was observed due to the reduced light yield.

  2. Estimation of neutron spectrum in the low-level gamma spectroscopy system using unfolding procedure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knežević, D., E-mail: david.knezevic@df.uns.ac.rs; Jovančević, N.; Krmar, M.

    2016-03-25

    The radiation resulting from neutron interactions with Ge nuclei in active volume of HPGe detectors is one of the main concerns in low-level gamma spectroscopy measurements [1,2]. It is usually not possible to measure directly spectrum of neutrons which strike detector. This paper explore the possibility of estimation of neutron spectrum using measured activities of certain Ge(n,γ) and Ge(n,n’) reactions (obtained from low-level gamma measurements), available ENDF cross section data and unfolding procedures. In this work HPGe detector with passive shield made from commercial low background lead was used for the measurement. The most important objective of this study wasmore » to reconstruct muon induced neutron spectrum created in the shield of the HPGe detector. MAXED [3] and GRAVEL [4] algorithms for neutron spectra unfolding were used. The results of those two algorithms were compared and we analyzed the sensitivity of the unfolding procedure to the various input parameters.« less

  3. Gamma-Ray Spectroscopy at TRIUMF-ISAC: the New Frontier of Radioactive Ion Beam Research

    NASA Astrophysics Data System (ADS)

    Ball, G. C.; Andreoiu, C.; Austin, R. A. E.; Bandyopadhyay, D.; Becker, J. A.; Bricault, P.; Brown, N.; Chan, S.; Churchman, R.; Colosimo, S.; Coombes, H.; Cross, D.; Demand, G.; Drake, T. E.; Dombsky, M.; Ettenauer, S.; Finlay, P.; Furse, D.; Garnsworthy, A.; Garrett, P. E.; Green, K. L.; Grinyer, G. F.; Hyland, B.; Hackman, G.; Kanungo, R.; Kulp, W. D.; Lassen, J.; Leach, K. G.; Leslie, J. R.; Mattoon, C.; Melconian, D.; Morton, A. C.; Pearson, C. J.; Phillips, A. A.; Rand, E.; Sarazin, F.; Svensson, C. E.; Sumithrarachchi, S.; Schumaker, M. A.; Triambak, S.; Waddington, J. C.; Walker, P. M.; Williams, S. J.; Wood, J. L.; Wong, J.; Zganjar, E. F.

    2009-03-01

    High-resolution gamma-ray spectroscopy is essential to fully exploit the unique scientific opportunities at the next generation radioactive ion beam facilities such as the TRIUMF Isotope Separator and Accelerator (ISAC). At ISAC the 8π spectrometer and its associated auxiliary detectors is optimize for β-decay studies while TIGRESS an array of segmented clover HPGe detectors has been designed for studies with accelerated beams. This paper gives a brief overview of these facilities and also presents recent examples of the diverse experimental program carried out at the 8π spectrometer.

  4. The [Gamma] Algorithm and Some Applications

    ERIC Educational Resources Information Center

    Castillo, Enrique; Jubete, Francisco

    2004-01-01

    In this paper the power of the [gamma] algorithm for obtaining the dual of a given cone and some of its multiple applications is discussed. The meaning of each sequential tableau appearing during the process is interpreted. It is shown that each tableau contains the generators of the dual cone of a given cone and that the algorithm updates the…

  5. Brilliant gamma beams for industrial applications: new opportunities, new challenges

    NASA Astrophysics Data System (ADS)

    Iancu, V.; Suliman, G.; Turturica, G. V.; Iovea, M.; Daito, I.; Ohgaki, H.; Matei, C.; Ur, C. A.; Balabanski, D. L.

    2016-10-01

    The Nuclear Physics oriented pillar of the pan-European Extreme Light Infrastructure (ELI-NP) will host an ultra-bright, energy tunable, and quasi-monochromatic gamma-ray beam system in the range of 0.2-19.5 MeV produced by laser-Compton backscattering technique. The applied research program envisioned at ELI-NP targets to use nuclear resonance fluorescence (NRF) and computed tomography to provide new opportunities for industry and society. High sensitivity NRF-based investigations can be successfully applied to safeguard applications and management of radioactive wastes as well as to uncharted fields like cultural heritage and medical imaging. Gamma-ray radioscopy and computed tomography performed at ELI-NP has the potential to achieve high resolution in industrial-sized objects provided the detection challenges introduced by the unique characteristics of the gamma beam are overcome. Here we discuss the foreseen industrial applications that will benefit from the high quality and unique characteristics of ELI-NP gamma beam and the challenges they present. We present the experimental setups proposed to be implemented for this goal, discuss their performance based on analytical calculations and numerical Monte-Carlo simulations, and comment about constrains imposed by the limitation of current scintillator detectors. Several gamma-beam monitoring devices based on scintillator detectors will also be discussed.

  6. Applications of Raman spectroscopy in life science

    NASA Astrophysics Data System (ADS)

    Martin, Airton A.; T. Soto, Cláudio A.; Ali, Syed M.; Neto, Lázaro P. M.; Canevari, Renata A.; Pereira, Liliane; Fávero, Priscila P.

    2015-06-01

    Raman spectroscopy has been applied to the analysis of biological samples for the last 12 years providing detection of changes occurring at the molecular level during the pathological transformation of the tissue. The potential use of this technology in cancer diagnosis has shown encouraging results for the in vivo, real-time and minimally invasive diagnosis. Confocal Raman technics has also been successfully applied in the analysis of skin aging process providing new insights in this field. In this paper it is presented the latest biomedical applications of Raman spectroscopy in our laboratory. It is shown that Raman spectroscopy (RS) has been used for biochemical and molecular characterization of thyroid tissue by micro-Raman spectroscopy and gene expression analysis. This study aimed to improve the discrimination between different thyroid pathologies by Raman analysis. A total of 35 thyroid tissues samples including normal tissue (n=10), goiter (n=10), papillary (n=10) and follicular carcinomas (n=5) were analyzed. The confocal Raman spectroscopy allowed a maximum discrimination of 91.1% between normal and tumor tissues, 84.8% between benign and malignant pathologies and 84.6% among carcinomas analyzed. It will be also report the application of in vivo confocal Raman spectroscopy as an important sensor for detecting advanced glycation products (AGEs) on human skin.

  7. Development of a Small-Sized, Flexible, and Insertable Fiber-Optic Radiation Sensor for Gamma-Ray Spectroscopy

    PubMed Central

    Yoo, Wook Jae; Shin, Sang Hun; Lee, Dong Eun; Jang, Kyoung Won; Cho, Seunghyun; Lee, Bongsoo

    2015-01-01

    We fabricated a small-sized, flexible, and insertable fiber-optic radiation sensor (FORS) that is composed of a sensing probe, a plastic optical fiber (POF), a photomultiplier tube (PMT)-amplifier system, and a multichannel analyzer (MCA) to obtain the energy spectra of radioactive isotopes. As an inorganic scintillator for gamma-ray spectroscopy, a cerium-doped lutetium yttrium orthosilicate (LYSO:Ce) crystal was used and two solid-disc type radioactive isotopes with the same dimensions, cesium-137 (Cs-137) and cobalt-60 (Co-60), were used as gamma-ray emitters. We first determined the length of the LYSO:Ce crystal considering the absorption of charged particle energy and measured the gamma-ray energy spectra using the FORS. The experimental results demonstrated that the proposed FORS can be used to discriminate species of radioactive isotopes by measuring their inherent energy spectra, even when gamma-ray emitters are mixed. The relationship between the measured photon counts of the FORS and the radioactivity of Cs-137 was subsequently obtained. The amount of scintillating light generated from the FORS increased by increasing the radioactivity of Cs-137. Finally, the performance of the fabricated FORS according to the length and diameter of the POF was also evaluated. Based on the results of this study, it is anticipated that a novel FORS can be developed to accurately measure the gamma-ray energy spectrum in inaccessible locations such as narrow areas and holes. PMID:26343667

  8. Evaluation of a Gamma Titanium Aluminide for Hypersonic Structural Applications

    NASA Technical Reports Server (NTRS)

    Johnson, W. Steven; Weeks, Carrell E.

    2005-01-01

    Titanium matrix composites (TMCs) have been extensively evaluated for their potential to replace conventional superalloys in high temperature structural applications, with significant weight-savings while maintaining comparable mechanical properties. New gamma titanium aluminide alloys and an appropriate fiber could offer an improved TMC for use in intermediate temperature applications (400-800 C). The purpose of this investigation is the evaluation of a gamma titanium aluminide alloy with nominal composition Ti-46.5Al-4(Cr,Nb,Ta,B)at.% as a structural material in future aerospace transportation systems, where very light-weight structures are necessary to meet the goals of advanced aerospace programs.

  9. Lu.sub.1-xI.sub.3:Ce.sub.x-a scintillator for gamma-ray spectroscopy and time-of-flight pet

    DOEpatents

    Shah, Kanai S [Newton, MA

    2008-02-12

    The present invention includes very fast scintillator materials including lutetium iodide doped with Cerium (Lu.sub.1-xI.sub.3:Ce.sub.x; LuI.sub.3:Ce). The LuI.sub.3 scintillator material has surprisingly good characteristics including high light output, high gamma-ray stopping efficiency, fast response, low cost, good proportionality, and minimal afterglow that the material is useful for gamma-ray spectroscopy, medical imaging, nuclear and high energy physics research, diffraction, non-destructive testing, nuclear treaty verification and safeguards, and geological exploration.

  10. Overview of Mono-Energetic Gamma-Ray Sources and Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartemann, Fred; /LLNL, Livermore; Albert, Felicie

    2012-06-25

    Recent progress in accelerator physics and laser technology have enabled the development of a new class of tunable gamma-ray light sources based on Compton scattering between a high-brightness, relativistic electron beam and a high intensity laser pulse produced via chirped-pulse amplification (CPA). A precision, tunable Mono-Energetic Gamma-ray (MEGa-ray) source driven by a compact, high-gradient X-band linac is currently under development and construction at LLNL. High-brightness, relativistic electron bunches produced by an X-band linac designed in collaboration with SLAC NAL will interact with a Joule-class, 10 ps, diode-pumped CPA laser pulse to generate tunable {gamma}-rays in the 0.5-2.5 MeV photon energymore » range via Compton scattering. This MEGaray source will be used to excite nuclear resonance fluorescence in various isotopes. Applications include homeland security, stockpile science and surveillance, nuclear fuel assay, and waste imaging and assay. The source design, key parameters, and current status are presented, along with important applications, including nuclear resonance fluorescence.« less

  11. X-Ray photoelectron Spectroscopy Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engelhard, Mark H.; Droubay, Timothy C.; Du, Yingge

    2017-01-03

    With capability for obtaining quantitative elemental composition, chemical and electronic state, and overlayer thickness information from the top ~10 nm of a sample surface, X-ray Photoelectron Spectroscopy (XPS) or Electron Spectroscopy for Chemical Analysis (ESCA) is a versatile and widely used technique for analyzing surfaces. The technique is applied to a host of materials, from insulators to conductors in virtually every scientific field and sub-discipline. More recently, XPS has been extended under in-situ and operando conditions. Following a brief introduction to XPS principles and instrument components, this article exemplifies widely ranging XPS applications in material and life sciences.

  12. 21 CFR 1304.26 - Additional recordkeeping requirements applicable to drug products containing gamma-hydroxybutyric...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... to drug products containing gamma-hydroxybutyric acid. 1304.26 Section 1304.26 Food and Drugs DRUG....26 Additional recordkeeping requirements applicable to drug products containing gamma-hydroxybutyric....22, practitioners dispensing gamma-hydroxybutyric acid that is manufactured or distributed in...

  13. Synchrotron EXAFS and XANES spectroscopy studies of transition aluminas doped with La and Cr for catalytic applications

    NASA Astrophysics Data System (ADS)

    Glazoff, Michael V.

    2016-04-01

    Transition aluminas doped with Cr find widespread application in the dehydrogenation catalysis industry, while La-stabilized transition aluminas are used extensively for high-temperature application as catalytic supports (Wefers and Misra in Oxides and hydroxides of aluminum, Alcoa Laboratories, Pittsburgh, 1987). In this work, detailed synchrotron XAFS spectroscopy studies were conducted to shed light upon the atomic mechanisms of surface and subsurface reconstructions and/or catalytic support stabilization of doped aluminas. It was demonstrated that in four transition aluminas doped with Cr, it is the atoms which are mostly in the state of oxidation Cr3+ and enter nanoparticles of Cr-bearing phases (Cr2O3 in the case of gamma- and chi-alumina). In the transition series aluminas: "gamma- chi- theta- eta-alumina," the change of properties (in particular, the dramatic increase in dehydrogenation catalytic activity and catalyst longevity and the coloration of samples) takes place because of the reduction in the average size of Cr clusters and their appearance on the Al2O3 surface, probably responsible for change in catalytic activity. It was demonstrated that in the samples of gamma-alumina doped with La any substantial change in the local coordination of the La atoms takes place only upon heating up to 1400 °C. This makes the La-stabilized gamma-alumina a perfect catalytic support for the numerous applications, e.g., catalytic three-way conversion of automobile exhaust gases. This change manifested itself in the form of increased La-O bond lengths and the La coordination number (from 8 to 12). Furthermore, it was demonstrated that the local environment of La in this new La-bearing phase cannot be explained in terms of the LaAlO3 formation. The absence of the La atoms in the second coordination sphere favors monoatomic distribution of La atoms on grain boundaries, proving that only very small amount of this rare earth material is required to achieve full

  14. Synchrotron EXAFS and XANES spectroscopy studies of transition aluminas doped with La and Cr for catalytic applications

    DOE PAGES

    Glazoff, Michael V.

    2016-03-14

    Abstract Transition aluminas doped with Cr find widespread application in the dehydrogenation industry, while La-stabilized transition aluminas are used extensively for high temperature application as catalytic supports. In this work, a detailed synchrotron XAFS-spectroscopy studies were conducted to shed light upon the atomic mechanisms of catalysis and/or catalytic support stabilization. It has been demonstrated that in the samples of different transition aluminas doped with Cr, the atoms of chromium are mostly in the state of oxidation Cr3+ and enter nanoparticles of Cr-bearing phases (Cr2O3 in the case of gamma- and –chi-alumina. In the row “gamma – chi – theta –more » eta-alumina” the change of properties (in particular, of the coloration of different samples) takes place because of dramatic reduction in the average size of Cr clusters and, possibly, their appearance on the Al2O3 surface. It has been also demonstrated that the substantial change in the local coordination of the La atoms in the samples of gamma-alumina doped with La, takes place only upon heating up to 1400°C, thereby making the La-stabilized gamma-alumina a perfect catalytic support for the numerous applications, e.g. catalytic three-way conversion of automobile exhaust gases. This change manifested itself in the form of increased La-O bond lengths and the La coordination number (from 8 to 12). It has been proved that the local environment of La in this new La-bearing phase cannot be explained in terms of the LaAlO3 formation. The absence of the La atoms in the second coordination sphere favors monoatomic distribution of La atoms on grain boundaries, proving that only very small amounts of this expensive rare earth material is required to achieve full stabilization. It is inferred that the tendency of La atoms to get surrounded by oxygen atoms, and also the impossibility of going into the bulk of alumina crystal, could be a major reason of the increased thermal stability of

  15. Synchrotron EXAFS and XANES spectroscopy studies of transition aluminas doped with La and Cr for catalytic applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glazoff, Michael V.

    Abstract Transition aluminas doped with Cr find widespread application in the dehydrogenation industry, while La-stabilized transition aluminas are used extensively for high temperature application as catalytic supports. In this work, a detailed synchrotron XAFS-spectroscopy studies were conducted to shed light upon the atomic mechanisms of catalysis and/or catalytic support stabilization. It has been demonstrated that in the samples of different transition aluminas doped with Cr, the atoms of chromium are mostly in the state of oxidation Cr3+ and enter nanoparticles of Cr-bearing phases (Cr2O3 in the case of gamma- and –chi-alumina. In the row “gamma – chi – theta –more » eta-alumina” the change of properties (in particular, of the coloration of different samples) takes place because of dramatic reduction in the average size of Cr clusters and, possibly, their appearance on the Al2O3 surface. It has been also demonstrated that the substantial change in the local coordination of the La atoms in the samples of gamma-alumina doped with La, takes place only upon heating up to 1400°C, thereby making the La-stabilized gamma-alumina a perfect catalytic support for the numerous applications, e.g. catalytic three-way conversion of automobile exhaust gases. This change manifested itself in the form of increased La-O bond lengths and the La coordination number (from 8 to 12). It has been proved that the local environment of La in this new La-bearing phase cannot be explained in terms of the LaAlO3 formation. The absence of the La atoms in the second coordination sphere favors monoatomic distribution of La atoms on grain boundaries, proving that only very small amounts of this expensive rare earth material is required to achieve full stabilization. It is inferred that the tendency of La atoms to get surrounded by oxygen atoms, and also the impossibility of going into the bulk of alumina crystal, could be a major reason of the increased thermal stability of

  16. Application of Raman spectroscopy technology to studying Sudan I

    NASA Astrophysics Data System (ADS)

    Li, Gang; Zhang, Guoping; Chen, Chen

    2006-06-01

    Being an industrial dye, the Sudan I may have a toxic effect after oral intake on the body, and has recently been shown to cause cancer in rats, mice and rabbits. Because China and some other countries have detected the Sudan I in samples of the hot chilli powder and the chilli products, it is necessary to study the characteristics of this dye. As one kind of molecule scattering spectroscopy, Raman spectroscopy is characterized by the frequency excursion caused by interactions of molecules and photons. The frequency excursion reflects the margin between certain two vibrational or rotational energy states, and shows the information of the molecule. Because Raman spectroscopy can provides quick, easy, reproducible, and non-destructive analysis, both qualitative and quantitative, with no sample preparation required, Raman spectroscopy has been a particularly promising technique for analyzing the characteristics and structures of molecules, especially organic ones. Now, it has a broad application in biological, chemical, environmental and industrial applications. This paper firstly introduces Sudan I dye and the Raman spectroscopy technology, and then describes its application to the Sudan I. Secondly, the fingerprint spectra of the Sudan I are respectively assigned and analyzed in detail. Finally, the conclusion that the Raman spectroscopy technology is a powerful tool to determine the Sudan I is drawn.

  17. Computed radiography as a gamma ray detector—dose response and applications

    NASA Astrophysics Data System (ADS)

    O'Keeffe, D. S.; McLeod, R. W.

    2004-08-01

    Computed radiography (CR) can be used for imaging the spatial distribution of photon emissions from radionuclides. Its wide dynamic range and good response to medium energy gamma rays reduces the need for long exposure times. Measurements of small doses can be performed without having to pre-sensitize the computed radiography plates via an x-ray exposure, as required with screen-film systems. Cassette-based Agfa MD30 and Kodak GP25 CR plates were used in applications involving the detection of gamma ray emissions from technetium-99m and iodine-131. Cassette entrance doses as small as 1 µGy (140 keV gamma rays) produce noisy images, but the images are suitable for applications such as the detection of breaks in radiation protection barriers. A consequence of the gamma ray sensitivity of CR plates is the possibility that some nuclear medicine patients may fog their x-rays if the x-ray is taken soon after their radiopharmaceutical injection. The investigation showed that such fogging is likely to be diffuse.

  18. Resonance production in. gamma gamma. collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renard, F.M.

    1983-04-01

    The processes ..gamma gamma.. ..-->.. hadrons can be depicted as follows. One photon creates a q anti q pair which starts to evolve; the other photon can either (A) make its own q anti q pair and the (q anti q q anti q) system continue to evolve or (B) interact with the quarks of the first pair and lead to a modified (q anti q) system in interaction with C = +1 quantum numbers. A review of the recent theoretical activity concerning resonance production and related problems is given under the following headings: hadronic C = +1 spectroscopy (qmore » anti q, qq anti q anti q, q anti q g, gg, ggg bound states and mixing effects); exclusive ..gamma gamma.. processes (generalities, unitarized Born method, VDM and QCD); total cross section (soft and hard contributions); q/sup 2/ dependence of soft processes (soft/hard separation, 1/sup +- +/ resonances); and polarization effects. (WHK)« less

  19. Testing FLUKA on neutron activation of Si and Ge at nuclear research reactor using gamma spectroscopy

    NASA Astrophysics Data System (ADS)

    Bazo, J.; Rojas, J. M.; Best, S.; Bruna, R.; Endress, E.; Mendoza, P.; Poma, V.; Gago, A. M.

    2018-03-01

    Samples of two characteristic semiconductor sensor materials, silicon and germanium, have been irradiated with neutrons produced at the RP-10 Nuclear Research Reactor at 4.5 MW. Their radionuclides photon spectra have been measured with high resolution gamma spectroscopy, quantifying four radioisotopes (28Al, 29Al for Si and 75Ge and 77Ge for Ge). We have compared the radionuclides production and their emission spectrum data with Monte Carlo simulation results from FLUKA. Thus we have tested FLUKA's low energy neutron library (ENDF/B-VIIR) and decay photon scoring with respect to the activation of these semiconductors. We conclude that FLUKA is capable of predicting relative photon peak amplitudes, with gamma intensities greater than 1%, of produced radionuclides with an average uncertainty of 13%. This work allows us to estimate the corresponding systematic error on neutron activation simulation studies of these sensor materials.

  20. Gas-phase broadband spectroscopy using active sources: progress, status, and applications

    PubMed Central

    Cossel, Kevin C.; Waxman, Eleanor M.; Finneran, Ian A.; Blake, Geoffrey A.; Ye, Jun; Newbury, Nathan R.

    2017-01-01

    Broadband spectroscopy is an invaluable tool for measuring multiple gas-phase species simultaneously. In this work we review basic techniques, implementations, and current applications for broadband spectroscopy. We discuss components of broad-band spectroscopy including light sources, absorption cells, and detection methods and then discuss specific combinations of these components in commonly-used techniques. We finish this review by discussing potential future advances in techniques and applications of broad-band spectroscopy. PMID:28630530

  1. Application of gamma irradiation for inhibition of food allergy

    NASA Astrophysics Data System (ADS)

    Byun, Myung-Woo; Lee, Ju-Woon; Yook, Hong-Sun; Jo, Cheorun; Kim, Hee-Yun

    2002-03-01

    This study was carried out to evaluate the application of food irradiation technology as a method for reducing food allergy. Milk β-lactoglobulin, chicken egg albumin, and shrimp tropomyosin were used as model food allergens for experiments on allergenic and molecular properties by gamma irradiation. The amount of intact allergens in an irradiated solution was reduced by gamma irradiation depending upon the dose. These results showed that epitopes on the allergens were structurally altered by radiation treatment and that the irradiation technology can be applied to reduce allergenicity of allergic foods.

  2. Exploring atmospheric radon with airborne gamma-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Baldoncini, Marica; Albéri, Matteo; Bottardi, Carlo; Minty, Brian; Raptis, Kassandra G. C.; Strati, Virginia; Mantovani, Fabio

    2017-12-01

    222Rn is a noble radioactive gas produced along the 238U decay chain, which is present in the majority of soils and rocks. As 222Rn is the most relevant source of natural background radiation, understanding its distribution in the environment is of great concern for investigating the health impacts of low-level radioactivity and for supporting regulation of human exposure to ionizing radiation in modern society. At the same time, 222Rn is a widespread atmospheric tracer whose spatial distribution is generally used as a proxy for climate and pollution studies. Airborne gamma-ray spectroscopy (AGRS) always treated 222Rn as a source of background since it affects the indirect estimate of equivalent 238U concentration. In this work the AGRS method is used for the first time for quantifying the presence of 222Rn in the atmosphere and assessing its vertical profile. High statistics radiometric data acquired during an offshore survey are fitted as a superposition of a constant component due to the experimental setup background radioactivity plus a height dependent contribution due to cosmic radiation and atmospheric 222Rn. The refined statistical analysis provides not only a conclusive evidence of AGRS 222Rn detection but also a (0.96 ± 0.07) Bq/m3 222Rn concentration and a (1318 ± 22) m atmospheric layer depth fully compatible with literature data.

  3. Transparent ceramic scintillators for gamma spectroscopy and MeV imaging

    NASA Astrophysics Data System (ADS)

    Cherepy, N. J.; Seeley, Z. M.; Payne, S. A.; Swanberg, E. L.; Beck, P. R.; Schneberk, D. J.; Stone, G.; Perry, R.; Wihl, B.; Fisher, S. E.; Hunter, S. L.; Thelin, P. A.; Thompson, R. R.; Harvey, N. M.; Stefanik, T.; Kindem, J.

    2015-09-01

    We report on the development of two new mechanically rugged, high light yield transparent ceramic scintillators: (1) Ce-doped Gd-garnet for gamma spectroscopy, and (2) Eu-doped Gd-Lu-bixbyite for radiography. GYGAG(Ce) garnet transparent ceramics offer ρ = 5.8g/cm3, Zeff = 48, principal decay of <100 ns, and light yield of 50,000 Ph/MeV. Gdgarnet ceramic scintillators offer the best energy resolution of any oxide scintillator, as good as R(662 keV) = 3% (Si-PD readout) for small sizes and typically R(662 keV) < 5% for cubic inch sizes. For radiography, the bixbyite transparent ceramic scintillator, (Gd,Lu,Eu)2O3, or "GLO," offers excellent x-ray stopping, with ρ = 9.1 g/cm3 and Zeff = 68. Several 10" diameter by 0.1" thickness GLO scintillators have been fabricated. GLO outperforms scintillator glass for high energy radiography, due to higher light yield (55,000 Ph/MeV) and better stopping, while providing spatial resolution of >8 lp/mm.

  4. A triple-crystal phoswich detector with digital pulse shape discrimination for alpha/beta/gamma spectroscopy

    NASA Astrophysics Data System (ADS)

    White, Travis L.; Miller, William H.

    1999-02-01

    Researchers at the University of Missouri - Columbia have developed a three-crystal phoswich detector coupled to a digital pulse shape discrimination system for use in alpha/beta/gamma spectroscopy. Phoswich detectors use a sandwich of scintillators viewed by a single photomultiplier tube to simultaneously detect multiple types of radiation. Separation of radiation types is based upon pulse shape difference among the phosphors, which has historically been performed with analog circuitry. The system uses a GaGe CompuScope 1012, 12 bit, 10 MHz computer-based oscilloscope that digitally captures the pulses from a phoswich detector and subsequently performs pulse shape discrimination with cross-correlation analysis. The detector, based partially on previous phoswich designs by Usuda et al., uses a 10 mg/cm 2 thick layer of ZnS(Ag) for alpha detection, followed by a 0.254 cm CaF 2(Eu) crystal for beta detection, all backed by a 2.54 cm NaI(Tl) crystal for gamma detection. Individual energy spectra and count rate information for all three radiation types are displayed and updated periodically. The system shows excellent charged particle discrimination with an accuracy of greater than 99%. Future development will include a large area beta probe with gamma-ray discrimination, systems for low-energy photon detection (e.g. Bremsstrahlung or keV-range photon emissions), and other health physics instrumentation.

  5. The future of imaging spectroscopy - Prospective technologies and applications

    USGS Publications Warehouse

    Schaepman, M.E.; Green, R.O.; Ungar, S.G.; Curtiss, B.; Boardman, J.; Plaza, A.J.; Gao, B.-C.; Ustin, S.; Kokaly, R.; Miller, J.R.; Jacquemoud, S.; Ben-Dor, E.; Clark, R.; Davis, C.; Dozier, J.; Goodenough, D.G.; Roberts, D.; Swayze, G.; Milton, E.J.; Goetz, A.F.H.

    2006-01-01

    Spectroscopy has existed for more than three centuries now. Nonetheless, significant scientific advances have been achieved. We discuss the history of spectroscopy in relation to emerging technologies and applications. Advanced focal plane arrays, optical design, and intelligent on-board logic are prime prospective technologies. Scalable approaches in pre-processing of imaging spectrometer data will receive additional focus. Finally, we focus on new applications monitoring transitional ecological zones, where human impact and disturbance have highest impact as well as in monitoring changes in our natural resources and environment We conclude that imaging spectroscopy enables mapping of biophysical and biochemical variables of the Earth's surface and atmospheric composition with unprecedented accuracy.

  6. Gamma-Ray Background Variability in Mobile Detectors

    NASA Astrophysics Data System (ADS)

    Aucott, Timothy John

    Gamma-ray background radiation significantly reduces detection sensitivity when searching for radioactive sources in the field, such as in wide-area searches for homeland security applications. Mobile detector systems in particular must contend with a variable background that is not necessarily known or even measurable a priori. This work will present measurements of the spatial and temporal variability of the background, with the goal of merging gamma-ray detection, spectroscopy, and imaging with contextual information--a "nuclear street view" of the ubiquitous background radiation. The gamma-ray background originates from a variety of sources, both natural and anthropogenic. The dominant sources in the field are the primordial isotopes potassium-40, uranium-238, and thorium-232, as well as their decay daughters. In addition to the natural background, many artificially-created isotopes are used for industrial or medical purposes, and contamination from fission products can be found in many environments. Regardless of origin, these backgrounds will reduce detection sensitivity by adding both statistical as well as systematic uncertainty. In particular, large detector arrays will be limited by the systematic uncertainty in the background and will suffer from a high rate of false alarms. The goal of this work is to provide a comprehensive characterization of the gamma-ray background and its variability in order to improve detection sensitivity and evaluate the performance of mobile detectors in the field. Large quantities of data are measured in order to study their performance at very low false alarm rates. Two different approaches, spectroscopy and imaging, are compared in a controlled study in the presence of this measured background. Furthermore, there is additional information that can be gained by correlating the gamma-ray data with contextual data streams (such as cameras and global positioning systems) in order to reduce the variability in the background

  7. Neutron Capture Gamma-Ray Libraries for Nuclear Applications

    NASA Astrophysics Data System (ADS)

    Sleaford, B. W.; Firestone, R. B.; Summers, N.; Escher, J.; Hurst, A.; Krticka, M.; Basunia, S.; Molnar, G.; Belgya, T.; Revay, Z.; Choi, H. D.

    2011-06-01

    The neutron capture reaction is useful in identifying and analyzing the gamma-ray spectrum from an unknown assembly as it gives unambiguous information on its composition. This can be done passively or actively where an external neutron source is used to probe an unknown assembly. There are known capture gamma-ray data gaps in the ENDF libraries used by transport codes for various nuclear applications. The Evaluated Gamma-ray Activation file (EGAF) is a new thermal neutron capture database of discrete line spectra and cross sections for over 260 isotopes that was developed as part of an IAEA Coordinated Research Project. EGAF is being used to improve the capture gamma production in ENDF libraries. For medium to heavy nuclei the quasi continuum contribution to the gamma cascades is not experimentally resolved. The continuum contains up to 90% of all the decay energy and is modeled here with the statistical nuclear structure code DICEBOX. This code also provides a consistency check of the level scheme nuclear structure evaluation. The calculated continuum is of sufficient accuracy to include in the ENDF libraries. This analysis also determines new total thermal capture cross sections and provides an improved RIPL database. For higher energy neutron capture there is less experimental data available making benchmarking of the modeling codes more difficult. We are investigating the capture spectra from higher energy neutrons experimentally using surrogate reactions and modeling this with Hauser-Feshbach codes. This can then be used to benchmark CASINO, a version of DICEBOX modified for neutron capture at higher energy. This can be used to simulate spectra from neutron capture at incident neutron energies up to 20 MeV to improve the gamma-ray spectrum in neutron data libraries used for transport modeling of unknown assemblies.

  8. Applications of absorption spectroscopy using quantum cascade lasers.

    PubMed

    Zhang, Lizhu; Tian, Guang; Li, Jingsong; Yu, Benli

    2014-01-01

    Infrared laser absorption spectroscopy (LAS) is a promising modern technique for sensing trace gases with high sensitivity, selectivity, and high time resolution. Mid-infrared quantum cascade lasers, operating in a pulsed or continuous wave mode, have potential as spectroscopic sources because of their narrow linewidths, single mode operation, tunability, high output power, reliability, low power consumption, and compactness. This paper reviews some important developments in modern laser absorption spectroscopy based on the use of quantum cascade laser (QCL) sources. Among the various laser spectroscopic methods, this review is focused on selected absorption spectroscopy applications of QCLs, with particular emphasis on molecular spectroscopy, industrial process control, combustion diagnostics, and medical breath analysis.

  9. Local application of antirabies gamma-globulin in dried form for the prevention of rabies

    PubMed Central

    Soloviev, V. D.; Kobrinski, G. D.

    1962-01-01

    The authors report on guinea-pig experiments conducted to determine the effect of dried antirabies gamma-globulin in the local treatment of wounds infected with street rabies. The results showed that local application of dried gamma-globulin within 30 minutes of the time of infection of the wound protected the majority of animals and resulted in a considerably longer incubation period in the remainder than in the controls. When the preparation was applied later than 30 minutes after infection, the therapeutic effect was slight or absent. Optimum protection in these experiments was obtained through rapid application of gamma-globulin, followed by vaccination every other day for six days. Dried antirabies gamma-globulin exerts a specific, local action on the rabies virus and is entirely painless and non-destructive to body tissues. PMID:13915039

  10. Environmentally friendly gamma-MnO2 hexagon-based nanoarchitectures: structural understanding and their energy-saving applications.

    PubMed

    Wu, Changzheng; Xie, Wei; Zhang, Miao; Bai, Liangfei; Yang, Jinlong; Xie, Yi

    2009-01-01

    Although about 200,000 metric tons of gamma-MnO(2) are used annually worldwide for industrial applications, the gamma-MnO(2) structure is still known to possess a highly ambiguous crystal lattice. To better understand the gamma-MnO(2) atomic structure, hexagon-based nanoarchitectures were successfully synthesized and used to elucidate its internal structure for the present work. The structural analysis results, obtained from the hexagon-based nanoarchitectures, clearly show the coexistence of akhtenskite (epsilon-MnO(2)), pyrolusite (beta-MnO(2)), and ramsdellite in the so-called gamma-MnO(2) phase and verified the heterogeneous phase assembly of the gamma-MnO(2) state, which violates the well-known "De Wolff" model and derivative models, but partially accords with Heuer's results. Furthermore, heterogeneous gamma-MnO(2) assembly was found to be a metastable structure under hydrothermal conditions, and the individual components of the heterogeneous gamma-MnO(2) system have structural similarities and a high lattice matches with pyrolusite (beta-MnO(2)). The as-obtained gamma-MnO(2) nanoarchitectures are nontoxic and environmentally friendly, and the application of such nanoarchitectures as support matrices successfully mitigates the common problems for phase-change materials of inorganic salts, such as phase separation and supercooling-effects, thereby showing prospect in energy-saving applications in future "smart-house" systems.

  11. Nuclear Deexcitation Gamma Ray Lines from Accelerated Particle Interactions

    DTIC Science & Technology

    2002-01-01

    MeV) 10−1 1 10 102 103 104 105 C ou nt s s− 1 M eV −1 neutron capture 12C 56Fe, 24Mg, 20Ne, 28Si 16O 16O, 15N positron annihilation Fig. 1.— Gamma...1996). The results of these efforts have established gamma-ray spectroscopy as an important tool for exploration of high-energy processes in solar...Murphy et al. 1997) is shown in Figure 1. Among the main results of the investigations using gamma-ray spectroscopy are (1) the determination of the

  12. Application of supercontinuum radiation for mid-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Kilgus, Jakob; Müller, Petra; Moselund, Peter M.; Brandstetter, Markus

    2016-04-01

    The emergence of new laser-based mid-infrared (MIR) sources, such as quantum cascade lasers (QCL), led to substantial developments in the field of MIR spectroscopy in the last decade. Recently, also MIR supercontinuum (SC) sources became available. They combine broadband spectral emission known from thermal sources emission with coherent properties known from laser sources like QCLs. Nevertheless, while the latter already find practical application in the field of optical sensing, SC sources have yet to prove their applicability. In this contribution we present the development, characterization and application of a measurement concept consisting of a fiber-coupled broadband MIR SC source (1.75 μm-4.2 μm, 75 mW optical power) and a fully-integrated MOEMS-based Fabry-Pérot microspectrometer (FPMS) for MIR spectroscopy. The main hindrance for the use of SC sources in spectroscopy so far, are the significant pulse-to-pulse fluctuations arising from the non-linear nature of the SC generation process. We show to what extent spectral averaging makes sense and evaluate the noise performance. By combining a SC source and a FPMS it was possible to significantly reduce noise in spectral, time and polarization domain, resulting in a set-up suitable for MIR spectroscopy. The performance of the set-up was characterized both in transmission and reflection geometry. Low-noise absorption spectra of oils, polymers and aqueous solutions of acetic acid were acquired . Furthermore, time-resolved measurements of the curing process of ethyl-2-cyanoacrylate and results of the chemical mapping of a painted metal surface are reported. The obtained results prove the concept of SC-FPMS promising for MIR spectroscopy, characterized by its simplicity and versatility.

  13. Gamma Spectroscopy by Artificial Neural Network Coupled with MCNP

    NASA Astrophysics Data System (ADS)

    Sahiner, Huseyin

    While neutron activation analysis is widely used in many areas, sensitivity of the analysis depends on how the analysis is conducted. Even though the sensitivity of the techniques carries error, compared to chemical analysis, its range is in parts per million or sometimes billion. Due to this sensitivity, the use of neutron activation analysis becomes important when analyzing bio-samples. Artificial neural network is an attractive technique for complex systems. Although there are neural network applications on spectral analysis, training by simulated data to analyze experimental data has not been made. This study offers an improvement on spectral analysis and optimization on neural network for the purpose. The work considers five elements that are considered as trace elements for bio-samples. However, the system is not limited to five elements. The only limitation of the study comes from data library availability on MCNP. A perceptron network was employed to identify five elements from gamma spectra. In quantitative analysis, better results were obtained when the neural fitting tool in MATLAB was used. As a training function, Levenberg-Marquardt algorithm was used with 23 neurons in the hidden layer with 259 gamma spectra in the input. Because the interest of the study deals with five elements, five neurons representing peak counts of five isotopes in the input layer were used. Five output neurons revealed mass information of these elements from irradiated kidney stones. Results showing max error of 17.9% in APA, 24.9% in UA, 28.2% in COM, 27.9% in STRU type showed the success of neural network approach in analyzing gamma spectra. This high error was attributed to Zn that has a very long decay half-life compared to the other elements. The simulation and experiments were made under certain experimental setup (3 hours irradiation, 96 hours decay time, 8 hours counting time). Nevertheless, the approach is subject to be generalized for different setups.

  14. Characterization of high density SiPM non-linearity and energy resolution for prompt gamma imaging applications

    NASA Astrophysics Data System (ADS)

    Regazzoni, V.; Acerbi, F.; Cozzi, G.; Ferri, A.; Fiorini, C.; Paternoster, G.; Piemonte, C.; Rucatti, D.; Zappalà, G.; Zorzi, N.; Gola, A.

    2017-07-01

    Fondazione Bruno Kessler (FBK) (Trento, Italy) has recently introduced High Density (HD) and Ultra High-Density (UHD) SiPMs, featuring very small micro-cell pitch. The high cell density is a very important factor to improve the linearity of the SiPM in high-dynamic-range applications, such as the scintillation light readout in high-energy gamma-ray spectroscopy and in prompt gamma imaging for proton therapy. The energy resolution at high energies is a trade-off between the excess noise factor caused by the non-linearity of the SiPM and the photon detection efficiency of the detector. To study these effects, we developed a new setup that simulates the LYSO light emission in response to gamma photons up to 30 MeV, using a pulsed light source. We measured the non-linearity and energy resolution vs. energy of the FBK RGB-HD e RGB-UHD SiPM technologies. We considered five different cell sizes, ranging from 10 μm up to 25 μm. With the UHD technology we were able to observe a remarkable reduction of the SiPM non-linearity, less than 5% at 5 MeV with 10 μm cells, which should be compared to a non-linearity of 50% with 25 μm-cell HD-SiPMs. With the same setup, we also measured the different components of the energy resolution (intrinsic, statistical, detector and electronic noise) vs. cell size, over-voltage and energy and we separated the different sources of excess noise factor.

  15. Principles and applications of Raman spectroscopy in pharmaceutical drug discovery and development.

    PubMed

    Gala, Urvi; Chauhan, Harsh

    2015-02-01

    In recent years, Raman spectroscopy has become increasingly important as an analytical technique in various scientific areas of research and development. This is partly due to the technological advancements in Raman instrumentation and partly due to detailed fingerprinting that can be derived from Raman spectra. Its versatility of applications, rapidness of collection and easy analysis have made Raman spectroscopy an attractive analytical tool. The following review describes Raman spectroscopy and its application within the pharmaceutical industry. The authors explain the theory of Raman scattering and its variations in Raman spectroscopy. The authors also highlight how Raman spectra are interpreted, providing examples. Raman spectroscopy has a number of potential applications within drug discovery and development. It can be used to estimate the molecular activity of drugs and to establish a drug's physicochemical properties such as its partition coefficient. It can also be used in compatibility studies during the drug formulation process. Raman spectroscopy's immense potential should be further investigated in future.

  16. Time-resolved gamma spectroscopy of single events

    NASA Astrophysics Data System (ADS)

    Wolszczak, W.; Dorenbos, P.

    2018-04-01

    In this article we present a method of characterizing scintillating materials by digitization of each individual scintillation pulse followed by digital signal processing. With this technique it is possible to measure the pulse shape and the energy of an absorbed gamma photon on an event-by-event basis. In contrast to time-correlated single photon counting technique, the digital approach provides a faster measurement, an active noise suppression, and enables characterization of scintillation pulses simultaneously in two domains: time and energy. We applied this method to study the pulse shape change of a CsI(Tl) scintillator with energy of gamma excitation. We confirmed previously published results and revealed new details of the phenomenon.

  17. Seabed gamma-ray spectrometry: applications at IAEA-MEL.

    PubMed

    Osvath, I; Povinec, P P

    2001-01-01

    The technique of underwater gamma-ray spectrometry has been developed to complement or replace the traditional sampling-sample analysis approach for applications with space-time constraints, e.g. large areas of investigation, emergency response or long-term monitoring. IAEA-MEL has used both high-efficiency NaI(Tl) and high-resolution HPGe spectrometry to investigate contamination with anthropogenic radionuclides in a variety of marine environments. Surveys at the South Pacific nuclear test sites of Mururoa and Fangataufa have been used to guide sampling in areas of high contamination around ground zero points. In the Irish Sea offshore from the Sellafield nuclear reprocessing plant, a gamma-ray survey of seabed sediment was carried out to obtain estimates of the distribution and subsequently, for the inventory of 137Cs in the investigated area.

  18. Insights into electron and ion acceleration and transport from x-ray and gamma-ray imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Hurford, Gordon J.; Krucker, Samuel

    The previous solar maximum has featured high resolution imaging/spectroscopy observations at hard x-ray and gamma-ray energies by the Reuven Ramaty High Energy Solar/Spectroscopic Imager (RHESSI). Highlights of these observations will be reviewed, along with their impli-cations for our understanding of ion and electron acceleration and transport processes. The results to date have included new insights into the location of the acceleration region and the thick target model, a new appreciation of the significance of x-ray albedo, observation of coronal gamma-ray sources and their implications for electron trapping, and indications of differences in the acceleration and transport between electrons and ions. The role of RHESSI's observational strengths and weaknesses in determining the character of its scientific results will also be discussed and used to identify what aspects of the acceleration and transport processes must await the next generation of instrumentation. The extent to which new instrumentation now under development, such as Solar Orbiter/STIX, GRIPS, and FOXSI, can address these open issues will be outlined.

  19. Application of whole-body personal TL dosemeters in mixed field beta-gamma radiation.

    PubMed

    Ciupek, K; Aksamit, D; Wołoszczuk, K

    2014-11-01

    Application of whole-body personal TL dosemeters based on a high-sensitivity LiF:Mg,Cu,P (MCP-N) in mixed field beta-gamma radiation has been characterised. The measurements were carried out with (90)Sr/(90)Y, (85)Kr and (137)Cs point sources to calculate the energy response and linearity of the TLD response in a dose range of 0.1-30 mSv. From the result, calibration curves were obtained, enabling the readout of individual dose equivalent Hp(10) from gamma radiation and Hp(0.07) from beta radiation in mixed field beta-gamma. Limitation of the methodology and its application are presented and discussed. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. [Phosphorus magnetic resonance spectroscopy: Brain pathologies applications].

    PubMed

    Menuel, C; Guillevin, R; Costalat, R; Perrin, M; Sahli-Amor, M; Martin-Duverneuil, N; Chiras, J

    2010-05-01

    Until recent years, brain applications of (31)P magnetic resonance spectroscopy were poor. Arising of clinical high field strength magnets (three Tesla) as well as dedicated brain coils (eg: bird cage), using specific and useful sequences providing appropriate spatial localisation and signal to noise ratio brought highlights on multinuclear spectroscopy. Better understanding of brain metabolism emphasizes the role of phosphoenergetic compounds and its potential issues in tumoral, metabolic and degenerative diseases. In the present paper, we report 1 year of experience and preliminary results for 40 patients as well as review of the literature. By successive in vivo determination and quantitation of numerous metabolites it allows, multinuclear spectroscopy may provide additional information to biomathematical models of brain metabolism. Copyright 2009. Published by Elsevier Masson SAS.

  1. New concepts for HgI2 scintillator gamma ray spectroscopy

    NASA Technical Reports Server (NTRS)

    Iwanczyk, Jan S.

    1994-01-01

    The primary goals of this project are development of the technology for HgI2 photodetectors (PD's), development of a HgI2/scintillator gamma detector, development of electronics, and development of a prototype gamma spectrometer. Work on the HgI2 PD's involved HgI2 purification and crystal growth, detector surface and electrical contact studies, PD structure optimization, encapsulation and packaging, and testing. Work on the HgI2/scintillator gamma detector involved a study of the optical - mechanical coupling for the optimization of CsI(Tl)/HgI2 gamma ray detectors and determination of the relationship between resolution versus scintillator type and size. The development of the electronics focused on low noise amplification circuits using different preamp input FET's and the use of a coincidence technique to maximize the signal, minimize the noise contribution in the gamma spectra, and improve the overall system resolution.

  2. Lu.sub.1-xI.sub.3:Ce.sub.x--a scintillator for gamma ray spectroscopy and time-of-flight PET

    DOEpatents

    Shah, Kanai S.

    2007-02-06

    The present invention concerns very fast scintillator materials comprising lutetium iodide doped with Cerium (Lu.sub.1-xI.sub.3:Ce.sub.x; LuI.sub.3:Ce). The LuI.sub.3 scintillator material has surprisingly good characteristics including high light output, high gamma ray stopping efficiency, fast response, low cost, good proportionality, and minimal afterglow that the material is useful for gamma ray spectroscopy, medical imaging, nuclear and high energy physics research, diffraction, non-destructive testing, nuclear treaty verification and safeguards, and geological exploration. The timing resolution of the scintillators of the present invention provide compositions capable of resolving the position of an annihilation event within a portion of a human body cross-section.

  3. [Application of Raman Spectroscopy Technique to Agricultural Products Quality and Safety Determination].

    PubMed

    Liu, Yan-de; Jin, Tan-tan

    2015-09-01

    The quality and safety of agricultural products and people health are inseparable. Using the conventional chemical methods which have so many defects, such as sample pretreatment, complicated operation process and destroying the samples. Raman spectroscopy as a powerful tool of analysing and testing molecular structure, can implement samples quickly without damage, qualitative and quantitative detection analysis. With the continuous improvement and the scope of the application of Raman spectroscopy technology gradually widen, Raman spectroscopy technique plays an important role in agricultural products quality and safety determination, and has wide application prospects. There have been a lot of related research reports based on Raman spectroscopy detection on agricultural product quality safety at present. For the understanding of the principle of detection and the current development situation of Raman spectroscopy, as well as tracking the latest research progress both at home and abroad, the basic principles and the development of Raman spectroscopy as well as the detection device were introduced briefly. The latest research progress of quality and safety determination in fruits and vegetables, livestock and grain by Raman spectroscopy technique were reviewed deeply. Its technical problems for agricultural products quality and safety determination were pointed out. In addition, the text also briefly introduces some information of Raman spectrometer and the application for patent of the portable Raman spectrometer, prospects the future research and application.

  4. Applications of mid-infrared spectroscopy in the clinical laboratory setting.

    PubMed

    De Bruyne, Sander; Speeckaert, Marijn M; Delanghe, Joris R

    2018-01-01

    Fourier transform mid-infrared (MIR-FTIR) spectroscopy is a nondestructive, label-free, highly sensitive and specific technique that provides complete information on the chemical composition of biological samples. The technique both can offer fundamental structural information and serve as a quantitative analysis tool. Therefore, it has many potential applications in different fields of clinical laboratory science. Although considerable technological progress has been made to promote biomedical applications of this powerful analytical technique, most clinical laboratory analyses are based on spectroscopic measurements in the visible or ultraviolet (UV) spectrum and the potential role of FTIR spectroscopy still remains unexplored. In this review, we present some general principles of FTIR spectroscopy as a useful method to study molecules in specimens by MIR radiation together with a short overview of methods to interpret spectral data. We aim at illustrating the wide range of potential applications of the proposed technique in the clinical laboratory setting with a focus on its advantages and limitations and discussing the future directions. The reviewed applications of MIR spectroscopy include (1) quantification of clinical parameters in body fluids, (2) diagnosis and monitoring of cancer and other diseases by analysis of body fluids, cells, and tissues, (3) classification of clinically relevant microorganisms, and (4) analysis of kidney stones, nails, and faecal fat.

  5. High resolution infrared spectroscopy: Some new approaches and applications to planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Mumma, M. J.

    1978-01-01

    The principles of spectral line formation and of techniques for retrieval of atmospheric temperature and constituent profiles are discussed. Applications to the atmospheres of Earth, Mars, Venus, and Jupiter are illustrated by results obtained with Fourier transform and infrared heterodyne spectrometers at resolving powers (lambda/delta hyperon lambda of approximately 10,000 and approximately 10 to the seventh power), respectively, showing the high complementarity of spectroscopy at these two widely different resolving powers. The principles of heterodyne spectroscopy are presented and its applications to atmospheric probing and to laboratory spectroscopy are discussed. Direct absorption spectroscopy with tuneable semiconductor lasers is discussed in terms of precision frequency-and line strength-measurements, showing substantial advances in laboratory infrared spectroscopy.

  6. Medical applications of atomic force microscopy and Raman spectroscopy.

    PubMed

    Choi, Samjin; Jung, Gyeong Bok; Kim, Kyung Sook; Lee, Gi-Ja; Park, Hun-Kuk

    2014-01-01

    This paper reviews the recent research and application of atomic force microscopy (AFM) and Raman spectroscopy techniques, which are considered the multi-functional and powerful toolkits for probing the nanostructural, biomechanical and physicochemical properties of biomedical samples in medical science. We introduce briefly the basic principles of AFM and Raman spectroscopy, followed by diagnostic assessments of some selected diseases in biomedical applications using them, including mitochondria isolated from normal and ischemic hearts, hair fibers, individual cells, and human cortical bone. Finally, AFM and Raman spectroscopy applications to investigate the effects of pharmacotherapy, surgery, and medical device therapy in various medicines from cells to soft and hard tissues are discussed, including pharmacotherapy--paclitaxel on Ishikawa and HeLa cells, telmisartan on angiotensin II, mitomycin C on strabismus surgery and eye whitening surgery, and fluoride on primary teeth--and medical device therapy--collagen cross-linking treatment for the management of progressive keratoconus, radiofrequency treatment for skin rejuvenation, physical extracorporeal shockwave therapy for healing of Achilles tendinitis, orthodontic treatment, and toothbrushing time to minimize the loss of teeth after exposure to acidic drinks.

  7. Fourier Transform Infrared Spectroscopy Part III. Applications.

    ERIC Educational Resources Information Center

    Perkins, W. D.

    1987-01-01

    Discusses the use of the FT-IR spectrometer in analyses that were previously avoided. Examines some of the applications of this spectroscopy with aqueous solutions, circular internal reflection, samples with low transmission, diffuse reflectance, infrared emission, and the infrared microscope. (TW)

  8. The calculation of neutron capture gamma-ray yields for space shielding applications

    NASA Technical Reports Server (NTRS)

    Yost, K. J.

    1972-01-01

    The application of nuclear models to the calculation of neutron capture and inelastic scattering gamma yields is discussed. The gamma ray cascade model describes the cascade process in terms of parameters which either: (1) embody statistical assumptions regarding electric and magnetic multipole transition strengths, level densities, and spin and parity distributions or (2) are fixed by experiment such as measured energies, spin and parity values, and transition probabilities for low lying states.

  9. Advanced Laser-Compton Gamma-Ray Sources for Nuclear Materials Detection, Assay and Imaging

    NASA Astrophysics Data System (ADS)

    Barty, C. P. J.

    2015-10-01

    Highly-collimated, polarized, mono-energetic beams of tunable gamma-rays may be created via the optimized Compton scattering of pulsed lasers off of ultra-bright, relativistic electron beams. Above 2 MeV, the peak brilliance of such sources can exceed that of the world's largest synchrotrons by more than 15 orders of magnitude and can enable for the first time the efficient pursuit of nuclear science and applications with photon beams, i.e. Nuclear Photonics. Potential applications are numerous and include isotope-specific nuclear materials management, element-specific medical radiography and radiology, non-destructive, isotope-specific, material assay and imaging, precision spectroscopy of nuclear resonances and photon-induced fission. This review covers activities at the Lawrence Livermore National Laboratory related to the design and optimization of mono-energetic, laser-Compton gamma-ray systems and introduces isotope-specific nuclear materials detection and assay applications enabled by them.

  10. Application of visible spectroscopy in waste sorting

    NASA Astrophysics Data System (ADS)

    Spiga, Philippe; Bourely, Antoine

    2011-10-01

    Today, waste recycling, (bottles, papers...), is a mechanical operation: the waste are crushed, fused and agglomerated in order to obtain new manufactured products (e.g. new bottles, clothes ...). The plastics recycling is the main application in the color sorting process. The colorless plastics recovered are more valuable than the colored plastics. Other emergent applications are in the paper sorting, where the main goal is to sort dyed paper from white papers. Up to now, Pellenc Selective Technologies has manufactured color sorting machines based on RGB cameras. Three dimensions (red, green and blue) are no longer sufficient to detect low quantities of dye in the considered waste. In order to increase the efficiency of the color detection, a new sorting machine, based on visible spectroscopy, has been developed. This paper presents the principles of the two approaches and their difference in terms of sorting performance, making visible spectroscopy a clear winner.

  11. One-step synthesis of gene carrier via gamma irradiation and its application in tumor gene therapy

    PubMed Central

    Kim, Eun-Ji; Heo, Hun; Park, Jong-Seok; Gwon, Hui-Jeong; Lim, Youn-Mook; Jang, Mi-Kyeong

    2018-01-01

    Introduction Although numerous studies have been conducted with the aim of developing drug-delivery systems, chemically synthesized gene carriers have shown limited applications in the biomedical fields due to several problems, such as low-grafting yields, undesirable reactions, difficulties in controlling the reactions, and high-cost production owing to multi-step manufacturing processes. Materials and methods We developed a 1-step synthesis process to produce 2-aminoethyl methacrylate-grafted water-soluble chitosan (AEMA-g-WSC) as a gene carrier, using gamma irradiation for simultaneous synthesis and sterilization, but no catalysts or photoinitiators. We analyzed the AEMA graft site on WSC using 2-dimensional nuclear magnetic resonance spectroscopy (2D NMR; 1H and 13C NMR), and assayed gene transfection effects in vitro and in vivo. Results We revealed selective grafting of AEMA onto C6-OH groups of WSC. AEMA-g-WSC effectively condensed plasmid DNA to form polyplexes in the size range of 170 to 282 nm. AEMA-g-WSC polyplexes in combination with psi-hBCL2 (a vector expressing short hairpin RNA against BCL2 mRNA) inhibited tumor cell proliferation and tumor growth in vitro and in vivo, respectively, by inducing apoptosis. Conclusion The simple grafting process mediated via gamma irradiation is a promising method for synthesizing gene carriers. PMID:29416333

  12. Radiation resistance of a gamma-ray irradiated nonlinear optic chromophore

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Taylor, Edward W.

    2009-11-01

    The radiation resistance of organic electro-optic and optoelectronic materials for space applications is receiving increased attention. An earlier investigation reported that guest-host poled polymer EO modulator devices composed of a phenyltetraene bridge-type chromophore in amorphous polycarbonate (CLD/APC) did not exhibit a decrease in EO response (i.e., an increase in modulation-switching voltage- Vπ) following irradiation by low dose [10-160 krad(Si)] 60Co gamma-rays. To provide further evidences to the observed radiation stability, the post-irradiation responses of 60Co gamma-rays on CLD1/APC thin films are examined by various chemical and spectroscopic methods including: a solubility test, thin-layer chromatography, proton nuclear magnetic resonance spectroscopy, UV-vis absorption, and infra-red absorption. The results indicate that CLD1 and APC did not decompose under gamma-ray irradiation at dose levels ranging from 66-274 krad(Si) and from 61-154 krad(Si), respectively which support the previously reported data.

  13. Gamma ray spectroscopy in astrophysics: Solar gamma ray astronomy on solar maximum mission. [experimental design

    NASA Technical Reports Server (NTRS)

    Forrest, D. J.

    1978-01-01

    The SMM gamma ray experiment and the important scientific capabilities of the instrument are discussed. The flare size detectable as a function of spectrum integration time was studied. A preliminary estimate indicates that a solar gamma ray line at 4.4 MeV one-fifth the intensity of that believed to have been emitted on 4 August 1972 can be detected in approximately 1000 sec with a confidence level of 99%.

  14. Neutron and gamma-ray energy reconstruction for characterization of special nuclear material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clarke, Shaun D.; Hamel, Michael C.; Di fulvio, Angela

    Characterization of special nuclear material may be performed using energy spectroscopy of either the neutron or gamma-ray emissions from the sample. Gamma-ray spectroscopy can be performed relatively easily using high-resolution semiconductors such as high-purity germanium. Neutron spectroscopy, by contrast, is a complex inverse problem. Here, results are presented for 252Cf and PuBe energy spectra unfolded using a single EJ309 organic scintillator; excellent agreement is observed with the reference spectra. Neutron energy spectroscopy is also possible using a two-plane detector array, whereby time-offlight kinematics can be used. With this system, energy spectra can also be obtained as a function of position.more » Finally, spatial-dependent energy spectra are presented for neutron and gamma-ray sources that are in excellent agreement with expectations.« less

  15. Neutron and gamma-ray energy reconstruction for characterization of special nuclear material

    DOE PAGES

    Clarke, Shaun D.; Hamel, Michael C.; Di fulvio, Angela; ...

    2017-06-30

    Characterization of special nuclear material may be performed using energy spectroscopy of either the neutron or gamma-ray emissions from the sample. Gamma-ray spectroscopy can be performed relatively easily using high-resolution semiconductors such as high-purity germanium. Neutron spectroscopy, by contrast, is a complex inverse problem. Here, results are presented for 252Cf and PuBe energy spectra unfolded using a single EJ309 organic scintillator; excellent agreement is observed with the reference spectra. Neutron energy spectroscopy is also possible using a two-plane detector array, whereby time-offlight kinematics can be used. With this system, energy spectra can also be obtained as a function of position.more » Finally, spatial-dependent energy spectra are presented for neutron and gamma-ray sources that are in excellent agreement with expectations.« less

  16. Application of the Pulsed Photoacoustic Spectroscopy in Biomedicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gutierrez-Juarez, G.; Sims, M. J.; Gupta, S. K.

    2008-08-11

    The use of optical spectroscopy as a diagnostic tool in biomedical applications and research has grown considerably in the last two decades. One of them is the pulsed photoacoustic or optoacoustic, which promises to be one of the most important tools for disease diagnostic studies, because while most spectroscopies exploit the optical nature of the light-tissue interaction, this field of photoacoustics uses optical energy to generate an acoustic wave which propagates in the tissue environment. The acoustic wave propagation is fundamentally related to various tissue properties and an analysis of the wave dynamics can provide insights into these properties. Thismore » work presents a review on pulsed photoacoustic spectroscopy of several photoacoustic methods to derive information about tissue and tissue phantoms.« less

  17. Development and application of marine gamma-ray measurements: a review.

    PubMed

    Jones, D G

    2001-01-01

    The development of instruments to measure gamma radiation in the marine environment, particularly on the sea floor, and the range of uses to which they have been put is reviewed. Since the first steps in the late 1950s, systems have been developed in at least 10 countries with the main thrust occurring in the 1970s. Development has continued up to the present, primarily in Europe and the USA. Marine gamma-ray spectrometers have been used for a range of applications including the mapping of rocks and unconsolidated sediments, mineral exploration (mainly for heavy minerals and phosphorites), sediment transport studies and investigations in relation to discharged and dumped nuclear wastes and at nuclear weapon test sites.

  18. Environmental application of gamma technology: Update on the Canadian sludge irradiator

    NASA Astrophysics Data System (ADS)

    Swinwood, Jean F.; Fraser, Frank M.

    1993-10-01

    Waste treatment and disposal technologies have recently been subjected to increasing public and regulatory scrutiny. Concern for the environment and a heightened awareness of potential health hazards that could result from insufficient or inappropriate waste handling methods have combined to push waste generators in their search for new treatment alternatives. Gamma technology can offer a new option for the treatment of potentially infectious wastes, including municipal sewage sludge. Sewage sludge contains beneficial plant nutrients and a high organic component that make it ideal as a soil conditioning agent or fertilizer bulking material. It also carries potentially infectious microorganisms which limit opportunities for beneficial recycling of sludges. Gamma irradiation-disinfection of these sludges offers a reliable, fast and efficient method for safe sludge recycling. Nordion International's Market Development Division was created in 1987 as part of a broad corporate reorganization. It was given an exclusive mandate to develop new applications of gamma irradiation technology and markets for these new applications. Nordion has since explored and developed opportunities in food irradiation, pharmaceutical/cosmetic products irradiation, biomedical waste sterilization, airline waste disinfection, and sludge disinfection for recycling. This paper focuses on the last of these -a proposed sludge recycling facility that incorporates a cobalt 60 sludge irradiator.

  19. Gamma-ray burst spectroscopy capabilities of the BATSE/GRO experiment

    NASA Technical Reports Server (NTRS)

    Matteson, J. L.; Fishman, G. J.; Meegan, C. A.; Parnell, T. A.; Wilson, R. B.; Paciesas, W.; Cline, T. L.; Teegarden, B. J.

    1985-01-01

    A scintillation spectrometer is included in each of the eight BATSE/GRO detector modules, resulting in all-sky coverage for gamma-ray bursts. The scientific motivation, design and capabilities of these spectrometers for performing spectral observations over a wide range of gamma-ray energies and burst intensities are described.

  20. Active Neutron and Gamma-Ray Instrumentation for In Situ Planetary Science Applications

    NASA Technical Reports Server (NTRS)

    Parsons, A.; Bodnarik, J.; Evans, L.; Floyd, A.; Lim, L.; McClanahan, T.; Namkung, M.; Nowicki, S.; Schweitzer, J.; Starr, R.; hide

    2011-01-01

    We describe the development of an instrument capable of detailed in situ bulk geochemical analysis of the surface of planets, moons, asteroids, and comets. This instrument technology uses a pulsed neutron generator to excite the solid materials of a planet and measures the resulting neutron and gamma-ray emission with its detector system. These time-resolved neutron and gamma-ray data provide detailed information about the bulk elemental composition, chemical context, and density distribution of the soil within 50 cm of the surface. While active neutron scattering and neutron-induced gamma-ray techniques have been used extensively for terrestrial nuclear well logging applications, our goal is to apply these techniques to surface instruments for use on any solid solar system body. As described, experiments at NASA Goddard Space Flight Center use a prototype neutron-induced gamma-ray instrument and the resulting data presented show the promise of this technique for becoming a versatile, robust, workhorse technology for planetary science, and exploration of any of the solid bodies in the solar system. The detection of neutrons at the surface also provides useful information about the material. This paper focuses on the data provided by the gamma-ray detector.

  1. X-Ray Spectral Diagnostics of Gamma-Ray Burst Environments.

    PubMed

    Paerels; Kuulkers; Heise; Liedahl

    2000-05-20

    Recently, detection of discrete features in the X-ray afterglow spectra of GRB 970508 and GRB 970828 was reported. The most natural interpretation of these features is that they are redshifted Fe K emission complexes. The identification of the line emission mechanism has drastic implications for the inferred mass of radiating material and hence the nature of the burst site. X-ray spectroscopy provides a direct observational constraint on these properties of gamma-ray bursters. We briefly discuss how these constraints arise in the context of an application to the spectrum of GRB 970508.

  2. Analytical Applications Of High-Resolution Molecular Fluorescence Spectroscopy In Low Temperature Solid Matrices

    NASA Astrophysics Data System (ADS)

    Hofstraat, Johannes W.; van Zeijl, W. J.; Smedes, F.; Ariese, Freek; Gooijer, Cees; Velthorst, Nel H.; Locher, R.; Renn, Alois; Wild, Urs P.

    1989-05-01

    High-resolution fluorescence spectroscopy may be used to obtain highly specific, vibrationally resolved spectral signatures of molecules. Two techniques are presented that both make use of low temperature, solid matrices. In Shpol'skii spectroscopy highly resolved spectra are obtained by employing n-alkanes as solvents that form neat crystalline matrices at low temperatures in which the guest molecules occupy well defined substitutional sites. Fluorescence line-narrowing spectroscopy is based on the application of selective (mostly laser-) excitation of the guest molecules. Principles and analytical applications of both techniques will be discussed. Specific attention will be paid to the determination of pyrene in bird meat by means of Shpol'skii spectroscopy and to the possibilities of applying two-dimensional fluorescence line-narrowing spectroscopy.

  3. The gamma irradiation effects on structural and optical properties of silk fibroin/HPMC blend films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shetty, G. Rajesha; Rao, B. Lakshmeesha; Gowda, Mahadeva

    In this paper the structural, chemical and optical properties of gamma irradiated silk fibroin/Hydroxypropyl methyl cellulose (SF-HPMC) blend films were studied using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and UV-visible spectroscopy. The results indicate that the gamma radiation did not affect significantly the primary structure of polypeptide arrangement in the blend films. But the optical properties of the blends changed with gamma irradiation dosage.

  4. Modeling the Martian neutron and gamma-ray leakage fluxes using Geant4

    NASA Astrophysics Data System (ADS)

    Pirard, Benoit; Desorgher, Laurent; Diez, Benedicte; Gasnault, Olivier

    A new evaluation of the Martian neutron and gamma-ray (continuum and line) leakage fluxes has been performed using the Geant4 code. Even if numerous studies have recently been carried out with Monte Carlo methods to characterize planetary radiation environments, only a few however have been able to reproduce in detail the neutron and gamma-ray spectra observed in orbit. We report on the efforts performed to adapt and validate the Geant4-based PLAN- ETOCOSMICS code for use in planetary neutron and gamma-ray spectroscopy data analysis. Beside the advantage of high transparency and modularity common to Geant4 applications, the new code uses reviewed nuclear cross section data, realistic atmospheric profiles and soil layering, as well as specific effects such as gravity acceleration for low energy neutrons. Results from first simulations are presented for some Martian reference compositions and show a high consistency with corresponding neutron and gamma-ray spectra measured on board Mars Odyssey. Finally we discuss the advantages and perspectives of the improved code for precise simulation of planetary radiation environments.

  5. Radiation detection system for portable gamma-ray spectroscopy

    DOEpatents

    Rowland, Mark S [Alamo, CA; Howard, Douglas E [Livermore, CA; Wong, James L [Dublin, CA; Jessup, James L [Tracy, CA; Bianchini, Greg M [Livermore, CA; Miller, Wayne O [Livermore, CA

    2006-06-20

    A portable gamma ray detection apparatus having a gamma ray detector encapsulated by a compact isolation structure having at least two volumetrically-nested enclosures where at least one is a thermal shield. The enclosures are suspension-mounted to each other to successively encapsulate the detector without structural penetrations through the thermal shields. A low power cooler is also provided capable of cooling the detector to cryogenic temperatures without consuming cryogens, due to the heat load reduction by the isolation structure and the reduction in the power requirements of the cooler. The apparatus also includes a lightweight portable power source for supplying power to the apparatus, including to the cooler and the processing means, and reducing the weight of the apparatus to enable handheld operation or toting on a user's person.

  6. Study of gamma spectrometry laboratory measurement in various sediment and vulcanic rocks

    NASA Astrophysics Data System (ADS)

    Nurhandoko, Bagus Endar B.; Kurniadi, Rizal; Rizka Asmara Hadi, Muhammad; Rizal Komara, Insan

    2017-01-01

    Gamma-ray spectroscopy is the quantitative study of the energy spectra of gamma-ray sources. This method is powerful to characterize some minerals, especially to differentiate rocks which contains among Potassium, Uranium, dan Thorium. Rock contains radioactive material which produce gamma rays in various energies and intensities. When these emissions are detected and analyzed with a spectroscopy system, a gamma-ray energy spectrum can be used as indicator for mineral content of rock. Some sediment and vulcanic rock have been collected from East Java Basin. Samples are ranging from Andesite vulcanics, Tuff, Shale, various vulcanic clay and Alluvial clay. We present some unique characteristics of gamma spectrometry in various sedimentar and vulcanic rocks of East Java Basins. Details contents of gamma ray spectra give enrichments to characterize sample of sediment and vulcanic in East Java. Weathered vulcanic clay has lower counting rate of gamma ray than alluvial deltaic clay counting rate. Therefore, gamma spectrometrometry can be used as tool for characterizing the enviroment of clay whether vulcanic or alluvial-deltaic. This phenomena indicates that gamma ray spectrometry can be as tool for characterizing the clay whether it tends to Smectite or Illite

  7. Bismuth- and lithium-loaded plastic scintillators for gamma and neutron detection

    NASA Astrophysics Data System (ADS)

    Cherepy, Nerine J.; Sanner, Robert D.; Beck, Patrick R.; Swanberg, Erik L.; Tillotson, Thomas M.; Payne, Stephen A.; Hurlbut, Charles R.

    2015-04-01

    Transparent plastic scintillators based on polyvinyltoluene (PVT) have been fabricated with high loading of bismuth carboxylates for gamma spectroscopy, and with lithium carboxylates for neutron detection. When activated with a combination of standard fluors, 2,5-diphenyloxazole (PPO) and tetraphenylbutadiene (TPB), gamma light yields with 15 wt% bismuth tripivalate of 5000 Ph/MeV are measured. A PVT plastic formulation including 30 wt% lithium pivalate and 30 wt% PPO offers both pulse shape discrimination, and a neutron capture peak at 400 keVee. In another configuration, a bismuth-loaded PVT plastic is coated with ZnS(6Li) paint, permitting simultaneous gamma and neutron detection via pulse shape discrimination with a figure-of-merit of 3.8, while offering gamma spectroscopy with energy resolution of R(662 keV)=15%.

  8. Intracellular applications of fluorescence correlation spectroscopy: prospects for neuroscience.

    PubMed

    Kim, Sally A; Schwille, Petra

    2003-10-01

    Based on time-averaging fluctuation analysis of small fluorescent molecular ensembles in equilibrium, fluorescence correlation spectroscopy has recently been applied to investigate processes in the intracellular milieu. The exquisite sensitivity of fluorescence correlation spectroscopy provides access to a multitude of measurement parameters (rates of diffusion, local concentration, states of aggregation and molecular interactions) in real time with fast temporal and high spatial resolution. The introduction of dual-color cross-correlation, imaging, two-photon excitation, and coincidence analysis coupled with fluorescence correlation spectroscopy has expanded the utility of the technique to encompass a wide range of promising applications in living cells that may provide unprecedented insight into understanding the molecular mechanisms of intracellular neurobiological processes.

  9. Novel synthesis of cobalt/poly vinyl alcohol/gamma alumina nanocomposite for catalytic application

    NASA Astrophysics Data System (ADS)

    Hatamie, Shadie; Ahadian, Mohammad Mahdi; Rashidi, Alimoradeh; Karimi, Ali; Akhavan, Omid

    2017-05-01

    In this manuscript, synthesis of cobalt/poly vinyl alcohol (PVA)/gamma alumina nanocomposite via a simple room temperature, as well as its catalyst performance were explored. Brunauer-Emmett-Teller analysis, X-ray diffraction, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy were conducted. The surface area of the polymeric composite was obtained to be 280 m2/g. The cobalt loading on the nanocomposite was measured using inductivity couple plasma. Transmission electron microscopy analysis showed that the size of cobalt crystalline encapsulate inside the polymer was confined to 5 nm. Magnetic property analysis, using vibrating sample magnetometer, confirmed ferromagnetic nature of the composite. Thermo-gravimetric analyses were employed to explain the degradation process for the polymeric base nanocomposite. Temperature-programmed reduction was used to evaluate the structural form of cobalt oxide in nanocomposite. The catalysis activity was determined by Fischer-Tropsch synthesize, which showed a high catalyst selectivity to C2-C4 hydrocarbons.

  10. Effect of gamma radiation on the stability of UV replicated composite mirrors

    NASA Astrophysics Data System (ADS)

    Zaldivar, Rafael J.; Kim, Hyun I.; Ferrelli, Geena L.

    2018-04-01

    Composite replicated mirrors are gaining increasing attention for space-based applications due to their lower density, tailorable mechanical properties, and rapid manufacturing times over state-of-the-art glass mirrors. Ultraviolet (UV)-cured mirrors provide a route by which high-quality mirrors can be manufactured at relatively low processing temperatures that minimize residual stresses. The successful utilization of these mirrors requires nanometer scale dimensional stability after both thermal cycling and hygrothermal exposure. We investigate the effect of gamma irradiation as a process to improve the stability of UV replicated mirrors. Gamma radiation exposure was shown to increase the cure state of these mirrors as evidenced by an increase in modulus, glass transition temperature, and the thermal degradation behavior with dosage. Gas chromatography-mass spectroscopy also showed evidence of consumption of the primary monomers and initiation of the photosensitive agent with gamma exposure. The gamma-exposed mirrors exhibited significant improvement in stability even after multiple thermal cycling in comparison with nonirradiated composite mirrors. Though improvements in the cure state contribute to the overall stability, the radiation dosage was also shown to reduce the film stress of the mirror by over 80% as evidenced using Stoney replicated specimens. This reduction in residual stress is encouraging considering the utilization of these structures for space applications. This paper shows that replicated composite mirrors are a viable alternative to conventional optical structures.

  11. Accurate Modeling of the Terrestrial Gamma-Ray Background for Homeland Security Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandness, Gerald A.; Schweppe, John E.; Hensley, Walter K.

    2009-10-24

    Abstract–The Pacific Northwest National Laboratory has developed computer models to simulate the use of radiation portal monitors to screen vehicles and cargo for the presence of illicit radioactive material. The gamma radiation emitted by the vehicles or cargo containers must often be measured in the presence of a relatively large gamma-ray background mainly due to the presence of potassium, uranium, and thorium (and progeny isotopes) in the soil and surrounding building materials. This large background is often a significant limit to the detection sensitivity for items of interest and must be modeled accurately for analyzing homeland security situations. Calculations ofmore » the expected gamma-ray emission from a disk of soil and asphalt were made using the Monte Carlo transport code MCNP and were compared to measurements made at a seaport with a high-purity germanium detector. Analysis revealed that the energy spectrum of the measured background could not be reproduced unless the model included gamma rays coming from the ground out to distances of at least 300 m. The contribution from beyond about 50 m was primarily due to gamma rays that scattered in the air before entering the detectors rather than passing directly from the ground to the detectors. These skyshine gamma rays contribute tens of percent to the total gamma-ray spectrum, primarily at energies below a few hundred keV. The techniques that were developed to efficiently calculate the contributions from a large soil disk and a large air volume in a Monte Carlo simulation are described and the implications of skyshine in portal monitoring applications are discussed.« less

  12. Bismuth- and lithium-loaded plastic scintillators for gamma and neutron detection

    DOE PAGES

    Cherepy, Nerine J.; Sanner, Robert D.; Beck, Patrick R.; ...

    2015-01-09

    In this paper, transparent plastic scintillators based on polyvinyltoluene (PVT) have been fabricated with high loading of bismuth carboxylates for gamma spectroscopy, and with lithium carboxylates for neutron detection. When activated with a combination of standard fluors, 2,5-diphenyloxazole (PPO) and tetraphenylbutadiene (TPB), gamma light yields with 15 wt% bismuth tripivalate of 5000 Ph/MeV are measured. A PVT plastic formulation including 30 wt% lithium pivalate and 30 wt% PPO offers both pulse shape discrimination, and a neutron capture peak at ~400 keVee. Finally, in another configuration, a bismuth-loaded PVT plastic is coated with ZnS( 6Li) paint, permitting simultaneous gamma and neutronmore » detection via pulse shape discrimination with a figure-of-merit of 3.8, while offering gamma spectroscopy with energy resolution of R(662 keV)=15%.« less

  13. Applications of positron annihilation spectroscopy in materials research

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.

    1988-01-01

    Positron Annihilation Spectroscopy (PAS) has emerged as a powerful technique for research in condensed matter. It has been used extensively in the study of metals, ionic crystals, glasses and polymers. The present review concentrates on applications of positron lifetime measurements for elucidation of the physicochemical structure of polymers.

  14. HEAO C-1 gamma-ray spectrometer. [experimental design

    NASA Technical Reports Server (NTRS)

    Mahoney, W. A.; Ling, J. C.; Willett, J. B.; Jacobson, A. S.

    1978-01-01

    The gamma-ray spectroscopy experiment to be launched on the third High Energy Astronomy Observatory (HEAO C) will perform a complete sky search for narrow gamma-ray line emission to the level of about 00001 photons/sq cm -sec for steady point sources. The design of this experiment and its performance based on testing and calibration to date are discussed.

  15. Development of a digital method for neutron/gamma-ray discrimination based on matched filtering

    NASA Astrophysics Data System (ADS)

    Korolczuk, S.; Linczuk, M.; Romaniuk, R.; Zychor, I.

    2016-09-01

    Neutron/gamma-ray discrimination is crucial for measurements with detectors sensitive to both neutron and gamma-ray radiation. Different techniques to discriminate between neutrons and gamma-rays based on pulse shape analysis are widely used in many applications, e.g., homeland security, radiation dosimetry, environmental monitoring, fusion experiments, nuclear spectroscopy. A common requirement is to improve a radiation detection level with a high detection reliability. Modern electronic components, such as high speed analog to digital converters and powerful programmable digital circuits for signal processing, allow us to develop a fully digital measurement system. With this solution it is possible to optimize digital signal processing algorithms without changing any electronic components in an acquisition signal path. We report on results obtained with a digital acquisition system DNG@NCBJ designed at the National Centre for Nuclear Research. A 2'' × 2'' EJ309 liquid scintillator was used to register mixed neutron and gamma-ray radiation from PuBe sources. A dedicated algorithm for pulse shape discrimination, based on real-time filtering, was developed and implemented in hardware.

  16. Applications of spatially offset Raman spectroscopy to defense and security

    NASA Astrophysics Data System (ADS)

    Guicheteau, Jason; Hopkins, Rebecca

    2016-05-01

    Spatially offset Raman spectroscopy (SORS) allows for sub-surface and through barrier detection and has applications in drug analysis, cancer detection, forensic science, as well as defense and security. This paper reviews previous efforts in SORS and other through barrier Raman techniques and presents a discussion on current research in defense and security applications.

  17. Use of the gamma distribution to represent monthly rainfall in Africa for drought monitoring applications

    USGS Publications Warehouse

    Husak, Gregory J.; Michaelsen, Joel C.; Funk, Christopher C.

    2007-01-01

    Evaluating a range of scenarios that accurately reflect precipitation variability is critical for water resource applications. Inputs to these applications can be provided using location- and interval-specific probability distributions. These distributions make it possible to estimate the likelihood of rainfall being within a specified range. In this paper, we demonstrate the feasibility of fitting cell-by-cell probability distributions to grids of monthly interpolated, continent-wide data. Future work will then detail applications of these grids to improved satellite-remote sensing of drought and interpretations of probabilistic climate outlook forum forecasts. The gamma distribution is well suited to these applications because it is fairly familiar to African scientists, and capable of representing a variety of distribution shapes. This study tests the goodness-of-fit using the Kolmogorov–Smirnov (KS) test, and compares these results against another distribution commonly used in rainfall events, the Weibull. The gamma distribution is suitable for roughly 98% of the locations over all months. The techniques and results presented in this study provide a foundation for use of the gamma distribution to generate drivers for various rain-related models. These models are used as decision support tools for the management of water and agricultural resources as well as food reserves by providing decision makers with ways to evaluate the likelihood of various rainfall accumulations and assess different scenarios in Africa. 

  18. UV-Vis spectroscopy of tyrosine side-groups in studies of protein structure. Part 2: selected applications.

    PubMed

    Antosiewicz, Jan M; Shugar, David

    In Part 2 we discuss application of several different types of UV-Vis spectroscopy, such as normal, difference, and second-derivative UV absorption spectroscopy, fluorescence spectroscopy, linear and circular dichroism spectroscopy, and Raman spectroscopy, of the side-chain of tyrosine residues in different molecular environments. We review the ways these spectroscopies can be used to probe complex protein structures.

  19. UV-Vis spectroscopy of tyrosine side-groups in studies of protein structure. Part 2: selected applications.

    PubMed

    Antosiewicz, Jan M; Shugar, David

    2016-06-01

    In Part 2 we discuss application of several different types of UV-Vis spectroscopy, such as normal, difference, and second-derivative UV absorption spectroscopy, fluorescence spectroscopy, linear and circular dichroism spectroscopy, and Raman spectroscopy, of the side-chain of tyrosine residues in different molecular environments. We review the ways these spectroscopies can be used to probe complex protein structures.

  20. [Application of near infrared spectroscopy technology (NIRS) in forage field].

    PubMed

    Yan, Xu; Bai, Shi-Qie; Yan, Jia-Jun; Gan, You-Min; Dao, Zhi-Xue

    2012-07-01

    The majority of nutrients in ruminants and other herbivores come from forages. Forage quality not only affects the growth and production efficiency of livestock, but also determines the final output and quality of livestock products. Forage quality mainly depends on nutrient concentrations and their digestibility, palatability and the level of presence of antiquality factors and mycotoxins in forage. Near infrared reflectance spectroscopy (NIRS) has been widely used in many research areas because it is a inexpensive, rapid, simple and nondestructive technique offering the potential for qualitative and quantitative analysis. The present paper briefly introduces the principle and characteristics of NIRS, detailedly expounds the application of NIRS in forage quality. In addition, other applications of near infrared spectroscopy technique in forage are also discussed, including forage breeding, identification of variety and classification by kind. This paper comprehensively reviews the status quo of application of NIRS in forage filed, in order to contribute to promoting development of NIRS in this field in China.

  1. A Method to Estimate the Atomic Number and Mass Thickness of Intervening Materials in Uranium and Plutonium Gamma-Ray Spectroscopy Measurements

    NASA Astrophysics Data System (ADS)

    Streicher, Michael; Brown, Steven; Zhu, Yuefeng; Goodman, David; He, Zhong

    2016-10-01

    To accurately characterize shielded special nuclear materials (SNM) using passive gamma-ray spectroscopy measurement techniques, the effective atomic number and the thickness of shielding materials must be measured. Intervening materials between the source and detector may affect the estimated source isotopics (uranium enrichment and plutonium grade) for techniques which rely on raw count rates or photopeak ratios of gamma-ray lines separated in energy. Furthermore, knowledge of the surrounding materials can provide insight regarding the configuration of a device containing SNM. The described method was developed using spectra recorded using high energy resolution CdZnTe detectors, but can be expanded to any gamma-ray spectrometers with energy resolution of better than 1% FWHM at 662 keV. The effective atomic number, Z, and mass thickness of the intervening shielding material are identified by comparing the relative attenuation of different gamma-ray lines and estimating the proportion of Compton scattering interactions to photoelectric absorptions within the shield. While characteristic Kα x-rays can be used to identify shielding materials made of high Z elements, this method can be applied to all shielding materials. This algorithm has adequately estimated the effective atomic number for shields made of iron, aluminum, and polyethylene surrounding uranium samples using experimental data. The mass thicknesses of shielding materials have been estimated with a standard error of less than 1.3 g/cm2 for iron shields up to 2.5 cm thick. The effective atomic number was accurately estimated to 26 ± 5 for all iron thicknesses.

  2. Investigation of Martian H2O and CO2 via orbital gamma ray spectroscopy

    NASA Technical Reports Server (NTRS)

    Evans, Larry G.; Squyres, Steven W.

    1987-01-01

    The capability of an orbital gamma ray spectrometer to address presently unanswered questions concerning H2O and CO2 on Mars is investigated. The gamma ray signal produced by the Martian atmosphere and by several simple models of Martian surface materials is calculated. Results are reported for: (1) the production of neutrons in the atmosphere and in the subsurface material by cosmic ray interactions, (2) the scattering of neutrons and the resultant neutron energy spectrum and spatial distributions, (3) the reproduction of gamma rays by neutron prompt capture and nonelastic scatter reactions, (4) the production of gamma rays by natural radionuclides, (5) the attenuation of the gamma ray signal by passage through surface materials and the Martian atmosphere, (6) the production of the gamma ray continuum background, and (7) the uncertainty in gamma ray line strengths that results from the combined signal and background observed by the detector.

  3. Parasites under the Spotlight: Applications of Vibrational Spectroscopy to Malaria Research.

    PubMed

    Perez-Guaita, David; Marzec, Katarzyna M; Hudson, Andrew; Evans, Corey; Chernenko, Tatyana; Matthäus, Christian; Miljkovic, Milos; Diem, Max; Heraud, Philip; Richards, Jack S; Andrew, Dean; Anderson, David A; Doerig, Christian; Garcia-Bustos, Jose; McNaughton, Don; Wood, Bayden R

    2018-04-20

    New technologies to diagnose malaria at high sensitivity and specificity are urgently needed in the developing world where the disease continues to pose a huge burden on society. Infrared and Raman spectroscopy-based diagnostic methods have a number of advantages compared with other diagnostic tests currently on the market. These include high sensitivity and specificity for detecting low levels of parasitemia along with ease of use and portability. Here, we review the application of vibrational spectroscopic techniques for monitoring and detecting malaria infection. We discuss the role of vibrational (infrared and Raman) spectroscopy in understanding the processes of parasite biology and its application to the study of interactions with antimalarial drugs. The distinct molecular phenotype that characterizes malaria infection and the high sensitivity enabling detection of low parasite densities provides a genuine opportunity for vibrational spectroscopy to become a front-line tool in the elimination of this deadly disease and provide molecular insights into the chemistry of this unique organism.

  4. Characterization and Applications of a CdZnTe-Based Gamma-Ray Imager

    NASA Astrophysics Data System (ADS)

    Galloway, Michelle Lee

    Detection of electromagnetic radiation in the form of gamma rays provides a means to discover the presence of nuclear sources and the occurrence of highly-energetic events that occur in our terrestrial and astrophysical environment. The highly penetrative nature of gamma rays allows for probing into objects and regions that are obscured at other wavelengths. The detection and imaging of gamma rays relies upon an understanding of the ways in which these high-energy photons interact with matter. The applications of gamma-ray detection and imaging are numerous. Astrophysical observation of gamma rays expands our understanding of the Universe in which we live. Terrestrial detection and imaging of gamma rays enable environmental monitoring of radioactivity. This allows for identification and localization of nuclear materials to prevent illicit trafficking and to ultimately protect against harmful acts. This dissertation focusses on the development and characterization of a gamma-ray detection and imaging instrument and explores its capabilities for the aforementioned applications. The High Efficiency Multimode Imager, HEMI, is a prototype instrument that is based on Cadmium Zinc Telluride (CdZnTe) semiconductor detectors. The detectors are arranged in a two-planar configuration to allow for both Compton and coded-aperture imaging. HEMI was initially developed as a prototype instrument to demonstrate its capabilities for nuclear threat detection, spectroscopy, and imaging. The 96-detector instrument was developed and fully characterized within the laboratory environment, yielding a system energy resolution of 2.4% FWHM at 662 keV, an angular resolution of 9.5 deg. FWHM at 662 keV in Compton mode, and a 10.6 deg. angular resolution in coded aperture mode. After event cuts, the effective area for Compton imaging of the 662 keV photopeak is 0.1 cm 22. Imaging of point sources in both Compton and coded aperture modes have been demonstrated. The minimum detectable activity of

  5. An evolution of technologies and applications of gamma imagers in the nuclear cycle industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalil, R. A.; Carrel, F.; Menaa, N.

    The tracking of radiation contamination and distribution has become a high priority in the nuclear cycle industry in order to respect the ALARA principle which is a main challenge during decontamination and dismantling activities. To support this need, AREVA/CANBERRA and CEA LIST have been actively carrying out research and development on a gamma-radiation imager. In this paper we will present the new generation of gamma camera, called GAMPIX. This system is based on the Timepix chip, hybridized with a CdTe substrate. A coded mask could be used in order to increase the sensitivity of the camera. Moreover, due to themore » USB connection with a standard computer, this gamma camera is immediately operational and user-friendly. The final system is a very compact gamma camera (global weight is less than 1 kg without any shielding) which could be used as a hand-held device for radioprotection purposes. In this article, we present the main characteristics of this new generation of gamma camera and we expose experimental results obtained during in situ measurements. Even though we present preliminary results the final product is under industrialization phase to address various applications specifications. (authors)« less

  6. Gamma-Ray Imager With High Spatial And Spectral Resolution

    NASA Technical Reports Server (NTRS)

    Callas, John L.; Varnell, Larry S.; Wheaton, William A.; Mahoney, William A.

    1996-01-01

    Gamma-ray instrument developed to enable both two-dimensional imaging at relatively high spatial resolution and spectroscopy at fractional-photon-energy resolution of about 10 to the negative 3rd power in photon-energy range from 10 keV to greater than 10 MeV. In its spectroscopic aspect, instrument enables identification of both narrow and weak gamma-ray spectral peaks.

  7. Proceedings of the 3rd US-Japan Workshop on Plasma Polarization Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beiersdorfer, P; Flyimoto, T

    The third US-Japan Workshop on Plasma Polarization Spectroscopy was held at the Lawrence Livermore National Laboratory in Livermore, California, on June 18-21, 2001. The talks presented at this workshop are summarized in these proceedings. The papers cover both experimental investigation and applications of plasma polarization spectroscopy as well as the theoretical foundation and formalisms to understand and describe the polarization phenomena. The papers give an overview of the history of plasma polarization spectroscopy, derive the formal aspects of polarization spectroscopy, including the effects of electric and magnetic fields, discuss spectra perturbed by intense microwave fields, charge exchange, and dielectronic recombination,more » and present calculations of various collisional excitation and ionization cross sections and the modeling of plasma polarization spectroscopy phenomena. Experimental results are given from the WT-3 tokamak, the MST reverse field pinch, the Large Helical Device, the GAMMA 10 mirror machine, the Nevada Terrawatt Facility, the Livermore EBIT-II electron beam ion trap, and beam-foil spectroscopy. In addition, results were presented from studies of several laser-produced plasma experiments and new instrumental techniques were demonstrated.« less

  8. Use of CLYC spectrometer in counter-terrorism applications

    NASA Astrophysics Data System (ADS)

    Ing, H.; Smith, M. B.; Koslowsky, M. R.; Andrews, H. R.

    2015-05-01

    A new scintillator crystal, now known as CLYC (Cs2LiYCl6:Ce), has been under development for over 15 years (1). It was primarily of interest for radiation detection applications because of its good energy resolution for gamma rays (< 4% for 662 keV gamma rays) and its capability for detection of thermal neutrons. The pulse shapes of the signals from the two radiations are different, which allow them to be separated electronically, permitting simultaneous detection of gamma rays and neutrons. The crystal is now commercially available. Early investigations of the neutron response by the current authors (2) revealed that CLYC also responds to fast neutrons. In fact, the good energy resolution of the response under monoenergetic neutron irradiations showed that CLYC was an excellent high-energy neutron spectrometer. This discovery has great impact on the field of neutron spectroscopy, which has numerous, although often specialized, applications. This presentation focuses on applications in counter-terrorism scenarios where neutrons may be involved. The relative importance of the fast neutron response of CLYC, compared to the thermal and gamma-ray response, will be discussed for these scenarios.

  9. Application of Raman Spectroscopy for Nondestructive Evaluation of Composite Materials

    NASA Technical Reports Server (NTRS)

    Washer, Glenn A.; Brooks, Thomas M. B.; Saulsberry, Regor

    2007-01-01

    This paper will present an overview of efforts to investigate the application of Raman spectroscopy for the characterization of Kevlar materials. Raman spectroscopy is a laser technique that is sensitive to molecular interactions in materials such as Kevlar, graphite and carbon used in composite materials. The overall goal of this research reported here is to evaluate Raman spectroscopy as a potential nondestructive evaluation (NDE) tool for the detection of stress rupture in Kevlar composite over-wrapped pressure vessels (COPVs). Characterization of the Raman spectra of Kevlar yarn and strands will be presented and compared with analytical models provided in the literature. Results of testing to investigate the effects of creep and high-temperature aging on the Raman spectra will be presented.

  10. Novel applications of X-ray photoelectron spectroscopy on unsupported nanoparticles

    NASA Astrophysics Data System (ADS)

    Kostko, Oleg; Xu, Bo; Jacobs, Michael I.; Ahmed, Musahid

    X-ray photoelectron spectroscopy (XPS) is a powerful technique for chemical analysis of surfaces. We will present novel results of XPS on unsupported, gas-phase nanoparticles using a velocity-map imaging (VMI) spectrometer. This technique allows for probes of both the surfaces of nanoparticles via XPS as well as their interiors via near edge X-ray absorption fine structure (NEXAFS) spectroscopy. A recent application of this technique has confirmed that arginine's guanidinium group exists in a protonated state even in strongly basic solution. Moreover, the core-level photoelectron spectroscopy can provide information on the effective attenuation length (EAL) of low kinetic energy electrons. This contradictory value is important for determining the probing depth of XPS and in photolithography. A new method for determining EALs will be presented.

  11. IRIS: A database application system for diseases identification using FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Arshad, Ahmad Zulhilmi; Munajat, Yusof; Ibrahim, Raja Kamarulzaman Raja; Mahmood, Nasrul Humaimi

    2015-05-01

    Infrared information on diseases identification system (IRIS) is an application for diseases identification and analysis by using Fourier transform infrared (FTIR) spectroscopy. This is the preliminary step to gather information from the secondary data which was extracted from recognized various research and scientific paper, which are combined into a single database as in IRIS for our purpose of study. The importance of this database is to examine the fingerprint differences between normal and diseases cell or tissue. With the implementation of this application is it hopes that the diseases identification using FTIR spectroscopy would be more reliable and may assist either physicians, pathologists, or researchers to diagnose the certain type of disease efficiently.

  12. Research in cosmic and gamma ray astrophysics: Cosmic physics portion

    NASA Technical Reports Server (NTRS)

    Stone, Edward C.; Mewaldt, Richard A.; Schindler, Stephen

    1993-01-01

    Research in particle astrophysics at the Space Radiation Laboratory (SRL) of the California Institute of Technology is supported under NASA Grant NAGW-1919. A three-year proposal for continuation of support was submitted a year ago and put into effect 1 October 1992. This report is the combined progress report and continuation application called for under the Federal Demonstration Project. Gamma-ray Astrophysics at SRL is separately supported under NAGW-1919 and will be separately summarized and proposed. This report will document progress and plans for our particle spectroscopy activities and for related data analysis, calibration, and community service activities. A bibliography and a budget will be attached as appendices. The Caltech SRL research program includes a heavy emphasis on elemental and isotopic spectroscopy of energetic particles in the cosmic radiation; in solar, interplanetary, and anomalous 'cosmic' radiation; and in planetary magnetospheres as discussed.

  13. High Resolution Gamma Ray Spectroscopy at MHz Counting Rates With LaBr3 Scintillators for Fusion Plasma Applications

    NASA Astrophysics Data System (ADS)

    Nocente, M.; Tardocchi, M.; Olariu, A.; Olariu, S.; Pereira, R. C.; Chugunov, I. N.; Fernandes, A.; Gin, D. B.; Grosso, G.; Kiptily, V. G.; Neto, A.; Shevelev, A. E.; Silva, M.; Sousa, J.; Gorini, G.

    2013-04-01

    High resolution γ-ray spectroscopy measurements at MHz counting rates were carried out at nuclear accelerators, combining a LaBr 3(Ce) detector with dedicated hardware and software solutions based on digitization and off-line analysis. Spectra were measured at counting rates up to 4 MHz, with little or no degradation of the energy resolution, adopting a pile up rejection algorithm. The reported results represent a step forward towards the final goal of high resolution γ-ray spectroscopy measurements on a burning plasma device.

  14. Gamma ray astrophysics to the year 2000. Report of the NASA Gamma Ray Program Working Group

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Important developments in gamma-ray astrophysics up to energies of 100 GeV during the last decade are reviewed. Also, the report seeks to define the major current scientific goals of the field and proposes a vigorous program to pursue them, extending to the year 2000. The goals of gamma-ray astronomy include the study of gamma rays which provide the most direct means of studying many important problems in high energy astrophysics including explosive nucleosynthesis, accelerated particle interactions and sources, and high-energy processes around compact objects. The current research program in gamma-ray astronomy in the U.S. including the space program, balloon program and foreign programs in gamma-ray astronomy is described. The high priority recommendations for future study include an Explorer-class high resolution gamma-ray spectroscopy mission and a Get Away Special cannister (GAS-can) or Scout class multiwavelength experiment for the study of gamma-ray bursts. Continuing programs include an extended Gamma Ray Observatory mission, continuation of the vigorous program of balloon observations of the nearby Supernova 1987A, augmentation of the balloon program to provide for new instruments and rapid scientific results, and continuation of support for theoretical research. Long term recommendations include new space missions using advanced detectors to better study gamma-ray sources, the development of these detectors, continued study for the assembly of large detectors in space, collaboration with the gamma-ray astronomy missions initiated by other countries, and consideration of the Space Station attached payloads for gamma-ray experiments.

  15. Thallium Bromide as an Alternative Material for Room-Temperature Gamma-Ray Spectroscopy and Imaging

    NASA Astrophysics Data System (ADS)

    Koehler, William

    Thallium bromide is an attractive material for room-temperature gamma-ray spectroscopy and imaging because of its high atomic number (Tl: 81, Br: 35), high density (7.56 g/cm3), and a wide bandgap (2.68 eV). In this work, 5 mm thick TlBr detectors achieved 0.94% FWHM at 662 keV for all single-pixel events and 0.72% FWHM at 662 keV from the best pixel and depth using three-dimensional position sensing technology. However, these results were limited to stable operation at -20°C. After days to months of room-temperature operation, ionic conduction caused these devices to fail. Depth-dependent signal analysis was used to isolate room-temperature degradation effects to within 0.5 mm of the anode surface. This was verified by refabricating the detectors after complete failure at room temperature; after refabrication, similar performance and functionality was recovered. As part of this work, the improvement in electron drift velocity and energy resolution during conditioning at -20°C was quantified. A new method was developed to measure the impurity concentration without changing the gamma ray measurement setup. The new method was used to show that detector conditioning was likely the result of charged impurities drifting out of the active volume. This space charge reduction then caused a more stable and uniform electric field. Additionally, new algorithms were developed to remove hole contributions in high-hole-mobility detectors to improve depth reconstruction. These algorithms improved the depth reconstruction (accuracy) without degrading the depth uncertainty (precision). Finally, spectroscopic and imaging performance of new 11 x 11 pixelated-anode TlBr detectors was characterized. The larger detectors were used to show that energy resolution can be improved by identifying photopeak events from their Tl characteristic x-rays.

  16. Recoil Distance Method lifetime measurements via gamma-ray and charged-particle spectroscopy at NSCL

    NASA Astrophysics Data System (ADS)

    Voss, Philip Jonathan

    The Recoil Distance Method (RDM) is a well-established technique for measuring lifetimes of electromagnetic transitions. Transition matrix elements derived from the lifetimes provide valuable insight into nuclear structure. Recent RDM investigations at NSCL present a powerful new model-independent tool for the spectroscopy of nuclei with extreme proton-to-neutron ratios that exhibit surprising behavior. Neutron-rich 18C is one such example, where a small B(E2; 2+1 → 0+gs) represented a dramatic shift from the expected inverse relationship between the B(E2) and 2+1 excitation energy. To shed light on the nature of this quadrupole excitation, the RDM lifetime technique was applied with the Koln/NSCL plunger. States in 18C were populated by the one-proton knockout reaction of a 19N secondary beam. De-excitation gamma rays were detected with the Segmented Germanium Array in coincidence with reaction residues at the focal plane of the S800 Magnetic Spectrometer. The deduced B(E2) and excitation energy were both well described by ab initio no-core shell model calculations. In addition, a novel extension of RDM lifetime measurements via charged-particle spectroscopy of exotic proton emitters has been investigated. Substituting the reaction residue degrader of the Koln/NSCL plunger with a thin silicon detector permits the study of short-lived nuclei beyond the proton dripline. A proof of concept measurement of the mean lifetime of the two-proton emitter 19Mg was conducted. The results indicated a sub-picosecond lifetime, one order of magnitude smaller than the published results, and validate this new technique for lifetime measurements of charged-particle emitters.

  17. Applications of terahertz spectroscopy and imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Cunlin; Mu, Kaijun

    2009-07-01

    We have examined application feasibility of THz time-domain spectroscopy (THz-TDS) to inspect 30 kinds of illicit drugs, 20 kinds of amino acid and 10 kinds of explosives and related compounds (ERCs). We also have got their fingerprints, established the corresponding database, and propose the reference-free methods to extract the absorption or reflection spectra, respectively. We also use optical pump THz probe to research the ultrafast dynamics of semiconductor. While, we also present some new THz imaging techniques, such as, focal-plane multiwavelength phase imaging, reference-free phase imaging, polarization imaging, and continuous-wave (CW) standoff distance imaging.

  18. Fusion gamma diagnostics

    NASA Astrophysics Data System (ADS)

    Medley, S. S.; Cecil, F. E.; Cole, D.; Conway, M. A.; Wilkinson, F. J., III

    1985-05-01

    Nuclear reactions of interest in fusion research often possess a branch yielding prompt emission of gamma radiation in excess of 15 MeV which can be exploited to provide a new fusion reaction diagnostic having applications similar to conventional neutron emission measurements. Conceptual aspects of fusion gamma diagnostics are discussed with emphasis on application to the Tokamak Fusion Test Reactor (TFTR) during deuterium neutral beam heating of D-T and D-3He plasmas. Recent measurements of the D (T, γ)5He, D(3He, γ)5Li, and D(D, γ)4He branching ratios at low center-of-mass energy (30-100 keV) and of the response of a large volume Ne226 detector for gamma detection in high neutron backgrounds are presented. Using a well-shielded Ne226 detector during 20 MW-120 kV deuterium beam heating of a tritium plasma in TFTR, the D(T, γ)5He gamma signal level is estimated to be 3.5×105 cps.

  19. Gamma-ray spectroscopy: The diffuse galactic glow

    NASA Technical Reports Server (NTRS)

    Hartmann, Dieter H.

    1991-01-01

    The goal of this project is the development of a numerical code that provides statistical models of the sky distribution of gamma-ray lines due to the production of radioactive isotopes by ongoing Galactic nucleosynthesis. We are particularly interested in quasi-steady emission from novae, supernovae, and stellar winds, but continuum radiation and transient sources must also be considered. We have made significant progress during the first half period of this project and expect the timely completion of a code that can be applied to Oriented Scintillation Spectrometer Experiment (OSSE) Galactic plane survey data.

  20. Isomer-delayed gamma-ray spectroscopy of neutron-rich 166Tb

    NASA Astrophysics Data System (ADS)

    Gurgi, L. A.; Regan, P. H.; Söderström, P.-A.; Watanabe, H.; Walker, P. M.; Podolyák, Zs.; Nishimura, S.; Berry, T. A.; Doornenbal, P.; Lorusso, G.; Isobe, T.; Baba, H.; Xu, Z. Y.; Sakurai, H.; Sumikama, T.; Catford, W. N.; Bruce, A. M.; Browne, F.; Lane, G. J.; Kondev, F. G.; Odahara, A.; Wu, J.; Liu, H. L.; Xu, F. R.; Korkulu, Z.; Lee, P.; Liu, J. J.; Phong, V. H.; Yagi, A.; Zhang, G. X.; Alharbi, T.; Carroll, R. J.; Chae, K. Y.; Dombradi, Zs.; Estrade, A.; Fukuda, N.; Griffin, C.; Ideguchi, E.; Inabe, N.; Kanaoka, H.; Kojouharov, I.; Kubo, T.; Kubono, S.; Kurz, N.; Kuti, I.; Lalkovski, S.; Lee, E. J.; Lee, C. S.; Lotay, G.; Moon, C. B.; Nishizuka, I.; Nita, C. R.; Patel, Z.; Roberts, O. J.; Schaffner, H.; Shand, C. M.; Suzuki, H.; Takeda, H.; Terashima, S.; Vajta, Zs.; Kanaya, S.; Valiente-Dobòn, J. J.

    2017-09-01

    This short paper presents the identification of a metastable, isomeric-state decay in the neutron-rich odd-odd, prolate-deformed nucleus 166Tb. The nucleus of interest was formed using the in-flight fission of a 345 MeV per nucleon 238U primary beam at the RIBF facility, RIKEN, Japan. Gamma-ray transitions decaying from the observed isomeric states in 166Tb were identified using the EURICA gamma-ray spectrometer, positioned at the final focus of the BigRIPS fragments separator. The current work identifies a single discrete gamma-ray transition of energy 119 keV which de-excites an isomeric state in 166Tb with a measured half-life of 3.5(4) μs. The multipolarity assignment for this transition is an electric dipole and is made on the basis internal conversion and decay lifetime arguments. Possible two quasi-particle Nilsson configurations for the initial and final states which are linked by this transition in 166Tb are made on the basis of comparison with Blocked BCS Nilsson calculations, with the predicted ground state configuration for this nucleus arising from the coupling of the v(1-/2)?[521] and ? π(3+/2) Nilsson orbitals.

  1. New Applications of Portable Raman Spectroscopy in Agri-Bio-Photonics

    NASA Astrophysics Data System (ADS)

    Voronine, Dmitri; Scully, Rob; Sanders, Virgil

    2014-03-01

    Modern optical techniques based on Raman spectroscopy are being used to monitor and analyze the health of cattle, crops and their natural environment. These optical tools are now available to perform fast, noninvasive analysis of live animals and plants in situ. We will report new applications of a portable handheld Raman spectroscopy to identification and taxonomy of plants. In addition, detection of organic food residues will be demonstrated. Advantages and limitations of current portable instruments will be discussed with suggestions for improved performance by applying enhanced Raman spectroscopic schemes.

  2. The neutron-gamma Feynman variance to mean approach: Gamma detection and total neutron-gamma detection (theory and practice)

    NASA Astrophysics Data System (ADS)

    Chernikova, Dina; Axell, Kåre; Avdic, Senada; Pázsit, Imre; Nordlund, Anders; Allard, Stefan

    2015-05-01

    Two versions of the neutron-gamma variance to mean (Feynman-alpha method or Feynman-Y function) formula for either gamma detection only or total neutron-gamma detection, respectively, are derived and compared in this paper. The new formulas have particular importance for detectors of either gamma photons or detectors sensitive to both neutron and gamma radiation. If applied to a plastic or liquid scintillation detector, the total neutron-gamma detection Feynman-Y expression corresponds to a situation where no discrimination is made between neutrons and gamma particles. The gamma variance to mean formulas are useful when a detector of only gamma radiation is used or when working with a combined neutron-gamma detector at high count rates. The theoretical derivation is based on the Chapman-Kolmogorov equation with the inclusion of general reactions and corresponding intensities for neutrons and gammas, but with the inclusion of prompt reactions only. A one energy group approximation is considered. The comparison of the two different theories is made by using reaction intensities obtained in MCNPX simulations with a simplified geometry for two scintillation detectors and a 252Cf-source. In addition, the variance to mean ratios, neutron, gamma and total neutron-gamma are evaluated experimentally for a weak 252Cf neutron-gamma source, a 137Cs random gamma source and a 22Na correlated gamma source. Due to the focus being on the possibility of using neutron-gamma variance to mean theories for both reactor and safeguards applications, we limited the present study to the general analytical expressions for Feynman-alpha formulas.

  3. The alterations in high density polyethylene properties with gamma irradiation

    NASA Astrophysics Data System (ADS)

    Zaki, M. F.; Elshaer, Y. H.; Taha, Doaa. H.

    2017-10-01

    In the present investigation, high density polyethylene (HDPE) polymer has been used to study the alterations in its properties under gamma-irradiation. Physico-chemical properties have been investigated with different spectroscopy techniques, Fourier Transform Infrared spectroscopy (FTIR), X-ray diffraction (XRD), biocompatibility properties, as well as, mechanical properties change. The FT-IR analysis shows the formation of new band at 1716 cm-1 that is attributed to the oxidation of irradiated polymer chains, which is due to the formation of carbonyl groups (C˭O). XRD patterns show that a decrease in the crystallite size and increase in the Full Width at Half Maximum (FWHM). This means that the crystallinity of irradiated samples is decreased with increase in gamma dose. The contact angle measurements show an increase in the surface free energy as the gamma irradiation increases. The measurements of mechanical properties of irradiated HDPE samples were discussed.

  4. Recent applications of hard x-ray photoelectron spectroscopy

    DOE PAGES

    Weiland, Conan; Rumaiz, Abdul K.; Pianetta, Piero; ...

    2016-05-05

    Recent applications of hard x-ray photoelectron spectroscopy (HAXPES) demonstrate its many capabilities in addition to several of its limitations. Examples are given, including measurement of buried interfaces and materials under in-situ or in-operando conditions, as well as measurements under x-ray standing-wave and resonant excitation. We also present physical considerations that differentiate HAXPES from photoemission measurements utilizing soft and ultraviolet x rays.

  5. Gamma-ray luminosity and photon index evolution of FSRQ blazars and contribution to the gamma-ray background

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singal, J.; Ko, A.; Petrosian, V., E-mail: jsingal@richmond.edu

    We present the redshift evolutions and distributions of the gamma-ray luminosity and photon spectral index of flat spectrum radio quasar (FSRQ) type blazars, using non-parametric methods to obtain the evolutions and distributions directly from the data. The sample we use for analysis consists of almost all FSRQs observed with a greater than approximately 7σ detection threshold in the first-year catalog of the Fermi Gamma-ray Space Telescope's Large Area Telescope, with redshifts as determined from optical spectroscopy by Shaw et al. We find that FSQRs undergo rapid gamma-ray luminosity evolution, but negligible photon index evolution, with redshift. With these evolutions accountedmore » for we determine the density evolution and luminosity function of FSRQs and calculate their total contribution to the extragalactic gamma-ray background radiation, resolved and unresolved, which is found to be 16(+10/–4)%, in agreement with previous studies.« less

  6. OPTIMIZATION OF VIRTUAL FRISCH-GRID CdZnTe DETECTOR DESIGNS FOR IMAGING AND SPECTROSCOPY OF GAMMA RAYS.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BOLOTNIKOV,A.E.; ABDUL-JABBAR, N.M.; BABALOLA, S.

    2007-08-21

    In the past, various virtual Frisch-grid designs have been proposed for cadmium zinc telluride (CZT) and other compound semiconductor detectors. These include three-terminal, semi-spherical, CAPture, Frisch-ring, capacitive Frisch-grid and pixel devices (along with their modifications). Among them, the Frisch-grid design employing a non-contacting ring extended over the entire side surfaces of parallelepiped-shaped CZT crystals is the most promising. The defect-free parallelepiped-shaped crystals with typical dimensions of 5x5{approx}12 mm3 are easy to produce and can be arranged into large arrays used for imaging and gamma-ray spectroscopy. In this paper, we report on further advances of the virtual Frisch-grid detector design formore » the parallelepiped-shaped CZT crystals. Both the experimental testing and modeling results are described.« less

  7. Investigation of radiosterilization feasibility of sulfamethoxazole by ESR spectroscopy

    NASA Astrophysics Data System (ADS)

    Çolak, Şeyda

    2017-12-01

    In the present study, the spectroscopic features of the radiolytic intermediates that were produced in gamma-irradiated (5, 10, 25 and 50 kGy) sulfamethoxazole (SMX) have been investigated by electron spin resonance (ESR) spectroscopy and the radiation sterilization feasibility of SMX by ionizing radiation was examined. Gamma-irradiated SMX exhibited a complex ESR spectrum consisting of 13 resonance lines where spectral parameters for the central resonance line were found to be g = 2.0062 and ΔHpp = 0.6 mT. The radiation yield of SMX was calculated to be relatively low (G = 0.1) by ESR spectroscopy and no meaningful difference was observed in the comparison of unirradiated and 50 kGy gamma irradiated SMX by the Fourier transform infrared (FT-IR) technique, confirming that SMX is a radioresistive material. Although SMX could not be accepted to be a good dosimetric material, the identification of irradiated SMX from the unirradiated sample was possible even for the low absorbed radiation doses and for a relatively long time (three months) after the irradiation process. Decay activation energy of the radical species, which is mostly responsible for the central intense resonance line, is calculated to be 45.15 kJ/mol by using the signal intensity decay data derived from annealing studies. Four radical species with different spectroscopic properties were accepted to be responsible for the ESR spectra of gamma-irradiated SMX, by simulation calculations. It is concluded that SMX and SMX-containing drugs can be sterilized by gamma radiation and ESR spectroscopy is an appropriate technique for the characterization of these induced radical intermediates during the gamma irradiation process of SMX. Toxicology tests should also be done for its safe usage.

  8. Applications of infrared free electron lasers in picosecond and nonlinear spectroscopy

    NASA Astrophysics Data System (ADS)

    Fann, W. S.; Benson, S. V.; Madey, J. M. J.; Etemad, S.; Baker, G. L.; Rothberg, L.; Roberson, M.; Austin, R. H.

    1990-10-01

    In this paper we describe two different types of spectroscopic experiments that exploit the characteristics of the infrared FEL, Mark III, for studies of condensed matter: - the spectrum of χ(3)(-3ω; ω, ω, ω) in polyacetylene: an application of the free electron laser in nonlinear optical spectroscopy, and - a dynamical test of Davydov-like solitons in acetanilide using a picosecond free electron laser. These two studies highlight the unique contributions FELs can make to condensed-matter spectroscopy.

  9. The effects of gamma-ray irradiation on organic materials of different conjugation lengths

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Taylor, Edward W.

    2009-08-01

    The radiation resistance of organic electro-optic and optoelectronic materials of different conjugation lengths for space applications is receiving increased attention. Earlier investigation reported that guest-host (G-H) poled polymer EO modulator devices composed of a phenyltetraene bridge-type chromophore in amorphous polycarbonate (CLD/APC) did not exhibit a decrease in EO response (i.e., an increase in modulation-switching voltage- Vπ) following irradiation by low dose [10-160 krad(Si)] 60Co gamma-rays. In this work, the post-irradiation responses of 60Co gamma-rays on CLD1/APC thin films are examined by various chemical and spectroscopic methods including: a solubility test, thin-layer chromatography, proton nuclear magnetic resonance spectroscopy, UV-vis absorption, and infra-red absorption. The results indicate that CLD1 and APC did not decompose under gamma-ray irradiation at dose levels ranging from 66-274 krad(Si) and from 61-154 krad(Si), respectively which support the previously reported data. A comparison with an in situ proton irradiated DRI/PMMA material is also presented.

  10. Lactoferrin-Immobilized Surfaces onto Functionalized PLA Assisted by the Gamma-Rays and Nitrogen Plasma to Create Materials with Multifunctional Properties.

    PubMed

    Stoleru, Elena; Zaharescu, Traian; Hitruc, Elena Gabriela; Vesel, Alenka; Ioanid, Emil G; Coroaba, Adina; Safrany, Agnes; Pricope, Gina; Lungu, Maria; Schick, Christoph; Vasile, Cornelia

    2016-11-23

    Both cold nitrogen radiofrequency plasma and gamma irradiation have been applied to activate and functionalize the polylactic acid (PLA) surface and the subsequent lactoferrin immobilization. Modified films were comparatively characterized with respect to the procedure of activation and also with unmodified sample by water contact angle measurements, mass loss, X-ray photoelectron spectroscopy (XPS), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), atomic force microscopy (AFM), and chemiluminescence measurements. All modified samples exhibit enhanced surface properties mainly those concerning biocompatibility, antimicrobial, and antioxidant properties, and furthermore, they are biodegradable and environmentally friendly. Lactoferrin deposited layer by covalent coupling using carbodiimide chemistry showed a good stability. It was found that the lactoferrin-modified PLA materials present significantly increased oxidative stability. Gamma-irradiated samples and lactoferrin-functionalized samples show higher antioxidant, antimicrobial, and cell proliferation activity than plasma-activated and lactoferrin-functionalized ones. The multifunctional materials thus obtained could find application as biomaterials or as bioactive packaging films.

  11. Design of high-linear CMOS circuit using a constant transconductance method for gamma-ray spectroscopy system

    NASA Astrophysics Data System (ADS)

    Jung, I. I.; Lee, J. H.; Lee, C. S.; Choi, Y.-W.

    2011-02-01

    We propose a novel circuit to be applied to the front-end integrated circuits of gamma-ray spectroscopy systems. Our circuit is designed as a type of current conveyor (ICON) employing a constant- gm (transconductance) method which can significantly improve the linearity in the amplified signals by using a large time constant and the time-invariant characteristics of an amplifier. The constant- gm method is obtained by a feedback control which keeps the transconductance of the input transistor constant. To verify the performance of the propose circuit, the time constant variations for the channel resistances are simulated with the TSMC 0.18 μm transistor parameters using HSPICE, and then compared with those of a conventional ICON. As a result, the proposed ICON shows only 0.02% output linearity variation and 0.19% time constant variation for the input amplitude up to 100 mV. These are significantly small values compared to a conventional ICON's 1.39% and 19.43%, respectively, for the same conditions.

  12. Solubility Enhancement of Steviol Glycosides and Characterization of Their Inclusion Complexes with Gamma-Cyclodextrin

    PubMed Central

    Upreti, Mani; Strassburger, Ken; Chen, You L.; Wu, Shaoxiong; Prakash, Indra

    2011-01-01

    Steviol glycosidesrebaudioside (reb) A, C and D have low aqueous solubilities. To improve their aqueous solubilities, inclusion complex of steviol glycosides, reb A, C and D and gamma cyclodextrin were prepared by freeze drying method and further characterized by means of differential scanning calorimetry, Fourier transform infrared spectroscopy and Raman spectroscopy. The effect of gamma cyclodextrin on chemical shifts of the steviol glycosides was also studied in proton NMR experiments as well as in solid state 13C CP/MAS NMR experiments. These results indicated that the steviol glycosides were clearly in inclusion complex formation with the gamma cyclodextrin which also results in solubility enhancement of these steviol glycosides. Phase solubility studies showed that amounts of soluble reb A, C and D increased with increasing amounts of gamma cyclodextrin indicating formation of 1:1 stoichiometric and higher order inclusion complexes. PMID:22174615

  13. High resolution X- and gamma-ray spectroscopy of solar flares

    NASA Technical Reports Server (NTRS)

    Lin, R. P.

    1984-01-01

    A balloon-borne X- and gamma-ray instrument was developed, fabricated, and flown. This instrument has the highest energy resolution of any instrument flown to date for measurements of solar and cosmic X-ray and gamma-ray emission in the 13 to 600 keV energy range. The purpose of the solar measurements was to study electron acceleration and solar flare energy release processes. The cosmic observations were to search for cyclotron line features from neutron stars and for low energy gamma-ray lines from nucleosynthesis. The instrument consists of four 4 cm diameter, 1.3 cm thick, planar intrinsic germanium detectors cooled by liquid nitrogen and surrounded by CsI and NaI anti-coincidence scintillation crystals. A graded z collimator limited the field of view to 3 deg x 6 deg and a gondola pointing system provided 0.3 deg pointing accuracy. A total of four flights were made with this instrument. Additional funding was obtained from NSF for the last three flights, which had primarily solar objectives. A detailed instrument description is given. The main scientific results and the data analysis are discussed. Current work and indications for future work are summarized. A bibliography of publications resulting from this work is given.

  14. Isomer-delayed gamma-ray spectroscopy of neutron-rich 166Tb

    DOE PAGES

    Gurgi, L. A.; Regan, P. H.; Söderström, P. -A.; ...

    2017-09-13

    Here, this short paper presents the identification of a metastable, isomeric-state decay in the neutron-rich odd-odd, prolate-deformed nucleus 166Tb. The nucleus of interest was formed using the in-flight fission of a 345 MeV per nucleon 238U primary beam at the RIBF facility, RIKEN, Japan. Gamma-ray transitions decaying from the observed isomeric states in 166Tb were identified using the EURICA gamma-ray spectrometer, positioned at the final focus of the BigRIPS fragments separator. The current work identifies a single discrete gamma-ray transition of energy 119 keV which de-excites an isomeric state in 166Tb with a measured half-life of 3.5(4) μs. The multipolaritymore » assignment for this transition is an electric dipole and is made on the basis internal conversion and decay lifetime arguments. Possible two quasi-particle Nilsson configurations for the initial and final states which are linked by this transition in 166Tb are made on the basis of comparison with Blocked BCS Nilsson calculations, with the predicted ground state configuration for this nucleus arising from the coupling of the v(1-/2)[521] and π(3+/2) Nilsson orbitals.« less

  15. Differential sensitivity of Chironomus and human hemoglobin to gamma radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaikwad, Pallavi S.; Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085; Panicker, Lata

    Chironomus ramosus is known to tolerate high doses of gamma radiation exposure. Larvae of this insect possess more than 95% of hemoglobin (Hb) in its circulatory hemolymph. This is a comparative study to see effect of gamma radiation on Hb of Chironomus and humans, two evolutionarily diverse organisms one having extracellular and the other intracellular Hb respectively. Stability and integrity of Chironomus and human Hb to gamma radiation was compared using biophysical techniques like Dynamic Light Scattering (DLS), UV-visible spectroscopy, fluorescence spectrometry and CD spectroscopy after exposure of whole larvae, larval hemolymph, human peripheral blood, purified Chironomus and human Hb.more » Sequence- and structure-based bioinformatics methods were used to analyze the sequence and structural similarities or differences in the heme pockets of respective Hbs. Resistivity of Chironomus Hb to gamma radiation is remarkably higher than human Hb. Human Hb exhibited loss of heme iron at a relatively low dose of gamma radiation exposure as compared to Chironomus Hb. Unlike human Hb, the heme pocket of Chironomus Hb is rich in aromatic amino acids. Higher hydophobicity around heme pocket confers stability of Chironomus Hb compared to human Hb. Previously reported gamma radiation tolerance of Chironomus can be largely attributed to its evolutionarily ancient form of extracellular Hb as evident from the present study. -- Highlights: •Comparison of radiation tolerant Chironomus Hb and radiation sensitive Human Hb. •Amino acid composition of midge and human heme confer differential hydrophobicity. •Heme pocket of evolutionarily ancient midge Hb provide gamma radiation resistivity.« less

  16. Xe isotope detection and discrimination using beta spectroscopy with coincident gamma spectroscopy

    NASA Astrophysics Data System (ADS)

    Reeder, P. L.; Bowyer, T. W.

    1998-02-01

    Beta spectroscopic techniques show promise of significant improvements for a beta-gamma coincidence counter that is part of a system for analyzing Xe automatically separated from air. The previously developed counting system for 131mXe, 133mXe, 133gXe, and 135gXe can be enhanced to give additional discrimination between these Xe isotopes by using the plastic scintillation sample cell as a beta spectrometer to resolve the conversion electron peaks. The automated system will be a key factor in monitoring the Comprehensive Test Ban Treaty.

  17. Gamma-ray spectroscopy and pulse shape discrimination with a plastic scintillator

    NASA Astrophysics Data System (ADS)

    van Loef, E.; Markosyan, G.; Shirwadkar, U.; McClish, M.; Shah, K.

    2015-07-01

    The scintillation properties of a novel plastic scintillator loaded with an organolead compound are presented. Under X-ray and gamma-ray excitation, emission is observed peaking at 435 nm. The scintillation light output is 9000 ph/MeV. An energy resolution (full width at half maximum over the peak position) of about 16% was observed for the 662 keV full absorption peak. Excellent pulse shape discrimination between neutrons and gamma-rays with a Figure of Merit of 2.6 at 1 MeVee was observed.

  18. DSC studies on gamma irradiated poly(vinylidene fluoride) applied to high gamma dose dosimetry

    NASA Astrophysics Data System (ADS)

    Batista, Adriana S. M.; Faria, Luiz O.

    2017-11-01

    Poly(vinylidene fluoride) homopolymer (PVDF) was investigated for use on high gamma dose dosimetry. Samples were irradiated with gamma doses ranging from 100 kGy to 3000 kGy. Differential scanning calorimetry (DSC) was used to construct an unambiguous relationship between the melting transition latent heat (LM) and the absorbed dose (D). DSC thermograms were taken immediately, 1, 2 and 8 months after the irradiation process revealing that the LMx D relationship presented no change for doses ranging from 100 to 2750 kGy. FTIR and UV-Vis spectroscopy data revealed the radio-induction of C˭O and C˭C bonds. These radio-induced bonds were responsible by the chain stiffening and chain oxidation, respectively. SEM microscopy demonstrates that the spherulitic large crystalline structures present in pristine PVDF are destroyed with doses as low as 100 kGy. The DRX analysis revealed that the main effect of high gamma doses in the crystalline structure of PVDF is to provoke a change from the pristine PVDF α-phase to the γ-phase. Both the ability to detect gamma doses in a large dose range and the low fading features make PVDF homopolymers good candidates to be investigated as high gamma dose dosimeters.

  19. DETECTION OF FREE RADICALS IN FATS IRRADIATED WITH $gamma$-RAYS BY MEANS OF ELECTRON SPIN RESONANCE SPECTROSCOPY (in German)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lueck, H.; Deffner, U.; Kohn, R.

    1963-10-01

    Electron spin resonance (ESR) spectroscopy offers a convenient method for determining the occurrence of free radicals in food products irradiated with gamma rays. Some work has been done on meat and vegetables, but nothing on fats. For this reason, lard, tallow, and cocoa butter were irradiated at --196, --80, 0, and +30 deg C with 1, 2, and 10 Mrad gamma rays at a rate of 0.5 Mrad/hr and measured the ESR spectra at --196, --80 deg C, and at room temperature allowing various times to elapse between irradiation and measurement. The spectra were taken with a Varian V 4500more » spectrometer at a modulation of 100 kHz. In all the examined fats, free radicals were found after irradiation with high doses at very low temperatures. The number of free radicals was very small and their life duration varied at room temperature between fractions of a minute and several weeks. The spectra of the fats investigated were very similar, although their life duration varied depending on the presence of impurities which acted as radical scavengers. When the irradiated fats were stored for some time at room temperature, free peroxide radicals were found. (OID)« less

  20. Fluorescence fluctuation spectroscopy for clinical applications

    NASA Astrophysics Data System (ADS)

    Olson, Eben

    Fluorescence correlation spectroscopy (FCS) and the related techniques of brightness analysis have become standard tools in biological and biophysical research. By analyzing the statistics of fluorescence emitted from a restricted volume, a number of parameters including concentrations, diffusion coefficients and chemical reaction rates can be determined. The single-molecule sensitivity, spectral selectivity, small sample volume and non-perturbative measurement mechanism of FCS make it an excellent technique for the study of molecular interactions. However, its adoption outside of the research laboratory has been limited. Potential reasons for this include the cost and complexity of the required apparatus. In this work, the application of fluorescence fluctuation analysis to several clinical problems is considered. Optical designs for FCS instruments which reduce the cost and increase alignment tolerance are presented. Brightness analysis of heterogenous systems, with application to the characterization of protein aggregates and multimer distributions, is considered. Methods for FCS-based assays of two clinically relevant proteins, von Willebrand factor and haptoglobin, are presented as well.

  1. High resolution gamma-ray spectroscopy and the fascinating angular momentum realm of the atomic nucleus

    NASA Astrophysics Data System (ADS)

    Riley, M. A.; Simpson, J.; Paul, E. S.

    2016-12-01

    In 1974 Aage Bohr and Ben Mottelson predicted the different ‘phases’ that may be expected in deformed nuclei as a function of increasing angular momentum and excitation energy all the way up to the fission limit. While admitting their picture was highly conjectural they confidently stated ‘...with the ingenious experimental approaches that are being developed, we may look forward with excitement to the detailed spectroscopic studies that will illuminate the behaviour of the spinning quantised nucleus’. High resolution gamma-ray spectroscopy has indeed been a major tool in studying the structure of atomic nuclei and has witnessed numerous significant advances over the last four decades. This article will select highlights from investigations at the Niels Bohr Institute, Denmark, and Daresbury Laboratory, UK, in the late 1970s and early 1980s, some of which have continued at other national laboratories in Europe and the USA to the present day. These studies illustrate the remarkable diversity of phenomena and symmetries exhibited by nuclei in the angular momentum-excitation energy plane that continue to surprise and fascinate scientists.

  2. Active Neutron and Gamma Ray Instrumentation for In Situ Planetary Science Applications

    NASA Technical Reports Server (NTRS)

    Parsons, A.; Bodnarik, J.; Evans, L.; Floyd, S.; Lim, L.; McClanahan, T.; Namkung, M.; Schweitzer, J.; Starr, R.; Trombka, J.

    2010-01-01

    The Pulsed Neutron Generator-Gamma Ray And Neutron Detectors (PNG-GRAND) experiment is an innovative application of the active neutron-gamma ray technology so successfully used in oil field well logging and mineral exploration on Earth. The objective of our active neutron-gamma ray technology program at NASA Goddard Space Flight Center (NASA-GSFC) is to bring the PNG-GRAND instrument to the point where it can be flown on a variety of surface lander or rover missions to the Moon, Mars, Menus, asteroids, comets and the satellites of the outer planets. Gamma-Ray Spectrometers (GRS) have been incorporated into numerous orbital planetary science missions and, especially its the case of the Mars Odyssey GRS, have contributed detailed maps of the elemental composition over the entire surface of Mars. However, orbital gamma ray measurements have low spatial sensitivity (100's of km) due to their low surface emission rates from cosmic rays and subsequent need to be averaged over large surface areas. PNG-GRAND overcomes this impediment by incorporating a powerful neutron excitation source that permits high sensitivity surface and subsurface measurements of bulk elemental compositions. PNG-GRAND combines a pulsed neutron generator (PNG) with gamma ray and neutron detectors to produce a landed instrument to determine subsurface elemental composition without needing to drill into a planet's surface a great advantage in mission design. We are currently testing PNG-GRAND prototypes at a unique outdoor neutron instrumentation test facility recently constructed at NASA/GSFC that consists of a 2 m x 2 in x 1 m granite structure placed outdoors in an empty field. Because an independent trace elemental analysis has been performed on the material, this granite sample is a known standard with which to compare both Monte Carlo simulations and our experimentally measured elemental composition data. We will present data from operating PNG-GRAND in various experimental configurations on a

  3. A 3D simulation look-up library for real-time airborne gamma-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Kulisek, Jonathan A.; Wittman, Richard S.; Miller, Erin A.; Kernan, Warnick J.; McCall, Jonathon D.; McConn, Ron J.; Schweppe, John E.; Seifert, Carolyn E.; Stave, Sean C.; Stewart, Trevor N.

    2018-01-01

    A three-dimensional look-up library consisting of simulated gamma-ray spectra was developed to leverage, in real-time, the abundance of data provided by a helicopter-mounted gamma-ray detection system consisting of 92 CsI-based radiation sensors and exhibiting a highly angular-dependent response. We have demonstrated how this library can be used to help effectively estimate the terrestrial gamma-ray background, develop simulated flight scenarios, and to localize radiological sources. Source localization accuracy was significantly improved, particularly for weak sources, by estimating the entire gamma-ray spectra while accounting for scattering in the air, and especially off the ground.

  4. Applications of Infrared and Raman Spectroscopies to Probiotic Investigation

    PubMed Central

    Santos, Mauricio I.; Gerbino, Esteban; Tymczyszyn, Elizabeth; Gomez-Zavaglia, Andrea

    2015-01-01

    In this review, we overview the most important contributions of vibrational spectroscopy based techniques in the study of probiotics and lactic acid bacteria. First, we briefly introduce the fundamentals of these techniques, together with the main multivariate analytical tools used for spectral interpretation. Then, four main groups of applications are reported: (a) bacterial taxonomy (Subsection 4.1); (b) bacterial preservation (Subsection 4.2); (c) monitoring processes involving lactic acid bacteria and probiotics (Subsection 4.3); (d) imaging-based applications (Subsection 4.4). A final conclusion, underlying the potentialities of these techniques, is presented. PMID:28231205

  5. Novel developments and applications of two-dimensional correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Park, Yeonju; Noda, Isao; Jung, Young Mee

    2016-11-01

    A comprehensive survey review of new and noteworthy developments of 2D correlation spectroscopy (2DCOS) and its applications for the last two years is compiled. This review covers not only journal articles and book chapters but also books, proceedings, and review articles published on 2DCOS, numerous significant new concepts of 2DCOS, patents and publication trends. Noteworthy experimental practices in the field of 2DCOS, including types of analytical probes employed, various perturbation methods used in experiments, and pertinent examples of fundamental and practical applications, are also reviewed.

  6. Search for elemental and mineral biomarkers using inelastic neutron scattering spectroscopy (INSS)

    NASA Astrophysics Data System (ADS)

    Wielopolski, Lucian; Hoover, Richard B.; Mitra, Sudeep

    2004-02-01

    Life on Earth is characterized by a select group of low Z elements: C, H, N, O, P, K, S, Na, Cl. The presence of these elements and their ratios can provide indications of possible biogenicity and thus they may constitute valuable biomarkers that may help determine the best locations to seek more definitive evidence of life. We discuss the possible applications and significance of the inelastic neutron scattering induced gamma spectroscopy (INSGS) for future Astrobiology Missions to Mars or other solar System bodies. The general requirements and capabilities of the proposed approach are presented.

  7. Fermi GBM Observations of Terrestrial Gamma Flashes

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.; Briggs, M. S.; Connaughton, V.; Fishman, G. J.; Bhat, P. N.; Paciesas, W. S.; Preece, R. D.; Kippen, R. M.; vonKienlin, A.; Dwyer, J. R.; hide

    2010-01-01

    In its first two years of operation, the Fermi Gamma Ray Burst Monitor (GBM) has observed 79 Terrestrial Gamma Flashes (TGFs). The thick Bismuth Germanate (BGO) detectors are excellent for TGF spectroscopy, having a high probability of recording the full energy of an incident photon, spanning a broad energy range from 150 keV to 40 MeV, and recording a large number of photons per TGF. Correlations between GBM TGF triggers and lightning sferics detected with the World-Wide Lightning Location Network indicate that TGFs and lightning are simultaneous to within tens of microseconds.

  8. Gamma-sky.net: Portal to the gamma-ray sky

    NASA Astrophysics Data System (ADS)

    Voruganti, Arjun; Deil, Christoph; Donath, Axel; King, Johannes

    2017-01-01

    http://gamma-sky.net is a novel interactive website designed for exploring the gamma-ray sky. The Map View portion of the site is powered by the Aladin Lite sky atlas, providing a scalable survey image tesselated onto a three-dimensional sphere. The map allows for interactive pan and zoom navigation as well as search queries by sky position or object name. The default image overlay shows the gamma-ray sky observed by the Fermi-LAT gamma-ray space telescope. Other survey images (e.g. Planck microwave images in low/high frequency bands, ROSAT X-ray image) are available for comparison with the gamma-ray data. Sources from major gamma-ray source catalogs of interest (Fermi-LAT 2FHL, 3FGL and a TeV source catalog) are overlaid over the sky map as markers. Clicking on a given source shows basic information in a popup, and detailed pages for every source are available via the Catalog View component of the website, including information such as source classification, spectrum and light-curve plots, and literature references. We intend for gamma-sky.net to be applicable for both professional astronomers as well as the general public. The website started in early June 2016 and is being developed as an open-source, open data project on GitHub (https://github.com/gammapy/gamma-sky). We plan to extend it to display more gamma-ray and multi-wavelength data. Feedback and contributions are very welcome!

  9. New concepts for scintillator/HgI[sub 2] gamma ray spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Y.J.; Iwanczyk, J.S.; Patt, B.E.

    The construction of a high energy resolution gamma ray detector consisting of a scintillator/mercuric iodide photodetector combination has been investigated. Several HgI[sub 2] photodetectors have been fabricated and tested with standard NIM electronics. The energy resolution of a scintillator/HgI[sub 2] pair was found to be 4.75%, full width at half maximum, for 662 keV [sup 137]Cs gamma ray photons. Of five detectors fabricated with the new technique, all produced resolutions better than 5.6% FWHM. This technology makes it possible to reliably produce high quality HgI[sub 2] photodetectors. New design concepts for the HgI[sub 2] photocell, including the transparent entrance electrode,more » detector geometry, and detector packaging, are described in the paper. Advantages of gamma ray spectrometers based upon crystal scintillators optically coupled to HgI[sub 2] photodetectors (in contrast to coupling the scintillators to the more conventional light sensors, i.e., photomultiplier tubes (PMTs)) include greater ruggedness, improved energy resolution, markedly smaller size and weight, reduced power, and insensitivity to magnetic field perturbations.« less

  10. Principle, system, and applications of tip-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, MingQian; Wang, Rui; Wu, XiaoBin; Wang, Jia

    2012-08-01

    Raman spectroscopy is a powerful technique in chemical information characterization. However, this spectral method is subject to two obstacles in nano-material detection. One is diffraction limited spatial resolution, and the other is its inherent small Raman cross section and weak signaling. To resolve these problems, a new approach has been developed, denoted as tip-enhanced Raman spectroscopy (TERS). TERS is capable of high-resolution and high-sensitivity detection and demonstrated to be a promising spectroscopic and micro-topographic method to characterize nano-materials and nanostructures. In this paper, the principle and experimental system of TERS are discussed. The latest application of TERS in molecule detection, biological specimen identification, nanao-material characterization, and semi-conductor material determination with some specific experimental examples are presented.

  11. ESR identification of gamma-irradiated albendazole

    NASA Astrophysics Data System (ADS)

    Çolak, Seyda

    2010-01-01

    The use of ionizing radiation for sterilization of pharmaceuticals is a well-established technology. In the present work, the spectroscopic and kinetic features of the radicals induced in gamma-irradiated solid albendazole samples is investigated at different temperatures in the dose range of 3-34 kGy by electron spin resonance (ESR) spectroscopy. Irradiation with gamma radiation produced two different radical species in albendazole. They were fairly stable at room temperature but relatively unstable above room temperature, giving rise to an unresolved ESR spectrum consisting of three resonance peaks centered at g=2.0057. Decay activation energies of the contributing radical species were calculated to be 47.8 (±13.5) and 50.5 (±9.7) kJ/mol using the signal intensity decay data derived from annealing studies performed at high temperatures. A linear function of the applied dose was found to best describe the experimental dose-response data. Albendazole does not present the characteristics of good dosimetric materials. However, the discrimination of irradiated albendazole from its unirradiated form was possible even 6 months after storage in normal conditions. Based on these findings, it is concluded that albendazole and albendazole-containing drugs can be safely sterilized by gamma radiation and that ESR spectroscopy could be successfully used as a potential technique for monitoring their radiosterilization.

  12. Determination of Peukert's Constant Using Impedance Spectroscopy: Application to Supercapacitors.

    PubMed

    Mills, Edmund Martin; Kim, Sangtae

    2016-12-15

    Peukert's equation is widely used to model the rate dependence of battery capacity, and has recently attracted attention for application to supercapacitors. Here we present a newly developed method to readily determine Peukert's constant using impedance spectroscopy. Impedance spectroscopy is ideal for this purpose as it has the capability of probing electrical performance of a device over a wide range of time-scales within a single measurement. We demonstrate that the new method yields consistent results with conventional galvanostatic measurements through applying it to commercially available supercapacitors. Additionally, the novel method is much simpler and more precise, making it an attractive alternative for the determination of Peukert's constant.

  13. Establishment of Imaging Spectroscopy of Nuclear Gamma-Rays based on Geometrical Optics

    PubMed Central

    Tanimori, Toru; Mizumura, Yoshitaka; Takada, Atsushi; Miyamoto, Shohei; Takemura, Taito; Kishimoto, Tetsuro; Komura, Shotaro; Kubo, Hidetoshi; Kurosawa, Shunsuke; Matsuoka, Yoshihiro; Miuchi, Kentaro; Mizumoto, Tetsuya; Nakamasu, Yuma; Nakamura, Kiseki; Parker, Joseph D.; Sawano, Tatsuya; Sonoda, Shinya; Tomono, Dai; Yoshikawa, Kei

    2017-01-01

    Since the discovery of nuclear gamma-rays, its imaging has been limited to pseudo imaging, such as Compton Camera (CC) and coded mask. Pseudo imaging does not keep physical information (intensity, or brightness in Optics) along a ray, and thus is capable of no more than qualitative imaging of bright objects. To attain quantitative imaging, cameras that realize geometrical optics is essential, which would be, for nuclear MeV gammas, only possible via complete reconstruction of the Compton process. Recently we have revealed that “Electron Tracking Compton Camera” (ETCC) provides a well-defined Point Spread Function (PSF). The information of an incoming gamma is kept along a ray with the PSF and that is equivalent to geometrical optics. Here we present an imaging-spectroscopic measurement with the ETCC. Our results highlight the intrinsic difficulty with CCs in performing accurate imaging, and show that the ETCC surmounts this problem. The imaging capability also helps the ETCC suppress the noise level dramatically by ~3 orders of magnitude without a shielding structure. Furthermore, full reconstruction of Compton process with the ETCC provides spectra free of Compton edges. These results mark the first proper imaging of nuclear gammas based on the genuine geometrical optics. PMID:28155870

  14. Establishment of Imaging Spectroscopy of Nuclear Gamma-Rays based on Geometrical Optics.

    PubMed

    Tanimori, Toru; Mizumura, Yoshitaka; Takada, Atsushi; Miyamoto, Shohei; Takemura, Taito; Kishimoto, Tetsuro; Komura, Shotaro; Kubo, Hidetoshi; Kurosawa, Shunsuke; Matsuoka, Yoshihiro; Miuchi, Kentaro; Mizumoto, Tetsuya; Nakamasu, Yuma; Nakamura, Kiseki; Parker, Joseph D; Sawano, Tatsuya; Sonoda, Shinya; Tomono, Dai; Yoshikawa, Kei

    2017-02-03

    Since the discovery of nuclear gamma-rays, its imaging has been limited to pseudo imaging, such as Compton Camera (CC) and coded mask. Pseudo imaging does not keep physical information (intensity, or brightness in Optics) along a ray, and thus is capable of no more than qualitative imaging of bright objects. To attain quantitative imaging, cameras that realize geometrical optics is essential, which would be, for nuclear MeV gammas, only possible via complete reconstruction of the Compton process. Recently we have revealed that "Electron Tracking Compton Camera" (ETCC) provides a well-defined Point Spread Function (PSF). The information of an incoming gamma is kept along a ray with the PSF and that is equivalent to geometrical optics. Here we present an imaging-spectroscopic measurement with the ETCC. Our results highlight the intrinsic difficulty with CCs in performing accurate imaging, and show that the ETCC surmounts this problem. The imaging capability also helps the ETCC suppress the noise level dramatically by ~3 orders of magnitude without a shielding structure. Furthermore, full reconstruction of Compton process with the ETCC provides spectra free of Compton edges. These results mark the first proper imaging of nuclear gammas based on the genuine geometrical optics.

  15. Currie detection limits in gamma-ray spectroscopy.

    PubMed

    De Geer, Lars-Erik

    2004-01-01

    Currie Hypothesis testing is applied to gamma-ray spectral data, where an optimum part of the peak is used and the background is considered well known from nearby channels. With this, the risk of making Type I errors is about 100 times lower than commonly assumed. A programme, PeakMaker, produces random peaks with given characteristics on the screen and calculations are done to facilitate a full use of Poisson statistics in spectrum analyses. SHORT TECHNICAL NOTE SUMMARY: The Currie decision limit concept applied to spectral data is reinterpreted, which gives better consistency between the selected error risk and the observed error rates. A PeakMaker program is described and the few count problem is analyzed.

  16. Topics in gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Lingenfelter, R. E.

    1986-01-01

    Observations of gamma rays from solar flares, gamma ray bursts, the Galactic center, galactic nucleosynthesis, SS433, and Cygnus X-3, and their effects on astrophysical problems are discussed. It is observed that gamma ray spectra from solar flares are applicable to the study of particle acceleration and confinement and the determination of chemical abundances in the solar atmosphere. The gamma ray lines from the compact galactic object SS433 are utilized to examine the acceleration of jets, and analysis of the gamma ray lines of Cygnus X-3 reveal that particles can be accelerated in compact sources to ultrahigh energies.

  17. Application of Computer-Assisted Learning Methods in the Teaching of Chemical Spectroscopy.

    ERIC Educational Resources Information Center

    Ayscough, P. B.; And Others

    1979-01-01

    Discusses the application of computer-assisted learning methods to the interpretation of infrared, nuclear magnetic resonance, and mass spectra; and outlines extensions into the area of integrated spectroscopy. (Author/CMV)

  18. The effect of gamma irradiation on rice protein aqueous solution

    NASA Astrophysics Data System (ADS)

    Baccaro, Stefania; Bal, Oya; Cemmi, Alessia; Di Sarcina, Ilaria

    2018-05-01

    The use of proteins as natural biopolymers are sensibly increasing in several application fields such as food industry, packaging and environment protection. In particular, rice proteins (RP) present good nutritional, hypoallergenic and healthful properties very interesting for human consumption. Since ionizing radiation can be successfully applied on protein containing systems involved in different industrial processes, this work aims to determine the effect of gamma radiation on 5 wt%-7.5 wt% RP aqueous solutions in a wide range of absorbed doses up to around 40 kGy. The changes of RP secondary and tertiary structures and their chemical composition were followed by UV-VIS absorbance spectroscopy, luminescence analysis and pH measurements. The experimental data showed the occurrence of the unfolding of RP chains with the increase of the absorbed dose and the formation of new molecules, due to the reaction among tryptophane and tyrosine amino acids and the radical species induced by gamma radiation. The results are also confirmed by the modification of the pH values measured for the irradiated solutions.

  19. A Correlated Optical and Gamma Emission from GRB 081126A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gendre, B.; Klotz, A.; CESR, Observatoire Midi-Pyrenees, CNRS, Universite de Toulouse, BP 4346, F-31028-Toulouse Cedex 04

    2010-10-15

    We present an analysis of time-resolved optical emissions observed from the gamma-ray burst GRB 081126 during the prompt phase. The analysis employed time-resolved photometry using optical data obtained by the TAROT telescope, BAT data from the Swift spacecraft and time-resolved spectroscopy at high energies from the GBM instrument onboard the Fermi spacecraft. The optical emission of GRB 081126 is found to be compatible with the second gamma emission pulse shifted by a positive time-lag of 8.4{+-}3.9 sec. This is the first well resolved observation of a time lag between optical and gamma emissions during a gamma-ray burst. Our observations couldmore » potentially provide new constraints on the fireball model for gamma ray burst early emissions. Furthermore, observations of time-lags between optical and gamma ray photons provides an exciting opportunity to constrain quantum gravity theories.« less

  20. BiI 3 Crystals for High Energy Resolution Gamma-Ray Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nino, Juan C.; Baciak, James; Johns, Paul

    2017-04-12

    BiI 3 had been investigated for its unique properties as a layered compound semiconductor for many decades. However, despite the exceptional atomic, physical, and electronic properties of this material, good resolution gamma ray spectra had never been reported for BiI 3. The shortcomings that previously prevented BiI 3 from reaching success as a gamma ray sensor were, through this project, identified and suppressed to unlock the performance of this promising compound. Included in this work were studies on a number of methods which have, for the first time, enabled BiI 3 to exhibit spectral performance rivaling many other candidate semiconductorsmore » for room temperature gamma ray sensors. New approaches to crystal growth were explored that allow BiI 3 spectrometers to be fabricated with up to 2.2% spectral resolution at 662 keV. Fundamental studies on trap states, dopant incorporation, and polarization were performed to enhance performance of this compound. Additionally, advanced detection techniques were applied to display the capabilities of high quality BiI 3 spectrometers. Overall, through this work, BiI 3 has been revealed as a potentially transformative material for nuclear security and radiation detection sciences.« less

  1. A deep-level transient spectroscopy study of gamma-ray irradiation on the passivation properties of silicon nitride layer on silicon

    NASA Astrophysics Data System (ADS)

    Dong, Peng; Yu, Xuegong; Ma, Yao; Xie, Meng; Li, Yun; Huang, Chunlai; Li, Mo; Dai, Gang; Zhang, Jian

    2017-08-01

    Plasma-enhanced chemical vapor deposited silicon nitride (SiNx) films are extensively used as passivation material in the solar cell industry. Such SiNx passivation layers are the most sensitive part to gamma-ray irradiation in solar cells. In this work, deep-level transient spectroscopy has been applied to analyse the influence of gamma-ray irradiation on the passivation properties of SiNx layer on silicon. It is shown that the effective carrier lifetime decreases with the irradiation dose. At the same time, the interface state density is significantly increased after irradiation, and its energy distribution is broadened and shifts deeper with respect to the conduction band edge, which makes the interface states becoming more efficient recombination centers for carriers. Besides, C-V characteristics show a progressive negative shift with increasing dose, indicating the generation of effective positive charges in SiNx films. Such positive charges are beneficial for shielding holes from the n-type silicon substrates, i. e. the field-effect passivation. However, based on the reduced carrier lifetime after irradiation, it can be inferred that the irradiation induced interface defects play a dominant role over the trapped positive charges, and therefore lead to the degradation of passivation properties of SiNx on silicon.

  2. In vivo magnetic resonance spectroscopy measurement of gray-matter and white-matter gamma-aminobutyric acid concentration in sensorimotor cortex using a motion-controlled MEGA point-resolved spectroscopy sequence.

    PubMed

    Bhattacharyya, Pallab K; Phillips, Micheal D; Stone, Lael A; Lowe, Mark J

    2011-04-01

    Gamma-aminobutyric acid (GABA) is a major inhibitory neurotransmitter in the brain. Understanding the GABA concentration, in vivo, is important to understand normal brain function. Using MEGA point-resolved spectroscopy sequence with interleaved water scans to detect subject motion, GABA level of sensorimotor cortex was measured using a voxel identified from a functional magnetic resonance imaging scan. The GABA level in a 20×20×20-mm(3) voxel consisting of 37%±7% gray matter, 52%±12% white matter and 11%±8% cerebrospinal fluid in the sensorimotor region was measured to be 1.43±0.48 mM. In addition, using linear regression analysis, GABA concentrations within gray and white matter were calculated to be 2.87±0.61 and 0.33±0.11 mM, respectively. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Observational techniques for solar flare gamma-rays, hard X-rays, and neutrons

    NASA Technical Reports Server (NTRS)

    Lin, Robert P.

    1989-01-01

    The development of new instrumentation and techniques for solar hard X-ray, gamma ray and neutron observations from spacecraft and/or balloon-borne platforms is examined. The principal accomplishments are: (1) the development of a two segment germanium detector which is near ideal for solar hard X-ray and gamma ray spectroscopy; (2) the development of long duration balloon flight techniques and associated instrumentation; and (3) the development of innovative new position sensitive detectors for hard X-ray and gamma rays.

  4. Application of Raman spectroscopy for cervical dysplasia diagnosis

    PubMed Central

    Kanter, Elizabeth M.; Vargis, Elizabeth; Majumder, Shovan; Keller, Matthew D.; Woeste, Emily; Rao, Gautam G.; Mahadevan-Jansen, Anita

    2014-01-01

    Cervical cancer is the second most common malignancy among women worldwide, with over 490000 cases diagnosed and 274000 deaths each year. Although current screening methods have dramatically reduced cervical cancer incidence and mortality in developed countries, a “See and Treat” method would be preferred, especially in developing countries. Results from our previous work have suggested that Raman spectroscopy can be used to detect cervical precancers; however, with a classification accuracy of 88%, it was not clinically applicable. In this paper, we describe how incorporating a woman's hormonal status, particularly the point in menstrual cycle and menopausal state, into our previously developed classification algorithm improves the accuracy of our method to 94%. The results of this paper bring Raman spectroscopy one step closer to being utilized in a clinical setting to diagnose cervical dysplasia. Posterior probabilities of class membership, as determined by MRDF-SMLR, for patients regardless of menopausal status, and for pre-menopausal patients only PMID:19343687

  5. Applications of T-ray spectroscopy in the petroleum field

    NASA Astrophysics Data System (ADS)

    Al-Douseri, Fatemah M.

    2005-11-01

    Because of heavy usage of petroleum products, which are the main source of energy in daily life and industry, a fast, reliable, and portable analysis system is needed to complement traditional techniques. Terahertz (THz) radiation, or T-rays, is electromagnetic radiation in the 0.1 to 10 THz frequency range. One unique attribute of T-rays is their ability to sensitively measure the induced molecular dipole moments in non-polar liquids such as aromatics, which make up the majority of the contents of many petroleum products. This information can lead to several applications in petroleum analysis. The application of T-rays to petroleum product analysis has the potential to make a significant impact in the petroleum field. In this dissertation, I show the first use of T-ray time-domain spectroscopy and Fourier transform infrared (FTIR) spectroscopy techniques for petroleum product analysis. I report on the feasibility of analyzing selected petroleum products, including gasoline, diesel, lubricating oil, and selected compounds of toluene, ethylbenzene, and xylene (BTEX). With the use of a T-ray time-domain spectrometer. I demonstrate that gasolines with different octane numbers and diesel all show specific absorption coefficients and refractive indexes in the spectral range from 0.5 to 2.0 THz. Furthermore, I report the qualitative and quantitative analysis of selected BTEX components in gasoline and diesel using FTIR spectroscopy in the 50 to 650 cm-1 region. I distinguish gasolines with different octane numbers from diesel and lubricating oil according to their different spectral features. I also determine the concentration of (o, m, p) xylene isomers in gasoline according to their specific absorption bands. The experimental results in this thesis, imply that linking between the knowledge of petroleum products and the development of T-ray spectrometer with the cooperation of industry might translate the T-ray spectroscopic system into a real world application in

  6. Numerical study on determining formation porosity using a boron capture gamma ray technique and MCNP.

    PubMed

    Liu, Juntao; Zhang, Feng; Wang, Xinguang; Han, Fei; Yuan, Zhelong

    2014-12-01

    Formation porosity can be determined using the boron capture gamma ray counting ratio with a near to far detector in a pulsed neutron-gamma element logging tool. The thermal neutron distribution, boron capture gamma spectroscopy and porosity response for formations with different water salinity and wellbore diameter characteristics were simulated using the Monte Carlo method. We found that a boron lining improves the signal-to-noise ratio and that the boron capture gamma ray counting ratio has a higher sensitivity for determining porosity than total capture gamma. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. New applications of laser-induced breakdown and stand-off Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Snyder, Marion Lawrence

    Two novel spectroscopic applications, with the common theme of remote spectroscopy are described. In one application, laser-induced breakdown spectroscopy (LIBS) is investigated for deep ocean measurements of hydrothermal vent chemistry. This technique is demonstrated for the first time for solution measurements at pressures corresponding to those found at hydrothermal vent sites, at ocean depths of one to three kilometers. In the other application, Raman spectroscopy is investigated for stand-off detection of high explosive (HE) materials. We demonstrate several HE materials in silica can be measured at 50-meter range under ambient light conditions, a new record for this application. Chapters one through three of this dissertation contain published and recently submitted articles describing LIBS for in situ multi-elemental detection in high-pressure aqueous environments such as the deep ocean. Initial work shows the potential of single-pulse LIBS (SP-LIBS) to measure dissolved elements (e.g., Na, Ca, Li, K, and Mn) at the part-per-million level in aqueous solutions at pressures exceeding 276 bar. Dual-pulse LIBS (DP-LIBS) of high-pressure aqueous solutions is also presented. We show significant DP-LIBS enhancements are achieved through excitation of a vapor bubble formed by laser-induced breakdown of the solution with a previous laser pulse, thereby increasing the sensitivity of LIBS and allowing additional elements to be measured. Preliminary findings show that increasing solution pressure has a detrimental effect on DP-LIBS emission intensities, such that little if any DP-LIBS emission was observed above approximately 100 bar. Recent results suggest a direct relationship exists between the size of the bubble and the resulting DP-LIBS emission, and that reduction in bubble size and lifetime at elevated pressure lead to the decreased DP-LIBS emission. Chapter four contains published work examining the potential of stand-off Raman spectroscopy for remote HE

  8. Real time method and computer system for identifying radioactive materials from HPGe gamma-ray spectroscopy

    DOEpatents

    Rowland, Mark S.; Howard, Douglas E.; Wong, James L.; Jessup, James L.; Bianchini, Greg M.; Miller, Wayne O.

    2007-10-23

    A real-time method and computer system for identifying radioactive materials which collects gamma count rates from a HPGe gamma-radiation detector to produce a high-resolution gamma-ray energy spectrum. A library of nuclear material definitions ("library definitions") is provided, with each uniquely associated with a nuclide or isotope material and each comprising at least one logic condition associated with a spectral parameter of a gamma-ray energy spectrum. The method determines whether the spectral parameters of said high-resolution gamma-ray energy spectrum satisfy all the logic conditions of any one of the library definitions, and subsequently uniquely identifies the material type as that nuclide or isotope material associated with the satisfied library definition. The method is iteratively repeated to update the spectrum and identification in real time.

  9. Characterization of a gamma-ray source based on a laser-plasma accelerator with applications to radiography

    NASA Astrophysics Data System (ADS)

    Edwards, R. D.; Sinclair, M. A.; Goldsack, T. J.; Krushelnick, K.; Beg, F. N.; Clark, E. L.; Dangor, A. E.; Najmudin, Z.; Tatarakis, M.; Walton, B.; Zepf, M.; Ledingham, K. W. D.; Spencer, I.; Norreys, P. A.; Clarke, R. J.; Kodama, R.; Toyama, Y.; Tampo, M.

    2002-03-01

    The application of high intensity laser-produced gamma rays is discussed with regard to picosecond resolution deep-penetration radiography. The spectrum and angular distribution of these gamma rays is measured using an array of thermoluminescent detectors for both an underdense (gas) target and an overdense (solid) target. It is found that the use of an underdense target in a laser plasma accelerator configuration produces a much more intense and directional source. The peak dose is also increased significantly. Radiography is demonstrated in these experiments and the source size is also estimated.

  10. Fluorescence lifetime spectroscopy in multiple-scattering environments: an application to biotechnology

    NASA Astrophysics Data System (ADS)

    Cerussi, Albert E.; Gratton, Enrico; Fantini, Sergio

    1999-07-01

    Over the past few years, there has been significant research activity devoted to the application of fluorescence spectroscopy to strongly scattering media, where photons propagate diffusely. Much of this activity focused on fluorescence as a source of contrast enhancement in optical tomography. Our efforts have emphasized the quantitative recovery of fluorescence parameters for spectroscopy. Using a frequency-domain diffusion-based model, we have successfully recovered the lifetime, the absolute quantum yield, the fluorophore concentration, and the emission spectrum of the fluorophore, as well as the absorption and the reduced scattering coefficients at the emission wavelength of the medium in different measurements. In this contribution, we present a sensitive monitor of the binding between ethidium bromide and bovine cells in fresh milk. The spectroscopic contrast was the approximately tenfold increase in the ethidium bromide lifetime upon binding to DNA. The measurement clearly demonstrated that we could quantitatively measure the density of cells in the milk, which is an application vital to the tremendous economic burden of bovine subclinical mastitis detection. Furthermore, we may in principle use the spirit of this technique as a quantitative monitor of the binding of fluorescent drugs inside tissues. This is a first step towards lifetime spectroscopy in tissues.

  11. Lithium-doped hydroxyapatite nano-composites: Synthesis, characterization, gamma attenuation coefficient and dielectric properties

    NASA Astrophysics Data System (ADS)

    Badran, H.; Yahia, I. S.; Hamdy, Mohamed S.; Awwad, N. S.

    2017-01-01

    Lithium-hydroxyapatite (0, 1, 5, 10, 20, 30 and 40 wt% Li-HAp) nano-composites were synthesized by sol-gel technique followed by microwave-hydrothermal treatment. The composites were characterized by X-ray diffraction (XRD), Field emission scanning electron microscope (FE-SEM), energy dispersive spectroscopy (EDS), Fourier transform infrared (FTIR) and Raman techniques. Gamma attenuation coefficient and the dielectric properties for all composites were investigated. The crystallinity degree of Li-doped HAp was higher than that of un-doped HAp. Gamma attenuation coefficient values increased from 0.562 cm-1 for 0 wt% Li-HAp to 2.190 cm-1 for 40 wt% Li-HAp. The alternating current conductivity increased with increasing frequency. The concentration of Li affect the values of dielectric constant where Li doped HAp of low dielectric constant can have an advantage for healing in bone fractures. The calcium to phosphorus ratio decreased from 1.43 to 1.37 with the addition of lithium indicating the Ca deficiency in the studied composites. Our findings lead to the conclusion that Li-HAp is a new nano-composite useful for medical applications and could be doped with gamma shield materials.

  12. Noble liquid detectors for fundamental physics and applications

    NASA Astrophysics Data System (ADS)

    Curioni, A.

    2009-12-01

    Noble liquid detectors come in many sizes and configurations and cover a lot of ground as particle and radiation detectors: from calorimeters for colliders to imaging detectors for neutrino physics and proton decay to WIMP Dark Matter detectors. It turns out that noble liquid detectors are a mature technology for imaging and spectroscopy of gamma rays and for neutron detection, a fact that makes them suitable for applications, e.g. cargo scanning and Homeland Security. In this short paper I will focus on liquid xenon and liquid argon, which make excellent detectors for hypothetical WIMP Dark Matter and neutrinos and for much less exotic gamma rays.

  13. Prospects for laser-induced breakdown spectroscopy for biomedical applications: a review.

    PubMed

    Singh, Vivek Kumar; Rai, Awadhesh Kumar

    2011-09-01

    We review the different spectroscopic techniques including the most recent laser-induced breakdown spectroscopy (LIBS) for the characterization of materials in any phase (solid, liquid or gas) including biological materials. A brief history of the laser and its application in bioscience is presented. The development of LIBS, its working principle and its instrumentation (different parts of the experimental set up) are briefly summarized. The generation of laser-induced plasma and detection of light emitted from this plasma are also discussed. The merit and demerits of LIBS are discussed in comparison with other conventional analytical techniques. The work done using the laser in the biomedical field is also summarized. The analysis of different tissues, mineral analysis in different organs of the human body, characterization of different types of stone formed in the human body, analysis of biological aerosols using the LIBS technique are also summarized. The unique abilities of LIBS including detection of molecular species and calibration-free LIBS are compared with those of other conventional techniques including atomic absorption spectroscopy, inductively coupled plasma atomic emission spectroscopy and mass spectroscopy, and X-ray fluorescence.

  14. Sample presentation, sources of error and future perspectives on the application of vibrational spectroscopy in the wine industry.

    PubMed

    Cozzolino, Daniel

    2015-03-30

    Vibrational spectroscopy encompasses a number of techniques and methods including ultra-violet, visible, Fourier transform infrared or mid infrared, near infrared and Raman spectroscopy. The use and application of spectroscopy generates spectra containing hundreds of variables (absorbances at each wavenumbers or wavelengths), resulting in the production of large data sets representing the chemical and biochemical wine fingerprint. Multivariate data analysis techniques are then required to handle the large amount of data generated in order to interpret the spectra in a meaningful way in order to develop a specific application. This paper focuses on the developments of sample presentation and main sources of error when vibrational spectroscopy methods are applied in wine analysis. Recent and novel applications will be discussed as examples of these developments. © 2014 Society of Chemical Industry.

  15. Thin film CdTe based neutron detectors with high thermal neutron efficiency and gamma rejection for security applications

    NASA Astrophysics Data System (ADS)

    Smith, L.; Murphy, J. W.; Kim, J.; Rozhdestvenskyy, S.; Mejia, I.; Park, H.; Allee, D. R.; Quevedo-Lopez, M.; Gnade, B.

    2016-12-01

    Solid-state neutron detectors offer an alternative to 3He based detectors, but suffer from limited neutron efficiencies that make their use in security applications impractical. Solid-state neutron detectors based on single crystal silicon also have relatively high gamma-ray efficiencies that lead to false positives. Thin film polycrystalline CdTe based detectors require less complex processing with significantly lower gamma-ray efficiencies. Advanced geometries can also be implemented to achieve high thermal neutron efficiencies competitive with silicon based technology. This study evaluates these strategies by simulation and experimentation and demonstrates an approach to achieve >10% intrinsic efficiency with <10-6 gamma-ray efficiency.

  16. About cosmic gamma ray lines

    NASA Astrophysics Data System (ADS)

    Diehl, Roland

    2017-06-01

    Gamma ray lines from cosmic sources convey the action of nuclear reactions in cosmic sites and their impacts on astrophysical objects. Gamma rays at characteristic energies result from nuclear transitions following radioactive decays or high-energy collisions with excitation of nuclei. The gamma-ray line from the annihilation of positrons at 511 keV falls into the same energy window, although of different origin. We present here the concepts of cosmic gamma ray spectrometry and the corresponding instruments and missions, followed by a discussion of recent results and the challenges and open issues for the future. Among the lessons learned are the diffuse radioactive afterglow of massive-star nucleosynthesis in 26Al and 60Fe gamma rays, which is now being exploited towards the cycle of matter driven by massive stars and their supernovae; large interstellar cavities and superbubbles have been recognised to be of key importance here. Also, constraints on the complex processes making stars explode as either thermonuclear or core-collapse supernovae are being illuminated by gamma-ray lines, in this case from shortlived radioactivities from 56Ni and 44Ti decays. In particular, the three-dimensionality and asphericities that have recently been recognised as important are enlightened in different ways through such gamma-ray line spectroscopy. Finally, the distribution of positron annihilation gamma ray emission with its puzzling bulge-dominated intensity disctribution is measured through spatially-resolved spectra, which indicate that annihilation conditions may differ in different parts of our Galaxy. But it is now understood that a variety of sources may feed positrons into the interstellar medium, and their characteristics largely get lost during slowing down and propagation of positrons before annihilation; a recent microquasar flare was caught as an opportunity to see positrons annihilate at a source.

  17. THz spectroscopy: An emerging technology for pharmaceutical development and pharmaceutical Process Analytical Technology (PAT) applications

    NASA Astrophysics Data System (ADS)

    Wu, Huiquan; Khan, Mansoor

    2012-08-01

    As an emerging technology, THz spectroscopy has gained increasing attention in the pharmaceutical area during the last decade. This attention is due to the fact that (1) it provides a promising alternative approach for in-depth understanding of both intermolecular interaction among pharmaceutical molecules and pharmaceutical product quality attributes; (2) it provides a promising alternative approach for enhanced process understanding of certain pharmaceutical manufacturing processes; and (3) the FDA pharmaceutical quality initiatives, most noticeably, the Process Analytical Technology (PAT) initiative. In this work, the current status and progress made so far on using THz spectroscopy for pharmaceutical development and pharmaceutical PAT applications are reviewed. In the spirit of demonstrating the utility of first principles modeling approach for addressing model validation challenge and reducing unnecessary model validation "burden" for facilitating THz pharmaceutical PAT applications, two scientific case studies based on published THz spectroscopy measurement results are created and discussed. Furthermore, other technical challenges and opportunities associated with adapting THz spectroscopy as a pharmaceutical PAT tool are highlighted.

  18. Detection system for high-resolution gamma radiation spectroscopy with neutron time-of-flight filtering

    DOEpatents

    Dioszegi, Istvan; Salwen, Cynthia; Vanier, Peter

    2014-12-30

    A .gamma.-radiation detection system that includes at least one semiconductor detector such as HPGe-Detector, a position-sensitive .alpha.-Detector, a TOF Controller, and a Digitizer/Integrator. The Digitizer/Integrator starts to process the energy signals of a .gamma.-radiation sent from the HPGe-Detector instantly when the HPGe-Detector detects the .gamma.-radiation. Subsequently, it is determined whether a coincidence exists between the .alpha.-particles and .gamma.-radiation signal, based on a determination of the time-of-flight of neutrons obtained from the .alpha.-Detector and the HPGe-Detector. If it is determined that the time-of-flight falls within a predetermined coincidence window, the Digitizer/Integrator is allowed to continue and complete the energy signal processing. If, however, there is no coincidence, the Digitizer/Integrator is instructed to be clear and reset its operation instantly.

  19. [Applications of near-infrared spectroscopy to analysis of traditional Chinese herbal medicine].

    PubMed

    Li, Yan-Zhou; Min, Shun-Geng; Liu, Xia

    2008-07-01

    Analysis of traditional Chinese herbal medicine is of great importance to its quality control Conventional analysis methods can not meet the requirement of rapid and on-line analysis because of complex process more experiences or needed. In recent years, near-infrared spectroscopy technique has been used for rapid determination of active components, on-line quality control, identification of counterfeit and discrimination of geographical origins of herbal medicines and so on, due to its advantages of simple pretreatment, high efficiency, convenience to use solid diffuse reflection spectroscopy and fiber. In the present paper, the principles and methods of near-infrared spectroscopy technique are introduced concisely. Especially, the applications of this technique in quantitative analysis and qualitative analysis of traditional Chinese herbal medicine are reviewed.

  20. Comparison of the effect of plasma treatment and gamma ray irradiation on PS-Cu nanocomposite films surface

    NASA Astrophysics Data System (ADS)

    Farag, O. F.

    2018-06-01

    Polystyrene-copper (PS-Cu) nanocomposite films were treated with DC N2 plasma and gamma rays irradiations. The plasma treatment of PS-Cu film surface was carried out at different treatment times, gas pressure 0.4 Torr and the applied power 3.5 W. On the other hand, the treatment with gamma rays irradiation were carried out at irradiation doses 10, 30 and 50 kGy. The induced changes in surface properties of PS-Cu films were investigated with UV-viss spectroscopy, scanning electron microscopy (SEM) and FTIR spectroscopy techniques. In addition, the wettability property, surface free energy, spreading coefficient and surface roughness of the treated samples were studied by measuring the contact angle. The UV-viss spectroscopy analysis revealed that the optical band gap decreases with increasing the treatment time and the irradiation dose for plasma and gamma treatments, respectively. SEM observations showed that the particle size of copper particles was increased with increasing the treatment time and the irradiation dose, but gamma treatment changes the copper particles size from nano scale to micro scale. The contact angle measurements showing that the wettability property, surface free energy, spreading coefficient and surface roughness of the treated PS-Cu samples were increased remarkably with increasing the treatment time and the irradiation dose for plasma and gamma treatments, respectively. The contact angle, surface free energy, spreading coefficient and surface roughness of the treated PS-Cu samples are more influenced by plasma treatment than gamma treatment.

  1. Applications of Quantum Cascade Laser Spectroscopy in the Analysis of Pharmaceutical Formulations.

    PubMed

    Galán-Freyle, Nataly J; Pacheco-Londoño, Leonardo C; Román-Ospino, Andrés D; Hernandez-Rivera, Samuel P

    2016-09-01

    Quantum cascade laser spectroscopy was used to quantify active pharmaceutical ingredient content in a model formulation. The analyses were conducted in non-contact mode by mid-infrared diffuse reflectance. Measurements were carried out at a distance of 15 cm, covering the spectral range 1000-1600 cm(-1) Calibrations were generated by applying multivariate analysis using partial least squares models. Among the figures of merit of the proposed methodology are the high analytical sensitivity equivalent to 0.05% active pharmaceutical ingredient in the formulation, high repeatability (2.7%), high reproducibility (5.4%), and low limit of detection (1%). The relatively high power of the quantum-cascade-laser-based spectroscopic system resulted in the design of detection and quantification methodologies for pharmaceutical applications with high accuracy and precision that are comparable to those of methodologies based on near-infrared spectroscopy, attenuated total reflection mid-infrared Fourier transform infrared spectroscopy, and Raman spectroscopy. © The Author(s) 2016.

  2. Development of an ultra-compact CsI/HgI{sub 2} gamma-ray scintillation spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patt, B.E.; Wang, Y.J.; Iwanczyk, J.S.

    A novel new semiconductor photodetector has been developed which utilizes large mercuric iodide photodetectors coupled to highly optimized CsI(T1) scintillators for gamma ray spectroscopy. With this new detector technology the authors have achieved energy resolution superior to that of any other scintillation detector. Furthermore, gamma probes based on the new HgI{sub 2}/CsI(Tl) detector can be highly miniaturized offering improved portability. A {1/2}-inch diameter HgI{sub 2} photodetector coupled with a {1/2}-inch diameter by {1/2}-inch high right-rectangular scintillator produced energy resolution of 4.58% FWHM for {sup 137}Cs (662 keV). This is perhaps the best result ever reported for room temperature scintillation spectroscopy.more » Evaluation of a prototype device with similar performance has been conducted at Los Alamos using Pu and U standard samples. Recently, Monte-Carlo simulations have been performed for co-optimization of the gamma-collection efficiency and light collection efficiency of the scintillator/photodetector pairs resulting in a new tapered scintillator geometry. Energy resolution of 5.69% FWHM at 662 keV was obtained for a 1-inch diameter photodetector coupled to a two-inch long conical CsI(Tl) scintillator; with dimensions: 1-inch diameter at the top tapered to 2-inch diameter at the bottom. The long term stability of the technology has been verified. Current efforts to optimize the detectors for specific applications in safeguards and in materials control and accountability are discussed.« less

  3. Mercuric iodine room temperature gamma-ray detectors

    NASA Technical Reports Server (NTRS)

    Patt, Bradley E.; Markakis, Jeffrey M.; Gerrish, Vernon M.; Haymes, Robert C.; Trombka, Jacob I.

    1990-01-01

    high resolution mercuric iodide room temperature gamma-ray detectors have excellent potential as an essential component of space instruments to be used for high energy astrophysics. Mercuric iodide detectors are being developed both as photodetectors used in combination with scintillation crystals to detect gamma-rays, and as direct gamma-ray detectors. These detectors are highly radiation damage resistant. The list of applications includes gamma-ray burst detection, gamma-ray line astronomy, solar flare studies, and elemental analysis.

  4. Applications of Laser-Induced Breakdown Spectroscopy (LIBS) in Molten Metal Processing

    NASA Astrophysics Data System (ADS)

    Hudson, Shaymus W.; Craparo, Joseph; De Saro, Robert; Apelian, Diran

    2017-10-01

    In order for metals to meet the demand for critical applications in the automotive, aerospace, and defense industries, tight control over the composition and cleanliness of the metal must be achieved. The use of laser-induced breakdown spectroscopy (LIBS) for applications in metal processing has generated significant interest for its ability to perform quick analyses in situ. The fundamentals of LIBS, current techniques for deployment on molten metal, demonstrated capabilities, and possible avenues for development are reviewed and discussed.

  5. Reactor cell assembly for use in spectroscopy and microscopy applications

    DOEpatents

    Grindstaff, Quirinus; Stowe, Ashley Clinton; Smyrl, Norm; Powell, Louis; McLane, Sam

    2015-08-04

    The present disclosure provides a reactor cell assembly that utilizes a novel design and that is wholly or partially manufactured from Aluminum, such that reactions involving Hydrogen, for example, including solid-gas reactions and thermal decomposition reactions, are not affected by any degree of Hydrogen outgassing. This reactor cell assembly can be utilized in a wide range of optical and laser spectroscopy applications, as well as optical microscopy applications, including high-temperature and high-pressure applications. The result is that the elucidation of the role of Hydrogen in the reactions studied can be achieved. Various window assemblies can be utilized, such that high temperatures and high pressures can be accommodated and the signals obtained can be optimized.

  6. Recent advances in the application of transmission Raman spectroscopy to pharmaceutical analysis.

    PubMed

    Buckley, Kevin; Matousek, Pavel

    2011-06-25

    This article reviews recent advances in transmission Raman spectroscopy and its applications, from the perspective of pharmaceutical analysis. The emerging concepts enable rapid non-invasive volumetric analysis of pharmaceutical formulations and could lead to many important applications in pharmaceutical settings, including quantitative bulk analysis of intact pharmaceutical tablets and capsules in quality and process control. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  7. Three-dimensional dose verification of the clinical application of gamma knife stereotactic radiosurgery using polymer gel and MRI.

    PubMed

    Papagiannis, P; Karaiskos, P; Kozicki, M; Rosiak, J M; Sakelliou, L; Sandilos, P; Seimenis, I; Torrens, M

    2005-05-07

    This work seeks to verify multi-shot clinical applications of stereotactic radiosurgery with a Leksell Gamma Knife model C unit employing a polymer gel-MRI based experimental procedure, which has already been shown to be capable of verifying the precision and accuracy of dose delivery in single-shot gamma knife applications. The treatment plan studied in the present work resembles a clinical treatment case of pituitary adenoma using four 8 mm and one 14 mm collimator helmet shots to deliver a prescription dose of 15 Gy to the 50% isodose line (30 Gy maximum dose). For the experimental dose verification of the treatment plan, the same criteria as those used in the clinical treatment planning evaluation were employed. These included comparison of measured and GammaPlan calculated data, in terms of percentage isodose contours on axial, coronal and sagittal planes, as well as 3D plan evaluation criteria such as dose-volume histograms for the target volume, target coverage and conformity indices. Measured percentage isodose contours compared favourably with calculated ones despite individual point fluctuations at low dose contours (e.g., 20%) mainly due to the effect of T2 measurement uncertainty on dose resolution. Dose-volume histogram data were also found in a good agreement while the experimental results for the percentage target coverage and conformity index were 94% and 1.17 relative to corresponding GammaPlan calculations of 96% and 1.12, respectively. Overall, polymer gel results verified the planned dose distribution within experimental uncertainties and uncertainty related to the digitization process of selected GammaPlan output data.

  8. Copper doping of ZnO crystals by transmutation of 64Zn to 65Cu: An electron paramagnetic resonance and gamma spectroscopy study

    NASA Astrophysics Data System (ADS)

    Recker, M. C.; McClory, J. W.; Holston, M. S.; Golden, E. M.; Giles, N. C.; Halliburton, L. E.

    2014-06-01

    Transmutation of 64Zn to 65Cu has been observed in a ZnO crystal irradiated with neutrons. The crystal was characterized with electron paramagnetic resonance (EPR) before and after the irradiation and with gamma spectroscopy after the irradiation. Major features in the gamma spectrum of the neutron-irradiated crystal included the primary 1115.5 keV gamma ray from the 65Zn decay and the positron annihilation peak at 511 keV. Their presence confirmed the successful transmutation of 64Zn nuclei to 65Cu. Additional direct evidence for transmutation was obtained from the EPR of Cu2+ ions (where 63Cu and 65Cu hyperfine lines are easily resolved). A spectrum from isolated Cu2+ (3d9) ions acquired after the neutron irradiation showed only hyperfine lines from 65Cu nuclei. The absence of 63Cu lines in this Cu2+ spectrum left no doubt that the observed 65Cu signals were due to transmuted 65Cu nuclei created as a result of the neutron irradiation. Small concentrations of copper, in the form of Cu+-H complexes, were inadvertently present in our as-grown ZnO crystal. These Cu+-H complexes are not affected by the neutron irradiation, but they dissociate when a crystal is heated to 900 °C. This behavior allowed EPR to distinguish between the copper initially in the crystal and the copper subsequently produced by the neutron irradiation. In addition to transmutation, a second major effect of the neutron irradiation was the formation of zinc and oxygen vacancies by displacement. These vacancies were observed with EPR.

  9. Analytical application of femtosecond laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Melikechi, Noureddine; Markushin, Yuri

    2015-05-01

    We report on significant advantages provided by femtosecond laser-induced breakdown spectroscopy (LIBS) for analytical applications in fields as diverse as protein characterization and material science. We compare the results of a femto- and nanosecond-laser-induced breakdown spectroscopy analysis of dual-elemental pellets in terms of the shot-to-shot variations of the neutral/ionic emission line intensities. This study is complemented by a numerical model based on two-dimensional random close packing of disks in an enclosed geometry. In addition, we show that LIBS can be used to obtain quantitative identification of the hydrogen composition of bio-macromolecules in a heavy water solution. Finally, we show that simultaneous multi-elemental particle assay analysis combined with LIBS can significantly improve macromolecule detectability up to near single molecule per particle efficiency. Research was supported by grants from the National Science Foundation Centers of Research Excellence in Science and Technology (0630388), National Aeronautics and Space Administration (NX09AU90A). Our gratitude to Dr. D. Connolly, Fox Chase Cancer Center.

  10. Novel applications of photoacoustic spectroscopy in life sciences

    NASA Astrophysics Data System (ADS)

    Stolik, S.

    2004-10-01

    The Photoacoustic Spectroscopy, based on the generation of acoustic waves following the absorption of the modulated light by an enclosed material, was discovered in 1880 by Alexander Graham Bell. There are a lot of remarkable achievements in this topic since those days. It has been intended to present a relatively new tool to the researchers in biological areas and, simultaneously, to propose new fields of investigation to those who have been attracted by physics. The application of Photoacoustic trace gas detection to the determination of ethylene content in mice exhalation is described as a biomarker of free radicals production. It has been demonstrated the feasibility of studying the lipid peroxidation in vivo by this technique. Specifically, the results of δ-aminolevulinic acid administration in mice are presented. This drug has been used to induce Protoporphyrin IX production and ultimately to apply the Photodynamic Therapy, a recent method in cancer treatment. A kinetic study of Protoporphyrin IX production in mice skin and blood after δ-aminolevulinic acid administration in different doses is also shown. This study was performed using Photoacoustic Spectroscopy in solids.

  11. Statistical Analysis of Bending Rigidity Coefficient Determined Using Fluorescence-Based Flicker-Noise Spectroscopy.

    PubMed

    Doskocz, Joanna; Drabik, Dominik; Chodaczek, Grzegorz; Przybyło, Magdalena; Langner, Marek

    2018-06-01

    Bending rigidity coefficient describes propensity of a lipid bilayer to deform. In order to measure the parameter experimentally using flickering noise spectroscopy, the microscopic imaging is required, which necessitates the application of giant unilamellar vesicles (GUV) lipid bilayer model. The major difficulty associated with the application of the model is the statistical character of GUV population with respect to their size and the homogeneity of lipid bilayer composition, if a mixture of lipids is used. In the paper, the bending rigidity coefficient was measured using the fluorescence-enhanced flicker-noise spectroscopy. In the paper, the bending rigidity coefficient was determined for large populations of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and 1,2-dioleoyl-sn-glycero-3-phosphocholine vesicles. The quantity of obtained experimental data allows to perform statistical analysis aiming at the identification of the distribution, which is the most appropriate for the calculation of the value of the membrane bending rigidity coefficient. It has been demonstrated that the bending rigidity coefficient is characterized by an asymmetrical distribution, which is well approximated with the gamma distribution. Since there are no biophysical reasons for that we propose to use the difference between normal and gamma fits as a measure of the homogeneity of vesicle population. In addition, the effect of a fluorescent label and types of instrumental setups on determined values has been tested. Obtained results show that the value of the bending rigidity coefficient does not depend on the type of a fluorescent label nor on the type of microscope used.

  12. Hyperspectral photoacoustic spectroscopy of highly-absorbing samples for diagnostic ocular imaging applications

    NASA Astrophysics Data System (ADS)

    Lim, Hoong-Ta; Murukeshan, Vadakke Matham

    2017-01-01

    Photoacoustic spectroscopy has been used to measure optical absorption coefficient and the application of tens of wavelength bands in photoacoustic spectroscopy was reported. Using optical methods, absorption-related information is, generally, derived from reflectance or transmittance values. Hence measurement accuracy is limited for highly absorbing samples where the reflectance or transmittance is too low to give reasonable signal-to-noise ratio. In this context, this paper proposes and illustrates a hyperspectral photoacoustic spectroscopy system to measure the absorption-related properties of highly absorbing samples directly. The normalized optical absorption coefficient spectrum of the highly absorbing iris is acquired using an optical absorption coefficient standard. The proposed concepts and the feasibility of the developed diagnostic medical imaging system are demonstrated using fluorescent microsphere suspensions and porcine eyes as test samples.

  13. The BATSE experiment on the Gamma Ray Observatory: Solar flare hard x ray and gamma-ray capabilities

    NASA Technical Reports Server (NTRS)

    Fishman, G. J.; Meegan, C. A.; Wilson, R. B.; Parnell, T. A.; Paciesas, W. S.; Pendleton, G. N.; Hudson, H. S.; Matteson, J. L.; Peterson, L. E.; Cline, T. L.

    1989-01-01

    The Burst and Transient Source Experiment (BATSE) for the Gamma Ray Observatory (GRO) consists of eight detector modules that provide full-sky coverage for gamma-ray bursts and other transient phenomena such as solar flares. Each detector module has a thin, large-area scintillation detector (2025 sq cm) for high time-resolution studies, and a thicker spectroscopy detector (125 sq cm) to extend the energy range and provide better spectral resolution. The total energy range of the system is 15 keV to 100 MeV. These 16 detectors and the associated onboard data system should provide unprecedented capabilities for observing rapid spectral changes and gamma-ray lines from solar flares. The presence of a solar flare can be detected in real-time by BATSE; a trigger signal is sent to two other experiments on the GRO. The launch of the GRO is scheduled for June 1990, so that BATSE can be an important component of the Max '91 campaign.

  14. Novel Applications of Rapid Prototyping in Gamma-ray and X-ray Imaging

    PubMed Central

    Miller, Brian W.; Moore, Jared W.; Gehm, Michael E.; Furenlid, Lars R.; Barrett, Harrison H.

    2010-01-01

    Advances in 3D rapid-prototyping printers, 3D modeling software, and casting techniques allow for the fabrication of cost-effective, custom components in gamma-ray and x-ray imaging systems. Applications extend to new fabrication methods for custom collimators, pinholes, calibration and resolution phantoms, mounting and shielding components, and imaging apertures. Details of the fabrication process for these components are presented, specifically the 3D printing process, cold casting with a tungsten epoxy, and lost-wax casting in platinum. PMID:22984341

  15. The U.S. Spectrum X Gamma Coordination Facility

    NASA Astrophysics Data System (ADS)

    Forman, William R.

    1999-08-01

    Spectrum-X-Gamma (SXG) provides for US participation in a first-class international x-ray mission. Despite launch delays, SXG will provide unique scientific opportunities due to its capability for all-sky monitoring, polarimetry, high resolution spectroscopy, and broad wavelength range-from the ultraviolet (TAUVEX and FUVITA), through the x-ray (SODART and JET-X), to the hard x-ray (MART), and gamma-ray burst detectors. Before describing our completed work, we review the unique properties of SXG and provide some examples of the scientific importance of SXG in the Chandra, XMM, and ASTRO-E era.

  16. The U.S. Spectrum X Gamma Coordination Facility

    NASA Technical Reports Server (NTRS)

    Forman, William R.

    1999-01-01

    Spectrum-X-Gamma (SXG) provides for US participation in a first-class international x-ray mission. Despite launch delays, SXG will provide unique scientific opportunities due to its capability for all-sky monitoring, polarimetry, high resolution spectroscopy, and broad wavelength range-from the ultraviolet (TAUVEX and FUVITA), through the x-ray (SODART and JET-X), to the hard x-ray (MART), and gamma-ray burst detectors. Before describing our completed work, we review the unique properties of SXG and provide some examples of the scientific importance of SXG in the Chandra, XMM, and ASTRO-E era.

  17. Improved extrinsic polymer optical fiber sensors for gamma-ray monitoring in radioprotection applications

    NASA Astrophysics Data System (ADS)

    de Andrés, A. I.; Esteban, Ó.; Embid, M.

    2017-08-01

    Gamma radiation detection in the range of 662 keV, the reference for environmental protection, is done through extrinsic optical fiber sensors. The fluorescence rendered by an inorganic scintillator when irradiated with such gamma rays is gathered by a modified polymer optical fiber tip. This modification increases the recorded signal when compared with plain unaltered fiber. Two fiber tip modification are then compared in terms of light gathering capability. A chemically etched fiber, in which the cladding and part of the core are removed, and a tapered fiber in which the core-cladding structure is kept. Both structures are comparable in length and final diameter, and show linear response in the tested range up to 2 Gy/h air Kerma rate. The etched fiber shows a higher slope than the tapered one, although both improve the signal gathered by a plain fiber tip. The easy fabrication and handling of the reported transducers, together with the improved signal gathering, allow to reduce the overall system budget with the use of low-cost optoelectronics in the detection stage. This offers a significant improvement for surveillance systems in radioprotection applications, in which presence of gamma radiation coming out accidental leakage or spurious sources activity is the main target.

  18. [Application of microscopic spectroscopy in quality control of Niuhuang Qingxin pills].

    PubMed

    Nie, Li-Xing; Zhang, Ye; Zhang, Nan-Ping; Hu, Xiao-Ru; Kang, Shuai; Hou, Jian-Zhong; Dai, Zhong; Ma, Shuang-Cheng

    2016-10-01

    Application of microscopic spectroscopy in quality control of Niuhuang Qingxin pills was discussed. First, microscopic characteristics specified by the statutory standard of Niuhuang Qingxin pills were summarized. Then new identification method was established for Dioscoreae Rhizoma, Saigae Tataricae Cornu, Cinnamomi Cortex and Saposhnikoviae Radix. Finally, microscopic spectroscopy was used for test of Dioscoreae Rhizoma's adulterant Dioscoreae Fordii Rhizoma.It was the first time for this technology being applied in adulteration test of Chinese patent medicine.The results showed that Saigae Tataricae Cornu was not detected in 2 batches of Niuhuang Qingxin pills from 1 manufacturer while Dioscoreae Fordii Rhizoma was detected in 3 batches of samples from 2 manufacturers. The proposed methods were accurate, simple, rapid, objective and economic, which offered a more comprehensive approach for quality control of Niuhuang Qingxin pills. It was indicated that conventional technology such as microscopic spectroscopy could play an important role in identification of traditional Chinese medicine whose index ingredient was deficient or tiny. Copyright© by the Chinese Pharmaceutical Association.

  19. Gamma-ray spectroscopy in the decay of (83)Se to levels of (83)Br.

    PubMed

    Krane, K S

    2015-03-01

    High-resolution γ ray spectroscopy experiments have been done to study the emissions from the radioactive decay of 22-min (83g)Se produced from neutron capture using samples of enriched (82)Se. Energy and intensity values have been obtained to roughly an order of magnitude greater precision than in previous studies. Based on energy sums, 2 new levels are proposed in the daughter (83)Br and one previously proposed level is shown to be doubtful. Some 25 new transitions appear to decay with the (83)Se halflife, about half of which can be accommodated among the previous or newly proposed levels. Several previous γ ray placements are shown to be inconsistent with the new determinations of the (83)Br energy levels, but cannot be accommodated anywhere else among the known levels. As a result of the missing γ ray placements, some of the β branchings in the decay to levels of (83)Br appear to be negative. Gamma rays from the 2.4-h decay of the daughter (83)Br to levels of (83)Kr have also been observed, along with decays of (81g)(,m)Se present as a small impurity in the enriched samples and also as a strong component in irradiated samples of natural Se. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Hard X-ray and low-energy gamma-ray spectrometers

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Crannell, C. J.; Orwig, L. E.; Forrest, D. J.; Lin, R. P.; Starr, R.

    1988-01-01

    Basic principles of operation and characteristics of scintillation and semi-conductor detectors used for solar hard X-ray and gamma-ray spectrometers are presented. Scintillation materials such as NaI offer high stopping power for incident gamma rays, modest energy resolution, and relatively simple operation. They are, to date, the most often used detector in solar gamma-ray spectroscopy. The scintillator BGO has higher stopping power than NaI, but poorer energy resolution. The primary advantage of semi-conductor materials such as Ge is their high-energy resolution. Monte-Carlo simulations of the response of NaI and Ge detectors to model solar flare inputs show the benefit of high resoluton for studying spectral lines. No semi-conductor material besides Ge is currently available with adequate combined size and purity to make general-use hard X-ray and gamma-ray detectors for solar studies.

  1. Uranium, radium and thorium in soils with high-resolution gamma spectroscopy, MCNP-generated efficiencies, and VRF non-linear full-spectrum nuclide shape fitting

    NASA Astrophysics Data System (ADS)

    Metzger, Robert; Riper, Kenneth Van; Lasche, George

    2017-09-01

    A new method for analysis of uranium and radium in soils by gamma spectroscopy has been developed using VRF ("Visual RobFit") which, unlike traditional peak-search techniques, fits full-spectrum nuclide shapes with non-linear least-squares minimization of the chi-squared statistic. Gamma efficiency curves were developed for a 500 mL Marinelli beaker geometry as a function of soil density using MCNP. Collected spectra were then analyzed using the MCNP-generated efficiency curves and VRF to deconvolute the 90 keV peak complex of uranium and obtain 238U and 235U activities. 226Ra activity was determined either from the radon daughters if the equilibrium status is known, or directly from the deconvoluted 186 keV line. 228Ra values were determined from the 228Ac daughter activity. The method was validated by analysis of radium, thorium and uranium soil standards and by inter-comparison with other methods for radium in soils. The method allows for a rapid determination of whether a sample has been impacted by a man-made activity by comparison of the uranium and radium concentrations to those that would be expected from a natural equilibrium state.

  2. AFM-IR: Technology and Applications in Nanoscale Infrared Spectroscopy and Chemical Imaging.

    PubMed

    Dazzi, Alexandre; Prater, Craig B

    2016-12-13

    Atomic force microscopy-based infrared spectroscopy (AFM-IR) is a rapidly emerging technique that provides chemical analysis and compositional mapping with spatial resolution far below conventional optical diffraction limits. AFM-IR works by using the tip of an AFM probe to locally detect thermal expansion in a sample resulting from absorption of infrared radiation. AFM-IR thus can provide the spatial resolution of AFM in combination with the chemical analysis and compositional imaging capabilities of infrared spectroscopy. This article briefly reviews the development and underlying technology of AFM-IR, including recent advances, and then surveys a wide range of applications and investigations using AFM-IR. AFM-IR applications that will be discussed include those in polymers, life sciences, photonics, solar cells, semiconductors, pharmaceuticals, and cultural heritage. In the Supporting Information , the authors provide a theoretical section that reviews the physics underlying the AFM-IR measurement and detection mechanisms.

  3. Performance of the prototype LaBr3 spectrometer developed for the JET gamma-ray camera upgrade.

    PubMed

    Rigamonti, D; Muraro, A; Nocente, M; Perseo, V; Boltruczyk, G; Fernandes, A; Figueiredo, J; Giacomelli, L; Gorini, G; Gosk, M; Kiptily, V; Korolczuk, S; Mianowski, S; Murari, A; Pereira, R C; Cippo, E P; Zychor, I; Tardocchi, M

    2016-11-01

    In this work, we describe the solution developed by the gamma ray camera upgrade enhancement project to improve the spectroscopic properties of the existing JET γ-ray camera. Aim of the project is to enable gamma-ray spectroscopy in JET deuterium-tritium plasmas. A dedicated pilot spectrometer based on a LaBr 3 crystal coupled to a silicon photo-multiplier has been developed. A proper pole zero cancellation network able to shorten the output signal to a length of 120 ns has been implemented allowing for spectroscopy at MHz count rates. The system has been characterized in the laboratory and shows an energy resolution of 5.5% at E γ = 0.662 MeV, which extrapolates favorably in the energy range of interest for gamma-ray emission from fast ions in fusion plasmas.

  4. Preparation and characterization of gamma irradiated Starch/PVA/ZnO nanocomposite films

    NASA Astrophysics Data System (ADS)

    Akhavan, Azam; Khoylou, Farah; Ataeivarjovi, Ebrahim

    2017-09-01

    In this study starch/PVA/ZnO nanocomposite films with antibacterial activity were prepared and modified using gamma irradiation for packaging applications. ZnO nanoparticles (NPs) were synthesized from Zn(OH)2 using hydrothermal process and characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The prepared ZnO NPs were incorporated into blend films of starch and poly (vinyl alcohol) (PVA) with different concentrations from 0.1 to 1 wt% using solution casting method. The results of SEM confirmed good dispersion of ZnO NPs into the films while FTIR spectroscopy showed interactions between ZnO particles and starch/PVA blend. The nanocomposite films were irradiated at the dose range of 1-5 kGy. It was found that gamma irradiation induces a significant reduction in water absorptions of the films at the dose of 3 kGy. Different trends were observed for the tensile and elongation properties of the irradiated films. Based on the results, the bacterial growth on the films was effectively inhibited when the dosage of ZnO NPs was only 0.5 wt%.

  5. Medical Applications of Laser Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Pathak, A. K.; Rai, N. K.; Singh, Ankita; Rai, A. K.; Rai, Pradeep K.; Rai, Pramod K.

    2014-11-01

    Sedentary lifestyle of human beings has resulted in various diseases and in turn we require a potential tool that can be used to address various issues related to human health. Laser Induced Breakdown Spectroscopy (LIBS) is one such potential optical analytical tool that has become quite popular because of its distinctive features that include applicability to any type/phase of samples with almost no sample preparation. Several reports are available that discusses the capabilities of LIBS, suitable for various applications in different branches of science which cannot be addressed by traditional analytical methods but only few reports are available for the medical applications of LIBS. In the present work, LIBS has been implemented to understand the role of various elements in the formation of gallstones (formed under the empyema and mucocele state of gallbladder) samples along with patient history that were collected from Purvancal region of Uttar Pradesh, India. The occurrence statistics of gallstones under the present study reveal higher occurrence of gallstones in female patients. The gallstone occurrence was found more prevalent for those male patients who were having the habit of either tobacco chewing, smoking or drinking alcohols. This work further reports in-situ LIBS study of deciduous tooth and in-vivo LIBS study of human nail.

  6. Low energy proton capture study of the 14N(p, gamma)15O reaction

    NASA Astrophysics Data System (ADS)

    Daigle, Stephen Michael

    The 14N(p,gamma)15O reaction regulates the rate of energy production for stars slightly more massive than the sun throughout stable hydrogen burning on the main sequence. The 14N(p,gamma)15O reaction rate also determines the luminosity for all stars after leaving the main sequence when their cores have exhausted hydrogen fuel, and later when they become red giant stars. The significant role that this reaction plays in stellar evolution has far-reaching consequences, from neutrino production in our Sun, to age estimates of globular clusters in our Galaxy. The weak cross section and inherent coincidence summing in the 15O gamma-ray decay scheme make a precision measurement of the astrophysical S-factor especially challenging, particularly for the ground-state transition. The present study, performed in the Laboratory for Experimental Nuclear Astrophysics (LENA), was aimed at measuring the ground-state transition at low energy by utilizing a new 24-element, position-sensitive, NaI(Tl) detector array. Because the array is highly segmented, the 14N( p,gamma)15O S-factor was evaluated for transitions to the ground, 5.18, 6.18, and 6.79 MeV states without the need for coincidence summing corrections. Additionally, the position-sensitivity of the detector was exploited to measure the angular correlation of the two-photon cascades. Software cuts were made to the data in order to identify single and coincident gamma-ray events and a fraction fit analysis technique was used to extract the characteristic 15O peaks from the composite gamma-ray spectrum. The results from the current work demonstrated a new approach to measuring weak nuclear cross sections near astrophysically relevant energies that, with refinements, has broader applications in gamma-ray spectroscopy.

  7. Advanced Spectroscopy Technique for Biomedicine

    NASA Astrophysics Data System (ADS)

    Zhao, Jianhua; Zeng, Haishan

    This chapter presents an overview of the applications of optical spectroscopy in biomedicine. We focus on the optical design aspects of advanced biomedical spectroscopy systems, Raman spectroscopy system in particular. Detailed components and system integration are provided. As examples, two real-time in vivo Raman spectroscopy systems, one for skin cancer detection and the other for endoscopic lung cancer detection, and an in vivo confocal Raman spectroscopy system for skin assessment are presented. The applications of Raman spectroscopy in cancer diagnosis of the skin, lung, colon, oral cavity, gastrointestinal tract, breast, and cervix are summarized.

  8. Gamma irradiation effect on the chemical composition and the antioxidant activity of Ipomoea batatas L.

    NASA Astrophysics Data System (ADS)

    Tahir, D.; Halide, H.; Wahab, A. W.; Kurniawan, D.

    2014-09-01

    The chemical composition and antioxidant activity of Ipomoea batatas L. (sweet potato) were studied by x-ray fluorescence (XRF) spectroscopy, Fourier transform infrared spectroscopy, and by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging capacity. The irradiation treatment was performed by using Cs-137 as a gamma sources in experimental equipment. Treatment by irradiation emerges as a possible conservation technique that has been tested successfully in several food products. The amount of chemical composition was changed and resulting new chemical for absorbed dose 40 mSv. Interestingly, it was found that gamma irradiation significantly increased the antioxidant activity, as measured by DPPH radical scavenging capacity. The antioxidant activity of Ipomoea batatas L. extract was dramatically increased in the non-irradiated sample to the sample irradiated at 40 mSv. These results indicate that gamma irradiation of Ipomoea batatas L. extract can enhance its antioxidant activity through the formation of a new chemical compound. Based on these results, increased antioxidant activity of Ipomoea batatas L. extracts by gamma rays can be applied to various industries, especially cosmetics, foodstuffs, and pharmaceuticals.

  9. Application of Symbolic Regression to Electrochemical Impedance Spectroscopy Data for Lubricating Oil Health Evaluation

    DTIC Science & Technology

    2012-09-27

    Technical Research Publication 3. DATES COVERED (From - To) 09/27/2010 – 09/26/2012 4. TITLE AND SUBTITLE Application of Symbolic Regression to...relationships are not well described. In this paper these tools and techniques are described in detail, and the results of the application of these...585) 424-1990 Application of Symbolic Regression to Electrochemical Impedance Spectroscopy Data for Lubricating Oil Health Evaluation Carl

  10. Development of Advanced Seed Laser Modules for Lidar and Spectroscopy Applications

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.; Rosiewicz, Alex; Coleman, Steven M.

    2013-01-01

    We report on recent progress made in the development of highly compact, single mode, distributed feedback laser (DFB) seed laser modules for lidar and spectroscopy applications from space based platforms. One of the intended application of this technology is in the NASA's Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission. The DFB laser modules operating at 1571 nm and 1262 nm have advanced current and temperature drivers built into them. A combination of temperature and current tuning allows coarse and fine adjustment of the diode wavelengths.

  11. [Application of near-infrared spectroscopy to agriculture and food analysis].

    PubMed

    Wang, Duo-jia; Zhou, Xiang-yang; Jin, Tong-ming; Hu, Xiang-na; Zhong, Jiao-e; Wu, Qi-tang

    2004-04-01

    Near-Infrared Spectroscopy (NIRS) is the most rapidly developing and the most noticeable spectrographic technique in the 90's (the last century). Its principle and characteristics were explained in this paper, and the development of NIRS instrumentation, the methodology of spectrum pre-processing, as well as the chemical metrology were also introduced. The anthors mainly summarized the applications to agriculture and food, especially in-line analysis methods, which have been used in production procedure by fiber optics. The authors analyzed the NIRS application status in China, and made the first proposal to establish information sharing mode between central database and end-user by using network technology and concentrating valuable resources.

  12. Inhibitory effect of gamma irradiation and its application for control of postharvest green mold decay of Satsuma mandarins.

    PubMed

    Jeong, Rae-Dong; Chu, Eun-Hee; Lee, Gun Woong; Cho, Chuloh; Park, Hae-Jun

    2016-10-03

    Gamma irradiation has been shown to be effective for the control of postharvest fungi in vitro, but little is known regarding antifungal action, responses to gamma irradiation, and its application to fresh produce. Gamma irradiation was evaluated for its in vitro and in vivo antifungal activity against Penicillium digitatum on Satsuma mandarin fruits. Green mold was inhibited in a dose-dependent manner. Gamma irradiation showed a complete inhibition of spore germination, germ tube elongation, and mycelial growth of P. digitatum, particularly at 1.0kGy. To further investigate the mechanisms by which gamma irradiation inhibits fungal growth, the membrane integrity and cellular leakage of conidia were tested, indicating that gamma irradiation results in the loss of plasma membrane integrity, causing the release of intracellular contents such as soluble proteins. In vivo assays demonstrated that established doses can completely inhibit the growth of fungal pathogens, but such high doses cause severe fruit damage. Thus, to eliminate the negative impact on fruit quality, gamma irradiation at lower doses was evaluated for inhibition of P. digitatum, in combination with a chlorine donor, sodium dichloro-s-triazinetrione (NaDCC). Interestingly, only a combined treatment with 0.4kGy of gamma irradiation and 10ppm of NaDCC exhibited significant synergistic antifungal activity against green mold decay. The mechanisms by which the combined treatment decreased the green mold decay of mandarin fruits can be directly associated with the disruption of cell membrane of the fungal pathogen, which resulted in a loss of cytoplasmic material from the hyphae. These findings suggest that a synergistic effect of combining treatment with gamma irradiation with NaDCC has potential as an antifungal approach to reduce the severity of green mold in mandarin fruits. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Raman spectroscopy and imaging: applications in human breast cancer diagnosis.

    PubMed

    Brozek-Pluska, Beata; Musial, Jacek; Kordek, Radzislaw; Bailo, Elena; Dieing, Thomas; Abramczyk, Halina

    2012-08-21

    The applications of spectroscopic methods in cancer detection open new possibilities in early stage diagnostics. Raman spectroscopy and Raman imaging represent novel and rapidly developing tools in cancer diagnosis. In the study described in this paper Raman spectroscopy has been employed to examine noncancerous and cancerous human breast tissues of the same patient. The most significant differences between noncancerous and cancerous tissues were found in regions characteristic for the vibrations of carotenoids, lipids and proteins. Particular attention was paid to the role played by unsaturated fatty acids in the differentiation between the noncancerous and the cancerous tissues. Comparison of Raman spectra of the noncancerous and the cancerous tissues with the spectra of oleic, linoleic, α-linolenic, γ-linolenic, docosahexaenoic and eicosapentaenoic acids has been presented. The role of sample preparation in the determination of cancer markers is also discussed in this study.

  14. Effects of gamma irradiations on reactive pulsed laser deposited vanadium dioxide thin films

    NASA Astrophysics Data System (ADS)

    Madiba, I. G.; Émond, N.; Chaker, M.; Thema, F. T.; Tadadjeu, S. I.; Muller, U.; Zolliker, P.; Braun, A.; Kotsedi, L.; Maaza, M.

    2017-07-01

    Vanadium oxide films are considered suitable coatings for various applications such as thermal protective coating of small spacecrafts because of their thermochromic properties. While in outer space, such coating will be exposed to cosmic radiations which include γ-rays. To study the effect of these γ-rays on the coating properties, we have deposited vanadium dioxide (VO2) films on silicon substrates and subjected them to extensive γ-irradiations with typical doses encountered in space missions. The prevalent crystallographic phase after irradiation remains the monoclinic VO2 phase but the films preferential orientation shifts to lower angles due to the presence of disordered regions caused by radiations. Raman spectroscopy measurements also evidences that the VO2 structure is slightly affected by gamma irradiation. Indeed, increasing the gamma rays dose locally alters the crystalline and electronic structures of the films by modifying the V-V inter-dimer distance, which in turns favours the presence of the VO2 metallic phase. From the XPS measurements of V2p and O1s core level spectra, an oxidation of vanadium from V4+ towards V5+ is revealed. The data also reveal a hydroxylation upon irradiation which is corroborated by the vanishing of a low oxidation state peak near the Fermi energy in the valence band. Our observations suggest that gamma radiations induce the formation of Frenkel pairs. Moreover, THz transmission measurements show that the long range structure of VO2 remains intact after irradiation whilst the electrical measurements evidence that the coating resistivity decreases with gamma irradiation and that their transition temperature is slightly reduced for high gamma ray doses. Even though gamma rays are only one of the sources of radiations that are encountered in space environment, these results are very promising with regards to the potential of integration of such VO2 films as a protective coating for spacecrafts.

  15. Influence of gamma irradiation on carbon nanotube-reinforced polypropylene.

    PubMed

    Castell, P; Medel, F J; Martinez, M T; Puértolas, J A

    2009-10-01

    Single walled carbon nanotubes (SWNT) have been incorporated into a polypropylene (PP) matrix in different concentrations (range: 0.25-2.5 wt%). The nanotubes were blended with PP particles (approximately 500 microm in size) before mixing in an extruder. Finally, rectangular plates were obtained by compression moulding. PP-SWNT composites were gamma irradiated at different doses, 10 and 20 kGy, to promote crosslinking in the matrix and potentially enhance the interaction between nanotubes and PP. Extensive thermal, structural and mechanical characterization was conducted by means of DSC, X-ray diffraction, Raman spectroscopy, uniaxial tensile tests and dynamic mechanical thermal (DMTA) techniques. DSC thermograms reflected higher crystallinity with increasing nanotube concentration. XRD analysis confirmed the only presence of a monoclinic crystals and proved unambiguously that CNTs generated a preferred orientation. Raman spectroscopy confirmed that the intercalation of the polymer between bundles is favored at low CNTs contents. Elastic modulus results confirmed the reinforcement of the polypropylene matrix with increasing SWNT concentration, although stiffness saturation was observed at the highest concentration. Loss tangent DMTA curves showed three transitions for raw polypropylene. While gamma relaxation remained practically unchanged in all the samples, beta relaxation temperatures showed an increase with increasing CNT content due to the reduced mobility of the system. Gamma-irradiated PP exhibited an increase in the beta relaxation temperature, associated with changes in glass transition due to radiation-induced crosslinking. On the contrary, gamma-irradiated nanocomposites did not show this effect probably due to the reaction of radiative free radicals with CNTs.

  16. [Application progress on near infrared spectroscopy in quality control and process monitoring of traditional Chinese medicine].

    PubMed

    Li, Wenlong; Qu, Haibin

    2017-01-25

    The industry of traditional Chinese medicine (TCM) encounters problems like quality fluctuation of raw materials and unstandardized production process. Near infrared (NIR) spectroscopy technology is widely used in quality control of TCM because of its abundant information, fast and nondestructive characters. The main applications include quantitative analysis of Chinese medicinal materials, intermediates and Chinese patent medicines; the authenticity of TCM, species, origins and manufacturers; monitoring and control of the extraction, alcohol precipitation, column chromatography and blending process. This article reviews the progress on the application of NIR spectroscopy technology in TCM field. In view of the problems existing in the application, the article proposes that the standardization of NIR analysis method should be developed according to specific characteristics of TCM, which will promote the application of NIR technology in the TCM industry.

  17. Z{gamma}{gamma}{gamma} {yields} 0 Processes in SANC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bardin, D. Yu., E-mail: bardin@nu.jinr.ru; Kalinovskaya, L. V., E-mail: kalinov@nu.jinr.ru; Uglov, E. D., E-mail: corner@nu.jinr.ru

    2013-11-15

    We describe the analytic and numerical evaluation of the {gamma}{gamma} {yields} {gamma}Z process cross section and the Z {yields} {gamma}{gamma}{gamma} decay rate within the SANC system multi-channel approach at the one-loop accuracy level with all masses taken into account. The corresponding package for numeric calculations is presented. For checking of the results' correctness we make a comparison with the other independent calculations.

  18. Sneaky Gamma-Rays: Using Gravitational Lensing to Avoid Gamma-Gamma-Absorption

    NASA Astrophysics Data System (ADS)

    Boettcher, Markus; Barnacka, Anna

    2014-08-01

    It has recently been suggested that gravitational lensing studies of gamma-ray blazars might be a promising avenue to probe the location of the gamma-ray emitting region in blazars. Motivated by these prospects, we have investigated potential gamma-gamma absorption signatures of intervening lenses in the very-high-energy gamma-ray emission from lensedblazars. We considered intervening galaxies and individual stars within these galaxies. We find that the collective radiation field of galaxies acting as sources of macrolensing are not expected to lead to significant gamma-gamma absorption. Individual stars within intervening galaxies could, in principle, cause a significant opacity to gamma-gamma absorption for VHE gamma-rays if the impact parameter (the distance of closest approach of the gamma-ray to the center of the star) is small enough. However, we find that the curvature of the photon path due to gravitational lensing will cause gamma-ray photons to maintain a sufficiently large distance from such stars to avoid significant gamma-gamma absorption. This re-inforces the prospect of gravitational-lensing studies of gamma-ray blazars without interference due to gamma-gamma absorption due to the lensing objects.

  19. High-resolution imaging gamma-ray spectroscopy with externally segmented germanium detectors

    NASA Technical Reports Server (NTRS)

    Callas, J. L.; Mahoney, W. A.; Varnell, L. S.; Wheaton, W. A.

    1993-01-01

    Externally segmented germanium detectors promise a breakthrough in gamma-ray imaging capabilities while retaining the superb energy resolution of germanium spectrometers. An angular resolution of 0.2 deg becomes practical by combining position-sensitive germanium detectors having a segment thickness of a few millimeters with a one-dimensional coded aperture located about a meter from the detectors. Correspondingly higher angular resolutions are possible with larger separations between the detectors and the coded aperture. Two-dimensional images can be obtained by rotating the instrument. Although the basic concept is similar to optical or X-ray coded-aperture imaging techniques, several complicating effects arise because of the penetrating nature of gamma rays. The complications include partial transmission through the coded aperture elements, Compton scattering in the germanium detectors, and high background count rates. Extensive electron-photon Monte Carlo modeling of a realistic detector/coded-aperture/collimator system has been performed. Results show that these complicating effects can be characterized and accounted for with no significant loss in instrument sensitivity.

  20. Preparation and characterisation of Isophthalic-Bi2O3 polymer composite gamma radiation shields

    NASA Astrophysics Data System (ADS)

    Ambika, M. R.; Nagaiah, N.; Harish, V.; Lokanath, N. K.; Sridhar, M. A.; Renukappa, N. M.; Suman, S. K.

    2017-01-01

    Bi2O3 filled Isophthalic resin based polymer composites of different weight % (0, 5, 10, 20, 30, 40, 50 & 60) were fabricated by open mould cast technique. Gamma attenuation study was carried out using NaI (Tl) gamma ray spectrometer for Cs-137. The shielding parameters such as attenuation coefficient, HVL & λ were investigated. The distribution of the filler within the matrix was studied using Scanning Electron Microscopy. X ray diffractometer and Fourier Transform Infrared Spectroscopy were employed to study the structural changes if any. The thermal stability and mechanical strength of the composites were investigated using TGA & UTM respectively. Dielectric properties and AC conductivity were also studied using LCR meter. The composites are found to be thermally stable upto 200 °C. There were no such structural changes observed and all the composites show very low conductivity. The mechanical strength of the composites was found to increase upon adding the bismuth oxide with a slight decrease when the concentration of the filler exceeds 40 wt%. Attenuation results reveal that, the shielding efficiency increases with the increase of the filler wt% and are comparable to those of the conventional shielding materials. Hence, Bi2O3 filled composites can be used for gamma shielding applications.

  1. Scientific prospects for spectroscopy of the gamma-ray burst prompt emission with SVOM

    NASA Astrophysics Data System (ADS)

    Bernardini, M. G.; Xie, F.; Sizun, P.; Piron, F.; Dong, Y.; Atteia, J.-L.; Antier, S.; Daigne, F.; Godet, O.; Cordier, B.; Wei, J.

    2017-10-01

    SVOM (Space-based multi-band astronomical Variable Objects Monitor) is a Sino-French space mission dedicated to the study of Gamma-Ray Bursts (GRBs) in the next decade, capable to detect and localise the GRB emission, and to follow its evolution in the high-energy and X-ray domains, and in the visible and NIR bands. The satellite carries two wide-field high-energy instruments: a coded-mask gamma-ray imager (ECLAIRs; 4-150 keV), and a gamma-ray spectrometer (GRM; 15-5500 keV) that, together, will characterise the GRB prompt emission spectrum over a wide energy range. In this paper we describe the performances of the ECLAIRs and GRM system with different populations of GRBs from existing catalogues, from the classical ones to those with a possible thermal component superimposed to their non-thermal emission. The combination of ECLAIRs and the GRM will provide new insights also on other GRB properties, as for example the spectral characterisation of the subclass of short GRBs showing an extended emission after the initial spike.

  2. Application of gamma irradiation for aging control and improvement of shelf-life of kimchi, korean salted and fermented vegetables

    NASA Astrophysics Data System (ADS)

    Song, Hyun-Pa; Kim, Dong-Ho; Yook, Hong-Sun; Kim, Kyung-Soo; Kwon, Joong-Ho; Byun, Myung-Woo

    2004-09-01

    This study was carried out to evaluate the application of food irradiation as a method for extending shelf life of Kimchi. Gamma irradiation up to 10 kGy in the early stage of Kimchi fermentation had a dose-dependent effect on the inactivation of fermentative microbes, lowering the lactate dehydrogenase (LDH) activity and delaying acidification. Although gamma irradiation on the mid-fermentation stage of Kimchi inactivated the fermentative microbes effectively, LDH activity remained high and acidification continued. Kimchi irradiated at 10 kGy had lower scores in acceptability than those of control, 2.5 and 5 kGy irradiated. Therefore, gamma irradiation upto 5 kGy in the early fermentation stage is recommended for aging control and the improvement of shelf life of Kimchi.

  3. Continuous versus pulse neutron induced gamma spectroscopy for soil carbon analysis

    USDA-ARS?s Scientific Manuscript database

    Neutron induced gamma spectra analysis (NGA) provides a means of measuring carbon in large soil volumes without destructive sampling. Calibration of the NGA system must account for system background and the interference of other nuclei on the carbon peak at 4.43 MeV. Accounting for these factors pro...

  4. Applications of Bayesian Statistics to Problems in Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Meegan, Charles A.

    1997-01-01

    This presentation will describe two applications of Bayesian statistics to Gamma Ray Bursts (GRBS). The first attempts to quantify the evidence for a cosmological versus galactic origin of GRBs using only the observations of the dipole and quadrupole moments of the angular distribution of bursts. The cosmological hypothesis predicts isotropy, while the galactic hypothesis is assumed to produce a uniform probability distribution over positive values for these moments. The observed isotropic distribution indicates that the Bayes factor for the cosmological hypothesis over the galactic hypothesis is about 300. Another application of Bayesian statistics is in the estimation of chance associations of optical counterparts with galaxies. The Bayesian approach is preferred to frequentist techniques here because the Bayesian approach easily accounts for galaxy mass distributions and because one can incorporate three disjoint hypotheses: (1) bursts come from galactic centers, (2) bursts come from galaxies in proportion to luminosity, and (3) bursts do not come from external galaxies. This technique was used in the analysis of the optical counterpart to GRB970228.

  5. Application of spectroscopy and super-resolution microscopy: Excited state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharjee, Ujjal

    Photophysics of inorganic materials and organic molecules in complex systems have been extensively studied with absorption and emission spectroscopy.1-4 Steady-state and time-resolved fluorescence studies are commonly carried out to characterize excited-state properties of fluorophores. Although steady-state fluorescence measurements are widely used for analytical applications, time-resolved fluorescence measurements provide more detailed information about excited-state properties and the environment in the vicinity of the fluorophore. Many photophysical processes, such as photoinduced electron transfer (PET), rotational reorientation, solvent relaxation, and energy transfer, occur on a nanosecond (10 -9 s) timescale, thus affecting the lifetime of the fluorophores. Moreover, time-resolved microscopy methods, such asmore » lifetimeimaging, combine the benefits of the microscopic measurement and information-rich, timeresolved data. Thus, time-resolved fluorescence spectroscopy combined with microscopy can be used to quantify these processes and to obtain a deeper understanding of the chemical surroundings of the fluorophore in a small area under investigation. This thesis discusses various photophysical and super-resolution microscopic studies of organic and inorganic materials, which have been outlined below.« less

  6. Accelerated aging, natural aging, and small punch testing of gamma-air sterilized polycarbonate urethane acetabular components.

    PubMed

    Kurtz, S M; Siskey, R; Reitman, M

    2010-05-01

    The objectives of this study were three-fold: (1) to determine the applicability of the small punch test to characterize Bionate 80A polycarbonate urethane (PCU) acetabular implants; (2) to evaluate the susceptibility of PCU acetabular implants to exhibit degradation of mechanical behavior following gamma irradiation in air and accelerated aging; and (3) to compare the oxidation of gamma-air sterilized PCU following accelerated aging and 5 years of natural shelf aging. In addition to attenuated total reflectance-Fourier transform infrared spectroscopy, we also adapted a miniature specimen mechanical test, the small punch test, for the deformable PCU cups. Accelerated aging was performed using ASTM F2003, a standard test that represents a severe oxidative challenge. The results of this study suggest that the small punch test is sufficiently sensitive and reproducible to discriminate slight differences in the large-deformation mechanical behavior of Bionate 80A following accelerated aging. The gamma-air sterilized PCU had a reduction of 9% in ultimate load after aging. Five years of shelf aging had little effect on the mechanical properties of the PCU. Overall, our findings suggest that the Bionate 80A material has greater oxidative stability than ultra-high molecular weight polyethylene following gamma irradiation in air and exposure to a severe oxidative challenge. (c) 2010 Wiley Periodicals, Inc.

  7. Environmental cell assembly for use in for use in spectroscopy and microscopy applications

    DOEpatents

    Stowe, Ashley Clinton; Smyrl, Norman; Hallman, Jr., Russell L.

    2014-09-02

    An environmental cell assembly for use in microscopy and spectroscopy applications, including: an environmentally sealed body assembly configured to selectively hold and contain a sample; a plurality of ports manufactured into one or more surfaces of the body assembly for one or more of evacuating the body assembly and injecting a gas into or removing a gas from the body assembly; a port manufactured into a surface of the body assembly for receiving a translating stage configured to move the sample within the body assembly; and a port manufactured into a surface of the body assembly for receiving one or more lenses utilized in a microscopy or spectroscopy application; wherein the one or more lenses are disposed adjacent the sample without intervening structures disposed there between. The cell assembly also includes a port manufactured into a surface of the body assembly for retaining a window and providing visualization of the sample.

  8. Fermi GBM Observations of Terrestrial Gamma Flashes

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.; Briggs, M. S.; Fishman, G. J.; Bhat, P. N.; Paciesas, W. S.; Preece, R.; Kippen, R. M.; von Kienlin, A.; Dwyer, J. R.; Smith, D. M.; hide

    2010-01-01

    In its first two years of operation, the Fermi Gamma Ray Burst Monitor (GBM) has observed more than 77 Terrestrial Gamma Flashes (TGFs). The thick Bismuth Germanate (BGO) detectors are excellent for TGF spectroscopy, having a high probability of recording the full energy of an incident photon, spanning a broad energy range from 150 keV to 40 MeV, and recording a large number of photons per TGF. Correlations between GBM TGF triggers and lightning sferics detected with the World-Wide Lightning Location Network indicate that TGFs and lightning are simultaneous to within tens of microseconds. The energy spectra of some TGFs have strong 511 keV positron annihilation lines, indicating that these TGFs contain a large fraction of positrons

  9. Enrichment Meter Dataset from High-Resolution Gamma Spectroscopy Measurements of U3O8 Enrichment Standards and UF6 Cylinder Wall Equivalents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicholson, Andrew D.; Croft, Stephen; Shephard, Adam M.

    2015-12-01

    The Enrichment Meter Principle (EMP) is the basis for a commonly used standard test method for the non-destructive assay of 235U enrichment in bulk compounds [1]. The technique involves determining the net count rate in the direct 186 keV peak using medium or high energy gamma-ray spectrometry in a fixed geometry. With suitable correction for wall attenuation, compound type, rate loss (live time), and peaked background (if significant), the atom fraction of 235U may be obtained from the counting rate from a linear relationship through the origin. The widespread use of this method for field verification of enrichment [2,3] togethermore » with the fact that the response function rests on fundamental physics considerations (i.e., is not represented by a convenient but arbitrary form) makes it an interesting example of uncertainty quantification, one in which one can expect a valid measurement model can be applied. When applied using NaI(Tl) and region of interest analysis, the technique is susceptible to both interference error and bias [2-4]. When implemented using high-resolution gamma-ray spectroscopy, the spectrum interpretation is considerable simplified and more robust [5]. However, a practical challenge to studying the uncertainty budget of the EMP method (for example, to test linearity, extract wall corrections and so forth using modern methods) is the availability of quality experimental data that can be referenced and shared. To fill this gap, the research team undertook an experimental campaign [6]. A measurement campaign was conducted to produce high-resolution gamma spectroscopy enrichment meter data comparable to UF 6 cylinder measurements. The purpose of this report is to provide both an introduction to and quality assurance (QA) of the raw data produced. This report is intended for the analyst or researcher who uses the raw data. Unfortunately, the raw data (i.e., the spectra files) are too voluminous to include in this report but can be requested

  10. Detector optimization for hand-held CsI(Tl)/HgI{sub 2} gamma-ray scintillation spectrometer applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Y.J.; Patt, B.E.; Iwanczyk, J.S.

    Gamma-ray spectrometers using mercuric iodide (HgI{sub 2}) photodetectors (PDs) coupled with CsI(Tl) scintillators have shown excellent energy resolutions and high detection efficiency at room temperature. Additionally HgI{sub 2} semiconductor PDs allow for extreme miniaturization of the detector packaging compared with photomultiplier tube (PMT) based detectors. These advantages make possible the construction of a new generation of hand-held gamma-ray spectrometers. Studies of detector optimization for this application have been undertaken. Several contact materials including hydrogen and semi-transparent metal films have been evaluated and compared for their performances and long term stability. In order to provide higher gamma-ray detection efficiency (i.e., largermore » scintillator volume), but without causing significant degradation of the excellent response achieved with the matched scintillator/PD interface, the scintillator/PD configuration has been studied. A Monte Carlo simulation model has been developed so that the spectral shape can be predicted for various scintillator shapes and surface treatments.« less

  11. Performance of the prototype LaBr{sub 3} spectrometer developed for the JET gamma-ray camera upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rigamonti, D., E-mail: davide.rigamonti@mib.infn.it; Nocente, M.; Gorini, G.

    2016-11-15

    In this work, we describe the solution developed by the gamma ray camera upgrade enhancement project to improve the spectroscopic properties of the existing JET γ-ray camera. Aim of the project is to enable gamma-ray spectroscopy in JET deuterium-tritium plasmas. A dedicated pilot spectrometer based on a LaBr{sub 3} crystal coupled to a silicon photo-multiplier has been developed. A proper pole zero cancellation network able to shorten the output signal to a length of 120 ns has been implemented allowing for spectroscopy at MHz count rates. The system has been characterized in the laboratory and shows an energy resolution ofmore » 5.5% at E{sub γ} = 0.662 MeV, which extrapolates favorably in the energy range of interest for gamma-ray emission from fast ions in fusion plasmas.« less

  12. An MS-DOS-based program for analyzing plutonium gamma-ray spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruhter, W.D.; Buckley, W.M.

    1989-09-07

    A plutonium gamma-ray analysis system that operates on MS-DOS-based computers has been developed for the International Atomic Energy Agency (IAEA) to perform in-field analysis of plutonium gamma-ray spectra for plutonium isotopics. The program titled IAEAPU consists of three separate applications: a data-transfer application for transferring spectral data from a CICERO multichannel analyzer to a binary data file, a data-analysis application to analyze plutonium gamma-ray spectra, for plutonium isotopic ratios and weight percents of total plutonium, and a data-quality assurance application to check spectral data for proper data-acquisition setup and performance. Volume 3 contains the software listings for these applications.

  13. Application of laser Raman spectroscopy to dental diagnosis

    NASA Astrophysics Data System (ADS)

    Izawa, Takahiro; Wakaki, Moriaki

    2005-03-01

    The aim of this research is related with the diagnosis of caries by use of a laser. We study the fundamental characterization of the diagnosis method using both fluorescence and Raman scattering spectroscopy. We try to evaluate the possibility of the caries diagnosis using Raman spectroscopy and its clinical application. We focus on the PO34- ion that flows out with the dissolution of hydroxyapatite (HAp), and the fluorescence that increases in connection with caries. The Raman line of P-O vibration is overlapped on the continuous, background spectrum by fluorescence. Consequently, we try to find out the correlation between a healthy part and a carious part by analyzing both fluorescence and Raman spectra. It was found that Raman intensity of HAp at carious lesion was weaker than those of healthy parts and the florescence intensity at the same portions was stronger. We have obtained the feasibility to estimate the degree of caries and health condition by deriving the ratio between Raman and florescence intensity. And the trial measurements in vivo were carried out to verify the availability of the method by using a fiber probe type multi channel Raman spectrometer. The process of remineralization is under researching for the development of preventive medicine.

  14. An array of virtual Frisch-grid CdZnTe detectors and a front-end application-specific integrated circuit for large-area position-sensitive gamma-ray cameras.

    PubMed

    Bolotnikov, A E; Ackley, K; Camarda, G S; Cherches, C; Cui, Y; De Geronimo, G; Fried, J; Hodges, D; Hossain, A; Lee, W; Mahler, G; Maritato, M; Petryk, M; Roy, U; Salwen, C; Vernon, E; Yang, G; James, R B

    2015-07-01

    We developed a robust and low-cost array of virtual Frisch-grid CdZnTe detectors coupled to a front-end readout application-specific integrated circuit (ASIC) for spectroscopy and imaging of gamma rays. The array operates as a self-reliant detector module. It is comprised of 36 close-packed 6 × 6 × 15 mm(3) detectors grouped into 3 × 3 sub-arrays of 2 × 2 detectors with the common cathodes. The front-end analog ASIC accommodates up to 36 anode and 9 cathode inputs. Several detector modules can be integrated into a single- or multi-layer unit operating as a Compton or a coded-aperture camera. We present the results from testing two fully assembled modules and readout electronics. The further enhancement of the arrays' performance and reduction of their cost are possible by using position-sensitive virtual Frisch-grid detectors, which allow for accurate corrections of the response of material non-uniformities caused by crystal defects.

  15. Raman spectroscopy of graphene-based materials and its applications in related devices.

    PubMed

    Wu, Jiang-Bin; Lin, Miao-Ling; Cong, Xin; Liu, He-Nan; Tan, Ping-Heng

    2018-03-05

    Graphene-based materials exhibit remarkable electronic, optical, and mechanical properties, which has resulted in both high scientific interest and huge potential for a variety of applications. Furthermore, the family of graphene-based materials is growing because of developments in preparation methods. Raman spectroscopy is a versatile tool to identify and characterize the chemical and physical properties of these materials, both at the laboratory and mass-production scale. This technique is so important that most of the papers published concerning these materials contain at least one Raman spectrum. Thus, here, we systematically review the developments in Raman spectroscopy of graphene-based materials from both fundamental research and practical (i.e., device applications) perspectives. We describe the essential Raman scattering processes of the entire first- and second-order modes in intrinsic graphene. Furthermore, the shear, layer-breathing, G and 2D modes of multilayer graphene with different stacking orders are discussed. Techniques to determine the number of graphene layers, to probe resonance Raman spectra of monolayer and multilayer graphenes and to obtain Raman images of graphene-based materials are also presented. The extensive capabilities of Raman spectroscopy for the investigation of the fundamental properties of graphene under external perturbations are described, which have also been extended to other graphene-based materials, such as graphene quantum dots, carbon dots, graphene oxide, nanoribbons, chemical vapor deposition-grown and SiC epitaxially grown graphene flakes, composites, and graphene-based van der Waals heterostructures. These fundamental properties have been used to probe the states, effects, and mechanisms of graphene materials present in the related heterostructures and devices. We hope that this review will be beneficial in all the aspects of graphene investigations, from basic research to material synthesis and device applications.

  16. Study of the Nuclear Structure of 39P Using Beta-Delayed Gamma Spectroscopy

    NASA Astrophysics Data System (ADS)

    Abromeit, Brittany; NSCL Experiment E14063 Team Team

    2016-03-01

    Investigation of nuclei with neutron and proton imbalance is at the forefront of nuclear physics research today. This is driven by the fact that the structure in these regimes may vary with that seen near the valley of stability. With eight neutrons more than the stable isotope of phosphorous, 39P is a neutron-rich exotic nucleus that has very limited information on it: previous studies of 39P produce only three known energy levels and gamma rays. The fragmentation of a 48Ca primary beam on a 564mg/cm2 thick Be target at the National Superconducting Cyclotron Laboratory (NSCL) was used to produce exotic 39Si. Using the NSCL Beta Counting System (BCS), consisting of a thick planner germanium double-sided strip detector (GeDSSD) and 16 High-purity germanium detectors in an array, SeGA, the beta-gamma coincidences from the decay of 39Si to 39P were analyzed. The resulting level scheme of 39P, including over 12 new gamma rays and energy states, confirmation of the previously measured half-life, and first-time logft values will be presented. This work was supported by the NSF under Grant No. 1401574.

  17. One- and two-dimensional pulse electron paramagnetic resonance spectroscopy: concepts and applications.

    PubMed

    Van Doorslaer, S; Schweiger, A

    2000-06-01

    During the last two decades, the possibilities of pulse electron paramagnetic resonance (EPR) and pulse electron nuclear double resonance (ENDOR) spectroscopy have increased tremendously. While at the beginning of the 1980s pulse-EPR and ENDOR applications were still a rarity, the techniques are now very frequently applied in chemistry, physics, materials science, biology and mineralogy. This is mainly due to the considerable efforts invested in the last few years on instrument development and pulse-sequence design. Pulse-EPR spectrometers are now commercially available, which enables many research groups to use these techniques. In this work, an overview of state-of-the-art pulse EPR and ENDOR spectroscopy is given. The rapid expansion of the field, however, does not allow us to give an exhaustive record of all the pulse methods introduced so far. After a brief and very qualitative description of the basic principles of pulse EPR, we discuss some of the experiments in more detail and illustrate the potential of the methods with a number of selected applications.

  18. Frontiers of two-dimensional correlation spectroscopy. Part 2. Perturbation methods, fields of applications, and types of analytical probes

    NASA Astrophysics Data System (ADS)

    Noda, Isao

    2014-07-01

    Noteworthy experimental practices, which are advancing forward the frontiers of the field of two-dimensional (2D) correlation spectroscopy, are reviewed with the focus on various perturbation methods currently practiced to induce spectral changes, pertinent examples of applications in various fields, and types of analytical probes employed. Types of perturbation methods found in the published literature are very diverse, encompassing both dynamic and static effects. Although a sizable portion of publications report the use of dynamic perturbatuions, much greater number of studies employ static effect, especially that of temperature. Fields of applications covered by the literature are also very broad, ranging from fundamental research to practical applications in a number of physical, chemical and biological systems, such as synthetic polymers, composites and biomolecules. Aside from IR spectroscopy, which is the most commonly used tool, many other analytical probes are used in 2D correlation analysis. The ever expanding trend in depth, breadth and versatility of 2D correlation spectroscopy techniques and their broad applications all point to the robust and healthy state of the field.

  19. Smart poly(oligo(propylene glycol) methacrylate) hydrogel prepared by gamma radiation

    NASA Astrophysics Data System (ADS)

    Suljovrujic, E.; Micic, M.

    2015-01-01

    The synthesis of poly(oligo(propylene glycol) methacrylate) (POPGMA) from functionalised oligo(propylene glycol) methacrylate (OPGMA) monomers by gamma radiation-induced radical polymerisation is reported for the first time; POPGMA homopolymeric hydrogel with oligo(propylene glycol) (OPG) pendant chains, as a non-linear PPGMA-analogue, was synthesised from an monomer-solvent (OPGMA375-water/ethanol) mixture at different irradiation doses (5, 10, 25, and 40 kGy). Determination of the gel fraction was conducted after synthesis. The swelling properties of the POPGMA hydrogel were preliminarily investigated over wide pH (2.2-9.0) and temperature (4-70 °C) ranges. Additional characterisation of structure and properties was conducted by UV-vis and Fourier transform infrared (FTIR) spectroscopy as well as by differential scanning calorimetry (DSC). In order to evaluate the potential for biomedical applications, biocompatibility (cytocompatibility and haemolytic activity) studies were performed as well. Sol-gel conversion was relatively high for all irradiation doses, indicating radiation-induced synthesis as a good method for fabricating this hydrogel. Thermoresponsiveness and variations in swelling capacity as a result of thermosensitive OPG pendant chains with a lower critical solution temperature (LCST) were mainly observed below room temperature; thus, the volume phase transition temperature (VPTT) of POPGMA homopolymeric hydrogel is about 15 °C. Furthermore, POPGMA has satisfactory biocompatibility. The results indicate that the hydrogels with propylene glycol pendant chains can be easily prepared by gamma radiation and have potential for different applications as smart and biocompatible polymers.

  20. The Z {yields} cc-bar {yields} {gamma}{gamma}*, Z {yields} bb-bar {yields} {gamma}{gamma}* triangle diagrams and the Z {yields} {gamma}{psi}, Z {yields} {gamma}Y decays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achasov, N. N., E-mail: achasov@math.nsc.ru

    2011-03-15

    The approach to the Z {yields} {gamma}{psi} and Z {yields} {gamma}Y decay study is presented in detail, based on the sum rules for the Z {yields} cc-bar {yields} {gamma}{gamma}* and Z {yields} bb-bar {yields} {gamma}{gamma}* amplitudes and their derivatives. The branching ratios of the Z {yields} {gamma}{psi} and Z {yields} {gamma}Y decays are calculated for different hypotheses on saturation of the sum rules. The lower bounds of {Sigma}{sub {psi}} BR(Z {yields} {gamma}{psi}) = 1.95 Multiplication-Sign 10{sup -7} and {Sigma}{sub {upsilon}} BR(Z {yields} {gamma}Y) = 7.23 Multiplication-Sign 10{sup -7} are found. Deviations from the lower bounds are discussed, including the possibilitymore » of BR(Z {yields} {gamma}J/{psi}(1S)) {approx} BR(Z {yields} {gamma}Y(1S)) {approx} 10{sup -6}, that could be probably measured in LHC. The angular distributions in the Z {yields} {gamma}{psi} and Z {yields} {gamma}Y decays are also calculated.« less

  1. Implications of Gamma-Ray Transparency Constraints in Blazars: Minimum Distances and Gamma-Ray Collimation

    NASA Technical Reports Server (NTRS)

    Becker, Peter A.; Kafatos, Menas

    1995-01-01

    We develop a general expression for the gamma - gamma absorption coefficient, alpha(sub gamma(gamma)) for gamma-rays propagating in an arbitrary direction at an arbitrary point in space above an X-ray-emitting accretion disk. The X-ray intensity is assumed to vary as a power law in energy and radius between the outer disk radius, R(sub 0), and the inner radius, R(sub ms) which is the radius of marginal stability for a Schwarzschild black hole. We use our result for alpha(sub gamma(gamma)) to calculate the gamma - gamma optical depth, tau(sub gamma(gamma)) for gamma - rays created at height z and propagating at angle Phi relative to the disk axis, and we show that for Phi = 0 and z greater than or approx equal to R(sub 0), tau(sub gamma(gamma)) proportional to Epsilon(sup alpha)z(sup -2(alpha) - 3), where alpha is the X-ray spectral index and Epsilon is the gamma - ray energy. As an application, we use our formalism to compute the minimum distance between the central black hole and the site of production of the gamma-rays detected by EGRET during the 1991 June flare of 3C 279. In order to obtain an upper limit, we assume that all of the X-rays observed contemporaneously by Ginga were emitted by the disk. Our results suggest that the observed gamma - rays may have originated within less than or approx equal to 45 GM/sq c from a black hole of mass greater than or approx equal to 10(exp 9) solar mass, perhaps in active plasma located above the central funnel of the accretion disk. This raises the possibility of establishing a direct connection between the production of the observed gamma - rays and the accretion of material onto the black hole. We also consider the variation of the optical depth as a function of the angle of propagation Phi. Our results indicate that the "focusing" of the gamma - rays along the disk axis due to pair production is strong enough to explain the observed degree of alignment in blazar sources. If the gamma - rays are produced isotropically

  2. Exfoliated graphite with graphene flakes as potential candidates for TL dosimeters at high gamma doses.

    PubMed

    Ortiz-Morales, A; López-González, E; Rueda-Morales, G; Ortega-Cervantez, G; Ortiz-Lopez, J

    2018-06-06

    Graphite powder (GP) subjected to microwave radiation (MWG) results in exfoliation of graphite particles into few-layered graphene flakes (GF) intermixed with partially exfoliated graphite particles (PEG). Characterization of MWG by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and Raman spectroscopy reveal few-layer GF with sizes ranging from 0.2 to 5 µm. Raman D, G, and 2D (G') bands characteristic of graphitic structures include evidence of the presence of bilayered graphene. The thermoluminescent (TL) dosimetric properties of MWG are evaluated and can be characterized as a gamma-ray sensitive and dose-resistant material with kinetic parameters (activation energy for the main peak located at 400 and 408 K is 0.69 and 0.72 eV) and threshold dose (~1 kGy and 5 kGy respectively). MWG is a low-Z material (Z eff = 6) with a wide linear range of TL dose-response (0.170-2.5 kGy) tested at doses in the 1-20 kGy range with promising results for applications in gamma-ray dosimetry. Results obtained in gamma irradiated MWG are compared with those obtained in graphite powder samples (GP) without microwave treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Raman-spectroscopy-based biosensing for applications in ophthalmology

    NASA Astrophysics Data System (ADS)

    Rusciano, Giulia; Capriglione, Paola; Pesce, Giuseppe; Zito, Gianluigi; Del Prete, Antonio; Cennamo, Giovanni; Sasso, Antonio

    2013-05-01

    Cell-based biosensors rely on the detection and identification of single cells as well as monitoring of changes induced by interaction with drugs and/or toxic agents. Raman spectroscopy is a powerful tool to reach this goal, being non-destructive analytical technique, allowing also measurements of samples in aqueous environment. In addition, micro-Raman measurements do not require preliminary sample preparation (as in fluorescence spectroscopy), show a finger-print spectral response, allow a spatial resolution below typical cell sizes, and are relatively fast (few s or even less). All these properties make micro-Raman technique particularly promising for high-throughput on-line analysis integrated in lab-on-a-chip devices. Herein, we demonstrate some applications of Raman analysis in ophthalmology. In particular, we demonstrate that Raman analysis can provide useful information for the therapeutic treatment of keratitis caused by Acanthamoeba Castellanii (A.), an opportunistic protozoan that is widely distributed in the environment and is known to produce blinding keratitis and fatal encephalitis. In particular, by combining Raman analysis with Principal Component Analysis (PCA), we have demonstrated that is possible to distinguish between live and dead cells, enabling, therefore to establish the effectiveness of therapeutic strategies to vanquish the protozoa. As final step, we have analyzed the presence of biochemical differences in the conjunctival epithelial tissues of patients affected by keratitis with respect to healthy people. As a matter of facts, it is possible to speculate some biochemical alterations of the epithelial tissues, rendering more favorable the binding of the protozoan. The epithelial cells were obtained by impression cytology from eyes of both healthy and keratitis-affected individuals. All the samples were analyzed by Raman spectroscopy within a few hours from cells removal from eyes. The results of this analysis are discussed.

  4. Gamma ray constraints on the Galactic supernova rate

    NASA Technical Reports Server (NTRS)

    Hartmann, D.; The, L.-S.; Clayton, Donald D.; Leising, M.; Mathews, G.; Woosley, S. E.

    1991-01-01

    We perform Monte Carlo simulations of the expected gamma ray signatures of Galactic supernovae of all types to estimate the significance of the lack of a gamma ray signal due to supernovae occurring during the last millenium. Using recent estimates of the nuclear yields, we determine mean Galactic supernova rates consistent with the historic supernova record and the gamma ray limits. Another objective of these calculations of Galactic supernova histories is their application to surveys of diffuse Galactic gamma ray line emission.

  5. Gamma ray constraints on the galactic supernova rate

    NASA Technical Reports Server (NTRS)

    Hartmann, D.; The, L.-S.; Clayton, D. D.; Leising, M.; Mathews, G.; Woosley, S. E.

    1992-01-01

    Monte Carlo simulations of the expected gamma-ray signatures of galactic supernovae of all types are performed in order to estimate the significance of the lack of a gamma-ray signal due to supernovae occurring during the last millenium. Using recent estimates of nuclear yields, we determine galactic supernova rates consistent with the historic supernova record and the gamma-ray limits. Another objective of these calculations of galactic supernova histories is their application to surveys of diffuse galactic gamma-ray line emission.

  6. Thermodynamic confinement and alpha-helix persistence length in poly(gamma-benzyl-L-glutamate)-b-poly(dimethyl siloxane)-b-poly(gamma-benzyl-L-glutamate) triblock copolymers.

    PubMed

    Papadopoulos, P; Floudas, G; Schnell, I; Lieberwirth, I; Nguyen, T Q; Klok, H-A

    2006-02-01

    The structure and the associated dynamics of a series of poly(gamma-benzyl-L-glutamate)-b-poly(dimethyl siloxane)-b-poly(gamma-benzyl-L-glutamate) (PBLG-b-PDMS-b-PBLG) triblock copolymers were investigated using small- and wide-angle X-ray scattering, NMR, transmission electron microscopy, and dielectric spectroscopy, respectively. The structural analysis revealed phase separation in the case of the longer blocks with defected alpha-helical segments embedded within the block copolymer nanodomains. The alpha-helical persistence length was found to depend on the degree of segregation; thermodynamic confinement and chain stretching results in the partial annihilation of helical defects.

  7. Thermally stimulated capacitance in gamma irradiated epitaxial 4H-SiC Schottky barrier diodes

    NASA Astrophysics Data System (ADS)

    Vigneshwara Raja, P.; Narasimha Murty, N. V. L.

    2018-04-01

    Deep level defects in 4H-SiC Schottky barrier diodes (SBDs) fabricated on n-type epitaxial 4H-SiC have been identified by thermally stimulated capacitance (TSCAP) spectroscopy prior to and after 60Co-gamma irradiation. The TSCAP measurements on the non-irradiated SBDs reveal two electron traps at Ec-0.63 eV (˜250 K) and Ec-1.13 eV (˜525 K), whereas only one trap at Ec-0.63 eV is identified by conventional thermally stimulated current (TSC) measurements. Hence, TSCAP spectroscopy is more effective in identifying deep level defects in epitaxial 4 H-SiC SBDs as compared to the TSC spectroscopy. Upon exposure to 60Co-gamma rays up to a dose of 100 Mrad, significant changes in the concentration of the traps at Ec-0.63 eV, Ec-1.13 eV, and one new trap at Ec-0.89 eV (˜420 K) are observed. The electrical characteristics of the SBDs are considerably changed after gamma irradiation. The dominant mechanisms responsible for the irradiation induced changes in the SBD electrical characteristics are analyzed by incorporating the trap signatures in the commercial Silvaco® TCAD device simulator. The extracted trap parameters of the irradiated SBDs may be helpful in predicting the survival of 4H-SiC SBD detectors at higher irradiation levels.

  8. Electron-positron pair production by gamma-rays in an anisotropic flux of soft photons, and application to pulsar polar caps

    NASA Astrophysics Data System (ADS)

    Voisin, Guillaume; Mottez, Fabrice; Bonazzola, Silvano

    2018-02-01

    Electron-positron pair production by collision of photons is investigated in view of application to pulsar physics. We compute the absorption rate of individual gamma-ray photons by an arbitrary anisotropic distribution of softer photons, and the energy and angular spectrum of the outgoing leptons. We work analytically within the approximation that 1 ≫ mc2/E > ɛ/E, with E and ɛ the gamma-ray and soft-photon maximum energy and mc2 the electron mass energy. We give results at leading order in these small parameters. For practical purposes, we provide expressions in the form of Laurent series which give correct reaction rates in the isotropic case within an average error of ˜ 7 per cent. We apply this formalism to gamma-rays flying downward or upward from a hot neutron star thermally radiating at a uniform temperature of 106 K. Other temperatures can be easily deduced using the relevant scaling laws. We find differences in absorption between these two extreme directions of almost two orders of magnitude, much larger than our error estimate. The magnetosphere appears completely opaque to downward gamma-rays while there are up to ˜ 10 per cent chances of absorbing an upward gamma-ray. We provide energy and angular spectra for both upward and downward gamma-rays. Energy spectra show a typical double peak, with larger separation at larger gamma-ray energies. Angular spectra are very narrow, with an opening angle ranging from 10-3 to 10-7 radians with increasing gamma-ray energies.

  9. Optical study of gamma irradiated sodium metaphosphate glasses containing divalent metal oxide MO (ZnO or CdO)

    NASA Astrophysics Data System (ADS)

    Nabhan, E.; Abd-Allah, W. M.; Ezz-El-Din, F. M.

    Sodium metaphosphate glasses containing divalent metal oxide, ZnO or CdO with composition 50 P2O5 - (50 - x) Na2O - x MO (ZnO, or CdO) where x = 0, 10, 20 (mol%) were prepared by conventional melt method. UV/visible spectroscopy and FTIR spectroscopy are measured before and after exposing to successive gamma irradiation doses (5-80 kGy). The optical absorption spectra results of the samples before irradiation reveal a strong UV absorption band at (∼230 nm) which is related to unavoided iron impurities. The effects of gamma irradiation on the optical spectral properties of the various glasses have been compared. From the optical absorption spectral data, the optical band gap is evaluated. The main structural groups and the influence of both divalent metal oxide and gamma irradiation effect on the structural vibrational groups are realized through IR spectroscopy. The FTIR spectra of γ-irradiated samples are characterized by the stability of the number and position for the main characteristic band of phosphate groups. To better understood the structural changes during γ-irradiation, a deconvolution of FTIR spectra in the range 650-1450 cm-1 is made. The FTIR deconvolution results found evidence that, the changes occurring after gamma irradiation have been related to irradiation induced structural defects and compositional changes.

  10. Synthesis and characterization of molybdenum catalysts supported on {gamma}-Al{sub 2}O{sub 3}-CeO{sub 2} composite oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farooq, Muhammad; Ramli, Anita; Subbarao, Duvvuri

    2012-09-26

    The physical and chemical properties of a catalyst play a vital role in various industrial applications. Molybdenum catalysts supported on {gamma}-Al{sub 2}O{sub 3} and {gamma}-Al{sub 2}O{sub 3}-CeO{sub 2} mixed oxides with varying loading of CeO{sub 2} (5, 10, 15, 20 wt% with respect to {gamma}-Al{sub 2}O{sub 3}) were prepared by wet impregnation method. The physiochemical properties of these synthesized Mo catalysts were studied with various characterization techniques such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), temperature-programmed reduction (TPR), field emission scanning electron microscopy-energy dispersive analysis (FESEM-EDX) and X-ray fluorescence spectrometer (XRF). The results showed that the addition of CeO{submore » 2} into the support affected the binding energies of the elements and reducibility of the metal oxides formed after calcination of catalyst samples due to the change in metal-support interaction. Further, the characterization techniques showed that the active metal was well dispersed on the surface of support material.« less

  11. Application of Near Infrared Spectroscopy, Intravascular Ultrasound and the Coronary Calcium Score to Predict Adverse Coronary Events

    DTIC Science & Technology

    2015-10-01

    planned. 15. SUBJECT TERMS coronary artery disease , near infrared spectroscopy, calcium scoring, intravascular ultrasound 16. SECURIY CLASSIFICATION OF...Award Number: W81XWH-11-1-0831 TITLE: Application of Near Infrared Spectroscopy, Intravascular Ultrasound and the Coronary Calcium Score to...Predict Adverse Coronary Events PRINCIPAL INVESTIGATOR: Dr. Charles Lambert CONTRACTING ORGANIZATION: University Community Hospital Tampa, FL 33613

  12. Low-background gamma spectroscopy at the Boulby Underground Laboratory

    NASA Astrophysics Data System (ADS)

    Scovell, P. R.; Meehan, E.; Araújo, H. M.; Dobson, J.; Ghag, C.; Kraus, H.; Kudryavtsev, V. A.; Liu, X.-. R.; Majewski, P.; Paling, S. M.; Preece, R. M.; Saakyan, R.; Tomás, A.; Toth, C.; Yeoman, L. M.

    2018-01-01

    The Boulby Underground Germanium Suite (BUGS) comprises three low-background, high-purity germanium detectors operating in the Boulby Underground Laboratory, located 1.1 km underground in the north-east of England, UK. BUGS utilises three types of detector to facilitate a high-sensitivity, high-throughput radio-assay programme to support the development of rare-event search experiments. A Broad Energy Germanium (BEGe) detector delivers sensitivity to low-energy gamma-rays such as those emitted by 210Pb and 234Th. A Small Anode Germanium (SAGe) well-type detector is employed for efficient screening of small samples. Finally, a standard p-type coaxial detector provides fast screening of standard samples. This paper presents the steps used to characterise the performance of these detectors for a variety of sample geometries, including the corrections applied to account for cascade summing effects. For low-density materials, BUGS is able to radio-assay to specific activities down to 3.6mBqkg-1 for 234Th and 6.6mBqkg-1 for 210Pb both of which have uncovered some significant equilibrium breaks in the 238U chain. In denser materials, where gamma-ray self-absorption increases, sensitivity is demonstrated to specific activities of 0.9mBqkg-1 for 226Ra, 1.1mBqkg-1 for 228Ra, 0.3mBqkg-1 for 224Ra, and 8.6mBqkg-1 for 40K with all upper limits at a 90% confidence level. These meet the requirements of most screening campaigns presently under way for rare-event search experiments, such as the LUX-ZEPLIN (LZ) dark matter experiment. We also highlight the ability of the BEGe detector to probe the X-ray fluorescence region which can be important to identify the presence of radioisotopes associated with neutron production; this is of particular relevance in experiments sensitive to nuclear recoils.

  13. Application of fluorescence spectroscopy and imaging in the detection of a photosensitizer in photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Zang, Lixin; Zhao, Huimin; Zhang, Zhiguo; Cao, Wenwu

    2017-02-01

    Photodynamic therapy (PDT) is currently an advanced optical technology in medical applications. However, the application of PDT is limited by the detection of photosensitizers. This work focuses on the application of fluorescence spectroscopy and imaging in the detection of an effective photosenzitizer, hematoporphyrin monomethyl ether (HMME). Optical properties of HMME were measured and analyzed based on its absorption and fluorescence spectra. The production mechanism of its fluorescence emission was analyzed. The detection device for HMME based on fluorescence spectroscopy was designed. Ratiometric method was applied to eliminate the influence of intensity change of excitation sources, fluctuates of excitation sources and photo detectors, and background emissions. The detection limit of this device is 6 μg/L, and it was successfully applied to the diagnosis of the metabolism of HMME in the esophageal cancer cells. To overcome the limitation of the point measurement using fluorescence spectroscopy, a two-dimensional (2D) fluorescence imaging system was established. The algorithm of the 2D fluorescence imaging system is deduced according to the fluorescence ratiometric method using bandpass filters. The method of multiple pixel point addition (MPPA) was used to eliminate fluctuates of signals. Using the method of MPPA, SNR was improved by about 30 times. The detection limit of this imaging system is 1.9 μg/L. Our systems can be used in the detection of porphyrins to improve the PDT effect.

  14. Analysis and application of Fourier transform spectroscopy in atmospheric remote sensing

    NASA Technical Reports Server (NTRS)

    Park, J. H.

    1984-01-01

    An analysis method for Fourier transform spectroscopy is summarized with applications to various types of distortion in atmospheric absorption spectra. This analysis method includes the fast Fourier transform method for simulating the interferometric spectrum and the nonlinear least-squares method for retrieving the information from a measured spectrum. It is shown that spectral distortions can be simulated quite well and that the correct information can be retrieved from a distorted spectrum by this analysis technique.

  15. Fluorescence correlation spectroscopy: principles and applications.

    PubMed

    Bacia, Kirsten; Haustein, Elke; Schwille, Petra

    2014-07-01

    Fluorescence correlation spectroscopy (FCS) is used to study the movements and the interactions of biomolecules at extremely dilute concentrations, yielding results with good spatial and temporal resolutions. Using a number of technical developments, FCS has become a versatile technique that can be used to study a variety of sample types and can be advantageously combined with other methods. Unlike other fluorescence-based techniques, the analysis of FCS data is not based on the average intensity of the fluorescence emission but examines the minute intensity fluctuations caused by spontaneous deviations from the mean at thermal equilibrium. These fluctuations can result from variations in local concentrations owing to molecular mobility or from characteristic intermolecular or intramolecular reactions of fluorescently labeled biomolecules present at low concentrations. Here, we provide a basic introduction to FCS, including its technical development and theoretical basis, experimental setup of an FCS system, adjustment of a setup, data acquisition, and analysis of FCS measurements. Finally, the application of FCS to the study of lipid bilayer membranes and to living cells is discussed. © 2014 Cold Spring Harbor Laboratory Press.

  16. Piezoelectric wafer active sensors under gamma radiation exposure toward applications for structural health monitoring of nuclear dry cask storage systems

    NASA Astrophysics Data System (ADS)

    Faisal Haider, Mohammad; Mei, Hanfei; Lin, Bin; Yu, Lingyu; Giurgiutiu, Victor; Lam, Poh-Sang; Verst, Christopher

    2018-03-01

    Structural health monitoring (SHM) is in urgent need and must be integrated into the nuclear-spent fuel storage systems to guarantee the safe operation. The dry cask storage system (DCSS) is such storage facility, which is licensed for temporary storage for nuclear-spent fuel at the independent spent fuel storage installations (ISFSIs) for certain predetermined period of time. Gamma radiation is one of the major radiation sources near DCSS. Therefore, a detailed experimental investigation was completed on the gamma radiation endurance of piezoelectric wafer active sensors (PWAS) transducers for SHM applications to the DCSS system. The irradiation test was done in a Co-60 gamma irradiator. Lead Zirconate Titanate (PZT) and Gallium Orthophosphate (GaPO4) PWAS transducers were exposed to 40.7 kGy gamma radiation. Total radiation dose was achieved in two different radiation dose rates: (a) slower radiation rate at 0.1 kGy/hr for 20 hours (b) accelerated radiation rate at 1.233 kGy/hr for 32 hours. The total cumulative radiation dose of 40.7 kGy is equivalent to 45 years of operation in DCSS system. Electro-mechanical impedance and admittance (EMIA) signatures and electrical capacitance were measured to evaluate the PWAS performance after each gamma radiation exposure. The change in resonance frequency of PZT-PWAS transducer for both in-plane and thickness mode was observed. The GaPO4-PWAS EMIA spectra do not show a significant shift in resonance frequency after gamma irradiation exposure. Radiation endurance of new high-temperature HPZ-HiT PWAS transducer was also evaluated. The HPZ-HiT transducers were exposed to gamma radiation at 1.233 kGy/hr for 160 hours with 80 hours interval. Therefore, the total accumulated gamma radiation dose is 184 kGy. No significant change in impedance spectra was observed due to gamma radiation exposure.

  17. Creating poly(ethylene glycol) film on the surface of NiTi alloy by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Yu, Hongyan; Yan, Jin; Ma, Huiling; Zeng, Xinmiao; Liu, Yang; Zhao, Xinqing

    2015-07-01

    NiTi alloy has been extensively utilized as biomaterials owing to its unique shape memory effect, superelasticity and biocompatibility. However, concern with the toxic and allergic responses of nickel potentially releasing from implants stimulated lots of researches of modification on NiTi alloy surface. Creating chemical bond attachment of bioorganic film on NiTi alloy surface could effectively inhibit Ni releasing and obtain bioactive functions for further application. In this work, to get a bioorganic surface, NiTi alloy was modified with poly(ethylene glycol) (PEG) film by gamma ray induced grafting or crosslinking. X-ray diffraction (XRD) spectrum, water contact angle geometer and X-ray photoelectron spectroscopy (XPS) techniques were used to characterize the NiTi surface. The results indicated that PEG was covalent bonded on NiTi alloy surface. Fluorescence microscope (FM) images for morphology of 1 day osteoblast culture on the PEG coated NiTi surface showed that PEG could improve cell proliferation on NiTi surface. Our work offers a way to introduce a bioorganic metal surface by gamma irradiation.

  18. Sky and Elemental Planetary Mapping Via Gamma Ray Emissions

    NASA Technical Reports Server (NTRS)

    Roland, John M.

    2011-01-01

    Low-energy gamma ray emissions ((is) approximately 30keV to (is) approximately 30MeV) are significant to astrophysics because many interesting objects emit their primary energy in this regime. As such, there has been increasing demand for a complete map of the gamma ray sky, but many experiments to do so have encountered obstacles. Using an innovative method of applying the Radon Transform to data from BATSE (the Burst And Transient Source Experiment) on NASA's CGRO (Compton Gamma-Ray Observatory) mission, we have circumvented many of these issues and successfully localized many known sources to 0.5 - 1 deg accuracy. Our method, which is based on a simple 2-dimensional planar back-projection approximation of the inverse Radon transform (familiar from medical CAT-scan technology), can thus be used to image the entire sky and locate new gamma ray sources, specifically in energy bands between 200keV and 2MeV which have not been well surveyed to date. Samples of these results will be presented. This same technique can also be applied to elemental planetary surface mapping via gamma ray spectroscopy. Due to our method's simplicity and power, it could potentially improve a current map's resolution by a significant factor.

  19. Inverse Analysis of Irradiated NuclearMaterial Gamma Spectra via Nonlinear Optimization

    NASA Astrophysics Data System (ADS)

    Dean, Garrett James

    Nuclear forensics is the collection of technical methods used to identify the provenance of nuclear material interdicted outside of regulatory control. Techniques employed in nuclear forensics include optical microscopy, gas chromatography, mass spectrometry, and alpha, beta, and gamma spectrometry. This dissertation focuses on the application of inverse analysis to gamma spectroscopy to estimate the history of pulse irradiated nuclear material. Previous work in this area has (1) utilized destructive analysis techniques to supplement the nondestructive gamma measurements, and (2) been applied to samples composed of spent nuclear fuel with long irradiation and cooling times. Previous analyses have employed local nonlinear solvers, simple empirical models of gamma spectral features, and simple detector models of gamma spectral features. The algorithm described in this dissertation uses a forward model of the irradiation and measurement process within a global nonlinear optimizer to estimate the unknown irradiation history of pulse irradiated nuclear material. The forward model includes a detector response function for photopeaks only. The algorithm uses a novel hybrid global and local search algorithm to quickly estimate the irradiation parameters, including neutron fluence, cooling time and original composition. Sequential, time correlated series of measurements are used to reduce the uncertainty in the estimated irradiation parameters. This algorithm allows for in situ measurements of interdicted irradiated material. The increase in analysis speed comes with a decrease in information that can be determined, but the sample fluence, cooling time, and composition can be determined within minutes of a measurement. Furthermore, pulse irradiated nuclear material has a characteristic feature that irradiation time and flux cannot be independently estimated. The algorithm has been tested against pulse irradiated samples of pure special nuclear material with cooling times of

  20. Mössbauer study of the effect of gamma irradiation on the removal of pyrite from Colombian coals

    NASA Astrophysics Data System (ADS)

    Mejía, J. A.; Reyes Caballero, F.; Palacio, C. A.; de Grave, E.; Olaya Dávila, H.; Martínez Ovalle, S. A.

    2014-04-01

    The removal of sulfur from the coals is necessary before using it. It is due to the environmental and technological problems that it causes. In this work, the results of the study by Mössbauer spectroscopy of the gamma-irradiation effect on the pyrite in three Colombian coals are analyzed. They were exposed to different gamma-irradiation doses using a 60Co source.

  1. 103Rh NMR spectroscopy and its application to rhodium chemistry.

    PubMed

    Ernsting, Jan Meine; Gaemers, Sander; Elsevier, Cornelis J

    2004-09-01

    Rhodium is used for a number of large processes that rely on homogeneous rhodium-catalyzed reactions, for instance rhodium-catalyzed hydroformylation of alkenes, carbonylation of methanol to acetic acid and hydrodesulfurization of thiophene derivatives (in crude oil). Many laboratory applications in organometallic chemistry and catalysis involve organorhodium chemistry and a wealth of rhodium coordination compounds is known. For these and other areas, 103Rh NMR spectroscopy appears to be a very useful analytical tool. In this review, most of the literature concerning 103Rh NMR spectroscopy published from 1989 up to and including 2003 has been covered. After an introduction to several experimental methods for the detection of the insensitive 103Rh nucleus, a discussion of factors affecting the transition metal chemical shift is given. Computational aspects and calculations of chemical shifts are also briefly addressed. Next, the application of 103Rh NMR in coordination and organometallic chemistry is elaborated in more detail by highlighting recent developments in measurement and interpretation of 103Rh NMR data, in relation to rhodium-assisted reactions and homogeneous catalysis. The dependence of the 103Rh chemical shift on the ligands at rhodium in the first coordination sphere, on the complex geometry, oxidation state, temperature, solvent and concentration is treated. Several classes of compounds and special cases such as chiral rhodium compounds are reviewed. Finally, a section on scalar coupling to rhodium is provided. 2004 John Wiley & Sons, Ltd.

  2. Special Nuclear Material Gamma-Ray Signatures for Reachback Analysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karpius, Peter Joseph; Myers, Steven Charles

    2016-08-29

    These are slides on special nuclear material gamma-ray signatures for reachback analysts for an LSS Spectroscopy course. The closing thoughts for this presentation are the following: SNM materials have definite spectral signatures that should be readily recognizable to analysts in both bare and shielded configurations. One can estimate burnup of plutonium using certain pairs of peaks that are a few keV apart. In most cases, one cannot reliably estimate uranium enrichment in an analogous way to the estimation of plutonium burnup. The origin of the most intense peaks from some SNM items may be indirect and from ‘associated nuclides.' Indirectmore » SNM signatures sometimes have commonalities with the natural gamma-ray background.« less

  3. Fourier transform infrared spectroscopic study of gamma irradiated SiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Huseynov, Elchin; Garibov, Adil; Mehdiyeva, Ravan; Huseynova, Efsane

    2018-03-01

    In the present work, nano SiO2 particles are investigated before and after gamma irradiation (25, 50, 75, 100 and 200 kGy) using Fourier transform infrared (FTIR) spectroscopy method for the wavenumber between 400-4000 cm-1. It is found that as a result of spectroscopic analysis, five new peaks have appeared after gamma radiation. Two of new obtained peaks (which are located at 687 cm-1 and 2357 cm-1 of wavenumber) were formed as a result of gamma radiation interaction with Si-O bonds. Another three new peaks (peaks appropriate to 941, 2052 and 2357 cm-1 values of wavenumber) appear as a result of interaction of water with nano SiO2 particles after gamma irradiation. It has been defined as asymmetrical bending vibration, symmetrical bending vibration, symmetrical stretching vibration and asymmetrical stretching vibration of Si-O bonds appropriate to peaks.

  4. Design and Mechanical Stability Analysis of the Interaction Region for the Inverse Compton Scattering Gamma-Ray Source Using Finite Element Method

    NASA Astrophysics Data System (ADS)

    Khizhanok, Andrei

    Development of a compact source of high-spectral brilliance and high impulse frequency gamma rays has been in scope of Fermi National Accelerator Laboratory for quite some time. Main goal of the project is to develop a setup to support gamma rays detection test and gamma ray spectroscopy. Potential applications include but not limited to nuclear astrophysics, nuclear medicine, oncology ('gamma knife'). Present work covers multiple interconnected stages of development of the interaction region to ensure high levels of structural strength and vibrational resistance. Inverse Compton scattering is a complex phenomenon, in which charged particle transfers a part of its energy to a photon. It requires extreme precision as the interaction point is estimated to be 20 microm. The slightest deflection of the mirrors will reduce effectiveness of conversion by orders of magnitude. For acceptable conversion efficiency laser cavity also must have >1000 finesse value, which requires a trade-off between size, mechanical stability, complexity, and price of the setup. This work focuses on advantages and weak points of different designs of interaction regions as well as in-depth description of analyses performed. This includes laser cavity amplification and finesse estimates, natural frequency mapping, harmonic analysis. Structural analysis is required as interaction must occur under high vacuum conditions.

  5. Fiber based infrared lasers and their applications in medicine, spectroscopy and metrology

    NASA Astrophysics Data System (ADS)

    Alexander, Vinay Varkey

    In my thesis, I have demonstrated the development of fiber based infrared lasers and devices for applications in medicine, spectroscopy and metrology. One of the key accomplishments presented in this thesis for medical applications is the demonstration of a focused infrared laser to perform renal denervation both in vivo and in vitro. Hypertension is a significant health hazard in the US and throughout the world, and the laser based renal denervation procedure may be a potential treatment for resistant hypertension. Compared to current treatment modalities, lasers may be able to perform treatments with lesser collateral tissue damage and quicker treatment times helping to reduce patient discomfort and pain. An additional medical application demonstrated in this thesis is the use of infrared fiber lasers to damage sebaceous glands in human skin as a potential treatment for acne. Another significant work presented in this thesis is a field trial performed at the Wright Patterson Air Force Base using a Short Wave Infrared (SWIR) Supercontinuum (SC) laser as an active illumination source for long distance reflectance measurements. In this case, an SC laser developed as part of this thesis is kept on a 12 story tower and propagated through the atmosphere to a target kept 1.6 km away and used to perform spectroscopy measurements. In the future this technology may permit 24/7 surveillance based on looking for the spectral signatures of materials. Beyond applications in defense, this technology may have far reaching commercial applications as well, including areas such as oil and natural resources exploration. Beyond these major contributions to the state-of-the-art, this thesis also describes other significant studies such as power scalability of SWIR SC sources and non-invasive measurement of surface roughness.

  6. Development of neutron/gamma generators and a polymer semiconductor detector for homeland security applications

    NASA Astrophysics Data System (ADS)

    King, Michael Joseph

    Instrumentation development is essential to the advancement and success of homeland security systems. Active interrogation techniques that scan luggage and cargo containers for shielded special nuclear materials or explosives hold great potential in halting further terrorist attacks. The development of more economical, compact and efficient source and radiation detection devices will facilitate scanning of all containers and luggage while maintaining high-throughput and low-false alarms Innovative ion sources were developed for two novel, specialized neutron generating devices and initial generator tests were performed. In addition, a low-energy acceleration gamma generator was developed and its performance characterized. Finally, an organic semiconductor was investigated for direct fast neutron detection. A main part of the thesis work was the development of ion sources, crucial components of the neutron/gamma generator development. The use of an externally-driven radio-frequency antenna allows the ion source to generate high beam currents with high, mono-atomic species fractions while maintaining low operating pressures, advantageous parameters for neutron generators. A dual "S" shaped induction antenna was developed to satisfy the high current and large extraction area requirements of the high-intensity neutron generator. The dual antenna arrangement generated a suitable current density of 28 mA/cm2 at practical RF power levels. The stringent requirements of the Pulsed Fast Neutron Transmission Spectroscopy neutron generator necessitated the development of a specialized ten window ion source of toroidal shape with a narrow neutron production target at its center. An innovative ten antenna arrangement with parallel capacitors was developed for driving the multi-antenna arrangement and uniform coupling of RF power to all ten antennas was achieved. To address the desire for low-impact, low-radiation dose active interrogation systems, research was performed on mono

  7. Gamma ray energy tracking in GRETINA

    NASA Astrophysics Data System (ADS)

    Lee, I. Y.

    2011-10-01

    The next generation of stable and exotic beam accelerators will provide physics opportunities to study nuclei farther away from the line of stability. However, these experiments will be more demanding on instrumentation performance. These come from the lower production rate for more exotic beams, worse beam impurities, and large beam velocity from the fragmentation and inverse reactions. Gamma-ray spectroscopy will be one of the most effective tools to study exotic nuclei. However, to fully exploit the physics reach provided by these new facilities, better gamma-ray detector will be needed. In the last 10 years, a new concept, gamma-ray energy tracking array, was developed. Tracking arrays will increase the detection sensitivity by factors of several hundred compared to current arrays used in nuclear physics research. Particularly, the capability of reconstructing the position of the interaction with millimeters resolution is needed to correct the Doppler broadening of gamma rays emitted from high velocity nuclei. GRETINA is a gamma-ray tracking array which uses 28 Ge crystals, each with 36 segments, to cover ¼ of the 4 π of the 4 π solid angle. The gamma ray tracking technique requires detailed pulse shape information from each of the segments. These pulses are digitized using 14-bit 100 MHz flash ADCs, and digital signal analysis algorithms implemented in the on-board FPGAs provides energy, time and selection of pulse traces. A digital trigger system, provided flexible trigger functions including a fast trigger output, and also allows complicated trigger decisions to be made up to 20 microseconds. Further analyzed, carried out in a computer cluster, determine the energy, time, and three-dimensional positions of all gamma-ray interactions in the array. This information is then utilized, together with the characteristics of Compton scattering and pair-production processes, to track the scattering sequences of the gamma rays. GRETINA construction is completed in

  8. Investigation of Martian H2O and CO2 via gamma-ray spectroscopy

    NASA Technical Reports Server (NTRS)

    Squyres, Steven W.; Evans, Larry G.

    1987-01-01

    The evolution and present state of water and carbon dioxide on Mars are discussed. Researchers wished to determine how effectively questions regarding the distribution of water and carbon dioxide on Mars may be addressed with orbital gamma ray spectrometer data. Several simple, multi-layer models of the Martian surface were formulated to address problems such as the ice/dust ratio of layered deposits; the distribution, depth and concentration of ground ice; the thickness of north polar perennial ice; the thickness of the carbon dioxide layer over the south polar cap; the thickness of the seasonal carbon dioxide frost cap; and the water content of the seasonal frost cap. The results indicate that the Mars Observer gamma ray spectrometer will be a powerful tool for investigating the distribution and stratigraphy of volatiles on Mars.

  9. GABA level, gamma oscillation, and working memory performance in schizophrenia

    PubMed Central

    Chen, Chi-Ming A.; Stanford, Arielle D.; Mao, Xiangling; Abi-Dargham, Anissa; Shungu, Dikoma C.; Lisanby, Sarah H.; Schroeder, Charles E.; Kegeles, Lawrence S.

    2014-01-01

    A relationship between working memory impairment, disordered neuronal oscillations, and abnormal prefrontal GABA function has been hypothesized in schizophrenia; however, in vivo GABA measurements and gamma band neural synchrony have not yet been compared in schizophrenia. This case–control pilot study (N = 24) compared baseline and working memory task-induced neuronal oscillations acquired with high-density electroencephalograms (EEGs) to GABA levels measured in vivo with magnetic resonance spectroscopy. Working memory performance, baseline GABA level in the left dorsolateral prefrontal cortex (DLPFC), and measures of gamma oscillations from EEGs at baseline and during a working memory task were obtained. A major limitation of this study is a relatively small sample size for several analyses due to the integration of diverse methodologies and participant compliance. Working memory performance was significantly lower for patients than for controls. During the working memory task, patients (n = 7) had significantly lower amplitudes in gamma oscillations than controls (n = 9). However, both at rest and across working memory stages, there were significant correlations between gamma oscillation amplitude and left DLPFC GABA level. Peak gamma frequency during the encoding stage of the working memory task (n = 16) significantly correlated with GABA level and working memory performance. Despite gamma band amplitude deficits in patients across working memory stages, both baseline and working memory-induced gamma oscillations showed strong dependence on baseline GABA levels in patients and controls. These findings suggest a critical role for GABA function in gamma band oscillations, even under conditions of system and cognitive impairments as seen in schizophrenia. PMID:24749063

  10. GABA level, gamma oscillation, and working memory performance in schizophrenia.

    PubMed

    Chen, Chi-Ming A; Stanford, Arielle D; Mao, Xiangling; Abi-Dargham, Anissa; Shungu, Dikoma C; Lisanby, Sarah H; Schroeder, Charles E; Kegeles, Lawrence S

    2014-01-01

    A relationship between working memory impairment, disordered neuronal oscillations, and abnormal prefrontal GABA function has been hypothesized in schizophrenia; however, in vivo GABA measurements and gamma band neural synchrony have not yet been compared in schizophrenia. This case-control pilot study (N = 24) compared baseline and working memory task-induced neuronal oscillations acquired with high-density electroencephalograms (EEGs) to GABA levels measured in vivo with magnetic resonance spectroscopy. Working memory performance, baseline GABA level in the left dorsolateral prefrontal cortex (DLPFC), and measures of gamma oscillations from EEGs at baseline and during a working memory task were obtained. A major limitation of this study is a relatively small sample size for several analyses due to the integration of diverse methodologies and participant compliance. Working memory performance was significantly lower for patients than for controls. During the working memory task, patients (n = 7) had significantly lower amplitudes in gamma oscillations than controls (n = 9). However, both at rest and across working memory stages, there were significant correlations between gamma oscillation amplitude and left DLPFC GABA level. Peak gamma frequency during the encoding stage of the working memory task (n = 16) significantly correlated with GABA level and working memory performance. Despite gamma band amplitude deficits in patients across working memory stages, both baseline and working memory-induced gamma oscillations showed strong dependence on baseline GABA levels in patients and controls. These findings suggest a critical role for GABA function in gamma band oscillations, even under conditions of system and cognitive impairments as seen in schizophrenia.

  11. Microstructure and Mechanical Properties in Gamma(face-centered cubic) + Gamma Prime(L12) Precipitation-Strengthened Cobalt-based Superalloys

    NASA Astrophysics Data System (ADS)

    Bocchini, Peter J.

    High-temperature structural alloys for aerospace and energy applications have long been dominated by Ni-based superalloys, whose high-temperature strength and creep resistance can be attributed to a two-phase microstructure consisting of a large volume fraction of ordered gamma'(L12)-precipitates embedded in a disordered gamma(f.c.c.)-matrix. These alloys exhibit excellent mechanical behavior and thermal stability, but after decades of incremental improvement, are nearing the theoretical limit of their operating temperatures. In 2006, an analogous gamma(f.c.c.) + gamma'(L12) microstructure was identified in the Co-Al-W ternary system with liquidus and solidus temperatures 50-150 °C higher than conventional Ni-based superalloys. The work herein focuses on assessing the effects of alloying additions on microstructure and mechanical behavior in an effort to lay the foundations for understanding this emerging alloy system. A variety of Co-based superalloys are investigated in order to study fundamental materials properties and to address key engineering challenges. Coarsening rate constants and temporal exponents are measured for gamma'(L1 2)-precipitates in a ternary Co-Al-W alloy aged at 650 °C and 750 °C. A series of Co-Al-W-B-Zr alloys are cast to study the influence of segregation of B and Zr to grain boundaries (GBs) on mechanical properties. Co-Ni-Al-W-Ti alloys with various amounts of Al, W, and Ti are cast in order to fabricate Co-based superalloys with decreased density and increased gamma'(L1 2)-solvus temperature. 2-D dislocation dynamics modeling is employed to predict how gamma'(L12)-precipitate size and volume fraction affect the mechanical properties of Ni- and Co-based superalloys. Compositional information such as phase concentrations, partitioning behavior, and GB segregation are measured with local electrode atom probe (LEAP) tomography in alloys with fine microstructures and with scanning electron microscope (SEM) electron dispersive x

  12. Infrared fiber optic evanescent wave spectroscopy: applications in biology and medicine

    NASA Astrophysics Data System (ADS)

    Afanasyeva, Natalia I.; Bruch, Reinhard F.; Katzir, Abraham

    1999-04-01

    A new powerful and highly sensitive technique for non-invasive biomedical diagnostics in vivo has been developed using Infrared Fiberoptic Evanescent Wave Fourier Transform Spectroscopy (FEW-FTIR). This compact and portable method allows to detect functional chemical groups and bonds via vibrational spectroscopy directly from surfaces including living tissue. Such differences and similarities in molecular structure of tissue and materials can be evaluated online. Operating in the attenuated total reflection (ATR) regime in the middle-infrared (MIR) range, the FEW-FTIR technique provides direct contact between the fiber probe and tissue for non-destructive, non-invasive, fast and remote (few meters) diagnostics and quality control of materials. This method utilizes highly flexible and extremely low loss unclad fibers, for example silver halide fibers. Applications of this method include investigations of normal skin, precancerous and cancerous conditions, monitoring of the process of aging, allergic reactions and radiation damage to the skin. This setup is suitable as well for the detection of the influence of environmental factors (sun, water, pollution, and weather) on skin surfaces. The FEW-FTIR technique is very promising also for fast histological examinations in vitro. In this review, we present recent investigations of skin, breast, lung, stomach, kidney tissues in vivo and ex vivo (during surgery) to define the areas of tumor localization. The main advantages of the FEW-FTIR technique for biomedical, clinical, and environmental applications are discussed.

  13. All-fiber mid-infrared difference frequency generation source and its application to molecular dispersion spectroscopy

    NASA Astrophysics Data System (ADS)

    Krzempek, K.; Abramski, K. M.; Nikodem, M.

    2017-09-01

    A widely tunable, fully monolithic, mid-infrared difference frequency generation source and its application in the dispersion-spectroscopy-based laser trace gas detection of methane and ethane, near 2938 and 2998 cm-1, is presented. Utilizing a fiber pigtailed nonlinear crystal module radically simplified the optical setup, while maintaining a superb conversion efficiency of 20% W-1. Seeded directly from two laser diodes, the source delivered ~0.5 mW of tunable radiation, which was used in a chirped laser dispersion spectroscopy setup, enabling the highly sensitive detection of hydrocarbons.

  14. Emerging biomedical applications of time-resolved fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Lakowicz, Joseph R.; Szmacinski, Henryk; Koen, Peter A.

    1994-07-01

    Time-resolved fluorescence spectroscopy is presently regarded as a research tool in biochemistry, biophysics, and chemical physics. Advances in laser technology, the development of long-wavelength probes, and the use of lifetime-based methods are resulting in the rapid migration of time-resolved fluorescence to the clinical chemistry lab, to the patient's bedside, to flow cytometers, to the doctor's office, and even to home health care. Additionally, time-resolved imaging is now a reality in fluorescence microscopy, and will provide chemical imaging of a variety of intracellular analytes and/or cellular phenomena. In this overview paper we attempt to describe some of the opportunities available using chemical sensing based on fluorescence lifetimes, and to predict those applications of lifetime-based sensing which are most likely in the near future.

  15. A tandem-based compact dual-energy gamma generator.

    PubMed

    Persaud, A; Kwan, J W; Leitner, M; Leung, K-N; Ludewigt, B; Tanaka, N; Waldron, W; Wilde, S; Antolak, A J; Morse, D H; Raber, T

    2010-02-01

    A dual-energy tandem-type gamma generator has been developed at E. O. Lawrence Berkeley National Laboratory and Sandia National Laboratories. The tandem accelerator geometry allows higher energy nuclear reactions to be reached, thereby allowing more flexible generation of MeV-energy gammas for active interrogation applications. Both positively charged ions and atoms of hydrogen are created from negative ions via a gas stripper. In this paper, we show first results of the working tandem-based gamma generator and that a gas stripper can be utilized in a compact source design. Preliminary results of monoenergetic gamma production are shown.

  16. Application of neutron-gamma analysis for determination of C/N ratio in compost

    USDA-ARS?s Scientific Manuscript database

    Neutron-gamma analysis is based on the acquisition of gamma rays from neutron irradiated study objects. The intensity and energy of the registered gamma rays gives information on the types and amounts of elements in the studied object. The use of this method for measurements of soil carbon demonstra...

  17. The application of network synthesis to repeating classical gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Hurley, K.; Kouveliotou, C.; Fishman, J.; Meegan, C.; Laros, J.; Klebesadel, R.

    1995-01-01

    It has been suggested that the Burst and Transient Source Experiment (BATSE) gamma-ray burst catalog contains several groups of bursts clustered in space or in space and time, which provide evidence that a substantial fraction of the classical gamma-ray burst sources repeat. Because many of the bursts in these groups are weak, they are not directly detected by the Ulysses GRB experiment. We apply the network synthesis method to these events to test the repeating burst hypothesis. Although we find no evidence for repeating sources, the method must be applied under more general conditions before reaching any definite conclusions about the existence of classical gamma-ray burst repeating sources.

  18. Gamma signatures of the C-BORD Tagged Neutron Inspection System

    NASA Astrophysics Data System (ADS)

    Sardet, A.; Pérot, B.; Carasco, C.; Sannié, G.; Moretto, S.; Nebbia, G.; Fontana, C.; Pino, F.; Iovene, A.; Tintori, C.

    2018-01-01

    In the frame of C-BORD project (H2020 program of the EU), a Rapidly relocatable Tagged Neutron Inspection System (RRTNIS) is being developed to non-intrusively detect explosives, chemical threats, and other illicit goods in cargo containers. Material identification is performed through gamma spectroscopy, using twenty NaI detectors and four LaBr3 detectors, to determine the different elements composing the inspected item from their specific gamma signatures induced by fast neutrons. This is performed using an unfolding algorithm to decompose the energy spectrum of a suspect item, selected by X-ray radiography and on which the RRTNIS inspection is focused, on a database of pure element gamma signatures. This paper reports on simulated signatures for the NaI and LaBr3 detectors, constructed using the MCNP6 code. First experimental spectra of a few elements of interest are also presented.

  19. Moessbauer spectroscopy study on the corrosion resistance of plasma nitrided ASTM F138 stainless steel in chloride solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souza, S.D. de; Olzon-Dionysio, M., E-mail: dmod@df.ufscar.br; Basso, R.L.O.

    2010-10-15

    Plasma nitriding of ASTM F138 stainless steel samples has been carried out using dc glow discharge under 80% H{sub 2}-20% N{sub 2} gas mixture, at 673 K, and 2, 4, and 7 h time intervals, in order to investigate the influence of treatment time on the microstructure and the corrosion resistance properties. The samples were characterized by scanning electron microscopy, glancing angle X-ray diffraction and conversion electron Moessbauer spectroscopy, besides electrochemical tests in NaCl aerated solution. A modified layer of about 6 {mu}m was observed for all the nitrided samples, independent of nitriding time. The X-ray diffraction analysis shows broadmore » {gamma}{sub N} phase peaks, signifying a great degree of nitrogen supersaturation. Besides {gamma}{sub N,} the Moessbauer spectroscopy results indicated the occurrence of {gamma}' and {epsilon} phases, as well as some other less important phases. Corrosion measurements demonstrate that the plasma nitriding time affects the corrosion resistance and the best performance is reached at 4 h treatment. It seems that the {epsilon}/{gamma}' fraction ratio plays an important role on the resistance corrosion. Additionally, the Moessbauer spectroscopy was decisive in this study, since it was able to identify and quantify the iron phases that influence the corrosion resistance of plasma nitrided ASTM F138 samples.« less

  20. Effect of gamma irradiation on the structural, mechanical and optical properties of polytetrafluoroethylene sheet

    NASA Astrophysics Data System (ADS)

    Mohammadian-Kohol, M.; Asgari, M.; Shakur, H. R.

    2018-04-01

    In this study, the effects of gamma radiation on the chemical structure, mechanical and optical properties of polytetrafluoroethylene (PTFE) sheet were investigated with various doses up to 12 kGy. The chemical changes in the structure were studied by FTIR spectroscopy. Also, effects of radiation on the different mechanical parameters such as Young's modulus, toughness, strain, and stress were studied at the maximum tolerable force and the fracture points. Furthermore, changing the various optical parameters such as absorption coefficient, Urbach energy, optical band gaps, refractive index, optical dispersion parameters and plasma resonance frequency were studied by UV-visible spectroscopy. Formation of a band at 1594 cm-1, which was belonged to double carbon bonds, indicated that chain-scission was occurred at 12 kGy gamma irradiation dose. As well, the mechanical results showed an increase in the elastic behavior of PTFE sheets and a decrease in the plastic behavior of it with absorbed dose increasing. Moreover, the results showed that gamma irradiation can effectively change the various optical properties of PTFE sheets due to different phenomena such as degradation of the main chains, occurring chain-scission, formation of free radicals and cross-linking in the polymer structure.

  1. High resolution gamma-ray spectroscopy at high count rates with a prototype High Purity Germanium detector

    NASA Astrophysics Data System (ADS)

    Cooper, R. J.; Amman, M.; Vetter, K.

    2018-04-01

    High-resolution gamma-ray spectrometers are required for applications in nuclear safeguards, emergency response, and fundamental nuclear physics. To overcome one of the shortcomings of conventional High Purity Germanium (HPGe) detectors, we have developed a prototype device capable of achieving high event throughput and high energy resolution at very high count rates. This device, the design of which we have previously reported on, features a planar HPGe crystal with a reduced-capacitance strip electrode geometry. This design is intended to provide good energy resolution at the short shaping or digital filter times that are required for high rate operation and which are enabled by the fast charge collection afforded by the planar geometry crystal. In this work, we report on the initial performance of the system at count rates up to and including two million counts per second.

  2. Dielectric spectroscopy in agrophysics

    NASA Astrophysics Data System (ADS)

    Skierucha, W.; Wilczek, A.; Szypłowska, A.

    2012-04-01

    The paper presents scientific foundation and some examples of agrophysical applications of dielectric spectroscopy techniques. The aim of agrophysics is to apply physical methods and techniques for studies of materials and processes which occur in agriculture. Dielectric spectroscopy, which describes the dielectric properties of a sample as a function of frequency, may be successfully used for examinations of properties of various materials. Possible test materials may include agrophysical objects such as soil, fruit, vegetables, intermediate and final products of the food industry, grain, oils, etc. Dielectric spectroscopy techniques enable non-destructive and non-invasive measurements of the agricultural materials, therefore providing tools for rapid evaluation of their water content and quality. There is a limited number of research in the field of dielectric spectroscopy of agricultural objects, which is caused by the relatively high cost of the respective measurement equipment. With the fast development of modern technology, especially in high frequency applications, dielectric spectroscopy has great potential of expansion in agrophysics, both in cognitive and utilitarian aspects.

  3. Application of miniaturized near-infrared spectroscopy for quality control of extemporaneous orodispersible films.

    PubMed

    Foo, Wen Chin; Widjaja, Effendi; Khong, Yuet Mei; Gokhale, Rajeev; Chan, Sui Yung

    2018-02-20

    Extemporaneous oral preparations are routinely compounded in the pharmacy due to a lack of suitable formulations for special populations. Such small-scale pharmacy preparations also present an avenue for individualized pharmacotherapy. Orodispersible films (ODF) have increasingly been evaluated as a suitable dosage form for extemporaneous oral preparations. Nevertheless, as with all other extemporaneous preparations, safety and quality remain a concern. Although the United States Pharmacopeia (USP) recommends analytical testing of compounded preparations for quality assurance, pharmaceutical assays are typically not routinely performed for such non-sterile pharmacy preparations, due to the complexity and high cost of conventional assay methods such as high performance liquid chromatography (HPLC). Spectroscopic methods including Raman, infrared and near-infrared spectroscopy have been successfully applied as quality control tools in the industry. The state-of-art benchtop spectrometers used in those studies have the advantage of superior resolution and performance, but are not suitable for use in a small-scale pharmacy setting. In this study, we investigated the application of a miniaturized near infrared (NIR) spectrometer as a quality control tool for identification and quantification of drug content in extemporaneous ODFs. Miniaturized near infrared (NIR) spectroscopy is suitable for small-scale pharmacy applications in view of its small size, portability, simple user interface, rapid measurement and real-time prediction results. Nevertheless, the challenge with miniaturized NIR spectroscopy is its lower resolution compared to state-of-art benchtop equipment. We have successfully developed NIR spectroscopy calibration models for identification of ODFs containing five different drugs, and quantification of drug content in ODFs containing 2-10mg ondansetron (OND). The qualitative model for drug identification produced 100% prediction accuracy. The quantitative

  4. Investigation of gamma radiation induced changes in local structure of borosilicate glass by TDPAC and EXAFS

    NASA Astrophysics Data System (ADS)

    Kumar, Ashwani; Nayak, C.; Rajput, P.; Mishra, R. K.; Bhattacharyya, D.; Kaushik, C. P.; Tomar, B. S.

    2016-12-01

    Gamma radiation induced changes in local structure around the probe atom (Hafnium) were investigated in sodium barium borosilicate (NBS) glass, used for immobilization of high level liquid waste generated from the reprocessing plant at Trombay, Mumbai. The (NBS) glass was doped with 181Hf as a probe for time differential perturbed angular correlation (TDPAC) spectroscopy studies, while for studies using extended X-ray absorption fine structure (EXAFS) spectroscopy, the same was doped with 0.5 and 2 % (mole %) hafnium oxide. The irradiated as well as un-irradiated glass samples were studied by TDPAC and EXAFS techniques to obtain information about the changes (if any) around the probe atom due to gamma irradiation. TDPAC spectra of unirradiated and irradiated glasses were similar and reminescent of amorphous materials, indicating negligible effect of gamma radiation on the microstructure around Hafnium probe atom, though the quaqdrupole interaction frequency ( ω Q) and asymmetry parameter ( η) did show a marginal decrease in the irradiated glass compared to that in the unirradiated glass. EXAFS measurements showed a slight decrease in the Hf-O bond distance upon gamma irradiation of Hf doped NBS glass indicating densification of the glass matrix, while the cordination number around hafnium remains unchanged.

  5. QUASI-STAR JETS AS UNIDENTIFIED GAMMA-RAY SOURCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czerny, Bozena; Sikora, Marek; Janiuk, Agnieszka

    2012-08-10

    Gamma-ray catalogs contain a considerable amount of unidentified sources. Many of these are located out of the Galactic plane and therefore may have extragalactic origin. Here we assume that the formation of massive black holes in galactic nuclei proceeds through a quasi-star stage and consider the possibility of jet production by such objects. Those jets would be the sources of collimated synchrotron and Compton emission, extending from radio to gamma rays. The expected lifetimes of quasi-stars are of the order of million of years while the jet luminosities, somewhat smaller than that of quasar jets, are sufficient to account formore » the unidentified gamma-ray sources. The jet emission dominates over the thermal emission of a quasi-star in all energy bands, except when the jet is not directed toward an observer. The predicted synchrotron emission peaks in the IR band, with the flux close to the limits of the available IR all sky surveys. The ratio of the gamma-ray flux to the IR flux is found to be very large ({approx}60), much larger than in BL Lac objects but reached by some radio-loud quasars. On the other hand, radio-loud quasars show broad emission lines while no such lines are expected from quasi-stars. Therefore, the differentiation between various scenarios accounting for the unidentified gamma-ray sources will be possible at the basis of the photometry and spectroscopy of the IR/optical counterparts.« less

  6. Assessment of individual organ doses in a realistic human phantom from neutron and gamma stimulated spectroscopy of the breast and liver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belley, Matthew D.; Segars, William Paul; Kapadia, Anuj J., E-mail: anuj.kapadia@duke.edu

    2014-06-15

    Purpose: Understanding the radiation dose to a patient is essential when considering the use of an ionizing diagnostic imaging test for clinical diagnosis and screening. Using Monte Carlo simulations, the authors estimated the three-dimensional organ-dose distribution from neutron and gamma irradiation of the male liver, female liver, and female breasts for neutron- and gamma-stimulated spectroscopic imaging. Methods: Monte Carlo simulations were developed using the Geant4 GATE application and a voxelized XCAT human phantom. A male and a female whole body XCAT phantom was voxelized into 256 × 256 × 600 voxels (3.125 × 3.125 × 3.125 mm{sup 3}). A monoenergeticmore » rectangular beam of 5.0 MeV neutrons or 7.0 MeV photons was made incident on a 2 cm thick slice of the phantom. The beam was rotated at eight different angles around the phantom ranging from 0° to 180°. Absorbed dose was calculated for each individual organ in the body and dose volume histograms were computed to analyze the absolute and relative doses in each organ. Results: The neutron irradiations of the liver showed the highest organ dose absorption in the liver, with appreciably lower doses in other proximal organs. The dose distribution within the irradiated slice exhibited substantial attenuation with increasing depth along the beam path, attenuating to ∼15% of the maximum value at the beam exit side. The gamma irradiation of the liver imparted the highest organ dose to the stomach wall. The dose distribution from the gammas showed a region of dose buildup at the beam entrance, followed by a relatively uniform dose distribution to all of the deep tissue structures, attenuating to ∼75% of the maximum value at the beam exit side. For the breast scans, both the neutron and gamma irradiation registered maximum organ doses in the breasts, with all other organs receiving less than 1% of the breast dose. Effective doses ranged from 0.22 to 0.37 mSv for the neutron scans and 41 to 66 mSv for

  7. Laser-induced breakdown spectroscopy (LIBS): applications in environmental issues

    NASA Astrophysics Data System (ADS)

    Couris, Stelios; Hatziapostolou, A.; Anglos, Dmitrios; Mavromanolakis, A.; Fotakis, Costas

    1996-11-01

    Results are presented from three different applications of laser induced breakdown spectroscopy (LIBS) in problems of environmental interest. In one case, LIBS is applied in the on-line control of the nickel recovery process, by monitoring the nickel content of molten ferronickel slabs, in a laboratory scale experiment. In a second case, LIBS is used in the identification of polymer materials, and on the basis of spectral features, criteria are proposed for the distinction among different types of plastic materials. Also, in preliminary experiments, the use of LIBS with respect to the detection of heavy and toxic metals in paints and the possibility of performing depth profile analysis of multiple paint layers is examined.

  8. High-energy Emission from Nonrelativistic Radiative Shocks: Application to Gamma-Ray Novae

    NASA Astrophysics Data System (ADS)

    Vurm, Indrek; Metzger, Brian D.

    2018-01-01

    The observation of GeV gamma-rays from novae by Fermi/LAT demonstrates that the nonrelativistic radiative shocks in these systems can accelerate particles to energies of at least ∼10 GeV. The low-energy extension of the same nonthermal particle distribution inevitably gives rise to emission in the hard X-ray band. Above ≳ 10 {keV}, this radiation can escape the system without significant absorption/attenuation, and can potentially be detected by NuSTAR. We present theoretical models for hard X-ray and gamma-ray emission from radiative shocks in both leptonic and hadronic scenarios, accounting for the rapid evolution of the downstream properties due to the fast cooling of thermal plasma. We find that due to strong Coulomb losses, only a fraction of {10}-4{--}{10}-3 of the gamma-ray luminosity is radiated in the NuSTAR band; nevertheless, this emission could be detectable simultaneously with the LAT emission in bright gamma-ray novae with a ∼50 ks exposure. The spectral slope in hard X-rays is α ≈ 0 for typical nova parameters, thus serving as a testable prediction of the model. Our work demonstrates how combined hard X-ray and gamma-ray observations can be used to constrain properties of the nova outflow (velocity, density, and mass outflow rate) and particle acceleration at the shock. A very low X-ray to gamma-ray luminosity ratio ({L}{{X}}/{L}γ ≲ 5× {10}-4) would disfavor leptonic models for the gamma-ray emission. Our model can also be applied to other astrophysical environments with radiative shocks, including SNe IIn and colliding winds in massive star binaries.

  9. Gamma radiation effects on polydimethylsiloxane rubber foams under different radiation conditions

    NASA Astrophysics Data System (ADS)

    Sui, H. L.; Liu, X. Y.; Zhong, F. C.; Li, X. Y.; Wang, L.; Ju, X.

    2013-07-01

    Polydimethylsiloxane rubber foams were irradiated by gamma ray under different radiation conditions designed by orthogonal design method. Compression set measurement, infrared attenuated total reflectance spectroscopy (ATR) and X-ray induced photoelectron spectroscopy (XPS) were used. Three aging factors' influence effects on the mechanical property and chemical structure were studied. It was found that among the three factors and the chosen levels, both properties were affected most by radiation dose, while radiation dose rate had no obvious influence on both properties. The stiffening of the rubber foams was caused by cross-linking reactions in the Si-CH3. At the same radiation dose, the rigidity of the foams irradiated in air was lower than that in nitrogen. When polydimethylsiloxane was irradiated at a high dose in sealed nitrogen atmosphere, carbon element distribution would be changed. Hydrocarbons produced by gamma ray in the sealed tube would make the carbon content in the skin-deep higher than that in the middle, which indicated that polydimethylsiloxane rubber foams storing in a sealed atmosphere filled with enough hydrocarbons should be helpful to extend the service life.

  10. Advances in commercial application of gamma radiation in tropical fruits at Brazil

    NASA Astrophysics Data System (ADS)

    Sabato, S. F.; Silva, J. M.; Cruz, J. N.; Broisler, P. O.; Rela, P. R.; Salmieri, S.; Lacroix, M.

    2009-07-01

    All regions of Brazil are potential areas for growing tropical fruits. As this country is already a great producer and exporter of tropical fruits, ionizing radiation has been the subject of studies in many commodities. An important project has been carried out to increase the commercial use of gamma radiation in our country. Instituto de Pesquisas Energeticas e Nucleares (IPEN)-CNEN/SP together with field producers in northeast region and partners like International Atomic Energy Agency (IAEA), CIC, Empresa Brasileira Pesquisa na Agricultura (EMBRAPA) joined to demonstrate this technology, its application and commercial feasibility. The objective of this study is to show advances in feasibility demonstrate the quality of the irradiated fruits in an international consignment from Brazil to Canada. In this work, Tommy Atkins mangoes harvested in northeast region of Brazil were sent to Canada. The fruits were treated in a gamma irradiation facility at doses 0.4 and 1.0 kGy. The control group was submitted to hydrothermal treatment (46 °C for 110 min). The fruits were stored at 11 °C for 10 days until the international transportation and kept at an environmental condition (22 °C) for 12 days, where their physical-chemical and sensorial properties were evaluated. The financial part of the feasibility study covers the scope of the investment, including the net working capital and production costs.

  11. Anticonvulsant properties of alpha, gamma, and alpha, gamma-substituted gamma-butyrolactones.

    PubMed

    Klunk, W E; Covey, D F; Ferrendelli, J A

    1982-09-01

    Derivatives of gamma-butyrolactone (GBL) substituted on the alpha- and/or gamma-positions were synthesized and tested for their effects on behavior in mice, on the electroencephalographs and blood pressure of paralyzed-ventilated guinea pigs, and on electrical activity of incubated hippocampal slices. Several compounds, including alpha-ethyl-alpha-methyl GBL (alpha-EMGBL), alpha, alpha-dimethyl GBL, alpha, gamma-diethyl-alpha, gamma-dimethyl GBL, and gamma-ethyl-gamma-methyl GBL, prevented seizures induced by pentylenetetrazol, beta-ethyl-beta-methyl-gamma-butyrolactone (beta-EMGBL), picrotoxin, or all three compounds in mice and guinea pigs but had no effect on seizures induced by maximal electroshock or bicuculline. Neither gamma-hydroxybutyrate (GHB) nor alpha-isopropylidine GBL had any anticonvulsant activity. The anticonvulsant alpha-substituted compounds had a potent hypotensive effect and antagonized the hypertensive effect of beta-EMGBL, alpha-EMGBL was tested in incubated hippocampal slices and was found to depress basal activity and antagonize excitation induced by beta-EMGBL. These results demonstrate that alpha-alkyl-substituted GBL and, to a lesser extent, gamma-substituted derivatives are anticonvulsant agents and that their effects are strikingly different from those of GHB or beta-alkyl-substituted GBLs, which are epileptogenic. Possibly beta- and alpha-substituted GBLs act at the same site as agonists and antagonists, respectively.

  12. Gamma ray irradiated silicon nanowires: An effective model to investigate defects at the interface of Si/SiOx

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Kui; Zhao, Yi; Liu, Liangbin

    2014-01-20

    The effect of gamma ray irradiation on silicon nanowires was investigated. Here, an additional defect emerged in the gamma-ray-irradiated silicon nanowires and was confirmed with electron spin resonance spectra. {sup 29}Si nuclear magnetic resonance spectroscopy showed that irradiation doses had influence on the Q{sup 4} unit structure. This phenomenon indicated that the unique core/shell structure of silicon nanowires might contribute to induce metastable defects under gamma ray irradiation, which served as a satisfactory model to investigate defects at the interface of Si/SiOx.

  13. Liverpool Telescope Spectroscopy of the Nova Eruption from V392 Persei

    NASA Astrophysics Data System (ADS)

    Darnley, M. J.; Copperwheat, C. M.; Harvey, E. J.; Healy, M. W.

    2018-05-01

    Here we report Liverpool Telescope (LT; Steele et al. 2004) spectroscopy of the recent nova eruption (ATel #11588) from the known dwarf nova system V392 Per. A Fermi & gamma;-ray detection of the eruption has also been reported (ATel #11590) along with additional photometry (ATel #11594).

  14. Biomedical applications of laser-induced breakdown spectroscopy (LIBS)

    NASA Astrophysics Data System (ADS)

    Unnikrishnan, V. K.; Nayak, Rajesh; Bhat, Sujatha; Mathew, Stanley; Kartha, V. B.; Santhosh, C.

    2015-03-01

    LIBS has been proven to be a robust elemental analysis tool attracting interest because of the wide applications. LIBS can be used for analysis of any type of samples i.e. environmental/physiological, regardless of its state of matter. Conventional spectroscopy techniques are good in analytical performance, but their sample preparation method is mostly destructive and time consuming. Also, almost all these methods are incapable of analysing multi elements simaltaneously. On the other hand, LIBS has many potential advantages such as simplicity in the experimental setup, less sample preparation, less destructive analysis of sample etc. In this paper, we report some of the biomedical applications of LIBS. From the experiments carried out on clinical samples (calcified tissues or teeth and gall stones) for trace elemental mapping and detection, it was found that LIBS is a robust tool for such applications. It is seen that the presence and relative concentrations of major elements (calcium, phosphorus and magnesium) in human calcified tissue (tooth) can be easily determined using LIBS technique. The importance of this study comes in anthropology where tooth and bone are main samples from which reliable data can be easily retrieved. Similarly, elemental composition of bile juice and gall stone collected from the same subject using LIBS was found to be similar. The results show interesting prospects for LIBS to study cholelithiasis (the presence of stones in the gall bladder, is a common disease of the gastrointestinal tract) better.

  15. Selective laser spectroscopy of molecules and ions in solids: a history, fundamentals and applications

    NASA Astrophysics Data System (ADS)

    Sapozhnikov, Michael

    2018-03-01

    A history of the development of selective laser spectroscopy is presented, beginning with a pioneering work by Yu. V. Denisov and V. A. Kizel in 1967, who were the first to demonstrate the possibility of removing the inhomogeneous broadening of luminescence spectra of impurity ions in glasses upon monochromatic resonance excitation. Selective excitation of optical centers can be achieved due to existence of zero-phonon transitions corresponding to narrow homogeneous zero-phonon lines in the spectra of impurity centers in solids, which are hidden in broad inhomogeneous optical bands upon usual nonselective excitation. The fundamentals of zero-phonon transition spectroscopy are considered and the mechanism of removing the inhomogeneous broadening of optical spectra of ions and molecules in crystals and amorphous solids under selective laser excitation of luminescence and persistent hole burning in absorption spectra is presented in detail. Various applications of selective laser spectroscopy for fundamental and applied studies are discussed.

  16. Perspectives of shaped pulses for EPR spectroscopy

    NASA Astrophysics Data System (ADS)

    Spindler, Philipp E.; Schöps, Philipp; Kallies, Wolfgang; Glaser, Steffen J.; Prisner, Thomas F.

    2017-07-01

    This article describes current uses of shaped pulses, generated by an arbitrary waveform generator, in the field of EPR spectroscopy. We show applications of sech/tanh and WURST pulses to dipolar spectroscopy, including new pulse schemes and procedures, and discuss the more general concept of optimum-control-based pulses for applications in EPR spectroscopy. The article also describes a procedure to correct for experimental imperfections, mostly introduced by the microwave resonator, and discusses further potential applications and limitations of such pulses.

  17. Neutron and Gamma Imaging for National Security Applications

    NASA Astrophysics Data System (ADS)

    Hornback, Donald

    2017-09-01

    The Department of Energy, National Nuclear Security Administration (NNSA), Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D/NA-22) possesses, in part, the mission to develop technologies in support of nuclear security efforts in coordination with other U.S. government entities, such as the Department of Defense and the Department of Homeland Security. DNN R&D has long supported research in nuclear detection at national labs, universities, and through the small business innovation research (SBIR) program. Research topics supported include advanced detector materials and electronics, detection algorithm development, and advanced gamma/neutron detection systems. Neutron and gamma imaging, defined as the directional detection of radiation as opposed to radiography, provides advanced detection capabilities for the NNSA mission in areas of emergency response, international safeguards, and nuclear arms control treaty monitoring and verification. A technical and programmatic overview of efforts in this field of research will be summarized.

  18. Application of artificial neural networks for the prediction of volume fraction using spectra of gamma rays backscattered by three-phase flows

    NASA Astrophysics Data System (ADS)

    Gholipour Peyvandi, R.; Islami Rad, S. Z.

    2017-12-01

    The determination of the volume fraction percentage of the different phases flowing in vessels using transmission gamma rays is a conventional method in petroleum and oil industries. In some cases, with access only to the one side of the vessels, attention was drawn toward backscattered gamma rays as a desirable choice. In this research, the volume fraction percentage was measured precisely in water-gasoil-air three-phase flows by using the backscatter gamma ray technique andthe multilayer perceptron (MLP) neural network. The volume fraction determination in three-phase flows requires two gamma radioactive sources or a dual-energy source (with different energies) while in this study, we used just a 137Cs source (with the single energy) and a NaI detector to analyze backscattered gamma rays. The experimental set-up provides the required data for training and testing the network. Using the presented method, the volume fraction was predicted with a mean relative error percentage less than 6.47%. Also, the root mean square error was calculated as 1.60. The presented set-up is applicable in some industries with limited access. Also, using this technique, the cost, radiation safety and shielding requirements are minimized toward the other proposed methods.

  19. A US Coordination Facility for the Spectrum-X-Gamma Observatory

    NASA Technical Reports Server (NTRS)

    Forman, William R.

    1999-01-01

    Spectrum-X Gamma (SXG) is a world-class, orbiting astronomical observatory, with capabilities for all-sky monitoring, polarimetry, and high resolution spectroscopy, and wavelength coverage extending from the ultraviolet (TAUVEX and FUVITA), through the x-ray (SODART and JET-X), to the hard x-ray (MART), and gamma-ray (SPIN) regimes. SXG is a multi-national mission developed under the sponsorship of the Russian Academy of Sciences, with participation from several European countries and the U.S. The U.S. involvement in SXG includes both instrumentation and data rights. The U.S. Spectrum X Gamma Coordination Facility (SXGCF) supports U.S. observers in proposing for SXG SODART observations, analyzing SXG data, and conducting archival research. The SXGCF also has the responsibility for organizing the U.S. archive of SXG data, which will eventually include approximately half of the data from most SXG instruments. This report summarizes the activities of the SXGCF scientific and technical staff during the period from Feb. 1 through July 31, 1999.

  20. Application of gamma-ray radiography and gravimetric measurements after accelerated corrosion tests of steel embedded in mortar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duffó, Gustavo, E-mail: duffo@cnea.gov.ar; Consejo Nacional de Investigaciones Científicas y Técnicas; Universidad Nacional de San Martín, Av. Gral. Paz 1499, 1650 San Martín, Buenos Aires

    2015-08-15

    The accelerated corrosion by the impressed current technique is widely used in studies of concrete durability since it has the advantage that tests can be carried out within reasonable periods of time. In the present work the relationship between the applied current density and the resulting damage on the reinforcing steel, by applying optical microscopy, scanning electron microscopy, gamma-ray radiography and gravimetric measurements, was studied by means of the implementation of accelerated corrosion tests on reinforced mortar. The results show that the efficiency of the applied current is between 1 and 77%, regardless of the applied current density, the water/cementmore » ratio and the mortar cover depth of the specimens. The results show the applicability of the gamma-ray radiography technique to detect localized corrosion of steel rebars in laboratory specimens.« less

  1. Topics in Astrophysical X-Ray and Gamma Ray Spectroscopy. Ph.D. Thesis - Maryland Univ.

    NASA Technical Reports Server (NTRS)

    Bussard, R. W.

    1978-01-01

    A number of topics relating to astrophysical observations that have already been made or are currently planned of spectral features, mostly emission lines, in the X-ray and gamma ray region of the electromagnetic spectrum are investigated. These topics include: the production of characteristic X-ray and gamma ray lines by nonthermal ions, spectral features induced by processes occurring in strong magnetic fields, and the positron annihilation line at 0.5 MeV. The rate of X-ray production at 6.8 keV by the 2p to 1s transition in fast hydrogen- and helium-like iron ions, following both electron capture to excited levels and collisional excitation is calculated. The cross section for electron-ion Coulomb collisions in strong fields is also calculated.

  2. Gamma-Ray Imaging for Explosives Detection

    NASA Technical Reports Server (NTRS)

    deNolfo, G. A.; Hunter, S. D.; Barbier, L. M.; Link, J. T.; Son, S.; Floyd, S. R.; Guardala, N.; Skopec, M.; Stark, B.

    2008-01-01

    We describe a gamma-ray imaging camera (GIC) for active interrogation of explosives being developed by NASA/GSFC and NSWCICarderock. The GIC is based on the Three-dimensional Track Imager (3-DTI) technology developed at GSFC for gamma-ray astrophysics. The 3-DTI, a large volume time-projection chamber, provides accurate, approx.0.4 mm resolution, 3-D tracking of charged particles. The incident direction of gamma rays, E, > 6 MeV, are reconstructed from the momenta and energies of the electron-positron pair resulting from interactions in the 3-DTI volume. The optimization of the 3-DTI technology for this specific application and the performance of the GIC from laboratory tests is presented.

  3. Dual-Particle Imaging System with Neutron Spectroscopy for Safeguard Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamel, Michael C.; Weber, Thomas M.

    2017-11-01

    A dual-particle imager (DPI) has been designed that is capable of detecting gamma-ray and neutron signatures from shielded SNM. The system combines liquid organic and NaI(Tl) scintillators to form a combined Compton and neutron scatter camera. Effective image reconstruction of detected particles is a crucial component for maximizing the performance of the system; however, a key deficiency exists in the widely used iterative list-mode maximum-likelihood estimation-maximization (MLEM) image reconstruction technique. For MLEM a stopping condition is required to achieve a good quality solution but these conditions fail to achieve maximum image quality. Stochastic origin ensembles (SOE) imaging is a goodmore » candidate to address this problem as it uses Markov chain Monte Carlo to reach a stochastic steady-state solution. The application of SOE to the DPI is presented in this work.« less

  4. Integrated fluorescence correlation spectroscopy device for point-of-care clinical applications

    PubMed Central

    Olson, Eben; Torres, Richard; Levene, Michael J.

    2013-01-01

    We describe an optical system which reduces the cost and complexity of fluorescence correlation spectroscopy (FCS), intended to increase the suitability of the technique for clinical use. Integration of the focusing optics and sample chamber into a plastic component produces a design which is simple to align and operate. We validate the system by measurements on fluorescent dye, and compare the results to a commercial instrument. In addition, we demonstrate its application to measurements of concentration and multimerization of the clinically relevant protein von Willebrand factor (vWF) in human plasma. PMID:23847733

  5. A novel algorithm for solving the true coincident counting issues in Monte Carlo simulations for radiation spectroscopy.

    PubMed

    Guan, Fada; Johns, Jesse M; Vasudevan, Latha; Zhang, Guoqing; Tang, Xiaobin; Poston, John W; Braby, Leslie A

    2015-06-01

    Coincident counts can be observed in experimental radiation spectroscopy. Accurate quantification of the radiation source requires the detection efficiency of the spectrometer, which is often experimentally determined. However, Monte Carlo analysis can be used to supplement experimental approaches to determine the detection efficiency a priori. The traditional Monte Carlo method overestimates the detection efficiency as a result of omitting coincident counts caused mainly by multiple cascade source particles. In this study, a novel "multi-primary coincident counting" algorithm was developed using the Geant4 Monte Carlo simulation toolkit. A high-purity Germanium detector for ⁶⁰Co gamma-ray spectroscopy problems was accurately modeled to validate the developed algorithm. The simulated pulse height spectrum agreed well qualitatively with the measured spectrum obtained using the high-purity Germanium detector. The developed algorithm can be extended to other applications, with a particular emphasis on challenging radiation fields, such as counting multiple types of coincident radiations released from nuclear fission or used nuclear fuel.

  6. Prompt gamma-ray imaging for small animals

    NASA Astrophysics Data System (ADS)

    Xu, Libai

    codes GEANT4 or MCNP5, to predict results and investigate the feasibility of this new imaging idea. Benchmark experiments have been conducted to test the capability of the code to simulate prompt gamma rays, which are produced by following the nuclear structures of each irradiated isotope, and coincidence counting techniques, which are considered the most important improvement in neutron-related gamma-ray detection applications to reduce gamma background and improve system signal-to-noise ratios. With coincidence prompt gamma rays available, two major imaging techniques, electronic collimations and mechanic collimations, are implemented in the simulation to illustrate the feasibility of imaging elemental distribution by this new technique. The expectation maximization algorithm is employed in electronic collimation to reconstruct images. The common SPECT imaging algorithms are used in mechanical collimation to get an image. Several critical topics concerning practical applications have already been discussed, such as the radiation dose to the mouse and the detection efficiency of high-energy gamma rays. The funding of this work is provided by the Center for Engineering Application of Radioisotopes (CEAR) at North Carolina State University (NCSU) and Nuclear Engineering Education Research.

  7. Application of THz Vibrational Spectroscopy to Molecular Characterization and the Theoretical Fundamentals: An Illustration Using Saccharide Molecules.

    PubMed

    Zhang, Feng; Wang, Houng-Wei; Tominaga, Keisuke; Hayashi, Michitoshi; Hasunuma, Tomohisa; Kondo, Akihiko

    2017-02-01

    This work illustrates several theoretical fundamentals for the application of THz vibrational spectroscopy to molecular characterization in the solid state using two different types of saccharide systems as examples. Four subjects have been specifically addressed: (1) the qualitative differences in the molecular vibrational signatures monitored by THz and mid-IR vibrational spectroscopy; (2) the selection rules for THz vibrational spectroscopy as applied to crystalline and amorphous systems; (3) a normal mode simulation, using α-l-xylose as an example; and (4) a rigorous mode analysis to quantify the percentage contributions of the intermolecular and intramolecular vibrations to the normal mode of interest. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. [Application of Fourier transform attenuated total reflection infrared spectroscopy in analysis of pulp and paper industry].

    PubMed

    Zhang, Yong; Cao, Chun-yu; Feng, Wen-ying; Xu, Ming; Su, Zhen-hua; Liu, Xiao-meng; Lü, Wei-jun

    2011-03-01

    As one of the most powerful tools to investigate the compositions of raw materials and the property of pulp and paper, infrared spectroscopy has played an important role in pulp and paper industry. However, the traditional transmission infrared spectroscopy has not met the requirements of the producing processes because of its disadvantages of time consuming and sample destruction. New technique would be needed to be found. Fourier transform attenuated total reflection infrared spectroscopy (ATR-FTIR) is an advanced spectroscopic tool for nondestructive evaluation and could rapidly, accurately estimate the production properties of each process in pulp and paper industry. The present review describes the application of ATR-FTIR in analysis of pulp and paper industry. The analysis processes will include: pulping, papermaking, environmental protecting, special processing and paper identifying.

  9. Advances in Gamma-Ray Imaging with Intensified Quantum-Imaging Detectors

    NASA Astrophysics Data System (ADS)

    Han, Ling

    Nuclear medicine, an important branch of modern medical imaging, is an essential tool for both diagnosis and treatment of disease. As the fundamental element of nuclear medicine imaging, the gamma camera is able to detect gamma-ray photons emitted by radiotracers injected into a patient and form an image of the radiotracer distribution, reflecting biological functions of organs or tissues. Recently, an intensified CCD/CMOS-based quantum detector, called iQID, was developed in the Center for Gamma-Ray Imaging. Originally designed as a novel type of gamma camera, iQID demonstrated ultra-high spatial resolution (< 100 micron) and many other advantages over traditional gamma cameras. This work focuses on advancing this conceptually-proven gamma-ray imaging technology to make it ready for both preclinical and clinical applications. To start with, a Monte Carlo simulation of the key light-intensification device, i.e. the image intensifier, was developed, which revealed the dominating factor(s) that limit energy resolution performance of the iQID cameras. For preclinical imaging applications, a previously-developed iQID-based single-photon-emission computed-tomography (SPECT) system, called FastSPECT III, was fully advanced in terms of data acquisition software, system sensitivity and effective FOV by developing and adopting a new photon-counting algorithm, thicker columnar scintillation detectors, and system calibration method. Originally designed for mouse brain imaging, the system is now able to provide full-body mouse imaging with sub-350-micron spatial resolution. To further advance the iQID technology to include clinical imaging applications, a novel large-area iQID gamma camera, called LA-iQID, was developed from concept to prototype. Sub-mm system resolution in an effective FOV of 188 mm x 188 mm has been achieved. The camera architecture, system components, design and integration, data acquisition, camera calibration, and performance evaluation are presented in

  10. A Brief Review of OPT101 Sensor Application in Near-Infrared Spectroscopy Instrumentation for Intensive Care Unit Clinics

    PubMed Central

    Li, Ting; Zhong, Fulin; Pan, Boan; Li, Zebin; Huang, Chong; Deng, Zishan

    2017-01-01

    The optoelectronic sensor OPT101 have merits in advanced optoelectronic response characteristics at wavelength range for medical near-infrared spectroscopy and small-size chip design with build-in trans-impedance amplifier. Our lab is devoted to developing a series of portable near-infrared spectroscopy (NIRS) devices embedded with OPT101 for applications in intensive care unit clinics, based on NIRS principle. Here we review the characteristics and advantages of OPT101 relative to clinical NIRS instrumentation, and the most recent achievements, including early-diagnosis and therapeutic effect evaluation of thrombus, noninvasive monitoring of patients' shock severity, and fatigue evaluation. The future prospect on OPT101 improvements in noninvasive clinical applications is also discussed. PMID:28757564

  11. The low-temperature scintillation properties of bismuth germanate and its application to high-energy gamma radiation imaging devices.

    PubMed

    Piltingsrud, H V

    1979-12-01

    Bismuth germanate is a scintillation material with very high z, and high density (7.13 g/cm3). It is a rugged, nonhygroscopic, crystalline material with room-temperature scintillation properties described by previous investigators as having a light yield approximately 8% of that of NaI(Tl), emission peak at approximately 480 nm, decay constant of 0.3 microsec, and energy resolution congruent to 15% (FWHM) for Cs-137 gamma radiations. These properties make it an excellent candidate for applications involving the detection of high-energy gamma photons and positron annihilation radiation, particularly when good spatial resolution is desired. At room temperature, however, the application of this material is somewhat limited by low light output and poor energy resolution. This paper presents new data on the scintillation properties of bismuth germanate as a function of temperature from -- 196 degrees C to j0 degrees C. Low-temperature use of the material is shown to greatly improve its light yield and energy resolution. The implications of this work to the design of imaging devices for high-energy radiation in health physics and nuclear medicine are discussed.

  12. High resolution X- and gamma-ray spectroscopy of cosmic X-ray sources

    NASA Technical Reports Server (NTRS)

    Lin, R. P.

    1983-01-01

    A high resolution X-ray spectrometer and large area phoswich detector were designed and co-aligned in a common elevation mounting in order to measure solar and cosmic X-ray and gamma ray emission in the 13 to 600 KeV energy range from a balloon. The instrument is described and results obtained for the Crab Nebula, the supernova remnant Cas A, and the Sun are discussed and analyzed.

  13. Polycrystalline gamma plutonium's elastic moduli versus temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Migliori, Albert; Betts, J; Trugman, A

    2009-01-01

    Resonant ultrasound spectroscopy was used to measure the elastic properties of pure polycrystalline {sup 239}Pu in the {gamma} phase. Shear and longitudinal elastic moduli were measured simultaneously and the bulk modulus was computed from them. A smooth, linear, and large decrease of all elastic moduli with increasing temperature was observed. They calculated the Poisson ratio and found that it increases from 0.242 at 519 K to 0.252 at 571 K. These measurements on extremely well characterized pure Pu are in agreement with other reported results where overlap occurs.

  14. Graphical Environment Tools for Application to Gamma-Ray Energy Tracking Arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todd, Richard A.; Radford, David C.

    2013-12-30

    Highly segmented, position-sensitive germanium detector systems are being developed for nuclear physics research where traditional electronic signal processing with mixed analog and digital function blocks would be enormously complex and costly. Future systems will be constructed using pipelined processing of high-speed digitized signals as is done in the telecommunications industry. Techniques which provide rapid algorithm and system development for future systems are desirable. This project has used digital signal processing concepts and existing graphical system design tools to develop a set of re-usable modular functions and libraries targeted for the nuclear physics community. Researchers working with complex nuclear detector arraysmore » such as the Gamma-Ray Energy Tracking Array (GRETA) have been able to construct advanced data processing algorithms for implementation in field programmable gate arrays (FPGAs) through application of these library functions using intuitive graphical interfaces.« less

  15. The gamma knife in ophthalmology. Part One--Uveal melanoma.

    PubMed

    Wygledowska-Promieńska, Dorota; Jurys, Małgorzata; Wilczyński, Tomasz; Drzyzga, Łukasz

    2014-01-01

    The Gamma Knife was designed by Lars Leksell in the early 1950's. It gave rise to a new discipline of medicine--stereotactic radiosurgery. Primarily dedicated to neurosurgery, the Gamma Knife has become an alternative, widely used surgery technique. According to Elekta's statistics, approximately 60,000 people are treated with Leksell Gamma Knife every year and it is the most extensively studied stereotactic radiosurgery system in the world. The Leksell Gamma Knife can also be used in ophthalmology. The gamma ray beam concentration enables effective treatment of uveal melanoma, choroidal hemangioma, orbital tumors or even choroidal neovascularization. The virtue of Leksell Gamma Knife is its extreme precision, non-invasiveness and the possibility of outpatient treatment, which significantly reduces costs and diminishes post-operative complications. Innovative solutions shorten a single session to a minimum, which is very comfortable and safe for both staff and patients. Advantages and possible side effects of gamma knife radiosurgery are well-documented in the professional literature. The objective of this review is to present the recognized applications of Leksell Gamma Knife in ophthalmology.

  16. High reliability - low noise radionuclide signature identification algorithms for border security applications

    NASA Astrophysics Data System (ADS)

    Lee, Sangkyu

    Illicit trafficking and smuggling of radioactive materials and special nuclear materials (SNM) are considered as one of the most important recent global nuclear threats. Monitoring the transport and safety of radioisotopes and SNM are challenging due to their weak signals and easy shielding. Great efforts worldwide are focused at developing and improving the detection technologies and algorithms, for accurate and reliable detection of radioisotopes of interest in thus better securing the borders against nuclear threats. In general, radiation portal monitors enable detection of gamma and neutron emitting radioisotopes. Passive or active interrogation techniques, present and/or under the development, are all aimed at increasing accuracy, reliability, and in shortening the time of interrogation as well as the cost of the equipment. Equally important efforts are aimed at advancing algorithms to process the imaging data in an efficient manner providing reliable "readings" of the interiors of the examined volumes of various sizes, ranging from cargos to suitcases. The main objective of this thesis is to develop two synergistic algorithms with the goal to provide highly reliable - low noise identification of radioisotope signatures. These algorithms combine analysis of passive radioactive detection technique with active interrogation imaging techniques such as gamma radiography or muon tomography. One algorithm consists of gamma spectroscopy and cosmic muon tomography, and the other algorithm is based on gamma spectroscopy and gamma radiography. The purpose of fusing two detection methodologies per algorithm is to find both heavy-Z radioisotopes and shielding materials, since radionuclides can be identified with gamma spectroscopy, and shielding materials can be detected using muon tomography or gamma radiography. These combined algorithms are created and analyzed based on numerically generated images of various cargo sizes and materials. In summary, the three detection

  17. Effects of gamma-sterilization on the physicochemical properties of natural sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bank, Tracy L; Madden, Andrew; Baldwin, Mark E

    2008-06-01

    Batch U(VI) sorption/reduction experiments were completed on sterilized and non-sterilized sediment samples to elucidate biological and geochemical reduction mechanisms. Results from X-ray absorption near-edge structure (XANES) spectroscopy revealed that {gamma}-sterilized sediments were actually better sorbents of U(VI), despite the absence of any measurable biological activity. These results indicate that {gamma}-irradiation induced significant physico-chemical changes in the sediment which is contrary to numerous other studies identifying {gamma}-sterilization as an effective and minimally invasive technique. To identify the extent and method of alteration of the soil as a result of {gamma}-sterilization, untreated soil samples, physically separated size fractions, and chemically extracted fractionsmore » of the soil were analyzed pre- and post-sterilization. The effects of sterilization on mineralogy, pH, natural organic matter (NOM), cation exchange capacity (CEC), and iron oxidation state were determined. Results indicated that major mineralogy of the clay and whole sediment samples was unchanged. Sediment pH decreased only slightly with {gamma}-irradiation; however, irradiation produced a significant decrease in CEC of the untreated sediments and affected both the organic and inorganic fractions. Moessbauer spectra of non-sterile and {gamma}-sterilized sediments measured more reduced iron present in {gamma}-sterilized sediments compared to non-sterile samples. Our results suggest that sterilization by {gamma}-irradiation induced iron reduction that may have increased the sorption and/or reduction of U(VI) onto these sediments. However, Moessbauer and batch sorption data are somewhat contradictory, the former indicates that the iron oxide or iron hydroxide minerals are more significantly reduced while the later indicates that reduced clay minerals account for greater sorption of U(VI).« less

  18. A matrix-inversion method for gamma-source mapping from gamma-count data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adsley, Ian; Burgess, Claire; Bull, Richard K

    In a previous paper it was proposed that a simple matrix inversion method could be used to extract source distributions from gamma-count maps, using simple models to calculate the response matrix. The method was tested using numerically generated count maps. In the present work a 100 kBq Co{sup 60} source has been placed on a gridded surface and the count rate measured using a NaI scintillation detector. The resulting map of gamma counts was used as input to the matrix inversion procedure and the source position recovered. A multi-source array was simulated by superposition of several single-source count maps andmore » the source distribution was again recovered using matrix inversion. The measurements were performed for several detector heights. The effects of uncertainties in source-detector distances on the matrix inversion method are also examined. The results from this work give confidence in the application of the method to practical applications, such as the segregation of highly active objects amongst fuel-element debris. (authors)« less

  19. Illustration of microphysical processes in Amazonian deep convective clouds in the gamma phase space: introduction and potential applications

    NASA Astrophysics Data System (ADS)

    Cecchini, Micael A.; Machado, Luiz A. T.; Wendisch, Manfred; Costa, Anja; Krämer, Martina; Andreae, Meinrat O.; Afchine, Armin; Albrecht, Rachel I.; Artaxo, Paulo; Borrmann, Stephan; Fütterer, Daniel; Klimach, Thomas; Mahnke, Christoph; Martin, Scot T.; Minikin, Andreas; Molleker, Sergej; Pardo, Lianet H.; Pöhlker, Christopher; Pöhlker, Mira L.; Pöschl, Ulrich; Rosenfeld, Daniel; Weinzierl, Bernadett

    2017-12-01

    The behavior of tropical clouds remains a major open scientific question, resulting in poor representation by models. One challenge is to realistically reproduce cloud droplet size distributions (DSDs) and their evolution over time and space. Many applications, not limited to models, use the gamma function to represent DSDs. However, even though the statistical characteristics of the gamma parameters have been widely studied, there is almost no study dedicated to understanding the phase space of this function and the associated physics. This phase space can be defined by the three parameters that define the DSD intercept, shape, and curvature. Gamma phase space may provide a common framework for parameterizations and intercomparisons. Here, we introduce the phase space approach and its characteristics, focusing on warm-phase microphysical cloud properties and the transition to the mixed-phase layer. We show that trajectories in this phase space can represent DSD evolution and can be related to growth processes. Condensational and collisional growth may be interpreted as pseudo-forces that induce displacements in opposite directions within the phase space. The actually observed movements in the phase space are a result of the combination of such pseudo-forces. Additionally, aerosol effects can be evaluated given their significant impact on DSDs. The DSDs associated with liquid droplets that favor cloud glaciation can be delimited in the phase space, which can help models to adequately predict the transition to the mixed phase. We also consider possible ways to constrain the DSD in two-moment bulk microphysics schemes, in which the relative dispersion parameter of the DSD can play a significant role. Overall, the gamma phase space approach can be an invaluable tool for studying cloud microphysical evolution and can be readily applied in many scenarios that rely on gamma DSDs.

  20. Very high energy gamma ray extension of GRO observations

    NASA Technical Reports Server (NTRS)

    Weekes, Trevor C.

    1992-01-01

    This has been an exiciting year for high energy gamma-ray astronomy, both from space and from ground-based observatories. It has been a particularly active period for the Whipple Observatory gamma-ray group. In phase 1 of the Compton Gamma Ray Observatory (GRO), there has not been too much opportunity for overlapping observations with the Energetic Gamma Ray Experiment Telescope (EGRET) and the other GRO telescopes; however, significant progress was made in the development of data analysis techniques and in improving the sensitivity of the technique which will have direct application in correlative observations in phase 2. Progress made during the period 1 Jul. 1991 - 31 Dec. 1991 is presented.

  1. Application of blind source separation to gamma ray spectra acquired by GRaND around Vesta

    NASA Astrophysics Data System (ADS)

    Mizzon, H.; Toplis, M. J.; Forni, O.; Prettyman, T. H.; Raymond, C. A.; Russell, C. T.

    2012-12-01

    The bismuth germinate (BGO) scintillator is one of the sensors of the gamma ray and neutron detector (GRaND)1 on board the Dawn spacecraft, that has spent just over one year in orbit around the asteroid 4-Vesta. The BGO detector is excited by energetic gamma-rays produced by galactic cosmic rays (GCR) or energetic solar particles interacting either with Vesta and/or the Dawn spacecraft. In detail, during periods of quiet solar activity, gamma ray spectra produced by the scintillator can be considered as consisting of three signals: i) a contribution of gamma-rays from Vesta produced by GCR interactions at the asteroid's surface, ii) a contribution from the spacecraft excited by neutrons coming from Vesta, and iii) a contribution of the spacecraft excited by local interaction with galactic cosmic rays. While the first two contributions should be positive functions of the solid angle of Vesta in the field of view during acquisition, the last one should have a negative dependence because Vesta partly shields the spacecraft from GCR. This theoretical mix can be written formally as: S=aΩSV+bΩSSCNV+c(4π-Ω)SSCGCR (1) where S is the series of recorded spectra, Ω is the solid angle, SV is the contribution of gamma rays coming from Vesta, SSCNV is the contribution of gamma rays coming from the spacecraft excited by the neutron coming from Vesta and SSCGCR is the contribution of gamma rays coming from the spacecraft excited by GCR. A blind source separation method called independent component analysis enables separating additive subcomponents supposing the mutual statistical independence of the non-Gaussian source signals2. Applying this method to BGO spectra acquired during the first three months of the low-altitude measurement orbit (LAMO) reveals two main independent components. The first one is dominated by the positron electron annihilation peak and is positively correlated to the solid angle. The second is negatively correlated to the solid angle and displays peaks

  2. A prototype small CdTe gamma camera for radioguided surgery and other imaging applications.

    PubMed

    Tsuchimochi, Makoto; Sakahara, Harumi; Hayama, Kazuhide; Funaki, Minoru; Ohno, Ryoichi; Shirahata, Takashi; Orskaug, Terje; Maehlum, Gunnar; Yoshioka, Koki; Nygard, Einar

    2003-12-01

    Gamma probes have been used for sentinel lymph node biopsy in melanoma and breast cancer. However, these probes can provide only radioactivity counts and variable pitch audio output based on the intensity of the detected radioactivity. We have developed a small semiconductor gamma camera (SSGC) that allows visualisation of the size, shape and location of the target tissues. This study is designed to characterise the performance of the SSGC for radioguided surgery of metastatic lesions and for other imaging applications amenable to the smaller format of this prototype imaging system. The detector head had 32 cadmium telluride semiconductor arrays with a total of 1,024 pixels, and with application-specific integrated circuits (ASICs) and a tungsten collimator. The entire assembly was encased in a lead housing measuring 152 mmx166 mmx65 mm. The effective visual field was 44.8 mmx44.8 mm. The energy resolution and imaging aspects were tested. Two spherical 5-mm- and 15-mm-diameter technetium-99m radioactive sources that had activities of 0.15 MBq and 100 MBq, respectively, were used to simulate a sentinel lymph node and an injection site. The relative detectability of these foci by the new detector and a conventional scintillation camera was studied. The prototype was also examined in a variety of clinical applications. Energy resolution [full-width at half-maximum (FWHM)] for a single element at the centre of the field of view was 4.2% at 140 keV (99mTc), and the mean energy resolution of the CdTe detector arrays was approximately 7.8%. The spatial resolution, represented by FWHM, had a mean value of 1.56 +/- 0.05 mm. Simulated node foci could be visualised clearly by the SSGC using a 15-s acquisition time. In preliminary clinical tests, the SSGC successfully imaged diseases in a variety of tissues, including salivary and thyroid glands, temporomandibular joints and sentinel lymph nodes. The SSGC has significant potential for diagnosing diseases and facilitating

  3. Parametric analysis of cherenkov light LDF from EAS for high energy gamma rays and nuclei: Ways of practical application

    NASA Astrophysics Data System (ADS)

    Elshoukrofy, A. Sh. M.; Postnikov, E. B.; Korosteleva, E. E.; Sveshnikova, L. G.; Motaweh, H. A.

    2017-06-01

    In this paper we propose a `knee-like' approximation of the lateral distribution of the Cherenkov light from extensive air showers in the energy range 30-3000 TeV and study a possibility of its practical application in high energy ground-based gamma-ray astronomy experiments (in particular, in TAIGA-HiSCORE). The approximation has a very good accuracy for individual showers and can be easily simplified for practical application in the HiSCORE wide angle timing array in the condition of a limited number of triggered stations.

  4. Applications of Raman spectroscopy to gemology.

    PubMed

    Bersani, Danilo; Lottici, Pier Paolo

    2010-08-01

    Being nondestructive and requiring short measurement times, a low amount of material, and no sample preparation, Raman spectroscopy is used for routine investigation in the study of gemstone inclusions and treatments and for the characterization of mounted gems. In this work, a review of the use of laboratory Raman and micro-Raman spectrometers and of portable Raman systems in the gemology field is given, focusing on gem identification and on the evaluation of the composition, provenance, and genesis of gems. Many examples are shown of the use of Raman spectroscopy as a tool for the identification of imitations, synthetic gems, and enhancement treatments in natural gemstones. Some recent developments are described, with particular attention being given to the semiprecious stone jade and to two important organic materials used in jewelry, i.e., pearls and corals.

  5. Electrochemical impedance spectroscopy based-on interferon-gamma detection

    NASA Astrophysics Data System (ADS)

    Li, Guan-Wei; Kuo, Yi-Ching; Tsai, Pei-I.; Lee, Chih-Kung

    2014-03-01

    Tuberculosis (TB) is an ancient disease constituted a long-term menace to public health. According to World Health Organization (WHO), mycobacterium tuberculosis (MTB) infected nearly a third of people of the world. There is about one new TB occurrence every second. Interferon-gamma (IFN-γ) is associated with susceptibility to TB, and interferongamma release assays (IGRA) is considered to be the best alternative of tuberculin skin test (TST) for diagnosis of latent tuberculosis infection (LTBI). Although significant progress has been made with regard to the design of enzyme immunoassays for IFN-γ, adopting this assay is still labor-intensive and time-consuming. To alleviate these drawbacks, we used IFN-γ antibody to facilitate the detection of IFN-γ. An experimental verification on the performance of IGRA was done in this research. We developed two biosensor configurations, both of which possess high sensitivity, specificity, and rapid IFN-γ diagnoses. The first is the electrochemical method. The second is a circular polarization interferometry configuration, which incorporates two light beams with p-polarization and s-polarization states individually along a common path, a four photo-detector quadrature configuration to arrive at a phase modulated ellipsometer. With these two methods, interaction between IFN-γ antibody and IFN-γ were explored and presented in detail.

  6. Nuclear Science and Applications with the Next Generation of High-Power Lasers and Brilliant Low-Energy Gamma Beams at ELI-NP

    NASA Astrophysics Data System (ADS)

    Gales, S.; ELI-NP Team

    2015-10-01

    The development of high power lasers and the combination of such novel devices with accelerator technology has enlarged the science reach of many research fields, in particular High Energy, Nuclear and Astrophysics as well as societal applications in Material Science, Nuclear Energy and Medicine. The European Strategic Forum for Research Infrastructures (ESFRI) has selected a proposal based on these new premises called "ELI" for Extreme Light Infrastructure. ELI will be built as a network of three complementary pillars at the frontier of laser technologies. The ELI-NP pillar (NP for Nuclear Physics) is under construction near Bucharest (Romania) and will develop a scientific program using two 10 PW class lasers and a Back Compton Scattering High Brilliance and Intense Low Energy Gamma Beam, a marriage of Laser and Accelerator technology at the frontier of knowledge. In the present paper, the technical and scientific status of the project as well as the applications of the gamma source will be discussed.

  7. Development of the Probing In-Situ with Neutron and Gamma Rays (PING) Instrument for Planetary Science Applications

    NASA Technical Reports Server (NTRS)

    Parsons, A.; Bodnarik, J.; Burger, D.; Evans, L.; Floyd, S; Lim, L.; McClanahan, T.; Namkung, M.; Nowicki, S.; Schweitzer, J.; hide

    2011-01-01

    The Probing In situ with Neutrons and Gamma rays (PING) instrument is a promising planetary science application of the active neutron-gamma ray technology that has been used successfully in oil field well logging and mineral exploration on Earth for decades. Similar techniques can be very powerful for non-invasive in situ measurements of the subsurface elemental composition on other planets. The objective of our active neutron-gamma ray technology program at NASA Goddard Space Flight Center (NASA/GSFC) is to bring instruments using this technology to the point where they can be flown on a variety of surface lander or rover missions to the Moon, Mars, Venus, asteroids, comets and the satellites of the outer planets. PING combines a 14 MeV deuterium-tritium pulsed neutron generator with a gamma ray spectrometer and two neutron detectors to produce a landed instrument that can determine the elemental composition of a planet down to 30 - 50 cm below the planet's surface. The penetrating nature of.5 - 10 MeV gamma rays and 14 MeV neutrons allows such sub-surface composition measurements to be made without the need to drill into or otherwise disturb the planetary surface, thus greatly simplifying the lander design. We are currently testing a PING prototype at a unique outdoor neutron instrumentation test facility at NASA/GSFC that provides two large (1.8 m x 1.8 m x.9 m) granite and basalt test formations placed outdoors in an empty field. Since an independent trace elemental analysis has been performed on both the Columbia River basalt and Concord Gray granite materials, these samples present two known standards with which to compare PING's experimentally measured elemental composition results. We will present experimental results from PING measurements of both the granite and basalt test formations and show how and why the optimum PING instrument operating parameters differ for studying the two materials.

  8. Effects of gamma irradiation on physicochemical properties of native and acetylated wheat starches.

    PubMed

    Kong, Xiangli; Zhou, Xin; Sui, Zhongquan; Bao, Jinsong

    2016-10-01

    Effects of gamma irradiation on the physicochemical and crystalline properties of the native and acetylated wheat starches were investigated. Peak, hot paste, cool paste and setback viscosities of both native and acetylated wheat starches decreased continuously and significantly with the increase of the irradiation dose, whereas breakdown viscosity increased after irradiation. However, gamma irradiation only exerted slight effects on thermal and retrogradation properties of both native and acetylated wheat starches. X-ray diffraction and fourier transform infrared spectroscopy revealed that acetylation modification had considerable effects on the molecular structure of wheat starch, and the crystallinity of both untreated and acetylated starches increased slightly with the increase of irradiation dose. However, the V-type crystallinity of amylose-lipid complex was not affected by gamma irradiation treatments with doses up to 9kGy. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. IAEA Co-ordinated Research Project: update of X-ray and gamma-ray decay data standards for detector calibration and other applications.

    PubMed

    Nichols, Alan L

    2004-01-01

    A Co-ordinated Research Project (CRP) was established in 1998 by the IAEA Nuclear Data Section (Update of X-ray and gamma-ray Decay Data Standards for Detector Calibration and Other Applications), in order to improve further the recommended decay data used to undertake efficiency calibrations of gamma-ray detectors. Participants in this CRP reviewed and modified the list of radionuclides most suited for detector efficiency calibration, and also considered the decay-data needs for safeguards, waste management, dosimetry, nuclear medicine, material analysis and environmental monitoring. Overall, 62 radionuclides were selected for decay-data evaluation, along with four parent-daughter combinations and two natural decay chains. gamma-ray emissions from specific nuclear reactions were also included to extend the calibrant energy well beyond 10 MeV. A significant number of these decay-data evaluations have been completed, and an IAEA-TECDOC report and database are in the process of being assembled for planned completion by the end of 2003.

  10. Plasma driven neutron/gamma generator

    DOEpatents

    Leung, Ka-Ngo; Antolak, Arlyn

    2015-03-03

    An apparatus for the generation of neutron/gamma rays is described including a chamber which defines an ion source, said apparatus including an RF antenna positioned outside of or within the chamber. Positioned within the chamber is a target material. One or more sets of confining magnets are also provided to create a cross B magnetic field directly above the target. To generate neutrons/gamma rays, the appropriate source gas is first introduced into the chamber, the RF antenna energized and a plasma formed. A series of high voltage pulses are then applied to the target. A plasma sheath, which serves as an accelerating gap, is formed upon application of the high voltage pulse to the target. Depending upon the selected combination of source gas and target material, either neutrons or gamma rays are generated, which may be used for cargo inspection, and the like.

  11. gamma-Hexachlorocyclohexane (gamma-HCH)

    Integrated Risk Information System (IRIS)

    gamma - Hexachlorocyclohexane ( gamma - HCH ) ; CASRN 58 - 89 - 9 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Asse

  12. Mineral mapping and applications of imaging spectroscopy

    USGS Publications Warehouse

    Clark, R.N.; Boardman, J.; Mustard, J.; Kruse, F.; Ong, C.; Pieters, C.; Swayze, G.A.

    2006-01-01

    Spectroscopy is a tool that has been used for decades to identify, understand, and quantify solid, liquid, or gaseous materials, especially in the laboratory. In disciplines ranging from astronomy to chemistry, spectroscopic measurements are used to detect absorption and emission features due to specific chemical bonds, and detailed analyses are used to determine the abundance and physical state of the detected absorbing/emitting species. Spectroscopic measurements have a long history in the study of the Earth and planets. Up to the 1990s remote spectroscopic measurements of Earth and planets were dominated by multispectral imaging experiments that collect high-quality images in a few, usually broad, spectral bands or with point spectrometers that obtained good spectral resolution but at only a few spatial positions. However, a new generation of sensors is now available that combines imaging with spectroscopy to create the new discipline of imaging spectroscopy. Imaging spectrometers acquire data with enough spectral range, resolution, and sampling at every pixel in a raster image so that individual absorption features can be identified and spatially mapped (Goetz et al., 1985).

  13. Fourier transform mid infrared spectroscopy applications for monitoring the structural plasticity of plant cell walls

    PubMed Central

    Largo-Gosens, Asier; Hernández-Altamirano, Mabel; García-Calvo, Laura; Alonso-Simón, Ana; Álvarez, Jesús; Acebes, José L.

    2014-01-01

    Fourier transform mid-infrared (FT-MIR) spectroscopy has been extensively used as a potent, fast and non-destructive procedure for analyzing cell wall architectures, with the capacity to provide abundant information about their polymers, functional groups, and in muro entanglement. In conjunction with multivariate analyses, this method has proved to be a valuable tool for tracking alterations in cell walls. The present review examines recent progress in the use of FT-MIR spectroscopy to monitor cell wall changes occurring in muro as a result of various factors, such as growth and development processes, genetic modifications, exposition or habituation to cellulose biosynthesis inhibitors and responses to other abiotic or biotic stresses, as well as its biotechnological applications. PMID:25071791

  14. [Research progress and application prospect of near infrared spectroscopy in soil nutrition analysis].

    PubMed

    Ding, Hai-quan; Lu, Qi-peng

    2012-01-01

    "Digital agriculture" or "precision agriculture" is an important direction of modern agriculture technique. It is the combination of the modern information technique and traditional agriculture and becomes a hotspot field in international agriculture research in recent years. As a nondestructive, real-time, effective and exact analysis technique, near infrared spectroscopy, by which precision agriculture could be carried out, has vast prospect in agrology and gradually gained the recognition. The present paper intends to review the basic theory of near infrared spectroscopy and its applications in the field of agrology, pointing out that the direction of NIR in agrology should based on portable NIR spectrograph in order to acquire qualitative or quantitative information from real-time measuring in field. In addition, NIRS could be combined with space remote sensing to macroscopically control the way crop is growing and the nutrition crops need, to change the current state of our country's agriculture radically.

  15. Radionuclide concentrations in soil and lifetime cancer risk due to gamma radioactivity in Kirklareli, Turkey.

    PubMed

    Taskin, H; Karavus, M; Ay, P; Topuzoglu, A; Hidiroglu, S; Karahan, G

    2009-01-01

    The objective of this study is to evaluate and map soil radionuclides' activity concentrations and environmental outdoor gamma dose rates (terrestrial and cosmic) in Kirklareli, Turkey. The excess lifetime cancer risks are also calculated. Outdoor gamma dose rates were determined in 230 sampling stations and soil samples were taken from 177 locations. The coordinates of the readings were determined by the Global Positioning System (GPS). The outdoor gamma dose rates were determined by Eberline smart portable device (ESP-2) and measurements were taken in air for two minutes at 1m from the ground. The average outdoor gamma dose rate was 118+/-34nGyh(-1). Annual effective gamma dose of Kirklareli was 144microSv and the excess lifetime cancer risk of 5.0x10(-4). Soil samples were analyzed by gamma spectroscopy. The average 226Ra, 238U, 232Th, 137Cs, and 40K activities were 37+/-18Bqkg(-1), 28+/-13Bqkg(-1), 40+/-18Bqkg(-1), 8+/-5Bqkg(-1) and 667+/-281Bqkg(-1), respectively. The average soil radionuclides' concentrations of Kirklareli were within the worldwide range although some extreme values had been determined. Annual effective gamma doses and the excess lifetime risks of cancer were higher than the world's average.

  16. The 124Sb activity standardization by gamma spectrometry for medical applications

    NASA Astrophysics Data System (ADS)

    de Almeida, M. C. M.; Iwahara, A.; Delgado, J. U.; Poledna, R.; da Silva, R. L.

    2010-07-01

    This work describes a metrological activity determination of 124Sb, which can be used as radiotracer, applying gamma spectrometry methods with hyper pure germanium detector and efficiency curves. This isotope with good activity and high radionuclidic purity is employed in the form of meglumine antimoniate (Glucantime) or sodium stibogluconate (Pentostam) to treat leishmaniasis. 124Sb is also applied in animal organ distribution studies to solve some questions in pharmacology. 124Sb decays by β-emission and it produces several photons (X and gamma rays) with energy varying from 27 to 2700 keV. Efficiency curves to measure point 124Sb solid sources were obtained from a 166mHo standard that is a multi-gamma reference source. These curves depend on radiation energy, sample geometry, photon attenuation, dead time and sample-detector position. Results for activity determination of 124Sb samples using efficiency curves and a high purity coaxial germanium detector were consistent in different counting geometries. Also uncertainties of about 2% ( k=2) were obtained.

  17. New approaches in teaching spectroscopy technique and application classes: history, experiments and frontier lectures

    NASA Astrophysics Data System (ADS)

    Yang, Qing; Zhuge, Minghua; Yuan, Bo

    2017-08-01

    Spectroscopy has a long history. The theory of is difficult for students to understand. So we want to improve the traditional teaching to some way of interesting experience combined with historical knowledge, practical application and development frontiers. We make use of all kinds of resources to get vivid information of big events of spectroscopy development in order to show students the specific process of some phenomenon. Meanwhile, students will be suggested to read all kinds of latest papers relevantly to obtain much more information about this discipline. Both in class and in lab, we lead students to do some very useful experiments and give them guidance. Through this practice, they will understand the theory much more deeply, especially they will know how to solve the problems in research.

  18. Development of a high resolution liquid xenon imaging chamber for gamma-ray astronomy

    NASA Technical Reports Server (NTRS)

    Aprile, Elena

    1991-01-01

    The objective was to develop the technology of liquid xenon (LXe) detectors for spectroscopy and imaging of gamma rays from astrophysical sources emitting in the low to medium energy regime. In particular, the technical challenges and the physical processes relevant to the realization of the LXe detector operated as a Time Projection Chamber (TPC) were addressed and studied. Experimental results were obtained on the following topics: (1) long distance drift of free electrons in LXe (purity); (2) scintillation light yield for electrons and alphas in LXe (triggering); and (3) ionization yield for electrons and gamma rays in LXe (energy resolution). The major results from the investigations are summarized.

  19. Directional Auger Electron Spectroscopy — Physical Foundations and Applications

    NASA Astrophysics Data System (ADS)

    Mróz, S.

    Experimental data about the dependence of the Auger signal from crystalline samples on the primary beam direction are presented and discussed. It is shown that, for Auger electrons and elastically and inelastically backscattered electrons, maxima of the signal in its dependence on the polar and azimuth angles of the primary beam (in polar and azimuth profiles, respectively) appear when the primary beam is parallel either to one of the close-packed rows of atoms or to one of the densely packed atomic planes in the sample. This indicates that the diffraction of the primary electron beam is responsible for the dependence mentioned above. Mechanisms proposed for simple explanation of this dependence (channeling and forward focusing of primary electrons) are presented and results of their application are discussed. It is shown that both those mechanisms play an important role in the creation of the Auger signal contrast. The possibilities and limitations of the application of polar and azimuth Auger emission profiles in the determination of the surface layer crystalline structure (directional Auger electron spectroscopy — DAES) are presented and discussed. It is shown that the thickness of the investigated surface layer can be decreased up to a few monolayers. Results obtained with DAES are similar to those provided by X-ray photoelectron diffraction (XPD) and Auger electron diffraction (AED), but the DAES experimental equipment is simple and inexpensive and measurements are fast. Finally, experimental systems for DAES are described and examples of DAES applications are presented.

  20. High-Resolution Laser-Induced Breakdown Spectroscopy used in Homeland Security and Forensic Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Madhavi Z; Wullschleger, Stan D; Vass, Arpad Alexander

    The technique of laser-induced breakdown spectroscopy (LIBS) to detect elements for a variety of homeland security applications such as nuclear materials identification and inventory,and forensic applications has been demonstrated. For nuclear materials applications, we detected and profiled metals in coatings that were used to encapsulate nuclear fuel. Multivariate analysis has been successfully employed in the quantification of elements present in treated wood and engineered wood composites. These examples demonstrate that LIBS-based techniques are inherently well suited for diverse environmental applications related to homeland security. Three key advantages are evident: (1) small samples (mg) are sufficient; (2) samples can be analyzedmore » by LIBS very rapidly, and (3) biological materials such as human and animal bones and wood can be analyzed with minimal sample preparation. For forensic applications they have used LIBS to determine differences in animal and human bones. They have also applied this technique in the determination of counterfeit and non-counterfeit currency. They recently applied LIBS in helping to solve a murder case.« less

  1. Call for papers for special issue of Journal of Molecular Spectroscopy focusing on "Frequency-comb spectroscopy"

    NASA Astrophysics Data System (ADS)

    Foltynowicz, Aleksandra; Picqué, Nathalie; Ye, Jun

    2018-05-01

    Frequency combs are becoming enabling tools for many applications in science and technology, beyond the original purpose of frequency metrology of simple atoms. The precisely evenly spaced narrow lines of a laser frequency comb inspire intriguing approaches to molecular spectroscopy, designed and implemented by a growing community of scientists. Frequency-comb spectroscopy advances the frontiers of molecular physics across the entire electro-magnetic spectrum. Used as frequency rulers, frequency combs enable absolute frequency measurements and precise line shape studies of molecular transitions, for e.g. tests of fundamental physics and improved determination of fundamental constants. As light sources interrogating the molecular samples, they dramatically improve the resolution, precision, sensitivity and acquisition time of broad spectral-bandwidth spectroscopy and open up new opportunities and applications at the leading edge of molecular spectroscopy and sensing.

  2. Development of a Compton suppressed gamma spectrometer using Monte Carlo techniques

    NASA Astrophysics Data System (ADS)

    Britton, Richard

    Gamma ray spectroscopy is routinely used to measure radiation in a number of situations. These include security applications, nuclear forensics studies, characterisation of radioactive sources, and environmental monitoring. For routine studies of environmental materials, the amount of radioactivity present is often very low, requiring spectroscopy systems which have to monitor the source for up to 7 days to achieve the required sensitivity. Recent developments in detector technology and data processing techniques have opened up the possibility of developing a highly efficient Compton Suppressed system, that was previously the preserve of large experimental collaborations. The accessibility of Monte-Carlo toolkits such as GEANT4 also provide the opportunity to optimise these systems using computer simulations, greatly reducing the need for expensive (and inefficient) testing in the laboratory. This thesis details the development of such a Compton Suppressed, planar HPGe detector system. Using the GEANT4 toolkit in combination with the experimental facilities at AWE, Aldermaston (which include HPGe detection systems, scintillator based detector systems, advanced shielding materials and gamma-gamma coincidence systems), simulations were built and validated to reproduce the detector response seen in the 'real-life' systems. This resulted in several improvements to the current system; for the shielding materials used, terrestrial and cosmic radiation were minimised, while reducing the X-ray fluorescence seen in the primary HPGe detector by an order of magnitude. With respect to the HPGe detector itself, an optimum thickness was identified for low energy (<300 keV) radiation, which maximised the efficiency for the energy range of interest while minimising the interaction probability for higher energy radionuclides (which are the primary cause of the Compton continuum that obscures lower energy decays). A combination of secondary detectors were then optimised to design a

  3. Neutrons and gamma-rays spectroscopy of Mercury surface: global mapping from ESA MPO-BepiColombo spacecraft by MGNS instrument.

    NASA Astrophysics Data System (ADS)

    Kozyrev, A. S.; Gurvits, L. I.; Litvak, M. L.; Malakhov, A. A.; Mokrousov, M. I.; Mitrofanov, I. G.; Rogozhin, A. A.; Sanin, A. B.; Owens, A.; Schvetsov, V. N.

    2009-04-01

    For analyse chemistry composition of Mercury subsurface we will apply method of as-called remote sensing of neutrons. This method can be use for study celestial body of Solar system without thick atmospheres, like Moon, Mars, Phobos, Mercury etc. by the analysis of induced nuclear gamma-rays and neutron emission. These gamma-rays and neutrons are produced by energetic galactic cosmic rays colliding with nuclei of regolith within a 1-2 meter layer of subsurface. Mercury Planetary Orbiter of BepiColombo mission includes the nuclear instrument MGNS (Mercury Gamma-rays and Neutrons Spectrometers), which consists of gamma-rays spectrometer for detection of gamma-ray lines and neutron spectrometer for measurement of the neutron leakage flux. To test know theoretical models of Mercury composition, MGNS will provide the data for the set of gamma-ray lines, which are necessary and sufficient to discriminate between the models. Neutron data are known to be very sensitive for the presence of hydrogen within heavy soil-constituting elements. Mapping measurements of epithermal neutrons and 2.2 MeV line will allow us to study the content of hydrogen over the surface of Mercury and to test the presence of water ice deposits in the cold traps of permanently shadowed polar craters of this planet. There are also three natural radioactive elements, K, Th and U, which contents in the soil of a celestial body characterizes the physical condition of its formation in the proto-planetary cloud. The data from gamma-spectrometer will allow to compare the origin of Mercury with evolution of Earth, Moon and Mars. Three sensors for thermal and epithermal neutrons are made with similar 3He proportional counters, but have different polyethylene enclosures and cadmium shielding for different sensitivity of thermal and epithermal neutrons at different energy ranges. The fourth neutron sensor for high energy neutrons 1-10 MeV contains the scintillation crystal of stylbene with cylindrical shape of

  4. Diffusion coefficient of hydrogen in a cast gamma titanium aluminide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sundaram, P.A.; Wessel, E.; Ennis, P.J.

    1999-06-04

    Gamma titanium aluminides have the potential for high temperature applications because of their high specific strength and specific modulus. Their oxidation resistance is good, especially at intermediate temperatures and with suitable alloying additions, good oxidation resistance can be obtained up to 800 C. One critical area of application is in combustion engines in aero-space vehicles such as hypersonic airplanes and high speed civil transport airplanes. This entails the use of hydrogen as a fuel component and hence the effect of hydrogen on the mechanical properties of gamma titanium aluminides is of significant scientific and technological utility. The purpose of thismore » short investigation is to use an electrochemical method under galvanostatic conditions to determine the diffusion coefficient of hydrogen in a cast gamma titanium aluminide, a typical technical alloy with potential application in gas turbines under creep conditions. This result will be then compared with that obtained by microhardness profiling of electrolytically hydrogen precharged material.« less

  5. Unidentified Gamma-Ray Sources: Hunting Gamma-Ray Blazars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massaro, F.; D'Abrusco, R.; Tosti, G.

    2012-04-02

    One of the main scientific objectives of the ongoing Fermi mission is unveiling the nature of the unidentified {gamma}-ray sources (UGSs). Despite the large improvements of Fermi in the localization of {gamma}-ray sources with respect to the past {gamma}-ray missions, about one third of the Fermi-detected objects are still not associated to low energy counterparts. Recently, using the Wide-field Infrared Survey Explorer (WISE) survey, we discovered that blazars, the rarest class of Active Galactic Nuclei and the largest population of {gamma}-ray sources, can be recognized and separated from other extragalactic sources on the basis of their infrared (IR) colors. Basedmore » on this result, we designed an association method for the {gamma}-ray sources to recognize if there is a blazar candidate within the positional uncertainty region of a generic {gamma}-ray source. With this new IR diagnostic tool, we searched for {gamma}-ray blazar candidates associated to the UGS sample of the second Fermi {gamma}-ray catalog (2FGL). We found that our method associates at least one {gamma}-ray blazar candidate as a counterpart each of 156 out of 313 UGSs analyzed. These new low-energy candidates have the same IR properties as the blazars associated to {gamma}-ray sources in the 2FGL catalog.« less

  6. UNIDENTIFIED {gamma}-RAY SOURCES: HUNTING {gamma}-RAY BLAZARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massaro, F.; Ajello, M.; D'Abrusco, R.

    2012-06-10

    One of the main scientific objectives of the ongoing Fermi mission is unveiling the nature of unidentified {gamma}-ray sources (UGSs). Despite the major improvements of Fermi in the localization of {gamma}-ray sources with respect to the past {gamma}-ray missions, about one-third of the Fermi-detected objects are still not associated with low-energy counterparts. Recently, using the Wide-field Infrared Survey Explorer survey, we discovered that blazars, the rarest class of active galactic nuclei and the largest population of {gamma}-ray sources, can be recognized and separated from other extragalactic sources on the basis of their infrared (IR) colors. Based on this result, wemore » designed an association method for the {gamma}-ray sources to recognize if there is a blazar candidate within the positional uncertainty region of a generic {gamma}-ray source. With this new IR diagnostic tool, we searched for {gamma}-ray blazar candidates associated with the UGS sample of the second Fermi {gamma}-ray LAT catalog (2FGL). We found that our method associates at least one {gamma}-ray blazar candidate as a counterpart to each of 156 out of 313 UGSs analyzed. These new low-energy candidates have the same IR properties as the blazars associated with {gamma}-ray sources in the 2FGL catalog.« less

  7. Effect of gamma-ray irradiation on the device process-induced defects in 4H-SiC epilayers

    NASA Astrophysics Data System (ADS)

    Miyazaki, T.; Makino, T.; Takeyama, A.; Onoda, S.; Ohshima, T.; Tanaka, Y.; Kandori, M.; Yoshie, T.; Hijikata, Y.

    2016-11-01

    We investigated the gamma-ray irradiation effect on 4H-SiC device process-induced defects by photoluminescence (PL) imaging and deep level transient spectroscopy (DLTS). We found that basal plane dislocations (BPDs) that were present before the irradiation were eliminated by gamma-ray irradiation of 1 MGy. The reduction mechanism of BPD was discussed in terms of BPD-threading edge dislocation (TED) transformation and shrinkage of stacking faults. In addition, the entire PL image was gradually darkened with increasing absorbed dose, which is presumably due to the point defects generated by gamma-ray irradiation. We obtained DLTS peaks that could be assigned to complex defects, termed RD series, and found that the peaks increased with absorbed dose.

  8. Identification of gamma-irradiated fruit juices by EPR spectroscopy

    NASA Astrophysics Data System (ADS)

    Aleksieva, K. I.; Dimov, K. G.; Yordanov, N. D.

    2014-10-01

    The results of electron paramagnetic resonance (EPR) study on commercially available juices from various fruits and different fruit contents: 25%, 40%, 50%, and 100%, homemade juices, nectars and concentrated fruit syrups, before and after gamma-irradiation are reported. In order to remove water from non- and irradiated samples all juices and nectars were filtered; the solid residue was washed with alcohol and dried at room temperature. Only concentrated fruit syrups were dried for 60 min at 40 °C in a standard laboratory oven. All samples under study show a singlet EPR line with g=2.0025 before irradiation with exception of concentrated fruit syrups, which are EPR silent. Irradiation of juice samples gives rise to complex EPR spectra which gradually transferred to "cellulose-like" EPR spectrum from 25% to 100% fruit content. Concentrated fruit syrups show typical "sugar-like" spectra due to added saccharides. All EPR spectra are characteristic and can prove radiation treatment. The fading kinetics of radiation-induced EPR signals were studied for a period of 60 days after irradiation.

  9. Total absorption γ -ray spectroscopy of the β -delayed neutron emitters Br 87 , Br 88 , and Rb 94

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valencia, E.; Tain, J. L.; Algora, A.

    2017-02-01

    We investigate the decay of Br-87,Br-88 and Rb-94 using total absorption gamma-ray spectroscopy. These important fission products are beta-delayed neutron emitters. Our data show considerable beta gamma intensity, so far unobserved in high-resolution gamma-ray spectroscopy, from states at high excitation energy. We also find significant differences with the beta intensity that can be deduced from existing measurements of the beta spectrum. We evaluate the impact of the present data on reactor decay heat using summation calculations. Although the effect is relatively small it helps to reduce the discrepancy between calculations and integral measurements of the photon component for U-235 fissionmore » at cooling times in the range 1-100 s. We also use summation calculations to evaluate the impact of present data on reactor antineutrino spectra. We find a significant effect at antineutrino energies in the range of 5 to 9 MeV. In addition, we observe an unexpected strong probability for. emission from neutron unbound states populated in the daughter nucleus. The. branching is compared to Hauser-Feshbach calculations, which allow one to explain the large value for bromine isotopes as due to nuclear structure. However the branching for Rb-94, although much smaller, hints of the need to increase the radiative width gamma by one order of magnitude. This increase in gamma would lead to a similar increase in the calculated (n, gamma) cross section for this very neutron-rich nucleus with a potential impact on r process abundance calculations.« less

  10. Multicomponent hollow tubules formed using phytosterol and gamma-oryzanol-based compounds: an understanding of their molecular embrace.

    PubMed

    Rogers, Michael A; Bot, Arjen; Lam, Ricky Sze Ho; Pedersen, Tor; May, Tim

    2010-08-19

    The formation kinetics of self-assembling tubules composed of phytosterol:gamma-oryzanol mixtures were investigated at the Canadian Light Source on the mid-IR beamline using synchrotron radiation and Fourier transform infrared spectroscopy (FT-IR). The Avrami model was fitted to the changing hydrogen bonding density occurring at 3450 cm(-1). The nucleation process was found to be highly dependent on the molecular structure of the phytosterol. The nucleation event for cholesterol:gamma-oryzanol was determined to be sporadic whereas 5alpha-cholestan-3beta-ol:gamma-oryzanol and beta-sitosterol:gamma-oryzanol underwent instantaneous nucleation. One-dimensional growth occurred for each phytosterol:gamma-oryzanol mixture and involved the evolution of highly specific intermolecular hydrogen bonds. More detailed studies on the cholesterol:gamma-oryzanol system indicated that the nucleation activation energy, determined from multiple rate constants, obtained using the Avrami model, was at a minimum when the two compounds were at a 1:1 weight ratio. This resulted in drastic differences to the microscopic structures and affected the macroscopic properties such as turbidity. The formation of the phytosterol:gamma-oryzanol complex was due to intermolecular hydrogen bonding, which was in agreement with the infrared spectroscopic evidence.

  11. Self-induced intracerebral gamma oscillations in the human cortex.

    PubMed

    Corlier, Juliana; Rimsky-Robert, Daphné; Valderrama, Mario; Lehongre, Katia; Adam, Claude; Clémenceau, Stéphane; Charpier, Stéphane; Bastin, Julien; Kahane, Philippe; Lachaux, Jean-Philippe; Navarro, Vincent; Le Van Quyen, Michel

    2016-12-01

    Gamma oscillations play a pivotal role in multiple cognitive functions. They enable coordinated activity and communication of local assemblies, while abnormalities in gamma oscillations exist in different neurological and psychiatric diseases. Thus, a specific rectification of gamma synchronization could potentially compensate the deficits in pathological conditions. Previous experiments have shown that animals can voluntarily modulate their gamma power through operant conditioning. Using a closed-loop experimental setup, we show in six intracerebrally recorded epileptic patients undergoing presurgical evaluation that intracerebral power spectrum can be increased in the gamma frequency range (30-80 Hz) at different fronto-temporal cortical sites in human subjects. Successful gamma training was accompanied by increased gamma power at other cortical locations and progressively enhanced cross-frequency coupling between gamma and slow oscillations (3-12 Hz). Finally, using microelectrode targets in two subjects, we report that upregulation of gamma activities is possible also in spatial micro-domains, without the spread to macroelectrodes. Overall, our findings indicate that intracerebral gamma modulation can be achieved rapidly, beyond the motor system and with high spatial specificity, when using micro targets. These results are especially significant because they pave the way for use of high-resolution therapeutic approaches for future clinical applications. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. ^235U(n,xnγ) Excitation Function Measurements Using Gamma-Ray Spectroscopy at GEANIE

    NASA Astrophysics Data System (ADS)

    Younes, W.; Becker, J. A.; Bernstein, L. A.; Archer, D. E.; Stoyer, M. A.; Hauschild, K.; Drake, D. M.; Johns, G. D.; Nelson, R. O.; Wilburn, S. W.

    1998-04-01

    The ^235U(n,xn) cross sections (where x<=2) have previously been measured at several incident neutron energies. In particular, the ^235U(n,2n) cross section has been measured(J. Frehaut et al.), Nucl. Sci. Eng. 74,29 (1980). reliably up to peak near E_n≈ 11 MeV, but not along the tail which is predicted by some(M.B. Chadwick, private communication.) codes to yield significant (e.g. >= 10% of peak) cross section out to E_n≈ 30 MeV. We have measured gamma-ray spectra resulting from ^235U(n,xn) as a function of neutron energy in the range 1 MeV <~ En <~ 200 MeV using the GEANIE spectrometer at the LANSCE/WNR ``white'' neutron source. We will present excitation functions for the de-excitation gamma rays in ^234,235U compared to predictions from the Hauser-Feshbach-preequilibrium code GNASH(M.B. Chadwick and P.G. Young, Los Alamos Report No. LA-UR-93-104, 1993.).

  13. Fission products detection in irradiated TRIGA fuel by means of gamma spectroscopy and MCNP calculation.

    PubMed

    Cagnazzo, M; Borio di Tigliole, A; Böck, H; Villa, M

    2018-05-01

    Aim of this work was the detection of fission products activity distribution along the axial dimension of irradiated fuel elements (FEs) at the TRIGA Mark II research reactor of the Technische Universität (TU) Wien. The activity distribution was measured by means of a customized fuel gamma scanning device, which includes a vertical lifting system to move the fuel rod along its vertical axis. For each investigated FE, a gamma spectrum measurement was performed along the vertical axis, with steps of 1 cm, in order to determine the axial distribution of the fission products. After the fuel elements underwent a relatively short cooling down period, different fission products were detected. The activity concentration was determined by calibrating the gamma detector with a standard calibration source of known activity and by MCNP6 simulations for the evaluation of self-absorption and geometric effects. Given the specific TRIGA fuel composition, a correction procedure is developed and used in this work for the measurement of the fission product Zr 95 . This measurement campaign is part of a more extended project aiming at the modelling of the TU Wien TRIGA reactor by means of different calculation codes (MCNP6, Serpent): the experimental results presented in this paper will be subsequently used for the benchmark of the models developed with the calculation codes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Low energy prompt gamma-ray tests of a large volume BGO detector.

    PubMed

    Naqvi, A A; Kalakada, Zameer; Al-Anezi, M S; Raashid, M; Khateeb-ur-Rehman; Maslehuddin, M; Garwan, M A

    2012-01-01

    Tests of a large volume Bismuth Germinate (BGO) detector were carried out to detect low energy prompt gamma-rays from boron and cadmium-contaminated water samples using a portable neutron generator-based Prompt Gamma Neutron Activation Analysis (PGNAA) setup. Inspite of strong interference between the sample- and the detector-associated prompt gamma-rays, an excellent agreement has been observed between the experimental and calculated yields of the prompt gamma-rays, indicating successful application of the large volume BGO detector in the PGNAA analysis of bulk samples using low energy prompt gamma-rays. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Gamma-line emission from radioactivities produced in supernovae

    NASA Technical Reports Server (NTRS)

    Woosley, S. E.; Timmes, F. X.

    1997-01-01

    The major targets for the gamma ray spectroscopy of supernovae are reviewed. The principle benefit of such observations is the insight provided into the mechanisms of supernova explosions, the distribution and nature of star forming regions in our Galaxy, and the history of the nucleosynthesis of our Galaxy. The emphasis is on two short lived species, Co-56 and Ti-44 which may be seen in individual events and two longer lived species, Al-26 and Fe-60, which can be seen as the cumulative production of many supernovae.

  16. One-dimensional Spatial Distributions of Gamma-ray Emitting Contaminants in Field Lysimeters Using a Collimated Gamma-ray Spectroscopy System.

    PubMed

    Erdmann, Bryan J; Powell, Brian A; Kaplan, Daniel I; DeVol, Timothy A

    2018-05-01

    One-dimensional scans of gamma-ray emitting contaminants were conducted on lysimeters from the RadFLEX facility at the Savannah River Nationals Laboratory (SRNL). The lysimeters each contained a contamination source that was buried in SRNL soil. A source consisted of Cs, Co, Ba, and Eu incorporated either into a solid waste form (Portland cement and reducing grout) or applied to a filter paper for direct soil exposure. The lysimeters were exposed to natural environmental conditions for 3 to 4 y. The initial contaminant activities range from 4.0 to 9.0 MBq for the solid wasteforms and 0.25 to 0.47 MBq for the soil-incorporated source. The measurements were performed using a collimated high-purity germanium gamma-ray spectrometer with a spatial resolution of 2.5 mm. These scans showed downward mobility of Co and Ba when the radionuclides were incorporated directly into the SRNL soil. When radionuclides were incorporated into the solid waste forms positioned in the SRNL soil, Cs exhibited both upward and downward dispersion while the other radionuclides showed no movement. This dispersion was more significant for the Portland cement than the reducing grout wasteform. Europium-152 was the only radionuclide of those studied that showed no movement within the spatial resolution of the scanner from the original placement within the lysimeter. Understanding radionuclide movement in the environment is important for developing strategies for waste management and disposal.

  17. Shell-isolated nanoparticle-enhanced Raman spectroscopy: principle and applications (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Li, Jian-Feng; Tian, Zhong-Qun

    2015-08-01

    Surface-enhanced Raman spectroscopy (SERS) is a powerful technique that yields fingerprint vibrational information with ultra-high sensitivity. However, only roughened Ag, Au and Cu surfaces can generate strong SERS effect. The lack of materials and morphology generality has severely limited the breadth of SERS practical applications on surface science, electrochemistry and catalysis. Shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) was therefore invented to break the long-standing limitation of SERS. In SHINERS, Au@SiO2 core-shell nanoparticles were rationally designed. The gold core acts as plasmonic antenna and encapsulated by an ultra-thin, uniform and pinhole-free silica shell, can provide high electromagnetic field to enhance the Raman signals of probed molecules. The inert silica shell acts as tunneling barrier prevents the core from interacting with the environment. SHINERS has already been applied to a number of challenging systems, such as hydrogen and CO on Pt(hkl) and Rh(hkl), which can't be realized by traditional SERS. Combining with electrochemical methods, we has investigated the adsorption processes of pyridine at the Au(hkl) single crystal/solution interface, and in-situ monitored the surface electro-oxidation at Au(hkl) electrodes. These pioneering studies demonstrate convincingly the ability of SHINERS in exploring correlations between structure and reactivity as well as in monitoring intermediates at the interfaces. SHINERS was also explored from semiconductor surface for industry, to living bacteria for life science, and to pesticide residue detection for food safety. The concept of shell-isolated nanoparticle-enhancement is being applied to other spectroscopies such as infrared absorption, sum frequency generation and fluorescence. Jian-Feng Li et al., Nature, 2010, 464, 392-395.

  18. A New Optical Design for Imaging Spectroscopy

    NASA Astrophysics Data System (ADS)

    Thompson, K. L.

    2002-05-01

    We present an optical design concept for imaging spectroscopy, with some advantages over current systems. The system projects monochromatic images onto the 2-D array detector(s). Faint object and crowded field spectroscopy can be reduced first using image processing techniques, then building the spectrum, unlike integral field units where one must first extract the spectra, build data cubes from these, then reconstruct the target's integrated spectral flux. Like integral field units, all photons are detected simultaneously, unlike tunable filters which must be scanned through the wavelength range of interest and therefore pay a sensitivity pentalty. Several sample designs are presented, including an instrument optimized for measuring intermediate redshift galaxy cluster velocity dispersions, one designed for near-infrared ground-based adaptive optics, and one intended for space-based rapid follow-up of transient point sources such as supernovae and gamma ray bursts.

  19. Growth kinetics of gamma-prime precipitates in a directionally solidified eutectic, gamma/gamma-prime-delta

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.

    1976-01-01

    A directionally solidified eutectic alloy (DSEA), of those viewed as potential candidates for the next generation of aircraft gas turbine blade materials, is studied for the gamma-prime growth kinetics, in the system Ni-Nb-Cr-Al, specifically: Ni-20 w/o Nb-6 w/o Cr-2.5 w/o Al gamma/gamma-prime-delta DSEA. Heat treatment, polishing and etching, and preparation for electron micrography are described, and the size distribution of gamma-prime phase following various anneals is plotted, along with gamma-prime growth kinetics in this specific DSEA, and the cube of gamma-prime particle size vs anneal time. Activation energies and coarsening kinetics are studied.

  20. High resolution gamma-ray spectrometry of culverts containing transuranic waste at the Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hofstetter, K.J.; Sigg, R.

    1990-12-31

    A number of concrete culverts used to retrievably store drummed, dry, radioactive waste at the Savannah River Site (SRS), were suspected of containing ambiguous quantities of transuranic (TRU) nuclides. These culverts were assayed in place for Pu-239 content using thermal and fast neutron counting techniques. High resolution gamma-ray spectroscopy on 17 culverts, having neutron emission rates several times higher than expected, showed characteristic gamma-ray signatures of neutron emitters other than Pu-239 (e.g., Pu-238, Pu/Be, or Am/Be neutron sources). This study confirmed the Pu-239 content of the culverts with anomalous neutron rates and established limits on the Pu-239 mass in eachmore » of the 17 suspect culverts by in-field, non-intrusive gamma-ray measurements.« less

  1. High resolution gamma-ray spectrometry of culverts containing transuranic waste at the Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hofstetter, K.J.; Sigg, R.

    1990-01-01

    A number of concrete culverts used to retrievably store drummed, dry, radioactive waste at the Savannah River Site (SRS), were suspected of containing ambiguous quantities of transuranic (TRU) nuclides. These culverts were assayed in place for Pu-239 content using thermal and fast neutron counting techniques. High resolution gamma-ray spectroscopy on 17 culverts, having neutron emission rates several times higher than expected, showed characteristic gamma-ray signatures of neutron emitters other than Pu-239 (e.g., Pu-238, Pu/Be, or Am/Be neutron sources). This study confirmed the Pu-239 content of the culverts with anomalous neutron rates and established limits on the Pu-239 mass in eachmore » of the 17 suspect culverts by in-field, non-intrusive gamma-ray measurements.« less

  2. First Year PIDDP Report on gamma-ray and x-ray spectroscopy: X-ray remote sensing and in situ spectroscopy for planetary exploration missions and gamma-ray remote sensing and in situ spectroscopy for planetary exploration missions

    NASA Technical Reports Server (NTRS)

    Mahdavi, M.; Giboni, K. L.; Vajda, S.; Schweitzer, J. S.; Truax, J. A.

    1994-01-01

    Detectors that will be used for planetary missions must have their responses calibrated in a reproducible manner. In addition, it is important to characterize a detector system at uneven portions of its life cycle, for example after exposure to different amounts of radiation. A calibration and response characterization facility has been constructed at Schlumberger-Doll Research for all types of gamma- and x-ray detectors that may be used for planetary measurement. This facility is currently being tested. Initial use is expected for the MARS 94 detectors. The facility will then also be available for calibrating other detectors as well as arrays of detectors such as the NEAR detector with its central Nal(TI) crystal surrounded with a large BGO crystal. Cadmium telluride detectors are investigated for applications in space explorations. These detectors show an energy resolution of 5 keV for the 122 keV 57Co line. Earlier reported polarization effects are not observed. The detectors can be used at temperatures up to 100 C, although with reduced energy resolution. The thickness of standard detectors is limited to 2 mm. These detectors become fully efficient at bias voltages above 200 V. Initial results for a 1 cm thick detector show that the quality of the material is inferior to the thinner standard detectors and hole trapping affects the pulse height. A detailed characterization of the detector is in progress. Prototypes of photomultipliers based on a Channel Electron Multiplier (CEM) are being built to study their performance. Such photomultipliers promise better timing characteristics and a higher dynamic range while being more compact and of lower in weight.

  3. Estimating irradiated nuclear fuel characteristics by nonlinear multivariate regression of simulated gamma-ray emissions

    NASA Astrophysics Data System (ADS)

    Åberg Lindell, M.; Andersson, P.; Grape, S.; Håkansson, A.; Thulin, M.

    2018-07-01

    In addition to verifying operator declared parameters of spent nuclear fuel, the ability to experimentally infer such parameters with a minimum of intrusiveness is of great interest and has been long-sought after in the nuclear safeguards community. It can also be anticipated that such ability would be of interest for quality assurance in e.g. recycling facilities in future Generation IV nuclear fuel cycles. One way to obtain information regarding spent nuclear fuel is to measure various gamma-ray intensities using high-resolution gamma-ray spectroscopy. While intensities from a few isotopes obtained from such measurements have traditionally been used pairwise, the approach in this work is to simultaneously analyze correlations between all available isotopes, using multivariate analysis techniques. Based on this approach, a methodology for inferring burnup, cooling time, and initial fissile content of PWR fuels using passive gamma-ray spectroscopy data has been investigated. PWR nuclear fuels, of UOX and MOX type, and their gamma-ray emissions, were simulated using the Monte Carlo code Serpent. Data comprising relative isotope activities was analyzed with decision trees and support vector machines, for predicting fuel parameters and their associated uncertainties. From this work it may be concluded that up to a cooling time of twenty years, the 95% prediction intervals of burnup, cooling time and initial fissile content could be inferred to within approximately 7 MWd/kgHM, 8 months, and 1.4 percentage points, respectively. An attempt aiming to estimate the plutonium content in spent UOX fuel, using the developed multivariate analysis model, is also presented. The results for Pu mass estimation are promising and call for further studies.

  4. A US coordination Facility for the Spectrum-X-Gamma Observatory

    NASA Technical Reports Server (NTRS)

    Forman, W.; West, Donald (Technical Monitor)

    2001-01-01

    We have completed our efforts in support of the Spectrum X Gamma mission under a NASA grant. These activities have included direct support to the mission, developing unifying tools applicable to SXG and other X-ray astronomy missions, and X-ray astronomy research to maintain our understanding of the importance and relevance of SXG to the field. SXG provides: 1) Simultaneous Multiwavelength Capability; 2) Large Field of View High Resolution Imaging Spectroscopy; 3) Sensitive Polarimetry with SXRP (Stellar X-Ray Polarimeter). These capabilities will ensure the fulfillment of the following objectives: understanding the accretion dynamics and the importance of reprocessing, upscattering, and disk viscosity around black holes; studying cluster mergers; spatially resolving cluster cooling flows to detect cooling gas; detecting cool gas in cluster outskirts in absorption; mapping gas in filaments around clusters; finding the 'missing' baryons in the Universe; determining the activity history of the black hole in the Galactic Center of our own central black hole; determining pulsar beam geometry; searching for the Lense-Thirring effect in black hole sources; constraining emission mechanisms and accretion geometry in AGN.

  5. Reduced gamma-aminobutyric acid concentration is associated with physical disability in progressive multiple sclerosis

    PubMed Central

    Solanky, Bhavana S.; Muhlert, Nils; Tur, Carmen; Edden, Richard A. E.; Wheeler-Kingshott, Claudia A. M.; Miller, David H.; Thompson, Alan J.; Ciccarelli, Olga

    2015-01-01

    Neurodegeneration is thought to be the major cause of ongoing, irreversible disability in progressive stages of multiple sclerosis. Gamma-aminobutyric acid is the principle inhibitory neurotransmitter in the brain. The aims of this study were to investigate if gamma-aminobutyric acid levels (i) are abnormal in patients with secondary progressive multiple sclerosis compared with healthy controls; and (ii) correlate with physical and cognitive performance in this patient population. Thirty patients with secondary progressive multiple sclerosis and 17 healthy control subjects underwent single-voxel MEGA-PRESS (MEscher-GArwood Point RESolved Spectroscopy) magnetic resonance spectroscopy at 3 T, to quantify gamma-aminobutyric acid levels in the prefrontal cortex, right hippocampus and left sensorimotor cortex. All subjects were assessed clinically and underwent a cognitive assessment. Multiple linear regression models were used to compare differences in gamma-aminobutyric acid concentrations between patients and controls adjusting for age, gender and tissue fractions within each spectroscopic voxel. Regression was used to examine the relationships between the cognitive function and physical disability scores specific for these regions with gamma-aminobuytric acid levels, adjusting for age, gender, and total N-acetyl-aspartate and glutamine-glutamate complex levels. When compared with controls, patients performed significantly worse on all motor and sensory tests, and were cognitively impaired in processing speed and verbal memory. Patients had significantly lower gamma-aminobutyric acid levels in the hippocampus (adjusted difference = −0.403 mM, 95% confidence intervals −0.792, −0.014, P = 0.043) and sensorimotor cortex (adjusted difference = −0.385 mM, 95% confidence intervals −0.667, −0.104, P = 0.009) compared with controls. In patients, reduced motor function in the right upper and lower limb was associated with lower gamma-aminobutyric acid

  6. Reduced gamma-aminobutyric acid concentration is associated with physical disability in progressive multiple sclerosis.

    PubMed

    Cawley, Niamh; Solanky, Bhavana S; Muhlert, Nils; Tur, Carmen; Edden, Richard A E; Wheeler-Kingshott, Claudia A M; Miller, David H; Thompson, Alan J; Ciccarelli, Olga

    2015-09-01

    Neurodegeneration is thought to be the major cause of ongoing, irreversible disability in progressive stages of multiple sclerosis. Gamma-aminobutyric acid is the principle inhibitory neurotransmitter in the brain. The aims of this study were to investigate if gamma-aminobutyric acid levels (i) are abnormal in patients with secondary progressive multiple sclerosis compared with healthy controls; and (ii) correlate with physical and cognitive performance in this patient population. Thirty patients with secondary progressive multiple sclerosis and 17 healthy control subjects underwent single-voxel MEGA-PRESS (MEscher-GArwood Point RESolved Spectroscopy) magnetic resonance spectroscopy at 3 T, to quantify gamma-aminobutyric acid levels in the prefrontal cortex, right hippocampus and left sensorimotor cortex. All subjects were assessed clinically and underwent a cognitive assessment. Multiple linear regression models were used to compare differences in gamma-aminobutyric acid concentrations between patients and controls adjusting for age, gender and tissue fractions within each spectroscopic voxel. Regression was used to examine the relationships between the cognitive function and physical disability scores specific for these regions with gamma-aminobuytric acid levels, adjusting for age, gender, and total N-acetyl-aspartate and glutamine-glutamate complex levels. When compared with controls, patients performed significantly worse on all motor and sensory tests, and were cognitively impaired in processing speed and verbal memory. Patients had significantly lower gamma-aminobutyric acid levels in the hippocampus (adjusted difference = -0.403 mM, 95% confidence intervals -0.792, -0.014, P = 0.043) and sensorimotor cortex (adjusted difference = -0.385 mM, 95% confidence intervals -0.667, -0.104, P = 0.009) compared with controls. In patients, reduced motor function in the right upper and lower limb was associated with lower gamma-aminobutyric acid concentration in the

  7. Gamma knife radiosurgery in movement disorders: Indications and limitations.

    PubMed

    Higuchi, Yoshinori; Matsuda, Shinji; Serizawa, Toru

    2017-01-01

    Functional radiosurgery has advanced steadily during the past half century since the development of the gamma knife technique for treating intractable cancer pain. Applications of radiosurgery for intracranial diseases have increased with a focus on understanding radiobiology. Currently, the use of gamma knife radiosurgery to ablate deep brain structures is not widespread because visualization of the functional targets remains difficult despite the increased availability of advanced neuroimaging technology. Moreover, most existing reports have a small sample size or are retrospective. However, increased experience with intraoperative neurophysiological evaluations in radiofrequency thalamotomy and deep brain stimulation supports anatomical and neurophysiological approaches to the ventralis intermedius nucleus. Two recent prospective studies have promoted the clinical application of functional radiosurgery for movement disorders. For example, unilateral gamma knife thalamotomy is a potential alternative to radiofrequency thalamotomy and deep brain stimulation techniques for intractable tremor patients with contraindications for surgery. Despite the promising efficacy of gamma knife thalamotomy, however, these studies did not include sufficient follow-up to confirm long-term effects. Herein, we review the radiobiology literature, various techniques, and the treatment efficacy of gamma knife radiosurgery for patients with movement disorders. Future research should focus on randomized controlled studies and long-term effects. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.

  8. Radioactive Waste Characterization Strategies; Comparisons Between AK/PK, Dose to Curie Modeling, Gamma Spectroscopy, and Laboratory Analysis Methods- 12194

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singledecker, Steven J.; Jones, Scotty W.; Dorries, Alison M.

    2012-07-01

    In the coming fiscal years of potentially declining budgets, Department of Energy facilities such as the Los Alamos National Laboratory (LANL) will be looking to reduce the cost of radioactive waste characterization, management, and disposal processes. At the core of this cost reduction process will be choosing the most cost effective, efficient, and accurate methods of radioactive waste characterization. Central to every radioactive waste management program is an effective and accurate waste characterization program. Choosing between methods can determine what is classified as low level radioactive waste (LLRW), transuranic waste (TRU), waste that can be disposed of under an Authorizedmore » Release Limit (ARL), industrial waste, and waste that can be disposed of in municipal landfills. The cost benefits of an accurate radioactive waste characterization program cannot be overstated. In addition, inaccurate radioactive waste characterization of radioactive waste can result in the incorrect classification of radioactive waste leading to higher disposal costs, Department of Transportation (DOT) violations, Notice of Violations (NOVs) from Federal and State regulatory agencies, waste rejection from disposal facilities, loss of operational capabilities, and loss of disposal options. Any one of these events could result in the program that mischaracterized the waste losing its ability to perform it primary operational mission. Generators that produce radioactive waste have four characterization strategies at their disposal: - Acceptable Knowledge/Process Knowledge (AK/PK); - Indirect characterization using a software application or other dose to curie methodologies; - Non-Destructive Analysis (NDA) tools such as gamma spectroscopy; - Direct sampling (e.g. grab samples or Surface Contaminated Object smears) and laboratory analytical; Each method has specific advantages and disadvantages. This paper will evaluate each method detailing those advantages and disadvantages

  9. Application of carbon-ion beams or gamma-rays on primary tumors does not change the expression profiles of metastatic tumors in an in vivo murine model.

    PubMed

    Tamaki, Tomoaki; Iwakawa, Mayumi; Ohno, Tatsuya; Imadome, Kaori; Nakawatari, Miyako; Sakai, Minako; Tsujii, Hirohiko; Nakano, Takashi; Imai, Takashi

    2009-05-01

    To clarify how carbon-ion radiotherapy (C-ion) on primary tumors affects the characteristics of subsequently arising metastatic tumor cells. Mouse squamous cell carcinomas, NR-S1, in synergic C3H/HeMsNrs mice were irradiated with a single dose of 5-50 Gy of C-ion (290 MeV per nucleon, 6-cm spread-out Bragg peak) or gamma-rays ((137)Cs source) as a reference beam. The volume of the primary tumors and the number of metastatic nodules in lung were studied, and histologic analysis and microarray analysis of laser-microdissected tumor cells were also performed. Including 5 Gy of C-ion and 8 Gy of gamma-rays, which did not inhibit the primary tumor growth, all doses used in this study inhibited lung metastasis significantly. Pathologic findings showed no difference among the metastatic tumor nodules in the nonirradiated, C-ion-irradiated, and gamma-ray-irradiated groups. Clustering analysis of expression profiles among metastatic tumors and primary tumors revealed a single cluster consisting of metastatic tumors different from their original primary tumors, indicating that the expression profiles of the metastatic tumor cells were not affected by the local application of C-ion or gamma-ray radiotherapy. We found no difference in the incidence and histology, and only small differences in expression profile, of distant metastasis between local C-ion and gamma-ray radiotherapy. The application of local radiotherapy per se or the type of radiotherapy applied did not influence the transcriptional changes caused by metastasis in tumor cells.

  10. The self-absorption effect of gamma rays in /sup 239/Pu

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, Hsiao-Hua

    1989-01-01

    Nuclear materials assay with gamma-ray spectrum measurement is a well-established method for safeguards. However, for a thick source, the self-absorption of characteristic low-energy gamma rays has been a handicap to accurate assay. I have carried out Monte Carlo simulations to study this effect using the /sup 239/Pu ..cap alpha..-decay gamma-ray spectrum as an example. The thickness of a plutonium metal source can be considered a function of gamma-ray intensity ratios. In a practical application, gamma-ray intensity ratios can be obtained from a measured spectrum. With the help of calculated curves, scientists can find the source thickness and make corrections tomore » gamma-ray intensities, which then lead to an accurate quantitative determination of radioactive isotopes in the material. 2 refs., 9 figs.« less

  11. Terahertz source requirements for molecular spectroscopy

    NASA Astrophysics Data System (ADS)

    De Lucia, Frank C.; Goyette, Thomas M.

    1994-06-01

    Molecular spectroscopy was the earliest application in the terahertz spectral region and remains one of the most important. With the development of modern technology, spectroscopy has expanded beyond the laboratory and is the basis for a number of important remote sensing systems, especially in atmospheric science and studies of the interstellar medium. Concurrently, these spectroscopic applications have been one of the prime motivators for the development of terahertz technology. This paper will review these issues in the context of the requirements placed on future technology developments by spectroscopic applications.

  12. Terahertz source requirements for molecular spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Lucia, F.C.; Goyette, T.M.

    1994-12-31

    Molecular spectroscopy was the earliest application in the terahertz spectral region and remains one of the most important. With the development of modern technology, spectroscopy has expanded beyond the laboratory and is the basis for a number of important remote sensing systems, especially in atmospheric science and studies of the interstellar medium. Concurrently, these spectroscopic applications have been one of the prime motivators for the development of terahertz technology. This paper will review these issues in the context of the requirements placed on future technology developments by spectroscopic applications.

  13. X-ray and gamma ray astronomy detectors

    NASA Technical Reports Server (NTRS)

    Decher, Rudolf; Ramsey, Brian D.; Austin, Robert

    1994-01-01

    X-ray and gamma ray astronomy was made possible by the advent of space flight. Discovery and early observations of celestial x-rays and gamma rays, dating back almost 40 years, were first done with high altitude rockets, followed by Earth-orbiting satellites> once it became possible to carry detectors above the Earth's atmosphere, a new view of the universe in the high-energy part of the electromagnetic spectrum evolved. Many of the detector concepts used for x-ray and gamma ray astronomy were derived from radiation measuring instruments used in atomic physics, nuclear physics, and other fields. However, these instruments, when used in x-ray and gamma ray astronomy, have to meet unique and demanding requirements related to their operation in space and the need to detect and measure extremely weak radiation fluxes from celestial x-ray and gamma ray sources. Their design for x-ray and gamma ray astronomy has, therefore, become a rather specialized and rapidly advancing field in which improved sensitivity, higher energy and spatial resolution, wider spectral coverage, and enhanced imaging capabilities are all sought. This text is intended as an introduction to x-ray and gamma ray astronomy instruments. It provides an overview of detector design and technology and is aimed at scientists, engineers, and technical personnel and managers associated with this field. The discussion is limited to basic principles and design concepts and provides examples of applications in past, present, and future space flight missions.

  14. Experimental setup for radon exposure and first diffusion studies using gamma spectroscopy

    NASA Astrophysics Data System (ADS)

    Maier, Andreas; van Beek, Patrick; Hellmund, Johannes; Durante, Marco; Schardt, Dieter; Kraft, Gerhard; Fournier, Claudia

    2015-11-01

    In order to measure the uptake and diffusion of 222Rn in biological material, an exposure chamber was constructed where cell cultures, biological tissues and mice can be exposed to 222Rn-activities similar to therapy conditions. After exposure, the material is transferred to a gamma spectrometer and the decay of 214Pb and 214Bi is analyzed. From the time kinetics of these decays the total amount of the initial 222Rn concentration can be calculated. In this paper the design and construction as well as first test measurements are reported.

  15. Germanium detectors for nuclear spectroscopy: Current research and development activity at LNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Napoli, D. R., E-mail: daniel.r.napoli@lnl.infn.it; Maggioni, G., E-mail: maggioni@lnl.infn.it; Carturan, S.

    2016-07-07

    High-purity Germanium (HPGe) detectors have reached an unprecedented level of sophistication and are still the best solution for high-resolution gamma spectroscopy. In the present work, we will show the results of the characterization of new surface treatments for the production of these detectors, studied in the framework of our multidisciplinary research program in HPGe detector technologies.

  16. Gamma-irradiation of malic acid in aqueous solutions. [prebiotic significance

    NASA Technical Reports Server (NTRS)

    Negron-Mendoza, A.; Graff, R. L.; Ponnamperuma, C.

    1980-01-01

    The gamma-irradiation of malic acid in aqueous solutions was studied under initially oxygenated and oxygen-free conditions in an attempt to determine the possible interconversion of malic acid into other carboxylic acids, specifically those associated with Krebs cycle. The effect of dose on product formation of the system was investigated. Gas-liquid chromatography combined with mass spectrometry was used as the principal means of identification of the nonvolatile products. Thin layer chromatography and direct probe mass spectroscopy were also employed. The findings show that a variety of carboxylic acids are formed, with malonic and succinic acids in greatest abundance. These products have all been identified as being formed in the gamma-irradiation of acetic acid, suggesting a common intermediary. Since these molecules fit into a metabolic cycle, it is strongly suggestive that prebiotic pathways provided the basis for biological systems.

  17. Operando Positron Annihilation Gamma Spectrometer (OPAGS)

    NASA Astrophysics Data System (ADS)

    Satyal, S.; Shastry, K.; Mukherjee, S.; Weiss, A. H.

    2009-03-01

    Surface properties measured under UHV conditions cannot be extended to surfaces interacting with gases under realistic pressures due to surface reconstruction and other strong perturbations of the surface. Surface probing techniques require UHV conditions to perform efficiently and avoid data loss due to scattering of outgoing particles. This poster describes the design of an Operando Positron Annihilation Gamma Spectrometer (OPAGS) currently under construction at the University of Texas at Arlington. The new system will be capable of obtaining surface and defect specific chemical and charge state information from surfaces under realistic pressures. Differential pumping will be used to maintain the sample in a gas environment while the rest of the beam is under UHV. Elemental content of the surface interacting with the gas environment will be determined from the Doppler broadened gamma spectra. This system will also include a time of flight (TOF) Auger spectrometer which correlates with the results of the Doppler measurements at lower pressures. By employing the unique capabilities of OPAGS together with those of the TOF PAES spectroscopy the charge transfer mechanisms at the surface in catalytic systems can be understood.

  18. Application of new nuclear de-excitation model of PHITS for prediction of isomer yield and prompt gamma-ray production

    NASA Astrophysics Data System (ADS)

    Ogawa, Tatsuhiko; Hashimoto, Shintaro; Sato, Tatsuhiko; Niita, Koji

    2014-06-01

    A new nuclear de-excitation model, intended for accurate simulation of isomeric transition of excited nuclei, was incorporated into PHITS and applied to various situations to clarify the impact of the model. The case studies show that precise treatment of gamma de-excitation and consideration for isomer production are important for various applications such as detector performance prediction, radiation shielding calculations and the estimation of radioactive inventory including isomers.

  19. Fabrication of High-Resolution Gamma-Ray Metallic Magnetic Calorimeters with Ag:Er Sensor and Thick Electroplated Absorbers

    NASA Astrophysics Data System (ADS)

    Hummatov, Ruslan; Hall, John A.; Kim, Geon-Bo; Friedrich, Stephan; Cantor, Robin; Boyd, S. T. P.

    2018-05-01

    We are developing metallic magnetic calorimeters for high-resolution gamma-ray spectroscopy for non-destructive assay of nuclear materials. Absorbers for these higher-energy photons can require substantial thickness to achieve adequate stopping power. We developed a new absorber fabrication process using dry-film photoresists to electroform cantilevered, thick absorbers. Gamma detectors with these absorbers have an energy resolution of 38 eV FWHM at 60 keV. In this report, we summarize modifications to STARCryo's "Delta 1000" process for our devices and describe the new absorber fabrication process.

  20. A bivariate gamma probability distribution with application to gust modeling. [for the ascent flight of the space shuttle

    NASA Technical Reports Server (NTRS)

    Smith, O. E.; Adelfang, S. I.; Tubbs, J. D.

    1982-01-01

    A five-parameter gamma distribution (BGD) having two shape parameters, two location parameters, and a correlation parameter is investigated. This general BGD is expressed as a double series and as a single series of the modified Bessel function. It reduces to the known special case for equal shape parameters. Practical functions for computer evaluations for the general BGD and for special cases are presented. Applications to wind gust modeling for the ascent flight of the space shuttle are illustrated.

  1. The Swift Gamma Ray Burst Mission

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Chincarini, G.; Giommi, P.; Mason, K. O.; Nousek, J. A.; Wells, A. A.; White, N. E.; Barthelmy, S. D.; Burrows, D. N.; Cominsky, L. R.

    2004-01-01

    The Swift mission: scheduled for launch in early 2004: is a multiwavelength observatory for gamma-ray burst (GRB) astronomy. It is the first-of-its-kind autonomous rapid-slewing satellite for transient astronomy and pioneers the way for future rapid-reaction and multiwavelength missions. It will be far more powerful than any previous GRB mission, observing more than 100 bursts per year and performing detailed X-ray and UV/optical afterglow observations spanning timescales from 1 minute to several days after the burst. The objectives are to: 1) determine the origin of GFU3s; 2) classify GRBs and search for new types; 3) study the interaction of the ultra-relativistic outflows of GRBs with their surrounding medium; and 4) use GRBs to study the early universe out to z greater than 10. The mission is being developed by a NASA-led international collaboration. It will carry three instruments: a new-generation wide-field gamma-ray (15-150 keV) detector that will detect bursts, calculate 1-4 arcmin positions: and trigger autonomous spacecraft slews; a narrow-field X-ray telescope that will give 5 arcsec positions and perform spectroscopy in the 0.2 to 10 keV band; and a narrow-field UV/optical telescope that will operate in the 170-600 nm band and provide 0.3 arcsec positions and optical finding charts. Redshift determinations will be made for most bursts. In addition to the primary GRB science, the mission will perform a hard X-ray survey to a sensitivity of approx. 1 mCrab (approx. 2 x l0(exp -11) erg/sq cm s in the 15-150 keV band), more than an order of magnitude better than HEAO A-4. A flexible data and operations system will allow rapid follow-up observations of all types of high-energy transients. with rapid data downlink and uplink available through the NASA TDRSS system. Swift transient data will be rapidly distributed to the astronomical community and all interested observers are encouraged to participate in follow-up measurements. A Guest Investigator program

  2. EFFECTS OF GAMMA IRRADIATION ON EPDM ELASTOMERS (REVISION 1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, E.

    Two formulations of EPDM elastomer, one substituting a UV stabilizer for the normal antioxidant in this polymer, and the other the normal formulation, were synthesized and samples of each were exposed to gamma irradiation in initially pure deuterium gas to compare their radiation stability. Stainless steel containers having rupture disks were designed for this task. After 130 MRad dose of cobalt-60 radiation in the SRNL Gamma Irradiation Facility, a significant amount of gas was created by radiolysis; however the composition indicated by mass spectroscopy indicated an unexpected increase in the total amount deuterium in both formulations. The irradiated samples retainedmore » their ductility in a bend test. No change of sample weight, dimensions, or density was observed. No change of the glass transition temperature as measured by dynamic mechanical analysis was observed, and most of the other dynamic mechanical properties remained unchanged. There appeared to be an increase in the storage modulus of the irradiated samples containing the UV stabilizer above the glass transition, which may indicate hardening of the material by radiation damage. Revision 1 adds a comparison with results of a study of tritium exposed EPDM. The amount of gas produced by the gamma irradiation was found to be equivalent to about 280 days exposure to initially pure tritium gas at one atmosphere. The glass transition temperature of the tritium exposed EPDM rose about 10°C. over 280 days, while no glass transition temperature change was observed for gamma irradiated EPDM. This means that gamma irradiation in deuterium cannot be used as a surrogate for tritium exposure.« less

  3. Application of the V-Gamma map to vehicle breakup analysis

    NASA Technical Reports Server (NTRS)

    Salama, Ahmed; McRonald, Angus; Ahmadi, Reza; LIng, Lisa; Accad, Elie; Kim, Alex

    2003-01-01

    The V-Gamma map consists of all possible pairs of speed and flight path angle at atmospheric entry interface for accidental Earth reentries resulting from steady misaligned burns, incomplete burns, or no burn.

  4. Very high-energy gamma rays from gamma-ray bursts.

    PubMed

    Chadwick, Paula M

    2007-05-15

    Very high-energy (VHE) gamma-ray astronomy has undergone a transformation in the last few years, with telescopes of unprecedented sensitivity having greatly expanded the source catalogue. Such progress makes the detection of a gamma-ray burst at the highest energies much more likely than previously. This paper describes the facilities currently operating and their chances for detecting gamma-ray bursts, and reviews predictions for VHE gamma-ray emission from gamma-ray bursts. Results to date are summarized.

  5. Laser induced breakdown spectroscopy for elemental analysis in environmental, cultural heritage and space applications: a review of methods and results.

    PubMed

    Gaudiuso, Rosalba; Dell'Aglio, Marcella; De Pascale, Olga; Senesi, Giorgio S; De Giacomo, Alessandro

    2010-01-01

    Analytical applications of Laser Induced Breakdown Spectroscopy (LIBS), namely optical emission spectroscopy of laser-induced plasmas, have been constantly growing thanks to its intrinsic conceptual simplicity and versatility. Qualitative and quantitative analysis can be performed by LIBS both by drawing calibration lines and by using calibration-free methods and some of its features, so as fast multi-elemental response, micro-destructiveness, instrumentation portability, have rendered it particularly suitable for analytical applications in the field of environmental science, space exploration and cultural heritage. This review reports and discusses LIBS achievements in these areas and results obtained for soils and aqueous samples, meteorites and terrestrial samples simulating extraterrestrial planets, and cultural heritage samples, including buildings and objects of various kinds.

  6. Neurofeedback training of gamma band oscillations improves perceptual processing.

    PubMed

    Salari, Neda; Büchel, Christian; Rose, Michael

    2014-10-01

    In this study, a noninvasive electroencephalography-based neurofeedback method is applied to train volunteers to deliberately increase gamma band oscillations (40 Hz) in the visual cortex. Gamma band oscillations in the visual cortex play a functional role in perceptual processing. In a previous study, we were able to demonstrate that gamma band oscillations prior to stimulus presentation have a significant influence on perceptual processing of visual stimuli. In the present study, we aimed to investigate longer lasting effects of gamma band neurofeedback training on perceptual processing. For this purpose, a feedback group was trained to modulate oscillations in the gamma band, while a control group participated in a task with an identical design setting but without gamma band feedback. Before and after training, both groups participated in a perceptual object detection task and a spatial attention task. Our results clearly revealed that only the feedback group but not the control group exhibited a visual processing advantage and an increase in oscillatory gamma band activity in the pre-stimulus period of the processing of the visual object stimuli after the neurofeedback training. Results of the spatial attention task showed no difference between the groups, which underlines the specific role of gamma band oscillations for perceptual processing. In summary, our results show that modulation of gamma band activity selectively affects perceptual processing and therefore supports the relevant role of gamma band activity for this specific process. Furthermore, our results demonstrate the eligibility of gamma band oscillations as a valuable tool for neurofeedback applications.

  7. Motion artifact removal in FNIR spectroscopy for real-world applications

    NASA Astrophysics Data System (ADS)

    Devaraj, Ajit; Izzetoglu, Meltem; Izzetoglu, Kurtulus; Bunce, Scott C.; Li, Connie Y.; Onaral, Banu

    2004-12-01

    Near infrared spectroscopy as a neuroimaging modality is a recent development. Near infrared neuroimagers are typically safe, portable, relatively affordable and non-invasive. The ease of sensor setup and non-intrusiveness make functional near infrared (fNIR) imaging an ideal candidate for monitoring human cortical function in a wide range of real world situations. However optical signals are susceptible to motion-artifacts, hindering the application of fNIR in studies where subject mobility cannot be controlled. In this paper, we present a filtering framework for motion-artifact cancellation to facilitate the deployment of fNIR imaging in real-world scenarios. We simulate a generic field environment by having subjects walk on a treadmill while performing a cognitive task and demonstrate that measurements can be effectively cleaned of motion-artifacts.

  8. Applications of UV/Vis Spectroscopy in Characterization and Catalytic Activity of Noble Metal Nanoparticles Fabricated in Responsive Polymer Microgels: A Review.

    PubMed

    Begum, Robina; Farooqi, Zahoor H; Naseem, Khalida; Ali, Faisal; Batool, Madeeha; Xiao, Jianliang; Irfan, Ahmad

    2018-11-02

    Noble metal nanoparticles loaded smart polymer microgels have gained much attention due to fascinating combination of their properties in a single system. These hybrid systems have been extensively used in biomedicines, photonics, and catalysis. Hybrid microgels are characterized by using various techniques but UV/Vis spectroscopy is an easily available technique for characterization of noble metal nanoparticles loaded microgels. This technique is widely used for determination of size and shape of metal nanoparticles. The tuning of optical properties of noble metal nanoparticles under various stimuli can be studied using UV/Vis spectroscopic method. Time course UV/Vis spectroscopy can also be used to monitor the kinetics of swelling and deswelling of microgels and hybrid microgels. Growth of metal nanoparticles in polymeric network or growth of polymeric network around metal nanoparticle core can be studied by using UV/Vis spectroscopy. This technique can also be used for investigation of various applications of hybrid materials in catalysis, photonics, and sensing. This tutorial review describes the uses of UV/Vis spectroscopy in characterization and catalytic applications of responsive hybrid microgels with respect to recent research progress in this area.

  9. Noiseless coding for the Gamma Ray spectrometer

    NASA Technical Reports Server (NTRS)

    Rice, R.; Lee, J. J.

    1985-01-01

    The payload of several future unmanned space missions will include a sophisticated gamma ray spectrometer. Severely constrained data rates during certain portions of these missions could limit the possible science return from this instrument. This report investigates the application of universal noiseless coding techniques to represent gamma ray spectrometer data more efficiently without any loss in data integrity. Performance results demonstrate compression factors from 2.5:1 to 20:1 in comparison to a standard representation. Feasibility was also demonstrated by implementing a microprocessor breadboard coder/decoder using an Intel 8086 processor.

  10. Mössbauer spectroscopy.

    PubMed

    Huynh, Boi Hanh

    2011-01-01

    Mössbauer spectroscopy has contributed significantly to the studies of Fe-containing proteins. Early applications yielded detailed electronic characterizations of hemeproteins, and thus enhanced our understanding of the chemical properties of this important class of proteins. The next stage of the applications was marked by major discoveries of several novel Fe clusters of complex structures, including the 8Fe7S P cluster and the mixed metal 1Mo7Fe M center in nitrogenase. Since early 1990 s, rapid kinetic techniques have been used to arrest enzymatic reactions for Mössbauer studies. A number of reaction intermediates were discovered and characterized, both spectroscopically and kinetically, providing unprecedented detailed molecular-level mechanistic information. This chapter gives a brief summary of the historical accounts and a concise description of some experimental and theoretical elements in Mössbauer spectroscopy that are essential for understanding Mössbauer spectra. Major biological applications are summarized at the end.

  11. Pulsed laser diffusion of thin hole-barrier contacts in high purity germanium for gamma radiation detectors

    NASA Astrophysics Data System (ADS)

    Maggioni, G.; Carturan, S.; Raniero, W.; Riccetto, S.; Sgarbossa, F.; Boldrini, V.; Milazzo, R.; Napoli, D. R.; Scarpa, D.; Andrighetto, A.; Napolitani, E.; De Salvador, D.

    2018-03-01

    A new method for the formation of hole-barrier contacts in high purity germanium (HPGe) is described, which consists in the sputter deposition of a Sb film on HPGe, followed by Sb diffusion produced through laser annealing of the Ge surface in the melting regime. This process gives rise to a very thin ( ≤ 100 nm) n-doped layer, as determined by SIMS measurement, while preserving the defect-free morphology of HPGe surface. A small prototype of gamma ray detector with a Sb laser-diffused contact was produced and characterized, showing low leakage currents and good spectroscopy data with different gamma ray sources.

  12. EDITORIAL: Nano Meets Spectroscopy Nano Meets Spectroscopy

    NASA Astrophysics Data System (ADS)

    Birch, David J. S.

    2012-08-01

    The multidisciplinary two-day Nano Meets Spectroscopy (NMS) event was held at the National Physical Laboratory (NPL), Teddington, UK, in September 2011. The event was planned from the outset to be at the interface of several areas—in particular, spectroscopy and nanoscience, and to bring together topics and people with different approaches to achieving common goals in biomolecular science. Hence the meeting cut across traditional boundaries and brought together researchers using diverse techniques, particularly fluorescence and Raman spectroscopy. Despite engaging common problems, these techniques are frequently seen as mutually exclusive with the two communities rarely interacting at conferences. The meeting was widely seen to have lived up to its billing in good measure. It attracted the maximum capacity of ~120 participants, including 22 distinguished speakers (9 from outside the UK), over 50 posters and a vibrant corporate exhibition comprising 10 leading instrument companies and IOP Publishing. The organizers were Professor David Birch (Chair), Dr Karen Faulds and Professor Duncan Graham of the University of Strathclyde, Professor Cait MacPhee of the University of Edinburgh and Dr Alex Knight of NPL. The event was sponsored by the European Science Foundation, the Institute of Physics, the Royal Society of Chemistry, NPL and the Scottish Universities Physics Alliance. The full programme and abstracts are available at http://sensor.phys.strath.ac.uk/nms/program.php. The programme was quite ambitious in terms of the breadth and depth of scope. The interdisciplinary and synergistic concept of 'X meets Y' played well, cross-fertilization between different fields often being a source of inspiration and progress. Fluorescence and Raman spectroscopy provided the core, but the meeting had little repetition and also attracted contributions on more specialist techniques such as CARS, super-resolution, single molecule and chiral methods. In terms of application the

  13. Fatigue properties of MA 6000E, a gamma-prime strengthened ODS alloy. [Oxide Dispersion Strengthened Ni-base alloy for gas turbine blade applications

    NASA Technical Reports Server (NTRS)

    Kim, Y. G.; Merrick, H. F.

    1980-01-01

    MA 6000E is a corrosion resistant, gamma-prime strengthened ODS alloy under development for advanced turbine blade applications. The high temperature, 1093 C, rupture strength is superior to conventional nickel-base alloys. This paper addresses the fatigue behavior of the alloy. Excellent properties are exhibited in low and high cycle fatigue and also thermal fatigue. This is attributed to a unique combination of microstructural features, i.e., a fine distribution of dispersed oxides and other nonmetallics, and the highly elongated grain structure which advantageously modify the deformation characteristics and crack initiation and propagation modes from that characteristic of conventional gamma-prime hardened superalloys.

  14. BOOTES and GTC observations of cosmic gamma-ray bursts and their progenitors

    NASA Astrophysics Data System (ADS)

    Castro-Tirado, Alberto J.

    2016-07-01

    We will summarize the follow-up observations of gamma-ray bursts performed worldwide by the BOOTES Network of robotic telescopes (with some of the data being contemporaneous to the prompt emission) leading to the discovery of many afterglows. Complementary data has been also obtained by the 10.4m GTC telescope in La Palma (mainly spectroscopy), with one of them being the highest extinguished afterglow detected to date.

  15. Gamma rays shielding and sensing application of some rare earth doped lead-alumino-phosphate glasses

    NASA Astrophysics Data System (ADS)

    Kaur, Preet; Singh, Devinder; Singh, Tejbir

    2018-03-01

    Seven rare earth (Sm3+, Eu3+ and Nd3+) doped lead alumino phosphate glasses were prepared. The protective and sensing measures from gamma rays were analysed in terms of parameters viz. density (ρ), refractive index, energy band gap (Eg), mean free path (mfp), effective atomic number (Zeff) and buildup factors (energy absorption EABF as well as exposure buildup factor EBF). The energy dependent parameters (mfp, Zeff, EABF and EBF) were investigated in the energy region from 15 keV to 15 MeV. EABF and EBF values were observed to be maximum in the intermediate energy region. Besides, the EABF and EBF values for the prepared samples are shown to have strong dependence on chemical composition of the glass at lower energy, whereas, it is almost independent of chemical composition in higher energy region. The prepared glass samples are found to have potential applications in radiation shielding as well as radiation sensing, which further find numerous applications in the field of medicine and industry.

  16. Role of Raman spectroscopy and surface enhanced Raman spectroscopy in colorectal cancer

    PubMed Central

    Jenkins, Cerys A; Lewis, Paul D; Dunstan, Peter R; Harris, Dean A

    2016-01-01

    Colorectal cancer (CRC) is the fourth most common cancer in the United Kingdom and is the second largest cause of cancer related death in the United Kingdom after lung cancer. Currently in the United Kingdom there is not a diagnostic test that has sufficient differentiation between patients with cancer and those without cancer so the current referral system relies on symptomatic presentation in a primary care setting. Raman spectroscopy and surface enhanced Raman spectroscopy (SERS) are forms of vibrational spectroscopy that offer a non-destructive method to gain molecular information about biological samples. The techniques offer a wide range of applications from in vivo or in vitro diagnostics using endoscopic probes, to the use of micro-spectrometers for analysis of biofluids. The techniques have the potential to detect molecular changes prior to any morphological changes occurring in the tissue and therefore could offer many possibilities to aid the detection of CRC. The purpose of this review is to look at the current state of diagnostic technology in the United Kingdom. The development of Raman spectroscopy and SERS in clinical applications relation for CRC will then be discussed. Finally, future areas of research of Raman/SERS as a clinical tool for the diagnosis of CRC are also discussed. PMID:27190582

  17. Detection of explosive substances by tomographic inspection using neutron and gamma-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Farahmand, M.; Boston, A. J.; Grint, A. N.; Nolan, P. J.; Joyce, M. J.; Mackin, R. O.; D'Mellow, B.; Aspinall, M.; Peyton, A. J.; van Silfhout, R.

    2007-08-01

    In recent years the detection and identification of hazardous materials has become increasingly important. This work discusses research and development of a technique which is capable of detecting and imaging hidden explosives. It is proposed to utilise neutron interrogation of the substances under investigation facilitating the detection of emitted gamma radiation and scattered neutrons. Pulsed fast neutron techniques are attractive because they can be used to determine the concentrations of the light elements (hydrogen, carbon, nitrogen, and oxygen) which can be the primary components of explosive materials. Using segmented High Purity Ge (HPGe) detectors and digital pulse processing [R.J. Cooper, G. Turk, A.J. Boston, H.C. Boston, J.R. Cresswell, A.R. Mather, P.J. Nolan, C.J. Hall, I. Lazarus, J. Simpson, A. Berry, T. Beveridge, J. Gillam, R.A. Lewis, in: Proceedings of the 7th International Conference on Position Sensitive Detectors, Nuclear Instruments and Methods A, in press; I. Lazarus, D.E. Appelbe, A. J. Boston, P.J. Coleman-Smith, J.R. Cresswell, M. Descovich, S.A.A. Gros, M. Lauer, J. Norman, C.J. Pearson, V.F.E. Pucknell, J.A. Sampson, G. Turk, J.J. Valiente-Dobón, IEEE Trans. Nucl. Sci., 51 (2004) 1353; R.J. Cooper, A.J. Boston, H.C. Boston, J.R. Cresswell, A.N. Grint, A.R. Mather, P.J. Nolan, D.P. Scraggs, G. Turk, C.J. Hall, I. Lazarus, A. Berry, T. Beveridge, J. Gillam, R.A. Lewis, in: Proceedings of the 11th International Symposium on Radiation Measurements and Application, 2006. [1-3

  18. Delayed gamma-ray spectroscopy with lanthanum bromide detector for non-destructive assay of nuclear material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Favalli, Andrea; Iliev, Metodi; Ianakiev, Kiril

    High-energy delayed γ-ray spectroscopy is a potential technique for directly assaying spent fuel assemblies and achieving the safeguards goal of quantifying nuclear material inventories for spent fuel handling, interim storage, reprocessing facilities, repository sites, and final disposal. Requirements for the γ-ray detection system, up to ~6 MeV, can be summarized as follows: high efficiency at high γ-ray energies, high energy resolution, good linearity between γ-ray energy and output signal amplitude, ability to operate at very high count rates, and ease of use in industrial environments such as nuclear facilities. High Purity Germanium Detectors (HPGe) are the state of the artmore » and provide excellent energy resolution but are limited in their count rate capability. Lanthanum Bromide (LaBr 3) scintillation detectors offer significantly higher count rate capabilities at lower energy resolution. Thus, LaBr 3 detectors may be an effective alternative for nuclear spent-fuel applications, where count-rate capability is a requirement. This paper documents the measured performance of a 2” (length) × 2” (diameter) of LaBr3 scintillation detector system, coupled to a negatively biased PMT and a tapered active high voltage divider, with count-rates up to ~3 Mcps. An experimental methodology was developed that uses the average current from the PMT’s anode and a dual source method to characterize the detector system at specific very high count rate values. Delayed γ-ray spectra were acquired with the LaBr 3 detector system at the Idaho Accelerator Center, Idaho State University, where samples of ~3g of 235U were irradiated with moderated neutrons from a photo-neutron source. Results of the spectroscopy characterization and analysis of the delayed γ-ray spectra acquired indicate the possible use of LaBr3 scintillation detectors when high count rate capability may outweigh the lower energy resolution.« less

  19. Delayed gamma-ray spectroscopy with lanthanum bromide detector for non-destructive assay of nuclear material

    DOE PAGES

    Favalli, Andrea; Iliev, Metodi; Ianakiev, Kiril; ...

    2017-10-09

    High-energy delayed γ-ray spectroscopy is a potential technique for directly assaying spent fuel assemblies and achieving the safeguards goal of quantifying nuclear material inventories for spent fuel handling, interim storage, reprocessing facilities, repository sites, and final disposal. Requirements for the γ-ray detection system, up to ~6 MeV, can be summarized as follows: high efficiency at high γ-ray energies, high energy resolution, good linearity between γ-ray energy and output signal amplitude, ability to operate at very high count rates, and ease of use in industrial environments such as nuclear facilities. High Purity Germanium Detectors (HPGe) are the state of the artmore » and provide excellent energy resolution but are limited in their count rate capability. Lanthanum Bromide (LaBr 3) scintillation detectors offer significantly higher count rate capabilities at lower energy resolution. Thus, LaBr 3 detectors may be an effective alternative for nuclear spent-fuel applications, where count-rate capability is a requirement. This paper documents the measured performance of a 2” (length) × 2” (diameter) of LaBr3 scintillation detector system, coupled to a negatively biased PMT and a tapered active high voltage divider, with count-rates up to ~3 Mcps. An experimental methodology was developed that uses the average current from the PMT’s anode and a dual source method to characterize the detector system at specific very high count rate values. Delayed γ-ray spectra were acquired with the LaBr 3 detector system at the Idaho Accelerator Center, Idaho State University, where samples of ~3g of 235U were irradiated with moderated neutrons from a photo-neutron source. Results of the spectroscopy characterization and analysis of the delayed γ-ray spectra acquired indicate the possible use of LaBr3 scintillation detectors when high count rate capability may outweigh the lower energy resolution.« less

  20. Delayed gamma-ray spectroscopy with lanthanum bromide detector for non-destructive assay of nuclear material

    NASA Astrophysics Data System (ADS)

    Favalli, Andrea; Iliev, Metodi; Ianakiev, Kiril; Hunt, Alan W.; Ludewigt, Bernhard

    2018-01-01

    High-energy delayed γ-ray spectroscopy is a potential technique for directly assaying spent fuel assemblies and achieving the safeguards goal of quantifying nuclear material inventories for spent fuel handling, interim storage, reprocessing facilities, repository sites, and final disposal. Requirements for the γ-ray detection system, up to ∼6 MeV, can be summarized as follows: high efficiency at high γ-ray energies, high energy resolution, good linearity between γ-ray energy and output signal amplitude, ability to operate at very high count rates, and ease of use in industrial environments such as nuclear facilities. High Purity Germanium Detectors (HPGe) are the state of the art and provide excellent energy resolution but are limited in their count rate capability. Lanthanum Bromide (LaBr3) scintillation detectors offer significantly higher count rate capabilities at lower energy resolution. Thus, LaBr3 detectors may be an effective alternative for nuclear spent-fuel applications, where count-rate capability is a requirement. This paper documents the measured performance of a 2" (length) × 2" (diameter) of LaBr3 scintillation detector system, coupled to a negatively biased PMT and a tapered active high voltage divider, with count-rates up to ∼3 Mcps. An experimental methodology was developed that uses the average current from the PMT's anode and a dual source method to characterize the detector system at specific very high count rate values. Delayed γ-ray spectra were acquired with the LaBr3 detector system at the Idaho Accelerator Center, Idaho State University, where samples of ∼3g of 235U were irradiated with moderated neutrons from a photo-neutron source. Results of the spectroscopy characterization and analysis of the delayed γ-ray spectra acquired indicate the possible use of LaBr3 scintillation detectors when high count rate capability may outweigh the lower energy resolution.

  1. Gamma-ray emission from Cataclysmic variables. 1: The Compton EGRET survey

    NASA Technical Reports Server (NTRS)

    Schlegel, Eric M.; Barrett, Paul E.; De Jager, O. C.; Chanmugam, G.; Hunter, S.; Mattox, J.

    1995-01-01

    We report the results of the first gamma-ray survey of cataclysmic variables (CVs) using observations obtained with the Energetic Gamma Ray Experiment Telescope (EGRET) instrument on the Compton Observatory. We briefly describe the theoretical models that are applicable to gamma-ray emission from CVs. These models are particularly relevant to magnetic CVs containing asynchronously rotating white dwarfs. No magnetic CV was detected with an upper limit on the flux at 1 GeV of approximately 2 x 10(exp -8)/sq cm/sec, which corresponds to an upper limit on the gamma-ray luminosity of approximately 10(exp 31) ergs/sec, assuming a typical CV distance of 100 pc.

  2. 7T Proton Magnetic Resonance Spectroscopy of Gamma-Aminobutyric Acid, Glutamate, and Glutamine Reveals Altered Concentrations in Patients With Schizophrenia and Healthy Siblings.

    PubMed

    Thakkar, Katharine N; Rösler, Lara; Wijnen, Jannie P; Boer, Vincent O; Klomp, Dennis W J; Cahn, Wiepke; Kahn, René S; Neggers, Sebastiaan F W

    2017-03-15

    The N-methyl-D-aspartate receptor hypofunction model of schizophrenia predicts dysfunction in both glutamatergic and gamma-aminobutyric acidergic (GABAergic) transmission. We addressed this hypothesis by measuring GABA, glutamate, glutamine, and the sum of glutamine plus glutamate concentrations in vivo in patients with schizophrenia using proton magnetic resonance spectroscopy at 7T, which allows separation of metabolites that would otherwise overlap at lower field strengths. In addition, we investigated whether altered levels of GABA, glutamate, glutamine, and the sum of glutamine plus glutamate reflect genetic vulnerability to schizophrenia by including healthy first-degree relatives. Proton magnetic resonance spectroscopy at 7T was performed in 21 patients with chronic schizophrenia who were taking medication, 23 healthy first-degree relatives of patients with schizophrenia, and 24 healthy nonrelatives. Glutamate, glutamine, and GABA were measured cortically and subcortically in bilateral basal ganglia and occipital cortex. Patients with schizophrenia had reduced cortical GABA compared with healthy relatives and the combined sample of healthy relatives and healthy nonrelatives, suggesting that altered GABAergic systems in schizophrenia are associated with either disease state or medication effects. Reduced cortical glutamine relative to healthy control subjects was observed in patients with schizophrenia and the combined sample of healthy relatives and patients with schizophrenia, suggesting that altered glutamatergic metabolite levels are associated with illness liability. No group differences were found in the basal ganglia. Taken together, these findings are consistent with alterations in GABAergic and glutamatergic systems in patients with schizophrenia and provide novel insights into these systems in healthy relatives. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  3. Applications of NIR spectroscopy to monitoring and analyzing the solid state during industrial crystallization processes.

    PubMed

    Févotte, G; Calas, J; Puel, F; Hoff, C

    2004-04-01

    Fiber-optic near infrared (NIR) spectroscopy was used to investigate several key features of the polymorphic transitions observed during the crystallization and the filtration of SaC, an Active Pharmaceutical Ingredient (API) produced by Sanofi-Synthelabo. Using few samples, the spectroscopic data were calibrated to provide measurements of the polymorphic composition of the solid product which is likely to appear in two crystalline forms or in the amorphous state. Both qualitative and quantitative methods were successfully evaluated to characterize the API. The NIR spectroscopy measurement was then applied to investigate the kinetic behavior of the phase transition phenomena against various operating conditions. From the viewpoint of industrial process development several applications are presented. The effects of temperature and seed crystal habits on the rate of transition of filtration cakes are briefly investigated; and a study of the effect of residual water in the solvent on the transition occurring during filtration is more deeply analyzed. The experimental results demonstrate that highly valuable information can be provided by the NIR spectroscopy measurements, when one aims at understanding more deeply and optimizing the consequences of various and complex phenomena involved during the solid processing chain.

  4. Laser Induced Breakdown Spectroscopy for Elemental Analysis in Environmental, Cultural Heritage and Space Applications: A Review of Methods and Results

    PubMed Central

    Gaudiuso, Rosalba; Dell’Aglio, Marcella; De Pascale, Olga; Senesi, Giorgio S.; De Giacomo, Alessandro

    2010-01-01

    Analytical applications of Laser Induced Breakdown Spectroscopy (LIBS), namely optical emission spectroscopy of laser-induced plasmas, have been constantly growing thanks to its intrinsic conceptual simplicity and versatility. Qualitative and quantitative analysis can be performed by LIBS both by drawing calibration lines and by using calibration-free methods and some of its features, so as fast multi-elemental response, micro-destructiveness, instrumentation portability, have rendered it particularly suitable for analytical applications in the field of environmental science, space exploration and cultural heritage. This review reports and discusses LIBS achievements in these areas and results obtained for soils and aqueous samples, meteorites and terrestrial samples simulating extraterrestrial planets, and cultural heritage samples, including buildings and objects of various kinds. PMID:22163611

  5. Bio-analytical applications of mid-infrared spectroscopy using silver halide fiber-optic probes1

    NASA Astrophysics Data System (ADS)

    Heise, H. M.; Küpper, L.; Butvina, L. N.

    2002-10-01

    Infrared-spectroscopy has proved to be a powerful method for the study of various biomedical samples, in particular for in-vitro analysis in the clinical laboratory and for non-invasive diagnostics. In general, the analysis of biofluids such as whole blood, urine, microdialysates and bioreactor broth media takes advantage of the fact that a multitude of analytes can be quantified simultaneously and rapidly without the need for reagents. Progress in the quality of infrared silver halide fibers enabled us to construct several flexible fiber-optic probes of different geometries, which are particularly suitable for the measurement of small biosamples. Recent trends show that dry film measurements by mid-infrared spectroscopy could revolutionize analytical tools in the clinical chemistry laboratory, and an example is given. Infrared diagnostic tools show a promising potential for patients, and minimal-invasive blood glucose assays or skin tissue pathology in particular cannot be left out using mid-infrared fiber-based probes. Other applications include the measurement of skin samples including penetration studies of vitamins and constituents of cosmetic cream formulations. A further field is the micro-domain analysis of biopsy samples from bog mummified corpses, and recent results on the chemistry of dermis and hair samples are reported. Another field of application, for which results are reported, is food analysis and bio-reactor monitoring.

  6. Lasers '81

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, C.B.

    1982-01-01

    Progress in lasers is discussed. The subjects addressed include: excimer lasers, surface spectroscopy, modern laser spectroscopy, free electron lasers, cavities and propagation, lasers in medicine, X-ray and gamma ray lasers, laser spectroscopy of small molecules and clusters, optical bistability, excitons, nonlinear optics in the X-ray and gamma ray regions, collective atomic phenomena, tunable IR lasers, far IR/submillimeter lasers, and laser-assisted collisions. Also treated are: special applications, multiphoton processes in atoms and small molecules, nuclear pumped lasers, material processing and applications, polarization, high energy lasers, laser chemistry, IR molecular lasers, laser applications of collision and dissociation phenomena, solid state laser materials,more » phase conjugation, advances in laser technology for fusion, metal vapor lasers, picosecond phenomena, laser ranging and geodesy, and laser photochemistry of complex molecules.« less

  7. Dual-comb spectroscopy of laser-induced plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergevin, Jenna; Wu, Tsung-Han; Yeak, Jeremy

    Dual-comb spectroscopy has become a powerful spectroscopic technique in applications that rely on its broad spectral coverage combined with high frequency resolution capabilities. Experiments to date have primarily focused on detection and analysis of multiple gas species under semi-static conditions, with applications ranging from environmental monitoring of greenhouse gases to high resolution molecular spectroscopy. Here, we utilize dual-comb spectroscopy to demonstrate broadband, high-resolution, and time-resolved measurements in a laser induced plasma for the first time. As a first demonstration, we simultaneously detect trace amounts of Rb and K in solid samples with a single laser ablation shot, with transitions separatedmore » by over 6 THz (13 nm) and spectral resolution sufficient to resolve isotopic and ground state hyperfine splittings of the Rb D2 line. This new spectroscopic approach offers the broad spectral coverage found in the powerful techniques of laser-induced breakdown spectroscopy (LIBS) while providing the high-resolution and accuracy of cw laser-based spectroscopies.« less

  8. Advances in Mid-Infrared Spectroscopy for Chemical Analysis

    NASA Astrophysics Data System (ADS)

    Haas, Julian; Mizaikoff, Boris

    2016-06-01

    Infrared spectroscopy in the 3-20 μm spectral window has evolved from a routine laboratory technique into a state-of-the-art spectroscopy and sensing tool by benefitting from recent progress in increasingly sophisticated spectra acquisition techniques and advanced materials for generating, guiding, and detecting mid-infrared (MIR) radiation. Today, MIR spectroscopy provides molecular information with trace to ultratrace sensitivity, fast data acquisition rates, and high spectral resolution catering to demanding applications in bioanalytics, for example, and to improved routine analysis. In addition to advances in miniaturized device technology without sacrificing analytical performance, selected innovative applications for MIR spectroscopy ranging from process analysis to biotechnology and medical diagnostics are highlighted in this review.

  9. Application of Raman Spectroscopy and Infrared Spectroscopy in the Identification of Breast Cancer.

    PubMed

    Depciuch, Joanna; Kaznowska, Ewa; Zawlik, Izabela; Wojnarowska, Renata; Cholewa, Marian; Heraud, Philip; Cebulski, Józef

    2016-02-01

    Raman spectroscopy and infrared (IR) spectroscopy are both techniques that allow for the investigation of vibrating chemical particles. These techniques provide information not only about chemical particles through the identification of functional groups and spectral analysis of so-called "fingerprints", these methods allow for the qualitative and quantitative analyses of chemical substances in the sample. Both of these spectral techniques are frequently being used in biology and medicine in diagnosing illnesses and monitoring methods of therapy. The type of breast cancer found in woman is often a malignant tumor, causing 1.38 million new cases of breast cancer and 458 000 deaths in the world in 2013. The most important risk factors for breast cancer development are: sex, age, family history, specific benign breast conditions in the breast, ionizing radiation, and lifestyle. The main purpose of breast cancer screening tests is to establish early diagnostics and to apply proper treatment. Diagnoses of breast cancer are based on: (1) physical techniques (e.g., ultrasonography, mammography, elastography, magnetic resonance, positron emission tomography [PET]); (2) histopathological techniques; (3) biological techniques; and (4) optical techniques (e.g., photo acoustic imaging, fluorescence tomography). However, none of these techniques provides unique or especially revealing answers. The aim of our study is comparative spectroscopic measurements on patients with the following: normal non-cancerous breast tissue; breast cancer tissues before chemotherapy; breast cancer tissues after chemotherapy; and normal breast tissues received around the cancerous breast region. Spectra collected from breast cancer patients shows changes in amounts of carotenoids and fats. We also observed changes in carbohydrate and protein levels (e.g., lack of amino acids, changes in the concentration of amino acids, structural changes) in comparison with normal breast tissues. This fact

  10. Gamma-ray spectroscopy of 131Sn81 via the (9Be, 8Be γ) reaction

    NASA Astrophysics Data System (ADS)

    Burcher, Sean; Bey, A.; Jones, K.; Ahn, S. H.; Ayres, A.; Schmitt, K. T.; Allmond, J.; Galindo-Urribari, A.; Radford, D. C.; Liang, J. F.; Neseraja, C. D.; Pain, S. D.; Pittman, S. T.; Smith, M. S.; Stracener, D. W.; Varner, R. L.; Bardayan, D. W.; O'Malley, P. D.; Cizewski, J. A.; Howard, M. E.; Manning, B. M.; Garcia Ruiz, R. F.; Kozub, R. L.; Matos, M.; Padilla-Rodal, E.

    2016-09-01

    Nuclear data in the region of the doubly-magic nucleus 132Sn82 is useful for benchmarking nuclear structure theories due to the clean single-particle nature of the nuclear wavefunction near the closed shells. At the Holifield Radioactive Ion Beam Facility (HRIBF) neutron-rich beams in the 132Sn82 region were produced via proton-induced fission of a Uranium-Carbide target. The CLARION array of HPGe detectors was coupled with the HyBall array of CsI detectors to allow for particle-gamma coincidence measurements. The gamma-ray de-excitation of the four lowest lying single-neutron states has been observed for the first time via the (9Be,8Be γ) reaction. The excitation energy of these states have been measured to higher precision than was possible with the previous charged particle measurement. This work was supported in part by the U.S. Department of Energy and the National Science Foundation.

  11. Application of gamma spectrometry in the Kola peninsula (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golovin, I.V.; Kolesnik, N.I.; Antipov, V.S.

    1973-01-01

    The methodology used and results obtained in gamma spectrometric studies of pre-Cambrian formations of some nickel-bearing regions of the Kola Penlnsula are described. The radioactive element contents of typical metamorphic and magmatic complexes and sulfide ores are presented. (au-trans)

  12. Power quality considerations for nuclear spectroscopy applications: Grounding

    NASA Astrophysics Data System (ADS)

    García-Hernández, J. M.; Ramírez-Jiménez, F. J.; Mondragón-Contreras, L.; López-Callejas, R.; Torres-Bribiesca, M. A.; Peña-Eguiluz, R.

    2013-11-01

    Traditionally the electrical installations are designed for supplying power and to assure the personnel safety. In nuclear analysis laboratories, additional issues about grounding also must be considered for proper operation of high resolution nuclear spectroscopy systems. This paper shows the traditional ways of grounding nuclear spectroscopy systems and through different scenarios, it shows the effects on the more sensitive parameter of these systems: the energy resolution, it also proposes the constant monitoring of a power quality parameter as a way to preserve or to improve the resolution of the systems, avoiding the influence of excessive extrinsic noise.

  13. An Artificial Intelligence Classification Tool and Its Application to Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Hakkila, Jon; Haglin, David J.; Roiger, Richard J.; Giblin, Timothy; Paciesas, William S.; Pendleton, Geoffrey N.; Mallozzi, Robert S.

    2004-01-01

    Despite being the most energetic phenomenon in the known universe, the astrophysics of gamma-ray bursts (GRBs) has still proven difficult to understand. It has only been within the past five years that the GRB distance scale has been firmly established, on the basis of a few dozen bursts with x-ray, optical, and radio afterglows. The afterglows indicate source redshifts of z=1 to z=5, total energy outputs of roughly 10(exp 52) ergs, and energy confined to the far x-ray to near gamma-ray regime of the electromagnetic spectrum. The multi-wavelength afterglow observations have thus far provided more insight on the nature of the GRB mechanism than the GRB observations; far more papers have been written about the few observed gamma-ray burst afterglows in the past few years than about the thousands of detected gamma-ray bursts. One reason the GRB central engine is still so poorly understood is that GRBs have complex, overlapping characteristics that do not appear to be produced by one homogeneous process. At least two subclasses have been found on the basis of duration, spectral hardness, and fluence (time integrated flux); Class 1 bursts are softer, longer, and brighter than Class 2 bursts (with two second durations indicating a rough division). A third GRB subclass, overlapping the other two, has been identified using statistical clustering techniques; Class 3 bursts are intermediate between Class 1 and Class 2 bursts in brightness and duration, but are softer than Class 1 bursts. We are developing a tool to aid scientists in the study of GRB properties. In the process of developing this tool, we are building a large gamma-ray burst classification database. We are also scientifically analyzing some GRB data as we develop the tool. Tool development thus proceeds in tandem with the dataset for which it is being designed. The tool invokes a modified KDD (Knowledge Discovery in Databases) process, which is described as follows.

  14. The effect of porosity and gamma-gamma' eutectic content on the low cycle fatigue behavior of hydrogen-charged PWA-1480

    NASA Technical Reports Server (NTRS)

    Gayda, John; Dreshfield, Robert L.; Gabb, Timothy P.

    1991-01-01

    Single crystal superalloys such as PWA 1480 are considered for turbopump blades in the main engines of the space shuttle. As fatigue resistance in a hydrogen environment is a key issue in this application, a study of the effect of porosity and gamma-gamma' eutectic content on the fatigue life of a hydrogen-charged PWA 1480 was performed. Porosity and eutectic were linked to fatigue initiation, and therefore reduction of either of both may be one means to improve fatigue life of PWA 1480 when hydrogen is present.

  15. Gamma-ray monitoring of AGN and galactic black hole candidates by the Gamma-Ray Observatory

    NASA Technical Reports Server (NTRS)

    Wheaton, Wm. A.; Ling, James C.; Skelton, R. T.; Harmon, Alan; Fishman, Gerald J.; Meegan, Charles A.; Paciesas, William S.; Rubin, Brad; Wilson, Robert B.; Gruber, Duane E.

    1992-01-01

    The Burst and Transient Spectroscopy Experiment (BATSE) on the Compton Gamma-Ray Observatory has a powerful capability to provide nearly uninterrupted monitoring in the 25 keV-10 MeV range of both AGN and Galactic black hole candidates such as Cygnus X-1, using the occultation of cosmic sources by the Earth. Progress in background modeling indicates that the data accept region, or fit window tau, around the occultation step can be substantially increased over that conservatively assumed in earlier estimates of BATSE's Earth occultation sensitivity. We show samples of large-tau fits to background and source edges. As a result we expect to be able to perform long-term monitoring of Cygnus X-1 and many of the brighter AGN for the duration of the CGRO mission.

  16. Benchmark Gamma Spectroscopy Measurements of Uranium Hexafluoride in Aluminmum Pipe with a Sodium Iodide Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    March-Leuba, Jose A; Uckan, Taner; Gunning, John E

    2010-01-01

    monitor (FM) and an enrichment monitor (EM). Development of the FM is primarily the responsibility of Oak Ridge National Laboratory, and development of the EM is primarily the responsibility of Los Alamos National Laboratory. The FM will measure {sup 235}U mass flow rate by combining information from measuring the UF{sub 6} volumetric flow rate and the {sup 235}U density. The UF{sub 6} flow rate will be measured using characteristics of the process pumps used in product and tail UF{sub 6} header process lines of many GCEPs, and the {sup 235}U density will be measured using commercially available sodium iodide (NaI) gamma ray scintillation detectors. This report describes the calibration of the portion of the FM that measures the {sup 235}U density. Research has been performed to define a methodology and collect data necessary to perform this calibration without the need for plant declarations. The {sup 235}U density detector is a commercially available system (GammaRad made by Amptek, www.amptek.com) that contains the NaI crystal, photomultiplier tube, signal conditioning electronics, and a multichannel analyzer (MCA). Measurements were made with the detector system installed near four {sup 235}U sources. Two of the sources were made of solid uranium, and the other two were in the form of UF{sub 6} gas in aluminum piping. One of the UF{sub 6} gas sources was located at ORNL and the other at LANL. The ORNL source consisted of two pipe sections (schedule 40 aluminum pipe of 4-inch and 8-inch outside diameter) with 5.36% {sup 235}U enrichment, and the LANL source was a 4-inch schedule 40 aluminum pipe with 3.3% {sup 235}U enrichment. The configurations of the detector on these test sources, as well as on long straight pipe configurations expected to exist at GCEPs, were modeled using the computer code MCNP. The results of the MCNP calculations were used to define geometric correction factors between the test source and the GCEP application. Using these geometric correction

  17. Application of Two Phase (Liquid/Gas) Xenon Gamma-Camera for the Detection of Special Nuclear Material and PET Medical Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKinsey, Daniel Nicholas

    The McKinsey group at Yale has been awarded a grant from DTRA for the building of a Liquid Xenon Gamma Ray Color Camera (LXe-GRCC), which combines state-of-the-art detection of LXe scintillation light and time projection chamber (TPC) charge readout. The DTRA application requires a movable detector and hence only a single phase (liquid) xenon detector can be considered in this case. We propose to extend the DTRA project to applications that allow a two phase (liquid/gas) xenon TPC. This entails additional (yet minimal) hardware and extension of the research effort funded by DTRA. The two phase detector will have bettermore » energy and angular resolution. Such detectors will be useful for PET medical imaging and detection of special nuclear material in stationary applications (e.g. port of entry). The expertise of the UConn group in gas phase TPCs will enhance the capabilities of the Yale group and the synergy between the two groups will be very beneficial for this research project as well as the education and research projects of the two universities. The LXe technology to be used in this project has matured rapidly over the past few years, developed for use in detectors for nuclear physics and astrophysics. This technology may now be applied in a straightforward way to the imaging of gamma rays. According to detailed Monte Carlo simulations recently performed at Yale University, energy resolution of 1% and angular resolution of 3 degrees may be obtained for 1.0 MeV gamma rays, using existing technology. With further research and development, energy resolution of 0.5% and angular resolution of 1.3 degrees will be possible at 1.0 MeV. Because liquid xenon is a high density, high Z material, it is highly efficient for scattering and capturing gamma rays. In addition, this technology scales elegantly to large detector areas, with several square meter apertures possible. The Yale research group is highly experienced in the development and use of noble liquid

  18. Effect of gamma irradiation on Korean traditional multicolored paintwork

    NASA Astrophysics Data System (ADS)

    Yoon, Minchul; Kim, Dae-Woon; Choi, Jong-il; Chung, Yong-Jae; Kang, Dai-Ill; Hoon Kim, Gwang; Son, Kwang-Tae; Park, Hae-Jun; Lee, Ju-Woon

    2015-10-01

    Gamma irradiation can destroy fungi and insects involved in the bio-deterioration of organic cultural heritages. However, this irradiation procedure can alter optical and structural properties of historical pigments used in wooden cultural heritage paintings. The crystal structure and color centers of these paintings must be maintained after application of the irradiation procedure. In this study, we investigated the effects of gamma irradiation on Korean traditional multicolored paintwork (Dancheong) for the preservation of wooden cultural heritages. The main pigments in Korean traditional wooden cultural heritages, Sukganju (Hematite; Fe2O3), Jangdan (Minium; Pb3O4), Whangyun (Crocoite; PbCrO4), and Jidang (Rutile; TiO2), were irradiated by gamma radiation at doses of 1, 5, and 20 kGy. After irradiation, changes in Commision Internationale d'Eclairage (CIE) color values (L*, a*, b*) were measured using the color difference meter, and their structural changes were analyzed using X-ray diffraction (XRD) analysis. The slightly change in less than 1 dE* unit by gamma irradiation was observed, and structural changes in the Dancheong were stable after exposure to 20 kGy gamma irradiation. In addition, gamma irradiation could be applied to painted wooden cultural properties from the Korean Temple. Based on the color values, gamma irradiation of 20 kGy did not affect the Dancheong and stability was maintained for five months. In addition, the fungicidal and insecticidal effect by less than 5 kGy gamma irradiation was conformed. Therefore, the optical and structural properties of Dancheong were maintained after gamma irradiation, which suggested that gamma irradiation can be used for the preservation of wooden cultural heritages painted with Dancheong.

  19. Thermal and mechanical properties of gamma-irradiated prevulcanized natural rubber latex/low nitrosamines latex blends

    NASA Astrophysics Data System (ADS)

    Ibrahim, Pairu; Daik, Rusli; Wan Zin, Wan Manshol

    2016-12-01

    Thermal and mechanical properties of blended radiation prevulcanized natural rubber latex (RVNRL) and low nitrosamines latex (LNL) were studied. RVNRL was blended with LNL at various composition ratios. From the tensile test, it was found that the optimum tensile value was attained at a total blending ratio of 70% RVNRL and 30% LNL. Latex blending with optimum tensile strength was then subjected to gamma irradiation at various doses with the presence and absence of methyl methacrylate (MMA) at 10 pphr. It was found that the gamma irradiation of latex blend with the presence of MMA could help increase further the tensile value. Composition of blending at a specific ratio and gamma irradiation at a specific dose has led to a significant improvement in the mechanical properties of the latex blend. The formation of grafting in the latex blend was characterized by Fourier transform infrared spectra (FTIR) spectroscopy and differential scanning calorimetry (DSC). FTIR spectroscopy confirmed that MMA could be grafted onto blended latex effectively under appropriate irradiation conditions. Two new peaks at 1731 and 1149 cm-1 were observed after irradiation, indicating the presence of an ester group from poly(methyl methacrylate) (PMMA), which was grafted onto rubber chains. This finding was proved by the presence of new Tg in DSC analysis. The increase in new Tg indicates the movement of grafting chains, which are tightly bound onto rubber chains.

  20. Impact of gamma radiation on the eruption rate of rat incisors

    NASA Astrophysics Data System (ADS)

    El-Faramawy, Nabil; El-Haddad, Khaled; Ali, Mohamed; Talaat, Mona

    2015-09-01

    The present work aims to test the effect of gamma radiation on the rate of eruption of rat incisors. One hundred and five adult male albino rats were used and irradiated at different gamma doses. The effects of irradiation were investigated by numerical measurements of eruption rate, histological investigation using light microscope and spectral analysis using Fourier Transform Infra-Red (FTIR). No detectable changes were observed in the groups with smaller radiation doses. There was a significant decrease in the eruption rate starting from the 4 Gy radiation dose. The observation of histological sections revealed disturbance in cellular elements responsible for eruption as well as periodontal disturbance in the samples irradiated with 4 and 6 Gy. FTIR Spectroscopy of control group and the group irradiated by 0.5 Gy showed similar absorption bands with minor differences. However, samples irradiated by 1 Gy showed significant changes in both molecular structure and conformation related to carbonates and hydroxyl groups. From the previous results, it could be concluded that gamma irradiation negatively affects the eruption rate of the rat incisors especially with higher doses.

  1. Particle Swarm Imaging (PSIM) - Innovative Gamma-Ray Assay - 13497

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parvin, Daniel; Clarke, Sean; Humes, Sarah J.

    2013-07-01

    Particle Swarm Imaging is an innovative technique used to perform quantitative gamma-ray assay. The innovation overcomes some of the difficulties associated with the accurate measurement and declaration of measurement uncertainties of radionuclide inventories within waste items when the distribution of activity is unknown. Implementation requires minimal equipment, with field measurements and results obtained using only a single electrically cooled HRGS gamma-ray detector. Examples of its application in the field are given in this paper. (authors)

  2. Clinical instrumentation and applications of Raman spectroscopy

    PubMed Central

    Pence, Isaac

    2016-01-01

    delivering this information in real-time, non-invasively, and in an automated manner. This review presents the various instrumentation considerations relevant to the clinical implementation of Raman spectroscopy and reviews a subset of interesting applications that have successfully demonstrated the efficacy of this technique for clinical diagnostics and monitoring in large (n ≥ 50) in vivo human studies. PMID:26999370

  3. Triple pulse shape discrimination and capture-gated spectroscopy in a composite heterogeneous scintillator

    NASA Astrophysics Data System (ADS)

    Sharma, M.; Nattress, J.; Wilhelm, K.; Jovanovic, I.

    2017-06-01

    We demonstrate an all-solid-state design for a composite heterogeneous scintillation detector sensitive to interactions with high-energy photons (gammas), fast neutrons, and thermal neutrons. The scintillator exhibits triple pulse shape discrimination, effectively separating electron recoils, fast neutron recoils, and neutron captures. This is accomplished by combining the properties of two distinct scintillators, whereby a 51-mm diameter, 51-mm tall cylinder of pulse shape discriminating plastic is wrapped by a 320-μm thick sheet of 6LiF:ZnS(Ag), optically coupling the scintillators to each other and to the photomultiplier tube. In this way, the sensitivity to neutron captures is achieved without the need to load the plastic scintillator with a capture agent. We demonstrate a figure of merit of up to 1.2 for fast neutrons/gammas and 5.7 for thermal neutrons/gammas. Intrinsic capture efficiency is found to be 0.46±0.05% and is in good agreement with simulation, while gamma rejection was 10-6 with respect to the capture region and 10-4 with respect to the recoil region using a 300 keVee threshold. Finally, we show an improvement in capture-gated neutron spectroscopy by rejecting accidental gamma coincidences using pulse shape discrimination in the plastic scintillator.

  4. Localized cerebral energy failure in DNA polymerase gamma-associated encephalopathy syndromes.

    PubMed

    Tzoulis, Charalampos; Neckelmann, Gesche; Mørk, Sverre J; Engelsen, Bernt E; Viscomi, Carlo; Moen, Gunnar; Ersland, Lars; Zeviani, Massimo; Bindoff, Laurence A

    2010-05-01

    Mutations in the catalytic subunit of the mitochondrial DNA-polymerase gamma cause a wide spectrum of clinical disease ranging from infantile hepato-encephalopathy to juvenile/adult-onset spinocerebellar ataxia and late onset progressive external ophthalmoplegia. Several of these syndromes are associated with an encephalopathy that characteristically shows episodes of rapid neurological deterioration and the development of acute cerebral lesions. The purpose of this study was to investigate the nature, distribution and natural evolution of central nervous system lesions in polymerase gamma associated encephalopathy focusing particularly on lesions identified by magnetic resonance imaging. We compared radiological, electrophysiological and pathological findings where available to study potential mechanisms underlying the episodes of exacerbation and acute cerebral lesions. We studied a total of 112 magnetic resonance tomographies and 11 computed tomographies in 32 patients with polymerase gamma-encephalopathy, including multiple serial examinations performed during both the chronic and acute phases of the disease and, in several cases, magnetic resonance spectroscopy and serial diffusion weighted studies. Data from imaging, electroencephalography and post-mortem examination were compared in order to study the underlying disease process. Our findings show that magnetic resonance imaging in polymerase gamma-related encephalopathies has high sensitivity and can identify patterns that are specific for individual syndromes. One form of chronic polymerase gamma-encephalopathy, that is associated with the c.1399G > A and c.2243G > C mutations, is characterized by progressive cerebral and cerebellar atrophy and focal lesions of the thalamus, deep cerebellar structures and medulla oblongata. Acute encephalopathies, both infantile and later onset, show similar pictures with cortical stroke-like lesions occurring during episodes of exacerbation. These lesions can occur both

  5. Forensic and homeland security applications of modern portable Raman spectroscopy.

    PubMed

    Izake, Emad L

    2010-10-10

    Modern detection and identification of chemical and biological hazards within the forensic and homeland security contexts may well require conducting the analysis in field while adapting a non-contact approach to the hazard. Technological achievements on both surface and resonance enhancement Raman scattering re-developed Raman spectroscopy to become the most adaptable spectroscopy technique for stand-off and non-contact analysis of hazards. On the other hand, spatially offset Raman spectroscopy proved to be very valuable for non-invasive chemical analysis of hazards concealed within non-transparent containers and packaging. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  6. Development of a three-layer phoswich alpha-beta-gamma imaging detector

    NASA Astrophysics Data System (ADS)

    Yamamoto, Seiichi; Ishibashi, Hiroyuki

    2015-06-01

    For radiation monitoring at the sites of such nuclear power plant accidents as Fukushima Daiichi, radiation detectors are needed not only for gamma photons but also for alpha and beta particles because some nuclear fission products emit beta particles and gamma photons and some nuclear fuels contain plutonium that emits alpha particles. In some applications, imaging detectors are required to detect the distribution of plutonium particles that emit alpha particles and radiocesium in foods that emits beta particles and gamma photons. To solve these requirements, we developed an imaging detector that can measure the distribution of alpha and beta particles as well as gamma photons. The imaging detector consists of three-layer scintillators optically coupled to each other and to a position sensitive photomultiplier tube (PSPMT). The first layer, which is made of a thin plastic scintillator (decay time: 5 ns), detects alpha particles. The second layer, which is made of a thin Gd2SiO5 (GSO) scintillator with 1.5 mol% Ce (decay time: 35 ns), detects beta particles. The third layer made of a thin GSO scintillator with 0.4 mol% Ce (decay time: 70 ns) detects gamma photons. Using pulse shape discrimination, the images of these layers can be separated. The position information is calculated by the Anger principle from 8×8 anode signals from the PSPMT. The images for the alpha and beta particles and the gamma photons are individually formed by the pulse shape discriminations for each layer. We detected alpha particle images in the first layer and beta particle images in the second layer. Gamma photon images were detected in the second and third layers. The spatial resolution for the alpha and beta particles was 1.25 mm FWHM and less than 2 mm FWHM for the gamma photons. We conclude that our developed alpha-beta-gamma imaging detector is promising for imaging applications not only for the environmental monitoring of radionuclides but also for medical and molecular imaging.

  7. EVIDENCE FOR ENHANCED {sup 3}HE IN FLARE-ACCELERATED PARTICLES BASED ON NEW CALCULATIONS OF THE GAMMA-RAY LINE SPECTRUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, R. J.; Kozlovsky, B.; Share, G. H., E-mail: murphy@ssd5.nrl.navy.mil, E-mail: benz@wise.tau.ac.il, E-mail: share@astro.umd.edu

    2016-12-20

    The {sup 3}He abundance in impulsive solar energetic particle (SEP) events is enhanced up to several orders of magnitude compared to its photospheric value of [{sup 3}He]/[{sup 4}He] = 1–3 × 10{sup −4}. Interplanetary magnetic field and timing observations suggest that these events are related to solar flares. Observations of {sup 3}He in flare-accelerated ions would clarify the relationship between these two phenomena. Energetic {sup 3}He interactions in the solar atmosphere produce gamma-ray nuclear-deexcitation lines, both lines that are also produced by protons and α particles and lines that are essentially unique to {sup 3}He. Gamma-ray spectroscopy can, therefore, reveal enhanced levelsmore » of accelerated {sup 3}He. In this paper, we identify all significant deexcitation lines produced by {sup 3}He interactions in the solar atmosphere. We evaluate their production cross sections and incorporate them into our nuclear deexcitation-line code. We find that enhanced {sup 3}He can affect the entire gamma-ray spectrum. We identify gamma-ray line features for which the yield ratios depend dramatically on the {sup 3}He abundance. We determine the accelerated {sup 3}He/ α ratio by comparing these ratios with flux ratios measured previously from the gamma-ray spectrum obtained by summing the 19 strongest flares observed with the Solar Maximum Mission Gamma-Ray Spectrometer. All six flux ratios investigated show enhanced {sup 3}He, confirming earlier suggestions. The {sup 3}He/ α weighted mean of these new measurements ranges from 0.05 to 0.3 (depending on the assumed accelerated α /proton ratio) and has a <1 × 10{sup −3} probability of being consistent with the photospheric value. With the improved code, we can now exploit the full potential of gamma-ray spectroscopy to establish the relationship between flare-accelerated ions and {sup 3}He-rich SEPs.« less

  8. Evaluation of 2.1μm DFB lasers for space applications

    NASA Astrophysics Data System (ADS)

    Barbero, J.; López, D.; Esquivias, I.; Tijero, J. M. G.; Fischer, M.; Roessner, K.; Koeth, J.; Zahir, M.

    2017-11-01

    This paper presents the results obtained in the frame of an ESA-funded project called "Screening and Preevaluation of Shortwave Infrared Laser Diode for Space Application" with the objective of verifying the maturity of state of the art SWIR DFB lasers at 2.1μm to be used for space applications (mainly based on the occultation measurement principle and spectroscopy). The paper focus on the functional and environmental evaluation test plan. It includes high precision characterization, mechanical test (vibration and SRS shocks), thermal cycling, gamma and proton radiation tests, life test and some details of the Destructive Physical Analysis performed. The electro-optical characterization includes measurements of the tuning capabilities of the laser both by current and by temperature, the wavelength stability and the optical power versus laser current.

  9. Direct Absorption Spectroscopy with Electro-Optic Frequency Combs

    NASA Astrophysics Data System (ADS)

    Fleisher, Adam J.; Long, David A.; Plusquellic, David F.; Hodges, Joseph T.

    2017-06-01

    The application of electro-optic frequency combs to direct absorption spectroscopy has increased research interest in high-agility, modulator-based comb generation. This talk will review common architectures for electro-optic frequency comb generators as well as describe common self-heterodyne and multi-heterodyne (i.e., dual-comb) detection approaches. In order to achieve a sufficient signal-to-noise ratio on the recorded interferogram while allowing for manageable data volumes, broadband electro-optic frequency combs require deep coherent averaging, preferably in real-time. Applications such as cavity-enhanced spectroscopy, precision atomic and molecular spectroscopy, as well as time-resolved spectroscopy will be introduced. D.A. Long et al., Opt. Lett. 39, 2688 (2014) A.J. Fleisher et al., Opt. Express 24, 10424 (2016)

  10. Radicals initiated by gamma-rays in collagen and its main components

    NASA Astrophysics Data System (ADS)

    Kornacka, Ewa Maria; Przybytniak, Grażyna; Zimek, Zbigniew

    2018-01-01

    Radical products generated by gamma-rays were identified in collagen and in microcrystalline powders of glycyne, L-proline and L-hydroksyproline. Reagents irradiated at 77 K were studied by EPR spectroscopy in the range of 100-350 K using temperature control system. Two radical centers found in collagen were localized in proline ring at α and γ positions to the carbonyl group. There were neither terminal radicals generated by chain scission nor transient products disrupting hydrogen bonding system of irradiated collagen.

  11. Application of CdZnTe Gamma-Ray Detector for Imaging Corrosion under Insulation

    NASA Astrophysics Data System (ADS)

    Abdullah, J.; Yahya, R.

    2007-05-01

    Corrosion under insulation (CUI) on the external wall of steel pipes is a common problem in many types of industrial plants. This is mainly due to the presence of moisture or water in the insulation materials. This type of corrosion can cause failures in areas that are not normally of a primary concern to an inspection program. The failures are often the result of localised corrosion and not general wasting over a large area. These failures can tee catastrophic in nature or at least have an adverse economic effect in terms of downtime and repairs. There are a number of techniques used today for CUI investigations. The main ones are profile radiography, pulse eddy current, ultrasonic spot readings and insulation removal. A new system now available is portable Pipe-CUI-Profiler. The nucleonic system is based on dual-beam gamma-ray absorption technique using Cadmium Zinc Telluride (CdZnTe) semiconductor detectors. The Pipe-CUI-Profiler is designed to inspect pipes of internal diameter 50, 65, 80, 90, 100, 125 and 150 mm. Pipeline of these sizes with aluminium or thin steel sheathing, containing fibreglass or calcium silicate insulation to thickness of 25, 40 and 50 mm can be inspected. The system has proven to be a safe, fast and effective method of inspecting pipe in industrial plant operations. This paper describes the application of gamma-ray techniques and CdZnTe semiconductor detectors in the development of Pipe-CUI-Profiler for non-destructive imaging of corrosion under insulation of steel pipes. Some results of actual pipe testing in large-scale industrial plant will be presented.

  12. Beta-gamma spectroscopy of the neutron-rich 150Ba

    NASA Astrophysics Data System (ADS)

    Yokoyama, R.; Ideguchi, E.; Simpson, G. S.; Tanaka, Mn; Nishimura, S.; Doornenbal, P.; Lorusso, G.; Söderström, P.-A.; Sumikama, T.; Wu, J.; Xu, Z. Y.; Aoi, N.; Baba, H.; Bello Garrote, F. L.; Benzoni, G.; Browne, F.; Daido, R.; Fang, Y.; Fukuda, N.; Gottardo, A.; Gey, G.; Go, S.; Inabe, N.; Isobe, T.; Kameda, D.; Kobayashi, K.; Kobayashi, M.; Kojouharov, I.; Komatsubara, T.; Kubo, T.; Kurz, N.; Kuti, I.; Li, Z.; Matsushita, M.; Michimasa, S.; Moon, C. B.; Nishibata, H.; Nishizuka, I.; Odahara, A.; Patel, Z.; Rice, S.; Sahin, E.; Sakurai, H.; Schaffner, H.; Sinclair, L.; Suzuki, H.; Takeda, H.; Taprogge, J.; Vajta, Zs; Watanabe, H.; Yagi, A.; Inakura, T.

    2018-04-01

    Excited states in the neutron-rich nucleus ^{150}Ba have been observed via β-γ spectroscopy at the Radioactive Isotope Beam Factory, RIKEN Nishina Center. The ^{150}Ba ions were produced by the in-flight fission of a ^{238}U beam with an energy of 345 MeV/nucleon. The E(2+) energy of ^{150}Ba was identified at 100 keV, which is the lowest known in the neutron-rich Ba isotopes. A γ-ray peak was also observed at 597 keV. A mean-field calculation with a fully 3D real space was performed and a static octupole deformation was obtained for the Ba isotopes. K^{π}=0- and 1- excited states with significant octupole collectivity were newly predicted at around or lower than 1 MeV on the ground state of ^{150}Ba by a random-phase approximation calculation. The 597 keV γ ray can be interpreted as a negative-parity state, showing that ^{150}Ba may possess octupole collectivity.

  13. Feasibility of Interfacing a Microcomputer with a Multichannel Analyzer to Perform Gamma Ray Spectroscopy.

    DTIC Science & Technology

    1981-03-01

    David Hardin. Many members and students of the Electrical Engineering department helped as I was assembling and testing hardware, but I wish to...in a detector and produce electrical pulses with amplitude proportional to the energy of the gamma ray absorbed. The electrical pulses are amplified...accomplished : t ges. First, the electrical outputs available Cron the 6 multichannel analyzer were determined. Then, a microcomputer was selected from those

  14. GRB 080517: a local, low-luminosity gamma-ray burst in a dusty galaxy at z = 0.09

    NASA Astrophysics Data System (ADS)

    Stanway, Elizabeth R.; Levan, Andrew J.; Tanvir, Nial; Wiersema, Klaas; van der Horst, Alexander; Mundell, Carole G.; Guidorzi, Cristiano

    2015-02-01

    We present an analysis of the photometry and spectroscopy of the host galaxy of Swift-detected GRB 080517. From our optical spectroscopy, we identify a redshift of z = 0.089 ± 0.003, based on strong emission lines, making this a rare example of a very local, low-luminosity, long gamma-ray burst. The galaxy is detected in the radio with a flux density of S4.5 GHz = 0.22 ± 0.04 mJy - one of relatively few known gamma-ray bursts hosts with a securely measured radio flux. Both optical emission lines and a strong detection at 22 μm suggest that the host galaxy is forming stars rapidly, with an inferred star formation rate ˜16 M⊙ yr-1 and a high dust obscuration (E(B - V) > 1, based on sightlines to the nebular emission regions). The presence of a companion galaxy within a projected distance of 25 kpc, and almost identical in redshift, suggests that star formation may have been triggered by galaxy-galaxy interaction. However, fitting of the remarkably flat spectral energy distribution from the ultraviolet through to the infrared suggests that an older, 500 Myr post-starburst stellar population is present along with the ongoing star formation. We conclude that the host galaxy of GRB 080517 is a valuable addition to the still very small sample of well-studied local gamma-ray burst hosts.

  15. Application of the near-infrared spectroscopy in the pharmaceutical technology.

    PubMed

    Jamrógiewicz, Marzena

    2012-07-01

    Near-infrared (NIR) spectroscopy is currently the fastest-growing and the most versatile analytical method not only in the pharmaceutical sciences but also in the industry. This review focuses on recent NIR applications in the pharmaceutical technology. This article covers monitoring, by NIR, of many manufacturing processes, such as granulation, mixing or drying, in order to determine the end-point of these processes. In this paper, apart from basic theoretical information concerning the NIR spectra, there are included determinations of the quality and quantity of pharmaceutical compounds. Some examples of measurements and control of physicochemical parameters of the final medicinal products, such as hardness, porosity, thickness size, compression strength, disintegration time and potential counterfeit are included. Biotechnology and plant drug analysis using NIR is also described. Moreover, some disadvantages of this method are stressed and future perspectives are anticipated. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Neutron/Gamma-ray discrimination through measures of fit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amiri, Moslem; Prenosil, Vaclav; Cvachovec, Frantisek

    2015-07-01

    Statistical tests and their underlying measures of fit can be utilized to separate neutron/gamma-ray pulses in a mixed radiation field. In this article, first the application of a sample statistical test is explained. Fit measurement-based methods require true pulse shapes to be used as reference for discrimination. This requirement makes practical implementation of these methods difficult; typically another discrimination approach should be employed to capture samples of neutrons and gamma-rays before running the fit-based technique. In this article, we also propose a technique to eliminate this requirement. These approaches are applied to several sets of mixed neutron and gamma-ray pulsesmore » obtained through different digitizers using stilbene scintillator in order to analyze them and measure their discrimination quality. (authors)« less

  17. Low temperature gamma sterilization of a bioresorbable polymer, PLGA

    NASA Astrophysics Data System (ADS)

    Davison, Lisa; Themistou, Efrosyni; Buchanan, Fraser; Cunningham, Eoin

    2018-02-01

    Medical devices destined for insertion into the body must be sterilised before implantation to prevent infection or other complications. Emerging biomaterials, for example bioresorbable polymers, can experience changes in their properties due to standard industrial sterilization processes. Gamma irradiation is one of the most reliable, large scale sterilization methods, however it can induce chain scission, cross-linking or oxidation reactions in polymers. sterilization at low temperature or in an inert atmosphere has been reported to reduce the negative effects of gamma irradiation. The aim of this study was to investigate the impact of low temperature sterilization (at -80 °C) when compared to sterilization at ambient temperature (25 °C) both in inert atmospheric conditions of nitrogen gas, on poly(lactide co-glycolide) (PLGA). PLGA was irradiated at -80 and 25 °C at 40 kGy in a nitrogen atmosphere. Samples were characterised using differential scanning calorimetry (DSC), tensile test, Fourier transform infrared (FTIR) spectroscopy, proton nuclear magnetic resonance (1H NMR) spectroscopy and gel permeation chromatography (GPC). The results showed that the molecular weight was significantly reduced as was the glass transition temperature, an indication of chain scission. FTIR showed small changes in chemical structure in the methyl and carbonyl groups after irradiation. Glass transition temperature was significantly different between irradiation at -80 °C and irradiation at 25 °C, however this was a difference of only 1 °C. Ultimately, the results indicate that the sterilization temperature used does not affect PLGA when carried out in a nitrogen atmosphere.

  18. Nuclear isomer suitable for gamma ray laser

    NASA Technical Reports Server (NTRS)

    Jha, S.

    1979-01-01

    The operation of gamma ray lasers (gasers) are studied. It is assumed that the nuclear isomers mentioned in previously published papers have inherent limitations. It is further assumed that the judicious use of Bormann effect or the application of the total external reflection of low energy gamma radiation at grazing angle of incidence may permit the use of a gaser crystal sufficiently long to achieve observable stimulated emission. It is suggested that a long lived 0(+) isomer decaying by low energy gamma ray emission to a short lived 2(+) excited nuclear state would be an attractive gaser candidate. It is also suggested that the nuclear isomer be incorporated in a matrix of refractory material having an electrostatic field gradient whose principal axis lies along the length of the medium. This results in the preferential transmission of electric quadrupole radiation along the length of the medium.

  19. Picosecond sulfur K-edge X-ray absorption spectroscopy with applications to excited state proton transfer

    DOE PAGES

    Van Kuiken, Benjamin E.; Ross, Matthew R.; Strader, Matthew L.; ...

    2017-05-08

    Picosecond X-ray absorption (XA) spectroscopy at the S K-edge (~2.4 keV) is demonstrated and used to monitor excited state dynamics in a small organosulfur molecule (2-Thiopyridone, 2TP) following optical excitation. Multiple studies have reported that the thione (2TP) is converted into the thiol (2-Mercaptopyridine, 2MP) following photoexcitation. However, the timescale and photochemical pathway of this reaction remain uncertain. In this work, time-resolved XA spectroscopy at the S K-edge is used to monitor the formation and decay of two transient species following 400nm excitation of 2TP dissolved in acetonitrile. The first transient species forms within the instrument response time (70 ps)more » and decays within 6 ns. The second transient species forms on a timescale of ~400 ps and decays on a 15 ns timescale. Time-dependent density functional theory is used to identify the first and second transient species as the lowestlying triplet states of 2TP and 2MP, respectively. This study demonstrates transient S K-edge XA spectroscopy as a sensitive and viable probe of time-evolving charge dynamics near sulfur sites in small molecules with future applications towards studying complex biological and material systems.« less

  20. EPR Investigation of Gamma-Irradiated Rapana Thomasiana (Gastropoda, Muricidae) Shell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seletchi, Emilia Dana; Duliu, Octavian G.; Georgescu, Rodica

    2007-04-23

    The shell of Rapana Thomasiana snail, a carnivorous gastropod collected from the coasts of the Black Sea (Romania) was investigated by using Electron Paramagnetic Resonance (EPR) spectroscopy. The samples in powder form were irradiated with a 60Co gamma-ray source at ambient temperature in the dose range between 1.06 and 11.3 kGy. The measurements showed that the EPR signal intensity enhanced following saturation exponential with the absorbed dose. The estimated EPR parameters: g1 = 1.9976, g2 = 2.0006, g3 = 2.0015, g4 = 2.0030 and g5 = 2.0043 revealed a complex spectrum consisting of CO{sub 2}{sup -}, CO{sub 3}{sup 3-} andmore » CO{sub 3}{sup -} species. A very weak signal at g6 = 2.0057 was associated to SO{sub 2}{sup -} electron center. All EPR signals of gamma-irradiated samples decreased with various rate with the of 100 deg. C isothermal annealing time.« less

  1. An electron spin resonance study of gamma-ray irradiated ginseng.

    PubMed

    Nakamura, Hideo; Ukai, Mitsuko; Shimoyama, Yuhei

    2006-03-13

    Using electron spin resonance (ESR) spectroscopy, we revealed the presence of four radical species in gamma-ray irradiated ginseng (Agaliaceae). Before irradiation, the representative ESR spectrum of ginseng is composed of a sextet centered at g = 2.0, a sharp singlet at the same g-value, and a singlet at about g = 4.0. The first one is attributable to a hyperfine (hf) signal of Mn2+ ion (hf constant: 7.4 mT). The second one is due to an organic free radical. The third one is originated from Fe3+. Upon gamma-ray irradiation, a new ESR (the fourth) signal was detectable in the vicinity of g = 2.0 region. The progressive saturation behaviors of the ESR signals at various microwave power levels were indicative of different relaxation time for those radicals. The anisotropic ESR spectra were detected by the angular rotation of the sample tube. This is due to the existence of anisotropic microcrystalline in the ginseng powder sample.

  2. Emission study on the gamma-ray irradiation effects on the ferroelectric Pb(Zr,Ti)O3 thin films

    NASA Astrophysics Data System (ADS)

    Lee, Yunsang; Lim, Junwhi; Yang, Sun A.; Bu, S. D.

    We investigated the photoluminescence of the gammy-ray irradiated Pb(Zr,Ti)O3 (PZT) thin films with the various total doses up to 1000 kGy. The PZT thin films were prepared on the Pt/Ti/SiO2/Si substrates by using a sol-gel method with a spin-coating process. It was found that the visible emission emerges near 550 nm with the gamma-ray irradiation. The intensity of the emission increased with the increasing dose amount. The spectral feature of the gamma-ray induced emission was quite narrow, which was distinguished from that formed by normal defects such as oxygen vacancy. We suggest that the gamma-ray irradiation should generate a specific type of defect state inside the PZT films, which could be detected by the low temperature photoluminescence spectroscopy.

  3. Laser spectroscopy applied to environmental, ecological, food safety, and biomedical research.

    PubMed

    Svanberg, Sune; Zhao, Guangyu; Zhang, Hao; Huang, Jing; Lian, Ming; Li, Tianqi; Zhu, Shiming; Li, Yiyun; Duan, Zheng; Lin, Huiying; Svanberg, Katarina

    2016-03-21

    Laser spectroscopy provides many possibilities for multi-disciplinary applications in environmental monitoring, in the ecological field, for food safety investigations, and in biomedicine. The paper gives several examples of the power of multi-disciplinary applications of laser spectroscopy as pursued in our research group. The studies utilize mostly similar and widely applicable spectroscopic approaches. Air pollution and vegetation monitoring by lidar techniques, as well as agricultural pest insect monitoring and classification by elastic scattering and fluorescence spectroscopy are described. Biomedical aspects include food safety applications and medical diagnostics of sinusitis and otitis, with strong connection to the abatement of antibiotics resistance development.

  4. Real-Time Airborne Gamma-Ray Background Estimation Using NASVD with MLE and Radiation Transport for Calibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulisek, Jonathan A.; Schweppe, John E.; Stave, Sean C.

    2015-06-01

    Helicopter-mounted gamma-ray detectors can provide law enforcement officials the means to quickly and accurately detect, identify, and locate radiological threats over a wide geographical area. The ability to accurately distinguish radiological threat-generated gamma-ray signatures from background gamma radiation in real time is essential in order to realize this potential. This problem is non-trivial, especially in urban environments for which the background may change very rapidly during flight. This exacerbates the challenge of estimating background due to the poor counting statistics inherent in real-time airborne gamma-ray spectroscopy measurements. To address this, we have developed a new technique for real-time estimation ofmore » background gamma radiation from aerial measurements. This method is built upon on the noise-adjusted singular value decomposition (NASVD) technique that was previously developed for estimating the potassium (K), uranium (U), and thorium (T) concentrations in soil post-flight. The method can be calibrated using K, U, and T spectra determined from radiation transport simulations along with basis functions, which may be determined empirically by applying maximum likelihood estimation (MLE) to previously measured airborne gamma-ray spectra. The method was applied to both measured and simulated airborne gamma-ray spectra, with and without man-made radiological source injections. Compared to schemes based on simple averaging, this technique was less sensitive to background contamination from the injected man-made sources and may be particularly useful when the gamma-ray background frequently changes during the course of the flight.« less

  5. Radiation-induced degradation of cyclohexanebutyric acid in aqueous solutions by gamma ray irradiation

    NASA Astrophysics Data System (ADS)

    Jia, Wenbao; He, Yanquan; Ling, Yongsheng; Hei, Daqian; Shan, Qing; Zhang, Yan; Li, Jiatong

    2015-04-01

    The radiation-induced degradation of cyclohexanebutyric acid under gamma ray irradiation was investigated. Degradation experiments were performed with 100 mL sealed Pyrex glass vessels loaded with 80 mL of cyclohexanebutyric acid solutions at various initial concentrations of 10, 20, and 40 mg L-1. The absorbed doses were controlled at 0, 0.65, 1.95, 3.25, 6.5, 9.75, and 13 kGy. The results showed that gamma ray irradiation could effectively degrade cyclohexanebutyric acid in aqueous solutions. The removal rate of cyclohexanebutyric acid increased significantly with the increase of absorbed dose and the decrease of its initial concentration. At the same time, the removal of chemical oxygen demand (COD) was as effective as that of cyclohexanebutyric acid. The kinetic studies showed that the degradation of cyclohexanebutyric acid followed pseudo first-order reaction. Above all, the proposed mechanism obtained when NaNO2, NaNO3 and tert-butanol were added showed that the •OH radical played a major role in the gamma degradation process of cyclohexanebutyric acid, while •H and eaq- played a minor role in the gamma degradation process. The degradation products were identified by Fourier transform infrared spectroscopy (FTIR) and gas chromatography/mass spectrometry (GC/MS) during cyclohexanebutyric acid degradation.

  6. Bismuth- and lithium-loaded plastic scintillators for gamma and neutron detection (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Martinez, H. Paul; Cherepy, Nerine J.; Sanner, Robert D.; Beck, Patrick R.; Swanberg, Eric L.; Payne, Stephen A.

    2016-09-01

    Plastic scintillators are widely deployed for ionizing radiation detection, as they can be fabricated in large sizes, for high detection efficiency. However commercial plastics are limited in use for gamma spectroscopy, since their photopeak is too weak, due to low Z, and they are also limited in use for neutron detection, since proton recoils are indistinguishable from other ionizing radiation absorption events in standard plastics. We are working on scale up and production of transparent plastic scintillators based on polystyrene (PS) with high loading of bismuth metallorganics for gamma spectroscopy, and with lithium metallorganics for neutron detection. When activated with standard organic fluors, PS scintillators containing 8 wt% bismuth provide energy resolution of 11% at 662 keV. A PS plastic formulation including 1.3 wt% lithium-6 provides a neutron capture peak at 525 keVee, with 11% resolution for the capture peak and 90% efficiency for thermal neutron capture in 2mm thickness. Acknowledgements This work was performed under the auspices of the U.S. DOE by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, and has been supported by the US DOE National Nuclear Security Administration, Defense Nuclear Nonproliferation Research and Development under Contract No. DE-AC03-76SF00098

  7. Beta-decay spectroscopy of neutron-rich 84-86Ga isotopes

    NASA Astrophysics Data System (ADS)

    Naqvi, Farheen; Xu, Zhengyu; Werner, Volker; Niikura, Megumi; Nishimura, Shunji; Eurica Collaboration

    2013-10-01

    The low lying excited states in 84-86 Ge were studied via the beta-gamma spectroscopy of 84-86 Ga nuclei. The study focused on the beta-delayed neutron emission probabilities and the beta-decay lifetimes, relevant for the astrophysical r process path in the region. The neutron-rich Ga isotopes were produced by in-flight fragmentation of 238U beam on a 9Be target. The experiment was performed at the Radioactive Ion Beam Facility (RIBF) at RIKEN, Japan. The BigRIPS spectrometer was utilized to identify and separate the reaction residues and the ions of interest were implanted in a segmented Si detector array called WASABI. Gamma rays emitted after the beta decay were identified by the EURICA array. Results of the ongoing analysis will be presented. Work supported by DOE grant no. DE-FG02-91ER-40609.

  8. Novel scintillators and silicon photomultipliers for nuclear physics and applications

    NASA Astrophysics Data System (ADS)

    Jenkins, David

    2015-06-01

    Until comparatively recently, scintillator detectors were seen as an old-fashioned tool of nuclear physics with more attention being given to areas such as gamma-ray tracking using high-purity germanium detectors. Next-generation scintillator detectors, such as lanthanum bromide, which were developed for the demands of space science and gamma- ray telescopes, are found to have strong applicability to low energy nuclear physics. Their excellent timing resolution makes them very suitable for fast timing measurements and their much improved energy resolution compared to conventional scintillators promises to open up new avenues in nuclear physics research which were presently hard to access. Such "medium-resolution" spectroscopy has broad interest across several areas of contemporary interest such as the study of nuclear giant resonances. In addition to the connections to space science, it is striking that the demands of contemporary medical imaging have strong overlap with those of experimental nuclear physics. An example is the interest in PET-MRI combined imaging which requires putting scintillator detectors in a high magnetic field environment. This has led to strong advances in the area of silicon photomultipliers, a solid-state replacement for photomultiplier tubes, which are insensitive to magnetic fields. Broad application to nuclear physics of this technology may be foreseen.

  9. Laser-induced breakdown spectroscopy in industrial and security applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bol'shakov, Alexander A.; Yoo, Jong H.; Liu Chunyi

    2010-05-01

    Laser-induced breakdown spectroscopy (LIBS) offers rapid, localized chemical analysis of solid or liquid materials with high spatial resolution in lateral and depth profiling, without the need for sample preparation. Principal component analysis and partial least squares algorithms were applied to identify a variety of complex organic and inorganic samples. This work illustrates how LIBS analyzers can answer a multitude of real-world needs for rapid analysis, such as determination of lead in paint and children's toys, analysis of electronic and solder materials, quality control of fiberglass panels, discrimination of coffee beans from different vendors, and identification of generic versus brand-name drugs.more » Lateral and depth profiling was performed on children's toys and paint layers. Traditional one-element calibration or multivariate chemometric procedures were applied for elemental quantification, from single laser shot determination of metal traces at {approx}10 {mu}g/g to determination of halogens at 90 {mu}g/g using 50-shot spectral accumulation. The effectiveness of LIBS for security applications was demonstrated in the field by testing the 50-m standoff LIBS rasterizing detector.« less

  10. Review of optical breast imaging and spectroscopy

    NASA Astrophysics Data System (ADS)

    Grosenick, Dirk; Rinneberg, Herbert; Cubeddu, Rinaldo; Taroni, Paola

    2016-09-01

    Diffuse optical imaging and spectroscopy of the female breast is an area of active research. We review the present status of this field and discuss the broad range of methodologies and applications. Starting with a brief overview on breast physiology, the remodeling of vasculature and extracellular matrix caused by solid tumors is highlighted that is relevant for contrast in optical imaging. Then, the various instrumental techniques and the related methods of data analysis and image generation are described and compared including multimodality instrumentation, fluorescence mammography, broadband spectroscopy, and diffuse correlation spectroscopy. We review the clinical results on functional properties of malignant and benign breast lesions compared to host tissue and discuss the various methods to improve contrast between healthy and diseased tissue, such as enhanced spectroscopic information, dynamic variations of functional properties, pharmacokinetics of extrinsic contrast agents, including the enhanced permeability and retention effect. We discuss research on monitoring neoadjuvant chemotherapy and on breast cancer risk assessment as potential clinical applications of optical breast imaging and spectroscopy. Moreover, we consider new experimental approaches, such as photoacoustic imaging and long-wavelength tissue spectroscopy.

  11. Tuberculin Skin Tests versus Interferon-Gamma Release Assays in Tuberculosis Screening among Immigrant Visa Applicants.

    PubMed

    Chuke, Stella O; Yen, Nguyen Thi Ngoc; Laserson, Kayla F; Phuoc, Nguyen Huu; Trinh, Nguyen An; Nhung, Duong Thi Cam; Mai, Vo Thi Chi; Qui, An Dang; Hai, Hoang Hoa; Loan, Le Thien Huong; Jones, Warren G; Whitworth, William C; Shah, J Jina; Painter, John A; Mazurek, Gerald H; Maloney, Susan A

    2014-01-01

    Objective. Use of tuberculin skin tests (TSTs) and interferon gamma release assays (IGRAs) as part of tuberculosis (TB) screening among immigrants from high TB-burden countries has not been fully evaluated. Methods. Prevalence of Mycobacterium tuberculosis infection (MTBI) based on TST, or the QuantiFERON-TB Gold test (QFT-G), was determined among immigrant applicants in Vietnam bound for the United States (US); factors associated with test results and discordance were assessed; predictive values of TST and QFT-G for identifying chest radiographs (CXRs) consistent with TB were calculated. Results. Of 1,246 immigrant visa applicants studied, 57.9% were TST positive, 28.3% were QFT-G positive, and test agreement was 59.4%. Increasing age was associated with positive TST results, positive QFT-G results, TST-positive but QFT-G-negative discordance, and abnormal CXRs consistent with TB. Positive predictive values of TST and QFT-G for an abnormal CXR were 25.9% and 25.6%, respectively. Conclusion. The estimated prevalence of MTBI among US-bound visa applicants in Vietnam based on TST was twice that based on QFT-G, and 14 times higher than a TST-based estimate of MTBI prevalence reported for the general US population in 2000. QFT-G was not better than TST at predicting abnormal CXRs consistent with TB.

  12. Cancer diagnosis by infrared spectroscopy: methodological aspects

    NASA Astrophysics Data System (ADS)

    Jackson, Michael; Kim, Keith; Tetteh, John; Mansfield, James R.; Dolenko, Brion; Somorjai, Raymond L.; Orr, F. W.; Watson, Peter H.; Mantsch, Henry H.

    1998-04-01

    IR spectroscopy is proving to be a powerful tool for the study and diagnosis of cancer. The application of IR spectroscopy to the analysis of cultured tumor cells and grading of breast cancer sections is outlined. Potential sources of error in spectral interpretation due to variations in sample histology and artifacts associated with sample storage and preparation are discussed. The application of statistical techniques to assess differences between spectra and to non-subjectively classify spectra is demonstrated.

  13. Early identification of cervical neoplasia with Raman spectroscopy and advanced methods for biomedical applications

    NASA Astrophysics Data System (ADS)

    Jess, Phillip R. T.; Smith, Daniel D. W.; Mazilu, Michael; Cormack, Iain; Riches, Andrew C.; Herrington, C. Simon; Dholakia, Kishan

    2008-02-01

    Early detection of malignant tumours, or their precursor lesions, can dramatically improve patient outcome. High risk human Papillomavirus (HPV), particularly HPV16, infection can lead to the initiation and development of uterine cervical neoplasia. Bearing this in mind the identification of the effects of HPV infection may have clinical value. In this manuscript we investigate the application of Raman microspectroscopy to detect the presence of HPV in cultured cells when compared with normal cells. We also investigate the effect of sample fixation, which is a common clinical practice, on the ability of Raman spectroscopy to detect the presence of HPV. Raman spectra were acquired from Primary Human Keratinocytes (PHK), PHK expressing the E7 gene of HPV 16 (PHK E7) and CaSki cells, an HPV16 containing cervical carcinoma derived cell line. The average Raman spectra display variations, mostly in peaks relating to DNA and proteins, consistent with HPV gene expression and the onset of neoplasia in both live and fixed samples. Principle component analysis was used to objectively discriminate between the cells types giving sensitivities up to 100% for the comparison between PHK and CaSki. These results show that Raman spectroscopy can discriminate between cell lines representing different stages of cervical neoplasia. Furthermore Raman spectroscopy was able to identify cells expressing the HPV 16 E7 gene suggesting the approach may be of value in clinical practice. Finally this technique was also able to detect the effects of the virus in fixed samples demonstrating the compatibility of this technique with current cervical screening methods. However if Raman spectroscopy is to make a significant impact in clinical practice the long acquisition times must be addressed. In this report we examine the potential for beam shaping and advanced to improve the signal to noise ration hence subsequently facilitating a reduction in acquisition time.

  14. Calibration of gamma-ray detectors using Gaussian photopeak fitting in the multichannel spectra with a LabVIEW-based digital system

    NASA Astrophysics Data System (ADS)

    Schlattauer, Leo; Parali, Levent; Pechousek, Jiri; Sabikoglu, Israfil; Celiktas, Cuneyt; Tektas, Gozde; Novak, Petr; Jancar, Ales; Prochazka, Vit

    2017-09-01

    This paper reports on the development of a gamma-ray spectroscopic system for the (i) recording and (ii) processing of spectra. The utilized data read-out unit consists of a PCI digital oscilloscope, personal computer and LabVIEW™ programming environment. A pulse-height spectra of various sources were recorded with two NaI(Tl) detectors and analyzed, demonstrating the proper usage of the detectors. A multichannel analyzer implements the Gaussian photopeak fitting. The presented method provides results which are in compliance to the ones taken from commercial spectroscopy systems. Each individual hardware or software unit can be further utilized in different spectrometric user-systems. An application of the developed system for research and teaching purposes regarding the design of digital spectrometric systems has been successfully tested at the laboratories of the Department of Experimental Physics.

  15. GHB: Forensic examination of a dangerous recreational drug by FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kindig, J. P.; Ellis, L. E.; Brueggemeyer, T. W.; Satzger, R. D.

    1998-06-01

    Gamma-hydroxybutyric acid (GHB) is an illegal drug that has been abused for its intoxicating effects. However, GHB can also produce harmful physiological effects ranging from mild (nausea, drowsiness) to severe (coma, death). Because GHB is often produced by clandestine manufacture, its concentration, purity, and final form can be variable. Therefore, the analysis of suspected GHB samples using FTIR spectroscopy requires a variety of sample preparations and accessories, based on the sample matrix.

  16. Measurements of soil carbon by neutron-gamma analysis in static and scanning modes

    USDA-ARS?s Scientific Manuscript database

    The herein described application of the inelastic neutron scattering (INS) method for soil carbon analysis is based on the registration and analysis of gamma rays created when neutrons interact with soil elements. The main parts of the INS system are a pulsed neutron generator, NaI(Tl) gamma detecto...

  17. Effect of gamma irradiation on hyperthermal composting microorganisms for feasible application in space

    NASA Astrophysics Data System (ADS)

    Yoon, Minchul; Choi, Jong-il; Yamashita, Masamichi

    2013-05-01

    The composting system is the most efficient method for processing organic waste in space; however, the composting activity of microorganisms can be altered by cosmic rays. In this study, the effect of ionizing irradiation on composting bacteria was investigated. Sequence analyses of amplified 16S rRNA, 18S rRNA, and amoA genes were used to identify hyperthermal composting microorganisms. The viability of microorganisms in compost soil after gamma irradiation was directly determined using LIVE/DEAD BacLight viability kit. The dominant bacterial genera were Weissella cibaria and Leuconostoc sp., and the fungal genera were Metschnikowia bicuspidata and Pichia guilliermondii. Gamma irradiation up to a dose of 10 kGy did not significantly alter the microbial population. Furthermore, amylase and cellulase activities were maintained after high-dose gamma irradiation. Our results show that hyperthermal microorganisms can be used to recycle agricultural and fermented material in space stations and other human-inhabiting facilities on the Moon, Mars, and other planets.

  18. Multispectroscopic investigation of the interaction of BSA and DNA with the anticancer drug, N-(6-ferrocenyl-2-naphthoyl)-gamma-amino butyric acid methyl ester

    NASA Astrophysics Data System (ADS)

    Rajina, S. R.; Sudhi, Geethu; Austin, P.; Praveen, S. G.; Xavier, T. S.; Kenny, Peter T. M.; Binoy, J.

    2018-05-01

    The interaction of a drug with DNA and BSA play a great role in studying anti cancer activity and drug transport properties, which can be effectively, investigated using vibrational spectroscopy, UV visible spectroscopy and Fluorescence spectroscopy. The present work reports the structural features of N-(6-ferrocenyl-2-naphthoyl)-gamma-amino butyric acid Methyl ester (FNGABME) based on FTIR and FTRaman spectroscopy. The absorption and fluorescence spectroscopic methods were used to study the efficiency of the interaction of the compound FNGABME with BSA and DNA and also molecular docking were performed computationally to validate the results which shows that the title compound may exhibit inhibitory activity against the cancer cells.

  19. A comparative study of LaBr3(Ce(3+)) and CeBr3 based gamma-ray spectrometers for planetary remote sensing applications.

    PubMed

    Kozyrev, A; Mitrofanov, I; Owens, A; Quarati, F; Benkhoff, J; Bakhtin, B; Fedosov, F; Golovin, D; Litvak, M; Malakhov, A; Mokrousov, M; Nuzhdin, I; Sanin, A; Tretyakov, V; Vostrukhin, A; Timoshenko, G; Shvetsov, V; Granja, C; Slavicek, T; Pospisil, S

    2016-08-01

    The recent availability of large volume cerium bromide crystals raises the possibility of substantially improving gamma-ray spectrometer limiting flux sensitivities over current systems based on the lanthanum tri-halides, e.g., lanthanum bromide and lanthanum chloride, especially for remote sensing, low-level counting applications or any type of measurement characterized by poor signal to noise ratios. The Russian Space Research Institute has developed and manufactured a highly sensitive gamma-ray spectrometer for remote sensing observations of the planet Mercury from the Mercury Polar Orbiter (MPO), which forms part of ESA's BepiColombo mission. The Flight Model (FM) gamma-ray spectrometer is based on a 3-in. single crystal of LaBr3(Ce(3+)) produced in a separate crystal development programme specifically for this mission. During the spectrometers development, manufacturing, and qualification phases, large crystals of CeBr3 became available in a subsequent phase of the same crystal development programme. Consequently, the Flight Spare Model (FSM) gamma-ray spectrometer was retrofitted with a 3-in. CeBr3 crystal and qualified for space. Except for the crystals, the two systems are essentially identical. In this paper, we report on a comparative assessment of the two systems, in terms of their respective spectral properties, as well as their suitability for use in planetary mission with respect to radiation tolerance and their propensity for activation. We also contrast their performance with a Ge detector representative of that flown on MESSENGER and show that: (a) both LaBr3(Ce(3+)) and CeBr3 provide superior detection systems over HPGe in the context of minimally resourced spacecraft and (b) CeBr3 is a more attractive system than LaBr3(Ce(3+)) in terms of sensitivities at lower gamma fluxes. Based on the tests, the FM has now been replaced by the FSM on the BepiColombo spacecraft. Thus, CeBr3 now forms the central gamma-ray detection element on the MPO spacecraft.

  20. [Applications of near infrared reflectance spectroscopy in detecting chitin, ergosterol and mycotoxins].

    PubMed

    Yi, Yong-Yan; Li, De-Rong; Zhang, Yun-Wei; Yang, Fu-Yu

    2009-07-01

    The invasion extent and harmfulness of fungi can be determined by chitin, ergosterol and mycotoxins. It is important to monitor chitin, ergosterol and mycotoxins changes to prevent contamination of forage and feed products, and effectively control the sustainable development of the mildew. Predication of these chemical materials was often completed by laboratory analysis, which was time-consuming and cumbersome and could not reflect the results in time in the past. Near infrared reflectance spectroscopy (NIRS) is a rapid, convenient, highly efficient, nondestructive and low-cost analytical technique, which has been widely used in various fields such as food field and feed field for quantitative and qualitative analysis. It has a great potentiality of application in quality analysis. In this paper, the principle and the characteristic of NIRS and its applications in food, forage, feed and other agriculture products quality analysis were introduced. Its applications in fungal biomass (chitin, ergosterol) and mycotoxins were mainly reviewed. NIRS was used to quantify chitin, ergosterol and mycotoxins. Calibration equations and validation equations for these materials were developed. It is also expected that NIRS will play a more and more important role in the field of fungi with the establishment of calibration equation and improvement of model database.