Sample records for gamma-hydroxybutyrate ghb ketamine

  1. Illicit gamma-hydroxybutyrate (GHB) and pharmaceutical sodium oxybate (Xyrem): differences in characteristics and misuse.

    PubMed

    Carter, Lawrence P; Pardi, Daniel; Gorsline, Jane; Griffiths, Roland R

    2009-09-01

    There are distinct differences in the accessibility, purity, dosing, and misuse associated with illicit gamma-hydroxybutyrate (GHB) compared to pharmaceutical sodium oxybate. Gamma-hydroxybutyrate sodium and sodium oxybate are the chemical and drug names, respectively, for the pharmaceutical product Xyrem (sodium oxybate) oral solution. However, the acronym GHB is also used to refer to illicit formulations that are used for non-medical purposes. This review highlights important differences between illicit GHB and sodium oxybate with regard to their relative abuse liability, which includes the likelihood and consequences of abuse. Data are summarized from the scientific literature; from national surveillance systems in the U.S., Europe, and Australia (for illicit GHB); and from clinical trials and post-marketing surveillance with sodium oxybate (Xyrem). In the U.S., the prevalence of illicit GHB use, abuse, intoxication, and overdose has declined from 2000, the year that GHB was scheduled, to the present and is lower than that of most other licit and illicit drugs. Abuse and misuse of the pharmaceutical product, sodium oxybate, has been rare over the 5 years since its introduction to the market, which is likely due in part to the risk management program associated with this product. Differences in the accessibility, purity, dosing, and misuse of illicit GHB and sodium oxybate suggest that risks associated with illicit GHB are greater than those associated with the pharmaceutical product sodium oxybate.

  2. Enhancing sexual desire and experience: an investigation of the sexual correlates of gamma-hydroxybutyrate (GHB) use.

    PubMed

    Kapitány-Fövény, Máté; Mervó, Barbara; Corazza, Ornella; Kökönyei, Gyöngyi; Farkas, Judit; Urbán, Róbert; Zacher, Gábor; Demetrovics, Zsolt

    2015-07-01

    Various studies have dealt with gamma-hydroxybutyrate's (GHB) potential role in sexual assaults, while the sexual correlates of intentional recreational GHB use have not well been highlighted. Our study aims to explore GHB's sexual effects, the patterns of choice of sexual partners, the frequency of experienced blackouts, and endured sexual or acquisitory crimes as a result of GHB use. Sixty recreational GHB users filled out a questionnaire on experienced subjective, somatic, and sexual effects of GHB, the frequency of blackouts due to their GHB use, and items on their sexual experiences in relation to GHB use. Of the sample, 25.9% reported increased sexual arousal as well as more intense attraction towards their sexual partners and increased sexual openness when using GHB; 34.8% had sexual intercourse with strangers, or with others, but not with their partners when using GHB; and 8.6% were victims of acquisitory crimes, whereas 3.4% were victims of a sexual assault. Furthermore, 24.6% typically experienced blackouts when using GHB. Gamma-hydroxybutyrate seems to be a potential substitute for both stimulant and depressant substances. Increased sexual desire and disinhibition may lead to a more frequent and potentially more riskful sexual activity. Experienced blackouts need to be considered as risk factors for suffering sexual or acquisitory crimes. Copyright © 2015 John Wiley & Sons, Ltd.

  3. Gamma-hydroxybutyric acid (GHB) and the mesoaccumbens reward circuit: evidence for GABA(B) receptor-mediated effects.

    PubMed

    Pistis, M; Muntoni, A L; Pillolla, G; Perra, S; Cignarella, G; Melis, M; Gessa, G L

    2005-01-01

    Gamma-hydroxybutyric acid (GHB) is a short-chain fatty acid naturally occurring in the mammalian brain, which recently emerged as a major recreational drug of abuse. GHB has multiple neuronal mechanisms including activation of both the GABA(B) receptor, and a distinct GHB-specific receptor. This complex GHB-GABA(B) receptor interaction is probably responsible for the multifaceted pharmacological, behavioral and toxicological profile of GHB. Drugs of abuse exert remarkably similar effects upon reward-related circuits, in particular the mesolimbic dopaminergic system and the nucleus accumbens (NAc). We used single unit recordings in vivo from urethane-anesthetized rats to characterize the effects of GHB on evoked firing in NAc "shell" neurons and on spontaneous activity of antidromically identified dopamine (DA) cells located in the ventral tegmental area. GHB was studied in comparison with the GABA(B) receptor agonist baclofen and antagonist (2S)(+)-5,5-dimethyl-2-morpholineacetic acid (SCH50911). Additionally, we utilized a GHB analog, gamma-(p-methoxybenzil)-gamma-hydroxybutyric acid (NCS-435), devoid of GABA(B) binding properties, but with high affinity for specific GHB binding sites. In common with other drugs of abuse, GHB depressed firing in NAc neurons evoked by the stimulation of the basolateral amygdala. On DA neurons, GHB exerted heterogeneous effects, which were correlated to the baseline firing rate of the cells but led to a moderate stimulation of the DA system. All GHB actions were mediated by GABA(B) receptors, since they were blocked by SCH50911 and were not mimicked by NCS-435. Our study indicates that the electrophysiological profile of GHB is close to typical drugs of abuse: both inhibition of NAc neurons and moderate to strong stimulation of DA transmission are distinctive features of diverse classes of abused drugs. Moreover, it is concluded that addictive and rewarding properties of GHB do not necessarily involve a putative high affinity GHB

  4. Illicit gamma-hydroxybutyrate (GHB) and pharmaceutical sodium oxybate (Xyrem®): differences in characteristics and misuse

    PubMed Central

    Carter, Lawrence P.; Pardi, Daniel; Gorsline, Jane; Griffiths, Roland R.

    2009-01-01

    There are distinct differences in the accessibility, purity, dosing, and misuse associated with illicit gamma-hydroxybutyrate (GHB) compared to pharmaceutical sodium oxybate. Gamma-hydroxybutyrate sodium and sodium oxybate are the chemical and drug names, respectively, for the pharmaceutical product Xyrem® (sodium oxybate) oral solution. However, the acronym GHB is also used to refer to illicit formulations that are used for non-medical purposes. This review highlights important differences between illicit GHB and sodium oxybate with regard to their relative abuse liability, which includes the likelihood and consequences of abuse. Data are summarized from the scientific literature; from national surveillance systems in the U.S., Europe, and Australia (for illicit GHB); and from clinical trials and post-marketing surveillance with sodium oxybate (Xyrem). In the U.S., the prevalence of illicit GHB use, abuse, intoxication, and overdose has declined from 2000, the year that GHB was scheduled, to the present and is lower than that of most other licit and illicit drugs. Abuse and misuse of the pharmaceutical product, sodium oxybate, has been rare over the 5 years since its introduction to the market, which is likely due in part to the risk management program associated with this product. Differences in the accessibility, purity, dosing, and misuse of illicit GHB and sodium oxybate suggest that risks associated with illicit GHB are greater than those associated with the pharmaceutical product sodium oxybate. PMID:19493637

  5. Gamma hydroxybutyric acid (GHB) concentrations in humans and factors affecting endogenous production.

    PubMed

    Elliott, Simon P

    2003-04-23

    The endogenous nature of the drug of abuse gamma hydroxybutyric acid (GHB) has caused various interpretative problems for toxicologists. In order to obtain data for the presence of endogenous GHB in humans and to investigate any factors that may affect this, a volunteer study was undertaken. The GHB concentrations in 119 urine specimens from GHB-free subjects and 25 urine specimens submitted for toxicological analysis showed maximal urinary GHB concentrations of 3mg/l. Analysis of 15 plasma specimens submitted for toxicological analysis detected no measurable GHB (less than 2.5mg/l). Studies in a male and female volunteer in which different dietary food groups were ingested at weekly intervals, showed significant creatinine-independent intra-individual fluctuation with overall urine GHB concentrations between 0 and 2.55, and 0 and 2.74mg/l, respectively. Urinary concentrations did not appear to be affected by the particular dietary groups studied. The concentrations measured by gas chromatography with flame ionisation detection (GC-FID) and gas chromatography with mass spectrometry (GC-MS) lend further support to the proposed urinary and plasma interpretative cut-offs of 10 and 4mg/l, respectively, where below this it is not possible to determine whether any GHB detected is endogenous or exogenous in nature.

  6. Monitoring of the interconversion of gamma-butyrolactone (GBL) to gamma hydroxybutyric acid (GHB) by Raman spectroscopy.

    PubMed

    Munshi, Tasnim; Brewster, Victoria L; Edwards, Howell G M; Hargreaves, Michael D; Jilani, Shelina K; Scowen, Ian J

    2013-08-01

    Gamma-hydroxybutyric acid (GHB) is a drug-of-abuse that has recently become associated with drug-facilitated sexual assault, known as date rape. For this reason the drug is commonly found 'spiked' in alcoholic beverages. When GHB is in solution it may undergo conversion into the corresponding lactone, Gamma-butyrolactone (GBL). Studies have been carried out to determine the detection limits of GHB and GBL in various solutions by Raman spectroscopy and to monitor the interconversion of GHB and GBL in solution with different pH conditions and temperature. In this study, a portable Raman spectrometer was used to study the interconversion of GHB and GBL in water and ethanol solutions as a function of pH, time, and temperature. The aim of this was to determine the optimum pH range for conversion in order to relate this to the pH ranges that the drug is likely to be subjected to, first in spiked beverages and secondly after ingestion in the digestive system. The aim was also to identify a timescale for this conversion in relation to possible scenarios, for example if GHB takes a number of hours to convert to GBL, it is likely for the beverage to be ingested before esterification can take place. GHB and GBL were then spiked into a selection of beverages of known pH in order to study the stability of GHB and GBL in real systems. Copyright © 2012 John Wiley & Sons, Ltd.

  7. Detoxification with titration and tapering in gamma-hydroxybutyrate (GHB) dependent patients: The Dutch GHB monitor project.

    PubMed

    Dijkstra, Boukje A G; Kamal, Rama; van Noorden, Martijn S; de Haan, Hein; Loonen, Anton J M; De Jong, Cor A J

    2017-01-01

    Gamma-hydroxybutyrate (GHB) detoxification procedures have been insufficiently studied for effectiveness and safety. Based on case reports, benzodiazepines are generally regarded as first-choice agents in GHB detoxification. Detoxification by titration and tapering (DeTiTap) with pharmaceutical GHB in an open-label consecutive case series of 23 GHB-dependent patients showed to be feasible, effective and safe. This study further explored the feasibility, effectiveness and safety of this detoxification procedure in a large group of patients. A large observational multicenter study was carried out in six addiction treatment centers in the Netherlands. GHB-dependent inpatients (229 unique patients, 274 admissions) were titrated on and tapered off with pharmaceutical GHB. Successful detoxification was achieved in 85% of cases. Detoxification was carried out in 12.5days in most patients. The DeTiTap procedure proved to be feasible and significantly reduced the experienced withdrawal symptoms and craving (p≤0.001). Several symptoms were found to influence the course of subjective withdrawal symptoms. During detoxification, psychological symptoms such as depression, anxiety, and stress decreased (p≤0.05). The main complications were hypertension and anxiety. Six patients were sent to the general hospital for observation, but all six were able to continue detoxification in the addiction treatment centers. Most patients (69%) relapsed within three months after detoxification. The DeTiTap procedure using pharmaceutical GHB seems a safe alternative to benzodiazepines as a GHB detoxification procedure. However, the high relapse rates warrant further investigation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Low-carb diets, fasting and euphoria: Is there a link between ketosis and gamma-hydroxybutyrate (GHB)?

    PubMed

    Brown, Andrew J

    2007-01-01

    Anecdotal evidence links the initial phase of fasting or a low-carbohydrate diet with feelings of well-being and mild euphoria. These feelings have often been attributed to ketosis, the production of ketone bodies which can replace glucose as an energy source for the brain. One of these ketone bodies, beta-hydroxybutyrate (BHB), is an isomer of the notorious drug of abuse, GHB (gamma-hydroxybutyrate). GHB is also of interest in relation to its potential as a treatment for alcohol and opiate dependence and narcolepsy-associated cataplexy. Here I hypothesize that, the mild euphoria often noted with fasting or low-carbohydrate diets may be due to shared actions of BHB and GHB on the brain. Specifically, I propose that BHB, like GHB, induces mild euphoria by being a weak partial agonist for GABA(B) receptors. I outline several approaches that would test the hypothesis, including receptor binding studies in cultured cells, perception studies in trained rodents, and psychometric testing and functional magnetic resonance imaging in humans. These and other studies investigating whether BHB and GHB share common effects on brain chemistry and mood are timely and warranted, especially when considering their structural similarities and the popularity of ketogenic diets and GHB as a drug of abuse.

  9. Report on the analysis of common beverages spiked with gamma-hydroxybutyric acid (GHB) and gamma-butyrolactone (GBL) using NMR and the PURGE solvent-suppression technique.

    PubMed

    Lesar, Casey T; Decatur, John; Lukasiewicz, Elaan; Champeil, Elise

    2011-10-10

    In forensic evidence, the identification and quantitation of gamma-hydroxybutyric acid (GHB) in "spiked" beverages is challenging. In this report, we present the analysis of common alcoholic beverages found in clubs and bars spiked with gamma-hydroxybutyric acid (GHB) and gamma-butyrolactone (GBL). Our analysis of the spiked beverages consisted of using (1)H NMR with a water suppression method called Presaturation Utilizing Relaxation Gradients and Echoes (PURGE). The following beverages were analyzed: water, 10% ethanol in water, vodka-cranberry juice, rum and coke, gin and tonic, whisky and diet coke, white wine, red wine, and beer. The PURGE method allowed for the direct identification and quantitation of both compounds in all beverages except red and white wine where small interferences prevented accurate quantitation. The NMR method presented in this paper utilizes PURGE water suppression. Thanks to the use of a capillary internal standard, the method is fast, non-destructive, sensitive and requires no sample preparation which could disrupt the equilibrium between GHB and GBL. Published by Elsevier Ireland Ltd.

  10. [Treatment of gamma-hydroxybutyrate withdrawal].

    PubMed

    Strand, Niels August Willer; Petersen, Tonny Studsgaard; Nielsen, Lars Martin; Boegevig, Soren

    2017-12-11

    Gamma-hydroxybutyrate (GHB) is a drug of abuse, for which physical addiction develops quickly. GHB withdrawal can develop into a life-threatening condition and has previously been treated mainly with benzodiazepines. These have not always proven effective, leading to long hospitalizations in intensive care units. Based on successful Dutch treatment results for using GHB to treat GHB withdrawal symptoms, we propose to implement a similar method in Denmark. The method requires an interdisciplinary effort for which The Danish Poison Information Centre should be consulted for expertise.

  11. Gamma-hydroxybutyrate (GHB) for treatment of alcohol withdrawal and prevention of relapses.

    PubMed

    Leone, Maurizio A; Vigna-Taglianti, Federica; Avanzi, Giancarlo; Brambilla, Romeo; Faggiano, Fabrizio

    2010-02-17

    Chronic excessive alcohol consumption may lead to dependence, and to alcohol withdrawal syndrome (AWS) in case of abrupt drinking cessation. Gamma-hydroxybutyric acid (GHB) can prevent and suppress withdrawal symptoms, and improve the medium-term abstinence rate. A clear balance between effectiveness and harmfulness has not been yet established. To evaluate the efficacy and safety of GHB for treatment of AWS and prevention of relapse We searched Cochrane Drugs and Alcohol Group' Register of Trials (October 2008), PubMed, EMBASE, CINAHL (January 2005 - October 2008), EconLIT (1969 to February 2008), reference list of retrieved articles Randomized controlled trials (RCTs) and Controlled Prospective Studies (CPS) evaluating the efficacy and the safety of GHB vs placebo or other pharmacological treatments. Three authors independently extracted data and assessed the methodological quality of studies. Thirteen RCTs were included. Eleven studies were conducted in Italy.For withdrawal syndrome, comparing GHB 50mg with placebo, results from 1 study, 23 participants favour GHB for withdrawal symptoms: WMD -12.1 (95% CI, -15.9 to -8.29) and side effects were more frequent in the placebo group: RR 16.2 (95% CI, 1.04 to 254.9).In the comparison with Chlormetiazole, for GHB 50mg, results from 1 study, 21 participants favour GHB for withdrawal symptoms: MD -3.40 (95% CI -5.09 to -1.71), for GHB 100mg, results from 1 study, 98 participants favour anticonvulsants for side effects: RR 1.84 (95% CI 1.19 to 2.85).At mid-term, comparing GHB with placebo, results favour GHB for abstinence rate (RR 5.35; 1.28-22.4), controlled drinking (RR 2.13; 1.07-5.54), relapses (RR 0.36; 0.21-0.63), and number of daily drinks (WMD -4.60; -6.18 to -3.02). GHB performed better than NTX and Disulfiram on abstinence (RR 2.59; 1.35-4.98, RR 1.66; 0.99-2.80 respectively). The association of GHB and NTX was better than NTX on abstinence (RR 12.2; 1.79-83.9), as well was the association of NTX, GHB and

  12. A Critical Evaluation of the Gamma-Hydroxybutyrate (GHB) Model of Absence Seizures

    PubMed Central

    Venzi, Marcello; Di Giovanni, Giuseppe; Crunelli, Vincenzo

    2015-01-01

    Typical absence seizures (ASs) are nonconvulsive epileptic events which are commonly observed in pediatric and juvenile epilepsies and may be present in adults suffering from other idiopathic generalized epilepsies. Our understanding of the pathophysiological mechanisms of ASs has been greatly advanced by the availability of genetic and pharmacological models, in particular the γ-hydroxybutyrate (GHB) model which, in recent years, has been extensively used in studies in transgenic mice. GHB is an endogenous brain molecule that upon administration to various species, including humans, induces not only ASs but also a state of sedation/hypnosis. Analysis of the available data clearly indicates that only in the rat does there exist a set of GHB-elicited behavioral and EEG events that can be confidently classified as ASs. Other GHB activities, particularly in mice, appear to be mostly of a sedative/hypnotic nature: thus, their relevance to ASs requires further investigation. At the molecular level, GHB acts as a weak GABA-B agonist, while the existence of a GHB receptor remains elusive. The pre- and postsynaptic actions underlying GHB-elicited ASs have been thoroughly elucidated in thalamus, but little is known about the cellular/network effects of GHB in neocortex, the other brain region involved in the generation of ASs. PMID:25403866

  13. Psychiatric aspects of acute withdrawal from gamma-hydroxybutyrate (GHB) and its analogue gamma-butyrolactone (GBL): implications for psychiatry services in the general hospital.

    PubMed

    Choudhuri, Debajeet; Cross, Sean; Dargan, Paul I; Wood, David M; Ranjith, Gopinath

    2013-06-01

    The objective of this study was to describe the psychiatric symptoms, management and outcomes in a consecutive series of patients being managed medically for symptoms of withdrawal from gamma-hydroxybutyrate (GHB) and its analogue gamma-butyrolactone (GBL) in a general hospital setting. A toxicology database was used to identify patients presenting with a history suggestive of withdrawal from GHB and analogues. Electronic and paper medical records were searched for demographic features, neuropsychiatric symptoms, psychiatric management while in hospital and overall outcome. There were 31 presentations with withdrawal from the drugs involving 20 patients. Of these 17 (54%) were referred to and seen by the liaison psychiatry team. Anxiety (61.3%) and agitation (48.4%) were the most common symptoms. Of the 17 cases seen by the liaison psychiatry team, 52.9% required close constant observation by a mental health nurse and 29.4% required to be detained in hospital under mental health legislation. The significant proportion of patients presenting with neuropsychiatric symptoms and requiring intensive input from the liaison psychiatry team during withdrawal from GHB and its analogues points to the importance of close liaison between medical and psychiatric teams in managing these patients in the general hospital.

  14. [Gamma-hydroxybutyric acid (GHB): more than a date rape drug, a potentially addictive drug].

    PubMed

    Karila, Laurent; Novarin, Johanne; Megarbane, Bruno; Cottencin, Olivier; Dally, Sylvain; Lowenstein, William; Reynaud, Michel

    2009-10-01

    According to available information, GHB and its precursors--gamma-butyrolactone (GBL) and 1,4-butanediol (1,4BD)--are used especially in a nightlife scene characterized by the search for amplified sensations through the combination of electronic music, marathon dancing, and substance abuse. Evidence indicates that GHB/GHL is used particularly in some subpopulations and in places, such as in gay nightclubs. Commonly known as Gorliquid ecstasy, it was misused in the 1980s for its bodybuilding effects and in the 1990s as a recreational drug at music venues. In the same period, media coverage of the use of GHB in sexual assault (often referred to as date rape) brought the drug into the spotlight. GHB/GHL addiction is a recognized clinical entity evidenced by severe withdrawal symptoms when the drug is abruptly discontinued after regular or chronic use. There is evidence that negative health and social consequences may occur in recreational and chronic users. Nonfatal overdoses and deaths related to GHB have been reported. These undesirable effects and especially the deaths appear to have prompted campaigns to limit the use of GHB. Clinicians must also be aware of GBL, which is being sold and used as a substitute for GHB.

  15. Identification of the date-rape drug GHB and its precursor GBL by Raman spectroscopy.

    PubMed

    Brewster, Victoria L; Edwards, Howell G M; Hargreaves, Michael D; Munshi, Tasnim

    2009-01-01

    Gamma hydroxybutyric acid (GHB), also known as 'liquid ecstasy', has recently become associated with drug-facilitated sexual assaults, known colloquially as 'date rape', due to the ability of the drug to cause loss of consciousness. The drug is commonly found 'spiked' into alcoholic beverages, as alcohol increases its sedative effects. Gamma hydroxybutyric acid and the corresponding lactone gamma-butyrolactone (GBL) will reach an equilibrium in solution which favours the lactone in basic conditions and GHB in acidic conditions (less than pH 4). Therefore, we have studied both GHB and GBL, as a mildly acidic beverage 'spiked' with GHB will contain both GHB and GBL. We report the analysis of GHB as a sodium salt and GBL, its precursor, using bench-top and portable Raman spectroscopy. It has been demonstrated that we are able to detect GHB and GBL in a variety of containers including colourless and amber glass vials, plastic vials and polythene bags. We have also demonstrated the ability to detect both GBL and GHB in a range of liquid matrices simulating 'spiked' beverages. (c) 2009 John Wiley & Sons, Ltd.

  16. GHB: Forensic examination of a dangerous recreational drug by FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kindig, J. P.; Ellis, L. E.; Brueggemeyer, T. W.; Satzger, R. D.

    1998-06-01

    Gamma-hydroxybutyric acid (GHB) is an illegal drug that has been abused for its intoxicating effects. However, GHB can also produce harmful physiological effects ranging from mild (nausea, drowsiness) to severe (coma, death). Because GHB is often produced by clandestine manufacture, its concentration, purity, and final form can be variable. Therefore, the analysis of suspected GHB samples using FTIR spectroscopy requires a variety of sample preparations and accessories, based on the sample matrix.

  17. [Hypernatremia caused by treatment with GHB obtained via a doctor's prescription].

    PubMed

    Rood, I M; Seijger, C G W; van Waarde, J A; de Maat, M M R; Verhave, J C; Blans, M J

    In the last few years, gamma hydroxybutyric acid (GHB) has been used increasingly as a party drug; this has led to a marked increase in the number of requests for professional help with the treatment of GHB addiction. Pharmaceutical GHB (sodium oxybate, the sodium-salt of GHB), registered for cataplexia in narcolepsy patients, is used off-label to treat the withdrawal symptoms associated with GHB addiction. Pharmaceutical GHB has a high sodium load. In this report we present the cases of two patients who developed symptomatic hypernatremia following treatment with pharmaceutical GHB and who thereafter needed intensive care for the severe withdrawal symptoms that they experienced.

  18. A surrogate analyte-based LC-MS/MS method for the determination of γ-hydroxybutyrate (GHB) in human urine and variation of endogenous urinary concentrations of GHB.

    PubMed

    Kang, Soyoung; Oh, Seung Min; Chung, Kyu Hyuck; Lee, Sooyeun

    2014-09-01

    γ-Hydroxybutyrate (GHB) is a drug of abuse with a strong anesthetic effect; however, proving its ingestion through the quantification of GHB in biological specimens is not straightforward due to the endogenous presence of GHB in human blood, urine, saliva, etc. In the present study, a surrogate analyte approach was applied to accurate quantitative determination of GHB in human urine using liquid chromatography-tandem mass spectrometry (LC-MS/MS) in order to overcome this issue. For this, (2)H6-GHB and (13)C2-dl-3-hydroxybutyrate were used as a surrogate standard and as an internal standard, respectively, and parallelism between the surrogate analyte approach and standard addition was investigated at the initial step. The validation results proved the method to be selective, accurate, and precise, with acceptable linearity within calibration ranges (0.1-1μg/ml). The limit of detection and the limit of quantification of (2)H6-GHB were 0.05 and 0.1μg/ml, respectively. No significant variations were observed among urine matrices from different sources. The stability of (2)H6-GHB was satisfactory under sample storage and in-process conditions. However, in vitro production of endogenous GHB was observed when the urine sample was kept under the in-process condition for 4h and under the storage conditions of 4 and -20°C. In order to facilitate the practical interpretation of urinary GHB, endogenous GHB was accurately measured in urine samples from 79 healthy volunteers using the surrogate analyte-based LC-MS/MS method developed in the present study. The unadjusted and creatinine-adjusted GHB concentrations in 74 urine samples with quantitative results ranged from 0.09 to 1.8μg/ml and from 4.5 to 530μg/mmol creatinine, respectively. No significant correlation was observed between the unadjusted and creatinine-adjusted GHB concentrations. The urinary endogenous GHB concentrations were affected by gender and age while they were not significantly influenced by habitual

  19. Gamma-hydroxybutyrate enhances mood and prosocial behavior without affecting plasma oxytocin and testosterone.

    PubMed

    Bosch, Oliver G; Eisenegger, Christoph; Gertsch, Jürg; von Rotz, Robin; Dornbierer, Dario; Gachet, M Salomé; Heinrichs, Markus; Wetter, Thomas C; Seifritz, Erich; Quednow, Boris B

    2015-12-01

    Gamma-hydroxybutyrate (GHB) is a GHB-/GABAB-receptor agonist. Reports from GHB abusers indicate euphoric, prosocial, and empathogenic effects of the drug. We measured the effects of GHB on mood, prosocial behavior, social and non-social cognition and assessed potential underlying neuroendocrine mechanisms. GHB (20mg/kg) was tested in 16 healthy males, using a randomized, placebo-controlled, cross-over design. Subjective effects on mood were assessed by visual-analogue-scales and the GHB-Specific-Questionnaire. Prosocial behavior was examined by the Charity Donation Task, the Social Value Orientation test, and the Reciprocity Task. Reaction time, memory, empathy, and theory-of-mind were also tested. Blood plasma levels of GHB, oxytocin, testosterone, progesterone, dehydroepiandrosterone (DHEA), cortisol, aldosterone, and adrenocorticotropic-hormone (ACTH) were determined. GHB showed stimulating and sedating effects, and elicited euphoria, disinhibition, and enhanced vitality. In participants with low prosociality, the drug increased donations and prosocial money distributions. In contrast, social cognitive abilities such as emotion recognition, empathy, and theory-of-mind, and basal cognitive functions were not affected. GHB increased plasma progesterone, while oxytocin and testosterone, cortisol, aldosterone, DHEA, and ACTH levels remained unaffected. GHB has mood-enhancing and prosocial effects without affecting social hormones such as oxytocin and testosterone. These data suggest a potential involvement of GHB-/GABAB-receptors and progesterone in mood and prosocial behavior. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Baclofen as relapse prevention in the treatment of gamma-hydroxybutyrate dependence: a case series.

    PubMed

    Kamal, Rama M; Loonen, Anton J M; Dijkstra, Boukje A G; De Jong, Cornelis A J

    2015-06-01

    In the last decade, gamma-hydroxybutyrate (GHB) abuse and dependence have increased. It has been reported that GHB dependence has a high rate of relapse, serious complications of intoxication, and a potentially life-threatening withdrawal syndrome. Nevertheless, in clinical practice, there is no known medical treatment to support GHB relapse prevention. We describe a case series of patients who were supported through an off-label treatment with baclofen to avoid a relapse into GHB abuse, for a period of 12 weeks. Nine of 11 patients did not relapse while taking a dose ranging from 30 to 60 mg per day, one patient relapsed after 5 weeks, and one stopped after 7 weeks. Baclofen was well tolerated; patients reported mild side effects such as fatigue, nausea, dry mouth, excessive sweating, and depressive feelings. Although systematic evidence is still lacking, our practice-based experience suggests that treatment with baclofen to assist abstinence might be effective in patients with GHB dependence. Further systematic controlled studies are necessary to establish the exact efficacy and safety of baclofen as relapse prevention for GHB-dependent patients.

  1. An overview of gamma-hydroxybutyric acid: pharmacodynamics, pharmacokinetics, toxic effects, addiction, analytical methods, and interpretation of results.

    PubMed

    Andresen, H; Aydin, B E; Mueller, A; Iwersen-Bergmann, S

    2011-09-01

    Abuse of gamma-hydroxybutyric acid (GHB) has been known since the early 1990's, but is not as widespread as the consumption of other illegal drugs. However, the number of severe intoxications with fatal outcomes is comparatively high; not the least of which is brought about by the consumption of the currently legal precursor substances gamma-butyrolactone (GBL) and 1,4-butanediol (1,4-BD). In regards to previous assumptions, addiction to GHB or its analogues can occur with severe symptoms of withdrawal. Moreover, GHB can be used for drug-facilitated sexual assaults. Its pharmacological effects are generated mainly by interaction with both GABA(B) and GHB receptors, as well as its influence on other transmitter systems in the human brain. Numerous analytical methods for determining GHB using chromatographic techniques were published in recent years, and an enzymatic screening method was established. However, the short window of GHB detection in blood or urine due to its rapid metabolism is a challenge. Furthermore, despite several studies addressing this problem, evaluation of analytical results can be difficult: GHB is a metabolite of GABA (gamma-aminobutyric acid); a differentiation between endogenous and exogenous concentrations has to be made. Apart from this, in samples with a longer storage interval and especially in postmortem specimens, higher levels can be measured due to GHB generation during this postmortem interval or storage time. Copyright © 2011 John Wiley & Sons, Ltd.

  2. Intensive sex partying with gamma-hydroxybutyrate: factors associated with using gamma-hydroxybutyrate for chemsex among Australian gay and bisexual men - results from the Flux Study.

    PubMed

    Hammoud, Mohamed A; Bourne, Adam; Maher, Lisa; Jin, Fengyi; Haire, Bridget; Lea, Toby; Degenhardt, Louisa; Grierson, Jeffrey; Prestage, Garrett

    2018-04-01

    Background Gamma-hydroxybutyrate (GHB) use among gay and bisexual men (GBM) has increased in recent years. It is commonly cited as a sexual-enhancement drug. There is, however, little evidence for factors associated with GHB use or the consequences of its use among GBM. Factors associated with GHB use, its relationship to sexual risk behaviour, and the contexts, consequences, and motivations for its use were examined. The Following Lives Undergoing Change (Flux) Study is an online prospective observational study of Australian GBM. At baseline, a total of 3190 GBM provided details about their use of GHB. Data on frequency, methods, pleasures and consequences of their drug use, alongside key demographic variables were collected. Mean age was 35.0 years. One in five men (19.5%) had a history of GHB use and 5.4% reported use within the past 6 months, with 2.7% having used it monthly or more frequently. Overdose had been experienced by 14.7%, this was more common among men who used GHB at least monthly. Being HIV-positive, having more gay friends, greater social engagement with gay men who use drugs, a greater number of sexual partners, group sex, and condomless anal intercourse with casual partners were independently associated with GHB use in the past 6 months. Greater social engagement with gay men who use drugs and group sex were independently associated with at least monthly use. More frequent GHB use was independently associated with experiencing overdose among GHB users. Most men used GHB infrequently and it was often used explicitly to enhance sexual experiences, often in the context of intensive sex partying. Men who used GHB frequently, were at greater risk of overdose and other negative health outcomes. GHB use should be considered alongside other drugs that have been implicated in sexual risk behaviour and HIV transmission. Harm-reduction interventions need to consider the particular impact of frequent GHB use.

  3. The effects and consequences of selected club drugs.

    PubMed

    Freese, Thomas E; Miotto, Karen; Reback, Cathy J

    2002-09-01

    Ecstasy (MDMA), gamma-hydroxybutyrate (GHB), ketamine, and methamphetamine are 4 examples of club drugs that are increasing in popularity. Although the pharmacological classifications of these drugs vary, MDMA has structural similarities to both amphetamine and the hallucinogen mescaline. Ketamine and GHB are anesthetic agents and methamphetamine is a long-acting psychostimulant. Medical visits for club drug-related toxicity have sharply increased across the country. This article provides a brief review of the literature on club drugs. Copyright 2002 Elsevier Science Inc.

  4. Hair testing of GHB: an everlasting issue in forensic toxicology.

    PubMed

    Busardò, Francesco Paolo; Pichini, Simona; Zaami, Simona; Pacifici, Roberta; Kintz, Pascal

    2018-01-26

    In this paper, the authors present a critical review of different studies regarding hair testing of endogenous γ-hydroxybutyrate (GHB), concentrations in chronic users, and values measured after a single GHB exposure in drug facilitated sexual assault (DFSA) cases together with the role of a recently identified GHB metabolite, GHB-glucuronide. The following databases (up to March 2017) PubMed, Scopus and Web of Science were used, searching the following key words: γ-hydroxybutyrate, GHB, GHB glucuronide, hair. The main key words "GHB" and "γ-hydroxybutyrate" were searched singularly and then associated individually to each of the other keywords. Of the 2304 sources found, only 20 were considered appropriate for the purpose of this paper. Summing up all the studies investigating endogenous GHB concentration in hair, a very broad concentration range from 0 to 12 ng/mg was found. In order to detect a single GHB dose in hair it is necessary to commonly wait 1 month for collecting hair and a segmental analysis of 3 or 5 mm fragments and the calculation of a ratio between the targeted segment and the others represent a reliable method to detect a single GHB intake considering that the ratios presently proposed vary from 3 and 10. The only two studies so far performed, investigating GHB-Glucuronide in hair, show that the latter does not seem to provide any diagnostic information regarding GHB exposure. A practical operative protocol is proposed to be applied in all suspected cases of GHB-facilitated sexual assault (GHB-FSA).

  5. The Effect of Co-occurring Substance Use on Gamma-hydroxybutyric Acid Withdrawal Syndrome.

    PubMed

    Kamal, Rama M; Dijkstra, Boukje A G; Loonen, Anton J; De Jong, Cornelis A J

    2016-01-01

    Gamma-hydroxybutyric acid (GHB) withdrawal is a complex syndrome which can be potentially life-threatening. Additionally, GHB-dependent patients frequently report co-occurring substance use of other psychoactive drugs. We assessed the add-on effect of co-use on GHB withdrawal symptoms. We conducted an open-label, pretest-posttest design study with 95 patients selected from 229 inpatients admitted for detoxification, who were divided into GHB only (GO, n = 40), GHB plus sedatives (GSE, n = 38), and GHB plus stimulants (GST, n = 17) groups. GHB withdrawal was evaluated by means of the Subjective Withdrawal Scale. Co-use add-on effects on the severity of withdrawal symptoms were evaluated 2.5 hours after the last illicit GHB self-administration (T1) when withdrawal was expected and 2.5 hours later, after administration of a very low dose of pharmaceutical GHB (T2). The GO group reported high scores of psychomotor retardation symptoms at both T1 and T2, and also high cravings, agitation, and restlessness at T1, and anxiety at T2. The GSE group reported the highest score in psycho-autonomic distress symptoms at both T1 and T2, whereas the GST group reported the highest score in psycho-motor stress factor at T2. There was no significant difference in withdrawal intensity in all symptom clusters between T1 and T2 for both GSE and GO groups. However, after 5 hours, the GST group reported significant decreases in intensity for all symptoms except for psycho-motor stress. At T1, GST and GSE groups reported more muscle twitches than the GO group as a significant add-on effect to the GHB withdrawal. At T2, the GST group experienced more agitation (P = 0.009), restlessness (P = 0.001), and rapid pulse (P = 0.034) than the GO group. Co-use, especially of stimulants, caused an add-on effect on the GHB withdrawal symptoms within the first 5 hours.

  6. The clinical toxicology of γ-hydroxybutyrate, γ-butyrolactone and 1,4-butanediol.

    PubMed

    Schep, Leo J; Knudsen, Kai; Slaughter, Robin J; Vale, J Allister; Mégarbane, Bruno

    2012-07-01

    Gamma-hydroxybutyrate (GHB) and its precursors, gamma-butyrolactone (GBL) and 1,4-butanediol (1,4-BD), are drugs of abuse which act primarily as central nervous system (CNS) depressants. In recent years, the rising recreational use of these drugs has led to an increasing burden upon health care providers. Understanding their toxicity is therefore essential for the successful management of intoxicated patients. We review the epidemiology, mechanisms of toxicity, toxicokinetics, clinical features, diagnosis, and management of poisoning due to GHB and its analogs and discuss the features and management of GHB withdrawal. OVID MEDLINE and ISI Web of Science databases were searched using the terms "GHB," "gamma-hydroxybutyrate," "gamma-hydroxybutyric acid," "4-hydroxybutanoic acid," "sodium oxybate," "gamma-butyrolactone," "GBL," "1,4-butanediol," and "1,4-BD" alone and in combination with the keywords "pharmacokinetics," "kinetics," "poisoning," "poison," "toxicity," "ingestion," "adverse effects," "overdose," and "intoxication." In addition, bibliographies of identified articles were screened for additional relevant studies including nonindexed reports. Non-peer-reviewed sources were also included: books, relevant newspaper reports, and applicable Internet resources. These searches produced 2059 nonduplicate citations of which 219 were considered relevant. There is limited information regarding statistical trends on world-wide use of GHB and its analogs. European data suggests that the use of GHB is generally low; however, there is some evidence of higher use among some sub-populations, settings, and geographical areas. In the United States of America, poison control center data have shown that enquiries regarding GHB have decreased between 2002 and 2010 suggesting a decline in use over this timeframe. GHB is an endogenous neurotransmitter synthesized from glutamate with a high affinity for GHB-receptors, present on both on pre- and postsynaptic neurons, thereby

  7. [Treatment of fibromyalgia syndrome with gamma-hydroxybutyrate : A randomized controlled study].

    PubMed

    Reuter, E; Tafelski, S; Thieme, K; West, C; Haase, U; Beck, L; Schäfer, M; Spies, C

    2017-04-01

    The etiology of fibromyalgia syndrome is not yet fully understood. Current hypotheses suggest a potential role of gamma-hydroxybutyrate (GHB) in influencing endocrinological abnormalities in patients with fibromyalgia. The aim of the study was to investigate whether low dose GHB as a growth-hormone releasing substance reduces pain intensity and improves depressive mood, physical impairment and sleep quality in outpatients with fibromyalgia. Additionally, adverse events were recorded. The pilot study was conducted in the outpatient clinic for pain at the clinic for anesthesiology and surgical intensive care of the Charité Universitätsmedizin Berlin. In the study 25 female patients with fibromyalgia according to the criteria of the American College of Rheumatology were randomized into 2 groups. Over 15 weeks patients of the intervention group received 25 mg/kg body weight oral GHB before going to bed and were compared with a placebo control group. In addition, all patients participated in operant behavioral pain treatment in a group setting. Dependent variables were pain intensity, depressive mood, physical impairment and quality of sleep. There were no group differences in the course of pain intensity (p = 0.61), depressive mood (p = 0.16), physical impairment (p = 0.25) and quality of sleep (p = 0.44); however, all symptoms improved across the groups from pretherapy to posttherapy. Low dose GHB did not increase growth hormone blood concentrations. The number of adverse events that were reported more than two times was similar in both groups. Administration of low dose GHB did not yield clinical improvements in female outpatients with fibromyalgia. General improvement in the course of treatment may have resulted from operant behavioral pain therapy. Future studies on GHB should control hypothetical risk factors for identification of non-responders.

  8. Effect of storage temperature on endogenous GHB levels in urine.

    PubMed

    LeBeau, M A; Miller, M L; Levine, B

    2001-06-15

    Because gamma-hydroxybutyrate (GHB) is an endogenous substance present in the body and is rapidly eliminated after ingestion, toxicologists investigating drug-facilitated sexual assault cases are often asked to differentiate between endogenous and exogenous levels of GHB in urine samples. This study was designed to determine the effects of storage temperature on endogenous GHB levels in urine. Specifically, it was designed to ascertain whether endogenous levels can be elevated to a range considered indicative of GHB ingestion. Urine specimens from two subjects that had not been administered exogenous GHB were collected during a 24h period and individually pooled. The pooled specimens were separated into standard sample cups and divided into three storage groups: room temperature ( approximately 25 degrees C), refrigerated (5 degrees C), and frozen (-10 degrees C). Additionally, some specimens were put through numerous freeze/thaw cycles to mimic situations that may occur if multiple laboratories analyze the same specimen. Periodic analysis of the samples revealed increases in the levels of endogenous GHB over a 6-month period. The greatest increase (up to 404%) was observed in the samples maintained at room temperature. The refrigerated specimens showed increases of 140-208%, while the frozen specimens showed smaller changes (88-116%). The specimens subjected to multiple freeze/thaw cycles mirrored specimens that had been thawed only once. None of the stored urine specimens demonstrated increases in GHB concentrations that would be consistent with exogenous GHB ingestion.

  9. Residual social, memory and oxytocin-related changes in rats following repeated exposure to γ-hydroxybutyrate (GHB), 3,4-methylenedioxymethamphetamine (MDMA) or their combination.

    PubMed

    van Nieuwenhuijzen, Petra S; Long, Leonora E; Hunt, Glenn E; Arnold, Jonathon C; McGregor, Iain S

    2010-12-01

    There has been little investigation of the possible lasting adverse effects of γ-hydroxybutyrate (GHB). This study aims to study whether GHB produces residual adverse effects on memory and social behaviour in rats and lasting changes in brain monoamines and oxytocin-related gene expression. Rats received daily intraperitoneal injections of GHB (500 mg/kg), methylenedioxymethamphetamine (MDMA; 5 mg/kg) or their combination (GHB/MDMA) over ten consecutive days. Locomotor activity and body weight were assessed during the dosing period and withdrawal-related anxiety was assessed 24 h after drug cessation. After a washout of 4 weeks, rats were tested on the emergence, social interaction, and object recognition tasks over a 2-week period. Monoamine levels in cortex and striatum, and hypothalamic oxytocin and oxytocin receptor mRNA, were then assessed. MDMA and GHB/MDMA caused modest sensitization of locomotor activity over time, while sedative effects of GHB diminished with repeated exposure. GHB-treated rats showed reduced social interaction 24 h after the final dose, indicating GHB withdrawal-induced anxiety. All drug-treated groups displayed residual deficits in social interaction and object recognition. No changes in monoamine levels were detected 8 weeks post-drug. However, MDMA pre-exposure increased hypothalamic oxytocin mRNA while GHB pre-exposure upregulated oxytocin receptor mRNA. GHB/MDMA pre-exposure caused intermediate changes in both of these measures. GHB treatment caused residual impairments in memory and social behaviour and increases in anxiety, paralleling the lasting adverse effects of MDMA. Both drugs caused lasting neuroadaptations in brain oxytocin systems and this may be related to the long-term social interaction deficiencies caused by both drugs.

  10. Behavioral effects of gamma-hydroxybutyrate, its precursor gamma-butyrolactone, and GABA(B) receptor agonists: time course and differential antagonism by the GABA(B) receptor antagonist 3-aminopropyl(diethoxymethyl)phosphinic acid (CGP35348).

    PubMed

    Koek, Wouter; Mercer, Susan L; Coop, Andrew; France, Charles P

    2009-09-01

    Gamma-hydroxybutyrate (GHB) is used therapeutically and recreationally. The mechanism by which GHB produces its therapeutic and recreational effects is not entirely clear, although GABA(B) receptors seem to play an important role. This role could be complex, because there are indications that different GABA(B) receptor mechanisms mediate the effects of GHB and the prototypical GABA(B) receptor agonist baclofen. To further explore possible differences in underlying GABA(B) receptor mechanisms, the present study examined the effects of GHB and baclofen on operant responding and their antagonism by the GABA(B) receptor antagonist 3-aminopropyl(diethoxymethyl)phosphinic acid (CGP35348). Pigeons were trained to peck a key for access to food during response periods that started at different times after the beginning of the session. In these pigeons, GHB, its precursor gamma-butyrolactone (GBL), and the GABA(B) receptor agonists baclofen and 3-aminopropyl(methyl)phosphinic acid hydrochloride (SKF97541) decreased the rate of responding in a dose- and time-dependent manner. CGP35348 shifted the dose-response curve of each agonist to the right, but the magnitude of the shift differed among the agonists. Schild analysis yielded a pA(2) value of CGP35348 to antagonize GHB and GBL [i.e., 3.9 (3.7-4.2)] that was different (P = 0.0011) from the pA(2) value to antagonize baclofen and SKF97541 [i.e., 4.5 (4.4-4.7)]. This finding is further evidence that the GABA(B) receptor mechanisms mediating the effects of GHB and prototypical GABA(B) receptor agonists are not identical. A better understanding of the similarities and differences between these mechanisms, and their involvement in the therapeutic effects of GHB and baclofen, could lead to more effective medications with fewer adverse effects.

  11. Do capillary dried blood spot concentrations of gamma-hydroxybutyric acid mirror those in venous blood? A comparative study.

    PubMed

    Sadones, Nele; Archer, John R H; Ingels, Ann-Sofie M E; Dargan, Paul I; Wood, David M; Wood, Michelle; Neels, Hugo; Lambert, Willy E; Stove, Christophe P

    2015-04-01

    Gamma-hydroxybutyric acid (GHB) is a well-known illicit club and date-rape drug. Dried blood spot (DBS) sampling is a promising alternative for classical venous sampling in cases of (suspected) GHB intoxication since it allows rapid sampling, which is of interest for the extensively metabolized GHB. However, there is limited data if -and how- capillary DBS concentrations correlate with venous concentrations. We conducted a comparative study in 50 patients with suspected GHB intoxication, to determine and to correlate GHB concentrations in venous DBS (vDBS) and capillary DBS (cDBS). This is the first study that evaluates in a large cohort the correlation between capillary and venous concentrations of an illicit drug in real-life samples. Of the 50 paired samples, 7 were excluded: the vDBS concentration was below the LLOQ of 2 µg/mL in 3 cases and 4 samples were excluded after visual inspection of the DBS. Bland-Altman analysis revealed a mean % difference of -2.8% between cDBS and vDBS concentrations, with the zero value included in the 95% confidence interval of the mean difference in GHB concentration. A paired sample t-test confirmed this observation (p = 0.17). Also the requirement for incurred sample reproducibility was fulfilled: for more than two-thirds of the samples the concentrations obtained in cDBS and those in vDBS were within 20% of their mean. Since equivalent concentrations were observed in cDBS and vDBS, blood obtained by fingerprick can be considered a valid alternative for venous blood for GHB determination. Copyright © 2015 John Wiley & Sons, Ltd.

  12. Effect of gamma-hydroxybutyrate on keratinocytes proliferation: A preliminary prospective controlled study in severe burn patients.

    PubMed

    Rousseau, Anne-Françoise; Bargues, Laurent; Bever, Hervé Le; Vest, Philippe; Cavalier, Etienne; Ledoux, Didier; Piérard, Gérald E; Damas, Pierre

    2014-04-01

    Hypermetabolism and hyposomatotropism related to severe burns lead to impaired wound healing. Growth hormone (GH) boosts wound healing notably following stimulation of the production of insulin-like growth factor-1 (IGF1), a mitogen factor for keratinocytes. Gamma-hydroxybutyrate (GHB) stimulates endogenous GH secretion. To assess effects of GHB sedation on keratinocytes proliferation (based on immunohistochemical techniques). Monocentric, prospective, controlled trial. Patients (aging 18-65 years, burn surface area >30%, expected to be sedated for at least one month) were alternately allocated, at the 5(th) day following injury, in three groups according to the intravenous GHB dose administered for 21 days: Evening bolus of 50 mg/kg (Group B), continuous infusion at the rate of 10 mg/kg/h (Group C), or absence of GHB (Group P). They all received local standard cares. Immunohistochemistry (Ki67/MIB-1, Ulex europaeus agglutinin-1 and Mac 387 antibodies) was performed at D21 on adjacent unburned skin sample for assessing any keratinocyte activation. Serum IGF1 levels were measured at initiation and completion of the protocol. Categorical variables were compared with Chi-square test. Comparisons of medians were made using Kruskal-Wallis test. Post hoc analyses were performed using Mann-Whitney test with Bonferroni correction for multiple comparisons. A P < 0.05 was considered to be statistically significant. A total of 14 patients completed the study (Group B: n = 5, Group C: n = 5, Group P: n = 4). Continuous administration of GHB was associated with a significant higher Ki67 immunolabeling at D21 (P = 0.049) and with a significant higher increase in the IGF1 concentrations at D21 (P = 0.024). No adverse effects were disclosed. Our preliminary data support a positive effect of GHB on keratinocyte proliferation and are encouraging enough to warrant large prospective studies.

  13. Effect of gamma-hydroxybutyrate on keratinocytes proliferation: A preliminary prospective controlled study in severe burn patients

    PubMed Central

    Rousseau, Anne-Françoise; Bargues, Laurent; Bever, Hervé Le; Vest, Philippe; Cavalier, Etienne; Ledoux, Didier; Piérard, Gérald E.; Damas, Pierre

    2014-01-01

    Background: Hypermetabolism and hyposomatotropism related to severe burns lead to impaired wound healing. Growth hormone (GH) boosts wound healing notably following stimulation of the production of insulin-like growth factor-1 (IGF1), a mitogen factor for keratinocytes. Gamma-hydroxybutyrate (GHB) stimulates endogenous GH secretion. Aim: To assess effects of GHB sedation on keratinocytes proliferation (based on immunohistochemical techniques). Design: Monocentric, prospective, controlled trial. Materials and Methods: Patients (aging 18-65 years, burn surface area >30%, expected to be sedated for at least one month) were alternately allocated, at the 5th day following injury, in three groups according to the intravenous GHB dose administered for 21 days: Evening bolus of 50 mg/kg (Group B), continuous infusion at the rate of 10 mg/kg/h (Group C), or absence of GHB (Group P). They all received local standard cares. Immunohistochemistry (Ki67/MIB-1, Ulex europaeus agglutinin-1 and Mac 387 antibodies) was performed at D21 on adjacent unburned skin sample for assessing any keratinocyte activation. Serum IGF1 levels were measured at initiation and completion of the protocol. Statistical Analysis: Categorical variables were compared with Chi-square test. Comparisons of medians were made using Kruskal-Wallis test. Post hoc analyses were performed using Mann-Whitney test with Bonferroni correction for multiple comparisons. A P < 0.05 was considered to be statistically significant. Results: A total of 14 patients completed the study (Group B: n = 5, Group C: n = 5, Group P: n = 4). Continuous administration of GHB was associated with a significant higher Ki67 immunolabeling at D21 (P = 0.049) and with a significant higher increase in the IGF1 concentrations at D21 (P = 0.024). No adverse effects were disclosed. Conclusions: Our preliminary data support a positive effect of GHB on keratinocyte proliferation and are encouraging enough to warrant large prospective studies. PMID

  14. Hospital in the field: prehospital management of GHB intoxication by medical assistance teams.

    PubMed

    Dutch, Martin J; Austin, Kristy B

    2012-10-01

    Recreational use of gamma-hydroxybutyrate (GHB) is increasingly common at mass-gathering dance events in Australia. Overdose often occurs in clusters, and places a significant burden on the surrounding health care infrastructure. To describe the clinical presentation, required interventions and disposition of patrons with GHB intoxication at dance events, when managed by dedicated medical assistance teams. Retrospective analysis of all patrons attending St. John Ambulance medical assistance teams at dance events in the state of Victoria (Australia), from January 2010 through May 2011. Main outcome measures Clinical presentation, medical interventions and discharge destination. Sixty-one patients with GHB intoxication attended medical teams during the study period. The median age was 22 years, and 64% were male. Altered conscious state was present in 89% of attendances, and a GCS <9 in 44%. Hypotension, bradycardia and hypothermia were commonly encountered. Endotracheal intubation was required in three percent of patrons. Median length of stay onsite was 90 minutes. Ambulance transport to hospital was avoided in 65% of presentations. The deployment of medical teams at dance events and music festivals successfully managed the majority of GHB intoxications onsite and avoided acute care ambulance transfer and emergency department attendance.

  15. Decision rules for GHB (γ-hydroxybutyric acid) detoxification: a vignette study.

    PubMed

    Kamal, Rama M; van Iwaarden, Sjacco; Dijkstra, Boukje A G; de Jong, Cornelis A J

    2014-02-01

    GHB dependent patients can suffer from a severe and sometimes life-threatening withdrawal syndrome. Therefore, most of the patients are treated within inpatient settings. However, some prefers an outpatient approach to treatment. The aim of this study was to develop decision rules for addiction physicians to determine whether an outpatient or inpatient setting should be chosen for a safe GHB detoxification. A prospective vignette study was performed. Forty addiction medicine specialists from various treatment settings and residents of the Addiction Medicine postgraduate Master training were asked to contribute vignettes of GHB dependent patients. A focus group of 15 psychiatrists and addiction medicine specialists was asked to recommend an outpatient or inpatient setting for GHB detoxification treatment per vignette. Finally, five addiction medicine specialists, experts in GHB dependence treatment in the Netherlands, assessed the bio-psychosocial reasons for the choices of the focus group and formulated the recommended criteria. Based on the bio-psychosocial state of twenty vignette patients, addiction physicians and psychiatrists established the criteria and conditions recommended for the indication of an outpatient GHB detoxification. Intensity of addiction (GHB dose ≤32 g/d and frequency of abuse ≤2 h) was stated as the primary criterion in determining the setting as well as the complexity of the psychiatric comorbid disorders. The importance of a stable support system was emphasised. The vignette study resulted in a set of criteria with which addiction medicine specialists can make a weighted decision as to an outpatient or inpatient setting for GHB detoxification. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. Simultaneous analysis method for GHB, ketamine, norketamine, phenobarbital, thiopental, zolpidem, zopiclone and phenytoin in urine, using C18 poroshell column.

    PubMed

    Anilanmert, Beril; Çavuş, Fatma; Narin, Ibrahim; Cengiz, Salih; Sertler, Şefika; Özdemir, Ali Acar; Açikkol, Münevver

    2016-06-01

    Date-rape drugs have the potential to be used in drug-facilitated sexual assault, organ theft and property theft. Since they are colorless, tasteless and odorless, victims can drink without noticing, when added to the beverages. These drugs must be detected in time, before they are cleared up from the biofluids. A simultaneous extraction and determination method in urine for GHB, ketamine, norketamine, phenobarbital, thiopental, zolpidem, zopiclone and phenytoin (an anticonvulsant and antiepileptic drug) with LC-MS/MS was developed for the first time with analytically acceptable recoveries and validated. A 4 steps liquid-liquid extraction was applied, using only 1.000mL urine. A new age commercial C18 poroshell column with high column efficiency was used for LC-MS/MS analysis with a fast isocratic elution as 5.5min. A new MS transition were introduced for barbital. 222.7>179.8 with the effect of acetonitrile. Recoveries (%) were between 80.98-99.27 for all analytes, except for GHB which was 71.46. LOD and LOQ values were found in the ranges of 0.59-49.50 and 9.20-80.80ngmL(-1) for all the analytes (except for GHB:3.44 and 6.00μgmL(-1)). HorRat values calculated (between 0.25-1.21), revealed that the inter-day and interanalist precisions (RSD%≤14.54%) acceptable. The simultaneous extraction and determination of these 8 analytes in urine is challenging because of the difficulty arising from the different chemical properties of some. Since the procedure can extract drugs from a wide range of polarity and pKa, it increases the window of detection. Group representatives from barbiturates, z-drugs, ketamine, phenytoin and polar acidic drugs (GHB) have been successfully analyzed in this study with low detection limits. The method is important from the point of determining the combined or single use of these drugs in crimes and finding out the reasons of deaths related to these drugs. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. A fast and reliable method for GHB quantitation in whole blood by GC-MS/MS (TQD) for forensic purposes.

    PubMed

    Castro, André L; Tarelho, Sónia; Dias, Mário; Reis, Flávio; Teixeira, Helena M

    2016-02-05

    Gamma-hydroxybutyric acid (GHB) is an endogenous compound with a story of clinical use since the 1960s. However, due to its secondary effects, it has become a controlled substance, entering the illicit market. A fully validated, sensitive and reproducible method for the quantification of GHB by methanolic precipitation and GC-MS/MS (TQD) in whole blood is presented. Using 100μL of whole blood, obtained results included a LOD and LLOQ of 0.1mg/L and a recovery of 86% in a working range between 0.1 and 100mg/L. This method is sensitive and specific to detect the presence of GHB in small amounts of whole blood (both ante-mortem or post-mortem), and is, to the authors' knowledge, the first GC-MS-MS TQD method that uses different precursor ions and product ions for the identification of GHB and GHB-D6 (internal standard). Hence, this method may be especially useful for the study of endogenous values in this biological sample. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Identification of GHB and morphine in hair in a case of drug-facilitated sexual assault.

    PubMed

    Rossi, Riccardo; Lancia, Massimo; Gambelunghe, Cristiana; Oliva, Antonio; Fucci, Nadia

    2009-04-15

    The authors present the case of a 24-year-old girl who was sexually assaulted after administration of gamma-hydroxybutyrate (GHB) and morphine. She had been living in an international college for foreign students for about 1 year and often complained of a general unhealthy feeling in the morning. At the end of the college period she returned to Italy and received at home some video clips shot by a mobile phone camera. In these videos she was having sex with a boy she met when she was studying abroad. Toxicological analysis of her hair was done: the hair was 20-cm long. A 2/3-cm segmentation of all the length of the hair was performed. Morphine and GHB were detected in hair segments related to the period of time she was abroad. The analyses of hair segments were performed by gas chromatography/mass spectrometry (GC/MS) and the concentration of morphine and GHB were calculated. A higher value of GHB was found in the period associated with the possible criminal activity and was also associated with the presence of morphine in the same period.

  19. An interactive lesson in acid/base and pro-drug chemistry using sodium gamma-hydroxybutyrate and commercial test coasters.

    PubMed

    Page, Nathaniel A; Paganelli, Meaghan; Boje, Kathleen M K; Fung, Ho-Leung

    2007-06-15

    To develop a classroom activity that applied pertinent pharmaceutical concepts to examine the use and limitations of a commercially available test drink coaster in detecting the presence of a date-rape drug, sodium gamma-hydroxybutyrate (NaGHB), in beverages. An activity exercise involving a combination of self-study, hands on participation, and classroom discussion was developed. Topics incorporated into the activity were drug-assisted rape, the concepts of false positives and negatives, and prodrug and pH chemistry. Based on questionnaires completed by the students, the intended concepts were reinforced and students demonstrated an increased awareness of the potential shortcomings of the commercial test devices. The activity was well received by the majority of students. The developed activity stimulated student awareness and interest in several principles relevant in pharmaceutical education, including drug-assisted rape, consumer-based drug testing of NaGHB, and the chemical basis for its limitations. The activity requires no special equipment other than the drink coasters and can be easily completed in one 2-hour classroom session.

  20. Molecular Hybridization of Potent and Selective γ-Hydroxybutyric Acid (GHB) Ligands: Design, Synthesis, Binding Studies, and Molecular Modeling of Novel 3-Hydroxycyclopent-1-enecarboxylic Acid (HOCPCA) and trans-γ-Hydroxycrotonic Acid (T-HCA) Analogs.

    PubMed

    Krall, Jacob; Jensen, Claus Hatt; Bavo, Francesco; Falk-Petersen, Christina Birkedahl; Haugaard, Anne Stæhr; Vogensen, Stine Byskov; Tian, Yongsong; Nittegaard-Nielsen, Mia; Sigurdardóttir, Sara Björk; Kehler, Jan; Kongstad, Kenneth Thermann; Gloriam, David E; Clausen, Rasmus Prætorius; Harpsøe, Kasper; Wellendorph, Petrine; Frølund, Bente

    2017-11-09

    γ-Hydroxybutyric acid (GHB) is a neuroactive substance with specific high-affinity binding sites. To facilitate target identification and ligand optimization, we herein report a comprehensive structure-affinity relationship study for novel ligands targeting these binding sites. A molecular hybridization strategy was used based on the conformationally restricted 3-hydroxycyclopent-1-enecarboxylic acid (HOCPCA) and the linear GHB analog trans-4-hydroxycrotonic acid (T-HCA). In general, all structural modifications performed on HOCPCA led to reduced affinity. In contrast, introduction of diaromatic substituents into the 4-position of T-HCA led to high-affinity analogs (medium nanomolar K i ) for the GHB high-affinity binding sites as the most high-affinity analogs reported to date. The SAR data formed the basis for a three-dimensional pharmacophore model for GHB ligands, which identified molecular features important for high-affinity binding, with high predictive validity. These findings will be valuable in the further processes of both target characterization and ligand identification for the high-affinity GHB binding sites.

  1. Treatment consumption and treatment re-enrollment in GHB-dependent patients in The Netherlands.

    PubMed

    van Noorden, Martijn S; Mol, Ton; Wisselink, Jeroen; Kuijpers, Wil; Dijkstra, Boukje A G

    2017-07-01

    The objective of this study was to assess treatment consumption and re-enrollment in treatment in patients with gamma-hydroxybutyrate (GHB)-dependence in Dutch Addiction Treatment Centers (ATCs) in comparison with other addictions. A cohort-study using nationwide administrative data from regular Dutch ATCs associated with the Dutch National Alcohol and Drugs Information System (LADIS), covering an estimated 95% of ATCs. We selected in- and out-patients with alcohol, drug and/or behavioral addictions with a first treatment episode in 2008-2011 and consecutive treatments until 2013 (n=71,679). Patients still in treatment at that date (n=3686; 5.1%), forensic patients (n=1949; 2.7%) and deceased patients (n=570; 0.8%) were excluded, leaving 65,474 patients (91.3%). Of those, 596 (0.9%) patients had GHB dependence. We analyzed number of treatment contacts, treatment duration, admissions and admission duration of the first treatment episode, and re-enrollment (defined as having started a second treatment episode in the study period). GHB-dependent patients showed the highest number of treatment contacts, duration of treatment and chance of being admitted. Re-enrollment rates were 2-5 times higher in GHB-dependent patients than other patients with adjusted HR of other addictions ranging from 0.18 (95% confidence interval [CI]: 0.15-0.21) to 0.53 (95% CI: 0.47-0.61). This study demonstrates high levels of treatment consumption and high rates of treatment re-enrollment in GHB-dependent patients. These findings highlight the urgency of developing effective relapse prevention interventions for GHB-dependent patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Effect of gamma-hydroxybutyric acid on tissue Na+,K- ATPase levels after experimental head trauma.

    PubMed

    Yosunkaya, A; Ustün, M E; Bariskaner, H; Tavlan, A; Gürbilek, M

    2004-05-01

    A failure of the Na(+),K(+)-ATPase activity (which is essential for ion flux across the cell membranes) occurs in many pathological conditions and may lead to cell dysfunction or even cell death. By altering the concentration of specific opioid peptides, gamma-hydroxybutyric acid (GHB) may change ion flux across cell membranes and produce the 'channel arrest' which we assumed will inhibit the failure of Na+,K(+)-ATPase activity and therefore lead to energy conservation and cell protection. Therefore we planned this study to see the effects of GHB at two different doses on Na(+),K(+)-ATPase activity in an experimental head trauma model. Forty New Zealand rabbits were divided equally into four groups: group I was the sham-operated group, group II (untreated group), group III received head trauma and intravenous (i.v.) 500 mg/kg GHB and group IV received head trauma and i.v. 50 mg/kg GHB. Head trauma was delivered by performing a craniectomy over the right hemisphere and dropping a weight of 10 g from a height of 80 cm. The non-traumatized (left) side was named as 'a' and the traumatized (right) side as 'b'. One hour after the trauma in groups II and III and craniotomy in group I, brain cortices were resected from both sides and in group I only from the right side was the tissue Na-K-ATPase activity determined. The mean +/- SD of Na(+),K(+)-ATPase levels of each group are as follows: group I - 5.97 +/- 0.55; group IIa - 3.90 +/- 1.08; group IIb - 3.58 +/- 0.90; group IIIa - 5.53 +/- 0.60; group IIIb - 5.33 +/- 0.88; group IVa - 5.05 +/- 0.72; group IVb - 4.93 +/- 0.67. The Na(+),K(+)-ATPase levels of group IIa, IIb, IVa and IVb were significantly different from group S (P < 0.05). There were also significant differences between group IIa and groups IIIa and IVa; group IIb and groups IIIb and IVb (P < 0.05). We conclude that GHB is effective in suppressing the decrease in Na(+),K(+)-ATPase levels in brain tissue at two different dose schedules after head trauma.

  3. Anticonvulsant properties of alpha, gamma, and alpha, gamma-substituted gamma-butyrolactones.

    PubMed

    Klunk, W E; Covey, D F; Ferrendelli, J A

    1982-09-01

    Derivatives of gamma-butyrolactone (GBL) substituted on the alpha- and/or gamma-positions were synthesized and tested for their effects on behavior in mice, on the electroencephalographs and blood pressure of paralyzed-ventilated guinea pigs, and on electrical activity of incubated hippocampal slices. Several compounds, including alpha-ethyl-alpha-methyl GBL (alpha-EMGBL), alpha, alpha-dimethyl GBL, alpha, gamma-diethyl-alpha, gamma-dimethyl GBL, and gamma-ethyl-gamma-methyl GBL, prevented seizures induced by pentylenetetrazol, beta-ethyl-beta-methyl-gamma-butyrolactone (beta-EMGBL), picrotoxin, or all three compounds in mice and guinea pigs but had no effect on seizures induced by maximal electroshock or bicuculline. Neither gamma-hydroxybutyrate (GHB) nor alpha-isopropylidine GBL had any anticonvulsant activity. The anticonvulsant alpha-substituted compounds had a potent hypotensive effect and antagonized the hypertensive effect of beta-EMGBL, alpha-EMGBL was tested in incubated hippocampal slices and was found to depress basal activity and antagonize excitation induced by beta-EMGBL. These results demonstrate that alpha-alkyl-substituted GBL and, to a lesser extent, gamma-substituted derivatives are anticonvulsant agents and that their effects are strikingly different from those of GHB or beta-alkyl-substituted GBLs, which are epileptogenic. Possibly beta- and alpha-substituted GBLs act at the same site as agonists and antagonists, respectively.

  4. Intoxication by gamma hydroxybutyrate and related analogues: Clinical characteristics and comparison between pure intoxication and that combined with other substances of abuse.

    PubMed

    Miró, Òscar; Galicia, Miguel; Dargan, Paul; Dines, Alison M; Giraudon, Isabelle; Heyerdahl, Fridtjof; Hovda, Knut E; Yates, Christopher; Wood, David M; Liakoni, Evangelia; Liechti, Matthias; Jürgens, Gesche; Pedersen, Carsten Boe; O'Connor, Niall; Markey, Gerard; Moughty, Adrian; Lee, Christopher; O'Donohoe, Patrick; Sein Anand, Jacek; Puiguriguer, Jordi; Homar, Catalina; Eyer, Florian; Vallersnes, Odd Martin; Persett, Per Sverre; Chevillard, Lucie; Mégarbane, Bruno; Paasma, Raido; Waring, W Stephen; Põld, Kristiina; Rabe, Christian; Kabata, Piotr Maciej

    2017-08-05

    To study the profile of European gamma-hydroxybutyrate (GHB) and gammabutyrolactone (GBL) intoxication and analyse the differences in the clinical manifestations produced by intoxication by GHB/GBL alone and in combination with other substances of abuse. We prospectively collected data on all the patients attended in the Emergency Departments (ED) of the centres participating in the Euro-DEN network over 12 months (October 2013 to September 2014) with a primary presenting complaint of drug intoxication (excluding ethanol alone) and registered the epidemiological and clinical data and outcomes. We included 710 cases (83% males, mean age 31 years), representing 12.6% of the total cases attended for drug intoxication. Of these, 73.5% arrived at the ED by ambulance, predominantly during weekend, and 71.7% consumed GHB/GBL in combination with other substances of abuse, the most frequent additional agents being ethanol (50%), amphetamine derivatives (36%), cocaine (12%) and cannabis (8%). Among 15 clinical features pre-defined in the project database, the 3 most frequently identified were altered behaviour (39%), reduced consciousness (34%) and anxiety (14%). The severity ranged from mild cases requiring no treatment (308 cases, 43.4%) to severe cases requiring admission to intensive care (103 cases, 14.6%) and mechanical ventilation (49 cases, 6.9%). No deaths were reported. In comparison with only GHB/GBL consumption, patients consuming GHB/GBL with co-intoxicants presented more vomiting (15% vs. 3%, p<0.001) and cardiovascular symptoms (5.3% vs. 1.5%, p<0.05), a greater need for treatment (59.8% vs. 48.3%, p<0.01) and a longer ED stay (11.3% vs. 3.6% patients with ED stay >12h, p<0.01). The profile of the typical GHB/GBL-intoxicated European is a young male, requiring care for altered behaviour and reduced level of consciousness, mainly during the weekend. The clinical features are more severe when GHB is consumed in combination with other substances of abuse

  5. When a death apparently associated to sexual assault is instead a natural death due to idiopathic hypereosinophilic syndrome: The importance of gamma-hydroxybutyric acid analysis in vitreous humor.

    PubMed

    Busardò, Francesco Paolo; Portelli, Francesca; Montana, Angelo; Rotolo, Maria Concetta; Pichini, Simona; Maresi, Emiliano

    2017-05-01

    We here report a case involving a 21-year-old female, found dead in a central square of a city in the south of Italy. Initial evidences and circumstances were suggestive of a death associated with a sexual assault. Two peripheral blood and two vitreous humor samples were collected for the purpose of gamma-hydroxybutyric acid (GHB) testing from the dead body at two different post-mortem intervals (PMIs): approximately 2 (t 0 ) and 36 (t 1 ) hours. The obtained results showed that, between t 0 and t 1, there was an increase of GHB concentrations in peripheral blood and vitreous humor of 66.3% and 8.1%, respectively. This case was the first evidence of GHB post mortem production in a dead body and not in vitro, showing that vitreous humor is less affected than peripheral blood in GHB post-mortem production. The value detected at t 1 in peripheral blood (53.4µg/mL) exceeded the proposed cut-off and if interpreted alone would have led to erroneous conclusions. This was not the case of vitreous humor GHB, whose post-mortem increase was minimal and it allowed to exclude a GHB exposure. Only after a broad forensic investigation including a complete autopsy, serological, histological, toxicological and haematology analyses, a diagnosis of idiopathic hypereosinophilic syndrome, a myeloproliferative disorder characterized by persistent eosinophilia associated with damage to multiple organs, was made and the cause of death was due to a pulmonary eosinophilic vasculitis responsible for an acute respiratory failure. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Spinal anaesthesia with gamma hydroxybutyrate. A study in a rat model.

    PubMed

    Chanimov, M; Bahar, M; Cohen, M L; Brenner, R; Koifman, I; Grinshpon, Y

    1999-05-01

    Gamma hydroxybutyric acid, a central inhibitory neurotransmitter and a cerebral metabolite of gamma-aminobutyric acid, is present in high concentrations in the mammalian hypothalamus and basal ganglia. Its sodium salt gamma hydroxybutyrate has been effectively used as an intravenous anaesthetic agent, and as an oral sedative, and in the management of the alcohol withdrawal syndrome. In an animal model, using 72 Wistar strain rats allocated to one of six groups of 12 animals each, with implanted lumbar intrathecal catheters, we examined whether gamma hydroxybutyrate, 20% 40 microL (32 mg kg-1) administered alone or combined with fentanyl, gamma hydroxybutyrate 20% 20 microL (16 mg kg-1), fentanyl 0.005% 20 microL (4 mg kg-1) as an intrathecal bolus, provides intraoperative anaesthesia, comparable with that produced by intrathecal lignocaine. We demonstrated that gamma hydroxybutyrate, given by an intrathecal bolus in the rat model, produced reversible segmental antinociception, together with muscular relaxation of the abdominal wall and rear limbs. This is accompanied by moderate sedation without haemodynamic or respiratory depression. This agent may thus be promising for use as a spinal anaesthetic drug.

  7. Pharmacological aspects of the combined use of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) and gamma-hydroxybutyric acid (GHB): a review of the literature.

    PubMed

    Uys, Joachim D K; Niesink, Raymond J M

    2005-07-01

    Epidemiological studies show that the use of club drugs is on the rise. Furthermore, the last few decades have seen a rise in patterns of polydrug use. One of the combinations frequently used is ecstasy (MDMA) with gammahydroxybutyrate (GHB). For effective prevention it is important to be aware of this phenomenon and of the pharmacology of these drugs. The effects of the combination extend to different neurotransmitter systems, including serotonin, dopamine and noradrenaline. Studies investigating the effects of combinations of psychoactive substances are limited. In this review we describe the subjective effects of the MDMA/GHB combination. Furthermore, we review the individual actions of MDMA on serotonin, dopamine and noradrenaline systems. In addition, actions of GHB on these systems are discussed as a possible pharmacological basis for the interaction of both drugs. It is postulated that GHB attenuates the unpleasant or dysphoric effects of MDMA by its effect on the central dopaminergic system.

  8. 21 CFR 1304.26 - Additional recordkeeping requirements applicable to drug products containing gamma-hydroxybutyric...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... to drug products containing gamma-hydroxybutyric acid. 1304.26 Section 1304.26 Food and Drugs DRUG....26 Additional recordkeeping requirements applicable to drug products containing gamma-hydroxybutyric....22, practitioners dispensing gamma-hydroxybutyric acid that is manufactured or distributed in...

  9. Gamma-hydroxybutyric acid endogenous production and post-mortem behaviour - the importance of different biological matrices, cut-off reference values, sample collection and storage conditions.

    PubMed

    Castro, André L; Dias, Mário; Reis, Flávio; Teixeira, Helena M

    2014-10-01

    Gamma-Hydroxybutyric Acid (GHB) is an endogenous compound with a story of clinical use, since the 1960's. However, due to its secondary effects, it has become a controlled substance, entering the illicit market for recreational and "dance club scene" use, muscle enhancement purposes and drug-facilitated sexual assaults. Its endogenous context can bring some difficulties when interpreting, in a forensic context, the analytical values achieved in biological samples. This manuscript reviewed several crucial aspects related to GHB forensic toxicology evaluation, such as its post-mortem behaviour in biological samples; endogenous production values, whether in in vivo and in post-mortem samples; sampling and storage conditions (including stability tests); and cut-off reference values evaluation for different biological samples, such as whole blood, plasma, serum, urine, saliva, bile, vitreous humour and hair. This revision highlights the need of specific sampling care, storage conditions, and cut-off reference values interpretation in different biological samples, essential for proper practical application in forensic toxicology. Copyright © 2014 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  10. Quantitative analysis of the endogenous GHB level in the hair of the Chinese population using GC/MS/MS.

    PubMed

    Shi, Yan; Cui, Xiaopei; Shen, Min; Xiang, Ping

    2016-04-01

    Endogenous production complicates interpretation when gamma-hydroxybutyrate (GHB) is measured in hair for forensic purposes. A method capable of quantifying the endogenous concentration of GHB in human head hair was developed and validated using GC/MS/MS. Hair was digested under alkaline conditions (1 mol/L NaOH, 90 °C 10 min), and GHB-d6 was used as an internal standard. Before derivatization with BSTFA and ethyl acetate, a liquid-liquid extraction with ethyl acetate under acidic conditions was performed. GHB-TMS derivatives were detected using GC/MS/MS in the multiple-reaction monitoring mode. This method exhibited good linearity (y = 0.018x + 0.038, R(2) = 0.9998), and the limit of detection was 0.02 ng/mg. The extraction recoveries were more than 60%, and the inter-day and intra-day relative standard deviations (RSD) were less than 15%. This method has been applied for the analysis of the endogenous GHB in hair samples from 66 drug-free Chinese donors. The mean measured concentration for 0-3 cm hair was 1.93 ± 1.40 ng/mg (n = 66), and extreme values were in the range of 0.28-4.91 ng/mg. The mean male endogenous GHB level was 2.95 ng/mg (0.92-4.91 ng/mg, n = 35), while the mean female level was 0.77 ng/mg (0.28-1.95 ng/mg, n = 31). This method was applied to a forensic case for the determination of GHB in hair samples but it is hard to make a reasonable "cut off" in hair. The solution is to use each subject as his own control. Copyright © 2016 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  11. Field-test of a date-rape drug detection device.

    PubMed

    Quest, Dale W; Horsley, Joanne

    2007-01-01

    Drink Safe Technology Version 1.2 is an inexpensive color-change reagent test marketed internationally for use by consumers in settings such as a night club to detect potentially incapacitating concentrations of gamma-hydroxybutyric acid (GHB) and ketamine in beverages. The objective of this study was to compare product performance in the laboratory and performance in the hands of consumers in the field. Product performance in the laboratory adhered to the protocol defined by the manufacturer. Product performance in the hands of consumers in field settings allowed browsing participants to pipette an aliquot of their own drinks into randomly coded vials containing authentic drugs, or pure water, so as to yield the same concentrations of GHB or ketamine specified in the manufacturer-defined protocol, or blanks. Consumers were to proceed according to the directions printed on the product, and to record their results on a card with a code corresponding with the vial to which they had added an aliquot of their beverage. Diagnostic performance was calculated using two-way analysis. In the laboratory, Drink Safe Technology Version 1.2 reliably detected GHB and ketamine at concentrations specified by the manufacturer's protocol. The reactive color change denoting a positive test for GHB was rapid, but a positive test for ketamine required substantially more time to resolve. Nonetheless, test accuracy following the manufacturer's protocol in the laboratory was 100%. In the field, based on 101 paired-test results recorded by consumers, the test efficiency was 65.1%, sensitivity 50%, and specificity 91.6%. The product performed much better in the laboratory than it did in the hand of consumers in the field. There seems to be considerable potential for consumers to misinterpret a test result. The potential for consumers to record a false-negative test result for a spiked drink is cause for concern.

  12. Psychiatric comorbidity, psychological distress, and quality of life in gamma-hydroxybutyrate-dependent patients.

    PubMed

    Kamal, Rama M; Dijkstra, Boukje A G; de Weert-van Oene, Gerdien H; van Duren, Josja A M; de Jong, Cornelis A J

    2017-01-01

    Understanding the psychiatric state and psychological distress level of patients with gamma-hydroxybutyrate dependence is important to develop effective detoxification and relapse management methods. The aim of the current study was to assess the prevalence among gamma-hydroxybutyrate-dependent individuals of psychiatric comorbidity and psychological distress levels and their association with the individuals' pattern of misuse and quality of life. There were 98 patients tested with the Mini International Neuropsychiatric Interview-plus, the Brief Symptom Inventory, the Depression Anxiety Stress scale, and the EuroQoL-5D as a part of the Dutch gamma-hydroxybutyrate detoxification monitor in 7 addiction treatment centers. Participants were selected from those undergoing inpatient gamma-hydroxybutyrate detoxification treatment between March 2011 and September 2012. Males accounted for 68% of the participants and the average age was 28-years-old. A high rate of psychiatric comorbidity (79%) was detected, including anxiety (current 38%, lifetime 40%), mood (13%, 31%), and psychotic disorders (13%, 21%). The level of psychological distress was significantly higher than the standard outpatient reference group, especially in patients with current psychiatric comorbidity (Brief Symptom Inventory Global Severity Index mean 1.61 versus 1.09, p ≤ 0.01). Increased gamma-hydroxybutyrate misuse (higher dose and shorter interval between doses) was associated with the presence of lifetime psychosis, current mood disorders (r pb = 0.23, p = 0.025), and psychoticism as a symptom of psychological distress. Current anxiety, mood disorders and high psychological stress had a negative effect on participants' quality of life. Gamma-hydroxybutyrate dependence is characterized by serious psychiatric comorbidity and psychological distress, both of which are, in turn, associated with increased gamma-hydroxybutyrate use and a lower quality of life. This needs to be considered during

  13. Ultra-high-performance liquid chromatography tandem mass spectrometry determination of GHB, GHB-glucuronide in plasma and cerebrospinal fluid of narcoleptic patients under sodium oxybate treatment.

    PubMed

    Tittarelli, Roberta; Pichini, Simona; Pedersen, Daniel S; Pacifici, Roberta; Moresco, Monica; Pizza, Fabio; Busardò, Francesco Paolo; Plazzi, Giuseppe

    2017-05-01

    Sodium oxybate (Xyrem ® ), the sodium salt of γ- hydroxybutyric acid (GHB), is a first-line treatment of the symptoms induced by type 1 narcolepsy (NT1) and it is highly effective in improving sleep architecture, decreasing excessive daytime sleepiness and the frequency of cataplexy attacks. Using an ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) validated method, GHB was determined together with its glucuronide (GHB-gluc), in plasma and cerebrospinal fluid (CSF) samples of NT1 patients under sodium oxybate treatment. To characterize the plasma pharmacokinetics of GHB, three subjects with NT1 were administered at time 0 and 4h with 1.25, 1.5 and 3.55g Xyrem ® , respectively and had their blood samples collected at 7 time points throughout an 8-h session. CSF specimens, collected for orexin A measurement from the same three subjects 6h after their second administration, were also tested. The results obtained suggested that GHB plasma values increased disproportionally with the rising doses, (C max0-4 : 12.53, 32.95 and 69.62μg/mL; C max4-8 : 44.93, 75.03 and 111.93μg/mL for total Xyrem ® dose of 2.5, 3 and 7g respectively) indicating non-linear dose-response. GHB-Gluc was present only in traces in all plasma samples from treated patients, not changing with increasing Xyrem ® doses. GHB values of 5.62, 6.10 and 17.74μg/mL for 2, 3 and 7g Xyrem ® were found in CSF with a significant difference from control values. GHB-Gluc was found in negligible concentrations with no differences to those of control individuals. In conclusion this simple and fast UHPLC-MS/MS method proved useful for pharmacokinetic studies and therapeutic drug monitoring of GHB in narcoleptic patients treated with sodium oxybate. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. GHB - Gamma-Hydroxybutyric Acid

    MedlinePlus

    ... Family More Drugs & Your Family Drugs & Your Family Social Media: Understanding a Teen's World Signs of Drug Use ... Consequences Consequences How Drugs Alter Brain Development and Affect Teens The Negative Health Effects of Marijuana Use State and Federal ...

  15. Gamma-hydroxybutyric acid in male and female cynomolgus monkeys trained to discriminate 1.0 or 2.0 g/kg ethanol.

    PubMed

    Helms, Christa M; Rogers, Laura S M; Grant, Kathleen A

    2008-07-01

    Gamma-hydroxybutyric acid has been proposed as a pharmacotherapy for alcoholism in part based on similar discriminative stimulus effects as ethanol. To date, drug discrimination studies with gamma-hydroxybutyric acid and ethanol have exclusively used rodents or pigeons as subjects. To evaluate possible differences between species, sex, and route of administration, this study investigated the substitution of gamma-hydroxybutyric acid (intragastrically or intramuscularly) for ethanol 30 or 60 min after administration in male (n=6) and female (n=7) cynomolgus monkeys trained to discriminate 1.0 and 2.0 g/kg ethanol. At least one dose of gamma-hydroxybutyric acid completely or partially substituted for ethanol in three of the 13 monkeys tested, with each case occurring in female monkeys. Ethanol-appropriate responding did not increase with gamma-hydroxybutyric acid dose. Monkeys were more sensitive to the response rate decreasing effects of gamma-hydroxybutyric acid administered intramuscularly compared with intragastrically. The lack of gamma-hydroxybutyric acid substitution for ethanol suggests that these drugs have different receptor bases for discrimination. Furthermore, the data do not strongly support shared discriminative stimulus effects as the rationale for gamma-hydroxybutyric acid pharmacotherapy for alcoholism.

  16. Neuronal correlates of ketamine and walking induced gamma oscillations in the medial prefrontal cortex and mediodorsal thalamus.

    PubMed

    Furth, Katrina E; McCoy, Alex J; Dodge, Caroline; Walters, Judith R; Buonanno, Andres; Delaville, Claire

    2017-01-01

    Alterations in the function of the medial prefrontal cortex (mPFC) and its major thalamic source of innervation, the mediodorsal (MD) thalamus, have been hypothesized to contribute to the symptoms of schizophrenia. The NMDAR antagonist ketamine, used to model schizophrenia, elicits a brain state resembling early stage schizophrenia characterized by cognitive deficits and increases in cortical low gamma (40-70 Hz) power. Here we sought to determine how ketamine differentially affects spiking and gamma local field potential (LFP) activity in the rat mPFC and MD thalamus. Additionally, we investigated the ability of drugs targeting the dopamine D4 receptor (D4R) to modify the effects of ketamine on gamma activity as a measure of potential cognitive therapeutic efficacy. Rats were trained to walk on a treadmill to reduce confounds related to hyperactivity after ketamine administration (10 mg/kg s.c.) while recordings were obtained from electrodes chronically implanted in the mPFC and MD thalamus. Ketamine increased gamma LFP power in mPFC and MD thalamus in a similar frequency range, yet did not increase thalamocortical synchronization. Ketamine also increased firing rates and spike synchronization to gamma oscillations in the mPFC but decreased both measures in MD thalamus. Conversely, walking alone increased both firing rates and spike-gamma LFP correlations in both mPFC and MD thalamus. The D4R antagonist alone (L-745,870) had no effect on gamma LFP power during treadmill walking, although it reversed increases induced by the D4R agonist (A-412997) in both mPFC and MD thalamus. Neither drug altered ketamine-induced changes in gamma power or firing rates in the mPFC. However, in MD thalamus, the D4R agonist increased ketamine-induced gamma power and prevented ketamine's inhibitory effect on firing rates. Results provide new evidence that ketamine differentially modulates spiking and gamma power in MD thalamus and mPFC, supporting a potential role for both areas in

  17. Neuronal correlates of ketamine and walking induced gamma oscillations in the medial prefrontal cortex and mediodorsal thalamus

    PubMed Central

    McCoy, Alex J.; Dodge, Caroline; Walters, Judith R.; Buonanno, Andres; Delaville, Claire

    2017-01-01

    Alterations in the function of the medial prefrontal cortex (mPFC) and its major thalamic source of innervation, the mediodorsal (MD) thalamus, have been hypothesized to contribute to the symptoms of schizophrenia. The NMDAR antagonist ketamine, used to model schizophrenia, elicits a brain state resembling early stage schizophrenia characterized by cognitive deficits and increases in cortical low gamma (40–70 Hz) power. Here we sought to determine how ketamine differentially affects spiking and gamma local field potential (LFP) activity in the rat mPFC and MD thalamus. Additionally, we investigated the ability of drugs targeting the dopamine D4 receptor (D4R) to modify the effects of ketamine on gamma activity as a measure of potential cognitive therapeutic efficacy. Rats were trained to walk on a treadmill to reduce confounds related to hyperactivity after ketamine administration (10 mg/kg s.c.) while recordings were obtained from electrodes chronically implanted in the mPFC and MD thalamus. Ketamine increased gamma LFP power in mPFC and MD thalamus in a similar frequency range, yet did not increase thalamocortical synchronization. Ketamine also increased firing rates and spike synchronization to gamma oscillations in the mPFC but decreased both measures in MD thalamus. Conversely, walking alone increased both firing rates and spike-gamma LFP correlations in both mPFC and MD thalamus. The D4R antagonist alone (L-745,870) had no effect on gamma LFP power during treadmill walking, although it reversed increases induced by the D4R agonist (A-412997) in both mPFC and MD thalamus. Neither drug altered ketamine-induced changes in gamma power or firing rates in the mPFC. However, in MD thalamus, the D4R agonist increased ketamine-induced gamma power and prevented ketamine’s inhibitory effect on firing rates. Results provide new evidence that ketamine differentially modulates spiking and gamma power in MD thalamus and mPFC, supporting a potential role for both areas

  18. Determination of GHB in human hair by HPLC-MS/MS: Development and validation of a method and application to a study group and three possible single exposure cases.

    PubMed

    Bertol, Elisabetta; Mari, Francesco; Vaiano, Fabio; Romano, Guido; Zaami, Simona; Baglìo, Giovanni; Busardò, Francesco Paolo

    2015-05-01

    Gamma-hydroxybutyrate (GHB) over the last two decades has generated increased notoriety as a euphoric and disinhibiting drug of abuse in cases of drug-related sexual assault and for this reason it is considered a 'date rape' drug. The first aim of this paper was to develop and fully validate a method for the detection of GHB in human hair by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) after liquid-liquid extraction (LLE). The second aim was the application of the method to hair samples of 30 GHB-free users in order to determine the basal level. The results obtained showed no significant differences in endogenous concentrations (p = 0.556) between hair samples of the three groups (black, blonde, and dyed hair) and the age and sex of the subjects did not affect the endogenous levels. Another 12 healthy volunteers, with no previous history of GHB use, were selected and a single dose (25 mg/Kg) was orally administered to all of them and hair samples were collected before the administration of the single dose and other two samples were collected one month and two months later, respectively. The segmental analysis of the latter two samples allowed us to calculate two ratios: 4.45:1 (95% C.I. 3.52-5.63) and 3.35:1 (95% C.I. 2.14-5.18), respectively, which can be recommended as reasonable values for a positive identification of GHB intake. Finally the method was applied to three real cases where a GHB single exposure probably occurred. Copyright © 2014 John Wiley & Sons, Ltd.

  19. An Interactive Lesson in Acid/Base and Pro-Drug Chemistry Using Sodium Gamma-Hydroxybutyrate and Commercial Test Coasters

    PubMed Central

    Page, Nathaniel A.; Paganelli, Meaghan; Boje, Kathleen M.K.

    2007-01-01

    Objective To develop a classroom activity that applied pertinent pharmaceutical concepts to examine the use and limitations of a commercially available test drink coaster in detecting the presence of a date-rape drug, sodium γ-hydroxybutyrate (NaGHB), in beverages. Design An activity exercise involving a combination of self-study, hands on participation, and classroom discussion was developed. Topics incorporated into the activity were drug-assisted rape, the concepts of false positives and negatives, and prodrug and pH chemistry. Assessment Based on questionnaires completed by the students, the intended concepts were reinforced and students demonstrated an increased awareness of the potential shortcomings of the commercial test devices. The activity was well received by the majority of students. Conclusion The developed activity stimulated student awareness and interest in several principles relevant in pharamceutical education, including drug-assisted rape, consumer-based drug testing of NaGHB, and the chemical basis for its limitations. The activity requires no special equipment other than the drink coasters and can be easily completed in one 2-hour classroom session. PMID:17619654

  20. Ketamine Protects Gamma Oscillations by Inhibiting Hippocampal LTD

    PubMed Central

    Huang, Lanting; Yang, Xiu-Juan; Huang, Ying; Sun, Eve Y.

    2016-01-01

    NMDA receptors have been widely reported to be involved in the regulation of synaptic plasticity through effects on long-term potentiation (LTP) and long-term depression (LTD). LTP and LTD have been implicated in learning and memory processes. Besides synaptic plasticity, it is known that the phenomenon of gamma oscillations is critical in cognitive functions. Synaptic plasticity has been widely studied, however it is still not clear, to what degree synaptic plasticity regulates the oscillations of neuronal networks. Two NMDA receptor antagonists, ketamine and memantine, have been shown to regulate LTP and LTD, to promote cognitive functions, and have even been reported to bring therapeutic effects in major depression and Alzheimer’s disease respectively. These compounds allow us to investigate the putative interrelationship between network oscillations and synaptic plasticity and to learn more about the mechanisms of their therapeutic effects. In the present study, we have identified that ketamine and memantine could inhibit LTD, without impairing LTP in the CA1 region of mouse hippocampus, which may underlie the mechanism of these drugs’ therapeutic effects. Our results suggest that NMDA-induced LTD caused a marked loss in the gamma power, and pretreatment with 10 μM ketamine prevented the oscillatory loss via its inhibitory effect on LTD. Our study provides a new understanding of the role of NMDA receptors on hippocampal plasticity and oscillations. PMID:27467732

  1. Raves: a review of the culture, the drugs and the prevention of harm

    PubMed Central

    Weir, E

    2000-01-01

    Raves are all-night dance parties attended by large numbers of youth, sometimes in excess of 20,000. The rave scene, which is international in scope, is distinguished by clandestine venues, hypnotic electronic music and the liberal use of drugs such as ecstasy (3,4-methylenedioxymethamphetamine), GHB (gamma-hydroxybutyrate) and ketamine. Several rave-related deaths in Canada in 1999 alerted health authorities, parents and police to the health risks of rave attendance. Family physicians, emergency physicians and pediatricians should have some understanding of raves, the drugs and the health risks so they can effectively counsel and treat patients. The rave culture in Canada and the drugs commonly used at raves are reviewed, and strategies and initiatives for harm reduction are discussed. PMID:10906922

  2. Determination of γ-hydroxybutyrate in human urine samples by ion exclusion and ion exchange two-dimensional chromatography system.

    PubMed

    Liu, Junwei; Deng, Zhifen; Zhu, Zuoyi; Wang, Yong; Wang, Guoqing; Sun, Yu-An; Zhu, Yan

    2017-12-15

    A two-dimensional ion chromatography system was developed for the determination of γ-hydroxybutyrate (GHB) in human urine samples. Ion exclusion chromatography was used in the first dimensional separation for elimination of urine matrices and detection of GHB above 10mgL -1 , ion exchange chromatography was used in the second dimensional separation via column-switching technique for detection of GHB above 0.08mgL -1 . Under the optimized chromatographic conditions, the ion exclusion and ion exchange chromatography separation system exhibited satisfactory repeatability (RSD<3.1%, n=6) and good linearity in the range of 50-1000mgL -1 and 0.5-100mgL -1 , respectively. By this method, concentrations of GHB in the selected human urine samples were detected in the range of 0-1.57mgL -1 . The urine sample containing 0.89mgL -1 GHB was selected to evaluate the accuracy; the spiked recoveries of GHB were 95.9-102.8%. The results showed that the two-dimensional ion chromatography system was convenient and practical for the determination of GHB in human urine samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. New Synthesis and Tritium Labeling of a Selective Ligand for Studying High-affinity γ-Hydroxybutyrate (GHB) Binding Sites

    PubMed Central

    Vogensen, Stine B.; Marek, Aleš; Bay, Tina; Wellendorph, Petrine; Kehler, Jan; Bundgaard, Christoffer; Frølund, Bente; Pedersen, Martin H.F.; Clausen, Rasmus P.

    2013-01-01

    3-Hydroxycyclopent-1-enecarboxylic acid (HOCPCA, 1) is a potent ligand for the high-affinity GHB binding sites in the CNS. An improved synthesis of 1 together with a very efficient synthesis of [3H]-1 is described. The radiosynthesis employs in situ generated lithium trimethoxyborotritide. Screening of 1 against different CNS targets establishes a high selectivity and we demonstrate in vivo brain penetration. In vitro characterization of [3H]-1 binding shows high specificity to the high-affinity GHB binding sites. PMID:24053696

  4. GHB Pharmacology and Toxicology: Acute Intoxication, Concentrations in Blood and Urine in Forensic Cases and Treatment of the Withdrawal Syndrome

    PubMed Central

    Busardò, Francesco P.; Jones, Alan W.

    2015-01-01

    The illicit recreational drug of abuse, γ-hydroxybutyrate (GHB) is a potent central nervous system depressant and is often encountered during forensic investigations of living and deceased persons. The sodium salt of GHB is registered as a therapeutic agent (Xyrem®), approved in some countries for the treatment of narcolepsy-associated cataplexy and (Alcover®) is an adjuvant medication for detoxification and withdrawal in alcoholics. Trace amounts of GHB are produced endogenously (0.5-1.0 mg/L) in various tissues, including the brain, where it functions as both a precursor and a metabolite of the major inhibitory neurotransmitter γ-aminobutyric acid (GABA). Available information indicates that GHB serves as a neurotransmitter or neuromodulator in the GABAergic system, especially via binding to the GABA-B receptor subtype. Although GHB is listed as a controlled substance in many countries abuse still continues, owing to the availability of precursor drugs, γ-butyrolactone (GBL) and 1,4-butanediol (BD), which are not regulated. After ingestion both GBL and BD are rapidly converted into GHB (t½ ~1 min). The Cmax occurs after 20-40 min and GHB is then eliminated from plasma with a half-life of 30-50 min. Only about 1-5% of the dose of GHB is recoverable in urine and the window of detection is relatively short (3-10 h). This calls for expeditious sampling when evidence of drug use and/or abuse is required in forensic casework. The recreational dose of GHB is not easy to estimate and a concentration in plasma of ~100 mg/L produces euphoria and disinhibition, whereas 500 mg/L might cause death from cardiorespiratory depression. Effective antidotes to reverse the sedative and intoxicating effects of GHB do not exist. The poisoned patients require supportive care, vital signs should be monitored and the airways kept clear in case of emesis. After prolonged regular use of GHB tolerance and dependence develop and abrupt cessation of drug use leads to unpleasant

  5. GC-MS Analysis of [gamma]-Hydroxybutyric Acid Analogs: A Forensic Chemistry Experiment

    ERIC Educational Resources Information Center

    Henck, Colin; Nally, Luke

    2007-01-01

    An upper-division forensic chemistry experiment is described. It involves using glycolic acid and sodium glycolate as analogs of [gamma]-hydroxybutyric acid and its sodium salt. The experiment shows the use of silylation in GC-MS analysis and gives students the opportunity to work with a commonly used silylating reagent,…

  6. Association between narcotic use and anabolic-androgenic steroid use among American adolescents.

    PubMed

    Denham, Bryan E

    2009-01-01

    Drawing on the data gathered in the 2006 Monitoring the Future study of American youth, the present research examines associations between use of narcotics and use of anabolic-androgenic steroids (AASs) among high-school seniors (n = 2,489). With independent measures and controls including sex, race, media exposure, socializing with friends, participation in recreational and school-sponsored sports, perceptions of drug use among professional athletes, and perceptions of steroid use among close friends, binary logistic regression analyses revealed significant associations between AAS use and the use of alcohol, crack cocaine, Vicodin, gamma-hydroxybutyrate (GHB), Ketamine, and Rohypnol. While use of both AASs and the narcotic drugs generally did not eclipse 5% of the sample, the numbers extend to many thousands in larger populations. Implications for health practitioners and recommendations for future research are offered. The study's limitations are noted.

  7. Evaluation of a procedure to assess the adverse effects of illicit drugs.

    PubMed

    van Amsterdam, J G C; Best, W; Opperhuizen, A; de Wolff, F A

    2004-02-01

    The assessment procedure of new synthetic illicit drugs that are not documented in the UN treaty on psychotropic drugs was evaluated using a modified Electre model. Drugs were evaluated by an expert panel via the open Delphi approach, where the written score was discussed on 16 items, covering medical, health, legal, and criminalistic issues of the drugs. After this face-to-face discussion the drugs were scored again. Taking the assessment of ketamine as an example, it appeared that each expert used its own scale to score, and that policymakers do not score deviant from experts trained in the medical-biological field. Of the five drugs evaluated by the panel, p-methoxy-metamphetamine (PMMA), gamma-hydroxybutyric acid (GHB), and 4-methylthio-amphetamine (MTA) were assessed as more adverse than ketamine and psilocine and psilocybine-containing mushrooms. Whereas some experts slightly adjusted during the assessment procedure their opinion on ketamine and PMMA, the opinion on mushrooms was not affected by the discussion held between the two scoring rounds. All experts rank the five drugs in a similar way on the adverse effect scale i.e., concordance scale of the Electre model, indicating unanimity in the expert panel with respect to the risk classification of these abused drugs.

  8. Electroencephalogram Signatures of Ketamine-Induced Unconsciousness

    PubMed Central

    Akeju, Oluwaseun; Song, Andrew H.; Hamilos, Allison E.; Pavone, Kara J.; Flores, Francisco J.; Brown, Emery N.; Purdon, Patrick L.

    2016-01-01

    Objectives Ketamine is an N-methyl-D-aspartate receptor antagonist commonly administered as a general anesthetic. However, circuit level mechanisms to explain ketamine-induced unconsciousness in humans are yet to be clearly defined. Disruption of frontal-parietal network connectivity has been proposed as a mechanism to explain this brain state. However, this mechanism was recently demonstrated at subanesthetic doses of ketamine in awake-patients. Therefore we investigated whether there is an electroencephalogram (EEG) marker for ketamine-induced unconsciousness. Methods We retrospectively studied the EEG in 12 patients who received ketamine for the induction of general anesthesia. We analyzed the EEG dynamics using power spectral and coherence methods. Results Following the administration of a bolus dose of ketamine to induce unconsciousness, we observed a “gamma burst” EEG pattern that consisted of alternating slow-delta (0.1-4 Hz) and gamma (~27-40 Hz) oscillations. This pattern was also associated with increased theta oscillations (~4-8 Hz) and decreased alpha/beta oscillations (~10-24 Hz). Conclusions Ketamine-induced unconsciousness is associated with a gamma burst EEG pattern. Significance We postulate that the gamma burst pattern is a thalamocortical rhythm based on insights previously obtained from cat neurophysiological experiments. This EEG signature of ketamine-induced unconsciousness may offer new insights into general anesthesia induced brain states. PMID:27178861

  9. Ketamine has distinct electrophysiological and behavioral effects in depressed and healthy subjects.

    PubMed

    Nugent, Allison C; Ballard, Elizabeth D; Gould, Todd D; Park, Lawrence T; Moaddel, Ruin; Brutsche, Nancy E; Zarate, Carlos A

    2018-02-27

    Ketamine's mechanism of action was assessed using gamma power from magnetoencephalography (MEG) as a proxy measure for homeostatic balance in 35 unmedicated subjects with major depressive disorder (MDD) and 25 healthy controls enrolled in a double-blind, placebo-controlled, randomized cross-over trial of 0.5 mg/kg ketamine. MDD subjects showed significant improvements in depressive symptoms, and healthy control subjects exhibited modest but significant increases in depressive symptoms for up to 1 day after ketamine administration. Both groups showed increased resting gamma power following ketamine. In MDD subjects, gamma power was not associated with the magnitude of the antidepressant effect. However, baseline gamma power was found to moderate the relationship between post-ketamine gamma power and antidepressant response; specifically, higher post-ketamine gamma power was associated with better response in MDD subjects with lower baseline gamma, with an inverted relationship in MDD subjects with higher baseline gamma. This relationship was observed in multiple regions involved in networks hypothesized to be involved in the pathophysiology of MDD. This finding suggests biological subtypes based on the direction of homeostatic dysregulation and has important implications for inferring ketamine's mechanism of action from studies of healthy controls alone.

  10. Club drugs: review of the ‘rave’ with a note of concern for the Indian scenario

    PubMed Central

    Chakraborty, Kaustav; Neogi, Rajarshi; Basu, Debasish

    2011-01-01

    ‘Club drugs’ which include Ecstasy, gamma-hydroxybutyrate (GHB), ketamine, and Rohypnol (flunitrazepam) have become popular with participants in ‘raves’, because they are perceived to enhance energy, endurance, sociability and sexual arousal. These drugs vary in their pharmacologic properties, physiological and psychological effects, and potential consequences. The use of club drugs by young people has increased in the last decade, and continue to get modified and evolve, making them very difficult to monitor. Further, these drugs are not picked up by routine drugs screening procedures, thereby making these popular with the criminals. India, which is in a phase of social transition, also faces this rising menace. Despite the nature and extent of this problem, this area has been under-researched. Data from India are sparse barring a few newspaper and police reports. Keeping abreast of current trends in club drug use prepares the clinician to recognize the clinical effects of club drug use, to manage club drug related emergencies, and to generate social awareness. PMID:21727657

  11. Effects of the GABAB Receptor-Positive Modulators CGP7930 and rac-BHFF in Baclofen- and γ-Hydroxybutyrate-Discriminating Pigeons

    PubMed Central

    France, Charles P.; Cheng, Kejun; Rice, Kenner C.

    2012-01-01

    In vivo effects of GABAB receptor-positive modulators suggest them to have therapeutic potential to treat central nervous system disorders such as anxiety and drug abuse. Although these effects are thought to be mediated by positive modulation of GABAB receptors, such modulation has been examined primarily in vitro. This study further examined the in vivo properties of the GABAB receptor-positive modulators 2,6-di-tert-butyl-4-(3-hydroxy-2,2-dimethylpropyl) phenol (CGP7930) and (R,S)-5,7-di-tert-butyl-3-hydroxy-3-trifluoromethyl-3H-benzofuran-2-one (rac-BHFF). In pigeons discriminating baclofen from saline, γ-hydroxybutyrate (GHB) produced 100% baclofen-appropriate responding, and the GABAB antagonist 3-aminopropyl(dimethoxymethyl) phosphinic acid (CGP35348) blocked the effects of both drugs. CGP7930 and rac-BHFF produced at most 41 and 74% baclofen-appropriate responding, respectively, and enhanced the discriminative stimulus effects of baclofen, but not of GHB. In pigeons discriminating GHB from saline, CGP7930 and rac-BHFF produced at most 1 and 49% GHB-appropriate responding, respectively, and enhanced the effects of baclofen, but not of GHB. Enhancement of the discriminative stimulus effects of baclofen by rac-BHFF and CGP7930 is further evidence of their effectiveness as GABAB receptor-positive modulators in vivo. Furthermore, lack of complete substitution of the positive modulators rac-BHFF and CGP7930 for baclofen and GHB suggests that their discriminative stimulus effects differ from those of GABAB receptor agonists. Finally, together with converging evidence that the GABAB receptor populations mediating the effects of baclofen and GHB are not identical, the present findings suggest that these populations differ in their susceptibility to positive modulatory effects. Such differences could allow for more selective therapeutic targeting of the GABAB system. PMID:22319197

  12. Club Drug Use

    MedlinePlus

    ... are: GHB (liquid ecstasy) MDMA (ecstasy) flunitrazepam (roofies) ketamine (special K) LSD (acid). Club drugs contain a ... or cut to include meth. These include GHB, ketamine, and flunitrazepam. They can cause severe, long-lasting ...

  13. Further evidence for GHB naturally occurring in common non-alcoholic beverages.

    PubMed

    Elliott, Simon P; Fais, Paolo

    2017-08-01

    GHB has been implicated in many cases of suspected surreptitious administration with the purpose of increasing victim vulnerability to sexual assault. Low amounts of endogenous (or naturally occurring) GHB, which do not reach pharmacologically active levels, have been detected in alcoholic and non-alcoholic beverages. Due to the continued requirement to obtain data on the presence of endogenous GHB in various beverage types, GHB concentrations were measured in a series of non-alcoholic beverages. Tonic water and lemon flavoured tonic water beverages were analysed at 0, 24 and 96h after the bottle opening using gas chromatography coupled to tandem mass spectrometry (GC-MS/MS) on an Agilent 6890/7000C Triple Quadrupole. GHB was detected in all beverages at very low amounts ranging from 89 to 145ng/mL (0.089-0.145mg/L) and did not demonstrate a general trend of variation for concentration along the tested time span (96h). The presented data provide additional evidence for the endogenous nature of GHB in non-alcoholic beverages at very low concentrations, which are many orders of magnitude lower than those described to produce any pharmacological effect on the subject. However, when considering a case of alleged drug-facilitated sexual assault, a low level of GHB detected in a drink may be related both to a surreptitiously GHB administration with subsequent dilution for concealment or to the presence of endogenous GHB. On this basis, a comprehensive analysis of all the available information, including circumstantial data demonstrating possible attempts to conceal GHB administration and an assessment of levels of endogenous GHB in the suspected beverage type, is of the utmost importance for a proper interpretation of the toxicological results. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Sexual risk taking and club drug use across three age cohorts of HIV-positive gay and bisexual men in New York City.

    PubMed

    Pappas, Molly K; Halkitis, Perry N

    2011-11-01

    This study examined club drug use (i.e., cocaine, ecstasy, ketamine, gamma-hydroxybutyrate [GHB], and methamphetamine) and unprotected anal intercourse (UAI) in an ethnically and racially diverse sample of 166 New York City-based seropositive, club drug-using, gay and bisexual men, ages 19-61, and considered these behaviors in relation to age category (20s, 30s, and 40 +) and number of years living with HIV. Club drug use was common across all age categories, with differences arising only in the type of club drug used. Multivariate logistic regression modeling indicated older participants (30s and 40 +) were more likely to use cocaine and methamphetamine and less likely to use GHB and ketamine than those in their 20s. We examined UAI with casual partners in relation to age category, the number of years living with HIV, and club drug use. The likelihood of engaging in UAI with seronegative casual partners was greater among those in their 20s than those in their 30s or 40+. Further, participants were equally likely to engage in unprotected receptive anal intercourse and unprotected insertive anal intercourse with each casual partner serostatus type. With regard to number of years living with HIV, those living longer with the disease were more likely to report UAI with casual partners with a seropositive status than with a negative or unknown serostatus. Our findings suggest that UAI and club drug use is common among seropositive gay and bisexual men regardless of age category, but that differential patterns of risk emerge in relation to the number of years one has been living with HIV and age. These findings are of significance as both the aging population of seropositive gay and bisexual men and HIV infection rates continue to grow, and demonstrate a need for differentiated and tailored prevention strategies across the age continuum.

  15. [Club drugs].

    PubMed

    Guerreiro, Diogo Frasquilho; Carmo, Ana Lisa; da Silva, Joaquim Alves; Navarro, Rita; Góis, Carlos

    2011-01-01

    Club drugs are the following substances: Methylenedioxymethamphetamine (MDMA); Methamphetamine; Lysergic Acid Diethylamide (LSD); Ketamine; Gamma-hydroxybutyrate (GHB) and Flunitrazepam. These substances are mainly used by adolescents and young adults, mostly in recreational settings like dance clubs and rave parties. These drugs have diverse psychotropic effects, are associated with several degrees of toxicity, dependence and long term adverse effects. Some have been used for several decades, while others are relatively recent substances of abuse. They have distinct pharmacodynamic and pharmacokinetic properties, are not easy to detect and, many times, the use of club drugs is under diagnosed. Although the use of these drugs is increasingly common, few health professionals feel comfortable with the diagnosis and treatment. The authors performed a systematic literature review, with the goal of synthesising the existing knowledge about club drugs, namely epidemiology, mechanism of action, detection, adverse reactions and treatment. The purpose of this article is creating in Portuguese language a knowledge data base on club drugs, that health professionals of various specialties can use as a reference when dealing with individual with this kind of drug abuse.

  16. Ketamine abuse potential and use disorder.

    PubMed

    Liu, Yu; Lin, Deyong; Wu, Boliang; Zhou, Wenhua

    2016-09-01

    Ketamine is a noncompetitive antagonist of N-methyl-d-asparate (NMDA) receptor and has been long used as an anesthetic agent in humans and veterinary medicine. The present article reviews the epidemiology, pharmacology, neurochemistry, and treatment of ketamine abuse. Ketamine has a unique mood controlling property and a number of studies have demonstrated a significant and rapid antidepressant effect of ketamine. However, the therapeutic value of ketamine to treat psychiatric disorders faces a major challenge that ketamine also owns significant reinforcing and toxic effects. Its abuse has posted severe harms on individuals and society. Disrupted learning and memory processing has long been related with ketamine use. It is hypothesized that ketamine blocks NMDA receptors on gamma-aminobutyric acid (GABA) neurons inside the thalamic reticular nucleus, which leads to disinhibition of dopaminergic neurons and increased release of dopamine. Currently, there is no specific treatment for treating every ketamine patient presenting peripheral toxicity. Interestingly, ketamine psychotherapy has been suggested to be a promising approach to treat addiction of other drugs. Future research can continue to develop creative ways to investigate potential mechanism and treatments related to ketamine abuse that have posted severe individual and social harms. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Chronic Ketamine Reduces the Peak Frequency of Gamma Oscillations in Mouse Prefrontal Cortex Ex vivo.

    PubMed

    McNally, James M; McCarley, Robert W; Brown, Ritchie E

    2013-01-01

    Abnormalities in EEG gamma band oscillations (GBO, 30-80 Hz) serve as a prominent biomarker of schizophrenia (Sz), associated with positive, negative, and cognitive symptoms. Chronic, subanesthetic administration of antagonists of N-methyl-D-aspartate receptors (NMDAR), such as ketamine, elicits behavioral effects, and alterations in cortical interneurons similar to those observed in Sz. However, the chronic effects of ketamine on neocortical GBO are unknown. Thus, here we examine the effects of chronic (five daily i.p. injections) application of ketamine (5 and 30 mg/kg) and the more specific NMDAR antagonist, MK-801 (0.02, 0.5, and 2 mg/kg), on neocortical GBO ex vivo. Oscillations were generated by focal application of the glutamate receptor agonist, kainate (KA), in coronal brain slices containing the prelimbic cortex. This region constitutes the rodent analog of the human dorsolateral prefrontal cortex, a brain region strongly implicated in Sz-pathophysiology. Here we report the novel finding that chronic ketamine elicits a reduction in the peak oscillatory frequency of KA-elicited oscillations (from 47 to 40 Hz at 30 mg/kg). Moreover, the power of GBO in the 40-50 Hz band was reduced. These findings are reminiscent of both the reduced resonance frequency and power of cortical oscillations observed in Sz clinical studies. Surprisingly, MK-801 had no significant effect, suggesting care is needed when equating Sz-like behavioral effects elicited by different NMDAR antagonists to alterations in GBO activity. We conclude that chronic ketamine in the mouse mimics GBO abnormalities observed in Sz patients. Use of this ex vivo slice model may be useful in testing therapeutic compounds which rescue these GBO abnormalities.

  18. Involvement of posterior cingulate cortex in ketamine-induced psychosis relevant behaviors in rats.

    PubMed

    Ma, Jingyi; Leung, L Stan

    2018-02-15

    The involvement of posterior cingulate cortex (PCC) on ketamine-induced psychosis relevant behaviors was investigated in rats. Bilateral infusion of muscimol, a GABA A receptor agonist, into the PCC significantly antagonized ketamine-induced deficit in prepulse inhibition of a startle reflex (PPI), deficit in gating of hippocampal auditory evoked potentials, and behavioral hyperlocomotion in a dose dependent manner. Local infusion of ketamine directly into the PCC also induced a PPI deficit. Systemic injection of ketamine (3mg/kg,s.c.) induced an increase in power of electrographic activity in the gamma band (30-100Hz) in both the PCC and the hippocampus; peak theta (4-10Hz) power was not significantly altered, but peak theta frequency was increased by ketamine. In order to exclude volume conduction from the hippocampus to PCC, inactivation of the hippocampus was made by local infusion of muscimol into the hippocampus prior to ketamine administration. Muscimol in the hippocampus effectively blocked ketamine-induced increase of gamma power in the hippocampus but not in the PCC, suggesting independent generation of gamma waves in PCC and hippocampus. It is suggested that the PCC is part of the brain network mediating ketamine-induced psychosis related behaviors. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Ketamine: differential neurophysiological dynamics in functional networks in the rat brain

    PubMed Central

    Ahnaou, A; Huysmans, H; Biermans, R; Manyakov, N V; Drinkenburg, W H I M

    2017-01-01

    Recently, the N-methyl-d-aspartate-receptor (NMDAR) antagonist ketamine has emerged as a fast-onset mechanism to achieve antidepressant activity, whereas its psychomimetic, dissociative and amnestic effects have been well documented to pharmacologically model schizophrenia features in rodents. Sleep–wake architecture, neuronal oscillations and network connectivity are key mechanisms supporting brain plasticity and cognition, which are disrupted in mood disorders such as depression and schizophrenia. In rats, we investigated the dynamic effects of acute and chronic subcutaneous administration of ketamine (2.5, 5 and 10 mg kg−1) on sleep–wake cycle, multichannels network interactions assessed by coherence and phase–amplitude cross-frequency coupling, locomotor activity (LMA), cognitive information processing as reflected by the mismatch negativity-like (MMN) component of event-related brain potentials (ERPs). Acute ketamine elicited a short, lasting inhibition of rapid eye movement (REM) sleep, increased coherence in higher gamma frequency oscillations independent of LMA, altered theta-gamma phase–amplitude coupling, increased MMN peak-amplitude response and evoked higher gamma oscillations. In contrast, chronic ketamine reduced large-scale communication among cortical regions by decreasing oscillations and coherent activity in the gamma frequency range, shifted networks activity towards slow alpha rhythm, decreased MMN peak response and enhanced aberrant higher gamma neuronal network oscillations. Altogether, our data show that acute and chronic ketamine elicited differential changes in network connectivity, ERPs and event-related oscillations (EROs), supporting possible underlying alterations in NMDAR–GABAergic signaling. The findings underscore the relevance of intermittent dosing of ketamine to accurately maintain the functional integrity of neuronal networks for long-term plastic changes and therapeutic effect. PMID:28926001

  20. Determination of endogenous levels of GHB in human hair. Are there possibilities for the identification of GHB administration through hair analysis in cases of drug-facilitated sexual assault?

    PubMed

    Goullé, Jean Pierre; Chèze, Marjorie; Pépin, Gilbert

    2003-01-01

    We have developed a GC-MS-MS assay for GHB in human hair. Five milligrams of washed hair were hydrolyzed by 1M or 0.01M NaOH before a liquid-liquid extraction with ethyl acetate under acidic conditions. GHB-d(6) was used as the internal standard. TMS derivatives were formed before injection. TBDMS derivatives were used in cases of strong chromatographic interferences or in a confirmatory procedure. Analysis of basal levels of GHB in 61 drug-free donors gave the following results: the mean measured concentration for blond hair was 0.60 ng/mg (n = 12), SD = 0.19 ng/mg, and extreme figures were in the range 0.35-0.95 ng/mg. For brown hair, the mean measured concentration was 0.90 ng/mg (n = 30), SD = 0.42 ng/mg, and extreme figures 0.41-1.86 ng/mg. For black hair, the mean measured concentration was 0.90 ng/mg (n = 19), SD = 0.37 ng/mg, and extreme figures 0.32-1.54 ng/mg, showing no significant differences depending on hair color. Analysis of basal levels of GHB of 12 or more specimens in segmented hair showed a mean concentration of 1.22 ng/mg (0.31-8.4 ng/mg) and a relative standard deviation for each individual ranging from 6.75% to 37.98%. GHB was administered to a healthy 53-year-old white male (light brown hair) at oral dosages of 30, 45, and 60 mg/kg. Beard hair was collected just before administration and 24 h after (and each day for one week for the last dose), and a 7.5-cm scalp hair lock was collected 7 days after the last dose. A rise in GHB concentration was observed in beard hair for the 45 and 60 mg/kg dosages with a maximum at 24 h, whereas no change was observed for the 30 mg/kg dosage. Scalp hair was segmented into 3-mm long segments. The three proximal last segments showed significantly (0.0005 < p < 0.005) different concentrations of GHB (1.22, 1.27, and 1.66 ng/mg, respectively) when compared with the basal physiological level of GHB in this same person (mean = 0.62 ng/mg, SD = 0.15 ng/mg). A case of daily GHB abuse during bodybuilding allowed us

  1. Potential of IRMS technology for tracing gamma-butyrolactone (GBL).

    PubMed

    Marclay, François; Pazos, Diego; Delémont, Olivier; Esseiva, Pierre; Saudan, Christophe

    2010-05-20

    Popularity of gamma-hydroxybutyric acid (GHB) is fairly stable among drug users, while the consumption of its chemical precursor, gamma-butyrolactone (GBL), is a growing phenomenon. Although conventional analytical methods allow to detect this substance in various matrices, linking a trace and a source is still a difficult challenge. However, as several synthesis pathways and chemical precursors exist for the production of GBL, its carbon isotopic signature may vary extensively. For that purpose, a method has been developed to determine the carbon isotopes content of GBL by means of gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). The delta(13)C-values of 19 bulk samples purchased worldwide were in the range from -23.1 to -45.8 per thousand (SD<0.3 per thousand). Furthermore, testing on the purification of GBL by distillation has not been found to be consistent with such a large range of delta(13)C-values, which are likely to result from the isotopic composition of the organic precursors used to produce GBL together with the kinetic isotope effect associated with the synthesis routes. Finally, inter- and intra-variability measurements of the delta(13)C-values demonstrated the high potential of IRMS for discriminating between seizures of GBL and for source determination.

  2. Club drug use and dependence among young adults recruited through time-space sampling.

    PubMed

    Parsons, Jeffrey T; Grov, Christian; Kelly, Brian C

    2009-01-01

    Ketamine, methylenedioxymethamphetamine (MDMA/ecstasy), cocaine, gamma-hydroxybutyrate (GHB), methamphetamine, and d-lysergic acid diethylamide (LSD/acid) have been identified as "club drugs" because of their link to club culture among young adults. Yet little is known about users' demographic differences in the prevalence of club drugs. This study sought to provide a comprehensive profile of users' demographic differences in prevalence of club drug use and dependence. Using time-space sampling, a stratified sample of 400 18- to 29-year-old club-going young adults was recruited into the Club Drugs and Health Project. Though participants reported using an array of club drugs, almost all participants (90.0%) were cocaine users. Although there were several sexual orientation and gender differences in recent drug exposure, patterns of use (measured in days) were fairly similar across gender, sexual orientation, and age. Finally, a majority of individuals (58.5%) met or exceeded criteria for club drug dependence, with most (61.7%) indicating cocaine was the one drug causing them significant problems. Cocaine is a major drug in club culture. It is essential to develop culturally appropriate drug education and prevention initiatives for young adults using club drugs.

  3. In vitro production of GHB in blood and serum samples under various storage conditions.

    PubMed

    Zörntlein, S W; Kopp, A; Becker, J; Kaufmann, T J; Röhrich, J; Urban, R

    2012-01-10

    The in vitro production of GHB was observed in freshly collected, untreated whole blood samples using glass BD-Vacutainers and polypropylene S-monovettes. GHB concentrations were determined daily over a period of one week and after 3, 6 and 9 weeks again. Furthermore, the GHB concentration in 40 untreated random whole blood samples stored at 4°C for a longer period of time (10 samples 12 month, 10 samples 24 month and 20 samples 36 month) was also determined. For comparison, the in vitro production of GHB in freshly collected and prepared serum samples was observed. GHB serum concentrations were determined three times over a period of one week and once again after six weeks. Sample preparation was performed by means of methanolic extraction following the precipitation of whole blood and serum samples. A methanolic standard calibration was done in a low range of 0.005-0.1 μg/mL (LOD: 0.004, LLOQ: 0.013). For quantification a spiked blood bank serum with a determined GHB concentration of 0.09 μg/mL was used. Corrected calibrations in the range of 0.09-5.09 μg/mL were used (LOD: 0.08 μg/mL, LLOQ: 0.30 μg/mL), recovery: 91.3% (high level: 4.09 μg/mL) 50.5% (low level: 0.19 μg/mL). Relevant elevation of GHB was observed in all whole blood samples stored in liquid form (4°C or room temperature). In two of the 40 whole blood samples stored over a longer period of time at 4°C, GHB concentrations in the range of 13 μg/mL were even determined. These findings constitute grounds for caution. Even a GHB cut-off level of 5 μg/mL cannot be considered as "absolutely positive" proof of a case of exogenous administration, at least in untreated liquid blood samples in long time storage. However, no significant elevations of GHB were otherwise observed in any of the serum samples independently of storage temperature nor in the whole blood samples that were frozen for storage. The results suggest that the cut-off for exogenous GHB of 5 μg/mL could be lowered significantly

  4. Ketamine-Induced Oscillations in the Motor Circuit of the Rat Basal Ganglia

    PubMed Central

    Alegre, Manuel; Pérez-Alcázar, Marta; Iriarte, Jorge; Artieda, Julio

    2011-01-01

    Oscillatory activity can be widely recorded in the cortex and basal ganglia. This activity may play a role not only in the physiology of movement, perception and cognition, but also in the pathophysiology of psychiatric and neurological diseases like schizophrenia or Parkinson's disease. Ketamine administration has been shown to cause an increase in gamma activity in cortical and subcortical structures, and an increase in 150 Hz oscillations in the nucleus accumbens in healthy rats, together with hyperlocomotion. We recorded local field potentials from motor cortex, caudate-putamen (CPU), substantia nigra pars reticulata (SNr) and subthalamic nucleus (STN) in 20 awake rats before and after the administration of ketamine at three different subanesthetic doses (10, 25 and 50 mg/Kg), and saline as control condition. Motor behavior was semiautomatically quantified by custom-made software specifically developed for this setting. Ketamine induced coherent oscillations in low gamma (50 Hz), high gamma (80 Hz) and high frequency (HFO, 150 Hz) bands, with different behavior in the four structures studied. While oscillatory activity at these three peaks was widespread across all structures, interactions showed a different pattern for each frequency band. Imaginary coherence at 150 Hz was maximum between motor cortex and the different basal ganglia nuclei, while low gamma coherence connected motor cortex with CPU and high gamma coherence was more constrained to the basal ganglia nuclei. Power at three bands correlated with the motor activity of the animal, but only coherence values in the HFO and high gamma range correlated with movement. Interactions in the low gamma band did not show a direct relationship to movement. These results suggest that the motor effects of ketamine administration may be primarily mediated by the induction of coherent widespread high-frequency activity in the motor circuit of the basal ganglia, together with a frequency-specific pattern of

  5. [The knowledge about gamma-hydroxybutyric acid as by students of Physical Education Academy].

    PubMed

    Chwaluk, Paweł; Chwaluk, Agnieszka; Parnicki, Florian

    2009-01-01

    Gamma-hydroxybutyric acid is a substance stealthily used by criminals to facilitate sexual assaults. It is also known as doping agent in sports. Physical Education Academies should prepare their graduates to be educators for young people, their trainers, organizers of sports and recreational events. Second year students of two majors: physical education and tourism and recreation were surveyed by means of questionnaire on "date-rape drug". As much as 320 among 327 students surveyed had heard about "date-rape drug". However their knowledge on it was shallow and unsystematic. None of the surveyed knew that the substance of "date-rape drug" could also be used as a doping agent. Only 31% of respondents were aware of existence of the test to detect "date-rape drug" in drinks. Physical Education Academy students should be thoroughly and relevantly educated on the matter of pharmacologic doping agents and drugs endangerment.

  6. Bidirectional Homeostatic Regulation of a Depression-Related Brain State by Gamma-Aminobutyric Acidergic Deficits and Ketamine Treatment.

    PubMed

    Ren, Zhen; Pribiag, Horia; Jefferson, Sarah J; Shorey, Matthew; Fuchs, Thomas; Stellwagen, David; Luscher, Bernhard

    2016-09-15

    Major depressive disorder is increasingly recognized to involve functional deficits in both gamma-aminobutyric acid (GABA)ergic and glutamatergic synaptic transmission. To elucidate the relationship between these phenotypes, we used GABAA receptor γ2 subunit heterozygous (γ2(+/-)) mice, which we previously characterized as a model animal with construct, face, and predictive validity for major depressive disorder. To assess possible consequences of GABAergic deficits on glutamatergic transmission, we quantitated the cell surface expression of N-methyl-D-aspartate (NMDA)-type and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-type glutamate receptors and the function of synapses in the hippocampus and medial prefrontal cortex of γ2(+/-) mice. We also analyzed the effects of an acute dose of the experimental antidepressant ketamine on all these parameters in γ2(+/-) versus wild-type mice. Modest defects in GABAergic synaptic transmission of γ2(+/-) mice resulted in a strikingly prominent homeostatic-like reduction in the cell surface expression of NMDA-type and AMPA-type glutamate receptors, along with prominent functional impairment of glutamatergic synapses in the hippocampus and medial prefrontal cortex. A single subanesthetic dose of ketamine normalized glutamate receptor expression and synaptic function of γ2(+/-) mice to wild-type levels for a prolonged period, along with antidepressant-like behavioral consequences selectively in γ2(+/-) mice. The GABAergic synapses of γ2(+/-) mice were potentiated by ketamine in parallel but only in the medial prefrontal cortex. Depressive-like brain states that are caused by GABAergic deficits involve a homeostatic-like reduction of glutamatergic transmission that is reversible by an acute, subanesthetic dose of ketamine, along with regionally selective potentiation of GABAergic synapses. The data merge the GABAergic and glutamatergic deficit hypotheses of major depressive disorder. Copyright © 2016

  7. Adjunct Ketamine Use in the Management of Severe Ethanol Withdrawal.

    PubMed

    Pizon, Anthony F; Lynch, Michael J; Benedict, Neal J; Yanta, Joseph H; Frisch, Adam; Menke, Nathan B; Swartzentruber, Greg S; King, Andrew M; Abesamis, Michael G; Kane-Gill, Sandra L

    2018-05-08

    Ketamine offers a plausible mechanism with favorable kinetics in treatment of severe ethanol withdrawal. The purpose of this study is to determine if a treatment guideline using an adjunctive ketamine infusion improves outcomes in patients suffering from severe ethanol withdrawal. Retrospective observational cohort study. Academic tertiary care hospital. Patients admitted to the ICU and diagnosed with delirium tremens by Diagnostic and Statistical Manual of Mental Disorders V criteria. Pre and post guideline, all patients were treated in a symptom-triggered fashion with benzodiazepines and/or phenobarbital. Postguideline, standard symptom-triggered dosing continued as preguideline, plus, the patient was initiated on an IV ketamine infusion at 0.15-0.3 mg/kg/hr continuously until delirium resolved. Based upon withdrawal severity and degree of agitation, a ketamine bolus (0.3 mg/kg) was provided prior to continuous infusion in some patients. A total of 63 patients were included (29 preguideline; 34 postguideline). Patients treated with ketamine were less likely to be intubated (odds ratio, 0.14; p < 0.01; 95% CI, 0.04-0.49) and had a decreased ICU stay by 2.83 days (95% CI, -5.58 to -0.089; p = 0.043). For ICU days outcome, correlation coefficients were significant for alcohol level and total benzodiazepine dosing. For hospital days outcome, correlation coefficients were significant for patient age, aspartate aminotransferase, and alanine aminotransferase level. Regression revealed the use of ketamine was associated with a nonsignificant decrease in hospital stay by 3.66 days (95% CI, -8.40 to 1.08; p = 0.13). Mechanistically, adjunctive therapy with ketamine may attenuate the demonstrated neuroexcitatory contribution of N-methyl-D-aspartate receptor stimulation in severe ethanol withdrawal, reduce the need for excessive gamma-aminobutyric acid agonist mediated-sedation, and limit associated morbidity. A ketamine infusion in patients with delirium tremens was

  8. What You Need to Know about Drugs: GHB

    MedlinePlus

    ... for the purpose of getting people high. Like Ecstasy, GHB is a popular drug with club-goers ... drug is mixed with alcohol . Sometimes Called: Liquid Ecstasy, G, Georgia Home Boy, Cups How It's Used: ...

  9. Ketamine

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español Ketamine KidsHealth / For Teens / Ketamine Print en español Ketamina What It Is: Ketamine hydrochloride is a quick-acting anesthetic that is ...

  10. Surfing new territory: club-drug use and risky sex among Hispanic men who have sex with men recruited on the Internet.

    PubMed

    Fernández, M Isabel; Perrino, Tatiana; Collazo, Jose B; Varga, Leah M; Marsh, David; Hernandez, Nilda; Rehbein, Alfredo; Bowen, G Stephen

    2005-03-01

    The Internet presents unique and growing opportunities for conducting HIV/ STD research. This article reports on the first 171 participants enrolled in an ongoing study examining use of the Internet to recruit Hispanic men who have sex with men (HMSM) living in an AIDS epicenter to participate in community-based studies. First, it describes initial success with chatroom recruitment. Second, it compares the demographic, psychosocial, and sexual risk practices among HMSM recruited through the Internet who had used club drugs in the last 6 months and those who had not. In 2 months, 211 hours were spent recruiting in chatrooms; 735 chatroom users were engaged. Researchers used a scripted dialogue to describe the study and to invite chatroom users to visit the study's community sites for screening and enrollment. One hundred and seventy-six men came to the community sites; 172 (98%) were eligible and completed an audio-computer assisted self-interview. In the last 6 months, 48.5% of the sample had used club drugs [defined as cocaine, crystal methamphetamines (crystal), amyl nitrites (poppers), Ecstasy, gamma-hydroxybutyrate (GHB), ketamine (Special K), and Viagra]. The proportion of men reporting use of each drug was: cocaine (15.8%), crystal (11.7%), poppers (31.6%), Ecstasy (14%), GHB (3.5%), Special K (3.5%), and Viagra (19.3%). In multivariate analyses, having higher number of sex partners, having higher social isolation scores, and having engaged in unprotected receptive anal intercourse were significantly associated with club-drug use. These initial findings suggest that high-risk HMSM can be successfully recruited through chatroom dialogues to participate in community-based HIV studies. The alarmingly high rates of club-drug use and risky sexual practices among HMSM underscore the need for effective HIV preventive interventions for this population.

  11. Ketamine: A Review of Clinical Pharmacokinetics and Pharmacodynamics in Anesthesia and Pain Therapy.

    PubMed

    Peltoniemi, Marko A; Hagelberg, Nora M; Olkkola, Klaus T; Saari, Teijo I

    2016-09-01

    Ketamine is a phencyclidine derivative, which functions primarily as an antagonist of the N-methyl-D-aspartate receptor. It has no affinity for gamma-aminobutyric acid receptors in the central nervous system. Ketamine shows a chiral structure consisting of two optical isomers. It undergoes oxidative metabolism, mainly to norketamine by cytochrome P450 (CYP) 3A and CYP2B6 enzymes. The use of S-ketamine is increasing worldwide, since the S(+)-enantiomer has been postulated to be a four times more potent anesthetic and analgesic than the R(-)-enantiomer and approximately two times more effective than the racemic mixture of ketamine. Because of extensive first-pass metabolism, oral bioavailability is poor and ketamine is vulnerable to pharmacokinetic drug interactions. Sublingual and nasal formulations of ketamine are being developed, and especially nasal administration produces rapid maximum plasma ketamine concentrations with relatively high bioavailability. Ketamine produces hemodynamically stable anesthesia via central sympathetic stimulation without affecting respiratory function. Animal studies have shown that ketamine has neuroprotective properties, and there is no evidence of elevated intracranial pressure after ketamine dosing in humans. Low-dose perioperative ketamine may reduce opioid consumption and chronic postsurgical pain after specific surgical procedures. However, long-term analgesic effects of ketamine in chronic pain patients have not been demonstrated. Besides analgesic properties, ketamine has rapid-acting antidepressant effects, which may be useful in treating therapy-resistant depressive patients. Well-known psychotomimetic and cognitive adverse effects restrict the clinical usefulness of ketamine, even though fewer psychomimetic adverse effects have been reported with S-ketamine in comparison with the racemate. Safety issues in long-term use are yet to be resolved.

  12. Anesthetic efficacy of ketamine-diazepam, ketamine-xylazine, and ketamine-acepromazine in Caspian Pond turtles (Mauremys caspica).

    PubMed

    Adel, Milad; Sadegh, Amin Bigham; Arizza, Vincenzo; Abbasi, Hossein; Inguglia, Luigi; Saravi, Hasan Nasrollahzadeh

    2017-01-01

    The objective of this study was to assess the efficacy of different anesthetic drug combinations on the Caspian Pond turtles ( Mauremys caspica ). Three groups of the Caspian Pond turtles ( n = 6) were anesthetized with three different drug combinations. Initially, a pilot study was conducted to determine the best drug doses for the anesthetization of the turtles, and according to these results, ketamine-diazepam (120 mg/kg ketamine hydrochloride [5%] and 2 mg/kg diazepam [5%]), ketamine-acepromazine (120 mg/kg ketamine hydrochloride [5%] and 1 mg/kg acepromazine [1%]), and ketamine-xylazine (120 mg/kg ketamine hydrochloride [5%] and 1 mg/kg xylazine [2%]) were injected intramuscularly. The onset times of anesthetization and the recovery time were measured. Statistical analysis of the data was performed using one-way analysis of variance followed by t -tests, and P < 0.05 was considered statistically significant. There were statistically significant differences in the mean of the onset times of anesthesia and recovery time among the three drug combinations depending on the treatment used. The onset of anesthesia of the animals treated with the ketamine-diazepam combination was 60% and 42% shorter, for male and female turtles, respectively, compared to that obtained with the ketamine-acepromazine combination and 64% (male turtles) and 50% (female turtles) shorter than that obtained with the ketamine-xylazine combination. Further, the recovery time, in male turtles, was 17% shorter in animals treated with the first drug combination than those treated with the ketamine-acepromazine combination and 37% shorter than those treated with the ketamine-xylazine combination. The recovery time, in female turtles, did not seem to be significantly different among treatments. The study showed that the ketamine-diazepam drug combination is the anesthetic combination with the fastest onset time and shortest recovery time.

  13. Effects of aberrant gamma frequency oscillations on prepulse inhibition.

    PubMed

    Jones, Nigel C; Anderson, Paul; Rind, Gil; Sullivan, Caley; van den Buuse, Maarten; O'Brien, Terence J

    2014-10-01

    Emerging literature implicates abnormalities in gamma frequency oscillations in the pathophysiology of schizophrenia, with hypofunction of N-methyl-D-aspartate (NMDA) receptors implicated as a key factor. Prepulse inhibition (PPI) is a behavioural measure of sensorimotor gating, which is disrupted in schizophrenia. We studied relationships between ongoing and sensory-evoked gamma oscillations and PPI using pharmacological interventions designed to increase gamma oscillations (ketamine, MK-801); reduce gamma oscillations (LY379268); or disrupt PPI (amphetamine). We predicted that elevating ongoing gamma power would lead to increased 'neural noise' in cortical circuits, dampened sensory-evoked gamma responses and disrupted behaviour. Wistar rats were implanted with EEG recording electrodes. They received ketamine (5 mg/kg), MK-801 (0.16 mg/kg), amphetamine (0.5 mg/kg), LY379268 (3 mg/kg) or vehicle and underwent PPI sessions with concurrent EEG recording. Ketamine and MK-801 increased the power of ongoing gamma oscillations and caused time-matched disruptions of PPI, while amphetamine marginally affected ongoing gamma power. In contrast, LY379268 reduced ongoing gamma power, but had no effect on PPI. The sensory gamma response evoked by the prepulse was reduced following treatment with all psychotomimetics, associating with disruptions in PPI. This was most noticeable following treatment with NMDA receptor antagonists. We found that ketamine and MK-801 increase ongoing gamma power and reduce evoked gamma power, both of which are related to disruptions in sensorimotor gating. This appears to be due to antagonism of NMDA receptors, since amphetamine and LY379268 differentially impacted these outcomes and possess different neuropharmacological substrates. Aberrant gamma frequency oscillations caused by NMDA receptor hypofunction may mediate the sensory processing deficits observed in schizophrenia.

  14. Antidepressant Potential of (R)-Ketamine in Rodent Models: Comparison with (S)-Ketamine.

    PubMed

    Fukumoto, Kenichi; Toki, Hidetoh; Iijima, Michihiko; Hashihayata, Takashi; Yamaguchi, Jun-Ichi; Hashimoto, Kenji; Chaki, Shigeyuki

    2017-04-01

    The rapid-acting and long-lasting antidepressant effects of ( R,S )-ketamine have recently gained much attention. Although ( S )-ketamine has been studied as an active isomer, recent evidence suggests that ( R )-ketamine exhibits longer-lasting antidepressant effects than ( S )-ketamine in rodents. However, the antidepressant potential of ( R )-ketamine has not been fully addressed. In the present study, we compared the antidepressant effects of ( R )-ketamine with those of ( S )-ketamine in animal models of depression, including a model that is refractory to current medications. Both ( R )-ketamine and ( S )-ketamine exhibited antidepressant effects at 30 minutes as well as at 24 hours after administration in forced-swimming and tail-suspension tests in mice. At 48 hours after administration, however, ( R )-ketamine still exerted a significant antidepressant effect in the tail-suspension test, whereas the effect of ( S )-ketamine was no longer observed. Moreover, ( R )-ketamine, but not ( S )-ketamine, significantly reversed the depressive-like behavior induced by repeated treatments with corticosterone in rats at 24 hours after a single administration. This effect was attenuated by an α -amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor antagonist, suggesting the involvement of AMPA receptor stimulation in the effects. Both ( R )-ketamine and ( S )-ketamine exhibited practically the same exposure levels in plasma, brain, and cerebrospinal fluid in mice and rats, and both compounds were rapidly eliminated from plasma (<4-8 hours). The present results confirmed the previous findings that ( R )-ketamine exerted longer-lasting antidepressant effects than ( S )-ketamine in animal models of depression. Moreover, our study is the first to demonstrate that ( R )-ketamine exerted a sustained antidepressant effect even in a model that is refractory to currently prescribed antidepressants. Copyright © 2017 by The American Society for Pharmacology and

  15. Inhibition of 1,4-butanediol metabolism in human liver in vitro.

    PubMed

    Lenz, Daniel; Jübner, Martin; Bender, Katja; Wintermeyer, Annette; Beike, Justus; Rothschild, Markus A; Käferstein, Herbert

    2011-06-01

    The conversion of 1,4-butanediol (1,4-BD) to gamma-hydroxybutyric acid (GHB), a drug of abuse, is most probably catalyzed by alcohol dehydrogenase, and potentially by aldehyde dehydrogenase. The purpose of this study was to investigate the degradation of 1,4-BD in cytosolic supernatant of human liver in vitro, and to verify involvement of the suggested enzymes by means of gas chromatography-mass spectrometry. The coingestion of 1,4-BD and ethanol (EtOH) might cause complex pharmacokinetic interactions in humans. Therefore, the effect of EtOH on 1,4-BD metabolism by human liver was examined in vitro. Additionally, the influence of acetaldehyde (AL), which might inhibit the second step of 1,4-BD degradation, was investigated. In case of a 1,4-BD intoxication, the alcohol dehydrogenase inhibitor fomepizole (4-methylpyrazole, FOM) has been discussed as an antidote preventing the formation of the central nervous system depressing GHB. Besides FOM, we tested pyrazole, disulfiram, and cimetidine as possible inhibitors of the formation of GHB from 1,4-BD catalyzed by human liver enzymes in vitro. The conversion of 1,4-BD to GHB was inhibited competitively by EtOH with an apparent K(i) of 0.56 mM. Therefore, the coingestion of 1,4-BD and EtOH might increase the concentrations and the effects of 1,4-BD itself. By contrast AL accelerated the formation of GHB. All antidotes showed the ability to inhibit the formation of GHB. In comparison FOM showed the highest inhibitory effectiveness. Furthermore, the results confirm strong involvement of ADH in 1,4-BD metabolism by human liver.

  16. Acute poisonings treated in hospitals in Oslo: a one-year prospective study (I): pattern of poisoning.

    PubMed

    Hovda, K E; Bjornaas, M A; Skog, K; Opdahl, A; Drottning, P; Ekeberg, O; Jacobsen, D

    2008-01-01

    Prospective design is mandatory to study pattern of poisoning and suicidal intention of patients. Prospective cross-sectional multi-center study of all patients contacting health care services because of acute poisoning during one year in Oslo, irrespective of intention. Data on the adult hospitalized patients (> or = 16 years) are presented here. Of a total of 3,775 such adult contacts (3,025 episodes), there were 947 (31 %) hospitalizations; annual incidence 1.9 (per 1,000) in males and 2.1 in females. Median age was 36 years (range 16-89); 54% females. Benzodiazepines (18%), ethanol (17%), paracetamol (12%), opioids (7%), and gamma hydroxybutyric acid (GHB) (7%) were most frequently taken. Patients stated suicidal intention in 29% of the admissions; physicians in 10%. Benzodiazepines and ethanol were the most common agents, but newer illicit drugs were frequent, especially GHB. Males often took ethanol and drugs of abuse; females often used prescription drugs with suicidal intention.

  17. Ketamine

    MedlinePlus

    ... DEA Museum and Visitors' Center National Prevention Week Ketamine Last Updated: Wednesday, December 27, 2017 What is ... Agitation, depression, unconsciousness Hallucinations Flashbacks Read More About Ketamine Be Informed. Search for information about a drug ...

  18. Microwave-assisted on-spot derivatization for gas chromatography-mass spectrometry based determination of polar low molecular weight compounds in dried blood spots.

    PubMed

    Sadones, Nele; Van Bever, Elien; Archer, John R H; Wood, David M; Dargan, Paul I; Van Bortel, Luc; Lambert, Willy E; Stove, Christophe P

    2016-09-23

    Dried blood spot (DBS) sampling and analysis is increasingly being applied in bioanalysis. Although the use of DBS has many advantages, it is also associated with some challenges. E.g. given the limited amount of available material, highly sensitive detection techniques are often required to attain sufficient sensitivity. In gas chromatography coupled to mass spectrometry (GC-MS), derivatization can be helpful to achieve adequate sensitivity. Because this additional sample preparation step is considered as time-consuming, we introduce a new derivatization procedure, i.e. "microwave-assisted on-spot derivatization", to minimize sample preparation of DBS. In this approach the derivatization reagents are directly applied onto the DBS and derivatization takes place in a microwave instead of via conventional heating. In this manuscript we evaluated the applicability of this new concept of derivatization for the determination of two polar low molecular weight molecules, gamma-hydroxybutyric acid (GHB) and gabapentin, in DBS using a standard GC-MS configuration. The method was successfully validated for both compounds, with imprecision and bias values within acceptance criteria (<20% at LLOQ, <15% at 3 other QC levels). Calibration lines were linear over the 10-100μg/mL and 1-30μg/mL range for GHB and gabapentin, respectively. Stability studies revealed no significant decrease of gabapentin and GHB in DBS upon storage at room temperature for at least 84 days. Furthermore, DBS-specific parameters, including hematocrit and volume spotted, were evaluated. As demonstrated by the analysis of GHB and gabapentin positive samples, "microwave-assisted on-spot derivatization" proved to be reliable, fast and applicable in routine toxicology. Moreover, other polar low molecular weight compounds of interest in clinical and/or forensic toxicology, including vigabatrin, beta-hydroxybutyric acid, propylene glycol, diethylene glycol, 1,4-butanediol and 1,2-butanediol, can also be

  19. Ketamine and international regulations.

    PubMed

    Liao, Yanhui; Tang, Yi-Lang; Hao, Wei

    2017-09-01

    Ketamine is an anesthetic commonly used in low-income countries and has recently been shown to be effective for treatment-resistant depression. However, the illicit manufacturing, trafficking, and nonmedical use of ketamine are increasing globally, and its illicit use poses major public health challenges in many countries. To review the nonmedical use of ketamine in selected countries and its regulatory control. We conducted a review of literature identified from searches of the China National Knowledge Infrastructure (CNKI) (1979-2016) and PubMed databases, supplemented by additional references identified by the authors. Special attention was given to the regulation of ketamine. Illicit manufacturing, trafficking, and use of ketamine appear to have begun on a large scale in several Asian nations, and it has subsequently spread to other regions. Regulations governing availability of ketamine vary across countries, but there is a clear trend toward tighter regulations. As nonmedical use of ketamine and its harmful consequences have worsened globally, stricter controls are necessary. Appropriate regulation of ketamine is important for international efforts to control ketamine's cross-border trafficking and its nonmedical use.

  20. Effects of GABA-B receptor positive modulator on ketamine-induced psychosis-relevant behaviors and hippocampal electrical activity in freely moving rats.

    PubMed

    Ma, Jingyi; Stan Leung, L

    2017-10-01

    Decreased GABA B receptor function is proposed to mediate some symptoms of schizophrenia. In this study, we tested the effect of CGP7930, a GABA B receptor positive allosteric modulator, on ketamine-induced psychosis-relevant behaviors and hippocampal electrical activity in behaving rats. Electrodes were bilaterally implanted into the hippocampus, and cannulae were placed into the lateral ventricles of Long-Evans rats. CGP7930 or vehicle was injected intraperitoneally (i.p.) or intracerebroventricularly (i.c.v.), alone or 15 min prior to ketamine (3 mg/kg, subcutaneous) injection. Paired click auditory evoked potentials in the hippocampus (AEP), prepulse inhibition (PPI), and locomotor activity were recorded before and after drug injection. CGP7930 at doses of 1 mg/kg (i.p.) prevented ketamine-induced deficit of PPI. CGP7930 (1 mg/kg i.p.) also prevented the decrease in gating of hippocampal AEP and the increase in hippocampal gamma (65-100 Hz) waves induced by ketamine. Unilateral i.c.v. infusion of CGP7930 (0.3 mM/1 μL) also prevented the decrease in gating of hippocampal AEP induced by ketamine. Ketamine-induced behavioral hyperlocomotion was suppressed by 5 mg/kg i.p. CGP7930. CGP7930 alone, without ketamine, did not significantly affect integrated PPI, locomotion, gating of hippocampal AEP, or gamma waves. CGP7930 (1 mg/kg i.p.) increased heterosynaptically mediated paired pulse depression in the hippocampus, a measure of GABA B receptor function in vivo. CGP7930 reduces the behavioral and electrophysiological disruptions induced by ketamine in animals, and the hippocampus may be one of the neural targets where CGP7930 exerts its actions.

  1. The ability of two commercially available quick test kits to detect drug-facilitated sexual assault drugs in beverages.

    PubMed

    Beynon, C M; Sumnall, H R; McVeigh, J; Cole, J C; Bellis, M A

    2006-10-01

    Assessment of the sensitivity and specificity of two commercially available 'drug-facilitated sexual assault' drug detector kits, Drink Guard and Drink Detective. Experimental. Laboratory. Gamma hydroxybutyrate (GHB) sodium salt, ketamine hydrochloride, temazepam, flunitrazepam and diazepam were dissolved (Tween added to benzodiazepine solutions) as separate stock solutions and added to 330 ml samples of cola (Pepsi Max), beer (Stella Artois), 'alcopop' (Bacardi Breezer) and placebo (distilled water). The doses used are reported to be common in cases of intoxication. Each kit was tested 10 times for each drink/drug combination. Two blind, independent observers scored each test (presence/absence of drug) in accordance with kit instructions; chi 2 was used to compare the proportion of times raters scored tests correctly and incorrectly. Sensitivity and specificity were calculated overall, for each drink, and sensitivity was calculated for each drug. Inter-observer agreement was evaluated using the kappa statistic. While both raters were able to score significantly more tests correctly than incorrectly using Drink Detective, and one rater scored similarly using Drink Guard, the overall sensitivity of Drink Detective and Drink Guard was 69.0% (95% CI 64.2-73.5%) and 37.5% (95% CI 30.1-45.5%), respectively. Sensitivity was drink-dependent. Drink Detective was unable to detect our dose of GHB in water, with all tests scored negatively by both raters for this drink/drug combination (n = 20 negative scores). Overall, specificity was 76.6% (95% CI 71.5-81.0%) and 87.9% (95% CI 83.0-91.6%) for Drink Guard and Drink Detective, respectively, but was affected by the beverage. Inter-rater agreement was poor for Drink Guard (kappa = 0.278 +/- 0.069) but excellent for Drink Detective (kappa = 0.894 +/- 0.245). Inter-observer agreement was drug-dependent. Use of drug detector kits by the public in the night-time environment needs further investigation and may create a false sense

  2. Cognitive, psychomotor, and subjective effects of sodium oxybate and triazolam in healthy volunteers

    PubMed Central

    Carter, Lawrence P.; Griffiths, Roland R.; Mintzer, Miriam Z.

    2009-01-01

    Rationale Illicit gamma-hydroxybutyrate (GHB) has received attention as a “date rape drug” that produces robust amnesia; however, there is little experimental evidence in support of GHB’s amnestic effects. Objectives This study compared the cognitive effects of GHB (sodium oxybate) with those of triazolam in healthy volunteers. Materials and methods Doses of sodium oxybate (1.125, 2.25, and 4.5 g/70 kg), triazolam (0.125, 0.25, and 0.5 mg/70 kg), and placebo were administered to 15 volunteers under repeated measures, counterbalanced, double-blind, double-dummy conditions. The time course and peak physiological, psychomotor, subjective, and cognitive effects were examined. Results Sodium oxybate and triazolam produced similar increases in participant ratings of drug effects. Performance on psychomotor, working memory, and episodic memory tasks was impaired to a greater extent after triazolam than sodium oxybate. Conclusions Together, these data suggest that sodium oxybate produces less psychomotor and cognitive impairment than triazolam at doses that produce equivalent participant-rated subjective effects in healthy volunteers. PMID:19543883

  3. Repeated ketamine administration alters N-methyl-d-aspartic acid receptor subunit gene expression: Implication of genetic vulnerability for ketamine abuse and ketamine psychosis in humans

    PubMed Central

    Lipsky, Robert H

    2015-01-01

    For more than 40 years following its approval by the Food and Drug Administration (FDA) as an anesthetic, ketamine, a non-competitive N-methyl-d-aspartic acid (NMDA) receptor antagonist, has been used as a tool of psychiatric research. As a psychedelic drug, ketamine induces psychotic symptoms, cognitive impairment, and mood elevation, which resemble some symptoms of schizophrenia. Recreational use of ketamine has been increasing in recent years. However, little is known of the underlying molecular mechanisms responsible for ketamine-associated psychosis. Recent animal studies have shown that repeated ketamine administration significantly increases NMDA receptor subunit gene expression, in particular subunit 1 (NR1 or GluN1) levels. This results in neurodegeneration, supporting a potential mechanism where up-regulation of NMDA receptors could produce cognitive deficits in chronic ketamine abuse patients. In other studies, NMDA receptor gene variants are associated with addictive behavior. Here, we focus on the roles of NMDA receptor gene subunits in ketamine abuse and ketamine psychosis and propose that full sequencing of NMDA receptor genes may help explain individual vulnerability to ketamine abuse and ketamine-associated psychosis. PMID:25245072

  4. [Ketamine--dreams and realities].

    PubMed

    Arditti, J; Spadari, M; de Haro, L; Brun, A; Bourdon, J H; Valli, M

    2002-01-01

    Ketamine is an anaesthetic used in human medicine and veterinary practice, synthesised on 1962 and marketed on 1970 in France. Recreational uses were described during 1992 in the medical community and in 1996 in the dance settings. The chemical name of ketamine is 2--(2chlorophenyl)2-(methylamine)-cyclohexanone, an aryl cyclohexylamine, structurally related to phencyclidine. Ketamine is known under the following street names: Keta K, Kate, Special K, Vitamin K, la Golden, la Vétérinaire. Ketamine is used intranasally, orally and intramusculary in recreational use. Ketamine is manufactured by the chemical industry. Due to the complicated synthesis, it is sold illicitly for recreational use. Ketamine is a dissociative drug, and the user enters in a psychedelic dream with hallucinations, floating sensation, feeling of dissociation of the mind from the body. The dream is forgotten, the user full in reality with loss of self control, risk of acute intoxication. In long-term exposure, tolerance, dependence, withdrawal signs and flash back are described. Ketamine trademarks are subject to control in France through medicine legislation Ketamine and its salts are subject to control under the national legislation on narcotics and psychotropics substance. From September 2001, the theft of medical and veterinary trademarks have to be declared to police, care health authority Pharmacy control authority and French Health Products Safety Agency.

  5. 21 CFR 522.1222 - Ketamine.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Ketamine. 522.1222 Section 522.1222 Food and Drugs..., AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.1222 Ketamine. (a) Specifications. Each milliliter contains ketamine hydrochloride equivalent to 100 milligrams (mg) ketamine base...

  6. Melatonin successfully rescues hippocampal bioenergetics and improves cognitive function following drug intoxication by promoting Nrf2-ARE signaling activity.

    PubMed

    Chen, Li-You; Renn, Ting-Yi; Liao, Wen-Chieh; Mai, Fu-Der; Ho, Ying-Jui; Hsiao, George; Lee, Ai-Wei; Chang, Hung-Ming

    2017-09-01

    Prolonged exposure to gamma-hydroxybutyric acid (GHB) would cause drug intoxication in which impaired cognitive function results from enhanced hippocampal oxidative stress may serve as a major symptom in this deficiency. Considering melatonin possesses significant anti-oxidative efficacy, this study aimed to determine whether melatonin would successfully promote the nuclear factor erythroid 2-related factor 2 and antioxidant responsive element (Nrf2-ARE) signaling, depress oxidative stress, and rescue hippocampal bioenergetics and cognitive function following drug intoxication injury. Adolescent rats subjected to 10 days of GHB were received melatonin at doses of either 10 or 100 mg/kg. Time-of-flight secondary ion mass spectrometry, biochemical assay, quantitative histochemistry, [ 14 C]-2-deoxyglucose analysis, together with Morris water maze were employed to detect the molecular signaling, oxidative status, bioenergetic level, as well as the cognitive performances, respectively. Results indicated that in GHB-intoxicated rats, enhanced oxidative stress, increased cholesterol level, and decreased anti-oxidative enzymes activities were detected in hippocampal regions. Intense oxidative stress paralleled well with reduced bioenergetics and poor performance in behavioral testing. However, in rats treated with melatonin following GHB intoxication, all above parameters and cognitive function were gradually returned to nearly normal levels. Melatonin also remarkably promoted the translocation of Nrf2 from cytoplasm to nucleus in a dose-dependent manner, thereby increased the Nrf2-ARE signaling-related downstream anti-oxidative enzymes activities. As melatonin effectively rescues hippocampal bioenergetics through depressing the oxidative stress by promoting Nrf2-ARE molecular machinery, this study thus highlights for the first time that clinical use of melatonin may serve as a therapeutic strategy to improve the cognitive function in unsuspecting victims suffered from

  7. ASSAY OF POLY-β-HYDROXYBUTYRIC ACID

    PubMed Central

    Law, John H.; Slepecky, Ralph A.

    1961-01-01

    Law, John H. (Harvard University, Cambridge, Mass.) and Ralph A. Splepecky. Assay of poly-β-hydroxybutyric acid. J. Bacteriol. 82:33–36. 1961—A convenient spectrophotometric assay of bacterial poly-β-hydroxybutyric acid has been devised. Quantitative conversion of poly-β-hydroxybutyric acid to crotonic acid by heating in concentrated sulfuric acid and determination of the ultraviolet absorption of the produce permits an accurate determination of this material in quantities down to 5 μg. This method has been used to follow the production of poly-β-hydroxybutyric acid by Bacillus megaterium strain KM. PMID:13759651

  8. Ketamine for pain

    PubMed Central

    Jonkman, Kelly; Dahan, Albert; van de Donk, Tine; Aarts, Leon; Niesters, Marieke; van Velzen, Monique

    2017-01-01

    The efficacy of the N-methyl-D-aspartate receptor antagonist ketamine as an analgesic agent is still under debate, especially for indications such as chronic pain. To understand the efficacy of ketamine for relief of pain, we performed a literature search for relevant narrative and systematic reviews and meta-analyses. We retrieved 189 unique articles, of which 29 were deemed appropriate for use in this review. Ketamine treatment is most effective for relief of postoperative pain, causing reduced opioid consumption. In contrast, for most other indications (that is, acute pain in the emergency department, prevention of persistent postoperative pain, cancer pain, and chronic non-cancer pain), the efficacy of ketamine is limited. Ketamine’s lack of analgesic effect was associated with an increase in side effects, including schizotypical effects. PMID:28979762

  9. Distinct retrosplenial cortex cell populations and their spike dynamics during ketamine-induced unconscious state.

    PubMed

    Fox, Grace E; Li, Meng; Zhao, Fang; Tsien, Joe Z

    2017-01-01

    Ketamine is known to induce psychotic-like symptoms, including delirium and visual hallucinations. It also causes neuronal damage and cell death in the retrosplenial cortex (RSC), an area that is thought to be a part of high visual cortical pathways and at least partially responsible for ketamine's psychotomimetic activities. However, the basic physiological properties of RSC cells as well as their response to ketamine in vivo remained largely unexplored. Here, we combine a computational method, the Inter-Spike Interval Classification Analysis (ISICA), and in vivo recordings to uncover and profile excitatory cell subtypes within layers 2&3 and 5&6 of the RSC in mice within both conscious, sleep, and ketamine-induced unconscious states. We demonstrate two distinct excitatory principal cell sub-populations, namely, high-bursting excitatory principal cells and low-bursting excitatory principal cells, within layers 2&3, and show that this classification is robust over the conscious states, namely quiet awake, and natural unconscious sleep periods. Similarly, we provide evidence of high-bursting and low-bursting excitatory principal cell sub-populations within layers 5&6 that remained distinct during quiet awake and sleep states. We further examined how these subtypes are dynamically altered by ketamine. During ketamine-induced unconscious state, these distinct excitatory principal cell subtypes in both layer 2&3 and layer 5&6 exhibited distinct dynamics. We also uncovered different dynamics of local field potential under various brain states in layer 2&3 and layer 5&6. Interestingly, ketamine administration induced high gamma oscillations in layer 2&3 of the RSC, but not layer 5&6. Our results show that excitatory principal cells within RSC layers 2&3 and 5&6 contain multiple physiologically distinct sub-populations, and they are differentially affected by ketamine.

  10. Ketamine - A Multifaceted Drug.

    PubMed

    Meng, Lingzhong; Li, Jian; Lu, Yi; Sun, Dajin; Tao, Yuan-Xiang; Liu, Renyu; Luo, Jin Jun

    There is a petition for tight control of ketamine from the Chinese government to classify ketamine as a Schedule I drug, which is defined as a drug with no currently accepted medical use but a high potential for abuse. However, ketamine has unique properties that can benefit different patient populations. Scholars from the Translational Perioperative and Pain Medicine and the International Chinese Academy of Anesthesiology WeChat groups had an interactive discussion on ketamine, including its current medical applications, future research priorities, and benefits versus risks. The discussion is summarized in this manuscript with some minor edits.

  11. Current Ketamine Practice: Results of the 2016 American Society of Pain Management Nursing Survey on Ketamine.

    PubMed

    Klaess, Cynthia C; Jungquist, Carla R

    2018-06-01

    Ketamine is increasingly utilized for a variety of pain management challenges. Audience comments from a ketamine presentation at the 2015 American Society of Pain Management Nursing (ASPMN) Conference reflected wide variation in ketamine practices as well as barriers to use. The goal was to gain a greater understanding of ASPMN member practice patterns and barriers related to ketamine as adjunctive therapy for pain management. A questionnaire survey design was used. Respondents represented 35 states and 2 countries. The participants were 146 respondents from ASPMN membership (1,485 members). The survey was distributed by ASPMN on SurveyMonkey. Practice setting and ketamine administration practices were assessed with areas for comments. Results were reviewed using frequencies to describe responses and formatted into tables. Comments were individually reviewed and grouped into common themes. Administration of ketamine as an analgesic was reported by 63% of respondents. Continuous intravenous ketamine infusions were the most common route of administration (65%); however, wide variability in dosing and length of therapy was reported. A wide variety of practices and challenges related to ketamine utilization were noted. Numerous studies have indicated the analgesic benefits of ketamine in pain management. The lack of practice standardization has created challenges to its consistent use and outcome measurement. Additionally, the off-label use of ketamine for pain management creates its own unique challenges. However, given the current national climate with intense focus on pain management, interdisciplinary practitioners have an ideal opportunity to evaluate ketamine's use in a comprehensive approach to pain management. Copyright © 2018 American Society for Pain Management Nursing. Published by Elsevier Inc. All rights reserved.

  12. Effects of Ketamine and Ketamine Metabolites on Evoked Striatal Dopamine Release, Dopamine Receptors, and Monoamine Transporters

    PubMed Central

    Can, Adem; Zanos, Panos; Moaddel, Ruin; Kang, Hye Jin; Dossou, Katinia S. S.; Wainer, Irving W.; Cheer, Joseph F.; Frost, Douglas O.; Huang, Xi-Ping

    2016-01-01

    Following administration at subanesthetic doses, (R,S)-ketamine (ketamine) induces rapid and robust relief from symptoms of depression in treatment-refractory depressed patients. Previous studies suggest that ketamine’s antidepressant properties involve enhancement of dopamine (DA) neurotransmission. Ketamine is rapidly metabolized to (2S,6S)- and (2R,6R)-hydroxynorketamine (HNK), which have antidepressant actions independent of N-methyl-d-aspartate glutamate receptor inhibition. These antidepressant actions of (2S,6S;2R,6R)-HNK, or other metabolites, as well as ketamine’s side effects, including abuse potential, may be related to direct effects on components of the dopaminergic (DAergic) system. Here, brain and blood distribution/clearance and pharmacodynamic analyses at DA receptors (D1–D5) and the DA, norepinephrine, and serotonin transporters were assessed for ketamine and its major metabolites (norketamine, dehydronorketamine, and HNKs). Additionally, we measured electrically evoked mesolimbic DA release and decay using fast-scan cyclic voltammetry following acute administration of subanesthetic doses of ketamine (2, 10, and 50 mg/kg, i.p.). Following ketamine injection, ketamine, norketamine, and multiple hydroxynorketamines were detected in the plasma and brain of mice. Dehydronorketamine was detectable in plasma, but concentrations were below detectable limits in the brain. Ketamine did not alter the magnitude or kinetics of evoked DA release in the nucleus accumbens in anesthetized mice. Neither ketamine’s enantiomers nor its metabolites had affinity for DA receptors or the DA, noradrenaline, and serotonin transporters (up to 10 μM). These results suggest that neither the side effects nor antidepressant actions of ketamine or ketamine metabolites are associated with direct effects on mesolimbic DAergic neurotransmission. Previously observed in vivo changes in DAergic neurotransmission following ketamine administration are likely indirect. PMID

  13. A novel quadruplex real-time PCR method for simultaneous detection of Cry2Ae and two genetically modified cotton events (GHB119 and T304-40).

    PubMed

    Li, Xiang; Wang, Xiuxiu; Yang, Jielin; Liu, Yueming; He, Yuping; Pan, Liangwen

    2014-05-16

    To date, over 150 genetically modified (GM) crops are widely cultivated. To comply with regulations developed for genetically modified organisms (GMOs), including labeling policies, many detection methods for GMO identification and quantification have been developed. To detect the entrance and exit of unauthorized GM crop events in China, we developed a novel quadruplex real-time PCR method for simultaneous detection and quantification of GM cotton events GHB119 and T304-40 in cotton-derived products (based on the 5'-flanking sequence) and the insect-resistance gene Cry2Ae. The limit of detection was 10 copies for GHB119 and Cry2Ae and 25 copies for T304-40. The limit of quantification was 25 copies for GHB119 and Cry2Ae and 50 copies for T304-40. Moreover, low bias and acceptable standard deviation and relative standard deviation values were obtained in quantification analysis of six blind samples containing different GHB119 and T304-40 ingredients. The developed quadruplex quantitative method could be used for quantitative detection of two GM cotton events (GHB119 and T304-40) and Cry2Ae gene ingredient in cotton derived products.

  14. Distinct retrosplenial cortex cell populations and their spike dynamics during ketamine-induced unconscious state

    PubMed Central

    Zhao, Fang; Tsien, Joe Z.

    2017-01-01

    Ketamine is known to induce psychotic-like symptoms, including delirium and visual hallucinations. It also causes neuronal damage and cell death in the retrosplenial cortex (RSC), an area that is thought to be a part of high visual cortical pathways and at least partially responsible for ketamine’s psychotomimetic activities. However, the basic physiological properties of RSC cells as well as their response to ketamine in vivo remained largely unexplored. Here, we combine a computational method, the Inter-Spike Interval Classification Analysis (ISICA), and in vivo recordings to uncover and profile excitatory cell subtypes within layers 2&3 and 5&6 of the RSC in mice within both conscious, sleep, and ketamine-induced unconscious states. We demonstrate two distinct excitatory principal cell sub-populations, namely, high-bursting excitatory principal cells and low-bursting excitatory principal cells, within layers 2&3, and show that this classification is robust over the conscious states, namely quiet awake, and natural unconscious sleep periods. Similarly, we provide evidence of high-bursting and low-bursting excitatory principal cell sub-populations within layers 5&6 that remained distinct during quiet awake and sleep states. We further examined how these subtypes are dynamically altered by ketamine. During ketamine-induced unconscious state, these distinct excitatory principal cell subtypes in both layer 2&3 and layer 5&6 exhibited distinct dynamics. We also uncovered different dynamics of local field potential under various brain states in layer 2&3 and layer 5&6. Interestingly, ketamine administration induced high gamma oscillations in layer 2&3 of the RSC, but not layer 5&6. Our results show that excitatory principal cells within RSC layers 2&3 and 5&6 contain multiple physiologically distinct sub-populations, and they are differentially affected by ketamine. PMID:29073221

  15. Suppressive effects of ketamine on macrophage functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang Yi; Department of Anesthesiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan; Chen, T.-L.

    2005-04-01

    Ketamine is an intravenous anesthetic agent. Clinically, induction of anesthesia with ketamine can cause immunosuppression. Macrophages play important roles in host defense. In this study, we attempted to evaluate the effects of ketamine on macrophage functions and its possible mechanism using mouse macrophage-like Raw 264.7 cells as the experimental model. Exposure of macrophages to 10 and 100 {mu}M ketamine, which correspond to 0.1 and 1 times the clinically relevant concentration, for 1, 6, and 24 h had no effect on cell viability or lactate dehydrogenase release. When the administered concentration reached 1000 {mu}M, ketamine caused a release of lactate dehydrogenasemore » and cell death. Ketamine, at 10 and 100 {mu}M, did not affect the chemotactic activity of macrophages. Administration of 1000 {mu}M ketamine in macrophages resulted in a decrease in cell migration. Treatment of macrophages with ketamine reduced phagocytic activities. The oxidative ability of macrophages was suppressed by ketamine. Treatment with lipopolysaccharide induced TNF-{alpha}, IL-1{beta}, and IL-6 mRNA in macrophages. Administration of ketamine alone did not influence TNF-{alpha}, IL-1{beta}, or IL-6 mRNA production. Meanwhile, cotreatment with ketamine and lipopolysaccharide significantly inhibited lipopolysaccharide-induced TNF-{alpha}, IL-1{beta}, and IL-6 mRNA levels. Exposure to ketamine led to a decrease in the mitochondrial membrane potential. However, the activity of mitochondrial complex I NADH dehydrogenase was not affected by ketamine. This study shows that a clinically relevant concentration of ketamine (100 {mu}M) can suppress macrophage function of phagocytosis, its oxidative ability, and inflammatory cytokine production possibly via reduction of the mitochondrial membrane potential instead of direct cellular toxicity.« less

  16. Cost-Effectiveness of Postoperative Ketamine in Chiari Decompression.

    PubMed

    McDowell, Michael M; Alhourani, Ahmad; Pearce-Smith, Beverly A; Mazurkiewicz, Anna; Friedlander, Robert M

    2018-02-01

    In Chiari I patients, postoperative pain and discomfort frequently slow the transition back to the home setting. We sought to determine the effect of standardized ketamine infusion protocols on hospital length of stay (LOS). This retrospective cohort study reviewed 100 consecutive adult patients undergoing Chiari I decompression. Fifty-nine patients were placed on a 2-3 mg/hr ketamine drip until postoperative day 1. This group was compared with a group who received 2-3 mg/hr of ketamine until postoperative day 2 (19 patients) and patients who did not receive ketamine at all (22 patients). Clinical characteristics, opioid use, LOS, and relative hospitalization costs were assessed. All narcotic amounts were converted into milligram equivalents of morphine. LOS of the short-ketamine group was 46.5 hours when compared with the long-ketamine group (66.8 hours) and no-ketamine group (56.9 hours). There was a statistically significant difference when comparing the short-ketamine group with the long-ketamine group and no-ketamine group together (P < 0.001), as well as when compared individually (P = 0.001 and 0.004). The mean cost of hospitalization was 20% less when a short-ketamine protocol was used (P < 0.001). Mean morphine milligram equivalents used postoperatively were 148 mg in the short-ketamine group, 196 mg in the long-ketamine group, and 187 mg in the no-ketamine group (P = 0.65). No adverse events from ketamine were noted. Ketamine at subanesthetic levels may be an effective tool to facilitate early return home postoperatively and may significantly reduce medical costs. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. A novel quadruplex real-time PCR method for simultaneous detection of Cry2Ae and two genetically modified cotton events (GHB119 and T304-40)

    PubMed Central

    2014-01-01

    Background To date, over 150 genetically modified (GM) crops are widely cultivated. To comply with regulations developed for genetically modified organisms (GMOs), including labeling policies, many detection methods for GMO identification and quantification have been developed. Results To detect the entrance and exit of unauthorized GM crop events in China, we developed a novel quadruplex real-time PCR method for simultaneous detection and quantification of GM cotton events GHB119 and T304-40 in cotton-derived products (based on the 5′-flanking sequence) and the insect-resistance gene Cry2Ae. The limit of detection was 10 copies for GHB119 and Cry2Ae and 25 copies for T304-40. The limit of quantification was 25 copies for GHB119 and Cry2Ae and 50 copies for T304-40. Moreover, low bias and acceptable standard deviation and relative standard deviation values were obtained in quantification analysis of six blind samples containing different GHB119 and T304-40 ingredients. Conclusions The developed quadruplex quantitative method could be used for quantitative detection of two GM cotton events (GHB119 and T304-40) and Cry2Ae gene ingredient in cotton derived products. PMID:24884946

  18. [Ketamine as anesthetic agent in electroconvulsion therapy].

    PubMed

    Janke, C; Bumb, J M; Aksay, S S; Thiel, M; Kranaster, L; Sartorius, A

    2015-05-01

    Electroconvulsive therapy (ECT) is a well-established, safe and effective treatment for severe psychiatric disorders. Ketamine is known as a core medication in anesthesiology and has recently gained interest in ECT practice as there are three potential advantages: (1) ketamine has no anticonvulsive actions, (2) according to recent studies ketamine could possess a unique intrinsic antidepressive potential and (3) ketamine may exhibit neuroprotective properties, which again might reduce the risk of cognitive side effects associated with ECT. The use of ketamine in psychiatric patients has been controversially discussed due to its dose-dependent psychotropic and psychotomimetic effects. This study was carried out to test if the occurrence of side effects is comparable and if seizure quality is better with ketamine when compared to thiopental. This retrospective study analyzed a total of 199 patients who received ketamine anesthesia for a total of 2178 ECT sessions. This cohort was compared to patients who were treated with thiopental for 1004 ECT sessions. A repeated measurement multiple logistic regression analysis revealed significant advantages in the ketamine group for seizure concordance and postictal suppression (both are surrogates for central inhibition). S-ketamin also necessitated the use of a higher dose of urapidil and a higher maximum postictal heart frequency. Clinically relevant psychiatric side effects were rare in both groups. No psychiatric side effects occurred in the subgroup of patients with schizophrenia (ketamine: n = 30). The mean dose of S-ketamine used increased in the first years but stabilized at 63 mg per patient in 2014. From these experiences it can be concluded that S-ketamine can be recommended at least as a safe alternative to barbiturates.

  19. Ketamine potentiates hippocampal neurodegeneration and persistent learning and memory impairment through the PKCγ-ERK signaling pathway in the developing brain.

    PubMed

    Huang, Lining; Liu, Ya; Jin, Wei; Ji, Xiaochen; Dong, Zhenming

    2012-10-02

    Ketamine, an N-methyl-d-aspartate (NMDA) receptor antagonist, is widely used as a general pediatric anesthetic. Recent studies suggest that ketamine enhances neuronal apoptosis in developing rodents and nonhuman primates. The main goal of this study is to determine whether ketamine causes hippocampal neurodegeneration and behavioral deficits in adulthood, and if so, whether the effects of ketamine are associated with protein kinase C-gamma (PKCγ), extracellular signal regulated kinase (ERK)1/2 and Bcl-2 expression. Starting from postnatal day 7, Sprague-Dawley rat pups randomly received daily ketamine treatment (25, 50 and 75mg/kg, ip) for three consecutive days. Twenty-four hours after the last treatment with ketamine, the rats were decapitated, and the hippocampi were isolated for detection of neuronal apoptosis by TUNEL. The protein expression levels of PKCγ, ERK1/2 and Bcl-2 in the hippocampi were measured by western blot analysis. At 2months of age, learning and memory abilities were tested by the Morris water maze. Ketamine increased the number of apoptotic cells in the CA1 region and dentate gyrus at a dose of 75mg/kg but not at lower doses of 25 and 50mg/kg. The dose of 75mg/kg of ketamine suppressed p-PKCγ, p-ERK1/2 and Bcl-2 expression but not t-PKCγ or t-ERK expression. Ketamine administered to the developing brains of P7 rats at a dose of 75mg/kg caused learning and memory impairments in adulthood. Therefore, these data demonstrate that ketamine at a dose of 75mg/kg in the developing brain results in hippocampal neurodegeneration and persistent learning and memory impairment, which is associated with the PKCγ-ERK signaling pathway. This article is part of a Special Issue entitled: Brain Integration. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Ketamine-induced apoptosis in cultured rat cortical neurons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takadera, Tsuneo; Ishida, Akira; Ohyashiki, Takao

    2006-01-15

    Recent data suggest that anesthetic drugs cause neurodegeneration during development. Ketamine is frequently used in infants and toddlers for elective surgeries. The purpose of this study is to determine whether glycogen synthase kinase-3 (GSK-3) is involved in ketamine-induced apoptosis. Ketamine increased apoptotic cell death with morphological changes which were characterized by cell shrinkage, nuclear condensation or fragmentation. In addition, insulin growth factor-1 completely blocked the ketamine-induced apoptotic cell death. Ketamine decreased Akt phosphorylation. GSK-3 is known as a downstream target of Akt. The selective inhibitors of GSK-3 prevented the ketamine-induced apoptosis. Moreover, caspase-3 activation was accompanied by the ketamine-induced cellmore » death and inhibited by the GSK-3 inhibitors. These results suggest that activation of GSK-3 is involved in ketamine-induced apoptosis in rat cortical neurons.« less

  1. 21 CFR 522.1222a - Ketamine.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Ketamine. 522.1222a Section 522.1222a Food and..., FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.1222a Ketamine. (a) Specifications. Each milliliter contains ketamine hydrochloride equivalent to 100 milligrams (mg...

  2. 21 CFR 522.1222a - Ketamine.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Ketamine. 522.1222a Section 522.1222a Food and..., FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.1222a Ketamine. (a) Specifications. Each milliliter contains ketamine hydrochloride equivalent to 100 milligrams (mg...

  3. 21 CFR 522.1222a - Ketamine.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Ketamine. 522.1222a Section 522.1222a Food and..., FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.1222a Ketamine. (a) Specifications. Each milliliter contains ketamine hydrochloride equivalent to 100 milligrams (mg...

  4. 21 CFR 522.1222a - Ketamine.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ketamine. 522.1222a Section 522.1222a Food and..., FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.1222a Ketamine. (a) Specifications. Each milliliter contains ketamine hydrochloride equivalent to 100 milligrams (mg...

  5. 21 CFR 522.1223 - Ketamine, promazine, and aminopentamide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Ketamine, promazine, and aminopentamide. 522.1223... § 522.1223 Ketamine, promazine, and aminopentamide. (a) Specifications. Each milliliter of solution contains ketamine hydrochloride equivalent to 100 milligrams (mg) ketamine base activity, 7.5 (mg) of...

  6. Ketamine for Treatment-Resistant Unipolar Depression

    PubMed Central

    Mathew, Sanjay J.; Shah, Asim; Lapidus, Kyle; Clark, Crystal; Jarun, Noor; Ostermeyer, Britta; Murrough, James W.

    2013-01-01

    Currently available drugs for unipolar major depressive disorder (MDD), which target monoaminergic systems, have a delayed onset of action and significant limitations in efficacy. Antidepressants with primary pharmacological targets outside the monoamine system may offer the potential for more rapid activity with improved therapeutic benefit. The glutamate system has been scrutinized as a target for antidepressant drug discovery. The purpose of this article is to review emerging literature on the potential rapid-onset antidepressant properties of the glutamate NMDA receptor antagonist ketamine, an established anaesthetic agent. The pharmacology of ketamine and its enantiomer S-ketamine is reviewed, followed by examples of its clinical application in chronic, refractory pain conditions, which are commonly co-morbid with depression. The first generation of studies in patients with treatment-resistant depression (TRD) reported the safety and acute efficacy of a single subanaesthetic dose (0.5 mg/kg) of intravenous ketamine. A second generation of ketamine studies is focused on testing alternate routes of drug delivery, identifying methods to prevent relapse following resolution of depressive symptoms and understanding the neural basis for the putative antidepressant actions of ketamine. In addition to traditional depression rating endpoints, ongoing research is examining the impact of ketamine on neurocognition. Although the first clinical report in MDD was published in 2000, there is a paucity of adequately controlled double-blind trials, and limited clinical experience outside of research settings. Given the potential risks of ketamine, safety considerations will ultimately determine whether this old drug is successfully repositioned as a new therapy for TRD. PMID:22303887

  7. Drug-facilitated sexual assault ('date rape').

    PubMed

    Schwartz, R H; Milteer, R; LeBeau, M A

    2000-06-01

    In the past few years, drug-facilitated sexual assaults have received widespread media coverage. In addition to alcohol, the most frequently used date-rape drug, flunitrazepam (Rohypnol), a fast-acting benzodiazepine, and gamma-hydroxybutyrate (GHB) and its congeners are among the most popular drugs used for this purpose. The latter drug is easily procured at some gymnasiums, popular bars, discos, and rave clubs, as well as over the Internet. Perpetrators choose these drugs because they act rapidly, produce disinhibition and relaxation of voluntary muscles, and cause the victim to have lasting anterograde amnesia for events that occur under the influence of the drug. Alcoholic beverages potentiate the drug effects. We review several date-rape drugs, provide information on laboratory testing for them, and offer guidelines for preventing drug-facilitated sexual assault.

  8. [Safety and efficacy of ketamine for pain relief].

    PubMed

    Niesters, Marieke; Dahan, Albert; van Kleef, Maarten

    2016-01-01

    Intravenous ketamine treatment is frequently used for the management of chronic pain, especially in those patients who do not benefit from other therapies. In this commentary we discuss the efficacy of ketamine for relief of chronic pain and ketamine's safety profile. A review of the literature indicates that only a few studies show that intravenous ketamine has analgesic effects that persist beyond the infusion period, an effect that occurs in about two-thirds of patients. Ketamine has multiple safety issues, ranging from psychotomimetic and schizotypal symptoms, sympathetic stimulation, tachycardia and hypertension, and damage to the liver and the urogenital tract. Damage to the urogenital tract seems to be restricted to individuals who chronically abuse ketamine. We indicate the need for large randomized trials in which ketamine is compared with an 'active' placebo.

  9. Ketamine-snorting associated cystitis.

    PubMed

    Chen, Chung-Hsien; Lee, Ming-Huei; Chen, Yi-Chang; Lin, Ming-Fong

    2011-12-01

    Ketamine hydrochloride, commonly used as a pediatric anesthetic agent, is an N-methyl-D-aspartic (NMDA) acid receptor antagonist with rapid onset and short duration of action. It produces a cataleptic-like state where the patient is dissociated from the surrounding environment by direct action on the cortex and limbic system. It has emerged as an increasingly popular choice among young drug users, especially within dance club venues. Cases of bladder dysfunction among recreational ketamine users were reported since Shahani et al first reported nine cases of ketamine-associated ulcerative cystitis in 2007. We report on four patients who had history of ketamine abuse, presenting with dysuria, fluctuating lower urinary tract symptoms (LUTS), lower abdominal or perineal pain, and impaired functional bladder capacities. Urinalysis showed pyuria and microhematuria. Urine culture was sterile. Bladder ulceration with severe diffuse hemorrhage and low bladder capacity were noted under anesthetized cystoscopic examination. Transurethral bladder mucosa biopsy was consistent with chronic cystitis. Cessation of ketamine abuse was the milestone of treatment, followed by the administration of mucosal protective agents, such as pentosan polysulphate or hyaluronic acid. Suprapubic pain was improved in three patients during follow-up. However, the outcome of treatment depends on the severity of the disease process, similar to that of interstitial cystitis (IC). Copyright © 2011. Published by Elsevier B.V.

  10. The Xyrem risk management program.

    PubMed

    Fuller, David E; Hornfeldt, Carl S; Kelloway, Judy S; Stahl, Pamela J; Anderson, Todd F

    2004-01-01

    Sodium oxybate, also known as gamma-hydroxybutyric acid (GHB), was discovered in 1960 and has been described both as a therapeutic agent with high medical value and, more recently, a substance of abuse. The naturally occurring form of this drug is found in various body tissues but has been studied most extensively in the CNS where its possible function as a neurotransmitter continues to be studied. Sodium oxybate has been approved in different countries for such varied uses as general anaesthesia, the treatment of alcohol withdrawal and addiction, and, most recently, cataplexy associated with narcolepsy. During the 1980s, easy access to GHB-containing products led to various unapproved uses, including weight loss, bodybuilding and the treatment of sleeplessness, sometimes with serious long-term effects. The availability of these unapproved and unregulated forms of the drug led to GHB and its analogues being popularised as substances of abuse and subsequent notoriety as agents used in drug-facilitated sexual assault, or 'date rape', eventually leading to the prohibition of GHB sales in the US. Legal efforts to control the sale and distribution of GHB and its analogues nearly prevented the clinical development of sodium oxybate for narcolepsy in the US. However, following extensive discussions with a variety of interested parties, a satisfactory solution was devised, including legislative action and the development of the Xyrem Risk Management Program. Amendments to the US Controlled Substances Act made GHB a schedule I drug, but also contained provisions that allow US FDA-approved products to be placed under schedule III. This unique, bifurcated schedule for sodium oxybate/GHB allowed the clinical development of sodium oxybate to proceed and, in July 2002, it was approved by the FDA as an orphan drug for the treatment of cataplexy in patients with narcolepsy as Xyrem(sodium oxybate) oral solution. To promote the safe use of sodium oxybate, as well as alleviate

  11. Ketamine versus Ketamine / magnesium Sulfate for Procedural Sedation and Analgesia in the Emergency Department: A Randomized Clinical Trial

    PubMed Central

    Azizkhani, Reza; Bahadori, Azadeh; Shariati, Mohammadreza; Golshani, Keyhan; Ahmadi, Omid; Masoumi, Babak

    2018-01-01

    Background: The present study was designed to evaluate the effectiveness of magnesium sulfate (MgSO4) in procedural sedation and analgesia (PSA) when combined with ketamine in patients with fractures in emergency departments and required short and painful emergency procedures. Materials and Methods: In this study, 100 patients with fractures and dislocations who were presented to the emergency departments and required PSA for short and painful emergency procedures were randomly allocated to groups of ketamine plus MgSO4 or ketamine alone. Train of four (TOF) stimulation pattern was assessed using nerve stimulator machine and compared between groups. Results: The mean age of studied patients was 46.9 ± 9.3 years old. 48% were male and 52% were female. No significant differences were noted between groups in demographic variables. The status of TOF, 2 min after the injection of ketamine (1.5 mg/kg), in both groups was similar. After the injection of the second dose of ketamine (1 mg/kg) the status of TOF in four patients in ketamine plus MgSO4 (0.45 mg/kg) group changed, it was three quarters but in ketamine group, the status of TOF in all patients was four quarters. The difference between groups was not statistically significant (P = 0.12). Conclusion: The findings revealed that for muscle relaxation during medical procedures in the emergency department, ketamine in combination with MgSO4 with this dose was not effective for muscle relaxation during procedures. PMID:29456990

  12. Ketamine versus Ketamine / magnesium Sulfate for Procedural Sedation and Analgesia in the Emergency Department: A Randomized Clinical Trial.

    PubMed

    Azizkhani, Reza; Bahadori, Azadeh; Shariati, Mohammadreza; Golshani, Keyhan; Ahmadi, Omid; Masoumi, Babak

    2018-01-01

    The present study was designed to evaluate the effectiveness of magnesium sulfate (MgSO 4 ) in procedural sedation and analgesia (PSA) when combined with ketamine in patients with fractures in emergency departments and required short and painful emergency procedures. In this study, 100 patients with fractures and dislocations who were presented to the emergency departments and required PSA for short and painful emergency procedures were randomly allocated to groups of ketamine plus MgSO 4 or ketamine alone. Train of four (TOF) stimulation pattern was assessed using nerve stimulator machine and compared between groups. The mean age of studied patients was 46.9 ± 9.3 years old. 48% were male and 52% were female. No significant differences were noted between groups in demographic variables. The status of TOF, 2 min after the injection of ketamine (1.5 mg/kg), in both groups was similar. After the injection of the second dose of ketamine (1 mg/kg) the status of TOF in four patients in ketamine plus MgSO 4 (0.45 mg/kg) group changed, it was three quarters but in ketamine group, the status of TOF in all patients was four quarters. The difference between groups was not statistically significant ( P = 0.12). The findings revealed that for muscle relaxation during medical procedures in the emergency department, ketamine in combination with MgSO 4 with this dose was not effective for muscle relaxation during procedures.

  13. Ketamine for chronic pain: risks and benefits

    PubMed Central

    Niesters, Marieke; Martini, Christian; Dahan, Albert

    2014-01-01

    The anaesthetic ketamine is used to treat various chronic pain syndromes, especially those that have a neuropathic component. Low dose ketamine produces strong analgesia in neuropathic pain states, presumably by inhibition of the N-methyl-D-aspartate receptor although other mechanisms are possibly involved, including enhancement of descending inhibition and anti-inflammatory effects at central sites. Current data on short term infusions indicate that ketamine produces potent analgesia during administration only, while three studies on the effect of prolonged infusion (4–14 days) show long-term analgesic effects up to 3 months following infusion. The side effects of ketamine noted in clinical studies include psychedelic symptoms (hallucinations, memory defects, panic attacks), nausea/vomiting, somnolence, cardiovascular stimulation and, in a minority of patients, hepatoxicity. The recreational use of ketamine is increasing and comes with a variety of additional risks ranging from bladder and renal complications to persistent psychotypical behaviour and memory defects. Blind extrapolation of these risks to clinical patients is difficult because of the variable, high and recurrent exposure to the drug in ketamine abusers and the high frequency of abuse of other illicit substances in this population. In clinical settings, ketamine is well tolerated, especially when benzodiazepines are used to tame the psychotropic side effects. Irrespective, close monitoring of patients receiving ketamine is mandatory, particularly aimed at CNS, haemodynamic, renal and hepatic symptoms as well as abuse. Further research is required to assess whether the benefits outweigh the risks and costs. Until definite proof is obtained ketamine administration should be restricted to patients with therapy-resistant severe neuropathic pain. PMID:23432384

  14. Ketamine in the treatment of acute pain.

    PubMed

    Brinck, Elina; Kontinen, Vesa

    2017-01-01

    Ketamine is an old anesthetic agent that relieves pain by reducing central sensitization in the central nervous system. This is advantageous for patients suffering from severe pain prior to surgery or are using a strong opioid. The S enantiomer of ketamine used for anesthesia is more powerful than racemic ketamine. The ideal dose of ketamine for pain relief is not yet known, and its adverse effects on the central nervous system, including hallucinations, sedation, and diplopia have limited its use in pain management. The significance of these effects at low doses is probably less than expected, particularly if benzodiazepines or an alpha-2 agonist, such as dexmedetomidine, are administered in addition to ketamine.

  15. Study protocol for the randomised controlled trial: Ketamine augmentation of ECT to improve outcomes in depression (Ketamine-ECT study).

    PubMed

    Trevithick, Liam; McAllister-Williams, R Hamish; Blamire, Andrew; Branton, Tim; Clark, Ross; Downey, Darragh; Dunn, Graham; Easton, Andrew; Elliott, Rebecca; Ellwell, Clare; Hayden, Katherine; Holland, Fiona; Karim, Salman; Lowe, Jo; Loo, Colleen; Nair, Rajesh; Oakley, Timothy; Prakash, Antony; Sharma, Parveen K; Williams, Stephen R; Anderson, Ian M

    2015-10-21

    There is a robust empirical evidence base supporting the acute efficacy of electroconvulsive therapy (ECT) for severe and treatment resistant depression. However, a major limitation, probably contributing to its declining use, is that ECT is associated with impairment in cognition, notably in anterograde and retrograde memory and executive function. Preclinical and preliminary human data suggests that ketamine, used either as the sole anaesthetic agent or in addition to other anaesthetics, may reduce or prevent cognitive impairment following ECT. A putative hypothesis is that ketamine, through antagonising glutamate receptors, protects from excess excitatory neurotransmitter stimulation during ECT. The primary aim of the ketamine-ECT study is to investigate whether adjunctive ketamine can attenuate the cognitive impairment caused by ECT. Its secondary aim is to examine if ketamine increases the speed of clinical improvement with ECT. The ketamine ECT study is a multi-site randomised, placebo-controlled, double blind trial. It was originally planned to recruit 160 moderately to severely depressed patients who had been clinically prescribed ECT. This recruitment target was subsequently revised to 100 patients due to recruitment difficulties. Patients will be randomly allocated on a 1:1 basis to receive either adjunctive ketamine or saline in addition to standard anaesthesia for ECT. The primary neuropsychological outcome measure is anterograde verbal memory (Hopkins Verbal Learning Test-Revised delayed recall task) after 4 ECT treatments. Secondary cognitive outcomes include verbal fluency, autobiographical memory, visuospatial memory and digit span. Efficacy is assessed using observer and self-report efficacy measures of depressive symptomatology. The effects of ECT and ketamine on cortical activity during cognitive tasks will be studied in a sub-sample using functional near-infrared spectroscopy (fNIRS). The ketamine-ECT study aims to establish whether or not

  16. Ketamine and ketamine metabolites as novel estrogen receptor ligands: Induction of cytochrome P450 and AMPA glutamate receptor gene expression.

    PubMed

    Ho, Ming-Fen; Correia, Cristina; Ingle, James N; Kaddurah-Daouk, Rima; Wang, Liewei; Kaufmann, Scott H; Weinshilboum, Richard M

    2018-04-03

    Major depressive disorder (MDD) is the most common psychiatric illness worldwide, and it displays a striking sex-dependent difference in incidence, with two thirds of MDD patients being women. Ketamine treatment can produce rapid antidepressant effects in MDD patients, effects that are mediated-at least partially-through glutamatergic neurotransmission. Two active metabolites of ketamine, (2R,6R)-hydroxynorketamine (HNK) and (2S,6S)-HNK, also appear to play a key role in ketamine's rapid antidepressant effects through the activation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptors. In the present study, we demonstrated that estrogen plus ketamine or estrogen plus active ketamine metabolites displayed additive effects on the induction of the expression of AMPA receptor subunits. In parallel, the expression of estrogen receptor alpha (ERα) was also significantly upregulated. Even more striking, radioligand binding assays demonstrated that [ 3 H]-ketamine can directly bind to ERα (K D : 344.5 ± 13 nM). Furthermore, ketamine and its (2R,6R)-HNK and (2S,6S)-HNK metabolites displayed similar affinity for ERα (IC 50 : 2.31 ± 0.1, 3.40 ± 0.2, and 3.53 ± 0.2 µM, respectively) as determined by [ 3 H]-ketamine displacement assays. Finally, induction of AMPA receptors by either estrogens or ketamine and its metabolites was lost when ERα was knocked down or silenced pharmacologically. These results suggest a positive feedback loop by which estrogens can augment the effects of ketamine and its (2R,6R)-HNK and (2S,6S)-HNK metabolites on the ERα-induced transcription of CYP2A6 and CYP2B6, estrogen inducible enzymes that catalyze ketamine's biotransformation to form the two active metabolites. These observations provide novel insight into ketamine's molecular mechanism(s) of action and have potential implications for the treatment of MDD. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Something new about ketamine for pediatric anesthesia?

    PubMed

    Lois, Fernande; De Kock, Marc

    2008-06-01

    This review discusses the place of the old anesthetic ketamine in pediatric anesthesia. Despite the availability of modern alternatives, ketamine remains a frequently used drug particularly for anesthesia in high-risk children and for procedures outside the operating room. In adult patients undergoing surgery, a renewed interest in this drug is noted. It is the consequence of recent demonstrations of the following effects. First, ketamine is highly effective against surgery and opiate-induced hyperalgesia. Second, it has original antiproinflammatory properties. In other words, it promotes self-limitation of the inflammatory response that follows surgery. In the pediatric population, these benefits wait to be confirmed. Finally, questions arise about the safety of ketamine anesthesia. Ketamine is a potent proapoptotic drug. In rodents treated during the critical period for central nervous system development, long-term behavioral deficits were noted after an anesthetic dose of ketamine. The exact consequences of these proapoptotic properties on human brain tissue development have to be exactly determined and are still debatable. Ketamine has not yet revealed all its interactions in humans. Recent discoveries indicate interesting properties on the one hand and potentially deleterious effects on the other.

  18. Ketamine: 50 Years of Modulating the Mind

    PubMed Central

    Li, Linda; Vlisides, Phillip E.

    2016-01-01

    Ketamine was introduced into clinical practice in the 1960s and continues to be both clinically useful and scientifically fascinating. With considerably diverse molecular targets and neurophysiological properties, ketamine’s effects on the central nervous system remain incompletely understood. Investigators have leveraged the unique characteristics of ketamine to explore the invariant, fundamental mechanisms of anesthetic action. Emerging evidence indicates that ketamine-mediated anesthesia may occur via disruption of corticocortical information transfer in a frontal-to-parietal (“top down”) distribution. This proposed mechanism of general anesthesia has since been demonstrated with anesthetics in other pharmacological classes as well. Ketamine remains invaluable to the fields of anesthesiology and critical care medicine, in large part due to its ability to maintain cardiorespiratory stability while providing effective sedation and analgesia. Furthermore, there may be an emerging role for ketamine in treatment of refractory depression and Post-Traumatic Stress Disorder. In this article, we review the history of ketamine, its pharmacology, putative mechanisms of action and current clinical applications. PMID:27965560

  19. Pharmacokinetics of ketamine and norketamine enantiomers after racemic or S-ketamine IV bolus administration in dogs during sevoflurane anaesthesia.

    PubMed

    Romagnoli, Noemi; Bektas, Rima N; Kutter, Annette P; Barbarossa, Andrea; Roncada, Paola; Hartnack, Sonja; Bettschart-Wolfensberger, Regula

    2017-06-01

    The aims of this study were to measure plasma levels of R- and S-ketamine and their major metabolites R- and S-norketamine following single intravenous bolus administration of racemic or S-ketamine in sevoflurane anaesthetised dogs and to calculate the relevant pharmacokinetic profiles. Six adult healthy beagle dogs were used in the study. An intravenous bolus of 4mg/kg racemic ketamine (RS-KET) or 2mg/kg S-ketamine (S-KET) was administered, with a three-weeks washout period between treatments. Venous blood samples were collected at fixed times until 900min and R- and S-ketamine as well as R- and S-norketamine plasma levels determined by liquid chromatography coupled with tandem mass spectrometry. Cardiovascular parameters were recorded during the anaesthesia until 240min. All dogs recovered well from anaesthesia. No statistical differences between groups were detected in any cardiovascular parameter. The pharmacokinetics of S-ketamine did not differ when injected intravenously alone or as part of the racemic mixture in dogs anaesthetised with sevoflurane. Following racemic ketamine, the area under the curve of R-norketamine was statistically higher than the one of S-norketamine. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Perioperative Ketamine Administration for Thoracotomy Pain.

    PubMed

    Moyse, Daniel W; Kaye, Alan D; Diaz, James H; Qadri, Muhammad Y; Lindsay, David; Pyati, Srinivas

    2017-03-01

    Of all the postsurgical pain conditions, thoracotomy pain poses a particular therapeutic challenge in terms of its prevalence, severity, and ensuing postoperative morbidity. Multiple pain generators contribute to the severity of post-thoracotomy pain, and therefore a multimodal analgesic therapy is considered to be a necessary strategy. Along with opioids, thoracic epidural analgesia, and paravertebral blocks, N-Methyl-D-Aspartate (NMDA) receptor antagonists such as ketamine have been used as adjuvants to improve analgesia. We reviewed the evidence for the efficacy of intravenous and epidural administration of ketamine in acute post-thoracotomy pain management, and its effectiveness in reducing chronic post-thoracotomy pain. Systematic literature review and an analytic study of a data subset were performed. We searched PubMed, Embase, and Cochrane reviews using the key terms "ketamine," "neuropathic pain," "postoperative," and "post-thoracotomy pain syndrome." The search was limited to human trials and included all studies published before January 2015. Data from animal studies, abstracts, and letters were excluded. All studies not available in the English language were excluded. The manuscript bibliographies were reviewed for additional related articles. We included randomized controlled trials and retrospective studies, while excluding individual case reports. This systematic literature search yielded 15 randomized control trials evaluating the efficacy of ketamine in the treatment of acute post-thoracotomy pain; fewer studies assessed its effect on attenuating chronic post-thoracotomy pain. The majority of reviewed studies demonstrated that ketamine has efficacy in reduction of acute pain, but the evidence is limited on the long-term benefits of ketamine to prevent post-thoracotomy pain syndrome, regardless of the route of administration. A nested analytical study found there is a statistically significant reduction in acute post-thoracotomy pain with IV or

  1. Intravenous sub-anesthetic ketamine for perioperative analgesia

    PubMed Central

    Gorlin, Andrew W; Rosenfeld, David M; Ramakrishna, Harish

    2016-01-01

    Ketamine, an N-methyl-d-aspartate antagonist, blunts central pain sensitization at sub-anesthetic doses (0.3 mg/kg or less) and has been studied extensively as an adjunct for perioperative analgesia. At sub-anesthetic doses, ketamine has a minimal physiologic impact though it is associated with a low incidence of mild psychomimetic symptoms as well as nystagmus and double vision. Contraindications to its use do exist and due to ketamine's metabolism, caution should be exercised in patients with renal or hepatic dysfunction. Sub-anesthetic ketamine improves pain scores and reduces perioperative opioid consumption in a broad range of surgical procedures. In addition, there is evidence that ketamine may be useful in patients with opioid tolerance and for preventing chronic postsurgical pain. PMID:27275042

  2. Ketamine for chronic pain: risks and benefits.

    PubMed

    Niesters, Marieke; Martini, Christian; Dahan, Albert

    2014-02-01

    The anaesthetic ketamine is used to treat various chronic pain syndromes, especially those that have a neuropathic component. Low dose ketamine produces strong analgesia in neuropathic pain states, presumably by inhibition of the N-methyl-D-aspartate receptor although other mechanisms are possibly involved, including enhancement of descending inhibition and anti-inflammatory effects at central sites. Current data on short term infusions indicate that ketamine produces potent analgesia during administration only, while three studies on the effect of prolonged infusion (4-14 days) show long-term analgesic effects up to 3 months following infusion. The side effects of ketamine noted in clinical studies include psychedelic symptoms (hallucinations, memory defects, panic attacks), nausea/vomiting, somnolence, cardiovascular stimulation and, in a minority of patients, hepatoxicity. The recreational use of ketamine is increasing and comes with a variety of additional risks ranging from bladder and renal complications to persistent psychotypical behaviour and memory defects. Blind extrapolation of these risks to clinical patients is difficult because of the variable, high and recurrent exposure to the drug in ketamine abusers and the high frequency of abuse of other illicit substances in this population. In clinical settings, ketamine is well tolerated, especially when benzodiazepines are used to tame the psychotropic side effects. Irrespective, close monitoring of patients receiving ketamine is mandatory, particularly aimed at CNS, haemodynamic, renal and hepatic symptoms as well as abuse. Further research is required to assess whether the benefits outweigh the risks and costs. Until definite proof is obtained ketamine administration should be restricted to patients with therapy-resistant severe neuropathic pain. © 2013 The Authors. British Journal of Clinical Pharmacology © 2013 The British Pharmacological Society.

  3. Ketamine use in current clinical practice

    PubMed Central

    Gao, Mei; Rejaei, Damoon; Liu, Hong

    2016-01-01

    After nearly half a century on the market, ketamine still occupies a unique corner in the medical armamentarium of anesthesiologists or clinicians treating pain. Over the last two decades, much research has been conducted highlighting the drug's mechanisms of action, specifically those of its enantiomers. Nowadays, ketamine is also being utilized for pediatric pain control in emergency department, with its anti-hyperalgesic and anti-inflammatory effects being revealed in acute and chronic pain management. Recently, new insights have been gained on ketamine's potential anti-depressive and antisuicidal effects. This article provides an overview of the drug's pharmacokinetics and pharmacodynamics while also discussing the potential benefits and risks of ketamine administration in various clinical settings. PMID:27018176

  4. Ketamine for cancer pain: what is the evidence?

    PubMed

    Jonkman, Kelly; van de Donk, Tine; Dahan, Albert

    2017-06-01

    In this review, we assess the benefit of ketamine in the treatment of terminal cancer pain that is refractory to opioid treatment and/or complicated by neuropathy. While randomized controlled trials consistently show lack of clinical efficacy of ketamine in treating cancer pain, a large number of open-label studies and case series show benefit. Ketamine is an N-methyl-D-aspartate receptor antagonist that at low-dose has effective analgesic properties. In cancer pain, ketamine is usually prescribed as adjuvant to opioid therapy when pain becomes opioid resistant or when neuropathic pain symptoms dominate the clinical picture. A literature search revealed four randomized controlled trials that examined the benefit of oral, subcutaneous or intravenous ketamine in opioid refractory cancer pain. None showed clinically relevant benefit in relieving pain or reducing opioid consumption. This suggests absence of evidence of benefit for ketamine as adjuvant analgesic in cancer pain. These findings contrast the benefit from ketamine observed in a large number of open-label studies and (retrospective) case series. We relate the opposite outcomes to methodological issues. The complete picture is such that there is still insufficient evidence to state with certainty that ketamine is not effective in cancer pain.

  5. Transient central diabetes insipidus induced by ketamine infusion.

    PubMed

    Hatab, Sarah Z; Singh, Arun; Felner, Eric I; Kamat, Pradip

    2014-12-01

    Report a case of central diabetes insipidus (DI) associated with ketamine infusion. A 2-year-old girl with long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency and stable hypertrophic cardiomyopathy was admitted to the pediatric intensive care with pneumonia. She subsequently developed respiratory failure and required intubation. Continuous ketamine infusion was used for the sedation and facilitation of mechanical ventilation. Shortly after infusion of ketamine, the patient developed DI and responded appropriately to vasopressin. The Naranjo adverse drug reaction probability scale indicated a probable relationship between the development of central DI and ketamine. The most likely mechanism involves ketamine's antagonist action on N-methyl-d-aspartate receptors, resulting in inhibition of glutamate-stimulated arginine vasopressin release from the neurohypophysis. This is the second case report of ketamine-induced central DI and the only report in children. Clinicians who sedate children with continuous ketamine infusions should monitor patients for developing signs and symptoms of DI by measuring serum sodium and urine output prior to, during, and after ketamine infusion in order to make a timely diagnosis of this potentially serious complication. © The Author(s) 2014.

  6. Ketamine produces lasting disruptions in encoding of sensory stimuli.

    PubMed

    Maxwell, Christina R; Ehrlichman, Richard S; Liang, Yuling; Trief, Danielle; Kanes, Stephen J; Karp, Jonathan; Siegel, Steven J

    2006-01-01

    The current study analyzed the acute, chronic, and lasting effects of ketamine administration in four inbred mouse strains (C3H/HeHsd, C57BL/6Hsd, FVB/Hsd, and DBA/2Hsd) to evaluate vulnerability to ketamine as a drug of abuse and as a model of schizophrenia. Serum half-life of ketamine was similar between all strains (approximately 13 min). Also, the ratio of brain-to-serum ketamine levels was 3:1. Examination of multiple phases of auditory processing using auditory-evoked potentials (AEPs) following acute ketamine (0, 5, and 20 mg/kg) treatment revealed C3H/HeHsd mice to be most vulnerable to ketamine-induced alterations in AEPs, whereas FVB/Hsd mice exhibited the least electrophysiological sensitivity to ketamine. Overall, the precortical P1-evoked potential component increased in amplitude and latency, whereas the cortically generated N1 and P2 components decreased in amplitude and latency following acute ketamine across all strains. Brain catecholamine analyses indicated that ketamine decreased hippocampus epinephrine levels in C3H/HeHsd but elevated hippocampus epinephrine levels in FVB/Hsd, suggesting one potential mechanism for AEP vulnerability to ketamine. Based on results of the acute study, the immediate and lasting effects of chronic low-dose ketamine on AEPs were examined among C3H/HeHsd (sensitive) and FVB/Hsd (insensitive) mice. We observed a decrement of the N1 amplitude that persisted at least 1 week after the last exposure to ketamine across both strains. This lasting deficit in information processing occurred in the absence of acute changes among the FVB/Hsd mice. Implications for both ketamine abuse and N-methyl-D-aspartate hypofunction models of schizophrenia are discussed.

  7. Beyond Ketamine: New Approaches to the Development of Safer Antidepressants.

    PubMed

    Chaki, Shigeyuki

    2017-01-01

    Ketamine has been reported to exert rapid and sustained antidepressant effects in patients with depression, including patients with treatment-resistant depression. However, ketamine has several drawbacks such as psychotomimetic/dissociative symptoms, abuse potential and neurotoxicity, all of which prevent its routine use in daily clinical practice. Therefore, development of novel agents with fewer safety and usage concerns for the treatment of depression has been actively investigated. From this standpoint, searching for active substances (stereoisomers and metabolites) and agents acting on the N-methyl-D-aspartate (NMDA) receptor have recently gained much attention. The first approach includes stereoisomers of ketamine, (R)-ketamine and (S)-ketamine. Although (S)-ketamine has been considered as the active stereoisomer of racemic ketamine, recently, (R)-ketamine has been demonstrated to exert even more prolonged antidepressant effects in animal models than (S)-ketamine. Moreover, ketamine is rapidly metabolized into several metabolites, and some metabolites are speculated as being active substances exerting antidepressant effects. Of such metabolites, one in particular, namely, (2R,6R)-hydroxynorketamine, has been reported to be responsible for the antidepressant effects of ketamine. The second approach includes agents acting on the NMDA receptor, such as glycine site modulators and GluN2B subunit-selective antagonists. These agents have been tested in patients with treatment-resistant depression, and have been found to exhibit rapid antidepressant effects like ketamine. The above approaches may be useful to overcome the drawbacks of ketamine. Elucidation of the mechanisms of action of ketamine may pave the way for the development of antidepressant that are safer, but as potent and rapidly acting as ketamine. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Beyond Ketamine: New Approaches to the Development of Safer Antidepressants

    PubMed Central

    Chaki, Shigeyuki

    2017-01-01

    Background: Ketamine has been reported to exert rapid and sustained antidepressant effects in patients with depression, including patients with treatment-resistant depression. However, ketamine has several drawbacks such as psychotomimetic/dissociative symptoms, abuse potential and neurotoxicity, all of which prevent its routine use in daily clinical practice. Methods: Therefore, development of novel agents with fewer safety and usage concerns for the treatment of depression has been actively investigated. From this standpoint, searching for active substances (stereoisomers and metabolites) and agents acting on the N-methyl-D-aspartate (NMDA) receptor have recently gained much attention. Results: The first approach includes stereoisomers of ketamine, (R)-ketamine and (S)-ketamine. Although (S)-ketamine has been considered as the active stereoisomer of racemic ketamine, recently, (R)-ketamine has been demonstrated to exert even more prolonged antidepressant effects in animal models than (S)-ketamine. Moreover, ketamine is rapidly metabolized into several metabolites, and some metabolites are speculated as being active substances exerting antidepressant effects. Of such metabolites, one in particular, namely, (2R,6R)-hydroxynorketamine, has been reported to be responsible for the antidepressant effects of ketamine. The second approach includes agents acting on the NMDA receptor, such as glycine site modulators and GluN2B subunit-selective antagonists. These agents have been tested in patients with treatment-resistant depression, and have been found to exhibit rapid antidepressant effects like ketamine. Conclusion: The above approaches may be useful to overcome the drawbacks of ketamine. Elucidation of the mechanisms of action of ketamine may pave the way for the development of antidepressant that are safer, but as potent and rapidly acting as ketamine. PMID:28228087

  9. Longitudinal Trajectories of Ketamine Use among Young Injection Drug Users

    PubMed Central

    Lankenau, Stephen E.; Bloom, Jennifer Jackson; Shin, Charles

    2010-01-01

    Background Ketamine is a dissociative anesthetic that became increasing popular in the club and rave scene in the 1980s and 1990s. Reports surfaced in the late 1990s indicating that ketamine was being injected in several U.S. cities by young injection drug users (IDUs). Since all studies on ketamine injection were cross-sectional, a longitudinal study was undertaken in 2005 to determine: characteristics of young IDUs who continue to inject ketamine; frequency of ketamine injection over an extended time period; risks associated with ongoing ketamine injection; and environmental factors that impact patterns of ketamine use. Methods Young IDUs aged 16 to 29 with a history of injecting ketamine (n=101) were recruited from public locations in Los Angeles and followed during a two-year longitudinal study. A semi-structured instrument captured quantitative and qualitative data on patterns of ketamine injection and other drug use. A statistical model sorted IDUs who completed three or more interviews (n=66) into three groups based upon patterns of ketamine injection at baseline and follow-up. Qualitative analysis focused on detailed case studies within each group. Results IDUs recruited at baseline were typically in their early 20s, male, heterosexual, white, and homeless. Longitudinal injection trajectories included: “Moderates,” who injected ketamine several times per year (n=5); “Occasionals,” who injected ketamine approximately once per year (n=21); and “Abstainers,” who did not inject any ketamine during follow-up (n=40). Findings suggest that ketamine is infrequently injected compared to other drugs such as heroin, cocaine, and methamphetamine. Most IDUs who begin injecting ketamine will stop or curb use due to: negative or ambivalent experiences associated with ketamine; an inability to find the drug due to declining supply; or maturing out of injecting drugs more generally. Conclusion Reducing ketamine injection among young IDUs may best be accomplished

  10. The effects of pentobarbital, ketamine-pentobarbital and ketamine-xylazine anesthesia in a rat myocardial ischemic reperfusion injury model.

    PubMed

    Shekarforoush, Shahnaz; Fatahi, Zahra; Safari, Fatemeh

    2016-06-01

    To achieve reliable experimental data, the side-effects of anesthetics should be eliminated. Since anesthetics exert a variety of effects on hemodynamic data and incidence of arrhythmias, the selection of anesthetic agents in a myocardial ischemic reperfusion injury model is very important. The present study was performed to compare hemodynamic variables, the incidence of ventricular arrhythmias, and infarct size during 30 min of ischemia and 120 min of reperfusion in rats using pentobarbital, ketamine-pentobarbital or ketamine-xylazine anaesthesia. A total of 30 rats were randomly divided into three groups. In group P, pentobarbital (60 mg/kg, intraperitoneally [IP]) was used solely; in group K-P, ketamine and pentobarbital (50 and 30 mg/kg, respectively, IP) were used in combination; and in group K-X, ketamine and xylazine (75 and 5 mg/kg, respectively, IP) were also used in combination. Hemodynamic data and occurrence of ventricular arrhythmias were recorded throughout the experiments. The ischemic area was measured by triphenyltetrazolium chloride staining. The combination of ketamine-xylazine caused bradycardia and hypotension. The greatest reduction in mean arterial blood pressure during ischemia was in the P group. The most stability in hemodynamic parameters during ischemia and reperfusion was in the K-P group. The infarct size was significantly less in the K-X group. Whereas none of the rats anesthetized with ketamine-xylazine fibrillated during ischemia, ventricular fibrillation occurred in 57% of the animals anesthetized with pentobarbital or ketamine-pentobarbital. Because it offers the most stable hemodynamic parameters, it is concluded that the ketamine-pentobarbital anesthesia combination is the best anesthesia in a rat ischemia reperfusion injury model. © The Author(s) 2015.

  11. Effect of ketamine, pentobarbital, and morphine on Tc-99m-DISIDA hepatobiliary kinetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durakovic, A.; Dubois, A.

    1985-05-01

    The purpose of this study was to evaluate hapatobiliary kinetics of Tc-99m-DISIDA in dogs after administration of anesthetic sedative or narcotic agents. Four groups of six male Beagle dogs were studied as a non-treated control group and after parenteral administration of ketamine (30 mg/kg IM), pentobarbital (25 mg/kg IV) or morphine (1 mg/kg IV). Each animal was injected with 4 mCi Tc-99m-DISIDA and hepatobiliary scintigraphic studies were obtained using a gamma camera with parallel hole multipurpose collimator and an A/sup 3/ MDS computer. The authors determined; peak activity of Tc-99m-DISIDA in the liver, visualization and peak activity of gallbladder, andmore » intestinal visualization of Tc-99m-DISIDA. Total bilirubin, LDH, SGOT and SGPT were not modified significantly after any drug compared to control. The results showed that two commonly used anesthetics and sedatives (ketamine and pentobarbital) have dramatic and opposite effects on extrahepatic biliary kinetics. Furthermore, ketamine, but not pentobarbital, significantly accelerates intrahepatic biliary kinetics. Finally, as expected, morphine delayed extrahepatic biliary kinetics. Thus, studies of biliary kinetics should be interpreted with caution when measurements are made after administration of anesthetic, sedative or narcotic agents.« less

  12. Club Drug Use among Young Adults Frequenting Dance Clubs and Other Social Venues in New York City

    ERIC Educational Resources Information Center

    Parsons, Jeffrey T.; Halkitis, Perry N.; Bimbi, David S.

    2006-01-01

    A convenience sample of young adults (ages 18-25) in New York City was recruited to complete anonymous surveys in social venues (either dance clubs or other social settings, such as coffee shops and university "hangouts") regarding their use of "club drugs" (e.g., MDMA/Ecstasy, GHB, ketamine, crystal methamphetamine, cocaine,…

  13. Spinal conduction block by intrathecal ketamine in dogs.

    PubMed

    Iida, H; Dohi, S; Tanahashi, T; Watanabe, Y; Takenaka, M

    1997-07-01

    In addition to its use for intravenous (I.V.) anesthesia, ketamine can provide pain relief in humans when administered spinally. To elucidate the mechanisms of intrathecal (I.T.) ketamine analgesia, we observed differences in the effects of I.V. and I.T. ketamine on intraspinal evoked potentials (ISEPs) in 28 dogs anesthetized with pentobarbital. Bipolar extradural electrodes were inserted at the cervical and lumbar regions of the spinal cord for recording descending ISEPs represented by the two negative deflections, Waves I and II. I.V. ketamine 2 and 10 mg/ kg did not affect the amplitude and latency of Wave I, whereas the large dose (10 mg/kg) significantly decreased the amplitude but not the latency of Wave II. I.T. ketamine 1 and 5 mg/kg caused significant dose-dependent decreases in both Wave I and II amplitudes and prolongations of both Wave I and II latencies. These I.T. effects on ISEPs are consistent with previous in vitro observations that ketamine blocks axonal conduction. We conclude that axonal conduction block may contribute to the analgesic mechanism of I.T. ketamine.

  14. Ketamine-dependent neuronal activation in healthy volunteers.

    PubMed

    Höflich, Anna; Hahn, Andreas; Küblböck, Martin; Kranz, Georg S; Vanicek, Thomas; Ganger, Sebastian; Spies, Marie; Windischberger, Christian; Kasper, Siegfried; Winkler, Dietmar; Lanzenberger, Rupert

    2017-04-01

    Over the last years, a number of studies have been conducted to clarify the neurobiological correlates of ketamine application. However, comprehensive information regarding the influence of ketamine on cortical activity is still lacking. Using resting-state functional MRI and integrating pharmacokinetic information, a double-blind, randomized, placebo-controlled, crossover study was performed to determine the effects of ketamine on neuronal activation. During a 55 min resting-state fMRI scan, esketamine (Ketanest S ® ) was administered intravenously to 35 healthy volunteers. Neural activation as indicated by the BOLD signal using the pharmacokinetic curve of ketamine plasma levels as a regressor was computed. Compared with placebo, ketamine-dependent increases of neural activation were observed in the midcingulate cortex, the dorsal part of the anterior cingulate cortex, the insula bilaterally, and the thalamus (t values ranging between 5.95-9.78, p < 0.05; FWE-corrected). A significant decrease of neural activation in the ketamine condition compared to placebo was found in a cluster within the subgenual/subcallosal part of the anterior cingulate cortex, the orbitofrontal cortex and the gyrus rectus (t = 7.81, p < 0.05, FWE-corrected). Using an approach combining pharmacological and fMRI data, important information about the neurobiological correlates of the clinical antidepressant effects of ketamine could be revealed.

  15. Accelerated Recovery of Consciousness after General Anesthesia Is Associated with Increased Functional Brain Connectivity in the High-Gamma Bandwidth

    PubMed Central

    Li, Duan; Hambrecht-Wiedbusch, Viviane S.; Mashour, George A.

    2017-01-01

    Recent data from our laboratory demonstrate that high-frequency gamma connectivity across the cortex is present during consciousness and depressed during unconsciousness. However, these data were derived from static and well-defined states of arousal rather than during transitions that would suggest functional relevance. We also recently found that subanesthetic ketamine administered during isoflurane anesthesia accelerates recovery upon discontinuation of the primary anesthetic and increases gamma power during emergence. In the current study we re-analyzed electroencephalogram (EEG) data to test the hypothesis that functional cortical connectivity between anterior and posterior cortical regions would be increased during accelerated recovery induced by ketamine when compared to saline-treated controls. Rodents were instrumented with intracranial EEG electrodes and general anesthesia was induced with isoflurane anesthesia. After 37.5 min of continuous isoflurane anesthesia, a subanesthetic dose of ketamine (25 mg/kg intraperitoneal) was administered, with evidence of a 44% reduction in emergence time. In this study, we analyzed gamma and theta coherence (measure of undirected functional connectivity) and normalized symbolic transfer entropy (measure of directed functional connectivity) between frontal and parietal cortices during various levels of consciousness, with a focus on emergence from isoflurane anesthesia. During accelerated emergence in the ketamine-treated group, there was increased frontal-parietal coherence {p = 0.005, 0.05–0.23 [95% confidence interval (CI)]} and normalized symbolic transfer entropy [frontal to parietal: p < 0.001, 0.010–0.026 (95% CI); parietal to frontal: p < 0.001, 0.009–0.025 (95% CI)] in high-frequency gamma bandwidth as compared with the saline-treated group. Surrogates of cortical information exchange in high-frequency gamma are increased in association with accelerated recovery from anesthesia. This finding adds evidence

  16. Accelerated Recovery of Consciousness after General Anesthesia Is Associated with Increased Functional Brain Connectivity in the High-Gamma Bandwidth.

    PubMed

    Li, Duan; Hambrecht-Wiedbusch, Viviane S; Mashour, George A

    2017-01-01

    Recent data from our laboratory demonstrate that high-frequency gamma connectivity across the cortex is present during consciousness and depressed during unconsciousness. However, these data were derived from static and well-defined states of arousal rather than during transitions that would suggest functional relevance. We also recently found that subanesthetic ketamine administered during isoflurane anesthesia accelerates recovery upon discontinuation of the primary anesthetic and increases gamma power during emergence. In the current study we re-analyzed electroencephalogram (EEG) data to test the hypothesis that functional cortical connectivity between anterior and posterior cortical regions would be increased during accelerated recovery induced by ketamine when compared to saline-treated controls. Rodents were instrumented with intracranial EEG electrodes and general anesthesia was induced with isoflurane anesthesia. After 37.5 min of continuous isoflurane anesthesia, a subanesthetic dose of ketamine (25 mg/kg intraperitoneal) was administered, with evidence of a 44% reduction in emergence time. In this study, we analyzed gamma and theta coherence (measure of undirected functional connectivity) and normalized symbolic transfer entropy (measure of directed functional connectivity) between frontal and parietal cortices during various levels of consciousness, with a focus on emergence from isoflurane anesthesia. During accelerated emergence in the ketamine-treated group, there was increased frontal-parietal coherence { p = 0.005, 0.05-0.23 [95% confidence interval (CI)]} and normalized symbolic transfer entropy [frontal to parietal: p < 0.001, 0.010-0.026 (95% CI); parietal to frontal: p < 0.001, 0.009-0.025 (95% CI)] in high-frequency gamma bandwidth as compared with the saline-treated group. Surrogates of cortical information exchange in high-frequency gamma are increased in association with accelerated recovery from anesthesia. This finding adds evidence

  17. Metaplastic Effects of Subanesthetic Ketamine on CA1 Hippocampal Function

    PubMed Central

    Izumi, Yukitoshi; Zorumski, Charles F.

    2014-01-01

    Ketamine is a non-competitive N-methyl-D-aspartate receptor (NMDAR) antagonist of interest in neuropsychiatry. In the present studies, we examined the effects of subanesthetic, low micromolar ketamine on excitatory postsynaptic potentials (EPSPs), population spikes (PSs) and synaptic plasticity in the CA1 region of rat hippocampal slices. Ketamine acutely inhibited NMDAR-mediated synaptic responses with half-maximal effects near 10 µM. When administered for 15–30 min at 1–10 µM, ketamine had no effect on baseline dendritic AMPA receptor-mediated EPSPs, but persistently enhanced somatic EPSPs in the pyramidal cell body layer and augmented PS firing. Acute low micromolar ketamine also had no effect on the induction of long-term potentiation (LTP) but blocked long-term depression (LTD). Following 30 min administration of 1–10 µM ketamine, however, a slowly developing and persistent form of LTP inhibition was observed that took two hours following ketamine washout to become manifest. This LTP inhibition did not result from prolonged or enhanced NMDAR inhibition during drug washout. Effects of low ketamine on somatic EPSPs and LTP were not mimicked by a high ketamine concentration that completely inhibited NMDARs, and both of these effects were blocked by co-administration of low ketamine with a low concentration of the competitive NMDAR antagonist, 2-amino-5-phosphonovalerate or inhibitors of nitric oxide synthase. These results indicate that concentrations of ketamine relevant to psychotropic and psychotomimetic effects have complex metaplastic effects on hippocampal function that involve activation of unblocked NMDARs during ketamine exposure. PMID:25128848

  18. Nefopam and Ketamine Comparably Enhance Postoperative Analgesia

    PubMed Central

    Kapfer, Barbara; Alfonsi, Pascal; Guignard, Bruno; Sessler, Daniel I.; Chauvin, Marcel

    2005-01-01

    Summary Opioids alone sometimes provide insufficient postoperative analgesia. Co-administration of drugs may reduce opioid use and to improve opioid efficacy. We therefore tested the hypothesis that administration of ketamine or nefopam, to postoperative patients with pain only partly alleviated by morphine, limits the amount of subsequent opioid necessary to produce adequate analgesia. Patients (n=77) recovering from major surgery were given up to 9 mg intravenous morphine. Those still suffering from pain were randomly assigned to blinded administration of: 1) isotonic saline (Control, n=21); 2) ketamine 10 mg (Ketamine, n=22); or, 3) nefopam 20 mg (Nefopam, n=22). Three-mg morphine boluses were subsequently given at 5-minute intervals until adequate analgesia was obtained, or 60 minutes elapsed after the beginning of the study drug administration, or ventilation became insufficient (respiratory rate < 10 breath/minute or saturation by pulse oxymetery < 95%). Supplemental morphine (i.e., after test drug administration) requirements were significantly greater in the Control group [17 ± 10 (SD) mg] than in the Nefopam (10 ± 5 mg, P < 0.005) or Ketamine (9 ± 5 mg, P < 0.001) groups. Morphine titration was successful in all Ketamine and Nefopam patients, but failed in four Control patients (two from respiratory toxicity and two from persistent pain). Tachycardia and profuse sweating were more frequent in patients given nefopam and sedation was greater with ketamine; however, the incidence of other potential complications did not differ between groups. Implications We conclude that ketamine 10 mg and nefopam 20 mg comparably potentiate opioid analgesia, each reducing opioid need by approximately 40%. Ketamine administration was associated with sedation whereas nefopam produced tachycardia and sweating. However, none of the side effects was serious. Either drug can thus be used to potentiate opioid analgesia. PMID:15616073

  19. Alterations in interhemispheric gamma-band connectivity are related to the emergence of auditory verbal hallucinations in healthy subjects during NMDA-receptor blockade.

    PubMed

    Thiebes, Stephanie; Steinmann, Saskia; Curic, Stjepan; Polomac, Nenad; Andreou, Christina; Eichler, Iris-Carola; Eichler, Lars; Zöllner, Christian; Gallinat, Jürgen; Leicht, Gregor; Mulert, Christoph

    2018-06-01

    Auditory verbal hallucinations (AVH) are a common positive symptom of schizophrenia. Excitatory-to-inhibitory (E/I) imbalance related to disturbed N-methyl-D-aspartate receptor (NMDAR) functioning has been suggested as a possible mechanism underlying altered connectivity and AVH in schizophrenia. The current study examined the effects of ketamine, a NMDAR antagonist, on glutamate-related mechanisms underlying interhemispheric gamma-band connectivity, conscious auditory perception during dichotic listening (DL), and the emergence of auditory verbal distortions and hallucinations (AVD/AVH) in healthy volunteers. In a single-blind, pseudo-randomized, placebo-controlled crossover design, nineteen male, right-handed volunteers were measured using 64 channel electroencephalography (EEG). Psychopathology was assessed with the PANSS interview and the 5D-ASC questionnaire, including a subscale to detect auditory alterations with regard to AVD/AVH (AUA-AVD/AVH). Interhemispheric connectivity analysis was performed using eLORETA source estimation and lagged phase synchronization (LPS) in the gamma-band range (30-100 Hz). Ketamine induced positive symptoms such as hallucinations in a subgroup of healthy subjects. In addition, interhemispheric gamma-band connectivity was found to be altered under ketamine compared to placebo, and subjects with AUA-AVD/AVH under ketamine showed significantly higher interhemispheric gamma-band connectivity than subjects without AUA-AVD/AVH. These findings demonstrate a relationship between NMDAR functioning, interhemispheric connectivity in the gamma-band frequency range between bilateral auditory cortices and the emergence of AVD/AVH in healthy subjects. The result is in accordance with the interhemispheric miscommunication hypothesis of AVH and argues for a possible role of glutamate in AVH in schizophrenia.

  20. Use of Ketamine in Elderly Patients with Treatment-Resistant Depression.

    PubMed

    Medeiros da Frota Ribeiro, Carolina; Riva-Posse, Patricio

    2017-11-15

    The purpose of this paper is to provide a review of the use of ketamine as an antidepressant for treatment-resistant depression (TRD) in the geriatric population. Available treatment options for late-life treatment-resistant depression are limited and include electroconvulsive therapy and transcranial magnetic stimulation as well as possible pharmacologic augmentation. Ketamine has been shown to be a promising treatment in TRD; however, data regarding the use of ketamine in the elderly includes only five case reports. We discuss the use of ketamine for late-life TRD and present two cases where ketamine led to a significant and sustained improvement in depressive symptoms. Ketamine is a promising treatment for geriatric patients with TRD. Further studies in the elderly will provide valuable insights into the use of ketamine for a population much in need of safe and effective treatments for TRD.

  1. Ketamine-a returning option for procedural sedation and analgesia in adults.

    PubMed

    O'Malley, Patricia Anne

    2014-01-01

    I am a clinical nurse specialist in a busy trauma center. Increasingly, we are using ketamine for procedures and pain management in adults. I thought ketamine was appropriate only for pediatric patients. Why has ketamine emerged again for adults? Also, we have seen a few cases of ketamine abuse over the past 3 months. Is ketamine abuse becoming more prevalent?

  2. A PK-PD Model of Ketamine-Induced High-Frequency Oscillations

    PubMed Central

    Flores, Francisco J.; Ching, ShiNung; Hartnack, Katharine; Fath, Amanda B.; Purdon, Patrick L.; Wilson, Matthew A.; Brown, Emery N.

    2017-01-01

    Objective Ketamine is a widely used drug with clinical and research applications, and also known to be used as a recreational drug. Ketamine produces conspicuous changes in the electrocorticographic (ECoG) signals observed both in humans and rodents. In rodents, the intracranial ECoG displays a High-Frequency Oscillation (HFO) which power is modulated non-linearly by ketamine dose. Despite the widespread use of ketamine there is no model description of the relationship between the pharmacokinetic-pharmacodynamics (PK-PD) of ketamine and the observed HFO power. Approach In the present study, we developed a PK-PD model based on estimated ketamine concentration, its known pharmacological actions, and observed ECoG effects. The main pharmacological action of ketamine is antagonism of the NMDA receptor (NMDAR), which in rodents is accompanied by a high-frequency oscillation (HFO) observed in the ECoG. At high doses, however, ketamine also acts at non-NMDAR sites, produces loss of consciousness, and the transient disappearance of the HFO. We propose a two-compartment PK model that represents the concentration of ketamine, and a PD model based in opposing effects of the NMDAR and non-NMDAR actions on the HFO power. Main results We recorded ECoG from the cortex of rats after two doses of ketamine, and extracted the HFO power from the ECoG spectrograms. We fit the PK-PD model to the time course of the HFO power, and showed that the model reproduces the dose-dependent profile of the HFO power. The model provides good fits even in the presence of high variability in HFO power across animals. As expected, the model does not provide good fits to the HFO power after dosing the pure NMDAR antagonist MK-801. Significance Our study provides a simple model to relate the observed electrophysiological effects of ketamine to its actions at the molecular level at different concentrations. This will improve the study of ketamine and rodent models of schizophrenia to better understand the

  3. A PK-PD model of ketamine-induced high-frequency oscillations

    NASA Astrophysics Data System (ADS)

    Flores, Francisco J.; Ching, ShiNung; Hartnack, Katharine; Fath, Amanda B.; Purdon, Patrick L.; Wilson, Matthew A.; Brown, Emery N.

    2015-10-01

    Objective. Ketamine is a widely used drug with clinical and research applications, and also known to be used as a recreational drug. Ketamine produces conspicuous changes in the electrocorticographic (ECoG) signals observed both in humans and rodents. In rodents, the intracranial ECoG displays a high-frequency oscillation (HFO) which power is modulated nonlinearly by ketamine dose. Despite the widespread use of ketamine there is no model description of the relationship between the pharmacokinetic-pharmacodynamics (PK-PDs) of ketamine and the observed HFO power. Approach. In the present study, we developed a PK-PD model based on estimated ketamine concentration, its known pharmacological actions, and observed ECoG effects. The main pharmacological action of ketamine is antagonism of the NMDA receptor (NMDAR), which in rodents is accompanied by an HFO observed in the ECoG. At high doses, however, ketamine also acts at non-NMDAR sites, produces loss of consciousness, and the transient disappearance of the HFO. We propose a two-compartment PK model that represents the concentration of ketamine, and a PD model based in opposing effects of the NMDAR and non-NMDAR actions on the HFO power. Main results. We recorded ECoG from the cortex of rats after two doses of ketamine, and extracted the HFO power from the ECoG spectrograms. We fit the PK-PD model to the time course of the HFO power, and showed that the model reproduces the dose-dependent profile of the HFO power. The model provides good fits even in the presence of high variability in HFO power across animals. As expected, the model does not provide good fits to the HFO power after dosing the pure NMDAR antagonist MK-801. Significance. Our study provides a simple model to relate the observed electrophysiological effects of ketamine to its actions at the molecular level at different concentrations. This will improve the study of ketamine and rodent models of schizophrenia to better understand the wide and divergent

  4. Oral ketamine for the treatment of pain and treatment-resistant depression†.

    PubMed

    Schoevers, Robert A; Chaves, Tharcila V; Balukova, Sonya M; Rot, Marije Aan Het; Kortekaas, Rudie

    2016-02-01

    Recent studies with intravenous (i.v.) application of ketamine show remarkable but short-term success in patients with MDD. Studies in patients with chronic pain have used different ketamine applications for longer time periods. This experience may be relevant for psychiatric indications. To review the literature about the dosing regimen, duration, effects and side-effects of oral, intravenous, intranasal and subcutaneous routes of administration of ketamine for treatment-resistant depression and pain. Searches in PubMed with the terms 'oral ketamine', 'depression', 'chronic pain', 'neuropathic pain', 'intravenous ketamine', 'intranasal ketamine' and 'subcutaneous ketamine' yielded 88 articles. We reviewed all papers for information about dosing regimen, number of individuals who received ketamine, number of ketamine days per study, results and side-effects, as well as study quality. Overall, the methodological strength of studies investigating the antidepressant effects of ketamine was considered low, regardless of the route of administration. The doses for depression were in the lower range compared with studies that investigated analgesic use. Studies on pain suggested that oral ketamine may be acceptable for treatment-resistant depression in terms of tolerability and side-effects. Oral ketamine, given for longer time periods in the described doses, appears to be well tolerated, but few studies have systematically examined the longer-term negative consequences. The short- and longer-term depression outcomes as well as side-effects need to be studied with rigorous randomised controlled trials. © The Royal College of Psychiatrists 2016.

  5. R-ketamine: a rapid-onset and sustained antidepressant without psychotomimetic side effects

    PubMed Central

    Yang, C; Shirayama, Y; Zhang, J-c; Ren, Q; Yao, W; Ma, M; Dong, C; Hashimoto, K

    2015-01-01

    Although the efficacy of racemate ketamine, a rapid onset and sustained antidepressant, for patients with treatment-resistant depression was a serendipitous finding, clinical use of ketamine is limited, due to psychotomimetic side effects and abuse liability. Behavioral and side-effect evaluation tests were applied to compare the two stereoisomers of ketamine. To elucidate their potential therapeutic mechanisms, we examined the effects of these stereoisomers on brain-derived neurotrophic factor (BDNF)–TrkB signaling, and synaptogenesis in selected brain regions. In the social defeat stress and learned helplessness models of depression, R-ketamine showed a greater potency and longer-lasting antidepressant effect than S-ketamine (esketamine). Furthermore, R-ketamine induced a more potent beneficial effect on decreased dendritic spine density, BDNF–TrkB signaling and synaptogenesis in the prefrontal cortex (PFC), CA3 and dentate gyrus (DG) of the hippocampus from depressed mice compared with S-ketamine. However, neither stereoisomer affected these alterations in the nucleus accumbens of depressed mice. In behavioral tests for side effects, S-ketamine, but not R-ketamine, precipitated behavioral abnormalities, such as hyperlocomotion, prepulse inhibition deficits and rewarding effects. In addition, a single dose of S-ketamine, but not R-ketamine, caused a loss of parvalbumin (PV)-positive cells in the prelimbic region of the medial PFC and DG. These findings suggest that, unlike S-ketamine, R-ketamine can elicit a sustained antidepressant effect, mediated by increased BDNF–TrkB signaling and synaptogenesis in the PFC, DG and CA3. R-ketamine appears to be a potent, long-lasting and safe antidepressant, relative to S-ketamine, as R-ketamine appears to be free of psychotomimetic side effects and abuse liability. PMID:26327690

  6. A consideration of ketamine dreams.

    PubMed

    Hejja, P; Galloon, S

    1975-01-01

    This study was designed to see whether covering of the eyes during and after ketamine anaesthesia would reduce the incidence of dreams. One hundred and fifty patients, randomly divided into three groups, underwent therapeutic abortion with ketamine as the sole anaesthesia. One hundred patients had their eyes completely covered, 50 in the operating room only and 50 in the operating room and in the recovery room. The third 50 were controls, with their eyes uncovered. All patients were questioned post-operatively about dreams, nausea and vomiting, headache, dizziness and experiences, and also how frequently they dreamed at home. Although covering the eyes in the recovery room only reduced the incidence of dreams marginally, it became obvious that the patients who dreamed after ketamine (in all 3 groups) were those who normally dreamed at home. There were 82 patients who were recorded as not being home-dreamers, and only two of these dreamed after ketamine. In contrast, of the 68 home-dreamers, 50 dreamed after ketamine, and 17 of these had unpleasant dreams. In the home-dreamers, covering the eyes reduced the incidence of dreams from 86 per cent in Group 1 to 72 per cent in Group 2 and 64 per cent in Group 3. It is suggested that goggles may be advantageous when dealing with home-dreamers, and a question about the patient's tendency to dream should be included in the preoperative questioning. Alterations in premedication and the use of a quiet dark room during recovery may even further reduce unpleasant dreams in this group.

  7. Towards an Explanation of Subjective Ketamine Experiences among Young Injection Drug Users

    PubMed Central

    LANKENAU, STEPHEN E.; SANDERS, BILL; BLOOM, JENNIFER JACKSON; HATHAZI, DODI

    2008-01-01

    Ketamine is a dissociative anesthetic with powerful sedative and hallucinogenic properties. Despite the wide variability in reported subjective experiences, no study has attempted to describe the particular factors that shape these experiences. This manuscript is based upon a sample of 213 young injection drug users recruited in New York, New Orleans, and Los Angeles with histories of ketamine use. Qualitative interviews focused on specific ketamine events, such as first injection of ketamine, most recent injection of ketamine, and most recent experience sniffing ketamine. Findings indicate that six factors impacted both positive and negative ketamine experiences: polydrug use, drug using history, mode of administration, quantity and quality of ketamine, user group, and setting. Most subjective experiences during any given ketamine event were shaped by a combination of these factors. Additionally, subjective ketamine experiences were particularly influenced by a lifestyle characterized by homelessness and traveling. PMID:18941540

  8. Ketamine for Pain Management-Side Effects & Potential Adverse Events.

    PubMed

    Allen, Cheryl A; Ivester, Julius R

    2017-12-01

    An old anesthetic agent, ketamine is finding new use in lower doses for analgesic purposes. There are concerns stemming from its potential side effects-specifically psychomimetic effects. These side effects are directly related to dose amount. The doses used for analgesic purposes are much lower than those used for anesthesia purposes. A literature review was performed to ascertain potential side effects and/or adverse events when using ketamine for analgesia purposes. The search included CINAHL, PubMed, and Ovid using the search terms "ketamine," "ketamine infusion," "pain," "adverse events," "practice guideline," and "randomized controlled trial." Searches were limited to full-text, peer-reviewed articles and systematic reviews. Initially 1,068 articles were retrieved. The search was then narrowed by using the Boolean connector AND with various search term combinations. After adjusting for duplication, article titles and abstracts were reviewed, leaving 25 articles for an in-depth analysis. Specific exclusion criteria were then applied. The literature supports the use of ketamine for analgesic purposes, and ketamine offers a nonopioid option for the management of some pain conditions. Because ketamine is still classified as an anesthetic agent, health care institutions should develop their own set of policies and protocols for the administration of ketamine. By using forethought and understanding of the properties of ketamine, appropriate care may be planned to mitigate potential side effects and adverse events so that patients are appropriately cared for and their pain effectively managed. Copyright © 2017 American Society for Pain Management Nursing. Published by Elsevier Inc. All rights reserved.

  9. Effect of Rifampicin on S-ketamine and S-norketamine Plasma Concentrations in Healthy Volunteers after Intravenous S-ketamine Administration

    PubMed Central

    Noppers, Ingeborg; Olofsen, Erik; Niesters, Marieke; Aarts, Leon; Mooren, René; Dahan, Albert; Kharasch, Evan; Sarton, Elise

    2012-01-01

    Background Low-dose ketamine is used as analgesic for acute and chronic pain. It is metabolized in the liver to norketamine via cytochrome P450 enzymes. There are few human data on the involvement of CYP enzymes on the elimination of norketamine and its possible contribution to analgesic effect. The aim of this study was to investigate the effect of cytochrome P450 enzyme induction by rifampicin on the pharmacokinetics of S-ketamine and its major metabolite, S-norketamine, in healthy volunteers. Methods Twenty healthy male subjects received 20 mg/70kg/h (n = 10) or 40 mg/70kg/h (n = 10) intravenous S-ketamine for 2-h following either 5 days of oral rifampicin (once daily 600 mg) or placebo treatment. During and 3-h following drug infusion arterial plasma concentrations of S-ketamine and S-norketamine were obtained at regular intervals. The data were analyzed with a compartmental pharmacokinetic model consisting of three compartments for S-ketamine, three sequential metabolism compartments and two S-norketamine compartments using the statistical package NONMEM version VII. Results Rifampcin caused a 10% and 50% reduction in the area-under-the-curve of the plasma concentrations of S-ketamine and S-norketamine, respectively. The compartmental analysis indicated a 13% and 200% increase in S-ketamine and S-norketamine elimination from their respective central compartments by rifampicin. Conclusions A novel observation is the large effect of rifampicin on S-norketamine concentrations and indicates that rifampicin induces the elimination of S-ketamine’s metabolite, S-norketamine, probably via induction of the CYP3A4 and/or CYP2B6 enzymes. PMID:21508826

  10. Pre-Clinical Testing of New Hydroxybutyrate Analogues

    DTIC Science & Technology

    2011-07-01

    complex I and II sites. Several years ago, we evaluated the use of ketone bodies as secondary sources of energy for mitochondria compromised due to...hydroxybutyrate (DβHB), a ketone body normally produced by hepatocytes and astrocytes and infused via Alzet pump, protected the substantia nigra...crisis in the neurons . In an earlier study, bypassing this complex I deficiency using D-- hydroxybutyrate (DHB) in the MPTP (1-methyl-4-phenyl-1,2,3,6

  11. Abnormalities in white matter microstructure associated with chronic ketamine use.

    PubMed

    Edward Roberts, R; Curran, H Valerie; Friston, Karl J; Morgan, Celia J A

    2014-01-01

    Ketamine is an N-methyl-D-aspartate (NMDA) receptor antagonist that has been found to induce schizophrenia-type symptoms in humans and is a potent and fast-acting antidepressant. It is also a relatively widespread drug of abuse, particularly in China and the UK. Acute administration has been well characterized, but the effect of extended periods of ketamine use-on brain structure in humans-remains poorly understood. We measured indices of white matter microstructural integrity and connectivity in the brain of 16 ketamine users and 16 poly-drug-using controls, and we used probabilistic tractography to quantify changes in corticosubcortical connectivity associated with ketamine use. We found a reduction in the axial diffusivity profile of white matter in a right hemisphere network of white matter regions in ketamine users compared with controls. Within the ketamine-user group, we found a significant positive association between the connectivity profile between the caudate nucleus and the lateral prefrontal cortex and dissociative experiences. These findings suggest that chronic ketamine use may be associated with widespread disruption of white matter integrity, and white matter pathways between subcortical and prefrontal cortical areas may in part predict individual differences in dissociative experiences due to ketamine use.

  12. Thrombin immobilization to methacrylic acid grafted poly(3-hydroxybutyrate) and its in vitro application.

    PubMed

    Akkaya, Alper; Pazarlioglu, Nurdan

    2013-01-01

    Poly(3-hydroxybutyrate) is nontoxic and biodegradable, with good biocompatibility and potential support for long-term implants. For this reason, it is a good support for enzyme immobilization. Enzyme immobilization could not be done directly because poly(3-hydroxybutyrate) has no functional groups. Therefore, modification should be done for enzyme immobilization. In this study, methacrylic acid was graft polymerized to poly(3-hydroxybutyrate) and thrombin was immobilized to polymethacrylic acid grafted poly(3-hydroxybutyrate). In fact, graft polymerization of methacrylic acid to poly(3-hydroxybutyrate) and thrombin immobilization was a model study. Biomolecule immobilized poly(3-hydroxybutyrate) could be used as an implant. Thrombin was selected as a biomolecule for this model study and it was immobilized to methacrylic acid grafted poly(3-hydroxybutyrate). Then the developed product was used to stop bleeding.

  13. Revealing past memories: proactive interference and ketamine-induced memory deficits.

    PubMed

    Chrobak, James J; Hinman, James R; Sabolek, Helen R

    2008-04-23

    Memories of events that occur often are sensitive to interference from memories of similar events. Proactive interference plays an important and often unexamined role in memory testing for spatially and temporally unique events ("episodes"). Ketamine (NMDA receptor antagonist) treatment in humans and other mammals induces a constellation of cognitive deficits, including impairments in working and episodic memory. We examined the effects of the ketamine (2.5-100 mg/kg) on the acquisition, retrieval, and retention of memory in a delayed-match-to-place radial water maze task that can be used to assess proactive interference. Ketamine (2.5-25 mg/kg, i.p.) given 20 min before the sample trial, impaired encoding. The first errors made during the test trial were predominantly to arms located spatially adjacent to the goal arm, suggesting an established albeit weakened representation. Ketamine (25-100 mg/kg) given immediately after the sample trial had no effect on retention. Ketamine given before the test trial impaired retrieval. First errors under the influence of ketamine were predominantly to the goal location of the previous session. Thus, ketamine treatment promoted proactive interference. These memory deficits were not state dependent, because ketamine treatment at both encoding and retrieval only increased the number of errors during the test session. These data demonstrate the competing influence of distinct memory representations during the performance of a memory task in the rat. Furthermore, they demonstrate the subtle disruptive effects of the NMDA antagonist ketamine on both encoding and retrieval. Specifically, ketamine treatment disrupted retrieval by promoting proactive interference from previous episodic representations.

  14. Molecular stress response in the CNS of mice after systemic exposureto interferon-alpha, ionizing radiation and ketamine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowe, Xiu R.; Marchetti, Francesco; Lu, Xiaochen

    2009-03-03

    We previously showed that the expression of troponin T1 (Tnnt 1) was induced in the central nervous system (CNS) of adultmice 30 min after treatment with ketamine, a glutamate N-methyl-D-aspartic acid (NMDA) receptor antagonist. We hypothesized that Tnnt 1 expression may be an early molecular biomarker of stress response in the CNS of mice. To further evaluate this hypothesis, we investigated the regional expression of Tnnt 1 in the mouse brain using RNA in situ hybridization 4 h after systemic exposure to interferon-a (IFN-a) and gamma ionizing radiation, both of which have be associated with wide ranges of neuropsychiatric complications.more » Adult B6C3F1 male mice were treated with either human IFN-a (a single i.p. injection at 1 x 105 IU/kg) or whole body gamma-radiation (10 cGy or 2 Gy). Patterns of Tnnt 1 transcript expression were compared in various CNS regions after IFN-a, radiation and ketamine treatments (previous study). Tnnt 1 expression was consistently induced in pyramidal neurons of cerebral cortex and hippocampus after all treatment regimens including 10 cGy of ionizing radiation. Regional expression of Tnnt 1 was induced in Purkinje cells of cerebellum after ionizing radiation and ketamine treatment; but not after IFN-a treatment. None of the three treatments induced Tnnt 1 expression in glial cells. The patterns of Tnnt 1 expression in pyramidal neurons of cerebral cortex andhippocampus, which are both known to play important roles in cognitive function, memory and emotion, suggest that the expression of Tnnt 1 may be an early molecular biomarker of induced CNS stress.« less

  15. Ketamine accelerates fear extinction via mTORC1 signaling.

    PubMed

    Girgenti, Matthew J; Ghosal, Sriparna; LoPresto, Dora; Taylor, Jane R; Duman, Ronald S

    2017-04-01

    Impaired fear extinction contributes to the persistence of post-traumatic stress disorder (PTSD), and can be utilized for the study of novel therapeutic agents. Glutamate plays an important role in the formation of traumatic memories, and in the pathophysiology and treatment of PTSD, highlighting several possible drug targets. Recent clinical studies demonstrate that infusion of ketamine, a glutamate NMDA receptor antagonist, rapidly and significantly reduces symptom severity in PTSD patients. In the present study, we examine the mechanisms underlying the actions of ketamine in a rodent model of fear conditioning, extinction, and renewal. Rats received ketamine or saline 24h after fear conditioning and were then subjected to extinction-training on each of the following three days. Ketamine administration enhanced extinction on the second day of training (i.e., reduced freezing behavior to cue) and produced a long-lasting reduction in freezing on exposure to cue plus context 8days later. Additionally, ketamine and extinction exposure increased levels of mTORC1 in the medial prefrontal cortex (mPFC), a region involved in the acquisition and retrieval of extinction, and infusion of the selective mTORC1 inhibitor rapamycin into the mPFC blocked the effects of ketamine on extinction. Ketamine plus extinction also increased cFos in the mPFC and administration of a glutamate-AMPA receptor antagonist blocked the effects of ketamine. These results support the hypothesis that ketamine produces long-lasting mTORC1/protein synthesis and activity dependent effects on neuronal circuits that enhance the expression of extinction and could represent a novel approach for the treatment of PTSD. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Ketamine accelerates fear extinction via mTORC1 signaling

    PubMed Central

    Girgenti, Matthew J.; Ghosal, Sriparna; LoPresto, Dora; Taylor, Jane R.; Duman, Ronald S.

    2018-01-01

    Impaired fear extinction contributes to the persistence of post-traumatic stress disorder (PTSD), and can be utilized for the study of novel therapeutic agents. Glutamate plays an important role in the formation of traumatic memories, and in the pathophysiology and treatment of PTSD, highlighting several possible drug targets. Recent clinical studies demonstrate that infusion of ketamine, a glutamate NMDA receptor antagonist, rapidly and significantly reduces symptom severity in PTSD patients. In the present study, we examine the mechanisms underlying the actions of ketamine in a rodent model of fear conditioning, extinction, and renewal. Rats received ketamine or saline 24 h after fear conditioning and were then subjected to extinction-training on each of the following three days. Ketamine administration enhanced extinction on the second day of training (i.e., reduced freezing behavior to cue) and produced a long-lasting reduction in freezing on exposure to cue plus context 8 days later. Additionally, ketamine and extinction exposure increased levels of mTORC1 in the medial prefrontal cortex (mPFC), a region involved in the acquisition and retrieval of extinction, and infusion of the selective mTORC1 inhibitor rapamycin into the mPFC blocked the effects of ketamine on extinction. Ketamine plus extinction also increased cFos in the mPFC and administration of a glutamate-AMPA receptor antagonist blocked the effects of ketamine. These results support the hypothesis that ketamine produces long-lasting mTORC1/protein synthesis and activity dependent effects on neuronal circuits that enhance the expression of extinction and could represent a novel approach for the treatment of PTSD. PMID:28043916

  17. A review of the use of ketamine in pain management.

    PubMed

    Tawfic, Qutaiba A

    2013-01-01

    Ketamine is a noncompetitive antagonist of N-methyl-d-aspartate receptor. It has been widely used in anesthesia and pain management. Ketamine has been administered via the intravenous, intramuscular, subcutaneous, oral, rectal, topical, intranasal, sublingual, epidural, and caudal routes. Ketamine improves postoperative and posttrauma pain scores and reduces opioid consumption. It has special indication for patients with opioid tolerance, acute hyperalgesia, and neuropathic pain. It also has a role in the management of chronic pain including both cancer and noncancer pain. Recreational use of ketamine is increasing as well through different routes of administration like inhalation, smoking, or intravenous injection. Long-time exposure to ketamine, especially in the abusers, may lead to serious side effects. This review is trying to define the role of ketamine in pain management.

  18. Dexmedetomidine Protects Neural Stem Cells from Ketamine-Induced Injury.

    PubMed

    Lu, Pan; Lei, Shan; Li, Weisong; Lu, Yang; Zheng, Juan; Wang, Ning; Xia, Yongjun; Lu, Haixia; Chen, Xinlin; Liu, Yong; Zhang, Peng-Bo

    2018-06-19

    Ketamine inhibits the proliferation of neural stem cells (NSCs) and disturbs normal neurogenesis. Dexmedetomidine provides neuroprotection against volatile anesthetic-induced neuroapoptosis and cognitive impairment in the developing brain. Whether it may protect NSCs from ketamine-induced injury remains unknown. In this study, we investigated the protective effects of dexmedetomidine on ketamine-exposed NSCs and explored the mechanisms potentially involved. Primary NSC cultures were characterized using immunofluorescence. Cell viability was determined using a Cell Counting Kit 8 assay. Proliferation and apoptosis were assessed with BrdU incorporation and TUNEL assays, respectively. Protein levels of cleaved caspase-3, phosphorylated protein kinase B (p-Akt), and glycogen synthase kinase-3β (p-GSK-3β) were quantified using western blotting. Ket-amine significantly decreased NSC viability and proliferation and increased their apoptosis. Dexmedetomidine increased NSC proliferation and decreased their apoptosis in a dose-dependent manner. Furthermore, dexmedetomidine pretreatment notably augmented the viability and proliferation of ketamine-exposed NSCs and reduced their apoptosis. Moreover, dexmedetomidine lessened caspase-3 activation and increased p-Akt and p-GSK-3β levels in NSCs exposed to ketamine. The protective effects of dexmedetomidine on ketamine-exposed NSCs could be partly reversed by the PI3K inhibitor LY294002. Collectively, these findings indicate that dexmedetomidine may protect NSCs from ketamine-induced injury via the PI3K/Akt/GSK-3β signaling pathway. © 2018 The Author(s). Published by S. Karger AG, Basel.

  19. Ketamine for Analgosedation in the Intensive Care Unit: A Systematic Review.

    PubMed

    Patanwala, Asad E; Martin, Jennifer R; Erstad, Brian L

    2017-07-01

    To evaluate the evidence for the use of intravenous ketamine for analgosedation in the intensive care unit. MEDLINE and EMBASE were queried from inception until July 2015. Search terms used included ketamine, intensive care, and critical care. The search retrieved 584 articles to be screened for inclusion. The intent was to include randomized controlled studies using sustained intravenous infusions (>24 hours) of ketamine in the critically ill patients. One trial evaluated opioid consumption as an outcome in postoperative critically ill patients who were randomized to ketamine or saline infusions. The mean cumulative morphine consumption at 48 hours was significantly lower in the ketamine group (58 ± 35 mg) compared to the morphine-only group (80 ± 37 mg; P < .05). Other trials showed the potential safety of ketamine in terms of cerebral hemodynamics in patients with traumatic brain injury, improved gastrointestinal motility, and decreased vasopressor requirements. The observational study and case reports suggest that ketamine is safe and effective and may have a role in patients who are refractory to other therapies. Ketamine use may decrease analgesic consumption in the intensive care unit. Additional trials are needed to further delineate the role of ketamine for analgosedation.

  20. The prevalence and natural history of urinary symptoms among recreational ketamine users.

    PubMed

    Winstock, Adam R; Mitcheson, Luke; Gillatt, David A; Cottrell, Angela M

    2012-12-01

    Study Type--Symptom prevalence (prospective cohort) Level of Evidence 1b. What's known on the subject? and What does the study add? Case series have described lower urinary tract symptoms associated with ketamine use including severe pain, frequency, haematuria and dysuria. Little is known regarding the frequency of symptoms, relationship of symptoms with dose and frequency of use and natural history of symptoms once the ketamine user has stopped. This study describes the prevalence of ketamine use in a population of recreational drug users in a dance music setting. It shows a dose-frequency relationship with ketamine use. It shows that urinary symptoms associated with recreational ketamine use may lead to a considerable demand on health resources in the primary-, secondary- and emergency-care settings. It shows that symptoms may improve once ketamine use is decreased. • To investigate the prevalence and natural history of urinary symptoms in a cohort of recreational ketamine users. • A purposeful sampling technique was used. • Between November 2009 and January 2010 participants were invited to undertake an on-line questionnaire promoted by a national dance music magazine and website. • Data regarding demographics and illicit drug-use were collected. • Among respondents reporting recent ketamine use, additional information detailing their ketamine use, experience of urinary symptoms and use of related healthcare services was obtained. • In all, 3806 surveys were completed, of which 1285 (33.8%) participants reported ketamine use within the last year. • Of the ketamine users, 17% were found to be dependent on the drug; 26.6% (340) of recent ketamine users reported experiencing urinary symptoms. • Urinary symptoms were significantly related to both dose of ketamine used and frequency of ketamine use. • Of 251 users reporting their experience of symptoms over time in relationship to their use of ketamine, 51% reported improvement in urinary symptoms

  1. Subanesthetic, Subcutaneous Ketamine Infusion Therapy in the Treatment of Chronic Nonmalignant Pain.

    PubMed

    Zekry, Olfat; Gibson, Stephen B; Aggarwal, Arun

    2016-06-01

    This study was designed to describe the efficacy and toxicity of subcutaneous ketamine infusions and sublingual ketamine lozenges for the treatment of chronic nonmalignant pain. Data were collected prospectively on 70 subjects managed in an academic, tertiary care hospital between 2007 and 2012 who received between 3 and 7 days of subanesthetic, subcutaneous ketamine infusion. Data were analyzed for efficacy, adverse effects, and reduction in use of opioid medication. We also analyzed whether subsequent treatment with sublingual ketamine lozenges resulted in longer-term efficacy of the beneficial effects of the initial ketamine infusion. There was a significant reduction in pain intensity measured by numerical rating scale (NRS) from mean of 6.38 before ketamine to 4.60 after ketamine (P < .005) that was sustained for between 3 months and 6 years. In subjects on opioids, there was a significant reduction in opioid use at the end of the ketamine infusion from a mean morphine equivalent dose (MMED) of 216 mg/day before ketamine to 89 mg/day after ketamine (P < .005). The overall reduction in opioid use after ketamine infusion was 59%. No subjects increased their use of opioids during their hospitalization for the ketamine infusion. A small proportion of subjects who responded to the infusion were continued on ketamine lozenges. This group was followed for between 3 months and 2 years. The use of ketamine lozenges after the infusion resulted in 31% of these subjects being able to cease their use of opioids compared with only 6% who did not receive ketamine lozenges. Eleven percent of subjects who received lozenges subsequently increased their opioid usage. Adverse effects were fairly common, but only mild, with 46% of patients experiencing light-headedness and dizziness, 25% tiredness and sedation, 12% headaches, 12% hallucinations, and 8% vivid dreams. Adverse effects were easily managed by reducing the rate of the ketamine infusion. The administration of

  2. Single-dose infusion ketamine and non-ketamine N-methyl-d-aspartate receptor antagonists for unipolar and bipolar depression: a meta-analysis of efficacy, safety and time trajectories.

    PubMed

    Kishimoto, T; Chawla, J M; Hagi, K; Zarate, C A; Kane, J M; Bauer, M; Correll, C U

    2016-05-01

    Ketamine and non-ketamine N-methyl-d-aspartate receptor antagonists (NMDAR antagonists) recently demonstrated antidepressant efficacy for the treatment of refractory depression, but effect sizes, trajectories and possible class effects are unclear. We searched PubMed/PsycINFO/Web of Science/clinicaltrials.gov until 25 August 2015. Parallel-group or cross-over randomized controlled trials (RCTs) comparing single intravenous infusion of ketamine or a non-ketamine NMDAR antagonist v. placebo/pseudo-placebo in patients with major depressive disorder (MDD) and/or bipolar depression (BD) were included in the analyses. Hedges' g and risk ratios and their 95% confidence intervals (CIs) were calculated using a random-effects model. The primary outcome was depressive symptom change. Secondary outcomes included response, remission, all-cause discontinuation and adverse effects. A total of 14 RCTs (nine ketamine studies: n = 234; five non-ketamine NMDAR antagonist studies: n = 354; MDD = 554, BD = 34), lasting 10.0 ± 8.8 days, were meta-analysed. Ketamine reduced depression significantly more than placebo/pseudo-placebo beginning at 40 min, peaking at day 1 (Hedges' g = -1.00, 95% CI -1.28 to -0.73, p < 0.001), and loosing superiority by days 10-12. Non-ketamine NMDAR antagonists were superior to placebo only on days 5-8 (Hedges' g = -0.37, 95% CI -0.66 to -0.09, p = 0.01). Compared with placebo/pseudo-placebo, ketamine led to significantly greater response (40 min to day 7) and remission (80 min to days 3-5). Non-ketamine NMDAR antagonists achieved greater response at day 2 and days 3-5. All-cause discontinuation was similar between ketamine (p = 0.34) or non-ketamine NMDAR antagonists (p = 0.94) and placebo. Although some adverse effects were more common with ketamine/NMDAR antagonists than placebo, these were transient and clinically insignificant. A single infusion of ketamine, but less so of non-ketamine NMDAR antagonists, has ultra-rapid efficacy for MDD and BD, lasting

  3. How Ketamine Affects Livers of Pregnant Mice and Developing Mice?

    PubMed

    Cheung, Hoi Man; Chow, Tony Chin Hung; Yew, David Tai Wai

    2017-05-19

    It is well known that ketamine abuse can induce liver damage in adult addicts, but the effects of ketamine abuse in pregnant mothers on their offspring have received less attention. In this study, we investigated the effects of 5-day ketamine injections (30 mg/kg) to pregnant Institute for Cancer Research (ICR) mice during early gestation or mid-gestation on the aspartate aminotransferase (AST) and alkaline phosphatase (ALP) activities of the mothers and the offspring. We also looked into whether administering ketamine treatment to the mothers had any effects on the extent of fibrosis, cell proliferation and cell death in the livers of the newborns. No significant biochemical differences were found between treatment and control groups in the mothers. In the offspring, ketamine treatment mildly suppressed the gradual increase of hepatic AST activity in neonates during liver maturation. Measurements of hepatic ALP activity and lactic acid dehydrogenase (LDH) immunoreactivity revealed that ketamine treatment may lead to increased cell death. Proliferation of liver cells of the newborns was also retarded as shown by reduced proliferative cell nuclear antigen (PCNA) immunoreactivity in the ketamine groups. No obvious fibrosis was evident. Thus, we demonstrated that ketamine administration to pregnant mice suppressed hepatic development and also induced liver cell death of the offspring.

  4. Ketamine, sleep, and depression: current status and new questions.

    PubMed

    Duncan, Wallace C; Zarate, Carlos A

    2013-09-01

    Ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist, has well-described rapid antidepressant effects in clinical studies of individuals with treatment-resistant major depressive disorder (MDD). Preclinical studies investigating the effects of ketamine on brain-derived neurotrophic factor (BDNF) and on sleep slow wave activity (SWA) support its use as a prototype for investigating the neuroplastic mechanisms presumably involved in the mechanism of rapidly acting antidepressants. This review discusses human EEG slow wave sleep parameters and plasma BDNF as central and peripheral surrogate markers of plasticity, and their use in assessing ketamine's effects. Acutely, ketamine elevates BDNF levels, as well as early night SWA and high-amplitude slow waves; each of these measures correlates with change in mood in depressed patients who respond to ketamine. The slow wave effects are limited to the first night post-infusion, suggesting that their increase is part of an early cascade of events triggering improved mood. Increased total sleep and decreased waking occur during the first and second night post infusion, suggesting that these measures are associated with the enduring treatment response observed with ketamine.

  5. Environmental enrichment and abstinence attenuate ketamine-induced cardiac and renal toxicity

    PubMed Central

    Li, Xingxing; Li, Shuangyan; Zheng, Wenhui; Pan, Jian; Huang, Kunyu; Chen, Rong; Pan, Tonghe; Liao, Guorong; Chen, Zhongming; Zhou, Dongsheng; Shen, Wenwen; Zhou, Wenhua; Liu, Yu

    2015-01-01

    The current study was designed to investigate the effect of abstinence in combination with environmental enrichment (EE) on cardiac and renal toxicity induced by 2 weeks of ketamine self-administration (SA) in rodents. In Experiment 1, one group of rats underwent ketamine SA for 14 days. In Experiment 2, the animals completed 2 weeks of ketamine SA followed by 2 and 4 weeks of abstinence. In Experiment 3, animals underwent 14 days of ketamine SA and 4 weeks of abstinence in which isolated environment (IE) and EE was introduced. The corresponding control groups were included for each experiment. Two weeks of ketamine SA caused significant increases in organ weight, Apoptosis Stimulating Fragment/Kidney Injury Molecule-1, and apoptotic level of heart and kidney. The extended length of withdrawal from ketamine SA partially reduced toxicity on the heart and kidney. Finally, introduction of EE during the period of abstinence greatly promoted the effect of abstinence on ketamine-induced cardiac and renal toxicity. The interactive effect of EE and abstinence was promising to promote the recovery of cardiac and renal toxicity of ketamine. PMID:26112338

  6. Betaine enhances antidepressant-like, but blocks psychotomimetic effects of ketamine in mice.

    PubMed

    Lin, Jen-Cheng; Lee, Mei-Yi; Chan, Ming-Huan; Chen, Yi-Chyan; Chen, Hwei-Hsien

    2016-09-01

    Ketamine is emerging as a new hope against depression, but ketamine-associated psychotomimetic effects limit its clinical use. An adjunct therapy along with ketamine to alleviate its adverse effects and even potentiate the antidepressant effects might be an alternative strategy. Betaine, a methyl derivative of glycine and a dietary supplement, has been shown to have antidepressant-like effects and to act like a partial agonist at the glycine site of N-methyl-D-aspartate receptors (NMDARs). Accordingly, betaine might have potential to be an adjunct to ketamine treatment for depression. The antidepressant-like effects of ketamine and betaine were evaluated by forced swimming test and novelty suppressed feeding test in mice. Both betaine and ketamine produced antidepressant-like effects. Furthermore, we determined the effects of betaine on ketamine-induced antidepressant-like and psychotomimetic behaviors, motor incoordination, hyperlocomotor activity, and anesthesia. The antidepressant-like responses to betaine combined with ketamine were stronger than their individual effects. In contrast, ketamine-induced impairments in prepulse inhibition, novel object recognition test, social interaction, and rotarod test were remarkably attenuated, whereas ketamine-induced hyperlocomotion and loss of righting reflex were not affected by betaine. These findings revealed that betaine could enhance the antidepressant-like effects, yet block the psychotomimetic effects of ketamine, suggesting that betaine can be considered as an add-on therapy to ketamine for treatment-resistant depression and suitable for the treatment of depressive symptoms in patients with schizophrenia.

  7. Systemic ketamine inhibits hypersensitivity after surgery via descending inhibitory pathways in rats.

    PubMed

    Koizuka, Shiro; Obata, Hideaki; Sasaki, Masayuki; Saito, Shigeru; Goto, Fumio

    2005-05-01

    Systemic ketamine suppresses several types of chronic pain. Although ketamine is used as a general anesthetic agent, the analgesic effect of systemic ketamine for early-stage postoperative pain is not clear. We investigated the efficacy and mechanism of systemic ketamine in a rat model of postoperative pain. An incision was made in the plantar aspect of the left hind paw in male Wistar rats. Mechanical hypersensitivity was measured using calibrated von Frey filaments. The anti-hypersensitivity effect of systemic or intrathecal administration of ketamine was determined every hour after making the incision. We examined the effects of intrathecal pretreatment with yohimbine, an alpha2-adrenoceptor antagonist, and methysergide, a serotonergic receptor antagonist, on the anti-hypersensitivity effect of ketamine. We also examined the effect of systemic ketamine on the c-fos immunoreactivity in the spinal cord. Systemic administration of ketamine at doses from 3 to 30 mg.kg(-1) produced anti-hypersensitivity effects in a dose-dependent manner. Intrathecal administration of ketamine had no effect. There was no significant difference between effects of pre- and post-incisional administration. Intrathecal pretreatment with yohimbine (10 microg) or methysergide (15 microg) completely reversed the anti-hypersensitivity effects of systemic ketamine. Systemic ketamine reduced fos expression in laminae I-II in the dorsal horn of the lumbar spinal cord ipsilateral to the paw incision. The results suggest that systemic administration of ketamine perioperatively suppresses early-stage postoperative pain via monoaminergic descending inhibitory pathways.

  8. Relationship of resting brain hyperconnectivity and schizophrenia-like symptoms produced by the NMDA receptor antagonist ketamine in humans.

    PubMed

    Driesen, N R; McCarthy, G; Bhagwagar, Z; Bloch, M; Calhoun, V; D'Souza, D C; Gueorguieva, R; He, G; Ramachandran, R; Suckow, R F; Anticevic, A; Morgan, P T; Krystal, J H

    2013-11-01

    N-methyl-D-aspartate glutamate receptor (NMDA-R) antagonists produce schizophrenia-like positive and negative symptoms in healthy human subjects. Preclinical research suggests that NMDA-R antagonists interfere with the function of gamma-aminobutyric acid (GABA) neurons and alter the brain oscillations. These changes have been hypothesized to contribute to psychosis. In this investigation, we evaluated the hypothesis that the NMDA-R antagonist ketamine produces alterations in cortical functional connectivity during rest that are related to symptoms. We administered ketamine to a primary sample of 22 subjects and to an additional, partially overlapping, sample of 12 subjects. Symptoms before and after the experimental session were rated with the Positive and Negative Syndrome Scale (PANSS). In the primary sample, functional connectivity was measured via functional magnetic resonance imaging almost immediately after infusion began. In the additional sample, this assessment was repeated after 45 min of continuous ketamine infusion. Global, enhanced functional connectivity was observed at both timepoints, and this hyperconnectivity was related to symptoms in a region-specific manner. This study supports the hypothesis that pathological increases in resting brain functional connectivity contribute to the emergence of positive and negative symptoms associated with schizophrenia.

  9. Relationship of Resting Brain Hyperconnectivity and Schizophrenia-like Symptoms Produced by the NMDA receptor Antagonist Ketamine in Humans

    PubMed Central

    Driesen, Naomi R.; McCarthy, Gregory; Bhagwagar, Zubin; Bloch, Michael; Calhoun, Vincent; D’Souza, Deepak C.; Gueorguieva, Ralitza; He, George; Ramachandran, Ramani; Suckow, Raymond F.; Anticevic, Alan; Morgan, Peter T.; Krystal, John H.

    2012-01-01

    N-methyl-D-aspartate glutamate receptor (NMDA-R) antagonists produce schizophrenia-like positive and negative symptoms in healthy human subjects. Preclinical research suggests that NMDA-R antagonists interfere with the function of gamma-aminobutyric acid (GABA) neurons and alter brain oscillations. These changes have been hypothesized to contribute to psychosis. In this investigation, we evaluated the hypothesis that the NMDA-R antagonist ketamine produces alterations in cortical functional connectivity during rest that are related to symptoms. We administered ketamine to a primary sample of twenty-two subjects and to an additional, partially overlapping, sample of twelve subjects. Symptoms before and after the experimental session were rated with the Positive and Negative Symptom Scale (PANSS). In the primary sample, functional connectivity was measured via functional magnetic resonance imaging almost immediately after infusion began. In the additional sample, this assessment was repeated after 45 minutes of continuous ketamine infusion. Global, enhanced functional connectivity was observed at both timepoints and this hyperconnectivity was related to symptoms in a region-specific manner. This study supports the hypothesis that pathological increases in resting brain functional connectivity contribute to the emergence of positive and negative symptoms associated with schizophrenia. PMID:23337947

  10. Other drug use does not impact cognitive impairments in chronic ketamine users.

    PubMed

    Zhang, Chenxi; Tang, Wai Kwong; Liang, Hua Jun; Ungvari, Gabor Sandor; Lin, Shih-Ku

    2018-05-01

    Ketamine abuse causes cognitive impairments, which negatively impact on users' abstinence, prognosis, and quality of life. of cognitive impairments in chronic ketamine users have been inconsistent across studies, possibly due to the small sample sizes and the confounding effects of concomitant use of other illicit drugs. This study investigated the cognitive impairment and its related factors in chronic ketamine users with a large sample size and explored the impact of another drug use on cognitive functions. Cognitive functions, including working, verbal and visual memory and executive functions were assessed in ketamine users: 286 non-heavy other drug users and 279 heavy other drug users, and 261 healthy controls. Correlations between cognitive impairment and patterns of ketamine use were analysed. Verbal and visual memory were impaired, but working memory and executive functions were intact for all ketamine users. No significant cognitive differences were found between the two ketamine groups. Greater number of days of ketamine use in the past month was associated with worse visual memory performance in non-heavy other drug users. Higher dose of ketamine use was associated with worse short-term verbal memory in heavy other drug users. Verbal and visual memory are impaired in chronic ketamine users. Other drug use appears to have no impact on ketamine users' cognitive performance. Copyright © 2018. Published by Elsevier B.V.

  11. Psychoactive substances, alcohol and tobacco consumption in HIV-infected outpatients.

    PubMed

    Jacquet, Jean-Marc; Peyriere, Hélène; Makinson, Alain; Peries, Marianne; Nagot, Nicolas; Donnadieu-Rigole, Hélène; Reynes, Jacques

    2018-06-01

    To assess the alcohol consumption, tobacco addiction and psychoactive substance use (PSU) of people living with HIV (PLHIV). Cross-sectional study in an HIV outpatient unit. Autoquestionnaire systematically proposed to all patients during their usual clinical care visit during a 6-months period, for alcohol (AUDIT test), tobacco (Short Fagerstrom Test) and PSU (ASSIST V3.0 test). Of 1334 distributed questionnaires, 1018 PLHIV responded: 76.8% were men [528 patients were MSM), and the median age was 49 years (interquartile range: 42-46). A prevalence of excessive alcohol drinking was found in 22% [95% confidence interval (CI) 19.5-24.7%] and 44.6% (CI 41.5-47.7%) were current smokers, with high dependence in 29.1% (CI 24.9-33.7%). The prevalence of PSU was 37.8% (CI 34.8-41%) in the past 3 months: cannabis 27.7%, poppers 16.4%, cocaine 8.9%, psychotropic medications 7.1%, gamma-hydroxybutyrate/gamma-butyrolactone (GHB/GBL) 4.7%, stimulants 3.1%, synthetic cathinones 2.7%, hallucinogens 1.5%. In the past 3 months, PSU was more prevalent in MSM than in non-MSM patients (46 versus 30%, P < 0.001). MSM consumed significantly more inhaled solvents (poppers) 31.0 versus 1.1%, GHB/GBL 7.8 versus 0.8%, stimulants 5.0 versus 1.1%, synthetic cathinones 4.9 versus 0.3%, and hallucinogens 2.3 versus 0.5%. Given the high prevalence of PSU and other addictions (alcohol and smoking) among PLHIV, and particularly among MSM, a systematic screening of PSU and other addictions should be part of routine clinical care.

  12. Chronic postthoracotomy pain and perioperative ketamine infusion.

    PubMed

    Hu, Jie; Liao, Qin; Zhang, Fan; Tong, Jianbin; Ouyang, Wen

    2014-06-01

    The objectives of this study were to investigate whether continuous intravenous ketamine during the first 72 hours after thoracotomy could reduce the incidence and intensity of chronic postthoracotomy pain (CPTP) and to define the incidence and risk factors of CPTP. Seventy-eight patients receiving thoracotomy for lung tumor (benign or malignant) were randomly divided into two groups: ketamine group (n = 31) and control groups (n = 47). Patients in the ketamine group received intravenous ketamine 1 mg/kg before incision, followed by 2 μg/kg/minute infusion for 72 hours plus sufentanil patient-controlled intravenous analgesia after thoracotomy. Patients in the control group received intravenous a 0.9% normal saline and infusion plus sufentanil patient-controlled intravenous analgesia. The solutions patients received were blinded. The numerical rating scale (NRS) pain scores and the incidence and risk factors of CPTP were recorded during the first 6 months after surgery. Compared with control group, the incidence of chronic pain in the ketamine group did not decrease at 2 months (χ(2) = 1.599, P = .206) and 6 months (χ(2) = 0.368, P = .544) after surgery. Postoperative pain scores in the ketamine group were not significantly different from those of the control group patients at 2 months (U = 677.5, P = .593) and 6 months (U = 690.5, P = .680). The incidence of CPTP was 78.2% (61/78) at 2 months and 53.8% (42/78) at 6 months after surgery. Retractor used time (OR = 5.811, P = .002), inadequate acute pain control (NRS ≥ 5) (OR = 5.425, P = .048), and chemotherapy (OR = 3.784, P = .056) were independent risk factors for chronic postthoracotomy pain. The authors conclude that continuous intravenous ketamine (2 μg/kg/min) during the first 72 hours after thoracotomy was not beneficial to prevent chronic postthoracotomy pain. The independent risk factors for chronic postthoracotomy pain were retractor used time, inadequate acute pain control, and chemotherapy.

  13. Cognitive impairments in poly-drug ketamine users.

    PubMed

    Liang, H J; Lau, C G; Tang, A; Chan, F; Ungvari, G S; Tang, W K

    2013-11-01

    Cognitive impairment has been found to be reversible in people with substance abuse, particularly those using ketamine. Ketamine users are often poly-substance users. This study compared the cognitive functions of current and former ketamine users who were also abusing other psychoactive substances with those of non-users of illicit drugs as controls. One hundred ketamine poly-drug users and 100 controls were recruited. Drug users were divided into current (n = 32) and ex-users (n = 64) according to the duration of abstinence from ketamine (>30 days). The Beck Depression Inventory (BDI), the Hospital Anxiety Depression Scale (HADSA) and the Severity of Dependence Scale (SDS) were used to evaluate depression and anxiety symptoms and the severity of drug use, respectively. The cognitive test battery comprised verbal memory (Wechsler Memory Scale III: Logic Memory and Word List), visual memory (Rey-Osterrieth Complex Figure, ROCF), executive function (Stroop, Wisconsin Card Sorting Test, and Modified Verbal Fluency Test), working memory (Digit Span Backward), and general intelligence (Information, Arithmetic and Digit-Symbol Coding) tests. Current users had higher BDI and HADSA scores than ex-users (p < 0.001 for BDI and p = 0.022 for HADSA) and controls (p < 0.001 for BDI and p = 0.002 for HADSA). Ex-users had higher BDI (p = 0.006) but equal HADSA scores (p = 1.000) compared to controls. Both current and ex-users had lower scores on Logical Memory delayed recall (p = 0.038 for current users and p = 0.032 for ex-users) and ROCF delayed recall (p = 0.033 for current users and p = 0.014 for ex-users) than controls. Current users also performed worse on ROCF recognition than controls (p = 0.002). No difference was found between the cognitive functions of current and ex-users. Ketamine poly-drug users displayed predominantly verbal and visual memory impairments, which persisted in ex-users. The interactive effect of ketamine and poly-drug use on memory needs further

  14. Ketamine for pain management in France, an observational survey.

    PubMed

    Martinez, Valeria; Derivaux, Benoit; Beloeil, Helene

    2015-12-01

    Before updating the French guidelines on postoperative pain treatment in 2015, the Pain Committee of the French Society of Anaesthesiology and Intensive Care (SFAR) conducted a survey on the medical use of ketamine in France. An online questionnaire was nationally distributed to members of SFAR, the French Pain Society (SFETD) and the French Society of Emergency Medicine (SFMU). The questionnaire included questions on demographic data, the type of patients for whom ketamine was prescribed, the doses used, the side effects and safety measures associated with the administration of ketamine. A total of 1388 questionnaires were analysed. Ninety-two percent of the responders declared that they used ketamine. Ketamine was widely used as anti-hyperalgesic medication but the modalities of administration and the doses varied greatly and were not in accordance with the guidelines. Despite the lack of evidence and guidelines, ketamine has also been used to treat acute and chronic pain. Doses, duration and localization of the patients during administration have varied greatly. Psychedelic effects and hallucinations are the most feared side effects. In terms of monitoring during ketamine infusion, 15% of physicians declared that no monitoring was necessary while 59%, 55%, 59% and 77% monitored heart rate, SpO2, blood pressure and level of consciousness, respectively. Anaesthesiologists have integrated the benefit of ketamine in preventing hyperalgesia but there is no consensus on doses and duration. For other indications (acute and chronic pain treatment), toxicity and the absence of significant benefit call for guidelines from scientific societies. Copyright © 2015 Société française d’anesthésie et de réanimation (Sfar). Published by Elsevier Masson SAS. All rights reserved.

  15. Increasing Ketamine Use for Refractory Status Epilepticus in US Pediatric Hospitals.

    PubMed

    Keros, Sotirios; Buraniqi, Ersida; Alex, Byron; Antonetty, Annalee; Fialho, Hugo; Hafeez, Baria; Jackson, Michele C; Jawahar, Rachel; Kjelleren, Stephanie; Stewart, Elizabeth; Morgan, Lindsey A; Wainwright, Mark S; Sogawa, Yoshimi; Patel, Anup D; Loddenkemper, Tobias; Grinspan, Zachary M

    2017-06-01

    Ketamine is an emerging therapy for pediatric refractory status epilepticus. The circumstances of its use, however, are understudied. The authors described pediatric refractory status epilepticus treated with ketamine from 2010 to 2014 at 45 centers using the Pediatric Hospital Inpatient System database. For comparison, they described children treated with pentobarbital. The authors estimated that 48 children received ketamine and pentobarbital for refractory status epilepticus, and 630 pentobarbital without ketamine. Those receiving only pentobarbital were median age 3 [interquartile range 0-10], and spent 30 [18-52] days in-hospital, including 17 [9-28] intensive care unit (ICU) days; 17% died. Median cost was $148 000 [81 000-241 000]. The pentobarbital-ketamine group was older (7 [2-11]) with longer hospital stays (51 [30-93]) and more ICU days (29 [20-56]); 29% died. Median cost was $298 000 [176 000-607 000]. For 71%, ketamine was given ≥1 day after pentobarbital. Ketamine cases per half-year increased from 2 to 9 ( P < .05). Ketamine is increasingly used for severe pediatric refractory status epilepticus, typically after pentobarbital. Research on its effectiveness is indicated.

  16. Role of ketamine in acute postoperative pain management: a narrative review.

    PubMed

    Radvansky, Brian M; Shah, Khushbu; Parikh, Anant; Sifonios, Anthony N; Le, Vanny; Eloy, Jean D

    2015-01-01

    The objective of this narrative review was to examine the usage of ketamine as a postoperative analgesic agent across a wide variety of surgeries. A literature search was performed using the phrases "ketamine" and "postoperative pain." The authors analyzed the studies that involved testing ketamine's effectiveness at controlling postoperative pain. Effectiveness was assessed through various outcomes such as the amount of opiate consumption, visual analog scale (VAS) pain scores, and persistent postoperative pain at long-term follow-up. While many different administration protocols were evaluated, delivering ketamine both as a pre- or perioperative bolus and postoperative infusion for up to 48 hours appeared to be the most effective. These effects are dose-dependent. However, a number of studies analyzed showed no benefit in using ketamine versus placebo for controlling postoperative pain. While ketamine is a safe and well-tolerated drug, it does have adverse effects, and there are concerns for possible neurotoxicity and effects on memory. In a number of limited situations, ketamine has shown some efficacy in controlling postoperative pain and decreasing opioid consumption. More randomized controlled trials are necessary to determine the surgical procedures and administrations (i.e., intravenous, epidural) that ketamine is best suited for.

  17. Prenatal ketamine exposure causes abnormal development of prefrontal cortex in rat

    PubMed Central

    Zhao, Tianyun; Li, Chuanxiang; Wei, Wei; Zhang, Haixing; Ma, Daqing; Song, Xingrong; Zhou, Libing

    2016-01-01

    Ketamine is commonly used for anesthesia and as a recreational drug. In pregnant users, a potential neurotoxicity in offspring has been noted. Our previous work demonstrated that ketamine exposure of pregnant rats induces affective disorders and cognitive impairments in offspring. As the prefrontal cortex (PFC) is critically involved in emotional and cognitive processes, here we studied whether maternal ketamine exposure influences the development of the PFC in offspring. Pregnant rats on gestational day 14 were treated with ketamine at a sedative dose for 2 hrs, and pups were studied at postnatal day 0 (P0) or P30. We found that maternal ketamine exposure resulted in cell apoptosis and neuronal loss in fetal brain. Upon ketamine exposure in utero, PFC neurons at P30 showed more dendritic branching, while cultured neurons from P0 PFC extended shorter neurites than controls. In addition, maternal ketamine exposure postponed the switch of NR2B/2A expression, and perturbed pre- and postsynaptic protein expression in the PFC. These data suggest that prenatal ketamine exposure impairs neuronal development of the PFC, which may be associated with abnormal behavior in offsprings. PMID:27226073

  18. Suppressed neural complexity during ketamine- and propofol-induced unconsciousness.

    PubMed

    Wang, Jisung; Noh, Gyu-Jeong; Choi, Byung-Moon; Ku, Seung-Woo; Joo, Pangyu; Jung, Woo-Sung; Kim, Seunghwan; Lee, Heonsoo

    2017-07-13

    Ketamine and propofol have distinctively different molecular mechanisms of action and neurophysiological features, although both induce loss of consciousness. Therefore, identifying a common feature of ketamine- and propofol-induced unconsciousness would provide insight into the underlying mechanism of losing consciousness. In this study we search for a common feature by applying the concept of type-II complexity, and argue that neural complexity is essential for a brain to maintain consciousness. To test this hypothesis, we show that complexity is suppressed during loss of consciousness induced by ketamine or propofol. We analyzed the randomness (type-I complexity) and complexity (type-II complexity) of electroencephalogram (EEG) signals before and after bolus injection of ketamine or propofol. For the analysis, we use Mean Information Gain (MIG) and Fluctuation Complexity (FC), which are information-theory-based measures that quantify disorder and complexity of dynamics respectively. Both ketamine and propofol reduced the complexity of the EEG signal, but ketamine increased the randomness of the signal and propofol decreased it. The finding supports our claim and suggests EEG complexity as a candidate for a consciousness indicator. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. COMPARISON OF INTRAMUSCULAR FENTANYL-MIDAZOLAM, FENTANYL-MIDAZOLAM-KETAMINE, AND KETAMINE-MEDETOMIDINE FOR IMMOBILIZATION OF JAPANESE MACAQUES ( MACACA FUSCATA).

    PubMed

    Ølberg, Rolf-Arne; Sinclair, Melissa; Barker, Ian K; Crawshaw, Graham

    2018-03-01

    The combination of fentanyl and midazolam is commonly used as a sedative in humans. The objective of this study was to evaluate the sedative properties and physiological effects of fentanyl-midazolam and fentanyl-midazolam-ketamine compared with medetomidine-ketamine given intramuscularly in Japanese macaques ( Macaca fuscata). In a randomized crossover design, eight Japanese macaques were hand-injected with either 30 μg/kg fentanyl + 0.3 mg/kg midazolam (FM), 15 μg/kg fentanyl + 0.3 mg/kg midazolam + 5.0 mg/kg ketamine (FMK), or 0.05 mg/kg medetomidine + 5.0 mg/kg ketamine (MedK). Heart rate; indirect systolic, mean, and diastolic arterial pressure; respiratory rate; blood gas concentrations; rectal temperature; and duration of immobilization were recorded. Mixed linear models were used to evaluate the effects of drug treatment on all continuous variables, with a significance level of P < 0.05. Only three of seven animals receiving FM were successfully immobilized. All eight animals in both the FMK and MedK treatment groups had a rapid, smooth induction and were successfully immobilized. Both FMK and MedK treatments resulted in significant hypoxia and the animals required supplemental oxygen via face mask. The mean duration of FMK immobilization was 42 ± 10 min, significantly shorter than the 65 ± 14 min for the animals receiving MedK. Immobilization with MedK resulted in significantly lower heart rates, and significantly higher arterial pressure compared with FMK. Hypoventilation was significantly more pronounced in FMK-treated animals compared with MedK treatments. Immobilization with FMK resulted in a gradual, slow recovery whereas MedK-treated animals woke up more rapidly. Fentanyl-midazolam alone is not a useful sedative in Japanese macaques. A combination of fentanyl and midazolam with ketamine can be used as an alternative to medetomidine-ketamine in this species.

  20. Ketamine as an adjuvant to opioids for cancer pain.

    PubMed

    Bell, Rae F; Eccleston, Christopher; Kalso, Eija A

    2017-06-28

    This is an update of a review first published in 2003 and updated in 2012.Ketamine is a commonly used anaesthetic agent, and in subanaesthetic doses is also given as an adjuvant to opioids for the treatment of refractory cancer pain, when opioids alone or in combination with appropriate adjuvant analgesics prove to be ineffective. Ketamine is known to have psychomimetic (including hallucinogenic), urological, and hepatic adverse effects. To determine the effectiveness and adverse effects of ketamine as an adjuvant to opioids for refractory cancer pain in adults. For this update, we searched MEDLINE (OVID) to December 2016. We searched CENTRAL (CRSO), Embase (OVID) and two clinical trial registries to January 2017. The intervention considered by this review was the addition of ketamine, given by any route of administration, in any dose, to pre-existing opioid treatment given by any route and in any dose, compared with placebo or active control. We included studies with a group size of at least 10 participants who completed the trial. Two review authors independently assessed the search results and performed 'Risk of bias' assessments. We aimed to extract data on patient-reported pain intensity, total opioid consumption over the study period; use of rescue medication; adverse events; measures of patient satisfaction/preference; function; and distress. We also assessed participant withdrawal (dropout) from trial. We assessed the quality of the evidence using GRADE (Grading of Recommendations Assessment, Development and Evaluation). One new study (185 participants) was identified by the updated search and included in the review. We included a total of three studies in this update.Two small studies, both with cross-over design, with 20 and 10 participants respectively, were eligible for inclusion in the original review. One study with 20 participants examined the addition of intrathecal ketamine to intrathecal morphine, compared with intrathecal morphine alone. The

  1. Hypoxia and GABA shunt activation in the pathogenesis of Alzheimer's disease.

    PubMed

    Salminen, Antero; Jouhten, Paula; Sarajärvi, Timo; Haapasalo, Annakaisa; Hiltunen, Mikko

    2016-01-01

    We have previously observed that the conversion of mild cognitive impairment to definitive Alzheimer's disease (AD) is associated with a significant increase in the serum level of 2,4-dihydroxybutyrate (2,4-DHBA). The metabolic generation of 2,4-DHBA is linked to the activation of the γ-aminobutyric acid (GABA) shunt, an alternative energy production pathway activated during cellular stress, when the function of Krebs cycle is compromised. The GABA shunt can be triggered by local hypoperfusion and subsequent hypoxia in AD brains caused by cerebral amyloid angiopathy. Succinic semialdehyde dehydrogenase (SSADH) is a key enzyme in the GABA shunt, converting succinic semialdehyde (SSA) into succinate, a Krebs cycle intermediate. A deficiency of SSADH activity stimulates the conversion of SSA into γ-hydroxybutyrate (GHB), an alternative route from the GABA shunt. GHB can exert not only acute neuroprotective activities but unfortunately also chronic detrimental effects which may lead to cognitive impairment. Subsequently, GHB can be metabolized to 2,4-DHBA and secreted from the brain. Thus, the activation of the GABA shunt and the generation of GHB and 2,4-DHBA can have an important role in the early phase of AD pathogenesis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Memantine and Ketamine Differentially Alter NMDA Receptor Desensitization

    PubMed Central

    Povysheva, Nadezhda V.; Azofeifa, Andrea M.

    2017-01-01

    Memantine and ketamine are clinically useful NMDA receptor (NMDAR) open channel blockers that inhibit NMDARs with similar potency and kinetics, but display vastly different clinical profiles. This discrepancy has been hypothesized to result from inhibition by memantine and ketamine of overlapping but distinct NMDAR subpopulations. For example, memantine but not ketamine may inhibit extrasynaptic NMDARs more effectively than synaptic NMDARs. However, the basis for preferential NMDAR inhibition depending on subcellular location has not been investigated systematically. We integrated recordings from heterologously expressed single NMDAR subtypes, kinetic modeling, and recordings of synaptically evoked NMDAR responses in acute brain slices to investigate mechanisms by which channel blockers may distinguish NMDAR subpopulations. We found that memantine and ketamine differentially alter NMDAR desensitization and that memantine stabilizes a Ca2+-dependent desensitized state. As a result, inhibition by memantine of GluN1/2A receptors in tsA201 cells and of native synaptic NMDARs in cortical pyramidal neurons from mice of either sex increased in conditions that enhanced intracellular Ca2+ accumulation. Therefore, differential inhibition by memantine and ketamine based on NMDAR location is likely to result from location dependence of the intensity and duration of NMDAR activation. Modulation of Ca2+-dependent NMDAR desensitization is an unexplored mechanism of inhibitory action with the potential to endow drugs with NMDAR selectivity that leads to superior clinical profiles. Our results suggest that designing compounds to target specific receptor states, rather than specific receptor types, may be a viable strategy for future drug development. SIGNIFICANCE STATEMENT Memantine and ketamine are NMDA receptor (NMDAR) channel-blocking drugs with divergent clinical effects. Understanding mechanistically their differential actions may advance our understanding of nervous system

  3. Memantine and Ketamine Differentially Alter NMDA Receptor Desensitization.

    PubMed

    Glasgow, Nathan G; Povysheva, Nadezhda V; Azofeifa, Andrea M; Johnson, Jon W

    2017-10-04

    Memantine and ketamine are clinically useful NMDA receptor (NMDAR) open channel blockers that inhibit NMDARs with similar potency and kinetics, but display vastly different clinical profiles. This discrepancy has been hypothesized to result from inhibition by memantine and ketamine of overlapping but distinct NMDAR subpopulations. For example, memantine but not ketamine may inhibit extrasynaptic NMDARs more effectively than synaptic NMDARs. However, the basis for preferential NMDAR inhibition depending on subcellular location has not been investigated systematically. We integrated recordings from heterologously expressed single NMDAR subtypes, kinetic modeling, and recordings of synaptically evoked NMDAR responses in acute brain slices to investigate mechanisms by which channel blockers may distinguish NMDAR subpopulations. We found that memantine and ketamine differentially alter NMDAR desensitization and that memantine stabilizes a Ca 2+ -dependent desensitized state. As a result, inhibition by memantine of GluN1/2A receptors in tsA201 cells and of native synaptic NMDARs in cortical pyramidal neurons from mice of either sex increased in conditions that enhanced intracellular Ca 2+ accumulation. Therefore, differential inhibition by memantine and ketamine based on NMDAR location is likely to result from location dependence of the intensity and duration of NMDAR activation. Modulation of Ca 2+ -dependent NMDAR desensitization is an unexplored mechanism of inhibitory action with the potential to endow drugs with NMDAR selectivity that leads to superior clinical profiles. Our results suggest that designing compounds to target specific receptor states, rather than specific receptor types, may be a viable strategy for future drug development. SIGNIFICANCE STATEMENT Memantine and ketamine are NMDA receptor (NMDAR) channel-blocking drugs with divergent clinical effects. Understanding mechanistically their differential actions may advance our understanding of nervous

  4. Rapamycin blocks the antidepressant effect of ketamine in task-dependent manner.

    PubMed

    Holubova, Kristina; Kleteckova, Lenka; Skurlova, Martina; Ricny, Jan; Stuchlik, Ales; Vales, Karel

    2016-06-01

    The aim of our study was to test whether ketamine produces an antidepressant effect in animal model of olfactory bulbectomy and assess the role of mammalian target of rapamycin (mTOR) pathway in ketamine's antidepressant effect. Bulbectomized (OBX) rats and sham controls were assigned to four subgroups according to the treatment they received (ketamine, saline, ketamine + rapamycin, and saline + rapamycin). The animals were subjected to open field (OF), elevated plus maze (EPM), passive avoidance (PA), Morris water maze (MWM), and Carousel maze (CM) tests. Blood samples were collected before and after drug administration for analysis of phosphorylated mTOR level. After behavioral testing, brains were removed for evaluation of brain-derived neurotrophic factor (BDNF) in prefrontal cortex (PFC) and hippocampus. Ketamine normalized hyperactivity of OBX animals in EPM and increased the time spent in open arms. Rapamycin pretreatment resulted in elimination of ketamine effect in EPM test. In CM test, ketamine + rapamycin administration led to cognitive impairment not observed in saline-, ketamine-, or saline + rapamycin-treated OBX rats. Prefrontal BDNF content was significantly decreased, and level of mTOR was significantly elevated in OBX groups. OBX animals significantly differed from sham controls in most of the tests used. Treatment had more profound effect on OBX phenotype than controls. Pretreatment with rapamycin eliminated the anxiolytic and antidepressant effects of ketamine in task-dependent manner. The results indicate that ketamine + rapamycin application resulted in impaired stress responses manifested by cognitive deficits in active place avoidance (CM) test. Intensity of stressor (mild vs. severe) used in the behavioral tests had opposite effect on controls and on OBX animals.

  5. Mutual enhancement of central neurotoxicity induced by ketamine followed by methamphetamine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ke, J.-J.; Chen, H.-I.; Jen, C.J.

    2008-03-01

    We hereby report that repeated administration of ketamine (350 mg/kg in total) and methamphetamine (30 mg/kg in total) causes specific glutamatergic and dopaminergic neuron deficits, respectively, in adult mouse brain. Acute ketamine did not affect basal body temperature or the later methamphetamine-induced hyperthermia. However, pretreatment with repeated doses of ketamine aggravated methamphetamine-induced dopaminergic terminal loss as evidenced by a drastic decrease in the levels of dopamine, 3,4-dihydroxyphenylacetic acid, and dopamine transporter density as well as poor gait balance performance. In contrast, methamphetamine-induced serotonergic depletion was not altered by ketamine pretreatment. Likewise, the subsequent treatment with methamphetamine exacerbated the ketamine-induced glutamatergicmore » damage as indicated by reduced levels of the vesicular glutamate transporter in hippocampus and striatum and poor memory performance in the Morris water maze. Finally, since activation of the D1 and AMPA/kainate receptors has been known to be involved in the release of glutamate and dopamine, we examined the effects of co-administration of SCH23390, a D1 antagonist, and CNQX, an AMPA/kainate antagonist. Intraventricular CNQX infusion abolished ketamine's potentiation of methamphetamine-induced dopamine neurotoxicity, while systemic SCH23390 mitigated methamphetamine's potentiation of ketamine-induced glutamatergic toxicity. We conclude that repeated doses of ketamine potentiate methamphetamine-induced dopamine neurotoxicity via AMPA/kainate activation and that conjunctive use of methamphetamine aggravates ketamine-induced glutamatergic neurotoxicity possibly via D1 receptor activation.« less

  6. Differential regulation of GluA1 expression by ketamine and memantine.

    PubMed

    Zhang, Ke; Yamaki, Vitor Nagai; Wei, Zhisheng; Zheng, Yu; Cai, Xiang

    2017-01-01

    Evidence from preclinical and clinical studies shows that ketamine, a noncompetitive NMDA receptor antagonist, exerts rapid and sustained antidepressant responses. However, ketamine's psychotomimetic side effects and abuse liability limit the clinical use of the compound. Interestingly, memantine, another NMDA receptor channel blocker, processes no defined antidepressant property but is much safer and clinical tolerated. Understanding why ketamine but not memantine exhibits rapid antidepressant responses is important to elucidate the cellular signaling underlying the fast antidepressant actions of ketamine and to design a new safer generation of fast-acting antidepressants. Here we show that ketamine but memantine caused a rapid and sustained antidepressant-like responses in forced swim test (FST). Both drugs enhanced GluA1 S845 phosphorylation and potentiated Schaffer collateral-CA1 synaptic transmission. However, ketamine but not memantine elevated the expression of GluA1. Incubating acutely prepared hippocampal slices with ketamine but not memantine enhanced mTOR phosphorylation in a time course parallel to the time course of GluA1 elevation. Our results suggest that distinct properties in regulation of mTOR phosphorylation and synaptic protein expression may underlie the differential effectiveness of ketamine and memantine in their antidepressant responses. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Cognitive behavior therapy may sustain antidepressant effects of intravenous ketamine in treatment-resistant depression

    PubMed Central

    Wilkinson, Samuel T.; Wright, DaShaun; Fasula, Madonna K.; Fenton, Lisa; Griepp, Matthew; Ostroff, Robert B.; Sanacora, Gerard

    2017-01-01

    Introduction Ketamine has shown rapid though short-lived antidepressant effects. The possibility of concerning neurobiological changes following repeated exposure to the drug motivate the development of strategies that obviate or minimize the need for longer-term treatment with ketamine. In this open-label trial, we investigated whether cognitive behavioral therapy (CBT) can sustain or extend ketamine's antidepressant effects. Methods Patients who were pursuing ketamine infusion therapy for treatment-resistant depression (TRD) were invited to participate in the study. If enrolled, the subjects initiated a 12-session, 10-week course of CBT concurrently with a short 4-treatment, 2-week course of intravenous ketamine (0.5mg/kg infused over 40 mins) provided under a standardized clinical protocol. Results Sixteen participants initiated the protocol, with 8 (50%) attaining a response to the ketamine and 7 (43.8%) achieving remission during the first two weeks of protocol. Among ketamine responders, the relapse rate at the end of the CBT course (8 weeks following the last ketamine exposure) was 25% (2/8). On longer-term follow up, 5 of 8 subjects eventually relapsed, the median time-to-relapse being 12 weeks following ketamine exposure. Among ketamine remitters, 3 of 7 retained remission until at least 4 weeks following the last ketamine exposure, with 2 retaining remission through 8 weeks following ketamine exposure. Ketamine non-responders did not appear to benefit from CBT. Conclusions CBT may sustain the antidepressant effects of ketamine in TRD. Well-powered randomized controlled trials are warranted to further investigate this treatment combination as a way to sustain ketamine's antidepressant effects. PMID:28490030

  8. Effect of ketamine on endogenous pain modulation in healthy volunteers.

    PubMed

    Niesters, Marieke; Dahan, Albert; Swartjes, Maarten; Noppers, Ingeborg; Fillingim, Roger B; Aarts, Leon; Sarton, Elise Y

    2011-03-01

    Inhibitory and facilitatory descending pathways, originating at higher central nervous system sites, modulate activity of dorsal horn nociceptive neurons, and thereby influence pain perception. Dysfunction of inhibitory pain pathways or a shift in the balance between pain facilitation and pain inhibition has been associated with the development of chronic pain. The N-methyl-d-aspartate receptor antagonist ketamine has a prolonged analgesic effect in chronic pain patients. This effect is due to desensitization of sensitized N-methyl-d-aspartate receptors. Additionally, ketamine may modulate or enhance endogenous inhibitory control of pain perception. Diffuse noxious inhibitory control (DNIC) and offset analgesia (OA) are 2 mechanisms involved in descending inhibition. The present study investigates the effect of a ketamine infusion on subsequent DNIC and OA responses to determine whether ketamine has an influence on descending pain control. Ten healthy subjects (4 men/6 women) received a 1-hour placebo or S(+)-ketamine (40mg per 70kg) infusion on 2 separate occasions in random order. Upon the termination of the infusion, DNIC and OA responses were obtained. After placebo treatment, significant descending inhibition of pain responses was present for DNIC and OA. In contrast, after ketamine infusion, no DNIC was observed, but rather a significant facilitatory pain response (P<0.01); the OA response remained unchanged. These findings suggest that the balance between pain inhibition and pain facilitation was shifted by ketamine towards pain facilitation. The absence of an effect of ketamine on OA indicates differences in the mechanisms and neurotransmitter influences between OA and DNIC. Diffuse noxious inhibitory control responses following a 1-hour low-dose ketamine treatment displayed facilitation of pain in response to experimental noxious thermal stimulation. Copyright © 2010 International Association for the Study of Pain. Published by Elsevier B.V. All rights

  9. The effects of ketamine on sexual behavior, anxiety, and locomotion in female rats.

    PubMed

    Guarraci, Fay A; Gonzalez, Chantal M F; Lucero, Devon; Womble, Paige D; Abdel-Rahim, Heba; DeVore, Jennie; Kunkel, Marcela Nicole; Quadlander, Emma; Stinnett, Morgan; Boyette-Davis, Jessica

    2018-02-01

    The present study characterized the effects of ketamine on sexual behavior and anxiety in female rats. In Experiment 1, female subjects received an injection of ketamine (10.0mg/kg) or saline 30min prior to a sexual partner-preference test during which each female subject was given the opportunity to interact with a female stimulus or a sexually vigorous male stimulus. Immediately afterwards, female subjects were tested for locomotion in an open field test. Ketamine-treated subjects spent significantly more time with the male stimulus than saline-treated subjects. No other measures of mating behavior (i.e., paced mating behavior, lordosis) were affected by ketamine. Ketamine also had no effect on locomotion. In Experiment 2, female subjects received an injection of ketamine (10.0mg/kg), or saline daily for 10days to investigate the possibility that sexual dysfunction emerges only after repeated exposure. Similar to the results of Experiment 1, ketamine-treated subjects spent significantly more time with the male stimulus than saline-treated subjects. Chronic ketamine treatment also decreased the likelihood of leaving the male after mounts, without affecting any other measures of sexual behavior. Chronic ketamine had no effect on locomotion. In Experiment 3, female subjects received an injection of ketamine (10.0mg/kg) or saline and were tested for anxiety in an elevated plus maze test and for locomotion in an open field test. Acute ketamine had no effect on anxiety or locomotion. In Experiment 4, female subjects received an injection of ketamine (10.0mg/kg) or saline daily for 10days to investigate the possibility that anxiety emerges only after repeated exposure. Chronic ketamine exposure had no effect on any measure of anxiety. However, chronic ketamine exposure increased locomotion. The results from these experiments indicate that unlike other medications prescribed for depression, neither acute nor chronic ketamine treatment causes anxiety or disruption of

  10. New Linear and Star-Shaped Thermogelling Poly([R]-3-hydroxybutyrate) Copolymers.

    PubMed

    Barouti, Ghislaine; Liow, Sing Shy; Dou, Qingqing; Ye, Hongye; Orione, Clément; Guillaume, Sophie M; Loh, Xian Jun

    2016-07-18

    The synthesis of multi-arm poly([R]-3-hydroxybutyrate) (PHB)-based triblock copolymers (poly([R]-3-hydroxybutyrate)-b-poly(N-isopropylacrylamide)-b-[[poly(methyl ether methacrylate)-g-poly(ethylene glycol)]-co-[poly(methacrylate)-g-poly(propylene glycol)

  11. Optogenetic stimulation of infralimbic PFC reproduces ketamine's rapid and sustained antidepressant actions.

    PubMed

    Fuchikami, Manabu; Thomas, Alexandra; Liu, Rongjian; Wohleb, Eric S; Land, Benjamin B; DiLeone, Ralph J; Aghajanian, George K; Duman, Ronald S

    2015-06-30

    Ketamine produces rapid and sustained antidepressant actions in depressed patients, but the precise cellular mechanisms underlying these effects have not been identified. Here we determined if modulation of neuronal activity in the infralimbic prefrontal cortex (IL-PFC) underlies the antidepressant and anxiolytic actions of ketamine. We found that neuronal inactivation of the IL-PFC completely blocked the antidepressant and anxiolytic effects of systemic ketamine in rodent models and that ketamine microinfusion into IL-PFC reproduced these behavioral actions of systemic ketamine. We also found that optogenetic stimulation of the IL-PFC produced rapid and long-lasting antidepressant and anxiolytic effects and that these effects are associated with increased number and function of spine synapses of layer V pyramidal neurons. The results demonstrate that ketamine infusions or optogenetic stimulation of IL-PFC are sufficient to produce long-lasting antidepressant behavioral and synaptic responses similar to the effects of systemic ketamine administration.

  12. REVIEWING THE KETAMINE MODEL FOR SCHIZOPHRENIA

    PubMed Central

    Frohlich, Joel

    2014-01-01

    The observation that antagonists of the N-methyl-D-aspartate glutamate receptor (NMDAR), such as phencyclidine (PCP) and ketamine, transiently induce symptoms of acute schizophrenia had led to a paradigm shift from dopaminergic to glutamatergic dysfunction in pharmacological models of schizophrenia. The glutamate hypothesis can explain negative and cognitive symptoms of schizophrenia better than the dopamine hypothesis, and has the potential to explain dopamine dysfunction itself. The pharmacological and psychomimetic effects of ketamine, which is safer for human subjects than phencyclidine, are herein reviewed. Ketamine binds to a variety of receptors, but principally acts at the NMDAR, and convergent genetic and molecular evidence point to NMDAR hypofunction in schizophrenia. Furthermore, NMDAR hypofunction can explain connectional and oscillatory abnormalities in schizophrenia in terms of both weakened excitation of inhibitory -aminobutyric acidergic (GABAergic) interneurons that synchronize cortical networks and disinhibition of principal cells. Individuals with prenatal aberrations of NMDAR might experience the onset of schizophrenia towards the completion of synaptic pruning in adolescence, when network connectivity drops below a critical value. We conclude that ketamine challenge is useful for studying the positive, negative, and cognitive symptoms, dopaminergic and GABAergic dysfunction, age of onset, functional dysconnectivity, and abnormal cortical oscillations observed in acute schizophrenia. PMID:24257811

  13. Hippocampal gamma-slow oscillation coupling in macaques during sedation and sleep.

    PubMed

    Richardson, Andrew G; Liu, Xilin; Weigand, Pauline K; Hudgins, Eric D; Stein, Joel M; Das, Sandhitsu R; Proekt, Alexander; Kelz, Max B; Zhang, Milin; Van der Spiegel, Jan; Lucas, Timothy H

    2017-11-01

    Behavioral and neurophysiological evidence suggests that the slow (≤1 Hz) oscillation (SO) during sleep plays a role in consolidating hippocampal (HIPP)-dependent memories. The effects of the SO on HIPP activity have been studied in rodents and cats both during natural sleep and during anesthetic administration titrated to mimic sleep-like slow rhythms. In this study, we sought to document these effects in primates. First, HIPP field potentials were recorded during ketamine-dexmedetomidine sedation and during natural sleep in three rhesus macaques. Sedation produced regionally-specific slow and gamma (∼40 Hz) oscillations with strong coupling between the SO phase and gamma amplitude. These same features were seen in slow-wave sleep (SWS), but the coupling was weaker and the coupled gamma oscillation had a higher frequency (∼70 Hz) during SWS. Second, electrical stimuli were delivered to HIPP afferents in the parahippocampal gyrus (PHG) during sedation to assess the effects of sleep-like SO on excitability. Gamma bursts after the peak of SO cycles corresponded to periods of increased gain of monosynaptic connections between the PHG and HIPP. However, the two PHG-HIPP connectivity gains during sedation were both substantially lower than when the animal was awake. We conclude that the SO is correlated with rhythmic excitation and inhibition of the PHG-HIPP network, modulating connectivity and gamma generators intrinsic to this network. Ketamine-dexmedetomidine sedation produces a similar effect, but with a decreased contribution of the PHG to HIPP activity and gamma generation. © 2017 Wiley Periodicals, Inc.

  14. Molecular recognition of ketamine by a subset of olfactory G protein–coupled receptors

    PubMed Central

    Saven, Jeffery G.; Matsunami, Hiroaki; Eckenhoff, Roderic G.

    2015-01-01

    Ketamine elicits various neuropharmacological effects, including sedation, analgesia, general anesthesia, and antidepressant activity. Through an in vitro screen, we identified four mouse olfactory receptors (ORs) that responded to ketamine. In addition to their presence in the olfactory epithelium, these G protein (heterotrimeric guanine nucleotide–binding protein)–coupled receptors (GPCRs) are distributed throughout the central nervous system. To better understand the molecular basis of the interactions between ketamine and ORs, we used sequence comparison and molecular modeling to design mutations that (i) increased, reduced, or abolished ketamine responsiveness in responding receptors, and (ii) rendered non-responding receptors responsive to ketamine. We showed that olfactory sensory neurons (OSNs) that expressed distinct ORs responded to ketamine in vivo, suggesting that ORs may serve as functional targets for ketamine. The ability to both abolish and introduce responsiveness to ketamine in GPCRs enabled us to identify and confirm distinct interaction loci in the binding site, which suggested a signature ketamine-binding pocket that may guide exploration of additional receptors for this general anesthetic drug. PMID:25829447

  15. Ketamine changes the local resting-state functional properties of anesthetized-monkey brain.

    PubMed

    Rao, Jia-Sheng; Liu, Zuxiang; Zhao, Can; Wei, Rui-Han; Zhao, Wen; Tian, Peng-Yu; Zhou, Xia; Yang, Zhao-Yang; Li, Xiao-Guang

    2017-11-01

    Ketamine is a well-known anesthetic. 'Recreational' use of ketamine common induces psychosis-like symptoms and cognitive impairments. The acute and chronic effects of ketamine on relevant brain circuits have been studied, but the effects of single-dose ketamine administration on the local resting-state functional properties of the brain remain unknown. In this study, we aimed to assess the effects of single-dose ketamine administration on the brain local intrinsic properties. We used resting-state functional magnetic resonance imaging (rs-fMRI) to explore the ketamine-induced alterations of brain intrinsic properties. Seven adult rhesus monkeys were imaged with rs-fMRI to examine the fractional amplitude of low-frequency fluctuation (fALFF) and regional homogeneity (ReHo) in the brain before and after ketamine injection. Paired comparisons were used to detect the significantly altered regions. Results showed that the fALFF of the prefrontal cortex (p=0.046), caudate nucleus (left side, p=0.018; right side, p=0.025), and putamen (p=0.020) in post-injection stage significantly increased compared with those in pre-injection period. The ReHo of nucleus accumbens (p=0.049), caudate nucleus (p=0.037), and hippocampus (p=0.025) increased after ketamine injection, but that of prefrontal cortex decreased (p<0.05). These findings demonstrated that single-dose ketamine administration can change the regional intensity and synchronism of brain activity, thereby providing evidence of ketamine-induced abnormal resting-state functional properties in primates. This evidence may help further elucidate the effects of ketamine on the cerebral resting status. Copyright © 2017. Published by Elsevier Inc.

  16. Protective effect of ketamine against hemorrhagic cystitis in rats receiving ifosfamide

    PubMed Central

    Ozguven, Ali A.; Yılmaz, Omer; Taneli, Fatma; Ulman, Cevval; Vatansever, Seda; Onag, Ali

    2014-01-01

    Objective: To investigate the possible protective effect of a single dose of ketamine and the synergistic effect between ketamine and 2-mercaptoethane sulfonate (mesna) against ifosfamide-induced hemorrhagic cystitis. Materials and Methods: 35 adult female wistar rats were divided into five groups and pretreated with ketamine at 10 mg/kg and/or mesna 400 mg/kg 30 minutes before intraperitoneal injection of IFS (400 mg/kg) or with saline (control group). Hemorrhagic cystitis was evaluated 24 hours after IFS injection according to bladder wet weight (BWW), and microscopic changes, i.e. edema, hemorrhage, cellular infiltration, and urothelial desquamation. The markers of oxidative damage including nitric oxide (NO) and malondialdehyde (MDA) levels and the expressions of tumor necrosis factor alpha (TNF-α), interleukin 1-beta (IL-1β), inducible nitric oxide synthase (i-NOS) and endothelial nitric oxide synthase (e-NOS) were also assayed in the bladder tissues. Results: Pretreatment with ketamine alone or ketamine in combination with mesna reduced the IFS-induced increase of BWW (58,47% and 63,33%, respectively, P < 0.05). IFS- induced microscopic alterations were also prevented by ketamine with or without mesna (P < 0.05). In addition, also statistically insignificant, the bladder tissue expressions of IL-1β were lower in ketamine and/or mesna-receiving groups (P > 0,05). The parameters of oxidative stress, the NO and the MDA contents of the bladder tissues of the study groups were not different. Conclusion: The results of the present study suggest that a single dose of ketamine pretreatment attenuates experimental IFS-induced bladder damage. It is therefore necessary to investigate ketamine locally and systematically with various dosing schedulesin order to reduce the bladder damage secondary to oxazaphosphorine-alkylating agents and these results may widen the spectrum of ketamine. PMID:24741183

  17. A prospective study of ketamine versus haloperidol for severe prehospital agitation.

    PubMed

    Cole, Jon B; Moore, Johanna C; Nystrom, Paul C; Orozco, Benjamin S; Stellpflug, Samuel J; Kornas, Rebecca L; Fryza, Brandon J; Steinberg, Lila W; O'Brien-Lambert, Alex; Bache-Wiig, Peter; Engebretsen, Kristin M; Ho, Jeffrey D

    2016-08-01

    Ketamine is an emerging drug for the treatment of acute undifferentiated agitation in the prehospital environment, however no prospective comparative studies have evaluated its effectiveness or safety in this clinical setting. We hypothesized 5 mg/kg of intramuscular ketamine would be superior to 10 mg of intramuscular haloperidol for severe prehospital agitation, with time to adequate sedation as the primary outcome measure. This was a prospective open label study of all patients in an urban EMS system requiring chemical sedation for severe acute undifferentiated agitation that were subsequently transported to the EMS system's primary Emergency Department. All paramedics were trained in the Altered Mental Status Scale and prospectively recorded agitation scores on all patients. Two 6-month periods where either ketamine or haloperidol was the first-line therapy for severe agitation were prospectively compared primarily for time to adequate sedation. Secondary outcomes included laboratory data and adverse medication events. 146 subjects were enrolled; 64 received ketamine, 82 received haloperidol. Median time to adequate sedation for the ketamine group was 5 minutes (range 0.4-23) vs. 17 minutes (range 2-84) in the haloperidol group (difference 12 minutes, 95% CI 9-15). Complications occurred in 49% (27/55) of patients receiving ketamine vs. 5% (4/82) in the haloperidol group. Complications specific to the ketamine group included hypersalivation (21/56, 38%), emergence reaction (5/52, 10%), vomiting (5/57, 9%), and laryngospasm (3/55, 5%). Intubation was also significantly higher in the ketamine group; 39% of patients receiving ketamine were intubated vs. 4% of patients receiving haloperidol. Ketamine is superior to haloperidol in terms of time to adequate sedation for severe prehospital acute undifferentiated agitation, but is associated with more complications and a higher intubation rate.

  18. Behavioral alterations of zebrafish larvae after early embryonic exposure to ketamine.

    PubMed

    Félix, Luís M; Antunes, Luís M; Coimbra, Ana M; Valentim, Ana M

    2017-02-01

    Ketamine has been associated with pediatric risks that include neurocognitive impairment and long-term behavioral disorders. However, the neurobehavioral effects of ketamine exposure in early development remain uncertain. This study aimed to test stage- and dose-dependent effects of ketamine exposure on certain brain functions by evaluating alterations in locomotion, anxiety-like and avoidance behaviors, as well as socialization. Embryos were exposed to different concentrations of ketamine (0, 0.2, 0.4, and 0.8 mg mL -1 ) for 20 min during the 256-cell (2.5 h post fertilization-hpf), 50% epiboly (5.5 hpf), and 1-4 somites (10.5 hpf) stages. General exploratory activities, natural escape-like responses, and social interactions were analyzed under continuous light or under a moving light stimulus. A dose-dependent decrease in the overall mean speed was perceived in the embryos exposed during the 256-cell stage. These results were related to previously observed head and eye malformations, following ketamine exposure at this stage and may indicate possible neurobehavioral disorders when ketamine exposure is performed at this stage. Results also showed that ketamine exposure during the 50% epiboly and 1-4 somites stages induced a significant increment of the anxiety-like behavior and a decrease in avoidance behavior in all exposed groups. Overall, the results validate the neurodevelopmental risks of early-life exposure to ketamine.

  19. Allergic Reaction to Ketamine as Monotherapy for Procedural Sedation.

    PubMed

    Nguyen, Tammy T; Baker, Bethany; Ferguson, Jeffrey D

    2017-04-01

    Ketamine is a cyclohexamine derivative that acts as a noncompetitive N-methyl D-aspartate receptor antagonist. Its use for procedural sedation is recommended by national clinical policy. However, its immunogenic potential is not well documented. We report a case of allergic reaction associated with the administration of intravenous ketamine for procedural sedation in a 16-year-old male. Minutes after administration, the patient developed a morbilliform, erythematous rash that extended to the upper and lower torso and resolved with intravenous diphenhydramine. It is most likely that this allergic reaction was caused by a ketamine-induced histamine release that has been described in vitro. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: This is the first case report in which ketamine was used as monotherapy in the emergency department for the facilitation of procedural sedation that resulted in an allergic reaction. Supportive measures, including advanced airway procedures and hemodynamic support, may be necessary in more severe anaphylactic cases. Providers should be aware of this potential adverse effect when using ketamine for procedural sedation. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Evaluation of cardiorespiratory and biochemical effects of ketamine-propofol and guaifenesin-ketamine-xylazine anesthesia in donkeys (Equus asinus).

    PubMed

    Molinaro Coelho, Cássia M; Duque Moreno, Juan C; Goulart, Daniel da S; Caetano, Leandro B; Soares, Lorena K; Coutinho, Gustavo H; Alves, Geraldo Es; da Silva, Luiz Antonio F

    2014-11-01

    To evaluate the cardiorespiratory and biochemical effects of ketamine-propofol (KP) or guaifenesin-ketamine-xylazine (GKX) anesthesia in donkeys. Prospective crossover trial. Eight healthy, standard donkeys, aged 10 ± 5 years and weighing 153 ± 23 kg. Donkeys were premedicated with 1.0 mg kg(-1) of xylazine (IV) in both treatments. Eight donkeys were administered ketamine (1.5 mg kg(-1)) and propofol (0.5 mg kg(-1) for induction, and anesthesia was maintained by constant rate infusion (CRI) of ketamine (0.05 mg kg(-1) minute(-1)) and propofol (0.15 mg kg(-1) minute(-1)) in the KP treatment. After 10 days, diazepam (0.05 mg kg(-1)) and ketamine (2.2 mg kg(-1)) were administered for induction, and anesthesia was maintained by a CRI (2.0 mL kg(-1) hour(-1)) of ketamine (2.0 mg mL(-1), xylazine (0.5 mg mL(-1)) and guaifenesin (50 mg mL(-1)) solution. Quality of anesthesia was assessed along with cardiorespiratory and biochemical measurements. Anesthetic induction took longer in GKX than in KP. The induction was considered good in 7/8 with KP and in 6/8 in GKX. Anesthetic recovery was classified as good in 7/8 animals in both treatments. Xylazine administration decreased heart rate (HR) in both treatments, but in KP the HR increased and was higher than GKX throughout the anesthetic period. Respiratory rate was higher in GKX than in KP. PaO(2) decreased significantly in both groups during the anesthetic period. Glucose concentrations [GLU] increased and rectal temperature and PCV decreased in both treatments. Arterial lactate [LAC] increased at recovery compared with all time points in KP. [GLU] and calcium were higher in GKX than in KP at recovery. These protocols induced significant hypoxemia but no other cardiorespiratory or metabolic changes. These protocols could be used to maintain anesthesia in donkeys, however, they were not tested in animals undergoing surgery. © 2014 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesia

  1. Cognitive and subjective acute dose effects of intramuscular ketamine in healthy adults.

    PubMed

    Lofwall, Michelle R; Griffiths, Roland R; Mintzer, Miriam Z

    2006-11-01

    Ketamine is a noncompetitive N-methyl-D-aspartate (NMDA) antagonist. Given the purported role of the NMDA receptor in long-term potentiation, the primary purpose of the present study was to further understand the dose-related effects of ketamine on memory. The study was also designed to provide information about the relative effects of ketamine on memory versus nonmemory effects and to more fully characterize ketamine's overall pattern and time course of effects. Single intramuscular injections of ketamine (0.2 mg/kg, 0.4 mg/kg) were administered to 18 healthy adult volunteers using a double-blind, placebo-controlled, crossover design. Word lists were used to evaluate episodic memory (free recall, recognition memory, source memory) and metamemory. Working memory, time estimation, psychomotor performance, and subjective effects were assessed repeatedly for 5 hours after drug administration. Ketamine selectively impaired encoding (as measured by free recall) while sparing retrieval, working memory while sparing attention, and digit symbol substitution task speed while sparing accuracy. Ketamine did not significantly impair recognition or source memory, metamemory, or time estimation. There were no hallucinations or increases in mystical experiences with ketamine. Memory measures were less sensitive to ketamine effects than subjective or psychomotor measures. Subjective effects lasted longer than memory and most psychomotor impairments. Ketamine produces selective, transient, dose- and time-related effects. In conjunction with previous studies of drugs with different mechanisms of actions, the observed selectivity of effects enhances the understanding of the pharmacological mechanisms underlying memory, attention, psychomotor performance, and subjective experience.

  2. Mechanisms underlying differential effectiveness of memantine and ketamine in rapid antidepressant responses

    PubMed Central

    Gideons, Erinn S.; Kavalali, Ege T.; Monteggia, Lisa M.

    2014-01-01

    Ketamine is an NMDA receptor (NMDAR) antagonist that elicits rapid antidepressant responses in patients with treatment-resistant depression. However, ketamine can also produce psychotomimetic effects that limit its utility as an antidepressant, raising the question of whether the clinically tolerated NMDAR antagonist memantine possesses antidepressant properties. Despite its similar potency to ketamine as an NMDAR antagonist, clinical data suggest that memantine does not exert rapid antidepressant actions for reasons that are poorly understood. In this study, we recapitulate the ketamine and memantine clinical findings in mice, showing that ketamine, but not memantine, has antidepressant-like effects in behavioral models. Using electrophysiology in cultured hippocampal neurons, we show that ketamine and memantine effectively block NMDAR-mediated miniature excitatory postsynaptic currents in the absence of Mg2+. However, in physiological levels of extracellular Mg2+, we identified key functional differences between ketamine and memantine in their ability to block NMDAR function at rest. This differential effect of ketamine and memantine extends to intracellular signaling coupled to NMDAR at rest, in that memantine does not inhibit the phosphorylation of eukaryotic elongation factor 2 or augment subsequent expression of BDNF, which are critical determinants of ketamine-mediated antidepressant efficacy. These results demonstrate significant differences between the efficacies of ketamine and memantine on NMDAR-mediated neurotransmission that have impacts on downstream intracellular signaling, which we hypothesize is the trigger for rapid antidepressant responses. These data provide a novel framework on the necessary functional requirements of NMDAR-mediated neurotransmission as a critical determinant necessary to elicit rapid antidepressant responses. PMID:24912158

  3. To use or not to use: an update on licit and illicit ketamine use

    PubMed Central

    Li, Jih-Heng; Vicknasingam, Balasingam; Cheung, Yuet-Wah; Zhou, Wang; Nurhidayat, Adhi Wibowo; Jarlais, Don C Des; Schottenfeld, Richard

    2011-01-01

    Ketamine, a derivative of phencyclidine that was developed in the 1960s, is an anesthetic and analgesic with hallucinogenic effects. In this paper, the pharmacological and toxicological effects of ketamine are briefly reviewed. Ketamine possesses a wide safety margin but such a therapeutic benefit is somewhat offset by its emergence phenomenon (mind-body dissociation and delirium) and hallucinogenic effects. The increasing abuse of ketamine, initially predominantly in recreational scenes to experience a “k-hole” and other hallucinatory effects but more recently also as a drug abused during the workday or at home, has further pushed governments to confine its usage in many countries. Recently, urinary tract dysfunction has been associated with long-term ketamine use. In some long-term ketamine users, such damage can be irreversible and could result in renal failure and dialysis. Although ketamine has not yet been scheduled in the United Nations Conventions, previous studies using different assessment parameters to score the overall harms of drugs indicated that ketamine may cause more harm than some of the United Nations scheduled drugs. Some countries in Southeast and East Asia have reported an escalating situation of ketamine abuse. Dependence, lower urinary tract dysfunction, and sexual impulse or violence were the most notable among the ketamine-associated symptoms in these countries. These results implied that the danger of ketamine may have been underestimated previously. Therefore, the severity levels of the ketamine-associated problems should be scrutinized more carefully and objectively. To prevent ketamine from being improperly used and evolving into an epidemic, a thorough survey on the prevalence and characteristics of illicit ketamine use is imperative so that suitable policy and measures can be taken. On the other hand, recent findings that ketamine could be useful for treating major depressive disorder has given this old drug a new impetus. If

  4. Oral ketamine for sickle cell crisis pain refractory to opioids.

    PubMed

    Jennings, Cara A; Bobb, Barton T; Noreika, Danielle M; Coyne, Patrick J

    2013-06-01

    There is literature demonstrating that the N-methyl-d-aspartate (NMDA) receptor antagonist ketamine has analgesic properties that can be used as an adjuvant to opiates for pain relief in multiple various conditions and pain states. However, there is a lack of published information on ketamine used in persons with sickle cell disease in acute pain crises. The Virginia Commonwealth University Palliative Care team was consulted on a 38-year-old African American female with sickle cell thalassemia in severe acute pain crisis overlying chronic pain related to her disease. Pain control was unable to be achieved with escalating doses of opiates and other adjuvant medications. The patient responded well to an intravenous test dose of ketamine and was subsequently placed on an oral regimen of ketamine in addition to opiates. In the 24-hour period following ketamine initiation, the patient's pain was able to be controlled on decreased amounts of opiates. She was eventually transitioned to an oral opiate and ketamine regimen, which allowed her to be discharged home with pain levels close to her baseline and the ability to function and perform all activities of daily living.

  5. Ketamine. A solution to procedural pain in burned children.

    PubMed

    Groeneveld, A; Inkson, T

    1992-09-01

    Our experience has shown ketamine to be a safe and effective method of providing pain relief during specific procedures in burned children. It renders high doses of narcotics unnecessary and offers children the benefit of general anesthesia without the requirement of endotracheal intubation and a trip to the operating room. The response of parents and staff to the use of ketamine has been positive. Parents often experience feelings of guilt following injury to a child and are eager to employ methods that reduce their child's pain. So far, no parent has refused the administration of ketamine; some have even asked that it be used during subsequent procedures on their child. With adequate pre-procedure teaching, parents are prepared for the possible occurrence of emergent reactions and can assist in reorienting the child during recovery. Staff have found that the stress of doing painful procedures on children is reduced when ketamine is used. The procedures tend to be quicker and the predicament of working on a screaming, agitated child is eliminated. At the same time, nursing staff have had to get used to the nystagmic gaze of the children and accept that these patients are truly anesthetized even though they might move and talk. Despite the success we and others have had with ketamine, several questions about its use in burn patients remain unanswered. The literature does not answer such questions as: Which nursing measures reduce the incidence of emergent reactions? How many ketamine anesthetics can safely be administered to one individual? How does the frequency of administration relate to tolerance in a burn patient? Are there detrimental effects of frequent or long-term use? Clearly, an understanding of these questions is necessary to determine the safe boundaries of ketamine use in burn patients. Ketamine is not a panacea for the problem of pain in burned children. But it is one means of managing procedural pain, which is, after all, a significant clinical

  6. Recent insights into the mode of action of memantine and ketamine

    PubMed Central

    Johnson, Jon W.; Glasgow, Nathan G.; Povysheva, Nadezhda V.

    2014-01-01

    The clinical benefits of the glutamate receptor antagonists memantine and ketamine have helped sustain optimism that glutamate receptors represent viable targets for development of therapeutic drugs. Both memantine and ketamine antagonize N-methyl-d-aspartate receptors (NMDARs), a glutamate receptor subfamily, by blocking the receptor-associated ion channel. Although many of the basic characteristics of NMDAR inhibition by memantine and ketamine appear similar, their effects on humans and to a lesser extent on rodents are strongly divergent. Some recent research suggests that preferential inhibition by memantine and ketamine of distinct NMDAR subpopulations may contribute to the drugs' differential clinical effects. Here we review studies that shed light on possible explanations for differences between the effects of memantine and ketamine. PMID:25462293

  7. A Randomized Controlled Trial of Intranasal Ketamine in Major Depressive Disorder

    PubMed Central

    Lapidus, Kyle A.B.; Levitch, Cara F.; Perez, Andrew M.; Brallier, Jess W.; Parides, Michael K.; Soleimani, Laili; Feder, Adriana; Iosifescu, Dan V.; Charney, Dennis S.; Murrough, James W.

    2014-01-01

    Background The N-methyl-d-aspartate glutamate receptor antagonist ketamine, delivered via an intravenous route, has shown rapid antidepressant effects in patients with treatment-resistant depression. The current study was designed to test the safety, tolerability and efficacy of intranasal ketamine in patients with depression who had failed at least one prior antidepressant trial. Methods Twenty patients with major depression were randomized and 18 completed two treatment days with intranasal ketamine hydrochloride (50 mg) or saline solution in a randomized, double-blind, crossover study. The primary efficacy outcome measure was change in depression severity 24 hours following ketamine or placebo, measured using the Montgomery-Asberg Depression Rating Scale. Secondary outcomes included persistence of benefit, changes in self-reports of depression, changes in anxiety, and proportion of responders. Potential psychotomimetic, dissociative, hemodynamic, and general adverse effects associated with ketamine were also measured. Results Patients showed significant improvement in depressive symptoms at 24 hours following ketamine compared to placebo [t=4.39, p<0.001; estimated mean MADRS score difference of 7.6 ± 3.7 (95% CI: 3.9 – 11.3)]. Eight of 18 patients (44%) met response criteria 24 hours following ketamine administration, compared to 1 of 18 (6%) following placebo (p=0.033). Intranasal ketamine was well tolerated with minimal psychotomimetic or dissociative effects and was not associated with clinically significant changes in hemodynamic parameters. Conclusions This study provides the first controlled evidence for the rapid antidepressant effects of intranasal ketamine. Treatment was associated with minimal adverse effects. If replicated, these findings may lead to novel approaches to the pharmacologic treatment of patients with major depression. Trial Registration clinicaltrials.gov identifier NCT01304147 PMID:24821196

  8. Previous Ketamine Produces an Enduring Blockade of Neurochemical and Behavioral Effects of Uncontrollable Stress

    PubMed Central

    Dolzani, Samuel D.; Tilden, Scott; Christianson, John P.; Kubala, Kenneth H.; Bartholomay, Kristi; Sperr, Katherine; Ciancio, Nicholas; Watkins, Linda R.; Maier, Steven F.

    2016-01-01

    Recent interest in the antidepressant and anti-stress effects of subanesthetic doses of ketamine, an NMDA receptor antagonist, has identified mechanisms whereby ketamine reverses the effect of stress, but little is known regarding the prophylactic effect ketamine might have on future stressors. Here we investigate the prophylactic effect of ketamine against neurochemical and behavioral changes that follow inescapable, uncontrollable tail shocks (ISs) in Sprague Dawley rats. IS induces increased anxiety, which is dependent on activation of serotonergic (5-HT) dorsal raphe nucleus (DRN) neurons that project to the basolateral amygdala (BLA). Ketamine (10 mg/kg, i.p.) administered 2 h, 1 week, or 2 weeks before IS prevented the increased extracellular levels of 5-HT in the BLA typically produced by IS. In addition, ketamine administered at these time points blocked the decreased juvenile social investigation produced by IS. Microinjection of ketamine into the prelimbic (PL) region of the medial prefrontal cortex duplicated the effects of systemic ketamine, and, conversely, systemic ketamine effects were prevented by pharmacological inhibition of the PL. Although IS does not activate DRN-projecting neurons from the PL, IS did so after ketamine, suggesting that the prophylactic effect of ketamine is a result of altered functioning of this projection. SIGNIFICANCE STATEMENT The reported data show that systemic ketamine, given up to 2 weeks before a stressor, blunts behavioral and neurochemical effects of the stressor. The study also advances understanding of the mechanisms involved and suggests that ketamine acts at the prelimbic cortex to sensitize neurons that project to and inhibit the DRN. PMID:26740657

  9. Ketamine Infusions for Treatment Refractory Headache.

    PubMed

    Pomeroy, Jared L; Marmura, Michael J; Nahas, Stephanie J; Viscusi, Eugene R

    2017-02-01

    Management of chronic migraine (CM) or new daily persistent headache (NDPH) in those who require aggressive outpatient and inpatient treatment is challenging. Ketamine has been suggested as a new treatment for this intractable population. This is a retrospective review of 77 patients who underwent administration of intravenous, subanesthetic ketamine for CM or NDPH. All patients had previously failed aggressive outpatient and inpatient treatments. Records were reviewed for patients treated between January 2006 and December 2014. The mean headache pain rating using a 0-10 pain scale was an average of 7.1 at admission and 3.8 on discharge (P < .0001). The majority (55/77, 71.4%) of patients were classified as acute responders defined as at least 2-point improvement in headache pain at discharge. Some (15/77, 27.3%) acute responders maintained this benefit at their follow-up office visit but sustained response did not achieve statistical significance. The mean length of infusion was 4.8 days. Most patients tolerated ketamine well. A number of adverse events were observed, but very few were serious. Subanesthetic ketamine infusions may be beneficial in individuals with CM or NDPH who have failed other aggressive treatments. Controlled trials may confirm this, and further studies may be useful in elucidating more robust benefit in a less refractory patient population. © 2016 American Headache Society.

  10. Intact urothelial barrier function in a mouse model of ketamine-induced voiding dysfunction

    PubMed Central

    Rajandram, Retnagowri; Ong, Teng Aik; Razack, Azad H. A.; MacIver, Bryce; Zeidel, Mark

    2016-01-01

    Ketamine is a popular choice for young drug abusers. Ketamine abuse causes lower urinary tract symptoms, with the underlying pathophysiology poorly understood. Disruption of urothelial barrier function has been hypothesized to be a major mechanism for ketamine cystitis, yet the direct evidence of impaired urothelial barrier function is still lacking. To address this question, 8-wk-old female C57BL/6J mice were injected intraperitoneally with 30 mg·kg−1·day−1 ketamine for 12 wk to induce ketamine cystitis. A spontaneous voiding spot assay showed that ketamine-treated mice had increased primary voiding spot numbers and smaller primary voiding spot sizes than control mice (P < 0.05), indicating a contracted bladder and bladder overactivity. Consistently, significantly increased voiding frequency was observed in ketamine-treated mice on cystometrograms. These functional experiments indicate that ketamine induces voiding dysfunction in mice. Surprisingly, urothelial permeability in ketamine-treated mice was not changed when measured using an Ussing chamber system with isotopic urea and water. Mouse urothelial structure was also not altered, and intact umbrella cell structure was observed by both transmission and scanning electron microscopy. Furthermore, immunostaining and confocal microscopy confirmed the presence of a well-defined distribution of zonula occuldens-1 in tight junctions and uroplakin in umbrella cells. In conclusion, these data indicate that ketamine injection induces voiding dysfunction in mice but does not necessarily disrupt mouse bladder barrier function. Disruption of urothelial barrier function may not be the major mechanism in ketamine cystitis. PMID:26911853

  11. [2,4-13C2]-β-Hydroxybutyrate Metabolism in Human Brain

    PubMed Central

    Pan, Jullie W.; de Graaf, Robin A.; Petersen, Kitt F.; Shulman, Gerald I.; Hetherington, Hoby P.; Rothman, Douglas L.

    2010-01-01

    Summary Infusions of [2,4-13C2]-β-hydroxybutyrate and 1H–13C polarization transfer spectroscopy were used in normal human subjects to detect the entry and metabolism of β-hydroxybutyrate in the brain. During the 2-hour infusion study, 13C label was detectable in the β-hydroxybutyrate resonance positions and in the amino acid pools of glutamate, glutamine, and aspartate. With a plasma concentration of 2.25 ± 0.24 mmol/L (four volunteers), the apparent tissue β-hydroxybutyrate concentration reached 0.18 ± 0.06 mmol/L during the last 20 minutes of the study. The relative fractional enrichment of 13C-4-glutamate labeling was 6.78 ± 1.71%, whereas 13C-4-glutamine was 5.68 ± 1.84%. Steady-state modeling of the 13C label distribution in glutamate and glutamine suggests that, under these conditions, the consumption of the β-hydroxybutyrate is predominantly neuronal, used at a rate of 0.032 ± 0.009 mmol · kg−1 · min−1, and accounts for 6.4 ± 1.6% of total acetyl coenzyme A oxidation. These results are consistent with minimal accumulation of cerebral ketones with rapid utilization, implying blood–brain barrier control of ketone oxidation in the nonfasted adult human brain. PMID:12142574

  12. Ketamine Causes Mitochondrial Dysfunction in Human Induced Pluripotent Stem Cell-Derived Neurons

    PubMed Central

    Ito, Hiroyuki; Uchida, Tokujiro; Makita, Koshi

    2015-01-01

    Purpose Ketamine toxicity has been demonstrated in nonhuman mammalian neurons. To study the toxic effect of ketamine on human neurons, an experimental model of cultured neurons from human induced pluripotent stem cells (iPSCs) was examined, and the mechanism of its toxicity was investigated. Methods Human iPSC-derived dopaminergic neurons were treated with 0, 20, 100 or 500 μM ketamine for 6 and 24 h. Ketamine toxicity was evaluated by quantification of caspase 3/7 activity, reactive oxygen species (ROS) production, mitochondrial membrane potential, ATP concentration, neurotransmitter reuptake activity and NADH/NAD+ ratio. Mitochondrial morphological change was analyzed by transmission electron microscopy and confocal microscopy. Results Twenty-four-hour exposure of iPSC-derived neurons to 500 μM ketamine resulted in a 40% increase in caspase 3/7 activity (P < 0.01), 14% increase in ROS production (P < 0.01), and 81% reduction in mitochondrial membrane potential (P < 0.01), compared with untreated cells. Lower concentration of ketamine (100 μM) decreased the ATP level (22%, P < 0.01) and increased the NADH/NAD+ ratio (46%, P < 0.05) without caspase activation. Transmission electron microscopy showed enhanced mitochondrial fission and autophagocytosis at the 100 μM ketamine concentration, which suggests that mitochondrial dysfunction preceded ROS generation and caspase activation. Conclusions We established an in vitro model for assessing the neurotoxicity of ketamine in iPSC-derived neurons. The present data indicate that the initial mitochondrial dysfunction and autophagy may be related to its inhibitory effect on the mitochondrial electron transport system, which underlies ketamine-induced neural toxicity. Higher ketamine concentration can induce ROS generation and apoptosis in human neurons. PMID:26020236

  13. Hippocampal Perineuronal Nets Are Required for the Sustained Antidepressant Effect of Ketamine.

    PubMed

    Donegan, Jennifer J; Lodge, Daniel J

    2017-04-01

    N-methyl-D-aspartate receptor antagonists, like ketamine, produce a rapid-acting and long-lasting antidepressant effect. Although the mechanism is not completely understood, ketamine is thought to preferentially target N-methyl-D-aspartate receptors on fast-spiking parvalbumin-containing interneurons. The function of parvalbumin-containing interneurons is dependent on perineuronal nets, a specialized form of extracellular matrix that surrounds these cells. Chondroitinase was used to enzymatically degrade perineuronal nets surrounding parvalbumin-containing interneurons in the ventral hippocampus, a region that is involved in the antidepressant response to ketamine. Rats were tested on the forced swim test 30 minutes and 1 week after ketamine administration. Thirty minutes after ketamine injection, both chondroitinase-treated and control animals had a decrease in immobility. One week later, however, the antidepressant-like response observed with ketamine was completely abolished in the chondroitinase-treated animals. This suggests that parvalbumin interneuron function in the ventral hippocampus is essential for the sustained antidepressant effect of ketamine. © The Author 2016. Published by Oxford University Press on behalf of CINP.

  14. Ketamine infusion for refractory status epilepticus: A case report of cardiac arrest.

    PubMed

    Koffman, Lauren; Yan Yiu, Ho; Farrokh, Salia; Lewin, John; Geocadin, Romergryko; Ziai, Wendy

    2018-01-01

    Refractory status epilepticus (RSE) has a high mortality rate and is often difficult to treat. When traditional therapies fail ketamine may be considered. There are limited reports of adverse cardiac events with the use of ketamine for RSE and no reports of cardiac arrest in this context. Evaluate the occurrence of cardiac arrhythmias associated with the use of ketamine for RSE. Retrospective chart review of nine patients who underwent ketamine infusion for RSE. Etiology of refractory status epilepticus included autoimmune/infectious process (Zeiler et al., 2014), ischemic stroke (Bleck, 2005) and subarachnoid hemorrhage (Bleck, 2005). Of the nine patients who received ketamine, two had documented cardiac events; one remained clinically stable and the other developed multiple arrhythmias, including recurrent episodes of asystole. Once ketamine was discontinued the latter patient stabilized with the addition of anti arrhythmic therapy. Ketamine is utilized to treat refractory status epilepticus, but should be used with caution in patients with subarachnoid hemorrhage, as there may be an increased risk of life threatening arrhythmias and cardiac arrest. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Role of Ketamine in Acute Postoperative Pain Management: A Narrative Review

    PubMed Central

    Radvansky, Brian M.; Shah, Khushbu; Parikh, Anant; Sifonios, Anthony N.; Eloy, Jean D.

    2015-01-01

    Objectives. The objective of this narrative review was to examine the usage of ketamine as a postoperative analgesic agent across a wide variety of surgeries. Design. A literature search was performed using the phrases “ketamine” and “postoperative pain.” The authors analyzed the studies that involved testing ketamine's effectiveness at controlling postoperative pain. Effectiveness was assessed through various outcomes such as the amount of opiate consumption, visual analog scale (VAS) pain scores, and persistent postoperative pain at long-term follow-up. Results. While many different administration protocols were evaluated, delivering ketamine both as a pre- or perioperative bolus and postoperative infusion for up to 48 hours appeared to be the most effective. These effects are dose-dependent. However, a number of studies analyzed showed no benefit in using ketamine versus placebo for controlling postoperative pain. While ketamine is a safe and well-tolerated drug, it does have adverse effects, and there are concerns for possible neurotoxicity and effects on memory. Conclusions. In a number of limited situations, ketamine has shown some efficacy in controlling postoperative pain and decreasing opioid consumption. More randomized controlled trials are necessary to determine the surgical procedures and administrations (i.e., intravenous, epidural) that ketamine is best suited for. PMID:26495312

  16. Pharmacokinetics of S-ketamine during prolonged sedation at the pediatric intensive care unit.

    PubMed

    Flint, Robert B; Brouwer, Carole N M; Kränzlin, Anne S C; Lie-A-Huen, Loraine; Bos, Albert P; Mathôt, Ron A A

    2017-11-01

    S-ketamine is the S(+)-enantiomer of the racemic mixture ketamine, an anesthetic drug providing both sedation and analgesia. In clinical practice, significant interpatient variability in drug effect of S-ketamine is observed during long-term sedation. The aim of this study was to evaluate the pharmacokinetic variability of S-ketamine in children aged 0-18 years during long-term sedation. Twenty-five children (median age: 0.42 years, range: 0.02-12.5) received continuous intravenous administrations of 0.3-3.6 mg/kg/h S-ketamine for sedation during mechanical ventilation. Infusion rates were adjusted to the desired level of sedation and analgesia based on the COMFORT-B score and Visual Analog Scale. Blood samples were drawn once daily at random time-points, and at 1 and 4 hours after discontinuation of S-ketamine infusion. Time profiles of plasma concentrations of S-ketamine and active metabolite S-norketamine were analyzed using nonlinear mixed-effects modeling software. Clearance and volume of distribution were allometrically scaled using the ¾ power model. A total of 86 blood samples were collected. A 2-compartment and 1-compartment model adequately described the PK of S-ketamine and S-norketamine, respectively. The typical parameter estimates for clearance and central and peripheral volumes of distribution were: CL S - KETAMINE =112 L/h/70 kg, V1 S- KETAMINE =7.7 L/70 kg, V2 S- KETAMINE =545L/70 kg, Q S - kETAMINE =196 L/h/70 kg, and CL S - NORKETAMINE =53 L/h/70 kg. Interpatient variability of CL S - KETAMINE and CL S - NORKETAMINE was considerable with values of 40% and 104%, respectively, leading to marked variability in steady-state plasma concentrations. Substantial interpatient variability in pharmacokinetics in children complicates the development of adequate dosage regimen for continuous sedation. © 2017 John Wiley & Sons Ltd.

  17. Microbial degradation of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in soils.

    PubMed Central

    Mergaert, J; Webb, A; Anderson, C; Wouters, A; Swings, J

    1993-01-01

    The microbial degradation of tensile test pieces made of poly(3-hydroxybutyrate) [P(3HB)] or a copolymer of 90% 3-hydroxybutyric acid and 10% 3-hydroxyvaleric acid was studied in soils incubated at a constant temperature of 15, 28, or 40 degrees C for up to 200 days. In addition, hydrolytic degradation in sterile buffer at temperatures ranging from 4 to 55 degrees C was monitored for 98 days. Degradation was measured through loss of weight (surface erosion), molecular weight, and mechanical strength. While no weight loss was recorded in sterile buffer, samples incubated in soils were degraded at an erosion rate of 0.03 to 0.64% weight loss per day, depending on the polymer, the soil, and the incubation temperature. The erosion rate was enhanced by incubation at higher temperatures, and in most cases the copolymer lost weight at a higher rate than the homopolymer. The molecular weights of samples incubated at 40 degrees C in soils and those incubated at 40 degrees C in sterile buffer decreased at similar rates, while the molecular weights of samples incubated at lower temperatures remained almost unaffected, indicating that molecular weight decrease is due to simple hydrolysis and not to the action of biodegrading microorganisms. The degradation resulted in loss of mechanical properties. From the samples used in the biodegradation studies, 295 dominant microbial strains capable of degrading P (3HB) and the poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer in vitro were isolated and identified.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8250550

  18. Ketamine for Social Anxiety Disorder: A Randomized, Placebo-Controlled Crossover Trial.

    PubMed

    Taylor, Jerome H; Landeros-Weisenberger, Angeli; Coughlin, Catherine; Mulqueen, Jilian; Johnson, Jessica A; Gabriel, Daniel; Reed, Margot O; Jakubovski, Ewgeni; Bloch, Michael H

    2018-01-01

    Many patients with social anxiety disorder (SAD) experience inadequate symptom relief from available treatments. Ketamine is a potent N-methyl-D-aspartate receptor antagonist with a potentially novel mechanism of action for the treatment of anxiety disorders. Therefore, we conducted a double-blind, randomized, placebo-controlled crossover trial in 18 adults with DSM-5 SAD and compared the effects between intravenous ketamine (0.5 mg/kg over 40 min) and placebo (normal saline) on social phobia symptoms. Ketamine and placebo infusions were administered in a random order with a 28-day washout period between infusions. Ratings of anxiety were assessed 3-h post-infusion and followed for 14 days. We used linear mixed models to assess the impact of ketamine and placebo on anxiety symptoms. Outcomes were blinded ratings on the Liebowitz Social Anxiety Scale (LSAS) and self-reported anxiety on a visual analog scale (VAS-Anxiety). We also used the Wilcoxon signed-rank test to compare the proportion of treatment responders. Based on prior studies, we defined response as a greater than 35% LSAS reduction and 50% VAS-Anxiety reduction. We found ketamine resulted in a significantly greater reduction in anxiety relative to placebo on the LSAS (Time × Treatment: F 9,115 =2.6, p=0.01) but not the VAS-Anxiety (Time × Treatment: F 10,141 =0.4, p=0.95). Participants were significantly more likely to exhibit a treatment response after ketamine infusion relative to placebo in the first 2 weeks following infusion measured on the LSAS (33.33% response ketamine vs 0% response placebo, Wilcoxon signed-rank test z=2.24, p=0.025) and VAS (88.89% response ketamine vs 52.94% response placebo, Wilcoxon signed-rank test z=2.12, p=0.034). In conclusion, this proof-of-concept trial provides initial evidence that ketamine may be effective in reducing anxiety.

  19. Case report: efficacy and tolerability of ketamine in opioid-refractory cancer pain.

    PubMed

    Amin, Priya; Roeland, Eric; Atayee, Rabia

    2014-09-01

    A 36-year-old female with metastatic breast cancer involving bones, liver, lung, and pleura/chest wall with worsening back pain received weight-based intravenous (IV) ketamine and was transitioned to oral ketamine for cancer-related neuropathic pain. She had responded poorly to outpatient pain regimen of oxycodone sustained and immediate release, hydromorphone, gabapentin, and duloxetine (approximate 480 mg total oral morphine equivalents [OME]), reporting an initial pain score of 10/10. She was started on hydromorphone parenteral patient-controlled analgesia (PCA) bolus dose in addition to her outpatient regimen. Despite escalating doses of opioids and the addition of a lidocaine 5% patch, the patient's pain remained uncontrolled 6 days after admission. On hospital day 7, utilizing a hospital weight-based ketamine protocol, the patient was started on subanesthetic doses of ketamine at 0.2 mg/kg/h (288 mg/24 h) and titrated over 2 days to 0.4 mg/kg/h (576 mg/24 h). Then, a 3-day rotation from intravenous to oral ketamine was initiated, and the patient was discharged on ketamine oral solution, 75 mg every 8 hours. When the patient's dose was increased to 0.4 mg/kg/h, adequate pain relief was charted by the nurse within 120 minutes, "patient pain free and resting comfortably." Her pain continued to be well managed, with an average pain score of 5/10 with the ketamine continuous infusion and sustained with conversion to oral ketamine without any report of side effects. This was a 37% reduction in pain scores. With the patient's stabilized dose of ketamine, opioid requirements decreased by 61.4% (1017.5 mg reduction in total OME). The use of weight-based dosing of IV continuous infusion and transition to oral ketamine was effective and tolerable in the management of opioid-refractory, neuropathic cancer pain. It is hoped that this case report promotes a discussion regarding ketamine dosing in refractory neuropathic cancer pain.

  20. Ketamine for the Acute Management of Excited Delirium and Agitation in the Prehospital Setting.

    PubMed

    Linder, Lauren M; Ross, Clint A; Weant, Kyle A

    2018-01-01

    Traditional first-line therapy in the prehospital setting for the acutely agitated patient includes an antipsychotic in combination with a benzodiazepine. Recently, interest has grown regarding the use of ketamine in the prehospital setting as an attempt to overcome the limitations of the traditional medications and provide a more safe and effective therapy. This review provides an overview of the pharmacology of ketamine, evaluates the literature regarding ketamine use for prehospital agitation, and proposes an algorithm that may be used within the prehospital setting. A literature review was conducted to identify articles utilizing ketamine in the prehospital setting. The review was limited to English-language articles identified in Embase (1988-June 2017) and the U.S. National Library of Medicine (1970-June 2017). References of all pertinent articles were also reviewed. Ten articles were identified including 418 patients receiving ketamine for agitation. The most commonly utilized route for administration was intramuscular (IM), with five of the seven IM administration studies using a ketamine dose of 5 mg/kg. Ketamine administered in this fashion was efficacious to achieve proper sedation during transport and did not require repeat dosing. Three studies applied a ketamine protocol to outline dosing and the management of ketamine adverse events. The most common adverse events identified were respiratory-related events and hypersalivation. Ketamine has a role for agitation management in the prehospital setting; however, emergency personnel education and ketamine protocols should be utilized to aid in safe and effective pharmacotherapy and provide guidance on the management of adverse events. Future prospective comparative studies, with protocolized standard ketamine regimens, are needed to further delineate the role of ketamine in agitation management and identify accurate adverse event incidence rates. © 2017 Pharmacotherapy Publications, Inc.

  1. Studies of Circulatory and Metabolic Changes during Ketamine Narcosis,

    DTIC Science & Technology

    1985-03-13

    Braun, U., Hensel, I., Kettler, D., Lohr, B.: The effects of methoxyflurane , halothane, dipiritramide, barbiturate and ketamine on the total oxygen...narcosis caus- ed by ether, halothane, methoxyflurane , ketamine and piritranide, as well as neuroleptanalgesia. Lecture at the XIIth. General Con

  2. Ketamine Alters Hippocampal Cell Proliferation and Improves Learning in Mice after Traumatic Brain Injury.

    PubMed

    Peters, Austin J; Villasana, Laura E; Schnell, Eric

    2018-04-30

    Traumatic brain injury induces cellular proliferation in the hippocampus, which generates new neurons and glial cells during recovery. This process is regulated by N-methyl-D-aspartate-type glutamate receptors, which are inhibited by ketamine. The authors hypothesized that ketamine treatment after traumatic brain injury would reduce hippocampal cell proliferation, leading to worse behavioral outcomes in mice. Traumatic brain injury was induced in mice using a controlled cortical impact injury, after which mice (N = 118) received either ketamine or vehicle systemically for 1 week. The authors utilized immunohistochemical assays to evaluate neuronal, astroglial, and microglial cell proliferation and survival 3 days, 2 weeks, and 6 weeks postintervention. The Morris water maze reversal task was used to assess cognitive recovery. Ketamine dramatically increased microglial proliferation in the granule cell layer of the hippocampus 3 days after injury (injury + vehicle, 2,800 ± 2,700 cells/mm, n = 4; injury + ketamine, 11,200 ± 6,600 cells/mm, n = 6; P = 0.012). Ketamine treatment also prevented the production of astrocytes 2 weeks after injury (sham + vehicle, 2,400 ± 3,200 cells/mm, n = 13; injury + vehicle, 10,500 ± 11,300 cells/mm, n = 12; P = 0.013 vs. sham + vehicle; sham + ketamine, 3,500 ± 4,900 cells/mm, n = 14; injury + ketamine, 4,800 ± 3,000 cells/mm, n = 13; P = 0.955 vs. sham + ketamine). Independent of injury, ketamine temporarily reduced neurogenesis (vehicle-exposed, 105,100 ± 66,700, cells/mm, n = 25; ketamine-exposed, 74,300 ± 29,200 cells/mm, n = 27; P = 0.031). Ketamine administration improved performance in the Morris water maze reversal test after injury, but had no effect on performance in sham-treated mice. Ketamine alters hippocampal cell proliferation after traumatic brain injury. Surprisingly, these changes were associated with improvement in a neurogenesis-related behavioral recall task, suggesting a possible benefit from ketamine

  3. Mechanistic Target of Rapamycin-Independent Antidepressant Effects of (R)-Ketamine in a Social Defeat Stress Model.

    PubMed

    Yang, Chun; Ren, Qian; Qu, Youge; Zhang, Ji-Chun; Ma, Min; Dong, Chao; Hashimoto, Kenji

    2018-01-01

    The role of the mechanistic target of rapamycin (mTOR) signaling in the antidepressant effects of ketamine is controversial. In addition to mTOR, extracellular signal-regulated kinase (ERK) is a key signaling molecule in prominent pathways that regulate protein synthesis. (R)-Ketamine has a greater potency and longer-lasting antidepressant effects than (S)-ketamine. Here we investigated whether mTOR signaling and ERK signaling play a role in the antidepressant effects of two enantiomers. The effects of mTOR inhibitors (rapamycin and AZD8055) and an ERK inhibitor (SL327) on the antidepressant effects of ketamine enantiomers in the chronic social defeat stress (CSDS) model (n = 7 or 8) and on those of ketamine enantiomers in these signaling pathways in mouse brain regions were examined. The intracerebroventricular infusion of rapamycin or AZD8055 blocked the antidepressant effects of (S)-ketamine, but not (R)-ketamine, in the CSDS model. Furthermore, (S)-ketamine, but not (R)-ketamine, significantly attenuated the decreased phosphorylation of mTOR and its downstream effector, ribosomal protein S6 kinase, in the prefrontal cortex of susceptible mice after CSDS. Pretreatment with SL327 blocked the antidepressant effects of (R)-ketamine but not (S)-ketamine. Moreover, (R)-ketamine, but not (S)-ketamine, significantly attenuated the decreased phosphorylation of ERK and its upstream effector, mitogen-activated protein kinase/ERK kinase, in the prefrontal cortex and hippocampal dentate gyrus of susceptible mice after CSDS. This study suggests that mTOR plays a role in the antidepressant effects of (S)-ketamine, but not (R)-ketamine, and that ERK plays a role in (R)-ketamine's antidepressant effects. Thus, it is unlikely that the activation of mTOR signaling is necessary for antidepressant actions of (R)-ketamine. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  4. Oral ketamine for children with chronic pain: a pilot phase 1 study

    PubMed Central

    Bredlau, Amy-Lee; McDermott, Michael P.; Adams, Heather; Dworkin, Robert H; Venuto, Charles; Fisher, Susan; Dolan, James G; Korones, David N

    2013-01-01

    Objective To assess whether oral ketamine aids is is safe at higher dosages for sedating children and whether it may be an option for control of chronic pain in children. Study design A prospective study was performed on 12 children with chronic pain to identify the maximum tolerated dosage of oral ketamine. Participants were given 14 days of oral ketamine, three times daily, at dosages ranging from 0.25–1.5 mg/kg/dose. Participants were assessed for toxicity and for pain severity at baseline and on day 14 of treatment. Results Two participants, both treated at 1.5 mg/kg/dose, experienced dose-limiting toxicities (sedation and anorexia). One participant, treated at 1 mg/kg/dose, opted to stop ketamine treatment due to new pain on treatment. Nine participants completed their course of ketamine treatment. Of these 12 children, 5 experienced improvement in their pain scores, two with complete resolution of pain, lasting for more than 4 weeks off ketamine treatment. Conclusion Oral ketamine at dosages of 0.25–1 mg/kg/dose appears to be safe when given for 14 days to children with chronic pain. PMID:23403253

  5. Ketamine PCA for treatment of end-of-life neuropathic pain in pediatrics.

    PubMed

    Taylor, Matthew; Jakacki, Regina; May, Carol; Howrie, Denise; Maurer, Scott

    2015-12-01

    Control of neuropathic pain (NP) for children at end of life is challenging. Ketamine improves control of NP, but its use in children is not well described. We describe a retrospective case review of 14 children with terminal prognoses treated with ketamine patient-controlled analgesia (PCA) for management of opioid-refractory NP at the end of life. Median ketamine dose was 0.06 mg/kg/h (range 0.014-0.308 mg/kg/h) with a 0.05 mg/kg (range 0.03-0.5mg/kg) demand dose available every 15 minutes (range 10-60 minutes). All patients noted subjective pain relief with ketamine, and 79% had no adverse effects. Benzodiazepines limited neuropsychiatric side effects. Ketamine treatment arrested dose escalation of opioids in 64% of patients, and 79% were discharged to home hospice. Ketamine PCA is an effective, well-tolerated therapy for opioid-refractory NP in pediatric end-of-life care. © The Author(s) 2014.

  6. Ketamine for Depression: Where Do We Go from Here?

    PubMed Central

    aan het Rot, Marije; Zarate, Carlos A.; Charney, Dennis S.; Mathew, Sanjay J.

    2012-01-01

    Since publication of the first randomized controlled trial describing rapid antidepressant effects of ketamine, several reports have confirmed the potential utility of this dissociative anesthetic medication for treatment of major depressive episodes, including those associated with bipolar disorder and resistant to other medications and electroconvulsive therapy. These reports have generated several questions with respect to who might respond to ketamine, how, and for how long. To start answering these questions. We used PubMed.gov and ClinicalTrials.gov to perform a systematic review of all available published data on the antidepressant effects of ketamine and of all recently completed, ongoing, and planned studies. To date, 163 patients, primarily with treatment-resistant depression, have participated in case studies, open-label investigations, or controlled trials. All controlled trials have used a within-subject, crossover design with an inactive placebo as the control. Ketamine administration has usually involved an anaesthesiologist infusing a single, subanesthetic, intravenous dose, and required hospitalization for at least 24 hours postinfusion. Response rates in the open-label investigations and controlled trials have ranged from 25% to 85% at 24 hours postinfusion and from 14% to 70% at 72 hours postinfusion. Although adverse effects have generally been mild, some patients have experienced brief changes in blood pressure, heart rate, or respiratory rate. Risk–benefit analyses support further research of ketamine for individuals with severe mood disorders. However, given the paucity of randomized controlled trials, lack of an active placebo, limited data on long-term outcomes, and potential risks, ketamine administration is not recommended outside of the hospital setting. PMID:22705040

  7. The role of adipokines in the rapid antidepressant effects of ketamine.

    PubMed

    Machado-Vieira, R; Gold, P W; Luckenbaugh, D A; Ballard, E D; Richards, E M; Henter, I D; De Sousa, R T; Niciu, M J; Yuan, P; Zarate, C A

    2017-01-01

    We previously found that body mass index (BMI) strongly predicted response to ketamine. Adipokines have a key role in metabolism (including BMI). They directly regulate inflammation and neuroplasticity pathways and also influence insulin sensitivity, bone metabolism and sympathetic outflow; all of these have been implicated in mood disorders. Here, we sought to examine the role of three key adipokines-adiponectin, resistin and leptin-as potential predictors of response to ketamine or as possible transducers of its therapeutic effects. Eighty treatment-resistant subjects who met DSM-IV criteria for either major depressive disorder (MDD) or bipolar disorder I/II and who were currently experiencing a major depressive episode received a single ketamine infusion (0.5 mg kg -1 for 40 min). Plasma adipokine levels were measured at three time points (pre-infusion baseline, 230 min post infusion and day 1 post infusion). Overall improvement and response were assessed using percent change from baseline on the Montgomery-Asberg Depression Rating Scale and the Hamilton Depression Rating Scale. Lower baseline levels of adiponectin significantly predicted ketamine's antidepressant efficacy, suggesting an adverse metabolic state. Because adiponectin significantly improves insulin sensitivity and has potent anti-inflammatory effects, this finding suggests that specific systemic abnormalities might predict positive response to ketamine. A ketamine-induced decrease in resistin was also observed; because resistin is a potent pro-inflammatory compound, this decrease suggests that ketamine's anti-inflammatory effects may be transduced, in part, by its impact on resistin. Overall, the findings suggest that adipokines may either predict response to ketamine or have a role in its possible therapeutic effects.

  8. 21 CFR 522.1222 - Ketamine hydrochloride injectable dosage forms.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Ketamine hydrochloride injectable dosage forms. 522.1222 Section 522.1222 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... ANIMAL DRUGS § 522.1222 Ketamine hydrochloride injectable dosage forms. ...

  9. 21 CFR 522.1222 - Ketamine hydrochloride injectable dosage forms.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Ketamine hydrochloride injectable dosage forms. 522.1222 Section 522.1222 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... ANIMAL DRUGS § 522.1222 Ketamine hydrochloride injectable dosage forms. ...

  10. 21 CFR 522.1222 - Ketamine hydrochloride injectable dosage forms.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Ketamine hydrochloride injectable dosage forms. 522.1222 Section 522.1222 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... ANIMAL DRUGS § 522.1222 Ketamine hydrochloride injectable dosage forms. ...

  11. 21 CFR 522.1222 - Ketamine hydrochloride injectable dosage forms.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ketamine hydrochloride injectable dosage forms. 522.1222 Section 522.1222 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... ANIMAL DRUGS § 522.1222 Ketamine hydrochloride injectable dosage forms. ...

  12. Synergistic interaction between ketamine and magnesium in lowering body temperature in rats.

    PubMed

    Vučković, Sonja M; Savić Vujović, Katarina R; Srebro, Dragana P; Medić, Branislava M; Vučetić, Cedomir S; Prostran, Milan Š; Prostran, Milica Š

    2014-03-29

    A large body of evidence supports the existence of an endogenous glutamate system that tonically modulates body temperature via N-methyl-d-aspartate (NMDA) receptors. Ketamine and magnesium, both NMDA receptor antagonists, are known for their anesthetic, analgesic and anti-shivering properties. This study is aimed at evaluating the effects of ketamine and magnesium sulfate on body temperature in rats, and to determine the type of interaction between them. The body temperature was measured by insertion of a thermometer probe 5cm into the colon of unrestrained male Wistar rats (200-250g). Magnesium sulfate (5 and 60mg/kg, sc) showed influence neither on baseline, nor on morphine-evoked hyperthermic response. Subanesthetic doses of ketamine (5-30mg/kg, ip) given alone, produced significant dose-dependent reduction in both baseline colonic temperature and morphine-induced hyperthermia. Analysis of the log dose-response curves for the effects of ketamine and ketamine-magnesium sulfate combination on the baseline body temperature revealed synergistic interaction, and about 5.3 fold reduction in dosage of ketamine when the drugs were applied in fixed ratio (1:1) combinations. In addition, fixed low dose of magnesium sulfate (5mg/kg, sc) enhanced the temperature lowering effect of ketamine (1.25-10mg/kg, ip) on baseline body temperature and morphine-induced hyperthermia by factors of about 2.5 and 5.3, respectively. This study is the first to demonstrate the synergistic interaction between magnesium sulfate and ketamine in a whole animal study and its statistical confirmation. It is possible that the synergy between ketamine and magnesium may have clinical relevance. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Efficacy of ketamine in improving pain after tonsillectomy in children: meta-analysis.

    PubMed

    Cho, Hye Kyung; Kim, Kyu Won; Jeong, Yeon Min; Lee, Ho Seok; Lee, Yeon Ji; Hwang, Se Hwan

    2014-01-01

    The goal of this meta-analysis study was to perform a systematic review of the literature on the effects of ketamine on postoperative pain following tonsillectomy and adverse effects in children. Two authors independently searched three databases (MEDLINE, SCOPUS, Cochrane) from their inception of article collection to February 2014. Studies that compared preoperative ketamine administration (ketamine groups) with no treatment (control group) or opioid administration (opioid group) where the outcomes of interest were postoperative pain intensity, rescue analgesic consumption, or adverse effects (sedation, nausea and vomiting, bad dream, worsening sleep pattern, and hallucination) 0-24 hours after leaving the operation room were included in the analysis. The pain score reported by the physician during first 4 hours and need for analgesics during 24 hours postoperatively was significantly decreased in the ketamine group versus control group and was similar with the opioid group. In addition, there was no significant difference between ketamine and control groups for adverse effects during 24 hours postoperatively. In the subgroup analyses (systemic and local administration) regarding pain related measurements, peritonsillar infiltration of ketamine was more effective in reducing the postoperative pain severity and need for analgesics. Preoperative administration of ketamine systemically or locally could provide pain relief without side-effects in children undergoing tonsillectomy. However, considering the insufficient evaluation of efficacy of ketamine according to the administration methods and high heterogeneity in some parameters, further clinical trials with robust research methodology should be conducted to confirm the results of this study.

  14. Distinct effects of ketamine and acetyl l-carnitine on the dopamine system in zebrafish

    PubMed Central

    Robinson, Bonnie L.; Dumas, Melanie; Cuevas, Elvis; Gu, Qiang; Paule, Merle G.; Ali, Syed F.; Kanungo, Jyotshna

    2016-01-01

    Ketamine, a noncompetitive N-methyl-d-aspartic acid (NMDA) receptor antagonist is commonly used as a pediatric anesthetic. We have previously shown that acetyl L-carnitine (ALCAR) prevents ketamine toxicity in zebrafish embryos. In mammals, ketamine is known to modulate the dopaminergic system. NMDA receptor antagonists are considered as promising anti-depressants, but the exact mechanism of their function is unclear. Here, we measured the levels of dopamine (DA) and its metabolites, 3, 4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), in the zebrafish embryos exposed to ketamine in the presence and absence of 0.5 mM ALCAR. Ketamine, at lower doses (0.1–0.3 mM), did not produce significant changes in DA, DOPAC or HVA levels in 52 h post-fertilization embryos treated for 24 h. In these embryos, tyrosine hydroxylase (TH) mRNA expression remained unchanged. However, 2 mM ketamine (internal embryo exposure levels equivalent to human anesthetic plasma concentration) significantly reduced DA level and TH mRNA indicating that DA synthesis was adversely affected. In the presence or absence of 2 mM ketamine, ALCAR showed similar effects on DA level and TH mRNA, but increased DOPAC level compared to control. ALCAR reversed 2 mM ketamine-induced reduction in HVA levels. With ALCAR alone, the expression of genes encoding the DA metabolizing enzymes, MAO (monoamine oxidase) and catechol-O-methyltransferase (COMT), was not affected. However, ketamine altered MAO mRNA expression, except at the 0.1 mM dose. COMT transcripts were reduced in the 2 mM ketamine-treated group. These distinct effects of ketamine and ALCAR on the DA system may shed some light on the mechanism on how ketamine can work as an anti-depressant, especially at sub-anesthetic doses that do not affect DA metabolism and suppress MAO gene expression. PMID:26898327

  15. Ketamine attenuates the glutamatergic neurotransmission in the ventral posteromedial nucleus slices of rats.

    PubMed

    Fu, Bao; Liu, Chengxi; Zhang, Yajun; Fu, Xiaoyun; Zhang, Lin; Yu, Tian

    2017-08-23

    Ketamine is a frequently used intravenous anesthetic, which can reversibly induce loss of consciousness (LOC). Previous studies have demonstrated that thalamocortical system is critical for information transmission and integration in the brain. The ventral posteromedial nucleus (VPM) is a critical component of thalamocortical system. Glutamate is an important excitatory neurotransmitter in the brain and may be involved in ketamine-induced LOC. The study used whole-cell patch-clamp to observe the effect of ketamine (30 μM-1000 μM) on glutamatergic neurotransmission in VPM slices. Ketamine significantly decreased the amplitude of glutamatergic spontaneous excitatory postsynaptic currents (sEPSCs), but only higher concentration of ketamine (300 μM and 1000 μM) suppressed the frequency of sEPSCs. Ketamine (100 μM-1000 μM) also decreased the amplitude of glutamatergic miniature excitatory postsynaptic currents (mEPSCs), without altering the frequency. In VPM neurons, ketamine attenuates the glutamatergic neurotransmission mainly through postsynaptic mechanism and action potential may be involved in the process.

  16. Structure formation in fibrous materials based on poly-3-hydroxybutyrate for traumatology

    NASA Astrophysics Data System (ADS)

    Olkhov, A. A.; Sklyanchuk, E. D.; Staroverova, O. V.; Abbasov, T. A.; Guryev, V. V.; Akatov, V. S.; Fadeyeva, I. S.; Fesenko, N. I.; Filatov, Yu. N.; Iordanskii, A. L.

    2015-10-01

    The paper reviews the structure formation of fibrous materials based on poly-3-hydroxybutyrate depending on parameters of electrospinning and characteristics of polymer solution. Fiber structure was studied by DSC, ESR and SEM. The molecular weight affects the diameter and uniformity of the fiber. An electromechanical impact leads to an orientation of crystalline structure in the fiber. The design of an artificial bioresorbable implant based on nano- and microfibers of poly-3-hydroxybutyrate is created. Dynamics of growth of mesenchymal stem cells on poly-3-hydroxybutyrate scaffolds is studied. Successful field tests of implants of the Achilles tendon in Wistar rats are conducted.

  17. Ketamine use in Taiwan: Moral panic, civilizing processes, and democratization.

    PubMed

    Hsu, Liang-Yin

    2014-07-01

    Ketamine use among young people in Taiwan has increased in recent years. Believing ketamine users to be a threat to social order and harsh punishment to be a deterrent, some legislators have called for upgrading ketamine use to a more serious criminal offence. These calls have been repeatedly rebuffed by the advisory council which sets drug policy, suggesting that the perceived problem does not correlate to the actual one. In this commentary, I argue that the calls of legislators constitute a 'moral panic,' and follow Rohloff (2011) in connecting the phenomenon to Elias' (2000) concept of civilizing and decivilizing processes. In addition, I demonstrate that moral panic - in the ketamine case at least - is shaped by the legacy of authoritarianism. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Reinforcing properties of an intermittent, low dose of ketamine in rats: effects of sex and cycle.

    PubMed

    Wright, Katherine N; Strong, Caroline E; Addonizio, Marjorie N; Brownstein, Naomi C; Kabbaj, Mohamed

    2017-02-01

    Repeated intermittent exposure to ketamine has rapid and long-lasting antidepressant effects, but the abuse potential has only been assessed at high doses. Furthermore, while females are more susceptible to depression and more sensitive to ketamine's antidepressant-like effects, the abuse potential for ketamine in females is unknown. The objectives of this study are to determine the reinforcing properties of low-dose intermittent ketamine in adult rats of both sexes and determine whether cycling gonadal hormones influence females' response to ketamine. In male rats, we also aimed to determine whether reinstatement to intermittent ketamine is comparable to intermittent cocaine. Male rats intravenously self-administered cocaine (0.75 mg/kg/infusion) or ketamine (0.1 mg/kg/infusion) once every fourth day, while intact cycling female rats self-administered ketamine only during preidentified stages of their 4-day estrus cycle, when gonadal hormones are either high (proestrus) or low (diestrus). After acquiring self-administration, rats underwent daily extinction training followed by cue-primed and drug-primed reinstatement to assess drug-seeking behavior. Diestrus-trained females fail to maintain ketamine self-administration and did not display reinstatement to ketamine-paired cues. Males and proestrus-trained females reinstated to ketamine-paired cues. Ketamine-primed reinstatement was dependent on simultaneous cue presentation. Male rats reinstated to cocaine priming independent of cue presentation. These findings indicate that females's responsivity to this dose of ketamine depends on stage of cycle, as only proestrus-trained females and males respond to ketamine's reinforcing effects under this treatment paradigm.

  19. Studies of the biotransformation and pharmacology of ketamine and its metabolites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leung, Y.

    1986-01-01

    The first part of the research is concerned with the synthesis, resolution and metabolism of norketamine, the primary metabolite of ketamine. Incubations of racemic norketamine, individual enantiomers of norketamine and the pseudoracemates in rat liver microsomes revealed stereoselectivity and enantiomeric interactions during the metabolism of norketamine. The second part of the research describes the synthesis of 6-OH-norketamine, the major secondary metabolite of ketamine, and reports on its pharmacological activity and cerebral distribution in the rat. Primary deuterium isotope effects associated with the metabolism and pharmacological activity of ketamine-N-CD/sub 3/ were examined in the third part of this research. The lastmore » part of the research deals with the effect of diazepam on the metabolic transformation of ketamine to norketamine in the rat. The fractions of ketamine metabolized to norketamine were found not to be different in the presence or the absence of diazepam.« less

  20. Population pharmacokinetic-pharmacodynamic modeling of ketamine-induced pain relief of chronic pain.

    PubMed

    Dahan, Albert; Olofsen, Erik; Sigtermans, Marnix; Noppers, Ingeborg; Niesters, Marieke; Aarts, Leon; Bauer, Martin; Sarton, Elise

    2011-03-01

    Pharmacological treatment of chronic (neuropathic) pain is often disappointing. In order to enhance our insight in the complex interaction between analgesic drug and chronic pain relief, we performed a pharmacokinetic-pharmacodynamic (PK-PD) modeling study on the effect of S(+)-ketamine on pain scores in Complex Regional Pain Syndrome type 1 (CRPS-1) patients. Sixty CRPS-1 patients were randomly allocated to received a 100-h infusion of S(+)-ketamine or placebo. The drug infusion rate was slowly increased from 5 mg/h (per 70 kg) to 20 mg/h based upon the effect/side effect profile. Pain scores and drug blood samples were obtained during the treatment phase and pain scores were further obtained weekly for another 11 weeks. A population PK-PD model was developed to analyze the S(+)-ketamine-pain data. Plasma concentrations of S(+)-ketamine and its metabolite decreased rapidly upon the termination of S(+)-ketamine infusion. The chance for an analgesic effect from ketamine and placebo treatment was 67±10% and 23±9% (population value±SE), respectively. The pain data were well described by the PK-PD model with parameters C(50)=10.5±4.8 ng/ml (95% ci 4.37-21.2 ng/ml) and t½ for onset/offset=10.9±4.0 days (5.3-20.5 days). Long-term S(+)-ketamine treatment is effective in causing pain relief in CRPS-1 patients with analgesia outlasting the treatment period by 50 days. These data suggest that ketamine initiated a cascade of events, including desensitization of excitatory receptor systems in the central nervous system, which persisted but slowly abated when ketamine molecules were no longer present. Copyright © 2010 European Federation of International Association for the Study of Pain Chapters. Published by Elsevier Ltd. All rights reserved.

  1. Clinical pattern and prevalence of upper gastrointestinal toxicity in patients abusing ketamine.

    PubMed

    Liu, Shirley Yuk Wah; Ng, Stephen Ka Kei; Tam, Yuk Him; Yee, Samuel Chi Hang; Lai, Franco Pui Tak; Hong, Cindy Yuek Lam; Chiu, Philip Wai Yan; Ng, Enders Kwok Wai; Ng, Chi Fai

    2017-09-01

    Evaluations of upper gastrointestinal toxicity from ketamine abuse are uncommon. This study investigated the clinical pattern of upper gastrointestinal symptoms in patients inhaling ketamine. In a cross-sectional study of 611 consecutive patients who were seeking treatment for ketamine uropathy in a tertiary hospital setting between August 2008 and June 2016, their clinical pattern of upper gastrointestinal symptoms was evaluated and compared with a control population of 804 non-users. A total of 168 (27.5%) patients abusing ketamine (mean age 26.3 years, 58.9% female) reported the presence of upper gastrointestinal symptoms. These symptoms were significantly more prevalent in patients inhaling ketamine than in those who were not (27.5% vs 5.2%, P < 0.001). Their mean duration of ketamine abuse before symptom presentation was 5.0 ± 3.1 years. The presenting symptoms included epigastric pain (n = 155, 25.4%), recurrent vomiting (n = 48, 7.9%), anemia (n = 36, 5.9%) and gastrointestinal bleeding (n = 20, 3.3%). Uropathy symptoms were preceded by upper gastrointestinal symptoms for 4.4 ± 3.0 years in 141 (83.9%) patients. Logistic regression showed that elder age (odds ratio [OR] 1.06, P = 0.04), active abuser status (OR 1.60, P = 0.04) and longer duration of ketamine abuse (OR 1.00, P = 0.04) were independent factors associated with upper gastrointestinal toxicity. Although epigastric symptoms are unusual in the young population, upper gastrointestinal toxicity was highly prevalent in those inhaling ketamine. Enquiries about ketamine abuse are recommended when assessing young patients with epigastric symptoms. © 2017 Chinese Medical Association Shanghai Branch, Chinese Society of Gastroenterology, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine and John Wiley & Sons Australia, Ltd.

  2. Rapid and sensitive detection of ketamine in blood using novel fluorescence genosensor.

    PubMed

    Ding, Yanjun; Li, Xingmei; Guo, Yadong; Yan, Jie; Ling, Jiang; Li, Weichen; Lan, Lingmei; Chang, Yunfeng; Cai, Jifeng; Zha, Lagabaiyla

    2017-12-01

    In recent years, drug abuse has been considered as a most challenging social problem that aroused public attention. Ketamine has increased in unregulated use as a 'recreational drug' in teenagers. However, there is no suitable and maneuverable detection method for ketamine in situ at the moment. Fluorescence sensor technique, with predominant recognition and simple operation, is a good potential application in drug detection. Here, we first reported a highly sensitive and selective fluorescence genosensor for rapid detection of ketamine based on DNA-templated silver nanoclusters (DNA-AgNCs) probes, in which the DNA sequence could specially recognize ketamine with high affinity. Parameters affecting detection efficiency were investigated and optimized. Under optimum conditions, the as-prepared genosensor can allow for the determination of ketamine in the concentration range of 0.0001-20 μg/mL with two linear equations: one is y = 2.84x-7.139 (R 2 = 0.987) for 0.0001-0.1 μg/mL, and the other is y = 1.87x-0.091 (R 2 = 0.962) for 0.1-20 μg/mL, and the estimated detection limit of ketamine is 0.06 ng/mL. Moreover, the feasibility of this proposed method was also demonstrated by analyzing forensic blood samples. Compared with official gas chromatography/mass spectrometry (GC/MS), this fluorescence genosensor is simple, rapid, and accurate for quantitative determination of ketamine in blood for pharmaceutical and forensic analysis. Overall, it is the first report on a fluorescence genosensor for detecting ketamine directly in blood. This research may provide a new insight for the analyst to band fluorescence genosensor technology together with drug monitoring in the battle against drug abuse and forensic examination. Graphical abstract High selectively detection of ketamine using a novel fluorescence genosensor based on DNA-AgNCs probe.

  3. Fed-Batch Synthesis of Poly(3-Hydroxybutyrate) and Poly(3-Hydroxybutyrate-co-4-Hydroxybutyrate) from Sucrose and 4-Hydroxybutyrate Precursors by Burkholderia sacchari Strain DSM 17165.

    PubMed

    Miranda De Sousa Dias, Miguel; Koller, Martin; Puppi, Dario; Morelli, Andrea; Chiellini, Federica; Braunegg, Gerhart

    2017-04-20

    Based on direct sucrose conversion, the bacterium Burkholderia sacchari is an excellent producer of the microbial homopolyester poly(3-hydroxybutyrate) (PHB). Restrictions of the strain's wild type in metabolizing structurally related 3-hydroxyvalerate (3HV) precursors towards 3HV-containing polyhydroxyalkanoate (PHA) copolyester calls for alternatives. We demonstrate the highly productive biosynthesis of PHA copolyesters consisting of 3-hydroxybuytrate (3HB) and 4-hydroxybutyrate (4HB) monomers. Controlled bioreactor cultivations were carried out using saccharose from the Brazilian sugarcane industry as the main carbon source, with and without co-feeding with the 4HB-related precursor γ-butyrolactone (GBL). Without GBL co-feeding, the homopolyester PHB was produced at a volumetric productivity of 1.29 g/(L•h), a mass fraction of 0.52 g PHB per g biomass, and a final PHB concentration of 36.5 g/L; the maximum specific growth rate µmax amounted to 0.15 1/h. Adding GBL, we obtained 3HB and 4HB monomers in the polyester at a volumetric productivity of 1.87 g/(L•h), a mass fraction of 0.72 g PHA per g biomass, a final PHA concentration of 53.7 g/L, and a µmax of 0.18 1/h. Thermoanalysis revealed improved material properties of the second polyester in terms of reduced melting temperature Tm (161 °C vs. 178 °C) and decreased degree of crystallinity Xc (24% vs. 71%), indicating its enhanced suitability for polymer processing.

  4. Ketamine augmentation of electroconvulsive therapy to improve neuropsychological and clinical outcomes in depression (Ketamine-ECT): a multicentre, double-blind, randomised, parallel-group, superiority trial.

    PubMed

    Anderson, Ian M; Blamire, Andrew; Branton, Tim; Clark, Ross; Downey, Darragh; Dunn, Graham; Easton, Andrew; Elliott, Rebecca; Elwell, Clare; Hayden, Katherine; Holland, Fiona; Karim, Salman; Loo, Colleen; Lowe, Jo; Nair, Rajesh; Oakley, Timothy; Prakash, Antony; Sharma, Parveen K; Williams, Stephen R; McAllister-Williams, R Hamish

    2017-05-01

    The use of electroconvulsive therapy (ECT) is limited by concerns about its cognitive adverse effects. Preliminary evidence suggests that administering the glutamate antagonist ketamine with ECT might alleviate cognitive adverse effects and accelerate symptomatic improvement; we tested this in a randomised trial of low-dose ketamine. In this multicentre, randomised, parallel-group study in 11 ECT suites serving inpatient and outpatient care settings in seven National Health Service trusts in the North of England, we recruited severely depressed patients, who were diagnosed as having unipolar or bipolar depressive episodes defined as moderate or severe by DSM-IV criteria, aged at least 18 years, and were able and willing to provide written consent to participate in the study. Patients were randomly assigned (1:1) to ketamine (0·5 mg/kg intravenous bolus) or saline adjunctive to the anaesthetic for the duration of their ECT course. Patients and assessment and ECT treatment teams were masked to treatment allocation, although anaesthetists administering the study medication were not. We analysed the primary outcome, Hopkins Verbal Learning Test-Revised delayed verbal recall (HVLT-R-DR) after four ECT treatments, using a Gaussian repeated measures model in all patients receiving the first ECT treatment. In the same population, safety was assessed by adverse effect monitoring. This trial was registered with International Standard Randomised Controlled Trial Number, number ISRCTN14689382. Between early December, 2012, and mid-June, 2015, 628 patients were screened for eligibility, of whom 79 were randomly assigned to treatment (40 in the ketamine group vs 39 in the saline group). Ketamine (mean 5·17, SD 2·92), when compared with saline (5·54, 3·42), had no benefit on the primary outcome (HVLT-R-DR; difference in means -0·43 [95% CI -1·73 to 0·87]). 15 (45%) of 33 ketamine-treated patients compared with 10 (27%) of 37 patients receiving saline experienced at least

  5. Ketamine: An Update on Cellular and Subcellular Mechanisms with Implications for Clinical Practice.

    PubMed

    Iacobucci, Gary J; Visnjevac, Ognjen; Pourafkari, Leili; Nader, Nader Djalal

    2017-02-01

    Ketamine is one of the oldest hypnotic agents used to provide an anesthetic agent with analgesic properties and minimal suppressive effects on respiration. The ability of ketamine in modulating glutamatergic (N-methyl D-aspartate) pain receptors has made this anesthetic drug a new option for the management of patients with chronic pain syndromes. Further preclinical and clinical findings suggest ketamine may have wide ranging effects on both cognition and development. Recent advances have revealed an unprecedented role for ketamine in the acute management of depression. The purpose of this review is to integrate a number of basic science, preclinical, and clinical studies with the goal of providing insight into the possible signaling events underlying ketamine's biological effects in pain management, depression, cognition and memory, and neurodevelopment. Narrative literature review. Health science library. A comprehensive literature search was performed for the following medical subject headings and keywords (ketamine, anesthesia, pain, analgesia, depression, NMDA receptors) on PubMed, Google Scholar, and Medline from 1966 to the present time. The search was then limited to those in the English language. The full text of the relevant articles were printed and reviewed by all authors. We provided a comprehensive review of the literature that explored the pharmacologic aspects of ketamine from its conception as an anesthetic to its evolution as a drug used for treatment of depression and pain. To address the patient response variability observed in clinical studies, we have provided possible patient-specific factors that could contribute to outcome variability. Like any review, this study was limited by publication bias and missing information on negative studies which were denied publication. Ketamine, an old anesthetic agent with analgesic properties, is currently being considered for treating patients with chronic pain and depression. The complex pharmacological

  6. Efficacy of Ketamine in Pediatric Sedation Dentistry: A Systematic Review.

    PubMed

    Oh, Samuel; Kingsley, Karl

    2018-05-01

    Ketamine has been used as a safe and effective sedative to treat adults and children exhibiting high levels of anxiety or fear during dental treatment. Pediatric dentistry often involves patients with high levels of anxiety and fear and possibly few positive dental experiences. Patient management can involve behavioral approaches, as well as the use of sedation or general anesthesia with a variety of agents, including midazolam, diazepam, hydroxyzine, meperidine, and ketamine. The aim of this study was to investigate the clinical efficacy of ketamine use in pediatric sedation dentistry through systematic review and analysis. A systematic review of publications between 1990 and 2015 was conducted using PubMed and MEDLINE databases maintained by the US National Library of Medicine and the National Institutes of Health. The keywords used were (ketamine) AND (dental OR dentistry) AND (sedation). The abstract and title of all potential publications were then screened for clinical trials and to remove non-English articles, non-human or animal trials, and other non-dental or non-relevant studies. A total of 1,657 citations were initially identified, reviewed, and screened, eventually resulting in inclusion of 25 clinical trials in this systematic review. Nineteen studies evaluated ketamine effects in pediatric dental sedation using oral (non-invasive) administration, three involved subcutaneous or intramuscular injection, and three were completed intravenously. Evidence analysis of these trials revealed the majority (n = 22/25) provided strong, positive evidence for the use of ketamine (alone or in combination) to reduce dental anxiety and behavioral non-compliance with the remainder suggesting equivocal results. Additional endpoints evaluated in some studies involved dosage, as well as time to achieve sedation effect. The use of ketamine (alone or in combination) can provide safe, effective, and timely sedation in pediatric patients regardless of the route of

  7. Efficacy of Ketamine in Improving Pain after Tonsillectomy in Children: Meta-Analysis

    PubMed Central

    Cho, Hye Kyung; Kim, Kyu Won; Jeong, Yeon Min; Lee, Ho Seok; Lee, Yeon Ji; Hwang, Se Hwan

    2014-01-01

    Background and objectives The goal of this meta-analysis study was to perform a systematic review of the literature on the effects of ketamine on postoperative pain following tonsillectomy and adverse effects in children. Subjects and Methods Two authors independently searched three databases (MEDLINE, SCOPUS, Cochrane) from their inception of article collection to February 2014. Studies that compared preoperative ketamine administration (ketamine groups) with no treatment (control group) or opioid administration (opioid group) where the outcomes of interest were postoperative pain intensity, rescue analgesic consumption, or adverse effects (sedation, nausea and vomiting, bad dream, worsening sleep pattern, and hallucination) 0–24 hours after leaving the operation room were included in the analysis. Results The pain score reported by the physician during first 4 hours and need for analgesics during 24 hours postoperatively was significantly decreased in the ketamine group versus control group and was similar with the opioid group. In addition, there was no significant difference between ketamine and control groups for adverse effects during 24 hours postoperatively. In the subgroup analyses (systemic and local administration) regarding pain related measurements, peritonsillar infiltration of ketamine was more effective in reducing the postoperative pain severity and need for analgesics. Conclusion Preoperative administration of ketamine systemically or locally could provide pain relief without side-effects in children undergoing tonsillectomy. However, considering the insufficient evaluation of efficacy of ketamine according to the administration methods and high heterogeneity in some parameters, further clinical trials with robust research methodology should be conducted to confirm the results of this study. PMID:24979227

  8. Influence of ketamine on regional brain glucose use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, D.W.; Mans, A.M.; Biebuyck, J.F.

    1988-08-01

    The purpose of this study was to determine the effect of different doses of ketamine on cerebral function at the level of individual brain structures as reflected by glucose use. Rats received either 5 or 30 mg/kg ketamine intravenously as a loading dose, followed by an infusion to maintain a steady-state level of the drug. An additional group received 30 mg/kg as a single injection only, and was studied 20 min later, by which time they were recovering consciousness (withdrawal group). Regional brain energy metabolism was evaluated with (6-/sup 14/C)glucose and quantitative autoradiography during a 5-min experimental period. A subhypnotic,more » steady-state dose (5 mg/kg) of ketamine caused a stimulation of glucose use in most brain areas, with an average increase of 20%. At the larger steady-state dose (30 mg/kg, which is sufficient to cause anesthesia), there was no significant effect on most brain regions; some sensory nuclei were depressed (inferior colliculus, -29%; cerebellar dentate nucleus, -18%; vestibular nucleus, -16%), but glucose use in the ventral posterior hippocampus was increased by 33%. In contrast, during withdrawal from a 30-mg/kg bolus, there was a stimulation of glucose use throughout the brain (21-78%), at a time when plasma ketamine levels were similar to the levels in the 5 mg/kg group. At each steady-state dose, as well as during withdrawal, ketamine caused a notable stimulation of glucose use by the hippocampus.« less

  9. Ketamine-induced ventricular structural, sympathetic and electrophysiological remodelling: pathological consequences and protective effects of metoprolol

    PubMed Central

    Li, Y; Shi, J; Yang, BF; Liu, L; Han, CL; Li, WM; Dong, DL; Pan, ZW; Liu, GZ; Geng, JQ; Sheng, L; Tan, XY; Sun, DH; Gong, ZH; Gong, YT

    2012-01-01

    BACKGROUND AND PURPOSE Growing evidence suggests that long-term abuse of ketamine does harm the heart and increases the risk of sudden death. The present study was performed to explore the cardiotoxicity of ketamine and the protective effects of metoprolol. EXPERIMENTAL APPROACH Rats and rabbits were divided into control, ketamine, metoprolol alone and ketamine plus metoprolol groups. Ketamine (40 mg·kg−1·day−1, i.p.) and metoprolol (20 mg·kg−1·day−1, p.o.) were administered continuously for 12 weeks in rats and 8 weeks in rabbits. Cardiac function, electrophysiological disturbances, cardiac collagen, cardiomyocte apoptosis and the remodelling-related proteins were evaluated. KEY RESULTS Rabbits treated with ketamine showed decreased left ventricular ejection fraction, slowed ventricular conduction velocity and increased susceptibility to ventricular arrhythmia. Metoprolol prevented these pathophysiological alterations. In ketamine-treated rats, cardiac collagen volume fraction and apoptotic cell number were higher than those of control animals; these effects were prevented by co-administration of metoprolol. Consistently, the expressions of poly (ADP-ribose) polymerases-1, apoptosis-inducing factor and NF-κB-light-chain-enhancer of activated B cells were all increased after ketamine treatment and sharply reduced after metoprolol administration. Moreover, ketamine enhanced sympathetic sprouting, manifested as increased growth-associated protein 43 and tyrosine TH expression. These effects of ketamine were prevented by metoprolol. CONCLUSIONS AND IMPLICATIONS Chronic treatment with ketamine caused significant ventricular myocardial apoptosis, fibrosis and sympathetic sprouting, which altered the electrophysiological properties of the heart and increased its susceptibility to malignant arrhythmia that may lead to sudden cardiac death. Metoprolol prevented the cardiotoxicity of ketamine, indicating a promising new therapeutic strategy. PMID:21883145

  10. Ketamine and the metabolite norketamine: persistence and phototransformation toxicity in hospital wastewater and surface water.

    PubMed

    Lin, Angela Yu-Chen; Lee, Wan-Ning; Wang, Xiao-Huan

    2014-04-15

    Ketamine has been increasingly used both recreationally and medicinally around the world. Although the metabolic pathways to form its metabolite norketamine have been carefully investigated in humans and animals, knowledge of their environmental occurrence and fate is limited. In this study, we investigated the occurrence of ketamine and norketamine in 20 natural bodies of water, effluents from 13 hospitals, two wastewater treatment plants and one water supply plant. Ketamine was found at concentrations as high as 10 μg/L. Ketamine and norketamine were consistently found in similar concentrations (ketamine/norketamine ratio: 0.3-4.6) in the collected water samples, and this ratio similar to that found in urine samples. Dark incubation experiments have shown that ketamine is not susceptible to microbial degradation or hydrolysis. Phototransformation was demonstrated to significantly reduce the concentration of ketamine and norketamine in river waters (t(1/2) = 12.6 ± 0.4 and 10.1 ± 0.4 h, respectively) and resulted in byproducts that are similar to human metabolites. Both direct and indirect photolysis led to the N-demethylation of ketamine to form norketamine and other byproducts, including hydroxy-norketamine (HNK), dehydronorketamine (DNK), hydroxy-ketamine (HK) and isomer forms of ketamine and norketamine. Irradiated solutions exhibited higher toxicity (via the Microtox test). Although a final risk assessment could not be made due to a lack of studies on the chronic effects on aquatic organisms, the high and persistent environmental occurrences of ketamine and norketamine as well as the increasingly acute toxicity of the photo byproducts demonstrate the importance of including metabolites in evaluation of the overall risk of ketamine. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Clinically Relevant Concentrations of Ketamine Inhibit Osteoclast Formation In Vitro in Mouse Bone Marrow Cultures.

    PubMed

    Du, Erxia; McAllister, Patrick; Venna, Venugopal Reddy; Xiao, Liping

    2017-04-01

    Ketamine has been used safely in clinics for decades for analgesia and anesthesia. It is increasingly popular in clinical practice due to its new uses and importance for emergency procedures. It is known that ketamine is sequestered in the bone marrow and the major receptors for ketamine, noncompetitive N-methyl-d-aspartate receptors (NMDARs), are expressed in osteoclasts (OCs) and osteoblasts. However, the impact of ketamine on OCs or osteoblasts is unknown. In this study, we investigated the effects of ketamine on osteoclastogenesis and regulation of NMDARs expression in vitro. Bone marrows (BMs) or bone marrow macrophages (BMMs) were cultured in the presence of macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor kappa-B ligand (RANKL) with or without ketamine for up to 6 days. OC formation peaked at day 5. On day 5 of culture, ketamine inhibited OC formation from both BM and BMM cultures at clinically relevant concentrations (3-200 µM). Ketamine inhibited RANKL-induced expression of nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1) in BMM cultures. Inhibition of ketamine on RANKL-induced osteoclastogenesis is associated with down-regulation of NMDARs. In addition, ketamine significantly inhibited the M-CSF induced migration of BMMs, inhibited cell fusion and significantly increased mature OC apoptosis. We conclude that clinically relevant concentrations of ketamine inhibit OC formation in both BM and BMM cultures in vitro through inhibiting migration and fusion process and enhancing mature OC apoptosis. It is likely that ketamine regulates osteoclastogenesis, at least in part, via its effects on NMDAR expression. J. Cell. Biochem. 118: 914-923, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Long-Term Antihyperalgesic and Opioid-Sparing Effects of 5-Day Ketamine and Morphine Infusion ("Burst Ketamine") in Diabetic Neuropathic Rats.

    PubMed

    Mak, Plato; Broadbear, Jillian H; Kolosov, Anton; Goodchild, Colin S

    2015-09-01

    "Burst ketamine" (BK) is the long-term infusion of subanesthetic ketamine in combination with an opioid. It is used clinically with mixed success to provide long-term pain relief and improve opioid response in patients. BK has not been simulated preclinically, therefore, its effectiveness was investigated in an animal model of neuropathic pain--streptozotocin-induced diabetic neuropathy. Diabetic neuropathic rats were randomized to receive a subcutaneous infusion of ketamine 20 mg/kg/day plus morphine 20 mg/kg/day (BK), either drug alone at the same dose, or sham treatment. Drugs were administered continuously over 5 days via osmotic minipump. Antihyperalgesic effects and antinociceptive responsiveness to morphine (0.625-10 mg/kg, i.p.) were assessed at 2, 4, 6, and 12 weeks post-treatment using paw withdrawal latency (PWL) from noxious heat (thermal hyperalgesia) and mechanical touch (tactile allodynia). Antihyperalgesic effects with significant increases in PWL from noxious heat occurred following BK and ketamine-only infusion, persisting 12 and 4 weeks, respectively. Opioid-sparing effects from noxious heat with increased sensitivity to morphine analgesia also occurred for 6 weeks after BK and 2 weeks after ketamine treatment; acute treatment with the maximum nonsedating dose of morphine (5 mg/kg) produced an antinociceptive effect in these two groups, but not in sham-treated rats. In morphine-only infusion rats, hyperalgesia and opioid insensitivity were both increased. This is the first preclinical study to use a model of neuropathic pain to demonstrate the utility of the BK procedure for delivering a long-lasting reduction in hyperalgesia and improved antinociceptive responsiveness to opioids. Wiley Periodicals, Inc.

  13. Patterns of Polydrug Use Among Ketamine Injectors in New York City

    PubMed Central

    LANKENAU, STEPHEN E.; CLATTS, MICHAEL C.

    2007-01-01

    Polydrug use is an important public health issue since it has been linked to significant adverse health outcomes. Recently, club drugs, including ketamine and other drugs used in dance/rave scenes, have been identified as key substances in new types of polydrug using patterns. While seemingly a self-explanatory concept, “polydrug” use constitutes multiple drug using practices that may impact upon health risks. Ketamine, a club drug commonly administered intranasally among youth for its disassociative properties, has emerged as a drug increasingly prevalent among a new hidden population of injection drug users (IDUs). Using an ethno-epidemiological methodology, we interviewed 40 young (<25 years old) ketamine injectors in New York during 2000–2002 to describe the potential health risks associated with ketamine and polydrug use. Findings indicate that ketamine was typically injected or sniffed in the context of a polydrug using event. Marijuana, alcohol, PCP, and speed were among the most commonly used drugs during recent ketamine using events. Polydrug using events were often quite variable regarding the sequencing of drug use, the drug combinations consumed, the forms of the drug utilized, and the modes of administrating the drug combinations. Future research should be directed towards developing a more comprehensive description of the risks associated with combining ketamine with other drugs, such as drug overdoses, the transmission of bloodborne pathogens, such as HIV and HCV, the short- and long-term effects of drug combinations on cognitive functioning, and other unanticipated consequences associated with polydrug use. PMID:16048823

  14. Intravenous S-Ketamine Does Not Inhibit Alveolar Fluid Clearance in a Septic Rat Model

    PubMed Central

    Weber, Nina C.; van der Sluijs, Koen; Hackl, Florian; Hotz, Lorenz; Dahan, Albert; Hollmann, Markus W.; Berger, Marc M.

    2014-01-01

    We previously demonstrated that intratracheally administered S-ketamine inhibits alveolar fluid clearance (AFC), whereas an intravenous (IV) bolus injection had no effect. The aim of the present study was to characterize whether continuous IV infusion of S-ketamine, yielding clinically relevant plasma concentrations, inhibits AFC and whether its effect is enhanced in acute lung injury (ALI) which might favor the appearance of IV S-ketamine at the alveolar surface. AFC was measured in fluid-instilled rat lungs. S-ketamine was administered IV over 6 h (loading dose: 20 mg/kg, followed by 20 mg/kg/h), or intratracheally by addition to the instillate (75 µg/ml). ALI was induced by IV lipopolysaccharide (LPS; 7 mg/kg). Interleukin (IL)-6 and cytokine-induced neutrophil chemoattractant (CINC)-3 were measured by ELISA in plasma and bronchoalveolar lavage fluid. Isolated rat alveolar type-II cells were exposed to S-ketamine (75 µg/ml) and/or LPS (1 mg/ml) for 6 h, and transepithelial ion transport was measured as short circuit current (ISC). AFC was 27±5% (mean±SD) over 60 min in control rats and was unaffected by IV S-ketamine. Tracheal S-ketamine reduced AFC to 18±9%. In LPS-treated rats, AFC decreased to 16±6%. This effect was not enhanced by IV S-ketamine. LPS increased IL-6 and CINC-3 in plasma and bronchoalveolar lavage fluid. In alveolar type-II cells, S-ketamine reduced ISC by 37% via a decrease in amiloride-inhibitable sodium transport. Continuous administration of IV S-ketamine does not affect rat AFC even in endotoxin-induced ALI. Tracheal application with direct exposure of alveolar epithelial cells to S-ketamine decreases AFC by inhibition of amiloride-inhibitable sodium transport. PMID:25386677

  15. Ventral CA3 Activation Mediates Prophylactic Ketamine Efficacy Against Stress-Induced Depressive-like Behavior.

    PubMed

    Mastrodonato, Alessia; Martinez, Randy; Pavlova, Ina P; LaGamma, Christina T; Brachman, Rebecca A; Robison, Alfred J; Denny, Christine A

    2018-02-23

    We previously reported that a single injection of ketamine prior to stress protects against the onset of depressive-like behavior and attenuates learned fear. However, the molecular pathways and brain circuits underlying ketamine-induced stress resilience are still largely unknown. Here, we tested whether prophylactic ketamine administration altered neural activity in the prefrontal cortex and/or hippocampus. Mice were injected with saline or ketamine (30 mg/kg) 1 week before social defeat. Following behavioral tests assessing depressive-like behavior, mice were sacrificed and brains were processed to quantify ΔFosB expression. In a second set of experiments, mice were stereotaxically injected with viral vectors into ventral CA3 (vCA3) in order to silence or overexpress ΔFosB prior to prophylactic ketamine administration. In a third set of experiments, ArcCreER T2 mice, a line that allows for the indelible labeling of neural ensembles activated by a single experience, were used to quantify memory traces representing a contextual fear conditioning experience following prophylactic ketamine administration. Prophylactic ketamine administration increased ΔFosB expression in the ventral dentate gyrus and vCA3 of social defeat mice but not of control mice. Transcriptional silencing of ΔFosB activity in vCA3 inhibited prophylactic ketamine efficacy, while overexpression of ΔFosB mimicked and occluded ketamine's prophylactic effects. In ArcCreER T2 mice, ketamine administration altered memory traces representing the contextual fear conditioning experience in vCA3 but not in the ventral dentate gyrus. Our data indicate that prophylactic ketamine may be protective against a stressor by altering neural activity, specifically the neural ensembles representing an individual stressor in vCA3. Copyright © 2018 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  16. Prevention of Emergence Agitation with Ketamine in Rhinoplasty.

    PubMed

    Demir, Canser Yilmaz; Yuzkat, Nureddin

    2018-06-01

    Emergence agitation (EA), defined as restlessness, disorientation, excitation, and/or inconsolable crying, is a common phenomenon during early recovery from general anesthesia. In this study, we aimed to determine the (1) EA incidence after rhinoplasty operations in adults; (2) the effects of ketamine administered at sub-anesthetic doses just 20 min before the end of the surgery in rhinoplasty operations on agitation level, postoperative pain, side effects, and complications; and (3) to determine the risk factors for EA in adults after rhinoplasty. Totally 140 patients scheduled to undergo elective rhinoplasty were enrolled in this prospective study. Patients were equally and randomly divided into two groups: saline group (control group) (n = 70) and ketamine group (n = 70). Twenty minutes before surgery completion, 1 ml saline was administered via the intravenous (i.v.) route to the saline group, while 0.5 mg/kg ketamine was administered via i.v. patients in the ketamine group. The emergence agitation level of the patients was evaluated using the Richmond Agitation-Sedation Scale just after extubation and in the post-anesthesia care unit (PACU). For postoperative pain evaluation, the Numerical Rating Scale (NRS) was scored (from 0 to 10) every 10 min until the patients were discharged from PACU. EA incidence in the control group was as high as 54.3%, while in the ketamine group it was 8.6% just after extubation (p < 0.001). In the PACU, EA incidence was 28.6% in the control group, while none of the patients had EA in the PACU in the ketamine group (p < 0.001). Male gender, severe pain (NRS ≥ 5), and smoking were defined as significant risk factors for EA both after extubation and during follow-ups in the PACU (p < 0.001). Emergence agitation after rhinoplasty is a common complication, likely disturbing operative outcomes in adults. Ketamine at sub-anesthetic doses is highly effective in preventing EA. Further, larger-scale prospective studies are

  17. Protective effects of exogenous β-hydroxybutyrate on paraquat toxicity in rat kidney

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Teng; Tian, Wulin; Liu, Fangning

    Highlights: • β-Hydroxybutyrate inhibits paraquat-induced toxicity in rat kidney. • β-Hydroxybutyrate inhibits lipid peroxidation and caspase-mediated apoptosis. • β-Hydroxybutyrate increases the activities of SOD and CAT. • The study describes a novel finding for the renoprotective ability of β-hydroxybutyrate. - Abstract: In this study, we demonstrated the protective effects of β-hydroxybutyrate (β-HB) against paraquat (PQ)-induced kidney injury and elucidated the underlying molecular mechanisms. By histological examination and renal dysfunction specific markers (serum BUN and creatinine) assay, β-HB could protect the PQ-induced kidney injury in rat. PQ-induced kidney injury is associated with oxidative stress, which was measured by increased lipid peroxidationmore » (MDA) and decreased intracellular anti-oxidative abilities (SOD, CAT and GSH). β-HB pretreatment significantly attenuated that. Caspase-mediated apoptosis pathway contributed importantly to PQ toxicity, as revealed by the activation of caspase-9/-3, cleavage of PARP, and regulation of Bcl-2 and Bax, which were also effectively blocked by β-HB. Moreover, treatment of PQ strongly decreased the nuclear Nrf2 levels. However, pre-treatment with β-HB effectively suppressed this action of PQ. This may imply the important role of β-HB on Nrf2 pathway. Taken together, this study provides a novel finding that β-HB has a renoprotective ability against paraquat-induced kidney injury.« less

  18. Paliperidone for the treatment of ketamine-induced psychosis: a case report.

    PubMed

    Zuccoli, M L; Muscella, A; Fucile, C; Carrozzino, R; Mattioli, F; Martelli, A; Orengo, S

    2014-01-01

    Ketamine is an anaesthetic and analgesic drug synthesized in the 1960s from phencyclidine. The recreational use of ketamine increased among the dance culture of techno and house music, in particular in clubs, discotheques, and rave parties. The psychotropic effects of ketamine are now well known and they range from dissociation to positive, negative, and cognitive schizophrenia-like symptoms. We report a case of a chronic oral consumption of ketamine which induced agitation, behavioral abnormalities, and loss of contact with reality in a poly-drug abuser; these symptoms persisted more than two weeks after the drug consumption had stopped. Antipsychotic treatment with paliperidone led to a successful management of the psychosis, getting a complete resolution of the clinical picture. Paliperidone has proven to be very effective in the treatment of ketamine-induced disorders. Moreover, the pharmacological action and metabolism of paliperidone are poorly dependent from the activity of liver enzymes, so that it seems to be one of the best second generation antipsychotics for the treatment of smokers and alcohol abusers.

  19. Sympathoadrenal responses to cold and ketamine anesthesia in the rhesus monkey

    NASA Technical Reports Server (NTRS)

    Kolka, M. A.; Elizondo, R. S.; Weinberg, R. P.

    1983-01-01

    The effect of cold exposure on the sympathoadrenal system is investigated in eight adult rhesus monekys with and without ketamine anesthesia. It is found that a 3 hr cold exposure (12 c) was associated with a 175 percent increase above control levels of norepinephrine (NE) and a 100 percent increase in epinephrine (E). Also observed were decreases in the core temperature, mean skin temperature, and mean body temperature. No change in the plasma levels of NE and E from the control values was found during continuous infusion of ketamine; while the core temperature, mean skin temperature, and mean body temperature all showed greater declines with the addition of ketamine infusion to the cold exposure. Water exposure (28 C) under ketamine anesthesia resulted in a reduction of the core temperature to 33 C within 1 hr. Plasma levels of NE and E were found to be unchanged from control values at core temperatures of 35 and 33 C. It is concluded that the administration of ketamine abolishes both the thermoregulatory response and the catecholamine response to acute cold exposure.

  20. Loss of consciousness is related to hyper-correlated gamma-band activity in anesthetized macaques and sleeping humans.

    PubMed

    Bola, Michał; Barrett, Adam B; Pigorini, Andrea; Nobili, Lino; Seth, Anil K; Marchewka, Artur

    2018-02-15

    Loss of consciousness can result from a wide range of causes, including natural sleep and pharmacologically induced anesthesia. Important insights might thus come from identifying neuronal mechanisms of loss and re-emergence of consciousness independent of a specific manipulation. Therefore, to seek neuronal signatures of loss of consciousness common to sleep and anesthesia we analyzed spontaneous electrophysiological activity recorded in two experiments. First, electrocorticography (ECoG) acquired from 4 macaque monkeys anesthetized with different anesthetic agents (ketamine, medetomidine, propofol) and, second, stereo-electroencephalography (sEEG) from 10 epilepsy patients in different wake-sleep stages (wakefulness, NREM, REM). Specifically, we investigated co-activation patterns among brain areas, defined as correlations between local amplitudes of gamma-band activity. We found that resting wakefulness was associated with intermediate levels of gamma-band coupling, indicating neither complete dependence, nor full independence among brain regions. In contrast, loss of consciousness during NREM sleep and propofol anesthesia was associated with excessively correlated brain activity, as indicated by a robust increase of number and strength of positive correlations. However, such excessively correlated brain signals were not observed during REM sleep, and were present only to a limited extent during ketamine anesthesia. This might be related to the fact that, despite suppression of behavioral responsiveness, REM sleep and ketamine anesthesia often involve presence of dream-like conscious experiences. We conclude that hyper-correlated gamma-band activity might be a signature of loss of consciousness common across various manipulations and independent of behavioral responsiveness. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Ecotoxicological effect of ketamine: Evidence of acute, chronic and photolysis toxicity to Daphnia magna.

    PubMed

    Li, Shih-Wei; Wang, Yu-Hsiang; Lin, Angela Yu-Chen

    2017-09-01

    Ketamine has been increasingly used in medicine and has the potential for abuse or illicit use around the world. Ketamine cannot be removed by conventional wastewater treatment plants. Although ketamine and its metabolite norketamine have been detected to a significant degree in effluents and aquatic environments, their ecotoxicity effects in aquatic organisms remain undefined. In this study, we investigated the acute toxicity of ketamine and its metabolite, along with the chronic reproductive toxicity of ketamine (5-100μg/L) to Daphnia magna. Multiple environmental scenarios were also evaluated, including drug mixtures and sunlight irradiation toxicity. Ketamine and norketamine caused acute toxicity to D. magna, with half lethal concentration (LC 50 ) values of 30.93 and 25.35mg/L, respectively, after 48h of exposure. Irradiated solutions of ketamine (20mg/L) significantly increased the mortality of D. magna; pre-irradiation durations up to 2h rapidly increased the death rate to 100%. A new photolysis byproduct (M.W. 241) of norketamine that accumulates during irradiation was identified for the first time. The relevant environmental concentration of ketamine produced significant reproductive toxicity effects in D. magna, as revealed by the reduction of the number of total live offspring by 33.6-49.8% (p < 0.05). The toxicity results indicate that the environmental hazardous risks of the relevant ketamine concentration cannot be ignored and warrant further examination. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Comparative Investigation of Protective Effects of Metyrosine and Metoprolol Against Ketamine Cardiotoxicity in Rats.

    PubMed

    Ahiskalioglu, Ali; Ince, Ilker; Aksoy, Mehmet; Ahiskalioglu, Elif Oral; Comez, Mehmet; Dostbil, Aysenur; Celik, Mine; Alp, Hamit Hakan; Coskun, Resit; Taghizadehghalehjoughi, Ali; Suleyman, Bahadir

    2015-10-01

    This study investigated the effect of metyrosine against ketamine-induced cardiotoxicity in rats and compared the results with the effect of metoprolol. In this study, rats were divided into groups A, B and C. In group A, we investigated the effects of a single dose of metyrosine (150 mg/kg) and metoprolol (20 mg/kg) on single dose ketamine (60 mg/kg)-induced cardiotoxicity. In group B, we investigated the effect of metyrosine and metoprolol, which were given together with ketamine for 30 days. In group C, we investigated the effect of metyrosine and metoprolol given 15 days before ketamine and 30 days together with ketamine on ketamine cardiotoxicity. By the end of this process, we evaluated the effects of the levels of oxidant-antioxidant parameters such as MDA, MPO, 8-OHGua, tGSH, and SOD in addition to CK-MB and TP I on cardiotoxicity in rat heart tissue. The experimental results show that metyrosine prevented ketamine cardiotoxicity in groups A, B and C and metoprolol prevented it in only group C.

  3. Adverse Events During a Randomized Trial of Ketamine Versus Co-Administration of Ketamine and Propofol for Procedural Sedation in a Pediatric Emergency Department.

    PubMed

    Weisz, Keith; Bajaj, Lalit; Deakyne, Sara J; Brou, Lina; Brent, Alison; Wathen, Joseph; Roosevelt, Genie E

    2017-07-01

    The co-administration of ketamine and propofol (CoKP) is thought to maximize the beneficial profile of each medication, while minimizing the respective adverse effects of each medication. Our objective was to compare adverse events between ketamine monotherapy (KM) and CoKP for procedural sedation and analgesia (PSA) in a pediatric emergency department (ED). This was a prospective, randomized, single-blinded, controlled trial of KM vs. CoKP in patients between 3 and 21 years of age. The attending physician administered either ketamine 1 mg/kg i.v. or ketamine 0.5 mg/kg and propofol 0.5 mg/kg i.v. The physician could administer up to three additional doses of ketamine (0.5 mg/kg/dose) or ketamine/propofol (0.25 mg/kg/dose of each). Adverse events (e.g., respiratory events, cardiovascular events, unpleasant emergence reactions) were recorded. Secondary outcomes included efficacy, recovery time, and satisfaction scores. Ninety-six patients were randomized to KM and 87 patients were randomized to CoKP. There was no difference in adverse events or type of adverse event, except nausea was more common in the KM group. Efficacy of PSA was higher in the KM group (99%) compared to the CoKP group (90%). Median recovery time was the same. Satisfaction scores by providers, including nurses, were higher for KM, although parents were equally satisfied with both sedation regimens. We found no significant differences in adverse events between the KM and CoKP groups. While CoKP is a reasonable choice for pediatric PSA, our study did not demonstrate an advantage of this combination over KM. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Intravenous ketamine for subacute treatment of refractory chronic migraine: a case series.

    PubMed

    Lauritsen, Clinton; Mazuera, Santiago; Lipton, Richard B; Ashina, Sait

    2016-12-01

    Refractory migraine is a challenging condition with great impact on health related quality of life. Intravenous (IV) ketamine has been previously used to treat various refractory pain conditions. We present a series of patients with refractory migraine treated with intravenous ketamine in the hospital setting. Based on retrospective chart review, we identified six patients with refractory migraine admitted from 2010 through 2014 for treatment with intravenous ketamine. Ketamine was administered using a standard protocol starting with a dose of 0.1 mg/kg/hr and increased by 0.1 mg/kg/hr every 3 to 4 h as tolerated until the target pain score of 3/10 was achieved and maintained for at least 8 h. Visual Analogue Scale (VAS) scores at time of hospital admission were obtained as well as average baseline VAS scores prior to ketamine infusion. A phone interview was conducted for follow-up of migraine response in the 3 to 6 months following ketamine infusion. The study sample had a median age of 36.5 years (range 29-54) and 83% were women. Pre-treatment pain scores ranged from 9 to 10. All patients achieved a target pain level of 3 or less for 8 h; the average ketamine infusion rate at target was 0.34 mg/kg/hour (range 0.12-0.42 mg/kg/hr). One patient reported a transient out-of-body hallucination following an increase in the infusion rate, which resolved after decreasing the rate. There were no other significant side effects. IV ketamine was safely administered in the hospital setting to patients with refractory chronic migraine. Treatment was associated with short term improvement in pain severity in 6 of 6 patients with refractory chronic migraine. Prospective placebo-controlled trials are needed to assess short term and long-term efficacy of IV ketamine in refractory chronic migraine.

  5. Administration of ketamine for unipolar and bipolar depression.

    PubMed

    Kraus, Christoph; Rabl, Ulrich; Vanicek, Thomas; Carlberg, Laura; Popovic, Ana; Spies, Marie; Bartova, Lucie; Gryglewski, Gregor; Papageorgiou, Konstantinos; Lanzenberger, Rupert; Willeit, Matthäus; Winkler, Dietmar; Rybakowski, Janusz K; Kasper, Siegfried

    2017-03-01

    Clinical trials demonstrated that ketamine exhibits rapid antidepressant efficacy when administered in subanaesthetic dosages. We reviewed currently available literature investigating efficacy, response rates and safety profile. Twelve studies investigating unipolar, seven on bipolar depression were included after search in medline, scopus and web of science. Randomized, placebo-controlled or open-label trials reported antidepressant response rates after 24 h on primary outcome measures at 61%. The average reduction of Hamilton Depression Rating Scale (HAM-D) was 10.9 points, Beck Depression Inventory (BDI) 15.7 points and Montgomery-Asberg Depression Rating Scale (MADRS) 20.8 points. Ketamine was always superior to placebo. Most common side effects were dizziness, blurred vision, restlessness, nausea/vomiting and headache, which were all reversible. Relapse rates ranged between 60% and 92%. To provide best practice-based information to patients, a consent-form for application and modification in local language is included. Ketamine constitutes a novel, rapid and efficacious treatment option for patients suffering from treatment resistant depression and exhibits rapid and significant anti-suicidal effects. New administration routes might serve as alternative to intravenous regimes for potential usage in outpatient settings. However, long-term side effects are not known and short duration of antidepressant response need ways to prolong ketamine's efficacy.

  6. NMDAR inhibition-independent antidepressant actions of ketamine metabolites

    PubMed Central

    Zanos, Panos; Moaddel, Ruin; Morris, Patrick J.; Georgiou, Polymnia; Fischell, Jonathan; Elmer, Greg I.; Alkondon, Manickavasagom; Yuan, Peixiong; Pribut, Heather J.; Singh, Nagendra S.; Dossou, Katina S.S.; Fang, Yuhong; Huang, Xi-Ping; Mayo, Cheryl L.; Wainer, Irving W.; Albuquerque, Edson X.; Thompson, Scott M.; Thomas, Craig J.; Zarate, Carlos A.; Gould, Todd D.

    2016-01-01

    Major depressive disorder afflicts ~16 percent of the world population at some point in their lives. Despite a number of available monoaminergic-based antidepressants, most patients require many weeks, if not months, to respond to these treatments, and many patients never attain sustained remission of their symptoms. The non-competitive glutamatergic N-methyl-D-aspartate receptor (NMDAR) antagonist, (R,S)-ketamine (ketamine), exerts rapid and sustained antidepressant effects following a single dose in depressed patients. Here we show that the metabolism of ketamine to (2S,6S;2R,6R)-hydroxynorketamine (HNK) is essential for its antidepressant effects, and that the (2R,6R)-HNK enantiomer exerts behavioural, electroencephalographic, electrophysiological and cellular antidepressant actions in vivo. Notably, we demonstrate that these antidepressant actions are NMDAR inhibition-independent but they involve early and sustained α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor activation. We also establish that (2R,6R)-HNK lacks ketamine-related side-effects. Our results indicate a novel mechanism underlying ketamine’s unique antidepressant properties, which involves the required activity of a distinct metabolite and is independent of NMDAR inhibition. These findings have relevance for the development of next generation, rapid-acting antidepressants. PMID:27144355

  7. Depression in chronic ketamine users: Sex differences and neural bases.

    PubMed

    Li, Chiang-Shan R; Zhang, Sheng; Hung, Chia-Chun; Chen, Chun-Ming; Duann, Jeng-Ren; Lin, Ching-Po; Lee, Tony Szu-Hsien

    2017-11-30

    Chronic ketamine use leads to cognitive and affective deficits including depression. Here, we examined sex differences and neural bases of depression in chronic ketamine users. Compared to non-drug using healthy controls (HC), ketamine-using females but not males showed increased depression score as assessed by the Center of Epidemiological Studies Depression Scale (CES-D). We evaluated resting state functional connectivity (rsFC) of the subgenual anterior cingulate cortex (sgACC), a prefrontal structure consistently implicated in the pathogenesis of depression. Compared to HC, ketamine users (KU) did not demonstrate significant changes in sgACC connectivities at a corrected threshold. However, in KU, a linear regression against CES-D score showed less sgACC connectivity to the orbitofrontal cortex (OFC) with increasing depression severity. Examined separately, male and female KU showed higher sgACC connectivity to bilateral superior temporal gyrus and dorsomedial prefrontal cortex (dmPFC), respectively, in correlation with depression. The linear correlation of sgACC-OFC and sgACC-dmPFC connectivity with depression was significantly different in slope between KU and HC. These findings highlighted changes in rsFC of the sgACC as associated with depression and sex differences in these changes in chronic ketamine users. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Cut-off proposal for the detection of ketamine in hair.

    PubMed

    Salomone, A; Gerace, E; Diana, P; Romeo, M; Malvaso, V; Di Corcia, D; Vincenti, M

    2015-03-01

    Ketamine is a powerful anesthetic drug used in both human and veterinary surgery, but it is also commonly misused because of its psychotropic properties. Since the abuse of this drug has been reported in many countries worldwide, its determination in hair samples is offered as a specialist test by hundreds of laboratories. However, unlike other common drugs of abuse, a cut-off level for ketamine in hair has not been fixed yet. Therefore, aim of this study is to propose a concentration value for ketamine in hair analysis, in order to discriminate between chronic and occasional use, and between active use and external contamination. After considering the chemical properties of this molecule, and the experimental data collected in our laboratory or reported in several other published studies, we propose a cut-off level of 0.5ng/mg, as indicative of repeated exposure to ketamine. Additionally, we suggest that the detection of the metabolite norketamine should be mandatory to prove active intake and exclude false positive result from external contamination. Thus, a reasonable cut-off value for norketamine could be fixed at 0.1ng/mg, while the minimal concentration ratio norketamine/ketamine may be positively established at 0.05. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. The effect of ketamine on the consolidation and extinction of contextual fear memory

    PubMed Central

    Thomas, Kerrie L; Hall, Jeremy

    2018-01-01

    Ketamine, principally an antagonist of N-methyl-ᴅ-aspartate receptors, induces schizophrenia-like symptoms in adult humans, warranting its use in the investigation of psychosis-related phenotypes in animal models. Genomic studies further implicate N-methyl-ᴅ-aspartate receptor-mediated processes in schizophrenia pathology, together with more broadly-defined synaptic plasticity and associative learning processes. Strong pathophysiological links have been demonstrated between fear learning and psychiatric disorders such as schizophrenia. To further investigate the impact of ketamine on associative fear learning, we studied the effects of pre- and post-training ketamine on the consolidation and extinction of contextual fear memory in rats. Administration of 25 mg/kg ketamine prior to fear conditioning did not affect consolidation when potentially confounding effects of state dependency were controlled for. Pre-training ketamine (25 mg/kg) impaired the extinction of the conditioned fear response, which was mirrored with the use of a lower dose (8 mg/kg). Post-training ketamine (25 mg/kg) had no effect on the consolidation or extinction of conditioned fear. These observations implicate processes relating to the extinction of contextual fear memory in the manifestation of ketamine-induced phenotypes, and are consistent with existing hypotheses surrounding abnormal associative learning in schizophrenia. PMID:29338491

  10. Morphological and behavioral responses of zebrafish after 24 h of ketamine embryonic exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Félix, Luís M., E-mail: lfelix@utad.pt

    Ketamine, one anesthetic used as an illicit drug, has been detected both in freshwater and marine ecosystems. However, knowledge of its impact on aquatic life is still limited. This study aimed to test its effects in zebrafish embryos by analyzing its time- and dose-dependent developmental toxicity and long-term behavioral changes. The 24 h-LC{sub 50} was calculated from percent survival using probit analysis. Based on the 24 h-LC{sub 50} (94.4 mg L{sup −1}), embryos (2 hour post-fertilization - hpf) were divided into four groups, including control, and exposed for 24 h to ketamine concentrations of 50, 70 or 90 mg L{supmore » −1}. Developmental parameters were evaluated on the course of the experimental period, and anatomical abnormalities and locomotor deficits were analyzed at 144 hpf. Although the portion of ketamine transferred into the embryo was higher in the lowest exposed group (about 0.056 ± 0.020 pmol per embryo), the results showed that endpoints such as increased mortality, edema, heart rate alterations, malformation and abnormal growth rates were significantly affected. At 144 hpf, the developmental abnormalities included thoracic and trunk abnormalities in the groups exposed to 70 and 90 mg L{sup −1}. Defects in cartilage (alcian blue) and bone (calcein) elements also corroborated the craniofacial anomalies observed. A significant up-regulation of the development-related gene nog3 was detected by qRT-PCR at 8 hpf. Early exposure to ketamine also resulted in long-term behavioral changes, such as an increase in thigmotaxis and disruption of avoidance behavior at 144 hpf. Altogether, this study provides new evidence on the ketamine teratogenic potential, indicating a possible pharmacological impact of ketamine in aquatic environments. - Highlights: • 24 h exposure to ketamine increases mortality. • Morphological changes were observed after exposure. • Exposure to ketamine leads to severe craniofacial anomalies. • Developmental gene

  11. Ketamine as an adjuvant to opioids for cancer pain.

    PubMed

    Bell, Rae F; Eccleston, Christopher; Kalso, Eija A

    2012-11-14

    This is an update of the original review published in Issue 1, 2003. Ketamine is a commonly used anaesthetic agent, and in subanaesthetic doses is also given as an adjuvant to opioids for the treatment of cancer pain, particularly when opioids alone prove to be ineffective. Ketamine is known to have psychotomimetic (including hallucinogenic), urological and hepatic adverse effects. To determine the effectiveness and adverse effects of ketamine as an adjuvant to opioids in the treatment of cancer pain. Studies were originally identified from MEDLINE (1966 to 2002), EMBASE (1980 to 2002), CancerLit (1966 to 2002), The Cochrane Library (Issue 1, 2001); by handsearching reference lists from review articles, trials, and chapters from standard textbooks on pain and palliative care. The manufacturer of ketamine (Pfizer Parke-Davis) provided search results from their in-house database, PARDLARS.An improved and updated search of the following was performed in May 2012: CENTRAL, MEDLINE & OVID MEDLINE R, EMBASE. Randomized controlled trials (RCTs) of adult patients with cancer and pain being treated with an opioid, and receiving either ketamine (any dose and any route of administration) or placebo or an active control. Studies having a group size of at least 10 participants who completed the trial. Two independent review authors identified four RCTs for possible inclusion in the review, and 32 case studies/case series reports. Quality and validity assessment was performed by three independent review authors, and two RCTs were excluded because of inappropriate study design. Patient-reported pain intensity and pain relief was assessed using visual analogue scales (VAS), verbal rating scales or other validated scales, and adverse effects data were collated. For the update three RCTs were identified for possible inclusion in the review. Three new studies were identified by the updated search. All three were excluded from the review. Two studies were eligible for inclusion in the

  12. The correlation between ketamine and posttraumatic stress disorder in burned service members.

    PubMed

    McGhee, Laura L; Maani, Christopher V; Garza, Thomas H; Gaylord, Kathryn M; Black, Ian H

    2008-02-01

    Predisposing factors for posttraumatic stress disorder (PTSD) include experiencing a traumatic event, threat of injury or death, and untreated pain. Ketamine, an anesthetic, is used at low doses as part of a multimodal anesthetic regimen. However, since ketamine is associated with psychosomatic effects, there is a concern that ketamine may increase the risk of developing PTSD. This study investigated the prevalence of PTSD in Operation Iraqi Freedom/Operation Enduring Freedom (OIF/OEF) service members who were treated for burns in a military treatment center. The PTSD Checklist-Military (PCL-M) is a 17-question screening tool for PTSD used by the military. A score of 44 or higher is a positive screen for PTSD. The charts of all OIF/OEF soldiers with burns who completed the PCL-M screening tool (2002-2007) were reviewed to determine the number of surgeries received, the anesthetic regime used, including amounts given, the total body surface area burned, and injury severity score. Morphine equivalent units were calculated using standard dosage conversion factors. The prevalence of PTSD in patients receiving ketamine during their operation(s) was compared with patients not receiving ketamine. Of the 25,000 soldiers injured in OIF/OEF, United States Army Institute of Surgical Research received 603 burned casualties, of which 241 completed the PCL-M. Of those, 147 soldiers underwent at least one operation. Among 119 patients who received ketamine during surgery and 28 who did not; the prevalence of PTSD was 27% (32 of 119) versus 46% (13 of 28), respectively (p = 0.044). Contrary to expectations, patients receiving perioperative ketamine had a lower prevalence of PTSD than soldiers receiving no ketamine during their surgeries despite having larger burns, higher injury severity score, undergoing more operations, and spending more time in the ICU.

  13. Physiological and biochemical variables in captive tigers (Panthera tigris) immobilised with dexmedetomidine and ketamine or dexmedetomidine, midazolam and ketamine.

    PubMed

    Clark-Price, S C; Lascola, K M; Schaeffer, D J

    2015-12-05

    Physiological and biochemical variables in captive tigers (Panthera tigris) immobilised with dexmedetomidine and ketamine or dexmedetomidine, midazolam and ketamine were evaluated. Thirty tigers received either dexmedetomidine (0.025 mg/kg) and ketamine (3 mg/kg) (group DK) or dexmedetomidine (0.0125 mg/kg), midazolam (0.1 mg/kg) and ketamine (3 mg/kg) (group DMK). Heart rate, SPO2 and blood pressure were measured at five-minute intervals. Arterial pH, PO2, PCO2, glucose, K+ and arterial and venous lactate were measured at 15 and 45 minutes after immobilisation. A generalised linear mixed model was used for statistical comparison. There was no difference within or between groups at any time point for any measured variable. Measured PO2 was 73.2±17.5 mm Hg and SPO2 was 88.9±10.8 per cent. Systolic, mean and diastolic blood pressures were 170.5±48.4, 138.9±41.8 and 121.8±37.2 mm Hg, respectively. Venous lactate was higher than arterial lactate within groups at each time point. Seizure-like behaviour was observed in 25 per cent of tigers in group DK but not in group DMK. The addition of midazolam into a protocol for immobilisation of tigers did not result in a difference in any of the measured variables but may have prevented the development of seizure-like behaviour. British Veterinary Association.

  14. Ketamine rapidly relieves acute suicidal ideation in cancer patients: a randomized controlled clinical trial.

    PubMed

    Fan, Wei; Yang, HaiKou; Sun, Yong; Zhang, Jun; Li, Guangming; Zheng, Ying; Liu, Yi

    2017-01-10

    This study was designed to examine the rapid antidepressant effects of single dose ketamine on suicidal ideation and overall depression level in patients with newly-diagnosed cancer. Forty-two patients were enrolled into the controlled trial and randomized into two groups: ketamine group and midazolam group. Patients from the two groups received a sub-anesthetic dose of racemic ketamine hydrochloride or midazolam. Suicidal ideation score, measured with the Beck Scale and suicidal part of the Montgomery-Asberg Depression Rating Scale, significantly decreased on day 1 and day 3 in ketamine-treated patients when compared to those treated with midazolam. Consistently, overall depression levels measured using the Montgomery-Asberg Depression Rating Scale indicated a significant relief of overall depression on day 1 in ketamine-treated patients. Collectively, this study provides novel information about the rapid antidepressant effect of ketamine on acute depression and suicidal ideation in newly-diagnosed cancer patients.

  15. Psychiatric side effects of ketamine in hospitalized medical patients administered subanesthetic doses for pain control.

    PubMed

    Rasmussen, Keith G

    2014-08-01

    To assess the psychiatric side effects of ketamine when administered in subanesthetic doses to hospitalized patients. It is hypothesized that such effects occur frequently. In this retrospective study, the medical records of 50 patients hospitalized on medical and surgical units at our facility who had continuous intravenous infusions of ketamine for pain or mild sedation were reviewed. Patient progress in the days following the start of ketamine infusion was reviewed and response to ketamine was noted. Twenty-two percent of the patients were noted to have some type of psychiatric reaction to ketamine, including agitation, confusion, and hallucinations. These reactions were relatively short lived, namely, occurring during or shortly after the infusions. No association was found between patient response to ketamine and gender, age, or infusion rate. Awareness of the psychiatric side effects of ketamine is an important consideration for clinicians administering this medication either for pain control or for depressive illness.

  16. Antinociceptive effects, metabolism and disposition of ketamine in ponies under target-controlled drug infusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knobloch, M.; Portier, C.J.; Levionnois, O.L.

    2006-11-01

    Ketamine is widely used as an anesthetic in a variety of drug combinations in human and veterinary medicine. Recently, it gained new interest for use in long-term pain therapy administered in sub-anesthetic doses in humans and animals. The purpose of this study was to develop a physiologically based pharmacokinetic (PBPk) model for ketamine in ponies and to investigate the effect of low-dose ketamine infusion on the amplitude and the duration of the nociceptive withdrawal reflex (NWR). A target-controlled infusion (TCI) of ketamine with a target plasma level of 1 {mu}g/ml S-ketamine over 120 min under isoflurane anesthesia was performed inmore » Shetland ponies. A quantitative electromyographic assessment of the NWR was done before, during and after the TCI. Plasma levels of R-/S-ketamine and R-/S-norketamine were determined by enantioselective capillary electrophoresis. These data and two additional data sets from bolus studies were used to build a PBPk model for ketamine in ponies. The peak-to-peak amplitude and the duration of the NWR decreased significantly during TCI and returned slowly toward baseline values after the end of TCI. The PBPk model provides reliable prediction of plasma and tissue levels of R- and S-ketamine and R- and S-norketamine. Furthermore, biotransformation of ketamine takes place in the liver and in the lung via first-pass metabolism. Plasma concentrations of S-norketamine were higher compared to R-norketamine during TCI at all time points. Analysis of the data suggested identical biotransformation rates from the parent compounds to the principle metabolites (R- and S-norketamine) but different downstream metabolism to further metabolites. The PBPk model can provide predictions of R- and S-ketamine and norketamine concentrations in other clinical settings (e.g. horses)« less

  17. Interactions between recreational drugs and antiretroviral agents.

    PubMed

    Antoniou, Tony; Tseng, Alice Lin-In

    2002-10-01

    To summarize existing data regarding potential interactions between recreational drugs and drugs commonly used in the management of HIV-positive patients. Information was obtained via a MEDLINE search (1966-August 2002) using the MeSH headings human immunodeficiency virus, drug interactions, cytochrome P450, medication names commonly prescribed for the management of HIV and related opportunistic infections, and names of commonly used recreational drugs. Abstracts of national and international conferences, review articles, textbooks, and references of all articles were also reviewed. Literature on pharmacokinetic interactions was considered for inclusion. Pertinent information was selected and summarized for discussion. In the absence of specific data, prediction of potential clinically significant interactions was based on pharmacokinetic and pharmacodynamic properties. All protease inhibitors (PIs) and nonnucleoside reverse transcriptase inhibitors are substrates and potent inhibitors or inducers of the cytochrome P450 system. Many classes of recreational drugs, including benzodiazepines, amphetamines, and opioids, are also metabolized by the liver and can potentially interact with antiretrovirals. Controlled interaction studies are often not available, but clinically significant interactions have been observed in a number of case reports. Overdoses secondary to interactions between the "rave" drugs methylenedioxymethamphetamine (MDMA) or gamma-hydroxybutyrate (GHB) and PIs have been reported. PIs, particularly ritonavir, may also inhibit metabolism of amphetamines, ketamine, lysergic acid diethylmide (LSD), and phencyclidine (PCP). Case series and pharmacokinetic studies suggest that nevirapine and efavirenz induce methadone metabolism, which may lead to symptoms of opiate withdrawal. A similar interaction may exist between methadone and the PIs ritonavir and nelfinavir, although the data are less consistent. Opiate metabolism can be inhibited or induced by

  18. Intravenous Ketamine Infusions for Neuropathic Pain Management: A Promising Therapy in Need of Optimization.

    PubMed

    Maher, Dermot P; Chen, Lucy; Mao, Jianren

    2017-02-01

    Intravenous ketamine infusions have been used extensively to treat often-intractable neuropathic pain conditions. Because there are many widely divergent ketamine infusion protocols described in the literature, the variation in these protocols presents a challenge for direct comparison of one protocol with another and in discerning an optimal protocol. Careful examination of the published literature suggests that ketamine infusions can be useful to treat neuropathic pain and that certain characteristics of ketamine infusions may be associated with better clinical outcomes. Increased duration of relief from neuropathic pain is associated with (1) higher total infused doses of ketamine; (2) prolonged infusion durations, although the rate of infusion does not appear to be a factor; and (3) coadministration of adjunct medications such as midazolam and/or clonidine that mitigate some of the unpleasant psychomimetic side effects. However, there are few studies designed to optimize ketamine infusion protocols by defining what an effective infusion protocol entails with regard to a respective neuropathic pain condition. Therefore, despite common clinical practice, the current state of the literature leaves the use of ketamine infusions without meaningful guidance from high-quality comparative evidence. The objectives of this topical review are to (1) analyze the available clinical evidence related to ketamine infusion protocols and (2) call for clinical studies to identify optimal ketamine infusion protocols tailored for individual neuropathic pain conditions. The Oxford Center for Evidence-Based Medicine classification for levels of evidence was used to stratify the grades of clinical recommendation for each infusion variable studied.

  19. Ketamine coadministration attenuates morphine tolerance and leads to increased brain concentrations of both drugs in the rat

    PubMed Central

    Lilius, T O; Jokinen, V; Neuvonen, M S; Niemi, M; Kalso, E A; Rauhala, P V

    2015-01-01

    Background and Purpose The effects of ketamine in attenuating morphine tolerance have been suggested to result from a pharmacodynamic interaction. We studied whether ketamine might increase brain morphine concentrations in acute coadministration, in morphine tolerance and morphine withdrawal. Experimental Approach Morphine minipumps (6 mg·day–1) induced tolerance during 5 days in Sprague–Dawley rats, after which s.c. ketamine (10 mg·kg–1) was administered. Tail flick, hot plate and rotarod tests were used for behavioural testing. Serum levels and whole tissue brain and liver concentrations of morphine, morphine-3-glucuronide, ketamine and norketamine were measured using HPLC-tandem mass spectrometry. Key Results In morphine-naïve rats, ketamine caused no antinociception whereas in morphine-tolerant rats there was significant antinociception (57% maximum possible effect in the tail flick test 90 min after administration) lasting up to 150 min. In the brain of morphine-tolerant ketamine-treated rats, the morphine, ketamine and norketamine concentrations were 2.1-, 1.4- and 3.4-fold, respectively, compared with the rats treated with morphine or ketamine only. In the liver of morphine-tolerant ketamine-treated rats, ketamine concentration was sixfold compared with morphine-naïve rats. After a 2 day morphine withdrawal period, smaller but parallel concentration changes were observed. In acute coadministration, ketamine increased the brain morphine concentration by 20%, but no increase in ketamine concentrations or increased antinociception was observed. Conclusions and Implications The ability of ketamine to induce antinociception in rats made tolerant to morphine may also be due to increased brain concentrations of morphine, ketamine and norketamine. The relevance of these findings needs to be assessed in humans. PMID:25297798

  20. Short- and long-term antidepressant effects of ketamine in a rat chronic unpredictable stress model.

    PubMed

    Jiang, Yinghong; Wang, Yiqiang; Sun, Xiaoran; Lian, Bo; Sun, Hongwei; Wang, Gang; Du, Zhongde; Li, Qi; Sun, Lin

    2017-08-01

    This research was aimed to evaluate the behaviors of short- or long-term antidepressant effects of ketamine in rats exposed to chronic unpredictable stress (CUS). Ketamine, a glutamate noncompetitive NMDA receptor antagonist, regulates excitatory amino acid functions, such as anxiety disorders and major depression, and plays an important role in synaptic plasticity and learning and memory. After 42 days of CUS model, male rats received either a single injection of ketamine (10 mg/kg; day 43) or 15 daily injections (days 43-75). The influence of ketamine on behavioral reactivity was assessed 24 hr (short-term) or 7 weeks after ketamine treatment (long-term). Behavioral tests used to assess the effects of these treatments included the sucrose preference (SP), open field (OF), elevated plus maze (EPM), forced swimming (FS), and water maze (WM) to detect anxiety-like behavior (OF and EPM), forced swimming (FS), and water maze (WM). Results: Short-term ketamine administration resulted in increases of body weight gain, higher sensitivity to sucrose, augmented locomotor activity in the OF, more entries into the open arms of the EPM, along increased activity in the FS test; all responses indicative of reductions in depression/despair in anxiety-eliciting situations. No significant differences in these behaviors were obtained under conditions of long-term ketamine administration ( p  > .05). The CUS + Ketamine group showed significantly increased activity as compared with the CUS + Vehicle group for analysis of the long-term effects of ketamine (* p  < .05). Nor were significant differences obtained in learning and memory performance in rats receiving ketamine ( p  > .05). Taken together these findings demonstrate that a short-term administration of ketamine induced rapid antidepressant-like effects in adult male rats exposed to CUS conditions, effects that were not observed in response to the long-term treatment regime.

  1. Estimation of the contribution of norketamine to ketamine-induced acute pain relief and neurocognitive impairment in healthy volunteers.

    PubMed

    Olofsen, Erik; Noppers, Ingeborg; Niesters, Marieke; Kharasch, Evan; Aarts, Leon; Sarton, Elise; Dahan, Albert

    2012-08-01

    The N-methyl-D-aspartate receptor antagonist ketamine is metabolized in the liver into its active metabolite norketamine. No human data are available on the relative contribution of norketamine to ketamine-induced analgesia and side effects. One approach to assess the ketamine and norketamine contributions is by measuring the ketamine effect at varying ketamine and norketamine plasma concentrations using the CYP450 inducer rifampicin. In 12 healthy male volunteers the effect of rifampicin versus placebo pretreatment on S-ketamine-induced analgesia and cognition was quantified; the S-ketamine dosage was 20 mg/h for 2 h. The relative ketamine and norketamine contribution to effect was estimated using a linear additive population pharmacokinetic-pharmacodynamic model. S-ketamine produced significant analgesia, psychotropic effects (drug high), and cognitive impairment (including memory impairment and reduced psychomotor speed, reaction time, and cognitive flexibility). Modeling revealed a negative contribution of S-norketamine to S-ketamine- induced analgesia and absence of contribution to cognitive impairment. At ketamine and norketamine effect concentrations of 100 ng/ml and 50 ng/ml, respectively, the ketamine contribution to analgesia is -3.8 cm (visual analog pain score) versus a contribution of norketamine of +1.5 cm, causing an overall effect of -2.3 cm. The blood-effect site equilibration half-life ranged from 0 (cognitive flexibility) to 11.8 (pain intensity) min and was 6.1 min averaged across all endpoints. This first observation that norketamine produces effects in the opposite direction of ketamine requires additional proof. It can explain the observation of ketamine-related excitatory phenomena (such as hyperalgesia and allodynia) upon the termination of ketamine infusions.

  2. Ketamine-based anesthesia improves electroconvulsive therapy outcomes: a randomized-controlled study.

    PubMed

    Gamble, Jonathan J; Bi, Henry; Bowen, Rudy; Weisgerber, Grahme; Sanjanwala, Rohan; Prasad, Renuka; Balbuena, Lloyd

    2018-06-01

    Major depressive disorder (MDD) is a common and debilitating condition that can be challenging to treat. Electroconvulsive therapy (ECT) is currently the therapeutic gold standard for treatment-resistant MDD. We tested our hypothesis that ketamine-based anesthesia for ECT results in superior improvement in treatment-resistant MDD outcomes compared with propofol-based anesthesia. Patients with treatment-resistant MDD were enrolled in a randomized clinical trial with assignment to ketamine- or propofol-based anesthesia arms. Using a modified intention-to-treat analysis, we compared the median number of ECT treatments required to achieve a 50% reduction (primary outcome) and a score ≤ 10 (secondary outcome) on the Montgomery-Asberg depression rating scale (MADRS) between anesthesia groups. The study was terminated as significant results were found after the first planned interim analysis with 12 patients in each of the ketamine (intervention) and propofol (control) groups. All ketamine patients achieved at least a 50% MADRS reduction after a median of two ECT treatments whereas ten propofol patients (83%) achieved the same outcome after a median of four ECT treatments. All ketamine patients and seven propofol patients (58%) achieved MDD remission (MADRS ≤ 10). Log rank tests showed that both time-to-50% reduction and remission differed significantly between groups. Adverse events and recovery time were similar between groups. In this early-terminated small-sized study, ketamine-based anesthesia compared with propofol-based anesthesia provided response and remission after fewer ECT sessions. www.clinicaltrials.gov (NCT01935115). Registered 4 September 2013.

  3. Effect of Etomidate Versus Combination of Propofol-Ketamine and Thiopental-Ketamine on Hemodynamic Response to Laryngoscopy and Intubation: A Randomized Double Blind Clinical Trial.

    PubMed

    Gholipour Baradari, Afshin; Firouzian, Abolfazl; Zamani Kiasari, Alieh; Aarabi, Mohsen; Emadi, Seyed Abdollah; Davanlou, Ali; Motamed, Nima; Yousefi Abdolmaleki, Ensieh

    2016-02-01

    Laryngoscopy and intubation frequently used for airway management during general anesthesia, is frequently associated with undesirable hemodynamic disturbances. The aim of this study was to compare the effects of etomidate, combination of propofol-ketamine and thiopental-ketamine as induction agents on hemodynamic response to laryngoscopy and intubation. In a double blind, randomized clinical trial a total of 120 adult patients of both sexes, aged 18 - 45 years, scheduled for elective surgery under general anesthesia were randomly assigned into three equally sized groups. Patients in group A received etomidate (0.3 mg/kg) plus normal saline as placebo. Patients in group B and C received propofol (1.5 mg/kg) plus ketamine (0.5 mg/kg) and thiopental sodium (3 mg/kg) plus ketamine (0.5 mg/kg), respectively for anesthesia induction. Before laryngoscopy and tracheal intubation, immediately after, and also one and three minutes after the procedures, hemodynamic values (SBP, DBP, MAP and HR) were measured. A repeated measurement ANOVA showed significant changes in mean SBP and DBP between the time points (P < 0.05). In addition, the main effect of MAP and HR were statistically significant during the course of study (P < 0.05). Furthermore, after induction of anesthesia, the three study groups had significantly different SBP, DBP and MAP changes overtime (P < 0.05). However, HR changes over time were not statistically significant (P > 0.05). Combination of propofol-ketamine had superior hemodynamic stability compared to other induction agents. Combination of propofol-ketamine may be recommended as an effective and safe induction agent for attenuating hemodynamic responses to laryngoscopy and intubation with better hemodynamic stability. Although, further well-designed randomized clinical trials to confirm the safety and efficacy of this combination, especially in critically ill patients or patients with cardiovascular disease, are warranted.

  4. KETAMINE ABREACTION : A NEW APPROACH TO NARCOANALYSIS

    PubMed Central

    Golechha, G.R.; Sethi, I.C.; Misra, S.L.; Jayaprakash, N.P.

    1986-01-01

    SUMMARY Ketamine is a parenterally administered non barbiturate anaesthetic agent, in use for more than a decade. It is a safer than Na Pentothal. Administered intramuscularly, in dose of 6 to 15 mgm/Kg body wt. it produces dissociative anaesthesia. But, in smaller sub anaesthetic doses it may act as an abreactant. We report in this study the abreaction effect of Ketamine in dose of .5 to 1.5 mgm/kg body wt. given intramuscularly in 30 selected psychiatric cases requiring narcoanalysis for diagnostic or therapeutic purpose. The results are compared with another ten cases subjected to pentothal interview and five cases subjected to narcoanalysis with intravenous Na Amytal and methidrine. Our findings suggest that Ketamine has property of an efficacious abreactant in doses of 1 to 1.5 mgm/kg body wt. administered intramuscularly and can successfully be used for narcoanalysis in properly selected cases as a good substitute for intravenous pentothal or sodium amytal with methidrine. The relative cardio respiratory safety and ease of administration are its two added advantages. PMID:21927193

  5. Anhedonia as a clinical correlate of suicidal thoughts in clinical ketamine trials.

    PubMed

    Ballard, Elizabeth D; Wills, Kathleen; Lally, Níall; Richards, Erica M; Luckenbaugh, David A; Walls, Tessa; Ameli, Rezvan; Niciu, Mark J; Brutsche, Nancy E; Park, Lawrence; Zarate, Carlos A

    2017-08-15

    Identifying clinical correlates associated with reduced suicidal ideation may highlight new avenues for the treatment of suicidal thoughts. Anhedonia occurs across psychiatric diagnoses and has been associated with specific neural circuits in response to rapid-acting treatments, such as ketamine. This analysis sought to evaluate whether reductions in suicidal ideation after ketamine administration were related to reduced levels of anhedonia, independent of depressive symptoms. This post-hoc analysis included treatment-resistant patients with either major depressive disorder (MDD) or bipolar disorder (BD) from several clinical trials of ketamine. Anhedonia was assessed using a subscale of the Beck Depression Inventory (BDI) and the Snaith-Hamilton Pleasure Scale (SHAPS). The outcome of interest was suicidal ideation, as measured by a subscale of the Scale for Suicide Ideation (SSI5), one day post-ketamine administration. Anhedonia, as measured by the SHAPS, was associated with suicidal thoughts independent of depressive symptoms both before and after ketamine administration. One day post-ketamine administration, improvements on the SHAPS accounted for an additional 13% of the variance in suicidal thought reduction, beyond the influence of depressive symptoms. The BDI anhedonia subscale was not significantly associated with suicidal thoughts after adjusting for depressive symptoms. Data were limited to patients experiencing a major depressive episode and may not be generalizable to patients experiencing an active suicidal crisis. Suicidal thoughts may be related to symptoms of anhedonia independent of other depressive symptoms. These results have implications for the potential mechanisms of action of ketamine on suicidal thoughts. Published by Elsevier B.V.

  6. Chronic Ketamine Exposure Causes White Matter Microstructural Abnormalities in Adolescent Cynomolgus Monkeys.

    PubMed

    Li, Qi; Shi, Lin; Lu, Gang; Yu, Hong-Luan; Yeung, Fu-Ki; Wong, Nai-Kei; Sun, Lin; Liu, Kai; Yew, David; Pan, Fang; Wang, De-Feng; Sham, Pak C

    2017-01-01

    Acute and repeated exposures to ketamine mimic aspects of positive, negative, and cognitive symptoms of schizophrenia in humans. Recent studies by our group and others have shown that chronicity of ketamine use may be a key element for establishing a more valid model of cognitive symptoms of schizophrenia. However, current understanding on the long-term consequences of ketamine exposure on brain circuits has remained incomplete, particularly with regard to microstructural changes of white matter tracts that underpin the neuropathology of schizophrenia. Thus, the present study aimed to expand on previous investigations by examining causal effects of repeated ketamine exposure on white matter integrity in a non-human primate model. Ketamine or saline (control) was administered intravenously for 3 months to male adolescent cynomolgus monkeys ( n = 5/group). Diffusion tensor imaging (DTI) experiments were performed and tract-based spatial statistics (TBSS) was used for data analysis. Fractional anisotropy (FA) was quantified across the whole brain. Profoundly reduced FA on the right side of sagittal striatum, posterior thalamic radiation (PTR), retrolenticular limb of the internal capsule (RLIC) and superior longitudinal fasciculus (SLF), and on the left side of PTR, middle temporal gyrus and inferior frontal gyrus were observed in the ketamine group compared to controls. Diminished white matter integrity found in either fronto-thalamo-temporal or striato-thalamic connections with tracts including the SLF, PTR, and RLIC lends support to similar findings from DTI studies on schizophrenia in humans. This study suggests that chronic ketamine exposure is a useful pharmacological paradigm that might provide translational insights into the pathophysiology and treatment of schizophrenia.

  7. Immobilization of swift foxes with ketamine hydrochloride-xylazine hydrochloride

    USGS Publications Warehouse

    Telesco, R.L.; Sovada, Marsha A.

    2002-01-01

    There is an increasing need to develop field immobilization techniques that allow researchers to handle safely swift foxes (Vulpes velox) with minimal risk of stress or injury. We immobilized captive swift foxes to determine the safety and effectiveness of ketamine hydrochloride and xylazine hydrochloride at different dosages. We attempted to determine appropriate dosages to immobilize swift foxes for an adequate field-handling period based on three anesthesia intervals (induction period, immobilization period, and recovery period) and physiologic responses (rectal temperature, respiration rate, and heart rate). Between October 1998–July 1999, we conducted four trials, evaluating three different dosage ratios of ketamine and xylazine (2.27:1.2, 5.68:1.2, and 11.4:1.2 mg/kg ketamine:mg/kg xylazine, respectively), followed by a fourth trial with a higher dosage at the median ratio (11.4 mg/kg ketamine:2.4 mg/kg xylazine). We found little difference in induction and recovery periods among trials 1–3, but immobilization time increased with increasing dosage (P<0.08). Both the immobilization period and recovery period increased in trial 4 compared with trials 1–3 (P≤0.03). There was a high variation in responses of individual foxes across trials, making it difficult to identify an appropriate dosage for field handling. Heart rate and respiration rates were depressed but all physiologic measures remained within normal parameters established for domestic canids. We recommend a dosage ratio of 10 mg/kg ketamine to 1 mg/kg xylazine to immobilize swift foxes for field handling.

  8. Three-phase Bone Scintigraphy Can Predict the Analgesic Efficacy of Ketamine Therapy in CRPS.

    PubMed

    Sorel, Marc; Beatrix, Jacques-Christian; Locko, Blanche; Armessen, Catherine; Domec, Anne-Marie; Lecompte, Otilia; Boucheneb, Sofiane; Harache, Benoit; Robert, Jacques; Lefaucheur, Jean-Pascal

    2018-03-13

    The efficacy of ketamine in relieving complex regional pain syndrome (CRPS) lacks predictive factors. The value of three-phase bone scintigraphy (TPBS) was assessed or this purpose. TPBS was performed in 105 patients with unilateral, focal CRPS of type 1 before 5 days of ketamine infusions. Tracer uptake was measured in the region of interest concerned by CRPS and the contralateral homologous region. For the three scintigraphic phases (vascular, tissular, and bone phases), an asymmetry ratio of fixation was calculated between the affected and the unaffected sides (VPr, TPr, and BPr). Ketamine efficacy was assessed on pain intensity scores. Ketamine-induced pain relief did not correlate with VPr, TPr, and BPr, but with the ratios of these ratios: BPr/TPr (r=0.32, P=0.009), BPr/VPr (r=0.34, P=0.005), and TPr/VPr (r=0.23, P=0.02). The optimum cut-off value for predicting the response to ketamine therapy was >1.125 for BPr/TPr, >1.075 for BPr/VPr, and >0.935 for TPr/VPr. The combination of increased values of BPr/TPr, BPr/VPr, and TPr/VPr was extremely significantly associated with ketamine therapy outcome. The relative hyperfixation of the radioactive tracer in the limb region concerned by CRPS in phases 2 and 3 versus phase 1 of TPBS correlated positively to the analgesic efficacy of ketamine. This study shows for the first time the potential predictive value of TPBS regarding ketamine therapy outcome. In addition, these results suggest that the analgesic action of ketamine is not restricted to "central" mechanisms, but may also involve "peripheral" mechanisms related to tissue inflammation and bone remodeling.

  9. Apoptosis-related genes induced in response to ketamine during early life stages of zebrafish.

    PubMed

    Félix, Luís M; Serafim, Cindy; Valentim, Ana M; Antunes, Luís M; Matos, Manuela; Coimbra, Ana M

    2017-09-05

    Increasing evidence supports that ketamine, a widely used anaesthetic, potentiates apoptosis during development through the mitochondrial pathway of apoptosis. Defects in the apoptotic machinery can cause or contribute to the developmental abnormalities previously described in ketamine-exposed zebrafish. The involvement of the apoptotic machinery in ketamine-induced teratogenicity was addressed by assessing the apoptotic signals at 8 and 24 hpf following 20min exposure to ketamine at three stages of early zebrafish embryo development (256 cell, 50% epiboly and 1-4 somites stages). Exposure at the 256-cell stage to ketamine induced an up-regulation of casp8 and pcna at 8 hpf while changes in pcna at the mRNA level were observed at 24 hpf. After the 50% epiboly stage exposure, the mRNA levels of casp9 were increased at 8 and 24 hpf while aifm1 was affected at 24 hpf. Both tp53 and pcna expressions were increased at 8 hpf. After exposure during the 1-4 somites stage, no meaningful changes on transcript levels were observed. The distribution of apoptotic cells and the caspase-like enzymatic activities of caspase-3 and -9 were not affected by ketamine exposure. It is proposed that ketamine exposure at the 256-cell stage induced a cooperative mechanism between proliferation and cellular death while following exposure at the 50% epiboly, a p53-dependent and -independent caspase activation may occur. Finally, at the 1-4 somites stage, the defence mechanisms are already fully in place to protect against ketamine-insult. Thus, ketamine teratogenicity seems to be dependent on the functional mechanisms present in each developmental stage. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Somnophilia and Sexual Abuse through the Administration of GHB and GBL.

    PubMed

    Pettigrew, Mark

    2018-05-21

    Somnophilia, the desire to have sex with an unconscious, sleeping, or comatose person who is unable to respond, is a sexual paraphilia that is seldom reported. The underlying desire is often overshadowed by the act of sexual violation and when using GHB or GBL to induce unconsciousness, as in the case presented here, the victim might not even be able to recall, for certain, that they have been sexually violated. A case study is offered of a somnophile who adulterated drinks to render young men unconscious, so he could rape them in that state, before progressing to administering drugs anally on the pretext of applying lubrication to the anus to facilitate sexual intercourse. The offender's fetishistic compulsion to have sex with unconscious men propelled him to experiment with the means by which he surreptitiously administered drugs to his victims in order to deepen their comatose state. © 2018 American Academy of Forensic Sciences.

  11. Ketamine induces toxicity in human neurons differentiated from embryonic stem cells via mitochondrial apoptosis pathway

    PubMed Central

    Bosnjak, Zeljko J.; Yan, Yasheng; Canfield, Scott; Muravyeva, Maria Y.; Kikuchi, Chika; Wells, Clive; Corbett, John; Bai, Xiaowen

    2013-01-01

    Ketamine is widely used for anesthesia in pediatric patients. Growing evidence indicates that ketamine causes neurotoxicity in a variety of developing animal models. Our understanding of anesthesia neurotoxicity in humans is currently limited by difficulties in obtaining neurons and performing developmental toxicity studies in fetal and pediatric populations. It may be possible to overcome these challenges by obtaining neurons from human embryonic stem cells (hESCs) in vitro. hESCs are able to replicate indefinitely and differentiate into every cell type. In this study, we investigated the toxic effect of ketamine on neurons differentiated from hESCs. Two-week-old neurons were treated with different doses and durations of ketamine with or without the reactive oxygen species (ROS) scavenger, Trolox. Cell viability, ultrastructure, mitochondrial membrane potential (ΔΨm), cytochrome c distribution within cells, apoptosis, and ROS production were evaluated. Here we show that ketamine induced ultrastructural abnormalities and dose- and time-dependently caused cell death. In addition, ketamine decreased ΔΨm and increased cytochrome c release from mitochondria. Ketamine also increased ROS production and induced differential expression of oxidative stress-related genes. Specifically, abnormal ultrastructural and ΔΨm changes occurred earlier than cell death in the ketamine-induced toxicity process. Furthermore, Trolox significantly decreased ROS generation and attenuated cell death caused by ketamine in a dose-dependent manner. In conclusion, this study illustrates that ketamine time- and dose-dependently induces human neurotoxicity via ROS-mediated mitochondrial apoptosis pathway and that these side effects can be prevented by the antioxidant agent Trolox. Thus, hESC-derived neurons might provide a promising tool for studying anesthetic-induced developmental neurotoxicity and prevention strategies. PMID:22873495

  12. Ketamine induces brain-derived neurotrophic factor expression via phosphorylation of histone deacetylase 5 in rats.

    PubMed

    Choi, Miyeon; Lee, Seung Hoon; Park, Min Hyeop; Kim, Yong-Seok; Son, Hyeon

    2017-08-05

    Ketamine shows promise as a therapeutic agent for the treatment of depression. The increased expression of brain-derived neurotrophic factor (BDNF) has been associated with the antidepressant-like effects of ketamine, but the mechanism of BDNF induction is not well understood. In the current study, we demonstrate that the treatment of rats with ketamine results in the dose-dependent rapid upregulation of Bdnf promoter IV activity and expression of Bdnf exon IV mRNAs in rat hippocampal neurons. Transfection of histone deacetylase 5 (HDAC5) into rat hippocampal neurons similarly induces Bdnf mRNA expression in response to ketamine, whereas transfection of a HDAC5 phosphorylation-defective mutant (Ser259 and Ser498 replaced by Ala259 and Ala498), results in the suppression of ketamine-mediated BDNF promoter IV transcriptional activity. Viral-mediated hippocampal knockdown of HDAC5 induces Bdnf mRNA and protein expression, and blocks the enhancing effects of ketamine on BDNF expression in both unstressed and stressed rats, and thereby providing evidence for the role of HDAC5 in the regulation of Bdnf expression. Taken together, our findings implicate HDAC5 in the ketamine-induced transcriptional regulation of Bdnf, and suggest that the phosphorylation of HDAC5 regulates the therapeutic actions of ketamine. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. First injection of ketamine among young injection drug users (IDUs) in three U.S. cities

    PubMed Central

    Lankenau, Stephen E.; Sanders, Bill; Bloom, Jennifer Jackson; Hathazi, Dodi; Alarcon, Erica; Tortu, Stephanie; Clatts, Michael C.

    2007-01-01

    Ketamine, a dissociative anesthetic, has emerged as an increasingly common drug among subgroups of young injection drug users (IDUs) in cities across the United States. In-depth qualitative interviews were conducted with 213 young IDUs aged 16–28 years recruited in New York, New Orleans, and Los Angeles between 2004 and 2006. While some initiated injection drug use with ketamine, the drug was more frequently injected by IDUs with extensive polydrug using histories. IDUs initiating with ketamine commonly self-injected via an intramuscular mode of administration. The injection group provided crucial knowledge and material resources that enabled the injection event to occur, including ketamine, syringes, and injection skills. Injection paraphernalia was commonly shared during the first injection of ketamine, particularly vials of pharmaceutically-packaged liquid ketamine. Injection events infrequently occurred in a rave or club and more typically in a private home, which challenges ketamine’s designation as a ‘club’ drug. The first injection of ketamine was a noteworthy event since it introduced a novel drug or new mode of administration to be further explored by some, or exposed others to a drug to be avoided in the future. Risk reduction messages directed towards young IDUs should be expanded to include ketamine. PMID:16979848

  14. Restoring mood balance in depression: ketamine reverses deficit in dopamine-dependent synaptic plasticity.

    PubMed

    Belujon, Pauline; Grace, Anthony A

    2014-12-15

    One of the most novel and exciting findings in major depressive disorder research over the last decade is the discovery of the fast-acting and long-lasting antidepressant effects of ketamine. Indeed, the therapeutic effects of classic antidepressants, such as selective serotonin reuptake inhibitors, require a month or longer to be expressed, with about a third of major depressive disorder patients resistant to treatment. Clinical studies have shown that a low dose of ketamine exhibits fast-acting relatively sustained antidepressant action, even in treatment-resistant patients. However, the mechanisms of ketamine action at a systems level remain unclear. Wistar-Kyoto rats were exposed to inescapable, uncontrollable footshocks. To evaluate learned helplessness behavior, we used an active avoidance task in a shuttle box equipped with an electrical grid floor. After helplessness assessment, we performed in vivo electrophysiological recordings first from ventral tegmental area dopaminergic (DA) neurons and second from accumbens neurons responsive to fimbria stimulation. Ketamine was injected and tested on helpless behavior and electrophysiological recordings. We show that ketamine is able to restore the integrity of a network by acting on the DA system and restoring synaptic dysfunction observed in stress-induced depression. We show that part of the antidepressant effect of ketamine is via the DA system. Indeed, injection of ketamine restores a decreased dopamine neuron population activity, as well as synaptic plasticity (long-term potentiation) in the hippocampus-accumbens pathway, via, in part, activation of D1 receptors. This work provides a unique systems perspective on the mechanisms of ketamine on a disrupted limbic system. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  15. Magnetic resonance cholangiogram patterns and clinical profiles of ketamine-related cholangiopathy in drug users.

    PubMed

    Seto, Wai-Kay; Mak, Siu-King; Chiu, Keith; Vardhanabhuti, Varut; Wong, Ho-Fai; Leong, Heng-Tat; Lee, Paul S F; Ho, Y C; Lee, Chi-Kei; Cheung, Ka-Shing; Yuen, Man-Fung; Leung, Wai K

    2018-07-01

    Recreational ketamine use has emerged as an important health and social issue worldwide. Although ketamine is associated with biliary tract damage, the clinical and radiological profiles of ketamine-related cholangiopathy have not been well described. Chinese individuals who had used ketamine recreationally at least twice per month for six months in the previous two years via a territory-wide community network of charitable organizations tackling substance abuse were recruited. Magnetic resonance cholangiography (MRC) was performed, and the findings were interpreted independently by two radiologists, with the findings analysed in association with clinical characteristics. Among the 343 ketamine users referred, 257 (74.9%) were recruited. The mean age and ketamine exposure duration were 28.7 (±5.8) and 10.5 (±3.7) years, respectively. A total of 159 (61.9%) had biliary tract anomalies on MRC, categorized as diffuse extrahepatic dilatation (n = 73), fusiform extrahepatic dilatation (n = 64), and intrahepatic ductal changes (n = 22) with no extrahepatic involvement. Serum alkaline phosphatase (ALP) level (odds ratio [OR] 1.007; 95% CI 1.002-1.102), lack of concomitant recreational drug use (OR 1.99; 95% CI 1.11-3.58), and prior emergency attendance for urinary symptoms (OR 1.95; 95% CI 1.03-3.70) had high predictive values for biliary anomalies on MRC. Among sole ketamine users, ALP level had an AUC of 0.800 in predicting biliary anomalies, with an optimal level of ≥113 U/L having a positive predictive value of 85.4%. Cholangiographic anomalies were reversible after ketamine abstinence, whereas decompensated cirrhosis and death were possible after prolonged exposure. We have identified distinctive MRC patterns in a large cohort of ketamine users. ALP level and lack of concomitant drug use predicted biliary anomalies, which were reversible after abstinence. The study findings may aid public health efforts in combating the growing epidemic of ketamine

  16. The promise of ketamine for treatment-resistant depression: current evidence and future directions

    PubMed Central

    DeWilde, Kaitlin E.; Levitch, Cara F.; Murrough, James W.; Mathew, Sanjay J.; Iosifescu, Dan V.

    2014-01-01

    Major depressive disorder (MDD) is one of the most disabling diseases worldwide and is a significant public health threat. Current treatments for MDD primarily consist of monoamine-targeting agents and have limited efficacy. However, the glutamate neurotransmitter system has recently come into focus as a promising alternative for novel antidepressant treatments. We review the current data on the glutamate NMDA receptor antagonist ketamine, which has been shown in clinical trials to act as a rapid antidepressant in MDD. We also examine ketamine efficacy on dimensions of psychopathology, including anhedonia, cognition, and suicidality, consistent with the NIMH Research Domain Criteria (RDoC) initiative. Other aspects of ketamine reviewed in this paper include safety and efficacy, different administration methods, and the risks of misuse of ketamine outside of medical settings. Finally, we conclude with a discussion of other glutamatergic agents other than ketamine currently being tested as novel antidepressants. PMID:25649308

  17. Estimation of the contribution of norketamine to ketamine-induced acute pain relief and neurocognitive impairment in healthy volunteers

    PubMed Central

    Olofsen, Erik; Noppers, Ingeborg; Niesters, Marieke; Kharasch, Evan; Aarts, Leon; Sarton, Elise; Dahan, Albert

    2012-01-01

    Background The N-methyl-D-receptor antagonist ketamine is metabolized in the liver into its active metabolite norketamine. No human data are available on the relative contribution of norketamine to ketamine-induced analgesia and side effects. One approach to assess the ketamine and norketamine contributions is by measuring ketamine-effect at varying ketamine and norketamine plasma concentrations using the CYP450 inducer rifampicin. Methods In 12 healthy male volunteers the effect of rifampicin versus placebo pretreatment on S-ketamine (a 2-h infusion of 20 mg/h)-induced analgesia and cognition was quantified. The relative ketamine and norketamine contribution to effect was estimated using a linear additive population pharmacokinetic-pharmacodynamic model. Results S-ketamine produced significant analgesia, psychotropic effects (drug high), and cognitive impairment (including memory impairment, reduced psychomotor speed, reduced reaction time, reduced cognitive flexibility). Modeling revealed a negative contribution of S-norketamine to S-ketamine-induced analgesia and absence of contribution to cognitive impairment. At ketamine and norketamine effect concentrations of 100 ng/ml and 50 ng/ml, respectievly, the ketamine contribution to analgesia is −3.8 cm (visual analogue pain score) versus a contribution of norketamine of +1.5 cm, causing an overall effect −2.3 cm. The blood-effect-site equilibration half-life ranged from 0 (cognitive flexibility) to 11.8 (pain intensity) min, and averaged across all end-points was 6.1 min. Conclusions This first observation that norketamine produces effects in the opposite direction of ketamine requires further proof. It can explain the observation of ketamine-related excitatory phenomena (such as hyperalgesia and allodynia) upon the termination of ketamine infusions. PMID:22692377

  18. Ketamine-Based Anesthetic Protocols and Evoked Potential Monitoring: A Risk/Benefit Overview

    PubMed Central

    Stoicea, Nicoleta; Versteeg, Gregory; Florescu, Diana; Joseph, Nicholas; Fiorda-Diaz, Juan; Navarrete, Víctor; Bergese, Sergio D.

    2016-01-01

    Since its discovery, ketamine, a non-competitive N-methyl D-aspartate (NMDA) receptor antagonist related to phencyclidine, has been linked to multiple adverse reactions sometimes described as “out of body” and “near death experiences,” including emergence phenomena, delusions, hallucinations, delirium, and confusion. Due to these effects, ketamine has been withdrawn from mainstream anesthetic use in adult patients. Evoked potentials (EPs) are utilized to monitor neural pathways during surgery, detect intraoperative stress or damage, detect and define the level of neural lesions, and define abnormalities. Unfortunately, many of the volatile anesthetics commonly used during spinal and neurologic procedures suppress EP amplitude and monitoring. Ketamine has been found in several preclinical and clinical studies to actually increase EP amplitude and thus has been used as an analgesic adjunct in procedures where EP monitoring is critical. Once the gap in our knowledge of ketamine's risks has been sufficiently addressed in animal models, informed clinical trials should be conducted in order to properly incorporate ketamine-based anesthetic regimens during EP-monitored neurosurgeries. PMID:26909017

  19. Ketamine-Based Anesthetic Protocols and Evoked Potential Monitoring: A Risk/Benefit Overview.

    PubMed

    Stoicea, Nicoleta; Versteeg, Gregory; Florescu, Diana; Joseph, Nicholas; Fiorda-Diaz, Juan; Navarrete, Víctor; Bergese, Sergio D

    2016-01-01

    Since its discovery, ketamine, a non-competitive N-methyl D-aspartate (NMDA) receptor antagonist related to phencyclidine, has been linked to multiple adverse reactions sometimes described as "out of body" and "near death experiences," including emergence phenomena, delusions, hallucinations, delirium, and confusion. Due to these effects, ketamine has been withdrawn from mainstream anesthetic use in adult patients. Evoked potentials (EPs) are utilized to monitor neural pathways during surgery, detect intraoperative stress or damage, detect and define the level of neural lesions, and define abnormalities. Unfortunately, many of the volatile anesthetics commonly used during spinal and neurologic procedures suppress EP amplitude and monitoring. Ketamine has been found in several preclinical and clinical studies to actually increase EP amplitude and thus has been used as an analgesic adjunct in procedures where EP monitoring is critical. Once the gap in our knowledge of ketamine's risks has been sufficiently addressed in animal models, informed clinical trials should be conducted in order to properly incorporate ketamine-based anesthetic regimens during EP-monitored neurosurgeries.

  20. Ketamine-induced bladder fibrosis involves epithelial-to-mesenchymal transition mediated by transforming growth factor-β1.

    PubMed

    Wang, Junpeng; Chen, Yang; Gu, Di; Zhang, Guihao; Chen, Jiawei; Zhao, Jie; Wu, Peng

    2017-10-01

    Bladder wall fibrosis is a major complication of ketamine-induced cystitis (KC), but the underlying pathogenesis is poorly understood. The aim of the present study was to elucidate the mechanism of ketamine-induced fibrosis in association with epithelial-to-mesenchymal transition (EMT) mediated by transforming growth factor-β1 (TGF-β1). Sprague-Dawley rats were randomly distributed into four groups, which received saline, ketamine, ketamine combined with a TGF-β receptor inhibitor (SB-505124) for 16 wk, or 12 wk of ketamine and 4 wk of abstinence. In addition, the profibrotic effect of ketamine was confirmed in SV-40 immortalized human uroepithelial (SV-HUC-1) cells. The ketamine-treated rats displayed voiding dysfunction and decreased bladder compliance. Bladder fibrosis was accompanied by the appearance of a certain number of cells expressing both epithelial and mesenchymal markers, indicating that epithelial cells might undergo EMT upon ketamine administration. Meanwhile, the expression level of TGF-β1 was significantly upregulated in the urothelium of bladders in ketamine-treated rats. Treatment of SV-HUC-1 cells with ketamine increased the expression of TGF-β1 and EMT-inducing transcription factors, resulting in the downregulation of E-cadherin and upregulation of fibronectin and α-smooth muscle actin. Administration of SB-505124 inhibited EMT and fibrosis both in vitro and vivo. In addition, withdrawal from ketamine did not lead to recovery of bladder urinary function or decreased fibrosis. Taken together, our study shows for the first time that EMT might contribute to bladder fibrosis in KC. TGF-β1 may have an important role in bladder fibrogenesis via an EMT mechanism. Copyright © 2017 the American Physiological Society.

  1. Ketamine-induced inhibition of glycogen synthase kinase-3 contributes to the augmentation of AMPA receptor signaling

    PubMed Central

    Beurel, Eléonore; Grieco, Steven F; Amadei, Celeste; Downey, Kimberlee; Jope, Richard S

    2016-01-01

    Objectives Sub-anesthetic doses of ketamine have been found to provide rapid antidepressant actions, indicating that the cellular signaling systems targeted by ketamine are potential sites for therapeutic intervention. Ketamine acts as an antagonist of N-methyl-D-aspartate (NMDA) receptors, and animal studies indicate that subsequent augmentation of signaling by α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors is critical for the antidepressant outcome. Methods In this study, we tested if the inhibitory effect of ketamine on glycogen synthase kinase-3 (GSK3) affected hippocampal cell-surface AMPA receptors using immunoblotting of membrane and synaptosomal extracts from wild-type and GSK3 knockin mice. Results Treatment with an antidepressant dose of ketamine increased the hippocampal membrane level of the AMPA glutamate receptor (GluA)1 subunit, but did not alter the localization of GluA2, GluA3, or GluA4. This effect of ketamine was abrogated in GSK3 knockin mice expressing mutant GSK3 that cannot be inhibited by ketamine, demonstrating that ketamine-induced inhibition of GSK3 is necessary for up-regulation of cell surface AMPA GluA1 subunits. AMPA receptor trafficking is regulated by post-synaptic density-95 (PSD-95), a substrate for GSK3. Ketamine treatment decreased the hippocampal membrane level of phosphorylated PSD-95 on Thr-19, the target of GSK3 that promotes AMPA receptor internalization. Conclusions These results demonstrate that ketamine-induced inhibition of GSK3 causes reduced phosphorylation of PSD-95, diminishing the internalization of AMPA GluA1 subunits to allow for augmented signaling through AMPA receptors following ketamine treatment. PMID:27687706

  2. Small Dose Ketamine Improves Postoperative Analgesia and Rehabilitation After Total Knee Arthroplasty.

    PubMed Central

    Chauvin, Marcel; Manoir, Bertrand Du; Langlois, Mathieu; Sessler, Daniel I.; Fletcher, Dominique

    2005-01-01

    We designed this study to evaluate the effect of small-dose intravenous ketamine in combination with continuous femoral nerve block on postoperative pain and rehabilitation after total knee arthroplasty. Continuous femoral nerve block with ropivacaine was started before surgery and continued in the surgical ward for 48 h. Patients were randomly assigned to receive an initial bolus of 0.5 mg/kg ketamine followed by a continuous infusion of 3 μg·kg-1·min-1 during surgery and 1.5 μg·kg-1·min-1 for 48 h (Ketamine group) or an equal volume of saline (Control group). Additional postoperative analgesia was provided by patient-controlled intravenous morphine. Pain scores and morphine consumption were recorded over 48 hours. The maximal degree of active knee flexion tolerated was recorded daily until hospital discharge. Follow up was performed 6 weeks and 3 months after surgery. The Ketamine group required significantly less morphine than the Control group (45 ± 20 mg versus 69 ± 30 mg; P < 0.02). Patients in the Ketamine group reached 90° of active knee flexion more rapidly than those in the Control group (P < 0.02). Outcomes at 6 weeks and 3 months were similar in each group. These results confirm that ketamine is a useful analgesic adjuvant in perioperative multimodal analgesia with a positive impact on early knee mobilization. PMID:15673878

  3. Ultrastructure of canine meninges after repeated epidural injection of S(+)-ketamine.

    PubMed

    Acosta, Alinne; Gomar, Carmen; Bombí, Josep A; Graça, Dominguita L; Garrido, Marta; Krauspenhar, Cristina

    2006-01-01

    The safety of ketamine when administered by the spinal route must be confirmed in various animal species before it is approved for use in humans. This study evaluates the ultrastructure of canine meninges after repeated doses of epidural S(+)-ketamine. Five dogs received S(+)-ketamine 5%, 1 mg/kg, twice a day for 10 days through an epidural catheter with its tip located at the L5 level. One dog received the same volume of normal saline at the same times. The spinal cord and meninges were processed for histopathological and ultrastructural studies. Clinical effects were assessed after each injection. Motor and sensory block appeared after each injection of S(+)-ketamine, but not in the dog receiving saline. No signs of clinical or neurologic alterations were observed. Using light microscopy, no meningeal layer showed alterations except focal infiltration at the catheter tip level by macrophages, lymphocytes, and a few mast cells. The cells of different layers were studied by electron microscopy and interpreted according to data from human and other animal species because no ultrastructural description of the canine meninges is currently available. There were no cellular signs of inflammation, phagocytosis, or degeneration in meningeal layers and no signs of atrophy, compression, or demyelinization in the areas of dorsal root ganglia and spinal cord around the arachnoid. These findings were common for dogs receiving S(+)-ketamine and the dog receiving saline. Repeated doses of epidural S(+)-ketamine 5%, 1 mg/kg, twice a day for 10 days was not associated to cellular alterations in canine meninges.

  4. Ketamine and phencyclidine: the good, the bad and the unexpected

    PubMed Central

    Lodge, D; Mercier, M S

    2015-01-01

    The history of ketamine and phencyclidine from their development as potential clinical anaesthetics through drugs of abuse and animal models of schizophrenia to potential rapidly acting antidepressants is reviewed. The discovery in 1983 of the NMDA receptor antagonist property of ketamine and phencyclidine was a key step to understanding their pharmacology, including their psychotomimetic effects in man. This review describes the historical context and the course of that discovery and its expansion into other hallucinatory drugs. The relevance of these findings to modern hypotheses of schizophrenia and the implications for drug discovery are reviewed. The findings of the rapidly acting antidepressant effects of ketamine in man are discussed in relation to other glutamatergic mechanisms. PMID:26075331

  5. The effect of target-controlled infusion of low-dose ketamine on heat pain and temporal summation threshold.

    PubMed

    Lee, Joon-Ho; Cho, Sung-Hwan; Kim, Sang-Hyun; Chae, Won-Soek; Jin, Hee-Cheol; Lee, Jeong-Seok; Kim, Yong-Ik

    2011-08-01

    We investigated the heat pain threshold (HPT) and temporal summation threshold (TST) before and after target-controlled infusion (TCI) of ketamine with an effect-site concentration (Ce) of 30 and 60 ng/ml. Healthy young volunteers (n = 20) were enrolled. A thermode was applied to the volar side of each volunteer's right forearm, and HPT and TST were measured before and after TCI of ketamine. Vital signs and psychedelic effects according to ketamine infusion were also observed before and after TCI of ketamine. Mean HPT after TCI of ketamine with a Ce of 30 and 60 ng/ml did not increase significantly. However, mean TST after TCI of ketamine with a Ce of 30 and 60 ng/ml increased significantly, in a dose-dependent fashion, compared with the value before ketamine TCI. Vital signs showed no significant difference before and after ketamine TCI. The visual analog scale score of psychedelic symptoms was higher with a Ce of 60 ng/ml than with 30 ng/ml. TCI of ketamine with a Ce of 30 and 60 ng/ml increased TST but not HPT.

  6. GLYX-13 (rapastinel) ameliorates subchronic phencyclidine- and ketamine-induced declarative memory deficits in mice

    PubMed Central

    Rajagopal, Lakshmi; Burgdorf, Jeffrey S.; Moskal, Joseph R.; Meltzer, Herbert Y.

    2016-01-01

    GLYX-13 (rapastinel), a tetrapeptide (Thr-Pro-Pro-Thr-amide), has been reported to have fast acting antidepressant properties in man based upon its N-methyl-d-aspartate receptor (NMDAR) glycine site functional partial agonism. Ketamine, a non-competitive NMDAR antagonist, also reported to have fast acting antidepressant properties, produces cognitive impairment in rodents and man, whereas rapastinel has been reported to have cognitive enhancing properties in rodents, without impairing cognition in man, albeit clinical testing has been limited. The goal of this study was to compare the cognitive impairing effects of rapastinel and ketamine in novel object recognition (NOR), a measure of declarative memory, in male C57BL/6J mice treated with phencyclidine (PCP), another NMDAR noncompetitive antagonist known to severely impair cognition, in both rodents and man. C57BL/6J mice given a single dose or subchronic ketamine (30 mg/kg. i.p.) showed acute or persistent deficits in NOR, respectively. Acute i.v. rapastinel (1.0 mg/kg), did not induce NOR deficit. Pre-treatment with rapastinel significantly prevented acute ketamine-induced NOR deficit. Rapastinel (1.0 mg/kg, but not 0.3 mg/kg, iv) significantly reversed both subchronic ketamine- and subchronic PCP-induced NOR deficits. Rapastinel also potentiated the atypical antipsychotic drug with antidepressant properties, lurasidone, to restore NOR in subchronic ketamine-treated mice. These findings indicate that rapastinel, unlike ketamine, does not induce a declarative memory deficit in mice, and can prevent or reverse the ketamine-induced NOR deficit. Further study is required to determine if these differences translate during clinical use of ketamine and rapastinel as fast acting antidepressant drugs and if rapastinel could have non-ionotropic effects as an add-on therapy with antipsychotic/antidepressant medications. PMID:26632337

  7. Left ventricular, systemic arterial, and baroreflex responses to ketamine and TEE in chronically instrumented monkeys

    NASA Technical Reports Server (NTRS)

    Koenig, S. C.; Ludwig, D. A.; Reister, C.; Fanton, J. W.; Ewert, D.; Convertino, V. A.

    2001-01-01

    Effects of prescribed doses of ketamine five minutes after application and influences of transesophageal echocardiography (TEE) on left ventricular, systemic arterial, and baroreflex responses were investigated to test the hypothesis that ketamine and/or TEE probe insertion alter cardiovascular function. Seven rhesus monkeys were tested under each of four randomly selected experimental conditions: (1) intravenous bolus dose of ketamine (0.5 ml), (2) continuous infusion of ketamine (500 mg/kg/min), (3) continuous infusion of ketamine (500 mg/kg/min) with TEE, and (4) control (no ketamine or TEE). Monkeys were chronically instrumented with a high fidelity, dual-sensor micromanometer to measure left ventricular and aortic pressure and a transit-time ultrasound probe to measure aortic flow. These measures were used to calculate left ventricular function. A 4-element Windkessel lumped-parameter model was used to estimate total peripheral resistance and systemic arterial compliance. Baroreflex response was calculated as the change in R-R interval divided by the change in mean aortic pressure measured during administration of graded concentrations of nitroprusside. The results indicated that five minutes after ketamine application heart rate and left ventricular diastolic compliance decreased while TEE increased aortic systolic and diastolic pressure. We conclude that ketamine may be administered as either a bolus or continuous infusion without affecting cardiovascular function 5 minutes after application while the insertion of a TEE probe will increase aortic pressure. The results for both ketamine and TEE illustrate the classic "Hawthorne Effect," where the observed values are partly a function of the measurement process. Measures of aortic pressure, heart rate, and left ventricular diastolic pressure should be viewed as relative, as opposed to absolute, when organisms are sedated with ketamine or instrumented with a TEE probe.

  8. Ketamine as a Rapid Treatment for Post-Traumatic Stress Disorder

    DTIC Science & Technology

    2011-10-01

    Post - traumatic stress disorder ( PTSD ) is a debilitating anxiety disorder characterized by intrusive re-experiences of the traumatic events...08-1-0602 TITLE: Ketamine as a Rapid Treatment for Post - Traumatic Stress Disorder PRINCIPAL INVESTIGATOR: Dennis Charney...dissociative effects of ketamine but not have any sustained anxiolytic and antidepressant effects. Forty individuals diagnosed with post - traumatic

  9. N-acetylcysteine prevents ketamine-induced adverse effects on development, heart rate and monoaminergic neurons in zebrafish.

    PubMed

    Robinson, Bonnie; Dumas, Melanie; Gu, Qiang; Kanungo, Jyotshna

    2018-06-08

    N-acetylcysteine, a precursor molecule of glutathione, is an antioxidant. Ketamine, a pediatric anesthetic, has been implicated in cardiotoxicity and neurotoxicity including modulation of monoaminergic systems in mammals and zebrafish. Here, we show that N-acetylcysteine prevents ketamine's adverse effects on development and monoaminergic neurons in zebrafish embryos. The effects of ketamine and N-acetylcysteine alone or in combination were measured on the heart rate, body length, brain serotonergic neurons and tyrosine hydroxylase-immunoreactive (TH-IR) neurons. In the absence of N-acetylcysteine, a concentration of ketamine that produces an internal embryo exposure level comparable to human anesthetic plasma concentrations significantly reduced heart rate and body length and those effects were prevented by N-acetylcysteine co-treatment. Ketamine also reduced the areas occupied by serotonergic neurons in the brain, whereas N-acetylcysteine co-exposure counteracted this effect. TH-IR neurons in the embryo brain and TH-IR cells in the trunk were significantly reduced with ketamine treatment, but not in the presence of N-acetylcysteine. In our continued search for compounds that can prevent ketamine toxicity, this study using specific endpoints of developmental toxicity, cardiotoxicity and neurotoxicity, demonstrates protective effects of N-acetylcysteine against ketamine's adverse effects. This is the first study that shows the protective effects of N-acetylcysteine on ketamine-induced developmental defects of monoaminergic neurons as observed in a whole organism. Published by Elsevier B.V.

  10. Effect of sub-anesthetic xylazine and ketamine ('ketamine stun') administered to calves immediately prior to castration.

    PubMed

    Coetzee, Johann F; Gehring, Ronette; Tarus-Sang, Jepkoech; Anderson, David E

    2010-11-01

    To describe the pharmacokinetics, cortisol response and behavioral changes associated with administration of sub-anesthetic xylazine and ketamine prior to castration. Prospective, randomized experiment. Twenty-two male beef calves (260-310 kg). Calves were randomly assigned to receive the following treatment immediately prior to surgical or simulated castration; 1) uncastrated, placebo-treated control (CONT) (n=4),2) Castrated, placebo treated control (CAST) (n=6), 3) castrated with intravenous xylazine (X) (0.05 mg kg(-1)) (n=6), and 4) castrated with IV xylazine (X) (0.05 mg kg(-1) ) combined with ketamine (K) (0.1 mg kg(-1)) (n=6). Blood samples collected over 10 hours post-castration were analyzed by LC-MS-MS for drug concentrations and chemiluminescent immunoassay for cortisol determination. Drug concentrations during the first 60 minutes post-castration fit a one-compartment open model with first-order elimination. The harmonic mean elimination half-lives (± pseudo SD) for X, X with K and K were 12.9 ± 1.2, 11.2 ± 3.1 and 10.6 ± 2.8 minutes, respectively. The proportion of the total area under the effect curve (AUEC) for cortisol during this period was significantly lower in the X group (13 ± 3%; p=0.006) and the X+K group (14 ± 2%; p=0.016) compared with the CAST calves (21 ± 2%). However, after 300 minutes the AUEC in the X group was higher than CAST. Significantly more calves demonstrated attitude that was unchanged from pre-manipulation behavior in the CONT (p=0.021) and X+K treated calves (p=0.0051) compared with the CAST calves. Behavioral changes and lower serum cortisol concentrations during the first 60 minutes post-castration were associated with quantifiable xylazine and ketamine concentrations. Low doses of xylazine and ketamine administered immediately prior to castration may offer a safe, efficacious and cost-effective systemically administered alternative or adjunct to local anesthesia. © 2010 The Authors. Veterinary Anaesthesia and

  11. Rapid Resolution of Grief with IV Infusion of Ketamine: A Unique Phenomenological Experience

    PubMed Central

    Gowda, Mahesh Ramanna; Srinivasa, Preethi; Kumbar, Prabha S.; Ramalingaiah, Vinay Hosagavi; Muthyalappa, Chandrashekar; Durgoji, Sumit

    2016-01-01

    Ketamine, a primarily FDA-approved anaesthetic agent is also used as recreational drug. Based on preclinical findings and later the clinical observations it is noted to have rapid antidepressant effect due to its mechanisms related to NMDA antagonism. In spite of established evidence of ketamine being effective in depression with significant role in treatment resistant cases as well, there was absolute dearth of literature regarding its utility in grief-related disorders. In this context we present a case of 28-year-old graduate male who presented to us in complicated grief following death of his wife due to obstetric complications. With the patient and immediate family members consenting for use of ketamine as off-label use, patient had single IV infusion of ketamine following which he had unique phenomenological experience ultimately resolving his grief in few minutes. Through this case we highlight the enormous therapeutic promise of ketamine in complicated grief. PMID:27011405

  12. Longitudinal Effects of Ketamine on Dendritic Architecture In Vivo in the Mouse Medial Frontal Cortex123

    PubMed Central

    Phoumthipphavong, Victoria; Barthas, Florent; Hassett, Samantha

    2016-01-01

    Abstract A single subanesthetic dose of ketamine, an NMDA receptor antagonist, leads to fast-acting antidepressant effects. In rodent models, systemic ketamine is associated with higher dendritic spine density in the prefrontal cortex, reflecting structural remodeling that may underlie the behavioral changes. However, turnover of dendritic spines is a dynamic process in vivo, and the longitudinal effects of ketamine on structural plasticity remain unclear. The purpose of the current study is to use subcellular resolution optical imaging to determine the time course of dendritic alterations in vivo following systemic ketamine administration in mice. We used two-photon microscopy to visualize repeatedly the same set of dendritic branches in the mouse medial frontal cortex (MFC) before and after a single injection of ketamine or saline. Compared to controls, ketamine-injected mice had higher dendritic spine density in MFC for up to 2 weeks. This prolonged increase in spine density was driven by an elevated spine formation rate, and not by changes in the spine elimination rate. A fraction of the new spines following ketamine injection was persistent, which is indicative of functional synapses. In a few cases, we also observed retraction of distal apical tuft branches on the day immediately after ketamine administration. These results indicate that following systemic ketamine administration, certain dendritic inputs in MFC are removed immediately, while others are added gradually. These dynamic structural modifications are consistent with a model of ketamine action in which the net effect is a rebalancing of synaptic inputs received by frontal cortical neurons. PMID:27066532

  13. Ketamine Disrupts Frontal and Hippocampal Contribution to Encoding and Retrieval of Episodic Memory: An fMRI Study

    PubMed Central

    Honey, G.D.; Honey, R.A.E.; O’Loughlin, C.; Sharar, S.R.; Kumaran, D.; Suckling, J.; Menon, D.K.; Sleator, C.; Bullmore, E.T.; Fletcher, P.C.

    2012-01-01

    The N-methyl-d-aspartate (NMDA) receptor antagonist ketamine produces episodic memory deficits. We used functional magnetic resonance imaging to characterize the effects of ketamine on frontal and hippocampal responses to memory encoding and retrieval in healthy volunteers using a double-blind, placebo-controlled, randomized, within-subjects comparison of two doses of intravenous ketamine. Dissociation of the effects of ketamine on encoding and retrieval processes was achieved using two study-test cycles: in the first, items were encoded prior to drug infusion and retrieval tested, during scanning, on drug; in the second, encoding was scanned on drug, and retrieval tested once ketamine plasma levels had declined. We additionally determined the interaction of ketamine with the depth of processing that occurred at encoding. A number of effects upon task-dependent activations were seen. Overall, our results suggest that left frontal activation is augmented by ketamine when elaborative semantic processing is required at encoding. In addition, successful encoding on ketamine is supplemented by additional non-verbal processing that is incidental to task demands. The effects of ketamine at retrieval are consistent with impaired access to accompanying contextual features of studied items. Our findings show that, even when overt behaviour is unimpaired, ketamine has an impact upon the recruitment of key regions in episodic memory task performance. PMID:15537676

  14. Elevated α-Hydroxybutyrate and Branched-Chain Amino Acid Levels Predict Deterioration of Glycemic Control in Adolescents.

    PubMed

    Tricò, Domenico; Prinsen, Hetty; Giannini, Cosimo; de Graaf, Robin; Juchem, Christoph; Li, Fangyong; Caprio, Sonia; Santoro, Nicola; Herzog, Raimund I

    2017-07-01

    Traditional risk factors for type 2 diabetes mellitus are weak predictors of changes in glucose tolerance and insulin sensitivity in youth. To identify early metabolic features of insulin resistance (IR) in youth and whether they predict deterioration of glycemic control. A cross-sectional and longitudinal study was conducted at the Yale Pediatric Obesity Clinic. Concentrations of α-hydroxybutyrate, β-hydroxybutyrate, lactate, and branched-chain amino acids (BCAAs) were measured by nuclear magnetic resonance spectroscopy in 78 nondiabetic adolescents during an oral glucose tolerance test (OGTT). Associations between baseline metabolic alterations and longitudinal changes in glucose control were tested in 16 subjects after a mean follow-up of 2.3 years. The relationship between metabolite levels, parameters of IR, and glycemic control, and their progression over time. Elevated fasting α-hydroxybutyrate levels were observed in adolescents with reduced insulin sensitivity after adjusting for age, sex, ethnicity, Tanner stage, and body mass index z-score (P = 0.014). Plasma α-hydroxybutyrate and BCAAs were increased throughout the course of the OGTT in this group (P < 0.03). Notably, borderline IR was associated with a progressive α-hydroxybutyrate decrease from elevated baseline concentrations to normal levels (P = 0.02). Increased baseline α-hydroxybutyrate concentrations were further associated with progressive worsening of glucose tolerance and disposition index. α-Hydroxybutyrate and BCAA concentrations during an OGTT characterize insulin-resistant youth and predict worsening of glycemic control. These findings provide potential biomarkers for risk assessment of type 2 diabetes and new insights into IR pathogenesis. Copyright © 2017 Endocrine Society

  15. Sildenafil (Viagra) and club drug use in gay and bisexual men: the role of drug combinations and context.

    PubMed

    Halkitis, Perry N; Green, Kelly A

    2007-06-01

    Data ascertained in a study of club drug use among 450 gay and bisexual men indicate that at least one class of PDE-5 (phosphodiesterase type 5 inhibitor, sildenafil [Viagra]) is used frequently in combination with club drugs such as methamphetamine, MDMA (3,4 methylenedioxymethamphetamine [ecstasy]), ketamine, cocaine, and GHB (gamma hydroxy butyrate). Patterns of sildenafil use in combination with each of the club drugs differ among key demographics including race and age. Multivariate models, controlling for demographic factors, suggest that contextual factors are key to understanding why men mix sildenafil with club drugs, although age may still be an important issue to consider. Of particular importance is the fact that use of club drugs in combination with sildenafil is strongly associated with circuit and sex parties, where a centerpiece of these environments focuses on sexual exchange. These models imply interplay between person-level and contextual factors in explaining drug use patterns and further indicate that interventions aimed at addressing illicit substance use must carefully consider the role of environmental factors in explaining behavior.

  16. Street ketamine-associated bladder dysfunction: an emerging health problem.

    PubMed

    Lee, Py; Ong, Ta; Chua, Cb; Lei, Ccm; Teh, Gc

    2009-01-01

    Ketamine is frequently abused nowadays as a recreational drug. Case reports are emerging since 2007 to describe a new clinical entity of severe bladder dysfunction associated with chronic abuse of street ketamine. Severe lower urinary tract symptoms of urinary frequency and urgency which are refractory to conventional treatment. Quality of life is adversely affected as a consequence. Chronic kidney disease will develop in advanced cases. Investigation findings: The urine is sterile on culture. Ultrasound will show reduced bladder capacity with thickened bladder wall. In advanced stage, hydronephrosis and renal impairment will develop. Patients should be advised to stop street ketamine use immediately. Anticholinergic medication could be tried to alleviate the symptoms. Refractory cases with dilatation of the upper urinary tract might need urinary diversion. Awareness of this new condition is essential in diagnosis. Early intervention offers better treatment outcome.

  17. Novel Poly(3-hydroxybutyrate-g-vinyl alcohol) Polyurethane Scaffold for Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Reyes, Adriana Pétriz; Martínez Torres, Ataúlfo; Carreón Castro, Ma. Del Pilar; Rodríguez Talavera, José Rogelio; Muñoz, Susana Vargas; Aguilar, Víctor Manuel Velázquez; Torres, Maykel González

    2016-08-01

    The design of new synthetic grafted poly(3-hydroxybutyrate) as composite 3D-scaffolds is a convenient alternative for tissue engineering applications. The chemically modified poly(3-hydroxybutyrate) is receiving increasing attention for use as biomimetic copolymers for cell growth. As of yet, these copolymers cannot be used efficiently because of the lack of good mechanical properties. Here, we address this challenge, preparing a composite-scaffold of grafted poly(3-hydroxybutyrate) polyurethane for the first time. However, it is unclear if the composite structure and morphology can also offer a biological application. We obtained the polyurethane by mixing a polyester hydroxylated resin with polyisocyanate and the modified polyhydroxyalkanoates. The results show that the poly(3-hydroxybutyrate) grafted with poly(vinyl alcohol) can be successfully used as a chain extender to form a chemically-crosslinked thermosetting polymer. Furthermore, we show a proposal for the mechanism of the polyurethane synthesis, the analysis of its morphology and the ability of the scaffolds for growing mammalian cells. We demonstrated that astrocytes isolated from mouse cerebellum, and HEK293 can be cultured in the prepared material, and express efficiently fluorescent proteins by adenoviral transduction. We also tested the metabolism of Ca2+ to obtain evidence of the biological activity.

  18. Does systemic lidocaine reduce ketamine requirements for endotracheal intubation in calves?

    PubMed

    Lauper, Josiane; Marolf, Vincent; Levionnois, Olivier; Schelling, Esther; Meylan, Mireille; Spadavecchia, Claudia

    2017-03-01

    To investigate whether an intravenous (IV) lidocaine bolus in calves premedicated with xylazine-butorphanol reduces the amount of ketamine required to allow endotracheal intubation. Randomized, prospective clinical study. In total, 41 calves scheduled for elective umbilical surgery. Calves were randomly assigned to one of two groups (L: lidocaine or S: saline). The calves were administered xylazine (0.07 mg kg -1 ) and butorphanol (0.1 mg kg -1 ) intramuscularly and 10 minutes later lidocaine (2 mg kg -1 ; group L) or saline (group S) IV over 1 minute. After 2 minutes, ketamine (2.5 mg kg -1 ) was injected IV. If the depth of anaesthesia was insufficient for intubation, additional ketamine (1 mg kg -1 ) was administered every minute until intubation was successful. The amount of ketamine required for intubation, respiratory rate, pulse rate, arterial pressures, the depth of sedation and conditions of endotracheal intubation after induction of anaesthesia were compared between the two groups. The calves in group L were sedated more deeply than those in group S; however, neither the median (range) amount of ketamine required for intubation, 3.5 (2.5-4.5) mg kg -1 and 3.5 (2.5-3.5) mg kg -1 , respectively, nor the induction quality differed significantly between the groups. A bolus of lidocaine (2 mg kg -1 ) administered 10 minutes after xylazine-butorphanol in calves deepened the degree of sedation but did not decrease the requirement of ketamine for endotracheal intubation. No adverse effects were recorded in the physiological variables measured. Copyright © 2017. Published by Elsevier Ltd.

  19. Ketamine for pain in adults and children with cancer: a systematic review and synthesis of the literature.

    PubMed

    Bredlau, Amy Lee; Thakur, Rajbala; Korones, David Nathan; Dworkin, Robert H

    2013-10-01

    Chronic cancer pain is often refractory and difficult to treat. Ketamine is a medication with evidence of efficacy in the treatment of chronic pain. This article presents a synthesis of the data on ketamine for refractory cancer pain in adults and children. There are five randomized, double-blind, controlled trials of ketamine use in cancer pain that demonstrate improvement in pain for some patients. There are six prospective, uncontrolled trials in cancer pain that also demonstrate improvement in pain scores for some patients. There are no randomized, controlled trials in children with cancer pain, although there are a few studies reflecting improved pain control with ketamine for children with cancer pain. Adverse events for adults on ketamine are most commonly somnolence, feelings of insobriety, nausea/vomiting, hallucinations, depersonalization/derealization, and drowsiness. However, when ketamine is combined with benzodiazepines, feelings of insobriety, hallucinations, and depersonalization/derealization are not reported. Children on ketamine have had few reported adverse effects, which include sedation, anorexia, urinary retention, and myoclonic movements. Recommended ketamine infusion dosages are from 0.05 to 0.5 mg/kg/h (intravenous or subcutaneous). Recommended oral dosages of ketamine are 0.2-0.5 mg/kg/dose two to three times daily with a maximum of 50 mg/dose three times daily. Despite limitations in the breadth and depth of data available, there is evidence that ketamine may be a viable option for treatment-refractory cancer pain. Wiley Periodicals, Inc.

  20. Availability of neurotransmitter glutamate is diminished when beta-hydroxybutyrate replaces glucose in cultured neurons.

    PubMed

    Lund, Trine M; Risa, Oystein; Sonnewald, Ursula; Schousboe, Arne; Waagepetersen, Helle S

    2009-07-01

    Ketone bodies serve as alternative energy substrates for the brain in cases of low glucose availability such as during starvation or in patients treated with a ketogenic diet. The ketone bodies are metabolized via a distinct pathway confined to the mitochondria. We have compared metabolism of [2,4-(13)C]beta-hydroxybutyrate to that of [1,6-(13)C]glucose in cultured glutamatergic neurons and investigated the effect of neuronal activity focusing on the aspartate-glutamate homeostasis, an essential component of the excitatory activity in the brain. The amount of (13)C incorporation and cellular content was lower for glutamate and higher for aspartate in the presence of [2,4-(13)C]beta-hydroxybutyrate as opposed to [1,6-(13)C]glucose. Our results suggest that the change in aspartate-glutamate homeostasis is due to a decreased availability of NADH for cytosolic malate dehydrogenase and thus reduced malate-aspartate shuttle activity in neurons using beta-hydroxybutyrate. In the presence of glucose, the glutamate content decreased significantly upon activation of neurotransmitter release, whereas in the presence of only beta-hydroxybutyrate, no decrease in the glutamate content was observed. Thus, the fraction of the glutamate pool available for transmitter release was diminished when metabolizing beta-hydroxybutyrate, which is in line with the hypothesis of formation of transmitter glutamate via an obligatory involvement of the malate-aspartate shuttle.

  1. Clinically favourable effects of ketamine as an anaesthetic for electroconvulsive therapy: a retrospective study.

    PubMed

    Kranaster, Laura; Kammerer-Ciernioch, Jutta; Hoyer, Carolin; Sartorius, Alexander

    2011-12-01

    In a retrospective chart review, we examined the effects of ketamine, an N-methyl-d-aspartate (NMDA) receptor antagonist, as electroconvulsive therapy (ECT) anaesthetic in patients suffering from therapy-resistant depression. We included 42 patients who received ECT treatment with either ketamine (n = 16) or the barbiturate thiopental (n = 26). We analysed the number of sessions until completion of ECT treatment (used as a surrogate parameter for outcome), psychopathology as assessed by pre- and post-ECT Mini-Mental State Examination (MMSE) and Hamilton Rating Scale for Depression (HAM-D) scores as well as ECT and seizure parameters (stimulation dose, seizure duration and concordance, urapidil dosage for post-seizure blood pressure management). The ketamine group needed significantly fewer ECT sessions and had significantly lower HAM-D and higher MMSE scores afterwards. As expected, the ketamine group needed more urapidil for blood pressure control. Taking into account the limits inherent in a retrospective study design and the rather small sample size, our results nonetheless point towards synergistic effects of ECT and ketamine anaesthesia, less cognitive side effects and good tolerability of ketamine.

  2. Laryngospasm during emergency department ketamine sedation: a case-control study.

    PubMed

    Green, Steven M; Roback, Mark G; Krauss, Baruch

    2010-11-01

    The objective of this study was to assess predictors of emergency department (ED) ketamine-associated laryngospasm using case-control techniques. We performed a matched case-control analysis of a sample of 8282 ED ketamine sedations (including 22 occurrences of laryngospasm) assembled from 32 prior published series. We sequentially studied the association of each of 7 clinical variables with laryngospasm by assigning 4 controls to each case while matching for the remaining 6 variables. We then used univariate statistics and conditional logistic regression to analyze the matched sets. We found no statistical association of age, dose, oropharyngeal procedure, underlying physical illness, route, or coadministered anticholinergics with laryngospasm. Coadministered benzodiazepines showed a borderline association in the multivariate but not univariate analysis that was considered anomalous. This case-control analysis of the largest available sample of ED ketamine-associated laryngospasm did not demonstrate evidence of association with age, dose, or other clinical factors. Such laryngospasm seems to be idiosyncratic, and accordingly, clinicians administering ketamine must be prepared for its rapid identification and management. Given no evidence that they decrease the risk of laryngospasm, coadministered anticholinergics seem unnecessary.

  3. Low-Dose Ketamine Infusion for Emergency Department Patients with Severe Pain.

    PubMed

    Ahern, Terence L; Herring, Andrew A; Miller, Steve; Frazee, Bradley W

    2015-07-01

    Use of low-dose ketamine infusions in the emergency department (ED) has not previously been described, despite routine use in perioperative and other settings. Our hypothesis was that a low-dose ketamine bolus followed by continuous infusion would 1) provide clinically significant and sustained pain relief; 2) be well tolerated; and 3) be feasible in the ED. We prospectively administered 15 mg intravenous ketamine followed immediately by continuous ketamine infusion at 20 mg/h for 1 hour. Optional morphine (4 mg) was offered at 20, 40, and 60 minutes. Pain intensity, vitals signs, level of sedation, and adverse reactions were assessed for 120 minutes. A total of 38 patients were included with a median initial numerical rating scale (NRS) pain score of 9. At 10 minutes, the median reduction in pain score was 4, with 7 patients reporting a score of 0. At 60 and 120 minutes, 25 and 26 patients, respectively, reported clinically significant pain reduction (decrease NRS score > 3). Heart rate, blood pressure, respiratory rate, and oxygen saturation remained stable. Mild or moderate side effects including dizziness, fatigue, and headache were common. Patient satisfaction was high; 85% reported they would have this medication again for similar pain. A low-dose ketamine infusion protocol provided significant pain relief with mostly mild side effects and no severe adverse events. Wiley Periodicals, Inc.

  4. Repeated intranasal ketamine for treatment-resistant depression - the way to go? Results from a pilot randomised controlled trial.

    PubMed

    Gálvez, Verònica; Li, Adrienne; Huggins, Christina; Glue, Paul; Martin, Donel; Somogyi, Andrew A; Alonzo, Angelo; Rodgers, Anthony; Mitchell, Philip B; Loo, Colleen K

    2018-04-01

    Ketamine research in depression has mostly used intravenous, weight-based approaches, which are difficult to translate clinically. Intranasal (IN) ketamine is a promising alternative but no controlled data has been published on the feasibility, safety and potential efficacy of repeated IN ketamine treatments. This randomised, double-blind, placebo-controlled pilot study compared a 4-week course of eight treatments of 100 mg ketamine or 4.5 mg midazolam. Each treatment was given as 10 separate IN sprays, self-administered 5 min apart. The study was stopped early due to poor tolerability after five treatment-resistant depressed participants were included. Feasibility, safety (acute and cumulative), cognitive and efficacy outcomes were assessed. Plasma ketamine and norketamine concentrations were assayed after the first treatment. Significant acute cardiovascular, psychotomimetic and neurological side effects occurred at doses < 100 mg ketamine. No participants were able to self-administer all 10 ketamine sprays due to incoordination; treatment time occasionally had to be extended (>45 min) due to acute side effects. No hepatic, cognitive or urinary changes were observed after the treatment course in either group. There was an approximately two-fold variation in ketamine and norketamine plasma concentrations between ketamine participants. At course end, one participant had remitted in each of the ketamine and midazolam groups. IN ketamine, with the drug formulation and delivery device used, was not a useful treatment approach in this study. Absorption was variable between individuals and acute tolerability was poor, requiring prolonged treatment administration time in some individuals. The drug formulation, the delivery device, the insufflation technique and individual patient factors play an important role in tolerability and efficacy when using IN ketamine for TRD.

  5. Ketamine impairs recognition memory consolidation and prevents learning-induced increase in hippocampal brain-derived neurotrophic factor levels.

    PubMed

    Goulart, B K; de Lima, M N M; de Farias, C B; Reolon, G K; Almeida, V R; Quevedo, J; Kapczinski, F; Schröder, N; Roesler, R

    2010-06-02

    The non-competitive N-methyl-d-aspartate (NMDA) glutamate receptor antagonist ketamine has been shown to produce cognitive deficits. However, the effects of ketamine on the consolidation phase of memory remain poorly characterized. Here we show that systemic administration of ketamine immediately after training dose-dependently impairs long-term retention of memory for a novel object recognition (NOR) task in rats. Control experiments showed that the impairing effects of ketamine could not be attributed to an influence on memory retrieval or sensorimotor effects. In addition, ketamine prevented the increase in hippocampal brain-derived neurotrophic factor (BDNF) levels induced by NOR learning. Our results show for the first time that ketamine disrupts the consolidation phase of long-term recognition memory. In addition, the findings suggest that the amnestic effects of ketamine might be at least partially mediated by an influence on BDNF signaling in the hippocampus. Copyright 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Clozapine counteracts a ketamine-induced depression of hippocampal-prefrontal neuroplasticity and alters signaling pathway phosphorylation

    PubMed Central

    Rame, Marion; Caudal, Dorian; Schenker, Esther; Svenningsson, Per; Spedding, Michael; Jay, Thérèse M.

    2017-01-01

    Single sub-anesthetic doses of ketamine can exacerbate the symptoms of patients diagnosed with schizophrenia, yet similar ketamine treatments rapidly reduce depressive symptoms in major depression. Acute doses of the atypical antipsychotic drug clozapine have also been shown to counteract ketamine-induced psychotic effects. In the interest of understanding whether these drug effects could be modeled with alterations in neuroplasticity, we examined the impact of acutely-administered ketamine and clozapine on in vivo long-term potentiation (LTP) in the rat’s hippocampus-to-prefrontal cortex (H-PFC) pathway. We found that a low dose of ketamine depressed H-PFC LTP, whereas animals that were co-administrated the two drugs displayed LTP that was similar to a saline-treated control. To address which signaling molecules might mediate such effects, we also examined phosphorylation and total protein levels of GSK3β, GluA1, TrkB, ERK, and mTOR in prefrontal and hippocampal sub-regions. Among the statistically significant effects that were detected (a) both ketamine and clozapine increased the phosphorylation of Ser9-GSK3β throughout the prefrontal cortex and of Ser2481-mTOR in the dorsal hippocampus (DH), (b) clozapine increased the phosphorylation of Ser831-GluA1 throughout the prefrontal cortex and of Ser845-GluA1 in the ventral hippocampus, (c) ketamine treatment increased the phosphorylation of Thr202/Tyr204-ERK in the medial PFC (mPFC), and (d) clozapine treatment was associated with decreases in the phosphorylation of Tyr705-TrkB in the DH and of Try816-TrkB in the mPFC. Further analyses involving phosphorylation effect sizes also suggested Ser831-GluA1 in the PFC displayed the highest degree of clozapine-responsivity relative to ketamine. These results provide evidence for how ketamine and clozapine treatments affect neuroplasticity and signaling pathways in the stress-sensitive H-PFC network. They also demonstrate the potential relevance of H-PFC pathway

  7. The Use of Prehospital Ketamine for Control of Agitation in a Metropolitan Firefighter-based EMS System.

    PubMed

    Keseg, David; Cortez, Eric; Rund, Douglas; Caterino, Jeffrey

    2015-01-01

    Abstract Introduction. Prehospital personnel frequently encounter agitated, combative, and intoxicated patients in the field. In recent years, ketamine has been described as an effective sedative agent to treat such patients; however, a paucity of research exists describing the use of prehospital ketamine. The objective of this study was to provide a descriptive analysis of the Columbus Division of Fire's experience with utilizing ketamine in the prehospital setting. We hypothesized that ketamine administration improves patient condition, is effective at sedating patients, and does not result in endotracheal intubation in the prehospital setting or in the emergency department (ED). Methods. We conducted a retrospective cohort chart review of Columbus Division of Fire patient care reports and hospital records from destination hospitals in the central Ohio region between October 2010 and October 2012. All patients receiving ketamine administered by Columbus Division of Fire personnel for sedation were included. Patients 17 years and younger were excluded. The primary outcome was the percentage of patients noted to have an "improved" condition recorded in the data field of the patient care report. The secondary outcomes were the effectiveness of sedation and the performance of endotracheal intubation. Results. A total of 36 patients met inclusion criteria over the study period. Data were available on 35 patients for analysis. The mean IV dose of ketamine was 138 mg (SD = 59.5, 100-200). The mean IM dose of ketamine was 324 mg (SD = 120, 100-500). Prehospital records noted an improvement in patient condition after ketamine administration in 32 cases (91%, 95% CI 77-98%). Six patients required sedation post-ketamine administration either by EMS (2) or in the ED (4) (17%, 95% CI 6.5-34%). Endotracheal intubation was performed in eight (23%, 95% CI 10-40%) patients post-ketamine administration. Conclusion. We found that in a cohort of patients administered ketamine

  8. Ketamine Corrects Stress-Induced Cognitive Dysfunction through JAK2/STAT3 Signaling in the Orbitofrontal Cortex

    PubMed Central

    Patton, Michael S; Lodge, Daniel J; Morilak, David A; Girotti, Milena

    2017-01-01

    Deficits in cognitive flexibility are prominent in stress-related psychiatric disorders, including depression. Ketamine has rapid antidepressant efficacy, but it is unknown if ketamine improves cognitive symptoms. In rats, 2 weeks chronic intermittent cold (CIC) stress impairs reversal learning, a form of cognitive flexibility mediated by the orbitofrontal cortex (OFC) that we have used previously to model cognitive dysfunction in depression. We have shown that activating JAK2/STAT3 signaling in the OFC rescued the CIC stress-induced reversal learning deficit. Thus, in the present study we determined whether ketamine also corrects the stress-induced reversal learning deficit, and if JAK2/STAT3 signaling is involved in this effect. A single injection of ketamine (10 mg/kg, i.p.) 24 h prior to testing rescued the CIC stress-induced reversal learning deficit. CIC stress decreased JAK2 phosphorylation in the OFC, and ketamine restored pJAK2 levels within 2 h post injection. The JAK2 inhibitor AG490 given systemically or into the OFC at the time of ketamine injection prevented its beneficial effect on reversal learning. We then tested the role of JAK2/STAT3 in ketamine-induced plasticity in the OFC. Ketamine depressed local field potentials evoked in the OFC by excitatory thalamic afferent stimulation, and this was prevented by JAK2 inhibition in the OFC. Further, in both the OFC and primary cortical neurons in culture, ketamine increased expression of the neural plasticity-related protein Arc, and this was prevented by JAK2 inhibition. These results suggest that the JAK2/STAT3 signaling pathway is a novel mechanism by which ketamine exerts its therapeutic effects on stress-induced cognitive dysfunction in the OFC. PMID:27748739

  9. Mood and neuropsychological effects of different doses of ketamine in electroconvulsive therapy for treatment-resistant depression.

    PubMed

    Zhong, Xiaomei; He, Hongbo; Zhang, Chunping; Wang, Zhijie; Jiang, Miaoling; Li, Qirong; Zhang, Minling; Huang, Xiong

    2016-09-01

    Treatment-resistant depression (TRD) is a growing clinical challenge. Electroconvulsive therapy (ECT) is an effective tool for TRD treatment. However, there remains a subset of patients who do not respond to this treatment with common anesthetic agent. Ketamine, a noteworthy anesthetic agent, has emerged as an augmentation to enhance the antidepressant efficacy of ECT. Trials of i.v. ketamine in TRD indicated dose-related mood enhancing efficacy. We aimed to explore anesthetic and subanesthetic concentrations of ketamine in ECT for TRD with respect to their impact on mood and neuropsychological effects. Ninety TRD patients (36 males, 54 females; average age, 30.6 years old) were randomly assigned to receive either ketamine (0.8mg/kg) (n=30), subanesthetic ketamine (0.5mg/kg) plus propofol (0.5mg/kg) (n=30) or propofol (0.8mg/kg) (n=30) as an anesthetic and underwent 8 ECT sessions. The primary outcome measures were the 17-item Hamilton Depression Rating Scale (HDRS-17), cognitive assessments and seizure parameters. The ketamine group had an earlier improvement in HDRS-17, longer seizure duration, lower electric quantity, a higher remission rate, and a lower degree of executive cognitive impairment compared to the ketamine+propofol and propofol groups. The ketamine+propofol group showed earlier improvement in the HDRS-17, a longer seizure duration and a different seizure energy index when compared to the propofol group. The postoperative dissociative side effect was not assessed. Both anesthetic and subanesthetic concentrations of ketamine have rapid mood enhancing actions in ECT for TRD, while anesthetic concentrations results in larger magnitudes of antidepression and cognitive protection. ECT with ketamine anesthesia might be an optimized therapy for patients with TRD. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Resting-state Network-specific Breakdown of Functional Connectivity during Ketamine Alteration of Consciousness in Volunteers.

    PubMed

    Bonhomme, Vincent; Vanhaudenhuyse, Audrey; Demertzi, Athena; Bruno, Marie-Aurélie; Jaquet, Oceane; Bahri, Mohamed Ali; Plenevaux, Alain; Boly, Melanie; Boveroux, Pierre; Soddu, Andrea; Brichant, Jean François; Maquet, Pierre; Laureys, Steven

    2016-11-01

    Consciousness-altering anesthetic agents disturb connectivity between brain regions composing the resting-state consciousness networks (RSNs). The default mode network (DMn), executive control network, salience network (SALn), auditory network, sensorimotor network (SMn), and visual network sustain mentation. Ketamine modifies consciousness differently from other agents, producing psychedelic dreaming and no apparent interaction with the environment. The authors used functional magnetic resonance imaging to explore ketamine-induced changes in RSNs connectivity. Fourteen healthy volunteers received stepwise intravenous infusions of ketamine up to loss of responsiveness. Because of agitation, data from six subjects were excluded from analysis. RSNs connectivity was compared between absence of ketamine (wake state [W1]), light ketamine sedation, and ketamine-induced unresponsiveness (deep sedation [S2]). Increasing the depth of ketamine sedation from W1 to S2 altered DMn and SALn connectivity and suppressed the anticorrelated activity between DMn and other brain regions. During S2, DMn connectivity, particularly between the medial prefrontal cortex and the remaining network (effect size β [95% CI]: W1 = 0.20 [0.18 to 0.22]; S2 = 0.07 [0.04 to 0.09]), and DMn anticorrelated activity (e.g., right sensory cortex: W1 = -0.07 [-0.09 to -0.04]; S2 = 0.04 [0.01 to 0.06]) were broken down. SALn connectivity was nonuniformly suppressed (e.g., left parietal operculum: W1 = 0.08 [0.06 to 0.09]; S2 = 0.05 [0.02 to 0.07]). Executive control networks, auditory network, SMn, and visual network were minimally affected. Ketamine induces specific changes in connectivity within and between RSNs. Breakdown of frontoparietal DMn connectivity and DMn anticorrelation and sensory and SMn connectivity preservation are common to ketamine and propofol-induced alterations of consciousness.

  11. Potentiation of low dose ketamine effects by naltrexone: potential implications for the pharmacotherapy of alcoholism.

    PubMed

    Krystal, John H; Madonick, Steven; Perry, Edward; Gueorguieva, Ralitza; Brush, Laura; Wray, Yola; Belger, Aysenil; D'Souza, Deepak Cyril

    2006-08-01

    The interplay of opiate and NMDA glutamate receptors may contribute to psychosis, cognitive function, alcoholism, and substance dependence. Ketamine and ethanol block the NMDA glutamate receptor. The purpose of this randomized double-blind, placebo-controlled human laboratory study was to evaluate whether the interactive effects of drugs acting at opiate and NMDA glutamate receptors might partially explain the efficacy of naltrexone for the treatment of alcoholism, that is, whether naltrexone 25 mg pretreatment would modulate ketamine effects in healthy human subjects. Two groups of healthy subjects were studied. An initial group (n=31) received a perception-altering subanesthetic dose of ketamine (bolus of 0.23 mg/kg over 1 min followed by a 60-min infusion of 0.58 mg/kg or saline bolus and infusion). A second group (n=24) completed the same testing procedures, but received a subperceptual ketamine dose (bolus 0.081 mg/kg over 10 min followed by an infusion of 0.4 mg/kg/h). Ketamine produced positive symptoms, negative symptoms, emotional discomfort, and cognitive effects as measured by the Positive and Negative Syndrome Scale (PANSS) in a dose-related fashion. The lower ketamine dose produced subjective effects similar to two standard ethanol drinks, whereas the higher ketamine dose produced effects similar to five standard drinks. Although naltrexone produced no significant behavioral effects, it significantly magnified the increase in the total PANSS score produced by the lower subperceptual dose of ketamine, but not the higher perception-altering dose of ketamine. These data suggest that the interplay of opiate receptor antagonism and NMDA receptor antagonism may be relevant to the protective effects of naltrexone on alcohol consumption via potentiation of dysphoric effects associated with the NMDA receptor antagonist effects of ethanol. However, these data suggest that at levels of NMDA receptor antagonism associated with heavy drinking, this protective

  12. 5-Hydroxytryptamine-Independent Antidepressant Actions of (R)-Ketamine in a Chronic Social Defeat Stress Model.

    PubMed

    Zhang, Kai; Dong, Chao; Fujita, Yuko; Fujita, Atsuhiro; Hashimoto, Kenji

    2018-02-01

    Previous reports suggest that 5-hydroxytryptamine might play a role in the antidepressant actions of (R,S)-ketamine. However, its role in the antidepressant actions of (R)-ketamine, which is more potent than (S)-ketamine, is unknown. This study was conducted to examine whether 5-hydroxytryptamine depletion affects the antidepressant actions of (R)-ketamine in a chronic social defeat stress model. An inhibitor of 5-hydroxytryptamine synthesis, para-chlorophenylalanine methyl ester hydrochloride (300 mg/kg, twice daily for 3 consecutive days), or vehicle was administered to control and chronic social defeat stress-susceptible mice. Levels of 5-hydroxytryptamine and its metabolite, 5-hydroxyindoleacetic acid, in mouse brain regions were measured using high-performance liquid chromatography. Furthermore, antidepressant effects of (R)-ketamine (10 mg/kg) in the vehicle- and para-chlorophenylalanine methyl ester hydrochloride-treated susceptible mice were assessed using tail suspension test and 1% sucrose preference test. para-Chlorophenylalanine methyl ester hydrochloride treatment caused marked reductions of 5-hydroxytryptamine and 5-hydroxyindoleacetic acid in the brain regions of control and chronic social defeat stress susceptible mice. In the tail suspension test, (R)-ketamine significantly attenuated the increased immobility time in the chronic social defeat stress-susceptible mice with or without 5-hydroxytryptamine depletion. In the sucrose preference test (2 and 5 days after a single dose), (R)-ketamine significantly enhanced reduced sucrose consumption in the chronic social defeat stress-susceptible mice with or without 5-hydroxytryptamine depletion. These findings show that 5-hydroxytryptamine depletion did not affect the antidepressant effects of (R)-ketamine in a chronic social defeat stress model. Therefore, it is unlikely that 5-hydroxytryptamine plays a major role in the antidepressant actions of (R)-ketamine. © The Author 2017. Published by Oxford

  13. Treatment of severe mucositis pain with oral ketamine mouthwash.

    PubMed

    Shillingburg, Alexandra; Kanate, Abraham S; Hamadani, Mehdi; Wen, Sijin; Craig, Michael; Cumpston, Aaron

    2017-07-01

    Mucositis is a significant complication of intensive chemotherapy or hematopoietic cell transplantation (HCT), with few treatment options. Ketamine mouthwashes have been used for pain relief, but supporting evidence is limited. The primary objective of this study was to assess the reduction in pain intensity of stomatodynia and odynophagia compared to baseline assessment. This open-label, prospective, phase II interventional study (NCT01566448) was conducted from February 2012 through July 2015. Patients with grade 3 or 4 oral mucositis according to the World Health Organization (WHO) scale as a result of chemotherapy were treated with ketamine mouthwash 20 mg/5 mL four times daily and every 4 h as needed. Thirty patients were enrolled and a total of 136 assessments were conducted. A statistically significant reduction in pain scores of 2 and 3 points was achieved after 1 h and 3 days, respectively (p < 0.0001, p = 0.0003). Pain scores were significantly improved while swallowing, reduced 1 and 4 points at 1-h and 3-day assessment, respectively (p = 0.0006, p = 0.0001). No patients developed adverse effects related to ketamine administration. Ketamine mouthwashes resulted in clinically meaningful and statistically significant reduction in pain scores, have an acceptable safety profile, and can be a useful adjunctive treatment in the multi-modal management of severe mucositis.

  14. Locomotor sensitization to intermittent ketamine administration is associated with nucleus accumbens plasticity in male and female rats.

    PubMed

    Strong, C E; Schoepfer, K J; Dossat, A M; Saland, S K; Wright, K N; Kabbaj, M

    2017-07-15

    Clinical evidence suggests superior antidepressant response over time with a repeated, intermittent ketamine treatment regimen as compared to a single infusion. However, the club drug ketamine is commonly abused. Therefore, the abuse potential of repeated ketamine injections at low doses needs to be investigated. In this study, we investigated the abuse potential of repeated exposure to either 0, 2.5, or 5 mg/kg ketamine administered once weekly for seven weeks. Locomotor activity and conditioned place preference (CPP) were assayed to evaluate behavioral sensitization to the locomotor activating effects of ketamine and its rewarding properties, respectively. Our results show that while neither males nor females developed CPP, males treated with 5 mg/kg and females treated with either 2.5 or 5 mg/kg ketamine behaviorally sensitized. Furthermore, dendritic spine density was increased in the NAc of both males and females administered 5 mg/kg ketamine, an effect specific to the NAc shell (NAcSh) in males but to both the NAc core (NAcC) and NAcSh in females. Additionally, males administered 5 mg/kg ketamine displayed increased protein expression of ΔfosB, calcium calmodulin kinase II alpha (CaMKIIα), and brain-derived neurotrophic factor (BDNF), an effect not observed in females administered either dose of ketamine. However, males and females administered 5 mg/kg ketamine displayed increased protein expression of AMPA receptors (GluA1). Taken together, low-dose ketamine, when administered intermittently, induces behavioral sensitization at a lower dose in females than males, accompanied by an increase in spine density in the NAc and protein expression changes in pathways commonly implicated in addiction. Copyright © 2017. Published by Elsevier Ltd.

  15. Opposite effects of ketamine and deep brain stimulation on rat thalamocortical information processing.

    PubMed

    Kulikova, Sofya P; Tolmacheva, Elena A; Anderson, Paul; Gaudias, Julien; Adams, Brendan E; Zheng, Thomas; Pinault, Didier

    2012-11-01

    Sensory and cognitive deficits are common in schizophrenia. They are associated with abnormal brain rhythms, including disturbances in γ frequency (30-80 Hz) oscillations (GFO) in cortex-related networks. However, the underlying anatomofunctional mechanisms remain elusive. Clinical and experimental evidence suggests that these deficits result from a hyporegulation of glutamate N-methyl-D-aspartate receptors. Here we modeled these deficits in rats with ketamine, a non-competitive N-methyl-D-aspartate receptor antagonist and a translational psychotomimetic substance at subanesthetic doses. We tested the hypothesis that ketamine-induced sensory deficits involve an impairment of the ability of the thalamocortical (TC) system to discriminate the relevant information from the baseline activity. Furthermore, we wanted to assess whether ketamine disrupts synaptic plasticity in TC systems. We conducted multisite network recordings in the rat somatosensory TC system, natural stimulation of the vibrissae and high-frequency electrical stimulation (HFS) of the thalamus. A single systemic injection of ketamine increased the amount of baseline GFO, reduced the amplitude of the sensory-evoked TC response and decreased the power of the sensory-evoked GFO. Furthermore, cortical application of ketamine elicited local and distant increases in baseline GFO. The ketamine effects were transient. Unexpectedly, HFS of the TC pathway had opposite actions. In conclusion, ketamine and thalamic HFS have opposite effects on the ability of the somatosensory TC system to discriminate the sensory-evoked response from the baseline GFO during information processing. Investigating the link between the state and function of the TC system may conceptually be a key strategy to design innovative therapies against neuropsychiatric disorders. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  16. Long-Term Stability of Tramadol and Ketamine Solutions for Patient-Controlled Analgesia Delivery.

    PubMed

    Gu, Junfeng; Qin, Wengang; Chen, Fuchao; Xia, Zhongyuan

    2015-08-26

    Subanesthetic doses of ketamine as an adjuvant to tramadol in patient-controlled analgesia (PCA) for postoperative pain have been shown to improve the quality of analgesia. However, there are no such commercially available drug mixtures, and the stability of the combination has rarely been assessed. Admixtures were assessed for periods of up to 14 days at 4°C and 25°C. Three different mixtures of tramadol and ketamine (tramadol 5.0 mg/mL + ketamine 0.5 mg/mL, tramadol 5.0 mg/mL + ketamine 1.0 mg/mL, and tramadol 5.0 mg/mL + ketamine 2.0 mg/mL) were prepared in polyolefin bags by combining these 2 drugs with 0.9% sodium chloride (normal saline [NS]). The chemical stability of the admixtures was evaluated by a validated high-performance liquid chromatography (HPLC) method and by measurement of pH values. Solution appearance and color were assessed by observing the samples against black and white backgrounds. Solutions were considered stable if they maintained 90% of the initial concentration of each drug. The percentages of initial concentration of tramadol and ketamine in the various solutions remained above 98% when stored at 4°C or 25°C over the testing period. No changes in color or turbidity were observed in any of the prepared solutions. Throughout this period, pH values remained stable. The results indicate that the drug mixtures of tramadol with ketamine in NS for PCA delivery systems were stable for 14 days when stored in polyolefin bags at 4°C or 25°C.

  17. Clonidine versus ketamine to prevent tourniquet pain during intravenous regional anesthesia with lidocaine.

    PubMed

    Gorgias, N K; Maidatsi, P G; Kyriakidis, A M; Karakoulas, K A; Alvanos, D N; Giala, M M

    2001-01-01

    Both clonidine and ketamine have been found to prolong the action of local anesthetics through a peripheral mechanism. Our study compares the efficacy of a low dose of clonidine or ketamine separately added to intravenous regional anesthesia (IVRA) with lidocaine to prevent tourniquet pain. We conducted a prospective randomized double-blinded study in 45 patients undergoing hand or forearm surgery, with anticipated duration exceeding 1 hour under IVRA. Proximal cuff inflation of a double tourniquet was followed by administration of 40 mL of lidocaine 0.5% and either saline, 1 microg/kg clonidine, or 0.1 mg/kg ketamine. When anesthesia was established, the inflation of the proximal and distal cuff was interchanged. Thereafter, tourniquet pain was rated on a visual analog scale (VAS) every 10 minutes. Intraoperatively, boluses of 25 microg fentanyl were provided for tourniquet pain treatment when required, and total fentanyl consumption was recorded. Patients receiving plain lidocaine persistently reported the highest pain scores among groups (P <.001) 20 minutes after distal cuff inflation. Differences between the groups with additional treatment were noted 50 minutes after distal cuff inflation and until the end of the observation, with significantly lower VAS ratings (P <.001 to P <.01) in ketamine-treated patients. Total fentanyl consumption was significantly decreased by ketamine (70.00 +/- 25.35 microg) or clonidine (136.67 +/- 39.94 microg) compared with the plain lidocaine group (215.33 +/- 52.33 microg) (P <.001 between all groups). The addition of clonidine 1 microg/kg or ketamine 0.1 mg/kg to lidocaine for IVRA delays the onset of unbearable tourniquet pain and decreases analgesic consumption for tourniquet pain relief, although ketamine has a more potent effect.

  18. Long-Term Stability of Tramadol and Ketamine Solutions for Patient-Controlled Analgesia Delivery

    PubMed Central

    Gu, Junfeng; Qin, Wengang; Chen, Fuchao; Xia, Zhongyuan

    2015-01-01

    Background Subanesthetic doses of ketamine as an adjuvant to tramadol in patient-controlled analgesia (PCA) for postoperative pain have been shown to improve the quality of analgesia. However, there are no such commercially available drug mixtures, and the stability of the combination has rarely been assessed. Material/Methods Admixtures were assessed for periods of up to 14 days at 4°C and 25°C. Three different mixtures of tramadol and ketamine (tramadol 5.0 mg/mL + ketamine 0.5 mg/mL, tramadol 5.0 mg/mL + ketamine 1.0 mg/mL, and tramadol 5.0 mg/mL + ketamine 2.0 mg/mL) were prepared in polyolefin bags by combining these 2 drugs with 0.9% sodium chloride (normal saline [NS]). The chemical stability of the admixtures was evaluated by a validated high-performance liquid chromatography (HPLC) method and by measurement of pH values. Solution appearance and color were assessed by observing the samples against black and white backgrounds. Solutions were considered stable if they maintained 90% of the initial concentration of each drug. Results The percentages of initial concentration of tramadol and ketamine in the various solutions remained above 98% when stored at 4°C or 25°C over the testing period. No changes in color or turbidity were observed in any of the prepared solutions. Throughout this period, pH values remained stable. Conclusions The results indicate that the drug mixtures of tramadol with ketamine in NS for PCA delivery systems were stable for 14 days when stored in polyolefin bags at 4°C or 25°C. PMID:26306476

  19. Ketamine administration in depressive disorders: a systematic review and meta-analysis.

    PubMed

    Fond, Guillaume; Loundou, Anderson; Rabu, Corentin; Macgregor, Alexandra; Lançon, Christophe; Brittner, Marie; Micoulaud-Franchi, Jean-Arthur; Richieri, Raphaelle; Courtet, Philippe; Abbar, Mocrane; Roger, Matthieu; Leboyer, Marion; Boyer, Laurent

    2014-09-01

    Ketamine's efficacy in depressive disorders has been established in several controlled trials. The aim of the present study was to determine whether or not ketamine administration significantly improves depressive symptomatology in depression and more specifically in major depressive disorder (MDD), bipolar depression, resistant depression (non-ECT studies), and as an anesthetic agent in electroconvulsive therapy (ECT) for resistant depression (ECT studies). Secondary outcomes were the duration of ketamine's effect, the efficacy on suicidal ideations, the existence of a dose effect, and the safety/tolerance of the treatment. Studies were included if they met the following criteria (without any language or date restriction): design: randomized controlled trials, intervention: ketamine administration, participants: diagnosis of depression, and evaluation of severity based on a validated scale. We calculated standardized mean differences (SMDs) with 95 % confidence intervals (CIs) for each study. We used fixed and random effects models. Heterogeneity was assessed using the I2 statistic. We included nine non-ECT studies in our quantitative analysis (192 patients with major depressive disorder and 34 patients with bipolar depression). Overall, depression scores were significantly decreased in the ketamine groups compared to those in the control groups (SMD = -0.99; 95 % CI -1.23, -0.75; p < 0.01). Ketamine's efficacy was confirmed in MDD (resistant to previous pharmacological treatments or not) (SMD = -0.91; 95 % CI -1.19,-0.64; p < 0.01), in bipolar depression (SMD = -1.34; 95 % CI -1.94, -0.75), and in drug-free patients as well as patients under medication. Four ECT trials (118 patients) were included in our quantitative analysis. One hundred and three patients were diagnosed with major depressive disorder and 15 with bipolar depression. Overall, depression scores were significantly improved in the 58 patients receiving ketamine in ECT anesthesia

  20. Management of Neuropathic Chronic Pain with Methadone Combined with Ketamine: A Randomized, Double Blind, Active-Controlled Clinical Trial.

    PubMed

    Rigo, Flavia Karine; Trevisan, Gabriela; Godoy, Maria C; Rossato, Mateus Fortes; Dalmolin, Gerusa D; Silva, Mariane A; Menezes, Mirian S; Caumo, Wolnei; Ferreira, Juliano

    2017-03-01

    Methadone and ketamine are used in neuropathic pain management. However, the benefits of both drugs association are uncertain in the treatment of neuropathic pain. Our primary objective was test the hypothesis that oral methadone combined with oral ketamine is more effective than oral methadone or ketamine alone in reducing neuropathic pain. We conducted a randomized, double blind, active-controlled parallel-group clinical trial. Forty-two patients with neuropathic pain refractory to conventional therapy were randomly assigned to receive oral methadone (n = 14), ketamine (n = 14), or methadone plus ketamine (n = 14) over a 3-month period. During these 90 days, we observed pain scores using a visual analogical scale (VAS), allodynia, burning/shooting pain, and some side effects. All treatments were effective in reducing pain scores by at least 40%. However, a significant improvement in pain was observed only in the ketamine alone group compared with both the methadone or methadone/ketamine groups. No significant differences were observed among the treatment groups for the reduction of burning or shooting pain, while ketamine alone was more effective than methadone or methadone/ketamine for the reduction of allodynia. Formal assessment for awareness of the allocation was not performed, some co-intervention bias may have occurred, our results could be only relevant to the patient population investigated and the use of VAS as the primary outcome detect changes in pain intensity but not to assess neuropathic pain symptoms. This study indicates that ketamine was better than methadone or methadone/ketamine for treating neuropathic pain.Key words: Multimodal analgesia, refractory pain, NMDA receptor, opioid.

  1. Effects of Combined Ketamine/Xylazine Anesthesia on Light Induced Retinal Degeneration in Rats

    PubMed Central

    Bolz, Sylvia; Eslava-Schmalbach, Javier; Willmann, Gabriel; Zhour, Ahmad; Zrenner, Eberhart; Fischer, M. Dominik; Gekeler, Florian

    2012-01-01

    Objectives To explore the effect of ketamine-xylazine anesthesia on light-induced retinal degeneration in rats. Methods Rats were anesthetized with ketamine and xylazine (100 and 5 mg, respectively) for 1 h, followed by a recovery phase of 2 h before exposure to 16,000 lux of environmental illumination for 2 h. Functional assessment by electroretinography (ERG) and morphological assessment by in vivo imaging (optical coherence tomography), histology (hematoxylin/eosin staining, TUNEL assay) and immunohistochemistry (GFAP and rhodopsin staining) were performed at baseline (ERG), 36 h, 7 d and 14 d post-treatment. Non-anesthetized animals treated with light damage served as controls. Results Ketamine-xylazine pre-treatment preserved retinal function and protected against light-induced retinal degeneration. In vivo retinal imaging demonstrated a significant increase of outer nuclear layer (ONL) thickness in the non-anesthetized group at 36 h (p<0.01) and significant reduction one week (p<0.01) after light damage. In contrast, ketamine-xylazine pre-treated animals showed no significant alteration of total retinal or ONL thickness at either time point (p>0.05), indicating a stabilizing and/or protective effect with regard to phototoxicity. Histology confirmed light-induced photoreceptor cell death and Müller cells gliosis in non-anesthetized rats, especially in the superior hemiretina, while ketamine-xylazine treated rats showed reduced photoreceptor cell death (TUNEL staining: p<0.001 after 7 d), thicker ONL and longer IS/OS. Fourteen days after light damage, a reduction of standard flash induced a-wave amplitudes and a-wave slopes (p = 0.01) and significant alterations in parameters of the scotopic sensitivity function (e.g. Vmax of the Naka Rushton fit p = 0.03) were observed in non-treated vs. ketamine-xylazine treated animals. Conclusions Our results suggest that pre-treatment with ketamine-xylazine anesthesia protects retinas against light damage

  2. Ketamine blocks bursting in the lateral habenula to rapidly relieve depression.

    PubMed

    Yang, Yan; Cui, Yihui; Sang, Kangning; Dong, Yiyan; Ni, Zheyi; Ma, Shuangshuang; Hu, Hailan

    2018-02-14

    The N-methyl-d-aspartate receptor (NMDAR) antagonist ketamine has attracted enormous interest in mental health research owing to its rapid antidepressant actions, but its mechanism of action has remained elusive. Here we show that blockade of NMDAR-dependent bursting activity in the 'anti-reward center', the lateral habenula (LHb), mediates the rapid antidepressant actions of ketamine in rat and mouse models of depression. LHb neurons show a significant increase in burst activity and theta-band synchronization in depressive-like animals, which is reversed by ketamine. Burst-evoking photostimulation of LHb drives behavioural despair and anhedonia. Pharmacology and modelling experiments reveal that LHb bursting requires both NMDARs and low-voltage-sensitive T-type calcium channels (T-VSCCs). Furthermore, local blockade of NMDAR or T-VSCCs in the LHb is sufficient to induce rapid antidepressant effects. Our results suggest a simple model whereby ketamine quickly elevates mood by blocking NMDAR-dependent bursting activity of LHb neurons to disinhibit downstream monoaminergic reward centres, and provide a framework for developing new rapid-acting antidepressants.

  3. Up-regulation of insulin-like growth factor 2 by ketamine requires glycogen synthase kinase-3 inhibition.

    PubMed

    Grieco, Steven F; Cheng, Yuyan; Eldar-Finkelman, Hagit; Jope, Richard S; Beurel, Eléonore

    2017-01-04

    An antidepressant dose of the rapidly-acting ketamine inhibits glycogen synthase kinase-3 (GSK3) in mouse hippocampus, and this inhibition is required for the antidepressant effect of ketamine in learned helplessness depression-like behavior. Here we report that treatment with an antidepressant dose of ketamine (10mg/kg) increased expression of insulin-like growth factor 2 (IGF2) in mouse hippocampus, an effect that required ketamine-induced inhibition of GSK3. Ketamine also inhibited hippocampal GSK3 and increased expression of hippocampal IGF2 in mice when administered after the induction of learned helplessness. Treatment with the specific GSK3 inhibitor L803-mts was sufficient to up-regulate hippocampal IGF2 expression. Administration of IGF2 siRNA reduced ketamine's antidepressant effect in the learned helplessness paradigm. Mice subjected to the learned helplessness paradigm were separated into two groups, those that were resilient (non-depressed) and those that were susceptible (depressed). Non-depressed resilient mice displayed higher expression of IGF2 than susceptible mice. These results indicate that IGF2 contributes to ketamine's antidepressant effect and that IGF2 may confer resilience to depression-like behavior. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Up-regulation of insulin-like growth factor 2 by ketamine requires glycogen synthase kinase-3 inhibition

    PubMed Central

    Grieco, Steven F.; Cheng, Yuyan; Eldar-Finkelman, Hagit; Jope, Richard S.; Beurel, Eléonore

    2016-01-01

    An antidepressant dose of the rapidly-acting ketamine inhibits glycogen synthase kinase-3 (GSK3) in mouse hippocampus, and this inhibition is required for the antidepressant effect of ketamine in learned helplessness depression-like behavior. Here we report that treatment with an antidepressant dose of ketamine (10 mg/kg) increased expression of insulin-like growth factor 2 (IGF2) in mouse hippocampus, an effect that required ketamine-induced inhibition of GSK3. Ketamine also inhibited hippocampal GSK3 and increased expression of hippocampal IGF2 in mice when administered after the induction of learned helplessness. Treatment with the specific GSK3 inhibitor L803-mts was sufficient to up-regulate hippocampal IGF2 expression. Administration of IGF2 siRNA reduced ketamine's antidepressant effect in the learned helplessness paradigm. Mice subjected to the learned helplessness paradigm were separated into two groups, those that were resilient (non-depressed) and those that were susceptible (depressed). Non-depressed resilient mice displayed higher expression of IGF2 than susceptible mice. These results indicate that IGF2 contributes to ketamine's antidepressant effect and that IGF2 may confer resilience to depression-like behavior. PMID:27542584

  5. Ketamine produces antidepressant-like effects through phosphorylation-dependent nuclear export of histone deacetylase 5 (HDAC5) in rats

    PubMed Central

    Choi, Miyeon; Lee, Seung Hoon; Wang, Sung Eun; Ko, Seung Yeon; Song, Mihee; Choi, June-Seek; Duman, Ronald S.; Son, Hyeon

    2015-01-01

    Ketamine produces rapid antidepressant-like effects in animal assays for depression, although the molecular mechanisms underlying these behavioral actions remain incomplete. Here, we demonstrate that ketamine rapidly stimulates histone deacetylase 5 (HDAC5) phosphorylation and nuclear export in rat hippocampal neurons through calcium/calmodulin kinase II- and protein kinase D-dependent pathways. Consequently, ketamine enhanced the transcriptional activity of myocyte enhancer factor 2 (MEF2), which leads to regulation of MEF2 target genes. Transfection of a HDAC5 phosphorylation-defective mutant (Ser259/Ser498 replaced by Ala259/Ala498, HDAC5-S/A), resulted in resistance to ketamine-induced nuclear export, suppression of ketamine-mediated MEF2 transcriptional activity, and decreased expression of MEF2 target genes. Behaviorally, viral-mediated hippocampal knockdown of HDAC5 blocked or occluded the antidepressant effects of ketamine both in unstressed and stressed animals. Taken together, our results reveal a novel role of HDAC5 in the actions of ketamine and suggest that HDAC5 could be a potential mechanism contributing to the therapeutic actions of ketamine. PMID:26647181

  6. Drug use and sexual risk among gay and bisexual men who frequent party venues.

    PubMed

    Theodore, Peter S; Durán, Ron E; Antoni, Michael H

    2014-11-01

    Research connecting club drug use to risky sex among gay/bisexual men (GBM) contains methodological issues that have limited knowledge about the relative risks of distinct drugs. This paper reports drug use and sexual behavior data from 197 GBM who frequented at least one party venue within 3 months of participating. Alarming rates of drug use and unprotected anal intercourse (UAI) with casual sex-partners were reported in connection with time spent at a bar, club or circuit party. Structural equation modeling revealed that use of methamphetamine, gammahydroxybutrate (GHB), and/or ketamine (K), but not use of ecstasy, at a party venue helped explain likelihood of UAI with a casual sex-partner while under the influence of a drug during/following time partying (β = 0.41, p < .01). Findings suggest use of methamphetamine, GHB and/or K at party venues increases risk for subsequent UAI with casual sex-partners. Study implications, limitations, and recommendations for future research are discussed.

  7. β-Hydroxybutyrate supports synaptic vesicle cycling but reduces endocytosis and exocytosis in rat brain synaptosomes.

    PubMed

    Hrynevich, Sviatlana V; Waseem, Tatyana V; Hébert, Audrey; Pellerin, Luc; Fedorovich, Sergei V

    2016-02-01

    The ketogenic diet is used as a prophylactic treatment for different types of brain diseases, such as epilepsy or Alzheimer's disease. In such a diet, carbohydrates are replaced by fats in everyday food, resulting in an elevation of blood-borne ketone bodies levels. Despite clinical applications of this treatment, the molecular mechanisms by which the ketogenic diet exerts its beneficial effects are still uncertain. In this study, we investigated the effect of replacing glucose by the ketone body β-hydroxybutyrate as the main energy substrate on synaptic vesicle recycling in rat brain synaptosomes. First, we observed that exposing presynaptic terminals to nonglycolytic energy substrates instead of glucose did not alter the plasma membrane potential. Next, we found that synaptosomes were able to maintain the synaptic vesicle cycle monitored with the fluorescent dye acridine orange when glucose was replaced by β-hydroxybutyrate. However, in presence of β-hydroxybutyrate, synaptic vesicle recycling was modified with reduced endocytosis. Replacing glucose by pyruvate also led to a reduced endocytosis. Addition of β-hydroxybutyrate to glucose-containing incubation medium was without effect. Reduced endocytosis in presence of β-hydroxybutyrate as sole energy substrate was confirmed using the fluorescent dye FM2-10. Also we found that replacement of glucose by ketone bodies leads to inhibition of exocytosis, monitored by FM2-10. However this reduction was smaller than the effect on endocytosis under the same conditions. Using both acridine orange in synaptosomes and the genetically encoded sensor synaptopHluorin in cortical neurons, we observed that replacing glucose by β-hydroxybutyrate did not modify the pH gradient of synaptic vesicles. In conclusion, the nonglycolytic energy substrates β-hydroxybutyrate and pyruvate are able to support synaptic vesicle recycling. However, they both reduce endocytosis. Reduction of both endocytosis and exocytosis together with

  8. [Ketamine--anticonvulsive and proconvulsive actions].

    PubMed

    Kugler, J; Doenicke, A

    1994-11-01

    Animal experimentation has revealed that ketamine has anticonvulsive properties. Changes in the EEG have also been reported in animals; these have been designated non-convulsive generalized electrographic seizures because of their similarities to epileptiform potentials, even though there are no recognizable signs of seizures. The cataleptic condition of the cats in which these changes were observed led to the conclusion that ketamine could cause petit mal seizures, which took the course of petit mal status. Ketamine was therefore also seen as a dangerous anaesthetic agent predisposing to convulsions, the use of which could lead to status epilepticus and irreversible brain damage. These conflicts of opinion should be resolved, as they are based on various misconceptions. (1) The terminology used for epilepsy by specialized clinicians is not always correctly applied in the context of animal experimentation. (2) The activation of epileptiform potentials in the EEG of animals cannot be interpreted as a reliable sign of epileptogenic efficiency in humans. (3) Too little regard is paid to the different actions of anaesthetic agents in various sites of the brain, at different doses and with different routes of administration. (4) The statistical significance and biological relevance of the study results are inadequate because the numbers of observations are too small. Epileptologists regret the insufficiency of animal models as paradigma for the study of efficiency of antiepileptic drugs in humans. The degree by which extensor spasms in the front paw of Gerbils of rats induced by pentylentetrazol or electric current are reduced after application of an anticonvulsive drug is no reliable measure of its anticonvulsive effect in humans.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Evaluation of medetomidine-ketamine and medetomidine-ketamine-butorphanol for the field anesthesia of free-ranging dromedary camels (Camelus dromedarius) in Australia.

    PubMed

    Boardman, Wayne S J; Lethbridge, Mark R; Hampton, Jordan O; Smith, Ian; Woolnough, Andrew P; McEwen, Margaret-Mary; Miller, Graham W J; Caraguel, Charles G B

    2014-10-01

    Abstract We report the clinical course and physiologic and anesthetic data for a case series of 76 free-ranging dromedary camels (Camelus dromedarius) chemically restrained, by remote injection from a helicopter, in the rangelands of Western Australia and South Australia, 2008-11, to attach satellite-tracking collars. Fifty-five camels were successfully anesthetized using medetomidine-ketamine (MK, n=27) and medetomidine-ketamine-butorphanol (MKB, n=28); the induction of anesthesia in 21 animals was considered unsuccessful. To produce reliable anesthesia for MK, medetomidine was administered at 0.22 mg/kg (± SD=0.05) and ketamine at 2.54 mg/kg (± 0.56), and for MKB, medetomidine was administered at 0.12 mg/kg (± 0.05), ketamine at 2.3 mg/kg (± 0.39), and butorphanol at 0.05 mg/kg (± 0.02). Median time-to-recumbency for MKB (8.5 min) was 2.5 min shorter than for MK (11 min) (P=0.13). For MK, the reversal atipamezole was administered at 0.24 mg/kg (± 0.10), and for MKB, atipamezole was administered at 0.23 mg/kg (± 0.13) and naltrexone at 0.17 mg/kg (± 0.16). Median time-to-recovery was 1 min shorter for MK (5 min) than MKB (6 min; P=0.02). Physiologic parameters during recumbency were not clinically different between the two regimes. Both regimes were suitable to safely anesthetize free-ranging camels; however, further investigation is required to find the safest, most consistent, and logistically practical combination.

  10. Ameliorating treatment-refractory depression with intranasal ketamine: potential NMDA receptor actions in the pain circuitry representing mental anguish.

    PubMed

    Opler, Lewis A; Opler, Mark G A; Arnsten, Amy F T

    2016-02-01

    This article reviews the antidepressant actions of ketamine, an N-methyl-D-aspartame glutamate receptor (NMDAR) antagonist, and offers a potential neural mechanism for intranasal ketamine's ultra-rapid actions based on the key role of NMDAR in the nonhuman primate prefrontal cortex (PFC). Although intravenous ketamine infusions can lift mood within hours, the current review describes how intranasal ketamine administration can have ultra-rapid antidepressant effects, beginning within minutes (5-40 minutes) and lasting hours, but with repeated treatments needed for sustained antidepressant actions. Research in rodents suggests that increased synaptogenesis in PFC may contribute to the prolonged benefit of ketamine administration, beginning hours after administration. However, these data cannot explain the relief that occurs within minutes of intranasal ketamine delivery. We hypothesize that the ultra-rapid effects of intranasal administration in humans may be due to ketamine blocking the NMDAR circuits that generate the emotional representations of pain (eg, Brodmann Areas 24 and 25, insular cortex), cortical areas that can be overactive in depression and which sit above the nasal epithelium. In contrast, NMDAR blockade in the dorsolateral PFC following systemic administration of ketamine may contribute to cognitive deficits. This novel view may help to explain how intravenous ketamine can treat the symptoms of depression yet worsen the symptoms of schizophrenia.

  11. A randomized controlled trial of intranasal ketamine in migraine with prolonged aura.

    PubMed

    Afridi, Shazia K; Giffin, Nicola J; Kaube, Holger; Goadsby, Peter J

    2013-02-12

    The aim of our study was to test the hypothesis that ketamine would affect aura in a randomized controlled double-blind trial, and thus to provide direct evidence for the role of glutamatergic transmission in human aura. We performed a double-blinded, randomized parallel-group controlled study investigating the effect of 25 mg intranasal ketamine on migraine with prolonged aura in 30 migraineurs using 2 mg intranasal midazolam as an active control. Each subject recorded data from 3 episodes of migraine. Eighteen subjects completed the study. Ketamine reduced the severity (p = 0.032) but not duration of aura in this group, whereas midazolam had no effect. These data provide translational evidence for the potential importance of glutamatergic mechanisms in migraine aura and offer a pharmacologic parallel between animal experimental work on cortical spreading depression and the clinical problem. This study provides class III evidence that intranasal ketamine is effective in reducing aura severity in patients with migraine with prolonged aura.

  12. Role of NMDA receptor GluN2D subunit in the antidepressant effects of enantiomers of ketamine.

    PubMed

    Ide, Soichiro; Ikekubo, Yuiko; Mishina, Masayoshi; Hashimoto, Kenji; Ikeda, Kazutaka

    2017-11-01

    We investigated the rapid and sustained antidepressant effects of enantiomers of ketamine in N-methyl-d-aspartate (NMDA) receptor GluN2D subunit knockout (GluN2D-KO) mice. Intraperitoneal administration of ketamine or its enantiomers 10 min before the tail-suspension test exerted significant antidepressant effects on restraint stress-induced depression in both wildtype and GluN2D-KO mice. The antidepressant effects of (RS)-ketamine and (S)-ketamine were sustained 96 h after the injection in both wildtype and GluN2D-KO mice, but such sustained antidepressant effects of (R)-ketamine were only observed in wildtype mice. These data suggest that the GluN2D subunit is critical for the sustained antidepressant effects of (R)-ketamine. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  13. Pediatric procedural sedation with ketamine: time to discharge after intramuscular versus intravenous administration.

    PubMed

    Ramaswamy, Preeti; Babl, Franz E; Deasy, Conor; Sharwood, Lisa N

    2009-02-01

    Ketamine is an attractive agent for pediatric procedural sedation. There are limited data on time to discharge comparing intramuscular (IM) vs. intravenous (IV) ketamine. The authors set out to determine whether IM or IV ketamine leads to quicker discharge from the emergency department (ED) and how side effect profiles compare. All patients who had received ketamine IM or IV at a tertiary children's hospital ED during the 3-year study period (2004-2007) were identified. Prospective sedation registry data, retrospective medical records, and administrative data were reviewed for drug dosages, use of additional agents, time of drug administration to discharge, total ED time (triage to discharge), and adverse events. A subgroup analysis for patients requiring five or fewer sutures (short suture group) was performed. A total of 229 patients were enrolled (60% male) with median age of 2.8 years (IQR =1.8-4.3 years) and median weight of 15.7 kg (range = 8.7-74 kg). Ketamine was most frequently employed for laceration repair (80%) and foreign body removal (9%). Overall, 48% received ketamine IM and 52% received it IV. In the short-suture subgroup, 52% received ketamine IM, while 48% received it IV. Multivariate linear regression analysis determined time from drug administration to patient discharge as 21 minutes shorter for IV compared with IM administration, adjusted for age and number of additional doses (R(2) = -0.35; 95% CI = -0.5 to -0.19; p < 0.001). Total time in the ED (triage to discharge) comparing IV versus IM administration, adjusting for age and gender and number of additional doses, was not significantly different (p = 0.16). In the short-suture subgroup, time to discharge from administration was also shorter in the IV ketamine group (R(2) = -0.454; 95%CI = -0.66 to -0.25; p < 0.001) but similar for total time in ED (p = 0.16). Overall, adverse events occurred in 35% (95% CI = 27% to 45%) of the IM group and 20% (95% CI = 13% to 28%) of the IV group (p = 0

  14. Analysis of print news media framing of ketamine treatment in the United States and Canada from 2000 to 2015.

    PubMed

    Zhang, Melvyn W B; Hong, Ying X; Husain, Syeda F; Harris, Keith M; Ho, Roger C M

    2017-01-01

    There are multifaceted views on the use of ketamine, a potentially addictive substance, to treat mental health problems. The past 15 years have seen growing media coverage of ketamine for medical and other purposes. This study examined the print news media coverage of medical and other uses of ketamine in North America to determine orientations and trends over time. Print newspaper coverage of ketamine from 2000 to 2015 was reviewed, resulting in 43 print news articles from 28 North American newspapers. A 55-item structured coding instrument was applied to assess news reports of ketamine. Items captured negative and positive aspects, therapeutic use of ketamine, and adverse side effects. Chi-squares tested for changes in trends over time. In the 15-year reviewed period, the three most frequent themes related to ketamine were: abuse (68.2%), legal status (34.1%), and clinical use in anesthesia (31.8%). There was significant change in trends during two periods (2000-2007 and 2008-2015). In 2008-2015, print news media articles were significantly more likely to encourage clinical use of ketamine to treat depression (p = 0.002), to treat treatment resistant depression (p = 0.043), and to claim that ketamine is more effective than conventional antidepressants (p = 0.043). Our review found consistent positive changes in the portrayals of ketamine by the print news media as a therapeutic antidepressant that mirror the recent scientific publications. These changes in news media reporting might influence the popularity of ketamine use to treat clinical depression. Guidance is required for journalists on objective reporting of medical research findings, including limitations of current research evidence and potential risks of ketamine.

  15. Ketamine and other glutamate receptor modulators for depression in adults.

    PubMed

    Caddy, Caroline; Amit, Ben H; McCloud, Tayla L; Rendell, Jennifer M; Furukawa, Toshi A; McShane, Rupert; Hawton, Keith; Cipriani, Andrea

    2015-09-23

    Considering the ample evidence of involvement of the glutamate system in the pathophysiology of depression, pre-clinical and clinical studies have been conducted to assess the antidepressant efficacy of glutamate inhibition, and glutamate receptor modulators in particular. This review focuses on the use of glutamate receptor modulators in unipolar depression. To assess the effects - and review the acceptability - of ketamine and other glutamate receptor modulators in comparison to placebo (or saline placebo), other pharmacologically active agents, or electroconvulsive therapy (ECT) in alleviating the acute symptoms of depression in people with unipolar major depressive disorder. We searched the Cochrane Depression, Anxiety and Neurosis Review Group's Specialised Register (CCDANCTR, to 9 January 2015). This register includes relevant randomised controlled trials (RCTs) from: the Cochrane Library (all years), MEDLINE (1950 to date), EMBASE (1974 to date), and PsycINFO (1967 to date). We did not apply any restrictions to date, language or publication status. Double- or single-blind RCTs comparing ketamine, memantine, or other glutamate receptor modulators with placebo (or saline placebo), other active psychotropic drugs, or electroconvulsive therapy (ECT) in adults with unipolar major depression. Three review authors independently identified studies, assessed trial quality and extracted data. The primary outcomes for this review were response rate and adverse events. We included 25 studies (1242 participants) on ketamine (9 trials), memantine (3), AZD6765 (3), D-cycloserine (2), Org26576 (2), atomoxetine (1), CP-101,606 (1), MK-0657 (1), N-acetylcysteine (1), riluzole (1) and sarcosine (1). Twenty-one studies were placebo-controlled and the majority were two-arm studies (23 out of 25). Twenty-two studies defined an inclusion criteria specifying the severity of depression; 11 specified at least moderate depression; eight, severe depression; and the remaining three

  16. Effect of ketamine on exploratory behaviour in BALB/C and C57BL/6 mice.

    PubMed

    Akillioglu, Kubra; Melik, Emine Babar; Melik, Enver; Boga, Ayper

    2012-01-01

    In this study, we evaluated the effect of ketamine on exploratory locomotion behaviours in the Balb/c and C57BL/6 strains of mice, which differ in their locomotion behaviours. Intraperitoneal administration of ketamine at three different doses (1, 5 or 10 mg/kg, 0.1 ml/10 gr body weight) was performed on adult male Balb/c and C57BL/6 mice. The same volume of saline was applied to the control group. The open-field and elevated plus maze apparatus were used to evaluate exploratory locomotion. In the open-field test, Balb/c mice less spend time in the centre of the field and was decreased locomotor activity compared to C57BL/6 mice (p<0.01). Ketamine treatment of Balb/c mice at 10 mg/kg dose caused an increase in locomotor activity and an increase in the amount of time spent in the centre in the open-field test, compared to the control group (p<0.05). In C57BL/6 mice, ketamine treatment (1 and 10 mg/kg) decreased locomotor activity (p<0.05). In C57BL/6 mice, the three different doses of ketamine application each caused a decrease in the frequency of centre crossing (p<0.001) and the spent time in the centre (p<0.05). In the elevated plus maze, the number of open-arm entries, the percentage of open-arm time and total arm entries were decreased in Balb/c mice compared to C57BL/6 mice (p<0.001). Ketamine treatment of Balb/c mice at 10 mg/kg dose caused an increase in the open-arm activity (p<0.001). Ketamine application (10 mg/kg) decreased the open-arm activity in C57BL/6 mice (p<0.05). A subanaesthetic dose of ketamine increased exploratory locomotion in Balb/c mice. In contrast, a subanaesthetic dose of ketamine decreased exploratory locomotion in C57BL/6 mice. In conclusion, hereditary factors may play an important role in ketamine-induced responses. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Metabolic modulation of neuronal gamma-band oscillations.

    PubMed

    Vodovozov, Wadim; Schneider, Justus; Elzoheiry, Shehabeldin; Hollnagel, Jan-Oliver; Lewen, Andrea; Kann, Oliver

    2018-05-28

    Gamma oscillations (30-100 Hz) represent a physiological fast brain rhythm that occurs in many cortex areas in awake mammals, including humans. They associate with sensory perception, voluntary movement, and memory formation and require precise synaptic transmission between excitatory glutamatergic neurons and inhibitory GABAergic interneurons such as parvalbumin-positive basket cells. Notably, gamma oscillations are exquisitely sensitive to shortage in glucose and oxygen supply (metabolic stress), with devastating consequences for higher cognitive functions. Herein, we explored the robustness of gamma oscillations against changes in the availability of alternative energy substrates and amino acids, which is partially regulated by glial cells such as astrocytes. We used organotypic slice cultures of the rat hippocampus expressing acetylcholine-induced persistent gamma oscillations under normoxic recording conditions (20% oxygen fraction). Our main findings are (1) partial substitution of glucose with pyruvate and the ketone body β-hydroxybutyrate increases the frequency of gamma oscillations, even at different stages of neuronal tissue development. (2) Supplementation with the astrocytic neurotransmitter precursor glutamine has no effect on the properties of gamma oscillations. (3) Supplementation with glycine increases power, frequency, and inner coherence of gamma oscillations in a dose-dependent manner. (4) During these treatments switches to other frequency bands or pathological network states such as neural burst firing or synchronized epileptic activity are absent. Our study indicates that cholinergic gamma oscillations show general robustness against these changes in nutrient and amino acid composition of the cerebrospinal fluid; however, modulation of their properties may impact on cortical information processing under physiological and pathophysiological conditions.

  18. Ketamine as an Adjunct to Opioids for Acute Pain in the Emergency Department: A Randomized Controlled Trial.

    PubMed

    Bowers, Karen J; McAllister, Kelly B; Ray, Meredith; Heitz, Corey

    2017-06-01

    This study had five objectives: 1) to measure and compare total opioid use and number of opioid doses in patients treated with opioids versus ketamine in conjunction with opioids; 2) to measure pain scores up to 2 hours after presentation in the ED patient with pain, comparing standard opioid pain control to ketamine in conjunction with opioids; 3) to compare patient satisfaction with pain control using opioids alone versus ketamine in conjunction with opioids; 4) to monitor and compare side effects in patients treated with opioids versus ketamine in conjunction with opioids; and 5) to identify effect variation between different subgroups of patients, with the purpose of focusing future research. We hypothesized that low-dose ketamine, compared to placebo, as an adjunctive treatment to opioids would result in better pain control over 2 hours and greater patient satisfaction with pain control; further, this protocol will result in a lower opioid dosage over 2 hours. This was a randomized, double-blinded, placebo-controlled trial at a single academic emergency department evaluating the use of ketamine versus placebo in conjunction with opioids for moderate to severe pain. Subjects with a continued high level of pain after an initial dose of opioid analgesia were randomized to receive either 0.1 mg/kg ketamine or placebo prior to protocol-based dosing of additional opioid analgesia, if required. Over 120 minutes, subjects were assessed for pain level (0-10), satisfaction with pain control (0-4), side effects, sedation level, and need for additional pain medication. Total opioid dose, including the initial dose, was compared between groups. Sixty-three subjects were randomized to the placebo group and 53 to the ketamine group. No significant differences were found in demographics between the groups. Patients receiving ketamine reported lower pain scores over 120 minutes than patients receiving placebo (p = 0.015). Total opioid dose was lower in the ketamine group

  19. Dissociable effects of the noncompetitive NMDA receptor antagonists ketamine and MK-801 on intracranial self-stimulation in rats

    PubMed Central

    Hillhouse, Todd M.; Porter, Joseph H.; Negus, S. Stevens

    2014-01-01

    Rationale The noncompetitive NMDA antagonist ketamine produces rapid antidepressant effects in treatment-resistant patients suffering from major depressive and bipolar disorders. However, abuse liability is a concern. Objectives This study examined abuse-related effects of keta-mine using intracranial self-stimulation (ICSS) in rats. The higher-affinity NMDA antagonist MK-801 and the monoamine reuptake inhibitor cocaine were examined for comparison. Methods Male Sprague Dawley rats were implanted with electrodes targeting the medial forebrain bundle and trained to respond to brain stimulation under a frequency–rate ICSS procedure. The first experiment compared the potency and time course of ketamine (3.2–10.0 mg/kg) and MK-801 (0.032–0.32 mg/kg). The second experiment examined effects of repeated dosing with ketamine (3.2–20.0 mg/kg/day) and acute cocaine (10.0 mg/kg). Results Following acute administration, ketamine (3.2–10 mg/kg) produced only dose- and time-dependent depressions of ICSS and failed to produce an abuse-related facilitation of ICSS at any dose or pretreatment time. In contrast, MK-801 (0.032–0.32 mg/kg) produced a mixed profile of rate-increasing and rate-decreasing effects; ICSS facilitation was especially prominent at an intermediate dose of 0.18 mg/kg. Repeated dosing with ketamine produced dose-dependent tolerance to the rate-decreasing effects of ketamine (10.0 and 18.0 mg/kg) but failed to unmask expression of ICSS facilitation. Termination of ketamine treatment failed to produce withdrawal-associated decreases in ICSS. As reported previously, 10.0 mg/kg cocaine facilitated ICSS. Conclusions The dissociable effects of ketamine and MK-801 suggest differences in the pharmacology of these nominally similar NMDA antagonists. Failure of ketamine to facilitate ICSS contrasts with other evidence for the abuse liability of ketamine. PMID:24522331

  20. Inhibition by ketamine and amphetamine analogs of the neurogenic nitrergic vasodilations in porcine basilar arteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Mei-Fang

    The abuse of ketamine and amphetamine analogs is associated with incidence of hypertension and strokes involving activation of sympathetic activities. Large cerebral arteries at the base of the brain from several species receive dense sympathetic innervation which upon activation causes parasympathetic-nitrergic vasodilation with increased regional blood flow via axo-axonal interaction mechanism, serving as a protective mechanism to meet O{sub 2} demand in an acutely stressful situation. The present study was designed to examine effects of ketamine and amphetamine analogs on axo-axonal interaction-mediated neurogenic nitrergic vasodilation in porcine basilar arteries using techniques of blood-vessel myography, patch clamp and two-electrode voltage clamp,more » and calcium imaging. In U46619-contracted basilar arterial rings, nicotine (100 μM) and electrical depolarization of nitrergic nerves by transmural nerve stimulation (TNS, 8 Hz) elicited neurogenic nitrergic vasodilations. Ketamine and amphetamine analogs concentration-dependently inhibited nicotine-induced parasympathetic-nitrergic vasodilation without affecting that induced by TNS, nitroprusside or isoproterenol. Ketamine and amphetamine analogs also concentration-dependently blocked nicotine-induced inward currents in Xenopus oocytes expressing α3β2-nicotinic acetylcholine receptors (nAChRs), and nicotine-induced inward currents as well as calcium influxes in rat superior cervical ganglion neurons. The potency in inhibiting both inward-currents and calcium influxes is ketamine > methamphetamine > hydroxyamphetamine. These results indicate that ketamine and amphetamine analogs, by blocking nAChRs located on cerebral perivascular sympathetic nerves, reduce nicotine-induced, axo-axonal interaction mechanism-mediated neurogenic dilation of the basilar arteries. Chronic abuse of these drugs, therefore, may interfere with normal sympathetic-parasympathetic interaction mechanism resulting in diminished

  1. Significant treatment effect of add-on ketamine anesthesia in electroconvulsive therapy in depressive patients: A meta-analysis.

    PubMed

    Li, Dian-Jeng; Wang, Fu-Chiang; Chu, Che-Sheng; Chen, Tien-Yu; Tang, Chia-Hung; Yang, Wei-Cheng; Chow, Philip Chik-Keung; Wu, Ching-Kuan; Tseng, Ping-Tao; Lin, Pao-Yen

    2017-01-01

    Add-on ketamine anesthesia in electroconvulsive therapy (ECT) has been studied in depressive patients in several clinical trials with inconclusive findings. Two most recent meta-analyses reported insignificant findings with regards to the treatment effect of add-on ketamine anesthesia in ECT in depressive patients. The aim of this study is to update the current evidence and investigate the role of add-on ketamine anesthesia in ECT in depressive patients via a systematic review and meta-analysis. We performed a thorough literature search of the PubMed and ScienceDirect databases, and extracted all relevant clinical variables to compare the antidepressive outcomes between add-on ketamine anesthesia and other anesthetics in ECT. Total 16 articles with 346 patients receiving add-on ketamine anesthesia in ECT and 329 controls were recruited. We found that the antidepressive treatment effect of add-on ketamine anesthesia in ECT in depressive patients was significantly higher than that of other anesthetics (p<0.001). This significance persisted in both short-term (1-2 weeks) and moderate-term (3-4 weeks) treatment courses (all p<0.05). However, the side effect profiles and recovery time profiles were significantly worse in add-on ketamine anesthesia group than in control group. Our meta-analysis highlights the significantly higher antidepressive treatment effect of add-on ketamine in depressive patients receiving ECT compared to other anesthetics. However, clinicians need to take undesirable side effects into consideration when using add-on ketamine anesthesia in ECT in depressive patients. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.

  2. S-Ketamine Rapidly Reverses Synaptic and Vascular Deficits of Hippocampus in Genetic Animal Model of Depression.

    PubMed

    Ardalan, Maryam; Wegener, Gregers; Rafati, Ali H; Nyengaard, Jens R

    2017-03-01

    The neurovascular plasticity of hippocampus is an important theory underlying major depression. Ketamine as a novel glutamatergic antidepressant drug can induce a rapid antidepressant effect within hours. In a mechanistic proof of this concept, we examined whether ketamine leads to an increase in synaptogenesis and vascularization within 24 hours after a single injection in a genetic rat model of depression. Flinders Sensitive Line and Flinders Resistant Line rats were given a single intraperitoneal injection of ketamine (15 mg/kg) or saline. One day later, their behavior was evaluated by a modified forced swim test. Microvessel length was evaluated with global spatial sampling and optical microscopy, whereas the number of asymmetric synapses was quantified through serial section electron microscopy by using physical disector method in the CA1.stratum radiatum area of hippocampus. The immobility time in the forced swim test among Flinders Sensitive Line rats with ketamine treatment was significantly lower compared with Flinders Sensitive Line rats without treatment. The number of nonperforated and perforated synapses was significantly higher in the Flinders Sensitive Line-ketamine vs the Flinders Sensitive Line-vehicle group; however, ketamine did not induce a significant increase in the number of shaft synapses. Additionally, total length of microvessels was significantly increased 1 day after ketamine treatment in Flinders Sensitive Line rats in the hippocampal subregions, including the CA1.stratum radiatum. Our findings indicate that hippocampal vascularization and synaptogenesis is co-regulated rapidly after ketamine, and microvascular elongation may be a supportive factor for synaptic plasticity and neuronal activity. These findings go hand-in-hand with the behavioral observations, where ketamine acts as a potent antidepressant. © The Author 2016. Published by Oxford University Press on behalf of CINP.

  3. Analysis of print news media framing of ketamine treatment in the United States and Canada from 2000 to 2015

    PubMed Central

    2017-01-01

    Objectives There are multifaceted views on the use of ketamine, a potentially addictive substance, to treat mental health problems. The past 15 years have seen growing media coverage of ketamine for medical and other purposes. This study examined the print news media coverage of medical and other uses of ketamine in North America to determine orientations and trends over time. Methods Print newspaper coverage of ketamine from 2000 to 2015 was reviewed, resulting in 43 print news articles from 28 North American newspapers. A 55-item structured coding instrument was applied to assess news reports of ketamine. Items captured negative and positive aspects, therapeutic use of ketamine, and adverse side effects. Chi-squares tested for changes in trends over time. Results In the 15-year reviewed period, the three most frequent themes related to ketamine were: abuse (68.2%), legal status (34.1%), and clinical use in anesthesia (31.8%). There was significant change in trends during two periods (2000–2007 and 2008–2015). In 2008–2015, print news media articles were significantly more likely to encourage clinical use of ketamine to treat depression (p = 0.002), to treat treatment resistant depression (p = 0.043), and to claim that ketamine is more effective than conventional antidepressants (p = 0.043). Conclusions Our review found consistent positive changes in the portrayals of ketamine by the print news media as a therapeutic antidepressant that mirror the recent scientific publications. These changes in news media reporting might influence the popularity of ketamine use to treat clinical depression. Guidance is required for journalists on objective reporting of medical research findings, including limitations of current research evidence and potential risks of ketamine. PMID:28257514

  4. Modulatory effects of ketamine, risperidone and lamotrigine on resting brain perfusion in healthy human subjects.

    PubMed

    Shcherbinin, Sergey; Doyle, Orla; Zelaya, Fernando O; de Simoni, Sara; Mehta, Mitul A; Schwarz, Adam J

    2015-11-01

    Resting brain perfusion, measured using the MRI-based arterial spin labelling (ASL) technique, is sensitive to detect central effects of single, clinically effective, doses of pharmacological compounds. However, pharmacological interaction experiments, such as the modulation of one drug response in the presence of another, have not been widely investigated using a task-free ASL approach. We assessed the effects of three psychoactive compounds (ketamine, risperidone and lamotrigine), and their interaction, on resting brain perfusion in healthy human volunteers. A multivariate Gaussian process classification (GPC) and more conventional univariate analyses were applied. The four pre-infusion conditions for each subject comprised risperidone, lamotrigine and two placebo sessions. The two placebo conditions enabled us to evaluate the classification performance in a test-retest setting, in addition to its performance in distinguishing the active oral drugs from placebo (direct effect on brain perfusion). The post ketamine- or saline-infusion scans allowed the effect of ketamine, and its interaction with risperidone and lamotrigine, on brain perfusion to be characterised. The pseudo-continuous ASL measurements of perfusion were sensitive to the effects of ketamine infusion and risperidone. The GPC captured consistent changes in perfusion across the group and contextualised the univariate changes with a larger pattern of regions contributing to accurate discrimination of ketamine from placebo. The findings argue against perfusion changes confounding in the previously described evoked BOLD response to ketamine and emphasise the blockade of the NMDA receptor over neuronal glutamate release in determining the perfusion changes induced by ketamine.

  5. Long-term effect of sub-anesthetic ketamine in reducing L-DOPA-induced dyskinesias in a preclinical model.

    PubMed

    Bartlett, Mitchell J; Joseph, Ria M; LePoidevin, Lindsey M; Parent, Kate L; Laude, Nicholas D; Lazarus, Levi B; Heien, Michael L; Estevez, Miguel; Sherman, Scott J; Falk, Torsten

    2016-01-26

    Low-dose sub-anesthetic ketamine infusion treatment has led to a long-term reduction of treatment-resistant depression and posttraumatic stress disorder (PTSD) symptom severity, as well as reduction of chronic pain states, including migraine headaches. Ketamine also is known to change oscillatory electric brain activity. One commonality between migraine headaches, depression, PTSD, Parkinson's disease (PD) and l-DOPA-induced dyskinesias (LID) is hypersynchrony of electric activity in the brain, including the basal ganglia. Therefore, we investigated the use of low-dose sub-anesthetic ketamine in the treatment of LID. In a preclinical rodent model of LID, ketamine (5-20mg/kg) led to long-term dose-dependent reduction of abnormal involuntary movements, only when low-dose ketamine was given for 10h continuously (5× i.p. injections two hours apart) and not after a single acute low-dose ketamine i.p. injection. Pharmacokinetic analysis of plasma levels showed ketamine and its major metabolites were not detectable any more at time points when a lasting anti-dyskinetic effect was seen, indicating a plastic change in the brain. This novel use of low-dose sub-anesthetic ketamine infusion could lead to fast clinical translation, and since depression and comorbid pain states are critical problems for many PD patients could open up the road to a new dual therapy for patients with LID. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Assessment of pulse oximeter perfusion index in pediatric caudal block under basal ketamine anesthesia.

    PubMed

    Xu, Zifeng; Zhang, Jianhai; Shen, Hao; Zheng, Jijian

    2013-01-01

    Whether pulse oximeter perfusion index (PI) may be applied to detect the onset of caudal block in pediatric patients under ketamine intravenous basal anesthesia is investigated. 40 ASA I, 2-8-year-old boys scheduled for elective circumcision surgery were randomized into two groups. Group I: 20 patients were anesthetized by 2 mg·kg(-1) ketamine intravenous injection (IV) followed by caudal block using 1 mL·kg(-1) lidocaine (1%); Group II: 20 patients were anesthetized by 2 mg·kg(-1) ketamine IV only. PI on the toe in Group II decreased by 33 ± 12%, 71 ± 9% and 65 ± 8% at 1 min, 15 min, and 30 min after ketamine injection. The maximum increase in MAP and HR after ketamine IV was 11 ± 6% at 3 min and 10 ± 6% at 2 min. Compared to the PI value before caudal injection of lidocaine, PI in Group I increased by 363 ± 318% and 778 ± 578% at 5 min and 20 min after caudal block, while no significant changes in MAP and HR were found compared to the baseline before caudal block. Thus, PI provides an earlier, more objective, and more sensitive indicator to assess the early onset of caudal block under basal ketamine anesthesia.

  7. The effects of ketamine on the minimum alveolar concentration of isoflurane in cats.

    PubMed

    Pascoe, Peter J; Ilkiw, Janet E; Craig, Carolyn; Kollias-Baker, Cynthia

    2007-01-01

    To determine the minimum alveolar concentration (MAC) of isoflurane during the infusion of ketamine. Prospective, experimental trial. Twelve adult spayed female cats weighing 5.1 +/- 0.9 kg. Six cats were anesthetized with isoflurane in oxygen, intubated and attached to a circle-breathing system with mechanical ventilation. Catheters were placed in a peripheral vein for the infusion of fluids and ketamine, and the jugular vein for blood sampling for the measurement of ketamine concentrations. An arterial catheter was placed to allow blood pressure measurement and sampling for the measurement of PaCO2, PaO2 and pH. PaCO2 was maintained between 29 and 41 mmHg (3.9-5.5 kPa) and body temperature was kept between 37.8 and 39.3 degrees C. Following instrumentation, the MAC of isoflurane was determined in triplicate using a tail clamp method. A loading dose (2 mg kg(-1) over 5 minutes) and an infusion (23 microg kg(-1) minute(-1)) of ketamine was started and MAC was redetermined starting 30 minutes later. Two further loading doses and infusions were used, 2 mg kg(-1) and 6 mg kg(-1) with 46 and 115 microg kg(-1) minute(-1), respectively and MAC was redetermined. Cardiopulmonary measurements were taken before application of the noxious stimulus. The second group of six cats was used for the measurement of steady state plasma ketamine concentrations at each of the three infusion rates used in the initial study and the appropriate MAC value determined from the first study. The MAC decreased by 45 +/- 17%, 63 +/- 18%, and 75 +/- 17% at the infusion rates of 23, 46, and 115 microg kg(-1) minute(-1). These infusion rates corresponded to ketamine plasma concentrations of 1.75 +/- 0.21, 2.69 +/- 0.40, and 5.36 +/- 1.19 microg mL(-1). Arterial blood pressure and heart rate increased significantly with ketamine. Recovery was protracted. The MAC of isoflurane was significantly decreased by an infusion of ketamine and this was accompanied by an increase in heart rate and blood

  8. Preliminary analysis of positive and negative syndrome scale in ketamine-associated psychosis in comparison with schizophrenia.

    PubMed

    Xu, Ke; Krystal, John H; Ning, Yuping; Chen, Da Chun; He, Hongbo; Wang, Daping; Ke, Xiaoyin; Zhang, Xifan; Ding, Yi; Liu, Yuping; Gueorguieva, Ralitza; Wang, Zuoheng; Limoncelli, Diana; Pietrzak, Robert H; Petrakis, Ismene L; Zhang, Xiangyang; Fan, Ni

    2015-02-01

    Studies of the effects of the N-methyl-d-aspartate (NMDA) glutamate receptor antagonist, ketamine, have suggested similarities to the symptoms of schizophrenia. Our primary goal was to evaluate the dimensions of the Positive and Negative Syndrome Scale (PANSS) in ketamine users (acute and chronic) compared to schizophrenia patients (early and chronic stages). We conducted exploratory factor analysis for the PANSS from four groups: 135 healthy subject administrated ketamine or saline, 187 inpatients of ketamine abuse; 154 inpatients of early course schizophrenia and 522 inpatients of chronic schizophrenia. Principal component factor analyses were conducted to identify the factor structure of the PANSS. Factor analysis yielded five factors for each group: positive, negative, cognitive, depressed, excitement or dissociation symptoms. The symptom dimensions in two schizophrenia groups were consistent with the established five-factor model (Wallwork et al., 2012). The factor structures across four groups were similar, with 19 of 30 symptoms loading on the same factor in at least 3 of 4 groups. The factors in the chronic ketamine group were more similar to the factors in the two schizophrenia groups rather than to the factors in the acute ketamine group. Symptom severities were significantly different across the groups (Kruskal-Wallis χ(2)(4) = 540.6, p < 0.0001). Symptoms in the two ketamine groups were milder than in the two schizophrenia groups (Cohen's d = 0.7). Our results provide the evidence of similarity in symptom dimensions between ketamine psychosis and schizophrenia psychosis. The interpretations should be cautious because of potential confounding factors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. 21 CFR 862.1380 - Hydroxybutyric dehydrogenase test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Hydroxybutyric dehydrogenase test system. 862.1380 Section 862.1380 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test...

  10. Consciousness and Complexity during Unresponsiveness Induced by Propofol, Xenon, and Ketamine.

    PubMed

    Sarasso, Simone; Boly, Melanie; Napolitani, Martino; Gosseries, Olivia; Charland-Verville, Vanessa; Casarotto, Silvia; Rosanova, Mario; Casali, Adenauer Girardi; Brichant, Jean-Francois; Boveroux, Pierre; Rex, Steffen; Tononi, Giulio; Laureys, Steven; Massimini, Marcello

    2015-12-07

    A common endpoint of general anesthetics is behavioral unresponsiveness, which is commonly associated with loss of consciousness. However, subjects can become disconnected from the environment while still having conscious experiences, as demonstrated by sleep states associated with dreaming. Among anesthetics, ketamine is remarkable in that it induces profound unresponsiveness, but subjects often report "ketamine dreams" upon emergence from anesthesia. Here, we aimed at assessing consciousness during anesthesia with propofol, xenon, and ketamine, independent of behavioral responsiveness. To do so, in 18 healthy volunteers, we measured the complexity of the cortical response to transcranial magnetic stimulation (TMS)--an approach that has proven helpful in assessing objectively the level of consciousness irrespective of sensory processing and motor responses. In addition, upon emergence from anesthesia, we collected reports about conscious experiences during unresponsiveness. Both frontal and parietal TMS elicited a low-amplitude electroencephalographic (EEG) slow wave corresponding to a local pattern of cortical activation with low complexity during propofol anesthesia, a high-amplitude EEG slow wave corresponding to a global, stereotypical pattern of cortical activation with low complexity during xenon anesthesia, and a wakefulness-like, complex spatiotemporal activation pattern during ketamine anesthesia. Crucially, participants reported no conscious experience after emergence from propofol and xenon anesthesia, whereas after ketamine they reported long, vivid dreams unrelated to the external environment. These results are relevant because they suggest that brain complexity may be sensitive to the presence of disconnected consciousness in subjects who are considered unconscious based on behavioral responses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Aura in some patients with familial hemiplegic migraine can be stopped by intranasal ketamine.

    PubMed

    Kaube, H; Herzog, J; Käufer, T; Dichgans, M; Diener, H C

    2000-07-12

    Migraine aura is probably caused by cortical-spreading depression. No treatment for acute and severe migraine aura has been described previously. The effect of ketamine (25 mg intranasally) was studied in 11 patients with severe, disabling auras resulting from familial hemiplegic migraine. In five patients ketamine reproducibly reduced the severity and duration of the neurologic deficits, whereas in the remaining six patients no beneficial effect was seen. Ketamine offers, for the first time, a possible treatment option for severe and prolonged aura.

  12. S-ketamine influences strategic allocation of attention but not exogenous capture of attention.

    PubMed

    Fuchs, Isabella; Ansorge, Ulrich; Huber-Huber, Christoph; Höflich, Anna; Lanzenberger, Rupert

    2015-09-01

    We investigated whether s-ketamine differentially affects strategic allocation of attention. In Experiment 1, (1) a less visible cue was weakly masked by the onsets of competing placeholders or (2) a better visible cue was not masked because it was presented in isolation. Both types of cue appeared more often opposite of the target (75%) than at target position (25%). With this setup, we tested for strategic attention shifts to the opposite side of the cues and for exogenous attentional capture toward the cue's side in a short cue-target interval, as well as for (reverse) cueing effects in a long cue-target interval after s-ketamine and after placebo treatment in a double-blind within-participant design. We found reduced strategic attention shifts after cues presented without placeholders for the s-ketamine compared to the placebo treatment in the short interval, indicating an early effect on the strategic allocation of attention. No differences between the two treatments were found for exogenous attentional capture by less visible cues, suggesting that s-ketamine does not affect exogenous attentional capture in the presence of competing distractors. Experiment 2 confirmed that the competing onsets of the placeholders prevented the strategic cueing effect. Taken together, the results indicate that s-ketamine affects strategic attentional capture, but not exogenous attentional capture. The findings point to a more prominent role of s-ketamine during top-down controlled forms of attention that require suppression of automatic capture than during automatic capture itself. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. A Case Report: Subanesthetic Ketamine Infusion for Treatment of Cancer-Related Pain Produces Urinary Urge Incontinence.

    PubMed

    Vickers, Barbara A; Lee, Wayne; Hunsberger, Joann

    2017-05-01

    Oncology patients undergoing treatment can experience substantial pain related to their disease or prescribed therapy. Ketamine infusions at subanesthetic doses have been used at our institution to supplement the pain management regimens of 262 patients. We present 2 cases in which young adult patients being treated with subanesthetic ketamine for cancer-related pain experienced urinary urgency and incontinence after initiation or increase of the ketamine infusion. This adverse effect has not been reported previously at this dosing range. These case reports suggest that subanesthetic ketamine infusions may cause side effects that previously have been reported only at anesthetic or abuse doses.

  14. Adjuvant effect of melatonin on anesthesia induced by thiopental sodium, ketamine, and ether in rats.

    PubMed

    Budhiraja, S; Singh, J

    2005-12-01

    This study evaluated the anesthetic effects of thiopental sodium, ketamine, and ether with concurrent administration of melatonin. The loss of righting reflex was taken to assess the onset of anesthesia. Melatonin (20 mg/kg, p.o.) potentiated the anesthetic effects of thiopental sodium (20 mg/kg, i.v.) and ketamine (50 mg/kg, i.p.). Melatonin pretreatment caused rapid onset of anesthesia after ketamine and thiopental sodium administration while the duration of action of these agents was prolonged. Melatonin failed to alter anesthetic effects of ether (2 mg/kg by open method) in rats. This study suggests that melatonin modulate mechanisms involved in induction of thiopental sodium and ketamine anesthesia. Copyright 2005 Prous Science. All rights reserved.

  15. Effects of ketamine on glucose uptake by glucose transporter type 3 expressed in Xenopus oocytes: The role of protein kinase C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomioka, Shigemasa, E-mail: tomioka@dent.tokushima-u.ac.jp; Kaneko, Miyuki; Satomura, Kazuhito

    2009-10-09

    We investigated the effects of ketamine on the type 3 facilitative glucose transporter (GLUT3), which plays a major role in glucose transport across the plasma membrane of neurons. Human-cloned GLUT3 was expressed in Xenopus oocytes by injection of GLUT3 mRNA. GLUT3-mediated glucose uptake was examined by measuring oocyte radioactivity following incubation with 2-deoxy-D-[1,2-{sup 3}H]glucose. While ketamine and S(+)-ketamine significantly increased GLUT3-mediated glucose uptake, this effect was biphasic such that higher concentrations of ketamine inhibited glucose uptake. Ketamine (10 {mu}M) significantly increased V{sub max} but not K{sub m} of GLUT3 for 2-deoxy-D-glucose. Although staurosporine (a protein kinase C inhibitor) increased glucosemore » uptake, no additive or synergistic interactions were observed between staurosporine and racemic ketamine or S(+)-ketamine. Treatment with ketamine or S(+)-ketamine partially prevented GLUT3 inhibition by the protein kinase C activator phorbol-12-myrisate-13-acetate. Our results indicate that ketamine increases GLUT3 activity at clinically relevant doses through a mechanism involving PKC inhibition.« less

  16. Posttraumatic administration of a sub-anesthetic dose of ketamine exerts neuroprotection via attenuating inflammation and autophagy.

    PubMed

    Wang, C-Q; Ye, Y; Chen, F; Han, W-C; Sun, J-M; Lu, X; Guo, R; Cao, K; Zheng, M-J; Liao, L-C

    2017-02-20

    As a complex disease, traumatic brain injury (TBI) can result in long-term psychiatric changes and sensorimotor and cognitive impairments. The TBI-induced loss of memory and long-term cognitive dysfunction are related to mechanistic factors including an increased inflammatory response, autophagy, edema, and ischemia. Many published studies have offered evidence for the neuroprotective effects and anti-inflammatory properties of ketamine for TBI patients. Nonetheless, there is a limited understanding of the accurate mechanism that underlies the potential neuroprotective effects of ketamine. Herein, it can be shown that posttraumatic administration of ketamine at a sub-anesthetic dose (10mg/kg ketamine, every 24h up to 7days) can prevent the TBI-induced production of IL-6 and TNF-α, attenuate deficits of dendrites and spines and exert beneficial effects on memory and behavior. Moreover, studies show that ketamine may activate the mTOR signaling pathway by p-mTOR induction to down-regulate the expression of crucial autophagic proteins such as LC3 and Beclin-1. According to these findings, ameliorating secondary brain injury and anti-inflammatory properties is closely related to the neuroprotection of ketamine, which supports the use of ketamine as a potential therapy for patients with TBI to alleviate functional deficits. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Effect of ketamine dose on self-rated dissociation in patients with treatment refractory anxiety disorders.

    PubMed

    Castle, Cameron; Gray, Andrew; Neehoff, Shona; Glue, Paul

    2017-10-01

    Patients receiving ketamine for refractory depression and anxiety report dissociative symptoms in the first 60 min post-dose. The most commonly used instrument to assess this is the Clinician-Administered Dissociative States Scale (CADSS), developed based on the assessment of patients with dissociative symptoms. Its psychometric properties for ketamine-induced dissociation have not been reported. We evaluated these from a study using 0.25-1 mg/kg ketamine and midazolam (as an active control) in 18 patients with treatment-resistant anxiety. Dissociation ratings were increased by ketamine in a dose-dependent manner. In contrast, midazolam showed no effect on ratings of dissociation. For individual CADSS items, the magnitude of change and the ketamine dose at which changes were observed were not homogenous. The Cronbach alpha for the total scale was high (0.937), with acceptable item-rest correlations for almost all individual items. Purposefully removing items to maximise alpha did not lead to meaningful improvements. Acceptable internal consistency was still observed after removing items which lacked evidence of responsiveness at lower doses. The high Cronbach alpha values identified in this study suggests that the CADSS is an internally consistent instrument for evaluating ketamine-induced dissociation in clinical trials in anxiety, although it does not capture symptoms such as thought disorder.

  18. Surface glycosylation of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) membrane for selective adsorption of low-density lipoprotein.

    PubMed

    Wang, Wei; Lan, Ping

    2014-01-01

    A novel method of constructing a glycosylated surface on poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] membrane surface for the selective adsorption of low-density lipoprotein (LDL) was developed, which involved the photoinduced graft polymerization of acrylic acid followed by the chemical binding of carboxyl groups with glucosamine in the presence of 1-ethyl-3-(dimethyl-aminopropyl) carbodiimide hydrochloride and N-hydroxy-succinimide. The chemical structures of the fabricated membranes were characterized by attenuated total reflectance Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Zeta potential and water contact angle measurements were performed to investigate the surface charge and wettability of the membranes, respectively. An enzyme linked immunosorbent assay was used to measure the LDL adsorption on the plain and modified membrane surfaces. It was found that the surface glycosylation of P(3HB-co-4HB) membrane greatly enhanced the affinity interactions with LDL and the absorbed LDL could be easily desorbed with eluents, indicating a specific and reversible binding of LDL to the surface. Furthermore, the hemocompatibility of glycosylated membrane was improved as examined by platelet adhesion. The results suggest that the glycosylated P(3HB-co-4HB) membrane is promising for application in LDL apheresis therapy.

  19. Pilot Randomized Controlled Trial of Titrated Subcutaneous Ketamine in Older Patients with Treatment-Resistant Depression.

    PubMed

    George, Duncan; Gálvez, Verònica; Martin, Donel; Kumar, Divya; Leyden, John; Hadzi-Pavlovic, Dusan; Harper, Simon; Brodaty, Henry; Glue, Paul; Taylor, Rohan; Mitchell, Philip B; Loo, Colleen K

    2017-11-01

    To assess the efficacy and safety of subcutaneous ketamine for geriatric treatment-resistant depression. Secondary aims were to examine if repeated treatments were safe and more effective in inducing or prolonging remission than a single treatment. In this double-blind, controlled, multiple-crossover study with a 6-month follow-up (randomized controlled trial [RCT] phase), 16 participants (≥60 years) with treatment-resistant depression who relapsed after remission or did not remit in the RCT were administered an open-label phase. Up to five subcutaneous doses of ketamine (0.1, 0.2, 0.3, 0.4, and 0.5 mg/kg) were administered in separate sessions (≥1 week apart), with one active control (midazolam) randomly inserted (RCT phase). Twelve ketamine treatments were given in the open-label phase. Mood, hemodynamic, and psychotomimetic outcomes were assessed by blinded raters. Remitters in each phase were followed for 6 months. Seven of 14 RCT-phase completers remitted with ketamine treatment. Five remitted at doses below 0.5 mg/kg. Doses ≥ 0.2 mg/kg were significantly more effective than midazolam. Ketamine was well tolerated. Repeated treatments resulted in higher likelihood of remission or longer time to relapse. Results provide preliminary evidence for the efficacy and safety of ketamine in treating elderly depressed. Dose titration is recommended for optimizing antidepressant and safety outcomes on an individual basis. Subcutaneous injection is a practical method for giving ketamine. Repeated treatments may improve remission rates (clinicaltrials.gov; NCT01441505). Copyright © 2017 American Association for Geriatric Psychiatry. All rights reserved.

  20. Ketamine-xylazine anesthesia causes hyperopic refractive shift in mice

    PubMed Central

    Tkatchenko, Tatiana V.; Tkatchenko, Andrei V.

    2010-01-01

    Mice have increasingly been used as a model for studies of myopia. The key to successful use of mice for myopia research is the ability to obtain accurate measurements of refractive status of their eyes. In order to obtain accurate measurements of refractive errors in mice, the refraction needs to be performed along the optical axis of the eye. This represents a particular challenge, because mice are very difficult to immobilize. Recently, ketamine-xylazine anesthesia has been used to immobilize mice before measuring refractive errors, in combination with tropicamide ophthalmic solution to induce mydriasis. Although these drugs have increasingly been used while refracting mice, their effects on the refractive state of the mouse eye have not yet been investigated. Therefore, we have analyzed the effects of tropicamide eye drops and ketamine-xylazine anesthesia on refraction in P40 C57BL/6J mice. We have also explored two alternative methods to immobilize mice, i.e. the use of a restraining platform and pentobarbital anesthesia. We found that tropicamide caused a very small, but statistically significant, hyperopic shift in refraction. Pentobarbital did not have any substantial effect on refractive status, whereas ketamine-xylazine caused a large and highly significant hyperopic shift in refraction. We also found that the use of a restraining platform represents good alternative for immobilization of mice prior to refraction. Thus, our data suggest that ketamine-xylazine anesthesia should be avoided in studies of refractive development in mice and underscore the importance of providing appropriate experimental conditions when measuring refractive errors in mice. PMID:20813132

  1. Sit Down to Float: The Cultural Meaning of Ketamine Use in Hong Kong

    PubMed Central

    Joe-Laidler, Karen; Hunt, Geoffrey

    2009-01-01

    From the late 1990s onward, ketamine use among young persons in Hong Kong grew rapidly becoming the drug of choice. This article examines ketamine’s attraction in Hong Kong, and in so doing uncover the cultural meaning of ketamine use. The analysis is organized around the emergence and shifts in meanings and experiences of those who initiate and continue to use ketamine. The data stems from a comparative study of the social setting of club drug use in Hong Kong, San Francisco, and Rotterdam. Here we draw from 100 in-depth interviews to examine the experiences of young persons who have used drugs in dance venues in Hong Kong. Our findings indicate that ketamine has become embedded in a distinctively working class youth dance scene, is accessible in terms of supply and cost, shared among a group of friends, and results in a stimulating yet liberating experience beyond that of ecstasy. PMID:19759834

  2. Development of a checklist of short-term and long-term psychological symptoms associated with ketamine use.

    PubMed

    Fan, Ni; Xu, Ke; Ning, Yuping; Wang, Daping; Ke, Xiaoyin; Ding, Yi; Sun, Bin; Zhou, Chao; Deng, Xuefeng; Rosenheck, Robert; He, Hongbo

    2015-06-25

    Ketamine is an increasingly popular drug of abuse in China but there is currently no method for classifying the psychological effects of ketamine in individuals with ketamine dependence. Develop a scale that characterizes the acute and long-term psychological effects of ketamine use among persons with ketamine dependence. We developed a preliminary symptom checklist with 35 dichotomous ('yes' or 'no') items about subjective feelings immediately after ketamine use and about perceived long-term effects of ketamine use that was administered to 187 inpatients with ketamine dependence recruited from two large hospitals in Guangzhou, China. Exploratory factor analysis (EFA) was conducted on a randomly selected half of thesample to reduce the items and to identify underlying constructs. Confirmatory factor analysis (CFA) was conducted on the second half of the sample to assess the robustness of the identified factor structure. Among the 35 symptoms, the most-reported acute effects were 'floating or circling' (94%), 'euphoric when listening to rousing music' (86%), and 'feeling excited, talkative, and full of energy' (67%). The mostreported long-term symptoms were 'memory impairment' (93%), 'personality changes' (86%), and 'slowed reactions' (81%). EFA resulted in a final 22-item scale best modelled by a four-factor model: two factors representing chronic symptoms (social withdrawal and sleep disturbances), one about acute psychoticlike symptoms, and one that combined acute drug-related euphoria and longer-term decreased libido. CFA showed that these 4 factors accounted for 50% of the total variance of the final 22-item scale and that the model fit was fair (Goodness of Fit Index, GIF=83.3%; Root Mean Square Error of Approximation, RMSEA=0.072). A four-factor model including social withdrawal, sleep disturbance, psychotic-like symptoms, and euphoria at the time of drug use provides a fair description of the short-term and long-term psychological symptoms associated with

  3. Effects of ketamine and alfaxalone on application of a feline pain assessment scale.

    PubMed

    Buisman, Mandy; Wagner, Marika C; Hasiuk, Michelle Mm; Prebble, Melanie; Law, Laura; Pang, Daniel Sj

    2016-08-01

    The objective of this study was to compare the effects of ketamine and alfaxalone on the application of a validated feline-specific multidimensional composite pain scale (UNESP-Botucatu MCPS). In a prospective, randomized, blinded, crossover trial, 11 adult cats (weight 4.4 ± 0.6 kg) were given dexmedetomidine (15 μg/kg) and hydromorphone (0.05 mg/kg) with either alfaxalone (2 mg/kg) or ketamine (5 mg/kg) as a single intramuscular injection for the induction of general anesthesia. After orotracheal intubation, general anesthesia (without surgery) was maintained for 32 mins with isoflurane, followed by atipamezole. The following parameters were recorded at baseline, 1-8 h and 24 h post-extubation: pain (pain expression and psychomotor subscales) and sedation scale scores. Alfaxalone treatment injection sites were examined for inflammation at baseline, postinjection, and 8 h and 24 h post-extubation. Psychomotor scores were higher with ketamine at hours 1 (3.5 [0-5.0], P <0.0001), 2 (2.5 [0-4.0], P <0.0001) and 3 (0.5 [0-4.0], P = 0.009) post-extubation compared with alfaxalone (hour 1, 0 [0-2]; hour 2, 0 [0-0]; hour 3, 0 [0-0]). Six cats in the ketamine group crossed the analgesic intervention threshold. In contrast, pain expression scores did not differ significantly between treatments at any time (P >0.05); one cat from each group crossed the analgesic intervention threshold. Sedation was greater with ketamine (1 [0-3], P = 0.02) than alfaxalone (0 [0-1]) 1 h post-extubation. No cats had visible inflammation at the injection sites at any time. Ketamine has a confounding effect on the psychomotor subscale of the pain scale studied, which may lead to erroneous administration of rescue analgesia. In contrast, alfaxalone was not associated with significant increases in either pain subscale. These effects of ketamine should be considered when evaluating acute postoperative pain in cats. © The Author(s) 2015.

  4. Anorectal manometry with and without ketamine for evaluation of defecation disorders in children.

    PubMed

    Keshtgar, A S; Choudhry, M S; Kufeji, D; Ward, H C; Clayden, G S

    2015-03-01

    Anorectal manometry (ARCM) provides valuable information in children with chronic constipation and fecal incontinence but may not be tolerated in the awake child. This study aimed to evaluate the effect of ketamine anesthesia on the assessment of anorectal function by manometry and to evaluate defecation dynamics and anal sphincter resting pressure in the context of pathophysiology of chronic functional (idiopathic) constipation and soiling in children. This was a prospective study of children who were investigated for symptoms of chronic constipation and soiling between April 2001 and April 2004. We studied 52 consecutive children who had awake ARCM, biofeedback training and endosonography (awake group) and 64 children who had ketamine anesthesia for ARCM and endosonography (ketamine group). We age matched 31 children who had awake anorectal studies with 27 who had ketamine anesthesia. The children in awake and ketamine groups were comparable for age, duration of bowel symptoms and duration of laxative treatments. ARCM profile was comparable between the awake and the ketamine groups with regard to anal sphincter resting pressure, rectal capacity, amplitude of rectal contractions, frequency of rectal and IAS contractions and functional length of anal canal. Of 52 children who had awake ARCM, dyssynergia of the EAS muscles was observed in 22 (42%) and median squeeze pressure was 87mm Hg (range 25-134). The anal sphincter resting pressure was non-obstructive and comparable to healthy normal children. Rectoanal inhibitory reflex was seen in all children excluding diagnosis of Hirschsprung disease. Ketamine anesthesia does not affect quantitative or qualitative measurements of autonomic anorectal function and can be used reliably in children who will not tolerate the manometry while awake. Paradoxical contraction of the EAS can only be evaluated in the awake children and should be investigated further as the underlying cause of obstructive defecation in patients with

  5. The use of sub-anesthetic intravenous ketamine and adjuvant dexmedetomidine when treating acute pain from CRPS.

    PubMed

    Nama, Sharanya; Meenan, Daniel R; Fritz, William T

    2010-01-01

    Complex regional pain syndrome (CRPS) is a pain condition of the extremities that presents with pain and allodynia, decreased range of motion, swelling and skin changes. There are 2 forms of CRPS - Type I which does not have demonstrable nerve lesions and Type 2, which has evidence of obvious nerve damage. Management of refractory CRPS has been challenging. Some studies have revealed that the N-methyl-D-aspartic acid receptor (NMDAR) may be involved in the etiology of the pain in CRPS and perhaps that a NMDA receptor antagonist like ketamine is a potential treatment for CRPS. However, the side effect profile of ketamine is concerning, and limiting the adverse effects of the drug is beneficial. Dexmedetomidine is an alpha 2 agonist similar to clonidine with analgesic properties that can be used in combination with ketamine to provide additional analgesia in CRPS. This case describes the treatment of acute pain symptoms from Chronic Regional Pain Syndrome-Type 1 (CRPS-1) with sub-anesthetic intravenous infusion of ketamine with adjunct dexmedetomidine. A 47-year-old female patient presented with severe pain, burning and allodynia from CRPS-1 refractory to conventional therapy. She was then admitted to a monitored bed, received a sub-anesthetic intravenous infusion of ketamine with adjunct dexmedetomidine for 19 hours and subsequently discharged with complete resolution of her pain and associated symptoms. Here, the synergistic effect of the ketamine and dexmedetomidine together is shown to provide excellent symptom relief while decreasing the total ketamine administered. The combination minimized unwanted side effects and eliminated the need for intensive care unit admission secondary to anesthetic doses of ketamine.

  6. An effective dose of ketamine for eliminating pain during injection of propofol: a dose response study.

    PubMed

    Wang, M; Wang, Q; Yu, Y Y; Wang, W S

    2013-09-01

    Ketamine can completely eliminate pain associated with propofol injection. However, the effective dose of ketamine to eliminate propofol injection pain has not been determined. The purpose of this study was to determine the effective dose of ketamine needed to eliminate pain in 50% and 95% of patients (ED50 and ED95, respectively) during propofol injections. This study was conducted in a double-blinded fashion and included 50 patients scheduled for elective gynecological laparoscopy under general anesthesia. The initial dose of ketamine used in the first patient was 0.25mg/kg. The dosing modifications were in increments or decrements of 0.025 mg/kg. Ketamine was administered 15 seconds before injecting propofol (2.5mg/kg), which was injected at a rate of 1mL/s. Patients were asked to rate their pain during propofol injection every 5s econds using a 0-3 pain scale. The highest pain score was recorded. The ED50, ED95 and 95% confidence intervals (CI) were determined by probit analyses. The dose of ketamine ranged from 0.175 to 0.275 mg/kg. The ED50 and ED95 of ketamine for eliminating pain during propofol injection were 0.227 mg/kg and 0.283 mg/kg, respectively (95%CI: 0.211-0.243 mg/kg and 0.26-0.364 mg/kg, respectively). Ketamine at an approximate dose of 0.3mg/kg was effective in eliminating pain during propofol injection. Copyright © 2013 Société française d’anesthésie et de réanimation (Sfar). Published by Elsevier SAS. All rights reserved.

  7. A systematic review and meta-analysis of ketamine for the prevention of persistent post-surgical pain.

    PubMed

    McNicol, E D; Schumann, R; Haroutounian, S

    2014-11-01

    While post-operative pain routinely resolves, persistent post-surgical pain (PPSP) is common in certain surgeries; it causes disability, lowers quality of life and has economic consequences. The objectives of this systematic review and meta-analysis were to evaluate the effectiveness of ketamine in reducing the prevalence and severity of PPSP and to assess safety associated with its use. We searched the Cochrane Central Register of Controlled Trials, MEDLINE and EMBASE through December 2012 for articles in any language. We included randomized, controlled trials in adults in which ketamine was administered perioperatively via any route. Seventeen studies, the majority of which administered ketamine intravenously, met all inclusion criteria. The overall risk of developing PPSP was not significantly reduced at any time point in the ketamine group vs. placebo, nor did comparisons of pain severity scores reach statistical significance. Sensitivity analysis of exclusively intravenous ketamine studies included in this meta-analysis demonstrated statistically significant reductions in risk of developing PPSP at 3 and 6 months (P = 0.01 and P = 0.04, respectively). Adverse event rates were similar between ketamine and placebo groups. The study data from our review are heterogeneous and demonstrate efficacy of intravenously administered ketamine only in comparison with placebo. Highly variable timing and dosing of ketamine in these studies suggest that no unifying effective regimen has emerged. Future research should focus on clinically relevant outcomes, should stratify patients with pre-existing pain and possible central sensitization and should enroll sufficiently large numbers to account for loss to follow-up in long-term studies. © 2014 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  8. Glutamatergic Deficits in Schizophrenia - Biomarkers and Pharmacological Interventions within the Ketamine Model.

    PubMed

    Haaf, Moritz; Leicht, Gregor; Curic, Stjepan; Mulert, Christoph

    2018-06-19

    The basic mechanism of pharmacotherapy in schizophrenia has barely changed in the last 60 years. Currently used medications allow the effective treatment of positive symptoms via antagonistic effects at dopamine receptors whereas the effect on negative and cognitive symptoms is most often negligible. The observation that N-methyl-D-aspartate glutamate receptor (NMDAR) antagonists such as ketamine transiently induce schizophrenia-like positive, negative and cognitive symptoms has led to a paradigm shift from dopaminergic to glutamatergic dysfunction in pharmacological models of schizophrenia. The NMDAR hypofunction can explain not only the whole range of schizophrenia symptoms but also the dopaminergic dysfunction itself, and it emphasizes the need for pharmacologicallytargeted glutamatergic neurotransmission. Moreover, ketamine-induced psychopathological changes in healthy participants were accompanied by altered electro-(EEG), magnetoencephalographic (MEG) (e.g. Mismatch Negativity (MMN), N100), and functional magnetic resonance imaging (fMRI) signals, reminiscent of findings observed in patients with schizophrenia. Hence, the ketamine model offers the possibility to assess the effect of novel pharmacological agents on schizophrenia-like symptoms and neurophysiology, thereby potentially facilitating drug research and development by providing a way to ascertain functional target engagement and the ability to prioritize candidate drugs. Therefore, this review summarizes the recent evidence from EEG, MEG and fMRI studies on potential biomarkers found in healthy subjects treated with ketamine and pharmacological interventions within the ketamine model. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Performance on a probabilistic inference task in healthy subjects receiving ketamine compared with patients with schizophrenia

    PubMed Central

    Almahdi, Basil; Sultan, Pervez; Sohanpal, Imrat; Brandner, Brigitta; Collier, Tracey; Shergill, Sukhi S; Cregg, Roman; Averbeck, Bruno B

    2012-01-01

    Evidence suggests that some aspects of schizophrenia can be induced in healthy volunteers through acute administration of the non-competitive NMDA-receptor antagonist, ketamine. In probabilistic inference tasks, patients with schizophrenia have been shown to ‘jump to conclusions’ (JTC) when asked to make a decision. We aimed to test whether healthy participants receiving ketamine would adopt a JTC response pattern resembling that of patients. The paradigmatic task used to investigate JTC has been the ‘urn’ task, where participants are shown a sequence of beads drawn from one of two ‘urns’, each containing coloured beads in different proportions. Participants make a decision when they think they know the urn from which beads are being drawn. We compared performance on the urn task between controls receiving acute ketamine or placebo with that of patients with schizophrenia and another group of controls matched to the patient group. Patients were shown to exhibit a JTC response pattern relative to their matched controls, whereas JTC was not evident in controls receiving ketamine relative to placebo. Ketamine does not appear to promote JTC in healthy controls, suggesting that ketamine does not affect probabilistic inferences. PMID:22389244

  10. Dose-response characteristics of intravenous ketamine on dissociative stereotypy, locomotion, sensorimotor gating, and nociception in male Sprague-Dawley rats.

    PubMed

    Radford, Kennett D; Park, Thomas Y; Lee, Bong Hyo; Moran, Sean; Osborne, Lisa A; Choi, Kwang H

    2017-02-01

    Clinicians administer subanesthetic intravenous (IV) ketamine infusions for treatment of refractory depression, chronic pain, and post-traumatic stress disorder in humans. However, ketamine is administered via the subcutaneous (SC) or intraperitoneal (IP) routes to rodents in most pre-clinical research, which may limit translational application. The present study characterized the dose-response of a subanesthetic IV ketamine bolus (2 and 5mg/kg) and 1-h infusion (5, 10, and 20mg/kg/h) on dissociative stereotypy, locomotion, sensorimotor gating, and thermal nociception in male Sprague-Dawley rats. The secondary aim was to measure ketamine and norketamine plasma concentrations following IV ketamine bolus at 1, 20, and 50min and at the conclusion of the 1-h infusion using liquid chromatography/mass spectrometry. The results showed that ketamine bolus and infusions produced dose-dependent dissociative stereotypy. Bolus (2 and 5mg/kg) and 20mg/kg/h infusion increased locomotor activity while 5mg/kg/h infusion decreased locomotor activity. Both 10 and 20mg/kg/h infusions reduced the acoustic startle reflex, while 5mg/kg bolus and 20mg/kg/h infusion impaired pre-pulse inhibition. Ketamine 5mg/kg bolus and the 10 and 20mg/kg/h infusions induced significant and prolonged antinociception to the hotplate test. Plasma concentrations of ketamine decreased quickly after bolus while norketamine levels increased from 1 to 20min and plateaued from 20 to 50min. The peak ketamine plasma concentrations [ng/ml] were similar between 5mg/kg bolus [4100] vs. 20mg/kg/h infusion [3900], and 2mg/kg bolus [1700] vs. 10mg/kg/h infusion [1500]. These results support the findings from previous ketamine injection studies and further validate the feasibility of administering subanesthetic doses of IV ketamine infusion to rats for neuropharmacological studies. Published by Elsevier Inc.

  11. Subanesthetic ketamine for pain management in hospitalized children, adolescents, and young adults: a single-center cohort study

    PubMed Central

    Sheehy, Kathy A; Lippold, Caroline; Rice, Amy L; Nobrega, Raissa; Finkel, Julia C; Quezado, Zenaide MN

    2017-01-01

    Background Subanesthetic doses of ketamine, an N-methyl-d-aspartate receptor antagonist used as an adjuvant to opioid for the treatment of pain in adults with acute and chronic pain, have been shown, in some instances, to improve pain intensity and to decrease opioid intake. However, less is known about the role of ketamine in pain management in children, adolescents, and young adults. Purpose We examined the effects of subanesthetic ketamine on pain intensity and opioid intake in children, adolescents, and young adults with acute and chronic pain syndromes treated in an inpatient setting. Methods This is a longitudinal cohort study of patients treated with subanesthetic ketamine infusions in regular patient care units in a tertiary pediatric hospital. Primary outcomes included changes in pain scores and morphine-equivalent intake. Results The study cohort included 230 different patients who during 360 separate hospital admissions received subanesthetic ketamine infusions for pain management. Overall, ketamine infusions were associated with significant reductions in mean pain scores from baseline (mean pain scores 6.64 [95% CI: 6.38–6.90]) to those recorded on the day after discontinuation of ketamine (mean pain scores 4.38 [95% CI: 4.06–4.69]), p<0.001. Importantly, the effect of ketamine on pain scores varied according to clinical diagnosis (p=0.011), infusion duration (p=0.004), and pain location (p=0.004). Interestingly, greater reductions in pain scores were observed in patients with cancer pain and patients with pain associated with pancreatitis and Crohn’s disease. There were no records of psychotomimetic side effects requiring therapy. Conclusion These data suggest that administration of subanesthetic ketamine for pain management is feasible and safe in regular inpatient care units and may benefit children, adolescents, and young adults with acute and chronic pain. This study is informative and can be helpful in determining sample and effect sizes

  12. NMDA receptor antagonist ketamine impairs feature integration in visual perception.

    PubMed

    Meuwese, Julia D I; van Loon, Anouk M; Scholte, H Steven; Lirk, Philipp B; Vulink, Nienke C C; Hollmann, Markus W; Lamme, Victor A F

    2013-01-01

    Recurrent interactions between neurons in the visual cortex are crucial for the integration of image elements into coherent objects, such as in figure-ground segregation of textured images. Blocking N-methyl-D-aspartate (NMDA) receptors in monkeys can abolish neural signals related to figure-ground segregation and feature integration. However, it is unknown whether this also affects perceptual integration itself. Therefore, we tested whether ketamine, a non-competitive NMDA receptor antagonist, reduces feature integration in humans. We administered a subanesthetic dose of ketamine to healthy subjects who performed a texture discrimination task in a placebo-controlled double blind within-subject design. We found that ketamine significantly impaired performance on the texture discrimination task compared to the placebo condition, while performance on a control fixation task was much less impaired. This effect is not merely due to task difficulty or a difference in sedation levels. We are the first to show a behavioral effect on feature integration by manipulating the NMDA receptor in humans.

  13. Ketamine and thiopental sodium: individual and combined neuroprotective effects on cortical cultures exposed to NMDA or nitric oxide.

    PubMed

    Shibuta, S; Varathan, S; Mashimo, T

    2006-10-01

    An N-methyl-D-aspartate (NMDA) blocker, ketamine, has been shown to be neuroprotective both in vivo and in vitro. However, ketamine is not commonly recommended for use in patients suffering from cerebral ischaemia because of its adverse neurological effects. We hypothesized that combined administration of ketamine and thiopental sodium (TPS) would be highly effective in protecting cerebral cortical neurones from ischaemia, with possibly reduced dosages. We examined the degree of neuroprotection provided by various concentrations of ketamine and TPS, alone and in combination, in cortical cultures exposed to NMDA or a nitric oxide-releasing compound (NOC-5) for 24 h. The survival rate (SR) of E16 Wistar rat cortical neurones was evaluated using photomicrographs before and after exposure to these compounds. The SRs of cortical neurones exposed to 30 microM NMDA or NOC-5 were 15.0 (3.8)%, 12.8 (3.1)%, respectively. Higher doses (5, 10 and 50 microM) but not lower doses (<1 microM) of ketamine improved SRs [57.9 (2.2)%, 61.1 (5.4)%, 76.7 (3.0)%, respectively] against NMDA but not NOC. Enhanced survival was observed with combined administration of 5 or 10 microM ketamine and 50 microM TPS [SR 71.3 (4.8)%, 74.7 (3.7)%, respectively, P<0.05 if ketamine alone, P<0.01 if TPS alone], against NMDA-induced neurotoxicity in vitro. Only the highest dose of TPS (50 microM) improved survival after NOC exposure. This neuroprotection was not influenced by ketamine. These data indicate that a low, clinically relevant dose of ketamine offer significant neuroprotection during prolonged exposure to NMDA but not to NOC. Combinations of reduced doses of ketamine and TPS exhibited enhanced neuroprotection against NMDA-induced neurotoxicity. Hence, combinations of these two common i.v. anaesthetics agents could be developed to protect the brain from ischaemia.

  14. Ketamine potentiates oxidative stress and influences behavior and inflammation in response to lipolysaccharide (LPS) exposure in early life.

    PubMed

    Réus, Gislaine Z; Simões, Lutiana R; Colpo, Gabriela D; Scaini, Giselli; Oses, Jean P; Generoso, Jaqueline S; Prossin, Alan R; Kaddurah-Daouk, Rima; Quevedo, João; Barichello, Tatiana

    2017-06-14

    Immune activation (IA) during the early neonatal period is a risk factor for the development of schizophrenia. Lipopolysaccharide (LPS) injected in neonates lead to behavioral and brain changes that persist to adult life. We investigated oxidative stress, levels of cytokines, and the locomotor activity of IA in a schizophrenia animal model in which neonatal male Wistar rats were administered with an injection of LPS (50μg/kg) on postnatal day 3 and different doses of ketamine (5, 15 and 25mg/kg) for 7days during adulthood. Rats LPS-induced did not have locomotor activity alterations. Locomotor activity was elevated in neonatally saline-injected in the higher dose ketamine-treated animals. Carbonyl protein in the prefrontal cortex (PFC), hippocampus and striatum were increased in the LPS- and saline-induced in the ketamine (25mg/kg)-treated animals. Lipid damage occurred in the PFC, striatum and hippocampus in the LPS- and saline-induced in the ketamine (15 and 25mg/kg) -treated animals. In the hippocampus the superoxide dismutase (SOD) was decreased in the LPS- and saline-induced in the ketamine-treated with the dose of 25mg/kg. In the PFC SOD was reduced in the LPS-induced in the ketamine (25mg/kg)-treated animals. Catalase in the PFC and hippocampus was reduced in the LPS- and saline-induced in the ketamine (25mg/kg)-treated animals. Pro- and anti-inflammatory cytokines were lower in the brains of LPS-induced in the higher dose ketamine-treated rats. IA influences the locomotor activity and cytokine levels induced by ketamine, and it has a negative effect in potentiating the oxidative stress by higher doses of ketamine in the brain. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Riluzole for relapse prevention following intravenous ketamine in treatment-resistant depression: a pilot randomized, placebo-controlled continuation trial

    PubMed Central

    Mathew, Sanjay J.; Murrough, James W.; Rot, Marije aan het; Collins, Katherine A.; Reich, David L.; Charney, Dennis S.

    2013-01-01

    The N-methyl-d-aspartate (NMDA) glutamate receptor antagonist ketamine may have rapid, albeit transient, antidepressant properties. This study in patients with treatment-resistant major depression (TRD) aimed to (1) replicate the acute efficacy of single-dose intravenous (i.v.) ketamine; (2) test the efficacy of the glutamate-modulating agent riluzole in preventing post-ketamine relapse ; and (3) examine whether pretreatment with lamotrigine would attenuate ketamine’s psychotomimetic effects and enhance its antidepressant activity. Twenty-six medication-free patients received open-label i.v. ketamine (0.5 mg/kg over 40 min). Two hours prior to infusion, patients were randomized to lamotrigine (300 mg) or placebo. Seventeen patients (65%) met response criterion (≥50% reduction from baseline on the Montgomery–Asberg Depression Rating Scale) 24 h following ketamine. Lamotrigine failed to attenuate the mild, transient side-effects associated with ketamine and did not enhance its antidepressant effects. Fourteen patients (54%) met response criterion 72 h following ketamine and proceeded to participate in a 32-d, randomized, double-blind, placebo-controlled, flexible-dose continuation trial of riluzole (100–200 mg/d). The main outcome measure was time-to-relapse. An interim analysis found no significant differences in time-to-relapse between riluzole and placebo groups [log-rank χ2 = 0.17, d.f. = 1, p = 0.68], with 80% of patients relapsing on riluzole vs. 50% on placebo. The trial was thus stopped for futility. This pilot study showed that a sub-anaesthetic dose of i.v. ketamine is well-tolerated in TRD, and may have rapid and sustained antidepressant properties. Riluzole did not prevent relapse in the first month following ketamine. Further investigation of relapse prevention strategies post-ketamine is necessary. PMID:19288975

  16. Antisuicidal Response Following Ketamine Infusion Is Associated With Decreased Nighttime Wakefulness in Major Depressive Disorder and Bipolar Disorder.

    PubMed

    Vande Voort, Jennifer L; Ballard, Elizabeth D; Luckenbaugh, David A; Bernert, Rebecca A; Richards, Erica M; Niciu, Mark J; Park, Lawrence T; Machado-Vieira, Rodrigo; Duncan, Wallace C; Zarate, Carlos A

    Insomnia and disrupted sleep are associated with increased risk of suicide. The N-methyl-d-aspartate antagonist ketamine has been associated with reduced suicidal thoughts, but the mechanism of action is unknown. This study sought to evaluate differences in nocturnal wakefulness in depressed individuals who did and did not have an antisuicidal response to ketamine. Thirty-four participants with baseline suicidal ideation diagnosed with either DSM-IV major depressive disorder (n = 23) or bipolar depression (n = 11) between 2006 and 2013 completed nighttime electroencephalography (EEG) the night before and the night after a single ketamine infusion (0.5 mg/kg over 40 minutes). Suicidal ideation was assessed at baseline and the morning after ketamine infusion via several measures, including the Hamilton Depression Rating Scale suicide item, the suicide item of the Montgomery-Asberg Depression Rating Scale, and the first 5 items of the Scale for Suicide Ideation. A generalized linear mixed model evaluated differences in nocturnal wakefulness, as verified by EEG, between those who had an antisuicidal response to ketamine and those who did not, controlling for baseline nocturnal wakefulness. Results were also compared to the sleep of healthy controls (n = 22). After analyses adjusted for baseline sleep, participants with an antisuicidal response to ketamine showed significantly reduced nocturnal wakefulness the night after ketamine infusion compared to those without an antisuicidal response (F₁,₂₂ = 5.04, P = .04). Level of nocturnal wakefulness after antisuicidal response to ketamine did not differ significantly from nocturnal wakefulness in the control sample but did differ at a trend level (F₁,₄₀ = 3.15, P = .08). Reductions in wakefulness following ketamine may point to a biological mechanism underlying the effect of ketamine on suicidal ideation. ClinicalTrials.gov identifier: NCT00088699. © Copyright 2016 Physicians Postgraduate Press, Inc.

  17. Memantine reverses social withdrawal induced by ketamine in rats.

    PubMed

    Uribe, Ezequiel; Landaeta, José; Wix, Richard; Eblen, Antonio

    2013-03-01

    The objective of this study was to determine the effect of memantine on schizophrenia-like symptoms in a ketamine-induced social withdrawal model in rats. We examined therapeutic effects of memantine, an NMDA antagonist, and haloperidol, a classic antipsychotic drug, on this behavioral model. Administration of memantine (10 or 15 mg·kg(-1)) significantly reduced ketamine-induced social withdrawal, and this effect was more effective than that of haloperidol (0.25 mg·kg(-1)) by restoring the social interaction between rats with no modification in general motor activity. These results suggest that memantine could have a therapeutic potential for schizophrenia.

  18. Lack of Antidepressant Effects of (2R,6R)-Hydroxynorketamine in a Rat Learned Helplessness Model: Comparison with (R)-Ketamine.

    PubMed

    Shirayama, Yukihiko; Hashimoto, Kenji

    2018-01-01

    (R)-Ketamine exhibits rapid and sustained antidepressant effects in animal models of depression. It is stereoselectively metabolized to (R)-norketamine and subsequently to (2R,6R)-hydroxynorketamine in the liver. The metabolism of ketamine to hydroxynorketamine was recently demonstrated to be essential for ketamine's antidepressant actions. However, no study has compared the antidepressant effects of these 3 compounds in animal models of depression. The effects of a single i.p. injection of (R)-ketamine, (R)-norketamine, and (2R,6R)-hydroxynorketamine in a rat learned helplessness model were examined. A single dose of (R)-ketamine (20 mg/kg) showed an antidepressant effect in the rat learned helplessness model. In contrast, neither (R)-norketamine (20 mg/kg) nor (2R,6R)-hydroxynorketamine (20 and 40 mg/kg) did so. Unlike (R)-ketamine, its metabolite (2R,6R)-hydroxynorketamine did not show antidepressant actions in the rat learned helplessness model. Therefore, it is unlikely that the metabolism of ketamine to hydroxynorketamine is essential for ketamine's antidepressant actions. © The Author 2017. Published by Oxford University Press on behalf of CINP.

  19. Glutamatergic Signaling Drives Ketamine-Mediated Response in Depression: Evidence from Dynamic Causal Modeling.

    PubMed

    Gilbert, Jessica R; Yarrington, Julia S; Wills, Kathleen E; Nugent, Allison C; Zarate, Carlos A

    2018-04-13

    The glutamatergic modulator ketamine has rapid antidepressant effects in individuals with major depressive disorder (MDD) and bipolar depression. Thus, modulating glutamatergic transmission may be critical to effectively treating depression, though the mechanisms by which this occurs are not fully understood. This double-blind, crossover, placebo-controlled study analyzed data from 18 drug-free MDD subjects and 18 heathy controls who received a single intravenous infusion of ketamine hydrochloride (0.5 mg/kg) as well as an intravenous saline placebo. Magnetoencephalographic (MEG) recordings were collected prior to the first infusion and six to nine hours after both ketamine and placebo infusions. During scanning, participants passively received tactile stimulation to the right index finger. Antidepressant response was assessed across timepoints using the Montgomery-Asberg Depression Rating Scale (MADRS). Dynamic causal modeling (DCM) was used to measure changes in -amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)- and N-methyl-D-aspartate (NMDA)-mediated connectivity estimates in MDD subjects and controls using a simple model of somatosensory evoked responses. Both MDD and healthy subjects showed ketamine-mediated NMDA-blockade sensitization, with MDD subjects showing enhanced NMDA connectivity estimates in backward connections, and controls showing enhanced NMDA connectivity estimates in forward connections in our model. Within our MDD subject group, ketamine efficacy-as measured by improved mood ratings-correlated with reduced NMDA and AMPA connectivity estimates in discrete extrinsic connections within the somatosensory cortical network. These findings suggest that AMPA- and NMDA-mediated glutamatergic signaling play a key role in antidepressant response to ketamine and, further, that DCM is a powerful tool for modeling AMPA- and NMDA-mediated connectivity in vivo. NCT#00088699.

  20. Deviance-elicited changes in event-related potentials are attenuated by ketamine in mice.

    PubMed

    Ehrlichman, Richard S; Maxwell, Christina R; Majumdar, Sonalee; Siegel, Steven J

    2008-08-01

    People with schizophrenia exhibit reduced ability to detect change in the auditory environment, which has been linked to abnormalities in N-methyl-D-aspartate (NMDA) receptor-mediated glutamate neurotransmission. This ability to detect changes in stimulus qualities can be measured with electroencephalography using auditory event-related potentials (ERPs). For example, reductions in the N100 and mismatch negativity (MMN), in response to pitch deviance, have been proposed as endophenotypes of schizophrenia. This study examines a novel rodent model of impaired pitch deviance detection in mice using the NMDA receptor antagonist ketamine. ERPs were recorded from unanesthetized mice during a pitch deviance paradigm prior to and following ketamine administration. First, N40 amplitude was evaluated using stimuli between 4 and 10 kHz to assess the amplitude of responses across the frequency range used. The amplitude and latency of the N40 were analyzed following standard (7 kHz) and deviant (5-9 kHz) stimuli. Additionally, we examined which portions of the ERP are selectively altered by pitch deviance to define possible regions for the mouse MMN. Mice displayed increased N40 amplitude that was followed by a later negative component between 50 and 75 msec in response to deviant stimuli. Both the increased N40 and the late N40 negativity were attenuated by ketamine. Ketamine increased N40 latency for both standard and deviant stimuli alike. The mouse N40 and a subsequent temporal region have deviance response properties similar to the human N100 and, possibly, MMN. Deviance responses were abolished by ketamine, suggesting that ketamine-induced changes in mice mimic deviance detection deficits in schizophrenia.

  1. Blood pressure safety of subanesthetic ketamine for depression: A report on 684 infusions.

    PubMed

    Riva-Posse, Patricio; Reiff, Collin M; Edwards, Johnathan A; Job, Gregory P; Galendez, Gail C; Garlow, Steven J; Saah, Tammy C; Dunlop, Boadie W; McDonald, William M

    2018-08-15

    The dissociative anesthetic agent ketamine is increasingly being utilized to treat depression, despite not having FDA (Food and Drug Administration) approval for this indication. There are many questions about the potential risks of this treatment and hence the proper setting and degree of monitoring required to ensure patient safety. There is limited data about the cardiovascular safety of ketamine when administered at subanesthetic doses to treat depression. 66 patients in the Department of Psychiatry at Emory University received a total of 684 ketamine infusions between 2014 and 2016. Ketamine was dosed at 0.5 mg/kg body weight and infused over 40 min. Blood pressure was measured every 10 min during the infusions and every 15 min thereafter. Mean age of the patients was 56.7 years, 87.9% had unipolar depression and 36.1% had essential hypertension. No infusions were discontinued due to instability of vital signs, adverse physiological consequences or acute psychotomimetic effects. The biggest increases in blood pressure were measured at 30 min (systolic 3.28 mmHg, diastolic 3.17 mmHg). Hypertensive patients had higher blood pressure peaks during the infusions. Blood pressures returned to baseline during post-infusion monitoring. There was no development of tolerance to the blood pressure elevating effects of ketamine between the first and sixth infusions. This is a single site, retrospective analysis, of patients who were spontaneously seeking clinical care. The blood pressure changes observed when ketamine is administered over 40 min at 0.5 mg/kg for the treatment of depression are small, well tolerated and clinically insignificant. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. AMELIORATING TREATMENT-REFRACTORY DEPRESSION WITH INTRANASAL KETAMINE: POTENTIAL NMDA RECEPTOR ACTIONS IN THE PAIN CIRCUITRY REPRESENTING MENTAL ANGUISH

    PubMed Central

    Opler, Lewis A.; Opler, Mark G.; Arnsten, Amy F.T.

    2014-01-01

    This paper reviews the anti-depressant actions of the N-methyl-D-aspartame glutamate receptor (NMDAR) antagonist, ketamine, and offers a potential neural mechanism for intranasal ketamine’s ultra-rapid actions based on the key role of NMDAR in the nonhuman primate prefrontal cortex (PFC). Although intravenous ketamine infusions can lift mood within hours, the current review describes how intranasal ketamine administration can have ultra-rapid antidepressant effects, beginning within minutes (5–40 minutes) and lasting hours, but with repeated treatments needed for sustained antidepressant actions. Research in rodents suggests that increased synaptogenesis in PFC may contribute to the prolonged benefit of ketamine administration, beginning hours after administration. However, these data cannot explain the relief that occurs within minutes of intranasal ketamine delivery. We hypothesize that the ultra-rapid effects of intranasal administration in humans may be due to ketamine blocking the NMDAR circuits that generate the emotional representations of pain (e.g. Brodmann Areas 24 and 25, insular cortex), cortical areas that can be overactive in depression and which sit above the nasal epithelium. In contrast, NMDAR blockade in the dorsolateral PFC following systemic administration of ketamine may contribute to cognitive deficits. This novel view may help to explain how intravenous ketamine can treat the symptoms of depression yet worsen the symptoms of schizophrenia. PMID:25619798

  3. Some considerations of the tolerability of ketamine for ECT anesthesia: a case series and review of the literature.

    PubMed

    Rasmussen, Keith G; Ritter, Matthew J

    2014-12-01

    Most anesthetic agents used for electroconvulsive therapy (ECT) have few intrinsic adverse effects. Ketamine, however, is well known to be associated with a variety of adverse effects including nausea, dizziness, and psychotomimetic phenomena. Over the past several decades, there have been numerous reports on the use of ketamine for ECT anesthesia, with varied assessments on how prominent these adverse effects are in the ECT situation. Ketamine has received a resurgence of interest as an ECT anesthetic of late owing to its established independent antidepressant effects and to theoretical reasons why it might lessen the cognitive adverse effects of ECT. In this case series, the author reviews the experience with 14 patients who had undergone ECT who were switched to ketamine as anesthetic from methohexital at the preference of the treating anesthesiologist. All 14 patients spontaneously reported a strong preference not to be given ketamine again due to bothersome adverse effects. The latter consisted of either vestibular-type symptoms (nausea/vomiting, dizziness, and vertigo) or psychotomimetic effects (dissociative phenomena). It is concluded that ketamine is not free of adverse effects when used as an ECT anesthetic. Electroconvulsive therapy clinicians should be vigilant about assessing for these effects when ketamine is used, and consideration should be given to using a benzodiazepine such as diazepam or midazolam at seizure termination when ketamine anesthesia is used to prevent bothersome adverse effects seen upon awakening.

  4. Demonstration of analgesic effect of intranasal ketamine and intranasal fentanyl for postoperative pain after pediatric tonsillectomy.

    PubMed

    Yenigun, Alper; Yilmaz, Sinan; Dogan, Remzi; Goktas, Seda Sezen; Calim, Muhittin; Ozturan, Orhan

    2018-01-01

    Tonsillectomy is one of the oldest and most commonly performed surgical procedure in otolaryngology. Postoperative pain management is still an unsolved problem. In this study, our aim is to demonstrate the efficacy of intranasal ketamine and intranasal fentanyl for postoperative pain relief after tonsillectomy in children. This randomized-controlled study was conducted to evaluate the effects of intranasal ketamine and intranasal fentanyl in children undergoing tonsillectomy. Tonsillectomy performed in 63 children were randomized into three groups. Group I received: Intravenous paracetamol (10 mg/kg), Group II received intranasal ketamine (1.5 mg/kg ketamine), Group III received intranasal fentanyl (1.5 mcg/kg). The Children's Hospital of Eastern Ontario Pain Scale (CHEOPS) and Wilson sedation scale scores were recorded at 15, 30, 60 min, 2 h, 6hr, 12 h and 24 h postoperatively. Patients were interviewed on the day after surgery to assess the postoperative pain, nightmares, hallucinations, nausea, vomiting and bleeding. Intranasal ketamine and intranasal fentanyl provided significantly stronger analgesic affects compared to intravenous paracetamol administration at postoperative 15, 30, 60 min and at 2, 6, 12 and 24 h in CHEOPS (p < 0.05). Sedative effects were observed in three patients in the intranasal ketamine administration group. No such sedative effect was seen in the groups that received intranasal fentanyl and intravenous paracetamol in Wilson Sedation Scale (p < 0.05). Cognitive impairment, constipation, nausea, vomiting and bleeding were not observed in any of the groups. This study showed that either intranasal ketamine and intranasal fentanyl were more effective than paracetamol for postoperative analgesia after pediatric tonsillectomy. Sedative effects were observed in three patients with the group of intranasal ketamine. There was no significant difference in the efficacy of IN Ketamine and IN Fentanyl for post-tonsillectomy pain

  5. Subanesthetic ketamine infusions for the treatment of children and adolescents with chronic pain: a longitudinal study.

    PubMed

    Sheehy, Kathy A; Muller, Elena A; Lippold, Caroline; Nouraie, Mehdi; Finkel, Julia C; Quezado, Zenaide M N

    2015-12-01

    Chronic pain is common in children and adolescents and is often associated with severe functional disability and mood disorders. The pharmacological treatment of chronic pain in children and adolescents can be challenging, ineffective, and is mostly based on expert opinions and consensus. Ketamine, an N-methyl-D-aspartate receptor antagonist, has been used as an adjuvant for treatment of adult chronic pain and has been shown, in some instances, to improve pain and decrease opioid-requirement. We examined the effects of subanesthetic ketamine infusions on pain intensity and opioid use in children and adolescents with chronic pain syndromes treated in an outpatient setting. Longitudinal cohort study of consecutive pediatric patients treated with subanesthetic ketamine infusions in a tertiary outpatient center. Outcome measurements included self-reported pain scores (numeric rating scale) and morphine-equivalent intake. Over a 15-month period, 63 children and adolescents (median age 15, interquartile range 12-17 years) with chronic pain received 277 ketamine infusions. Intravenous administration of subanesthetic doses of ketamine to children and adolescents on an outpatient basis was safe and not associated with psychotropic effects or hemodynamic perturbations. Overall, ketamine significantly reduced pain intensity (p < 0.001) and yielded greater pain reduction in patients with complex regional pain syndrome (CRPS) than in patients with other chronic pain syndromes (p = 0.029). Ketamine-associated reductions in pain scores were the largest in postural orthostatic tachycardia syndrome (POTS) and trauma patients and the smallest in patients with chronic headache (p = 0.007). In 37% of infusions, patients had a greater than 20 % reduction in pain score. Conversely, ketamine infusions did not change overall morphine-equivalent intake (p = 0.3). These data suggest that subanesthetic ketamine infusion is feasible in an outpatient setting and may benefit children and

  6. Dopamine Attenuates Ketamine-Induced Neuronal Apoptosis in the Developing Rat Retina Independent of Early Synchronized Spontaneous Network Activity.

    PubMed

    Dong, Jing; Gao, Lingqi; Han, Junde; Zhang, Junjie; Zheng, Jijian

    2017-07-01

    Deprivation of spontaneous rhythmic electrical activity in early development by anesthesia administration, among other interventions, induces neuronal apoptosis. However, it is unclear whether enhancement of neuronal electrical activity attenuates neuronal apoptosis in either normal development or after anesthesia exposure. The present study investigated the effects of dopamine, an enhancer of spontaneous rhythmic electrical activity, on ketamine-induced neuronal apoptosis in the developing rat retina. TUNEL and immunohistochemical assays indicated that ketamine time- and dose-dependently aggravated physiological and ketamine-induced apoptosis and inhibited early-synchronized spontaneous network activity. Dopamine administration reversed ketamine-induced neuronal apoptosis, but did not reverse the inhibitory effects of ketamine on early synchronized spontaneous network activity despite enhancing it in controls. Blockade of D1, D2, and A2A receptors and inhibition of cAMP/PKA signaling partially antagonized the protective effect of dopamine against ketamine-induced apoptosis. Together, these data indicate that dopamine attenuates ketamine-induced neuronal apoptosis in the developing rat retina by activating the D1, D2, and A2A receptors, and upregulating cAMP/PKA signaling, rather than through modulation of early synchronized spontaneous network activity.

  7. [Preparing oral dosage form of ketamine in the hospital for simplicity and patient compliance--preparations using agar].

    PubMed

    Kaneuchi, Miki; Kohri, Naonori; Senbongi, Kaname; Sakai, Hideo; Iseki, Ken

    2005-02-01

    Ketamine has been widely used in the operation as intravenous and intramuscular injections, since ketamine has dissociative anesthetic properties. When it is given in sub-anesthetic dose, ketamine is known to have an analgesic effect. The analgesic effect is observed for patients with neuropathic pain when administrated not only by injection but also orally. In Japan, since ketamine is not commercially available except injection forms, patients have to take it as solution of injections for the oral medication. Since the solution of injections has extremely bitter taste, patients intensely desire the development of preparations without the bitterness. In the present study, we prepared oral gel dosage forms of ketamine using agar. It is simple to prepare this dosage form, and most pharmacists can prepare it easily in many hospitals. This gel dosage form met content uniformity requirements and the shape of that was maintained intact during the dissolution test (for 10 hours). The release rate was reduced by additions of additives such as sugar and a flavor in the gel. The reason for the reduction in release could be the suppression of ketamine diffusion depended on the micro-viscosity of solution in the gel. The ketamine contents and the release profile of the gel preparations were unchanged at the room temperature for 12-week storage. The gel preparations in this study would be useful for the oral medication of ketamine, since it is easy for patients to carry them when they go out and the intensely bitter taste could be improved by the addition of a flavor.

  8. Effects of ketamine and lidocaine in combination on the sevoflurane minimum alveolar concentration in alpacas

    PubMed Central

    Queiroz-Williams, Patricia; Doherty, Thomas J.; da Cunha, Anderson F.; Leonardi, Claudia

    2016-01-01

    This study investigated the effects of ketamine and lidocaine in combination on the minimum alveolar concentration of sevoflurane (MACSEVO) in alpacas. Eight healthy, intact male, adult alpacas were studied on 2 separate occasions. Anesthesia was induced with SEVO, and baseline MAC (MACB) determination began 45 min after induction. After MACB determination, alpacas were randomly given either an intravenous (IV) loading dose (LD) and infusion of saline or a loading dose [ketamine = 0.5 mg/kg body weight (BW); lidocaine = 2 mg/kg BW] and an infusion of ketamine (25 μg/kg BW per minute) in combination with lidocaine (50 μg/kg BW per minute), and MACSEVO was re-determined (MACT). Quality of recovery, time-to-extubation, and time-to-standing, were also evaluated. Mean MACB was 1.88% ± 0.13% and 1.89% ± 0.14% for the saline and ketamine + lidocaine groups, respectively. Ketamine and lidocaine administration decreased (P < 0.05) MACB by 57% and mean MACT was 0.83% ± 0.10%. Saline administration did not change MACB. Time to determine MACB and MACT was not significantly different between the treatments. The quality of recovery, time-to-extubation, and time-to-standing, were not different between groups. The infusion of ketamine combined with lidocaine significantly decreased MACSEVO by 57% and did not adversely affect time-to-standing or quality of recovery. PMID:27127341

  9. Effects of ketamine and lidocaine in combination on the sevoflurane minimum alveolar concentration in alpacas.

    PubMed

    Queiroz-Williams, Patricia; Doherty, Thomas J; da Cunha, Anderson F; Leonardi, Claudia

    2016-04-01

    This study investigated the effects of ketamine and lidocaine in combination on the minimum alveolar concentration of sevoflurane (MACSEVO) in alpacas. Eight healthy, intact male, adult alpacas were studied on 2 separate occasions. Anesthesia was induced with SEVO, and baseline MAC (MACB) determination began 45 min after induction. After MACB determination, alpacas were randomly given either an intravenous (IV) loading dose (LD) and infusion of saline or a loading dose [ketamine = 0.5 mg/kg body weight (BW); lidocaine = 2 mg/kg BW] and an infusion of ketamine (25 μg/kg BW per minute) in combination with lidocaine (50 μg/kg BW per minute), and MACSEVO was re-determined (MACT). Quality of recovery, time-to-extubation, and time-to-standing, were also evaluated. Mean MACB was 1.88% ± 0.13% and 1.89% ± 0.14% for the saline and ketamine + lidocaine groups, respectively. Ketamine and lidocaine administration decreased (P < 0.05) MACB by 57% and mean MACT was 0.83% ± 0.10%. Saline administration did not change MACB. Time to determine MACB and MACT was not significantly different between the treatments. The quality of recovery, time-to-extubation, and time-to-standing, were not different between groups. The infusion of ketamine combined with lidocaine significantly decreased MACSEVO by 57% and did not adversely affect time-to-standing or quality of recovery.

  10. Microcellular poly(hydroxybutyrate-co-hydroxyvalerate)-hyperbranched polymer-nanoclay nanocomposites

    Treesearch

    Alireza Javadi; Yottha Srithep; Srikanth Pilla; Craig C. Clemons; Shaoqin Gong; Lih-Sheng Turng

    2012-01-01

    The effects of incorporating hyperbranched polymers (HBPs) and different nanoclays [Cloisite® 30B and halloysite nanotubes (HNT)] on the mechanical, morphological, and thermal properties of solid and microcellular poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) were investigated. According to the X-ray diffraction (...

  11. Clinical and Neurobiological Aspects of Narcolepsy

    PubMed Central

    Nishino, Seiji

    2007-01-01

    Narcolepsy is characterized by excessive daytime sleepiness (EDS), cataplexy and/or other dissociated manifestations of rapid eye movement (REM) sleep (hypnagogic hallucinations and sleep paralysis). Narcolepsy is currently treated with amphetamine-like central nervous system (CNS) stimulants (for EDS) and antidepressants (for cataplexy). Some other classes of compounds such as modafinil (a non-amphetamine wake-promoting compound for EDS) and gamma-hydroxybutyrate (GHB, a short-acting sedative for EDS/fragmented nighttime sleep and cataplexy) given at night are also employed. The major pathophysiology of human narcolepsy has been recently elucidated based on the discovery of narcolepsy genes in animals. Using forward (i.e., positional cloning in canine narcolepsy) and reverse (i.e., mouse gene knockout) genetics, the genes involved in the pathogenesis of narcolepsy (hypocretin/orexin ligand and its receptor) in animals have been identified. Hypocretins/orexins are novel hypothalamic neuropeptides also involved in various hypothalamic functions such as energy homeostasis and neuroendocrine functions. Mutations in hypocretin-related genes are rare in humans, but hypocretin-ligand deficiency is found in many narcolepsy-cataplexy cases. In this review, the clinical, pathophysiological and pharmacological aspects of narcolepsy are discussed. PMID:17470414

  12. Ketamine as an Analgesic Adjuvant in Adult Trauma Intensive Care Unit Patients With Rib Fracture.

    PubMed

    Walters, Mary K; Farhat, Joseph; Bischoff, James; Foss, Mary; Evans, Cory

    2018-03-01

    Rib fracture associated pain is difficult to control. There are no published studies that use ketamine as a therapeutic modality to reduce the amount of opioid to control rib fracture pain. To examine the analgesic effects of adjuvant ketamine on pain scale scores in trauma intensive care unit (ICU) rib fracture. This retrospective, case-control cohort chart review evaluated ICU adult patients with a diagnosis of ≥1 rib fracture and an Injury Severity Score >15 during 2016. Patients received standard-of-care pain management with the physician's choice analgesics with or without ketamine as a continuous, fixed, intravenous infusion at 0.1 mg/kg/h. A total of 15 ketamine treatment patients were matched with 15 control standard-of-care patients. Efficacy was measured via Numeric Pain Scale (NPS)/Behavioral Pain Scale (BPS) scores, opioid use, and ICU and hospital length of stay. Safety of ketamine was measured by changes in vital signs, adverse effects, and mortality. Average NPS/BPS, severest NPS/BPS, and opioid use were lower in the ketamine group than in controls (NPS: 4.1 vs 5.8, P < 0.001; severest NPS: 7.0 vs 8.9, P = 0.004; opioid use: 2.5 vs 3.5 mg morphine equivalents/h/d, P = 0.015). No difference was found between the cohort's length of stay or mortality. Average diastolic blood pressure was higher in the treatment group versus the control group (75.3 vs 64.6 mm Hg, P = 0.014). Low-dose ketamine appears to be a safe and effective adjuvant option to reduce pain and decrease opioid use in rib fracture.

  13. “Resting” CBF in the Epileptic Baboon: Correlation with Ketamine Dose and Interictal Epileptic Discharges

    PubMed Central

    Szabó, C. Ákos; Narayana, Shalini; Franklin, Crystal; Knape, Koyle D.; Davis, M. Duff; Fox, Peter T.; Leland, M. Michelle; Williams, Jeff T.

    2011-01-01

    Background Photosensitive epileptic (SZ) baboons demonstrate different cerebral blood flow (CBF) activation patterns from asymptomatic controls (CTL) during intermittent light stimulation (ILS). This study compares “resting” CBF between PS and CTL animals, and CBF correlations with ketamine dose and interictal epileptic discharges (IEDs) between PS and CTL animals. Methods Continuous intravenous ketamine was administered to eight PS and eight CTL baboons (matched for gender and weight), and maintained at subanesthetic doses (4.8–14.6 mg/kg/hr). Three resting H215O-PET studies were attempted in each animal (CTI/Siemens HR+ scanner). Images were acquired in 3D mode (63 contiguous slices, 2.4 mm thickness). PET images were co-registered with MRI images (3T Siemens Trio, T1-weighted 3D Turboflash sequence, TE/TR/TI = 3.04/2100/785 msec, flip angle=13 degrees). EEG was used to monitor depth of sedation and for quantification of IED rates. Regional CBF was compared between PS and CTL groups and correlations were analyzed for ketamine dose and IED rates. Results When subsets of animals of either group, receiving similar doses of ketamine were compared, PS animals demonstrated relative CBF increases in the occipital lobes and decreases in the frontal lobes. Correlation analyses with ketamine dose confirmed the frontal and occipital lobe changes in the PS animals. The negative correlations of CBF with ketamine dose and IED rate overlapped frontally. While frontal lobe CBF was also negatively correlated with IED rate, positive correlations were found in the parietal lobe. Conclusions “Resting” CBF differs between PS and CTL baboons. Correlation analyses of CBF and ketamine dose reveal that occipital lobe CBF increases and frontal lobe in PS animals are driven by ketamine. While frontal lobe CBF decreases may be related to ketamine’s propensity to activate IEDs, positive CBF correlations with IED rate suggest involvement of the parietal lobes in their generation

  14. Ketamine as the anaesthetic for electroconvulsive therapy: the KANECT randomised controlled trial

    PubMed Central

    Fernie, Gordon; Currie, James; Perrin, Jennifer S.; Stewart, Caroline A.; Anderson, Virginica; Bennett, Daniel M.; Hay, Steven; Reid, Ian C.

    2017-01-01

    Background Ketamine has recently become an agent of interest as an acute treatment for severe depression and as the anaesthetic for electroconvulsive therapy (ECT). Subanaesthetic doses result in an acute reduction in depression severity while evidence is equivocal for this antidepressant effect with anaesthetic or adjuvant doses. Recent systematic reviews call for high-quality evidence from further randomised controlled trials (RCTs). Aims To establish if ketamine as the anaesthetic for ECT results in fewer ECT treatments, improvements in depression severity ratings and less memory impairment than the standard anaesthetic. Method Double-blind, parallel-design, RCT of intravenous ketamine (up to 2 mg/kg) with an active comparator, intravenous propofol (up to 2.5 mg/kg), as the anaesthetic for ECT in patients receiving ECT for major depression on an informal basis. (Trial registration: European Clinical Trials Database (EudraCT): 2011-000396-14 and clinicalTrials.gov: NCT01306760.) Results No significant differences were found on any outcome measure during, at the end of or 1 month following the ECT course. Conclusions Ketamine as an anaesthetic does not enhance the efficacy of ECT. PMID:28254962

  15. Rectal Thiopental versus Intramuscular Ketamine in Pediatric Procedural Sedation and Analgesia; a Randomized Clinical Trial.

    PubMed

    Azizkhani, Reza; Esmailian, Mehrdad; Shojaei, Azadeh; Golshani, Keihan

    2015-01-01

    Physicians frequently deal with procedures which require sedation of pediatric patients. Laceration repair is one of them. No study has been performed regarding the comparison between induction of sedation with sodium thiopental and ketamine in laceration repair. Therefore, the present study was aimed to comparison of induced sedation by rectal sodium thiopental and muscular injection of hydrochloride ketamine in pediatric patients need laceration repair. The presented study is a single-blinded clinical trial performed through 2013 to 2014 in Ayatollah Kashani and Alzahra Hospitals, Isfahan, Iran. Patients from 3 months to 14 years, needed sedation for laceration repair, were entered. Patients were sequentially evaluated and randomly categorized in two groups of hydrochloride ketamine with dose of 2-4 milligram per kilogram and sodium thiopental with dose of 25 milligram per kilogram. Demographic data and vital signs before drug administration and after induction of sedation, Ramsey score, time to onset of action, and sedation recovery time were evaluated. Chi-squared, Mann-Whitney, and Non-parametric analysis of covariance tests were used. P<0.05 was considered as a significant level. In this study 60 pediatric patients were entered. 30 patients with mean age of 42.8±18.82 months were received sodium thiopental and the rest with mean age of 30.08±16.88 months given ketamine. Mann-Whitney test was showed that time to onset of action in sodium thiopental group (28.23±5.18 minutes) was significantly higher than ketamine (7.77±4.13 minutes), (p<0.001). The sedation recovery time in ketamine group (29.83±7.70) was higher than sodium thiopental. Depth of sedation had no significant difference between two groups based on Ramsey score (p=0.87). No significant difference was seen between two groups in the respiratory rate (df=1, 58; F=0.002; P=0.96) and heart rate (df=1, 58; F=0.98; P=0.33). However, arterial oxygen saturation level (df=1, 58; F=6.58; P=0.013) was

  16. Suppression of RAGE and TLR9 by Ketamine Contributes to Attenuation of Lipopolysaccharide-Induced Acute Lung Injury.

    PubMed

    Yang, Chunyan; Song, Yulong; Wang, Hui

    2017-06-01

    The present study aimed to investigate the protective role of ketamine in lipopolysaccharide (LPS)-induced acute lung injury (ALI) by the inhibition of the receptor for advanced glycation end products (RAGE) and toll-like receptor 9 (TLR9). ALI was induced in rats by intratracheal instillation of LPS (5 mg/kg), and ketamine (5, 7.5, and 10 mg/kg) was injected intraperitoneally 1 h after LPS administration. Meanwhile, A549 alveolar epithelial cells were incubated with LPS in the presence or absence of ketamine. After 24 h, bronchoalveolar lavage fluid (BALF) and lung tissue were collected. Ketamine posttreatment at doses of 5, 7.5, and 10 mg/kg decreased LPS-induced evident lung histopathological changes, lung wet-to-dry weight ratio, and lung myeloperoxidase activity. In addition, posttreatment with ketamine-inhibited inflammatory cells and inflammatory mediators including tumor necrosis factor-α, interleukin-6, and high-mobility group box 1 in BALF. Furthermore, we demonstrated that ketamine-inhibited LPS-induced RAGE and TLR9 protein up-expressions and the phosphorylation of I-κB-α and nuclear factor-κB (NF-κB) p65 in vivo and in vitro. The results presented here suggest that the protective mechanism of ketamine may be attributed partly to decreased production of inflammatory mediators through the inhibition of RAGE/TLR9-NF-κB pathway.

  17. 76 FR 77016 - Controlled Substances: Final Adjusted Aggregate Production Quotas for 2011

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-09

    ... substances previously referenced, expressed in grams of anhydrous acid or base, as follows: Final adjusted...), diphenoxylate, fentanyl, gamma hydroxybutyric acid, hydrocodone, meperidine, methadone, methadone [[Page 77017... 2011 aggregate production quotas for alfentanil, diphenoxylate, gamma hydroxybutyric acid, meperidine...

  18. Caudal epidural analgesia using lidocaine alone or in combination with ketamine in dromedary camels Camelus dromedarius.

    PubMed

    Azari, Omid; Molaei, Mohammad M; Ehsani, Amir H

    2014-02-27

    This study was performed to investigate the analgesic effect of lidocaine and a combination of lidocaine and ketamine following epidural administration in dromedary camels. Ten 12-18-month-old camels were randomly divided into two equal groups. In group L, the animals received 2% lidocaine (0.22 mg/kg) and in group LK the animals received a mixture of 10% ketamine (1 mg/kg) and 2% lidocaine (0.22 mg/kg) administered into the first intercoccygeal (Co1-Co2) epidural space while standing. Onset time and duration of caudal analgesia, sedation level and ataxia were recorded after drug administration. Data were analysed by U Mann-Whitney tests and significance was taken as p < 0.05. The results showed that epidural lidocaine and co-administration of lidocaine and ketamine produced complete analgesia in the tail, anus and perineum. Epidural administration of the lidocaine-ketamine mixture resulted in mild to moderate sedation, whilst the animals that received epidural lidocaine alone were alert and nervous during the study. Ataxia was observed in all test subjects and was slightly more severe in camels that received the lidocaine-ketamine mixture. It was concluded that epidural administration of lidocaine plus ketamine resulted in longer caudal analgesia in standing conscious dromedary camels compared with the effect of administering lidocaine alone.

  19. Ketamine as a first-line treatment for severely agitated emergency department patients.

    PubMed

    Riddell, Jeff; Tran, Alexander; Bengiamin, Rimon; Hendey, Gregory W; Armenian, Patil

    2017-07-01

    Emergency physicians often need to control agitated patients who present a danger to themselves and hospital personnel. Commonly used medications have limitations. Our primary objective was to compare the time to a defined reduction in agitation scores for ketamine versus benzodiazepines and haloperidol, alone or in combination. Our secondary objectives were to compare rates of medication redosing, vital sign changes, and adverse events in the different treatment groups. We conducted a single-center, prospective, observational study examining agitation levels in acutely agitated emergency department patients between the ages of 18 and 65 who required sedation medication for acute agitation. Providers measured agitation levels on a previously validated 6-point sedation scale at 0-, 5-, 10-, and 15-min after receiving sedation. We also assessed the incidence of adverse events, repeat or rescue medication dosing, and changes in vital signs. 106 patients were enrolled and 98 met eligibility criteria. There was no significant difference between groups in initial agitation scores. Based on agitation scores, more patients in the ketamine group were no longer agitated than the other medication groups at 5-, 10-, and 15-min after receiving medication. Patients receiving ketamine had similar rates of redosing, changes in vital signs, and adverse events to the other groups. In highly agitated and violent emergency department patients, significantly fewer patients receiving ketamine as a first line sedating agent were agitated at 5-, 10-, and 15-min. Ketamine appears to be faster at controlling agitation than standard emergency department medications. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Morphological and behavioral responses of zebrafish after 24h of ketamine embryonic exposure.

    PubMed

    Félix, Luís M; Serafim, Cindy; Martins, Maria J; Valentim, Ana M; Antunes, Luís M; Matos, Manuela; Coimbra, Ana M

    2017-04-15

    Ketamine, one anesthetic used as an illicit drug, has been detected both in freshwater and marine ecosystems. However, knowledge of its impact on aquatic life is still limited. This study aimed to test its effects in zebrafish embryos by analyzing its time- and dose-dependent developmental toxicity and long-term behavioral changes. The 24h-LC 50 was calculated from percent survival using probit analysis. Based on the 24h-LC 50 (94.4mgL -1 ), embryos (2hour post-fertilization - hpf) were divided into four groups, including control, and exposed for 24h to ketamine concentrations of 50, 70 or 90mgL -1 . Developmental parameters were evaluated on the course of the experimental period, and anatomical abnormalities and locomotor deficits were analyzed at 144hpf. Although the portion of ketamine transferred into the embryo was higher in the lowest exposed group (about 0.056±0.020pmol per embryo), the results showed that endpoints such as increased mortality, edema, heart rate alterations, malformation and abnormal growth rates were significantly affected. At 144hpf, the developmental abnormalities included thoracic and trunk abnormalities in the groups exposed to 70 and 90mgL -1 . Defects in cartilage (alcian blue) and bone (calcein) elements also corroborated the craniofacial anomalies observed. A significant up-regulation of the development-related gene nog3 was detected by qRT-PCR at 8 hpf. Early exposure to ketamine also resulted in long-term behavioral changes, such as an increase in thigmotaxis and disruption of avoidance behavior at 144 hpf. Altogether, this study provides new evidence on the ketamine teratogenic potential, indicating a possible pharmacological impact of ketamine in aquatic environments. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Safety of sedation with ketamine in severe head injury patients: comparison with sufentanil.

    PubMed

    Bourgoin, Aurélie; Albanèse, Jacques; Wereszczynski, Nicolas; Charbit, Martine; Vialet, Renaud; Martin, Claude

    2003-03-01

    The aim of the study was to compare the safety concerning cerebral hemodynamics of ketamine and sufentanil used for sedation of severe head injury patients, both drugs being used in combination with midazolam. Prospective, randomized, double-blind study. Intensive care unit in a trauma center. Twenty-five patients with severe head injury. Twelve patients received sedation with a continuous infusion of ketamine-midazolam and 13 with a continuous infusion of sufentanil-midazolam. All patients were mechanically ventilated with moderate hyperventilation. Prognostic indicators (age, Glasgow Coma Scale scores, computed tomography diagnosis, and Injury Severity Scale score) were similar in the two groups at study entry. Measurements were carried out during the first 4 days of sedation. The average infusion rates during this time were 82 +/- 25 micro x kg x min ketamine and 1.64 +/- 0.5 microg x kg x min midazolam in the ketamine group and 0.008 +/- 0.002 microg x kg x min sufentanil and 1.63 +/- 0.37 microg x kg x min midazolam in the sufentanil group. No significant differences were observed between the two groups in the mean daily values of intracranial pressure and cerebral perfusion pressure. The numbers of intracranial pressure elevations were similar in both groups. The requirements of neuromuscular blocking agents, propofol, and thiopental were similar. Heart rate values were significantly higher in the ketamine group on therapy days 3 and 4 ( <.05). With regard to arterial pressure control, more fluids were given on the first therapy day and there was a trend toward greater use of vasopressors in the sufentanil group. Sedative costs were similar in the two groups. The results of this study suggest that ketamine in combination with midazolam is comparable with a combination of midazolam-sufentanil in maintaining intracranial pressure and cerebral perfusion pressure of severe head injury patients placed under controlled mechanical ventilation.

  2. Plasma brain derived neurotrophic factor (BDNF) and response to ketamine in treatment-resistant depression.

    PubMed

    Haile, C N; Murrough, J W; Iosifescu, D V; Chang, L C; Al Jurdi, R K; Foulkes, A; Iqbal, S; Mahoney, J J; De La Garza, R; Charney, D S; Newton, T F; Mathew, S J

    2014-02-01

    Ketamine produces rapid antidepressant effects in treatment-resistant depression (TRD), but the magnitude of response varies considerably between individual patients. Brain-derived neurotrophic factor (BDNF) has been investigated as a biomarker of treatment response in depression and has been implicated in the mechanism of action of ketamine. We evaluated plasma BDNF and associations with symptoms in 22 patients with TRD enrolled in a randomized controlled trial of ketamine compared to an anaesthetic control (midazolam). Ketamine significantly increased plasma BDNF levels in responders compared to non-responders 240 min post-infusion, and Montgomery-Åsberg Depression Rating Scale (MADRS) scores were negatively correlated with BDNF (r=-0.701, p = 0.008). Plasma BDNF levels at 240 min post-infusion were highly negatively associated with MADRS scores at 240 min (r = -0.897, p=.002), 24 h (r = -0.791, p = 0.038), 48 h (r = -0.944, p = 0.001) and 72 h (r = -0.977, p = 0.010). No associations with BDNF were found for patients receiving midazolam. These data support plasma BDNF as a peripheral biomarker relevant to ketamine antidepressant response.

  3. Ketamine modulation of the haemodynamic response to spreading depolarization in the gyrencephalic swine brain

    PubMed Central

    Santos, Edgar; Schöll, Michael; Kunzmann, Kevin; Stock, Christian; Silos, Humberto; Unterberg, Andreas W; Sakowitz, Oliver W

    2016-01-01

    Spreading depolarization (SD) generates significant alterations in cerebral haemodynamics, which can have detrimental consequences on brain function and integrity. Ketamine has shown an important capacity to modulate SD; however, its impact on SD haemodynamic response is incompletely understood. We investigated the effect of two therapeutic ketamine dosages, a low-dose of 2 mg/kg/h and a high-dose of 4 mg/kg/h, on the haemodynamic response to SD in the gyrencephalic swine brain. Cerebral blood volume, pial arterial diameter and cerebral blood flow were assessed through intrinsic optical signal imaging and laser-Doppler flowmetry. Our findings indicate that frequent SDs caused a persistent increase in the baseline pial arterial diameter, which can lead to a diminished capacity to further dilate. Ketamine infused at a low-dose reduced the hyperemic/vasodilative response to SD; however, it did not alter the subsequent oligemic/vasoconstrictive response. This low-dose did not prevent the baseline diameter increase and the diminished dilative capacity. Only infusion of ketamine at a high-dose suppressed SD and the coupled haemodynamic response. Therefore, the haemodynamic response to SD can be modulated by continuous infusion of ketamine. However, its use in pathological models needs to be explored to corroborate its possible clinical benefit. PMID:27126324

  4. Ketamine modulation of the haemodynamic response to spreading depolarization in the gyrencephalic swine brain.

    PubMed

    Sánchez-Porras, Renán; Santos, Edgar; Schöll, Michael; Kunzmann, Kevin; Stock, Christian; Silos, Humberto; Unterberg, Andreas W; Sakowitz, Oliver W

    2017-05-01

    Spreading depolarization (SD) generates significant alterations in cerebral haemodynamics, which can have detrimental consequences on brain function and integrity. Ketamine has shown an important capacity to modulate SD; however, its impact on SD haemodynamic response is incompletely understood. We investigated the effect of two therapeutic ketamine dosages, a low-dose of 2 mg/kg/h and a high-dose of 4 mg/kg/h, on the haemodynamic response to SD in the gyrencephalic swine brain. Cerebral blood volume, pial arterial diameter and cerebral blood flow were assessed through intrinsic optical signal imaging and laser-Doppler flowmetry. Our findings indicate that frequent SDs caused a persistent increase in the baseline pial arterial diameter, which can lead to a diminished capacity to further dilate. Ketamine infused at a low-dose reduced the hyperemic/vasodilative response to SD; however, it did not alter the subsequent oligemic/vasoconstrictive response. This low-dose did not prevent the baseline diameter increase and the diminished dilative capacity. Only infusion of ketamine at a high-dose suppressed SD and the coupled haemodynamic response. Therefore, the haemodynamic response to SD can be modulated by continuous infusion of ketamine. However, its use in pathological models needs to be explored to corroborate its possible clinical benefit.

  5. Production of high molecular weight poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymer by Cupriavidus malaysiensis USMAA1020 utilising substrate with longer carbon chain.

    PubMed

    Huong, Kai-Hee; Elina, K A R; Amirul, A A

    2018-05-01

    Long carbon chain alkanediols are used in the production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)], however these substrates possess high toxicity towards bacterial cells. This study demonstrated the effective utilisation of a long carbon chain alkanediol, namely 1,8-octanediol, to enhance the yield and production of a copolymer with a high molecular weight of over 1000 kDa, which is desirable for novel applications in medical and biopharmaceuticals. The increased PHA content (47-61 wt%) and concentration (1.7-4.5 g/L) was achieved by additional feeding of a combination of C4 substrates at C/N 10, with 1,8-octanediol + γ-butyrolactone producing P(3HB-co-22 mol% 4HB) with a high molecular weight (1060 kDa) and elongation at break of 970%. The DO-stat feeding strategy of C/N 10 has shown an increment of PHA concentration for both carbon combination, 0.45-4.27 g/L and 0.32-3.36 g/L for 1,8-octanediol + sodium 4-hydroxybutyrate (4HB-Na) and 1,8-octanediol + γ-butyrolactone, but with a slight reduction on molecular weight and mechanical strength. Nonetheless, further study revealed that a nitrogen-absence feeding strategy could retain the high molecular weight and elongation at break of the copolymer, and simultaneously improving the overall P(3HB-co-4HB) production. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Memantine Reverses Social Withdrawal Induced by Ketamine in Rats

    PubMed Central

    Landaeta, José; Wix, Richard; Eblen, Antonio

    2013-01-01

    The objective of this study was to determine the effect of memantine on schizophrenia-like symptoms in a ketamine-induced social withdrawal model in rats. We examined therapeutic effects of memantine, an NMDA antagonist, and haloperidol, a classic antipsychotic drug, on this behavioral model. Administration of memantine (10 or 15 mg·kg-1) significantly reduced ketamine-induced social withdrawal, and this effect was more effective than that of haloperidol (0.25 mg·kg-1) by restoring the social interaction between rats with no modification in general motor activity. These results suggest that memantine could have a therapeutic potential for schizophrenia. PMID:23585718

  7. S -ketamine compared to etomidate during electroconvulsive therapy in major depression.

    PubMed

    Zavorotnyy, Maxim; Kluge, Ina; Ahrens, Kathrin; Wohltmann, Thomas; Köhnlein, Benjamin; Dietsche, Patricia; Dannlowski, Udo; Kircher, Tilo; Konrad, Carsten

    2017-12-01

    Objective of the study was to compare two commonly used anesthetic drugs, S-ketamine and etomidate, regarding their influence on seizure characteristics, safety aspects, and outcome of electroconvulsive therapy (ECT) in major depression. Treatment data of 60 patients who underwent a total number of 13 ECTs (median) because of the severe or treatment-resistant major depressive disorder (DSM-IV) were analyzed. Etomidate, mean dosage (SD) = 0.25 (0.04) mg/kg, was used for anesthesia in 29 participants; 31 patients received S-ketamine, mean dosage (SD) = 0.96 (0.26) mg/kg. Right unilateral brief pulse ECTs were performed. The number of ECTs was individually adjusted to clinical needs, mean (SD) = 13.0 (4.3). Seizure characteristics, adverse events, and the clinical global impression (CGI) scores were compared between the both groups during ECT series. In the S-ketamine group, a lower initial seizure threshold (p = 0.014), stimulation charge (p < 0.001), higher postictal suppression (p < 0.001), EEG ictal amplitude (p = 0.04), EEG coherence (p < 0.001) and maximum heart rate (p = 0.015) were measured. Etomidate was associated with more frequent abortive seizures (p = 0.02) and restimulations (p = 0.01). The CGI scores, the number of sessions within an ECT series, and the incidence of adverse events did not differ between groups. Due to its lower initial seizure threshold, S-ketamine might hold a potential to become a clinically favorable anesthetic agent during ECT. However, the current findings should be interpreted with caution, and further prospective randomized clinical trials are required. Also, specific adverse effects profile of S-ketamine, especially with regard to the cardiovascular risk, needs to be taken into account.

  8. Delayed increase of thrombocyte levels after a single sub-anesthetic dose of ketamine - A randomized trial.

    PubMed

    Colic, Lejla; Woelfer, Marie; Colic, Merima; Leutritz, Anna Linda; Liebe, Thomas; Fensky, Luisa; Sen, Zumrut Duygu; Li, Meng; Hoffmann, Juliane; Kretzschmar, Moritz A; Isermann, Berend; Walter, Martin

    2018-04-23

    Recently, ketamine has been investigated as a potential antidepressant option for treatment resistant depression. Unlike traditional drugs, it yields immediate effects, most likely via increased glutamatergic transmission and synaptic plasticity. However, ketamine administration in humans is systemic and its long-term impact on blood parameters has not yet been described in clinical studies. Here we investigated potential sustained effects of ketamine administration (0.5 mg/kg ketamine racemate) on hematological and biochemical values in plasma and serum in a randomized double-blinded study. 80 healthy young participants were included and whole blood samples were collected 5 days before, and 14 days after the infusion. To assess the group effect, repeated measure analyses of co-variance (rmANCOVA) were conducted for the following blood parameters: levels of sodium, potassium, calcium, hemoglobin and number of erythrocytes, lymphocytes, and thrombocytes. RmANCOVA revealed a significant time by treatment effect on thrombocyte levels (F 1, 74 = 13.54, p < 0.001, eta = 0.155), driven by an increase in the ketamine group (paired t-test, t = -3.51, df = 38, p = 0.001). Specificity of thrombocyte effect was confirmed by logistic regression, and in addition, no other coagulation parameters showed significant interaction. Moreover, the relative increase in the ketamine group was stable across sexes and not predicted by age, BMI, smoking, alcohol or drug use, and contraception. Our results describe aftereffects of sub-anesthetic ketamine administration on blood coagulation parameters, which should be considered especially when targeting psychiatric populations with relevant clinical comorbidities. Copyright © 2018 Elsevier B.V. and ECNP. All rights reserved.

  9. Electroconvulsive therapy-induced persistent retrograde amnesia: could it be minimised by ketamine or other pharmacological approaches?

    PubMed

    Gregory-Roberts, Emily M; Naismith, Sharon L; Cullen, Karen M; Hickie, Ian B

    2010-10-01

    Certain pharmacological agents administered during electroconvulsive therapy may have the potential to prevent persistent retrograde amnesia induced during electroconvulsive therapy. This review examines mechanisms for electroconvulsive therapy-induced retrograde amnesia, and evaluates the suitability of the anaesthetic ketamine for preventing this amnestic outcome. A review of human studies, animal models and theoretical models in light of memory dysfunction following electroconvulsive therapy was conducted. MEDLINE was searched from 1950 to April 2009 using the MeSH terms "electroconvulsive therapy", "memory", "memory short term", "memory disorders", "excitatory amino acid antagonists", and "ketamine". PREMEDLINE was searched using the terms "electroconvulsive therapy", "amnesia" and "ketamine". Additional keyword and reference list searches were performed. No language, date constraints or article type constraints were used. Disruption of long term potentiation as a mechanism for electroconvulsive therapy-induced retrograde amnesia is well supported. Based on this putative mechanism, an N-methyl-D-aspartate receptor antagonist would appear suitable for preventing the retrograde amnesia. Available evidence in animals and humans supports the prediction that ketamine, an anaesthetic agent and N-methyl-D-aspartate receptor antagonist, could effectively prevent electroconvulsive therapy-induced persistent retrograde amnesia. Whilst there are concerns about the use of ketamine with electroconvulsive therapy, such as possible psychotomimetic effects, on balance this anaesthetic agent may improve or hasten clinical response to electroconvulsive therapy. A clinical trial is warranted to determine if ketamine anaesthesia during electroconvulsive therapy can lessen persistent retrograde amnesia and improve therapeutic response. Electroconvulsive therapy with ketamine anaesthesia may provide effective antidepressant action with minimal side effects. Copyright 2009 Elsevier B

  10. Acute administration of ketamine in rats increases hippocampal BDNF and mTOR levels during forced swimming test.

    PubMed

    Yang, Chun; Hu, Yi-Min; Zhou, Zhi-Qiang; Zhang, Guang-Fen; Yang, Jian-Jun

    2013-03-01

    Previous studies have shown that a single sub-anesthetic dose of ketamine exerts fast-acting antidepressant effects in patients and in animal models of depression. However, the underlying mechanisms are not totally understood. This study aims to investigate the effects of acute administration of different doses of ketamine on the immobility time of rats in the forced swimming test (FST) and to determine levels of hippocampal brain-derived neurotrophic factor (BDNF) and mammalian target of rapamycin (mTOR). Forty male Wistar rats weighing 180-220 g were randomly divided into four groups (n = 10 each): group saline and groups ketamine 5, 10, and 15 mg/kg. On the first day, all animals were forced to swim for 15 min. On the second day ketamine (5, 10, and 15 mg/kg, respectively) was given intraperitoneally, at 30 min before the second episode of the forced swimming test. Immobility times of the rats during the forced swimming test were recorded. The animals were then decapitated. The hippocampus was harvested for determination of BDNF and mTOR levels. Compared with group saline, administration of ketamine at a dose of 5, 10, and 15 mg/kg decreased the duration of immobility (P < 0.05 for all doses). Ketamine at doses of both 10 and 15 mg/kg showed a significant increase in the expression of hippocampal BDNF (P < 0.05 for both doses). Ketamine given at doses of 5, 10, and 15 mg/kg showed significant increases in relative levels of hippocampal p-mTOR (P < 0.05 for all doses) The antidepressant effect of ketamine might be related to the increased expression of BDNF and mTOR in the hippocampus of rats.

  11. Rationale and design of a multicenter randomized clinical trial with memantine and dextromethorphan in ketamine-responder patients.

    PubMed

    Pickering, Gisèle; Pereira, Bruno; Morel, Véronique; Tiberghien, Florence; Martin, Elodie; Marcaillou, Fabienne; Picard, Pascale; Delage, Noémie; de Montgazon, Géraldine; Sorel, Marc; Roux, Delphine; Dubray, Claude

    2014-07-01

    The N-methyl-D-aspartate receptor plays an important role in central sensitization of neuropathic pain and N-methyl-D-aspartate receptor antagonists, such as ketamine, memantine and dextromethorphan may be used for persistent pain. However, ketamine cannot be repeated too often because of its adverse events. A drug relay would be helpful in the outpatient to postpone or even cancel the next ketamine infusion. This clinical trial evaluates if memantine and/or dextromethorphan given as a relay to ketamine responders may maintain or induce a decrease of pain intensity and have a beneficial impact on cognition and quality of life. This trial is a multi-center, randomized, controlled and single-blind clinical study (NCT01602185). It includes 60 ketamine responder patients suffering from neuropathic pain. They are randomly allocated to memantine, dextromethorphan or placebo. After ketamine infusion, 60 patients received either memantine (maximal dose 20 mg/day), or dextromethorphan (maximal dose 90 mg/day), or placebo for 12 weeks. The primary endpoint is pain measured on a (0-10) Numeric Rating Scale 1 month after inclusion. Secondary outcomes include assessment of neuropathic pain, sleep, quality of life, anxiety/depression and cognitive function at 2 and 3 months. Data analysis is performed using mixed models and the tests are two-sided, with a type I error set at α=0.05. This study will explore if oral memantine and/or dextromethorphan may be a beneficial relay in ketamine responders and may diminish ketamine infusion frequency. Preservation of cognitive function and quality of life is also a central issue that will be analyzed in these vulnerable patients. Copyright © 2014. Published by Elsevier Inc.

  12. Adverse Events With Ketamine Versus Ketofol for Procedural Sedation on Adults: A Double-blind, Randomized Controlled Trial.

    PubMed

    Lemoel, Fabien; Contenti, Julie; Giolito, Didier; Boiffier, Mathieu; Rapp, Jocelyn; Istria, Jacques; Fournier, Marc; Ageron, François-Xavier; Levraut, Jacques

    2017-12-01

    The goal of our study was to compare the frequency and severity of recovery reactions between ketamine and ketamine-propofol 1:1 admixture ("ketofol"). We performed a multicentric, randomized, double-blind trial in which adult patients received emergency procedural sedations with ketamine or ketofol. Our primary outcome was the proportion of unpleasant recovery reactions. Other outcomes were frequency of interventions required by these recovery reactions, rates of respiratory or hemodynamic events, emesis, and satisfaction of patients as well as providers. A total of 152 patients completed the study, 76 in each arm. Compared with ketamine, ketofol determined a 22% reduction in recovery reactions incidence (p < 0.01) and less clinical and pharmacologic interventions required by these reactions. There was no serious adverse event in both groups. Rates in hemodynamic or respiratory events as well as satisfaction scores were similar. Significantly fewer patients experienced emesis with ketofol, with a threefold reduction in incidence compared with ketamine. We found a significant reduction in recovery reactions and emesis frequencies among adult patients receiving emergency procedural sedations with ketofol, compared with ketamine. © 2017 by the Society for Academic Emergency Medicine.

  13. Degradability in vitro of polyurethanes based on synthetic atactic poly[(R,S)-3-hydroxybutyrate].

    PubMed

    Brzeska, J; Janeczek, H; Janik, H; Kowalczuk, M; Rutkowska, M

    2015-01-01

    The aim of the present study was to determine the degradability of aliphatic polyurethanes, based on a different amount of synthetic, atactic poly[(R,S)-3-hydroxybutyrate] (a-PHB), in hydrolytic (phosphate buffer) and oxidative (H2O2/CoCl2) solutions. The soft segments were built with atactic poly[(R,S)-3-hydroxybutyrate] and polycaprolactone or polyoxytetramethylenediols, whereas hard segments were the reaction product of 4,4'-methylenedicyclohexyl diisocyanate and 1,4-butanediol.The selected properties - density and morphology of polymer surfaces - which could influence the sensitivity of polymers to degradation processes - were analyzed.The analysis of molecular mass (GPC), thermal properties (DSC) and the sample weight changes were undertaken to estimate the degree of degradability of polymer samples after incubation in environments studied.Investigated polyurethanes were amorphous with the very low amount of crystalline phases of hard segments.The polyurethane synthesized with a poly[(R,S)-3-hydroxybutyrate] and polyoxytetramethylenediol at a molar ratio of NCO:OH=3.7:1 (prepolymer step) appeared as the most sensitive for both degradative solutions. Its weight and molecular mass losses were the highest in comparison to other investigated polyurethanes.It could be expected that playing with the amount of poly[(R,S)-3-hydroxybutyrate] in polyurethane synthesis the rate of polyurethane degradation after immersion in living body would be modeled.

  14. Sub-dissociative-dose intranasal ketamine for moderate to severe pain in adult emergency department patients.

    PubMed

    Yeaman, Fiona; Meek, Robert; Egerton-Warburton, Diana; Rosengarten, Pamela; Graudins, Andis

    2014-06-01

    There are currently no studies assessing effectiveness of sub-dissociative intranasal (IN) ketamine as the initial analgesic for adult patients in the ED. The study aims to examine the effectiveness of sub-dissociative IN ketamine as a primary analgesic agent for adult patients in the ED. This is a prospective, observational study of adult ED patients presenting with severe pain (≥6 on 11-point scale at triage). IN ketamine dose was 0.7 mg/kg, with secondary dose of 0.5 mg/kg at 15 min if pain did not improve. After 6 months, initial dose was increased to 1.0 mg/kg with the same optional secondary dose. The primary outcomes are change in VAS rating at 30 min; percentage of patients reporting clinically significant reduction in VAS (≥20 mm) at 30 min; dose resulting in clinically significant pain reduction. Of the 72 patients available for analysis, median age was 34.5 years and 64% were men. Median initial VAS rating was 76 mm (interquartile range [IQR]: 65-82). Median total dose of IN ketamine for all patients was 0.98 mg/kg (IQR: 0.75-1.15, range: 0.59-1.57). Median reduction in VAS rating at 30 min was 24 mm (IQR: 2-45). Forty (56%, 95% CI: 44.0-66.7) reported VAS reduction ≥20 mm, these patients having had a total median ketamine dose of 0.94 mg/kg (IQR: 0.72-1.04). IN ketamine, at a dose of about 1 mg/kg, was an effective analgesic agent in 56% of study patients. The place of IN ketamine in analgesic guidelines for adults requires further investigation. © 2014 Australasian College for Emergency Medicine and Australasian Society for Emergency Medicine.

  15. Factors Influencing the Cardiovascular Response to Subanesthetic Ketamine: A Randomized, Placebo-Controlled Trial

    PubMed Central

    Li, Shijia; Lord, Anton; Colic, Lejla; Krause, Anna Linda; Batra, Anil; Kretzschmar, Moritz A; Sweeney-Reed, Catherine M; Behnisch, Gusalija; Schott, Björn H; Walter, Martin

    2017-01-01

    Abstract Background The increasing use of ketamine as a potential rapid-onset antidepressant necessitates a better understanding of its effects on blood pressure and heart rate, well-known side effects at higher doses. For the subanesthetic dose used for depression, potential predictors of these cardiovascular effects are important factors influencing clinical decisions. Since ketamine influences the sympathetic nervous system, we investigated the impact of autonomic nervous system-related factors on the cardiovascular response: a genetic polymorphism in the norepinephrine transporter and gender effects. Methods Blood pressure and heart rate were monitored during and following administration of a subanesthetic dose of ketamine or placebo in 68 healthy participants (mean age 26.04 ±5.562 years) in a double-blind, randomized, controlled, parallel-design trial. The influences of baseline blood pressure/heart rate, gender, and of a polymorphism in the norepinephrine transporter gene (NET SLC6A2, rs28386840 [A-3081T]) on blood pressure and heart rate changes were investigated. To quantify changes in blood pressure and heart rate, we calculated the maximum change from baseline (ΔMAX) and the time until maximum change (TΔMAX). Results Systolic and diastolic blood pressure as well as heart rate increased significantly upon ketamine administration, but without reaching hypertensive levels. During administration, the systolic blood pressure at baseline (TP0Sys) correlated negatively with the time to achieve maximal systolic blood pressure (TΔMAXSys, P<.001). Furthermore, women showed higher maximal diastolic blood pressure change (ΔMAXDia, P<.001) and reached this peak earlier than men (TΔMAXDia, P=.017) at administration. NET rs28386840 [T] carriers reached their maximal systolic blood pressure during ketamine administration significantly earlier than [A] homozygous (TΔMAXSys, P=.030). In a combined regression model, both genetic polymorphism and TP0Sys were

  16. Mechanisms of ketamine on mice hippocampi shown by gas chromatography-mass spectrometry-based metabolomic analysis.

    PubMed

    Lian, Bin; Xia, Jinjun; Yang, Xun; Zhou, Chanjuan; Gong, Xue; Gui, Siwen; Mao, Qiang; Wang, Ling; Li, Pengfei; Huang, Cheng; Qi, Xunzhong; Xie, Peng

    2018-06-13

    In the present study, we used a gas chromatography-mass spectrometry-based metabolomics method to evaluate the effects of ketamine on mice hippocampi. Multivariate statistical analysis and ingenuity pathway analysis were then used to identify and explore the potential mechanisms and biofunction of ketamine. Compared with the control (CON) group, 14 differential metabolites that involved amino acid metabolism, energy metabolism, and oxidative stress metabolism were identified. After combination with 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione (NBQX) administration, six of the 14 metabolites remained significantly differentially expressed between the ketamine (KET) and KET+NBQX groups, including glycine, alanine, glutamine, aspartic acid, myoinositol, and ascorbate, whereas no difference was found in the levels of the other eight metabolites between the KET and KET+NBQX groups, including phosphate, 4-aminobutyric acid, urea, creatine, L-malic acid, galactinol, inosine, and aminomalonic. Our findings indicate that ketamine exerts antidepressant effects through an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid inhibition-dependent mechanism and a mechanism not affected by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid inhibition. Which provides further insight into the therapeutic mechanisms of ketamine in the hippocampus.

  17. Ketamine Therapy for Treatment-resistant Depression in a Patient with Multiple Sclerosis: A Case Report.

    PubMed

    Messer, Michael M; Haller, Irina V

    2017-01-01

    Objective: Depression is a common condition among patients with multiple sclerosis and often becomes resistant to oral antidepressants. We report a patient with multiple sclerosis who developed severe treatment-resistant depression and who was successfully treated with intravenous ketamine over the period of two years. Methods: Ketamine treatment protocol included an initial series of six treatments administered every other day, followed by a maintenance schedule. Ketamine was administered intravenously at 0.5mg/kg of ideal body weight over 40 minutes. Depression symptoms were measured using Beck Depression Index. Results: The patient's Beck Depression Index score prior to initiating ketamine treatment was 38, corresponding to severe depression. Response to treatment, defined as 50-percent reduction in Beck Depression Index score, was observed after five treatments. For this patient, the maintenance schedule ranged from a weekly treatment to one treatment every three weeks. During the two-year observation period, this patient was able to maintain a stable non-depressed mood and had no worsening of her MS symptoms. Conclusion: Ketamine may be an alternative treatment for resistant depression and may have a special use in patients with multiple sclerosis.

  18. Antidepressant, anxiolytic and procognitive effects of subacute and chronic ketamine in the chronic mild stress model of depression.

    PubMed

    Papp, Mariusz; Gruca, Piotr; Lason-Tyburkiewicz, Magdalena; Willner, Paul

    2017-02-01

    Ketamine is the prototype of a new generation of antidepressant drugs, which is reported in clinical studies to be effective in treatment-resistant patients, with an effect that appears within hours and lasts for a few days. Chronic mild stress (CMS) is a well-established and widely used animal model of depression, in which anhedonia, anxiogenesis and cognitive dysfunction can be observed reliably. Studies using acute or brief ketamine treatment following withdrawal from CMS have replicated the clinical finding of a rapid onset of antidepressant action. However, there have been no CMS studies of chronic daily ketamine treatment or continued stress following ketamine treatment, which would have greater translational potential in relation to the long-term maintenance of antidepressant effects. Wistar rats were drug treated following an initial 2 weeks of CMS exposure, which continued alongside daily drug treatment. A first experiment tested a range of chronic (5 weeks) ketamine doses (5-30 mg/kg); a second compared the effects of subacute (3-5 days) and chronic (5 weeks) treatment. CMS-induced anhedonic, anxiogenic and dyscognitive effects, as measured, respectively, by decreased sucrose intake, avoidance of open arms in the elevated plus maze and loss of discrimination in the novel object recognition test. A sustained antidepressant-like effect of ketamine in the sucrose intake test was observed in both experiments, with an onset at around 1 week, faster than imipramine, and an optimum dose of 10 mg/kg. Anxiogenic and dyscognitive effects of CMS, in the elevated plus maze and novel object recognition test, respectively, were fully reversed by both subacute and chronic ketamine treatment. Daily treatment with ketamine in the CMS model causes sustained long-term antidepressant, anxiolytic and procognitive effects. The demonstration of a procognitive effect of ketamine may have particular translational value.

  19. The effects of subarachnoid administration of preservative-free S(+)-ketamine on spinal cord and meninges in dogs.

    PubMed

    Rojas, Alfredo Cury; Alves, Juliana Gaiotto; Moreira E Lima, Rodrigo; Esther Alencar Marques, Mariângela; Moreira de Barros, Guilherme Antônio; Fukushima, Fernanda Bono; Modolo, Norma Sueli Pinheiro; Ganem, Eliana Marisa

    2012-02-01

    The N-methyl-d-aspartate receptor antagonist ketamine and its active enantiomer, S(+)-ketamine, have been injected in the epidural and subarachnoid spaces to treat acute postoperative pain and relieve neuropathic pain syndrome. In this study we evaluated the effects of a single dose of preservative-free S(+)-ketamine, in doses usually used in clinical practice, in the spinal cord and meninges of dogs. Under anesthesia (IV etomidate (2 mg/kg) and fentanyl (0.005 mg/kg), 16 dogs (6 to 15 kg) were randomized to receive a lumbar intrathecal injection (L5/6) of saline solution of 0.9% (control group) or S(+)-ketamine 1 mg/kg(-1) (ketamine group). All doses were administered in a volume of 1 mL over a 10-second interval. Accordingly, injection solution ranged from 0.6% to 1.5%. After 21 days of clinical observation, the animals were killed; spinal cord, cauda equina root, and meninges were removed for histological examination with light microscopy. Tissues were examined for demyelination (Masson trichrome), neuronal death (hematoxylin and eosin) and astrocyte activation (glial fibrillary acidic protein). No clinical or histological alterations of spinal tissue or meninges were found in animals from either control or ketamine groups. A single intrathecal injection of preservative-free S(+)-ketamine, at 1 mg/kg(-1) dosage, over a concentration range of 6 to 15 mg/mL injected in the subarachnoid space in a single puncture, did not produce histological alterations in this experimental model.

  20. The effect of ketamine on optical and electrical characteristics of spreading depolarizations in gyrencephalic swine cortex.

    PubMed

    Sánchez-Porras, Renán; Santos, Edgar; Schöll, Michael; Stock, Christian; Zheng, Zelong; Schiebel, Patrick; Orakcioglu, Berk; Unterberg, Andreas W; Sakowitz, Oliver W

    2014-09-01

    Spreading depolarization (SD) is a wave of mass neuronal and glial depolarization that propagates across the cerebral cortex and has been implicated in the pathophysiology of brain injury states and migraine with aura. Analgesics and sedatives seem to have a significant effect on SD modulation. Studies have shown that ketamine, an NMDA receptor blocker, has the capacity to influence SD occurrence. The aim of this study was to analyze the dose-dependent effect of ketamine on SD susceptibility through electrocorticography (ECoG) and intrinsic optical signal (IOS) imaging in a gyrencephalic brain. Ketamine in a low-dose infusion (2 mg/kg/h) decreases SD spread and had an effect on the amplitude of SD deflections, as well as on duration, and speed. Moreover, during ketamine infusion at this dose, there was a sustained decrease in the hyperemic response following SD. However, a high-dose infusion (4 mg/kg/h) of ketamine inhibited SD induction and expansion. Furthermore, a high-dose bolus (4 mg/kg), 1 min after stimulation, blocked SD propagation abruptly within 1-2 min, and hindered SD induction and expansion for the following 15-30 min. The results suggest that ketamine may be therapeutically beneficial in preventing SDs. Nonetheless, an adequate dosage and way of administration should be considered and established for human use. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Hedonic sensitivity to low-dose ketamine is modulated by gonadal hormones in a sex-dependent manner

    PubMed Central

    Saland, Samantha K.; Schoepfer, Kristin J.; Kabbaj, Mohamed

    2016-01-01

    We recently reported a greater sensitivity of female rats to rapid antidepressant-like effects of ketamine compared to male rats, and that ovarian-derived estradiol (E2) and progesterone (P4) are essential for this response. However, to what extent testosterone may also contribute, and whether duration of response to ketamine is modulated in a sex- and hormone-dependent manner remains unclear. To explore this, we systematically investigated the influence of testosterone, estradiol and progesterone on initiation and maintenance of hedonic response to low-dose ketamine (2.5 mg/kg) in intact and gonadectomized male and female rats. Ketamine induced a sustained increase in sucrose preference of female, but not male, rats in an E2P4-dependent manner. Whereas testosterone failed to alter male treatment response, concurrent administration of P4 alone in intact males enhanced hedonic response low-dose ketamine. Treatment responsiveness in female rats only was associated with greater hippocampal BDNF levels, but not activation of key downstream signaling effectors. We provide novel evidence supporting activational roles for ovarian-, but not testicular-, derived hormones in mediating hedonic sensitivity to low-dose ketamine in female and male rats, respectively. Organizational differences may, in part, account for the persistence of sex differences following gonadectomy and selective involvement of BDNF in treatment response. PMID:26888470

  2. Acute administration of ketamine in rats increases hippocampal BDNF and mTOR levels during forced swimming test

    PubMed Central

    Hu, Yi-Min; Zhou, Zhi-Qiang; Zhang, Guang-Fen

    2013-01-01

    Introduction Previous studies have shown that a single sub-anesthetic dose of ketamine exerts fast-acting antidepressant effects in patients and in animal models of depression. However, the underlying mechanisms are not totally understood. This study aims to investigate the effects of acute administration of different doses of ketamine on the immobility time of rats in the forced swimming test (FST) and to determine levels of hippocampal brain-derived neurotrophic factor (BDNF) and mammalian target of rapamycin (mTOR). Methods Forty male Wistar rats weighing 180–220 g were randomly divided into four groups (n = 10 each): group saline and groups ketamine 5, 10, and 15 mg/kg. On the first day, all animals were forced to swim for 15 min. On the second day ketamine (5, 10, and 15 mg/kg, respectively) was given intraperitoneally, at 30 min before the second episode of the forced swimming test. Immobility times of the rats during the forced swimming test were recorded. The animals were then decapitated. The hippocampus was harvested for determination of BDNF and mTOR levels. Results Compared with group saline, administration of ketamine at a dose of 5, 10, and 15 mg/kg decreased the duration of immobility (P < 0.05 for all doses). Ketamine at doses of both 10 and 15 mg/kg showed a significant increase in the expression of hippocampal BDNF (P < 0.05 for both doses). Ketamine given at doses of 5, 10, and 15 mg/kg showed significant increases in relative levels of hippocampal p-mTOR (P < 0.05 for all doses) Conclusion The antidepressant effect of ketamine might be related to the increased expression of BDNF and mTOR in the hippocampus of rats. PMID:22970723

  3. Effect of ketamine pretreatment for anaesthesia in patients undergoing percutaneous transluminal balloon angioplasty with continuous remifentanil infusion

    PubMed Central

    Jun, Na Hyung; Shim, Jae Kwang; Choi, Yong Sun; An, Seung Ho

    2011-01-01

    Background An appropriate level of sedation and pharmacological assist are essential during percutaneous transluminal balloon angioplasty (PTA). Ketamine provides good analgesia while preserving airway patency, ventilation, and cardiovascular stability with an opioid sparing effect suggesting that it would be ideal in combination with remifentanil and midazolam in spontaneously breathing patients. We evaluated the effect of a small dose of ketamine added to midazolam and remifentanil on analgesia/sedation for PTA procedures. Methods Sixty-four patients receiving PTA were enrolled. The Control group received midazolam 1.0 mg i.v. and continuous infusion of remifentanil 0.05 µg/kg/min. The Ketamine group received, in addition, an intravenous bolus of 0.5 mg/kg ketamine. Patients' haemodynamic data were monitored before remifentanil infusion, 5 min after remifentanil infusion, at 1, 3, 5, 30 min after incision, and at admission to the recovery room. Verbal numerical rating scales (VNRS) and sedation [OAA/S (Observer's Assessment of Alertness/Sedation)] scores were also recorded. Results The VNRS values at 1, 3, and 5 min after incision and OAA/S scores at 5 min after remifentanil infusion, and 1, 3, and 5 min after incision were lower in the Ketamine group than in the Control group. In the Control group, the VNRS value at 1 min after incision significantly increased and OAA/S values at 3, 5, and 30 min after incision significantly decreased compared to baseline values, while there were no significant changes in the ketamine group. Conclusions A small dose of ketamine as an adjunct sedative to the combination of midazolam and remifentanil produced a better quality of sedation and analgesia than without ketamine and provided stable respiration without cardiopulmonary deterioration. PMID:22110884

  4. Effects of ketamine on the unconditioned and conditioned locomotor activity of preadolescent and adolescent rats: impact of age, sex, and drug dose.

    PubMed

    McDougall, Sanders A; Moran, Andrea E; Baum, Timothy J; Apodaca, Matthew G; Real, Vanessa

    2017-09-01

    Ketamine is used by preadolescent and adolescent humans for licit and illicit purposes. The goal of the present study was to determine the effects of acute and repeated ketamine treatment on the unconditioned behaviors and conditioned locomotor activity of preadolescent and adolescent rats. To assess unconditioned behaviors, female and male rats were injected with ketamine (5-40 mg/kg), and distance traveled was measured on postnatal day (PD) 21-25 or PD 41-45. To assess conditioned activity, male and female rats were injected with saline or ketamine in either a novel test chamber or the home cage on PD 21-24 or PD 41-44. One day later, rats were injected with saline and conditioned activity was assessed. Ketamine produced a dose-dependent increase in the locomotor activity of preadolescent and adolescent rats. Preadolescent rats did not exhibit sex differences, but ketamine-induced locomotor activity was substantially stronger in adolescent females than males. Repeated ketamine treatment neither caused a day-dependent increase in locomotor activity nor produced conditioned activity in preadolescent or adolescent rats. The activity-enhancing effects of ketamine are consistent with the actions of an indirect dopamine agonist, while the inability of ketamine to induce conditioned activity is unlike what is observed after repeated cocaine or amphetamine treatment. This dichotomy could be due to ketamine's ability to both enhance DA neurotransmission and antagonize N-methyl-D-aspartate (NMDA) receptors. Additional research will be necessary to parse out the relative contributions of DA and NMDA system functioning when assessing the behavioral effects of ketamine during early ontogeny.

  5. Behavioral and biochemical effects of ketamine and dextromethorphan relative to its antidepressant-like effects in Swiss Webster mice

    PubMed Central

    Nguyen, Linda; Lucke-Wold, Brandon P.; Logsdon, Aric F.; Scandinaro, Anna L.; Huber, Jason D.; Matsumoto, Rae R.

    2016-01-01

    Ketamine has been shown to produce rapid and robust antidepressant effects in depressed individuals, however its abuse potential and adverse psychotomimetic effects limit its widespread use. Dextromethorphan may serve as a safer alternative based on pharmacodynamic similarities to ketamine. In this proof of concept study, behavioral and biochemical analyses were undertaken to evaluate the potential involvement of brain derived neurotrophic factor (BDNF) in the antidepressant-like effects of dextromethorphan in mice, with comparisons to ketamine and imipramine. Male Swiss, Webster mice were injected with dextromethorphan, ketamine or imipramine and their behaviors evaluated in the forced swim test (FST) and open field test. Western blots were used to measure brain derived neurotrophic factor (BDNF) and its precursor, pro-BDNF, protein expression in the hippocampus and frontal cortex of these mice. Our results show dextromethorphan and imipramine each reduced immobility time in the FST without affecting locomotor activity, whereas ketamine reduced immobility time and increased locomotor activity. Ketamine also rapidly (within 40 min) increased pro-BDNF expression in an AMPA receptor-dependent manner in the hippocampus, while DM and imipramine did not alter pro-BDNF or BDNF levels in either the hippocampus or frontal cortex within this timeframe. These data demonstrate that dextromethorphan shares some features with both ketamine and imipramine. Additional studies looking at dextromethorphan may aid in the development of more rapid, safe, and efficacious antidepressant treatment. PMID:27580401

  6. Nitric oxide involvement in the antidepressant-like effect of ketamine in the Flinders sensitive line rat model of depression.

    PubMed

    Liebenberg, Nico; Joca, Sâmia; Wegener, Gregers

    2015-04-01

    We investigated whether the nitric oxide (NO) precursor, L-arginine, can prevent the antidepressant-like action of the fast-acting antidepressant, ketamine, in a genetic rat model of depression, and/or induce changes in the glutamate (Glu)/N-methyl-D-aspartate receptor (NMDAR)/NO/cyclic guanosine monophosphate (cGMP) signalling pathway. Hereby it was evaluated whether the NO signalling system is involved in the antidepressant mechanism of ketamine. Flinders sensitive line (FSL) rats received single i.p. injections of ketamine (15 mg/kg) with/without pre-treatment (30 min prior) with L-arginine (500 mg/kg). Depression-like behaviour was assessed in the forced swim test (FST) in terms of immobility, and the activation state of the Glu/NMDAR/NO/cGMP pathway was evaluated ex vivo in the frontal cortex and hippocampus regions in terms of total constitutive NOS (cNOS) activity and cGMP concentration. L-Arginine pre-treatment prevented the antidepressant-like effect of ketamine in the FST, as well as a ketamine-induced increase in cGMP levels in the frontal cortex and hippocampus of FSL rats. Ketamine reduced cNOS activity only in the hippocampus, and this effect was not reversed by L-arginine. Both the behavioural and molecular results from this study indicate an involvement for the NO signalling pathway in the antidepressant action of ketamine. Although not easily interpretable, these findings broaden our knowledge of effects of ketamine on the NO system.

  7. Ketamine Exhibits Different Neuroanatomical Profile After Mammalian Target of Rapamycin Inhibition in the Prefrontal Cortex: the Role of Inflammation and Oxidative Stress.

    PubMed

    Abelaira, Helena M; Réus, Gislaine Z; Ignácio, Zuleide M; Dos Santos, Maria Augusta B; de Moura, Airam B; Matos, Danyela; Demo, Júlia P; da Silva, Júlia B I; Danielski, Lucineia G; Petronilho, Fabricia; Carvalho, André F; Quevedo, João

    2017-09-01

    Studies indicated that mammalian target of rapamycin (mTOR), oxidative stress, and inflammation are involved in the pathophysiology of major depressive disorder (MDD). Ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist, has been identified as a novel MDD therapy; however, the antidepressant mechanism is not fully understood. In addition, the effects of ketamine after mTOR inhibition have not been fully investigated. In the present study, we examined the behavioral and biochemical effects of ketamine in the prefrontal cortex (PFC), hippocampus, amygdala, and nucleus accumbens after inhibition of mTOR signaling in the PFC. Male adult Wistar rats received pharmacological mTOR inhibitor, rapamycin (0.2 nmol) or vehicle into the PFC and then a single dose of ketamine (15 mg/kg, i.p.). Immobility was assessed in forced swimming tests, and then oxidative stress parameters and inflammatory markers were evaluated in the brain and periphery. mTOR activation in the PFC was essential to ketamine's antidepressant-like effects. Ketamine increased lipid damage in the PFC, hippocampus, and amygdala. Protein carbonyl was elevated in the PFC, amygdala, and NAc after ketamine administration. Ketamine also increased nitrite/nitrate in the PFC, hippocampus, amygdala, and NAc. Myeloperoxidase activity increased in the hippocampus and NAc after ketamine administration. The activities of superoxide dismutase and catalase were reduced after ketamine administration in all brain areas studied. Inhibition of mTOR signaling pathways by rapamycin in the PFC was required to protect against oxidative stress by reducing damage and increasing antioxidant enzymes. Finally, the TNF-α level was increased in serum by ketamine; however, the rapamycin plus treatment group was not able to block this increase. Activation of mTOR in the PFC is involved in the antidepressant-like effects of ketamine; however, the inhibition of this pathway was able to protect certain brain areas against

  8. [The Analgesic Sparing Effect of Ketamine for Postoperative Pain Management after Pediatric Surgery on the Body Surface].

    PubMed

    Urabe, Tomoaki; Nakanuno, Ryuichi; Hayase, Kazuma; Sasada, Shogo; Iwamitsu, Reimi; Senami, Masaki

    2016-04-01

    It is reported that ketamine, a N-methyl-D-aspertate (NMDA) receptor antagonist, can provide analgesic effect improving postoperative pain management and decrease the supplementary analgesic requirement. We investigated the analgesic sparing effect of ketamine for postoperative pain in children undergoing surgery of body surface. Fifty eight patients (0-9 yrs) who had surgery of body surface were divided into two groups (ketamine : n = 27, Group K or control : n = 31, Group N). Postoperative analgesia extracted from charts was retrospectively evaluated by the times patients used analgesics until discharge after the operations. Chi-square and Mann-Whitney U tests were used for statistical analysis. Results : The ketamine group received an intrave- nous bolus of ketamine (1 mg - kg-1) before surgical skin incision. However, there were no significant differ- ences of usage (Group K vs Group N : 4/27 vs 7/31, P=0.45) and frequency of supplementary analgesic us- ages (P=0.85) among groups. In addition, there were also no significant demographic differences between the two groups. Conclusions : Our investigation suggests that the intravenous bolus of ketamine (1 mg - kg-1) before surgical skin incision does not decrease the supple- mentary analgesic requirements on postoperative pain management in pediatric surgery of the body surface.

  9. Ketamine treatment involves medial prefrontal cortex serotonin to induce a rapid antidepressant-like activity in BALB/cJ mice.

    PubMed

    Pham, T H; Mendez-David, I; Defaix, C; Guiard, B P; Tritschler, L; David, D J; Gardier, A M

    2017-01-01

    Unlike classic serotonergic antidepressant drugs, ketamine, an NMDA receptor antagonist, exhibits a rapid and persistent antidepressant (AD) activity, at sub-anaesthetic doses in treatment-resistant depressed patients and in preclinical studies in rodents. The mechanisms mediating this activity are unclear. Here, we assessed the role of the brain serotonergic system in the AD-like activity of an acute sub-anaesthetic ketamine dose. We compared ketamine and fluoxetine responses in several behavioral tests currently used to predict anxiolytic/antidepressant-like potential in rodents. We also measured their effects on extracellular serotonin levels [5-HT] ext in the medial prefrontal cortex (mPFCx) and brainstem dorsal raphe nucleus (DRN), a serotonergic nucleus involved in emotional behavior, and on 5-HT cell firing in the DRN in highly anxious BALB/cJ mice. Ketamine (10 mg/kg i.p.) had no anxiolytic-like effect, but displayed a long lasting AD-like activity, i.e., 24 h post-administration, compared to fluoxetine (18 mg/kg i.p.). Ketamine (144%) and fluoxetine (171%) increased mPFCx [5-HT] ext compared to vehicle. Ketamine-induced AD-like effect was abolished by a tryptophan hydroxylase inhibitor, para-chlorophenylalanine (PCPA) pointing out the role of the 5-HT system in its behavioral activity. Interestingly, increase in cortical [5-HT] ext following intra-mPFCx ketamine bilateral injection (0.25 μg/side) was correlated with its AD-like activity as measured on swimming duration in the FST in the same mice. Furthermore, pre-treatment with a selective AMPA receptor antagonist (intra-DRN NBQX) blunted the effects of intra-mPFCx ketamine on both the swimming duration in the FST and mPFCx [5-HT] ext suggesting that the AD-like activity of ketamine required activation of DRN AMPA receptors and recruited the prefrontal cortex/brainstem DRN neural circuit in BALB/c mice. These results confirm a key role of cortical 5-HT release in ketamine's AD-like activity following

  10. The metabolic impact of β-hydroxybutyrate on neurotransmission: Reduced glycolysis mediates changes in calcium responses and KATP channel receptor sensitivity.

    PubMed

    Lund, Trine M; Ploug, Kenneth B; Iversen, Anne; Jensen, Anders A; Jansen-Olesen, Inger

    2015-03-01

    Glucose is the main energy substrate for neurons, and ketone bodies are known to be alternative substrates. However, the capacity of ketone bodies to support different neuronal functions is still unknown. Thus, a change in energy substrate from glucose alone to a combination of glucose and β-hydroxybutyrate might change neuronal function as there is a known coupling between metabolism and neurotransmission. The purpose of this study was to shed light on the effects of the ketone body β-hydroxybutyrate on glycolysis and neurotransmission in cultured murine glutamatergic neurons. Previous studies have shown an effect of β-hydroxybutyrate on glucose metabolism, and the present study further specified this by showing attenuation of glycolysis when β-hydroxybutyrate was present in these neurons. In addition, the NMDA receptor-induced calcium responses in the neurons were diminished in the presence of β-hydroxybutyrate, whereas a direct effect of the ketone body on transmitter release was absent. However, the presence of β-hydroxybutyrate augmented transmitter release induced by the KATP channel blocker glibenclamide, thus giving an indirect indication of the involvement of KATP channels in the effects of ketone bodies on transmitter release. Energy metabolism and neurotransmission are linked and involve ATP-sensitive potassium (KATP ) channels. However, it is still unclear how and to what degree available energy substrate affects this link. We investigated the effect of changing energy substrate from only glucose to a combination of glucose and R-β-hydroxybutyrate in cultured neurons. Using the latter combination, glycolysis was diminished, NMDA receptor-induced calcium responses were lower, and the KATP channel blocker glibenclamide caused a higher transmitter release. © 2014 International Society for Neurochemistry.

  11. Development and validation of an HPLC-MS/MS method for the detection of ketamine in Calliphora vomitoria (L.) (Diptera: Calliphoridae).

    PubMed

    Magni, Paola A; Pazzi, Marco; Droghi, Jessica; Vincenti, Marco; Dadour, Ian R

    2018-05-03

    Entomotoxicology is a branch of forensic entomology that studies the detection of drugs or other toxic substances from insects developing on the decomposing tissues of a human corpse or animal carcass. Entomotoxicology also investigates the effects of these substances on insect development, survival and morphology to provide an estimation of the minimum time since death. Ketamine is a medication mainly used for starting and maintaining anesthesia. In recent years ketamine has also been used as a recreational drug, and occasionally as a sedating drug to facilitate sexual assault. In both activities, it has resulted in several deaths. Furthermore, ketamine has been also implicated in suspicious deaths of animals. The present research describes for the first time the development and validation of an analytical method suited to detect ketamine in larvae, pupae, empty puparia, and adults of Calliphora vomitoria L. (Diptera: Calliphoridae), using liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). This research also considers the effects of ketamine on the survival, developmental rate and morphology (length and width of larvae and pupae) of C. vomitoria. The larvae were reared on liver substrates homogeneously spiked with ketamine concentrations consistent with those found in humans after recreational use (300 ng/mg) or allegedly indicated as capable of causing death in either humans or animals (600 ng/mg). The results demonstrated that (a) HPLC-MS/MS method is applicable to ketamine detection in C. vomitoria immatures, not adults; (b) the presence of ketamine at either concentration in the food substrate significantly delays the developmental time to pupal and adult instar; (d) the survival of C. vomitoria is negatively affected by the presence of ketamine in the substrate; (e) the length and width of larvae and pupae exposed to either ketamine concentration were significantly larger than the control samples. Copyright © 2018. Published by Elsevier Ltd.

  12. Microbial-based synthesis of highly elastomeric biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate) thermoplastic.

    PubMed

    Huong, Kai-Hee; Teh, Chin-Hoe; Amirul, A A

    2017-08-01

    This study reports the production of P(3HB-co-4HB) [Poly(3-hydroxybutyrate-co-4-hydroxybutyrate)] in possession of high molecular weight and elastomeric properties by Cupriavidus sp. USMAA1020 in single-stage mixed-substrate cultivation system. 1,4-butanediol and 1,6-hexanediol are found to be efficient substrate mixture that has resulted in high copolymer yield, occupying a maximum of 70wt% of the total biomass and producing higher 4HB monomer composition ranging from 31mol% to 41mol%. In substrate mixtures involving 1,6-hexanediol, cleavage of the 6-hydroxyhexanoyl-CoA produces Acetyl-CoA and 4-hydroxybutyryl-CoA. Acetyl-CoA is instrumental in initiating the cell growth in the single-stage fermentation system, preventing 4-hydroxybutyryl-CoA from being utilized via β-oxidation and retained the 4HB monomer at higher ratios. Macroscopic kinetic models of the bioprocesses have revealed that the P(3HB-co-4HB) formation appears to be in the nature of mixed-growth associated with higher formation rate during exponential growth phase; evidenced by higher growth associated constants, α, from 0.0690g/g to 0.4615g/g compared to non-growth associated constants, β, from 0.0092g/g/h to 0.0459g/g/h. The P(3HB-co-31mol% 4HB) produced from the substrate mixture exhibited high weight-average molecular weight, M w of 927kDa approaching a million Dalton, and possessed elongation at break of 1637% upon cultivation at 0.56wt% C. This is the first report on such properties for the P(3HB-co-4HB) copolymer. The copolymer is highly resistant to polymer deformation after being stretched. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Longitudinal two-photon imaging in somatosensory cortex of behaving mice reveals dendritic spine formation enhancement by subchronic administration of low-dose ketamine.

    PubMed

    Pryazhnikov, Evgeny; Mugantseva, Ekaterina; Casarotto, Plinio; Kolikova, Julia; Fred, Senem Merve; Toptunov, Dmytro; Afzalov, Ramil; Hotulainen, Pirta; Voikar, Vootele; Terry-Lorenzo, Ryan; Engel, Sharon; Kirov, Sergei; Castren, Eero; Khiroug, Leonard

    2018-04-24

    Ketamine, a well-known anesthetic, has recently attracted renewed attention as a fast-acting antidepressant. A single dose of ketamine induces rapid synaptogenesis, which may underlie its antidepressant effect. To test whether repeated exposure to ketamine triggers sustained synaptogenesis, we administered a sub-anesthetic dose of ketamine (10 mg/kg i.p.) once-daily for 5 days, and repeatedly imaged dendritic spines of the YFP-expressing pyramidal neurons in somatosensory cortex of awake female mice using in vivo two-photon microscopy. We found that the spine formation rate became significantly higher at 72-132 h after the first ketamine injection (but not at 6-24 h), while the rate of elimination of pre-existing spines remained unchanged. In contrast to the net gain of spines observed in ketamine-treated mice, the vehicle-injected control mice exhibited a net loss typical for young-adult animals undergoing synapse pruning. Ketamine-induced spinogenesis was correlated with increased PSD-95 and phosphorylated actin, consistent with formation of new synapses. Moreover, structural synaptic plasticity caused by ketamine was paralleled by a significant improvement in the nest building behavioral assay. Taken together, our data show that subchronic low-dose ketamine induces a sustained shift towards spine formation.

  14. Post-electroconvulsive therapy recovery and reorientation time with methohexital and ketamine: a randomized, longitudinal cross-over design trial

    PubMed Central

    Yen, Tony; Khafaja, Mohamad; Lam, Nicholas; Crumbacher, James; Schrader, Ronald; Rask, John; Billstrand, Mary; Rothfork, Jacob; Abbott, Christopher C.

    2014-01-01

    Objectives Methohexital, a barbiturate anesthetic commonly used for electroconvulsive therapy (ECT), possesses dose-dependent anticonvulsant properties, and its use can interfere with effective seizure therapy in patients with high seizure thresholds. Ketamine, a NMDA-antagonist with epileptogenic properties not broadly used for ECT inductions, is a commonly used induction agent for general anesthesia. Recent studies suggest that the use of ketamine is effective in allowing successful ECT treatment in patients with high seizure thresholds without an increase in side-effects. In this preliminary study, we directly compared the recovery and re-orientation times of subjects receiving ketamine and methohexital for ECTs. Methods Twenty patients were randomized in a cross-over design to receive methohexital and ketamine for ECT inductions in alternating fashion for six trials. Primary outcome measures were recovery time (voluntary movement, respiratory effort, blood pressure, consciousness, and O2 saturation) and re-orientation time. Secondary outcome measures were individual recovery variables, side-effect occurrence, and seizure duration. Results: Overall recovery time was not significantly different between the two treatment arms (F(1,17) = 0.72, P = 0.41). Re-orientation time was faster in the methohexital arm (F(1,17) = 9.23, P = 0.007). Conclusion Ketamine inductions resulted in higher number of side-effects, higher subject dropout rates, and a longer reorientation time with respect to methohexital inductions. No significant difference in post-anesthesia recovery time was found between the ketamine and methohexital arms. Intolerability to ketamine affected a significant proportion of subjects, and suggests that ketamine should remain as an alternative or adjunctive agent for patients with high seizure thresholds. PMID:24755722

  15. Temporal Dynamics of Antidepressant Ketamine Effects on Glutamine Cycling Follow Regional Fingerprints of AMPA and NMDA Receptor Densities.

    PubMed

    Li, Meng; Demenescu, Liliana Ramona; Colic, Lejla; Metzger, Coraline Danielle; Heinze, Hans-Jochen; Steiner, Johann; Speck, Oliver; Fejtova, Anna; Salvadore, Giacomo; Walter, Martin

    2017-05-01

    The anterior cingulate cortex (ACC) has shown decreased glutamate levels in patients with major depressive disorder. Subanesthetic doses of ketamine were repeatedly shown to improve depressive symptoms within 24 h after infusion and this antidepressant effect was attributed to increased α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) throughput. To elucidate ketamine's mechanism of action, we tested whether the clinical time course of the improvement is mirrored by the change of glutamine/glutamate ratio and if such effects show a regional and temporal specificity in two distinct subdivisions of ACC with different AMPA/N-methyl-D-aspartate receptor profiles. In a double-blind, placebo-controlled intravenous infusion study of ketamine, we measured glutamate and glutamine in the pregenual ACC (pgACC) and the anterior midcingulate cortex at 1 and 24 h post infusion with magnetic resonance spectroscopy at 7 T. A significant interaction of time, region, and treatment was found for the glutamine/glutamate ratios (placebo, n=14; ketamine, n=12). Post-hoc analyses revealed that the glutamine/glutamate ratio increased significantly in the ketamine group, compared with placebo, specifically in the pgACC after 24 h. The glutamine/glutamate increase in the pgACC caused by ketamine at 24 h post infusion was reproduced in an enlarged sample (placebo, n=24; ketamine, n=20). Our results support a significant temporal and regional response in glutamine/glutamate ratios to a single subanesthetic dose of ketamine, which mirrors the time course of the antidepressant response and reversal of the molecular deficits in patients and which may be associated with the histoarchitectonical receptor fingerprints of the ACC subregions.

  16. Temporal Dynamics of Antidepressant Ketamine Effects on Glutamine Cycling Follow Regional Fingerprints of AMPA and NMDA Receptor Densities

    PubMed Central

    Li, Meng; Demenescu, Liliana Ramona; Colic, Lejla; Metzger, Coraline Danielle; Heinze, Hans-Jochen; Steiner, Johann; Speck, Oliver; Fejtova, Anna; Salvadore, Giacomo; Walter, Martin

    2017-01-01

    The anterior cingulate cortex (ACC) has shown decreased glutamate levels in patients with major depressive disorder. Subanesthetic doses of ketamine were repeatedly shown to improve depressive symptoms within 24 h after infusion and this antidepressant effect was attributed to increased α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) throughput. To elucidate ketamine's mechanism of action, we tested whether the clinical time course of the improvement is mirrored by the change of glutamine/glutamate ratio and if such effects show a regional and temporal specificity in two distinct subdivisions of ACC with different AMPA/N-methyl-D-aspartate receptor profiles. In a double-blind, placebo-controlled intravenous infusion study of ketamine, we measured glutamate and glutamine in the pregenual ACC (pgACC) and the anterior midcingulate cortex at 1 and 24 h post infusion with magnetic resonance spectroscopy at 7 T. A significant interaction of time, region, and treatment was found for the glutamine/glutamate ratios (placebo, n=14; ketamine, n=12). Post-hoc analyses revealed that the glutamine/glutamate ratio increased significantly in the ketamine group, compared with placebo, specifically in the pgACC after 24 h. The glutamine/glutamate increase in the pgACC caused by ketamine at 24 h post infusion was reproduced in an enlarged sample (placebo, n=24; ketamine, n=20). Our results support a significant temporal and regional response in glutamine/glutamate ratios to a single subanesthetic dose of ketamine, which mirrors the time course of the antidepressant response and reversal of the molecular deficits in patients and which may be associated with the histoarchitectonical receptor fingerprints of the ACC subregions. PMID:27604568

  17. Effects of co-administration of ketamine and ethanol on the dopamine system via the cortex-striatum circuitry.

    PubMed

    Liu, Qing; Xu, Tian-Yong; Zhang, Zhi-Bi; Leung, Chi-Kwan; You, Ding-Yun; Wang, Shang-Wen; Yi, Shuai; Jing, Qiang; Xie, Run-Fang; Li, Huifang-Jie; Zeng, Xiao-Feng

    2017-06-15

    Ketamine and ethanol are increasingly being used together as recreational drugs in rave parties. Their effects on the dopamine (DA) system remain largely unknown. This study aimed to investigate the effects of consuming two different concentrations of ketamine with and without alcohol on the DA system. We employed the conditioned place preference (CPP) paradigm to evaluate the rewarding effects of the combined administration of two different doses of ketamine (30mg/kg and 60mg/kg) with ethanol (0.3156g/kg). We evaluated the effects of the combined drug treatment on the transcriptional output of tyrosine hydroxylase (TH), dopa decarboxylase (DDC), synaptosomal-associated protein 25 (SNAP25), and vesicular monoamine transporter 2 (VMAT2) as well as protein expression level of brain-derived neurotrophic factor (BDNF) in rat prefrontal cortex (PFC) and striatum. We found that rats exhibited a dose-dependent, drug-paired, place preference to ketamine and ethanol associated with an elevated DA level in the striatum but not in the PFC. Moreover, treatment involving low- or high-dose ketamine with or without ethanol caused a differential regulatory response in the mRNA levels of the four DA metabolism genes and the cellular protein abundance of BDNF via the cortex-striatum circuitry. This study investigated the molecular mechanisms that occur following the combined administration of ketamine and ethanol in the DA system, which could potentially lead to alterations in the mental status and behavior of ketamine/ethanol users. Our findings may aid the development of therapeutic strategies for substance abuse patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Adverse events, including death, associated with the use of 1,4-butanediol.

    PubMed

    Zvosec, D L; Smith, S W; McCutcheon, J R; Spillane, J; Hall, B J; Peacock, E A

    2001-01-11

    1,4-Butanediol is an industrial solvent that, when ingested, is converted to gamma-hydroxybutyrate, a drug of abuse with depressant effects, primarily on the central nervous system. After reports of toxic effects of gamma-hydroxybutyrate and its resultant regulation by the federal government, 1,4-butanediol and gamma-butyrolactone, another precursor of gamma-hydroxybutyrate and an industrial solvent, began to be marketed as dietary supplements. We investigated reports of toxic effects due to the ingestion of 1,4-butanediol and reviewed the related health risks. From June 1999 through December 1999, we identified cases of toxic effects of 1,4-butanediol involving patients who presented to our emergency departments with a clinical syndrome suggesting toxic effects of gamma-hydroxybutyrate and a history of ingesting 1,4-butanediol and patients discovered through public health officials and family members. We used gas chromatography-mass spectrometry to measure 1,4-butanediol or its metabolite, gamma-hydroxybutyrate, in urine, serum, or blood. We identified nine episodes of toxic effects in eight patients who had ingested 1,4-butanediol recreationally, to enhance bodybuilding, or to treat depression or insomnia. One patient presented twice with toxic effects and had withdrawal symptoms after her second presentation. Clinical findings and adverse events included vomiting, urinary and fecal incontinence, agitation, combativeness, a labile level of consciousness, respiratory depression, and death. No additional intoxicants were identified in six patients, including the two who died. The doses of 1,4-butanediol ingested ranged from 5.4 to 20 g in the patients who died and ranged from 1 to 14 g in the nonfatal cases. The health risks of 1,4-butanediol are similar to those of its counterparts, gamma-hydroxybutyrate and gamma-butyrolactone. These include acute toxic effects, which may be fatal, and addiction and withdrawal.

  19. Antidepressant effects of ketamine and the roles of AMPA glutamate receptors and other mechanisms beyond NMDA receptor antagonism.

    PubMed

    Aleksandrova, Lily R; Phillips, Anthony G; Wang, Yu Tian

    2017-06-01

    The molecular mechanisms underlying major depressive disorder remain poorly understood, and current antidepressant treatments have many shortcomings. The recent discovery that a single intravenous infusion of ketamine at a subanesthetic dose had robust, rapid and sustained antidepressant effects in individuals with treatment-resistant depression inspired tremendous interest in investigating the molecular mechanisms mediating ketamine's clinical efficacy as well as increased efforts to identify new targets for antidepressant action. We review the clinical utility of ketamine and recent insights into its mechanism of action as an antidepressant, including the roles of N -methyl-D-aspartate receptor inhibition, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor upregulation, activation of downstream synaptogenic signalling pathways and the production of an active ketamine metabolite, hydroxynorketamine. Emerging knowledge of the molecular mechanisms underlying both ketamine's positive therapeutic and detrimental side effects will aid the development of a new generation of much-needed superior antidepressant agents.

  20. [Inhibition of HCN1 channels by ketamine accounts for its antidepressant actions].

    PubMed

    Li, Jing; Chen, Feng-feng; Chen, Xiang-dong; Zhou, Cheng

    2014-11-01

    To investigate the roles of hyperolarization-actived cyclic nucleotide-gated channels 1 (HCN1) in antidepressant actions of ketamine (KET). Male HCN1 knock out (HCN1-/- ) and wildtype (HCN1+/+ ) C57BL6 mice (8-12 weeks, 20-25 g) were chosen. The depression model of mice was developed by continuously oral administration of low dosage of corticosterone (CORT). The immobility time in forced swimming tests (FST) was used to assess the depressive state of mice. Then the two genotype depressive mice were treated with single intraperitoneal injection of 5 mg/kg ketamine (KET group, n=7) or same volume of normal saline (NS group, n=7) respectively. After treatment, the immobility time at 30 min, 24 h and 7 d after the intraperitoneal injection of ketamine or normal saline in CORT-treated mice were compared. In addition, normal HCN1-/- and HCN1+/+ mice were intraperitoneally injected of BrdU and then treated with 5 mg/kg ketamine (KET group, n=5) or same volume of normal saline (NS group, n= 5) by single intraperitoneal injection. Each group was euthanized for immunohistochemical processing of 5-Bromo-2-deoxyuridine (BrdU)-labeled cells in hippocampus at 24 h after the intraperitoneal injection of saline or ketamine. The immobility time in FST of HCN1-/- mice was less than the HCN1+/+ mice before administration of CORT. It shows that the depressive state of HCN1-/- mice is less intensive than that of HCN1+/+ mice. And the immoblility time in both HCN1-/- and HCN1+/+ mice was increased after oral administration of low dose corticosterone, with an increase in depression. In addition, the comparisons were also made to the reduction of immobility time within 30 min, 24 h and 7 d. At any time point, the reduction of immobility time in HCN1+/+ KET group was higher than those in the other three groups (P<0. 05). Furthermore, there were no statistical significances among the three groups including HCN1-/- KET group, HCN1+/+ NS group, HCN1-/- NS group at any point. The number of

  1. Molecular and Cellular Mechanisms of Rapid-Acting Antidepressants Ketamine and Scopolamine

    PubMed Central

    Wohleb, Eric S.; Gerhard, Danielle; Thomas, Alex; Duman, Ronald S.

    2017-01-01

    Major depressive disorder (MDD) is a prevalent neuropsychiatric disease that causes profound social and economic burdens. The impact of MDD is compounded by the limited therapeutic efficacy and delay of weeks to months of currently available medications. These issues highlight the need for more efficacious and faster-acting treatments to alleviate the burdens of MDD. Recent breakthroughs demonstrate that certain drugs, including ketamine and scopolamine, produce rapid and long-lasting antidepressant effects in MDD patients. Moreover, preclinical work has shown that the antidepressant actions of ketamine and scopolamine in rodent models are caused by an increase of extracellular glutamate, elevated BDNF, activation of the mammalian target of rapamycin complex 1 (mTORC1) cascade, and increased number and function of spine synapses in the prefrontal cortex (PFC). Here we review studies showing that both ketamine and scopolamine elicit rapid antidepressant effects through converging molecular and cellular mechanisms in the PFC. In addition, we discuss evidence that selective antagonists of NMDA and muscarinic acetylcholine (mACh) receptor subtypes (i.e., NR2B and M1-AChR) in the PFC produce comparable antidepressant responses. Furthermore, we discuss evidence that ketamine and scopolamine antagonize inhibitory interneurons in the PFC leading to disinhibition of pyramidal neurons and increased extracellular glutamate that promotes the rapid antidepressant responses to these agents. Collectively, these studies indicate that specific NMDA and mACh receptor subtypes on GABAergic interneurons are promising targets for novel rapid-acting antidepressant therapies. PMID:26955968

  2. Zein/Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) electrospun blend fiber scaffolds: Preparation, characterization and cytocompatibility.

    PubMed

    Zhijiang, Cai; Qin, Zhang; Xianyou, Song; Yuanpei, Liu

    2017-02-01

    In the present work, a series of Zein/Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) blend fiber scaffolds have been prepared by electrospinning method. The electrospun fibers showed a circular and uniform morphology with random distribution. The blend fiber scaffolds possessed well interconnected porous fibrous network structure with high porosity and large aspect surface areas. The FTIR and XPS spectra of Zein/P(3HB-co-4HB) blend fibers demonstrated the same characteristics to that of pure Zein and P(3HB-co-4HB) electrospun fibers. However, Zein might hinder the crystallization of P(3HB-co-4HB) owing to the formation of weak intermolecular interactions, which can affect the preferential orientation of P(3HB-co-4HB) molecules. Only one glass transition temperature (Tg) can be detected for electrospun Zein/P(3HB-co-4HB) blend fiber scaffolds implying the miscibility of Zein and P(3HB-co-4HB) in the blend fibers. The Zein/P(3HB-co-4HB) blend fiber scaffolds showed about 50% of improvement in tensile strength and 400% of increase in elongation at break by increasing P(3HB-co-4HB) content from 20% to 80%. The cytocompatibility of the Zein/P(3HB-co-4HB) blend fiber scaffolds was preliminarily evaluated by cell culture in vitro. The as-prepared electrospun Zein/P(3HB-co-4HB) blend fiber scaffolds with the characteristics of good biocompatibility, excellent pore characteristic as well as sufficient mechanical properties should be more promising for applications as tissue engineering scaffold. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Synthesis of deuterium labeled ketamine metabolite dehydronorketamine-d₄.

    PubMed

    Sulake, Rohidas S; Chen, Chinpiao; Lin, Huei-Ru; Lua, Ahai-Chang

    2011-10-01

    A convenient synthesis of ketamine metabolite dehydronorketamine-d(4), starting from commercially available deuterium labeled bromochlorobenzene, was achieved. Key steps include Grignard reaction, regioselective hydroxybromination, Staudinger reduction, and dehydrohalogenation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Ketamine Patient Controlled Analgesia for Acute Pain in Trauma Patients: A Randomized, Active Comparator Controlled, Blinded, Pilot Trial

    DTIC Science & Technology

    2017-01-11

    patient- controlled analgesia per the primary treating team. Four subjects in the ketamine group and one subject in the hydromorphone group withdrew...occurred more frequently in the ketamine group , although this was not statistically significant (40% vs. 0%, P=0.090). Ketamine patient- controlled ...breakthrough IV morphine equivalents between groups . 4.0 RESULTS 4.1 Participants Due to unanticipated barriers to enrollment, including a

  5. Isoflurane and ketamine:xylazine differentially affect intraocular pressure-associated scotopic threshold responses in Sprague-Dawley rats.

    PubMed

    Choh, Vivian; Gurdita, Akshay; Tan, Bingyao; Feng, Yunwei; Bizheva, Kostadinka; McCulloch, Daphne L; Joos, Karen M

    2017-10-01

    Amplitudes of electroretinograms (ERG) are enhanced during acute, moderate elevation of intraocular pressure (IOP) in rats anaesthetised with isoflurane. As anaesthetics alone are known to affect ERG amplitudes, the present study compares the effects of inhalant isoflurane and injected ketamine:xylazine on the scotopic threshold response (STR) in rats with moderate IOP elevation. Isoflurane-anaesthetised (n = 9) and ketamine:xylazine-anaesthetised (n = 6) rats underwent acute unilateral IOP elevation using a vascular loop anterior to the equator of the right eye. STRs to a luminance series (subthreshold to -3.04 log scotopic cd s/m 2 ) were recorded from each eye of Sprague-Dawley rats before, during, and after IOP elevation. Positive STR (pSTR) amplitudes for all conditions were significantly smaller (p = 0.0001) for isoflurane- than for ketamine:xylazine-anaesthetised rats. In addition, ketamine:xylazine was associated with a progressive increase in pSTR amplitudes over time (p = 0.0028). IOP elevation was associated with an increase in pSTR amplitude (both anaesthetics p < 0.0001). The absolute interocular differences in IOP-associated enhancement of pSTR amplitudes for ketamine:xylazine and isoflurane were similar (66.3 ± 35.5 vs. 54.2 ± 24.1 µV, respectively). However, the fold increase in amplitude during IOP elevation was significantly higher in the isoflurane- than in the ketamine:xylazine-anaesthetised rats (16.8 ± 29.7x vs. 2.1 ± 2.7x, respectively, p = 0.0004). The anaesthetics differentially affect the STRs in the rat model with markedly reduced amplitudes with isoflurane compared to ketamine:xylazine. However, the IOP-associated enhancement is of similar absolute magnitude for the two anaesthetics, suggesting that IOP stress and anaesthetic effects operate on separate retinal mechanisms.

  6. Only extra-high dose of ketamine affects l-glutamate-induced intracellular Ca(2+) elevation and neurotoxicity.

    PubMed

    Shibuta, Satoshi; Morita, Tomotaka; Kosaka, Jun; Kamibayashi, Takahiko; Fujino, Yuji

    2015-09-01

    The neurotoxic effects of anesthetics on the developing brain are a concern. Although most of the anesthetics are GABAA agonists or NMDA antagonists, the differences in these effects on prospective glutamate-neurotoxicity in the brain is not fully understood. We examined the degree of L-glutamate-induced intracellular calcium ([Ca(2+)]i) elevation and neurotoxicity in neurons exposed to anesthetics. Primary cortical neurons from E17 rats were preincubated with 1-100 μM of ketamine or thiopental sodium (TPS) for the first 72 h of culturing. Two weeks later, the neurons were exposed to L-glutamate. The extent of glutamate toxicity was evaluated using Ca(2+)-imaging and morphological experiments. Preincubation with 100 μM ketamine but not with other concentrations of ketamine and TPS for the first 72 h in culture significantly enhanced L-glutamate-induced [Ca(2+)]i elevation 2 weeks later. Morphology experiments showed that vulnerability to L-glutamate-mediated neurotoxicity was only altered in neurons preincubated with 100 μM ketamine but not with TPS. Although preincubation with high concentration of ketamine showed enhancement of L-glutamate-induced [Ca(2+)]i elevation 2 weeks later, long-term exposure to TPS or ketamine at clinical doses during developmental periods may not result in a dose-related potentiation of exogenous glutamate-induced neurotoxicity, once the intravenous anesthetics are discontinued. Copyright © 2015 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  7. Behavioral and biochemical effects of ketamine and dextromethorphan relative to its antidepressant-like effects in Swiss Webster mice.

    PubMed

    Nguyen, Linda; Lucke-Wold, Brandon P; Logsdon, Aric F; Scandinaro, Anna L; Huber, Jason D; Matsumoto, Rae R

    2016-09-28

    Ketamine has been shown to produce rapid and robust antidepressant effects in depressed individuals; however, its abuse potential and adverse psychotomimetic effects limit its widespread use. Dextromethorphan (DM) may serve as a safer alternative on the basis of pharmacodynamic similarities to ketamine. In this proof-of-concept study, behavioral and biochemical analyses were carried out to evaluate the potential involvement of brain-derived neurotrophic factor (BDNF) in the antidepressant-like effects of DM in mice, with comparisons to ketamine and imipramine. Male Swiss, Webster mice were injected with DM, ketamine, or imipramine and their behaviors were evaluated in the forced-swim test and the open-field test. Western blots were used to measure BDNF and its precursor, pro-BDNF, protein expression in the hippocampus and the frontal cortex of these mice. Our results show that both DM and imipramine reduced immobility time in the forced-swim test without affecting locomotor activity, whereas ketamine reduced immobility time and increased locomotor activity. Ketamine also rapidly (within 40 min) increased pro-BDNF expression in an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor-dependent manner in the hippocampus, whereas DM and imipramine did not alter pro-BDNF or BDNF levels in either the hippocampus or the frontal cortex within this timeframe. These data show that DM shares some features with both ketamine and imipramine. Additional studies examining DM may aid in the development of more rapid, safe, and efficacious antidepressant treatments.

  8. Suppression of Methamphetamine Self-Administration by Ketamine Pre-treatment Is Absent in the Methylazoxymethanol (MAM) Rat Model of Schizophrenia.

    PubMed

    Ruda-Kucerova, Jana; Babinska, Zuzana; Stark, Tibor; Micale, Vincenzo

    2017-07-01

    Ketamine may prove to be a potential candidate in treating the widespread drug addiction/substance abuse epidemic among patients with schizophrenia. Clinical studies have shown ketamine to reduce cocaine and heroin cravings. However, the use of ketamine remains controversial as it may exacerbate the symptoms of schizophrenia. Therefore, the aim of this study is to characterize the effects of ketamine on drug addiction in schizophrenia using the methylazoxymethanol (MAM) acetate rat model on operant IV methamphetamine (METH) self-administration. MAM was administered intraperitoneally (22 mg/kg) on gestational day 17. Locomotor activity test and later IV self-administration (IVSA) were then performed in the male offspring followed by a period of forced abstinence and relapse of METH taking. After reaching stable intakes in the relapse phase, ketamine (5 mg/kg) was administered intraperitoneally 30 min prior to the self-administration session. As documented previously, the MAM rats showed a lack of habituation in the locomotor activity test but developed stable maintenance of METH self-administration with no difference in operant behaviour to control animals. Results show that ketamine treatment significantly reduced the METH intake in the control animals but not in MAM animals. Ketamine effect on METH self-administration may be explained by increased glutamatergic signalling in the prefrontal cortex caused by the N-methyl-D-aspartate antagonism and disinhibition of GABA interneurons which was shown to be impaired in the MAM rats. This mechanism may at least partly explain the clinically proven anti-craving potential of ketamine and allow development of more specific anti-craving medications with fewer risks.

  9. Does intravenous ketamine enhance analgesia after arthroscopic shoulder surgery with ultrasound guided single-injection interscalene block?: a randomized, prospective, double-blind trial.

    PubMed

    Woo, Jae Hee; Kim, Youn Jin; Baik, Hee Jung; Han, Jong In; Chung, Rack Kyung

    2014-07-01

    Ketamine has anti-inflammatory, analgesic and antihyperalgesic effect and prevents pain associated with wind-up. We investigated whether low doses of ketamine infusion during general anesthesia combined with single-shot interscalene nerve block (SSISB) would potentiate analgesic effect of SSISB. Forty adult patients scheduled for elective arthroscopic shoulder surgery were enrolled and randomized to either the control group or the ketamine group. All patients underwent SSISB and followed by general anesthesia. During an operation, intravenous ketamine was infused to the patients of ketamine group continuously. In control group, patients received normal saline in volumes equivalent to ketamine infusions. Pain score by numeric rating scale was similar between groups at 1, 6, 12, 24, 36, and 48 hr following surgery, which was maintained lower than 3 in both groups. The time to first analgesic request after admission on post-anesthesia care unit was also not significantly different between groups. Intraoperative low dose ketamine did not decrease acute postoperative pain after arthroscopic shoulder surgery with a preincisional ultrasound guided SSISB. The preventive analgesic effect of ketamine could be mitigated by SSISB, which remains one of the most effective methods of pain relief after arthroscopic shoulder surgery.

  10. Evaluating the Use of Ketamine for Pain Control With Sickle Cell Crisis in Pregnancy: A Report of 2 Cases.

    PubMed

    Gimovsky, Alexis C; Fritton, Kate; Viscusi, Eugene; Roman, Amanda

    2018-01-01

    Sickle cell crises occur frequently during pregnancy and are difficult to treat, even with high-dose opioids. Analgesia with ketamine has been suggested as an alternative, but its use during pregnancy is underreported. Two pregnant patients with uncontrolled sickle cell pain were treated with ketamine. Patient A reported no decrease in her pain, but her opioid requirements decreased. Patient B's pain resolved during ketamine administration. No serious maternal or neonatal adverse effects occurred. Ketamine may be considered as an adjunct analgesic in pregnant patients with sickle cell pain, although prospective clinical data are needed to fully assess its efficacy.

  11. Relationship of serum levels of TNF-α, IL-6 and IL-18 and schizophrenia-like symptoms in chronic ketamine abusers

    PubMed Central

    Fan, Ni; Luo, Yayan; Xu, Ke; Zhang, Minling; Ke, Xiaoyin; Huang, Xini; Ding, Yi; Wang, Daping; Ning, Yuping; Deng, Xuefeng; He, Hongbo

    2016-01-01

    Objective Exposing to NMDAR receptor antagonists, such as ketamine, produces schizophrenia-like symptoms in humans and deteriorates symptoms in schizophrenia patients. Meanwhile, schizophrenia is associated with alterations of cytokines in the immune system. This study aims to examine the serum TNF-α, IL-6 and IL-18 levels in chronic human ketamine users as compared to healthy subjects. The correlations between the serum cytokines levels with the demographic, ketamine use characteristics and psychiatric symptoms were also assessed. Methods 155 subjects who fulfilled the criteria of ketamine dependence and 80 healthy control subjects were recruited. Serum TNF-α, IL-6 and IL-18 levels were measured using an enzyme-linked immunosorbent assay (ELISA). The psychiatric symptoms of the ketamine abusers were assessed using the Positive and Negative Syndrome Scale (PANSS). Results Serum IL-6 and IL-18 levels were significantly higher, while serum TNF-α level was significantly lower among ketamine users than among healthy controls (p < 0.05). Serum TNF-α levels showed a significant negative association with PANSS total score (r = −0.210, p < 0.01) and negative subscore (r = −0.300, p < 0.01). No significant association was found between PANSS score and serum levels of IL-6 and IL-18. Conclusions Serum levels of TNF-α, IL-6 and IL-18 were altered in chronic ketamine abusers which may play a role in schizophrenia-like symptoms in chronic ketamine abusers. PMID:26589393

  12. Efficacy and safety of ketamine in bipolar depression: A systematic review.

    PubMed

    Alberich, Susana; Martínez-Cengotitabengoa, Mónica; López, Purificación; Zorrilla, Iñaki; Núñez, Nuria; Vieta, Eduard; González-Pinto, Ana

    The depression is the most prevalent state throughout the life of the bipolar patient. Ketamine has been shown to be an effective and rapid treatment for depression. The objective of the present work is to perform a systematic review on the efficacy and safety of ketamine as treatment of bipolar depression, as well as its different patterns of administration. The search found 10 relevant manuscripts that met the inclusion criteria: one clinical trial, 5 cohort studies, and 4 case reports. Intravenous infusion was used in 60% of the studies. According to data, ketamine seems to be an effective and safe treatment for bipolar depression, although the length of its effect is short. Adverse effects observed generally occurred at the time of infusion, and tended to completely disappear within 1-2h. Therefore, more studies are necessary to explore new patterns of administration, as well as on its safety and adverse effects. Copyright © 2016 SEP y SEPB. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. Inhibition of spinal astrocytic c-Jun N-terminal kinase (JNK) activation correlates with the analgesic effects of ketamine in neuropathic pain

    PubMed Central

    2011-01-01

    Background We have previously reported that inhibition of astrocytic activation contributes to the analgesic effects of intrathecal ketamine on spinal nerve ligation (SNL)-induced neuropathic pain. However, the underlying mechanisms are still unclear. c-Jun N-terminal kinase (JNK), a member of mitogen-activated protein kinase (MAPK) family, has been reported to be critical for spinal astrocytic activation and neuropathic pain development after SNL. Ketamine can decrease lipopolysaccharide (LPS)-induced phosphorylated JNK (pJNK) expression and could thus exert its anti-inflammatory effect. We hypothesized that inhibition of astrocytic JNK activation might be involved in the suppressive effect of ketamine on SNL-induced spinal astrocytic activation. Methods Immunofluorescence histochemical staining was used to detect SNL-induced spinal pJNK expression and localization. The effects of ketamine on SNL-induced mechanical allodynia were confirmed by behavioral testing. Immunofluorescence histochemistry and Western blot were used to quantify the SNL-induced spinal pJNK expression after ketamine administration. Results The present study showed that SNL induced ipsilateral pJNK up-regulation in astrocytes but not microglia or neurons within the spinal dorsal horn. Intrathecal ketamine relieved SNL-induced mechanical allodynia without interfering with motor performance. Additionally, intrathecal administration of ketamine attenuated SNL-induced spinal astrocytic JNK activation in a dose-dependent manner, but not JNK protein expression. Conclusions The present results suggest that inhibition of JNK activation may be involved in the suppressive effects of ketamine on SNL-induced spinal astrocyte activation. Therefore, inhibition of spinal JNK activation may be involved in the analgesic effects of ketamine on SNL-induced neuropathic pain. PMID:21255465

  14. Comparison of Propofol-Remifentanil Versus Propofol-Ketamine Deep Sedation for Third Molar Surgery

    PubMed Central

    Kramer, Kyle J.; Ganzberg, Steven; Prior, Simon; Rashid, Robert G.

    2012-01-01

    This study aimed to compare continuous intravenous infusion combinations of propofol-remifentanil and propofol-ketamine for deep sedation for surgical extraction of all 4 third molars. In a prospective, randomized, double-blinded controlled study, participants received 1 of 2 sedative combinations for deep sedation for the surgery. Both groups initially received midazolam 0.03 mg/kg for baseline sedation. The control group then received a combination of propofol-remifentanil in a ratio of 10 mg propofol to 5 μg of remifentanil per milliliter, and the experimental group received a combination of propofol-ketamine in a ratio of 10 mg of propofol to 2.5 mg of ketamine per milliliter; both were given at an initial propofol infusion rate of 100 μg/kg/min. Each group received an induction loading bolus of 500 μg/kg of the assigned propofol combination along with the appropriate continuous infusion combination . Measured outcomes included emergence and recovery times, various sedation parameters, hemodynamic and respiratory stability, patient and surgeon satisfaction, postoperative course, and associated drug costs. Thirty-seven participants were enrolled in the study. Both groups demonstrated similar sedation parameters and hemodynamic and respiratory stability; however, the ketamine group had prolonged emergence (13.6 ± 6.6 versus 7.1 ± 3.7 minutes, P = .0009) and recovery (42.9 ± 18.7 versus 24.7 ± 7.6 minutes, P = .0004) times. The prolonged recovery profile of continuously infused propofol-ketamine may limit its effectiveness as an alternative to propofol-remifentanil for deep sedation for third molar extraction and perhaps other short oral surgical procedures, especially in the ambulatory dental setting. PMID:23050750

  15. Early Use of the NMDA Receptor Antagonist Ketamine in Refractory and Superrefractory Status Epilepticus

    PubMed Central

    Zeiler, F. A.

    2015-01-01

    Refractory status epilepticus (RSE) and superrefractory status epilepticus (SRSE) pose a difficult clinical challenge. Multiple cerebral receptor and transporter changes occur with prolonged status epilepticus leading to pharmacoresistance patterns unfavorable for conventional antiepileptics. In particular, n-methyl-d-aspartate (NMDA) receptor upregulation leads to glutamate mediated excitotoxicity. Targeting these NMDA receptors may provide a novel approach to otherwise refractory seizures. Ketamine has been utilized in RSE. Recent systematic review indicates 56.5% and 63.5% cessation in seizures in adults and pediatrics, respectively. No complications were described. We should consider earlier implementation of ketamine or other NMDA receptor antagonists, for RSE. Prospective study of early implementation of ketamine should shed light on the role of such medications in RSE. PMID:25649724

  16. Comparison of different administration of ketamine and intravenous tramadol hydrochloride for postoperative pain relief and sedation after pediatric tonsillectomy.

    PubMed

    Yenigun, Alper; Et, Tayfun; Aytac, Sirin; Olcay, Betul

    2015-01-01

    Tonsillectomy is the oldest and most frequently performed surgical procedure practiced by ear, nose, and throat physicians. In this study, our aim was to compare the analgesic effects of peritonsillar, rectal, as well as intravenous infiltration of ketamine and intravenous tramadol hydrochloride infiltration for postoperative pain relief and sedation after tonsillectomy in children. This randomized controlled study evaluated the effects of peritonsillar, intravenous, and rectal infiltration of ketamine in children undergoing adenotonsillectomy. One hundred twenty children who were categorized under American Society of Anesthesiologists classes I to II were randomized to 4 groups of 30 members each. Group 1 received intravenous (IV) ketamine (0.5 mg/kg), group 2 received rectal ketamine (0.5 mg/kg), group 3 received local peritonsillar ketamine (2 mg/kg), and the control group received IV tramadol hydrochloride infiltration (2 mg/kg). Children's Hospital of Eastern Ontario Pain Scale scores and Wilson sedation scale were recorded at minutes 1, 15, 30, 60 as well as hours 2, 12, and 24 postoperatively. The patients were interviewed on the day after the surgery to assess the postoperative pain and sedation. All the routes of infiltration of ketamine were as effective as those of tramadol hydrochloride (P > 0.05). A statistically significant difference was observed between IV infiltrations and all groups during the assessments at hours 6 and 24. The analgesic efficacy of IV ketamine was found especially higher at hours 6 and 24 (P(6) = 0.045, P(24) = 0.011). Perioperative, low-dose IV, rectal, or peritonsillar ketamine infiltration provides efficient pain relief without any adverse effects in children who would undergo adenotonsillectomy.

  17. mTOR activation is required for the anti-alcohol effect of ketamine, but not memantine, in alcohol-preferring rats

    PubMed Central

    Sabino, Valentina; Narayan, Aditi R.; Zeric, Tamara; Steardo, Luca; Cottone, Pietro

    2013-01-01

    Glutamate NMDA receptors mediate many molecular and behavioral effects of alcohol, and they play a key role in the development of excessive drinking. Uncompetitive NMDA receptor antagonists may, therefore, have therapeutic potential for alcoholism. The first aim was to compare the effects of the NMDA antagonists memantine and ketamine on ethanol and saccharin drinking in alcohol-preferring rats. The second aim was to determine whether the effects of the two NMDA receptor antagonists were mediated by the mammalian target of rapamycin (mTOR). TSRI Sardinian alcohol-preferring rats were allowed to self-administer either 10% w/v ethanol or 0.08% w/v saccharin, and water. Operant responding and motor activity were assessed following administration of either memantine (0–10 mg/kg) or ketamine (0–20 mg/kg). Finally, ethanol self-administration was assessed in rats administered with either memantine or ketamine but pretreated with the mTOR inhibitor rapamycin (2.5 mg/kg). The uncompetitive NMDA receptor antagonists memantine and ketamine dose-dependently reduced ethanol drinking in alcohol-preferring rats; while memantine had a preferential effect on alcohol over saccharin, ketamine reduced responding for both solutions. Neither antagonist induced malaise, as shown by the lack of effect on water intake and motor activity. The mTOR inhibitor rapamycin blocked the effects of ketamine, but not those of memantine. Memantine and ketamine both reduce alcohol drinking in alcohol-preferring rats, but only memantine is selective for alcohol. The effects of ketamine, but not memantine, are mediated by mTOR. The results support the therapeutic potential of uncompetitive NMDA receptor antagonists, especially memantine, in alcohol addiction. PMID:23466691

  18. Ketamine Effects on Memory Reconsolidation Favor a Learning Model of Delusions

    PubMed Central

    Gardner, Jennifer M.; Piggot, Jennifer S.; Turner, Danielle C.; Everitt, Jessica C.; Arana, Fernando Sergio; Morgan, Hannah L.; Milton, Amy L.; Lee, Jonathan L.; Aitken, Michael R. F.; Dickinson, Anthony; Everitt, Barry J.; Absalom, Anthony R.; Adapa, Ram; Subramanian, Naresh; Taylor, Jane R.; Krystal, John H.; Fletcher, Paul C.

    2013-01-01

    Delusions are the persistent and often bizarre beliefs that characterise psychosis. Previous studies have suggested that their emergence may be explained by disturbances in prediction error-dependent learning. Here we set up complementary studies in order to examine whether such a disturbance also modulates memory reconsolidation and hence explains their remarkable persistence. First, we quantified individual brain responses to prediction error in a causal learning task in 18 human subjects (8 female). Next, a placebo-controlled within-subjects study of the impact of ketamine was set up on the same individuals. We determined the influence of this NMDA receptor antagonist (previously shown to induce aberrant prediction error signal and lead to transient alterations in perception and belief) on the evolution of a fear memory over a 72 hour period: they initially underwent Pavlovian fear conditioning; 24 hours later, during ketamine or placebo administration, the conditioned stimulus (CS) was presented once, without reinforcement; memory strength was then tested again 24 hours later. Re-presentation of the CS under ketamine led to a stronger subsequent memory than under placebo. Moreover, the degree of strengthening correlated with individual vulnerability to ketamine's psychotogenic effects and with prediction error brain signal. This finding was partially replicated in an independent sample with an appetitive learning procedure (in 8 human subjects, 4 female). These results suggest a link between altered prediction error, memory strength and psychosis. They point to a core disruption that may explain not only the emergence of delusional beliefs but also their persistence. PMID:23776445

  19. Complete recovery from intractable complex regional pain syndrome, CRPS-type I, following anesthetic ketamine and midazolam.

    PubMed

    Kiefer, Ralph-Thomas; Rohr, Peter; Ploppa, Annette; Altemeyer, Karl-Heinz; Schwartzman, Robert Jay

    2007-06-01

    To describe the treatment of an intractable complex regional pain syndrome I (CRPS-I) patient with anesthetic doses of ketamine supplemented with midazolam. A patient presented with a rapidly progressing contiguous spread of CRPS from a severe ligamentous wrist injury. Standard pharmacological and interventional therapy successively failed to halt the spread of CRPS from the wrist to the entire right arm. Her pain was unmanageable with all standard therapy. As a last treatment option, the patient was transferred to the intensive care unit and treated on a compassionate care basis with anesthetic doses of ketamine in gradually increasing (3-5 mg/kg/h) doses in conjunction with midazolam over a period of 5 days. On the second day of the ketamine and midazolam infusion, edema, and discoloration began to resolve and increased spontaneous movement was noted. On day 6, symptoms completely resolved and infusions were tapered. The patient emerged from anesthesia completely free of pain and associated CRPS signs and symptoms. The patient has maintained this complete remission from CRPS for 8 years now. In a patient with severe spreading and refractory CRPS, a complete and long-term remission from CRPS has been obtained utilizing ketamine and midazolam in anesthetic doses. This intensive care procedure has very serious risks but no severe complications occurred. The psychiatric side effects of ketamine were successfully managed with the concomitant use of midazolam and resolved within 1 month of treatment. This case report illustrates the effectiveness and safety of high-dose ketamine in a patient with generalized, refractory CRPS.

  20. Low-Dose Ketamine Infusions for Highly Opioid-Tolerant Adults Following Spinal Surgery: A Retrospective Before-and-after Study.

    PubMed

    Vaid, Patrycja; Green, Theresa; Shinkaruk, Kelly; King-Shier, Kathryn

    2016-04-01

    Managing acute-on-chronic pain in opioid-tolerant individuals is complex and challenging; exploring new analgesia regimens for this population is essential. Ketamine is an N-methyl D-aspartate antagonist that blocks transmission of painful stimuli and could be a useful medication for this patient population. A new low-dose ketamine protocol as an adjunct to conventional pain therapy was implemented in a major urban Level 1 trauma center in Canada. A retrospective before-and-after chart review was conducted to explore the research question, "What is the effect of low-dose ketamine continuous intravenous infusions on pain of highly opioid-tolerant adults following spinal surgery?". All patients had spine surgery, used a minimum of 100 mg daily oral morphine equivalent preoperatively and were followed postoperatively by the hospital's Acute Pain Service. Data from individuals treated with conventional therapy during the year prior to protocol implementation were compared with data from patients who received conventional therapy plus ketamine post implementation. Outcome measures included pain scores and daily opioid consumption on postoperative days 0 through 5, time to ambulation, time to discharge, and adverse effects. There were no statistically significant differences between conventional therapy and conventional therapy plus ketamine. Ketamine may still be of benefit to patients with acute-on-chronic pain, although this was not evident in this study. Future research using more robust assessment tools to determine effectiveness of ketamine is required. Copyright © 2016 American Society for Pain Management Nursing. Published by Elsevier Inc. All rights reserved.