Sample records for gamma-quanta bunch outline

  1. Phenomenological characteristic of the electron component in gamma-quanta initiated showers

    NASA Technical Reports Server (NTRS)

    Nikolsky, S. I.; Stamenov, J. N.; Ushev, S. Z.

    1985-01-01

    The phenomenological characteristics of the electron component in showers initiated by primary gamma-quanta were analyzed on the basis of the Tien Shan experimental data. It is shown that the lateral distribution of the electrons ion gamma-quanta initiated showers can be described with NKG - function with age parameters bar S equals 0, 76 plus or minus 0, 02, different from the same parameter for normal showers with the same size bar S equals 0, 85 plus or minus 0, 01. The lateral distribution of the correspondent electron energy flux in gamma-quanta initiated showers is steeper as in normal cosmic ray showers.

  2. Peculiarities of gamma-quanta distribution at 20 TeV energy

    NASA Technical Reports Server (NTRS)

    Ermakov, P. M.; Loktionov, A. A.; Lukin, Y. T.; Sadykov, T. K.

    1985-01-01

    The angular distribution of protons from the fragmentational region is analyzed. The gamma-quanta families are generated in a dense target by cosmic ray particles at 20 Tev energy. Families were found which had dense groups (spikes) of gamma-quanta where the rapidity/density is 3 times more than the average value determined for all registered families. The experimental data is compared with the results of artificial families simulation.

  3. Stimulation of processes of self-propagating high temperature synthesis in system Ti + Al at low temperatures by influence of γ-quanta

    NASA Astrophysics Data System (ADS)

    Sobachkin, A. V.; Loginova, M. V.; Sitnikov, A. A.; Yakovlev, V. I.; Filimonov, V. Yu; Gradoboev, A. V.

    2018-03-01

    In the present work, the influence of the irradiation with gamma-quanta 60Co upon the structural and phase state of the components of the mechanically activated powder composition of Ti+Al is investigated. The phase composition, structural parameters, and crystallinity are examined by means of X-ray diffractometry. It is found out that the irradiation with gamma-quanta changes the structure of the mechanically activated powder composition. The higher irradiation dose, the higher the structure crystallinity of both components with no change in phase state. At the same time, the parameters of Ti and Al crystal lattices approach to the initial parameters observed before the mechanical activation. The irradiation with gammaquanta leads to decrease of internal stresses in the mechanically activated powder composition while nanocrystallinity of the structure remains unchanged. Using of powder compositions exposed to the irradiation with gamma-quanta for the SH-synthesis helps to increase speed of the reaction, decrease the peak firing temperature and improve homogeneity, as well as the main phase of the produced material is TiAl.

  4. Development of a bunch-by-bunch longitudinal feedback system with a wide dynamic range for the HIGS facility

    NASA Astrophysics Data System (ADS)

    Wu, W. Z.; Kim, Y.; Li, J. Y.; Teytelman, D.; Busch, M.; Wang, P.; Swift, G.; Park, I. S.; Ko, I. S.; Wu, Y. K.

    2011-03-01

    Electron beam coupled-bunch instabilities can limit and degrade the performance of storage ring based light sources. A longitudinal feedback system has been developed for the Duke storage ring to suppress multi-bunch beam instabilities which prevent stable, high-current operation of the storage ring based free-electron lasers (FELs) and an FEL driven Compton gamma source, the high intensity gamma-ray source (HIGS) at Duke University. In this work, we report the development of a state-of-the-art second generation longitudinal feedback system which employs a field programmable gate array (FPGA) based processor, and a broadband, high shunt-impedance kicker cavity. With two inputs and two outputs, the kicker cavity was designed with a resonant frequency of 937 MHz, a bandwidth of 97 MHz, and a shunt impedance of 1530 Ω. We also developed an S-matrix based technique to fully characterize the performance of the kicker cavity in the cold test. This longitudinal feedback system has been commissioned and optimized to stabilize high-current electron beams with a wide range of electron beam energies (250 MeV to 1.15 GeV) and a number of electron beam bunch modes, including the single-bunch mode and all possible symmetric bunch modes. This feedback system has become a critical instrument to ensure stable, high-flux operation of HIGS to produce nearly monochromatic, highly polarized Compton gamma-ray beams.

  5. LEDs based upon AlGaInP heterostructures with multiple quantum wells: comparison of fast neutrons and gamma-quanta irradiation

    NASA Astrophysics Data System (ADS)

    Gradoboev, A. V.; Orlova, K. N.; Simonova, A. V.

    2018-05-01

    The paper presents the research results of watt and volt characteristics of LEDs based upon AlGaInP heterostructures with multiple quantum wells in the active region. The research is completed for LEDs (emission wavelengths 624 nm and 590 nm) under irradiation by fast neutron and gamma-quanta in passive powering mode. Watt-voltage characteristics in the average and high electron injection areas are described as a power function of the operating voltage. It has been revealed that the LEDs transition from average electron injection area to high electron injection area occurs by overcoming the transition area. It disappears as it get closer to the limit result of the irradiation LEDs that is low electron injection mode in the entire supply voltage range. It has been established that the gamma radiation facilitates initial defects restructuring only 42% compared to 100% when irradiation is performed by fast neutrons. Ratio between measured on the boundary between low and average electron injection areas current value and the contribution magnitude of the first stage LEDs emissive power reducing is established. It is allows to predict LEDs resistance to irradiation by fast neutrons and gamma rays.

  6. High energy particles and quanta in astrophysics

    NASA Technical Reports Server (NTRS)

    Mcdonald, F. B. (Editor); Fichtel, C. E.

    1974-01-01

    The various subdisciplines of high-energy astrophysics are surveyed in a series of articles which attempt to give an overall view of the subject as a whole by emphasizing the basic physics common to all fields in which high-energy particles and quanta play a role. Successive chapters cover cosmic ray experimental observations, the abundances of nuclei in the cosmic radiation, cosmic electrons, solar modulation, solar particles (observation, relationship to the sun acceleration, interplanetary medium), radio astronomy, galactic X-ray sources, the cosmic X-ray background, and gamma ray astronomy. Individual items are announced in this issue.

  7. Bunch Splitting Simulations for the JLEIC Ion Collider Ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Satogata, Todd J.; Gamage, Randika

    2016-05-01

    We describe the bunch splitting strategies for the proposed JLEIC ion collider ring at Jefferson Lab. This complex requires an unprecedented 9:6832 bunch splitting, performed in several stages. We outline the problem and current results, optimized with ESME including general parameterization of 1:2 bunch splitting for JLEIC parameters.

  8. A new method of differential structural analysis of gamma-family basic parameters

    NASA Technical Reports Server (NTRS)

    Melkumian, L. G.; Ter-Antonian, S. V.; Smorodin, Y. A.

    1985-01-01

    The maximum likelihood method is used for the first time to restore parameters of electron photon cascades registered on X-ray films. The method permits one to carry out a structural analysis of the gamma quanta family darkening spots independent of the gamma quanta overlapping degree, and to obtain maximum admissible accuracies in estimating the energies of the gamma quanta composing a family. The parameter estimation accuracy weakly depends on the value of the parameters themselves and exceeds by an order of the values obtained by integral methods.

  9. Modeling Multi-Bunch X-band Photoinjector Challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marsh, R A; Anderson, S G; Gibson, D J

    An X-band test station is being developed at LLNL to investigate accelerator optimization for future upgrades to mono-energetic gamma-ray technology at LLNL. The test station will consist of a 5.5 cell X-band rf photoinjector, single accelerator section, and beam diagnostics. Of critical import to the functioning of the LLNL X-band system with multiple electron bunches is the performance of the photoinjector. In depth modeling of the Mark 1 LLNL/SLAC X-band rf photoinjector performance will be presented addressing important challenges that must be addressed in order to fabricate a multi-bunch Mark 2 photoinjector. Emittance performance is evaluated under different nominal electronmore » bunch parameters using electrostatic codes such as PARMELA. Wake potential is analyzed using electromagnetic time domain simulations using the ACE3P code T3P. Plans for multi-bunch experiments and implementation of photoinjector advances for the Mark 2 design will also be discussed.« less

  10. Experimental study of the vidicon system for information recording using the wide-gap spark chamber of gamma - telescope gamma-I

    NASA Technical Reports Server (NTRS)

    Akimov, V. V.; Bazer-Bashv, R.; Voronov, S. A.; Galper, A. M.; Gro, M.; Kalinkin, L. F.; Kerl, P.; Kozlov, V. D.; Koten, F.; Kretol, D.

    1979-01-01

    The development of the gamma ray telescope is investigated. The wide gap spark chambers, used to identify the gamma quanta and to determine the directions of their arrival, are examined. Two systems of information recording with the spark chambers photographic and vidicon system are compared.

  11. Role of albedo from the Gamma-400 telescope calorimeter when recording the primary gamma emission.

    NASA Astrophysics Data System (ADS)

    Ginsburg, V. L.; Kurnosova, L. V.; Labensky, A. G.; Topchiev, N. P.; Fradkin, M. I.; Kaplin, V. A.; Kaplin, D. V.; Loginov, V. A.; Maklyaev, E. F.; Runtso, M. F.; Gorchakov, E. V.

    A calorimeter albedo emission affecting the Gamma-400 telescope operation is studied, when recording γ-quanta at energies from 10 to 1000 GeV. Methods for diminishing this impact on measuring data are proposed.

  12. Experimental search for the radiative capture reaction d + d {yields} {sup 4}He + {gamma} from the dd{mu} muonic molecule state J = 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baluev, V. V.; Bogdanova, L. N.; Bom, V. R.

    2011-07-15

    A search for the muon-catalyzed fusion reaction d + d {yields} {sup 4}He + {gamma} in the dd{mu} muonic molecule was performed using the experimental installation TRITON with BGO detectors for {gamma}-quanta. A high-pressure target filled with deuterium was exposed to the negative muon beam of the JINR Phasotron to detect {gamma}-quanta with the energy 23.8 MeV. An experimental estimation for the yield of radiative deuteron capture from the dd{mu} state J = 1 was obtained at the level of {eta}{sub {gamma}} {<=} 8 Multiplication-Sign 10{sup -7} per fusion.

  13. Effects of energy chirp on bunch length measurement in linear accelerator beams

    NASA Astrophysics Data System (ADS)

    Sabato, L.; Arpaia, P.; Giribono, A.; Liccardo, A.; Mostacci, A.; Palumbo, L.; Vaccarezza, C.; Variola, A.

    2017-08-01

    The effects of assumptions about bunch properties on the accuracy of the measurement method of the bunch length based on radio frequency deflectors (RFDs) in electron linear accelerators (LINACs) are investigated. In particular, when the electron bunch at the RFD has a non-negligible energy chirp (i.e. a correlation between the longitudinal positions and energies of the particle), the measurement is affected by a deterministic intrinsic error, which is directly related to the RFD phase offset. A case study on this effect in the electron LINAC of a gamma beam source at the Extreme Light Infrastructure-Nuclear Physics (ELI-NP) is reported. The relative error is estimated by using an electron generation and tracking (ELEGANT) code to define the reference measurements of the bunch length. The relative error is proved to increase linearly with the RFD phase offset. In particular, for an offset of {{7}\\circ} , corresponding to a vertical centroid offset at a screen of about 1 mm, the relative error is 4.5%.

  14. Coherent emission from a bunched electron beam: superradiance and stimulated-superradiance in a uniform and tapered wiggler FEL

    NASA Astrophysics Data System (ADS)

    Gover, A.; Ianconescu, R.; Friedman, A.; Emma, C.; Musumeci, P.

    2017-09-01

    We outline fundamental coherent radiation processes from a charge particles beam: Spontaneous Superradiance (SR), Stimulated Superradiance (ST-SR), and in the context of undulator radiation: Tapering-Enhanced Superradiance (TES) and Tapering-Enhanced Stimulated Superradiance Amplification (TESSA). Both single bunch and periodic bunching (in phasor and spectral Fourier frequency formulations) are considered in a model of radiation mode expansion.

  15. Sub-fs electron bunch generation with sub-10-fs bunch arrival-time jitter via bunch slicing in a magnetic chicane

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Assmann, R. W.; Dohlus, M.; Dorda, U.; Marchetti, B.

    2016-05-01

    The generation of ultrashort electron bunches with ultrasmall bunch arrival-time jitter is of vital importance for laser-plasma wakefield acceleration with external injection. We study the production of 100-MeV electron bunches with bunch durations of subfemtosecond (fs) and bunch arrival-time jitters of less than 10 fs, in an S-band photoinjector by using a weak magnetic chicane with a slit collimator. The beam dynamics inside the chicane is simulated by using two codes with different self-force models. The first code separates the self-force into a three-dimensional (3D) quasistatic space-charge model and a one-dimensional coherent synchrotron radiation (CSR) model, while the other one starts from the first principle with a so-called 3D sub-bunch method. The simulations indicate that the CSR effect dominates the horizontal emittance growth and the 1D CSR model underestimates the final bunch duration and emittance because of the very large transverse-to-longitudinal aspect ratio of the sub-fs bunch. Particularly, the CSR effect is also strongly affected by the vertical bunch size. Due to the coupling between the horizontal and longitudinal phase spaces, the bunch duration at the entrance of the last dipole magnet of the chicane is still significantly longer than that at the exit of the chicane, which considerably mitigates the impact of space charge and CSR effects on the beam quality. Exploiting this effect, a bunch charge of up to 4.8 pC in a sub-fs bunch could be simulated. In addition, we analytically and numerically investigate the impact of different jitter sources on the bunch arrival-time jitter downstream of the chicane, and define the tolerance budgets assuming realistic values of the stability of the linac for different bunch charges and compression schemes.

  16. Space γ-observatory GAMMA-400 Current Status and Perspectives

    NASA Astrophysics Data System (ADS)

    Galper, A. M.; Bonvicini, V.; Topchiev, N. P.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Bergstrom, L.; Berti, E.; Bigongiari, G.; Bobkov, S. G.; Boezio, M.; Bogomolov, E. A.; Bonechi, S.; Bongi, M.; Bottai, S.; Castellini, G.; Cattaneo, P. W.; Cumani, P.; Dedenko, G. L.; De Donato, C.; Dogiel, V. A.; Gorbunov, M. S.; Gusakov, Yu. V.; Hnatyk, B. I.; Kadilin, V. V.; Kaplin, V. A.; Kaplun, A. A.; Kheymits, M. D.; Korepanov, V. E.; Larsson, J.; Leonov, A. A.; Loginov, V. A.; Longo, F.; Maestro, P.; Marrocchesi, P. S.; Mikhailov, V. V.; Mocchiutti, E.; Moiseev, A. A.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu.; Papini, P.; Pearce, M.; Picozza, P.; Rappoldi, A.; Ricciarini, S.; Runtso, M. F.; Ryde, F.; Serdin, O. V.; Sparvoli, R.; Spillantini, P.; Suchkov, S. I.; Tavani, M.; Taraskin, A. A.; Tiberio, A.; Tyurin, E. M.; Ulanov, M. V.; Vacchi, A.; Vannuccini, E.; Vasilyev, G. I.; Yurkin, Yu. T.; Zampa, N.; Zirakashvili, V. N.; Zverev, V. G.

    GAMMA-400 γ-ray telescope is designed to measure fluxes of γ-rays and the electron-positron cosmic ray component possibly generated in annihilation or decay of dark matter particles; to search for and study in detail discrete γ-ray sources, to examine the energy spectra of Galactic and extragalactic diffuse γ-rays, to study γ-ray bursts and γ-rays from the active Sun. GAMMA-400 consists of plastic scintillation anticoincidence top and lateral detectors, converter-tracker, plastic scintillation detectors for the time-of-flight system (TOF), two-part calorimeter (CC1 and CC2), plastic scintillation lateral detectors of calorimeter, plastic scintillation detectors of calorimeter, and neutron detector. The converter-tracker consists of 13 layers of double (x, y) silicon strip coordinate detectors (pitch of 0.08 mm). The first three and final one layers are without tungsten while the middle nine layers are interleaved with nine tungsten conversion foils. The thickness of CC1 and CC2 is 2 X0 (0.1λ0) and 23 X0 (1.1λ0) respectively (where X0 is radiation length and λ0 is nuclear interaction one). The total calorimeter thickness is 25 X0 or 1.2λ0 for vertical incident particles registration and 54 X0 or 2.5λ0 for laterally incident ones. The energy range for γ-rays and electrons (positrons) registration in the main aperture is from ∼0.1 GeV to ∼3.0 TeV. The γ-ray telescope main aperture angular and energy resolutions are respectively ∼0.01 and ∼1% for 102 GeV γ-quanta, the proton rejection factor is ∼5×105. The first three strip layers without tungsten provide the registration of γ-rays down to ∼20 MeV in the main aperture. Also this aperture allows investigating high energy light nuclei fluxes characteristics. Electrons, positrons, light nuclei and gamma-quanta will also register from the lateral directions due to special aperture configuration. Lateral aperture energy resolution is the same as for main aperture for electrons, positrons, light

  17. Generation and measurement of velocity bunched ultrashort bunch of pC charge

    NASA Astrophysics Data System (ADS)

    Lu, X. H.; Tang, C. X.; Li, R. K.; To, H.; Andonian, G.; Musumeci, P.

    2015-03-01

    In this paper, we discuss the velocity compression in a short rf linac of an electron bunch from a rf photoinjector operated in the blowout regime. Particle tracking simulations shows that with a beam charge of 2 pC an ultrashort bunch duration of 16 fs can be obtained at a tight longitudinal focus downstream of the linac. A simplified coherent transition radiation (CTR) spectrum method is developed to enable the measurement of ultrashort (sub-50 fs) bunches at low bunch energy (5 MeV) and low bunch charges (<10 pC ). In this method, the ratio of the radiation energy selected by two narrow bandwidth filters is used to estimate the bunch length. The contribution to the coherent form factor of the large transverse size of the bunch suppresses the radiation signal significantly and is included in the analysis. The experiment was performed at the UCLA Pegasus photoinjector laboratory. The measurement results show bunches of sub-40 fs with 2 pC of charge well consistent with the simulation using actual experimental conditions. These results open the way to the generation of ultrashort bunches with time-duration below 10 fs once some of the limitations of the setup (rf phase jitter, amplitude instability and low field in the gun limited by breakdown) are corrected.

  18. Generation and measurement of velocity bunched ultrashort bunch of pC charge

    DOE PAGES

    Lu, X.  H.; Tang, C.  X.; Li, R.  K.; ...

    2015-03-01

    In this paper, we discuss the velocity compression in a short rf linac of an electron bunch from a rf photoinjector operated in the blowout regime. Particle tracking simulations shows that with a beam charge of 2 pC an ultrashort bunch duration of 16 fs can be obtained at a tight longitudinal focus downstream of the linac. A simplified coherent transition radiation (CTR) spectrum method is developed to enable the measurement of ultrashort (sub-50 fs) bunches at low bunch energy (5 MeV) and low bunch charges (<10 pC). In this method, the ratio of the radiation energy selected by twomore » narrow bandwidth filters is used to estimate the bunch length. The contribution to the coherent form factor of the large transverse size of the bunch suppresses the radiation signal significantly and is included in the analysis. The experiment was performed at the UCLA Pegasus photoinjector laboratory. The measurement results show bunches of sub-40 fs with 2 pC of charge well consistent with the simulation using actual experimental conditions. These results open the way to the generation of ultrashort bunches with time-duration below 10 fs once some of the limitations of the setup (rf phase jitter, amplitude instability and low field in the gun limited by breakdown) are corrected.« less

  19. New Transverse Bunch-by-Bunch Feedback System at TLS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, K. H.; Kuo, C. H.; Hsu, S. Y.

    2007-01-19

    An FPGA based transverse bunch-by-bunch feedback system was implemented and commissioned to replace the existing analog transverse feedback system in order to suppress more effectively multi-bunch instabilities caused by the resistive wall of the vacuum chamber, cavity-like structures and ions related instability. This system replaces existing analog transverse feedback system to enlarge the tunability of the working point. Lower chromaticity is possible with feedback system that is very helpful for injection efficiency improvement. Top-up and high current operation is benefit for this upgrade. One feedback loop suppresses horizontal and vertical multi-bunch instabilities simultaneously. The clean and simple structure makes themore » system simple and reliable. This study also presents the preliminary result of commissioning the new transverse feedback system.« less

  20. A transverse bunch by bunch feedback system for Pohang Light Source upgrade

    NASA Astrophysics Data System (ADS)

    Lee, E.-H.; Kim, D.-T.; Huang, J.-Y.; Shin, S.; Nakamura, T.; Kobayashi, K.

    2014-12-01

    The Pohang Light Source upgrade (PLS-II) project has successfully upgraded the Pohang Light Source (PLS). The main goals of the PLS-II project are to increase the beam energy to 3 GeV, increase the number of insertion devices by a factor of two (20 IDs), increase the beam current to 400 mA, and at the same time reduce the beam emittance to below 10 nm by using the existing PLS tunnel and injection system. Among 20 insertion devices, 10 narrow gap in-vacuum undulators are in operation now and two more in-vacuum undulators are to be installed later. Since these narrow gap in-vacuum undulators are most likely to produce coupled bunch instability by the resistive wall impedance and limit the stored beam current, a bunch by bunch feedback system is implemented to suppress coupled bunch instability in the PLS-II. This paper describes the scheme and performance of the PLS-II bunch by bunch feedback system.

  1. Registered particles onboard identification in the various apertures of GAMMA-400 space gamma-telescope

    NASA Astrophysics Data System (ADS)

    Arkhangelskaja, Irene

    2016-07-01

    GAMMA-400 (Gamma Astronomical Multifunctional Modular Apparatus) will be the gamma-telescope onboard international satellite gamma-observatory designed for particle registration in the wide energy band. Its parameters are optimized for detection of gamma-quanta with the energy ˜ 100 GeV in the main aperture. The main scientific goals of GAMMA-400 are to investigate fluxes of γ-rays and the electron-positron cosmic ray component possibly generated by dark matter particles decay or annihilation and to search for and study in detail discrete γ-ray sources, to investigate the energy spectra of Galactic and extragalactic diffuse γ-rays, and to study γ-ray bursts and γ-emission from the active Sun. This article presents analysis of detected events identification procedures and energy resolution in three apertures provide particles registration both from upper and lateral directions based on GAMMA-400 modeling due special designed software. Time and segmentation methods are used to reject backsplash (backscattering particles created when high energy γ-rays interact with the calorimeter's matter and move in the opposite direction) in the main aperture while only energy deposition analysis allows to reject this effect in the additional and lateral ones. The main aperture provides the best angular (all strip layers information analysis) and energy (energy deposition in the all detectors studying) resolution in the energy range 0.1 - 3 × 10^{3} GeV. The energy resolution in this band is 1%. Triggers in the main aperture will be formed using information about particle direction provided by time of flight system and presence of charged particle or backsplash signal formed according to analysis of energy deposition in combination of all two-layers anticoincidence systems individual detectors. In the additional aperture gamma-telescope allows to register events in the energy band 10 × 10^{-3} - 3 × 10^{3} GeV. The additional aperture energy resolution provides due to

  2. Beam tuning and bunch length measurement in the bunch compression operation at the cERL

    NASA Astrophysics Data System (ADS)

    Honda, Y.; Shimada, M.; Miyajima, T.; Hotei, T.; Nakamura, N.; Kato, R.; Obina, T.; Takai, R.; Harada, K.; Ueda, A.

    2017-12-01

    Realization of a short bunch beam by manipulating the longitudinal phase space distribution with a finite longitudinal dispersion following an off-crest acceleration is a widely used technique. The technique was applied in a compact test accelerator of an energy-recovery linac scheme for compressing the bunch length at the return loop. A diagnostic system utilizing coherent transition radiation was developed for the beam tuning and for estimating the bunch length. By scanning the beam parameters, we experimentally found the best condition for the bunch compression. The RMS bunch length of 250 ±50 fs was obtained at a bunch charge of 2 pC. This result confirmed the design and the tuning procedure of the bunch compression operation for the future energy-recovery linac (ERL).

  3. Compact Gamma-Beam Source for Nuclear Security Technologies

    NASA Astrophysics Data System (ADS)

    Gladkikh, P.; Urakawa, J.

    2015-10-01

    A compact gamma-beam source dedicated to the development of the nuclear security technologies by use of the nuclear resonance fluorescence is described. Besides, such source is a very promising tool for novel technologies of the express cargoes inspection to prevent nuclear terrorism. Gamma-beam with the quanta energies from 0.3MeV to 7.2MeV is generated in the Compton scattering of the "green" laser photons on the electron beam with energies from 90MeV to 430MeV. The characteristic property of the proposed gammabeam source is a narrow spectrum (less than 1%) at high average gamma-yield (of 1013γ/s) due to special operation mode.

  4. gamma-Hexachlorocyclohexane (gamma-HCH)

    Integrated Risk Information System (IRIS)

    gamma - Hexachlorocyclohexane ( gamma - HCH ) ; CASRN 58 - 89 - 9 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Asse

  5. Resolving quanta of collective spin excitations in a millimeter-sized ferromagnet

    PubMed Central

    Lachance-Quirion, Dany; Tabuchi, Yutaka; Ishino, Seiichiro; Noguchi, Atsushi; Ishikawa, Toyofumi; Yamazaki, Rekishu; Nakamura, Yasunobu

    2017-01-01

    Combining different physical systems in hybrid quantum circuits opens up novel possibilities for quantum technologies. In quantum magnonics, quanta of collective excitation modes in a ferromagnet, called magnons, interact coherently with qubits to access quantum phenomena of magnonics. We use this architecture to probe the quanta of collective spin excitations in a millimeter-sized ferromagnetic crystal. More specifically, we resolve magnon number states through spectroscopic measurements of a superconducting qubit with the hybrid system in the strong dispersive regime. This enables us to detect a change in the magnetic moment of the ferromagnet equivalent to a single spin flipped among more than 1019 spins. Our demonstration highlights the strength of hybrid quantum systems to provide powerful tools for quantum sensing and quantum information processing. PMID:28695204

  6. Gamma-telescopes Fermi/LAT and GAMMA-400 Trigger Systems Event Recognizing Methods Comparison

    NASA Astrophysics Data System (ADS)

    Arkhangelskaja, I. V.; Murchenko, A. E.; Chasovikov, E. N.; Arkhangelskiy, A. I.; Kheymits, M. D.

    Usually instruments for high-energy γ-quanta registration consists of converter (where γ-quanta produced pairs) and calorimeter for particles energy measurements surrounded by anticoincidence shield used to events identification (whether incident particle was charged or neutral). The influence of pair formation by γ-quanta in shield and the backsplash (moved in the opposite direction particles created due high energy γ-rays interact with calorimeter) should be taken into account. It leads to decrease both effective area and registration efficiency at E>10 GeV. In the presented article the event recognizing methods used in Fermi/LAT trigger system is considered in comparison with the ones applied in counting and triggers signals formation system of gamma-telescope GAMMA-400. The GAMMA-400 (Gamma Astronomical Multifunctional Modular Apparatus) will be the new high-apogee space γ-observatory. The GAMMA-400 consist of converter-tracker based on silicon-strip coordinate detectors interleaved with tungsten foils, imaging calorimeter make of 2 layers of double (x, y) silicon strip coordinate detectors interleaved with planes of CsI(Tl) crystals and the electromagnetic calorimeter CC2 consists only of CsI(Tl) crystals. Several plastics detections systems used as anticoincidence shield, for particles energy and moving direction estimations. The main differences of GAMMA-400 constructions from Fermi/LAT one are using the time-of-flight system with base of 50 cm and double layer structure of plastic detectors provides more effective particles direction definition and backsplash rejection. Also two calorimeters in GAMMA-400 composed the total absorbtion spectrometer with total thickness ∼ 25 X0 or ∼1.2 λ0 for vertical incident particles registration and 54 X0 or 2.5 λ0 for laterally incident ones (where λ0 is nuclear interaction length). It provides energy resolution 1-2% for 10 GeV-3.0×103 GeV events while the Fermi/LAT energy resolution does not reach such a

  7. Femtosecond electron bunches, source and characterization

    NASA Astrophysics Data System (ADS)

    Thongbai, C.; Kusoljariyakul, K.; Rimjaem, S.; Rhodes, M. W.; Saisut, J.; Thamboon, P.; Wichaisirimongkol, P.; Vilaithong, T.

    2008-03-01

    A femtosecond electron source has been developed at the Fast Neutron Research Facility (FNRF), Chiang Mai University, Thailand. So far, it has produced electron bunches as short as σ z˜180 fs with (1-6)×10 8 electrons per microbunch. The system consists of an RF-gun with a thermionic cathode, an alpha-magnet as a magnetic bunch compressor, and a linear accelerator as a post acceleration section. Coherent transition radiation emitted at wavelengths equal to and longer than the bunch length is used in a Michelson interferometer to determine the bunch length by autocorrelation technique. The experimental setup and results of the bunch length measurement are described.

  8. Some problems of the detection of the high energy gamma-radiation in space

    NASA Astrophysics Data System (ADS)

    Fradkin, M. I.; Ginzburg, V. L.; Kurnosova, L. V.; Labensky, A. G.; Razorenov, L. A.; Rusakovich, M. A.; Topchiev, N. P.; Kaplin, V. A.; Runtso, M. F.; Gorchakov, E. V.; Ignatiev, P. P.

    1995-05-01

    Diffuse gamma radiation in the Galaxy has been measured with instruments onboard the COS-B and Compton Gamma Ray Observatory (CGRO) satellites from the tens of keV up to about 30 GeV. There is no experimental data at higher energies, but this data is very important for the spectrum of primary cosmic rays and the existence of neutralinos (hypothetical supersymmetrical particles which are supposed to constitute dark matter in the Galaxy and create gamma-quanta in the process of annihilation). The GAMMA-400 collaboration is working on the design of a telescope for gamma-ray measurements in the 10-1000 GeV range. The electronics of the GAMMA-400 eliminate some hindering effects, in particular the influence of backscattered gammas emitted by the very massive calorimeter (calorimeter albedo). The GAMMA-400 project may be realized in the near future if economic conditions in Russia are favorable.

  9. Grading the Group: QUANTA 2.0 and the Peer Review

    ERIC Educational Resources Information Center

    Blanton, Casey; Flota, Michael; Gunshanan, Frank

    2013-01-01

    Can students assess their peers on collaboration, a key practice in learning communities? The QUANTA program is a team-taught, two-semester coordinated studies program that is over 25 years old. The central governing ideas for the program are a belief in the social construction of knowledge, and recognition of the value of active, collaborative…

  10. Self-bunching electron guns

    NASA Astrophysics Data System (ADS)

    Mako, Frederick M.; Len, L. K.

    1999-05-01

    We report on three electron gun projects that are aimed at power tube and injector applications. The purpose of the work is to develop robust electron guns which produce self-bunched, high-current-density beams. We have demonstrated, in a microwave cavity, self-bunching, cold electron emission, long life, and tolerance to contamination. The cold process is based on secondary electron emission. FMT has studied using simulation codes the resonant bunching process which gives rise to high current densities (0.01-5 kA/cm2), high charge bunches (up to 500 nC/bunch), and short pulses (1-100 ps) for frequencies from 1 to 12 GHz. The beam pulse width is nominally ˜5% of the rf period. The first project is the L-Band Micro-Pulse Gun (MPG). Measurements show ˜40 ps long micro-bunches at ˜20 A/cm2 without contamination due to air exposure. Lifetime testing has been carried out for about 18 months operating at 1.25 GHz for almost 24 hours per day at a repetition rate of 300 Hz and 5 μs-long macro-pulses. Approximately 5.8×1013 micro-bunches or 62,000 coulombs have passed through this gun and it is still working fine. The second project, the S-Band MPG, is now operational. It is functioning at a frequency of 2.85 GHz, a repetition rate of 30 Hz, with a 2 μs-long macro-pulse. It produces about 45 A in the macro-pulse. The third project is a 34.2 GHz frequency-multiplied source driven by an X-Band MPG. A point design was performed at an rf output power of 150 MW at 34.2 GHz. The resulting system efficiency is 53% and the gain is 60 dB. The system efficiency includes the input cavity efficiency, input driver efficiency (a 50 MW klystron at 11.4 GHz), output cavity efficiency, and the post-acceleration efficiency.

  11. Theoretical analysis and simulation study of the deep overcompression mode of velocity bunching for a comblike electron bunch train

    NASA Astrophysics Data System (ADS)

    Wang, Dan; Yan, Lixin; Du, YingChao; Huang, Wenhui; Gai, Wei; Tang, Chuanxiang

    2018-02-01

    Premodulated comblike electron bunch trains are used in a wide range of research fields, such as for wakefield-based particle acceleration and tunable radiation sources. We propose an optimized compression scheme for bunch trains in which a traveling wave accelerator tube and a downstream drift segment are together used as a compressor. When the phase injected into the accelerator tube for the bunch train is set to ≪-10 0 ° , velocity bunching occurs in a deep overcompression mode, which reverses the phase space and maintains a velocity difference within the injected beam, thereby giving rise to a compressed comblike electron bunch train after a few-meter-long drift segment; we call this the deep overcompression scheme. The main benefits of this scheme are the relatively large phase acceptance and the uniformity of compression for the bunch train. The comblike bunch train generated via this scheme is widely tunable: For the two-bunch case, the energy and time spacings can be continuously adjusted from +1 to -1 MeV and from 13 to 3 ps, respectively, by varying the injected phase of the bunch train from -22 0 ° to -14 0 ° . Both theoretical analysis and beam dynamics simulations are presented to study the properties of the deep overcompression scheme.

  12. Light, rest mass and electric charge quanta all formed by neutrinos?

    NASA Astrophysics Data System (ADS)

    Chen, Shao-Guang

    In high energy physics experiments the electric charge and rest mass of particles can commonly transform into the photons, vice versa. Its reason QFT can only give a vague answer: based on the particle creation and annihilation operators. There are not more clear answers or conjecture? At least, light, electric charge and rest mass should have a collective structure component, if not, the transformation is unable understanding. An elementary answer is that neutrino and antineutrino as their collective structure component. In the paper ‘Chen Qiliang & Wang Bin, The formation and characteristics of Chen Shaoguang's formula, China Science &Technology Overview 127101-103 (2011)’, the lowest energy state vertical polarized left spin 1/2 neutrino and right spin 1/2 antineutrino are just the left, right advance unit quanta la _{0}nuυ, ra nuυ _{0} and left, right back unit quanta lb (0) nuυ, rb nuυ (0) , it again compose into spin 1 unit photon la-ra _{0}nuυnuυ _{0} and back-photon lb-rb (0) nuυnuυ (0) , spin 0 unit rest mass ra-rb nuυ _{0}nuυ (0) and anti-mass la-lb _{0}nuυ (0) nuυ, spin 0 unit positive charge la-rb _{0}nuυnuυ (0) and negative charge ra-lb nuυ _{0} (0) nuυ. The physical vacuum is the even collocation of non-combinational nuυ _{0} or _{0}nuυ. It accord to the high energy physics experimental results of the transformation among the photons, masses quanta and charges quanta. In my paper ‘Quanta turn-advance ism, China Science && Technology Overview 131 192-210 (2011)’, QFT four-dimensional uncertainty principle and momentum-energy conservation law had been generalized as a five-dimensional equations: de Broglie wavelength as a position vector \\underline{q}= (i c t, r, s), momentum \\underline{P} = (i E / c, P, U c), \\underline{q} = i h / \\underline{P}, \\underline{q} \\underline{q} = 0, \\underline{P} \\underline{P} = 0, Sigma∑ \\underline{P} = \\underline{P} (0) . The five-dimensional time-space-spin had been quantized as a

  13. Measurements of the gamma-quanta angular distributions emitted from neutron inelastic scattering on 28Si

    NASA Astrophysics Data System (ADS)

    Fedorov, N. A.; Grozdanov, D. N.; Bystritskiy, V. M.; Kopach, Yu. N.; Ruskov, I. N.; Skoy, V. R.; Tretyakova, T. Yu.; Zamyatin, N. I.; Wang, D.; Aliev, F. A.; Hramco, C.; Gandhi, A.; Kumar, A.; Dabylova, S.; Bogolubov, E. P.; Barmakov, Yu. N.

    2018-04-01

    The characteristic gamma radiation from the interaction of 14.1 MeV neutrons with a natural silicon sample is investigated with Tagged Neutron Method (TNM). The anisotropy of gamma-ray emission of 1.779 MeV was measured at 11 azimuth angles with a step of ∠15°. The present results are in good agreement with some recent experimental data.

  14. Self-consistent Simulations and Analysis of the Coupled-Bunch Instability for Arbitrary Multi-Bunch Configurations

    DOE PAGES

    Bassi, Gabriele; Blednykh, Alexei; Smalyuk, Victor

    2016-02-24

    A novel algorithm for self-consistent simulations of long-range wakefield effects has been developed and applied to the study of both longitudinal and transverse coupled-bunch instabilities at NSLS-II. The algorithm is implemented in the new parallel tracking code space (self-consistent parallel algorithm for collective effects) discussed in the paper. The code is applicable for accurate beam dynamics simulations in cases where both bunch-to-bunch and intrabunch motions need to be taken into account, such as chromatic head-tail effects on the coupled-bunch instability of a beam with a nonuniform filling pattern, or multibunch and single-bunch effects of a passive higher-harmonic cavity. The numericalmore » simulations have been compared with analytical studies. For a beam with an arbitrary filling pattern, intensity-dependent complex frequency shifts have been derived starting from a system of coupled Vlasov equations. The analytical formulas and numerical simulations confirm that the analysis is reduced to the formulation of an eigenvalue problem based on the known formulas of the complex frequency shifts for the uniform filling pattern case.« less

  15. Multiple bunch HOM evaluation for ERL cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Chen; Ben-Zvi, I.; Blaskiewicz, Michael M.

    In this paper we investigate the effect of the bunch pattern in a linac on the Higher Order Mode (HOM) power generation. The future ERL-based electron–ion collider eRHIC at BNL is used as an illustrative example. This ERL has multiple high current Superconducting Radiofrequency (SRF) 5-cell cavities. The HOM power generated when a single bunch traverses the cavity is estimated by the corresponding loss factor. Multiple re-circulations through the Energy Recovery Linac (ERL) create a specific bunch pattern. In this case the loss factor can be different than the single bunch loss factor. HOM power can vary dramatically when themore » ERL bunch pattern changes. The HOM power generation can be surveyed in the time and frequency domains. We estimate the average HOM power in a 5-cell cavity with different ERL bunch patterns.« less

  16. Multiple bunch HOM evaluation for ERL cavities

    DOE PAGES

    Xu, Chen; Ben-Zvi, I.; Blaskiewicz, Michael M.; ...

    2017-06-15

    In this paper we investigate the effect of the bunch pattern in a linac on the Higher Order Mode (HOM) power generation. The future ERL-based electron–ion collider eRHIC at BNL is used as an illustrative example. This ERL has multiple high current Superconducting Radiofrequency (SRF) 5-cell cavities. The HOM power generated when a single bunch traverses the cavity is estimated by the corresponding loss factor. Multiple re-circulations through the Energy Recovery Linac (ERL) create a specific bunch pattern. In this case the loss factor can be different than the single bunch loss factor. HOM power can vary dramatically when themore » ERL bunch pattern changes. The HOM power generation can be surveyed in the time and frequency domains. We estimate the average HOM power in a 5-cell cavity with different ERL bunch patterns.« less

  17. Multiple bunch HOM evaluation for ERL cavities

    NASA Astrophysics Data System (ADS)

    Xu, Chen; Ben-Zvi, I.; Blaskiewicz, Michael M.; Hao, Yue; Ptitsyn, Vadim

    2017-09-01

    In this work we investigate the effect of the bunch pattern in a linac on the Higher Order Mode (HOM) power generation. The future ERL-based electron-ion collider eRHIC at BNL is used as an illustrative example. This ERL has multiple high current Superconducting Radiofrequency (SRF) 5-cell cavities. The HOM power generated when a single bunch traverses the cavity is estimated by the corresponding loss factor. Multiple re-circulations through the Energy Recovery Linac (ERL) create a specific bunch pattern. In this case the loss factor can be different than the single bunch loss factor. HOM power can vary dramatically when the ERL bunch pattern changes. The HOM power generation can be surveyed in the time and frequency domains. We estimate the average HOM power in a 5-cell cavity with different ERL bunch patterns.

  18. Bunch Length Measurements at JLab FEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P. Evtushenko; J. L. Coleman; K. Jordan

    2006-09-01

    The JLab FEL is routinely operated with sub-picosecond bunches. The short bunch length is important for high gain of the FEL. Coherent transition radiation has been used for the bunch length measurements for many years. This diagnostic can be used only in the pulsed beam mode. It is our goal to run FEL with CW beam and 74.85 MHz micropulse repetition rate. Hence it is very desirable to have the possibility of doing the bunch length measurements when running CW beam with any micropulse frequency. We use a Fourier transform infrared interferometer, which is essentially a Michelson interferometer, to measuremore » the spectrum of the coherent synchrotron radiation generated in the last dipole of the magnetic bunch compressor upstream of the FEL wiggler. This noninvasive diagnostic provides the bunch length measurements for CW beam operation at any micropulse frequency. We also compare the measurements made with the help of the FTIR interferometer with the data obtained by the Martin-Puplett interferometer. Results of the two diagnostics are usually agree within 15%. Here we present a description of the experimental setup, data evaluation procedure and results of the beam measurements.« less

  19. Plasma-driven ultrashort bunch diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dornmair, I.; Schroeder, C. B.; Floettmann, K.

    2016-06-10

    Ultrashort electron bunches are crucial for an increasing number of applications, however, diagnosing their longitudinal phase space remains a challenge. We propose a new method that harnesses the strong electric fields present in a laser driven plasma wakefield. By transversely displacing driver laser and witness bunch, a streaking field is applied to the bunch. This field maps the time information to a transverse momentum change and, consequently, to a change of transverse position. We illustrate our method with simulations where we achieve a time resolution in the attosecond range.

  20. A Report on the Intellectual Development of Students in the QUANTA Learning Community at Daytona Beach Community College, 1989-1990.

    ERIC Educational Resources Information Center

    Avens, Cynthia; Zelley, Richard

    This report summarizes the results of a research study conducted to assess the intellectual development of students in the QUANTA Learning Community at Daytona Beach Community College (DBCC) (Florida) in the 1989-90 academic year. QUANTA is a freshman interdisciplinary program with 75 students and three faculty. Three courses--English, psychology,…

  1. Studies on the S-band bunching system with the Hybrid Bunching-accelerating Structure

    NASA Astrophysics Data System (ADS)

    Pei, Shi-Lun; Gao, Bin

    2018-04-01

    Generally, a standard bunching system is composed of a standing-wave (SW) pre-buncher (PB), a traveling-wave (TW) buncher (B) and a standard accelerating structure. In the industrial area, the bunching system is usually simplified by eliminating the PB and integrating the B and the standard accelerating structure together to form a β-varied accelerating structure. The beam capturing efficiency for this kind of simplified system is often worse than that for the standard one. The hybrid buncher (HB) has been proved to be a successful attempt to reduce the cost but preserve the beam quality as much as possible. Here we propose to exclusively simplify the standard bunching system by integrating the PB, the B and the standard accelerating structure together to form a Hybrid Bunching-accelerating Structure (HBaS). Compared to the standard bunching system, the one based on the HBaS is more compact, and the cost is lowered to the largest extent. With almost the same beam transportation efficiency (∼70%) from the electron gun to the linac exit, the peak-to-peak (p-to-p) beam energy spread and the 1 σ emittance of the linac with the HBaS are ∼20% and ∼60% bigger than those of the linac based on the split PB/B/standard accelerating structure system. Nonetheless, the proposed HBaS can be widely applied in the industrial linacs to greatly increase the beam capturing efficiency without fairly increasing the construction cost.

  2. Propagation of Plasma Bunches through a Transverse Magnetic Barrier

    NASA Astrophysics Data System (ADS)

    Bishaev, A. M.; Gavrikov, M. B.; Kozintseva, M. V.; Savel'ev, V. V.

    2018-01-01

    The injection of a plasma bunch into a multipolar trap can be applied to fill the trap with a plasma. The injection of the bunch into a tokamak-like trap can be considered an additional means for controlling the processes of plasma heating and fuel delivery to the central zone of a thermonuclear reactor. In both cases, the bunch is injected normally to the magnetic field of the trap. It has been shown theoretically, experimentally, and by numerical simulation that the depth of plasma bunch penetration into the magnetic field varies in direct proportion to the bunch energy and in inverse proportion to the magnetic pressure and the cross-sectional area of the plasma bunch. The data of this work allow researchers to estimate the values of plasma bunch parameters at which the bunch will be trapped. As a result, the process of plasma bunch trapping has been optimized.

  3. X-Ray generation in strongly nonlinear plasma waves.

    NASA Astrophysics Data System (ADS)

    Kiselev, Sergey; Pukhov, Alexander; Kostyukov, Igor

    2004-11-01

    Using three-dimensional particle-in-cell simulations we show that a strongly nonlinear plasma wave excited by an ultrahigh intensity laser pulse works as a compact high-brightness source of Xray radiation. It has been recently suggested by A. Pukhov and J. Meyer-ter-Vehn, Appl. Phys. B 74, 355 (2002), that in a strongly nonlinear regime the plasma wave transforms to a ``bubble'', which is almost free from background electrons. Inside the bubble, a dense bunch of relativistic electrons is produced. These accelerated electrons make betatron oscillations in the transverse fields of the bubble and emit a bright broadband X-ray radiation with a maximum about 50 keV. The emission is confined to a small angle of about 0.1 rad. In addition, we make simulations of X-ray generation by an external 28.5-GeV electron bunch injected into the bubble. Gamma-quanta with up to GeV energies are observed in the simulation in a good agreement with analytical results. The energy conversion is efficient, leading to a significant stopping of the electron bunch over 5 mm interaction distance.

  4. Difference between BPM reading one bunch and the average of multi-bunch in Booster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xi Yang

    2004-08-18

    Differences caused by BPM reading one bunch and multi-bunch average need to be well understood before the beam parameters, such as the synchrotron tune, betatron tune, and chromaticity, are extracted from those BPM data. It is easy to perform such a study using numerical simulation other than modifying the BPM electronics.

  5. Extremely short relativistic-electron-bunch generation in the laser wakefield via novel bunch injection scheme

    NASA Astrophysics Data System (ADS)

    Khachatryan, A. G.; van Goor, F. A.; Boller, K.-J.; Reitsma, A. J.; Jaroszynski, D. A.

    2004-12-01

    Recently a new electron-bunch injection scheme for the laser wakefield accelerator has been proposed [

    JETP Lett. 74, 371 (2001)JTPLA20021-364010.1134/1.1427124
    ;
    Phys. Rev. E 65, 046504 (2002)PLEEE81063-651X10.1103/PhysRevE.65.046504
    ]. In this scheme, a low energy electron bunch, sent in a plasma channel just before a high-intensity laser pulse, is trapped in the laser wakefield, considerably compressed and accelerated to an ultrarelativistic energy. In this paper we show the possibility of the generation of an extremely short (on the order of 1 μm long or a few femtoseconds in duration) relativistic-electron-bunch by this mechanism. The initial electron bunch, which can be generated, for example, by a laser-driven photocathode rf gun, should have an energy of a few hundred keVs to a few MeVs, a duration in the picosecond range or less and a relatively low concentration. The trapping conditions and parameters of an accelerated bunch are investigated. The laser pulse dynamics as well as a possible experimental setup for the demonstration of the injection scheme are also considered.

  6. Bucket shaking stops bunch dancing in Tevatron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burov, A.; Tan, C.Y.; /Fermilab

    2011-03-01

    Bunches in Tevatron are known to be longitudinally unstable: their collective oscillations, also called dancing bunches, persist without any signs of decay. Typically, a damper is used to stop these oscillations, but recently, it was theoretically predicted that the oscillations can be stabilized by means of small bucket shaking. Dedicated measurements in Tevatron have shown that this method does stop the dancing. According to predictions of Refs. [2,3], the flattening of the bunch distribution at low amplitudes should make the bunch more stable against LLD. An experiment has been devised to flatten the distribution by modulating the RF phase atmore » the low-amplitude synchrotron frequency for a few degrees of amplitude. These beam studies show that stabilisation really happens. After several consecutive shakings, the dancing disappears and the resulting bunch profile becomes smoother at the top. Although not shown in this report, sometimes a little divot forms at the centre of the distribution. These experiments confirm that resonant RF shaking flattens the bunch distribution at low amplitudes, and the dancing stops.« less

  7. Quantum Random Number Generation Using a Quanta Image Sensor

    PubMed Central

    Amri, Emna; Felk, Yacine; Stucki, Damien; Ma, Jiaju; Fossum, Eric R.

    2016-01-01

    A new quantum random number generation method is proposed. The method is based on the randomness of the photon emission process and the single photon counting capability of the Quanta Image Sensor (QIS). It has the potential to generate high-quality random numbers with remarkable data output rate. In this paper, the principle of photon statistics and theory of entropy are discussed. Sample data were collected with QIS jot device, and its randomness quality was analyzed. The randomness assessment method and results are discussed. PMID:27367698

  8. Method for efficient, narrow-bandwidth, laser compton x-ray and gamma-ray sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barty, Christopher P. J.

    A method of x-ray and gamma-ray generation via laser Compton scattering uses the interaction of a specially-formatted, highly modulated, long duration, laser pulse with a high-frequency train of high-brightness electron bunches to both create narrow bandwidth x-ray and gamma-ray sources and significantly increase the laser to Compton photon conversion efficiency.

  9. Layout of bunch compressor for Beijing XFEL test facility

    NASA Astrophysics Data System (ADS)

    Zhu, Xiongwei; Du, Yingchao; He, Xiaozhong; Yang, Yufeng

    2006-10-01

    In this paper, we describe the layout of the bunch compressor for the Beijing XFEL test facility (BTF). Our bunch compressor setup is different from the usual one due to the space limit. The compensation X-BAND cavity and the first bunch compressor are separate in distance. The electron bunch is decelerated first and then accelerated to enter the first bunch compressor. The simulation result shows that our setup works well, and the nonlinear term is well compensated. Also, we present the result about the CSR emittance dilution study. Finally, we develop a program to study microbunch instability in the second BTF bunch compressor.

  10. Bunch-by-bunch detection of coherent transverse modes from digitized single-bpm signals in the Tevatron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stancari, G.; Valishev, A.; Semenov, A.

    2010-05-01

    A system was developed for bunch-by-bunch detection of transverse proton and antiproton coherent oscillations based on the signal from a single beam-position monitor (BPM) located in a region of the ring with large amplitude functions. The signal is digitized over a large number of turns and Fourier-analyzed offline with a dedicated algorithm. To enhance the signal, the beam is excited with band-limited noise for about one second, and this was shown not to significantly affect the circulating beams even at high luminosity. The system is used to measure betatron tunes of individual bunches and to study beam-beam effects. In particular,more » it is one of the main diagnostic tools in an ongoing study of nonlinear beam-beam compensation studies with Gaussian electron lenses. We present the design and operation of this tool, together with results obtained with proton and antiproton bunches.« less

  11. Modulated method for efficient, narrow-bandwidth, laser Compton X-ray and gamma-ray sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barty, Christopher P. J.

    A method of x-ray and gamma-ray generation via laser Compton scattering uses the interaction of a specially-formatted, highly modulated, long duration, laser pulse with a high-frequency train of high-brightness electron bunches to both create narrow bandwidth x-ray and gamma-ray sources and significantly increase the laser to Compton photon conversion efficiency.

  12. Solar Temporal Photon Bunching

    NASA Astrophysics Data System (ADS)

    Tan, Peng Kian

    2018-04-01

    Conventional ground-based astronomical observations suffer from image distortion due to atmospheric turbulence. Light from thermal blackbody radiators such as stars exhibits photon bunching behaviour at sufficiently short time-scales which should be independent from atmospherically induced phase fluctuations. However, this photon bunching signal is difficult to observe directly with available detector bandwidths. By performing narrowband spectral filtering on Sunlight and conducting temporal intensity interferometry using actively quenched avalanche photon detectors (APDs), the Solar g(2)(tau) signature was directly measured, consistently throughout the day despite fluctuating weather conditions, cloud cover and elevation angle.

  13. Conditioning of BPM pickup signals for operations of the Duke storage ring with a wide range of single-bunch current

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Li, Jing-Yi; Huang, Sen-Lin; Z. Wu, W.; Hao, H.; P., Wang; K. Wu, Y.

    2014-10-01

    The Duke storage ring is a dedicated driver for the storage ring based oscillator free-electron lasers (FELs), and the High Intensity Gamma-ray Source (HIGS). It is operated with a beam current ranging from about 1 mA to 100 mA per bunch for various operations and accelerator physics studies. High performance operations of the FEL and γ-ray source require a stable electron beam orbit, which has been realized by the global orbit feedback system. As a critical part of the orbit feedback system, the electron beam position monitors (BPMs) are required to be able to precisely measure the electron beam orbit in a wide range of the single-bunch current. However, the high peak voltage of the BPM pickups associated with high single-bunch current degrades the performance of the BPM electronics, and can potentially damage the BPM electronics. A signal conditioning method using low pass filters is developed to reduce the peak voltage to protect the BPM electronics, and to make the BPMs capable of working with a wide range of single-bunch current. Simulations and electron beam based tests are performed. The results show that the Duke storage ring BPM system is capable of providing precise orbit measurements to ensure highly stable FEL and HIGS operations.

  14. Are field quanta real objects? Some remarks on the ontology of quantum field theory

    NASA Astrophysics Data System (ADS)

    Bigaj, Tomasz

    2018-05-01

    One of the key philosophical questions regarding quantum field theory is whether it should be given a particle or field interpretation. The particle interpretation of QFT is commonly viewed as being undermined by the well-known no-go results, such as the Malament, Reeh-Schlieder and Hegerfeldt theorems. These theorems all focus on the localizability problem within the relativistic framework. In this paper I would like to go back to the basics and ask the simple-minded question of how the notion of quanta appears in the standard procedure of field quantization, starting with the elementary case of the finite numbers of harmonic oscillators, and proceeding to the more realistic scenario of continuous fields with infinitely many degrees of freedom. I will try to argue that the way the standard formalism introduces the talk of field quanta does not justify treating them as particle-like objects with well-defined properties.

  15. The Case: Bunche-Da Vinci Learning Partnership Academy

    ERIC Educational Resources Information Center

    Eisenberg, Nicole; Winters, Lynn; Alkin, Marvin C.

    2005-01-01

    The Bunche-Da Vinci case described in this article presents a situation at Bunche Elementary School that four theorists were asked to address in their evaluation designs (see EJ791771, EJ719772, EJ791773, and EJ792694). The Bunche-Da Vinci Learning Partnership Academy, an elementary school located between an urban port city and a historically…

  16. Acceleration of a trailing positron bunch in a plasma wakefield accelerator

    DOE PAGES

    Doche, A.; Beekman, C.; Corde, S.; ...

    2017-10-27

    High gradients of energy gain and high energy efficiency are necessary parameters for compact, cost-efficient and high-energy particle colliders. Plasma Wakefield Accelerators (PWFA) offer both, making them attractive candidates for next-generation colliders. Here in these devices, a charge-density plasma wave is excited by an ultra-relativistic bunch of charged particles (the drive bunch). The energy in the wave can be extracted by a second bunch (the trailing bunch), as this bunch propagates in the wake of the drive bunch. While a trailing electron bunch was accelerated in a plasma with more than a gigaelectronvolt of energy gain, accelerating a trailing positronmore » bunch in a plasma is much more challenging as the plasma response can be asymmetric for positrons and electrons. We report the demonstration of the energy gain by a distinct trailing positron bunch in a plasma wakefield accelerator, spanning nonlinear to quasi-linear regimes, and unveil the beam loading process underlying the accelerator energy efficiency. A positron bunch is used to drive the plasma wake in the experiment, though the quasi-linear wake structure could as easily be formed by an electron bunch or a laser driver. Finally, the results thus mark the first acceleration of a distinct positron bunch in plasma-based particle accelerators.« less

  17. Acceleration of a trailing positron bunch in a plasma wakefield accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doche, A.; Beekman, C.; Corde, S.

    High gradients of energy gain and high energy efficiency are necessary parameters for compact, cost-efficient and high-energy particle colliders. Plasma Wakefield Accelerators (PWFA) offer both, making them attractive candidates for next-generation colliders. Here in these devices, a charge-density plasma wave is excited by an ultra-relativistic bunch of charged particles (the drive bunch). The energy in the wave can be extracted by a second bunch (the trailing bunch), as this bunch propagates in the wake of the drive bunch. While a trailing electron bunch was accelerated in a plasma with more than a gigaelectronvolt of energy gain, accelerating a trailing positronmore » bunch in a plasma is much more challenging as the plasma response can be asymmetric for positrons and electrons. We report the demonstration of the energy gain by a distinct trailing positron bunch in a plasma wakefield accelerator, spanning nonlinear to quasi-linear regimes, and unveil the beam loading process underlying the accelerator energy efficiency. A positron bunch is used to drive the plasma wake in the experiment, though the quasi-linear wake structure could as easily be formed by an electron bunch or a laser driver. Finally, the results thus mark the first acceleration of a distinct positron bunch in plasma-based particle accelerators.« less

  18. Coherent Terahertz Smith Purcell radiation from beam bunching

    NASA Astrophysics Data System (ADS)

    Shi, Zongjun; Yang, Ziqiang; Liang, Zheng; Lan, Feng; Liu, Wenxin; Gao, Xi; Li, D.

    2007-08-01

    This paper presents a possible method to produce beam bunching and obtain coherent Terahertz (THz) Smith-Purcell (SP) radiation. A model of two-section rectangular grating is proposed. In the first section with a flat conducting roof, a continuous beam is bunched by using an 88.5 GHz input signal. In the second section without metal roof, the coherent THz SP radiation is stimulated by the bunched beam interacting with the grating. The particle-in-cell (PIC) simulations show that the beam is bunched at the downstream of the first section. The strongest radiation is observed at 120° with the frequency of 266.5 GHz in the second section.

  19. Evolution of dense spatially modulated electron bunches

    NASA Astrophysics Data System (ADS)

    Balal, N.; Bratman, V. L.; Friedman, A.

    2018-03-01

    An analytical theory describing the dynamics of relativistic moving 1D electron pulses (layers) with the density modulation affected by a space charge has been revised and generalized for its application to the formation of dense picosecond bunches from linear accelerators with laser-driven photo injectors, and its good agreement with General Particle Tracer simulations has been demonstrated. Evolution of quasi-one-dimensional bunches (disks), for which the derived formulas predict longitudinal expansion, is compared with that for thin and long electron cylinders (threads), for which the excitation of non-linear waves with density spikes was found earlier by Musumeci et al. [Phys. Rev. Lett. 106(18), 184801 (2011)] and Musumeci et al. [Phys. Rev. Spec. Top. -Accel. Beams 16(10), 100701 (2013)]. Both types of bunches can be used for efficiency enhancement of THz sources based on the Doppler frequency up-shifted coherent spontaneous radiation of electrons. Despite the strong Coulomb repulsion, the periodicity of a preliminary modulation in dense 1D layers persists during their expansion in the most interesting case of a relatively small change in particle energy. However, the period of modulation increases and its amplitude decreases in time. In the case of a large change in electron energy, the uniformity of periodicity is broken due to different relativistic changes in longitudinal scales along the bunch: the "period" of modulation decreases and its amplitude increases from the rear to the front boundary. Nevertheless, the use of relatively long electron bunches with a proper preliminary spatial modulation of density can provide a significantly higher power and a narrower spectrum of coherent spontaneous radiation of dense bunches than in the case of initially short single bunches with the same charge.

  20. Dancing bunches as Van Kampen modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burov, A.; /Fermilab

    2011-03-01

    Van Kampen modes are eigen-modes of Jeans-Vlasov equation [1-3]. Their spectrum consists of continuous and, possibly, discrete parts. Onset of a discrete van Kampen mode means emergence of a coherent mode without any Landau damping; thus, even a tiny couple-bunch wake is sufficient to drive instability. Longitudinal instabilities observed at Tevatron [4], RHIC [5] and SPS [6] can be explained as loss of Landau damping (LLD), which is shown here to happen at fairly low impedances. For repulsive wakes and single-harmonic RF, LLD is found to be extremely sensitive to steepness of the bunch distribution function at small amplitudes. Basedmore » on that, a method of beam stabilization is suggested. Emergence of a discrete van Kampen mode means either loss of Landau damping or instability. Longitudinal bunch stability is analysed in weak head-tail approximation for inductive impedance and single-harmonic RF. The LLD threshold intensities are found to be rather low: for cases under study all of them do not exceed a few percent of the zero-amplitude incoherent synchrotron frequency shift, strongly decreasing for shorter bunches. Because of that, LLD can explain longitudinal instabilities happened at fairly low impedances at Tevatron [4], and possibly for RHIC [5] and SPS [6], being in that sense an alternative to the soliton explanation [5, 20]. Although LLD itself results in many cases in emergence of a mode with zero growth rate, any couple-bunch (and sometimes multi-turn) wake would drive instability for that mode, however small this wake is. LLD is similar to a loss of immune system of a living cell, when any microbe becomes fatal for it. The emerging discrete mode is normally very different from the rigid-bunch motion; thus the rigid-mode model significantly overestimates the LLD threshold. The power low of LLD predicted in Ref. [17] agrees with results of this paper. However, the numerical factor in that scaling low strongly depends on the bunch distribution

  1. Observation of coherent Smith-Purcell and transition radiation driven by single bunch and micro-bunched electron beams

    NASA Astrophysics Data System (ADS)

    Liang, Yifan; Du, Yingchao; Su, Xiaolu; Wang, Dan; Yan, Lixin; Tian, Qili; Zhou, Zheng; Wang, Dong; Huang, Wenhui; Gai, Wei; Tang, Chuanxiang; Konoplev, I. V.; Zhang, H.; Doucas, G.

    2018-01-01

    Generation of coherent Smith-Purcell (cSPr) and transition/diffraction radiation using a single bunch or a pre-modulated relativistic electron beam is one of the growing research areas aiming at the development of radiation sources and beam diagnostics for accelerators. We report the results of comparative experimental studies of terahertz radiation generation by an electron bunch and micro-bunched electron beams and the spectral properties of the coherent transition and SP radiation. The properties of cSPr spectra are investigated and discussed, and excitations of the fundamental and second harmonics of cSPr and their dependence on the beam-grating separation are shown. The experimental and theoretical results are compared, and good agreement is demonstrated.

  2. Bunch beam cooling

    NASA Astrophysics Data System (ADS)

    Bryzgunov, M. I.; Kamerdzhiev, V.; Li, J.; Mao, L. J.; Parkhomchuk, V. V.; Reva, V. B.; Yang, X. D.; Zhao, H.

    2017-07-01

    Electron cooling is used for damping both transverse and longitudinal oscillations of heavy particle. The cooling of bunch ion beam (with RF voltage on) is important part of experiments with inner target, ion collision system, stacking and RF manipulation. The short length of an ion bunch increases the peak luminosity, gives a start-time point for using of the time-of-flight methods and obtains a short extraction beam pulse. This article describes the review of last experiments with electron cooling carried out on the CSRm, CSRe (China) and COSY (Germany) storage rings. The accumulated experience may be used for the project of electron cooler on 2.5 MeV (NICA) and 0.5 MeV HIAF for obtaining high luminosity, depressing beam-beam effects and RF manipulation.

  3. End-to-end simulation of bunch merging for a muon collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bao, Yu; Stratakis, Diktys; Hanson, Gail G.

    2015-05-03

    Muon accelerator beams are commonly produced indirectly through pion decay by interaction of a charged particle beam with a target. Efficient muon capture requires the muons to be first phase-rotated by rf cavities into a train of 21 bunches with much reduced energy spread. Since luminosity is proportional to the square of the number of muons per bunch, it is crucial for a Muon Collider to use relatively few bunches with many muons per bunch. In this paper we will describe a bunch merging scheme that should achieve this goal. We present for the first time a complete end-to-end simulationmore » of a 6D bunch merger for a Muon Collider. The 21 bunches arising from the phase-rotator, after some initial cooling, are merged in longitudinal phase space into seven bunches, which then go through seven paths with different lengths and reach the final collecting "funnel" at the same time. The final single bunch has a transverse and a longitudinal emittance that matches well with the subsequent 6D rectilinear cooling scheme.« less

  4. Detection of gamma-neutron radiation by solid-state scintillation detectors. Detection of gamma-neutron radiation by novel solid-state scintillation detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryzhikov, V.; Grinyov, B.; Piven, L.

    It is known that solid-state scintillators can be used for detection of both gamma radiation and neutron flux. In the past, neutron detection efficiencies of such solid-state scintillators did not exceed 5-7%. At the same time it is known that the detection efficiency of the gamma-neutron radiation characteristic of nuclear fissionable materials is by an order of magnitude higher than the efficiency of detection of neutron fluxes alone. Thus, an important objective is the creation of detection systems that are both highly efficient in gamma-neutron detection and also capable of exhibiting high gamma suppression for use in the role ofmore » detection of neutron radiation. In this work, we present the results of our experimental and theoretical studies on the detection efficiency of fast neutrons from a {sup 239}Pu-Be source by the heavy oxide scintillators BGO, GSO, CWO and ZWO, as well as ZnSe(Te, O). The most probable mechanism of fast neutron interaction with nuclei of heavy oxide scintillators is the inelastic scattering (n, n'γ) reaction. In our work, fast neutron detection efficiencies were determined by the method of internal counting of gamma-quanta that emerge in the scintillator from (n, n''γ) reactions on scintillator nuclei with the resulting gamma energies of ∼20-300 keV. The measured efficiency of neutron detection for the scintillation crystals we considered was ∼40-50 %. The present work included a detailed analysis of detection efficiency as a function of detector and area of the working surface, as well as a search for new ways to create larger-sized detectors of lower cost. As a result of our studies, we have found an unusual dependence of fast neutron detection efficiency upon thickness of the oxide scintillators. An explanation for this anomaly may involve the competition of two factors that accompany inelastic scattering on the heavy atomic nuclei. The transformation of the energy spectrum of neutrons involved in the (n, n'γ) reactions

  5. Phase modulation of the bucket stops bunch oscillations at the Fermilab Tevatron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, C.Y.; Burov, A.; /Fermilab

    2012-04-02

    Bunches in the Tevatron are known to exhibit longitudinal oscillations which persist indefinitely. These oscillations are colloquially called 'dancing bunches.' Although the dancing proton bunches do not cause single bunch emittance growth or beam loss at injection, they lead to bunch lengthening at collisions. In Tevatron operations, a longitudinal damper has been built which stops this dance and damps out coupled bunch modes. Recent theoretical work predicts that the dance can also be stopped by an appropriate change in the bunch distribution. This paper describes the Tevatron experiments which support this theory.

  6. EDITORIAL: Quanta and leaps

    NASA Astrophysics Data System (ADS)

    Dobson, Ken

    2000-11-01

    On Sunday 7 October 1900 Herr Doktor Heinrich Rubens and his wife dropped in on the Planck's Berlin household for tea and some (inevitable) shop-talk. Rubens and his colleague Ferdinand Kurlbaum had been working on an experimental project dear to Max Planck's heart: the variation of intensity with frequency of the radiation from hot objects. They had developed state-of-the-art techniques for taking measurements in the infrared, and Rubens outlined their latest results, due to be presented to the Prussian Academy on 25 October. Between teatime and suppertime Planck had deduced the final version of the radiation law. He was able to work so quickly because he had been working on the problem of reconciling the obviously incomplete Rayleigh law - and various other versions - for many years. The new data confirmed his fairly ad hoc reconciliation of electromagnetic theory and statistical thermodynamics and he sent the outline of his new relationship to Rubens by postcard the same evening. Almost as quick as an e-mail. This itself was a highly important step forward in physics - but what was really outstanding and original was yet to follow, after `a few weeks of the most strenuous work of my life', said the 42 year-old Planck. He realized the significance of his work: `Today I have made a discovery as important as that of Newton,' he confided to his son. This was his based on his determination to find a physical meaning for what had started off as `fictional' mathematical aids to help him derive his formula. The logic compelled him, somewhat reluctantly it appears, to accept that the vibrating objects in a hot body responsible for the oscillating electromagnetic waves they emitted could change in energy only by small discrete amounts: energy packets (quanta) of a size linked to frequency by the relationship E = hf. Not many people took a lot of notice of all this. One did - the obscure Albert Einstein who generalized it in his annus mirabilis 1905 to show that the

  7. Measuring short electron bunch lengths using coherent smith-purcell radiation

    DOEpatents

    Nguyen, Dinh C.

    1999-01-01

    A method is provided for directly determining the length of sub-picosecond electron bunches. A metallic grating is formed with a groove spacing greater than a length expected for the electron bunches. The electron bunches are passed over the metallic grating to generate coherent and incoherent Smith-Purcell radiation. The angular distribution of the coherent Smith-Purcell radiation is then mapped to directly deduce the length of the electron bunches.

  8. Luminosity geometric reduction factor from colliding bunches with different lengths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verdu-Andres, S.

    In the interaction point of the future electron-Ion collider eRHIC, the electron beam bunches are at least one order of magnitude shorter than the proton beam bunches. With the introduction of a crossing angle, the actual number of collisions resulting from the bunch collision gets reduced. Here we derive the expression for the luminosity geometric reduction factor when the bunches of the two incoming beams are not equal.

  9. Compact double-bunch x-ray free electron lasers for fresh bunch self-seeding and harmonic lasing

    DOE PAGES

    Emma, C.; Feng, Y.; Nguyen, D. C.; ...

    2017-03-03

    This study presents a novel method to improve the longitudinal coherence, efficiency and maximum photon energy of x-ray free electron lasers (XFELs). The method is equivalent to having two separate concatenated XFELs. The first uses one bunch of electrons to reach the saturation regime, generating a high power self-amplified spontaneous emission x-ray pulse at the fundamental and third harmonic. The x-ray pulse is filtered through an attenuator/monochromator and seeds a different electron bunch in the second FEL, using the fundamental and/or third harmonic as an input signal. In our method we combine the two XFELs operating with two bunches, separatedmore » by one or more rf cycles, in the same linear accelerator. We discuss the advantages and applications of the proposed system for present and future XFELs.« less

  10. Measuring short electron bunch lengths using coherent Smith-Purcell radiation

    DOEpatents

    Nguyen, D.C.

    1999-03-30

    A method is provided for directly determining the length of sub-picosecond electron bunches. A metallic grating is formed with a groove spacing greater than a length expected for the electron bunches. The electron bunches are passed over the metallic grating to generate coherent and incoherent Smith-Purcell radiation. The angular distribution of the coherent Smith-Purcell radiation is then mapped to directly deduce the length of the electron bunches. 8 figs.

  11. Bunch mode specific rate corrections for PILATUS3 detectors

    DOE PAGES

    Trueb, P.; Dejoie, C.; Kobas, M.; ...

    2015-04-09

    PILATUS X-ray detectors are in operation at many synchrotron beamlines around the world. This article reports on the characterization of the new PILATUS3 detector generation at high count rates. As for all counting detectors, the measured intensities have to be corrected for the dead-time of the counting mechanism at high photon fluxes. The large number of different bunch modes at these synchrotrons as well as the wide range of detector settings presents a challenge for providing accurate corrections. To avoid the intricate measurement of the count rate behaviour for every bunch mode, a Monte Carlo simulation of the counting mechanismmore » has been implemented, which is able to predict the corrections for arbitrary bunch modes and a wide range of detector settings. This article compares the simulated results with experimental data acquired at different synchrotrons. It is found that the usage of bunch mode specific corrections based on this simulation improves the accuracy of the measured intensities by up to 40% for high photon rates and highly structured bunch modes. For less structured bunch modes, the instant retrigger technology of PILATUS3 detectors substantially reduces the dependency of the rate correction on the bunch mode. The acquired data also demonstrate that the instant retrigger technology allows for data acquisition up to 15 million photons per second per pixel.« less

  12. Longitudinal Beam Diagnostics for the ILC Injectors and Bunch Compressors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piot, Philippe; Bracke, Adam; Demir, Veysel

    2010-12-01

    We present a diagnostics suite and analyze techniques for setting up the longitudinal beam dynamics in ILC e⁻ injectors and e⁺ and e⁻ bunch compressors. Techniques to measure the first order moments and recover the first order longitudinal transfer map of the injector's intricate bunching scheme are presented. Coherent transition radiation diagnostics needed to measure and monitor the bunch length downstream of the ~5 GeV bunch compressor are investigated using a vector diffraction model.

  13. Application accelerator system having bunch control

    DOEpatents

    Wang, Dunxiong; Krafft, Geoffrey Arthur

    1999-01-01

    An application accelerator system for monitoring the gain of a free electron laser. Coherent Synchrotron Radiation (CSR) detection techniques are used with a bunch length monitor for ultra short, picosec to several tens of femtosec, electron bunches. The monitor employs an application accelerator, a coherent radiation production device, an optical or beam chopping device, an infrared radiation collection device, a narrow-banding filter, an infrared detection device, and a control.

  14. Step Bunching: Influence of Impurities and Solution Flow

    NASA Technical Reports Server (NTRS)

    Chernov, A. A.; Vekilov, P. G.; Coriell, S. R.; Murray, B. T.; McFadden, G. B.

    1999-01-01

    Step bunching results in striations even at relatively early stages of its development and in inclusions of mother liquor at the later stages. Therefore, eliminating step bunching is crucial for high crystal perfection. At least 5 major effects causing and influencing step bunching are known: (1) Basic morphological instability of stepped interfaces. It is caused by concentration gradient in the solution normal to the face and by the redistribution of solute tangentially to the interface which redistribution enhances occasional perturbations in step density due to various types of noise; (2) Aggravation of the above basic instability by solution flowing tangentially to the face in the same directions as the steps or stabilization of equidistant step train if these flows are antiparallel; (3) Enhanced bunching at supersaturation where step velocity v increases with relative supersaturation s much faster than linear. This v(s) dependence is believed to be associated with impurities. The impurities of which adsorption time is comparable with the time needed to deposit one lattice layer may also be responsible for bunching; (4) Very intensive solution flow stabilizes growing interface even at parallel solution and step flows; (5) Macrosteps were observed to nucleate at crystal corners and edges. Numerical simulation, assuming step-step interactions via surface diffusion also show that step bunching may be induced by random step nucleation at the facet edge and by discontinuity in the step density (a ridge) somewhere in the middle of a face. The corresponding bunching patterns produce the ones observed in experiment. The nature of step bunching generated at the corners and edges and by dislocation step sources, as well as the also relative importance and interrelations between mechanisms 1-5 is not clear, both from experimental and theoretical standpoints. Furthermore, several laws controlling the evolution of existing step bunches have been suggested, though

  15. Longitudinal bunch dynamics study with coherent synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Billinghurst, B. E.; Bergstrom, J. C.; Baribeau, C.; Batten, T.; May, T. E.; Vogt, J. M.; Wurtz, W. A.

    2016-02-01

    An electron bunch circulating in a storage ring constitutes a dynamical system with both longitudinal and transverse degrees of freedom. Through a self-interaction with the wakefields created by the bunch, certain of these degrees may get excited, defining a set of eigenmodes analogous to a spectroscopic series. The present study focuses on the longitudinal modes of a single bunch. The excitation of a mode appears as an amplitude modulation at the mode frequency of the coherent synchrotron radiation (CSR) emitted by the bunch. The modulations are superimposed on a much larger continuum from CSR emission in the continuous mode. A given eigenmode is classified by the integer m which is the ratio of the mode frequency to the synchrotron frequency. The present measurements extend up to m =8 and focus on the region near the instability thresholds. At threshold the modes are excited sequentially, resembling a staircase when the mode frequencies are plotted as a function of bunch length or synchrotron frequency. Adjacent modes are observed to coexist at the boundaries between the modes. An energy-independent correlation is observed between the threshold current for an instability and the corresponding zero-current bunch length. Measurements were made at five beam energies between 1.0 and 2.9 GeV at the Canadian Light Source. The CSR was measured in the time domain using an unbiased Schottky diode spanning 50-75 GHz.

  16. Application accelerator system having bunch control

    DOEpatents

    Wang, D.; Krafft, G.A.

    1999-06-22

    An application accelerator system for monitoring the gain of a free electron laser is disclosed. Coherent Synchrotron Radiation (CSR) detection techniques are used with a bunch length monitor for ultra short, picosec to several tens of femtosec, electron bunches. The monitor employs an application accelerator, a coherent radiation production device, an optical or beam chopping device, an infrared radiation collection device, a narrow-banding filter, an infrared detection device, and a control. 1 fig.

  17. Stability condition for the drive bunch in a collinear wakefield accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baturin, S. S.; Zholents, A.

    The beam breakup instability of the drive bunch in the structure-based collinear wakefield accelerator is considered and a stabilizing method is proposed. The method includes using the specially designed beam focusing channel, applying the energy chirp along the electron bunch, and keeping energy chirp constant during the drive bunch deceleration. A stability condition is derived that defines the limit on the accelerating field for the witness bunch.

  18. Wake excited in plasma by an ultrarelativistic pointlike bunch

    DOE PAGES

    Stupakov, G.; Breizman, B.; Khudik, V.; ...

    2016-10-05

    We study propagation of a relativistic electron bunch through a cold plasma assuming that the transverse and longitudinal dimensions of the bunch are much smaller than the plasma collisionless skin depth. Treating the bunch as a point charge and assuming that its charge is small, we derive a simplified system of equations for the plasma electrons and show that, through a simple rescaling of variables, the bunch charge can be eliminated from the equations. The equations demonstrate an ion cavity formed behind the driver. They are solved numerically and the scaling of the cavity parameters with the driver charge ismore » obtained. As a result, a numerical solution for the case of a positively charged driver is also found.« less

  19. Following an electron bunch for free electron laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2012-01-01

    A video artist's ultra-slow-motion impression of an APEX-style electron gun firing a continuous train of electron bunches into a superconducting linear accelerator (in reality this would happen a million times a second). As they approach the speed of light the bunches contract, maintaining beam quality. After acceleration, the electron bunches are diverted into one or more undulators, the key components of free electron lasers. Oscillating back and forth in the changing magnetic field, they create beams of structured x-ray pulses. Before entering the experimental areas the electron bunches are diverted to a beam dump. (Animation created by Illumina Visual, http://www.illuminavisual.com/,more » for Lawrence Berkeley National Laboratory. Music for this excerpt, "Feeling Dark (Behind The Mask)" is by 7OOP3D http://ccmixter.org/files/7OOP3D/29126 and is licensed under a Creative Commons license: http://creativecommons.org/licenses/by-nc/3.0/)« less

  20. Bunch-Kaufman factorization for real symmetric indefinite banded matrices

    NASA Technical Reports Server (NTRS)

    Jones, Mark T.; Patrick, Merrell L.

    1989-01-01

    The Bunch-Kaufman algorithm for factoring symmetric indefinite matrices was rejected for banded matrices because it destroys the banded structure of the matrix. Herein, it is shown that for a subclass of real symmetric matrices which arise in solving the generalized eigenvalue problem using Lanczos's method, the Bunch-Kaufman algorithm does not result in major destruction of the bandwidth. Space time complexities of the algorithm are given and used to show that the Bunch-Kaufman algorithm is a significant improvement over LU factorization.

  1. Precision Control of the Electron Longitudinal Bunch Shape Using an Emittance-Exchange Beam Line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ha, Gwanghui; Cho, Moo -Hyun; Namkung, W.

    2017-03-09

    Here, we report on the experimental generation of relativistic electron bunches with a tunable longitudinal bunch shape. A longitudinal bunch-shaping (LBS) beam line, consisting of a transverse mask followed by a transverse-to-longitudinal emittance exchange (EEX) beam line, is used to tailor the longitudinal bunch shape (or current profile) of the electron bunch. The mask shapes the bunch’s horizontal profile, and the EEX beam line converts it to a corresponding longitudinal profile. The Argonne wakefield accelerator rf photoinjector delivers electron bunches into a LBS beam line to generate a variety of longitudinal bunch shapes. The quality of the longitudinal bunch shapemore » is limited by various perturbations in the exchange process. We develop a simple method, based on the incident slope of the bunch, to significantly suppress the perturbations.« less

  2. Density of bunches of native bluebunch wheatgrass and alien crested wheatgrass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rickard, W.H.

    The density of bunches of bluebunch wheatgrass in a natural undisturbed stand averaged 3.28 per m/sup 2/ as compared to 2.96 per m/sup 2/ for a nearby stand of crested wheatgrass that was planted 30 years ago. Bunch density was similar in both stands indicating that spacing is a response to an environment deficient in soil water. Bunches of crested wheatgrass on the average weighed 3.5 times more than bunches of bluebunch wheatgrass and they also produced a greater weight of seedheads.

  3. Simple method for generating adjustable trains of picosecond electron bunches

    NASA Astrophysics Data System (ADS)

    Muggli, P.; Allen, B.; Yakimenko, V. E.; Park, J.; Babzien, M.; Kusche, K. P.; Kimura, W. D.

    2010-05-01

    A simple, passive method for producing an adjustable train of picosecond electron bunches is demonstrated. The key component of this method is an electron beam mask consisting of an array of parallel wires that selectively spoils the beam emittance. This mask is positioned in a high magnetic dispersion, low beta-function region of the beam line. The incoming electron beam striking the mask has a time/energy correlation that corresponds to a time/position correlation at the mask location. The mask pattern is transformed into a time pattern or train of bunches when the dispersion is brought back to zero downstream of the mask. Results are presented of a proof-of-principle experiment demonstrating this novel technique that was performed at the Brookhaven National Laboratory Accelerator Test Facility. This technique allows for easy tailoring of the bunch train for a particular application, including varying the bunch width and spacing, and enabling the generation of a trailing witness bunch.

  4. Bunch of restless vector solitons in a fiber laser with SESAM.

    PubMed

    Zhao, L M; Tang, D Y; Zhang, H; Wu, X

    2009-05-11

    We report on the experimental observation of a novel form of vector soliton interaction in a fiber laser mode-locked with SESAM. Several vector solitons bunch in the cavity and move as a unit with the cavity repetition rate. However, inside the bunch the vector solitons make repeatedly contractive and repulsive motions, resembling the contraction and extension of a spring. The number of vector solitons in the bunch is controllable by changing the pump power. In addition, polarization rotation locking and period doubling bifurcation of the vector soliton bunch are also experimentally observed.

  5. Temporal Electron-bunch Shaping from a Photoinjector for Advanced Accelerator Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemery, Francois; Piot, Philippe

    2014-07-01

    Advanced-accelerator applications often require the production of bunches with shaped temporal distributions. An example of sought-after shape is a linearly-ramped current profile that can be improve the transformer ratio in beam-driven acceleration, or produce energy-modulated pulse for, e.g., the subsequent generation of THz radiation. Typically,  such a shaping is achieved by manipulating ultra-relativistic electron bunches. In this contribution we discuss the possibility of shaping the bunch via photoemission and demonstrate using particle-in-cell simulations the production of MeV electron bunches with quasi-ramped current profile.

  6. Scanning Synchronization of Colliding Bunches for MEIC Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derbenev, Yaroslav S.; Popov, V. P.; Chernousov, Yu D.

    2015-09-01

    Synchronization of colliding beams is one of the major issues of an electron-ion collider (EIC) design because of sensitivity of ion revolution frequency to beam energy. A conventional solution for this trouble is insertion of bent chicanes in the arcs space. In our report we consider a method to provide space coincidence of encountering bunches in the crab-crossing orbits Interaction Region (IR) while repetition rates of two beams do not coincide. The method utilizes pair of fast kickers realizing a bypass for the electron bunches as the way to equalize positions of the colliding bunches at the Interaction Point (IP).more » A dipole-mode warm or SRF cavities fed by the magnetron transmitters are used as fast kickers, allowing a broad-band phase and amplitude control. The proposed scanning synchronization method implies stabilization of luminosity at a maximum via a feedback loop. This synchronization method is evaluated as perspective for the Medium Energy Electron-Ion collider (MEIC) project of JLab with its very high bunch repetition rate.« less

  7. Colossal photon bunching in quasiparticle-mediated nanodiamond cathodoluminescence

    NASA Astrophysics Data System (ADS)

    Feldman, Matthew A.; Dumitrescu, Eugene F.; Bridges, Denzel; Chisholm, Matthew F.; Davidson, Roderick B.; Evans, Philip G.; Hachtel, Jordan A.; Hu, Anming; Pooser, Raphael C.; Haglund, Richard F.; Lawrie, Benjamin J.

    2018-02-01

    Nanoscale control over the second-order photon correlation function g(2 )(τ ) is critical to emerging research in nonlinear nanophotonics and integrated quantum information science. Here we report on quasiparticle control of photon bunching with g(2 )(0 ) >45 in the cathodoluminescence of nanodiamond nitrogen vacancy (NV0) centers excited by a converged electron beam in an aberration-corrected scanning transmission electron microscope. Plasmon-mediated NV0 cathodoluminescence exhibits a 16-fold increase in luminescence intensity correlated with a threefold reduction in photon bunching compared with that of uncoupled NV0 centers. This effect is ascribed to the excitation of single temporally uncorrelated NV0 centers by single surface plasmon polaritons. Spectrally resolved Hanbury Brown-Twiss interferometry is employed to demonstrate that the bunching is mediated by the NV0 phonon sidebands, while no observable bunching is detected at the zero-phonon line. The data are consistent with fast phonon-mediated recombination dynamics, a conclusion substantiated by agreement between Bayesian regression and Monte Carlo models of superthermal NV0 luminescence.

  8. Generation and Analysis of Subpicosecond Double Electron Bunch at the Brookhaven Accelerator Test Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babzien, M.; Kusche, K.; Yakimenko, V.

    2011-08-09

    Two compressed electron beam bunches from a single 60-MeV bunch have been generated in a reproducible manner during compression in the magnetic chicane - 'dog leg' arrangement at ATF. Measurements indicate they have comparable bunch lengths ({approx}100-200 fs) and are separated in energy by {approx}1.8 MeV with the higher-energy bunch preceding the lower-energy bunch by 0.5-1 ps. Some simulation results for analyzing the double-bunch formation process are also presented.

  9. Modeling Two-Stage Bunch Compression With Wakefields: Macroscopic Properties And Microbunching Instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bosch, R.A.; Kleman, K.J.; /Wisconsin U., SRC

    2011-09-08

    In a two-stage compression and acceleration system, where each stage compresses a chirped bunch in a magnetic chicane, wakefields affect high-current bunches. The longitudinal wakes affect the macroscopic energy and current profiles of the compressed bunch and cause microbunching at short wavelengths. For macroscopic wavelengths, impedance formulas and tracking simulations show that the wakefields can be dominated by the resistive impedance of coherent edge radiation. For this case, we calculate the minimum initial bunch length that can be compressed without producing an upright tail in phase space and associated current spike. Formulas are also obtained for the jitter in themore » bunch arrival time downstream of the compressors that results from the bunch-to-bunch variation of current, energy, and chirp. Microbunching may occur at short wavelengths where the longitudinal space-charge wakes dominate or at longer wavelengths dominated by edge radiation. We model this range of wavelengths with frequency-dependent impedance before and after each stage of compression. The growth of current and energy modulations is described by analytic gain formulas that agree with simulations.« less

  10. Effects of correlations between particle longitudinal positions and transverse plane on bunch length measurement: a case study on GBS electron LINAC at ELI-NP

    NASA Astrophysics Data System (ADS)

    Sabato, L.; Arpaia, P.; Cianchi, A.; Liccardo, A.; Mostacci, A.; Palumbo, L.; Variola, A.

    2018-02-01

    In high-brightness LINear ACcelerators (LINACs), electron bunch length can be measured indirectly by a radio frequency deflector (RFD). In this paper, the accuracy loss arising from non-negligible correlations between particle longitudinal positions and the transverse plane (in particular the vertical one) at RFD entrance is analytically assessed. Theoretical predictions are compared with simulation results, obtained by means of ELEctron Generation ANd Tracking (ELEGANT) code, in the case study of the gamma beam system (GBS) at the extreme light infrastructure—nuclear physics (ELI-NP). In particular, the relative error affecting the bunch length measurement, for bunches characterized by both energy chirp and fixed correlation coefficients between longitudinal particle positions and the vertical plane, is reported. Moreover, the relative error versus the correlation coefficients is shown for fixed RFD phase 0 rad and π rad. The relationship between relative error and correlations factors can help the decision of using the bunch length measurement technique with one or two vertical spot size measurements in order to cancel the correlations contribution. In the case of the GBS electron LINAC, the misalignment of one of the quadrupoles before the RFD between  -2 mm and 2 mm leads to a relative error less than 5%. The misalignment of the first C-band accelerating section between  -2 mm and 2 mm could lead to a relative error up to 10%.

  11. Sequential control of step-bunching during graphene growth on SiC (0001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bao, Jianfeng; Kusunoki, Michiko; Yasui, Osamu

    2016-08-22

    We have investigated the relation between the step-bunching and graphene growth phenomena on an SiC substrate. We found that only a minimum amount of step-bunching occurred during the graphene growth process with a high heating rate. On the other hand, a large amount of step-bunching occurred using a slow heating process. These results indicated that we can control the degree of step-bunching during graphene growth by controlling the heating rate. We also found that graphene coverage suppressed step bunching, which is an effective methodology not only in the graphene technology but also in the SiC-based power electronics.

  12. Submicron multi-bunch BPM for CLIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmickler, H.; Soby, L.; /CERN

    2010-08-01

    A common-mode free cavity BPM is currently under development at Fermilab within the ILC-CLIC collaboration. This monitor will be operated in a CLIC Main Linac multi-bunch regime, and needs to provide both, high spatial and time resolution. We present the design concept, numerical analysis, investigation on tolerances and error effects, as well as simulations on the signal response applying a multi-bunch stimulus. The proposed CERN linear collider (CLIC) requires a very precise measurement of beam trajectory to preserve the low emittance when transporting the beam through the Main Linac. An energy chirp within the bunch train will be applied tomore » measure and minimize the dispersion effects, which require high resolution (in both, time and space) beam position monitors (BPM) along the beam-line. We propose a low-Q waveguide loaded TM{sub 110} dipole mode cavity as BPM, which is complemented by a TM{sub 010} monopole mode resonator of same resonant frequency for reference signal purposes. The design is based on a well known TM{sub 110} selective mode coupling idea.« less

  13. Drosophila bunched integrates opposing DPP and EGF signals to set the operculum boundary.

    PubMed

    Dobens, L L; Peterson, J S; Treisman, J; Raftery, L A

    2000-02-01

    The Drosophila BMP homolog DPP can function as a morphogen, inducing multiple cell fates across a developmental field. However, it is unknown how graded levels of extracellular DPP are interpreted to organize a sharp boundary between different fates. Here we show that opposing DPP and EGF signals set the boundary for an ovarian follicle cell fate. First, DPP regulates gene expression in the follicle cells that will create the operculum of the eggshell. DPP induces expression of the enhancer trap reporter A359 and represses expression of bunched, which encodes a protein similar to the mammalian transcription factor TSC-22. Second, DPP signaling indirectly regulates A359 expression in these cells by downregulating expression of bunched. Reduced bunched function restores A359 expression in cells that lack the Smad protein MAD; ectopic expression of BUNCHED suppresses A359 expression in this region. Importantly, reduction of bunched function leads to an expansion of the operculum and loss of the collar at its boundary. Third, EGF signaling upregulates expression of bunched. We previously demonstrated that the bunched expression pattern requires the EGF receptor ligand GURKEN. Here we show that activated EGF receptor is sufficient to induce ectopic bunched expression. Thus, the balance of DPP and EGF signals sets the boundary of bunched expression. We propose that the juxtaposition of cells with high and low BUNCHED activity organizes a sharp boundary for the operculum fate.

  14. Adaptive method for electron bunch profile prediction

    DOE PAGES

    Scheinker, Alexander; Gessner, Spencer

    2015-10-15

    We report on an experiment performed at the Facility for Advanced Accelerator Experimental Tests (FACET) at SLAC National Accelerator Laboratory, in which a new adaptive control algorithm, one with known, bounded update rates, despite operating on analytically unknown cost functions, was utilized in order to provide quasi-real-time bunch property estimates of the electron beam. Multiple parameters, such as arbitrary rf phase settings and other time-varying accelerator properties, were simultaneously tuned in order to match a simulated bunch energy spectrum with a measured energy spectrum. Thus, the simple adaptive scheme was digitally implemented using matlab and the experimental physics and industrialmore » control system. Finally, the main result is a nonintrusive, nondestructive, real-time diagnostic scheme for prediction of bunch profiles, as well as other beam parameters, the precise control of which are important for the plasma wakefield acceleration experiments being explored at FACET.« less

  15. Interaction of an ion bunch with a plasma slab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krasovitskiy, V. B., E-mail: krasovit@mail.ru; Turikov, V. A.

    2016-11-15

    Charge neutralization of a short ion bunch passing through a plasma slab is studied by means of numerical simulation. It is shown that a fraction of plasma electrons are trapped by the bunch under the action of the collective charge separation field. The accelerated electrons generated in this process excite beam−plasma instability, thereby violating the trapping conditions. The process of electron trapping is also strongly affected by the high-frequency electric field caused by plasma oscillations at the slab boundaries. It is examined how the degree of charge neutralization depends on the parameters of the bunch and plasma slab.

  16. Resistive wall wakefields of short bunches at cryogenic temperatures

    DOE PAGES

    Stupakov, G.; Bane, K. L. F.; Emma, P.; ...

    2015-03-19

    In this study, we present calculations of the longitudinal wakefields at cryogenic temperatures for extremely short bunches, characteristic for modern x-ray free electron lasers. The calculations are based on the equations for the surface impedance in the regime of the anomalous skin effect in metals. This paper extends and complements an earlier analysis of B. Podobedov, Phys. Rev. ST Accel. Beams 12, 044401 (2009). into the region of very high frequencies associated with bunch lengths in the micron range. We study in detail the case of a rectangular bunch distribution for parameters of interest of LCLS-II with a superconducting undulator.

  17. High-Precision Phenotyping of Grape Bunch Architecture Using Fast 3D Sensor and Automation.

    PubMed

    Rist, Florian; Herzog, Katja; Mack, Jenny; Richter, Robert; Steinhage, Volker; Töpfer, Reinhard

    2018-03-02

    Wine growers prefer cultivars with looser bunch architecture because of the decreased risk for bunch rot. As a consequence, grapevine breeders have to select seedlings and new cultivars with regard to appropriate bunch traits. Bunch architecture is a mosaic of different single traits which makes phenotyping labor-intensive and time-consuming. In the present study, a fast and high-precision phenotyping pipeline was developed. The optical sensor Artec Spider 3D scanner (Artec 3D, L-1466, Luxembourg) was used to generate dense 3D point clouds of grapevine bunches under lab conditions and an automated analysis software called 3D-Bunch-Tool was developed to extract different single 3D bunch traits, i.e., the number of berries, berry diameter, single berry volume, total volume of berries, convex hull volume of grapes, bunch width and bunch length. The method was validated on whole bunches of different grapevine cultivars and phenotypic variable breeding material. Reliable phenotypic data were obtained which show high significant correlations (up to r² = 0.95 for berry number) compared to ground truth data. Moreover, it was shown that the Artec Spider can be used directly in the field where achieved data show comparable precision with regard to the lab application. This non-invasive and non-contact field application facilitates the first high-precision phenotyping pipeline based on 3D bunch traits in large plant sets.

  18. Electron cooling of a bunched ion beam in a storage ring

    NASA Astrophysics Data System (ADS)

    Zhao, He; Mao, Lijun; Yang, Jiancheng; Xia, Jiawen; Yang, Xiaodong; Li, Jie; Tang, Meitang; Shen, Guodong; Ma, Xiaoming; Wu, Bo; Wang, Geng; Ruan, Shuang; Wang, Kedong; Dong, Ziqiang

    2018-02-01

    A combination of electron cooling and rf system is an effective method to compress the beam bunch length in storage rings. A simulation code based on multiparticle tracking was developed to calculate the bunched ion beam cooling process, in which the electron cooling, intrabeam scattering (IBS), ion beam space-charge field, transverse and synchrotron motion are considered. Meanwhile, bunched ion beam cooling experiments have been carried out in the main cooling storage ring (CSRm) of the Heavy Ion Research Facility in Lanzhou, to investigate the minimum bunch length obtained by the cooling method, and study the dependence of the minimum bunch length on beam and machine parameters. The experiments show comparable results to those from simulation. Based on these simulations and experiments, we established an analytical model to describe the limitation of the bunch length of the cooled ion beam. It is observed that the IBS effect is dominant for low intensity beams, and the space-charge effect is much more important for high intensity beams. Moreover, the particles will not be bunched for much higher intensity beam. The experimental results in CSRm show a good agreement with the analytical model in the IBS dominated regime. The simulation work offers us comparable results to those from the analytical model both in IBS dominated and space-charge dominated regimes.

  19. Superthermal photon bunching in terms of simple probability distributions

    NASA Astrophysics Data System (ADS)

    Lettau, T.; Leymann, H. A. M.; Melcher, B.; Wiersig, J.

    2018-05-01

    We analyze the second-order photon autocorrelation function g(2 ) with respect to the photon probability distribution and discuss the generic features of a distribution that results in superthermal photon bunching [g(2 )(0 ) >2 ]. Superthermal photon bunching has been reported for a number of optical microcavity systems that exhibit processes such as superradiance or mode competition. We show that a superthermal photon number distribution cannot be constructed from the principle of maximum entropy if only the intensity and the second-order autocorrelation are given. However, for bimodal systems, an unbiased superthermal distribution can be constructed from second-order correlations and the intensities alone. Our findings suggest modeling superthermal single-mode distributions by a mixture of a thermal and a lasinglike state and thus reveal a generic mechanism in the photon probability distribution responsible for creating superthermal photon bunching. We relate our general considerations to a physical system, i.e., a (single-emitter) bimodal laser, and show that its statistics can be approximated and understood within our proposed model. Furthermore, the excellent agreement of the statistics of the bimodal laser and our model reveals that the bimodal laser is an ideal source of bunched photons, in the sense that it can generate statistics that contain no other features but the superthermal bunching.

  20. Matching into the Helical Bunch Coalescing Channel for a High Luminosity Muon Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sy, Amy; Ankenbrandt, Charles; Derbenev, Yaroslav

    2015-09-01

    For high luminosity in a muon collider, muon bunches that have been cooled in the six-dimensional helical cooling channel (HCC) must be merged into a single bunch and further cooled in preparation for acceleration and transport to the collider ring. The helical bunch coalescing channel has been previously simulated and provides the most natural match from helical upstream and downstream subsystems. This work focuses on the matching from the exit of the multiple bunch HCC into the start of the helical bunch coalescing channel. The simulated helical matching section simultaneously matches the helical spatial period lambda in addition to providingmore » the necessary acceleration for efficient bunch coalescing. Previous studies assumed that the acceleration of muon bunches from p=209.15 MeV/c to 286.816 MeV/c and matching of lambda from 0.5 m to 1.0 m could be accomplished with zero particle losses and zero emittance growth in the individual bunches. This study demonstrates nonzero values for both particle loss and emittance growth, and provides considerations for reducing these adverse effects to best preserve high luminosity.« less

  1. Excitation of vibrational quanta in furfural by intermediate-energy electrons

    NASA Astrophysics Data System (ADS)

    Jones, D. B.; Neves, R. F. C.; Lopes, M. C. A.; da Costa, R. F.; Varella, M. T. do N.; Bettega, M. H. F.; Lima, M. A. P.; García, G.; Blanco, F.; Brunger, M. J.

    2015-12-01

    We report cross sections for electron-impact excitation of vibrational quanta in furfural, at intermediate incident electron energies (20, 30, and 40 eV). The present differential cross sections are measured over the scattered electron angular range 10°-90°, with corresponding integral cross sections subsequently being determined. Furfural is a viable plant-derived alternative to petrochemicals, being produced via low-temperature plasma treatment of biomass. Current yields, however, need to be significantly improved, possibly through modelling, with the present cross sections being an important component of such simulations. To the best of our knowledge, there are no other cross sections for vibrational excitation of furfural available in the literature, so the present data are valuable for this important molecule.

  2. Adaptive method for electron bunch profile prediction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheinker, Alexander; Gessner, Spencer

    2015-10-01

    We report on an experiment performed at the Facility for Advanced Accelerator Experimental Tests (FACET) at SLAC National Accelerator Laboratory, in which a new adaptive control algorithm, one with known, bounded update rates, despite operating on analytically unknown cost functions, was utilized in order to provide quasi-real-time bunch property estimates of the electron beam. Multiple parameters, such as arbitrary rf phase settings and other time-varying accelerator properties, were simultaneously tuned in order to match a simulated bunch energy spectrum with a measured energy spectrum. The simple adaptive scheme was digitally implemented using matlab and the experimental physics and industrial controlmore » system. The main result is a nonintrusive, nondestructive, real-time diagnostic scheme for prediction of bunch profiles, as well as other beam parameters, the precise control of which are important for the plasma wakefield acceleration experiments being explored at FACET. © 2015 authors. Published by the American Physical Society.« less

  3. Go Pink! The Effect of Secondary Quanta on Detective Quantum Efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, Scott

    2017-09-05

    Photons are never directly observable. Consequently, we often use photoelectric detectors (eg CCDs) to record associated photoelectrons statistically. Nonetheless, it is an implicit goal of radiographic detector designers to achieve the maximum possible detector efficiency1. In part the desire for ever higher efficiency has been due to the fact that detectors are far less expensive than associated accelerator facilities (e.g. DARHT and PHERMEX2). In addition, higher efficiency detectors often have better spatial resolution. Consequently, the optimization of the detector, not the accelerator, is the system component with the highest leverage per dollar. In recent years, imaging scientists have adopted themore » so-called Detective Quantum Efficiency, or DQE as a summary measure of detector performance. Unfortunately, owing to the complex nature of the trade-space associated with detector components, and the natural desire for simplicity and low(er) cost, there has been a recent trend in Los Alamos to focus only on the zerofrequency efficiency, or DQE(0), when designing such systems. This narrow focus leads to system designs that neglect or even ignore the importance of high-spatial-frequency image components. In this paper we demonstrate the significant negative impact of these design choices on the Noise Power Spectrum1 (NPS) and recommend a more holistic approach to detector design. Here we present a statistical argument which indicates that a very large number (>20) of secondary quanta (typically visible light and/or recorded photo-electrons) are needed to take maximum advantage of the primary quanta (typically x-rays or protons) which are available to form an image. Since secondary particles come in bursts, they are not independent. In short, we want to maximize the pink nature of detector noise at DARHT.« less

  4. State orthogonality, boson bunching parameter and bosonic enhancement factor

    NASA Astrophysics Data System (ADS)

    Marchewka, Avi; Granot, Er'el

    2016-04-01

    It is emphasized that the bunching parameter β ≡ p B / p D , i.e. the ratio between the probability to measure two bosons and two distinguishable particles at the same state, is a constant of motion and depends only on the overlap between the initial wavefunctions. This ratio is equal to β = 2 / (1 + I 2), where I is the overlap integral between the initial wavefunctions. That is, only when the initial wavefunctions are orthogonal this ratio is equal to 2, however, this bunching ratio can be reduced to 1, when the two wavefunctions are identical. This simple equation explains the experimental evidences of a beam splitter. A straightforward conclusion is that by measuring the local bunching parameter β (at any point in space and time) it is possible to evaluate a global parameter I (the overlap between the initial wavefunctions). The bunching parameter is then generalized to arbitrary number of particles, and in an analogy to the two-particles scenario, the well-known bosonic enhancement appears only when all states are orthogonal.

  5. Attosecond electron bunches from a nanofiber driven by Laguerre-Gaussian laser pulses.

    PubMed

    Hu, Li-Xiang; Yu, Tong-Pu; Sheng, Zheng-Ming; Vieira, Jorge; Zou, De-Bin; Yin, Yan; McKenna, Paul; Shao, Fu-Qiu

    2018-05-08

    Generation of attosecond bunches of energetic electrons offers significant potential from ultrafast physics to novel radiation sources. However, it is still a great challenge to stably produce such electron beams with lasers, since the typical subfemtosecond electron bunches from laser-plasma interactions either carry low beam charge, or propagate for only several tens of femtoseconds. Here we propose an all-optical scheme for generating dense attosecond electron bunches via the interaction of an intense Laguerre-Gaussian (LG) laser pulse with a nanofiber. The dense bunch train results from the unique field structure of a circularly polarized LG laser pulse, enabling each bunch to be phase-locked and accelerated forward with low divergence, high beam charge and large beam-angular-momentum. This paves the way for wide applications in various fields, e.g., ultrabrilliant attosecond x/γ-ray emission.

  6. Bunch compression efficiency of the femtosecond electron source at Chiang Mai University

    NASA Astrophysics Data System (ADS)

    Thongbai, C.; Kusoljariyakul, K.; Saisut, J.

    2011-07-01

    A femtosecond electron source has been developed at the Plasma and Beam Physics Research Facility (PBP), Chiang Mai University (CMU), Thailand. Ultra-short electron bunches can be produced with a bunch compression system consisting of a thermionic cathode RF-gun, an alpha-magnet as a magnetic bunch compressor, and a linear accelerator as a post acceleration section. To obtain effective bunch compression, it is crucial to provide a proper longitudinal phase-space distribution at the gun exit matched to the subsequent beam transport system. Via beam dynamics calculations and experiments, we investigate the bunch compression efficiency for various RF-gun fields. The particle distribution at the RF-gun exit will be tracked numerically through the alpha-magnet and beam transport. Details of the study and results leading to an optimum condition for our system will be presented.

  7. Temporal profile monitor based on electro-optic spatial decoding for low-energy bunches

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Du, Yingchao; Yan, Lixin; Chi, Zhijun; Zhang, Zhen; Hua, Jianfei; Huang, Wenhui; Tang, Chuanxiang; Li, Ming

    2017-11-01

    The measurement of electron bunch temporal profile is one of the key diagnostics in accelerators, especially for ultrashort bunches. The electro-optic (EO) technique enables the precise longitudinal characterization of bunch electric field in a single-shot and nondestructive way, which can simultaneously obtain and analyze the time jitter between the electron bunch and the synchronized laser. An EO monitor based on spatial decoding for temporal profile measurement and timing jitter recoding has recently been demonstrated and analyzed in depth for low-energy bunches at the Tsinghua Thomson scattering X-ray source. A detailed description of the experimental setup and measurement results are presented in this paper. An EO signal as short as 82 fs (rms) is observed with 100 μ m gallium phosphide for a 40 MeV electron bunch, and the corresponding length is 106 fs (rms) with 300 μ m zinc telluride. Owing to the field-opening angle, we propose a method to eliminate the influence of energy factor for bunches with low energy, resulting in a bunch length of ˜60 fs (rms). The monitor is also successfully applied to measure time jitter with approximately 10 fs accuracy. The experiment environment is proved to be the main source of the slow drift, which is removed using feedback control. Consequently, the rms time jitter decreases from 430 fs to 320 fs.

  8. Application of constrained deconvolution technique for reconstruction of electron bunch profile with strongly non-Gaussian shape

    NASA Astrophysics Data System (ADS)

    Geloni, G.; Saldin, E. L.; Schneidmiller, E. A.; Yurkov, M. V.

    2004-08-01

    An effective and practical technique based on the detection of the coherent synchrotron radiation (CSR) spectrum can be used to characterize the profile function of ultra-short bunches. The CSR spectrum measurement has an important limitation: no spectral phase information is available, and the complete profile function cannot be obtained in general. In this paper we propose to use constrained deconvolution method for bunch profile reconstruction based on a priori-known information about formation of the electron bunch. Application of the method is illustrated with practically important example of a bunch formed in a single bunch-compressor. Downstream of the bunch compressor the bunch charge distribution is strongly non-Gaussian with a narrow leading peak and a long tail. The longitudinal bunch distribution is derived by measuring the bunch tail constant with a streak camera and by using a priory available information about profile function.

  9. The Potential-Well Distortion Effect and Coherent Instabilities of Electron Bunches in Storage Rings

    NASA Astrophysics Data System (ADS)

    Korchuganov, V. N.; Smygacheva, A. S.; Fomin, E. A.

    2018-05-01

    The effect of electromagnetic interaction between electron bunches and the vacuum chamber of a storage ring on the longitudinal motion of bunches is studied. Specifically, the potential-well distortion effect and the so-called coherent instabilities of coupled bunches are considered. An approximate analytical solution for the frequencies of incoherent oscillations of bunches distributed arbitrarily within the ring is obtained for a distorted potential well. A new approach to determining frequencies of coherent oscillations and an approximate analytical relation for estimating the stability of a system of bunches as a function of their distribution in the accelerator orbit are presented.

  10. Longitudinal dynamics of twin electron bunches in the Linac Coherent Light Source

    DOE PAGES

    Zhang, Zhen; Ding, Yuantao; Marinelli, Agostino; ...

    2015-03-02

    The recent development of two-color x-ray free-electron lasers, as well as the successful demonstration of high-gradient witness bunch acceleration in a plasma, have generated strong interest in electron bunch trains, where two or more electron bunches are generated, accelerated and compressed in the same accelerating bucket. In this paper we give a detailed analysis of a twin-bunch technique in a high-energy linac. This method allows the generation of two electron bunches with high peak current and independent control of time delay and energy separation. We find that the wakefields in the accelerator structures play an important role in the twin-bunchmore » compression, and through analysis show that they can be used to extend the available time delay range. As a result, based on the theoretical model and simulations we propose several methods to achieve larger time delay.« less

  11. Theoretical and numerical analyses of a slit-masked chicane for modulated bunch generation

    NASA Astrophysics Data System (ADS)

    Zhu, X.; Broemmelsiek, D. R.; Shin, Y.-M.

    2015-10-01

    Density modulations on electron beams can improve machine performance of beam-driven accelerators and FELs with resonance beam-wave coupling. The beam modulation is studied with a masked chicane by the analytic model and simulations with the beam parameters of the Fermilab Accelerator Science and Technology (FAST) facility. With the chicane design parameters (bending angle of 18o, bending radius of 0.95 m and R56 ~ -0.19 m) and a nominal beam of 3 ps bunch length, the analytic model showed that a slit-mask with slit period 900 μ m and aperture width 300 μ m induces a modulation of bunch-to-bunch spacing ~ 100 μ m to the bunch with 2.4% correlated energy spread. With the designed slit mask and a 3 ps bunch, particle-in-cell (PIC) simulations, including nonlinear energy distributions, space charge force, and coherent synchrotron radiation (CSR) effect, also result in beam modulation with bunch-to-bunch distance around 100 μ m and a corresponding modulation frequency of 3 THz. The beam modulation has been extensively examined with three different beam conditions, 2.25 ps (0.25 nC), 3.25 ps (1 nC), and 4.75 ps (3.2 nC), by tracking code Elegant. The simulation analysis indicates that the sliced beam by the slit-mask with 3 ~ 6% correlated energy spread has modulation lengths about 187 μ m (0.25 nC), 270 μ m (1 nC) and 325 μ m (3.2 nC). The theoretical and numerical data proved the capability of the designed masked chicane in producing modulated bunch train with micro-bunch length around 100 fs.

  12. Operational experience with nanocoulomb bunch charges in the Cornell photoinjector

    DOE PAGES

    Bartnik, Adam; Gulliford, Colwyn; Bazarov, Ivan; ...

    2015-08-19

    Characterization of 9–9.5 MeV electron beams produced in the dc-gun based Cornell photoinjector is given for bunch charges ranging from 20 pC to 2 nC. Comparison of the measured emittances and longitudinal current profiles to optimized 3D space charge simulations yields excellent agreement for bunch charges up to 1 nC when the measured laser distribution is used to generate initial particle distributions in simulation. Analysis of the scaling of the measured emittance with bunch charge shows that the emittance scales roughly as the square root of the bunch charge up to 300 pC, above which the trend becomes linear. Furthermore,more » these measurements demonstrate that the Cornell photoinjector can produce cathode emittance dominated beams meeting the emittance and peak current specifications for next generation free electron lasers operating at high repetition rate. In addition, the 1 and 2 nC results are relevant to the electron ion collider community.« less

  13. Dissipating Step Bunches during Crystallization under Transport Control

    NASA Technical Reports Server (NTRS)

    Lin, Hong; Yau, S.-T.; Vekilov, Peter, G.

    2003-01-01

    In studies of crystal formation by the generation and spreading of layers, equidistant step trains are considered unstable---bunches and other spatiotemporal patterns of the growth steps are viewed as ubiquitous. We provide an example to the opposite. We monitor the spatiotemporal dynamics of steps and the resulting step patterns during crystallization of the proteins ferritin and apoferritin using the atomic force microscope. The variations in step velocity and density are not correlated, indicating the lack of a long-range attraction between the steps. We show that (i) because of its coupling to bulk transport, nucleation of new layers is chaotic and occurs at the facet edges, where the interfacial supersaturation is higher; (ii) step bunches self-organize via the competition for supply from the solution; and, (iii) bunches of weakly interacting steps decay as they move along the face. Tests by numerical modeling support the conclusions about the mechanisms underlying our observations. The results from these systems suggest that during crystallization controlled by transport, with weakly or noninteracting growth steps, the stable kinetic state of the surface is an equidistant step train, and step bunches only arise during nucleation of new layers. Since nucleation only occurs at a few sites on the surface, the surface morphology may be controllably patterned or smoothened by locally controlling nucleation.

  14. THz based electron bunch length monitoring at the quasi-cw SRF accelerator ELBE

    NASA Astrophysics Data System (ADS)

    Green, Bertram; Kovalev, Sergey; Fisher, Alan; Bauer, Christian; Kuntzsch, Michael; Lehnert, Ulf; Schurig, Rico; Goltz, Torsten; Michel, Peter; Stojanovic, Nikola; Gensch, Michael

    2014-03-01

    In the past few years the quasi-cw SRF electron accelerator ELBE has been upgraded so that it now allows to compress electron bunches to the sub-picosecond regime. The actual optimization and control of the electron bunch form represents one of the largest challenges of the coming years. In particular with respect to the midterm goal to utilize the ultra-short electron bunches for Laser-Thomson scattering experiments or high field THz experiments. Current developments of THz based electron bunch diagnostic are discussed and an outlook into future developments is given.

  15. Capture, acceleration and bunching rf systems for the MEIC booster and storage rings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shaoheng; Guo, Jiquan; Lin, Fanglei

    2015-09-01

    The Medium-energy Electron Ion Collider (MEIC), proposed by Jefferson Lab, consists of a series of accelerators. The electron collider ring accepts electrons from CEBAF at energies from 3 to 12 GeV. Protons and ions are delivered to a booster and captured in a long bunch before being ramped and transferred to the ion collider ring. The ion collider ring accelerates a small number of long ion bunches to colliding energy before they are re-bunched into a high frequency train of very short bunches for colliding. Two sets of low frequency RF systems are needed for the long ion bunch energymore » ramping in the booster and ion collider ring. Another two sets of high frequency RF cavities are needed for re-bunching in the ion collider ring and compensating synchrotron radiation energy loss in the electron collider ring. The requirements from energy ramping, ion beam bunching, electron beam energy compensation, collective effects, beam loading and feedback capability, RF power capability, etc. are presented. The preliminary designs of these RF systems are presented. Concepts for the baseline cavity and RF station configurations are described, as well as some options that may allow more flexible injection and acceleration schemes.« less

  16. Bunch Length Measurements at the JLab FEL Using Coherent Transition and Synchrotron Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavel Evtushenko; James Coleman; Kevin Jordan

    2006-05-01

    The JLab FEL is routinely operated with sub-picosecond bunches. The short bunch length is important for high gain of the FEL. Coherent transition radiation has been used for the bunch length measurements for many years [1]. This diagnostic can be used only in the pulsed beam mode. It is our goal to run the FEL with CW beam and a 74.85 MHz micropulse repetition rate, which, with the 135 pC nominal bunch charge corresponds to the beam average current of 10 mA. Hence it is very desirable to have the possibility of making bunch length measurements when running CW beammore » with any micropulse frequency. We use a Fourier transform infrared (FTIR) interferometer, which is essentially a Michelson interferometer, to measure the spectrum of the coherent synchrotron radiation generated in the last dipole of the magnetic bunch compressor upstream of the FEL wiggler. This noninvasive diagnostic provides bunch length measurements for CW beam operation at any micropulse frequency. We also compare the measurements made with the help of the FTIR interferometer with data obtained using the Martin-Puplett interferometer [1]. Results of the two diagnostics agree within 15 %. Here we present a description of the experimental setup, data evaluation procedure and results of the beam measurements.« less

  17. Bunch Length Measurements at the JLab FEL Using Coherent Transition and Synchrotron Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evtushenko, P.; Coleman, J.; Jordan, K.

    2006-11-20

    The JLab FEL is routinely operated with sub-picosecond bunches. The short bunch length is important for high gain of the FEL. Coherent transition radiation has been used for the bunch length measurements for many years. This diagnostic can be used only in the pulsed beam mode. It is our goal to run the FEL with CW beam and a 74.85 MHz micropulse repetition rate, which, with the 135 pC nominal bunch charge corresponds to the beam average current of 10 mA, Hence it is very desirable to have the possibility of making bunch length measurements when running CW beam withmore » any micropulse frequency. We use a Fourier transform infrared (FTIR) interferometer, which is essentially a Michelson interferometer, to measure the spectrum of the coherent synchrotron radiation generated in the last dipole of the magnetic bunch compressor upstream of the FEL wiggler. This noninvasive diagnostic provides bunch length measurements for CW beam operation at any micropulse frequency. We also compare the measurements made with the help of the FTIR interferometer with data obtained using the Martin-Puplett interferometer. Results of the two diagnostics agree within 15 %. Here we present a description of the experimental setup, data evaluation procedure and results of the beam measurements.« less

  18. Predicting bunching costs for the Radio Horse 9 winch

    Treesearch

    Chris B. LeDoux; Bruce W. Kling; Patrice A. Harou; Patrice A. Harou

    1987-01-01

    Data from field studies and a prebunching cost simulator have been assembled and converted into a general equation that can be used to estimate the prebunching cost of the Radio Horse 9 winch. The methods can be used to estimate prebunching cost for bunching under the skyline corridor for swinging with cable systems, for bunching to skid trail edge to be picked up by a...

  19. Theoretical and numerical analyses of a slit-masked chicane for modulated bunch generation

    DOE PAGES

    Zhu, Xiaofang; Broemmelsiek, Daniel R.; Shin, Young -Min; ...

    2015-10-28

    Density modulations on electron beams can improve machine performance of beam-driven accelerators and FELs with resonance beam-wave coupling. The beam modulation is studied with a masked chicane by the analytic model and simulations with the beam parameters of the Fermilab Accelerator Science and Technology (FAST) facility. With the chicane design parameters (bending angle of 18o, bending radius of 0.95 m and R 56 ~ –0.19 m) and a nominal beam of 3 ps bunch length, the analytic model showed that a slit-mask with slit period 900 μ m and aperture width 300 μ m induces a modulation of bunch-to-bunch spacingmore » ~ 100 μ m to the bunch with 2.4% correlated energy spread. With the designed slit mask and a 3 ps bunch, particle-in-cell (PIC) simulations, including nonlinear energy distributions, space charge force, and coherent synchrotron radiation (CSR) effect, also result in beam modulation with bunch-to-bunch distance around 100 μ m and a corresponding modulation frequency of 3 THz. The beam modulation has been extensively examined with three different beam conditions, 2.25 ps (0.25 nC), 3.25 ps (1 nC), and 4.75 ps (3.2 nC), by tracking code Elegant. The simulation analysis indicates that the sliced beam by the slit-mask with 3 ~ 6% correlated energy spread has modulation lengths about 187 μ m (0.25 nC), 270 μ m (1 nC) and 325 μ m (3.2 nC). As a result, the theoretical and numerical data proved the capability of the designed masked chicane in producing modulated bunch train with micro-bunch length around 100 fs.« less

  20. Bunching phase and constraints on echo enabled harmonic generation

    NASA Astrophysics Data System (ADS)

    Hemsing, E.

    2018-05-01

    A simple mathematical description is developed for the bunching spectrum in echo enabled harmonic generation (EEHG) that incorporates the effect of additional electron beam energy modulations. Under common assumptions, they are shown to contribute purely through the phase of the longitudinal bunching factor, which allows the spectral moments of the bunching to be calculated directly from the known energy modulations. In particular, the second moment (spectral bandwidth) serves as simple constraint on the amplitude of the energy modulations to maintain a transform-limited seed. We show that, in general, the impact on the spectrum of energy distortions that develop between the EEHG chicanes scales like the harmonic number compared to distortions that occur upstream. This may limit the parameters that will allow EEHG to reach short wavelengths in high brightness FELs.

  1. Development of a Watt-level gamma-ray source based on high-repetition-rate inverse Compton scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mihalcea, D.; Murokh, A.; Piot, P.

    2017-07-01

    A high-brilliance (~10 22 photon s -1 mm -2 mrad -2 /0.1%) gamma-ray source experiment is currently being planned at Fermilab (E γ≃1.1 MeV). The source implements a high-repetition-rate inverse Compton scattering by colliding electron bunches formed in a ~300-MeV superconducting linac with a high-intensity laser pulse. This paper describes the design rationale along with some of technical challenges associated to producing high-repetition-rate collision. The expected performances of the gamma-ray source are also presented.

  2. USSR Report, Life Sciences Biomedical and Behavioral Sciences.

    DTIC Science & Technology

    1987-05-28

    No 3, May-Jun 85) 64 Cytogenetic Effects of Gamma Quanta and of Secondary Emission Generated by 70 GeV Protons on Chinese Hamster Fibroblasts...Irradiation With Gamma Quanta and Secondary Emission Generated by 70 GeV Protons (A.Kh. Akhmadiyeva, S.I. Zaichkina, et al.; RADIOBIOLOGIYA, No 3, May-Jun...ase, the enzyme assuring an active transfer of univalent cations through the membrane. Natural metabolites (I) and (II) exhibited the highest

  3. Coherent radiation characteristics of modulated electron bunch formed in stack of two plates

    NASA Astrophysics Data System (ADS)

    Gevorgyan, H. L.; Gevorgian, L. A.

    2017-07-01

    The present article is devoted to the radiation from the electron bunch with modulated density passes through the stack consisting of two plates with different thicknesses and electrodynamic properties. The new elegant expression for the frequency-angular distribution of transition radiation is obtained. Using the existence of resonant frequency at which the longitudinal form-factor of bunch not suppresses radiation coherence and choosing parameters for the stack of plates, one can also avoid suppression of the radiation coherence by transverse form-factor of bunch. The radiation from a bunch with modulated density in the process SASE (self-amplified spontaneous emission) FEL can be partially coherent at a resonant frequency. Then the intense sub monochromatic beam of X-ray photons is formed. On the other hand one can define an important parameter of the bunch density modulation depth which is unknown to this day.

  4. A novel source of MeV positron bunches driven by energetic protons for PAS application

    NASA Astrophysics Data System (ADS)

    Tan, Zongquan; Xu, Wenzhen; Liu, Yanfen; Xiao, Ran; Kong, Wei; Ye, Bangjiao

    2014-11-01

    This paper proposes a novel methodology of MeV positrons generation for PAS application. Feasibility of this proposal analyzed by G4Beamline and Transport have shown reasonable success. Using 2 Hz, 1.6 GeV, 100 ns and 1.5 μC/bunch proton bunches for bombarding a graphite target, about 100 ns e+ bunches are generated. Quasi-monochromatic positrons in the range of 1-10 MeV included in these bunches have a flux of >107/s, peak brightness of 1014/s. A magnetic-confinement beamline is utilized to transport the positrons and a "Fast Beam Chopper" is unprecedentedly extended to chop those relativistic bunches. The positron beam can be finally characterized by the energy range of 1-10 MeV and bunch width from one hundred ps up to 1 ns. Such ultrashort bunches can be useful in tomography-type positron annihilation spectroscopy (PAS) as well as other applications.

  5. Trains of electron micro-bunches in plasma wake-field acceleration

    NASA Astrophysics Data System (ADS)

    Lécz, Zsolt; Andreev, Alexander; Konoplev, Ivan; Seryi, Andrei; Smith, Jonathan

    2018-07-01

    Plasma-based charged particle accelerators have been intensively investigated in the past three decades due to their capability to open up new horizons in accelerator science and particle physics yielding electric field accelerating gradient more than three orders of magnitudes higher than in conventional devices. At the current stage the most advanced and reliable mechanism for accelerating electrons is based on the propagation of an intense laser pulse or a relativistic electron beam in a low density gaseous target. In this paper we concentrate on the electron beam-driven plasma wake-field acceleration and demonstrate using 3D PiC simulations that a train of electron micro-bunches with ∼10 fs period can be generated behind the driving beam propagating in a density down-ramp. We will discuss the conditions and properties of the micro-bunches generated aiming at understanding and study of multi-bunch mechanism of injection. It is show that the periodicity and duration of micro-bunches can be controlled by adjusting the plasma density gradient and driving beam charge.

  6. Beam dynamics performances and applications of a low-energy electron-beam magnetic bunch compressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prokop, C. R.; Piot, P.; Carlsten, B. E.

    2013-08-01

    Many front-end applications of electron linear accelerators rely on the production of temporally compressed bunches. The shortening of electron bunches is often realized with magnetic bunch compressors located in high-energy sections of accelerators. Magnetic compression is subject to collective effects including space charge and self interaction via coherent synchrotron radiation. In this paper we explore the application of magnetic compression to low-energy (~40MeV), high-charge (nC) electron bunches with low normalized transverse emittances (<5@mm).

  7. The Goddard program of gamma ray transient astronomy

    NASA Technical Reports Server (NTRS)

    Cline, T. L.; Desai, U. D.; Teegarden, B. J.

    1980-01-01

    Gamma ray burst studies are reviewed. The past results, present status and future expectations are outlined regarding endeavors using experiments on balloons, IMP-6 and -7, OGO-3, ISEE-1 and -3, Helios-2, Solar Maximum Mission, the Einstein Observatory, Solar Polar and the Gamma Ray Observatory, and with the interplanetary gamma ray burst networks, to which some of these spacecraft sensors contribute. Additional emphasis is given to the recent discovery of a new type of gamma ray transient, detected on 1979 March 5.

  8. Micro-Bunched Beam Production at FAST for Narrow Band THz Generation Using a Slit-Mask

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyun, J.; Crawford, D.; Edstrom Jr, D.

    We discuss simulations and experiments on creating micro-bunch beams for generating narrow band THz radiation at the Fermilab Accelerator Science and Technology (FAST) facility. The low-energy electron beamline at FAST consists of a photoinjector-based RF gun, two Lband superconducting accelerating cavities, a chicane, and a beam dump. The electron bunches are lengthened with cavity phases set off-crest for better longitudinal separation and then micro-bunched with a slit-mask installed in the chicane. We carried out the experiments with 30 MeV electron beams and detected signals of the micro-bunching using a skew quadrupole magnet in the chicane. In this paper, the detailsmore » of micro-bunch beam production, the detection of micro-bunching and comparison with simulations are described.« less

  9. How likely are constituent quanta to initiate inflation?

    DOE PAGES

    Berezhiani, Lasha; Trodden, Mark

    2015-08-06

    In this study, we propose an intuitive framework for studying the problem of initial conditions in slow-roll inflation. In particular, we consider a universe at high, but sub-Planckian energy density and analyze the circumstances under which it is plausible for it to become dominated by inflated patches at late times, without appealing to the idea of self-reproduction. Our approach is based on defining a prior probability distribution for the constituent quanta of the pre-inflationary universe. To test the idea that inflation can begin under very generic circumstances, we make specific – yet quite general and well grounded – assumptions onmore » the prior distribution. As a result, we are led to the conclusion that the probability for a given region to ignite inflation at sub-Planckian densities is extremely small. Furthermore, if one chooses to use the enormous volume factor that inflation yields as an appropriate measure, we find that the regions of the universe which started inflating at densities below the self-reproductive threshold nevertheless occupy a negligible physical volume in the present universe as compared to those domains that have never inflated.« less

  10. Destructive interferences results in bosons anti bunching: refining Feynman's argument

    NASA Astrophysics Data System (ADS)

    Marchewka, Avi; Granot, Er'el

    2014-09-01

    The effect of boson bunching is frequently mentioned and discussed in the literature. This effect is the manifestation of bosons tendency to "travel" in clusters. One of the core arguments for boson bunching was formulated by Feynman in his well-known lecture series and has been frequently used ever since. By comparing the scattering probabilities of two bosons and of two distinguishable particles, he concluded: "We have the result that it is twice as likely to find two identical Bose particles scattered into the same state as you would calculate assuming the particles were different" [R.P. Feynman, R.B. Leighton, M. Sands, The Feynman Lectures on Physics: Quantum mechanics (Addison-Wesley, 1965)]. This argument was rooted in the scientific community (see for example [C. Cohen-Tannoudji, B. Diu, F. Laloë, Quantum Mechanics (John Wiley & Sons, Paris, 1977); W. Pauli, Exclusion Principle and Quantum Mechanics, Nobel Lecture (1946)]), however, while this sentence is completely valid, as is proved in [C. Cohen-Tannoudji, B. Diu, F. Laloë, Quantum Mechanics (John Wiley & Sons, Paris, 1977)], it is not a synonym of bunching. In fact, as it is shown in this paper, wherever one of the wavefunctions has a zero, bosons can anti-bunch and fermions can bunch. It should be stressed that zeros in the wavefunctions are ubiquitous in Quantum Mechanics and therefore the effect should be common. Several scenarios are suggested to witness the effect.

  11. A THz Spectroscopy System Based on Coherent Radiation from Ultrashort Electron Bunches

    NASA Astrophysics Data System (ADS)

    Saisut, J.; Rimjaem, S.; Thongbai, C.

    2018-05-01

    A spectroscopy system will be discussed for coherent THz transition radiation emitted from short electron bunches, which are generated from a system consisting of an RF gun with a thermionic cathode, an alpha-magnet as a magnetic bunch compressor, and a linear accelerator for post-acceleration. The THz radiation is generated as backward transition radiation when electron bunches pass through an aluminum foil. The emitted THz transition radiation, which is coherent at wavelengths equal to and longer than the electron bunch length, is coupled to a Michelson interferometer. The performance of the spectroscopy system employing a Michelson interferometer is discussed. The radiation power spectra under different conditions are presented. As an example, the optical constant of a silicon wafer can be obtained using the dispersive Fourier transform spectroscopy (DFTS) technique.

  12. Simulation of 6 to 3 to 1 merge and squeeze of Au77+ bunches in AGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, C. J.

    2016-05-09

    In order to increase the intensity per Au77+ bunch at AGS extraction, a 6 to 3 to 1 merge scheme was developed and implemented by K. Zeno during the 2016 RHIC run. For this scheme, 12 Booster loads, each consisting of a single bunch, are delivered to AGS per AGS magnetic cycle. The bunch from Booster is itself the result of a 4 to 2 to 1 merge which is carried out on a flat porch during the Booster magnetic cycle. Each Booster bunch is injected into a harmonic 24 bucket on the AGS injection porch. In order to fitmore » into the buckets and allow for the AGS injection kicker rise time, the bunch width must be reduced by exciting quadrupole oscillations just before extraction from Booster. The bunches are injected into two groups of six adjacent harmonic 24 buckets. In each group the 6 bunches are merged into 3 by bringing on RF harmonic 12 while reducing harmonic 24. This is a straightforward 2 to 1 merge (in which two adjacent bunches are merged into one). One ends up with two groups of three adjacent bunches sitting in harmonic 12 buckets. These bunches are accelerated to an intermediate porch for further merging. Doing the merge on a porch that sits above injection energy helps reduce losses that are believed to be due to the space-charge force acting on the bunched particles. (The 6 to 3 merge is done on the injection porch because the harmonic 24 frequency on the intermediate porch would be too high for the AGS RF cavities.) On the intermediate porch each group of 3 bunches is merged into one by bringing on RF harmonics 8 and 4 and then reducing harmonics 12 and 8. One ends up with 2 bunches, each the result of a 6 to 3 to 1 merge and each sitting in a harmonic 4 bucket. This puts 6 Booster loads into each bunch. Each merged bunch needs to be squeezed into a harmonic 12 bucket for subsequent acceleration. This is done by again bringing on harmonic 8 and then harmonic 12. Results of simulations of the 6 to 3 to 1 merge and the subsequent squeeze into harmonic

  13. Temporal characterization of ultrashort linearly chirped electron bunches generated from a laser wakefield accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, C. J.; Hua, J. F.; Wan, Y.

    A new method for diagnosing the temporal characteristics of ultrashort electron bunches with linear energy chirp generated from a laser wakefield accelerator is described. When the ionization-injected bunch interacts with the back of the drive laser, it is deflected and stretched along the direction of the electric field of the laser. Upon exiting the plasma, if the bunch goes through a narrow slit in front of the dipole magnet that disperses the electrons in the plane of the laser polarization, it can form a series of bunchlets that have different energies but are separated by half a laser wavelength. Sincemore » only the electrons that are undeflected by the laser go through the slit, the energy spectrum of the bunch is modulated. By analyzing the modulated energy spectrum, the shots where the bunch has a linear energy chirp can be recognized. Consequently, the energy chirp and beam current profile of those bunches can be reconstructed. Lastly, this method is demonstrated through particle-in-cell simulations and experiment.« less

  14. Bunch modulation in LWFA blowout regime

    NASA Astrophysics Data System (ADS)

    Vyskočil, Jiří; Klimo, Ondřej; Vieira, Jorge; Korn, Georg

    2015-05-01

    Laser wakefield acceleration (LWFA) is able to produce high quality electron bunches interesting for many applications ranging from coherent light sources to high energy physics. The blow-out regime of LWFA provides excellent accelerating structure able to maintain small transverse emittance and energy spread of the accelerating electron beam if combined with localised injection. A modulation of the back of a self-injected electron bunch in the blowout regime of Laser Wakefield Acceleration appears 3D Particle-in-Cell simulations with the code OSIRIS. The shape of the modulation is connected to the polarization of the driving laser pulse, although the wavelength of the modulation is longer than that of the pulse. Nevertheless a circularly polarized laser pulse leads to a corkscrew-like modulation, while in the case of linear polarization, the modulation lies in the polarization plane.

  15. Simulations of Merging Helion Bunches on the AGS Injection Porch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, C. J.

    During the setup of helions for the FY2014 RHIC run it was discovered that the standard scheme for merging bunches on the AGS injection porch required an injection kicker pulse shorter than what was available. To overcome this difficulty, K. Zeno proposed and developed an interesting and unusual alternative which uses RF harmonic numbers 12, 4, 2 (rather than the standard 8, 4, 2) to merge 8 helion bunches into 2. In this note we carry out simulations that illustrate how the alternative scheme works and how it compares with the standard scheme. This is done in Sections 13 andmore » 14. A scheme in which 6 bunches are merged into 1 is simulated in Section 15. This may be useful if more helions per merged bunch are needed in future runs. General formulae for the simulations are given in Sections 9 through 12. For completeness, Sections 1 through 8 give a derivation of the turn-by-turn equations of longitudinal motion at constant magnetic field. The derivation is based on the work of MacLachlan. The reader may wish to skip over these Sections and start with Section 9.« less

  16. Study of Uneven Fills to Cure the Coupled-Bunch Instability in SRRC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chao, Alex W.

    2002-08-12

    The performance of the 1.5-GeV storage ring light source TLS in SRRC has been limited by a longitudinal coupled-bunch beam instability. To improve the performance of the TLS, the beam instability has to be suppressed. One possible way considered for the TLS to suppress its coupled-bunch instability uses uneven filling patterns according to the theory of Prabhakar[1]. By knowing the harmful high-order-modes (HOMs), a special filling pattern can be designed to utilize either mode coupling or Landau damping to cure beam instability. In TLS the HOMs are contributed from the Doris RF cavity installed in the storage ring. The HOMsmore » of a 3-D Doris cavity was numerically analyzed. Filling patterns with equal bunch current according to theory had been calculated to cure the most harmful HOM. A longitudinal particle tracking program was used to simulate the coupled-bunch beam instability with both the uniform filling and the special designed filling. Filling pattern with unequal bunch current was also studied. The results of the simulation were discussed and compared to the theory.« less

  17. Electron dynamics in high energy density plasma bunch generation driven by intense picosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Li, M.; Yuan, T.; Xu, Y. X.; Luo, S. N.

    2018-05-01

    When an intense picosecond laser pulse is loaded upon a dense plasma, a high energy density plasma bunch, including electron bunch and ion bunch, can be generated in the target. We simulate this process through one-dimensional particle-in-cell simulation and find that the electron bunch generation is mainly due to a local high energy density electron sphere originated in the plasma skin layer. Once generated the sphere rapidly expands to compress the surrounding electrons and induce high density electron layer, coupled with that, hot electrons are efficiently triggered in the local sphere and traveling in the whole target. Under the compressions of light pressure, forward-running and backward-running hot electrons, a high energy density electron bunch generates. The bunch energy density is as high as TJ/m3 order of magnitude in our conditions, which is significant in laser driven dynamic high pressure generation and may find applications in high energy density physics.

  18. First test of the prompt gamma ray timing method with heterogeneous targets at a clinical proton therapy facility

    NASA Astrophysics Data System (ADS)

    Hueso-González, Fernando; Enghardt, Wolfgang; Fiedler, Fine; Golnik, Christian; Janssens, Guillaume; Petzoldt, Johannes; Prieels, Damien; Priegnitz, Marlen; Römer, Katja E.; Smeets, Julien; Vander Stappen, François; Wagner, Andreas; Pausch, Guntram

    2015-08-01

    Ion beam therapy promises enhanced tumour coverage compared to conventional radiotherapy, but particle range uncertainties significantly blunt the achievable precision. Experimental tools for range verification in real-time are not yet available in clinical routine. The prompt gamma ray timing method has been recently proposed as an alternative to collimated imaging systems. The detection times of prompt gamma rays encode essential information about the depth-dose profile thanks to the measurable transit time of ions through matter. In a collaboration between OncoRay, Helmholtz-Zentrum Dresden-Rossendorf and IBA, the first test at a clinical proton accelerator (Westdeutsches Protonentherapiezentrum Essen, Germany) with several detectors and phantoms is performed. The robustness of the method against background and stability of the beam bunch time profile is explored, and the bunch time spread is characterized for different proton energies. For a beam spot with a hundred million protons and a single detector, range differences of 5 mm in defined heterogeneous targets are identified by numerical comparison of the spectrum shape. For higher statistics, range shifts down to 2 mm are detectable. A proton bunch monitor, higher detector throughput and quantitative range retrieval are the upcoming steps towards a clinically applicable prototype. In conclusion, the experimental results highlight the prospects of this straightforward verification method at a clinical pencil beam and settle this novel approach as a promising alternative in the field of in vivo dosimetry.

  19. More Gamma More Predictions: Gamma-Synchronization as a Key Mechanism for Efficient Integration of Classical Receptive Field Inputs with Surround Predictions

    PubMed Central

    Vinck, Martin; Bosman, Conrado A.

    2016-01-01

    During visual stimulation, neurons in visual cortex often exhibit rhythmic and synchronous firing in the gamma-frequency (30–90 Hz) band. Whether this phenomenon plays a functional role during visual processing is not fully clear and remains heavily debated. In this article, we explore the function of gamma-synchronization in the context of predictive and efficient coding theories. These theories hold that sensory neurons utilize the statistical regularities in the natural world in order to improve the efficiency of the neural code, and to optimize the inference of the stimulus causes of the sensory data. In visual cortex, this relies on the integration of classical receptive field (CRF) data with predictions from the surround. Here we outline two main hypotheses about gamma-synchronization in visual cortex. First, we hypothesize that the precision of gamma-synchronization reflects the extent to which CRF data can be accurately predicted by the surround. Second, we hypothesize that different cortical columns synchronize to the extent that they accurately predict each other’s CRF visual input. We argue that these two hypotheses can account for a large number of empirical observations made on the stimulus dependencies of gamma-synchronization. Furthermore, we show that they are consistent with the known laminar dependencies of gamma-synchronization and the spatial profile of intercolumnar gamma-synchronization, as well as the dependence of gamma-synchronization on experience and development. Based on our two main hypotheses, we outline two additional hypotheses. First, we hypothesize that the precision of gamma-synchronization shows, in general, a negative dependence on RF size. In support, we review evidence showing that gamma-synchronization decreases in strength along the visual hierarchy, and tends to be more prominent in species with small V1 RFs. Second, we hypothesize that gamma-synchronized network dynamics facilitate the emergence of spiking output that

  20. Design of a high-bunch-charge 112-MHz superconducting RF photoemission electron source

    NASA Astrophysics Data System (ADS)

    Xin, T.; Brutus, J. C.; Belomestnykh, Sergey A.; Ben-Zvi, I.; Boulware, C. H.; Grimm, T. L.; Hayes, T.; Litvinenko, Vladimir N.; Mernick, K.; Narayan, G.; Orfin, P.; Pinayev, I.; Rao, T.; Severino, F.; Skaritka, J.; Smith, K.; Than, R.; Tuozzolo, J.; Wang, E.; Xiao, B.; Xie, H.; Zaltsman, A.

    2016-09-01

    High-bunch-charge photoemission electron-sources operating in a continuous wave (CW) mode are required for many advanced applications of particle accelerators, such as electron coolers for hadron beams, electron-ion colliders, and free-electron lasers. Superconducting RF (SRF) has several advantages over other electron-gun technologies in CW mode as it offers higher acceleration rate and potentially can generate higher bunch charges and average beam currents. A 112 MHz SRF electron photoinjector (gun) was developed at Brookhaven National Laboratory to produce high-brightness and high-bunch-charge bunches for the coherent electron cooling proof-of-principle experiment. The gun utilizes a quarter-wave resonator geometry for assuring beam dynamics and uses high quantum efficiency multi-alkali photocathodes for generating electrons.

  1. Flexible pulse delay control up to picosecond for high-intensity twin electron bunches

    DOE PAGES

    Zhang, Zhen; Ding, Yuantao; Emma, Paul; ...

    2015-09-10

    Two closely spaced electron bunches have attracted strong interest due to their applications in two color X-ray free-electron lasers as well as witness bunch acceleration in plasmas and dielectric structures. In this paper, we propose a new scheme of delay system to vary the time delay up to several picoseconds while not affecting the bunch compression. Numerical simulations based on the Linac Coherent Light Source are performed to demonstrate the feasibility of this method.

  2. Ion Emittance Growth Due to Focusing Modulation from Slipping Electron Bunch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, G.

    2015-02-17

    Low energy RHIC operation has to be operated at an energy ranging from γ = 4.1 to γ = 10. The energy variation causes the change of revolution frequency. While the rf system for the circulating ion will operate at an exact harmonic of the revolution frequency (h=60 for 4.5 MHz rf and h=360 for 28 MHz rf.), the superconducting rf system for the cooling electron beam does not have a frequency tuning range that is wide enough to cover the required changes of revolution frequency. As a result, electron bunches will sit at different locations along the ion bunchmore » from turn to turn, i.e. the slipping of the electron bunch with respect to the circulating ion bunch. At cooling section, ions see a coherent focusing force due to the electrons’ space charge, which differs from turn to turn due to the slipping. We will try to estimate how this irregular focusing affects the transverse emittance of the ion bunch.« less

  3. Single bunch transverse instability in a circular accelerator with chromaticity and space charge

    DOE PAGES

    Balbekov, V.

    2015-10-21

    The transverse instability of a bunch in a circular accelerator is elaborated in this paper. A new tree-modes model is proposed and developed to describe the most unstable modes of the bunch. This simple and flexible model includes chromaticity and space charge, and can be used with any bunch and wake forms. The dispersion equation for the bunch eigentunes is obtained in form of a third-order algebraic equation. The known head-tail and TMCI modes appear as the limiting cases which are distinctly bounded at zero chromaticity only. It is shown that the instability parameters depend only slightly on the bunchmore » model but they are rather sensitive to the wake shape. In particular, space charge effects are investigated in the paper and it is shown that their influence depends on sign of wake field enhancing the bunch stability if the wake is negative. In addition, the resistive wall wake is considered in detail including a comparison of single and collective effects. A comparison of the results with earlier publications is carried out.« less

  4. Use of a corrugated beam pipe as a passive deflector for bunch length measurements

    NASA Astrophysics Data System (ADS)

    Seok, Jimin; Chung, Moses; Kang, Heung-Sik; Min, Chang-Ki; Na, Donghyun

    2018-02-01

    We report the experimental demonstration of bunch length measurements using a corrugated metallic beam pipe as a passive deflector. The corrugated beam pipe has been adopted for reducing longitudinal chirping after the bunch compressors in several XFEL facilities worldwide. In the meantime, there have been attempts to measure the electron bunch's longitudinal current profile using the dipole wakefields generated in the corrugated pipe. Nevertheless, the bunch shape reconstructed from the nonlinearly deflected beam suffers from significant distortion, particularly near the head of the bunch. In this paper, we introduce an iterative process to improve the resolution of the bunch shape reconstruction. The astra and elegant simulations have been performed for pencil beam and cigar beam cases, in order to verify the effectiveness of the reconstruction process. To overcome the undesirable effects of transverse beam spreads, a measurement scheme involving both the corrugated beam pipe and the spectrometer magnet has been employed, both of which do not require a dedicated (and likely very expensive) rf system. A proof-of-principle experiment was carried out at Pohang Accelerator Laboratory (PAL) Injector Test Facility (ITF), and its results are discussed together with a comparison with the rf deflector measurement.

  5. Bunch evolution study in optimization of MeV ultrafast electron diffraction

    NASA Astrophysics Data System (ADS)

    Lu, Xian-Hai; Du, Ying-Chao; Huang, Wen-Hui; Tang, Chuan-Xiang

    2014-12-01

    Megaelectronvolt ultrafast electron diffraction (UED) is a promising detection tool for ultrafast processes. The quality of diffraction image is determined by the transverse evolution of the probe bunch. In this paper, we study the contributing terms of the emittance and space charge effects to the bunch evolution in the MeV UED scheme, employing a mean-field model with an ellipsoidal distribution as well as particle tracking simulation. The small transverse dimension of the drive laser is found to be critical to improve the reciprocal resolution, exploiting both smaller emittance and larger transverse bunch size before the solenoid. The degradation of the reciprocal spatial resolution caused by the space charge effects should be carefully controlled.

  6. Coherent-Radiation Spectroscopy of Few-Femtosecond Electron Bunches Using a Middle-Infrared Prism Spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maxwell, T. J.; Behrens, C.; Ding, Y.

    2013-10-28

    Modern, high-brightness electron beams such as those from plasma wakefield accelerators and free-electron laser linacs continue the drive to ever-shorter bunch durations. In low-charge operation ( ~ 20 pC ), bunches shorter than 10 fs are reported at the Linac Coherent Light Source (LCLS). Though suffering from a loss of phase information, spectral diagnostics remain appealing as compact, low-cost bunch duration monitors suitable for deployment in beam dynamics studies and operations instrumentation. Progress in middle-infrared (MIR) imaging has led to the development of a single-shot, MIR prism spectrometer to characterize the corresponding LCLS coherent beam radiation power spectrum for few-femtosecondmore » scale bunch length monitoring. In this Letter, we report on the spectrometer installation as well as the temporal reconstruction of 3 to 60 fs-long LCLS electron bunch profiles using single-shot coherent transition radiation spectra.« less

  7. Study on Handing Process and Quality Degradation of Oil Palm Fresh Fruit Bunches (FFB)

    NASA Astrophysics Data System (ADS)

    Mat Sharif, Zainon Binti; Taib, Norhasnina Binti Mohd; Yusof, Mohd Sallehuddin Bin; Rahim, Mohammad Zulafif Bin; Tobi, Abdul Latif Bin Mohd; Othman, Mohd Syafiq Bin

    2017-05-01

    The main objective of this study is to determine the relationship between quality of oil palm fresh fruit bunches (FFB) and handling processes. The study employs exploratory and descriptive design, with quantitative approach and purposive sampling using self-administrated questionnaires, were obtained from 30 smallholder respondents from the Southern Region, Peninsular Malaysia. The study reveals that there was a convincing relationship between quality of oil palm fresh fruit bunches (FFB) and handling processes. The main handling process factors influencing quality of oil palm fresh fruit bunches (FFB) were harvesting activity and handling at the plantation area. As a result, it can be deduced that the handling process factors variable explains 82.80% of the variance that reflects the quality of oil palm fresh fruit bunches (FFB). The overall findings reveal that the handling process factors do play a significant role in the quality of oil palm fresh fruit bunches (FFB).

  8. Lateral distribution on charged particles in EAS

    NASA Technical Reports Server (NTRS)

    Dedenko, L. G.; Kulikov, G. V.; Solovjeva, V. I.; Sulakov, V. F.

    1985-01-01

    Lateral distribution of charged particles which allow for the finiteness of energy gamma-quanta, the inhomogeneity of the atmosphere and the experimental selection of EAS are needed to interpret experimental data. The effects of finiteness of energy of gamma-quanta which produce the partial electron-photon cascades were considered by substituting K R sub m instead of R sub m in NKG approximation where K was found to be 0.56 from comparison with the experimental data. New results on the lateral distribution of electrons in the partial cascades from gamma-quanta were obtained. It is shown that the coefficient K can be regarded as a constant. The last approximation of K was found to be most adequate when compared with the experimental data. The inhomogeneity of the atmosphere, muons and experimental selection are considered. The calculation of Ne are extended from 100,000 to 10 million for sea level and for Akeno level.

  9. Modelling and measurements of bunch profiles at the LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papadopoulou, S.; Antoniou, F.; Argyropoulos, T.

    The bunch profiles in the LHC are often observed to be non-Gaussian, both at Flat Bottom (FB) and Flat Top (FT) energies. Especially at FT, an evolution of the tail population in time is observed. In this respect, the Monte-Carlo Software for IBS and Radiation effects (SIRE) is used to track different types of beam distributions. The impact of the distribution shape on the evolution of bunch characteristics is studied. The results are compared with observations from the LHC Run 2 data.

  10. Overview of Mono-Energetic Gamma-Ray Sources and Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartemann, Fred; /LLNL, Livermore; Albert, Felicie

    2012-06-25

    Recent progress in accelerator physics and laser technology have enabled the development of a new class of tunable gamma-ray light sources based on Compton scattering between a high-brightness, relativistic electron beam and a high intensity laser pulse produced via chirped-pulse amplification (CPA). A precision, tunable Mono-Energetic Gamma-ray (MEGa-ray) source driven by a compact, high-gradient X-band linac is currently under development and construction at LLNL. High-brightness, relativistic electron bunches produced by an X-band linac designed in collaboration with SLAC NAL will interact with a Joule-class, 10 ps, diode-pumped CPA laser pulse to generate tunable {gamma}-rays in the 0.5-2.5 MeV photon energymore » range via Compton scattering. This MEGaray source will be used to excite nuclear resonance fluorescence in various isotopes. Applications include homeland security, stockpile science and surveillance, nuclear fuel assay, and waste imaging and assay. The source design, key parameters, and current status are presented, along with important applications, including nuclear resonance fluorescence.« less

  11. Towards Attosecond High-Energy Electron Bunches: Controlling Self-Injection in Laser-Wakefield Accelerators Through Plasma-Density Modulation

    NASA Astrophysics Data System (ADS)

    Tooley, M. P.; Ersfeld, B.; Yoffe, S. R.; Noble, A.; Brunetti, E.; Sheng, Z. M.; Islam, M. R.; Jaroszynski, D. A.

    2017-07-01

    Self-injection in a laser-plasma wakefield accelerator is usually achieved by increasing the laser intensity until the threshold for injection is exceeded. Alternatively, the velocity of the bubble accelerating structure can be controlled using plasma density ramps, reducing the electron velocity required for injection. We present a model describing self-injection in the short-bunch regime for arbitrary changes in the plasma density. We derive the threshold condition for injection due to a plasma density gradient, which is confirmed using particle-in-cell simulations that demonstrate injection of subfemtosecond bunches. It is shown that the bunch charge, bunch length, and separation of bunches in a bunch train can be controlled by tailoring the plasma density profile.

  12. Left–right asymmetry in integral spectra of γ-quanta in the interaction of nuclei with polarized thermal neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vesna, V. A.; Gledenov, Yu. M.; Nesvizhevsky, V. V., E-mail: nesvizhevsky@ill.eu

    The paper presents results of preliminarymeasurements of the left–right asymmetry in integral spectra of γ-quanta emitted in the interaction of polarized thermal neutrons with nuclei. These results indicate that for all cases of measured statistically significant P-odd asymmetry, the left–right asymmetry coefficient is much smaller than the P-odd asymmetry coefficient. This observation is not consistent with the predictions of theoretical calculations.

  13. Efficiency of feedbacks for suppression of transverse instabilities of bunched beams

    DOE PAGES

    Burov, Alexey

    2016-08-05

    Which gain and phase have to be set for a bunch-by-bunch transverse damper, and at which chromaticity it is better to stay? Furthermore, these questions are considered for three models: the two-particle model with possible quadrupole wake, the author's Nested Head-Tail Vlasov solver with a broadband impedance, and the same with the LHC impedance model.

  14. Acceleration of electron bunches by intense laser pulse in vacuum

    NASA Astrophysics Data System (ADS)

    Hua, J. F.; Ho, Y. K.; Lin, Y. Z.; Cao, N.

    2003-08-01

    This paper addresses the output characteristics of real electron bunches accelerated with ultra-intense laser pulse in vacuum by the capture & acceleration scenario (CAS) scheme (see, e.g., Phys. Rev. E66 (2002) 066501). Normally, the size of an electron bunch is much larger than that of a tightly focused and compressed laser pulse. We examine in detail the features of the intersection region, the distribution of electrons which can experience an intense laser field and be accelerated to high energy. Furthermore, the output properties of the accelerated CAS electrons, such as the energy spectra, the angular distributions, the energy-angle correlations, the acceleration gradient, the energy which can be reached with this scheme, the emittances of the outgoing electron bunches, and the dependence of the output properties on the incident electron beam qualities such as the emittance, focusing status, etc. were studied and explained. We found that with intense laser systems and electron beam technology currently available nowadays, the number of CAS electrons can reach 10 4-10 5, when the total number of incident electrons in the practical bunch reaches ˜10 8. These results demonstrate that CAS is promising to become a novel mechanism of vacuum laser accelerators.

  15. Non-linear effects in bunch compressor of TARLA

    NASA Astrophysics Data System (ADS)

    Yildiz, Hüseyin; Aksoy, Avni; Arikan, Pervin

    2016-03-01

    Transport of a beam through an accelerator beamline is affected by high order and non-linear effects such as space charge, coherent synchrotron radiation, wakefield, etc. These effects damage form of the beam, and they lead particle loss, emittance growth, bunch length variation, beam halo formation, etc. One of the known non-linear effects on low energy machine is space charge effect. In this study we focus on space charge effect for Turkish Accelerator and Radiation Laboratory in Ankara (TARLA) machine which is designed to drive InfraRed Free Electron Laser covering the range of 3-250 µm. Moreover, we discuss second order effects on bunch compressor of TARLA.

  16. Design of a high-bunch-charge 112-MHz superconducting RF photoemission electron source

    DOE PAGES

    Xin, T.; Brutus, J. C.; Belomestnykh, Sergey A.; ...

    2016-09-01

    High-bunch-charge photoemission electron-sources operating in a continuous wave (CW) mode are required for many advanced applications of particle accelerators, such as electron coolers for hadron beams, electron-ion colliders, and free-electron lasers (FELs). Superconducting RF (SRF) has several advantages over other electron-gun technologies in CW mode as it offers higher acceleration rate and potentially can generate higher bunch charges and average beam currents. A 112 MHz SRF electron photoinjector (gun) was developed at Brookhaven National Laboratory (BNL) to produce high-brightness and high-bunch-charge bunches for the Coherent electron Cooling Proof-of-Principle (CeC PoP) experiment. Lastly, the gun utilizes a quarter-wave resonator (QWR) geometrymore » for assuring beam dynamics, and uses high quantum efficiency (QE) multi-alkali photocathodes for generating electrons.« less

  17. Inertial stratification of an expanding highly ionized multicomponent plasma bunch

    NASA Astrophysics Data System (ADS)

    Kozhenkova, O. A.; Motorin, A. A.; Stupitskii, E. L.

    2013-09-01

    The initial composition of a four-component plasma bunch of a high specific energy has been determined, as well as its characteristics during the process of expansion. It is shown that the interaction of particles under a high energy is of the Coulomb character and this interaction is unable to ensure the same velocity of components with different atomic masses right from the very beginning of bunch expansion, leading to their radical stratification.

  18. Characteristics of GeV Electron Bunches Accelerated by Intense Lasers in Vacuum

    NASA Astrophysics Data System (ADS)

    Wang, P. X.; Ho, Y. K.; Kong, Q.; Yuan, X. Q.; Cao, N.; Feng, L.

    This paper studies the characteristics of GeV electron bunches driven by ultra-intense lasers in vacuum based on the mechanism of capture and violent acceleration scenario [CAS, see, e.g. J. X. Wang et al., Phys. Rev. E58, 6575 (1998)], which shows an interesting prospect of becoming a new principle of laser-driven accelerators. It has been found that the accelerated GeV electron bunch is a macro-pulse composed of a lot of micro-pulses, which is analogous to the structure of the bunches produced by conventional linacs. The macro-pulse corresponds to the duration of the laser pulse while the micro-pulse corresponds to the periodicity of the laser wave. Therefore, provided that the incoming electron bunch with comparable sizes as that of the laser pulse synchronously impinges on the laser pulse, the total fraction of electrons captured and accelerated to GeV energy can reach more than 20%. These results demonstrate that the mechanisms of CAS is a relatively effective accelerator mechanism.

  19. High intensity single bunch operation with heavy periodic transient beam loading in wide band rf cavities

    NASA Astrophysics Data System (ADS)

    Tamura, Fumihiko; Hotchi, Hideaki; Schnase, Alexander; Yoshii, Masahito; Yamamoto, Masanobu; Ohmori, Chihiro; Nomura, Masahiro; Toda, Makoto; Shimada, Taihei; Hasegawa, Katsushi; Hara, Keigo

    2015-09-01

    The rapid cycling synchrotron (RCS) in the Japan Proton Accelerator Research Complex (J-PARC) was originally designed to accelerate two high intensity bunches, while some of neutron experiments in the materials and life science experimental facility and a muon experiment using main ring beams require a single bunch operation mode, in which one of the two rf buckets is filled and the other is empty. The beam intensity in the single bunch operation has been limited by longitudinal beam losses due to the rf bucket distortions by the wake voltage of the odd harmonics (h =1 ,3 ,5 ) in the wide band magnetic alloy cavities. We installed an additional rf feedforward system to compensate the wake voltages of the odd harmonics (h =1 ,3 ,5 ). The additional system has a similar structure as the existing feedforward system for the even harmonics (h =2 ,4 ,6 ). We describe the function of the feedforward system for the odd harmonics, the commissioning methodology, and the commissioning results. The longitudinal beam losses during the single bunch acceleration disappeared with feedforward for the odd harmonics. We also confirmed that the beam quality in the single bunch acceleration are similar to that of the normal operation with two bunches. Thus, high intensity single bunch acceleration at the intensity of 2.3 ×1013 protons per bunch has been achieved in the J-PARC RCS. This article is a follow-up of our previous article, Phys. Rev. ST Accel. Beams 14, 051004 (2011). The feedforward system extension for single bunch operation was successful.

  20. Characterization of pseudosingle bunch kick-and-cancel operational mode

    DOE PAGES

    Sun, C.; Robin, D. S.; Steier, C.; ...

    2015-12-18

    Pseudosingle-bunch kick-and-cancel (PSB-KAC) is a new operational mode at the Advanced Light Source of Lawrence Berkeley National Laboratory that provides full timing and repetition rate control for single x-ray pulse users while being fully transparent to other users of synchrotron radiation light. In this operational mode, a single electron bunch is periodically displaced from a main bunch train by a fast kicker magnet with a user-on-demand repetition rate, creating a single x-ray pulse to be matched to a typical laser excitation pulse rate. This operational mode can significantly improve the signal to noise ratio of single x-ray pulse experiments andmore » drastically reduce dose-induced sample damage rate. It greatly expands the capabilities of synchrotron light sources to carry out dynamics and time-of-flight experiments. In this paper, we carry out extensive characterizations of this PSB-KAC mode both numerically and experimentally. This includes the working principle of this mode, resonance conditions and beam stability, experimental setups, and diagnostic tools and measurements.« less

  1. Revealing time bunching effect in single-molecule enzyme conformational dynamics.

    PubMed

    Lu, H Peter

    2011-04-21

    In this perspective, we focus our discussion on how the single-molecule spectroscopy and statistical analysis are able to reveal enzyme hidden properties, taking the study of T4 lysozyme as an example. Protein conformational fluctuations and dynamics play a crucial role in biomolecular functions, such as in enzymatic reactions. Single-molecule spectroscopy is a powerful approach to analyze protein conformational dynamics under physiological conditions, providing dynamic perspectives on a molecular-level understanding of protein structure-function mechanisms. Using single-molecule fluorescence spectroscopy, we have probed T4 lysozyme conformational motions under the hydrolysis reaction of a polysaccharide of E. coli B cell walls by monitoring the fluorescence resonant energy transfer (FRET) between a donor-acceptor probe pair tethered to T4 lysozyme domains involving open-close hinge-bending motions. Based on the single-molecule spectroscopic results, molecular dynamics simulation, a random walk model analysis, and a novel 2D statistical correlation analysis, we have revealed a time bunching effect in protein conformational motion dynamics that is critical to enzymatic functions. Bunching effect implies that conformational motion times tend to bunch in a finite and narrow time window. We show that convoluted multiple Poisson rate processes give rise to the bunching effect in the enzymatic reaction dynamics. Evidently, the bunching effect is likely common in protein conformational dynamics involving in conformation-gated protein functions. In this perspective, we will also discuss a new approach of 2D regional correlation analysis capable of analyzing fluctuation dynamics of complex multiple correlated and anti-correlated fluctuations under a non-correlated noise background. Using this new method, we are able to map out any defined segments along the fluctuation trajectories and determine whether they are correlated, anti-correlated, or non-correlated; after which, a

  2. Drive Beam Shaping and Witness Bunch Generation for the Plasma Wakefield Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    England, R. J.; Frederico, J.; Hogan, M. J.

    2010-11-04

    High transformer ratio operation of the plasma wake field accelerator requires a tailored drive beam current profile followed by a short witness bunch. We discuss techniques for generating the requisite dual bunches and for obtaining the desired drive beam profile, with emphasis on the FACET experiment at SLAC National Accelerator Laboratory.

  3. Time Evolving Fission Chain Theory and Fast Neutron and Gamma-Ray Counting Distributions

    DOE PAGES

    Kim, K. S.; Nakae, L. F.; Prasad, M. K.; ...

    2015-11-01

    Here, we solve a simple theoretical model of time evolving fission chains due to Feynman that generalizes and asymptotically approaches the point model theory. The point model theory has been used to analyze thermal neutron counting data. This extension of the theory underlies fast counting data for both neutrons and gamma rays from metal systems. Fast neutron and gamma-ray counting is now possible using liquid scintillator arrays with nanosecond time resolution. For individual fission chains, the differential equations describing three correlated probability distributions are solved: the time-dependent internal neutron population, accumulation of fissions in time, and accumulation of leaked neutronsmore » in time. Explicit analytic formulas are given for correlated moments of the time evolving chain populations. The equations for random time gate fast neutron and gamma-ray counting distributions, due to randomly initiated chains, are presented. Correlated moment equations are given for both random time gate and triggered time gate counting. There are explicit formulas for all correlated moments are given up to triple order, for all combinations of correlated fast neutrons and gamma rays. The nonlinear differential equations for probabilities for time dependent fission chain populations have a remarkably simple Monte Carlo realization. A Monte Carlo code was developed for this theory and is shown to statistically realize the solutions to the fission chain theory probability distributions. Combined with random initiation of chains and detection of external quanta, the Monte Carlo code generates time tagged data for neutron and gamma-ray counting and from these data the counting distributions.« less

  4. Non-linear effects in bunch compressor of TARLA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yildiz, Hüseyin, E-mail: huseyinyildiz006@gmail.com, E-mail: huseyinyildiz@gazi.edu.tr; Aksoy, Avni; Arikan, Pervin

    2016-03-25

    Transport of a beam through an accelerator beamline is affected by high order and non-linear effects such as space charge, coherent synchrotron radiation, wakefield, etc. These effects damage form of the beam, and they lead particle loss, emittance growth, bunch length variation, beam halo formation, etc. One of the known non-linear effects on low energy machine is space charge effect. In this study we focus on space charge effect for Turkish Accelerator and Radiation Laboratory in Ankara (TARLA) machine which is designed to drive InfraRed Free Electron Laser covering the range of 3-250 µm. Moreover, we discuss second order effects onmore » bunch compressor of TARLA.« less

  5. Enhanced dense attosecond electron bunch generation by irradiating an intense laser on a cone target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Li-Xiang; Yu, Tong-Pu, E-mail: tongpu@nudt.edu.cn; Shao, Fu-Qiu

    By using two-dimensional particle-in-cell simulations, we demonstrate enhanced spatially periodic attosecond electron bunches generation with an average density of about 10n{sub c} and cut-off energy up to 380 MeV. These bunches are acquired from the interaction of an ultra-short ultra-intense laser pulse with a cone target. The laser oscillating field pulls out the cone surface electrons periodically and accelerates them forward via laser pondermotive force. The inner cone wall can effectively guide these bunches and lead to their stable propagation in the cone, resulting in overdense energetic attosecond electron generation. We also consider the influence of laser and cone target parametersmore » on the bunch properties. It indicates that the attosecond electron bunch acceleration and propagation could be significantly enhanced without evident divergency by attaching a plasma capillary to the original cone tip.« less

  6. Spatial configuration of a plasma bunch formed under gyromagnetic resonance in a magnetic mirror trap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreev, V. V.; Novitskii, A. A.; Umnov, A. M.

    2016-06-15

    The spatial configuration of a relativistic plasma bunch generated under the gyromagnetic autoresonance and confined in a magnetic mirror trap has been studied experimentally and numerically. The characteristics of bremsstrahlung generated by the plasma bunch from the gas and chamber walls were investigated using X-ray spectroscopy and radiometry, which made it possible to determine the localization of the bunch and analyze the dynamics of its confinement.

  7. A self-consistency check for unitary propagation of Hawking quanta

    NASA Astrophysics Data System (ADS)

    Baker, Daniel; Kodwani, Darsh; Pen, Ue-Li; Yang, I.-Sheng

    2017-11-01

    The black hole information paradox presumes that quantum field theory in curved space-time can provide unitary propagation from a near-horizon mode to an asymptotic Hawking quantum. Instead of invoking conjectural quantum-gravity effects to modify such an assumption, we propose a self-consistency check. We establish an analogy to Feynman’s analysis of a double-slit experiment. Feynman showed that unitary propagation of the interfering particles, namely ignoring the entanglement with the double-slit, becomes an arbitrarily reliable assumption when the screen upon which the interference pattern is projected is infinitely far away. We argue for an analogous self-consistency check for quantum field theory in curved space-time. We apply it to the propagation of Hawking quanta and test whether ignoring the entanglement with the geometry also becomes arbitrarily reliable in the limit of a large black hole. We present curious results to suggest a negative answer, and we discuss how this loss of naive unitarity in QFT might be related to a solution of the paradox based on the soft-hair-memory effect.

  8. A Value-Engaged Approach for Evaluating the Bunche-Da Vinci Learning Academy

    ERIC Educational Resources Information Center

    Greene, Jennifer C.

    2005-01-01

    In 2001, the Bunche Academy was chosen by its district to join in partnership with the Da Vinci Learning Corporation to embark on an ambitious whole-school reform initiative, especially designed by the corporation for low-performing schools. In this chapter, the author describes how, as illustrated in the Bunche-Da Vinci Learning Academy context,…

  9. The Quanta Image Sensor: Every Photon Counts

    PubMed Central

    Fossum, Eric R.; Ma, Jiaju; Masoodian, Saleh; Anzagira, Leo; Zizza, Rachel

    2016-01-01

    The Quanta Image Sensor (QIS) was conceived when contemplating shrinking pixel sizes and storage capacities, and the steady increase in digital processing power. In the single-bit QIS, the output of each field is a binary bit plane, where each bit represents the presence or absence of at least one photoelectron in a photodetector. A series of bit planes is generated through high-speed readout, and a kernel or “cubicle” of bits (x, y, t) is used to create a single output image pixel. The size of the cubicle can be adjusted post-acquisition to optimize image quality. The specialized sub-diffraction-limit photodetectors in the QIS are referred to as “jots” and a QIS may have a gigajot or more, read out at 1000 fps, for a data rate exceeding 1 Tb/s. Basically, we are trying to count photons as they arrive at the sensor. This paper reviews the QIS concept and its imaging characteristics. Recent progress towards realizing the QIS for commercial and scientific purposes is discussed. This includes implementation of a pump-gate jot device in a 65 nm CIS BSI process yielding read noise as low as 0.22 e− r.m.s. and conversion gain as high as 420 µV/e−, power efficient readout electronics, currently as low as 0.4 pJ/b in the same process, creating high dynamic range images from jot data, and understanding the imaging characteristics of single-bit and multi-bit QIS devices. The QIS represents a possible major paradigm shift in image capture. PMID:27517926

  10. Observation of High Transformer Ratio of Shaped Bunch Generated by an Emittance-Exchange Beam Line.

    PubMed

    Gao, Q; Ha, G; Jing, C; Antipov, S P; Power, J G; Conde, M; Gai, W; Chen, H; Shi, J; Wisniewski, E E; Doran, D S; Liu, W; Whiteford, C E; Zholents, A; Piot, P; Baturin, S S

    2018-03-16

    Collinear wakefield acceleration has been long established as a method capable of generating ultrahigh acceleration gradients. Because of the success on this front, recently, more efforts have shifted towards developing methods to raise the transformer ratio (TR). This figure of merit is defined as the ratio of the peak acceleration field behind the drive bunch to the peak deceleration field inside the drive bunch. TR is always less than 2 for temporally symmetric drive bunch distributions and therefore recent efforts have focused on generating asymmetric distributions to overcome this limitation. In this Letter, we report on using the emittance-exchange method to generate a shaped drive bunch to experimentally demonstrate a TR≈5 in a dielectric wakefield accelerator.

  11. Electron bunch structure in energy recovery linac with high-voltage dc photoelectron gun

    NASA Astrophysics Data System (ADS)

    Saveliev, Y. M.; Jackson, F.; Jones, J. K.; McKenzie, J. W.

    2016-09-01

    The internal structure of electron bunches generated in an injector line with a dc photoelectron gun is investigated. Experiments were conducted on the ALICE (accelerators and lasers in combined experiments) energy recovery linac at Daresbury Laboratory. At a relatively low dc gun voltage of 230 kV, the bunch normally consisted of two beamlets with different electron energies, as well as transverse and longitudinal characteristics. The beamlets are formed at the head and the tail of the bunch. At a higher gun voltage of 325 kV, the beam substructure is much less pronounced and could be observed only at nonoptimal injector settings. Experiments and computer simulations demonstrated that the bunch structure develops during the initial beam acceleration in the superconducting rf booster cavity and can be alleviated either by increasing the gun voltage to the highest possible level or by controlling the beam acceleration from the gun voltage in the first accelerating structure.

  12. Demonstration of a real-time interferometer as a bunch-length monitor in a high-current electron beam accelerator.

    PubMed

    Thangaraj, J; Andonian, G; Thurman-Keup, R; Ruan, J; Johnson, A S; Lumpkin, A; Santucci, J; Maxwell, T; Murokh, A; Ruelas, M; Ovodenko, A

    2012-04-01

    A real-time interferometer (RTI) has been developed to monitor the bunch length of an electron beam in an accelerator. The RTI employs spatial autocorrelation, reflective optics, and a fast response pyro-detector array to obtain a real-time autocorrelation trace of the coherent radiation from an electron beam thus providing the possibility of online bunch-length diagnostics. A complete RTI system has been commissioned at the A0 photoinjector facility to measure sub-mm bunches at 13 MeV. Bunch length variation (FWHM) between 0.8 ps (~0.24 mm) and 1.5 ps (~0.45 mm) has been measured and compared with a Martin-Puplett interferometer and a streak camera. The comparisons show that RTI is a viable, complementary bunch length diagnostic for sub-mm electron bunches. © 2012 American Institute of Physics

  13. Demonstration of a real-time interferometer as a bunch-lenght monitor in a high-current electron beam accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thangaraj, J.; Thurman-Keup, R.; Ruan, J.

    2012-03-01

    A real-time interferometer (RTI) has been developed to monitor the bunch length of an electron beam in an accelerator. The RTI employs spatial autocorrelation, reflective optics, and a fast response pyro-detector array to obtain a real-time autocorrelation trace of the coherent radiation from an electron beam thus providing the possibility of online bunch-length diagnostics. A complete RTI system has been commissioned at the A0 photoinjector facility to measure sub-mm bunches at 13 MeV. Bunch length variation (FWHM) between 0.8 ps (-0.24 mm) and 1.5 ps (-0.45 mm) has been measured and compared with a Martin-Puplett interferometer and a streak camera.more » The comparisons show that RTI is a viable, complementary bunch length diagnostic for sub-mm electron bunches.« less

  14. Arbitrarily shaped high-coherence electron bunches from cold atoms

    NASA Astrophysics Data System (ADS)

    McCulloch, A. J.; Sheludko, D. V.; Saliba, S. D.; Bell, S. C.; Junker, M.; Nugent, K. A.; Scholten, R. E.

    2011-10-01

    Ultrafast electron diffractive imaging of nanoscale objects such as biological molecules and defects in solid-state devices provides crucial information on structure and dynamic processes: for example, determination of the form and function of membrane proteins, vital for many key goals in modern biological science, including rational drug design. High brightness and high coherence are required to achieve the necessary spatial and temporal resolution, but have been limited by the thermal nature of conventional electron sources and by divergence due to repulsive interactions between the electrons, known as the Coulomb explosion. It has been shown that, if the electrons are shaped into ellipsoidal bunches with uniform density, the Coulomb explosion can be reversed using conventional optics, to deliver the maximum possible brightness at the target. Here we demonstrate arbitrary and real-time control of the shape of cold electron bunches extracted from laser-cooled atoms. The ability to dynamically shape the electron source itself and to observe this shape in the propagated electron bunch provides a remarkable experimental demonstration of the intrinsically high spatial coherence of a cold-atom electron source, and the potential for alleviation of electron-source brightness limitations due to Coulomb explosion.

  15. Theoretical analysis and simulation of the influence of self-bunching effects and longitudinal space charge effects on the propagation of keV electron bunch produced by a novel S-band Micro-Pulse electron Gun

    NASA Astrophysics Data System (ADS)

    Zhao, Jifei; Lu, Xiangyang; Zhou, Kui; Yang, Ziqin; Yang, Deyu; Luo, Xing; Tan, Weiwei; Yang, Yujia

    2016-06-01

    As an important electron source, Micro-Pulse electron Gun (MPG) which is qualified for producing high average current, short pulse, low emittance electron bunches steadily holds promise to use as an electron source of Coherent Smith-Purcell Radiation (CSPR), Free Electron Laser (FEL). The stable output of S-band MPG has been achieved in many labs. To establish reliable foundation for the future application of it, the propagation of picosecond electron bunch produced by MPG should be studied in detail. In this article, the MPG which was working on the rising stage of total effective Secondary Electron Yield (SEY) curve was introduced. The self-bunching mechanism was discussed in depth both in the multipacting amplifying state and the steady working state. The bunch length broadening induced by the longitudinal space-charge (SC) effects was investigated by different theoretical models in different regions. The 2D PIC codes MAGIC and beam dynamic codes TraceWin simulations were also performed in the propagation. The result shows an excellent agreement between the simulation and the theoretical analysis for bunch length evolution.

  16. Theoretical analysis and simulation of the influence of self-bunching effects and longitudinal space charge effects on the propagation of keV electron bunch produced by a novel S-band Micro-Pulse electron Gun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Jifei; Lu, Xiangyang, E-mail: xylu@pku.edu.cn; Yang, Ziqin

    As an important electron source, Micro-Pulse electron Gun (MPG) which is qualified for producing high average current, short pulse, low emittance electron bunches steadily holds promise to use as an electron source of Coherent Smith-Purcell Radiation (CSPR), Free Electron Laser (FEL). The stable output of S-band MPG has been achieved in many labs. To establish reliable foundation for the future application of it, the propagation of picosecond electron bunch produced by MPG should be studied in detail. In this article, the MPG which was working on the rising stage of total effective Secondary Electron Yield (SEY) curve was introduced. Themore » self-bunching mechanism was discussed in depth both in the multipacting amplifying state and the steady working state. The bunch length broadening induced by the longitudinal space-charge (SC) effects was investigated by different theoretical models in different regions. The 2D PIC codes MAGIC and beam dynamic codes TraceWin simulations were also performed in the propagation. The result shows an excellent agreement between the simulation and the theoretical analysis for bunch length evolution.« less

  17. Soft gamma rays from black holes versus neutron stars

    NASA Technical Reports Server (NTRS)

    Liang, Edison P.

    1992-01-01

    The recent launches of GRANAT and GRO provide unprecedented opportunities to study compact collapsed objects from their hard x ray and gamma ray emissions. The spectral range above 100 keV can now be explored with much higher sensitivity and time resolution than before. The soft gamma ray spectral data is reviewed of black holes and neutron stars, radiation, and particle energization mechanisms and potentially distinguishing gamma ray signatures. These may include soft x ray excesses versus deficiencies, thermal versus nonthermal processes, transient gamma ray bumps versus power law tails, lines, and periodicities. Some of the highest priority future observations are outlines which will shed much light on such systems.

  18. Demonstration of a real-time interferometer as a bunch-length monitor in a high-current electron beam accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thangaraj, J.; Thurman-Keup, R.; Ruan, J.

    2012-04-15

    A real-time interferometer (RTI) has been developed to monitor the bunch length of an electron beam in an accelerator. The RTI employs spatial autocorrelation, reflective optics, and a fast response pyro-detector array to obtain a real-time autocorrelation trace of the coherent radiation from an electron beam thus providing the possibility of online bunch-length diagnostics. A complete RTI system has been commissioned at the A0 photoinjector facility to measure sub-mm bunches at 13 MeV. Bunch length variation (FWHM) between 0.8 ps ({approx}0.24 mm) and 1.5 ps ({approx}0.45 mm) has been measured and compared with a Martin-Puplett interferometer and a streak camera.more » The comparisons show that RTI is a viable, complementary bunch length diagnostic for sub-mm electron bunches.« less

  19. Spherical nanocrystalline cellulose (NCC) from oil palm empty fruit bunch pulp via ultrasound assisted hydrolysis.

    PubMed

    Zianor Azrina, Z A; Beg, M Dalour H; Rosli, M Y; Ramli, Ridzuan; Junadi, Norhafzan; Alam, A K M Moshiul

    2017-04-15

    Nanocrystalline cellulose (NCC) was isolated from oil palm empty fruit bunch pulp (EFBP) using ultrasound assisted acid hydrolysis. The obtained NCC was analysed using FESEM, XRD, FTIR, and TGA, and compared with raw empty fruit bunch fibre (REFB), empty fruit bunch pulp (EFBP), and treated empty fruit bunch pulp (TEFBP). Based on FESEM analysis, it was found that NCC has a spherical shaped after acid hydrolysis with the assistance of ultrasound. This situation was different compared to previous studies that obtained rod-like shaped of NCC. Furthermore, the crystallinity of NCC is higher compared to REFB and EFBP. According to thermal stability, the NCC obtained shows remarkable sign of high thermal stability compared to REFB and EFBP. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Independent component analysis applied to long bunch beams in the Los Alamos Proton Storage Ring

    NASA Astrophysics Data System (ADS)

    Kolski, Jeffrey S.; Macek, Robert J.; McCrady, Rodney C.; Pang, Xiaoying

    2012-11-01

    Independent component analysis (ICA) is a powerful blind source separation (BSS) method. Compared to the typical BSS method, principal component analysis, ICA is more robust to noise, coupling, and nonlinearity. The conventional ICA application to turn-by-turn position data from multiple beam position monitors (BPMs) yields information about cross-BPM correlations. With this scheme, multi-BPM ICA has been used to measure the transverse betatron phase and amplitude functions, dispersion function, linear coupling, sextupole strength, and nonlinear beam dynamics. We apply ICA in a new way to slices along the bunch revealing correlations of particle motion within the beam bunch. We digitize beam signals of the long bunch at the Los Alamos Proton Storage Ring with a single device (BPM or fast current monitor) for an entire injection-extraction cycle. ICA of the digitized beam signals results in source signals, which we identify to describe varying betatron motion along the bunch, locations of transverse resonances along the bunch, measurement noise, characteristic frequencies of the digitizing oscilloscopes, and longitudinal beam structure.

  1. Interaction of an ultrarelativistic electron bunch train with a W-band accelerating structure: High power and high gradient

    DOE PAGES

    Wang, D.; Antipov, S.; Jing, C.; ...

    2016-02-05

    Electron beam interaction with high frequency structures (beyond microwave regime) has a great impact on future high energy frontier machines. We report on the generation of multimegawatt pulsed rf power at 91 GHz in a planar metallic accelerating structure driven by an ultrarelativistic electron bunch train. This slow-wave wakefield device can also be used for high gradient acceleration of electrons with a stable rf phase and amplitude which are controlled by manipulation of the bunch train. To achieve precise control of the rf pulse properties, a two-beam wakefield interferometry method was developed in which the rf pulse, due to themore » interference of the wakefields from the two bunches, was measured as a function of bunch separation. As a result, measurements of the energy change of a trailing electron bunch as a function of the bunch separation confirmed the interferometry method.« less

  2. Study of the heavy ion bunch compression in CSRm

    NASA Astrophysics Data System (ADS)

    Yin, Da-Yu; Liu, Yong; Yuan, You-Jing; Yang, Jian-Cheng; Li, Peng; Li, Jie; Chai, Wei-Ping; Sha, Xiao-Ping

    2013-05-01

    The feasibility of attaining nanosecond pulse length heavy ion beam is studied in the main ring (CSRm) of the Heavy Ion Research Facility in Lanzhou. Such heavy ion beam can be produced by non-adiabatic compression, and it is implemented by a fast rotation in the longitudinal phase space. In this paper, the possible beam parameters during longitudinal bunch compression are studied with the envelope model and Particle in Cell simulation, and the results are compared. The result shows that the short bunch 238U28+ with the pulse duration of about 50 ns at the energy of 200 MeV/u can be obtained which can satisfy the research of high density plasma physics experiment.

  3. Ultrashort electron bunch length measurement with diffraction radiation deflector

    NASA Astrophysics Data System (ADS)

    Xiang, Dao; Huang, Wen-Hui

    2007-01-01

    In this paper, we propose a novel method to measure electron bunch length with a diffraction radiation (DR) deflector which is composed of a DR radiator and three beam position monitors (BPMs). When an electron beam passes through a metallic aperture which is tilted by 45 degrees with respect to its trajectory, backward DR that propagates perpendicular to the beam’s trajectory is generated which adds a transverse deflection to the beam as a result of momentum conservation. The deflection is found to be largely dependent on the bunch length and could be easily observed with a downstream BPM. Detailed investigations show that this method has wide applicability, high temporal resolution, and great simplicity.

  4. Compression of subrelativistic space-charge-dominated electron bunches for single-shot femtosecond electron diffraction.

    PubMed

    van Oudheusden, T; Pasmans, P L E M; van der Geer, S B; de Loos, M J; van der Wiel, M J; Luiten, O J

    2010-12-31

    We demonstrate the compression of 95 keV, space-charge-dominated electron bunches to sub-100 fs durations. These bunches have sufficient charge (200 fC) and are of sufficient quality to capture a diffraction pattern with a single shot, which we demonstrate by a diffraction experiment on a polycrystalline gold foil. Compression is realized by means of velocity bunching by inverting the positive space-charge-induced velocity chirp. This inversion is induced by the oscillatory longitudinal electric field of a 3 GHz radio-frequency cavity. The arrival time jitter is measured to be 80 fs.

  5. Shielded transient self-interaction of a bunch entering a circle from a straight path

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, R.; Bohn, C.L.; Bisognano, J.J.

    1997-08-01

    Recent developments in electron-gun and injector technologies enable production of short (mm-length), high-charge (nC-regime) bunches. In this parameter regime, the curvature effect on the bunch self-interaction, by way of coherent synchrotron radiation (CSR) and space-charge forces as the beam traverses magnet bends, may cause serious emittance degradation. In this paper, the authors study an electron bunch orbiting between two infinite, parallel conducting plates. The bunch moves on a trajectory from a straight path to a circular orbit and begins radiating. Transient effects, arising from CSR and space-charge forces generated from source particles both on the bend and on the straightmore » path prior to the bend, are analyzed using Lienard-Wiechert fields, and their overall net effect is obtained. The influence of the plates on the transients is contrasted to their shielding of the steady-state radiated power. Results for emittance degradation induced by this self-interaction are also presented.« less

  6. The influence of DNA inhibitor synthesis on the induction and repair of double-strand DNA breaks in human lymphocytes under action of radiation with a different linear energy transfer

    NASA Astrophysics Data System (ADS)

    Boreyko, A. V.; Chausov, V. N.; Krasavin, E. A.; Ravnachka, I.; Stukova, S. I.

    2011-07-01

    The influence that inhibitors of repair and replicative DNA synthesis, 1-β-D-arabinofuranosyl-cytosine and hydroxyurea, have on the formation and repair kinetics of double-strand breaks (DSBs) in peripheral human blood lymphocytes under the influence of radiation with a different linear energy transfer (LET) (gamma quanta and accelerated heavy ions) is studied. It is demonstrated that lithium and boron ions with LETs of 20 and 40 keV/μm, respectively, possess higher biological effectiveness with respect to the DNA DSB induction criterion. The value of the relative biological effectiveness of accelerated lithium and boron ions is 1.5 ± 0.1 and 1.6 ± 0.1, respectively. It is found that, upon cell irradiation by gamma quanta in the absence of inhibitors, efficient DNA DSB repair is observed during incubation. Under the conditions of cell incubation and in the presence of inhibitors, some growth in the number of DNA DSBs, rather than a reduction, is observed after 5-h incubation. In the case of the action of accelerated boron ions (as well as gamma quanta), under normal conditions, the efficient repair of induced DNA lesions takes place. Unlike the action of gamma quanta, in the case of cell incubation in the presence of radiomodifiers, the number of induced DNA DSBs falls. These results may testify to the fact that the repair of double-strand DNS breaks takes place under the action of ionizing radiation with a different LET on mammalian cells in the presence of DNA synthesis inhibitors Ara-C and HU. It is concluded that, for cells subject to gamma irradiation, no DNA DSB repair is observed due to the large contribution of single-strand incision DNA breaks formed in the postradiation period in the course of excision nucleotide repair.

  7. Towards highest peak intensities for ultra-short MeV-range ion bunches

    NASA Astrophysics Data System (ADS)

    Busold, Simon; Schumacher, Dennis; Brabetz, Christian; Jahn, Diana; Kroll, Florian; Deppert, Oliver; Schramm, Ulrich; Cowan, Thomas E.; Blažević, Abel; Bagnoud, Vincent; Roth, Markus

    2015-07-01

    A laser-driven, multi-MeV-range ion beamline has been installed at the GSI Helmholtz center for heavy ion research. The high-power laser PHELIX drives the very short (picosecond) ion acceleration on μm scale, with energies ranging up to 28.4 MeV for protons in a continuous spectrum. The necessary beam shaping behind the source is accomplished by applying magnetic ion lenses like solenoids and quadrupoles and a radiofrequency cavity. Based on the unique beam properties from the laser-driven source, high-current single bunches could be produced and characterized in a recent experiment: At a central energy of 7.8 MeV, up to 5 × 108 protons could be re-focused in time to a FWHM bunch length of τ = (462 ± 40) ps via phase focusing. The bunches show a moderate energy spread between 10% and 15% (ΔE/E0 at FWHM) and are available at 6 m distance to the source und thus separated from the harsh laser-matter interaction environment. These successful experiments represent the basis for developing novel laser-driven ion beamlines and accessing highest peak intensities for ultra-short MeV-range ion bunches.

  8. Towards highest peak intensities for ultra-short MeV-range ion bunches

    PubMed Central

    Busold, Simon; Schumacher, Dennis; Brabetz, Christian; Jahn, Diana; Kroll, Florian; Deppert, Oliver; Schramm, Ulrich; Cowan, Thomas E.; Blažević, Abel; Bagnoud, Vincent; Roth, Markus

    2015-01-01

    A laser-driven, multi-MeV-range ion beamline has been installed at the GSI Helmholtz center for heavy ion research. The high-power laser PHELIX drives the very short (picosecond) ion acceleration on μm scale, with energies ranging up to 28.4 MeV for protons in a continuous spectrum. The necessary beam shaping behind the source is accomplished by applying magnetic ion lenses like solenoids and quadrupoles and a radiofrequency cavity. Based on the unique beam properties from the laser-driven source, high-current single bunches could be produced and characterized in a recent experiment: At a central energy of 7.8 MeV, up to 5 × 108 protons could be re-focused in time to a FWHM bunch length of τ = (462 ± 40) ps via phase focusing. The bunches show a moderate energy spread between 10% and 15% (ΔE/E0 at FWHM) and are available at 6 m distance to the source und thus separated from the harsh laser-matter interaction environment. These successful experiments represent the basis for developing novel laser-driven ion beamlines and accessing highest peak intensities for ultra-short MeV-range ion bunches. PMID:26212024

  9. Test of Compton camera components for prompt gamma imaging at the ELBE bremsstrahlung beam

    NASA Astrophysics Data System (ADS)

    Hueso-González, F.; Golnik, C.; Berthel, M.; Dreyer, A.; Enghardt, W.; Fiedler, F.; Heidel, K.; Kormoll, T.; Rohling, H.; Schöne, S.; Schwengner, R.; Wagner, A.; Pausch, G.

    2014-05-01

    In the context of ion beam therapy, particle range verification is a major challenge for the quality assurance of the treatment. One approach is the measurement of the prompt gamma rays resulting from the tissue irradiation. A Compton camera based on several position sensitive gamma ray detectors, together with an imaging algorithm, is expected to reconstruct the prompt gamma ray emission density map, which is correlated with the dose distribution. At OncoRay and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), a Compton camera setup is being developed consisting of two scatter planes: two CdZnTe (CZT) cross strip detectors, and an absorber consisting of one Lu2SiO5 (LSO) block detector. The data acquisition is based on VME electronics and handled by software developed on the ROOT framework. The setup has been tested at the linear electron accelerator ELBE at HZDR, which is used in this experiment to produce bunched bremsstrahlung photons with up to 12.5 MeV energy and a repetition rate of 13 MHz. Their spectrum has similarities with the shape expected from prompt gamma rays in the clinical environment, and the flux is also bunched with the accelerator frequency. The charge sharing effect of the CZT detector is studied qualitatively for different energy ranges. The LSO detector pixel discrimination resolution is analyzed and it shows a trend to improve for high energy depositions. The time correlation between the pulsed prompt photons and the measured detector signals, to be used for background suppression, exhibits a time resolution of 3 ns FWHM for the CZT detector and of 2 ns for the LSO detector. A time walk correction and pixel-wise calibration is applied for the LSO detector, whose resolution improves up to 630 ps. In conclusion, the detector setup is suitable for time-resolved background suppression in pulsed clinical particle accelerators. Ongoing tasks are the quantitative comparison with simulations and the test of imaging algorithms. Experiments at proton

  10. Student Perceptions of Textbook Outlines

    ERIC Educational Resources Information Center

    Landrum, R. Eric; Clark, Jeremy

    2006-01-01

    Students in an introductory psychology course evaluated 3 types of outlines (traditional, graphical, alphabetical) and then provided summary information about their use of outlines and rank ordered their preferred type of outlines. Over 75% of students agreed that outlines are useful, and students clearly prefer the traditional, Roman…

  11. Construction and performance of the magnetic bunch compressor for the THz facility at Chiang Mai University

    NASA Astrophysics Data System (ADS)

    Saisut, J.; Kusoljariyakul, K.; Rimjaem, S.; Kangrang, N.; Wichaisirimongkol, P.; Thamboon, P.; Rhodes, M. W.; Thongbai, C.

    2011-05-01

    The Plasma and Beam Physics Research Facility at Chiang Mai University has established a THz facility to focus on the study of ultra-short electron pulses. Short electron bunches can be generated from a system that consists of a radio-frequency (RF) gun with a thermionic cathode, an alpha magnet as a magnetic bunch compressor, and a linear accelerator as a post-acceleration section. The alpha magnet is a conventional and simple instrument for low-energy electron bunch compression. With the alpha magnet constructed in-house, several hundred femtosecond electron bunches for THz radiation production can be generated from the thermionic RF gun. The construction and performance of the alpha magnet, as well as some experimental results, are presented in this paper.

  12. Generation of short electron bunches by a laser pulse crossing a sharp boundary of inhomogeneous plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuznetsov, S. V., E-mail: svk-IVTAN@yandex.ru

    The formation of short electron bunches during the passage of a laser pulse of relativistic intensity through a sharp boundary of semi-bounded plasma has been analytically studied. It is shown in one-dimensional geometry that one physical mechanism that is responsible for the generation of electron bunches is their self-injection into the wake field of a laser pulse, which occurs due to the mixing of electrons during the action of the laser pulse on plasma. Simple analytic relationships are obtained that can be used for estimating the length and charge of an electron bunch and the spread of electron energies inmore » the bunch. The results of the analytical investigation are confirmed by data from numerical simulations.« less

  13. Very-high energy gamma-ray astronomy. A 23-year success story in high-energy astroparticle physics

    NASA Astrophysics Data System (ADS)

    Lorenz, E.; Wagner, R.

    2012-08-01

    Very-high energy (VHE) gamma quanta contribute only a minuscule fraction - below one per million - to the flux of cosmic rays. Nevertheless, being neutral particles they are currently the best "messengers" of processes from the relativistic/ultra-relativistic Universe because they can be extrapolated back to their origin. The window of VHE gamma rays was opened only in 1989 by the Whipple collaboration, reporting the observation of TeV gamma rays from the Crab nebula. After a slow start, this new field of research is now rapidly expanding with the discovery of more than 150 VHE gamma-ray emitting sources. Progress is intimately related with the steady improvement of detectors and rapidly increasing computing power. We give an overview of the early attempts before and around 1989 and the progress after the pioneering work of the Whipple collaboration. The main focus of this article is on the development of experimental techniques for Earth-bound gamma-ray detectors; consequently, more emphasis is given to those experiments that made an initial breakthrough rather than to the successors which often had and have a similar (sometimes even higher) scientific output as the pioneering experiments. The considered energy threshold is about 30 GeV. At lower energies, observations can presently only be performed with balloon or satellite-borne detectors. Irrespective of the stormy experimental progress, the success story could not have been called a success story without a broad scientific output. Therefore we conclude this article with a summary of the scientific rationales and main results achieved over the last two decades.

  14. Focusing and transport of high-intensity multi-MeV proton bunches from a compact laser-driven source

    NASA Astrophysics Data System (ADS)

    Busold, S.; Schumacher, D.; Deppert, O.; Brabetz, C.; Frydrych, S.; Kroll, F.; Joost, M.; Al-Omari, H.; Blažević, A.; Zielbauer, B.; Hofmann, I.; Bagnoud, V.; Cowan, T. E.; Roth, M.

    2013-10-01

    Laser ion acceleration provides for compact, high-intensity ion sources in the multi-MeV range. Using a pulsed high-field solenoid, for the first time high-intensity laser-accelerated proton bunches could be selected from the continuous exponential spectrum and delivered to large distances, containing more than 109 particles in a narrow energy interval around a central energy of 9.4 MeV and showing ≤30mrad envelope divergence. The bunches of only a few nanoseconds bunch duration were characterized 2.2 m behind the laser-plasma source with respect to arrival time, energy width, and intensity as well as spatial and temporal bunch profile.

  15. Bio-phenolic resin from oil palm empty fruit bunches

    NASA Astrophysics Data System (ADS)

    Zakaria, Zuhaili; Zakaria, Sarani; Roslan, Rasidi; Chia, Chin Hua; Jaafar, Sharifah Nabihah Syed; Amran, Umar Adli

    2018-04-01

    Utilization of oil palm empty fruit bunches (EFB) in the production of bio-phenolic resin is an alternative way to reduce the dependency of petroleum-based phenol. In this study, resol type bio-phenolic resin (BPR) was synthesized from EFB fibers using sulfuric acid as the catalyst to produce liquefied empty fruit bunches (LEFB) followed by resinification reaction with formaldehyde in alkaline condition. The SEM image of LEFB residue showed separation of fiber bundles into individual fibers. This indicate that lignin was destroyed during the liquefaction process. The increased of formaldehyde/LEFB molar ratio has resulted an increase of viscosity, solid content and pH of the resin. The obtained FTIR spectra confirmed that functional groups of BPR resins was almost similar with commercial resin.

  16. Effects of correlation in transition radiation of super-short electron bunches

    NASA Astrophysics Data System (ADS)

    Danilova, D. K.; Tishchenko, A. A.; Strikhanov, M. N.

    2017-07-01

    The effect of correlations between electrons in transition radiation is investigated. The correlation function is obtained with help of the approach similar to the Debye-Hückel theory. The corrections due to correlations are estimated to be near 2-3% for the parameters of future projects SINBAD and FLUTE for bunches with extremely small lengths (∼1-10 fs). For the bunches with number of electrons about ∼ 2.5 ∗1010 and more, and short enough that the radiation would be coherent, the corrections due to correlations are predicted to reach 20%.

  17. Temporal profile measurements of relativistic electron bunch based on wakefield generation

    DOE PAGES

    Bettoni, S.; Craievich, P.; Lutman, A. A.; ...

    2016-02-25

    A complete characterization of the time-resolved longitudinal beam phase space is important to optimize the final performances of an accelerator, and in particular this is crucial for Free Electron Laser (FEL) facilities. In this study we propose a novel method to characterize the profile of a relativistic electron bunch by passively streaking the beam using its self-interaction with the transverse wakefield excited by the bunch itself passing off-axis through a dielectric-lined or a corrugated waveguide. Results of a proof-of-principle experiment at the SwissFEL Injector Test Facility are discussed.

  18. Transparent lattice characterization with gated turn-by-turn data of diagnostic bunch train

    NASA Astrophysics Data System (ADS)

    Li, Yongjun; Cheng, Weixing; Ha, Kiman; Rainer, Robert

    2017-11-01

    Methods of characterization of a storage ring's lattice have traditionally been intrusive to routine operations. More importantly, the lattice seen by particles can drift with the beam current due to collective effects. To circumvent this, we have developed a novel approach for dynamically characterizing a storage ring's lattice that is transparent to operations. Our approach adopts a dedicated filling pattern which has a short, separate diagnostic bunch train (DBT). Through the use of a bunch-by-bunch feedback system, the DBT can be selectively excited on demand. Gated functionality of a beam position monitor system is capable of collecting turn-by-turn data of the DBT, from which the lattice can then be characterized after excitation. As the DBT comprises only about one percent of the total operational bunches, the effects of its excitation are negligible to users. This approach allows us to localize the distributed quadrupolar wakefields generated in the storage ring vacuum chamber during beam accumulation. While effectively transparent to operations, our approach enables us to dynamically control the beta beat and phase beat, and unobtrusively optimize performance of the National Synchrotron Light Source-II accelerator during routine operations.

  19. Transparent lattice characterization with gated turn-by-turn data of diagnostic bunch train

    DOE PAGES

    Li, Yongjun; Cheng, Weixing; Ha, Kiman; ...

    2017-11-21

    Methods of characterization of a storage ring's lattice have traditionally been intrusive to routine operations. More importantly, the lattice seen by particles can drift with the beam current due to collective effects. To circumvent this, we have developed a novel approach for dynamically characterizing a storage ring's lattice that is transparent to operations. Our approach adopts a dedicated filling pattern which has a short, separate Diagnostic Bunch-Train (DBT). Through the use of a bunch-by-bunch feedback system, the DBT can be selectively excited on-demand. Gated functionality of a beam position monitor system is capable of collecting turn-by-turn data of the DBT,more » from which the lattice can then be characterized after excitation. As the DBT comprises only about one percent of the total operational bunches, the effects of its excitation are negligible to users. Therefore, this approach allows us to localize the distributed quadrupolar wake fields generated in the storage ring vacuum chamber during beam accumulation. While effectively transparent to operations, our approach enables us to dynamically control the beta-beat and phase-beat, and unobtrusively optimize performance of National Synchrotron Light Source-II accelerator during routine operations.« less

  20. Vanderbilt University Gamma Irradiation of Nano-modified Concrete (2017 Milestone Report)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deichert, Geoffrey G.; Linton, Kory D.; Terrani, Kurt A.

    This document outlines the irradiation of concrete specimens in the Gamma Irradiation Facility in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). Two gamma irradiation runs were performed in July of 2017 on 18 reference mortar bar specimens, 26 reference cement paste bar specimens, and 28 reference cement paste tab specimens to determine the dose and temperature response of the specimens in the gamma irradiation environment. Specimens from the first two gamma irradiations were surveyed and released to Vanderbilt University. The temperature and dose information obtained informs the test parameters of the final two gamma irradiationsmore » of nano-modified concrete planned for FY 2018.« less

  1. Felling and bunching small timber on steep slopes.

    Treesearch

    Rodger A. Arola; Edwin S. Miyata; John A. Sturos; Helmuth M. Steinhilb

    1981-01-01

    Discusses the results of a field test of the unique Menzi Muck machine for felling and bunching small trees on steep slopes. Includes the analysis of a detailed time study to determine the productivity, costs, and economic feasibility of this unusual machine.

  2. Direct Observation of Spatiotemporal Dynamics of Short Electron Bunches in Storage Rings

    NASA Astrophysics Data System (ADS)

    Evain, C.; Roussel, E.; Le Parquier, M.; Szwaj, C.; Tordeux, M.-A.; Brubach, J.-B.; Manceron, L.; Roy, P.; Bielawski, S.

    2017-02-01

    In recent synchrotron radiation facilities, the use of short (picosecond) electron bunches is a powerful method for producing giant pulses of terahertz coherent synchrotron radiation. Here we report on the first direct observation of these pulse shapes with a few picoseconds resolution, and of their dynamics over a long time. We thus confirm in a very direct way the theories predicting an interplay between two physical processes. Below a critical bunch charge, we observe a train of identical THz pulses (a broadband Terahertz comb) stemming from the shortness of the electron bunches. Above this threshold, a large part of the emission is dominated by drifting structures, which appear through spontaneous self-organization. These challenging single-shot THz recordings are made possible by using a recently developed photonic time stretch detector with a high sensitivity. The experiment has been realized at the SOLEIL storage ring.

  3. Solid Catalyst Nanoparticles derived from Oil-Palm Empty Fruit Bunches (OP-EFB) as a Renewable Catalyst for Biodiesel Production

    NASA Astrophysics Data System (ADS)

    Husin, H.; Asnawi, T. M.; Firdaus, A.; Husaini, H.; Ibrahim, I.; Hasfita, F.

    2018-05-01

    Solid nanocatalyst derived from oil-palm empty fruit bunches (OP-EFB) fiber was successfully synthesized and its application for biodiesel production was investigated. The OPEFB was treated by burning, milling and heating methods to generate ashes in a nanoparticle size. The nanoparticle palm-bunch ash was characterized by scanning electron microscopy (SEM) and x-ray diffraction (XRD). The effects of the calcination temperature and catalyst amounts for transesterification reactions were investigated. XRD analysis of palm bunch ash exhibited that the highest composition of peaks characteristic were potassium oxide (K2O). SEM analysis showed that the nano palm bunch ash have a particle size ranging of 150-400 nm. The highest conversion of palm-oil to biodiesel reach to 97.90% was observed by using of palm bunch ash nanocatalyst which heated at 600°C, 3 h reaction time and 1% catalyst amount. Reusability of palm bunch ash catalysts was also examined. It was found that of its high active sites, reusable solid catalyst was obtained by just heating of palm bunch ash. It has a capability to reduce not only the amount of catalyst consumption but also reduce the reaction time of transesterification process.

  4. Enhancing light-atom interactions via atomic bunching

    NASA Astrophysics Data System (ADS)

    Schmittberger, Bonnie L.; Gauthier, Daniel J.

    2014-07-01

    There is a broad interest in enhancing the strength of light-atom interactions to the point where injecting a single photon induces a nonlinear material response. Here we show theoretically that sub-Doppler-cooled two-level atoms that are spatially organized by weak optical fields give rise to a nonlinear material response that is greatly enhanced beyond that attainable in a homogeneous gas. Specifically, in the regime where the intensity of the applied optical fields is much less than the off-resonance saturation intensity, we show that the third-order nonlinear susceptibility scales inversely with atomic temperature and, due to this scaling, can be two orders of magnitude larger than that of a homogeneous gas for typical experimental parameters. As a result, we predict that spatially bunched two-level atoms can exhibit single-photon nonlinearities. Our model is valid for all regimes of atomic bunching and simultaneously accounts for the backaction of the atoms on the optical fields. Our results agree with previous theoretical and experimental results for light-atom interactions that have considered only limited regimes of atomic bunching. For lattice beams tuned to the low-frequency side of the atomic transition, we find that the nonlinearity transitions from a self-focusing type to a self-defocusing type at a critical intensity. We also show that higher than third-order nonlinear optical susceptibilities are significant in the regime where the dipole potential energy is on the order of the atomic thermal energy. We therefore find that it is crucial to retain high-order nonlinearities to accurately predict interactions of laser fields with spatially organized ultracold atoms. The model presented here is a foundation for modeling low-light-level nonlinear optical processes for ultracold atoms in optical lattices.

  5. Operational experience on the generation and control of high brightness electron bunch trains at SPARC-LAB

    NASA Astrophysics Data System (ADS)

    Mostacci, A.; Alesini, D.; Anania, M. P.; Bacci, A.; Bellaveglia, M.; Biagioni, A.; Cardelli, F.; Castellano, Michele; Chiadroni, Enrica; Cianchi, Alessandro; Croia, M.; Di Giovenale, Domenico; Di Pirro, Giampiero; Ferrario, Massimo; Filippi, Francesco; Gallo, Alessandro; Gatti, Giancarlo; Giribono, Anna; Innocenti, L.; Marocchino, A.; Petrarca, M.; Piersanti, L.; Pioli, S.; Pompili, Riccardo; Romeo, Stefano; Rossi, Andrea Renato; Shpakov, V.; Scifo, J.; Vaccarezza, Cristina; Villa, Fabio; Weiwei, L.

    2015-05-01

    Sub-picosecond, high-brightness electron bunch trains are routinely produced at SPARC-LAB via the velocity bunching technique. Such bunch trains can be used to drive multi-color Free Electron Lasers (FELs) and plasma wake field accelerators. In this paper we present recent results at SPARC-LAB on the generation of such beams, highlighting the key points of our scheme. We will discuss also the on-going machine upgrades to allow driving FELs with plasma accelerated beams or with short electron pulses at an increased energy.

  6. A Proposal to Build Evaluation Capacity at the Bunche-Da Vinci Learning Partnership Academy

    ERIC Educational Resources Information Center

    King, Jean A.

    2005-01-01

    The author describes potential evaluation capacity-building activities in contrast to the specifics of an evaluation design. Her response to the case of the Bunche-Da Vinci Learning Partnership Academy is developed in three parts: (1) an initial framing of the Bunche-Da Vinci situation; (2) what should be done before signing a contract; and (3)…

  7. Two-bunch operation with ns temporal separation at the FERMI FEL facility

    NASA Astrophysics Data System (ADS)

    Penco, Giuseppe; Allaria, Enrico; Bassanese, Silvano; Cinquegrana, Paolo; Cleva, Stefano; Danailov, Miltcho B.; Demidovich, Alexander; Ferianis, Mario; Gaio, Giulio; Giannessi, Luca; Masciovecchio, Claudio; Predonzani, Mauro; Rossi, Fabio; Roussel, Eleonore; Spampinati, Simone; Trovò, Mauro

    2018-05-01

    In the last decade, a continuous effort has been dedicated to extending the capabilities of existing free-electron lasers (FELs) operating in the x-ray and vacuum ultraviolet regimes. In this framework, the generation of two-color (or multi-color) temporally separated FEL pulses, has paved the way to new x-ray pump and probe experiments and several two-color two-pulse schemes have been implemented at the main facilities, but with a generally limited time-separation between the pulses, from 0 to few hundreds of fs. This limitation may be overcome by generating light with two independent electron bunches, temporally separated by integral multiples of the radio-frequency period. This solution was investigated at FERMI, measurements and characterization of this two-bunch mode of operation are presented, including trajectory control, impact of longitudinal and transverse wakefields, manipulation of the longitudinal phase space and finally a demonstration of suitability of the scheme to provide extreme ultraviolet light by using both bunches.

  8. Femtosecond timing-jitter between photo-cathode laser and ultra-short electron bunches by means of hybrid compression

    NASA Astrophysics Data System (ADS)

    Pompili, R.; Anania, M. P.; Bellaveglia, M.; Biagioni, A.; Castorina, G.; Chiadroni, E.; Cianchi, A.; Croia, M.; Di Giovenale, D.; Ferrario, M.; Filippi, F.; Gallo, A.; Gatti, G.; Giorgianni, F.; Giribono, A.; Li, W.; Lupi, S.; Mostacci, A.; Petrarca, M.; Piersanti, L.; Di Pirro, G.; Romeo, S.; Scifo, J.; Shpakov, V.; Vaccarezza, C.; Villa, F.

    2016-08-01

    The generation of ultra-short electron bunches with ultra-low timing-jitter relative to the photo-cathode (PC) laser has been experimentally proved for the first time at the SPARC_LAB test-facility (INFN-LNF, Frascati) exploiting a two-stage hybrid compression scheme. The first stage employs RF-based compression (velocity-bunching), which shortens the bunch and imprints an energy chirp on it. The second stage is performed in a non-isochronous dogleg line, where the compression is completed resulting in a final bunch duration below 90 fs (rms). At the same time, the beam arrival timing-jitter with respect to the PC laser has been measured to be lower than 20 fs (rms). The reported results have been validated with numerical simulations.

  9. OVERVIEW OF MONO-ENERGETIC GAMMA-RAY SOURCES & APPLICATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartemann, F V; Albert, F; Anderson, G G

    2010-05-18

    Recent progress in accelerator physics and laser technology have enabled the development of a new class of tunable gamma-ray light sources based on Compton scattering between a high-brightness, relativistic electron beam and a high intensity laser pulse produced via chirped-pulse amplification (CPA). A precision, tunable Mono-Energetic Gamma-ray (MEGa-ray) source driven by a compact, high-gradient X-band linac is currently under development and construction at LLNL. High-brightness, relativistic electron bunches produced by an X-band linac designed in collaboration with SLAC NAL will interact with a Joule-class, 10 ps, diode-pumped CPA laser pulse to generate tunable {gamma}-rays in the 0.5-2.5 MeV photon energymore » range via Compton scattering. This MEGa-ray source will be used to excite nuclear resonance fluorescence in various isotopes. Applications include homeland security, stockpile science and surveillance, nuclear fuel assay, and waste imaging and assay. The source design, key parameters, and current status are presented, along with important applications, including nuclear resonance fluorescence. In conclusion, we have optimized the design of a high brightness Compton scattering gamma-ray source, specifically designed for NRF applications. Two different parameters sets have been considered: one where the number of photons scattered in a single shot reaches approximately 7.5 x 10{sup 8}, with a focal spot size around 8 {micro}m; in the second set, the spectral brightness is optimized by using a 20 {micro}m spot size, with 0.2% relative bandwidth.« less

  10. Asymmetric linear efficiency and bunching mechanisms of TM modes for electron cyclotron maser

    NASA Astrophysics Data System (ADS)

    Chang, T. H.; Huang, W. C.; Yao, H. Y.; Hung, C. L.; Chen, W. C.; Su, B. Y.

    2017-02-01

    This study examines the transverse magnetic (TM) waveguide modes, which have long been considered as the unsuitable ones for the operation of the electron cyclotron maser. The beam-wave coupling strength of the TM modes, as expected, is found to be relatively weak as compared with that of the transverse electric (TE) waveguide modes. Unlike TE modes, surprisingly, the linear behavior of the TM modes depends on the sign of the wave number kz. The negative kz has a much stronger linear efficiency than that of the positive kz. The bunching mechanism analysis further exhibits that the azimuthal bunching and axial bunching do not compete but cooperate with each other for the backward-wave operation (negative kz). The current findings are encouraging and imply that TM modes might be advantageous to the gyrotron backward-wave oscillators.

  11. Bunch Length Measurements at the ATF Damping Ring in April 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bane, K.L.F.; /SLAC; Naito, T.

    We want to accurately know the energy spread and bunch length dependence on current in the ATF damping ring. One reason is to know the strength of the impedance: From the energy spread measurements we know whether or not we are above the threshold to the microwave instability, and from the energy spread and bunch length measurements we find out the extent of potential-well bunch lengthening (PWBL). Another reason for these measurements is to help in our understanding of the intra-beam scattering (IBS) effect in the ATF. The ATF as it is now, running below design energy and with themore » wigglers turned off, is strongly affected by IBS. To check for consistency with IBS theory of, for example, the measured vertical beam size, we need to know all dimensions of the beam, including the longitudinal one. But beyond this practical reason for studying IBS, IBS is currently a hot research topic at many accelerators around the world (see e.g. Ref. [1]), and the effect in actual machines is not well understood. Typically, when comparing theory with measurements fudge factors are needed to get agreement (see e.g. Ref. [1]). With its strong IBS effect, the ATF is an ideal machine for studying IBS, and an indispensable ingredient for this study is a knowledge of the longitudinal phase space of the beam. The results of earlier bunch lengthening measurements in the ATF can be found in Refs. [2]-[4]. Measurements of current dependent effects, especially bunch length measurements using a streak camera, can be difficult to perform accurately. For example, space charge in the camera itself can lead to systematic errors in the measurement results. It is important the results be accurate and reproducible. In the measurements of both December 1998[3] and December 1999[4], by using light filters, the authors first checked that space charge in the streak camera was not significant. And then the Dec 99 authors show that their results agree with those Dec 98, i.e. on the dates of the two

  12. Observation of Multi-bunch Interference with Coherent Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Billinghurst, B. E.; May, T.; Bergstrom, J.; DeJong, M.; Dallin, L.

    2010-02-01

    The observation of Multi-bunch interference with coherent synchrotron radiation at the Canadian Light Source is discussed along with the possibility that some of the spectral features are driven by the radiation impedance of the vacuum chamber.

  13. Emittance preservation during bunch compression with a magnetized beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stratakis, Diktys

    2015-09-02

    The deleterious effects of coherent synchrotron radiation (CSR) on the phase-space and energy spread of high-energy beams in accelerator light sources can significantly constrain the machine design and performance. In this paper, we present a simple method to preserve the beam emittance by means of using magnetized beams that exhibit a large aspect ratio on their transverse dimensions. The concept is based on combining a finite solenoid field where the beam is generated together with a special optics adapter. Numerical simulations of this new type of beam source show that the induced phase-space density growth can be notably suppressed tomore » less than 1% for any bunch charge. This work elucidates the key parameters that are needed for emittance preservation, such as the required field and aspect ratio for a given bunch charge.« less

  14. Work and information from thermal states after subtraction of energy quanta.

    PubMed

    Hloušek, J; Ježek, M; Filip, R

    2017-10-12

    Quantum oscillators prepared out of thermal equilibrium can be used to produce work and transmit information. By intensive cooling of a single oscillator, its thermal energy deterministically dissipates to a colder environment, and the oscillator substantially reduces its entropy. This out-of-equilibrium state allows us to obtain work and to carry information. Here, we propose and experimentally demonstrate an advanced approach, conditionally preparing more efficient out-of-equilibrium states only by a weak dissipation, an inefficient quantum measurement of the dissipated thermal energy, and subsequent triggering of that states. Although it conditionally subtracts the energy quanta from the oscillator, average energy grows, and second-order correlation function approaches unity as by coherent external driving. On the other hand, the Fano factor remains constant and the entropy of the subtracted state increases, which raise doubts about a possible application of this approach. To resolve it, we predict and experimentally verify that both available work and transmitted information can be conditionally higher in this case than by arbitrary cooling or adequate thermal heating up to the same average energy. It qualifies the conditional procedure as a useful source for experiments in quantum information and thermodynamics.

  15. Understanding and controlling the step bunching instability in aqueous silicon etching

    NASA Astrophysics Data System (ADS)

    Bao, Hailing

    Chemical etching of silicon has been widely used for more than half a century in the semiconductor industry. It not only forms the basis for current wafer cleaning processes, it also serves as a powerful tool to create a variety of surface morphologies for different applications. Its potential for controlling surface morphology at the atomic scale over micron-size regions is especially appealing. In spite of its wide usage, the chemistry of silicon etching is poorly understood. Many seemingly simple but fundamental questions have not been answered. As a result, the development of new etchants and new etching protocols are based on expensive and tedious trial-and-error experiments. A better understanding of the etching mechanism would direct the rational formulation of new etchants that produce controlled etch morphologies. Particularly, micron-scale step bunches spontaneously develop on the vicinal Si(111) surface etched in KOH or other anisotropic aqueous etchants. The ability to control the size, orientation, density and regularity of these surface features would greatly improve the performance of microelectromechanical devices. This study is directed towards understanding the chemistry and step bunching instability in aqueous anisotropic etching of silicon through a combination of experimental techniques and theoretical simulations. To reveal the cause of step-bunching instability, kinetic Monte Carlo simulations were constructed based on an atomistic model of the silicon lattice and a modified kinematic wave theory. The simulations showed that inhomogeneity was the origin of step-bunching, which was confirmed through STM studies of etch morphologies created under controlled flow conditions. To quantify the size of the inhomogeneities in different etchants and to clarify their effects, a five-parallel-trench pattern was fabricated. This pattern used a nitride mask to protect most regions of the wafer; five evenly spaced etch windows were opened to the Si(110

  16. Potential secondary inoculum sources of Botrytis cinerea and their influence on bunch rot development in dry Mediterranean climate vineyards.

    PubMed

    Calvo-Garrido, Carlos; Usall, Josep; Viñas, Inmaculada; Elmer, Philip Ag; Cases, Elena; Teixidó, Neus

    2014-06-01

    Epidemiological studies have described the life cycle of B. cinerea in vineyards. However, there is a lack of information on the several infection pathways and the quantitative relationships between secondary inoculum and bunch rot at harvest. Over two seasons, different spray programmes were used to determine key phenological stages for bunch rot development. Secondary inoculum sources within the bunch were also studied. The relative importance of flowering was evidenced in the given conditions, as treatments that included two fungicide applications at flowering were the most effective. In 2010, under conducive meteorological conditions for B. cinerea development after veraison, an extra application provided significantly higher control. Infections of necrotic tissues inside the bunch and latent infections developed mainly during flowering, while very low quantities of B. cinerea conidia were recovered from the fruit surface at veraison. Regression analysis correlated the incidence of latent infections and B. cinerea incidence on calyptras and aborted fruits at veraison with incidence of Botrytis bunch rot at harvest, presenting R2 = 0.95 for the overall regression model. This work points out key phenological stages during the season for bunch rot and B. cinerea secondary inoculum development and relates quantitatively inoculum sources at veraison to bunch rot at harvest. Recommendations for field applications of antibotrytic products are also suggested. © 2013 Society of Chemical Industry.

  17. Calculations of the conditions for bunch leakage in the Los Alamos proton storage ring

    NASA Astrophysics Data System (ADS)

    Neuffer, D.; Ohmori, C.

    1994-04-01

    Observations are consistent with the possibility of an "ep" instability in the Los Alamos Proton Storage Ring (PSR) with both bunched and unbunched beam. The instability requires electrons to be trapped within the beam, and calculations have shown that such trapping requires leakage of beam into the interbunch gap. Observationally, leakage of beam into the gap appears necessary for the onset of the instability. In this paper we present results of studies of the longitudinal beam dynamics at PSR parameters. The studies indicate that the combined effects of the rf buncher, longitudinal space charge, and injection mismatch are sufficient to cause the observed bunch leakage. Simulation results are presented and compared with PSR observations. Variations of PSR performance parameters are considered, and methods of improving bunch confinement are suggested and studied.

  18. Bunch length measurement at the Fermilab A0 photoinjector using a Martin-Puplett interferometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thurman-Keup, Randy; Fliller, Raymond Patrick; Kazakevich, Grigory

    2008-05-01

    We present preliminary measurements of the electron bunch lengths at the Fermilab A0 Photoinjector using a Martin-Puplett interferometer on loan from DESY. The photoinjector provides a relatively wide range of bunch lengths through laser pulse width adjustment and compression of the beam using a magnetic chicane. We present comparisons of data with simulations that account for diffraction distortions in the signal and discuss future plans for improving the measurement.

  19. Apprentice Machine Theory Outline.

    ERIC Educational Resources Information Center

    Connecticut State Dept. of Education, Hartford. Div. of Vocational-Technical Schools.

    This volume contains outlines for 16 courses in machine theory that are designed for machine tool apprentices. Addressed in the individual course outlines are the following topics: basic concepts; lathes; milling machines; drills, saws, and shapers; heat treatment and metallurgy; grinders; quality control; hydraulics and pneumatics;…

  20. Plasma irregularities caused by cycloid bunching of the CRRES G-2 barium release

    NASA Technical Reports Server (NTRS)

    Bernhardt, P. A.; Huba, J. D.; Pongratz, M. B.; Simons, D. J.; Wolcott, J. H.

    1993-01-01

    The Combined Release and Radiation Effects Satellite (CRRES) spacecraft carried a number of barium thermite canisters for release into the upper atmosphere. The barium release labeled G-2 showed evidence of curved irregularities not aligned with the ambient magnetic field B. The newly discovered curved structures can be explained by a process called cycloid bunching. Cycloid bunching occurs when plasma is created by photoionization of a neutral cloud injected at high velocity perpendicular to B. If the injection velocity is much larger than the expansion speed of the cloud, the ion trail will form a cycloid that has irregularities spaced by the product of the perpendicular injection speed and the ion gyroperiod, Images of the solar-illuminated barium ions are compared with the results of a three-dimensional kinetic simulation. Cycloid bunching is shown to be responsible for the rapid generation of both curved and field-aligned irregularities in the CRRES G-2 experiment.

  1. Negative-mass mitigation of Coulomb repulsion for terahertz undulator radiation of electron bunches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balal, N.; Magory, E.; Bandurkin, I. V.

    2015-10-19

    It is proposed to utilize the effect of negative mass for stabilization of the effective axial size of very dense and short electron bunches produced by photo-injector guns by using combined undulator and strong uniform magnetic fields. It has been shown that in the “abnormal” regime, an increase in the electron energy leads to a decrease in the axial velocity of the electron; due to the negative-mass effect, the Coulomb repulsion of electrons leads to their attraction and formation of a fairly stable and compact bunch “nucleus.” An undulator with a strong uniform magnetic field providing the negative-mass effect ismore » designed for an experimental source of terahertz radiation. The use of the negative-mass regime in this experiment should result in a long-pulse coherent spontaneous undulator emission from a short dense moderately relativistic (5.5 MeV) photo-injector electron bunch with a high (up to 20%) efficiency and a narrow frequency spectrum.« less

  2. Electron diffraction using ultrafast electron bunches from a laser-wakefield accelerator at kHz repetition rate

    NASA Astrophysics Data System (ADS)

    He, Z.-H.; Thomas, A. G. R.; Beaurepaire, B.; Nees, J. A.; Hou, B.; Malka, V.; Krushelnick, K.; Faure, J.

    2013-02-01

    We show that electron bunches in the 50-100 keV range can be produced from a laser wakefield accelerator using 10 mJ, 35 fs laser pulses operating at 0.5 kHz. It is shown that using a solenoid magnetic lens, the electron bunch distribution can be shaped. The resulting transverse and longitudinal coherence is suitable for producing diffraction images from a polycrystalline 10 nm aluminum foil. The high repetition rate, the stability of the electron source, and the fact that its uncorrelated bunch duration is below 100 fs make this approach promising for the development of sub-100 fs ultrafast electron diffraction experiments.

  3. Emittance growth due to static and radiative space charge forces in an electron bunch compressor

    NASA Astrophysics Data System (ADS)

    Talman, Richard; Malitsky, Nikolay; Stulle, Frank

    2009-01-01

    Evolution of short intense electron bunches passing through bunch-compressing beam lines is studied using the UAL (Unified Accelerator Libraries) string space charge formulation [R. Talman, Phys. Rev. ST Accel. Beams 7, 100701 (2004)PRABFM1098-440210.1103/PhysRevSTAB.7.100701; N. Malitsky and R. Talman, in Proceedings of the 9th European Particle Accelerator Conference, Lucerne, 2004 (EPS-AG, Lucerne, 2004); R. Talman, Accelerator X-Ray Sources (Wiley-VCH, Weinheim, 2006), Chap. 13]. Three major configurations are studied, with the first most important and studied in greatest detail (because actual experimental results are available and the same results have been simulated with other codes): (i) Experimental bunch compression results were obtained at CTF-II, the CERN test facility for the “Compact Linear Collider” using electrons of about 40 MeV. Previous simulations of these results have been performed (using TraFiC4* [A. Kabel , Nucl. Instrum. Methods Phys. Res., Sect. A 455, 185 (2000)NIMAER0168-900210.1016/S0168-9002(00)00729-4] and ELEGANT [M. Borland, Argonne National Laboratory Report No. LS-287, 2000]). All three simulations are in fair agreement with the data except that the UAL simulation predicts a substantial dependence of horizontal emittance γx on beam width (as controlled by the lattice βx function) at the compressor location. This is consistent with the experimental observations, but inconsistent with other simulations. Excellent agreement concerning dependence of bunch energy loss on bunch length and magnetic field strength [L. Groening , in Proceedings of the Particle Accelerator Conference, Chicago, IL, 2001 (IEEE, New York, 2001), http://groening.home.cern/groening/csr_00.htm] confirms our understanding of the role played by coherent synchrotron radiation (CSR). (ii) A controlled comparison is made between the predictions of the UAL code and those of CSRTrack [M. Dohlus and T. Limberg, in Proceedings of the 2004 FEL Conference, pp. 18

  4. Development of bunch shape monitor for high-intensity beam on the China ADS proton LINAC Injector II

    NASA Astrophysics Data System (ADS)

    Zhu, Guangyu; Wu, Junxia; Du, Ze; Zhang, Yong; Xue, Zongheng; Xie, Hongming; Wei, Yuan; Jing, Long; Jia, Huan

    2018-05-01

    The development, performance, and testing of the longitudinal bunch shape monitor, namely, the Fast Faraday Cup (FFC), are presented in this paper. The FFC is an invasive instrument controlled by a stepper motor, and its principle of operation is based on a strip line structure. The longitudinal bunch shape was determined by sampling a small part of the beam hitting the strip line through a 1-mm hole. The rise time of the detector reached 24 ps. To accommodate experiments that utilize high-intensity beams, the materials of the bunch shape monitor were chosen to sustain high temperatures. Water cooling was also integrated in the detector system to enhance heat transfer and prevent thermal damage. We also present an analysis of the heating caused by the beam. The bunch shape monitor has been installed and commissioned at the China ADS proton LINAC Injector II.

  5. Effect of Reinforcement Shape and Fiber Treatment on the Mechanical Properties of Oil Palm Empty Fruit Bunch-Polyethylene Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arif, M. F.; Yusoff, P. S. M. M.; Eng, K. K.

    2010-03-11

    High Density Polyethylene (HDPE) composites were fabricated using oil palm empty fruit bunch (EFB) as the reinforcing material. The effect of reinforcement shape on the tensile and flexural properties, that is 5 mm average length of short fiber and 325-400 {mu}m size distribution of particulate filler have been studied. Overall, EFB short fiber-HDPE composites yield higher mechanical properties compared to EFB particulate-HDPE composites. For both types of composites, considerable improvement showed in tensile and flexural modulus. However, the tensile strength decreased with increase in EFB content. Attempts to improve these properties using alkali and two types of silane, namely gamma-Methacryloxypropyltrimethoxysilanemore » (MTS) and vinyltriethoxysilane (VTS) were described. It is found that both types of silane enhanced the mechanical properties of composites. MTS showed better tensile strength compared to VTS. However, only marginal improvement obtained from alkali treatments.« less

  6. Magnetometer Application for GAMMA-400 Telescope Switching into the Mode with Increased Low Energy Charged Particles Intensity Registration

    NASA Astrophysics Data System (ADS)

    Khyzhniak, E. V.; Arkhangelskaja, I. V.; Chasovikov, E. N.; Arkhangelskiy, A. I.; Topchiev, N. P.

    GAMMA-400 is an international project of a high apogee orbital astrophysical observatory for studying the characteristics of high-energy gamma-emission, electrons/positrons and light nuclei fluxes. The energy range for γ-rays and electrons/positrons registration in the main aperture is from ∼0.1 GeV to ∼3.0 TeV. Also, this aperture allows high energy light nuclei fluxes characteristics investigation. Moreover, special aperture configuration allows registering of gamma-quanta, electrons (positrons) and light nuclei from the lateral directions too. The spacecraft GAMMA-400 orbit will be located in the Earth's magnetosphere and will pass front shock wave from magnetosphere interaction with the solar wind, turbulent-transition region, magnetopause and so on. During the satellite's movement through various Earth's magnetosphere regions its anticoincidence detectors will register high intensity fluxes of low energy charged particles captured by the magnetic field. The working area sections of GAMMA-400 detector systems used as anticoincidence shield are about 1 m2 each. The high intensity low energy charged particles flux influence on anticoincidence detectors should be taken into account during particle identification. This article presents a comparison between Earth's magnetosphere theoretical model according to SPENVIIS package and real data measured by detectors onboard THEMIS series satellites. The differences between these two datasets indicate that the calculated data are not sufficient to make short time predictions of variations of magnetic induction in the outer magnetosphere. A special trigger marker flag will be produced by GAMMA-400 counting and triggers signals formation system accordingly to the data of two onboard magnetometers. This flag's presence leads to special algorithms execution start, putting the plastic detectors into a dedicated working mode taking into account possible high count rates of external detector layers.

  7. Overview of Alternative Bunching and Current-shaping Techniques for Low-Energy Electron Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piot, Philippe

    2015-12-01

    Techniques to bunch or shape an electron beam at low energies (E <15 MeV) have important implications toward the realization of table-top radiation sources [1] or to the design of compact multi-user free-electron lasers[2]. This paper provides an overview of alternative methods recently developed including techniques such as wakefield-based bunching, space-charge-driven microbunching via wave-breaking [3], ab-initio shaping of the electron-emission process [4], and phase space exchangers. Practical applications of some of these methods to foreseen free-electron-laser configurations are also briefly discussed [5].

  8. Travel Agent Course Outline.

    ERIC Educational Resources Information Center

    British Columbia Dept. of Education, Victoria.

    Written for college entry-level travel agent training courses, this course outline can also be used for inservice training programs offered by travel agencies. The outline provides information on the work of a travel agent and gives clear statements on what learners must be able to do by the end of their training. Material is divided into eight…

  9. Method and apparatus for control of coherent synchrotron radiation effects during recirculation with bunch compression

    DOEpatents

    Douglas, David R; Tennant, Christopher

    2015-11-10

    A modulated-bending recirculating system that avoids CSR-driven breakdown in emittance compensation by redistributing the bending along the beamline. The modulated-bending recirculating system includes a) larger angles of bending in initial FODO cells, thereby enhancing the impact of CSR early on in the beam line while the bunch is long, and 2) a decreased bending angle in the final FODO cells, reducing the effect of CSR while the bunch is short. The invention describes a method for controlling the effects of CSR during recirculation and bunch compression including a) correcting chromatic aberrations, b) correcting lattice and CSR-induced curvature in the longitudinal phase space by compensating T.sub.566, and c) using lattice perturbations to compensate obvious linear correlations x-dp/p and x'-dp/p.

  10. PhD Dissertation Proposal - Introduction to Dark Mix Concept: Gamma Measurements of Capsule Mixture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meaney, Kevin Daniel

    Presentation slides: Intro to Inertial Confinement Fusion; Types of Mixture in ICF capsules; Previous mixture experiments; Dark Mix Concept; Measuring Dark Mix with Gamma Cherenkov Detector; Dissertation Outline.

  11. Pulse length of ultracold electron bunches extracted from a laser cooled gas

    PubMed Central

    Franssen, J. G. H.; Frankort, T. L. I.; Vredenbregt, E. J. D.; Luiten, O. J.

    2017-01-01

    We present measurements of the pulse length of ultracold electron bunches generated by near-threshold two-photon photoionization of a laser-cooled gas. The pulse length has been measured using a resonant 3 GHz deflecting cavity in TM110 mode. We have measured the pulse length in three ionization regimes. The first is direct two-photon photoionization using only a 480 nm femtosecond laser pulse, which results in short (∼15 ps) but hot (∼104 K) electron bunches. The second regime is just-above-threshold femtosecond photoionization employing the combination of a continuous-wave 780 nm excitation laser and a tunable 480 nm femtosecond ionization laser which results in both ultracold (∼10 K) and ultrafast (∼25 ps) electron bunches. These pulses typically contain ∼103 electrons and have a root-mean-square normalized transverse beam emittance of 1.5 ± 0.1 nm rad. The measured pulse lengths are limited by the energy spread associated with the longitudinal size of the ionization volume, as expected. The third regime is just-below-threshold ionization which produces Rydberg states which slowly ionize on microsecond time scales. PMID:28396879

  12. Unsteady Plasma Ejections from Hollow Accretion Columns of Galactic Neutron Stars as a Trigger for Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.

    1995-09-01

    We propose a model of gamma-ray bursts (GRBs) based on close Galactic neutron stars with accretion disks. We outline a simple mechanism of unsteady plasma ejections during episodic accretion events. The relative kinetic energy of ejected blobs can be converted into gamma-rays by internal shocks. The beaming of gamma-ray emission can be responsible for the observed isotropic angular distribution of GRBs.

  13. Using Computerized Outlines in Teaching American Government.

    ERIC Educational Resources Information Center

    Janda, Kenneth

    Because writing an outline on the chalk board wastes time and space, a computer program, a videoprojector, and a standard motion picture screen were used to outline a lecture to a large history class. PC-Outline is an outline program for IBM-compatible microcomputers which aids in processing outlines by inserting Roman numerals, letters, and…

  14. Instability of a witness bunch in a plasma bubble

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burov, A.; Lebedev, V.; Nagaitsev, S.

    2016-02-16

    The stability of a trailing witness bunch, accelerated by a plasma wake accelerator (PWA) in a blow-out regime, is discussed. The instability growth rate as well as the energy spread, required for BNS damping, are obtained. A relationship between the PWA power efficiency and the BNS energy spread is derived.

  15. Ralph Bunche: University and Diplomatic Legacies Fostering Innovative Paradigms

    ERIC Educational Resources Information Center

    Lindsay, Beverly

    2004-01-01

    This article is based upon the 2003 24th Annual Charles H. Thompson Lecture at Howard University. It devotes attention to the nexuses between Ralph Bunche's scholarly publications and diplomatic speeches and their relationships to contemporary university plans and programs to address ongoing crises. In-depth interviews with a university chancellor…

  16. AWAKE readiness for the study of the seeded self-modulation of a 400 GeV proton bunch

    NASA Astrophysics Data System (ADS)

    Muggli, P.; Adli, E.; Apsimon, R.; Asmus, F.; Baartman, R.; Bachmann, A.-M.; Barros Marin, M.; Batsch, F.; Bauche, J.; Berglyd Olsen, V. K.; Bernardini, M.; Biskup, B.; Blanco Vinuela, E.; Boccardi, A.; Bogey, T.; Bohl, T.; Bracco, C.; Braunmuller, F.; Burger, S.; Burt, G.; Bustamante, S.; Buttenschön, B.; Butterworth, A.; Caldwell, A.; Cascella, M.; Chevallay, E.; Chung, M.; Damerau, H.; Deacon, L.; Dexter, A.; Dirksen, P.; Doebert, S.; Farmer, J.; Fedosseev, V.; Feniet, T.; Fior, G.; Fiorito, R.; Fonseca, R.; Friebel, F.; Gander, P.; Gessner, S.; Gorgisyan, I.; Gorn, A. A.; Grulke, O.; Gschwendtner, E.; Guerrero, A.; Hansen, J.; Hessler, C.; Hofle, W.; Holloway, J.; Hüther, M.; Ibison, M.; Islam, M. R.; Jensen, L.; Jolly, S.; Kasim, M.; Keeble, F.; Kim, S.-Y.; Kraus, F.; Lasheen, A.; Lefevre, T.; LeGodec, G.; Li, Y.; Liu, S.; Lopes, N.; Lotov, K. V.; Martyanov, M.; Mazzoni, S.; Medina Godoy, D.; Mete, O.; Minakov, V. A.; Mompo, R.; Moody, J.; Moreira, M. T.; Mitchell, J.; Mutin, C.; Norreys, P.; Öz, E.; Ozturk, E.; Pauw, W.; Pardons, A.; Pasquino, C.; Pepitone, K.; Petrenko, A.; Pitmann, S.; Plyushchev, G.; Pukhov, A.; Rieger, K.; Ruhl, H.; Schmidt, J.; Shalimova, I. A.; Shaposhnikova, E.; Sherwood, P.; Silva, L.; Sosedkin, A. P.; Speroni, R.; Spitsyn, R. I.; Szczurek, K.; Thomas, J.; Tuev, P. V.; Turner, M.; Verzilov, V.; Vieira, J.; Vincke, H.; Welsch, C. P.; Williamson, B.; Wing, M.; Xia, G.; Zhang, H.; AWAKE Collaboration

    2018-01-01

    AWAKE is a proton-driven plasma wakefield acceleration experiment. We show that the experimental setup briefly described here is ready for systematic study of the seeded self-modulation of the 400 GeV proton bunch in the 10 m long rubidium plasma with density adjustable from 1 to 10× {10}14 cm-3. We show that the short laser pulse used for ionization of the rubidium vapor propagates all the way along the column, suggesting full ionization of the vapor. We show that ionization occurs along the proton bunch, at the laser time and that the plasma that follows affects the proton bunch.

  17. Beam manipulation with velocity bunching for PWFA applications

    NASA Astrophysics Data System (ADS)

    Pompili, R.; Anania, M. P.; Bellaveglia, M.; Biagioni, A.; Bisesto, F.; Chiadroni, E.; Cianchi, A.; Croia, M.; Curcio, A.; Di Giovenale, D.; Ferrario, M.; Filippi, F.; Galletti, M.; Gallo, A.; Giribono, A.; Li, W.; Marocchino, A.; Mostacci, A.; Petrarca, M.; Petrillo, V.; Di Pirro, G.; Romeo, S.; Rossi, A. R.; Scifo, J.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Zhu, J.

    2016-09-01

    The activity of the SPARC_LAB test-facility (LNF-INFN, Frascati) is currently focused on the development of new plasma-based accelerators. Particle accelerators are used in many fields of science, with applications ranging from particle physics research to advanced radiation sources (e.g. FEL). The demand to accelerate particles to higher and higher energies is currently limited by the effective efficiency in the acceleration process that requires the development of km-size facilities. By increasing the accelerating gradient, the compactness can be improved and costs reduced. Recently, the new technique which attracts main efforts relies on plasma acceleration. In the following, the current status of plasma-based activities at SPARC_LAB is presented. Both laser- and beam-driven schemes will be adopted with the aim to provide an adequate accelerating gradient (1-10 GV/m) while preserving the brightness of the accelerated beams to the level of conventional photo-injectors. This aspect, in particular, requires the use of ultra-short (< 100 fs) electron beams, consisting in one or more bunches. We show, with the support of simulations and experimental results, that such beams can be produced using RF compression by velocity-bunching.

  18. Unsteady Crystal Growth Due to Step-Bunch Cascading

    NASA Technical Reports Server (NTRS)

    Vekilov, Peter G.; Lin, Hong; Rosenberger, Franz

    1997-01-01

    Based on our experimental findings of growth rate fluctuations during the crystallization of the protein lysozym, we have developed a numerical model that combines diffusion in the bulk of a solution with diffusive transport to microscopic growth steps that propagate on a finite crystal facet. Nonlinearities in layer growth kinetics arising from step interaction by bulk and surface diffusion, and from step generation by surface nucleation, are taken into account. On evaluation of the model with properties characteristic for the solute transport, and the generation and propagation of steps in the lysozyme system, growth rate fluctuations of the same magnitude and characteristic time, as in the experiments, are obtained. The fluctuation time scale is large compared to that of step generation. Variations of the governing parameters of the model reveal that both the nonlinearity in step kinetics and mixed transport-kinetics control of the crystallization process are necessary conditions for the fluctuations. On a microscopic scale, the fluctuations are associated with a morphological instability of the vicinal face, in which a step bunch triggers a cascade of new step bunches through the microscopic interfacial supersaturation distribution.

  19. Tunable High-Intensity Electron Bunch Train Production Based on Nonlinear Longitudinal Space Charge Oscillation

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Yan, Lixin; Du, Yingchao; Zhou, Zheng; Su, Xiaolu; Zheng, Lianmin; Wang, Dong; Tian, Qili; Wang, Wei; Shi, Jiaru; Chen, Huaibi; Huang, Wenhui; Gai, Wei; Tang, Chuanxiang

    2016-05-01

    High-intensity trains of electron bunches with tunable picosecond spacing are produced and measured experimentally with the goal of generating terahertz (THz) radiation. By imposing an initial density modulation on a relativistic electron beam and controlling the charge density over the beam propagation, density spikes of several-hundred-ampere peak current in the temporal profile, which are several times higher than the initial amplitudes, have been observed for the first time. We also demonstrate that the periodic spacing of the bunch train can be varied continuously either by tuning launching phase of a radio-frequency gun or by tuning the compression of a downstream magnetic chicane. Narrow-band coherent THz radiation from the bunch train was also measured with μ J -level energies and tunable central frequency of the spectrum in the range of ˜0.5 to 1.6 THz. Our results pave the way towards generating mJ-level narrow-band coherent THz radiation and driving high-gradient wakefield-based acceleration.

  20. Tunable High-Intensity Electron Bunch Train Production Based on Nonlinear Longitudinal Space Charge Oscillation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhen; Yan, Lixin; Du, Yingchao

    2016-05-05

    High-intensity trains of electron bunches with tunable picosecond spacing are produced and measured experimentally with the goal of generating terahertz (THz) radiation. By imposing an initial density modulation on a relativistic electron beam and controlling the charge density over the beam propagation, density spikes of several-hundred-ampere peak current in the temporal profile, which are several times higher than the initial amplitudes, have been observed for the first time. We also demonstrate that the periodic spacing of the bunch train can be varied continuously either by tuning launching phase of a radiofrequency gun or by tuning the compression of a downstreammore » magnetic chicane. Narrow-band coherent THz radiation from the bunch train was also measured with μJ-level energies and tunable central frequency of the spectrum in the range of ~0.5 to 1.6 THz. Our results pave the way towards generating mJ-level narrow-band coherent THz radiation and driving high-gradient wakefield-based acceleration.« less

  1. Compensating effect of the coherent synchrotron radiation in bunch compressors

    NASA Astrophysics Data System (ADS)

    Jing, Yichao; Hao, Yue; Litvinenko, Vladimir N.

    2013-06-01

    Typical bunch compression for a high-gain free-electron laser (FEL) requires a large compression ratio. Frequently, this compression is distributed in multiple stages along the beam transport line. However, for a high-gain FEL driven by an energy recovery linac (ERL), compression must be accomplished in a single strong compressor located at the beam line’s end; otherwise the electron beam would be affected severely by coherent synchrotron radiation (CSR) in the ERL’s arcs. In such a scheme, the CSR originating from the strong compressors could greatly degrade the quality of the electron beam. In this paper, we present our design for a bunch compressor that will limit the effect of CSR on the e-beam’s quality. We discuss our findings from a study of such a compressor, and detail its potential for an FEL driven by a multipass ERL developed for the electron-Relativistic Heavy Ion Collider.

  2. Universality of Generalized Bunching and Efficient Assessment of Boson Sampling.

    PubMed

    Shchesnovich, V S

    2016-03-25

    It is found that identical bosons (fermions) show a generalized bunching (antibunching) property in linear networks: the absolute maximum (minimum) of the probability that all N input particles are detected in a subset of K output modes of any nontrivial linear M-mode network is attained only by completely indistinguishable bosons (fermions). For fermions K is arbitrary; for bosons it is either (i) arbitrary for only classically correlated bosons or (ii) satisfies K≥N (or K=1) for arbitrary input states of N particles. The generalized bunching allows us to certify in a polynomial in N number of runs that a physical device realizing boson sampling with an arbitrary network operates in the regime of full quantum coherence compatible only with completely indistinguishable bosons. The protocol needs only polynomial classical computations for the standard boson sampling, whereas an analytic formula is available for the scattershot version.

  3. Observation of coherently enhanced tunable narrow-band terahertz transition radiation from a relativistic sub-picosecond electron bunch train

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piot, P.; Maxwell, T. J.; Accelerator Physics Center, Fermi National Accelerator Laboratory, Batavia, Illinois 60510

    2011-06-27

    We experimentally demonstrate the production of narrow-band ({delta}f/f{approx_equal}20% at f{approx_equal}0.5THz) transition radiation with tunable frequency over [0.37, 0.86] THz. The radiation is produced as a train of sub-picosecond relativistic electron bunches transits at the vacuum-aluminum interface of an aluminum converter screen. The bunch train is generated via a transverse-to-longitudinal phase space exchange technique. We also show a possible application of modulated beams to extend the dynamical range of a popular bunch length diagnostic technique based on the spectral analysis of coherent radiation.

  4. Bunch Length Measurements Using CTR at the AWA with Comparison to Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neveu, N.; Spentzouris, L.; Halavanau, A.

    In this paper we present electron bunch length measurements at the Argonne Wakefield Accelerator (AWA) photoinjector facility. The AWA accelerator has a large dynamic charge density range, with electron beam charge varying between 0.1 nC - 100 nC, and laser spot size diameter at the cathode between 0.1 mm - 18 mm. The bunch length measurements were taken at different charge densities using a metallic screen and a Michelson interferometer to perform autocorrelation scans of the corresponding coherent transition radiation (CTR). A liquid helium-cooled 4K bolometer was used to register the interferometer signal. The experimental results are compared with OPAL-Tmore » numerical simulations.« less

  5. Biotechnology Outlines for Classroom Use.

    ERIC Educational Resources Information Center

    Paolella, Mary Jane

    1991-01-01

    Presents a course outline for the study of biotechnology at the high school or college level. The outline includes definitions, a history, and the vocabulary of biotechnology. Presents a science experiment to analyze the effects of restriction enzymes on DNA. (MDH)

  6. Demonstration of passive plasma lensing of a laser wakefield accelerated electron bunch

    DOE PAGES

    Kuschel, S.; Hollatz, D.; Heinemann, T.; ...

    2016-07-20

    We report on the first demonstration of passive all-optical plasma lensing using a two-stage setup. An intense femtosecond laser accelerates electrons in a laser wakefield accelerator (LWFA) to 100 MeV over millimeter length scales. By adding a second gas target behind the initial LWFA stage we introduce a robust and independently tunable plasma lens. We observe a density dependent reduction of the LWFA electron beam divergence from an initial value of 2.3 mrad, down to 1.4 mrad (rms), when the plasma lens is in operation. Such a plasma lens provides a simple and compact approach for divergence reduction well matchedmore » to the mm-scale length of the LWFA accelerator. The focusing forces are provided solely by the plasma and driven by the bunch itself only, making this a highly useful and conceptually new approach to electron beam focusing. Possible applications of this lens are not limited to laser plasma accelerators. Since no active driver is needed the passive plasma lens is also suited for high repetition rate focusing of electron bunches. As a result, its understanding is also required for modeling the evolution of the driving particle bunch in particle driven wake field acceleration.« less

  7. Current-horn suppression for reduced coherent-synchrotron-radiation-induced emittance growth in strong bunch compression

    NASA Astrophysics Data System (ADS)

    Charles, T. K.; Paganin, D. M.; Latina, A.; Boland, M. J.; Dowd, R. T.

    2017-03-01

    Control of coherent synchrotron radiation (CSR)-induced emittance growth is essential in linear accelerators designed to deliver very high brightness electron beams. Extreme current values at the head and tail of the electron bunch, resulting from strong bunch compression, are responsible for large CSR production leading to significant transverse projected emittance growth. The Linac Coherent Light Source (LCLS) truncates the head and tail current spikes which greatly improves free electron laser (FEL) performance. Here we consider the underlying dynamics that lead to formation of current spikes (also referred to as current horns), which has been identified as caustics forming in electron trajectories. We present a method to analytically determine conditions required to avoid the caustic formation and therefore prevent the current spikes from forming. These required conditions can be easily met, without increasing the transverse slice emittance, through inclusion of an octupole magnet in the middle of a bunch compressor.

  8. Transverse Mode Coupling Instability of the Bunch with Oscillating Wake Field and Space Charge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balbekov, V.

    Transverse mode coupling instability of a single bunch caused by oscillating wake field is considered in the paper. The instability threshold is found at different frequencies of the wake with space charge tune shift taken into account. The wake phase advance in the bunch length from 0 up tomore » $$4\\pi$$ is investigated. It is shown that the space charge can push the instability threshold up or down dependent on the phase advance. Transition region is investigated thoroughly, and simple asymptotic formulas for the threshold are represented.« less

  9. Alternative Outlining Techniques for ESL Composition.

    ERIC Educational Resources Information Center

    Hubbard, Philip

    Two methods of outlining are suggested for college-level students of English as a second language (ESL) who need the tools to master rhetorical patterns of academic written English that may be very different from those in their native languages. The two outlining techniques separate the four logically distinct tasks in the process of outlining:…

  10. Analytical model and error analysis of arbitrary phasing technique for bunch length measurement

    NASA Astrophysics Data System (ADS)

    Chen, Qushan; Qin, Bin; Chen, Wei; Fan, Kuanjun; Pei, Yuanji

    2018-05-01

    An analytical model of an RF phasing method using arbitrary phase scanning for bunch length measurement is reported. We set up a statistical model instead of a linear chirp approximation to analyze the energy modulation process. It is found that, assuming a short bunch (σφ / 2 π → 0) and small relative energy spread (σγ /γr → 0), the energy spread (Y =σγ 2) at the exit of the traveling wave linac has a parabolic relationship with the cosine value of the injection phase (X = cosφr|z=0), i.e., Y = AX2 + BX + C. Analogous to quadrupole strength scanning for emittance measurement, this phase scanning method can be used to obtain the bunch length by measuring the energy spread at different injection phases. The injection phases can be randomly chosen, which is significantly different from the commonly used zero-phasing method. Further, the systematic error of the reported method, such as the influence of the space charge effect, is analyzed. This technique will be especially useful at low energies when the beam quality is dramatically degraded and is hard to measure using the zero-phasing method.

  11. Gamma rays from active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Kazanas, Demosthenes

    1990-01-01

    The general properties of Active Galactic Nuclei (AGN) and quasars are reviewed with emphasis on their continuum spectral emission. Two general classes of models for the continuum are outlined and critically reviewed in view of the impending GRO (Gamma Ray Observatory) launch and observations. The importance of GRO in distinguishing between these models and in general in furthering the understanding of AGN is discussed. The very broad terms the status of the current understanding of AGN are discussed.

  12. Late-time structure of the Bunch-Davies de Sitter wavefunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anninos, Dionysios; Anous, Tarek; Freedman, Daniel Z.

    2015-11-30

    We examine the late time behavior of the Bunch-Davies wavefunction for interacting light fields in a de Sitter background. We use perturbative techniques developed in the framework of AdS/CFT, and analytically continue to compute tree and loop level contributions to the Bunch-Davies wavefunction. We consider self-interacting scalars of general mass, but focus especially on the massless and conformally coupled cases. We show that certain contributions grow logarithmically in conformal time both at tree and loop level. We also consider gauge fields and gravitons. The four-dimensional Fefferman-Graham expansion of classical asymptotically de Sitter solutions is used to show that the wavefunctionmore » contains no logarithmic growth in the pure graviton sector at tree level. Finally, assuming a holographic relation between the wavefunction and the partition function of a conformal field theory, we interpret the logarithmic growths in the language of conformal field theory.« less

  13. How gravitational-wave observations can shape the gamma-ray burst paradigm

    NASA Astrophysics Data System (ADS)

    Bartos, I.; Brady, P.; Márka, S.

    2013-06-01

    By reaching through shrouding blastwaves, efficiently discovering off-axis events and probing the central engine at work, gravitational wave (GW) observations will soon revolutionize the study of gamma-ray bursts. Already, analyses of GW data targeting gamma-ray bursts have helped constrain the central engines of selected events. Advanced GW detectors with significantly improved sensitivities are under construction. After outlining the GW emission mechanisms from gamma-ray burst progenitors (binary coalescences, stellar core collapses, magnetars and others) that may be detectable with advanced detectors, we review how GWs will improve our understanding of gamma-ray burst central engines, their astrophysical formation channels and the prospects and methods for different search strategies. We place special emphasis on multimessenger searches. To achieve the most scientific benefit, GW, electromagnetic and neutrino observations should be combined to provide greater discriminating power and science reach.

  14. RADIOMETRIC EQUIPMENT ON SECOND SPACESHIP-SATELLITE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papkov, S.F.; Pisarenko, N.F.; Savenko, I.A.

    1961-01-01

    Equipment installed on the second Soviet spaceshipsatellite to measure radiation and determine dose absorption is described. A scintillation counter recorded charged particles penetrating the skin of the spaceship and gamma quanta with energies exceeding 25 kev. Two CTC-5 gas-discharge counters also recorded charged particles, and, as the efficiency of gamma recording was low (below 10/sup -2/), a comparison of readings made it possible to evaluate the contribution of the charged particles and the gamma quanta, respectively, to the absorbed dose. A separate scintillation counter measured the energy flow of relatively soft charged particles. Electronic equipment was supplied with energy frommore » a 6( plus or minus 1)-v battery with power not over 0.5 w. A thorough check of the spaceship after its return to earth demonstrated that all the counters and electronie devices had retained their efficiency. A block diagram of the equipment is given. (OTS)« less

  15. SINGLE BUNCH BEAM BREAKUP - A GENERAL SOLUTION.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WANG,J.M.; MANE,S.R.; TOWNE,N.

    2000-06-26

    Caporaso, Barletta and Neil (CBN) found in a solution to the problem of the single-bunch beam breakup in a linac[1]. However, their method applies only to the case of a beam traveling in a strongly betatron-focused linac under the influence of the resistive wall impedance. We suggest in this paper a method for dealing with the same problem. Our methods is more general; it applies to the same problem under any impedance, and it applies to a linac with or without external betatron focusing.

  16. Generation and Characterization of Electron Bunches with Ramped Current Profiles in a Dual-Frequency Superconducting Linear Accelerator

    DOE PAGES

    Piot, P.; Behrens, C.; Gerth, C.; ...

    2011-09-07

    We report on the successful experimental generation of electron bunches with ramped current profiles. The technique relies on impressing nonlinear correlations in the longitudinal phase space using a superconducing radiofrequency linear accelerator operating at two frequencies and a current-enhancing dispersive section. The produced {approx} 700-MeV bunches have peak currents of the order of a kilo-Ampere. Data taken for various accelerator settings demonstrate the versatility of the method and in particular its ability to produce current profiles that have a quasi-linear dependency on the longitudinal (temporal) coordinate. The measured bunch parameters are shown, via numerical simulations, to produce gigavolt-per-meter peak acceleratingmore » electric fields with transformer ratios larger than 2 in dielectric-lined waveguides.« less

  17. Generation and characterization of electron bunches with ramped current profiles in a dual-frequency superconducting linear accelerator.

    PubMed

    Piot, P; Behrens, C; Gerth, C; Dohlus, M; Lemery, F; Mihalcea, D; Stoltz, P; Vogt, M

    2012-01-20

    We report on the successful experimental generation of electron bunches with ramped current profiles. The technique relies on impressing nonlinear correlations in the longitudinal phase space using a superconducing radio frequency linear accelerator operating at two frequencies and a current-enhancing dispersive section. The produced ~700-MeV bunches have peak currents of the order of a kilo-Ampère. Data taken for various accelerator settings demonstrate the versatility of the method and, in particular, its ability to produce current profiles that have a quasilinear dependency on the longitudinal (temporal) coordinate. The measured bunch parameters are shown, via numerical simulations, to produce gigavolt-per-meter peak accelerating electric fields with transformer ratios larger than 2 in dielectric-lined waveguides. © 2012 American Physical Society

  18. Effects of Bunch Rot (Botrytis cinerea) and Powdery Mildew (Erysiphe necator) Fungal Diseases on Wine Aroma.

    PubMed

    Lopez Pinar, Angela; Rauhut, Doris; Ruehl, Ernst; Buettner, Andrea

    2017-01-01

    This study aimed to characterize the effects of bunch rot and powdery mildew on the primary quality parameter of wine, the aroma. The influence of these fungal diseases was studied by comparative Aroma Extract Dilution Analyses (AEDA) and sensory tests. The effect of bunch rot was investigated on three grape varieties, namely White Riesling, Red Riesling and Gewürztraminer and that of powdery mildew on the hybrid Gm 8622-3; thereby, samples were selected that showed pronounced cases of infection to elaborate potential currently unknown effects. Both infections revealed aromatic differences induced by these fungi. The sensory changes were not associated with one specific compound only, but were due to quantitative variations of diverse substances. Bunch rot predominantly induced an increase in the intensities of peach-like/fruity, floral and liquor-like/toasty aroma notes. These effects were found to be related to variations in aroma substance composition as monitored via AEDA, mainly an increase in the FD factors of lactones and a general moderate increase of esters and alcohols. On the other hand, powdery mildew decreased the vanilla-like character of the wine while the remaining sensory attributes were rather unaffected. Correspondingly, FD factors of the main aroma constituents were either the same or only slightly modified by this disease. Moreover, bunch rot influenced the aroma profiles of the three varieties studied to a different degree. In hedonic evaluation, bunch rot-affected samples were rated as being more pleasant in comparison to their healthy controls in all three varieties while the powdery mildew-affected sample was rated as being less pleasant than its healthy control.

  19. Effects of bunch rot (Botrytis cinerea) and powdery mildew (Erysiphe necator) fungal diseases on wine aroma

    NASA Astrophysics Data System (ADS)

    Lopez Pinar, Angela; Rauhut, Doris; Ruehl, Ernst; Buettner, Andrea

    2017-03-01

    This study aimed to characterize the effects of bunch rot and powdery mildew on the primary quality parameter of wine, the aroma. The influence of these fungal diseases was studied by comparative Aroma Extract Dilution Analyses (AEDA) and sensory tests. The effect of bunch rot was investigated on three grape varieties, namely White Riesling, Red Riesling and Gewürztraminer and that of powdery mildew on the hybrid Gm 8622-3; thereby, samples were selected that showed pronounced cases of infection to elaborate potential currently unknown effects. Both infections revealed aromatic differences induced by these fungi. The sensory changes were not associated with one specific compound only, but were due to quantitative variations of diverse substances. Bunch rot predominantly induced an increase in the intensities of peach-like/fruity, floral and liquor-like/toasty aroma notes. These effects were found to be related to variations in aroma substance composition as monitored via AEDA, mainly an increase in the FD factors of lactones and a general moderate increase of esters and alcohols. On the other hand, powdery mildew decreased the vanilla-like character of the wine while the remaining sensory attributes were rather unaffected. Correspondingly, FD factors of the main aroma constituents were either the same or only slightly modified by this disease. Moreover, bunch rot influenced the aroma profiles of the three varieties studied to a different degree. In hedonic evaluation, bunch rot-affected samples were rated as being more pleasant in comparison to their healthy controls in all three varieties while the powdery mildew-affected sample was rated as being less pleasant than its healthy control.

  20. Bunching at the kink: implications for spending responses to health insurance contracts

    PubMed Central

    Einav, Liran; Finkelstein, Amy

    2017-01-01

    A large literature in empirical public finance relies on “bunching” to identify a behavioral response to non-linear incentives and to translate this response into an economic object to be used counterfactually. We conduct this type of analysis in the context of prescription drug insurance for the elderly in Medicare Part D, where a kink in the individual’s budget set generates substantial bunching in annual drug expenditure around the famous “donut hole”. We show that different alternative economic models can match the basic bunching pattern, but have very different quantitative implications for the counterfactual spending response to alternative insurance contracts. These findings illustrate the importance of modeling choices in mapping a compelling reduced form pattern into an economic object of interest. PMID:28785121

  1. Pseudo-single-bunch mode for a 100 MHz storage ring serving soft X-ray timing experiments

    NASA Astrophysics Data System (ADS)

    Olsson, T.; Leemann, S. C.; Georgiev, G.; Paraskaki, G.

    2018-06-01

    At many storage rings for synchrotron light production there is demand for serving both high-flux and timing users simultaneously. Today this is most commonly achieved by operating inhomogeneous fill patterns, but this is not preferable for rings that employ passive harmonic cavities to damp instabilities and increase Touschek lifetime. For these rings, inhomogeneous fill patterns could severely reduce the effect of the harmonic cavities. It is therefore of interest to develop methods to serve high-flux and timing users simultaneously without requiring gaps in the fill pattern. One such method is pseudo-single-bunch (PSB), where one bunch in the bunch train is kicked onto another orbit by a fast stripline kicker. The light emitted from the kicked bunch can then be separated by an aperture in the beamline. Due to recent developments in fast kicker design, PSB operation in multibunch mode is within reach for rings that operate with a 100 MHz RF system, such as the MAX IV and Solaris storage rings. This paper describes machine requirements and resulting performance for such a mode at the MAX IV 1.5 GeV storage ring. A solution for serving all beamlines is discussed as well as the consequences of beamline design and operation in the soft X-ray energy range.

  2. Digitized detection of gamma-ray signals concentrated in narrow time windows for transient positron annihilation lifetime spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinomura, A., E-mail: a.kinomura@aist.go.jp; Suzuki, R.; Oshima, N.

    2014-12-15

    A pulsed slow-positron beam generated by an electron linear accelerator was directly used for positron annihilation lifetime spectroscopy without any positron storage devices. A waveform digitizer was introduced to simultaneously capture multiple gamma-ray signals originating from positron annihilation events during a single accelerator pulse. The positron pulse was chopped and bunched with the chopper signals also sent to the waveform digitizer. Time differences between the annihilation gamma-ray and chopper peaks were calculated and accumulated as lifetime spectra in a computer. The developed technique indicated that positron annihilation lifetime spectroscopy can be performed in a 20 μs time window at amore » pulse repetition rate synchronous with the linear accelerator. Lifetime spectra of a Kapton sheet and a thermally grown SiO{sub 2} layer on Si were successfully measured. Synchronization of positron lifetime measurements with pulsed ion irradiation was demonstrated by this technique.« less

  3. Digitized detection of gamma-ray signals concentrated in narrow time windows for transient positron annihilation lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Kinomura, A.; Suzuki, R.; Oshima, N.; O'Rourke, B. E.; Nishijima, T.; Ogawa, H.

    2014-12-01

    A pulsed slow-positron beam generated by an electron linear accelerator was directly used for positron annihilation lifetime spectroscopy without any positron storage devices. A waveform digitizer was introduced to simultaneously capture multiple gamma-ray signals originating from positron annihilation events during a single accelerator pulse. The positron pulse was chopped and bunched with the chopper signals also sent to the waveform digitizer. Time differences between the annihilation gamma-ray and chopper peaks were calculated and accumulated as lifetime spectra in a computer. The developed technique indicated that positron annihilation lifetime spectroscopy can be performed in a 20 μs time window at a pulse repetition rate synchronous with the linear accelerator. Lifetime spectra of a Kapton sheet and a thermally grown SiO2 layer on Si were successfully measured. Synchronization of positron lifetime measurements with pulsed ion irradiation was demonstrated by this technique.

  4. A two-step method for retrieving the longitudinal profile of an electron bunch from its coherent radiation

    NASA Astrophysics Data System (ADS)

    Pelliccia, Daniele; Sen, Tanaji

    2014-11-01

    The coherent radiation emitted by an electron bunch provides a diagnostic signal that can be used to estimate its longitudinal distribution. Commonly only the amplitude of the intensity spectrum can be measured and the associated phase must be calculated to obtain the bunch profile. Very recently an iterative method was proposed to retrieve this phase. However ambiguities associated with non-uniqueness of the solution are always present in the phase retrieval procedure. Here we present a method to overcome the ambiguity problem by first performing multiple independent runs of the phase retrieval procedure and then second, sorting the good solutions by means of cross-correlation analysis. Results obtained with simulated bunches of various shapes and experimental measured spectra are presented, discussed and compared with the established Kramers-Kronig method. It is shown that even when the effect of the ambiguities is strong, as is the case for a double peak in the profile, the cross-correlation post-processing is able to filter out unwanted solutions. We show that, unlike the Kramers-Kronig method, the combined approach presented is able to faithfully reconstruct complicated bunch profiles.

  5. Grapevine bunch rots: impacts on wine composition, quality, and potential procedures for the removal of wine faults.

    PubMed

    Steel, Christopher C; Blackman, John W; Schmidtke, Leigh M

    2013-06-05

    Bunch rot of grape berries causes economic loss to grape and wine production worldwide. The organisms responsible are largely filamentous fungi, the most common of these being Botrytis cinerea (gray mold); however, there are a range of other fungi responsible for the rotting of grapes such as Aspergillus spp., Penicillium spp., and fungi found in subtropical climates (e.g., Colletotrichum spp. (ripe rot) and Greeneria uvicola (bitter rot)). A further group more commonly associated with diseases of the vegetative tissues of the vine can also infect grape berries (e.g., Botryosphaeriaceae, Phomopsis viticola ). The impact these fungi have on wine quality is poorly understood as are remedial practices in the winery to minimize wine faults. Compounds found in bunch rot affected grapes and wine are typically described as having mushroom, earthy odors and include geosmin, 2-methylisoborneol, 1-octen-3-ol, 2-octen-1-ol, fenchol, and fenchone. This review examines the current state of knowledge about bunch rot of grapes and how this plant disease complex affects wine chemistry. Current wine industry practices to minimize wine faults and gaps in our understanding of how grape bunch rot diseases affect wine production and quality are also identified.

  6. Natural Fiber Cut Machine Semi-Automatic Linear Motion System for Empty Fiber Bunches: Re-designing for Local Use

    NASA Astrophysics Data System (ADS)

    Asfarizal; Kasim, Anwar; Gunawarman; Santosa

    2017-12-01

    Empty Palm bunches of fiber is local ingredient in Indonesia that easy to obtain. Empty Palm bunches of fiber can be obtained from the palm oil industry such as in West Pasaman. The character of the empty Palm bunches of fiber that is strong and pliable has high-potential for particle board. To transform the large quantities of fiber become particles in size 0-10 mm requires a specially designed cut machine. Therefore, the machine is designed in two-stage system that is mechanical system, structure and cutting knife. Components that have been made, assembled and then tested to reveal the ability of the machine to cut. The results showed that the straight back and forth motion cut machine is able to cut out the empty oil palm bunches of fiber with a length 0-1 cm, 2 cm, 8 cm and the surface of the cut is not stringy. The cutting capacity is at a length of 2 cm in the result 24.4 (kg/h) and 8 cm obtained results of up to 84 (kg/h)

  7. Bunch by bunch beam monitoring in 3rd and 4th generation light sources by means of single crystal diamond detectors and quantum well devices

    NASA Astrophysics Data System (ADS)

    Antonelli, M.; Di Fraia, M.; Tallaire, A.; Achard, J.; Carrato, S.; Menk, R. H.; Cautero, G.; Giuressi, D.; Jark, W. H.; Biasiol, G.; Ganbold, T.; Oliver, K.; Callegari, C.; Coreno, M.; De Sio, A.; Pace, E.

    2012-10-01

    New generation Synchrotron Radiation (SR) sources and Free Electron Lasers (FEL) require novel concepts of beam diagnostics to keep photon beams under surveillance, asking for simultaneous position and intensity monitoring. To deal with high power load and short time pulses provided by these sources, novel materials and methods are needed for the next generation BPMs. Diamond is a promising material for the production of semitransparent in situ X-ray BPMs withstanding the high dose rates of SR rings and high energy FELs. We report on the development of freestanding, single crystal CVD diamond detectors. Performances in both low and radio frequency SR beam monitoring are presented. For the former, sensitivity deviation was found to be approximately 2%; a 0.05% relative precision in the intensity measurements and a 0.1-μm precision in the position encoding have been estimated. For the latter, single-shot characterizations revealed sub-nanosecond rise-times and spatial precisions below 6 μm, which allowed bunch-by-bunch monitoring in multi-bunch operation. Preliminary measurements at the Fermi FEL have been performed with this detector, extracting quantitative intensity and position information for FEL pulses (~ 100 fs, energy 12 ÷ 60 eV), with a long-term spatial precision of about 85 μm results on FEL radiation damages are also reported. Due to their direct, low-energy band gap, InGaAs quantum well devices too may be used as fast detectors for photons ranging from visible to X-ray. Results are reported which show the capability of a novel InGaAs/InAlAs device to detect intensity and position of 100-fs-wide laser pulses.

  8. Design of bunch compressing system with suppression of coherent synchrotron radiation for ATF upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jing, Yichao; Fedurin, Mikhail; Stratakis, Diktys

    2015-05-03

    One of the operation modes for Accelerator Test Facility (ATF) upgrade is to provide high peak current, high quality electron beam for users. Such operation requires a bunch compressing system with a very large compression ratio. The CSR originating from the strong compressors generally could greatly degrade the quality of the electron beam. In this paper, we present our design for the entire bunch compressing system that will limit the effect of CSR on the e-beam’s quality. We discuss and detail the performance from the start to end simulation of such a compressor for ATF.

  9. Upstream gyrophase bunched ions - A mechanism for creation at the bow shock and the growth of velocity space structure through gyrophase mixing

    NASA Technical Reports Server (NTRS)

    Gurgiolo, C.; Parks, G. K.; Mauk, G. H.

    1983-01-01

    The conditions necessary for the production of gyrophase bunched ions at the bow shock are developed. The conditions are applied to the reflection mechanism presented by Paschmann et al. (1980), showing that when in their model a portion of the incident parallel velocity is converted into reflected perpendicular velocity, the reflected particles are gyrophase bunched. The growth of velocity space structure in the gyrophase bunched distribution through gyrophase mixing is also explored. The structure is found to be similar to that reported in diffuse and dispersed ion events. This together with the close correlation of the observation of gyrophase bunched ions with diffuse and dispersed ions has led us to speculate that these two populations may be closely related.

  10. Tensile Mechanical Property of Oil Palm Empty Fruit Bunch Fiber Reinforced Epoxy Composites

    NASA Astrophysics Data System (ADS)

    Ghazilan, A. L. Ahmad; Mokhtar, H.; Shaik Dawood, M. S. I.; Aminanda, Y.; Ali, J. S. Mohamed

    2017-03-01

    Natural, short, untreated and randomly oriented oil palm empty fruit bunch fiber reinforced epoxy composites were manufactured using vacuum bagging technique with 20% fiber volume composition. The performance of the composite was evaluated as an alternative to synthetic or conventional reinforced composites. Tensile properties such as tensile strength, modulus of elasticity and Poisson’s ratio were compared to the tensile properties of pure epoxy obtained via tensile tests as per ASTM D 638 specifications using Universal Testing Machine INSTRON 5582. The tensile properties of oil palm empty fruit bunch fiber reinforced epoxy composites were lower compared to plain epoxy structure with the decrement in performances of 38% for modulus of elasticity and 61% for tensile strength.

  11. Ratchet without spatial asymmetry for controlling the motion of magnetic flux quanta using time-asymmetric drives.

    PubMed

    Cole, David; Bending, Simon; Savel'ev, Sergey; Grigorenko, Alexander; Tamegai, Tsuyoshi; Nori, Franco

    2006-04-01

    Initially inspired by biological motors, new types of nanodevice have been proposed for controlling the motion of nanoparticles. Structures incorporating spatially asymmetric potential profiles (ratchet substrates) have been realized experimentally to manipulate vortices in superconductors, particles in asymmetric silicon pores, as well as charged particles through artificial pores and arrays of optical tweezers. Using theoretical ideas, we demonstrate experimentally how to guide flux quanta in layered superconductors using a drive that is asymmetric in time instead of being asymmetric in space. By varying the time-asymmetry of the drive, we are able experimentally to increase or decrease the density of magnetic flux at the centre of superconducting samples that have no spatial ratchet substrate. This is the first ratchet without a ratchet potential. The experimental results can be well described by numerical simulations considering the dragging effect of two types of vortices penetrating layered superconductors in tilted magnetic fields.

  12. Enhanced Analysis Techniques for an Imaging Neutron and Gamma Ray Spectrometer

    NASA Astrophysics Data System (ADS)

    Madden, Amanda C.

    The presence of gamma rays and neutrons is a strong indicator of the presence of Special Nuclear Material (SNM). The imaging Neutron and gamma ray SPECTrometer (NSPECT) developed by the University of New Hampshire and Michigan Aerospace corporation detects the fast neutrons and prompt gamma rays from fissile material, and the gamma rays from radioactive material. The instrument operates as a double scatter device, requiring a neutron or a gamma ray to interact twice in the instrument. While this detection requirement decreases the efficiency of the instrument, it offers superior background rejection and the ability to measure the energy and momentum of the incident particle. These measurements create energy spectra and images of the emitting source for source identification and localization. The dual species instrument provides superior detection than a single species alone. In realistic detection scenarios, few particles are detected from a potential threat due to source shielding, detection at a distance, high background, and weak sources. This contributes to a small signal to noise ratio, and threat detection becomes difficult. To address these difficulties, several enhanced data analysis tools were developed. A Receiver Operating Characteristic Curve (ROC) helps set instrumental alarm thresholds as well as to identify the presence of a source. Analysis of a dual-species ROC curve provides superior detection capabilities. Bayesian analysis helps to detect and identify the presence of a source through model comparisons, and helps create a background corrected count spectra for enhanced spectroscopy. Development of an instrument response using simulations and numerical analyses will help perform spectra and image deconvolution. This thesis will outline the principles of operation of the NSPECT instrument using the double scatter technology, traditional analysis techniques, and enhanced analysis techniques as applied to data from the NSPECT instrument, and an

  13. Polarized e-bunch acceleration at Cornell RCS: Tentative tracking simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meot, F.; Ptitsyn, V.; Ranjbar, V.

    2017-10-19

    An option as an injector into eRHIC electron storage ring is a rapid-cyclic synchrotron (RCS). Rapid acceleration of polarized electron bunches has never been done, Cornell synchrotron might lend itself to dedicated tests, which is to be first explored based on numerical investigations. This paper is a very preliminary introduction to the topic.

  14. Atomic force microscopic study of step bunching and macrostep formation during the growth of L-arginine phosphate monohydrate single crystals

    NASA Astrophysics Data System (ADS)

    Sangwal, K.; Torrent-Burgues, J.; Sanz, F.; Gorostiza, P.

    1997-02-01

    The experimental results of the formation of step bunches and macrosteps on the {100} face of L-arginine phosphate monohydrate crystals grown from aqueous solutions at different supersaturations studied by using atomic force microscopy are described and discussed. It was observed that (1) the step height does not remain constant with increasing time but fluctuates within a particular range of heights, which depends on the region of step bunches, (2) the maximum height and the slope of bunched steps increases with growth time as well as supersaturation used for growth, and that (3) the slope of steps of relatively small heights is usually low with a value of about 8° and does not depend on the region of formation of step bunches, but the slope of steps of large heights is up to 21°. Analysis of the experimental results showed that (1) at a particular value of supersaturation the ratio of the average step height to the average step spacing is a constant, suggesting that growth of the {100} face of L-arginine phosphate monohydrate crystals occurs by direct integration of growth entities to growth steps, and that (2) the formation of step bunches and macrosteps follows the dynamic theory of faceting, advanced by Vlachos et al.

  15. A compact source for bunches of singly charged atomic ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murböck, T.; Birkl, G.; Schmidt, S.

    2016-04-15

    We have built, operated, and characterized a compact ion source for low-energy bunches of singly charged atomic ions in a vacuum beam line. It is based on atomic evaporation from an electrically heated oven and ionization by electron impact from a heated filament inside a grid-based ionization volume. An adjacent electrode arrangement is used for ion extraction and focusing by applying positive high-voltage pulses to the grid. The method is particularly suited for experimental environments which require low electromagnetic noise. It has proven simple yet reliable and has been used to produce μs-bunches of up to 10{sup 6} Mg{sup +}more » ions at a repetition rate of 1 Hz. We present the concept, setup and characterizing measurements. The instrument has been operated in the framework of the SpecTrap experiment at the HITRAP facility at GSI/FAIR to provide Mg{sup +} ions for sympathetic cooling of highly charged ions by laser-cooled {sup 24}Mg{sup +}.« less

  16. AN ONLINE, RADIATION HARD PROTON ENERGY-RESOLVING SCINTILLATOR STACK FOR LASER-DRIVEN PROTON BUNCHES.

    PubMed

    Englbrecht, Franz Siegfried; Würl, Matthias; Olivari, Francesco; Ficorella, Andrea; Kreuzer, Christian; Lindner, Florian H; Palma, Matteo Dalla; Pancheri, Lucio; Betta, Gian-Franco Dalla; Schreiber, Jörg; Quaranta, Alberto; Parodi, Katia

    2018-02-03

    We report on a scintillator-based online detection system for the spectral characterization of polychromatic proton bunches. Using up to nine stacked layers of radiation hard polysiloxane scintillators, coupled to and readout edge-on by a large area pixelated CMOS detector, impinging polychromatic proton bunches were characterized. The energy spectra were reconstructed using calibration data and simulated using Monte-Carlo simulations. Despite the scintillator stack showed some problems like thickness inhomogeneities and unequal layer coupling, the prototype allows to obtain a first estimate of the energy spectrum of proton beams. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Upgrading the Digital Electronics of the PEP-II Bunch Current Monitors at the Stanford Linear Accelerator Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kline, Josh; /SLAC

    2006-08-28

    The testing of the upgrade prototype for the bunch current monitors (BCMs) in the PEP-II storage rings at the Stanford Linear Accelerator Center (SLAC) is the topic of this paper. Bunch current monitors are used to measure the charge in the electron/positron bunches traveling in particle storage rings. The BCMs in the PEP-II storage rings need to be upgraded because components of the current system have failed and are known to be failure prone with age, and several of the integrated chips are no longer produced making repairs difficult if not impossible. The main upgrade is replacing twelve old (1995)more » field programmable gate arrays (FPGAs) with a single Virtex II FPGA. The prototype was tested using computer synthesis tools, a commercial signal generator, and a fast pulse generator.« less

  18. Outlining Techniques That Help Disabled Readers.

    ERIC Educational Resources Information Center

    Giordano, Gerard

    1982-01-01

    As alternatives to hierarchical outlining, pictorial, topical, and critical outlining kinesthetically reinforce reading comprehension and can be useful in helping older students who are learning disabled or poor readers. Examples of each approach are given. (CL)

  19. Putting time into proof outlines

    NASA Technical Reports Server (NTRS)

    Schneider, Fred B.; Bloom, Bard; Marzullo, Keith

    1993-01-01

    A logic for reasoning about timing properties of concurrent programs is presented. The logic is based on Hoare-style proof outlines and can handle maximal parallelism as well as certain resource-constrained execution environments. The correctness proof for a mutual exclusion protocol that uses execution timings in a subtle way illustrates the logic in action. A soundness proof using structural operational semantics is outlined in the appendix.

  20. Formation and acceleration of uniformly filled ellipsoidal electron bunches obtained via space-charge-driven expansion from a cesium-telluride photocathode

    NASA Astrophysics Data System (ADS)

    Piot, P.; Sun, Y.-E.; Maxwell, T. J.; Ruan, J.; Secchi, E.; Thangaraj, J. C. T.

    2013-01-01

    We report the experimental generation, acceleration, and characterization of a uniformly filled electron bunch obtained via space-charge-driven expansion (often referred to as “blow-out regime”) in an L-band (1.3-GHz) radiofrequency photoinjector. The beam is photoemitted from a cesium-telluride semiconductor photocathode using a short (<200fs) ultraviolet laser pulse. The produced electron bunches are characterized with conventional diagnostics and the signatures of their ellipsoidal character are observed. We especially demonstrate the production of ellipsoidal bunches with charges up to ˜0.5nC corresponding to a ˜20-fold increase compared to previous experiments with metallic photocathodes.

  1. Dissolving process of a cellulose bunch in ionic liquids: a molecular dynamics study.

    PubMed

    Li, Yao; Liu, Xiaomin; Zhang, Suojiang; Yao, Yingying; Yao, Xiaoqian; Xu, Junli; Lu, Xingmei

    2015-07-21

    In recent years, a variety of ionic liquids (ILs) were found to be capable of dissolving cellulose and mechanistic studies were also reported. However, there is still a lack of detailed information at the molecular level. Here, long time molecular dynamics simulations of cellulose bunch in 1-ethyl-3-methylimidazolium acetate (EmimAc), 1-ethyl-3-methylimidazolium chloride (EmimCl), 1-butyl-3-methylimidazolium chloride (BmimCl) and water were performed to analyze the inherent interaction and dissolving mechanism. Complete dissolution of the cellulose bunch was observed in EmimAc, while little change took place in EmimCl and BmimCl, and nothing significant happened in water. The deconstruction of the hydrogen bond (H-bond) network in cellulose was found and analyzed quantitatively. The synergistic effect of cations and anions was revealed by analyzing the whole dissolving process. Initially, cations bind to the side face of the cellulose bunch and anions insert into the cellulose strands to form H-bonds with hydroxyl groups. Then cations start to intercalate into cellulose chains due to their strong electrostatic interaction with the entered anions. The H-bonds formed by Cl(-) cannot effectively separate the cellulose chain and that is the reason why EmimCl and BmimCl dissolve cellulose more slowly. These findings deepen people's understanding on how ILs dissolve cellulose and would be helpful for designing new efficient ILs to dissolve cellulose.

  2. A combined source of electron bunches and microwave power

    NASA Astrophysics Data System (ADS)

    Xie, J. L.; Wang, F. Y.; Yang, X. P.; Shen, B.; Gu, W.; Zhang, L. W.

    2003-12-01

    In this article, the possibility of using a high power klystron amplifier simultaneously as a microwave power source as usual and an electron bunches source by extracting the spent beam with a magnet and also as an oscillator by feedback is investigated. The purpose of this study is to demonstrate the feasibility of constructing a very compact electron linear accelerator or for other applications of electron bunches. The feasibility of the idea was first examined by computer simulation of the electron motion in a 5 MW klystron and the characteristics of the klystron spent beam. Experimental study was then carried out by installing a radio frequency cavity and a Faraday cage in sequence at the exit end of a bending magnet located at the top of the klystron collector. The energy and current of the chopped spent electron beam can then be measured. By properly choosing the feedback circuit elements, the frequency stability of the klystron in oscillator mode was proved to be good enough for linac operation. According to the results presented in this article, it is evident that an extremely compact linac for research and education with better affordability can be constructed to promote the applications of linacs.

  3. A New Frequency-Domain Method for Bunch Length Measurement

    NASA Astrophysics Data System (ADS)

    Ferianis, M.; Pros, M.

    1997-05-01

    A new method for bunch length measurements has been developed at Elettra. It is based on a spectral observation of the synchrotron radiation light pulses. The single pulse spectrum is shaped by means of an optical process which gives the method an increased sensitivity compared to the usual spectral observations. Some simulations have been carried out to check the method in non-ideal conditions. The results of the first measurements are also presented.

  4. Impurity effects in crystal growth from solutions: Steady states, transients and step bunch motion

    NASA Astrophysics Data System (ADS)

    Ranganathan, Madhav; Weeks, John D.

    2014-05-01

    We analyze a recently formulated model in which adsorbed impurities impede the motion of steps in crystals grown from solutions, while moving steps can remove or deactivate adjacent impurities. In this model, the chemical potential change of an atom on incorporation/desorption to/from a step is calculated for different step configurations and used in the dynamical simulation of step motion. The crucial difference between solution growth and vapor growth is related to the dependence of the driving force for growth of the main component on the size of the terrace in front of the step. This model has features resembling experiments in solution growth, which yields a dead zone with essentially no growth at low supersaturation and the motion of large coherent step bunches at larger supersaturation. The transient behavior shows a regime wherein steps bunch together and move coherently as the bunch size increases. The behavior at large line tension is reminiscent of the kink-poisoning mechanism of impurities observed in calcite growth. Our model unifies different impurity models and gives a picture of nonequilibrium dynamics that includes both steady states and time dependent behavior and shows similarities with models of disordered systems and the pinning/depinning transition.

  5. Advanced simulation study on bunch gap transient effect

    NASA Astrophysics Data System (ADS)

    Kobayashi, Tetsuya; Akai, Kazunori

    2016-06-01

    Bunch phase shift along the train due to a bunch gap transient is a concern in high-current colliders. In KEKB operation, the measured phase shift along the train agreed well with a simulation and a simple analytical form in most part of the train. However, a rapid phase change was observed at the leading part of the train, which was not predicted by the simulation or by the analytical form. In order to understand the cause of this observation, we have developed an advanced simulation, which treats the transient loading in each of the cavities of the three-cavity system of the accelerator resonantly coupled with energy storage (ARES) instead of the equivalent single cavities used in the previous simulation, operating in the accelerating mode. In this paper, we show that the new simulation reproduces the observation, and clarify that the rapid phase change at the leading part of the train is caused by a transient loading in the three-cavity system of ARES. KEKB is being upgraded to SuperKEKB, which is aiming at 40 times higher luminosity than KEKB. The gap transient in SuperKEKB is investigated using the new simulation, and the result shows that the rapid phase change at the leading part of the train is much larger due to higher beam currents. We will also present measures to mitigate possible luminosity reduction or beam performance deterioration due to the rapid phase change caused by the gap transient.

  6. Tailored electron bunches with smooth current profiles for enhanced transformer ratios in beam-driven acceleration

    DOE PAGES

    Lemery, F.; Piot, P.

    2015-08-03

    Collinear high-gradient O(GV/m) beam-driven wakefield methods for charged-particle acceleration could be critical to the realization of compact, cost-efficient, accelerators, e.g., in support of TeV-scale lepton colliders or multiple-user free-electron laser facilities. To make these options viable, the high accelerating fields need to be complemented with large transformer ratios >2, a parameter characterizing the efficiency of the energy transfer between a wakefield-exciting “drive” bunch to an accelerated “witness” bunch. While several potential current distributions have been discussed, their practical realization appears challenging due to their often discontinuous nature. In this paper we propose several alternative continuously differentiable (smooth) current profiles whichmore » support enhanced transformer ratios. We especially demonstrate that one of the devised shapes can be implemented in a photo-emission electron source by properly shaping the photocathode-laser pulse. We finally discuss a possible superconducting linear-accelerator concept that could produce shaped drive bunches at high-repetition rates to drive a dielectric-wakefield accelerator with accelerating fields on the order of ~60 MV/m and a transformer ratio ~5 consistent with a recently proposed multiuser free-electron laser facility.« less

  7. Tailored electron bunches with smooth current profiles for enhanced transformer ratios in beam-driven acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemery, F.; Piot, P.

    Collinear high-gradient O(GV/m) beam-driven wakefield methods for charged-particle acceleration could be critical to the realization of compact, cost-efficient, accelerators, e.g., in support of TeV-scale lepton colliders or multiple-user free-electron laser facilities. To make these options viable, the high accelerating fields need to be complemented with large transformer ratios >2, a parameter characterizing the efficiency of the energy transfer between a wakefield-exciting “drive” bunch to an accelerated “witness” bunch. While several potential current distributions have been discussed, their practical realization appears challenging due to their often discontinuous nature. In this paper we propose several alternative continuously differentiable (smooth) current profiles whichmore » support enhanced transformer ratios. We especially demonstrate that one of the devised shapes can be implemented in a photo-emission electron source by properly shaping the photocathode-laser pulse. We finally discuss a possible superconducting linear-accelerator concept that could produce shaped drive bunches at high-repetition rates to drive a dielectric-wakefield accelerator with accelerating fields on the order of ~60 MV/m and a transformer ratio ~5 consistent with a recently proposed multiuser free-electron laser facility.« less

  8. Measurement of U-235 Fission Neutron Spectra Using a Multiple Gamma Coincidence Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji Chuncheng; Kegel, G.H.R.; Egan, J.J.

    2005-05-24

    The Los Alamos Model of Madland and Nix predicts the shape of the fission neutron energy spectrum for incident primary neutrons of different energies. Verifications of the model normally are limited to measurements of the fission neutron spectra for energies higher than that of the primary neutrons because the low-energy spectrum is distorted by the admixture of elastically and inelastically scattered neutrons. This situation can be remedied by using a measuring technique that separates fission from scattering events. One solution consists of using a fissile sample so thin that fission fragments can be observed indicating the occurrence of a fissionmore » event. A different approach is considered in this paper. It has been established that a fission event is accompanied by the emission of between seven and eight gamma rays, while in a scattering interaction, between zero and two gammas are emitted, so that a gamma multiplicity detector should supply a datum to distinguish a fission event from a scattering event. We proceed as follows: A subnanosecond pulsed and bunched proton beam from the UML Van de Graaff generates nearly mono-energetic neutrons by irradiating a thin metallic lithium target. The neutrons irradiate a 235U sample. Emerging neutron energies are measured with a time-of-flight spectrometer. A set of four BaF2 detectors is located close to the 235U sample. These detectors together with their electronic components identify five different events for each neutron detected, i.e., whether four, three, two, one, or none of the BaF2 detectors received one (or more) gamma rays. We present work, preliminary to the final measurements, involving feasibility considerations based on gamma-ray coincidence measurements with four BaF2 detectors, and the design of a Fission-Scattering Discriminator under construction.« less

  9. Electrical Trades. Suggested Basic Course Outline.

    ERIC Educational Resources Information Center

    Texas A and M Univ., College Station. Vocational Instructional Services.

    This course outline is intended to assist vocational instructors in developing and teaching a course in the electrical trades. Addressed in the individual sections of the outline are the following topics: orientation (a course overview, job orientation, safety, first aid, and Vocational Industrial Clubs of America); basic skills (mathematics,…

  10. Time evolution of gamma rays from supernova remnants

    NASA Astrophysics Data System (ADS)

    Gaggero, Daniele; Zandanel, Fabio; Cristofari, Pierre; Gabici, Stefano

    2018-04-01

    We present a systematic phenomenological study focused on the time evolution of the non-thermal radiation - from radio waves to gamma rays - emitted by typical supernova remnants via hadronic and leptonic mechanisms, for two classes of progenitors: thermonuclear and core-collapse. To this aim, we develop a numerical tool designed to model the evolution of the cosmic ray spectrum inside a supernova remnant, and compute the associated multi-wavelength emission. We demonstrate the potential of this tool in the context of future population studies based on large collection of high-energy gamma-ray data. We discuss and explore the relevant parameter space involved in the problem, and focus in particular on their impact on the maximum energy of accelerated particles, in order to study the effectiveness and duration of the PeVatron phase. We outline the crucial role of the ambient medium through which the shock propagates during the remnant evolution. In particular, we point out the role of dense clumps in creating a significant hardening in the hadronic gamma-ray spectrum.

  11. THE ENGINES BEHIND SUPERNOVAE AND GAMMA-RAY BURSTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FRYER, CHRISTOPHER LEE

    2007-01-23

    The authors review the different engines behind supernova (SNe) and gamma-ray bursts (GRBs), focusing on those engines driving explosions in massive stars: core-collapse SNe and long-duration GRBs. Convection and rotation play important roles in the engines of both these explosions. They outline the basic physics and discuss the wide variety of ways scientists have proposed that this physics can affect the supernova explosion mechanism, concluding with a review of the current status in these fields.

  12. Method for maximizing the brightness of the bunches in a particle injector by converting a highly space-charged beam to a relativistic and emittance-dominated beam

    DOEpatents

    Hannon, Fay

    2016-08-02

    A method for maximizing the brightness of the bunches in a particle injector by converting a highly space-charged beam to a relativistic and emittance-dominated beam. The method includes 1) determining the bunch charge and the initial kinetic energy of the highly space-charge dominated input beam; 2) applying the bunch charge and initial kinetic energy properties of the highly space-charge dominated input beam to determine the number of accelerator cavities required to accelerate the bunches to relativistic speed; 3) providing the required number of accelerator cavities; and 4) setting the gradient of the radio frequency (RF) cavities; and 5) operating the phase of the accelerator cavities between -90 and zero degrees of the sinusoid of phase to simultaneously accelerate and bunch the charged particles to maximize brightness, and until the beam is relativistic and emittance-dominated.

  13. Radiation of charged particle bunches in corrugated waveguides with small period

    NASA Astrophysics Data System (ADS)

    Tyukhtin, A. V.; Vorobev, V. V.; Akhmatova, E. R.; Antipov, S.

    2018-04-01

    Bunch radiation in periodical waveguides was mainly analyzed for situations when wavelengths are comparable to the structure period (Smith-Purcell emission). However, it is also interesting to study long wave radiation with wavelengths which are much greater than the structure period. In this paper, the electromagnetic field is analyzed using the method of equivalent boundary conditions. According to this approach, the exact boundary conditions on the complex periodic surface are replaced with certain equivalent conditions which must be fulfilled on the smooth surface. We consider a vacuum circular waveguide with a corrugated conductive wall (corrugation has rectangular form). The charge moves along the waveguide axis. The period and the depth of corrugation are much less than the waveguide radius and wavelengths under consideration. Expressions for the full field components and the wave field components are obtained. It is established that radiation consists of the only one TM waveguide mode which is excited if the charge velocity is more than certain limit value. Dependencies of the frequency and amplitude of the mode on the charge velocity and parameters of corrugation are analyzed. It is demonstrated that typical amplitude of waveguide mode from the ultra relativistic bunch has the same order as one in the ordinary regular waveguides with dielectric filling. In order to verify the method applied in this work we have simulated the electromagnetic field using the CST Particle Studio. For this purpose, we have considered the charged particle bunch with negligible thickness and Gaussian longitudinal distribution. It has been shown that the coincidence between theoretical and simulated results is good. This fact confirms that the theory based on the equivalent boundary conditions adequately describe the radiation process in the situation under consideration. The obtained results can be useful for development of methods of the electromagnetic radiation generation and

  14. Printing Trades. Suggested Basic Course Outline.

    ERIC Educational Resources Information Center

    Texas A and M Univ., College Station. Vocational Instructional Services.

    This course outline is intended to assist vocational instructors in developing and teaching a course in the printing trades. The outline, which has been written in accordance with the block progressive method of teaching, addresses the following areas: orientation (a course overview, youth leadership, and theory); layout and design (type, format,…

  15. Analysis of coupled-bunch instabilities for the NSLS-II storage ring with a 500MHz 7-cell PETRA-III cavity

    DOE PAGES

    Bassi, G.; Blednykh, A.; Cheng, W.; ...

    2015-12-11

    We present the NSLS-II storage ring that is designed to operate with superconducting RF-cavities with the aim to store an average current of 500 mA distributed in 1080 bunches, with a gap in the uniform filling for ion clearing. At the early stage of the commissioning (phase 1), characterized by a bare lattice without damping wigglers and without Landau cavities, a normal conducting 7-cell PETRA-III RF-cavity structure has been installed with the goal to store an average current of 25 mA. In this paper we discuss our analysis of coupled-bunch instabilities driven by the Higher Order Modes (HOMs) of themore » 7-cell PETRA-III RF-cavity. As a cure of the instabilities, we apply a well-known scheme based on a proper detuning of the HOMs frequencies based upon cavity temperature change, and the use of the beneficial effect of the slow head–tail damping at positive chromaticity to increase the transverse coupled-bunch instability thresholds. In addition, we discuss measurements of coupled-bunch instabilities observed during the phase 1 commissioning of the NSLS-II storage ring. In our analysis we rely, in the longitudinal case, on the theory of coupled-bunch instability for uniform fillings, while in the transverse case we complement our studies with numerical simulations with OASIS, a novel parallel particle tracking code for self-consistent simulations of collective effects driven by short and long-range wakefields.« less

  16. Ada training evaluation and recommendations from the Gamma Ray Observatory Ada Development Team

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The Ada training experiences of the Gamma Ray Observatory Ada development team are related, and recommendations are made concerning future Ada training for software developers. Training methods are evaluated, deficiencies in the training program are noted, and a recommended approach, including course outline, time allocation, and reference materials, is offered.

  17. Run 16 Tandem gold performance in the injectors and possible improvement with AGS type 6:3:1 bunch merge in the Booster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeno, Keith

    2016-10-21

    During Run 16 the Tandem was used as the Gold pre-injector for a brief time so that RHIC could continue running while EBIS was down for repairs. Given the time constraints, the setup was largely derived from the EBIS Au setup. The EBIS Au setup used a 4:2:1 bunch merge in the Booster and a 12:6:2 bunch merge in the AGS.1 This note will describe the Tandem Au setup and compare it to that used for EBIS Au. The bunch merge in the Booster for Tandem Au did not work well, and it seems likely that the performance would’ve beenmore » significantly better if it did. An AGS type 6:3:1 merge in the Booster is described which might improve matters.2 Somewhat speculative estimates for the AGS bunch intensity and emittance, if that merge were successful in reducing the Booster extraction emittance to EBIS Au levels, are also given for several potential setups. Using 6 Booster loads from the Tandem, the AGS bunch intensity at extraction reached about 2.5e9 ions with a longitudinal emittance (ε) of about 0.59 eV·s/n.3 Using 12 Booster loads from EBIS, the peak bunch intensity and ε was about 3.1e9 ions and 0.75 eV·s/n, respectively. A 6.4 sec supercycle was used for both at the time, but the Tandem Au supercycle (barring any potential issues with Tandem) could probably have been reduced to about 4.6 sec.« less

  18. Ion response to relativistic electron bunches in the blowout regime of laser-plasma accelerators.

    PubMed

    Popov, K I; Rozmus, W; Bychenkov, V Yu; Naseri, N; Capjack, C E; Brantov, A V

    2010-11-05

    The ion response to relativistic electron bunches in the so called bubble or blowout regime of a laser-plasma accelerator is discussed. In response to the strong fields of the accelerated electrons the ions form a central filament along the laser axis that can be compressed to densities 2 orders of magnitude higher than the initial particle density. A theory of the filament formation and a model of ion self-compression are proposed. It is also shown that in the case of a sharp rear plasma-vacuum interface the ions can be accelerated by a combination of three basic mechanisms. The long time ion evolution that results from the strong electrostatic fields of an electron bunch provides a unique diagnostic of laser-plasma accelerators.

  19. Ex situ investigation of the step bunching on crystal surfaces by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Krasinski, Mariusz J.

    1997-07-01

    We are describing ex situ observation of step bunching on the surfaces of solution grown potassium dihydrogen phosphate (KDP) and sodium chlorate monocrystals. The measurements have been done with the use of atomic force microscope. The use of this equipment allowed us to see directly the structure of macrosteps. Observation confirmed the existence of step pinning which is one of the proposed mechanisms of step bunching. Despite the very high resolution of AFM it was not possible to determine the nature of pinning point. The monatomic steps on KDP and sodium chlorate crystal surfaces are mainly one unit cell high what seems to be the result of the steps pairing. The origin of observed step pattern is discussed in frames of existing theories.

  20. Radiation shielding for gamma stereotactic radiosurgery units

    PubMed Central

    2007-01-01

    Shielding calculations for gamma stereotactic radiosurgery units are complicated by the fact that the radiation is highly anisotropic. Shielding design for these devices is unique. Although manufacturers will answer questions about the data that they provide for shielding evaluation, they will not perform calculations for customers. More than 237 such units are now installed in centers worldwide. Centers installing a gamma radiosurgery unit find themselves in the position of having to either invent or reinvent a method for performing shielding design. This paper introduces a rigorous and conservative method for barrier design for gamma stereotactic radiosurgery treatment rooms. This method should be useful to centers planning either to install a new unit or to replace an existing unit. The method described here is consistent with the principles outlined in Report No. 151 from the U.S. National Council on Radiation Protection and Measurements. In as little as 1 hour, a simple electronic spreadsheet can be set up, which will provide radiation levels on planes parallel to the barriers and 0.3 m outside the barriers. PACS numbers: 87.53.Ly, 87.56By, 87.52Tr

  1. Prospects for compact high-intensity laser synchrotron x-ray and gamma sources

    NASA Astrophysics Data System (ADS)

    Pogorelsky, I. V.

    1997-03-01

    A laser interacting with a relativistic electron beam behaves like a virtual wiggler of an extremely short period equal to half of the laser wavelength. This approach opens a route to relatively compact, high-brightness x-ray sources alternative or complementary to conventional synchrotron light sources. Although not new, the laser synchrotron source (LSS) concept is still waiting for a convincing demonstration. Available at the BNL Accelerator Test Facility (ATF), a high-brightness electron beam and the high-power CO2 laser may be used for prototype LSS demonstration. In a feasible demonstration experiment, 10-GW, 100-ps CO2 laser beam will be brought to a head-on collision with a 10-ps, 0.5-nC, 50 MeV electron bunch. Flashes of collimated 4.7 keV (2.6 Å) x-rays of 10-ps pulse duration, with a flux of ˜1019photons/sec, will be produced via linear Compton backscattering. The x-ray spectrum is tunable proportionally to the e-beam energy. A rational short-term extension of the proposed experiment would be further enhancement of the x-ray flux to the 1022 photons/sec level, after the ongoing ATF CO2 laser upgrade to 5 TW peak power and electron bunch shortening to 3 ps is realized. In the future, exploiting the promising approach of a high-gradient laser wake field accelerator, a compact "table-top" LSS of monochromatic gamma radiation may become feasible.

  2. Monochromatic coherent transition and diffraction radiation from a relativistic electron bunch train

    NASA Astrophysics Data System (ADS)

    Naumenko, G.; Potylitsyn, A.; Shevelev, M.; Karataev, P.; Shipulya, M.; Bleko, V.

    2018-04-01

    Electron beams of most accelerators have a bunched structure and are synchronized with the accelerating RF field. Due to modulation of the electron beam with frequency ν RF one can expect to observe resonances with frequencies ν k=kṡ ν RF in radiation spectrum generated via any spontaneous emission mechanism (k is an integer and the resonance order). In this paper we present the results of spectral measurements of coherent transition radiation (CTR) generated by an electron bunch train from the Tomsk microtron with ν RF=2.63GHz in the spectral frequency range from 8 to 35 GHz. We also measured the spectrum of coherent diffraction radiation and demonstrated that the observed spectra in both cases consist of monochromatic lines. For spectral measurements the Martin-Puplett interferometer with spectral resolution of 800 MHz (FWMH) was employed. Using a waveguide frequency cut-off we were able to exclude several spectral lines to observe higher resonance orders of up to k =7.

  3. Entrepreneurship and Small Business Course Outline.

    ERIC Educational Resources Information Center

    American Inst. of Small Business, Minneapolis, MN.

    This course outline is intended as a guide to using the American Institute of Small Business' text entitled "How To Set Up Your Own Small Business." The outline, which is based on a 20- or 21-week course cycle, is organized around the following topics: the nature of small business and entrepreneurship; sources of information about entrepreneurship…

  4. Z{gamma}{gamma}{gamma} {yields} 0 Processes in SANC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bardin, D. Yu., E-mail: bardin@nu.jinr.ru; Kalinovskaya, L. V., E-mail: kalinov@nu.jinr.ru; Uglov, E. D., E-mail: corner@nu.jinr.ru

    2013-11-15

    We describe the analytic and numerical evaluation of the {gamma}{gamma} {yields} {gamma}Z process cross section and the Z {yields} {gamma}{gamma}{gamma} decay rate within the SANC system multi-channel approach at the one-loop accuracy level with all masses taken into account. The corresponding package for numeric calculations is presented. For checking of the results' correctness we make a comparison with the other independent calculations.

  5. Sneaky Gamma-Rays: Using Gravitational Lensing to Avoid Gamma-Gamma-Absorption

    NASA Astrophysics Data System (ADS)

    Boettcher, Markus; Barnacka, Anna

    2014-08-01

    It has recently been suggested that gravitational lensing studies of gamma-ray blazars might be a promising avenue to probe the location of the gamma-ray emitting region in blazars. Motivated by these prospects, we have investigated potential gamma-gamma absorption signatures of intervening lenses in the very-high-energy gamma-ray emission from lensedblazars. We considered intervening galaxies and individual stars within these galaxies. We find that the collective radiation field of galaxies acting as sources of macrolensing are not expected to lead to significant gamma-gamma absorption. Individual stars within intervening galaxies could, in principle, cause a significant opacity to gamma-gamma absorption for VHE gamma-rays if the impact parameter (the distance of closest approach of the gamma-ray to the center of the star) is small enough. However, we find that the curvature of the photon path due to gravitational lensing will cause gamma-ray photons to maintain a sufficiently large distance from such stars to avoid significant gamma-gamma absorption. This re-inforces the prospect of gravitational-lensing studies of gamma-ray blazars without interference due to gamma-gamma absorption due to the lensing objects.

  6. Experimental characterization of the effects induced by passive plasma lens on high brightness electron bunches

    NASA Astrophysics Data System (ADS)

    Marocchino, A.; Anania, M. P.; Bellaveglia, M.; Biagioni, A.; Bini, S.; Bisesto, F.; Brentegani, E.; Chiadroni, E.; Cianchi, A.; Croia, M.; Di Giovenale, D.; Ferrario, M.; Filippi, F.; Giribono, A.; Lollo, V.; Marongiu, M.; Mostacci, A.; Di Pirro, G.; Pompili, R.; Romeo, S.; Rossi, A. R.; Scifo, J.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Zigler, A.

    2017-10-01

    We report on the experimental characterization of the effect that a passive plasma lens in the overdense regime has on high-brightness bunch quality by means of 6D phase-space analysis. The passive lens is generated by confining hydrogen gas with a capillary tube pre-ionized with a high-voltage discharge. We observed that the optimum condition is retrieved at the end of the overdense regime with almost no effect on bunch brightness. The presence of gas jets, leaking from the hollow capillary end-points, extends the lens effects also outside of the capillary, resulting in longer focusing channels. Experimental results are supported with numerical simulations of the complete accelerator line together with the plasma channel section.

  7. Observation of coherently enhanced tunable narrow-band terahertz transition radiation from a relativistic sub-picosecond electron bunch train

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piot, P.; Sun, Y. -E; Maxwell, T. J.

    2011-06-27

    We experimentally demonstrate the production of narrow-band (δf/f ~ =20% at f ~ = 0.5 THz) THz transition radiation with tunable frequency over [0.37, 0.86] THz. The radiation is produced as a train of sub-picosecond relativistic electron bunches transits at the vacuum-aluminum interface of an aluminum converter screen. In addition, we show a possible application of modulated beams to extend the dynamical range of a popular bunch length diagnostic technique based on the spectral analysis of coherent radiation.

  8. Formation of space-charge bunches in a multivelocity-electron-beam-based microwave oscillator with a cathode unshielded from the magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalinin, Yu. A.; Starodubov, A. V.; Fokin, A. S., E-mail: alexander1989fokin@mail.ru

    The influence of the magnitude and configuration of the magnetic field on the parameters of electron bunches formed in a multivelocity electron beam is analyzed. It is shown that the use of a cathode unshielded from the magnetic field and a nonuniform magnetic field increasing along the drift space enables the formation of compact electron bunches. The ratio between the current density in such bunches and the beam current density at the entrance to the drift space reaches 10{sup 6}, which results in a substantial broadening of the output microwave spectrum due to an increase in the amplitudes of themore » higher harmonics of the fundamental frequency.« less

  9. X-ray Generation in Strongly Nonlinear Plasma Waves

    NASA Astrophysics Data System (ADS)

    Kiselev, S.; Pukhov, A.; Kostyukov, I.

    2004-09-01

    We show that a laser wake field in the “bubble” regime [

    A. Pukhov and J. Meyer-ter-Vehn Appl. Phys. BAPBOEM0946-2171 74, 355 (2002)10.1007/s003400200795
    ], works as a compact high-brightness source of x-rays. The self-trapped relativistic electrons make betatron oscillations in the transverse fields of the bubble and emit a bright broadband x-ray radiation with a maximum about 50 keV. The emission is confined to a small angle of about 0.1 rad. In addition, we make simulations of x-ray generation by an external 28.5 GeV electron bunch injected into the bubble. γ quanta with up to GeV energies are observed in the simulation in good agreement with analytical results. The energy conversion is efficient, leading to a significant stopping of the electron bunch over 5 mm interaction distance.

  10. Screening and incorporation of rust resistance from Allium cepa into bunching onion (Allium fistulosum) via alien chromosome addition.

    PubMed

    Wako, Tadayuki; Yamashita, Ken-ichiro; Tsukazaki, Hikaru; Ohara, Takayoshi; Kojima, Akio; Yaguchi, Shigenori; Shimazaki, Satoshi; Midorikawa, Naoko; Sakai, Takako; Yamauchi, Naoki; Shigyo, Masayoshi

    2015-04-01

    Bunching onion (Allium fistulosum L.; 2n = 16), bulb onion (Allium cepa L. Common onion group), and shallot (Allium cepa L. Aggregatum group) cultivars were inoculated with rust fungus, Puccinia allii, isolated from bunching onion. Bulb onions and shallots are highly resistant to rust, suggesting they would serve as useful resources for breeding rust resistant bunching onions. To identify the A. cepa chromosome(s) related to rust resistance, a complete set of eight A. fistulosum - shallot monosomic alien addition lines (MAALs) were inoculated with P. allii. At the seedling stage, FF+1A showed a high level of resistance in controlled-environment experiments, suggesting that the genes related to rust resistance could be located on shallot chromosome 1A. While MAAL, multi-chromosome addition line, and hypoallotriploid adult plants did not exhibit strong resistance to rust. In contrast to the high resistance of shallot, the addition line FF+1A+5A showed reproducibly high levels of rust resistance.

  11. Comparative microstructure study of oil palm fruit bunch fibre, mesocarp and kernels after microwave pre-treatment

    NASA Astrophysics Data System (ADS)

    Chang, Jessie S. L.; Chan, Y. S.; Law, M. C.; Leo, C. P.

    2017-07-01

    The implementation of microwave technology in palm oil processing offers numerous advantages; besides elimination of polluted palm oil mill effluent, it also reduces energy consumption, processing time and space. However, microwave exposure could damage a material’s microstructure which affected the quality of fruit that can be related to its physical structure including the texture and appearance. In this work, empty fruit bunches, mesocarp and kernel was microwave dried and their respective microstructures were examined. The microwave pretreatments were conducted at 100W and 200W and the microstructure investigation of both treated and untreated samples were evaluated using scanning electron microscope. The micrographs demonstrated that microwave does not significantly influence kernel and mesocarp but noticeable change was found on the empty fruit bunches where the sizes of the granular starch were reduced and a small portion of the silica bodies were disrupted. From the experimental data, the microwave irradiation was shown to be efficiently applied on empty fruit bunches followed by mesocarp and kernel as significant weight loss and size reduction was observed after the microwave treatments. The current work showed that microwave treatment did not change the physical surfaces of samples but sample shrinkage is observed.

  12. Correlation analysis of 1 to 30 MeV celestial gamma rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, J.L.

    1984-01-01

    This paper outlines the development of a method of producing celestial sky maps from the data generated by the University of California, Riverside's double Compton scatter gamma ray telescope. The method makes use of a correlation between the telescope's data and theoretical calculated response functions. The results of applying this technique to northern hemisphere data obtained from a 1978 balloon flight from Palestine, Texas are included.

  13. The simultaneous generation of soliton bunches and Q-switched-like pulses in a partially mode-locked fiber laser with a graphene saturable absorber

    NASA Astrophysics Data System (ADS)

    Wang, Zhenhong; Wang, Zhi; Liu, Yan-ge; He, Ruijing; Wang, Guangdou; Yang, Guang; Han, Simeng

    2018-05-01

    We experimentally report the coexistence of soliton bunches and Q-switched-like pulses in a partially mode-locked fiber laser with a microfiber-based graphene saturable absorber. The soliton bunches, like isolated spikes with extreme amplitude and ultrashort duration, randomly generate in the background of the Q-switched-like pulses. The soliton bunches have some pulse envelopes in which pulses operate at a fundamental repetition rate in the temporal domain. Further investigation shows that the composite pulses are highly correlated with the noise-like pulses. Our work can make a further contribution to enrich the understanding of the nonlinear dynamics in fiber lasers.

  14. Rights, Bunche, Rose and the "pipeline".

    PubMed Central

    Marks, Steven R.; Wilkinson-Lee, Ada M.

    2006-01-01

    We address education "pipelines" and their social ecology, drawing on the 1930's writing of Ralph J. Bunche, a Nobel peace maker whose war against systematic second-class education for the poor, minority and nonminority alike is nearly forgotten; and of the epidemiologist Geoffrey Rose, whose 1985 paper spotlighted the difficulty of shifting health status and risks in a "sick society. From the perspective of human rights and human development, we offer suggestions toward the paired "ends" of the pipeline: equality of opportunity for individuals, and equality of health for populations. We offer a national "to do" list to improve pipeline flow and then reconsider the merits of the "pipeline" metaphor, which neither matches the reality of lived education pathways nor supports notions of human rights, freedoms and capabilities, but rather reflects a commoditizing stance to free persons. PMID:17019927

  15. The Z {yields} cc-bar {yields} {gamma}{gamma}*, Z {yields} bb-bar {yields} {gamma}{gamma}* triangle diagrams and the Z {yields} {gamma}{psi}, Z {yields} {gamma}Y decays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achasov, N. N., E-mail: achasov@math.nsc.ru

    2011-03-15

    The approach to the Z {yields} {gamma}{psi} and Z {yields} {gamma}Y decay study is presented in detail, based on the sum rules for the Z {yields} cc-bar {yields} {gamma}{gamma}* and Z {yields} bb-bar {yields} {gamma}{gamma}* amplitudes and their derivatives. The branching ratios of the Z {yields} {gamma}{psi} and Z {yields} {gamma}Y decays are calculated for different hypotheses on saturation of the sum rules. The lower bounds of {Sigma}{sub {psi}} BR(Z {yields} {gamma}{psi}) = 1.95 Multiplication-Sign 10{sup -7} and {Sigma}{sub {upsilon}} BR(Z {yields} {gamma}Y) = 7.23 Multiplication-Sign 10{sup -7} are found. Deviations from the lower bounds are discussed, including the possibilitymore » of BR(Z {yields} {gamma}J/{psi}(1S)) {approx} BR(Z {yields} {gamma}Y(1S)) {approx} 10{sup -6}, that could be probably measured in LHC. The angular distributions in the Z {yields} {gamma}{psi} and Z {yields} {gamma}Y decays are also calculated.« less

  16. Study on formation of step bunching on 6H-SiC (0001) surface by kinetic Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Chen, Xuejiang; Su, Juan

    2016-05-01

    The formation and evolution of step bunching during step-flow growth of 6H-SiC (0001) surfaces were studied by three-dimensional kinetic Monte Carlo (KMC) method and compared with the analytic model based on the theory of Burton-Cabera-Frank (BCF). In the KMC model the crystal lattice was represented by a structured mesh which fixed the position of atoms and interatomic bonding. The events considered in the model were adatoms adsorption and diffusion on the terrace, and adatoms attachment, detachment and interlayer transport at the step edges. In addition, effects of Ehrlich-Schwoebel (ES) barriers at downward step edges and incorporation barriers at upwards step edges were also considered. In order to obtain more elaborate information for the behavior of atoms in the crystal surface, silicon and carbon atoms were treated as the minimal diffusing species. KMC simulation results showed that multiple-height steps were formed on the vicinal surface oriented toward [ 1 1 bar 00 ] or [ 11 2 bar 0 ] directions. And then the formation mechanism of the step bunching was analyzed. Finally, to further analyze the formation processes of step bunching, a one-dimensional BCF analytic model with ES and incorporation barriers was used, and then it was solved numerically. In the BCF model, the periodic boundary conditions (PBC) were applied, and the parameters were corresponded to those used in the KMC model. The evolution character of step bunching was consistent with the results obtained by KMC simulation.

  17. Detection of nuclear gamma rays from Centaurus A

    NASA Technical Reports Server (NTRS)

    Hall, R. D.; Walraven, G. D.; Djuth, F. T.; Haymes, R. C.; Meegan, C. A.

    1976-01-01

    Results are reported for an observation of nuclear gamma rays in the energy range between 0.033 and 12.25 MeV from Centaurus A using a balloon-borne actively collimated NaI(Tl) crystal scintillation counter. The observing procedure is outlined, no systematic errors are found in the data, and power-law fits to the source's energy spectrum are attempted. A power law of approximately 0.86E to the -1.9 power photon/sq cm/sec per keV is shown to give an acceptable fit to the continuum, and the detection of two gamma-ray lines at 1.6 and 4.5 MeV, respectively, is discussed. It is found that the low-energy gamma-ray luminosity of Cen A is 9.4 by 10 to the 43rd power erg/sec for a distance of 5 Mpc and that Cen A is apparently variable in low-energy gamma radiation. It is suggested that the broad feature detected at 1.6 MeV may be due to three blended lines (possibly excited Ne-20, Mg-24, and Si-28), the 4.5-MeV line is most likely due to deexcitation of excited C-12, and the nuclear excitation results from either cosmic-ray bombardment of Cen A's interstellar medium or nucleosynthesis within the source.

  18. A bunch to bucket phase detector for the RHIC LLRF upgrade platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, K.S.; Harvey, M.; Hayes, T.

    2011-03-28

    As part of the overall development effort for the RHIC LLRF Upgrade Platform [1,2,3], a generic four channel 16 bit Analog-to-Digital Converter (ADC) daughter module was developed to provide high speed, wide dynamic range digitizing and processing of signals from DC to several hundred megahertz. The first operational use of this card was to implement the bunch to bucket phase detector for the RHIC LLRF beam control feedback loops. This paper will describe the design and performance features of this daughter module as a bunch to bucket phase detector, and also provide an overview of its place within the overallmore » LLRF platform architecture as a high performance digitizer and signal processing module suitable to a variety of applications. In modern digital control and signal processing systems, ADCs provide the interface between the analog and digital signal domains. Once digitized, signals are then typically processed using algorithms implemented in field programmable gate array (FPGA) logic, general purpose processors (GPPs), digital signal processors (DSPs) or a combination of these. For the recently developed and commissioned RHIC LLRF Upgrade Platform, we've developed a four channel ADC daughter module based on the Linear Technology LTC2209 16 bit, 160 MSPS ADC and the Xilinx V5FX70T FPGA. The module is designed to be relatively generic in application, and with minimal analog filtering on board, is capable of processing signals from DC to 500 MHz or more. The module's first application was to implement the bunch to bucket phase detector (BTB-PD) for the RHIC LLRF system. The same module also provides DC digitizing of analog processed BPM signals used by the LLRF system for radial feedback.« less

  19. Bunch length compression method for free electron lasers to avoid parasitic compressions

    DOEpatents

    Douglas, David R.; Benson, Stephen; Nguyen, Dinh Cong; Tennant, Christopher; Wilson, Guy

    2015-05-26

    A method of bunch length compression method for a free electron laser (FEL) that avoids parasitic compressions by 1) applying acceleration on the falling portion of the RF waveform, 2) compressing using a positive momentum compaction (R.sub.56>0), and 3) compensating for aberration by using nonlinear magnets in the compressor beam line.

  20. New drift chamber technology for high energy gamma-ray telescopes

    NASA Astrophysics Data System (ADS)

    Hunter, Stanley D.; Cuddapah, Rajani

    1990-08-01

    Work to develop a low-power amplifier and discriminator for use on space qualifiable drift chambers is discussed. Consideration is given to the goals of the next generation of high-energy gamma-ray telescope design and to how the goals can be achieved using xenon gas drift chambers. The design and construction of a low power drift chamber amplifier and discriminator are described, and the design of a quad-time-to-amplitude converter is outlined.

  1. Student Outlines Teaching Students to Organize Their Notes

    ERIC Educational Resources Information Center

    Burt, Derek

    2006-01-01

    Two years ago I implemented a basic outline of each class for my students to take notes on for Calculus II at the United States Military Academy. The outline provided students with a shell of the class material for each day of class. Their job was to fill in the shell as we went through the material. The outlines provided students an easy method…

  2. Missing energies at pair creation

    NASA Technical Reports Server (NTRS)

    El-Ela, A. A.; Hassan, S.; Bagge, E. R.

    1985-01-01

    Wilson cloud chamber measurements of the separated spectra of positrons and electrons produced by gamma quanta of 6.14 MeV differ considerably from the theoretically predicted spectra by BETHE and HEITLER, but are in good agreement with those of a modified theory of pair creation.

  3. Matching the laser generated p bunch into a crossbar-H drift tube linac

    NASA Astrophysics Data System (ADS)

    Almomani, A.; Droba, M.; Ratzinger, U.; Hofmann, I.

    2012-05-01

    Proton bunches with energies up to 30 MeV have been measured at the PHELIX laser. Because of the laser-plasma interactions at a power density of about 4×1019W/cm2, a total yield of 1.5×1013protons was produced. For the reference energy of 10 MeV, the yield within ±0.5MeV was exceeding 1010protons. The important topic for a further acceleration of the laser generated bunch is the matching into the acceptance of an rf accelerator stage. With respect to the high space charge forces and the transit energy range, only drift tube linacs seem adequate for this purpose. A crossbar H-type (CH) cavity was chosen as the linac structure. Optimum emittance values for the linac injection are compared with the available laser generated beam parameters. Options for beam matching into a CH structure by a pulsed magnetic solenoid and by using the simulation codes LASIN and LORASR are presented.

  4. Electron gun jitter effects on beam bunching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, M. S.; Iqbal, M., E-mail: muniqbal.chep@pu.edu.pk; Centre for High Energy Physics, University of the Punjab, Lahore 45590

    For routine operation of Beijing Electron Positron Collider II (BEPCII) linac, many factors may affect the beam bunching process directly or indirectly. We present the measurements and analyses of the gun timing jitter, gun high voltage jitter, and beam energy at the exit of the standard acceleration section of the linac quantitatively. Almost 80 mV and more than 200 ps of gun high voltage and time jitters have ever been measured, respectively. It was analyzed that the gun timing jitter produced severe effects on beam energy than the gun high voltage jitter, if the timing jitter exceeded 100 ps whichmore » eventually deteriorates both the beam performance and the injection rate to the storage ring.« less

  5. Ralph Bunche's International Legacy: The Middle East, Congo, and United Nations Peacekeeping

    ERIC Educational Resources Information Center

    Lyman, Princeton N.

    2004-01-01

    Ralph Bunche is remembered most for three major achievements in the international field. His mediation of the end of the first Israel-Arab war, for which he won the Nobel Peace Prize; his work in the tumultuous period of independence in the Congo; and his "invention" of United Nations peacekeeping, which itself won the Nobel Peace Prize…

  6. Double emittance exchanger as a bunch compressor for the MaRIE XFEL electron beam line at 1 GeV

    NASA Astrophysics Data System (ADS)

    Malyzhenkov, Alexander; Carlsten, Bruce E.; Yampolsky, Nikolai A.

    2017-03-01

    We demonstrate an alternative realization of a bunch compressor (specifically, the second bunch compressor for the MaRIE XFEL beamline, 1GeV electron energy) using a double emittance exchanger (EEX) and a telescope in the transverse phase space. We compare our results with a traditional bunch compressor realized via a chicane, taking into account the nonlinear dynamics, Coherent Synchrotron Radiation (CSR) and Space Charge (SC) effects. In particular, we use the Elegant code for tracking particles through the beamline, and analyze the evolution of the eigen-emittances to separate the influence of the CSR/SC effects from the nonlinear dynamics effects. We optimize the scheme parameters to reach a desirable compression factor and minimize the emittance growth. We observe dominant CSR effects in our scheme, resulting in critical emittance growth, and introduce an alternative version of an emittance exchanger with a reduced number of bending magnets to minimize the impact of CSR effects.

  7. Double Emittance Exchanger as a Bunch Compressor for the MaRIE XFEL electron beam line at 1GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malyzhenkov, Alexander; Yampolsky, Nikolai; Carlsten, Bruce Eric

    We demonstrate an alternative realization of a bunch compressor (specifically the second bunch compressor for the MaRIE XFEL beamline, 1GeV electron energy) using a double emittance exchanger (EEX) and a telescope in the transverse phase space.We compare our results with a traditional bunch compressor realized via chicane, taking into account the nonlinear dynamics, Coherent Synchrotron Radiation (CSR) and Space Charge (SC) effects. In particular, we use the Elegant code for tracking particles through the beam line and analyze the eigen-emittances evolution to separate the influence of the CSR/SC effects from the nonlinear dynamics effects. We optimize the scheme parameters tomore » reach a desirable compression factor and minimize the emittance growth. We observe dominant CSR-effects in our scheme resulting in critical emittance growth and introduce alternative version of an emittance exchanger with a reduced number of bending magnets to minimize the impact of CSR effects.« less

  8. Methane yields and methanogenic community changes during co-fermentation of cattle slurry with empty fruit bunches of oil palm.

    PubMed

    Walter, Andreas; Franke-Whittle, Ingrid H; Wagner, Andreas O; Insam, Heribert

    2015-01-01

    The biomethane potential and structural changes of the methanogenic community in a solid-state anaerobic digestion process co-digesting cattle slurry and empty fruit bunches were investigated under mesophilic (37°C) and thermophilic (55°C) conditions. Phylogenetic microarrays revealed the presence of two hydrogenotrophic genera (Methanoculleus and Methanobrevibacter) and one acetoclastic genus (Methanosarcina). Methanosarcina numbers were found to increase in both mesophilic and thermophilic treatments of empty fruit bunches. Methanobrevibacter, which dominated in the cattle slurry, remained constant during anaerobic digestion (AD) at 37°C and decreased in numbers during digestion at 55°C. Numbers of Methanoculleus remained constant at 37°C and increased during the thermophilic digestion. Physicochemical data revealed non-critical concentrations for important monitoring parameters such as total ammonia nitrogen, free ammonia nitrogen and volatile fatty acids in all treatments after AD. The biomethane potential of empty fruit bunches was higher under thermophilic conditions than under mesophilic conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Studies of longitudinal profile of electron bunches and impedance measurements at Indus-2 synchrotron radiation source

    NASA Astrophysics Data System (ADS)

    Garg, Akash Deep; Yadav, S.; Kumar, Mukesh; Shrivastava, B. B.; Karnewar, A. K.; Ojha, A.; Puntambekar, T. A.

    2016-04-01

    Indus-2 is a 3rd generation synchrotron radiation source at the Raja Ramanna Centre for Advanced Technology (RRCAT) in India. We study the longitudinal profile of electrons in Indus-2 by using dual sweep synchroscan streak camera at visible diagnostic beamline. In this paper, the longitudinal profiles of electron bunch are analyzed by filling beam current in a single bunch mode. These studies are carried at injection energy (550 MeV) and at ramped beam energy (2.5 GeV). The effects of the wakefield generated interactions between the circulating electrons and the surrounding vacuum chamber are analyzed in terms of measured effects on longitudinal beam distribution. The impedance of the storage ring is obtained by fitting the solutions of Haissinski equation to the measured bunch lengthening with different impedance models. The impedance of storage ring obtained by a series R+L impedance model indicates a resistance (R) of 1350±125 Ω, an inductance (L) of 180±25 nH and broadband impedance of 2.69 Ω. These results are also compared with the values obtained from measured synchronous phase advancing and scaling laws. These studies are very useful in better understanding and control of the electromagnetic interactions.

  10. Drywall Finishing Apprenticeship. Course Outline (C-6).

    ERIC Educational Resources Information Center

    Lengert, Gerald

    This course outline was prepard to help apprentice drywall installers and teachers of drywall finishing courses to learn or teach the skills necessary for the apprenticeship course in British Columbia. The course outline consists of 11 tracks (units) that cover the following topics: estimating, job inspection, safety, applying bead, filling…

  11. Possible mechanism for the onset of step-bunching instabilities during the epitaxy of single-species crystalline films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cermelli, Paolo; Jabbour, Michel E.; Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506-0027

    A thermodynamically consistent continuum theory for single-species, step-flow epitaxy that extends the classical Burton-Cabrera-Frank (BCF) framework is derived from basic considerations. In particular, an expression for the step chemical potential is obtained that contains two energetic contributions--one from the adjacent terraces in the form of the jump in the adatom grand canonical potential and the other from the monolayer of crystallized adatoms that underlies the upper terrace in the form of the nominal bulk chemical potential--thus generalizing the classical Gibbs-Thomson relation to the dynamic, dissipative setting of step-flow growth. The linear stability analysis of the resulting quasistatic free-boundary problem formore » an infinite train of equidistant rectilinear steps yields explicit--i.e., analytical--criteria for the onset of step bunching in terms of the basic physical and geometric parameters of the theory. It is found that, in contrast with the predictions of the classical BCF model, both in the absence as well as in the presence of desorption, a growth regime exists for which step bunching occurs, except possibly in the dilute limit where the train is always stable to step bunching. In the present framework, the onset of one-dimensional instabilities is directly attributed to the energetic influence on the migrating steps of the adjacent terraces. Hence the theory provides a ''minimalist'' alternative to existing theories of step bunching and should be relevant to, e.g., molecular beam epitaxy of GaAs where the equilibrium adatom density is shown by Tersoff, Johnson, and Orr [Phys. Rev. B 78, 282 (1997)] to be extremely high.« less

  12. Intermediate surface structure between step bunching and step flow in SrRuO3 thin film growth

    NASA Astrophysics Data System (ADS)

    Bertino, Giulia; Gura, Anna; Dawber, Matthew

    We performed a systematic study of SrRuO3 thin films grown on TiO2 terminated SrTiO3 substrates using off-axis magnetron sputtering. We investigated the step bunching formation and the evolution of the SRO film morphology by varying the step size of the substrate, the growth temperature and the film thickness. The thin films were characterized using Atomic Force Microscopy and X-Ray Diffraction. We identified single and multiple step bunching and step flow growth regimes as a function of the growth parameters. Also, we clearly observe a stronger influence of the step size of the substrate on the evolution of the SRO film surface with respect to the other growth parameters. Remarkably, we observe the formation of a smooth, regular and uniform ``fish skin'' structure at the transition between one regime and another. We believe that the fish skin structure results from the merging of 2D flat islands predicted by previous models. The direct observation of this transition structure allows us to better understand how and when step bunching develops in the growth of SrRuO3 thin films.

  13. Distributive Education: Secondary, Course Outline. Revised 1972.

    ERIC Educational Resources Information Center

    Washington State Coordinating Council for Occupational Education, Olympia.

    The document is a revision of earlier units, updated to include behavioral or performance objectives. Divided into 22 units of instruction, the course outline for distributive education presents suggested length of time for each part of a unit, prerequisites, a description of the part, objectives, sources, outline for the section, activities,…

  14. Comparing the effect on the AGS longitudinal emittance of gold ions from the BtA stripping foil with and without a Booster Bunch Merge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeno, K.

    The aim of this note to better understand the effect of merging the Gold bunches in the Booster into one on the resulting AGS longitudinal emittance as compared to not merging them. The reason it matters whether they are merged or not is because they pass through a stripping foil in the BtA line. Data was taken last run (Run 17) for the case where the bunches are not merged, and it will be compared with data from cases where the bunches are merged. Previous data from Tandem operation will also be considered. There are two main pieces to thismore » puzzle. The first is the ε growth associated with the energy spread due to ‘energy straggling’ in the BtA stripping foil and the second is the effective ε growth associated with the energy loss that occurs while passing through the foil. Both of these effects depend on whether or not the Booster bunches have been merged into one.« less

  15. Double and triple-harmonic RF buckets and their use for bunch squeezing in AGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, C. J.

    2016-08-24

    For the past several years we have merged bunches in AGS in order to achieve the desired intensity per bunch prior to injection into RHIC. The merging is done on a flat porch at or above AGS injection energy. Because the merges involve the reduction of the RF harmonic number by a factor of 2 (for a 2 to 1 merge) and then a factor of 3 (for a 3 to 1 merge), one requires RF frequencies 6hf s, 3hf s, 2hf s and hf s, where f s is the revolution frequency on the porch and h = 4more » is the fundamental harmonic number. The standard AGS RF cavities cannot operate at the lowest frequencies 2hf s and hf s; these are provided by two modified cavities. Upon completion of the merges, the bunches are sitting in harmonic h buckets. In order to be accelerated they need to be squeezed into harmonic 3h buckets. This is accomplished by producing a double-harmonic bucket in which harmonics h and 2h act in concert, and then a triple-harmonic bucket in which harmonics h, 2h, and 3h act in concert. Simulations have shown that the squeeze presents an acceptance bottleneck which limits the longitudinal emittance that can be put into the harmonic 3h bucket. In this note the areas of the double and triple-harmonic buckets are calculated explicitly, and it is shown that these go through a minimum as the RF voltages are raised to the desired values. Several RF voltage ranges are examined, and the acceptance bottleneck is determined for each of these. Finally, the acceptance bottleneck for Au77+ bunches in AGS is calculated for several RF voltage ranges. The main result is that the RF voltages for the low-frequency harmonic h and 2h cavities both must be at least 22 kV in order to achieve an acceptance of 0:6 eV s per nucleon. If the harmonic h and 2h voltages are 15 and 22 kV, respectively, then the acceptance is reduced to 0:548 eV s per nucleon.« less

  16. Gridded thermionic gun and integral superconducting ballistic bunch compression cavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultheiss, Thomas

    Electron-Ion colliders such as the Medium energy Electron Ion Collider (MEIC) being developed by JLAB require high current electrons with low energy spread for electron cooling of the collider ring. Accelerator techniques for improving bunch charge, average current, emittance, and energy spread are required for Energy Recovery Linacs (ERLs) and Circulator Rings (CR) for next generation colliders for nuclear physics experiments. Example candidates include thermionic-cathode electron guns with RF accelerating structures. Thermionic cathodes are known to produce high currents and have excellent lifetime. The success of the IR and THz Free-Electron Laser (FEL) designed and installed by Advanced Energy Systemsmore » at the Fritz Haber Institute (FHI) of the Max Planck Society in Berlin [1,2] demonstrates that gridded thermionic cathodes and rf systems be considered for next generation collider technology. In Phase 1 Advanced Energy Systems (AES) developed and analyzed a design concept using a superconducting cavity pair and gridded thermionic cathode. Analysis included Beam Dynamics and thermal analysis to show that a design of this type is feasible. The latest design goals for the MEIC electron cooler were for electron bunches of 420 pC at a frequency of 952.6 MHz with a magnetic field on the cathode of 2kG. This field magnetizes the beam imparting angular momentum that provides for helical motion of the electrons in the cooling solenoid. The helical motion increases the interaction time and improves the cooling efficiency. A coil positioned around the cathode providing 2kG field was developed. Beam dynamics simulations were run to develop the particle dynamics near the cathode and grid. Lloyd Young added capability to Tstep to include space charge effects between two plates and include image charge effects from the grid. He also added new pepper-pot geometry capability to account for honeycomb grids. These additions were used to develop the beam dynamics for this

  17. Outline of Polish Morphology.

    ERIC Educational Resources Information Center

    Bidwell, Charles E.

    This volume, one of a series of concise but relatively exhaustive descriptions of the grammatical structures of the principal standard Slavic languages, contains an outline of Polish morphology. The four major sections are morphophonemics, nominal inflection, the Polish verb (Part 1--stem alternation and conjugation, and the Polish verb (Part…

  18. Agronomic effect of empty fruit bunches compost, anorganic fertilizer and endophytic microbes in oil palm main nursery used Ganoderma endemic soil

    NASA Astrophysics Data System (ADS)

    Hanum, H.; Lisnawita; Tantawi, A. R.

    2018-02-01

    Using of Ganoderma endemic soil in oil palm main nursery is not recomended because produce bad quality seedling. The application of organic and anorganic fertilizer and endophytic microbes are the alternative for solving the problem. The objective of this research is to evaluate the effect of empty fruit bunches compost, anorganic fertilizer and endophytic microbes on growth of oil palm seedling in main nursery. This research used factorial randomized block design. The first factor was combination of empty fruit bunches compost and anorganic fertilizer, The second factor was endophytic microbes consisting of Trichoderma and Aspergillus. The results showed that interaction effect of the both treatment factor used increased growth of seedling in third and fourth month after application. The best growth of seedling was on the treatment of empty fruit bunches compost combined with anorganic fertilizer 150% recommended dosage and Trichoderma viride.

  19. Measurement of Transverse Wakefields Induced by a Misaligned Positron Bunch in a Hollow Channel Plasma Accelerator.

    PubMed

    Lindstrøm, C A; Adli, E; Allen, J M; An, W; Beekman, C; Clarke, C I; Clayton, C E; Corde, S; Doche, A; Frederico, J; Gessner, S J; Green, S Z; Hogan, M J; Joshi, C; Litos, M; Lu, W; Marsh, K A; Mori, W B; O'Shea, B D; Vafaei-Najafabadi, N; Yakimenko, V

    2018-03-23

    Hollow channel plasma wakefield acceleration is a proposed method to provide high acceleration gradients for electrons and positrons alike: a key to future lepton colliders. However, beams which are misaligned from the channel axis induce strong transverse wakefields, deflecting beams and reducing the collider luminosity. This undesirable consequence sets a tight constraint on the alignment accuracy of the beam propagating through the channel. Direct measurements of beam misalignment-induced transverse wakefields are therefore essential for designing mitigation strategies. We present the first quantitative measurements of transverse wakefields in a hollow plasma channel, induced by an off-axis 20 GeV positron bunch, and measured with another 20 GeV lower charge trailing positron probe bunch. The measurements are largely consistent with theory.

  20. Measurement of Transverse Wakefields Induced by a Misaligned Positron Bunch in a Hollow Channel Plasma Accelerator

    NASA Astrophysics Data System (ADS)

    Lindstrøm, C. A.; Adli, E.; Allen, J. M.; An, W.; Beekman, C.; Clarke, C. I.; Clayton, C. E.; Corde, S.; Doche, A.; Frederico, J.; Gessner, S. J.; Green, S. Z.; Hogan, M. J.; Joshi, C.; Litos, M.; Lu, W.; Marsh, K. A.; Mori, W. B.; O'Shea, B. D.; Vafaei-Najafabadi, N.; Yakimenko, V.

    2018-03-01

    Hollow channel plasma wakefield acceleration is a proposed method to provide high acceleration gradients for electrons and positrons alike: a key to future lepton colliders. However, beams which are misaligned from the channel axis induce strong transverse wakefields, deflecting beams and reducing the collider luminosity. This undesirable consequence sets a tight constraint on the alignment accuracy of the beam propagating through the channel. Direct measurements of beam misalignment-induced transverse wakefields are therefore essential for designing mitigation strategies. We present the first quantitative measurements of transverse wakefields in a hollow plasma channel, induced by an off-axis 20 GeV positron bunch, and measured with another 20 GeV lower charge trailing positron probe bunch. The measurements are largely consistent with theory.

  1. Linear bunchers and half-frequency bunching method

    NASA Astrophysics Data System (ADS)

    Tang, J. Y.; Jiang, J. Z.; Shi, A. M.; Yin, Z. K.; Wang, Y. F.

    2000-12-01

    A new buncher system consisting of two bunchers has been designed and constructed for HIRFL injector cyclotron, working at the SFC acceleration modes of H=1 and H=3, respectively. The bunchers use saw-tooth RF waveform, but with double-gap drift tube electrodes and single-gap grid electrodes, respectively. The special merit of the design is introduction of the half-frequency bunching mode, utilizing half of the cyclotron RF frequency. With this method, a perfect longitudinal match between the injector SFC and the main cyclotron SSC has been reached theoretically, compared to the original efficiency of 50% for most cases. Detailed studies have been made concerning space charge effects, longitudinal dispersions through the yoke hole and the spiral inflector, and non-linearity in both the RF waveform and the stray electric field of electrodes.

  2. Effects of Electronic Outlining on Students' Argumentative Writing Performance

    ERIC Educational Resources Information Center

    de Smet, M. J. R.; Broekkamp, H.; Brand-Gruwel, S.; Kirschner, P. A.

    2011-01-01

    This study examined the effect of electronic outlining on the quality of students' writing products and how outlining affects perceived mental effort during the writing task. Additionally, it was studied how students appropriate and appreciate an outline tool and whether they need explicit instruction in order to engage in planning. To answer…

  3. Bunch shape monitor development in J-PARC linac

    NASA Astrophysics Data System (ADS)

    Miura, A.; Tamura, J.; Liu, Y.; Miyao, T.

    2017-07-01

    In the linac at the Japan accelerator research complex (J-PARC), we decided to use bunch shape monitors (BSMs) as phase-width monitors. Both centroid-phase set point at the frequency jump from SDTL (324 MHz) to ACS (972 MHz) and phase-width control are key issues for suppressing excess beam loss. BSM was designed and developed at the Institute for Nuclear Research, Russia. Because the BSM was first used between acceleration cavities, we need to improve it to protect it from the leakage-magnetic field of the quadrupole magnets and from outgassing impacts on the cavities. In this paper, we introduce these improvements to the BSM for the adoption of the location nearby the acceleration cavities.

  4. Production of furfural from palm oil empty fruit bunches: kinetic model comparation

    NASA Astrophysics Data System (ADS)

    Panjaitan, J. R. H.; Monica, S.; Gozan, M.

    2017-05-01

    Furfural is a chemical compound that can be applied to pharmaceuticals, cosmetics, resins and cleaning compound which can be produced by acid hydrolysis of biomass. Indonesia’s demand for furfural in 2010 reached 790 tons that still imported mostly 72% from China. In this study, reaction kinetic models of furfural production from oil palm empty fruit bunches with submitting acid catalyst at the beginning of the experiment will be determine. Kinetic data will be obtained from hydrolysis of empty oil palm bunches using sulfuric acid catalyst 3% at temperature 170°C, 180°C and 190°C for 20 minutes. From this study, the kinetic model to describe the production of furfural is the kinetic model where generally hydrolysis reaction with an acid catalyst in hemicellulose and furfural will produce the same decomposition product which is formic acid with different reaction pathways. The activation energy obtained for the formation of furfural, the formation of decomposition products from furfural and the formation of decomposition products from hemicellulose is 8.240 kJ/mol, 19.912 kJ/mol and -39.267 kJ / mol.

  5. A Bunch Compression Method for Free Electron Lasers that Avoids Parasitic Compressions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benson, Stephen V.; Douglas, David R.; Tennant, Christopher D.

    2015-09-01

    Virtually all existing high energy (>few MeV) linac-driven FELs compress the electron bunch length though the use of off-crest acceleration on the rising side of the RF waveform followed by transport through a magnetic chicane. This approach has at least three flaws: 1) it is difficult to correct aberrations--particularly RF curvature, 2) rising side acceleration exacerbates space charge-induced distortion of the longitudinal phase space, and 3) all achromatic "negative compaction" compressors create parasitic compression during the final compression process, increasing the CSR-induced emittance growth. One can avoid these deficiencies by using acceleration on the falling side of the RF waveformmore » and a compressor with M 56>0. This approach offers multiple advantages: 1) It is readily achieved in beam lines supporting simple schemes for aberration compensation, 2) Longitudinal space charge (LSC)-induced phase space distortion tends, on the falling side of the RF waveform, to enhance the chirp, and 3) Compressors with M 56>0 can be configured to avoid spurious over-compression. We will discuss this bunch compression scheme in detail and give results of a successful beam test in April 2012 using the JLab UV Demo FEL« less

  6. Potential for luminosity improvement for low-energy RHIC operation with long bunches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fedotov, A.; Blaskiewicz, M.

    Electron cooling was proposed to increase luminosity of the RHIC collider for heavy ion beams at low energies. Luminosity decreases as the square of bunch intensity due to the beam loss from the RF bucket as a result of the longitudinal intra beam scattering (IBS), as well as due to the transverse emittance growth because of the transverse IBS. Both transverse and longitudinal IBS can be counteracted with electron cooling. This would allow one to keep the initial peak luminosity close to constant throughout the store essentially without the beam loss. In addition, the phase-space density of the hadron beamsmore » can be further increased by providing stronger electron cooling. Unfortunately, the defining limitation for low energies in RHIC is expected to be the space charge. Here we explore an idea of additional improvement in luminosity, on top of the one coming from just IBS compensation and longer stores, which may be expected if one can operate with longer bunches at the space-charge limit in a collider. This approach together with electron cooling may result in about 10-fold improvement in total luminosity for low-energy RHIC program.« less

  7. Demonstration of cathode emittance dominated high bunch charge beams in a DC gun-based photoinjector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulliford, Colwyn, E-mail: cg248@cornell.edu; Bartnik, Adam, E-mail: acb20@cornell.edu; Bazarov, Ivan

    We present the results of transverse emittance and longitudinal current profile measurements of high bunch charge (≥100 pC) beams produced in the DC gun-based Cornell energy recovery linac photoinjector. In particular, we show that the cathode thermal and core beam emittances dominate the final 95% and core emittances measured at 9–9.5 MeV. Additionally, we demonstrate excellent agreement between optimized 3D space charge simulations and measurement, and show that the quality of the transverse laser distribution limits the optimal simulated and measured emittances. These results, previously thought achievable only with RF guns, demonstrate that DC gun based photoinjectors are capable of deliveringmore » beams with sufficient single bunch charge and beam quality suitable for many current and next generation accelerator projects such as Energy Recovery Linacs and Free Electron Lasers.« less

  8. Development of a High-Average-Power Compton Gamma Source for Lepton Colliders

    NASA Astrophysics Data System (ADS)

    Pogorelsky, Igor; Polyanskiy, Mikhail N.; Yakimenko, Vitaliy; Platonenko, Viktor T.

    2009-01-01

    Gamma- (γ-) ray beams of high average power and peak brightness are of demand for a number of applications in high-energy physics, material processing, medicine, etc. One of such examples is gamma conversion into polarized positrons and muons that is under consideration for projected lepton colliders. A γ-source based on the Compton backscattering from the relativistic electron beam is a promising candidate for this application. Our approach to the high-repetition γ-source assumes placing the Compton interaction point inside a CO2 laser cavity. A laser pulse interacts with periodical electron bunches on each round-trip inside the laser cavity producing the corresponding train of γ-pulses. The round-trip optical losses can be compensated by amplification in the active laser medium. The major challenge for this approach is in maintaining stable amplification rate for a picosecond CO2-laser pulse during multiple resonator round-trips without significant deterioration of its temporal and transverse profiles. Addressing this task, we elaborated on a computer code that allows identifying the directions and priorities in the development of such a multi-pass picosecond CO2 laser. Proof-of-principle experiments help to verify the model and show the viability of the concept. In these tests we demonstrated extended trains of picosecond CO2 laser pulses circulating inside the cavity that incorporates the Compton interaction point.

  9. High-resolution depth profiling using a range-gated CMOS SPAD quanta image sensor.

    PubMed

    Ren, Ximing; Connolly, Peter W R; Halimi, Abderrahim; Altmann, Yoann; McLaughlin, Stephen; Gyongy, Istvan; Henderson, Robert K; Buller, Gerald S

    2018-03-05

    A CMOS single-photon avalanche diode (SPAD) quanta image sensor is used to reconstruct depth and intensity profiles when operating in a range-gated mode used in conjunction with pulsed laser illumination. By designing the CMOS SPAD array to acquire photons within a pre-determined temporal gate, the need for timing circuitry was avoided and it was therefore possible to have an enhanced fill factor (61% in this case) and a frame rate (100,000 frames per second) that is more difficult to achieve in a SPAD array which uses time-correlated single-photon counting. When coupled with appropriate image reconstruction algorithms, millimeter resolution depth profiles were achieved by iterating through a sequence of temporal delay steps in synchronization with laser illumination pulses. For photon data with high signal-to-noise ratios, depth images with millimeter scale depth uncertainty can be estimated using a standard cross-correlation approach. To enhance the estimation of depth and intensity images in the sparse photon regime, we used a bespoke clustering-based image restoration strategy, taking into account the binomial statistics of the photon data and non-local spatial correlations within the scene. For sparse photon data with total exposure times of 75 ms or less, the bespoke algorithm can reconstruct depth images with millimeter scale depth uncertainty at a stand-off distance of approximately 2 meters. We demonstrate a new approach to single-photon depth and intensity profiling using different target scenes, taking full advantage of the high fill-factor, high frame rate and large array format of this range-gated CMOS SPAD array.

  10. Measurement of Transverse Wakefields Induced by a Misaligned Positron Bunch in a Hollow Channel Plasma Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindstrom, C. A.; Adli, E.; Allen, J. M.

    Hollow channel plasma wakefield acceleration is a proposed method to provide high acceleration gradients for electrons and positrons alike: a key to future lepton colliders. However, beams which are misaligned from the channel axis induce strong transverse wakefields, deflecting beams and reducing the collider luminosity. This undesirable consequence sets a tight constraint on the alignment accuracy of the beam propagating through the channel. Direct measurements of beam misalignment-induced transverse wakefields are therefore essential for designing mitigation strategies. We present the first quantitative measurements of transverse wakefields in a hollow plasma channel, induced by an off-axis 20 GeV positron bunch, andmore » measured with another 20 GeV lower charge trailing positron probe bunch. Furthermore, the measurements are largely consistent with theory.« less

  11. Measurement of Transverse Wakefields Induced by a Misaligned Positron Bunch in a Hollow Channel Plasma Accelerator

    DOE PAGES

    Lindstrom, C. A.; Adli, E.; Allen, J. M.; ...

    2018-03-23

    Hollow channel plasma wakefield acceleration is a proposed method to provide high acceleration gradients for electrons and positrons alike: a key to future lepton colliders. However, beams which are misaligned from the channel axis induce strong transverse wakefields, deflecting beams and reducing the collider luminosity. This undesirable consequence sets a tight constraint on the alignment accuracy of the beam propagating through the channel. Direct measurements of beam misalignment-induced transverse wakefields are therefore essential for designing mitigation strategies. We present the first quantitative measurements of transverse wakefields in a hollow plasma channel, induced by an off-axis 20 GeV positron bunch, andmore » measured with another 20 GeV lower charge trailing positron probe bunch. Furthermore, the measurements are largely consistent with theory.« less

  12. Recording the synchrotron radiation by a picosecond streak camera for bunch diagnostics in cyclic accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vereshchagin, A K; Vorob'ev, N S; Gornostaev, P B

    2016-02-28

    A PS-1/S1 picosecond streak camera with a linear sweep is used to measure temporal characteristics of synchrotron radiation pulses on a damping ring (DR) at the Budker Institute of Nuclear Physics (BINP) of the Siberian Branch of the Russian Academy of Sciences (Novosibirsk). The data obtained allow a conclusion as to the formation processes of electron bunches and their 'quality' in the DR after injection from the linear accelerator. The expediency of employing the streak camera as a part of an optical diagnostic accelerator complex for adjusting the injection from a linear accelerator is shown. Discussed is the issue ofmore » designing a new-generation dissector with a time resolution up to a few picoseconds, which would allow implementation of a continuous bunch monitoring in the DR during mutual work with the electron-positron colliders at the BINP. (acoustooptics)« less

  13. Anticonvulsant properties of alpha, gamma, and alpha, gamma-substituted gamma-butyrolactones.

    PubMed

    Klunk, W E; Covey, D F; Ferrendelli, J A

    1982-09-01

    Derivatives of gamma-butyrolactone (GBL) substituted on the alpha- and/or gamma-positions were synthesized and tested for their effects on behavior in mice, on the electroencephalographs and blood pressure of paralyzed-ventilated guinea pigs, and on electrical activity of incubated hippocampal slices. Several compounds, including alpha-ethyl-alpha-methyl GBL (alpha-EMGBL), alpha, alpha-dimethyl GBL, alpha, gamma-diethyl-alpha, gamma-dimethyl GBL, and gamma-ethyl-gamma-methyl GBL, prevented seizures induced by pentylenetetrazol, beta-ethyl-beta-methyl-gamma-butyrolactone (beta-EMGBL), picrotoxin, or all three compounds in mice and guinea pigs but had no effect on seizures induced by maximal electroshock or bicuculline. Neither gamma-hydroxybutyrate (GHB) nor alpha-isopropylidine GBL had any anticonvulsant activity. The anticonvulsant alpha-substituted compounds had a potent hypotensive effect and antagonized the hypertensive effect of beta-EMGBL, alpha-EMGBL was tested in incubated hippocampal slices and was found to depress basal activity and antagonize excitation induced by beta-EMGBL. These results demonstrate that alpha-alkyl-substituted GBL and, to a lesser extent, gamma-substituted derivatives are anticonvulsant agents and that their effects are strikingly different from those of GHB or beta-alkyl-substituted GBLs, which are epileptogenic. Possibly beta- and alpha-substituted GBLs act at the same site as agonists and antagonists, respectively.

  14. Interim Draft: Biological Sampling and Analysis Plan Outline ...

    EPA Pesticide Factsheets

    Standard Operation Procedures This interim sampling and analysis plan (SAP) outline was developed specifically as an outline of the output that will be generated by a developing on-line tool called the MicroSAP. The goal of the MicroSAP tool is to assist users with development of SAPs needed for site characterization, verification sampling, and post decontamination sampling stages of biological sampling and analysis activities in which the EPA would be responsible for conducting sampling. These activities could include sampling and analysis for a biological contamination incident, a research study, or an exercise. The development of this SAP outline did not consider the initial response of an incident, as it is assumed that the initial response would have been previously completed by another agency during the response, or the clearance phase, as it is assumed that separate committee would be established to make decisions regarding clearing a site. This outline also includes considerations for capturing the associated data quality objectives in the SAP.

  15. Mechanical Properties of Oil Palm Empty Fruit Bunch Fiber

    NASA Astrophysics Data System (ADS)

    Gunawan, Fergyanto E.; Homma, Hiroomi; Brodjonegoro, Satryo S.; Hudin, Afzer Bin Baseri; Zainuddin, Aryanti Binti

    In tropical countries such as Indonesia and Malaysia, the empty fruit bunches are wastes of the oil palm industry. The wastes are abundantly available and has reached a level that severely threats the environment. Therefore, it is a great need to find useful applications of those waste materials; but firstly, the mechanical properties of the EFB fiber should be quantified. In this work, a small tensile test machine is manufactured, and the tensile test is performed on the EFB fibers. The results show that the strength of the EFB fiber is strongly affected by the fiber diameter; however, the fiber strength is relatively low in comparison to other natural fibers.

  16. Demonstration of thermal dissipation of absorbed quanta during energy-dependent quenching of chlorophyll fluorescence in photosynthetic membranes.

    PubMed

    Yahyaoui, W; Harnois, J; Carpentier, R

    1998-11-27

    When plant leaves or chloroplasts are exposed to illumination that exceeds their photosynthetic capacity, photoprotective mechanisms such as described by the energy-dependent (non-photochemical) quenching of chlorophyll fluorescence are involved. The protective action is attributed to an increased rate constant for thermal dissipation of absorbed quanta. We applied photoacoustic spectroscopy to monitor thermal dissipation in spinach thylakoid membranes together with simultaneous measurement of chlorophyll fluorescence in the presence of inhibitors of opposite action on the formation of delta pH across the thylakoid membrane (tentoxin and nigericin/valinomycin). A linear relationship between the appearance of fluorescence quenching during formation of the delta pH and the reciprocal variation of thermal dissipation was demonstrated. Dicyclohexylcarbodiimide, which is known to prevent protonation of the minor light-harvesting complexes of photosystem II, significantly reduced the formation of fluorescence quenching and the concurrent increase in thermal dissipation. However, the addition of exogenous ascorbate to activate the xanthophyll de-epoxidase increased non-photochemical fluorescence quenching without affecting the measured thermal dissipation. It is concluded that a portion of energy-dependent fluorescence quenching that is independent of de-epoxidase activity can be readily measured by photoacoustic spectroscopy as an increase in thermal deactivation processes.

  17. Quantification of the changes in potent wine odorants as induced by bunch rot (Botrytis cinerea) and powdery mildew (Erysiphe necator)

    NASA Astrophysics Data System (ADS)

    Lopez Pinar, Angela; Rauhut, Doris; Ruehl, Ernst; Buettner, Andrea

    2017-08-01

    Fungal infections are detrimental for viticulture since they may reduce harvest yield and wine quality. This study aimed to characterize the effects of bunch rot and powdery mildew on wine aroma by quantification of representative aroma compounds using Stable Isotope Dilution Analysis (SIDA). For this purpose, samples affected to a high degree by each fungus were compared with a healthy sample in each case; to this aim, the respective samples were collected and processed applying identical conditions. Thereby, the effects of bunch rot were studied in three different grape varieties: White Riesling, Red Riesling and Gewürztraminer whereas the influence of powdery mildew was studied on the hybrid Gm 8622-3. Analyses revealed that both fungal diseases caused significant changes in the concentration of most target compounds. Thereby, the greatest effects were increases in the concentration of phenylacetic acid, acetic acid and γ-decalactone for both fungi and all grape varieties. Regarding other compounds, however, inconsistent effects of bunch rot were observed for the three varieties studied.

  18. Characterization of imaging performance in differential phase contrast CT compared with the conventional CT: Spectrum of noise equivalent quanta NEQ(k)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang Xiangyang; Yang Yi; Tang Shaojie

    Purpose: Differential phase contrast CT (DPC-CT) is emerging as a new technology to improve the contrast sensitivity of conventional attenuation-based CT. The noise equivalent quanta as a function over spatial frequency, i.e., the spectrum of noise equivalent quanta NEQ(k), is a decisive indicator of the signal and noise transfer properties of an imaging system. In this work, we derive the functional form of NEQ(k) in DPC-CT. Via system modeling, analysis, and computer simulation, we evaluate and verify the derived NEQ(k) and compare it with that of the conventional attenuation-based CT. Methods: The DPC-CT is implemented with x-ray tube and gratings.more » The x-ray propagation and data acquisition are modeled and simulated through Fresnel and Fourier analysis. A monochromatic x-ray source (30 keV) is assumed to exclude any system imperfection and interference caused by scatter and beam hardening, while a 360 Degree-Sign full scan is carried out in data acquisition to avoid any weighting scheme that may disrupt noise randomness. Adequate upsampling is implemented to simulate the x-ray beam's propagation through the gratings G{sub 1} and G{sub 2} with periods 8 and 4 {mu}m, respectively, while the intergrating distance is 193.6 mm (1/16 of the Talbot distance). The dimensions of the detector cell for data acquisition are 32 Multiplication-Sign 32, 64 Multiplication-Sign 64, 96 Multiplication-Sign 96, and 128 Multiplication-Sign 128 {mu}m{sup 2}, respectively, corresponding to a 40.96 Multiplication-Sign 40.96 mm{sup 2} field of view in data acquisition. An air phantom is employed to obtain the noise power spectrum NPS(k), spectrum of noise equivalent quanta NEQ(k), and detective quantum efficiency DQE(k). A cylindrical water phantom at 5.1 mm diameter and complex refraction coefficient n= 1 -{delta}+i{beta}= 1 -2.5604 Multiplication-Sign 10{sup -7}+i1.2353 Multiplication-Sign 10{sup -10} is placed in air to measure the edge transfer function, line spread function

  19. A field programmable gate array-based time-resolved scaler for collinear laser spectroscopy with bunched radioactive potassium beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rossi, D. M., E-mail: rossi@nscl.msu.edu; Davis, M.; Ringle, R.

    A new data acquisition system including a Field Programmable Gate Array (FPGA) based time-resolved scaler was developed for laser-induced fluorescence and beam bunch coincidence measurements. The FPGA scaler was tested in a collinear laser-spectroscopy experiment on radioactive {sup 37}K at the BEam COoler and LAser spectroscopy (BECOLA) facility at the National Superconducting Cyclotron Laboratory at Michigan State University. A 1.29 μs bunch width from the buncher and a bunch repetition rate of 2.5 Hz led to a background suppression factor of 3.1 × 10{sup 5} in resonant photon detection measurements. The hyperfine structure of {sup 37}K and its isotope shiftmore » relative to the stable {sup 39}K were determined using 5 × 10{sup 4} s{sup −1} {sup 37}K ions injected into the BECOLA beam line. The obtained hyperfine coupling constants A({sup 2}S{sub 1/2}) = 120.3(1.4) MHz, A({sup 2}P{sub 1/2}) = 15.2(1.1) MHz, and A({sup 2}P{sub 3/2}) = 1.4(8) MHz, and the isotope shift δν{sup 39,} {sup 37} = −264(3) MHz are consistent with the previously determined values, where available.« less

  20. The MARS15-based FermiCORD code system for calculation of the accelerator-induced residual dose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grebe, A.; Leveling, A.; Lu, T.

    The FermiCORD code system, a set of codes based on MARS15 that calculates the accelerator-induced residual doses at experimental facilities of arbitrary configurations, has been developed. FermiCORD is written in C++ as an add-on to Fortran-based MARS15. The FermiCORD algorithm consists of two stages: 1) simulation of residual doses on contact with the surfaces surrounding the studied location and of radionuclide inventories in the structures surrounding those locations using MARS15, and 2) simulation of the emission of the nuclear decay gamma-quanta by the residuals in the activated structures and scoring the prompt doses of these gamma-quanta at arbitrary distances frommore » those structures. The FermiCORD code system has been benchmarked against similar algorithms based on other code systems and showed a good agreement. The code system has been applied for calculation of the residual dose of the target station for the Mu2e experiment and the results have been compared to approximate dosimetric approaches.« less

  1. Optical Pattern Formation in Spatially Bunched Atoms: A Self-Consistent Model and Experiment

    NASA Astrophysics Data System (ADS)

    Schmittberger, Bonnie L.; Gauthier, Daniel J.

    2014-05-01

    The nonlinear optics and optomechanical physics communities use different theoretical models to describe how optical fields interact with a sample of atoms. There does not yet exist a model that is valid for finite atomic temperatures but that also produces the zero temperature results that are generally assumed in optomechanical systems. We present a self-consistent model that is valid for all atomic temperatures and accounts for the back-action of the atoms on the optical fields. Our model provides new insights into the competing effects of the bunching-induced nonlinearity and the saturable nonlinearity. We show that it is crucial to keep the fifth and seventh-order nonlinearities that arise when there exists atomic bunching, even at very low optical field intensities. We go on to apply this model to the results of our experimental system where we observe spontaneous, multimode, transverse optical pattern formation at ultra-low light levels. We show that our model accurately predicts our experimentally observed threshold for optical pattern formation, which is the lowest threshold ever reported for pattern formation. We gratefully acknowledge the financial support of the NSF through Grant #PHY-1206040.

  2. ABSOLUTE BUNCH LENGTH MEASUREMENTS AT THE ALS BY INCOHERENTSYNCHROTRON RADIATION FLUCTUATION ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sannibale, Fernando; Zolotorev, Max S.; Filippetto, Daniele

    2007-06-22

    By analysing the pulse to pulse intensity fluctuations ofthe radiation emitted by a charge particle in the incoherent part of thespectrum, it is possible to extract information about the spatialdistribution of the beam. At the Advanced Light Source (ALS) of theLawrence Berkeley National Laboratory, we have developed and tested asimple scheme based on this principle that allows for the absolutemeasurement of the bunch length. A description of the method and theexperimental results are presented.

  3. Experimental demonstration of fresh bunch self-seeding in an X-ray free electron laser

    DOE PAGES

    Emma, C.; Lutman, A.; Guetg, M. W.; ...

    2017-04-10

    Here, we report the generation of ultrahigh brightness X-ray pulses using the Fresh Bunch Self-Seeding (FBSS) method in an X-ray Free Electron Laser (XFEL). The FBSS method uses two different electron slices or bunches, one to generate the seed and the other to amplify it after the monochromator. This method circumvents the trade-off between the seed power and electron slice energy spread, which limits the efficiency of regular self-seeded FELs. The experiment, the performance of which is limited by existing hardware, shows FBSS feasibility, generating 5.5 keV photon pulses which are 9 fs long and of 7.3 ×10 –5 bandwidthmore » and 50 GW power. FBSS performance is compared with Self Amplified Spontaneous Emission/self-seeding performance, measuring a brightness increase of twelve/two times, respectively. In an optimized XFEL, FBSS can increase the peak power a hundred times more than state-of-the-art to multi-TW, opening new research areas for nonlinear science and single molecule imaging.« less

  4. Bio-composite Nonwoven Media Based on Chitosan and Empty Fruit Bunches for Wastewater Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadikin, Aziatul Niza; Nawawi, Mohd Ghazali Mohd; Othman, Norasikin

    2011-01-17

    Fibrous filter media in the form of non-woven filters have been used extensively in water treatment as pre-filters or to support the medium that does the separation. Lignocellulosic such as empty fruit bunches have potential to be used as a low cost filter media as they represent unused resources, widely available and are environmentally friendly. Laboratory filtration tests were performed to investigate the potential application of empty fruit bunches that enriched with chitosan as a fiber filter media to remove suspended solids, oil and grease, and organics in terms of chemical oxygen demand from palm oil mill effluent. The presentmore » paper studies the effect of chitosan concentration on the filter media performance. Bench-scaled experiment results indicated that pre-treatment using the fiber filtration system removed up to 67.3% of total suspended solid, 65.1% of oil and grease and 46.1% of chemical oxygen demand. The results show that the lignocellulosic fiber filter could be a potential technology for primary wastewater treatment.« less

  5. Compression of high-density 0.16 pC electron bunches through high field gradients for ultrafast single shot electron diffraction: The Compact RF Gun

    PubMed Central

    Daoud, Hazem; Floettmann, Klaus; Dwayne Miller, R. J.

    2017-01-01

    We present an RF gun design for single shot ultrafast electron diffraction experiments that can produce sub-100 fs high-charge electron bunches in the 130 keV energy range. Our simulations show that our proposed half-cell RF cavity is capable of producing 137 keV, 27 fs rms (60 fs FWHM), 106 electron bunches with an rms spot size of 276 μm and a transverse coherence length of 2.0 nm. The required operation power is 9.2 kW, significantly lower than conventional rf cavity designs and a key design feature. This electron source further relies on high electric field gradients at the cathode to simultaneously accelerate and compress the electron bunch to open up new space-time resolution domains for atomically resolved dynamics. PMID:28428973

  6. Effect of grape bunch sunlight exposure and UV radiation on phenolics and volatile composition of Vitis vinifera L. cv. Pinot noir wine.

    PubMed

    Song, Jianqiang; Smart, Richard; Wang, Hua; Dambergs, Bob; Sparrow, Angela; Qian, Michael C

    2015-04-15

    The effect of canopy leaf removal and ultraviolet (UV) on Pinot noir grape and wine composition was investigated in this study. Limited basal leaf removal in the fruit zone was conducted, compared to shaded bunches. The UV exposure was controlled using polycarbonate screens to block UV radiation, and acrylic screens to pass the UV. The results showed that bunch sunlight and UV exposure significantly increased the Brix and pH in the grape juice, and increased substantially wine colour density, anthocyanins, total pigment, total phenolics and tannin content. Bunch sunlight and UV exposure affected terpene alcohols, C13-norisprenoids and other volatile composition of the wine differently. Sunlight exposure and UV resulted in increase of nerol, geraniol and citronellol but not linalool. Sunlight exposure slightly increased the concentration of β-ionone, but the increase was not statistically significant for UV treatment. Neither sunlight nor UV treatment showed any impact on the concentration of β-damascenone. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Late-time structure of the Bunch-Davies FRW wavefunction

    NASA Astrophysics Data System (ADS)

    Konstantinidis, George; Mahajan, Raghu; Shaghoulian, Edgar

    2016-10-01

    In this short note we organize a perturbation theory for the Bunch-Davies wavefunction in flat, accelerating cosmologies. The calculational technique avoids the in-in formalism and instead uses an analytic continuation from Euclidean signature. We will consider both massless and conformally coupled self-interacting scalars. These calculations explicitly illustrate two facts. The first is that IR divergences get sharper as the acceleration slows. The second is that UV-divergent contact terms in the Euclidean computation can contribute to the absolute value of the wavefunction in Lorentzian signature. Here UV divergent refers to terms involving inverse powers of the radial cutoff in the Euclidean computation. In Lorentzian signature such terms encode physical time dependence of the wavefunction.

  8. DOSIMETRIC MEASUREMENTS ON THE SECOND SOVIET SPACESHIP SATELLITE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savenko, I.A.; Pisarenko, N.F.; Shavrin, P.I.

    1963-02-01

    Readings of counters placed inside Sputnik II are given for one portion of its trajectory. The readings were taken by a gas-discharge counter STS-5 and a NaI crystal scintillator counter that registered gamma quanta, charged particles with a 25-kev counting threshold, and the aggregate energy liberation of ionizing radiations in the crystal. (C.E.S.)

  9. Temporal properties of coherent synchrotron radiation produced by an electron bunch moving along an arc of a circle

    NASA Astrophysics Data System (ADS)

    Geloni, G.; Saldin, E. L.; Schneidmiller, E. A.; Yurkov, M. V.

    2004-08-01

    In the limit for a large distance between bunch and detector and under the assumption that the entire process, i.e. radiation and detection, happens in vacuum, one can use the well-known Schwinger formulas in order to describe the single-particle radiation in the case of circular motion. Nevertheless, these formulas cannot be applied for particles moving in an arc of a circle. In this paper, we present a characterization of coherent synchrotron radiation (CSR) pulses in the time-domain as they are emitted by an electron bunch moving in an arc of a circle. This can be used in order to give a quantitative estimation of the effects of a finite bending magnet extension on the characteristics of the CSR pulse.

  10. Building Trades 1. Course Outline.

    ERIC Educational Resources Information Center

    Hill, Clair S.

    Intended to assist building trades instructors, this course outline to a prevocational building trades program for junior and senior high school students covers four occupational areas: carpentry, masonry, plumbing, and electricity. Specific notes to the administrator and teacher and the course goals precede the four occupational units. Each unit…

  11. Selection of putative Terra Maranhão plantain cultivar mutants obtained by gamma radiation.

    PubMed

    Reis, R V; Amorim, E P; Ledo, C A S; Pestana, R K N; Gonçalves, Z S; Borém, A

    2015-05-11

    The aim of this study was to select putative Terra Maranhão plantain cultivar mutants obtained by gamma radiation, with good agronomic traits and short height. A total of 315 buds were irradiated in vitro with gamma rays in doses of 20 Gy and were subcultivated and evaluated in the field over 2 production cycles. The clones were evaluated to select the best 10% of the plants. Cultivation was undertaken at a spacing of 3 x 4 m, and fertilization was carried out according to the technical recommendations for the crop. A total of 111 irradiated plants and 41 controls were evaluated in the field. Among the irradiated plants selected, genotypes that exhibited reduced height were observed. The genotypes Irra 04, Irra 13, Irra 19, and Irra 21 exhibited a height of 3.6 m, which was below the mean value of the controls selected. Other irradiated genotypes selected such as Irra 14 and Irra 16, with a height of 3.65 m, are promising because, in addition to reduced height, they exhibited good bunch weight and shorter period to flowering in relation to the mean value of the controls, which is a significant factor for the next stages in breeding. These results confirm the possibility of inducing mutations in Terra type banana plants to obtain desirable agronomic traits and short height.

  12. Putting time into proof outlines

    NASA Technical Reports Server (NTRS)

    Schneider, Fred B.; Bloom, Bard; Marzullo, Keith

    1991-01-01

    A logic for reasoning about timing of concurrent programs is presented. The logic is based on proof outlines and can handle maximal parallelism as well as resource-constrained execution environments. The correctness proof for a mutual exclusion protocol that uses execution timings in a subtle way illustrates the logic in action.

  13. The Isolation of Nanofibre Cellulose from Oil Palm Empty Fruit Bunch Via Steam Explosion and Hydrolysis with HCl 10%

    NASA Astrophysics Data System (ADS)

    Gea, S.; Zulfahmi, Z.; Yunus, D.; Andriayani, A.; Hutapea, Y. A.

    2018-03-01

    Cellulose nanofibrils were obtained from oil palm empty fruit bunch using steam explosion and hydrolized with 10% solution of HCl. Steam explosion coupled with acid hydrolysis pretreatment on the oil palm empty fruit bunch was very effective in the depolymerization and defibrillation process of the fibre to produce fibers in nanodimension. Structural analysis of steam exploded fibers was determined by Fourier Transform Infrared (FT-IR) spectroscopy. Thermal stability of cellulose measured using image analysis software image J. Characterization of the fibers by TEM and SEM displayed that fiber diameter decreases with mechanical-chemical treatment and final nanofibril size was 20-30 nm. FT-IR and TGA data confirmed the removal of hemicellulose and lignin during the chemical treatment process.

  14. The Study of the Cosmic Gamma-Emission Nonstationary Fluxes Characteristics by the AVS-F Apparatus Data

    NASA Astrophysics Data System (ADS)

    Kotov, Yu. D.; Arkhangelskaja, I. V.; Arkhangelsky, A. I.; Kuznetsov, S. N.; Glyanenko, A. S.; Kalmykov, P. A.; Amandzholova, D. B.; Samoylenko, V. T.; Yurov, V. N.; Pavlov, A. V.; Chervyakova, O. I.; Afonina, I. V.

    The AVS-F apparatus (Russian abbreviation for Amplitude-Time Spectrometry of the Sun) is intended for the solar flares' hard X-ray and gamma-ray emission characteristic studies and for the search and detection of the gamma-ray bursts (GRB). At present over 1,100 events with duration more than 2 s without any coordinate relations to Earth Radiation Belts and South Atlantic Anomaly were separated on the results of preliminary analysis of AVS-F experiment database.About 68 % of the identified events were associated with quasistationary equatorial precipitations-15-30 % count rate increases in the low-energy gamma-band of the AVS-F apparatus over its average value obtained by approximation of these parts with polynomials discovered on some equatorial segments in the ranges of geographic latitude of 25∘ up to +30∘. Several short events with duration of 1-16 ms associated with terrestrial gamma-ray flashes were registered during the experiment. These events were detected above the powerful thunderstorm formations.Solar flares with classes stronger than M1.0 according to the GOES classification were about 7 % of the detected events. Solar flares' hard X-rays and γ-emission were mainly observed during the rise or maximum phases of the emission in the soft X-rays band according to the detectors on board the GOES series satellites data and duration of their registration is less than of the soft X-ray bands. According to the preliminary data analysis gamma-emission with energy over 10 MeV was registered during 12 % of the observed flares. The emission in the energy band E ¿ 100 keV was registered during over 60 faint solar flares (of B and C classes according to the GOES and from several ones γ-quanta with energy up to several tens of MeV were observed.Several spectral line complexes were observed in the spectra of some solar flares stronger than M1.0 in the low-energy gamma-range. Registered spectral features were corresponded to α α-lines, annihilation line

  15. Beam measurement of the high frequency impedance sources with long bunches in the CERN Super Proton Synchrotron

    NASA Astrophysics Data System (ADS)

    Lasheen, A.; Argyropoulos, T.; Bohl, T.; Esteban Müller, J. F.; Timko, H.; Shaposhnikova, E.

    2018-03-01

    Microwave instability in the Super Proton Synchrotron (SPS) at CERN is one of the main limitations to reach the requirements for the High Luminosity-LHC project (increased beam intensity by a factor 2). To identify the impedance source responsible of the instability, beam measurements were carried out to probe the SPS impedance. The method presented in this paper relies on measurements of the unstable spectra of single bunches, injected in the SPS with the rf voltage switched off. The modulation of the bunch profile gives information about the main impedance sources driving microwave instability, and is compared to particle simulations using the SPS impedance model to identify the most important contributions. This allowed us to identify the vacuum flanges as the main impedance source for microwave instability in the SPS, and to evaluate possible missing impedance sources.

  16. Hydrothermal pre-treatment of oil palm empty fruit bunch into fermentable sugars

    NASA Astrophysics Data System (ADS)

    Muhd Ali, M. D.; Tamunaidu, P.; Nor Aslan, A. K. H.; Morad, N. A.; Sugiura, N.; Goto, M.; Zhang, Z.

    2016-06-01

    Presently oil palm empty fruit bunch (OPEFB) is one of the solid waste which is produced daily whereby it is usually left at plantation site to act as organic fertilizer for the plants to ensure the sustainability of fresh fruit bunch. The major drawback in biomass conversion technology is the difficulty of degrading the material in a short period of time. A pre-treatment step is required to break the lignocellulosic biomass to easily accessible carbon sources for further use in the production of fuels and fine chemicals. Therefore, this study investigated the effect of hydrothermal pre-treatment under different reaction temperatures (100 - 250°C), reaction time (10 - 40 min), solid to solvent ratio of (1:10 - 1:20 w/v) and particle size (0.15 - 1.00 mm) on the solubilization of OPEFB to produce soluble fermentable sugars. The maximum soluble sugars of 68.18 mg glucose per gram of OPEFB were achieved at 175°C of reaction temperature, 20 min of reaction time, 1:15 w/v of solid to solvent ratio for 30 mm of particle size. Results suggest that reaction temperature, reaction time, the amount of solid to solvent ratio and size of the particle are crucial parameters for hydrothermal pretreatment, in achieving a high yield of soluble fermentable sugars.

  17. Fort Benton Science Curriculum Outline.

    ERIC Educational Resources Information Center

    Fort Benton Public Schools, MT.

    The science curriculum for the Fort Benton school system was developed with funds under Title III of the Elementary and Secondary Education Act to give students the background of a modern and forward-looking program in science taught in an imaginative, investigative, and inquiry-oriented fashion. The science curriculum guide outlines a planned…

  18. Contextual essay for integrated thematic unit: Kids, Quarks, and Quanta

    NASA Astrophysics Data System (ADS)

    Draeger, Vicki Lee

    This essay provides the research and rationale to support the theory that early adolescence is the best time to present an introduction to quantum mechanics. It supports the creation of an integrated thematic unit to be used with students ages 11--14 in an inclusion classroom without limiting the unit to only an inclusion setting. The first section sets forth five problems the unit was written to address. Citing The National Center for Education Statistics 2000 version of The Nation's Report Card, the problems with current practices in science education resulting in poor student performance are presented. References to Project 2061: Science for All Americans help to demonstrate that students with disabilities are seldom considered when physical science curriculum is being developed, supporting the position that equity in science education is necessary, while maintaining challenging subject matter. The problem of the poor quality of many physical science texts is addressed, with an emphasis on the importance of curricular connections. The poor quality of physical science teacher training in many university teacher training courses is discussed, and the nature of the integrated thematic unit as a curriculum design is examined with reference to what is considered the over-emphasis on "reality-based" content to the exclusion of abstract subject matter. Having presented the problems and supporting their validity, the essay then demonstrated how Kids, Quarks, and Quanta specifically addresses each problem. The two and a half year study of Dr. John Hubisz and the committee he formed under The David and Lucille Packard Foundation grant to review and critique the physical science textbooks currently used with early adolescents is often referenced to support both the problems of teacher training and the poor quality of many texts. Recent brain research conducted by researchers of the National Institute of Mental Health is used to support the presentation of more abstract

  19. Test of a single module of the J-PET scanner based on plastic scintillators

    NASA Astrophysics Data System (ADS)

    Moskal, P.; Niedźwiecki, Sz.; Bednarski, T.; Czerwiński, E.; Kapłon, Ł.; Kubicz, E.; Moskal, I.; Pawlik-Niedźwiecka, M.; Sharma, N. G.; Silarski, M.; Zieliński, M.; Zoń, N.; Białas, P.; Gajos, A.; Kochanowski, A.; Korcyl, G.; Kowal, J.; Kowalski, P.; Kozik, T.; Krzemień, W.; Molenda, M.; Pałka, M.; Raczyński, L.; Rudy, Z.; Salabura, P.; Słomski, A.; Smyrski, J.; Strzelecki, A.; Wieczorek, A.; Wiślicki, W.

    2014-11-01

    A Time of Flight Positron Emission Tomography scanner based on plastic scintillators is being developed at the Jagiellonian University by the J-PET collaboration. The main challenge of the conducted research lies in the elaboration of a method allowing application of plastic scintillators for the detection of low energy gamma quanta. In this paper we report on tests of a single detection module built out from the BC-420 plastic scintillator strip (with dimensions of 5×19×300 mm3) read out at two ends by Hamamatsu R5320 photomultipliers. The measurements were performed using collimated beam of annihilation quanta from the 68Ge isotope and applying the Serial Data Analyzer (Lecroy SDA6000A) which enabled sampling of signals with 50 ps intervals. The time resolution of the prototype module was established to be better than 80 ps (σ) for a single level discrimination. The spatial resolution of the determination of the hit position along the strip was determined to be about 0.93 cm (σ) for the annihilation quanta. The fractional energy resolution for the energy E deposited by the annihilation quanta via the Compton scattering amounts to σ(E) / E ≈ 0.044 /√{ E(MeV) } and corresponds to the σ(E) / E of 7.5% at the Compton edge.

  20. Development of the Advanced Energetic Pair Telescope (AdEPT) for Medium-Energy Gamma-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Hunter, Stanley D.; Bloser, Peter F.; Dion, Michael P.; McConnell, Mark L.; deNolfo, Georgia A.; Son, Seunghee; Ryan, James M.; Stecker, Floyd W.

    2011-01-01

    Progress in high-energy gamma-ray science has been dramatic since the launch of INTEGRAL, AGILE and FERMI. These instruments, however, are not optimized for observations in the medium-energy (approx.0.3< E(sub gamma)< approx.200 MeV) regime where many astrophysical objects exhibit unique, transitory behavior, such as spectral breaks, bursts, and flares. We outline some of the major science goals of a medium-energy mission. These science goals are best achieved with a combination of two telescopes, a Compton telescope and a pair telescope, optimized to provide significant improvements in angular resolution and sensitivity. In this paper we describe the design of the Advanced Energetic Pair Telescope (AdEPT) based on the Three-Dimensional Track Imager (3-DTI) detector. This technology achieves excellent, medium-energy sensitivity, angular resolution near the kinematic limit, and gamma-ray polarization sensitivity, by high resolution 3-D electron tracking. We describe the performance of a 30x30x30 cm3 prototype of the AdEPT instrument.

  1. Can YAG screen accept LEReC bunch train?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seletskiy, S.; Thieberger, P.; Miller, T.

    2016-05-18

    LEReC RF diagnostic beamline is supposed to accept 250 us long pulse trains of 1.6 MeV – 2.6 MeV (kinetic energy) electrons. This beamline is equipped with YAG profile monitor. Since we are interested in observing only the last macro bunch in the train, one of the possibilities is to install a fast kicker and a dedicated dump upstream of the YAG screen (and related diagnostics equipment). This approach is expensive and challenging from engineering point of view. Another possibility is to send the whole pulse train to the YAG screen and to use a fast gated camera (such asmore » Imperex B0610 with trigger jitter under 60ns) to observe the image from the last pulse only. In this paper we study the feasibility of the last approach.« less

  2. Boater Performance Course Curriculum Outline.

    ERIC Educational Resources Information Center

    Davis, Michael W.; Reichle, Marvin N.

    One of three related documents on recreational boating, this curriculum outline presents units of study designed to provide the knowledge, attitudes, and skills essential for safe boating behavior in all recreational boating activities. Fourteen units of study cover all phases of boat operation and are geared to the 15- or 16-foot power boat--the…

  3. Bunch radiation from a semi-infinite waveguide with dielectric filling inside a waveguide with larger radius

    NASA Astrophysics Data System (ADS)

    Galyamin, S. N.; Tyukhtin, A. V.; Vorobev, V. V.; Aryshev, A.

    2018-02-01

    We consider a point charge and Gaussian bunch of charged particles moving along the axis of a circular perfectly conducting pipe with uniform dielectric filling and open end. It is supposed that this semi-infinite waveguide is located in collinear infinite vacuum pipe with perfectly conducting walls and larger diameter. We deal with two cases corresponding to the open end of the inner waveguide with and without flange. Radiation produced by a charge or bunch flying from dielectric part to wide vacuum part is analyzed. We use modified residue-calculus technique and construct rigorous analytical theory describing scattered field in each sub-area of the structure. Cherenkov radiation generated in the dielectric waveguide and penetrating into the vacuum regions of the structure is of main interest throughout the present paper. We show that this part of radiation can be easily analyzed using the presented formalism. We also perform numerical simulation in CST PS code and verify the analytical results.

  4. Retroflex Versus Bunched in Treatment for Rhotic Misarticulation: Evidence From Ultrasound Biofeedback Intervention

    PubMed Central

    Byun, Tara McAllister; Hitchcock, Elaine R.; Swartz, Michelle T.

    2014-01-01

    Purpose To document the efficacy of ultrasound biofeedback treatment for misarticulation of the North American English rhotic in children. Because of limited progress in the first cohort, a series of two closely related studies was conducted in place of a single study. The studies differed primarily in the nature of tongue-shape targets (e.g., retroflex, bunched) cued during treatment. Method Eight participants received 8 weeks of individual ultrasound biofeedback treatment targeting rhotics. In Study 1, all 4 participants were cued to match a bunched tongue-shape target. In Study 2, participants received individualized cues aimed at eliciting the tongue shape most facilitative of perceptually correct rhotics. Results Participants in Study 1 showed only minimal treatment effects. In Study 2, all participants demonstrated improved production of rhotics in untreated words produced without biofeedback, with large to very large effect sizes. Conclusions The results of Study 2 indicate that with proper parameters of treatment, ultrasound biofeedback can be a highly effective intervention for children with persistent rhotic errors. In addition, qualitative comparison of Studies 1 and 2 suggests that treatment for the North American English rhotic should include opportunities to explore different tongue shapes, to find the most facilitative variant for each individual speaker. PMID:25088034

  5. Commissioning of a compact laser-based proton beam line for high intensity bunches around 10Â MeV

    NASA Astrophysics Data System (ADS)

    Busold, S.; Schumacher, D.; Deppert, O.; Brabetz, C.; Kroll, F.; Blažević, A.; Bagnoud, V.; Roth, M.

    2014-03-01

    We report on the first results of experiments with a new laser-based proton beam line at the GSI accelerator facility in Darmstadt. It delivers high current bunches at proton energies around 9.6 MeV, containing more than 109 particles in less than 10 ns and with tunable energy spread down to 2.7% (ΔE/E0 at FWHM). A target normal sheath acceleration stage serves as a proton source and a pulsed solenoid provides for beam collimation and energy selection. Finally a synchronous radio frequency (rf) field is applied via a rf cavity for energy compression at a synchronous phase of -90 deg. The proton bunch is characterized at the end of the very compact beam line, only 3 m behind the laser matter interaction point, which defines the particle source.

  6. microPMT-A New Photodetector for Gamma Spectrometry and Fast Timing?

    NASA Astrophysics Data System (ADS)

    Szczęśniak, T.; Grodzicka, M.; Moszyński, M.; Szawłowski, M.; Baszak, J.

    2014-10-01

    A micro photomultiplier (microPMT or μPMT) works like a classic photomultiplier but the whole device is made directly in a silicon wafer sandwiched between two glass layers. A microPMT has dimensions of only 13x10x2 mm and its photocathode has a size of 3x1 mm. The aim of the work is to check usefulness of a microPMT in gamma spectrometry with scintillators and fast timing. In the first part of the study analysis of the energy resolution obtained with 3x3x1 mm LSO, BGO and CsI(Tl) scintillators is made. The recorded values for 662 keV are equal to 22.9% and 13.5% for CsI and LSO, respectively. The light pulse shapes of a single photoelectron and scintillation signal of LSO are also shown. The important part of the study is measurement of the number of photoelectrons and estimation of the excess noise factor. Only 2200 phe/MeV were obtained for LSO coupled with the tested microPMT. The calculated excess noise factor is equal to 1.4. In the second part, measurements of the time jitter and timing resolution with LSO crystal for 511 keV annihilation quanta are reported. The timing characteristics of the tested device is poor. Its time jitter equals to 1.5 ns, whereas timing resolution for 22Na is 620 ps. All the results are compared with data obtained with classic PMTs.

  7. Host resistance to Botrytis bunch rot in Vitis spp. and its correlation with Botrytis leaf spot

    USDA-ARS?s Scientific Manuscript database

    Botrytis cinerea, the causal agent of Botrytis bunch rot, is the number one postharvest disease of fresh grapes in the U.S. Fungicide applications are used to manage the disease, but resistant isolates are common and postharvest losses occur annually. Host resistance is needed for long-term manageme...

  8. Synthesis and characterization of [BMIM]bromide using microwave-assisted organic synthesis method and its application for dissolution of palm empty fruit bunch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arianie, Lucy, E-mail: lucy205@yahoo.com; Wahyuningrum, Deana, E-mail: deana@chem.itb.ac.id; Nurrachman, Zeily, E-mail: deana@chem.itb.ac.id

    The decrease of cellulose crystallinity index of palm empty fruit bunch is crucial for the next application of cellulose as raw material for various biofuel and its derivatives. The aim of this research is to decrease the cellulose crystallinity index of palm empty fruit bunch using 1-butyl-3-methylimidazoliumbromide or [BMIM] bromide which has been synthesized using Microwave-Assisted Organic Synthesis (MAOS) method. Conventional reaction method has also been carried out to synthesize [BMIM]bromide for comparison as well. The characterization of synthesized product using FTIR, {sup 1}H-NMR, {sup 13}C-NMR and LC-MS showed that these reactions have been carried out successfully. The results showedmore » that MAOS method is up to 90% faster in producing [BMIM]bromide compare to the conventional method. The application of [BMIM]bromide for dissolution of palm empty fruit bunch showed that cellulose and lignin could be extracted using stirring process for 20 hours. The decrease of cellulose crystallinity index and its morphology changes were identified using FTIR and Scanning Electron Microscope.« less

  9. Synthesis and characterization of [BMIM]bromide using microwave-assisted organic synthesis method and its application for dissolution of palm empty fruit bunch

    NASA Astrophysics Data System (ADS)

    Arianie, Lucy; Wahyuningrum, Deana; Nurrachman, Zeily; Natalia, Dessy

    2014-03-01

    The decrease of cellulose crystallinity index of palm empty fruit bunch is crucial for the next application of cellulose as raw material for various biofuel and its derivatives. The aim of this research is to decrease the cellulose crystallinity index of palm empty fruit bunch using 1-butyl-3-methylimidazoliumbromide or [BMIM] bromide which has been synthesized using Microwave-Assisted Organic Synthesis (MAOS) method. Conventional reaction method has also been carried out to synthesize [BMIM]bromide for comparison as well. The characterization of synthesized product using FTIR, 1H-NMR, 13C-NMR and LC-MS showed that these reactions have been carried out successfully. The results showed that MAOS method is up to 90% faster in producing [BMIM]bromide compare to the conventional method. The application of [BMIM]bromide for dissolution of palm empty fruit bunch showed that cellulose and lignin could be extracted using stirring process for 20 hours. The decrease of cellulose crystallinity index and its morphology changes were identified using FTIR and Scanning Electron Microscope.

  10. Unidentified Gamma-Ray Sources: Hunting Gamma-Ray Blazars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massaro, F.; D'Abrusco, R.; Tosti, G.

    2012-04-02

    One of the main scientific objectives of the ongoing Fermi mission is unveiling the nature of the unidentified {gamma}-ray sources (UGSs). Despite the large improvements of Fermi in the localization of {gamma}-ray sources with respect to the past {gamma}-ray missions, about one third of the Fermi-detected objects are still not associated to low energy counterparts. Recently, using the Wide-field Infrared Survey Explorer (WISE) survey, we discovered that blazars, the rarest class of Active Galactic Nuclei and the largest population of {gamma}-ray sources, can be recognized and separated from other extragalactic sources on the basis of their infrared (IR) colors. Basedmore » on this result, we designed an association method for the {gamma}-ray sources to recognize if there is a blazar candidate within the positional uncertainty region of a generic {gamma}-ray source. With this new IR diagnostic tool, we searched for {gamma}-ray blazar candidates associated to the UGS sample of the second Fermi {gamma}-ray catalog (2FGL). We found that our method associates at least one {gamma}-ray blazar candidate as a counterpart each of 156 out of 313 UGSs analyzed. These new low-energy candidates have the same IR properties as the blazars associated to {gamma}-ray sources in the 2FGL catalog.« less

  11. UNIDENTIFIED {gamma}-RAY SOURCES: HUNTING {gamma}-RAY BLAZARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massaro, F.; Ajello, M.; D'Abrusco, R.

    2012-06-10

    One of the main scientific objectives of the ongoing Fermi mission is unveiling the nature of unidentified {gamma}-ray sources (UGSs). Despite the major improvements of Fermi in the localization of {gamma}-ray sources with respect to the past {gamma}-ray missions, about one-third of the Fermi-detected objects are still not associated with low-energy counterparts. Recently, using the Wide-field Infrared Survey Explorer survey, we discovered that blazars, the rarest class of active galactic nuclei and the largest population of {gamma}-ray sources, can be recognized and separated from other extragalactic sources on the basis of their infrared (IR) colors. Based on this result, wemore » designed an association method for the {gamma}-ray sources to recognize if there is a blazar candidate within the positional uncertainty region of a generic {gamma}-ray source. With this new IR diagnostic tool, we searched for {gamma}-ray blazar candidates associated with the UGS sample of the second Fermi {gamma}-ray LAT catalog (2FGL). We found that our method associates at least one {gamma}-ray blazar candidate as a counterpart to each of 156 out of 313 UGSs analyzed. These new low-energy candidates have the same IR properties as the blazars associated with {gamma}-ray sources in the 2FGL catalog.« less

  12. OpenGov Plan 3.0 Outline

    EPA Pesticide Factsheets

    This document serves as an outline for the structure of the Agency’s Open Government Plan 3.0, expected to be published later this summer, along with a description of a candidate being consider as a flagship project.

  13. Outline of Basic Concepts in Anthropology. Publication No. 1.

    ERIC Educational Resources Information Center

    Georgia Univ., Athens. Anthropology Curriculum Project.

    This teaching aid outlines basic anthropological concepts described in the various units of the Anthropology Curriculum Project. The outline of important concepts to be learned is intended to be used by the teacher in conjunction with the other instructional materials in each unit. The introduction defines anthropology, its branches and purposes.…

  14. Food Service 255. Operational Management II: Procedures. Course Outline.

    ERIC Educational Resources Information Center

    Woodward, Nell M.

    An outline is provided of Food Service 225, a course offered at Orange Coast College dealing with the organization and management of food service departments within health care, community care, and school feeding programs. The outline first presents a course description, which covers prerequisite course work, the role of the course within the…

  15. Small Engine Repair Course Outline.

    ERIC Educational Resources Information Center

    DeClouet, Fred

    Small engines as referred to here are engines used on lawn mowers, chain saws, power plants, outboards, and cycles. It does not include engines used on automobiles. The course outlined is intended to show how small two-cycle and four-cycle gas engines are constructed, how they operate, what goes wrong, and how to service and repair them. It is…

  16. 29 CFR 1.4 - Outline of agency construction programs.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 1 2010-07-01 2010-07-01 true Outline of agency construction programs. 1.4 Section 1.4 Labor Office of the Secretary of Labor PROCEDURES FOR PREDETERMINATION OF WAGE RATES § 1.4 Outline of agency construction programs. To the extent practicable, at the beginning of each fiscal year each agency...

  17. Design, construction and measurements of an alpha magnet as a solution for compact bunch compressor for the electron beam from Thermionic RF Gun

    NASA Astrophysics Data System (ADS)

    Rajabi, A.; Jazini, J.; Fathi, M.; Sharifian, M.; Shokri, B.

    2018-03-01

    The beam produced by a thermionic RF gun has wide energy spread that makes it unsuitable for direct usage in photon sources. Here in the present work, we optimize the extracted beam from a thermionic RF gun by a compact economical bunch compressor. A compact magnetic bunch compressor (Alpha magnet) is designed and constructed. A comparison between simulation results and experimental measurements shows acceptable conformity. The beam dynamics simulation results show a reduction of the energy spread as well as a compression of length less than 1 ps with 2.3 mm-mrad emittance.

  18. Hard Burst Emission from the Soft Gamma Repeater SGR 1900+14

    NASA Technical Reports Server (NTRS)

    Woods, Peter M.; Kouveliotou, Chryssa; VanParadijs, Jan; Briggs, Michael S.; Hurley, Kevin; Gogus, Ersin; Preece, Robert D.; Giblin, Timothy W.; Thompson, Christopher; Duncan, Robert C.

    1999-01-01

    We present evidence for burst emission from SGR 1900 + 14 with a power-law high-energy spectrum extending beyond 500 keV. Unlike previous detections of high-energy photons during bursts from soft gamma repeaters (SGRs), these emissions are not associated with extraordinarily bright flares. Not only is the emission hard, but the spectra are better fitted by D. Band's gamma-ray burst (GRB) function rather than by the traditional optically thin thermal bremsstrahlung model. We find that the spectral evolution within these hard events obeys a hardness/intensity anticorrelation. Temporally, these events are distinct from typical SGR burst emissions in that they are longer (approximately 1 s) and have relatively smooth profiles. Despite a difference in peak luminosity of approximately > 10(exp 11) between these bursts from SGR 1900 + 14 and cosmological GRBs, there are striking temporal and spectral similarities between the two kinds of bursts, aside from spectral evolution. We outline an interpretation of these events in the context of the magnetar model.

  19. Growth kinetics of gamma-prime precipitates in a directionally solidified eutectic, gamma/gamma-prime-delta

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.

    1976-01-01

    A directionally solidified eutectic alloy (DSEA), of those viewed as potential candidates for the next generation of aircraft gas turbine blade materials, is studied for the gamma-prime growth kinetics, in the system Ni-Nb-Cr-Al, specifically: Ni-20 w/o Nb-6 w/o Cr-2.5 w/o Al gamma/gamma-prime-delta DSEA. Heat treatment, polishing and etching, and preparation for electron micrography are described, and the size distribution of gamma-prime phase following various anneals is plotted, along with gamma-prime growth kinetics in this specific DSEA, and the cube of gamma-prime particle size vs anneal time. Activation energies and coarsening kinetics are studied.

  20. The neutron-gamma Feynman variance to mean approach: Gamma detection and total neutron-gamma detection (theory and practice)

    NASA Astrophysics Data System (ADS)

    Chernikova, Dina; Axell, Kåre; Avdic, Senada; Pázsit, Imre; Nordlund, Anders; Allard, Stefan

    2015-05-01

    Two versions of the neutron-gamma variance to mean (Feynman-alpha method or Feynman-Y function) formula for either gamma detection only or total neutron-gamma detection, respectively, are derived and compared in this paper. The new formulas have particular importance for detectors of either gamma photons or detectors sensitive to both neutron and gamma radiation. If applied to a plastic or liquid scintillation detector, the total neutron-gamma detection Feynman-Y expression corresponds to a situation where no discrimination is made between neutrons and gamma particles. The gamma variance to mean formulas are useful when a detector of only gamma radiation is used or when working with a combined neutron-gamma detector at high count rates. The theoretical derivation is based on the Chapman-Kolmogorov equation with the inclusion of general reactions and corresponding intensities for neutrons and gammas, but with the inclusion of prompt reactions only. A one energy group approximation is considered. The comparison of the two different theories is made by using reaction intensities obtained in MCNPX simulations with a simplified geometry for two scintillation detectors and a 252Cf-source. In addition, the variance to mean ratios, neutron, gamma and total neutron-gamma are evaluated experimentally for a weak 252Cf neutron-gamma source, a 137Cs random gamma source and a 22Na correlated gamma source. Due to the focus being on the possibility of using neutron-gamma variance to mean theories for both reactor and safeguards applications, we limited the present study to the general analytical expressions for Feynman-alpha formulas.

  1. Recoilless Nuclear Resonance Absorption of Gamma Radiation

    NASA Astrophysics Data System (ADS)

    Mössbauer, Rudolf L.

    It is a high distinction to be permitted to address you on the subject of recoilless nuclear resonance absorption of gamma radiation. The methods used in this special branch of experimental physics have recently found acceptance in many areas of science. I take the liberty to confine myself essentially to the work which I was able to carry out in the years 1955-1958 at the Max Planck Institute in Heidelberg, and which finally led to establishment of the field of recoilless nuclear resonance absorption. Many investigators shared in the preparations of the basis for the research we are concerned with in this lecture. As early as the middle of the last century Stokes observed, in the case of fluorite, the phenomenon now known as fluorescence - namely, that solids, liquids, and gases under certain conditions partially absorb incident electromagnetic radiation which immediately is reradiated. A special case is the so-called resonance fluorescence, a phenomenon in which the re-emitted and the incident radiation both are of the same wavelength. The resonance fluorescence of the yellow D lines of sodium in sodium vapour is a particularly notable and exhaustively studied example. In this optical type of resonance fluorescence, light sources are used in which the atoms undergo transitions from excited states to their ground states (Fig. 1.1). The light quanta emitted in these transitions (A → B) are used to initiate the inverse process of resonance absorption in the atoms of an absorber which are identical with the radiating atoms. The atoms of the absorber undergo a transition here from the ground state (B) to the excited state (A), from which they again return to the ground state, after a certain time delay, by emission of fluorescent light.

  2. Results from the irradiation of stainless steel and copper by 23 MeV γ-quanta in the atmosphere of molecular deuterium at a pressure of 2 kbar

    NASA Astrophysics Data System (ADS)

    Didyk, A. Yu.; Wisniewski, R.

    2014-05-01

    Metal samples were arranged inside a "finger-type" high-pressure chamber (DHPC-FT) filled by deuterium. They were two aluminum rods, a copper rod, two specimens of homogeneous YMn2 alloy, and a stainless steel wire. The pressure of molecular deuterium in DHPC-FT was about 2 kbar. The samples were irradiated by braking γ-quanta at a threshold energy of 23 MeV. All the samples were studied using scanning electron microscopy (SEM) and X-ray (roentgen) microelement probe analysis (RMPA). Considerable changes in the surface structure and elemental composition were found for the samples of copper, aluminum, YMn2 alloy, and stainless steel. Unusual results were analyzed in detail and compared with the earlier data.

  3. The Lunch Bunch: an innovative strategy to combat depression and delirium through socialization in elderly sub-acute medicine patients.

    PubMed

    Feyerer, Margot; Kruk, Dawn; Bartlett, Nicole; Rodney, Kathy; McKenzie, Cyndi; Green, Patrice; Keller, Lisa; Adcroft, Pat

    2013-01-01

    Hospitalized sub-acute medicine patients face challenges to their functional and cognitive abilities as they await transfer to long-term care facilities or return home. The Continuous Quality Improvement (CQI) Council, representing a multidisciplinary team of healthcare professionals working in the Sub-Acute Medicine Unit (SAMU), implemented a twice-weekly lunch program called the Lunch Bunch in order to combat depression and delirium in our elderly and cognitively impaired patients. The Lunch Bunch initiative includes chaplains, nurses and physiotherapists who have provided a framework through which essential socialization and exercise for this vulnerable population is facilitated. Providing a means for both mental and physical stimulation also allows patients to open up and discuss hidden feelings of loneliness and isolation, thereby beginning a journey of spiritual and emotional healing.

  4. Curriculum Outline for Tennessee Transition Model.

    ERIC Educational Resources Information Center

    Esch, B. J.

    This curriculum outline for the Sevier County, Tennessee, transition program for special needs students provides goals and objectives for the following domains: domestic, vocational, community functioning, and recreation/leisure. The domestic domain covers personal hygiene/grooming, first aid, home nursing, birth control/pregnancy, parenting, drug…

  5. An annotated outline for a traffic management center operations manual

    DOT National Transportation Integrated Search

    2000-10-01

    This draft Traffic Management Center (TMC) and Operations manual outline is meant to serve as a model "checklist" for the development of similar manuals used in deployed environments. The purpose of this outline is to provide a reference for agencies...

  6. Long bunch trains measured using a prototype cavity beam position monitor for the Compact Linear Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cullinan, F. J.; Boogert, S. T.; Farabolini, W.

    2015-11-19

    The Compact Linear Collider (CLIC) requires beam position monitors (BPMs) with 50 nm spatial resolution for alignment of the beam line elements in the main linac and beam delivery system. Furthermore, the BPMs must be able to make multiple independent measurements within a single 156 ns long bunch train. A prototype cavity BPM for CLIC has been manufactured and tested on the probe beam line at the 3rd CLIC Test Facility (CTF3) at CERN. The transverse beam position is determined from the electromagnetic resonant modes excited by the beam in the two cavities of the pickup, the position cavity and the referencemore » cavity. The mode that is measured in each cavity resonates at 15 GHz and has a loaded quality factor that is below 200. Analytical expressions for the amplitude, phase and total energy of signals from long trains of bunches have been derived and the main conclusions are discussed. The results of the beam tests are presented. The variable gain of the receiver electronics has been characterized using beam excited signals and the form of the signals for different beam pulse lengths with the 2/3 ns bunch spacing has been observed. The sensitivity of the reference cavity signal to charge and the horizontal position signal to beam offset have been measured and are compared with theoretical predictions based on laboratory measurements of the BPM pickup and the form of the resonant cavity modes as determined by numerical simulation. Lastly, the BPM was calibrated so that the beam position jitter at the BPM location could be measured. It is expected that the beam jitter scales linearly with the beam size and so the results are compared to predicted values for the latter.« less

  7. Long bunch trains measured using a prototype cavity beam position monitor for the Compact Linear Collider

    NASA Astrophysics Data System (ADS)

    Cullinan, F. J.; Boogert, S. T.; Farabolini, W.; Lefevre, T.; Lunin, A.; Lyapin, A.; Søby, L.; Towler, J.; Wendt, M.

    2015-11-01

    The Compact Linear Collider (CLIC) requires beam position monitors (BPMs) with 50 nm spatial resolution for alignment of the beam line elements in the main linac and beam delivery system. Furthermore, the BPMs must be able to make multiple independent measurements within a single 156 ns long bunch train. A prototype cavity BPM for CLIC has been manufactured and tested on the probe beam line at the 3rd CLIC Test Facility (CTF3) at CERN. The transverse beam position is determined from the electromagnetic resonant modes excited by the beam in the two cavities of the pickup, the position cavity and the reference cavity. The mode that is measured in each cavity resonates at 15 GHz and has a loaded quality factor that is below 200. Analytical expressions for the amplitude, phase and total energy of signals from long trains of bunches have been derived and the main conclusions are discussed. The results of the beam tests are presented. The variable gain of the receiver electronics has been characterized using beam excited signals and the form of the signals for different beam pulse lengths with the 2 /3 ns bunch spacing has been observed. The sensitivity of the reference cavity signal to charge and the horizontal position signal to beam offset have been measured and are compared with theoretical predictions based on laboratory measurements of the BPM pickup and the form of the resonant cavity modes as determined by numerical simulation. Finally, the BPM was calibrated so that the beam position jitter at the BPM location could be measured. It is expected that the beam jitter scales linearly with the beam size and so the results are compared to predicted values for the latter.

  8. 76 FR 33726 - National Ocean Council; Strategic Action Plan Content Outlines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-09

    ...On July 19, 2010, President Obama signed Executive Order 13547 establishing a National Policy for the Stewardship of the Ocean, our Coasts, and the Great Lakes (``National Ocean Policy''). The National Ocean Policy provides an implementation strategy, which describes nine priority objectives that seek to address some of the most pressing challenges facing the ocean, our coasts, and the Great Lakes. The National Ocean Council is responsible for developing strategic action plans for each of the nine priority objectives. As a first step, Federal interagency writing teams have developed content outlines for each draft strategic action plan. The NOC is seeking public review and comment of these content outlines. The purpose of the draft content outlines (outlines) is to provide the public with an initial view of potential actions that could be taken to further the national priority objectives. As such, they are an interim step toward development of the first full draft of each strategic action plan. In developing the outlines, the writing teams were informed by the comments received during an initial public scoping period that closed on April 29. Each outline presents in bulleted form potential actions to further the particular priority objective. It describes the reasons for taking the action, expected outcomes and milestones, gaps and needs in science and technology, and the timeframe for completing the action. The outlines also provide an overview of the priority objective, greater context for the strategic action plan in implementing the National Ocean Policy, and an overview of the preparation of the plan . Public comments received on the outlines will be collated and posted on the NOC Web site. The comments on the outlines will inform the preparation of full draft strategic action plans, which will be released for public review in the fall of 2011, allowing additional opportunity for the public to provide comments. Final strategic action plans are expected to

  9. Very high-energy gamma rays from gamma-ray bursts.

    PubMed

    Chadwick, Paula M

    2007-05-15

    Very high-energy (VHE) gamma-ray astronomy has undergone a transformation in the last few years, with telescopes of unprecedented sensitivity having greatly expanded the source catalogue. Such progress makes the detection of a gamma-ray burst at the highest energies much more likely than previously. This paper describes the facilities currently operating and their chances for detecting gamma-ray bursts, and reviews predictions for VHE gamma-ray emission from gamma-ray bursts. Results to date are summarized.

  10. Rehabilitation Prevocational Support Services. Program Outline.

    ERIC Educational Resources Information Center

    Musgrove, Ann

    This outline decribes the Rehabilitation Prevocational Support Service program at Northwest Community College (Alabama), designed to help prepare selected students for occupational training programs or job placement and to enhance their academic level. Students are assigned to individualized learning modules based on pretesting by a variety of…

  11. Outline of Services for the Blind.

    ERIC Educational Resources Information Center

    Journal of Visual Impairment and Blindness, 1992

    1992-01-01

    Sixteen separate but related charts present an outline of basic administrative relationships of governmental and private organization programs and services for the blind. Major divisions include the federal Departments of Education, Health and Human Services, and Defense; consumer support groups; colleges and universities; client services; and…

  12. Absolute Bunch Length Measurements at the ALS by Incoherent Synchrotron Radiation Fluctuation Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filippetto, D.; /Frascati; Sannibale, F.

    2008-01-24

    By analyzing the pulse to pulse intensity fluctuations of the radiation emitted by a charge particle in the incoherent part of the spectrum, it is possible to extract information about the spatial distribution of the beam. At the Advanced Light Source (ALS) of the Lawrence Berkeley National Laboratory, we have developed and tested a simple scheme based on this principle that allows for the absolute measurement of the bunch length. A description of the method and the experimental results are presented.

  13. Entangled de Sitter from stringy axionic Bell pair I: an analysis using Bunch-Davies vacuum

    NASA Astrophysics Data System (ADS)

    Choudhury, Sayantan; Panda, Sudhakar

    2018-01-01

    In this work, we study the quantum entanglement and compute entanglement entropy in de Sitter space for a bipartite quantum field theory driven by an axion originating from Type IIB string compactification on a Calabi-Yau three fold (CY^3) and in the presence of an NS5 brane. For this computation, we consider a spherical surface S^2, which divides the spatial slice of de Sitter (dS_4) into exterior and interior sub-regions. We also consider the initial choice of vacuum to be Bunch-Davies state. First we derive the solution of the wave function of the axion in a hyperbolic open chart by constructing a suitable basis for Bunch-Davies vacuum state using Bogoliubov transformation. We then derive the expression for density matrix by tracing over the exterior region. This allows us to compute the entanglement entropy and Rényi entropy in 3+1 dimension. Furthermore, we quantify the UV-finite contribution of the entanglement entropy which contain the physics of long range quantum correlations of our expanding universe. Finally, our analysis complements the necessary condition for generating non-vanishing entanglement entropy in primordial cosmology due to the axion.

  14. Hydrothermal pretreatment of palm oil empty fruit bunch

    NASA Astrophysics Data System (ADS)

    Simanungkalit, Sabar Pangihutan; Mansur, Dieni; Nurhakim, Boby; Agustin, Astrid; Rinaldi, Nino; Muryanto, Fitriady, Muhammad Ariffudin

    2017-01-01

    Hydrothermal pretreatment methods in 2nd generation bioethanol production more profitable to be developed, since the conventional pretreatment, by using acids or alkalis, is associated with the serious economic and environmental constraints. The current studies investigate hydrothermal pretreatment of palm oil empty fruit bunch (EFB) in a batch tube reactor system with temperature and time range from 160 to 240 C and 15 to 30 min, respectively. The EFB were grinded and separated into 3 different particles sizes i.e. 10 mesh, 18 mesh and 40 mesh, prior to hydrothermal pretreatment. Solid yield and pH of the treated EFB slurries changed over treatment severities. The chemical composition of EFB was greatly affected by the hydrothermal pretreatment especially hemicellulose which decreased at higher severity factor as determined by HPLC. Both partial removal of hemicellulose and migration of lignin during hydrothermal pretreatment caused negatively affect for enzymatic hydrolysis. This studies provided important factors for maximizing hydrothermal pretreatment of EFB.

  15. Ultra-bright γ-ray flashes and dense attosecond positron bunches from two counter-propagating laser pulses irradiating a micro-wire target.

    PubMed

    Li, Han-Zhen; Yu, Tong-Pu; Hu, Li-Xiang; Yin, Yan; Zou, De-Bin; Liu, Jian-Xun; Wang, Wei-Quan; Hu, Shun; Shao, Fu-Qiu

    2017-09-04

    We propose a novel scheme to generate ultra-bright ultra-short γ-ray flashes and high-energy-density attosecond positron bunches by using multi-dimensional particle-in-cell simulations with quantum electrodynamics effects incorporated. By irradiating a 10 PW laser pulse with an intensity of 10 23 W/cm 2 onto a micro-wire target, surface electrons are dragged-out of the micro-wire and are effectively accelerated to several GeV energies by the laser ponderomotive force, forming relativistic attosecond electron bunches. When these electrons interact with the probe pulse from the other side, ultra-short γ-ray flashes are emitted with an ultra-high peak brightness of 1.8 × 10 24 photons s -1 mm -2 mrad -2 per 0.1%BW at 24 MeV. These photons propagate with a low divergence and collide with the probe pulse, triggering the Breit-Wheeler process. Dense attosecond e - e + pair bunches are produced with the positron energy density as high as 10 17 J/m 3 and number of 10 9 . Such ultra-bright ultra-short γ-ray flashes and secondary positron beams may have potential applications in fundamental physics, high-energy-density physics, applied science and laboratory astrophysics.

  16. Outline of Infrared Space Astrometry missions:JASMINE

    NASA Astrophysics Data System (ADS)

    Gouda, N.

    2018-04-01

    Japanese group is promoting infrared space astrometry missions, JASMINE project series, in international collaboration with Gaia DPAC team. In this paper, the outline of Nano-JASMINE and Small-JASMINE missions is shown.

  17. [Ligation of the retrobulbar vascular-nervous bunch during performance of evisceration and enucleation using titanic clips in ophthalmic surgery].

    PubMed

    Rykov, S A; Torchinskaia, N V; Bakbardina, I I; Simchuk, I V

    2011-10-01

    The efficacy of hemostasis achievement during conduction of a retrobulbar vascular-nervous bunch ligation (RVNBL), using titanic clips while evisceroenucleation performance, was studied up. A comparative analysis of clinical and functional results of surgical treatment of 36 patients, suffering terminal dolorous glaucoma and disaster of a sympathetic ophthalmia complication after an eye penetrating wounding occurrence. In 16 patients (the first group) a standard method of a hemostasis achievement was used while doing evisceroenucleation - a deep orbital tamponade for 5 minutes. In 20 patients (the second group) a procedure of RVNBL was conducted, using titanic clips before the bunch transsection doing. There was established, that while doing a RVNPL using titanic clips, a hemorrhage never occurs, a retrobulbar hematoma do not formated, the soft tissues reaction in the early postoperative period is less pronounced, and the patients postoperative rehabilitation period shortens.

  18. Certified Professional Secretary Examination. Outline and Bibliography. Effective November 1994.

    ERIC Educational Resources Information Center

    Professional Secretaries International, Kansas City, MO.

    This outline and bibliography is designed to acquaint candidates and educators with the Certified Professional Secretary (CPS) Examination. The outline indicates the areas in which secretaries should possess knowledge, skill, understanding, and judgment. It is divided into the three parts that comprise the examination: finance and business law…

  19. Teaching Speech Organization and Outlining Using a Color-Coded Approach.

    ERIC Educational Resources Information Center

    Hearn, Ralene

    The organization/outlining unit in the basic Public Speaking course can be made more interesting by using a color-coded instructional method that captivates students, facilitates understanding, and provides the opportunity for interesting reinforcement activities. The two part lesson includes a mini-lecture with a color-coded outline and a two…

  20. Outline of High School Credit Courses.

    ERIC Educational Resources Information Center

    South Carolina State Dept. of Education, Columbia.

    An outline is presented of the objectives and content of courses offered for credit in high schools in South Carolina. Courses in the following subjects are described: (1) art; (2) drama; (3) driver education; (4) environmental education; (5) foreign language: French, German, Russian, Spanish; (6) health; (7) language arts; (8) mathematics; (9)…

  1. Probing plasma wakefields using electron bunches generated from a laser wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Zhang, C. J.; Wan, Y.; Guo, B.; Hua, J. F.; Pai, C.-H.; Li, F.; Zhang, J.; Ma, Y.; Wu, Y. P.; Xu, X. L.; Mori, W. B.; Chu, H.-H.; Wang, J.; Lu, W.; Joshi, C.

    2018-04-01

    We show experimental results of probing the electric field structure of plasma wakes by using femtosecond relativistic electron bunches generated from a laser wakefield accelerator. Snapshots of laser-driven linear wakes in plasmas with different densities and density gradients are captured. The spatiotemporal evolution of the wake in a plasma density up-ramp is recorded. Two parallel wakes driven by a laser with a main spot and sidelobes are identified in the experiment and reproduced in simulations. The capability of this new method for capturing the electron- and positron-driven wakes is also shown via 3D particle-in-cell simulations.

  2. Evaluation of host resistance to Botrytis bunch rot in Vitis spp. and its correlation with Botrytis leaf spot

    USDA-ARS?s Scientific Manuscript database

    Botrytis cinerea, the causal agent of Botrytis bunch rot and gray mold, is the number one postharvest disease of fresh grapes in the United States. Fungicide applications are used to manage the disease, but fungicide-resistant isolates are common and postharvest losses occur annually. Host resistanc...

  3. 26 CFR 1.904(g)-0 - Outline of regulation provisions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 9 2010-04-01 2010-04-01 false Outline of regulation provisions. 1.904(g)-0 Section 1.904(g)-0 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Income from Sources Without the United States § 1.904(g)-0 Outline of...

  4. 26 CFR 1.904(j)-0 - Outline of regulation provisions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 9 2010-04-01 2010-04-01 false Outline of regulation provisions. 1.904(j)-0 Section 1.904(j)-0 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Income from Sources Without the United States § 1.904(j)-0 Outline of...

  5. Avionics. Progress Record and Theory Outline.

    ERIC Educational Resources Information Center

    Connecticut State Dept. of Education, Hartford. Div. of Vocational-Technical Schools.

    This combination progress record and course outline is designed for use by individuals teaching a course in avionics that is intended to prepare students for employment in the field of aerospace electronics. Included among the topics addressed in the course are the following: shop practices, aircraft and the theory of flight, electron physics,…

  6. Direct acceleration in intense laser fields used for bunch amplification of relativistic electrons

    NASA Astrophysics Data System (ADS)

    Braenzel, J.; Andreev, A. A.; Ehrentraut, L.; Schnürer, M.

    2017-05-01

    A method, how electrons can be directly accelerated in intense laser fields, is investigated experimentally and discussed with numerical and analytical simulation. When ultrathin foil targets are exposed with peak laser intensities of 1x1020 W/cm2 , slow electrons ( keV kinetic energy), that are emitted from the ultrathin foil target along laser propagation direction, are post-accelerated in the transmitted laser field. They received significant higher kinetic energies (MeV), when this interaction was limited in duration and an enhanced number of fast electrons were detected. The decoupling of the light field from the electron interaction we realized with a second separator foil, blocking the transmitted laser light at a particular distance and allowing the fast electrons to pass. Variation of the propagation distance in the laser field results in different energy gains for the electrons. This finding is explained with electron acceleration in the electromagnetic field of a light pulse and confirms a concept being discussed for some time. In the experiments the effect manifests in an electron number amplification of about 3 times around a peak at 1 MeV electron energy. Measurements confirmed that the overall number in the whole bunch is enhanced to about 109 electrons covering kinetic energies between 0.5 to 5 MeV. The method holds promise for ultrashort electron bunch generation at MeV energies for direct application, e.g. ultra-fast electron diffraction, or for injection into post accelerator stages for different purposes.

  7. Ripeness detection simulation of oil palm fruit bunches using laser-based imaging system

    NASA Astrophysics Data System (ADS)

    Shiddiq, Minarni; Fitmawati, Anjasmara, Ridho; Sari, Nurmaya; Hefniati

    2017-01-01

    Ripeness is one of important factors for quality sorting of harvested oil palm fresh fruit bunches (FFB). Traditional ripeness classifications using FFB color and number of fruit loose for harvesting have some disadvantages especially for high oil palm trees. A laser based imaging system is proposed to substitute the traditional method. In this study, ripeness detection simulation of oil palm FFBs was performed. The system composed of two diode lasers with 532 nm and 680 nm in wavelengths and a CMOS camera which was set on a rotating plate for easy adjustment of laser beam hitting FFB. The FFB samples were placed on an aluminum platform with 4 height variations, 1.5 m, 2 m, 2.5 m, and 3 m. The relations of reflectance intensities represented by Red Green Blue (RGB) values of the FFB images to the height variations and ripeness levels of FFBs with and without laser beam were analyzed. The samples were from Tenera variety with 4 ripeness levels called F0, F1, F3, and F4. The results showed that the red component of RGB values were dominant for FFBs without laser and with red laser. The average RGB values are higher for F3 (ripe) level and F4 (overripe). Imaging with green laser showed consistency. Imaging methods using laser was able to differentiate ripeness levels of oil palm fresh fruit bunch, it could be applied for future remote detection of oil palm FFB ripeness.

  8. SU-F-P-15: Report On AAPM TG 178 Gamma Knife Dosimetry and Quality Assurance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goetsch, S

    Purpose: AAPM Task Group 178 Gamma Stereotactic Radiosurgery Dosimetry and Quality Assurance was formed in August, 2008. The Task Group has 12 medical physicists, two physicians and two consultants. Methods: A round robin dosimetry intercomparison of proposed ionization chambers, electrometer and dosimetry phantoms was conducted over a 15 month period in 2011 and 2012 (Med Phys 42, 11, Nov, 2015). The data obtained at 9 institutions (with ten different Elekta Gamma Knife units) was analyzed by the lead author using several protocols. Results: The most consistent results were obtained using the Elekta ABS 16cm diameter phantom, with the TG-51 protocolmore » modified as recommended by Alfonso et al (Med Phys 35, 11, Nov 2008). A key white paper (Med Phys, in press) sponsored by Elekta Corporation, was used to obtain correction factors for the ionization chambers and phantoms used in this intercomparison. Consistent results were obtained for both Elekta Gamma Knife Model 4C and Gamma Knife Perfexion units as measured with each of two miniature ionization chambers Conclusion: The full TG 178 report gives clinical history and background of gamma stereotactic radiosurgery, clinical examples and history, quality assurance recommendations and outline of possible dosimetry protocols. The report will be reviewed by the AAPM Working Group on Recommendations for Radiotherapy External Beam Quality Assurance and then by the AAPM Science Council before publication in Medical Physics. Consultant to Elekta, Inc.« less

  9. Gamma-sky.net: Portal to the gamma-ray sky

    NASA Astrophysics Data System (ADS)

    Voruganti, Arjun; Deil, Christoph; Donath, Axel; King, Johannes

    2017-01-01

    http://gamma-sky.net is a novel interactive website designed for exploring the gamma-ray sky. The Map View portion of the site is powered by the Aladin Lite sky atlas, providing a scalable survey image tesselated onto a three-dimensional sphere. The map allows for interactive pan and zoom navigation as well as search queries by sky position or object name. The default image overlay shows the gamma-ray sky observed by the Fermi-LAT gamma-ray space telescope. Other survey images (e.g. Planck microwave images in low/high frequency bands, ROSAT X-ray image) are available for comparison with the gamma-ray data. Sources from major gamma-ray source catalogs of interest (Fermi-LAT 2FHL, 3FGL and a TeV source catalog) are overlaid over the sky map as markers. Clicking on a given source shows basic information in a popup, and detailed pages for every source are available via the Catalog View component of the website, including information such as source classification, spectrum and light-curve plots, and literature references. We intend for gamma-sky.net to be applicable for both professional astronomers as well as the general public. The website started in early June 2016 and is being developed as an open-source, open data project on GitHub (https://github.com/gammapy/gamma-sky). We plan to extend it to display more gamma-ray and multi-wavelength data. Feedback and contributions are very welcome!

  10. Women and Mass Media Course Outline.

    ERIC Educational Resources Information Center

    Hill, Janellen

    A complete upper division or graduate course outline for examining the media's effects on sex role stereotyping of women in society is presented in this paper. Various sections of the paper include (1) course objectives designed to explore how the media portrays women, how the media treats the changing role of women in society, and whether the…

  11. Substrate bias induced synthesis of flowered-like bunched carbon nanotube directly on bulk nickel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bisht, Atul; Academy of Scientific and Innovative Research; Chockalingam, S.

    2016-02-15

    Highlights: • Flowered-like bunched MWCNTs have been synthesized by MW PECVD technique. • Effect of substrate bias on the properties of MWCNT has been studied. • Minimum E{sub T} = 1.9 V/μm with β = 4770 has been obtained in the film deposited at −350 V. - Abstract: This paper reports the effect of substrate bias on the multiwalled carbon nanotube (MWCNT) deposited on nickel foil by microwave plasma enhanced chemical vapor deposition technique. The MWCNTs have been characterized by the scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), Raman spectroscopy, field emission and current–voltage characteristic of themore » heterojunction diode. The SEM images exhibit unique hierarchical flowered-like bunched and conformally coated MWCNTs. Substrate bias induced ion bombardment helps in the enhancement of hydrocarbon dissociation and is responsible for flowered-like MWCNTs growth. The HRTEM micrographs show the base growth mechanism for MWCNTs. The value of turn on field for emission decreases from 5.5 to 1.9 V/μm and field enhancement factor increases from 927 to 4770, respectively, with the increase of substrate bias. The diode ideality factor of CNT/ n-Si heterojunction is evaluated as 2.4 and the on/off current ratio is found to be 7 at ±2 V, respectively.« less

  12. Improvement in the accuracy of flux measurement of radio sources by exploiting an arithmetic pattern in photon bunching noise

    NASA Astrophysics Data System (ADS)

    Lieu, Richard

    2018-01-01

    A hierarchy of statistics of increasing sophistication and accuracy is proposed, to exploit an interesting and fundamental arithmetic structure in the photon bunching noise of incoherent light of large photon occupation number, with the purpose of suppressing the noise and rendering a more reliable and unbiased measurement of the light intensity. The method does not require any new hardware, rather it operates at the software level, with the help of high precision computers, to reprocess the intensity time series of the incident light to create a new series with smaller bunching noise coherence length. The ultimate accuracy improvement of this method of flux measurement is limited by the timing resolution of the detector and the photon occupation number of the beam (the higher the photon number the better the performance). The principal application is accuracy improvement in the bolometric flux measurement of a radio source.

  13. Positronium Annihilation Gamma Ray Laser

    DTIC Science & Technology

    2009-07-01

    polarized light since the reflection from the surface of a pellin broca prism mounted at Brewsters angle was nearly diminished, so as a result a fair...19 Figure 10 Simion simulation of the grid lens focus. The initial...21 Figure 12 Image simulation of the bunched beam before and after going through the grid lens

  14. Study of nonlinear interaction between bunched beam and intermediate cavities in a relativistic klystron amplifier

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Xu, Z.; Li, Z. H.; Tang, C. X.

    2012-07-01

    In intermediate cavities of a relativistic klystron amplifier (RKA) driven by intense relativistic electron beam, the equivalent circuit model, which is widely adopted to investigate the interaction between bunched beam and the intermediate cavity in a conventional klystron design, is invalid due to the high gap voltage and the nonlinear beam loading in a RKA. According to Maxwell equations and Lorentz equation, the self-consistent equations for beam-wave interaction in the intermediate cavity are introduced to study the nonlinear interaction between bunched beam and the intermediate cavity in a RKA. Based on the equations, the effects of modulation depth and modulation frequency of the beam on the gap voltage amplitude and its phase are obtained. It is shown that the gap voltage is significantly lower than that estimated by the equivalent circuit model when the beam modulation is high. And the bandwidth becomes wider as the beam modulation depth increases. An S-band high gain relativistic klystron amplifier is designed based on the result. And the corresponding experiment is carried out on the linear transformer driver accelerator. The peak output power has achieved 1.2 GW with an efficiency of 28.6% and a gain of 46 dB in the corresponding experiment.

  15. Delayed bunching for multi-reflection time-of-flight mass separation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenbusch, M.; Marx, G.; Schweikhard, L.

    2015-06-29

    Many experiments are handicapped when the ion sources do not only deliver the ions of interest but also contaminations, i.e., unwanted ions of similar mass. In the recent years, multi-reflection time-of-flight mass separation has become a promising method to isolate the ions of interest from the contaminants, in particular for measurements with low-energy short-lived nuclides. To further improve the performance of multi-reflection mass separators with respect to the limitations by space-charge effects, the simultaneously trapped ions are spatially widely distributed in the apparatus. Thus, the ions can propagate with reduced Coulomb interactions until, finally, they are bunched by a changemore » in the trapping conditions for high-resolution mass separation. Proof-of-principle measurements are presented.« less

  16. Resonance production in. gamma gamma. collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renard, F.M.

    1983-04-01

    The processes ..gamma gamma.. ..-->.. hadrons can be depicted as follows. One photon creates a q anti q pair which starts to evolve; the other photon can either (A) make its own q anti q pair and the (q anti q q anti q) system continue to evolve or (B) interact with the quarks of the first pair and lead to a modified (q anti q) system in interaction with C = +1 quantum numbers. A review of the recent theoretical activity concerning resonance production and related problems is given under the following headings: hadronic C = +1 spectroscopy (qmore » anti q, qq anti q anti q, q anti q g, gg, ggg bound states and mixing effects); exclusive ..gamma gamma.. processes (generalities, unitarized Born method, VDM and QCD); total cross section (soft and hard contributions); q/sup 2/ dependence of soft processes (soft/hard separation, 1/sup +- +/ resonances); and polarization effects. (WHK)« less

  17. Ethanol production from non-detoxified whole slurry of sulfite-pretreated empty fruit bunches at a low cellulase loading

    Treesearch

    Jinlan Cheng; Shao-Yuan Leu; J.Y. Zhu; Thomas W. Jeffries

    2014-01-01

    Sulfite pretreatment to overcome the recalcitrance of lignocelluloses (SPORL) was applied to an empty fruit bunches (EFB) for ethanol production. SPORL facilitated delignification through lignin sulfonation and dissolution of xylan to result in a highly digestible substrate. The pretreated whole slurry was enzymatically saccharified at a solids loading of 18% using a...

  18. Improvement in the Accuracy of Flux Measurement of Radio Sources by Exploiting an Arithmetic Pattern in Photon Bunching Noise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lieu, Richard

    A hierarchy of statistics of increasing sophistication and accuracy is proposed to exploit an interesting and fundamental arithmetic structure in the photon bunching noise of incoherent light of large photon occupation number, with the purpose of suppressing the noise and rendering a more reliable and unbiased measurement of the light intensity. The method does not require any new hardware, rather it operates at the software level with the help of high-precision computers to reprocess the intensity time series of the incident light to create a new series with smaller bunching noise coherence length. The ultimate accuracy improvement of this methodmore » of flux measurement is limited by the timing resolution of the detector and the photon occupation number of the beam (the higher the photon number the better the performance). The principal application is accuracy improvement in the signal-limited bolometric flux measurement of a radio source.« less

  19. Estate Planning; A Suggested Outline for an Adult Group. Bulletin 151.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Bureau of Business Education.

    This course outline on estate planning is designed for teachers and leaders in New York State public school adult education programs. Basic elements in estate planning (inventory, objectives, analysis, problem areas, administration, and others) are outlined, followed by information and guidelines on accumulating an estate, conserving an estate,…

  20. Multi-scale Gaussian representation and outline-learning based cell image segmentation.

    PubMed

    Farhan, Muhammad; Ruusuvuori, Pekka; Emmenlauer, Mario; Rämö, Pauli; Dehio, Christoph; Yli-Harja, Olli

    2013-01-01

    High-throughput genome-wide screening to study gene-specific functions, e.g. for drug discovery, demands fast automated image analysis methods to assist in unraveling the full potential of such studies. Image segmentation is typically at the forefront of such analysis as the performance of the subsequent steps, for example, cell classification, cell tracking etc., often relies on the results of segmentation. We present a cell cytoplasm segmentation framework which first separates cell cytoplasm from image background using novel approach of image enhancement and coefficient of variation of multi-scale Gaussian scale-space representation. A novel outline-learning based classification method is developed using regularized logistic regression with embedded feature selection which classifies image pixels as outline/non-outline to give cytoplasm outlines. Refinement of the detected outlines to separate cells from each other is performed in a post-processing step where the nuclei segmentation is used as contextual information. We evaluate the proposed segmentation methodology using two challenging test cases, presenting images with completely different characteristics, with cells of varying size, shape, texture and degrees of overlap. The feature selection and classification framework for outline detection produces very simple sparse models which use only a small subset of the large, generic feature set, that is, only 7 and 5 features for the two cases. Quantitative comparison of the results for the two test cases against state-of-the-art methods show that our methodology outperforms them with an increase of 4-9% in segmentation accuracy with maximum accuracy of 93%. Finally, the results obtained for diverse datasets demonstrate that our framework not only produces accurate segmentation but also generalizes well to different segmentation tasks.

  1. 26 CFR 1.846-0 - Outline of provisions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) INCOME TAXES (CONTINUED) Other Insurance Companies § 1.846-0 Outline of provisions. The following is a... factors. (iii) Annual statement changes. (2) Title insurance company reserves. (3) Reinsurance business...

  2. Analytical formulas for short bunch wakes in a flat dechirper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bane, Karl; Stupakov, Gennady; Zagorodnov, Igor

    2016-08-04

    We develop analytical models of the longitudinal and transverse wakes, on and off axis for a flat, corrugated beam pipe with realistic parameters, and then compare them with numerical calculations, and generally find good agreement. These analytical “first order” formulas approximate the droop at the origin of the longitudinal wake and of the slope of the transverse wakes; they represent an improvement in accuracy over earlier, “zeroth order” formulas. In example calculations for the RadiaBeam/LCLS dechirper using typical parameters, we find a 16% droop in the energy chirp at the bunch tail compared to simpler calculations. As a result, withmore » the beam moved to 200 μm from one jaw in one dechirper section, one can achieve a 3 MV transverse kick differential over a 30 μm length.« less

  3. Use of high-boiling point organic solvents for pulping oil palm empty fruit bunches.

    PubMed

    Rodríguez, Alejandro; Serrano, Luis; Moral, Ana; Pérez, Antonio; Jiménez, Luis

    2008-04-01

    Oil palm empty fruit bunches were used as an alternative raw material to obtain cellulosic pulp. Pulping was done by using high-boiling point organic solvents of decreased polluting power relative to classical (Kraft, sulphite) solvents but affording operation at similar pressure levels. The holocellulose, alpha-cellulose and lignin contents of oil palm empty fruit bunches (viz. 66.97%, 47.91% and 24.45%, respectively) are similar to those of some woody raw materials such as pine and eucalyptus, and various non-wood materials including olive tree prunings, wheat straw and sunflower stalks. Pulping tests were conducted by using ethyleneglycol, diethyleneglycol, ethanolamine and diethanolamine under two different sets of operating conditions, namely: (a) a 70% solvent concentration, 170 degrees C and 90 min; and (b) 80% solvent, 180 degrees C and 150 min. The solid/liquid ratio was six in both cases. The amine solvents were found to provide pulp with better properties than did the glycol solvents. Ethanolamine pulp exhibited the best viscosity and drainage index (viz. 636 mL/g and 17 degrees SR, respectively), and paper made from it the best breaking length (1709 m), stretch (1.95%), burst index (0.98 kN/g) and tear index (0.33 mNm(2)/g). Operating costs can be reduced by using milder conditions, which provide similar results. In any case, the amines are to be preferred to the glycols as solvents for this purpose.

  4. Cellulose nanofiber isolation from palm oil Empty Fruit Bunches (EFB) through strong acid hydrolysis

    NASA Astrophysics Data System (ADS)

    Setyaningsih, Dwi; Uju; Muna, Neli; Isroi; Budi Suryawan, Nyoman; Azid Nurfauzi, Ami

    2018-03-01

    The palm oil industry produces about 25-26% of palm oil empty fruit bunches. The empty fruit bunch of palm oil contains cellulose up to 36.67%. This is a good opportunity for the synthesis of cellulose nanofiber (CNF). Cellulose nanofiber is a nano-sized cellulose material that has unique physical and mechanical properties. The synthesis was performed using a strong acid method with sulfuric acid. Sulfuric acid removes the amorphous region of cellulose so that the crystalline part can be isolated. CNF yield measurement showed that temperature, time, acid concentration, and interaction between each factor were affecting significantly to CNF yield. The result showed that yield of 14.98 grams, was obtained by hydrolysis at 35°C for 6 hours and 55% acid concentration. The crystallinity measurement showed that the temperature, time, acid concentration, and interaction between each factor during hydrolysis were not affected significantly to percent value of CNF crystallinity. The result showed that 31.1% of crystallinity, was obtained by hydrolysis at 45°C for 3 hours and 55% of acid concentration. The size measurement showed that the temperature, time, acid concentration and interaction between each factor were affected significantly. The result showed 894.25 nm as the best result, obtained by hydrolysis with 35°C and 60% acid concentration for 6 hours. CNF color was white with the best dispersion of hydrolysis at 35°C of 55% for 6 hours.

  5. Physicochemical profile of microbial-assisted composting on empty fruit bunches of oil palm trees.

    PubMed

    Lim, Li Yee; Bong, Cassendra Phun Chien; Chua, Lee Suan; Lee, Chew Tin

    2015-12-01

    This study was carried out to investigate the physicochemical properties of compost from oil palm empty fruit bunches (EFB) inoculated with effective microorganisms (EM∙1™). The duration of microbial-assisted composting was shorter (∼7 days) than control samples (2 months) in a laboratory scale (2 kg) experiment. The temperature profile of EFB compost fluctuated between 26 and 52 °C without the presence of consistent thermophilic phase. The pH of compost changed from weak acidic (pH ∼5) to mild alkaline (pH ∼8) because of the formation of nitrogenous ions such as ammonium (NH4 (+)), nitrite (NO2 (-)), and nitrate (NO3 (-)) from organic substances during mineralization. The pH of the microbial-treated compost was less than 8.5 which is important to prevent the loss of nitrogen as ammonia gas in a strong alkaline condition. Similarly, carbon mineralization could be determined by measuring CO2 emission. The microbial-treated compost could maintain longer period (∼13 days) of high CO2 emission resulted from high microbial activity and reached the threshold value (120 mg CO2-C kg(-1) day(-1)) for compost maturity earlier (7 days). Microbial-treated compost slightly improved the content of minerals such as Mg, K, Ca, and B, as well as key metabolite, 5-aminolevulinic acid for plant growth at the maturity stage of compost. Graphical Abstract Microbial-assisted composting on empty fruit bunches.

  6. Automobile Course. Progress Record and Theory Outline.

    ERIC Educational Resources Information Center

    Connecticut State Dept. of Education, Hartford. Div. of Vocational-Technical Schools.

    This combination progress record and course outline is designed for use by individuals teaching a course in automobile repair. Included among the topics addressed in the course are the following: shop safety, engines, fuel and exhaust systems, electrical systems, crankcase lubrication systems, cooling systems, power transmission systems, steering…

  7. Method of incident low-energy gamma-ray direction reconstruction in the GAMMA-400 gamma-ray space telescope

    NASA Astrophysics Data System (ADS)

    Kheymits, M. D.; Leonov, A. A.; Zverev, V. G.; Galper, A. M.; Arkhangelskaya, I. V.; Arkhangelskiy, A. I.; Suchkov, S. I.; Topchiev, N. P.; Yurkin, Yu T.; Bakaldin, A. V.; Dalkarov, O. D.

    2016-02-01

    The GAMMA-400 gamma-ray space-based telescope has as its main goals to measure cosmic γ-ray fluxes and the electron-positron cosmic-ray component produced, theoretically, in dark-matter-particles decay or annihilation processes, to search for discrete γ-ray sources and study them in detail, to examine the energy spectra of diffuse γ-rays — both galactic and extragalactic — and to study gamma-ray bursts (GRBs) and γ-rays from the active Sun. Scientific goals of GAMMA-400 telescope require fine angular resolution. The telescope is of a pair-production type. In the converter-tracker, the incident gamma-ray photon converts into electron-positron pair in the tungsten layer and then the tracks are detected by silicon- strip position-sensitive detectors. Multiple scattering processes become a significant obstacle in the incident-gamma direction reconstruction for energies below several gigaelectronvolts. The method of utilising this process to improve the resolution is proposed in the presented work.

  8. Direct experimental observation of the gas density depression effect using a two-bunch X-ray FEL beam.

    PubMed

    Feng, Y; Schafer, D W; Song, S; Sun, Y; Zhu, D; Krzywinski, J; Robert, A; Wu, J; Decker, F J

    2018-01-01

    The experimental observation of the depression effect in gas devices designed for X-ray free-electron lasers (FELs) is reported. The measurements were carried out at the Linac Coherent Light Source using a two-bunch FEL beam at 6.5 keV with 122.5 ns separation passing through an argon gas cell. The relative intensities of the two pulses of the two-bunch beam were measured, after and before the gas cell, from X-ray scattering off thin targets by using fast diodes with sufficient temporal resolution. At a cell pressure of 140 hPa, it was found that the after-to-before ratio of the intensities of the second pulse was about 17% ± 6% higher than that of the first pulse, revealing lower effective attenuation of the gas cell due to heating by the first pulse and subsequent gas density reduction in the beam path. This measurement is important in guiding the design and/or mitigating the adverse effects in gas devices for high-repetition-rate FELs such as the LCLS-II and the European XFEL or other future high-repetition-rate upgrades to existing FEL facilities.

  9. Direct experimental observation of the gas density depression effect using a two-bunch X-ray FEL beam

    DOE PAGES

    Feng, Y.; Schafer, D. W.; Song, S.; ...

    2018-01-01

    The experimental observation of the depression effect in gas devices designed for X-ray free-electron lasers (FELs) is reported. The measurements were carried out at the Linac Coherent Light Source using a two-bunch FEL beam at 6.5 keV with 122.5 ns separation passing through an argon gas cell. The relative intensities of the two pulses of the two-bunch beam were measured, after and before the gas cell, from X-ray scattering off thin targets by using fast diodes with sufficient temporal resolution. At a cell pressure of 140 hPa, it was found that the after-to-before ratio of the intensities of the secondmore » pulse was about 17% ± 6% higher than that of the first pulse, revealing lower effective attenuation of the gas cell due to heating by the first pulse and subsequent gas density reduction in the beam path. Furthermore, this measurement is important in guiding the design and/or mitigating the adverse effects in gas devices for high-repetition-rate FELs such as the LCLS-II and the European XFEL or other future high-repetition-rate upgrades to existing FEL facilities.« less

  10. Direct experimental observation of the gas density depression effect using a two-bunch X-ray FEL beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Y.; Schafer, D. W.; Song, S.

    The experimental observation of the depression effect in gas devices designed for X-ray free-electron lasers (FELs) is reported. The measurements were carried out at the Linac Coherent Light Source using a two-bunch FEL beam at 6.5 keV with 122.5 ns separation passing through an argon gas cell. The relative intensities of the two pulses of the two-bunch beam were measured, after and before the gas cell, from X-ray scattering off thin targets by using fast diodes with sufficient temporal resolution. At a cell pressure of 140 hPa, it was found that the after-to-before ratio of the intensities of the secondmore » pulse was about 17% ± 6% higher than that of the first pulse, revealing lower effective attenuation of the gas cell due to heating by the first pulse and subsequent gas density reduction in the beam path. Furthermore, this measurement is important in guiding the design and/or mitigating the adverse effects in gas devices for high-repetition-rate FELs such as the LCLS-II and the European XFEL or other future high-repetition-rate upgrades to existing FEL facilities.« less

  11. Density of bunched threading dislocations in epitaxial GaN layers as determined using X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Barchuk, M.; Holý, V.; Rafaja, D.

    2018-04-01

    X-ray diffraction is one of the most popular experimental methods employed for determination of dislocation densities, as it can recognize both the strain fields and the local lattice rotations produced by dislocations. The main challenge of the quantitative analysis of the dislocation density is the formulation of a suitable microstructure model, which describes the dislocation arrangement and the effect of the interactions between the strain fields from neighboring dislocations reliably in order to be able to determine the dislocation densities precisely. The aim of this study is to prove the capability of X-ray diffraction and two computational methods, which are frequently used for quantification of the threading dislocation densities from X-ray diffraction measurements, in the special case of partially bunched threading dislocations. The first method is based on the analysis of the dislocation-controlled crystal mosaicity, and the other one on the analysis of diffuse X-ray scattering from threading dislocations. The complementarity of both methods is discussed. Furthermore, it is shown how the complementarity of these methods can be used to improve the results of the quantitative analysis of bunched and thus inhomogeneously distributed threading dislocations and to get a better insight into the dislocation arrangement.

  12. Hundreds MeV monoenergetic proton bunch from interaction of 10{sup 20-21} W/cm{sup 2} circularly polarized laser pulse with tailored complex target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Z. M.; Laser Fusion Research Center, CAEP, Mianyang 621900; He, X. T.

    A complex target (CT) configuration tailored for generating high quality proton bunch by circularly polarized laser pulses at intensities of 10{sup 20-21} W/cm{sup 2} is proposed. Two-dimensional particle-in-cell simulations show that both the collimation and mono-energetic qualities of the accelerated proton bunch obtained using a front-shaped thin foil can be greatly enhanced by the backside inhomogeneous plasma layer. The main mechanisms for improving the accelerated protons are identified and discussed. These include stabilization of the photon cavity, providing hole-boring supplementary acceleration and suppressing the thermal-electron effects. A theory for tailoring the CT parameters is also presented.

  13. Design and Performance of the GAMMA-400 Gamma-Ray Telescope for Dark Matter Searches

    NASA Technical Reports Server (NTRS)

    Galper, A.M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A.I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu. V.; hide

    2012-01-01

    The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons + positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is approx. 0.01 deg (E(sub gamma) > 100 GeV), the energy resolution approx. 1% (E(sub gamma) > 10 GeV), and the proton rejection factor approx 10(exp 6). GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.

  14. "Outlines" of History: Measured Spaces and Kinesthetics.

    ERIC Educational Resources Information Center

    Morris, Ronald V.

    2000-01-01

    Presents lessons for fourth-grade students in which they create outlines, a measured space that matches with the dimensions of a thing or place from the past. Uses kinesthetics for topics, such as: setting sail for Jamestown (Virginian) in 1606, building a log cabin in 1816, and homesteading in 1830. (CMK)

  15. Multi-scale Gaussian representation and outline-learning based cell image segmentation

    PubMed Central

    2013-01-01

    Background High-throughput genome-wide screening to study gene-specific functions, e.g. for drug discovery, demands fast automated image analysis methods to assist in unraveling the full potential of such studies. Image segmentation is typically at the forefront of such analysis as the performance of the subsequent steps, for example, cell classification, cell tracking etc., often relies on the results of segmentation. Methods We present a cell cytoplasm segmentation framework which first separates cell cytoplasm from image background using novel approach of image enhancement and coefficient of variation of multi-scale Gaussian scale-space representation. A novel outline-learning based classification method is developed using regularized logistic regression with embedded feature selection which classifies image pixels as outline/non-outline to give cytoplasm outlines. Refinement of the detected outlines to separate cells from each other is performed in a post-processing step where the nuclei segmentation is used as contextual information. Results and conclusions We evaluate the proposed segmentation methodology using two challenging test cases, presenting images with completely different characteristics, with cells of varying size, shape, texture and degrees of overlap. The feature selection and classification framework for outline detection produces very simple sparse models which use only a small subset of the large, generic feature set, that is, only 7 and 5 features for the two cases. Quantitative comparison of the results for the two test cases against state-of-the-art methods show that our methodology outperforms them with an increase of 4-9% in segmentation accuracy with maximum accuracy of 93%. Finally, the results obtained for diverse datasets demonstrate that our framework not only produces accurate segmentation but also generalizes well to different segmentation tasks. PMID:24267488

  16. Electromagnetic field of a bunch intersecting a dielectric plate in a waveguide

    NASA Astrophysics Data System (ADS)

    Alekhina, Tatiana Yu; Tyukhtin, Andrey V.

    2014-05-01

    The electromagnetic field (EMF) of a bunch moving uniformly and traversing a dielectric plate located in a waveguide is investigated. The main attention is focused on the case when Cherenkov radiation is generated in the plate. Analysis of the field components of the mode is performed with methods of the complex variable function theory. An algorithm of computation using the exact expressions for the EMF is also presented. Consideration of the EMF structure for different time moments is given. It is shown that Cherenkov-transition radiation (CTR) is generated in the vacuum area after the plate under certain conditions. Results obtained might be of interest for development of new methods of generation of electromagnetic radiation.

  17. Cosmic Gamma-Rays

    Science.gov Websites

    [Argonne Logo] [DOE Logo] Cosmic Gamma-Rays Home Publications Talks People Students Argonne > ; HEP > Cosmic Gamma-Rays Projects VERITAS Past Projects TrICE What's New CTA Cosmic Gamma-Rays The

  18. Light quanta modulated characteristics of Ni uptake by Brassica juncea seedlings: the interdependence of plant metal concentration and biomass.

    PubMed

    Dasgupta-Schubert, N; Whelan, T; Reyes, M A; Lloren, C; Brandt, T T; Persans, M W

    2007-01-01

    The relationships between the concentration of metal in the growth medium, Cs, the concentration of metal absorbed by the plant, Cp, and the total biomass achieved, M, all of which are factors relevant to the efficiency of metal uptake and tolerance by the plant, have been investigated via the physiological response of Brassica juncea seedlings to Ni stress. The factorial growth experiments treated the Ni concentration in agar medium and the diurnal light quanta as independently variable parameters. Observations included the evidence of light enhancement of Ni toxicity in the root, as well as at the whole-plant level. The shoot mass index possibly is an indicator of the amount of shoot metal sequestration in B. juncea, as are the logarithmic variation of Cp with Cs and the power-law dependence of M on Cp. The sum total of these observations indicates that, for the Ni accumulating plant B. juncea, the overall metabolic allocation to either growth or metal tolerance of the plant is important. Neither a rapid biomass increase nor a high metal absorbed concentration favored the removal of high metal mass from the medium. Rather, the plants with a moderate rate of biomass growth and a moderate absorbed metal concentration demonstrated the ability to remove the maximum mass of metal from the medium. The implication of these results as related to the extant model of phyoextraction efficiency is discussed.

  19. Design and Performance of the GAMMA-400 Gamma-Ray Telescope for Dark Matter Searches

    NASA Technical Reports Server (NTRS)

    Galper, A. M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu V.; hide

    2012-01-01

    The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons (+) positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is approximately 0.01deg (E(sub gamma) greater than 100 GeV), the energy resolution approximately 1% (E(sub gamma) greater than 10 GeV), and the proton rejection factor approximately 10(exp 6). GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.

  20. The Boomerang Bunch: A School-Based Multifamily Group Approach for Students and Their Families Recovering from Parental Separation and Divorce

    ERIC Educational Resources Information Center

    Ziffer, Judith M.; Crawford, Eileen; Penney-Wietor, Joy

    2007-01-01

    Because the community lacked counseling services for whole families experiencing separation and divorce, The Boomerang Bunch was conceived, designed and implemented by six school counselors to identify and therapeutically address changes impacting the participant families as they attempted to "bounce back" from separation and divorce.…

  1. COURSE OUTLINE FOR AGRICULTURAL MACHINERY--SERVICE OCCUPATIONS.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center for Vocational and Technical Education.

    THE OBJECTIVE OF THE 16-MODULE COURSE OUTLINED IN THIS GUIDE IS TO HELP TEACHERS PREPARE FORMER FARMERS, HIGH SCHOOL DROPOUTS AND GRADUATES, AND UNEMPLOYED, AND EMPLOYED PERSONS FOR OCCUPATIONAL ENTRY AS AGRICULTURAL MACHINERY SETUP MEN, MECHANIC'S HELPERS, MECHANICS, PARTS MEN, AND SERVICE SUPERVISORS. IT WAS DEVELOPED BY A NATIONAL TASK FORCE ON…

  2. Human Ecology. Study Guide and Course Outline.

    ERIC Educational Resources Information Center

    Zaki, Gamal

    An inservice course offered to elementary and secondary teachers and other concerned citizens in Rhode Island was presented in fifteen television programs. This study guide includes a description of the fifteen sessions. For each there is given a brief introduction and summary, an outline, questions for further study, and a bibliography of…

  3. Symbiotic fungi that influence vigor, biomass and reproductive potential of native bunch grasses for remediation of degraded semiarid rangelands

    Treesearch

    Jerry R. Barrow; Mary E. Lucero; Isaac Reyes-Vera

    2008-01-01

    A steady decline of perennial bunch grasses in arid rangelands has resulted in losses of productivity and germplasm. Remediation is costly and rarely successful. Cryptic symbiotic fungi, structurally integrated with cells and organs of native plants cannot be separated from host plant tissue. However, they were successfully transferred from cell cultures of native...

  4. A Bunch-Like Tertiary Amine Grafted Polysulfone Membrane for VRFBs with Simultaneously High Proton Conductivity and Low Vanadium Ion Permeability.

    PubMed

    Tan, Qinglong; Lu, Shanfu; Si, Jiangju; Wang, Haining; Wu, Chunxiao; Li, Xianfeng; Xiang, Yan

    2017-04-01

    Novel polysulfone membranes with bunch-like tertiary amine groups are synthesized with high ion selectivity and outstanding chemical stability for vanadium redox flow batteries (VRFBs). The bunch-like tertiary amine groups simultaneously act as an ionic conductor for proton hopping and vanadium ion transport obstacles. The performance of the membrane is tuned via controlling the grafting degree of the chloromethylated polysulfone. The results show that membranes show increasing proton over vanadium ion (σ/p) selectivity with increasing functional tertiary groups. VRFBs assembled with the prepared membranes demonstrate an impressive Coulombic efficiency of 98.9% and energy efficiency of 90.9% at a current density of 50 mA cm -2 . Furthermore, the prepared membrane reported in this work shows excellent stability in 1 m VO 2 + solution at 35 °C over 240 h. Overall, the synthesized polymers provide a new insight into the design of high-performance membranes toward VRFB applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Search for soft gamma repeaters in the SMM/HXRBS data

    NASA Technical Reports Server (NTRS)

    Kouveliotou, C.; Norris, J. P.; Wood, K. S.; Cline, T. L.; Dennis, B. R.; Desal, U. D.; Orwig, L. E.

    1992-01-01

    The triggered fast memory of the hard X-ray burst spectrometer (HXRBS) on board the SMM is used to describe the results of a search for short transients resembling soft gamma repeater (SGR) bursts. Memory data for a total of about 4000 burst triggers, out of which only a very few could be considered as valid SGR candidate events, are analyzed. The search methodology is outlined, the HXRBS exposure and sensitivity to SGR bursts are calculated, and the criteria which constrain the number of candidate events are described. An upper limit is given for the SGR source number density. This limit, combined with results from other relevant observations and the assumption of a neutron star origin, are applied to obtain a constraint on SGR-active lifetimes.

  6. Torrefaction of empty fruit bunches under biomass combustion gas atmosphere.

    PubMed

    Uemura, Yoshimitsu; Sellappah, Varsheta; Trinh, Thanh Hoai; Hassan, Suhaimi; Tanoue, Ken-Ichiro

    2017-11-01

    Torrefaction of oil palm empty fruit bunches (EFB) under combustion gas atmosphere was conducted in a batch reactor at 473, 523 and 573K in order to investigate the effect of real combustion gas on torrefaction behavior. The solid mass yield of torrefaction in combustion gas was smaller than that of torrefaction in nitrogen. This may be attributed to the decomposition enhancement effect by oxygen and carbon dioxide in combustion gas. Under combustion gas atmosphere, the solid yield for torrefaction of EFB became smaller as the temperature increased. The representative products of combustion gas torrefaction were carbon dioxide and carbon monoxide (gas phase) and water, phenol and acetic acid (liquid phase). By comparing torrefaction in combustion gas with torrefaction in nitrogen gas, it was found that combustion gas can be utilized as torrefaction gas to save energy and inert gas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Genetic dissimilarity of putative gamma-ray-induced 'Preciosa-AAAB-Pome type' banana (Musa sp) mutants based on multivariate statistical analysis.

    PubMed

    Pestana, R K N; Amorim, E P; Ferreira, C F; Amorim, V B O; Oliveira, L S; Ledo, C A S; Silva, S O

    2011-10-25

    Bananas are among the most important fruit crops worldwide, being cultivated in more than 120 countries, mainly by small-scale producers. However, short-stature high-yielding bananas presenting good agronomic characteristics are hard to find. Consequently, wind continues to damage a great number of plantations each year, leading to lodging of plants and bunch loss. Development of new cultivars through conventional genetic breeding methods is hindered by female sterility and the low number of seeds. Mutation induction seems to have great potential for the development of new cultivars. We evaluated genetic dissimilarity among putative 'Preciosa' banana mutants generated by gamma-ray irradiation, using morphoagronomic characteristics and ISSR markers. The genetic distances between the putative 'Preciosa' mutants varied from 0.21 to 0.66, with a cophenetic correlation coefficient of 0.8064. We found good variability after irradiation of 'Preciosa' bananas; this procedure could be useful for banana breeding programs aimed at developing short-stature varieties with good agronomic characteristics.

  8. Experiment Pamir-3. Coplanar emission of high energy gamma-quanta at interaction of hadrons with nuclei of air atoms at energies above 10 to the 7th power GeV

    NASA Technical Reports Server (NTRS)

    Asatiani, T. L.; Genina, L. E.; Zatsepin, G. T.

    1985-01-01

    A systematic analysis of large gamma families, detected in X-ray emulsion chambers, cases of multicore halos have been observed, and among them five events in which the halo is divided into three of four separate cores with their alignment observed in the target diagram (coplanarity of axes of corresponding electron photon cascades). The halo alignment (tendency to the straight line) leads to the aximuthal asymmetry (thrust). The analysis of lateral and momentum distributions of particles in these families shows that they also have thrust that correlates with the direction of the halo core alignment.

  9. Cost-Reduction Roadmap Outlines Two Pathways to Meet DOE Residential Solar

    Science.gov Websites

    Cost Target for 2030 | News | NREL Cost-Reduction Roadmap Outlines Two Pathways to Meet DOE Residential Solar Cost Target for 2030 News Release: Cost-Reduction Roadmap Outlines Two Pathways to Meet DOE Residential Solar Cost Target for 2030 Installing photovoltaics at the time of roof replacement or as part of

  10. Optical gamma thermometer

    DOEpatents

    Koster, Glen Peter; Xia, Hua; Lee, Boon Kwee

    2013-08-06

    An optical gamma thermometer includes a metal mass having a temperature proportional to a gamma flux within a core of a nuclear reactor, and an optical fiber cable for measuring the temperature of the heated metal mass. The temperature of the heated mass may be measured by using one or more fiber grating structures and/or by using scattering techniques, such as Raman, Brillouin, and the like. The optical gamma thermometer may be used in conjunction with a conventional reactor heat balance to calibrate the local power range monitors over their useful in-service life. The optical gamma thermometer occupies much less space within the in-core instrument tube and costs much less than the conventional gamma thermometer.

  11. Education Law. Course Outline. Casenote Education Series.

    ERIC Educational Resources Information Center

    Aquila, Frank D.

    The material included in this book--case briefs, outlines, and textbook/treatise reference information--provides a summary of the most important aspects of the law regarding education. At the heart of this body of knowledge, commonly identified as education law or school law, is statutory and case law. The book serves as a comprehensive guide to…

  12. Implications of Gamma-Ray Transparency Constraints in Blazars: Minimum Distances and Gamma-Ray Collimation

    NASA Technical Reports Server (NTRS)

    Becker, Peter A.; Kafatos, Menas

    1995-01-01

    We develop a general expression for the gamma - gamma absorption coefficient, alpha(sub gamma(gamma)) for gamma-rays propagating in an arbitrary direction at an arbitrary point in space above an X-ray-emitting accretion disk. The X-ray intensity is assumed to vary as a power law in energy and radius between the outer disk radius, R(sub 0), and the inner radius, R(sub ms) which is the radius of marginal stability for a Schwarzschild black hole. We use our result for alpha(sub gamma(gamma)) to calculate the gamma - gamma optical depth, tau(sub gamma(gamma)) for gamma - rays created at height z and propagating at angle Phi relative to the disk axis, and we show that for Phi = 0 and z greater than or approx equal to R(sub 0), tau(sub gamma(gamma)) proportional to Epsilon(sup alpha)z(sup -2(alpha) - 3), where alpha is the X-ray spectral index and Epsilon is the gamma - ray energy. As an application, we use our formalism to compute the minimum distance between the central black hole and the site of production of the gamma-rays detected by EGRET during the 1991 June flare of 3C 279. In order to obtain an upper limit, we assume that all of the X-rays observed contemporaneously by Ginga were emitted by the disk. Our results suggest that the observed gamma - rays may have originated within less than or approx equal to 45 GM/sq c from a black hole of mass greater than or approx equal to 10(exp 9) solar mass, perhaps in active plasma located above the central funnel of the accretion disk. This raises the possibility of establishing a direct connection between the production of the observed gamma - rays and the accretion of material onto the black hole. We also consider the variation of the optical depth as a function of the angle of propagation Phi. Our results indicate that the "focusing" of the gamma - rays along the disk axis due to pair production is strong enough to explain the observed degree of alignment in blazar sources. If the gamma - rays are produced isotropically

  13. Design and performance of the GAMMA-400 gamma-ray telescope for dark matter searches

    NASA Astrophysics Data System (ADS)

    Galper, A. M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu. V.; Kaplin, V. A.; Kachanov, V. A.; Kheymits, M. D.; Leonov, A. A.; Longo, F.; Mazets, E. P.; Maestro, P.; Marrocchesi, P.; Mereminskiy, I. A.; Mikhailov, V. V.; Moiseev, A. A.; Mocchiutti, E.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu.; Papini, P.; Picozza, P.; Rodin, V. G.; Runtso, M. F.; Sparvoli, R.; Spillantini, P.; Suchkov, S. I.; Tavani, M.; Topchiev, N. P.; Vacchi, A.; Vannuccini, E.; Yurkin, Yu. T.; Zampa, N.; Zverev, V. G.; Zirakashvili, V. N.

    2013-02-01

    The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons + positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is ~0.01° (Eγ > 100 GeV), the energy resolution ~1% (Eγ > 10 GeV), and the proton rejection factor ~106. GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.

  14. Identification of everyday objects on the basis of Gaborized outline versions

    PubMed Central

    Sassi, Michaël; Vancleef, Kathleen; Machilsen, Bart; Panis, Sven; Wagemans, Johan

    2010-01-01

    Using outlines derived from a widely used set of line drawings, we created stimuli geared towards the investigation of contour integration and texture segmentation using shapes of everyday objects. Each stimulus consisted of Gabor elements positioned and oriented curvilinearly along the outline of an object, embedded within a larger Gabor array of homogeneous density. We created six versions of the resulting Gaborized outline stimuli by varying the orientations of elements inside and outside the outline. Data from two experiments, in which participants attempted to identify the objects in the stimuli, provide norms for identifiability and name agreement, and show differences in identifiability between stimulus versions. While there was substantial variability between the individual objects in our stimulus set, further analyses suggest a number of stimulus properties which are generally predictive of identification performance. The stimuli and the accompanying normative data, both available on our website (http://www.gestaltrevision.be/sources/gaboroutlines), provide a useful tool to further investigate contour integration and texture segmentation in both normal and clinical populations, especially when top-down influences on these processes, such as the role of prior knowledge of familiar objects, are of main interest. PMID:23145218

  15. Identification of everyday objects on the basis of Gaborized outline versions.

    PubMed

    Sassi, Michaël; Vancleef, Kathleen; Machilsen, Bart; Panis, Sven; Wagemans, Johan

    2010-01-01

    Using outlines derived from a widely used set of line drawings, we created stimuli geared towards the investigation of contour integration and texture segmentation using shapes of everyday objects. Each stimulus consisted of Gabor elements positioned and oriented curvilinearly along the outline of an object, embedded within a larger Gabor array of homogeneous density. We created six versions of the resulting Gaborized outline stimuli by varying the orientations of elements inside and outside the outline. Data from two experiments, in which participants attempted to identify the objects in the stimuli, provide norms for identifiability and name agreement, and show differences in identifiability between stimulus versions. While there was substantial variability between the individual objects in our stimulus set, further analyses suggest a number of stimulus properties which are generally predictive of identification performance. The stimuli and the accompanying normative data, both available on our website (http://www.gestaltrevision.be/sources/gaboroutlines), provide a useful tool to further investigate contour integration and texture segmentation in both normal and clinical populations, especially when top-down influences on these processes, such as the role of prior knowledge of familiar objects, are of main interest.

  16. System to outline the graduate students.

    PubMed

    Schanaider, Alberto

    2015-01-01

    to evaluate the system to outline the graduate students from the Post-Graduate Programs of CAPES Medicine III area. it was analyzed the book of indicators and the Document of Area of the Post-Graduate Programs of Surgery, also checking the literature about this issue. there was a paucity of data from most of the programs, as regards to the methods for evaluation of graduate students. The current system lacks a standard and an institutional support to outline the graduate students. In the public system there is a concentration of postgraduate students in Medicine; however, they represent a small part of those Brazilians students who finished their graduation courses in Medicine. In the current context, the quest for the post graduate courses and consequently for a research field or even a teaching career, has been replaced by the private sector jobs and the labor market, both in non-academic assistance activities. it is imperative to establish not only science and technology innovation policies but also educational and health policies acting harmoniously and stimulating the qualification and the teaching career, improving the post-graduate courses. It is necessary to develop a single form under the institutional guidance of CAPES with the conception of a National Program for Graduate Student in order to consolidate guidelines to mapping the graduate students of post-graduate programs in surgery, in our country.

  17. Topic Outlines in Microbiology: An Instructor's Guide for Junior and Community Colleges.

    ERIC Educational Resources Information Center

    American Society for Microbiology, Washington, DC.

    This resource guide presents subject matter organized in outline form for four topical areas: introductory microbiology; medical microbiology; microbial genetics; and microbial physiology. The first two units comprise the two most frequently taught microbiology courses in community and junior colleges. The outlines for microbial genetics and…

  18. Time-Course Contingencies in Perceptual Organization and Identification of Fragmented Object Outlines

    ERIC Educational Resources Information Center

    Panis, Sven; Wagemans, Johan

    2009-01-01

    To study the dynamic interplay between different component processes involved in the identification of fragmented object outlines, the authors used a discrete-identification paradigm in which the masked presentation duration of fragmented object outlines was repeatedly increased until correct naming occurred. Survival analysis was used to…

  19. Temporal intensity interferometry: photon bunching in three bright stars

    NASA Astrophysics Data System (ADS)

    Guerin, W.; Dussaux, A.; Fouché, M.; Labeyrie, G.; Rivet, J.-P.; Vernet, D.; Vakili, F.; Kaiser, R.

    2017-12-01

    We report the first intensity correlation measured with starlight since the historical experiments of Hanbury Brown and Twiss. The photon bunching g(2)(τ, r = 0), obtained in the photon-counting regime, was measured for three bright stars: α Boo, α CMi and β Gem. The light was collected at the focal plane of a 1-m optical telescope, transported by a multi-mode optical fibre, split into two avalanche photodiodes and correlated digitally in real time. For total exposure times of a few hours, we obtained contrast values around 2 × 10-3, in agreement with the expectation for chaotic sources, given the optical and electronic bandwidths of our set-up. Comparing our results with the measurement of Hanbury Brown et al. for α CMi, we argue for the timely opportunity to extend our experiments to measuring the spatial correlation function over existing and/or foreseen arrays of optical telescopes diluted over several kilometres. This would enable microarcsec long-baseline interferometry in the optical, especially in the visible wavelengths, with a limiting magnitude of 10.

  20. Sample preparation for the determination of 241Am in sediments utilizing gamma-spectroscopy.

    PubMed

    Ristic, M; Degetto, S; Ast, T; Cantallupi, C

    2002-01-01

    This paper describes a procedure developed to separate americium-241 from the bulk of a sample by coprecipitation followed by high sensitivity gamma-counting of the concentrate in a well-type detector. It enables the measurement of 241Am at low concentrations, e.g. fallout levels in soils and sediments, or where large sample sizes are not available. The method is much faster and more reliable than those involving separation from other alpha-emitters, electroplating and alpha-spectrometry. A number of tracer experiments was performed in order to optimize the conditions for coprecipitation of 241Am from sediment leachates. The general outline of the determination of americium is also given.

  1. Increase in neutrophil Fc gamma receptor I expression following interferon gamma treatment in rheumatoid arthritis.

    PubMed Central

    Goulding, N J; Knight, S M; Godolphin, J L; Guyre, P M

    1992-01-01

    The therapeutic potential of interferon gamma (IFN gamma) in a number of disease states is still being explored, but progress is hampered by the lack of a suitable measure of in vivo biological activity. To assess the in vivo biological effects of recombinant human IFN gamma (rhIFN gamma), 14 patients were studied in a randomised, prospective, double blind, placebo controlled trial of this cytokine for the treatment of rheumatoid arthritis. The levels of Fc gamma receptors on peripheral blood neutrophils were measured at baseline and after 21 days of once daily, subcutaneous injections of rhIFN gamma or placebo. An induction of neutrophil Fc gamma receptor type I (Fc gamma RI) was seen in the group of patients receiving recombinant human rhIFN gamma but not in those receiving placebo. No change in the expression of Fc gamma RII or Fc gamma RIII was detected. The amount of induction of Fc gamma RI detected on the neutrophils of patients receiving rhIFN gamma did not correlate with clinical measures of response at either 21 days or at the end of the study (24 weeks). No significant clinical responses were observed in the rhIFN gamma group at these times. These data confirm that the reported in vitro effect of IFN gamma on human neutrophil Fc receptor expression can be reproduced in vivo. PMID:1534001

  2. Increase in neutrophil Fc gamma receptor I expression following interferon gamma treatment in rheumatoid arthritis.

    PubMed

    Goulding, N J; Knight, S M; Godolphin, J L; Guyre, P M

    1992-04-01

    The therapeutic potential of interferon gamma (IFN gamma) in a number of disease states is still being explored, but progress is hampered by the lack of a suitable measure of in vivo biological activity. To assess the in vivo biological effects of recombinant human IFN gamma (rhIFN gamma), 14 patients were studied in a randomised, prospective, double blind, placebo controlled trial of this cytokine for the treatment of rheumatoid arthritis. The levels of Fc gamma receptors on peripheral blood neutrophils were measured at baseline and after 21 days of once daily, subcutaneous injections of rhIFN gamma or placebo. An induction of neutrophil Fc gamma receptor type I (Fc gamma RI) was seen in the group of patients receiving recombinant human rhIFN gamma but not in those receiving placebo. No change in the expression of Fc gamma RII or Fc gamma RIII was detected. The amount of induction of Fc gamma RI detected on the neutrophils of patients receiving rhIFN gamma did not correlate with clinical measures of response at either 21 days or at the end of the study (24 weeks). No significant clinical responses were observed in the rhIFN gamma group at these times. These data confirm that the reported in vitro effect of IFN gamma on human neutrophil Fc receptor expression can be reproduced in vivo.

  3. Electron Beam Pattern Rotation as a Method of Tunable Bunch Train Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halavanau, A.; Piot, P.

    Transversely modulated electron beams can be formed in photo injectors via microlens array (MLA) UV laser shap- ing technique. Microlenses can be arranged in polygonal lattices, with resulting transverse electron beam modula- tion mimicking the lenses pattern. Conventionally, square MLAs are used for UV laser beam shaping, and generated electron beam patterns form square beamlet arrays. The MLA setup can be placed on a rotational mount, thereby rotating electron beam distribution. In combination with transverse-to-longitudinal emittance exchange (EEX) beam line, it allows to vary beamlets horizontal projection and tune electron bunch train. In this paper, we extend the technique tomore » the case of different MLA lattice arrangements and explore the benefits of its rotational symmetries.« less

  4. A high-gain and high-efficiency X-band triaxial klystron amplifier with two-stage cascaded bunching cavities

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Ju, Jinchuan; Zhang, Jun; Zhong, Huihuang

    2017-12-01

    To achieve GW-level amplification output radiation at the X-band, a relativistic triaxial klystron amplifier with two-stage cascaded double-gap bunching cavities is investigated. The input cavity is optimized to obtain a high absorption rate of the external injection microwave. The cascaded bunching cavities are optimized to achieve a high depth of the fundamental harmonic current. A double-gap standing wave extractor is designed to improve the beam wave conversion efficiency. Two reflectors with high reflection coefficients both to the asymmetric mode and the TEM mode are employed to suppress the asymmetric mode competition and TEM mode microwave leakage. Particle-in-cell simulation results show that a high power microwave with a power of 2.53 GW and a frequency of 8.4 GHz is generated with a 690 kV, 9.3 kA electron beam excitation and a 25 kW seed microwave injection. Particularly, the achieved power conversion efficiency is about 40%, and the gain is as high as 50 dB. Meanwhile, there is insignificant self-excitation of the parasitic mode in the proposed structure by adopting the reflectors. The relative phase difference between the injected signals and the output microwaves keeps locked after the amplifier becomes saturated.

  5. Gamma Knife

    MedlinePlus

    ... equipment? How is safety ensured? What is this equipment used for? The Gamma Knife® and its associated ... in size. top of page How does the equipment work? The Gamma Knife® utilizes a technique called ...

  6. Gamma-400 Science Objectives Built on the Current HE Gamma-Ray and CR Results

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander; Mitchell, John; Thompson, David

    2012-01-01

    The main scientific interest of the Russian Gamma-400 team: Observe gamma-rays above approximately 50 GeV with excellent energy and angular resolution with the goals of: (1) Studying the fine spectral structure of the isotropic high-energy gamma-radiation, (2) Attempting to identify the many still-unidentified Fermi-LAT gamma-ray sources. Gamma-400 will likely be the only space-based gamma-ray observatory operating at the end of the decade. In our proposed Gamma-400-LE version, it will substantially improve upon the capabilities of Fermi LAT and AGILE in both LE and HE energy range. Measuring gamma-rays from approx 20 MeV to approx 1 TeV for at least 7 years, Gamma-400-LE will address the topics of dark matter, cosmic ray origin and propagation, neutron stars, flaring pulsars, black holes, AGNs, GRBs, and actively participate in multiwavelength campaigns.

  7. Real Estate Course Outlines--Principles, Appraisal, Finance, Law, Math, Property Management, Investments, Marketing, Brokerage.

    ERIC Educational Resources Information Center

    Lyon, Robert

    This series of course outlines was developed by the Texas Real Estate Research Center to help instructors in developing courses in compliance with the Texas Real Estate License Act Section 7(a). The outlines are general in nature and designed to serve as the basis for the development of a comprehensive course outline based on the texts and…

  8. Peroxisome proliferator-activated receptor gamma and transforming growth factor-beta pathways inhibit intestinal epithelial cell growth by regulating levels of TSC-22.

    PubMed

    Gupta, Rajnish A; Sarraf, Pasha; Brockman, Jeffrey A; Shappell, Scott B; Raftery, Laurel A; Willson, Timothy M; DuBois, Raymond N

    2003-02-28

    Peroxisome proliferator-activated receptor gamma (PPARgamma) and transforming growth factor-beta (TGF-beta) are key regulators of epithelial cell biology. However, the molecular mechanisms by which either pathway induces growth inhibition and differentiation are incompletely understood. We have identified transforming growth factor-simulated clone-22 (TSC-22) as a target gene of both pathways in intestinal epithelial cells. TSC-22 is member of a family of leucine zipper containing transcription factors with repressor activity. Although little is known regarding its function in mammals, the Drosophila homolog of TSC-22, bunched, plays an essential role in fly development. The ability of PPARgamma to induce TSC-22 was not dependent on an intact TGF-beta1 signaling pathway and was specific for the gamma isoform. Localization studies revealed that TSC-22 mRNA is enriched in the postmitotic epithelial compartment of the normal human colon. Cells transfected with wild-type TSC-22 exhibited reduced growth rates and increased levels of p21 compared with vector-transfected cells. Furthermore, transfection with a dominant negative TSC-22 in which both repressor domains were deleted was able to reverse the p21 induction and growth inhibition caused by activation of either the PPARgamma or TGF-beta pathways. These results place TSC-22 as an important downstream component of PPARgamma and TGF-beta signaling during intestinal epithelial cell differentiation.

  9. What Drives Metal-Surface Step Bunching in Graphene Chemical Vapor Deposition?

    NASA Astrophysics Data System (ADS)

    Yi, Ding; Luo, Da; Wang, Zhu-Jun; Dong, Jichen; Zhang, Xu; Willinger, Marc-Georg; Ruoff, Rodney S.; Ding, Feng

    2018-06-01

    Compressive strain relaxation of a chemical vapor deposition (CVD) grown graphene overlayer has been considered to be the main driving force behind metal surface step bunching (SB) in CVD graphene growth. Here, by combining theoretical studies with experimental observations, we prove that the SB can occur even in the absence of a compressive strain, is enabled by the rapid diffusion of metal adatoms beneath the graphene and is driven by the release of the bending energy of the graphene overlayer in the vicinity of steps. Based on this new understanding, we explain a number of experimental observations such as the temperature dependence of SB, and how SB depends on the thickness of the graphene film. This study also shows that SB is a general phenomenon that can occur in all substrates covered by films of two-dimensional (2D) materials.

  10. Genomic sequences of murine gamma B- and gamma C-crystallin-encoding genes: promoter analysis and complete evolutionary pattern of mouse, rat and human gamma-crystallins.

    PubMed

    Graw, J; Liebstein, A; Pietrowski, D; Schmitt-John, T; Werner, T

    1993-12-22

    The murine genes, gamma B-cry and gamma C-cry, encoding the gamma B- and gamma C-crystallins, were isolated from a genomic DNA library. The complete nucleotide (nt) sequences of both genes were determined from 661 and 711 bp, respectively, upstream from the first exon to the corresponding polyadenylation sites, comprising more than 2650 and 2890 bp, respectively. The new sequences were compared to the partial cDNA sequences available for the murine gamma B-cry and gamma C-cry, as well as to the corresponding genomic sequences from rat and man, at both the nt and predicted amino acid (aa) sequence levels. In the gamma B-cry promoter region, a canonical CCAAT-box, a TATA-box, putative NF-I and C/EBP sites were detected. An R-repeat is inserted 366 bp upstream from the transcription start point. In contrast, the gamma C-cry promoter does not contain a CCAAT-box, but some other putative binding sites for transcription factors (AP-2, UBP-1, LBP-1) were located by computer analysis. The promoter regions of all six gamma-cry from mouse, rat and human, except human psi gamma F-cry, were analyzed for common sequence elements. A complex sequence element of about 70-80 bp was found in the proximal promoter, which contains a gamma-cry-specific and almost invariant sequence (crygpel) of 14 nt, and ends with the also invariant TATA-box. Within the complex sequence element, a minimum of three further features specific for the gamma A-, gamma B- and gamma D/E/F-cry genes can be defined, at least two of which were recently shown to be functional. In addition to these four sequence elements, a subtype-specific structure of inverted repeats with different-sized spacers can be deduced from the multiple sequence alignment. A phylogenetic analysis based on the promoter region, as well as the complete exon 3 of all gamma-cry from mouse, rat and man, suggests separation of only five gamma-cry subtypes (gamma A-, gamma B-, gamma C-, gamma D- and gamma E/F-cry) prior to species separation.

  11. Predicting diffusion paths and interface motion in gamma/gamma + beta, Ni-Cr-Al diffusion couples

    NASA Technical Reports Server (NTRS)

    Nesbitt, J. A.; Heckel, R. W.

    1987-01-01

    A simplified model has been developed to predict Beta recession and diffusion paths in ternary gamma/gamma + beta diffusion couples (gamma:fcc, beta: NiAl structure). The model was tested by predicting beta recession and diffusion paths for four gamma/gamma + beta, Ni-Cr-Al couples annealed for 100 hours at 1200 C. The model predicted beta recession within 20 percent of that measured for each of the couples. The model also predicted shifts in the concentration of the gamma phase at the gamma/gamma + beta interface within 2 at. pct Al and 6 at. pct Cr of that measured in each of the couples. A qualitative explanation based on simple kinetic and mass balance arguments has been given which demonstrates the necessity for diffusion in the two-phase region of certain gamma/gamma + beta, Ni-Cr-Al couples.

  12. Comparison of gamma-gamma Phase Coarsening Responses of Three Powder Metal Disk Superalloys

    NASA Technical Reports Server (NTRS)

    Gabb, T. P.; Gayda, J.; Johnson, D. F.; MacKay, R. A.; Rogers, R. B.; Sudbrack, C. K.; Garg, A.; Locci, I. E.; Semiatin, S. L.; Kang, E.

    2016-01-01

    The phase microstructures of several powder metal (PM) disk superalloys were quantitatively evaluated. Contents, chemistries, and lattice parameters of gamma and gamma strengthening phase were determined for conventionally heat treated Alloy 10, LSHR, and ME3 superalloys, after electrolytic phase extractions. Several of long term heat treatments were then performed, to allow quantification of the precipitation, content, and size distribution of gamma at a long time interval to approximate equilibrium conditions. Additional coarsening heat treatments were performed at multiple temperatures and shorter time intervals, to allow quantification of the precipitation, contents and size distributions of gamma at conditions diverging from equilibrium. Modest differences in gamma and gamma lattice parameters and their mismatch were observed among the alloys, which varied with heat treatment. Yet, gamma coarsening rates were very similar for all three alloys in the heat treatment conditions examined. Alloy 10 had higher gamma dissolution and formation temperatures than LSHR and ME3, but a lower lattice mismatch, which was slightly positive for all three alloys at room temperature. The gamma precipitates of Alloy 10 appeared to remain coherent at higher temperatures than for LSHR and ME3. Higher coarsening rates were observed for gamma precipitates residing along grain boundaries than for those within grains in all three alloys, during slow-moderate quenching from supersolvus solution heat treatments, and during aging at temperatures of 843 C and higher.

  13. Basal paravian functional anatomy illuminated by high-detail body outline

    PubMed Central

    Wang, Xiaoli; Pittman, Michael; Zheng, Xiaoting; Kaye, Thomas G.; Falk, Amanda R.; Hartman, Scott A.; Xu, Xing

    2017-01-01

    Body shape is a fundamental expression of organismal biology, but its quantitative reconstruction in fossil vertebrates is rare. Due to the absence of fossilized soft tissue evidence, the functional consequences of basal paravian body shape and its implications for the origins of avians and flight are not yet fully understood. Here we reconstruct the quantitative body outline of a fossil paravian Anchiornis based on high-definition images of soft tissues revealed by laser-stimulated fluorescence. This body outline confirms patagia-bearing arms, drumstick-shaped legs and a slender tail, features that were probably widespread among paravians. Finely preserved details also reveal similarities in propatagial and footpad form between basal paravians and modern birds, extending their record to the Late Jurassic. The body outline and soft tissue details suggest significant functional decoupling between the legs and tail in at least some basal paravians. The number of seemingly modern propatagial traits hint that feathering was a significant factor in how basal paravians utilized arm, leg and tail function for aerodynamic benefit. PMID:28248287

  14. Animal Science Technology. An Experimental Developmental Program. Volume II, Curriculum Course Outlines.

    ERIC Educational Resources Information Center

    Brant, Herman G.

    This volume, the second of a two part evaluation report, is devoted exclusively to the presentation of detailed course outlines representing an Animal Science Technology curriculum. Arranged in 6 terms of study (2 academic years), outlines are included on such topics as: (1) Introductory Animal Science, (2) General Microbiology, (3) Zoonoses, (4)…

  15. The Advanced Gamma-ray Imaging System (AGIS): Next-generation Cherenkov telescopes array.

    NASA Astrophysics Data System (ADS)

    Vassiliev, Vladimir; AGIS Collaboration

    2010-03-01

    AGIS is a concept for a next-generation ground-based gamma-ray observatory in the energy range from 50 GeV to 200 TeV. AGIS is being designed to have significantly improved sensitivity, angular resolution, and reliability of operation relative to the present generation instruments such as VERITAS and H.E.S.S. The novel technologies of AGIS are expected to enable great advances in the understanding of the populations and physics of sources of high-energy gamma rays in the Milky Way (e.g. SNR, X-ray binaries, dense molecular clouds) and outside the Galaxy (e.g. AGN, GRBs, galaxy clusters, and star-forming galaxies). AGIS will complement and extend the results now being obtained in the GeV range with the Fermi mission providing wide energy coverage, superior angular resolution, and sensitivity to variability on short time scales. AGIS will be a key instrument for identifying and characterizing Fermi LAT sources. In this submission we outline the status of the development of AGIS project, design concept, and principal technologies. As illustrations of the scientific capabilities of AGIS, we review its potential to indirectly search for dark matter and measure cosmological magnetic fields.

  16. The gamma-ray observatory

    NASA Technical Reports Server (NTRS)

    1991-01-01

    An overview is given of the Gamma Ray Observatory (GRO) mission. Detection of gamma rays and gamma ray sources, operations using the Space Shuttle, and instruments aboard the GRO, including the Burst and Transient Source Experiment (BATSE), the Oriented Scintillation Spectrometer Experiment (OSSE), the Imaging Compton Telescope (COMPTEL), and the Energetic Gamma Ray Experiment Telescope (EGRET) are among the topics surveyed.

  17. High-frequency gamma oscillations coexist with low-frequency gamma oscillations in the rat visual cortex in vitro.

    PubMed

    Oke, Olaleke O; Magony, Andor; Anver, Himashi; Ward, Peter D; Jiruska, Premysl; Jefferys, John G R; Vreugdenhil, Martin

    2010-04-01

    Synchronization of neuronal activity in the visual cortex at low (30-70 Hz) and high gamma band frequencies (> 70 Hz) has been associated with distinct visual processes, but mechanisms underlying high-frequency gamma oscillations remain unknown. In rat visual cortex slices, kainate and carbachol induce high-frequency gamma oscillations (fast-gamma; peak frequency approximately 80 Hz at 37 degrees C) that can coexist with low-frequency gamma oscillations (slow-gamma; peak frequency approximately 50 Hz at 37 degrees C) in the same column. Current-source density analysis showed that fast-gamma was associated with rhythmic current sink-source sequences in layer III and slow-gamma with rhythmic current sink-source sequences in layer V. Fast-gamma and slow-gamma were not phase-locked. Slow-gamma power fluctuations were unrelated to fast-gamma power fluctuations, but were modulated by the phase of theta (3-8 Hz) oscillations generated in the deep layers. Fast-gamma was spatially less coherent than slow-gamma. Fast-gamma and slow-gamma were dependent on gamma-aminobutyric acid (GABA)(A) receptors, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and gap-junctions, their frequencies were reduced by thiopental and were weakly dependent on cycle amplitude. Fast-gamma and slow-gamma power were differentially modulated by thiopental and adenosine A(1) receptor blockade, and their frequencies were differentially modulated by N-methyl-D-aspartate (NMDA) receptors, GluK1 subunit-containing receptors and persistent sodium currents. Our data indicate that fast-gamma and slow-gamma both depend on and are paced by recurrent inhibition, but have distinct pharmacological modulation profiles. The independent co-existence of fast-gamma and slow-gamma allows parallel processing of distinct aspects of vision and visual perception. The visual cortex slice provides a novel in vitro model to study cortical high-frequency gamma oscillations.

  18. A method to describe inelastic gamma field distribution in neutron gamma density logging.

    PubMed

    Zhang, Feng; Zhang, Quanying; Liu, Juntao; Wang, Xinguang; Wu, He; Jia, Wenbao; Ti, Yongzhou; Qiu, Fei; Zhang, Xiaoyang

    2017-11-01

    Pulsed neutron gamma density logging (NGD) is of great significance for radioprotection and density measurement in LWD, however, the current methods have difficulty in quantitative calculation and single factor analysis for the inelastic gamma field distribution. In order to clarify the NGD mechanism, a new method is developed to describe the inelastic gamma field distribution. Based on the fast-neutron scattering and gamma attenuation, the inelastic gamma field distribution is characterized by the inelastic scattering cross section, fast-neutron scattering free path, formation density and other parameters. And the contribution of formation parameters on the field distribution is quantitatively analyzed. The results shows the contribution of density attenuation is opposite to that of inelastic scattering cross section and fast-neutron scattering free path. And as the detector-spacing increases, the density attenuation gradually plays a dominant role in the gamma field distribution, which means large detector-spacing is more favorable for the density measurement. Besides, the relationship of density sensitivity and detector spacing was studied according to this gamma field distribution, therefore, the spacing of near and far gamma ray detector is determined. The research provides theoretical guidance for the tool parameter design and density determination of pulsed neutron gamma density logging technique. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Spectrometer for shot-to-shot photon energy characterization in the multi-bunch mode of the free electron laser at Hamburg

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palutke, S., E-mail: steffen.palutke@desy.de; Wurth, W.; Deutsches Elekronen Synchrotron

    The setup and first results from commissioning of a fast online photon energy spectrometer for the vacuum ultraviolet free electron laser at Hamburg (FLASH) at DESY are presented. With the use of the latest advances in detector development, the presented spectrometer reaches readout frequencies up to 1 MHz. In this paper, we demonstrate the ability to record online photon energy spectra on a shot-to-shot base in the multi-bunch mode of FLASH. Clearly resolved shifts in the mean wavelength over the pulse train as well as shot-to-shot wavelength fluctuations arising from the statistical nature of the photon generating self-amplified spontaneous emissionmore » process have been observed. In addition to an online tool for beam calibration and photon diagnostics, the spectrometer enables the determination and selection of spectral data taken with a transparent experiment up front over the photon energy of every shot. This leads to higher spectral resolutions without the loss of efficiency or photon flux by using single-bunch mode or monochromators.« less

  20. Gait recognition based on integral outline

    NASA Astrophysics Data System (ADS)

    Ming, Guan; Fang, Lv

    2017-02-01

    Biometric identification technology replaces traditional security technology, which has become a trend, and gait recognition also has become a hot spot of research because its feature is difficult to imitate and theft. This paper presents a gait recognition system based on integral outline of human body. The system has three important aspects: the preprocessing of gait image, feature extraction and classification. Finally, using a method of polling to evaluate the performance of the system, and summarizing the problems existing in the gait recognition and the direction of development in the future.