Sample records for gamma-ray blazar candidates

  1. Unidentified Gamma-Ray Sources: Hunting Gamma-Ray Blazars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massaro, F.; D'Abrusco, R.; Tosti, G.

    2012-04-02

    One of the main scientific objectives of the ongoing Fermi mission is unveiling the nature of the unidentified {gamma}-ray sources (UGSs). Despite the large improvements of Fermi in the localization of {gamma}-ray sources with respect to the past {gamma}-ray missions, about one third of the Fermi-detected objects are still not associated to low energy counterparts. Recently, using the Wide-field Infrared Survey Explorer (WISE) survey, we discovered that blazars, the rarest class of Active Galactic Nuclei and the largest population of {gamma}-ray sources, can be recognized and separated from other extragalactic sources on the basis of their infrared (IR) colors. Basedmore » on this result, we designed an association method for the {gamma}-ray sources to recognize if there is a blazar candidate within the positional uncertainty region of a generic {gamma}-ray source. With this new IR diagnostic tool, we searched for {gamma}-ray blazar candidates associated to the UGS sample of the second Fermi {gamma}-ray catalog (2FGL). We found that our method associates at least one {gamma}-ray blazar candidate as a counterpart each of 156 out of 313 UGSs analyzed. These new low-energy candidates have the same IR properties as the blazars associated to {gamma}-ray sources in the 2FGL catalog.« less

  2. UNIDENTIFIED {gamma}-RAY SOURCES: HUNTING {gamma}-RAY BLAZARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massaro, F.; Ajello, M.; D'Abrusco, R.

    2012-06-10

    One of the main scientific objectives of the ongoing Fermi mission is unveiling the nature of unidentified {gamma}-ray sources (UGSs). Despite the major improvements of Fermi in the localization of {gamma}-ray sources with respect to the past {gamma}-ray missions, about one-third of the Fermi-detected objects are still not associated with low-energy counterparts. Recently, using the Wide-field Infrared Survey Explorer survey, we discovered that blazars, the rarest class of active galactic nuclei and the largest population of {gamma}-ray sources, can be recognized and separated from other extragalactic sources on the basis of their infrared (IR) colors. Based on this result, wemore » designed an association method for the {gamma}-ray sources to recognize if there is a blazar candidate within the positional uncertainty region of a generic {gamma}-ray source. With this new IR diagnostic tool, we searched for {gamma}-ray blazar candidates associated with the UGS sample of the second Fermi {gamma}-ray LAT catalog (2FGL). We found that our method associates at least one {gamma}-ray blazar candidate as a counterpart to each of 156 out of 313 UGSs analyzed. These new low-energy candidates have the same IR properties as the blazars associated with {gamma}-ray sources in the 2FGL catalog.« less

  3. SEARCHING FOR NEW {gamma}-RAY BLAZAR CANDIDATES IN THE THIRD PALERMO BAT HARD X-RAY CATALOG WITH WISE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maselli, A.; Cusumano, G.; La Parola, V.

    We searched for {gamma}-ray blazar candidates among the 382 unidentified hard X-ray sources of the third Palermo BAT Catalog (3PBC) obtained from the analysis of 66 months of Swift Burst Alert Telescope (BAT) survey data and listing 1586 sources. We adopted a recently developed association method based on the peculiar infrared colors that characterize the {gamma}-ray blazars included in the second catalog of active galactic nuclei detected by the Fermi Large Area Telescope. We used this method exploiting the data of the all-sky survey performed by the Wide-field Infrared Survey Explorer (WISE) to establish correspondences between unidentified 3PBC sources andmore » WISE {gamma}-ray blazar candidates located within the BAT positional uncertainty region at a 99% confidence level. We obtained a preliminary list of candidates for which we analyzed all the available data in the Swift archive to complement the information in the literature and in the radio, infrared, and optical catalogs with the information on their optical-UV and soft X-ray emission. Requiring the presence of radio and soft X-ray counterparts consistent with the infrared positions of the selected WISE sources, as well as a blazar-like radio morphology, we finally obtained a list of 24 {gamma}-ray blazar candidates.« less

  4. OPTICAL SPECTROSCOPIC OBSERVATIONS OF GAMMA-RAY BLAZAR CANDIDATES. VI. FURTHER OBSERVATIONS FROM TNG, WHT, OAN, SOAR, AND MAGELLAN TELESCOPES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Álvarez Crespo, N.; Massaro, F.; Milisavljevic, D.

    Blazars, one of the most extreme classes of active galaxies, constitute so far the largest known population of γ-ray sources, and their number is continuously growing in the Fermi catalogs. However, in the latest release of the Fermi catalog there is still a large fraction of sources that are classified as blazar candidates of uncertain type (BCUs) for which optical spectroscopic observations are necessary to confirm their nature and their associations. In addition, about one-third of the γ-ray point sources listed in the Third Fermi-LAT Source Catalog (3FGL) are still unassociated and lacking an assigned lower-energy counterpart. Since 2012 wemore » have been carrying out an optical spectroscopic campaign to observe blazar candidates to confirm their nature. In this paper, the sixth of the series, we present optical spectroscopic observations for 30 γ-ray blazar candidates from different observing programs we carried out with the Telescopio Nazionale Galileo, William Herschel Telescope, Observatorio Astronómico Nacional, Southern Astrophysical Research Telescope, and Magellan Telescopes. We found that 21 out of 30 sources investigated are BL Lac objects, while the remaining targets are classified as flat-spectrum radio quasars showing the typical broad emission lines of normal quasi-stellar objects. We conclude that our selection of γ-ray blazar candidates based on their multifrequency properties continues to be a successful way to discover potential low-energy counterparts of the Fermi unidentified gamma-ray sources and to confirm the nature of BCUs.« less

  5. VizieR Online Data Catalog: New gamma-ray blazar candidates in the 3PBC (Maselli+, 2013)

    NASA Astrophysics Data System (ADS)

    Maselli, A.; Massaro, F.; Cusumano, G.; D'Abrusco, R.; La Parola, V.; Paggi, A.; Segreto, A.; Smith, H. A.; Tosti, G.

    2013-06-01

    We searched for γ-ray blazar candidates among the 382 unidentified hard X-ray sources of the third Palermo BAT Catalog (3PBC) obtained from the analysis of 66 months of Swift Burst Alert Telescope (BAT) survey data and listing 1586 sources. We adopted a recently developed association method based on the peculiar infrared colors that characterize the γ-ray blazars included in the second catalog of active galactic nuclei detected by the Fermi Large Area Telescope. We used this method exploiting the data of the all-sky survey performed by the Wide-field Infrared Survey Explorer (WISE) to establish correspondences between unidentified 3PBC sources and WISE γ-ray blazar candidates located within the BAT positional uncertainty region at a 99% confidence level. We obtained a preliminary list of candidates for which we analyzed all the available data in the Swift archive to complement the information in the literature and in the radio, infrared, and optical catalogs with the information on their optical-UV and soft X-ray emission. Requiring the presence of radio and soft X-ray counterparts consistent with the infrared positions of the selected WISE sources, as well as a blazar-like radio morphology, we finally obtained a list of 24 γ-ray blazar candidates. (2 data files).

  6. IR observations in gamma-ray blazars

    NASA Technical Reports Server (NTRS)

    Mahoney, W. A.; Gautier, T. N.; Ressler, M. E.; Wallyn, P.; Durouchoux, P.; Higdon, J. C.

    1997-01-01

    The infrared photometric and spectral observation of five gamma ray blazars in coordination with the energetic gamma ray experiment telescope (EGRET) onboard the Compton Gamma Ray Observatory is reported. The infrared measurements were made with a Cassegrain infrared camera and the mid-infrared large well imager at the Mt. Palomar 5 m telescope. The emphasis is on the three blazars observed simultaneously by EGRET and the ground-based telescope during viewing period 519. In addition to the acquisition of broadband spectral measurements for direct correlation with the 100 MeV EGRET observations, near infrared images were obtained, enabling a search for intra-day variability to be carried out.

  7. SYSTEMATIC STUDY OF GAMMA-RAY-BRIGHT BLAZARS WITH OPTICAL POLARIZATION AND GAMMA-RAY VARIABILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Itoh, Ryosuke; Fukazawa, Yasushi; Kanda, Yuka

    Blazars are highly variable active galactic nuclei that emit radiation at all wavelengths from radio to gamma rays. Polarized radiation from blazars is one key piece of evidence for synchrotron radiation at low energies, and it also varies dramatically. The polarization of blazars is of interest for understanding the origin, confinement, and propagation of jets. However, even though numerous measurements have been performed, the mechanisms behind jet creation, composition, and variability are still debated. We performed simultaneous gamma-ray and optical photopolarimetry observations of 45 blazars between 2008 July and 2014 December to investigate the mechanisms of variability and search formore » a basic relation between the several subclasses of blazars. We identify a correlation between the maximum degree of optical linear polarization and the gamma-ray luminosity or the ratio of gamma-ray to optical fluxes. Since the maximum polarization degree depends on the condition of the magnetic field (chaotic or ordered), this result implies a systematic difference in the intrinsic alignment of magnetic fields in parsec-scale relativistic jets between different types of blazars (flat-spectrum radio quasars vs. BL Lacs) and consequently between different types of radio galaxies (FR I versus FR II).« less

  8. The Effect of Blazar Spectral Breaks on the Blazar Contribution to the Extragalactic Gamma-Ray Background

    NASA Technical Reports Server (NTRS)

    Venters, Tonia M.; Pavlidou, Vasiliki

    2011-01-01

    The spectral shapes of the contributions of different classes of unresolved gamma-ray emitters can provide insight into their relative contributions to the extragalactic gamma-ray background (EGB) and the natures of their spectra at GeV energies, We calculate the spectral shapes of the contributions to the EGB arising from BL Lacertae type objects (BL Lacs) and flat-spectrum radio quasars (FSRQs) assuming blazar spectra can be described as broken power laws, We fit the resulting total blazar spectral shape to the Fermi Large Area Telescope measurements of the EGB, finding that the best-fit shape reproduces well the shape of the Fermi EGB for various break scenarios. We conclude that a scenario in which the contribution of blazars is dominant cannot be excluded on spectral grounds alone, even if spectral breaks are shown to be common among Fermi blazars. We also find that while the observation of a featureless (within uncertainties) power-law EGB spectrum by Fermi does not necessarily imply a single class of contributing unresolved sources with featureless individual spectra, such an observation and the collective spectra of the separate contributing populations determine the ratios of their contributions. As such, a comparison with studies including blazar gamma-ray luminosity functions could have profound implications for the blazar contribution to the EGB, blazar evolution, and blazar gamma-ray spectra and emission.

  9. TEMPORAL CORRELATIONS BETWEEN OPTICAL AND GAMMA-RAY ACTIVITY IN BLAZARS

    DOE PAGES

    Cohen, Daniel P.; Romani, Roger W.; Filippenko, Alexei V.; ...

    2014-12-08

    For this research, we have been using the 0.76 m Katzman Automatic Imaging Telescope (KAIT) at Lick Observatory to optically monitor a sample of 157 blazars that are bright in gamma-rays being detected with high significance (≥10σ) in one year by the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope. We attempt to observe each source on a three-day cadence with KAIT, subject to weather and seasonal visibility. The gamma-ray coverage is essentially continuous. KAIT observations extend over much of the five-year Fermi mission for several objects, and most have >100 optical measurements spanning the last three years.more » These blazars (flat-spectrum radio quasars and BL Lac objects) exhibit a wide range of flaring behavior. Using the discrete correlation function (DCF), here we search for temporal relationships between optical and gamma-ray light curves in the 40 brightest sources in hopes of placing constraints on blazar acceleration and emission zones. We find strong optical-gamma-ray correlation in many of these sources at time delays of ~1 to ~10 days, ranging between –40 and +30 days. A stacked average DCF of the 40 sources verifies this correlation trend, with a peak above 99% significance indicating a characteristic time delay consistent with 0 days. These findings strongly support the widely accepted leptonic models of blazar emission. However, we also find examples of apparently uncorrelated flares (optical flares with no gamma-ray counterpart and gamma-ray flares with no optical counterpart) that challenge simple, one-zone models of blazar emission. Moreover, we find that flat-spectrum radio quasars tend to have gamma-rays leading the optical, while intermediate- and high-synchrotron peak blazars with the most significant peaks have smaller lags/leads. In conclusion, it is clear that long-term monitoring at high cadence is necessary to reveal the underlying physical correlation.« less

  10. OPTICAL SPECTROSCOPIC OBSERVATIONS OF GAMMA-RAY BLAZAR CANDIDATES. V. TNG, KPNO, AND OAN OBSERVATIONS OF BLAZAR CANDIDATES OF UNCERTAIN TYPE IN THE NORTHERN HEMISPHERE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Álvarez Crespo, N.; Massaro, F.; Masetti, N.

    The extragalactic γ-ray sky is dominated by emission from blazars, a peculiar class of active galactic nuclei. Many of the γ-ray sources included in the Fermi-Large Area Telescope Third Source catalog (3FGL) are classified as blazar candidates of uncertain type (BCUs) because there are no optical spectra available in the literature to confirm their nature. In 2013, we started a spectroscopic campaign to look for the optical counterparts of the BCUs and of the unidentified γ-ray sources to confirm their blazar nature. Whenever possible we also determine their redshifts. Here, we present the results of the observations carried out inmore » the northern hemisphere in 2013 and 2014 at the Telescopio Nazionale Galileo, Kitt Peak National Observatory, and Observatorio Astronómico Nacional in San Pedro Mártir. In this paper, we describe the optical spectra of 25 sources. We confirmed that all of the 15 BCUs observed in our campaign and included in our sample are blazars and we estimated the redshifts for three of them. In addition, we present the spectra for three sources classified as BL Lacs in the literature but with no optical spectra available to date. We found that one of them is a quasar (QSO) at a redshift of z = 0.208 and the other two are BL Lacs. Moreover, we also present seven new spectra for known blazars listed in the Roma-BZCAT that have an uncertain redshift or are classified as BL Lac candidates. We found that one of them, 5BZB J0724+2621, is a “changing look” blazar. According to the spectrum available in the literature, it was classified as a BL Lac, but in our observation we clearly detected a broad emission line that led us to classify this source as a QSO at z = 1.17.« less

  11. RoboPol: the optical polarization of gamma-ray-loud and gamma-ray-quiet blazars

    NASA Astrophysics Data System (ADS)

    Angelakis, E.; Hovatta, T.; Blinov, D.; Pavlidou, V.; Kiehlmann, S.; Myserlis, I.; Böttcher, M.; Mao, P.; Panopoulou, G. V.; Liodakis, I.; King, O. G.; Baloković, M.; Kus, A.; Kylafis, N.; Mahabal, A.; Marecki, A.; Paleologou, E.; Papadakis, I.; Papamastorakis, I.; Pazderski, E.; Pearson, T. J.; Prabhudesai, S.; Ramaprakash, A. N.; Readhead, A. C. S.; Reig, P.; Tassis, K.; Urry, M.; Zensus, J. A.

    2016-12-01

    We present average R-band optopolarimetric data, as well as variability parameters, from the first and second RoboPol observing season. We investigate whether gamma-ray-loud and gamma-ray-quiet blazars exhibit systematic differences in their optical polarization properties. We find that gamma-ray-loud blazars have a systematically higher polarization fraction (0.092) than gamma-ray-quiet blazars (0.031), with the hypothesis of the two samples being drawn from the same distribution of polarization fractions being rejected at the 3σ level. We have not found any evidence that this discrepancy is related to differences in the redshift distribution, rest-frame R-band luminosity density, or the source classification. The median polarization fraction versus synchrotron-peak-frequency plot shows an envelope implying that high-synchrotron-peaked sources have a smaller range of median polarization fractions concentrated around lower values. Our gamma-ray-quiet sources show similar median polarization fractions although they are all low-synchrotron-peaked. We also find that the randomness of the polarization angle depends on the synchrotron peak frequency. For high-synchrotron-peaked sources, it tends to concentrate around preferred directions while for low-synchrotron-peaked sources, it is more variable and less likely to have a preferred direction. We propose a scenario which mediates efficient particle acceleration in shocks and increases the helical B-field component immediately downstream of the shock.

  12. Multiwavelength Study of Gamma-Ray Bright Blazars

    NASA Astrophysics Data System (ADS)

    Morozova, Daria; Larionov, V. M.; Hagen-Thorn, V. A.; Jorstad, S. G.; Marscher, A. P.; Troitskii, I. S.

    2011-01-01

    We investigate total intensity radio images of 6 gamma-ray bright blazars (BL Lac, 3C 279, 3C 273, W Com, PKS 1510-089, and 3C 66A) and their optical and gamma-ray light curves to study connections between gamma-ray and optical brightness variations and changes in the parsec-scale radio structure. We use high-resolution maps obtained by the BU group at 43 GHz with the VLBA, optical light curves constructed by the St.Petersburg State U. (Russia) team using measurements with the 0.4 m telescope of St.Petersburg State U. (LX200) and the 0.7 m telescope of the Crimean Astrophysical Observatory (AZT-8), and gamma-ray light curves, which we have constructed with data provided by the Fermi Large Area Telescope. Over the period from August 2008 to November 2009, superluminal motion is found in all 6 objects with apparent speed ranging from 2c to 40c. The blazars with faster apparent speeds, 3C 273, 3C 279, PKS 1510-089, and 3C 66A, exhibit stronger variability of the gamma-ray emission. There is a tendency for sources with sharply peaked gamma-ray flares to have faster jet speed than sources with gamma-ray light curves with no sharp peaks. Gamma-ray light curves with sharply peaked gamma-ray flares possess a stronger gamma-ray/optical correlations. The research at St.Petersburg State U. was funded by the Minister of Education and Science of the Russian Federation (state contract N#P123). The research at BU was funded in part by NASA Fermi Guest Investigator grant NNX08AV65G and by NSF grant AST-0907893. The VLBA is an instrument of the National Radio Astronomy Observatory, a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

  13. Detecting the Attenuation of Blazar Gamma-ray Emission by Extragalactic Background Light with GLAST

    NASA Technical Reports Server (NTRS)

    Chen, Andrew; Ritz, Steven

    1999-01-01

    Gamma rays with energy above 10 GeV interact with optical-UV photons resulting in pair production. Therefore, a large sample of high redshift sources of these gamma rays can be used to probe the extragalactic background starlight (EBL) by examining the redshift dependence of the attenuation of the flux above 10 GeV. GLAST, the next generation high-energy gamma-ray telescope, will for the first time have the unique capability to detect thousands of gamma-ray blazars up to redshifts of at least z = 4, with enough angular resolution to allow identification of a large fraction of their optical counterparts. By combining recent determinations of the gamma-ray blazar luminosity function, recent calculations of the high energy gamma-ray opacity due to EBL absorption, and the expected GLAST instrument performance to produce simulated samples of blazars that GLAST would detect, including their redshifts and fluxes, we demonstrate that these blazars have the potential to be a highly effective probe of the EBL.

  14. Blazar Gamma-Rays, Shock Acceleration, and the Extragalactic Background Light

    NASA Technical Reports Server (NTRS)

    Stecker, Floyd W.; Baring, Matthew G.; Summerlin, Errol J.

    2007-01-01

    The observed spectra of blazars, their intrinsic emission, and the underlying populations of radiating particles are intimately related. The use of these sources as probes of the extragalactic infrared background, a prospect propelled by recent advances in TeV-band telescopes, soon to be augmented by observations by NASA's upcoming Gamma-Ray Large Area Space Telescope (GLAST), has been a topic of great recent interest. Here, it is demonstrated that if particles in blazar jets are accelerated at relativistic shocks, then GAMMA-ray spectra with indices less than 1.5 can be produced. This, in turn, loosens the upper limits on the near infrared extragalactic background radiation previously proposed. We also show evidence hinting that TeV blazars with flatter spectra have higher intrinsic TeV GAMMA-ray luminosities and we indicate that there may be a correlation of flatness and luminosity with redshift.

  15. Searching for New γ-Ray Blazar Candidates in the Third Palermo BAT Hard X-Ray Catalog with WISE

    NASA Astrophysics Data System (ADS)

    Maselli, A.; Massaro, F.; Cusumano, G.; D'Abrusco, R.; La Parola, V.; Paggi, A.; Segreto, A.; Smith, Howard A.; Tosti, G.

    2013-06-01

    We searched for γ-ray blazar candidates among the 382 unidentified hard X-ray sources of the third Palermo BAT Catalog (3PBC) obtained from the analysis of 66 months of Swift Burst Alert Telescope (BAT) survey data and listing 1586 sources. We adopted a recently developed association method based on the peculiar infrared colors that characterize the γ-ray blazars included in the second catalog of active galactic nuclei detected by the Fermi Large Area Telescope. We used this method exploiting the data of the all-sky survey performed by the Wide-field Infrared Survey Explorer (WISE) to establish correspondences between unidentified 3PBC sources and WISE γ-ray blazar candidates located within the BAT positional uncertainty region at a 99% confidence level. We obtained a preliminary list of candidates for which we analyzed all the available data in the Swift archive to complement the information in the literature and in the radio, infrared, and optical catalogs with the information on their optical-UV and soft X-ray emission. Requiring the presence of radio and soft X-ray counterparts consistent with the infrared positions of the selected WISE sources, as well as a blazar-like radio morphology, we finally obtained a list of 24 γ-ray blazar candidates.

  16. Simultaneous Planck, Swift, and Fermi Observations of X-ray and Gamma-ray Selected Blazars

    NASA Technical Reports Server (NTRS)

    Giommi, P.; Polenta, G.; Laehteenmaeki, A.; Thompson, D. J.; Capalbi, M.; Cutini, S.; Gasparrini, D.; Gonzalez, Nuevo, J.; Leon-Tavares, J.; Lopez-Caniego, M.; hide

    2012-01-01

    We present simultaneous Planck, Swift, Fermi, and ground-based data for 105 blazars belonging to three samples with flux limits in the soft X-ray, hard X-ray, and gamma-ray bands, with additional 5 GHz flux-density limits to ensure a good probability of a Planck detection. We compare our results to those of a companion paper presenting simultaneous Planck and multi-frequency observations of 104 radio-loud northern active galactic nuclei selected at radio frequencies. While we confirm several previous results, our unique data set allows us to demonstrate that the selection method strongly influences the results, producing biases that cannot be ignored. Almost all the BL Lac objects have been detected by the Fermi Large Area Telescope (LAT), whereas 30% to 40% of the flat-spectrum radio quasars (FSRQs) in the radio, soft X-ray, and hard X-ray selected samples are still below the gamma-ray detection limit even after integrating 27 months of Fermi-LAT data. The radio to sub-millimetre spectral slope of blazars is quite flat, with (alpha) approx 0 up to about 70GHz, above which it steepens to (alpha) approx -0.65. The BL Lacs have significantly flatter spectra than FSRQs at higher frequencies. The distribution of the rest-frame synchrotron peak frequency (nu(sup s)(sub peak)) in the spectral energy distribution (SED) of FSRQs is the same in all the blazar samples with (nu(sup s)(sub peak)) = 10(exp 13.1 +/- 0.1) Hz, while the mean inverse Compton peak frequency, (nu(sup IC)(sub peak)), ranges from 10(exp 21) to 10(exp 22) Hz. The distributions of nu(sup s)(sub peak) and nu(sup IC)(sub peak) of BL Lacs are much broader and are shifted to higher energies than those of FSRQs; their shapes strongly depend on the selection method. The Compton dominance of blazars. defined as the ratio of the inverse Compton to synchrotron peak luminosities, ranges from less than 0.2 to nearly 100, with only FSRQs reaching values larger than about 3. Its distribution is broad and depends

  17. Blazar 3C 66A: Another extragalactic source of ultra-high-energy gamma-ray photons

    NASA Astrophysics Data System (ADS)

    Neshpor, Yu. I.; Stepanyan, A. A.; Kalekin, O. P.; Fomin, V. P.; Chalenko, N. N.; Shitov, V. G.

    1998-03-01

    he observations of the object 3C 66A which were carried out with the GT-48 gamma-ray telescope at the Crimean Astrophysical Observatory in November-December 1996 revealed a flux of ultra-high-energy (>10^12 eV) gamma-ray photons from this blazar. According to preliminary estimates, the photon flux is (31) 10^11 photons cm^-2 s^-1. The blazar 3C 66A is the third extragalactic object from which a flux of ultra- high-energy gamma-ray photons was detected. Fluxes of gamma-ray photons were previously detected from the galaxies Mk 421 and Mk 501 at the Whipple observatory. This result provides further evidence that active processes proceed in blazars which are accompanied by the generation of cosmic rays responsible for the emission of gamma-ray photons.

  18. Implications of Gamma-Ray Transparency Constraints in Blazars: Minimum Distances and Gamma-Ray Collimation

    NASA Technical Reports Server (NTRS)

    Becker, Peter A.; Kafatos, Menas

    1995-01-01

    We develop a general expression for the gamma - gamma absorption coefficient, alpha(sub gamma(gamma)) for gamma-rays propagating in an arbitrary direction at an arbitrary point in space above an X-ray-emitting accretion disk. The X-ray intensity is assumed to vary as a power law in energy and radius between the outer disk radius, R(sub 0), and the inner radius, R(sub ms) which is the radius of marginal stability for a Schwarzschild black hole. We use our result for alpha(sub gamma(gamma)) to calculate the gamma - gamma optical depth, tau(sub gamma(gamma)) for gamma - rays created at height z and propagating at angle Phi relative to the disk axis, and we show that for Phi = 0 and z greater than or approx equal to R(sub 0), tau(sub gamma(gamma)) proportional to Epsilon(sup alpha)z(sup -2(alpha) - 3), where alpha is the X-ray spectral index and Epsilon is the gamma - ray energy. As an application, we use our formalism to compute the minimum distance between the central black hole and the site of production of the gamma-rays detected by EGRET during the 1991 June flare of 3C 279. In order to obtain an upper limit, we assume that all of the X-rays observed contemporaneously by Ginga were emitted by the disk. Our results suggest that the observed gamma - rays may have originated within less than or approx equal to 45 GM/sq c from a black hole of mass greater than or approx equal to 10(exp 9) solar mass, perhaps in active plasma located above the central funnel of the accretion disk. This raises the possibility of establishing a direct connection between the production of the observed gamma - rays and the accretion of material onto the black hole. We also consider the variation of the optical depth as a function of the angle of propagation Phi. Our results indicate that the "focusing" of the gamma - rays along the disk axis due to pair production is strong enough to explain the observed degree of alignment in blazar sources. If the gamma - rays are produced isotropically

  19. RoboPol: connection between optical polarization plane rotations and gamma-ray flares in blazars

    NASA Astrophysics Data System (ADS)

    Blinov, D.; Pavlidou, V.; Papadakis, I.; Kiehlmann, S.; Liodakis, I.; Panopoulou, G. V.; Angelakis, E.; Baloković, M.; Hovatta, T.; King, O. G.; Kus, A.; Kylafis, N.; Mahabal, A.; Maharana, S.; Myserlis, I.; Paleologou, E.; Papamastorakis, I.; Pazderski, E.; Pearson, T. J.; Ramaprakash, A.; Readhead, A. C. S.; Reig, P.; Tassis, K.; Zensus, J. A.

    2018-02-01

    We use results of our 3 yr polarimetric monitoring programme to investigate the previously suggested connection between rotations of the polarization plane in the optical emission of blazars and their gamma-ray flares in the GeV band. The homogeneous set of 40 rotation events in 24 sources detected by RoboPol is analysed together with the gamma-ray data provided by Fermi-LAT. We confirm that polarization plane rotations are indeed related to the closest gamma-ray flares in blazars and the time lags between these events are consistent with zero. Amplitudes of the rotations are anticorrelated with amplitudes of the gamma-ray flares. This is presumably caused by higher relativistic boosting (higher Doppler factors) in blazars that exhibit smaller amplitude polarization plane rotations. Moreover, the time-scales of rotations and flares are marginally correlated.

  20. Simultaneous Planck, Swift, and Fermi Observations of X-Ray and gamma-Ray Selected Blazars

    NASA Technical Reports Server (NTRS)

    Giommi, P.; Polenta, G.; Laehteenmaeki, A.; Thompson, D. J.; Capalbi, M.; Cutini, S.; Gasparrini, D.; Gonzalez-Nuevo, J.; Leon-Tavares, J.; Lopez-Caniego, M.; hide

    2011-01-01

    We present simultaneous Planck, Swift, Fermi, and ground-based data for 105 blazars belonging to three samples with flux limits in the soft X-ray, hard X-ray, and -ray bands, and we compare our results to those of a companion paper presenting simultaneous Planck and multi-frequency observations of 104 radio-loud northern active galactic nuclei selected at radio frequencies. While we confirm several previous results, our unique data set has allowed us to demonstrate that the selection method strongly influences the results, producing biases that cannot be ignored. Almost all the BL Lac objects have been detected by Fermi Large Area Telescope (LAT), whereas 30 to 40% of the flat-spectrum radio quasars (FSRQs) in the radio, soft X-ray, and hard X-ray selected samples are still below the gamma ray detection limit even after integrating 27 months of Fermi-LAT data. The radio to sub-millimetre spectral slope of blazars is quite flat, with [alpha] approximately 0 up to about 70 GHz, above which it steepens to [alpha] approximately -0.65. BL Lacs have significantly flatter spectra than FSRQs at higher frequencies. The distribution of the rest-frame synchrotron peak frequency (v(sup IC) (sub (PEAK)), ranges from 10(sup 21) to 10(sup 22) HZ. The distribution of the rest-frame synchrotron peak frequency (v(sup s)(sub peak)) in the spectral energy distribution (SED) of FSRQs is the same in all the blazar samples with (v(sup s)(sub peak) = 10(sup 13:1 plus or minus 0.1) Hz, while the mean inverse-Compton peak frequency,(v(sup IC)(sub peak) ranges from 10(sup 21) to 10(sup 22) Hz. The distributions of v(sup S)(sub peak) and of v(sup IC)(sub peak) of BL Lacs are much broader and are shifted to higher energies than those of FSRQs; their shapes strongly depend on the selection method. The Compton dominance of blazars ranges from less than 0.2 to nearly 100, with only FSRQs reaching values larger than about 3. Its distribution is broad and depends strongly on the selection method

  1. On the origin of gamma-rays in Fermi blazars: beyondthe broad-line region

    NASA Astrophysics Data System (ADS)

    Costamante, L.; Cutini, S.; Tosti, G.; Antolini, E.; Tramacere, A.

    2018-07-01

    The gamma-ray emission in broad-line blazars is generally explained as inverse Compton (IC) radiation of relativistic electrons in the jet scattering optical-UV photons from the broad-line region (BLR), the so-called BLR external Compton (EC) scenario. We test this scenario on the Fermi gamma-ray spectra of 106 broad-line blazars detected with the highest significance or largest BLR, by looking for cut-off signatures at high energies compatible with γ-γ interactions with BLR photons. We do not find evidence for the expected BLR absorption. For 2/3 of the sources, we can exclude any significant absorption (τmax < 1), while for the remaining 1/3 the possible absorption is constrained to be 1.5-2 orders of magnitude lower than expected. This result holds also dividing the spectra in high- and low-flux states, and for powerful blazars with large BLR. Only 1 object out of 10 seems compatible with substantial attenuation (τmax > 5). We conclude that for 9 out of 10 objects, the jet does not interact with BLR photons. Gamma-rays seem either produced outside the BLR most of the time, or the BLR is ˜100 × larger than given by reverberation mapping. This means that (i) EC on BLR photons is disfavoured as the main gamma-ray mechanism, versus IC on IR photons from the torus or synchrotron self-Compton; (ii) the Fermi gamma-ray spectrum is mostly intrinsic, determined by the interaction of the particle distribution with the seed-photon spectrum; and (iii) without suppression by the BLR, broad-line blazars can become copious emitters above 100 GeV, as demonstrated by 3C 454.3. We expect the CTA sky to be much richer of broad-line blazars than previously thought.

  2. On the origin of gamma rays in Fermi blazars: beyond the broad line region.

    NASA Astrophysics Data System (ADS)

    Costamante, L.; Cutini, S.; Tosti, G.; Antolini, E.; Tramacere, A.

    2018-05-01

    The gamma-ray emission in broad-line blazars is generally explained as inverse Compton (IC) radiation of relativistic electrons in the jet scattering optical-UV photons from the Broad Line Region (BLR), the so-called BLR External Compton scenario. We test this scenario on the Fermi gamma-ray spectra of 106 broad-line blazars detected with the highest significance or largest BLR, by looking for cut-off signatures at high energies compatible with γ-γ interactions with BLR photons. We do not find evidence for the expected BLR absorption. For 2/3 of the sources, we can exclude any significant absorption (τmax < 1), while for the remaining 1/3 the possible absorption is constrained to be 1.5-2 orders of magnitude lower than expected. This result holds also dividing the spectra in high and low-flux states, and for powerful blazars with large BLR. Only 1 object out of 10 seems compatible with substantial attenuation (τmax > 5). We conclude that for 9 out of 10 objects, the jet does not interact with BLR photons. Gamma-rays seem either produced outside the BLR most of the time, or the BLR is ˜100 × larger than given by reverberation mapping. This means that i) External Compton on BLR photons is disfavoured as the main gamma-ray mechanism, vs IC on IR photons from the torus or synchrotron self-Compton; ii) the Fermi gamma-ray spectrum is mostly intrinsic, determined by the interaction of the particle distribution with the seed-photons spectrum; iii) without suppression by the BLR, broad-line blazars can become copious emitters above 100 GeV, as demonstrated by 3C 454.3. We expect the CTA sky to be much richer of broad-line blazars than previously thought.

  3. Time correlation between the radio and gamma-ray activity in blazars and the production site of the gamma-ray emission

    DOE PAGES

    Max-Moerbeck, W.; Hovatta, T.; Richards, J. L.; ...

    2014-09-22

    In order to determine the location of the gamma-ray emission site in blazars, we investigate the time-domain relationship between their radio and gamma-ray emission. Light-curves for the brightest detected blazars from the first 3 years of the mission of the Fermi Gamma-ray Space Telescope are cross-correlated with 4 years of 15GHz observations from the OVRO 40-m monitoring program. The large sample and long light-curve duration enable us to carry out a statistically robust analysis of the significance of the cross-correlations, which is investigated using Monte Carlo simulations including the uneven sampling and noise properties of the light-curves. Modeling the light-curvesmore » as red noise processes with power-law power spectral densities, we find that only one of 41 sources with high quality data in both bands shows correlations with significance larger than 3σ (AO0235+164), with only two more larger than even 2.25σ (PKS 1502+106 and B2 2308+34). Additionally, we find correlated variability in Mrk 421 when including a strong flare that occurred in July-September 2012. These results demonstrate very clearly the difficulty of measuring statistically robust multiwavelength correlations and the care needed when comparing light-curves even when many years of data are used. This should be a caution. In all four sources the radio variations lag the gamma-ray variations, suggesting that the gamma-ray emission originates upstream of the radio emission. Continuous simultaneous monitoring over a longer time period is required to obtain high significance levels in cross-correlations between gamma-ray and radio variability in most blazars.« less

  4. TIME STRUCTURE OF GAMMA-RAY SIGNALS GENERATED IN LINE-OF-SIGHT INTERACTIONS OF COSMIC RAYS FROM DISTANT BLAZARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prosekin, Anton; Aharonian, Felix; Essey, Warren

    2012-10-01

    Blazars are expected to produce both gamma rays and cosmic rays. Therefore, observed high-energy gamma rays from distant blazars may contain a significant contribution from secondary gamma rays produced along the line of sight by the interactions of cosmic-ray protons with background photons. Unlike the standard models of blazars that consider only the primary photons emitted at the source, models that include the cosmic-ray contribution predict that even {approx}10 TeV photons should be detectable from distant objects with redshifts as high as z {>=} 0.1. Secondary photons contribute to signals of point sources only if the intergalactic magnetic fields aremore » very small, B {approx}< 10{sup -14} G, and their detection can be used to set upper bounds on magnetic fields along the line of sight. Secondary gamma rays have distinct spectral and temporal features. We explore the temporal properties of such signals using a semi-analytical formalism and detailed numerical simulations, which account for all the relevant processes, including magnetic deflections. In particular, we elucidate the interplay of time delays coming from the proton deflections and from the electromagnetic cascade, and we find that, at multi-TeV energies, secondary gamma rays can show variability on timescales of years for B {approx} 10{sup -15} G.« less

  5. Comparison Of Optical, UV, X-ray, And Gamma-ray Variations Of Selected Blazars In 2011

    NASA Astrophysics Data System (ADS)

    Consiglio, Santina; Marscher, A. P.; Jorstad, S. G.; Walker, G.

    2012-01-01

    We present multi-wavelength observations of several gamma-ray bright blazars. We combine optical data obtained at Maria Mitchell Observatory on Nantucket Island with space- and ground-based observations carried out with a variety of instruments. These include a number of other optical telescopes, the Fermi Gamma-ray Space Telescope at photon energies of 0.1-200 GeV, the Rossi X-Ray Timing Explorer at 2.4-10 keV, and the Swift satellite at 0.3-10 keV plus optical and UV wavelengths. Three of the observed blazars proved to be particularly active - BL Lac, 3C 279, and PKS 1510-089. BL Lac was of special interest, varying greatly in optical brightness from night to night. In addition, as reported by the VERITAS group, it exhibited a remarkable, short-lived flare at TeV gamma-ray energies on one of the nights. We cross-correlate the variations in the different wavebands in an effort to guide theoretical interpretations of the optical and high-energy emission from blazars. This project was supported by NSF/REU grant AST-0851892 and by the Nantucket Maria Mitchell Association. The research at Boston University was supported in part by NSF grants AST-0907893, and by NASA through Fermi grants NNX08AV65G and NNX11AQ03G.

  6. Gamma-ray blazars: the combined AGILE and MAGIC views

    NASA Astrophysics Data System (ADS)

    Persic, M.; De Angelis, A.; Longo, F.; Tavani, M.

    The large FOV of the AGILE Gamma-Ray Imaging Detector (GRID), 2.5 sr, will allow the whole sky to be surveyed once every 10 days in the 30 MeV - 50 GeV energy band down to 0.05 Crab Units. This fact gives the opportunity of performing the first flux-limited, high-energy g-ray all-sky survey. The high Galactic latitude point-source population is expected to be largely dominated by blazars. Several tens of blazars are expected to be detected by AGILE (e.g., Costamante & Ghisellini 2002), about half of which accessible to the ground-based MAGIC Cherenkov telescope. The latter can then carry out pointed observations of this subset of AGILE sources in the 50GeV - 10TeV band. Given the comparable sensitivities of AGILE/GRID and MAGIC in adjacent energy bands where the emitted radiation is produced by the same (e.g., SSC) mechanism, we expect that most of these sources can be detected by MAGIC. We expect this broadband g-ray strategy to enable discovery by MAGIC of 10-15 previously unknown TeV blazars.

  7. Constraining the location of gamma-ray flares in luminous blazars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nalewajko, Krzysztof; Begelman, Mitchell C.; Sikora, Marek, E-mail: knalew@jila.colorado.edu

    2014-07-10

    Locating the gamma-ray emission sites in blazar jets is a long standing and highly controversial issue. We jointly investigate several constraints on the distance scale r and Lorentz factor Γ of the gamma-ray emitting regions in luminous blazars (primarily flat spectrum radio quasars). Working in the framework of one-zone external radiation Comptonization models, we perform a parameter space study for several representative cases of actual gamma-ray flares in their multiwavelength context. We find a particularly useful combination of three constraints: from an upper limit on the collimation parameter Γθ ≲ 1, from an upper limit on the synchrotron self-Compton (SSC)more » luminosity L{sub SSC} ≲ L{sub X}, and from an upper limit on the efficient cooling photon energy E{sub cool,obs} ≲ 100 MeV. These three constraints are particularly strong for sources with low accretion disk luminosity L{sub d}. The commonly used intrinsic pair-production opacity constraint on Γ is usually much weaker than the SSC constraint. The SSC and cooling constraints provide a robust lower limit on the collimation parameter Γθ ≳ 0.1-0.7. Typical values of r corresponding to moderate values of Γ ∼ 20 are in the range 0.1-1 pc, and are determined primarily by the observed variability timescale t{sub var,obs}. Alternative scenarios motivated by the observed gamma-ray/millimeter connection, in which gamma-ray flares of t{sub var,obs} ∼ a few days are located at r ∼ 10 pc, are in conflict with both the SSC and cooling constraints. Moreover, we use a simple light travel time argument to point out that the gamma-ray/millimeter connection does not provide a significant constraint on the location of gamma-ray flares. We argue that spine-sheath models of the jet structure do not offer a plausible alternative to external radiation fields at large distances; however, an extended broad-line region is an idea worth exploring. We propose that the most definite additional constraint

  8. 1WHSP: An IR-based sample of ~1000 VHE γ -ray blazar candidates

    DOE PAGES

    Arsioli, B.; Fraga, B.; Giommi, P.; ...

    2015-06-23

    Context. Blazars are the dominant type of extragalactic sources at microwave and at γ-ray energies. In the most energetic part of the electromagnetic spectrum (E > ≳ 100 GeV) a large fraction of high Galactic latitude sources are blazars of the High Synchrotron Peaked (HSP) type, that is BL Lac objects with synchrotron power peaking in the UV or in the X-ray band. Building new large samples of HSP blazars is key to understand the properties of jets under extreme conditions, and to study the demographics and the peculiar cosmological evolution of these sources. Aims. HSP blazars are remarkably rare,more » with only a few hundreds of them expected to be above the sensitivity limits of currently available surveys, some of which include hundreds of millions of sources. To find these very uncommon objects, we have devised a method that combines ALLWISE survey data with multi-frequency selection criteria. Methods. The sample was defined starting from a primary list of infrared colour-colour selected sources from the ALLWISE all sky survey database, and applying further restrictions on IR-radio and IR-X-ray flux ratios. Using a polynomial fit to the multi-frequency data (radio to X-ray) we estimated synchrotron peak frequencies and fluxes of each object. Results. We assembled a sample including 992 sources, which is currently the largest existing list of confirmed and candidates HSP blazars. All objects are expected to radiate up to the highest γ-ray photon energies. In fact, 299 of these are confirmed emitters of GeV γ-ray photons (based on Fermi-LAT catalogues), and 36 have already been detected in the TeV band. The majority of sources in the sample are within reach of the upcoming Cherenkov Telescope Array (CTA), and many may be detectable even by the current generation of Cherenkov telescopes during flaring episodes. The sample includes 425 previously known blazars, 151 new identifications, and 416 HSP candidates (mostly faint sources) for which no optical

  9. Gamma-ray luminosity and photon index evolution of FSRQ blazars and contribution to the gamma-ray background

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singal, J.; Ko, A.; Petrosian, V., E-mail: jsingal@richmond.edu

    We present the redshift evolutions and distributions of the gamma-ray luminosity and photon spectral index of flat spectrum radio quasar (FSRQ) type blazars, using non-parametric methods to obtain the evolutions and distributions directly from the data. The sample we use for analysis consists of almost all FSRQs observed with a greater than approximately 7σ detection threshold in the first-year catalog of the Fermi Gamma-ray Space Telescope's Large Area Telescope, with redshifts as determined from optical spectroscopy by Shaw et al. We find that FSQRs undergo rapid gamma-ray luminosity evolution, but negligible photon index evolution, with redshift. With these evolutions accountedmore » for we determine the density evolution and luminosity function of FSRQs and calculate their total contribution to the extragalactic gamma-ray background radiation, resolved and unresolved, which is found to be 16(+10/–4)%, in agreement with previous studies.« less

  10. 2WHSP: A multi-frequency selected catalogue of high energy and very high energy γ-ray blazars and blazar candidates

    NASA Astrophysics Data System (ADS)

    Chang, Y.-L.; Arsioli, B.; Giommi, P.; Padovani, P.

    2017-02-01

    Aims: High synchrotron peaked blazars (HSPs) dominate the γ-ray sky at energies higher than a few GeV; however, only a few hundred blazars of this type have been cataloged so far. In this paper we present the 2WHSP sample, the largest and most complete list of HSP blazars available to date, which is an expansion of the 1WHSP catalogue of γ-ray source candidates off the Galactic plane. Methods: We cross-matched a number of multi-wavelength surveys (in the radio, infrared and X-ray bands) and applied selection criteria based on the radio to IR and IR to X-ray spectral slopes. To ensure the selection of genuine HSPs, we examined the SED of each candidate and estimated the peak frequency of its synchrotron emission (νpeak) using the ASDC SED tool, including only sources with νpeak > 1015 Hz (equivalent to νpeak > 4 eV). Results: We have assembled the largest and most complete catalogue of HSP blazars to date, which includes 1691 sources. A number of population properties, such as infrared colours, synchrotron peak, redshift distributions, and γ-ray spectral properties have been used to characterise the sample and maximize completeness. We also derived the radio log N-log S distribution. This catalogue has already been used to provide seeds to discover new very high energy objects within Fermi-LAT data and to look for the counterparts of neutrino and ultra high energy cosmic ray sources, showing its potential for the identification of promising high-energy γ-ray sources and multi-messenger targets. Table 4 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/598/A17

  11. Blazars in Hard X-rays

    NASA Astrophysics Data System (ADS)

    Ghisellini, Gabriele

    2009-05-01

    Although blazars are thought to emit most of their luminosity in the γ-ray band, there are subclasses of them very prominent in hard X-rays. These are the best candidates to be studied by Simbol-X. They are at the extremes of the blazar sequence, having very small or very high jet powers. The former are the class of TeV emitting BL Lacs, whose synchrotron emission often peaks at tens of keV or more. The latter are the blazars with the most powerful jets, have high black hole masses accreting at high (i.e. close to Eddington) rates. These sources are predicted to have their high energy peak even below the MeV band, and therefore are very promising candidates to be studied with Simbol-X.

  12. Fermi-LAT View of Bright Flaring Gamma-Ray Blazars

    NASA Astrophysics Data System (ADS)

    Bastieri, D.; Ciprini, S.; Gasparrini, D.

    2011-06-01

    The Fermi LAT provides a continuous and uniform monitoring of the Universe in the gamma-ray band. During the first year many gamma-ray blazar flares, some unidentified transients and emission by the Sun while in a quiet state were promptly detected. This is mainly due to the design of the mission, featuring a detector, the LAT with a wide field of view, and to the operation of the spacecraft itself, that can cover every region of the sky every 3 hours. Nevertheless, the scientific exploitation of this monitoring is more fruitful when early information about transients reaches a broader community. In this respect, the indefatigable activity of flare advocates, who worked on weekly shifts to validate the results and quickly broadcast information about flares and new detections, was the key to most scientific results.

  13. Gamma-ray blazars within the first 2 billion years

    DOE PAGES

    Ackermann, M.; Ajello, M.; Baldini, L.; ...

    2017-02-27

    Here, the detection of high-redshift (more » $$z\\,\\gt 3$$) blazars enables the study of the evolution of the most luminous relativistic jets over cosmic time. More importantly, high-redshift blazars tend to host massive black holes and can be used to constrain the space density of heavy black holes in the early universe. Here, we report the first detection with the Fermi-Large Area Telescope of five γ-ray-emitting blazars beyond z = 3.1, more distant than any blazars previously detected in γ-rays. Among these five objects, NVSS J151002+570243 is now the most distant known γ-ray-emitting blazar at z = 4.31. These objects have steeply falling γ-ray spectral energy distributions (SEDs), and those that have been observed in X-rays have a very hard X-ray spectrum, both typical of powerful blazars. Their Compton dominance (ratio of the inverse Compton to synchrotron peak luminosities) is also very large ($$\\gt 20$$). All of these properties place these objects among the most extreme members of the blazar population. Their optical spectra and the modeling of their optical-UV SEDs confirm that these objects harbor massive black holes ($${M}_{\\mathrm{BH}}\\sim {10}^{8-10}\\,{M}_{\\odot }$$). We find that, at $$z\\approx 4$$, the space density of $$\\gt {10}^{9}\\,{M}_{\\odot }$$ black holes hosted in radio-loud and radio-quiet active galactic nuclei are similar, implying that radio-loudness may play a key role in rapid black hole growth in the early universe.« less

  14. Does the Blazar Gamma-ray Spectrum Harden with Increasing Flux? - Analysis of Nine Years of EGRET Data

    NASA Technical Reports Server (NTRS)

    Nandikotkur, Giridhar; Jahoda, Keith M.; Hartman, R. C.; Mukherjee, R.; Sreekumar, P.; Boettcher, M.

    2007-01-01

    The Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory (CGRO) discovered gamma-ray emission from more than 67 blazars during its nine-year lifetime. We conducted an exhaustive search of the EGRET archives and selected all the blazars that were observed multiple times and were bright enough to enable a spectral analysis using standard powerlaw models. The sample consists of 18 flat-spectrum radio quasars (FSRQs), 6 low-frequency-peaked BL Lacs (LBLs) and 2 high-frequency-peaked BL Lacs (HBLs). We do not detect any clear pattern in'the variation of spectral index with flux. Some of the blazars do not show any statistical evidence for spectral variability. The spectrum hardens with increasing flux in a few cases. There is also evidence for a flux-hardness anticorrelation at lo\\v fluxes in five blazars. The well observed blazars (3C 279,3C 273, PKS 0528-i-134, PKS 1622-297, PKS 0208- 512) do not show any overall trend in the long-term spectral dependence on flux, but the sample shows a mixture of hard and soft states. We observed spectral hysteresis at weekly timescales in all the three FSRQs for which data from flares lasting for 3 approx. 4 weeks were available. All three sources show a counterclockwise rotation despite the widely different flux profiles. Hysteresis in the spectral index vs. flux space has never been observed in FSRQs in gamma-rays at weekly timescales. itre analyze the observed spectral behavior in the context of various inverse-Compton mechanisms believed to be responsible for emission in the EGRET energy range. Our analysis uses the EGRET skymaps that were regenerated to include the changes in performance during the mission.

  15. DERIVATION OF A RELATION FOR THE STEEPENING OF TeV-SELECTED BLAZAR {gamma}-RAY SPECTRA WITH ENERGY AND REDSHIFT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stecker, Floyd William; Scully, Sean T.

    2010-02-01

    We derive a relation for the steepening of blazar {gamma}-ray spectra between the multi-GeV Fermi energy range and the TeV energy range observed by atmospheric Cerenkov telescopes. The change in spectral index is produced by two effects: (1) an intrinsic steepening, independent of redshift, owing to the properties of emission and absorption in the source and (2) a redshift-dependent steepening produced by intergalactic pair production interactions of blazar {gamma}-rays with low-energy photons of the 'intergalactic background light' (IBL). Given this relation, with good enough data on the mean {gamma}-ray spectral energy distribution of TeV-selected BL Lac objects, the redshift evolutionmore » of the IBL can, in principle, be determined independently of stellar evolution models. We apply our relation to the results of new Fermi observations of TeV-selected blazars.« less

  16. Optical flare observed in the flaring gamma-ray blazar S5 1044+71

    NASA Astrophysics Data System (ADS)

    Pursimo, Tapio; Blay, Pere; Telting, John; Ojha, Roopesh

    2017-01-01

    We report optical photometry of the blazar S5 1044+71, obtained with the 2.56m Nordic Optical Telescope in La Palma, to look for any enhanced optical activity associated with a recent flare in the daily averaged gamma-ray flux (ATel#9928).

  17. Characteristics of Gamma-Ray Loud Blazars in the VLBA Imaging and Polarimetry Survey

    NASA Technical Reports Server (NTRS)

    Linford, J. D.; Taylor, G. B.; Romani, R. W.; Healey, S. E.; Helmboldt, J. F.; Readhead, A. C.; Reeves, R.; Richards, J. L.; Cotter, G.

    2010-01-01

    The radio properties of blazars detected by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope have been observed as part of the VLBA Imaging and Polarimetry Survey. This large, flux-limited sample of active galactic nuclei (AGNs) provides insights into the mechanism that produces strong gamma-ray emission. At lower flux levels, radio flux density does not directly correlate with gamma-ray flux. We find that the LAT-detected BL Lac objects tend to be similar to the non-LAT BL Lac objects, but that the LAT-detected FSRQs are often significantly different from the non-LAT FSRQs. The differences between the gamma-ray loud and quiet FSRQS can be explained by Doppler boosting; these objects appear to require larger Doppler factors than those of the BL Lac objects. It is possible that the gamma-ray loud FSRQs are fundamentally different from the gamma-ray quiet FSRQs. Strong polarization at the base of the jet appears to be a signature for gamma-ray loud AGNs.

  18. Blazar Duty-Cycle at Gamma-Ray Frequecies: Constraints From Extragalactic Background Radiation And Prospects for AGILE And GLAST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pittori, Carlotta; Cavazzuti, Elisabetta; Colafrancesco, Sergio

    2011-11-29

    We take into account the constraints from the observed extragalactic {gamma}-ray background to estimate the maximum duty cycle allowed for a selected sample of WMAP Blazars, in order to be detectable by AGILE and GLAST {gamma}-ray experiments. For the nominal sensitivity values of both instruments, we identify a subset of sources which can in principle be detectable also in a steady state without over-predicting the extragalactic background. This work is based on the results of a recently derived Blazar radio LogN-LogS obtained by combining several multi-frequency surveys.

  19. Spectrum of Very High Energy Gamma-Rays from the blazar 1ES 1959+650 during Flaring Activity in 2002

    NASA Astrophysics Data System (ADS)

    Daniel, M. K.; Badran, H. M.; Bond, I. H.; Boyle, P. J.; Bradbury, S. M.; Buckley, J. H.; Carter-Lewis, D. A.; Catanese, M.; Celik, O.; Cogan, P.; Cui, W.; D'Vali, M.; de la Calle Perez, I.; Duke, C.; Falcone, A.; Fegan, D. J.; Fegan, S. J.; Finley, J. P.; Fortson, L. F.; Gaidos, J. A.; Gammell, S.; Gibbs, K.; Gillanders, G. H.; Grube, J.; Hall, J.; Hall, T. A.; Hanna, D.; Hillas, A. M.; Holder, J.; Horan, D.; Humensky, T. B.; Jarvis, A.; Jordan, M.; Kenny, G. E.; Kertzman, M.; Kieda, D.; Kildea, J.; Knapp, J.; Kosack, K.; Krawczynski, H.; Krennrich, F.; Lang, M. J.; Le Bohec, S.; Linton, E.; Lloyd-Evans, J.; Milovanovic, A.; Moriarty, P.; Müller, D.; Nagai, T.; Nolan, S.; Ong, R. A.; Pallassini, R.; Petry, D.; Power-Mooney, B.; Quinn, J.; Quinn, M.; Ragan, K.; Rebillot, P.; Reynolds, P. T.; Rose, H. J.; Schroedter, M.; Sembroski, G. H.; Swordy, S. P.; Syson, A.; Vassiliev, V. V.; Wakely, S. P.; Walker, G.; Weekes, T. C.; Zweerink, J.

    2005-03-01

    The blazar 1ES 1959+650 was observed in a flaring state with the Whipple 10 m Imaging Atmospheric Cerenkov Telescope in 2002 May. A spectral analysis has been carried out on the data from that time period, and the resulting very high energy gamma-ray spectrum (E>=316 GeV) can be well fitted by a power law of differential spectral index α=2.78+/-0.12stat+/-0.21sys. On 2002 June 4, the source flared dramatically in the gamma-ray range without any coincident increase in the X-ray emission, providing the first unambiguous example of an ``orphan'' gamma-ray flare from a blazar. The gamma-ray spectrum for these data can also be described by a simple power-law fit with α=2.82+/-0.15stat+/-0.30sys. There is no compelling evidence for spectral variability or for any cutoff to the spectrum.

  20. Sneaky Gamma-Rays: Using Gravitational Lensing to Avoid Gamma-Gamma-Absorption

    NASA Astrophysics Data System (ADS)

    Boettcher, Markus; Barnacka, Anna

    2014-08-01

    It has recently been suggested that gravitational lensing studies of gamma-ray blazars might be a promising avenue to probe the location of the gamma-ray emitting region in blazars. Motivated by these prospects, we have investigated potential gamma-gamma absorption signatures of intervening lenses in the very-high-energy gamma-ray emission from lensedblazars. We considered intervening galaxies and individual stars within these galaxies. We find that the collective radiation field of galaxies acting as sources of macrolensing are not expected to lead to significant gamma-gamma absorption. Individual stars within intervening galaxies could, in principle, cause a significant opacity to gamma-gamma absorption for VHE gamma-rays if the impact parameter (the distance of closest approach of the gamma-ray to the center of the star) is small enough. However, we find that the curvature of the photon path due to gravitational lensing will cause gamma-ray photons to maintain a sufficiently large distance from such stars to avoid significant gamma-gamma absorption. This re-inforces the prospect of gravitational-lensing studies of gamma-ray blazars without interference due to gamma-gamma absorption due to the lensing objects.

  1. Multiwavelength Observations of the Blazar BL Lacertae: A New Fast TeV Gamma-Ray Flare

    NASA Astrophysics Data System (ADS)

    Abeysekara, A. U.; Benbow, W.; Bird, R.; Brantseg, T.; Brose, R.; Buchovecky, M.; Buckley, J. H.; Bugaev, V.; Connolly, M. P.; Cui, W.; Daniel, M. K.; Falcone, A.; Feng, Q.; Finley, J. P.; Fortson, L.; Furniss, A.; Gillanders, G. H.; Gunawardhana, I.; Hütten, M.; Hanna, D.; Hervet, O.; Holder, J.; Hughes, G.; Humensky, T. B.; Johnson, C. A.; Kaaret, P.; Kar, P.; Kertzman, M.; Krennrich, F.; Lang, M. J.; Lin, T. T. Y.; McArthur, S.; Moriarty, P.; Mukherjee, R.; O’Brien, S.; Ong, R. A.; Otte, A. N.; Park, N.; Petrashyk, A.; Pohl, M.; Pueschel, E.; Quinn, J.; Ragan, K.; Reynolds, P. T.; Richards, G. T.; Roache, E.; Rulten, C.; Sadeh, I.; Santander, M.; Sembroski, G. H.; Shahinyan, K.; Wakely, S. P.; Weinstein, A.; Wells, R. M.; Wilcox, P.; Williams, D. A.; Zitzer, B.; The VERITAS Collaboration; Jorstad, S. G.; Marscher, A. P.; Lister, M. L.; Kovalev, Y. Y.; Pushkarev, A. B.; Savolainen, T.; Agudo, I.; Molina, S. N.; Gómez, J. L.; Larionov, V. M.; Borman, G. A.; Mokrushina, A. A.; Tornikoski, M.; Lähteenmäki, A.; Chamani, W.; Enestam, S.; Kiehlmann, S.; Hovatta, T.; Smith, P. S.; Pontrelli, P.

    2018-04-01

    Combined with measurements made by very-long-baseline interferometry, the observations of fast TeV gamma-ray flares probe the structure and emission mechanism of blazar jets. However, only a handful of such flares have been detected to date, and only within the last few years have these flares been observed from lower-frequency-peaked BL Lac objects and flat-spectrum radio quasars. We report on a fast TeV gamma-ray flare from the blazar BL Lacertae observed by the Very Energetic Radiation Imaging Telescope Array System (VERITAS). with a rise time of ∼2.3 hr and a decay time of ∼36 min. The peak flux above 200 GeV is (4.2 ± 0.6) × 10‑6 photon m‑2 s‑1 measured with a 4-minute-binned light curve, corresponding to ∼180% of the flux that is observed from the Crab Nebula above the same energy threshold. Variability contemporaneous with the TeV gamma-ray flare was observed in GeV gamma-ray, X-ray, and optical flux, as well as in optical and radio polarization. Additionally, a possible moving emission feature with superluminal apparent velocity was identified in Very Long Baseline Array observations at 43 GHz, potentially passing the radio core of the jet around the time of the gamma-ray flare. We discuss the constraints on the size, Lorentz factor, and location of the emitting region of the flare, and the interpretations with several theoretical models that invoke relativistic plasma passing stationary shocks.

  2. Gamma-Ray and Parsec-Scale Jet Properties of a Complete Sample of Blazars from the MOJAVE Program

    NASA Technical Reports Server (NTRS)

    Lister, M.L.; Aller, M.; Aller, H.; Hovatta, T.; Kellermann, K. I.; Kovalev, Y. Y.; Meyer, E. T.; Pushkarev, A. B.; Ros, E.; Ackermann, M.; hide

    2011-01-01

    We investigate the Fermi LAT gamma-ray and 15 GHz VLBA radio properties of a joint gamma-ray- and radio-selected sample of AGNs obtained during the first 11 months of the Fermi mission (2008 Aug 4 - 2009 Jul 5). Our sample contains the brightest 173 AGNs in these bands above declination -300 during this period, and thus probes the full range of gamma-ray loudness (gamma-ray to radio band luminosity ratio) in the bright blazar population. The latter quantity spans at least four orders of magnitude, reflecting a wide range of spectral energy distribution (SED) parameters in the bright blazar population. The BL Lac objects, however, display a linear correlation of increasing gamma-ray loudness with synchrotron SED peak frequency, suggesting a universal SED shape for objects of this class. The synchrotron self-Compton model is favored for the gamma-ray emission in these BL Lacs over external seed photon models, since the latter predict a dependence of Compton dominance on Doppler factor that would destroy any observed synchrotron SED peak - gamma-ray loudness correlation. The high-synchrotron peaked (HSP) BL Lac objects are distinguished by lower than average radio core brightness temperatures, and none display large radio modulation indices or high linear core polarization levels. No equivalent trends are seen for the flat-spectrum radio quasars (FSRQ) in our sample. Given the association of such properties with relativistic beaming, we suggest that the HSP BL Lacs have generally lower Doppler factors than the lower-synchrotron peaked BL Lacs or FSRQs in our sample.

  3. Characteristic Variability Timescales in the Gamma-ray Power Spectra of Blazars

    NASA Astrophysics Data System (ADS)

    Ryan, James Lee; Siemiginowska, Aneta; Sobolewska, Malgorzata; Grindlay, Jonathan E.

    2018-01-01

    We study the gamma-ray variability of 13 bright blazars observed with the Fermi Large Area Telescope in the 0.2-300 MeV band over 7.8 years.We find that continuous-time autoregressive moving average (CARMA) models provide adequate fits to the blazar light curves, and using the models we constrain the power spectral density (PSD) of each source.We also perform simulations to test the ability of CARMA modeling to recover the PSDs of artificial light curves with our data quality.Seven sources show evidence for a low-frequency break at an average timescale of ~1 year, with five of these sources showing evidence for an additional high-frequency break at an average timescale of ~7 days.We compare our results to previous studies, and discuss the possible physical interpretations of our results.

  4. Comparison of Optical and Multi-Waveband Variations of Selected Gamma-ray Bright Blazars in 2012

    NASA Astrophysics Data System (ADS)

    Schultz, Benjamin; Jorstad, S. G.; Marscher, A. P.; Williamson, K. E.; Walker, G. E.

    2013-01-01

    We present multi-wavelength observations of several gamma-ray bright blazars. We combine optical data obtained with the 17-inch CCD telescope of Maria Mitchell Observatory with space- and ground-based observations carried out with a variety of instruments. These include a number of other optical telescopes, the Fermi Gamma-Ray Space Telescope at photon energies of 0.1-200 GeV, and the Swift satellite at 0.3-10 keV plus optical and UV wavelengths. Three of the observed blazars proved to be particularly active - BL Lac, Mrk501, and CTA-102. BL Lac was of special interest, displaying remarkable activity in multiple wavelengths during this observation period, including the optical, in which it underwent its largest observed flare in a number of years. In addition, CTA-102 has recently undergone an unprecedented multi-wavelength outburst. We cross-correlate the variations in the different wavebands in an effort to guide theoretical interpretations of the optical and high-energy emission from blazars. This project was supported by NSF/REU grant AST-0851892 and the Nantucket Maria Mitchell Association. The research at Boston University was supported in part by NSF grant AST-0907893 and by NASA through Fermi grant NNX11AQ03G.

  5. Gamma-Ray Pulsar Candidates for GLAST

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.

    2008-01-01

    The Gamma-ray Large Area Space Telescope (GLAST) will be launched this year, and its Large Area Telescope (LAT) is expected to discover scores to hundreds of gamma-ray pulsars. This poster discusses which of the over 1700 known pulsars, mostly visible only at radio frequencies, are likely to emit greater than 100 MeV gamma rays with intensities detectable by the LAT. The main figure of merit used to select gamma-ray pulsar candidates is sqrt(E-dot)/d2, where E-dot is the energy loss due to rotational spin-down, and d is the distance to the pulsar. The figure of merit incorporates spin-down flux at earth (proportional to E-dot/d2) times efficiency, assumed proportional to l/sqrt(E-dot). A few individual objects are cited to illustrate the issues. Since large E-dot pulsars also tend to have large timing noise and occasional glitches, their ephemerides can become inaccurate in weeks to months. To detect and study the gamma-ray emission the photons must be accurately tagged with the pulse phase. With hours to days between gamma-ray photon arrival times from a pulsar and months to years of LAT exposure needed for good detections, GLAST will rely on radio and X-ray timing measurements throughout the continuous gamma-ray observations. The poster will describe efforts to coordinate pulsar timing of the candidate gamma-ray pulsars.

  6. On the intrinsic shape of the gamma-ray spectrum for Fermi blazars

    NASA Astrophysics Data System (ADS)

    Kang, Shi-Ju; Wu, Qingwen; Zheng, Yong-Gang; Yin, Yue; Song, Jia-Li; Zou, Hang; Feng, Jian-Chao; Dong, Ai-Jun; Wu, Zhong-Zu; Zhang, Zhi-Bin; Wu, Lin-Hui

    2018-05-01

    The curvature of the γ-ray spectrumin blazarsmay reflect the intrinsic distribution of emitting electrons, which will further give some information on the possible acceleration and cooling processes in the emitting region. The γ-ray spectra of Fermi blazars are normally fitted either by a single power-law (PL) or a log-normal (call Logarithmic Parabola, LP) form. The possible reason for this difference is not clear. We statistically explore this issue based on the different observational properties of 1419 Fermi blazars in the 3LAC Clean Sample.We find that the γ-ray flux (100MeV–100GeV) and variability index follow bimodal distributions for PL and LP blazars, where the γ-ray flux and variability index show a positive correlation. However, the distributions of γ-ray luminosity and redshift follow a unimodal distribution. Our results suggest that the bimodal distribution of γ-ray fluxes for LP and PL blazars may not be intrinsic and all blazars may have an intrinsically curved γ-ray spectrum, and the PL spectrum is just caused by the fitting effect due to less photons.

  7. Prediction of ECS and SSC Models for Flux-Limited Samples of Gamma-Ray Blazars

    NASA Technical Reports Server (NTRS)

    Lister, Matthew L.; Marscher, Alan P.

    1999-01-01

    The external Compton scattering (ECS) and synchrotron self-Compton (SSC) models make distinct predictions for the amount of Doppler boosting of high-energy gamma-rays emitted by Nazar. We examine how these differences affect the predicted properties of active galactic nucleus (AGN) samples selected on the basis of Murray emission. We create simulated flux-limited samples based on the ECS and SSC models, and compare their properties to those of identified EGRET blazars. We find that for small gamma-ray-selected samples, the two models make very similar predictions, and cannot be reliably distinguished. This is primarily due to the fact that not only the Doppler factor, but also the cosmological distance and intrinsic luminosity play a role in determining whether an AGN is included in a flux-limited gamma-ray sample.

  8. {gamma}-RAY AND PARSEC-SCALE JET PROPERTIES OF A COMPLETE SAMPLE OF BLAZARS FROM THE MOJAVE PROGRAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lister, M. L.; Hovatta, T.; Aller, M.

    We investigate the Fermi Large Area Telescope {gamma}-ray and 15 GHz Very Long Baseline Array radio properties of a joint {gamma}-ray and radio-selected sample of active galactic nuclei (AGNs) obtained during the first 11 months of the Fermi mission (2008 August 4-2009 July 5). Our sample contains the brightest 173 AGNs in these bands above declination -30 Degree-Sign during this period, and thus probes the full range of {gamma}-ray loudness ({gamma}-ray to radio band luminosity ratio) in the bright blazar population. The latter quantity spans at least 4 orders of magnitude, reflecting a wide range of spectral energy distribution (SED)more » parameters in the bright blazar population. The BL Lac objects, however, display a linear correlation of increasing {gamma}-ray loudness with synchrotron SED peak frequency, suggesting a universal SED shape for objects of this class. The synchrotron self-Compton model is favored for the {gamma}-ray emission in these BL Lac objects over external seed photon models, since the latter predict a dependence of Compton dominance on Doppler factor that would destroy any observed synchrotron SED-peak-{gamma}-ray-loudness correlation. The high-synchrotron peaked (HSP) BL Lac objects are distinguished by lower than average radio core brightness temperatures, and none display large radio modulation indices or high linear core polarization levels. No equivalent trends are seen for the flat-spectrum radio quasars (FSRQs) in our sample. Given the association of such properties with relativistic beaming, we suggest that the HSP BL Lac objects have generally lower Doppler factors than the lower-synchrotron peaked BL Lac objects or FSRQs in our sample.« less

  9. Gamma-Ray Pulsar Candidates for GLAST

    NASA Technical Reports Server (NTRS)

    Thompson, David J.; Smith, D. A.; Dumora, D.; Guillemot, L.; Parent, D.; Reposeur, T.; Grove, E.; Romani, R. W.; Thorsett, S. E.

    2007-01-01

    The Gamma-ray Large Area Space Telescope (GLAST) will be launched less than a year from now, and its Large Area Telescope (LAT) is expected to discover scores to hundreds of gamma-ray pulsars. This poster discusses which of the over 1700 known pulsars, mostly visible only at radio Erequencies, are likely to emit greater than l00 MeV gamma rays with intensities detectable by the LAT. The main figure of merit used to select gamma-ray pulsar candidates is sqrt(E-dot)/d^2, where E-dot is the energy loss due to rotational spindown, and d is the distance to the pulsar. The figure of merit incorporates spin-down flux at earth (proportional to E-dot/d^2) times efficiency, assumed proportional to 1/sqrt(E-dot). A few individual objects are cited to illustrate the issues. Since large E-dot pulsars also tend to have large timing noise and occasional glitches, their ephemerides can become inaccurate in weeks to months. To detect and study the gamma-ray emission the photons must be accurately tagged with the pulse phase. With hours to days between gamma-ray photon arrival times from a pulsar and months to years of LAT exposure needed for good detections, GLAST will need timing measurements throughout the continuous gamma-ray observations. The poster will describe efforts to coordinate pulsar timing of the candidate gamma-ray pulsars.

  10. AGILE detection of enhanced gamma-ray emission from the blazar 3C 279

    NASA Astrophysics Data System (ADS)

    Cardillo, M.; Verrecchia, F.; Pittori, C.; Lucarelli, F.; Ursi, A.; Piano, G.; Minervini, G.; Bulgarelli, A.; Fioretti, V.; Parmiggiani, N.; Tavani, M.; Munar-Adrover, P.; Donnarumma, I.; Vercellone, S.; Striani, E.; Cardillo, M.; Gianotti, F.; Trifoglio, M.; Giuliani, A.; Mereghetti, S.; Caraveo, P.; Perotti, F.; Chen, A.; Argan, A.; Costa, E.; Del Monte, E.; Evangelista, Y.; Feroci, M.; Lazzarotto, F.; Lapshov, I.; Pacciani, L.; Soffitta, P.; Sabatini, S.; Vittorini, V.; Pucella, G.; Rapisarda, M.; Di Cocco, G.; Fuschino, F.; Galli, M.; Labanti, C.; Marisaldi, M.; Pellizzoni, A.; Pilia, M.; Trois, A.; Barbiellini, G.; Vallazza, E.; Longo, F.; Morselli, A.; Picozza, P.; Prest, M.; Lipari, P.; Zanello, D.; Cattaneo, P. W.; Rappoldi, A.; Colafrancesco, S.; Ferrari, A.; Paoletti, F.; Antonelli, A.; Giommi, P.; Salotti, L.; Valentini, G.; D'Amico, F.

    2018-06-01

    AGILE is detecting enhanced gamma-ray emission above 100 MeV from the blazar 3C 279. Integrating from 2018-06-03 07:56:19 UT to 2018-06-05 07:56:19 UT, a preliminary maximum likelihood analysis yields a detection at a flux F(E > 100 MeV)=(7.0 +/- 1.5) x 10^-6 ph cm^-2 s^-1 and a significance greater than 7 sigma.

  11. Constraints on cosmic ray and PeV neutrino production in blazars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, B. Theodore; Li, Zhuo, E-mail: zhangbing91@pku.edu.cn, E-mail: zhuo.li@pku.edu.cn

    2017-03-01

    IceCube has detected a cumulative flux of PeV neutrinos, which origin is unknown. Blazars, active galactic nuclei with relativistic jets pointing to us, are long and widely expected to be one of the strong candidates of high energy neutrino sources. The neutrino production depends strongly on the cosmic ray power of blazar jets, which is largely unknown. The recent null results in stacking searches of neutrinos for several blazar samples by IceCube put upper limits on the neutrino fluxes from these blazars. Here we compute the cosmic ray power and PeV neutrino flux of Fermi-LAT blazars, and find that themore » upper limits for known blazar sources give stringent constraint on the cosmic ray loading factor of blazar jets (i.e., the ratio of the cosmic ray to bolometric radiation luminosity of blazar jets), ξ{sub cr} ∼< (2–10)ζ{sup −1} (with ζ ∼< 1 the remained fraction of cosmic ray energy when propagate into the blazar broad line region) for flat cosmic ray spectrum, and that the cumulative PeV neutrino flux contributed by all-sky blazars is a fraction ∼< (10–50)% of the IceCube detected flux.« less

  12. Optical photometric monitoring of gamma -ray loud blazars. II. Observations from November 1995 to June 1996

    NASA Astrophysics Data System (ADS)

    Raiteri, C. M.; Ghisellini, G.; Villata, M.; de Francesco, G.; Lanteri, L.; Chiaberge, M.; Peila, A.; Antico, G.

    1998-02-01

    New data from the optical monitoring of gamma -ray loud blazars at the Torino Astronomical Observatory are presented. Observations have been taken in the Johnson's B, V, and Cousins' R bands with the 1.05m REOSC telescope equipped with a 1242x1152 pixel CCD camera. Many of the 22 monitored sources presented here show noticeable magnitude variations. Periods corresponding to pointings of the Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory (CGRO) satellite are indicated on the light curves. The comparison of our data with those taken by CGRO in the gamma -ray band will contribute to better understand the mechanism of the gamma -ray emission. We finally show intranight light curves of 3C 66A and OJ 287, where microvariability was detected. Tables 2--21 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html

  13. Through the Ring of Fire: A Study of the Origin of Orphan Gamma-ray Flares in Blazars

    NASA Astrophysics Data System (ADS)

    MacDonald, Nicholas R.; Marscher, Alan P.; Jorstad, Svetlana G.; Joshi, Manasvita

    2014-06-01

    Blazars exhibit flares across the electromagnetic spectrum. Many gamma-ray flares are highly correlated with flares detected at optical wavelengths; however, a small subset appear to occur in isolation, with no counterpart in the other wave bands. These "orphan" gamma-ray flares challenge current models of blazar variability, most of which are unable to reproduce this type of behavior. We present numerical calculations of the time variable emission of a blazar based on a proposal by Marscher et al. (2010) to explain such events. In this model, a plasmoid ("blob") consisting of a power-law distribution of electrons propagates relativistically along the spine of a blazar jet and passes through a synchrotron emitting ring of electrons representing a shocked portion of the jet sheath. This ring supplies a source of seed photons that are inverse-Compton scattered by the electrons in the moving blob. As the blob approaches the ring, the photon density in the co-moving frame of the plasma increases, resulting in an orphan gamma-ray flare that then dissipates as the blob passes through and then moves away from the ring. The model includes the effects of radiative cooling and a spatially varying magnetic field. Support for the plausibility of this model is provided by observations by Marscher et al.(2010) of an isolated gamma-ray flare that was correlated with the passage of a superluminal knot through the inner jet of quasar PKS 1510-089. Synthetic light-curves produced by this new model are compared to the observed light-curves from this event. In addition, we present polarimetric observations that point to the existence of a jet sheath in the quasar 3C 273. A rough estimate of the bolometric luminosity of the sheath results in a value of ~10^45 erg s^-1 10% of the jet luminosity). This inferred sheath luminosity indicates that the jet sheath in 3C 273 can provide a significant source of seed photons that need to be taken into account when modeling the non

  14. High-energy sources at low radio frequency: the Murchison Widefield Array view of Fermi blazars

    DOE PAGES

    Giroletti, M.; Massaro, F.; D’Abrusco, R.; ...

    2016-04-01

    Low-frequency radio arrays are opening a new window for the study of the sky, both to study new phenomena and to better characterize known source classes. Being flat-spectrum sources, blazars are so far poorly studied at low radio frequencies. In this paper, we characterize the spectral properties of the blazar population at low radio frequency, compare the radio and high-energy properties of the gamma-ray blazar population, and search for radio counterparts of unidentified gamma-ray sources. We cross-correlated the 6100 deg 2 Murchison Widefield Array Commissioning Survey catalogue with the Roma blazar catalogue, the third catalogue of active galactic nuclei detectedmore » by Fermi-LAT, and the unidentified members of the entire third catalogue of gamma-ray sources detected by Fermi-LAT. When available, we also added high-frequency radio data from the Australia Telescope 20 GHz catalogue. We find low-frequency counterparts for 186 out of 517 (36%) blazars, 79 out of 174 (45%) gamma-ray blazars, and 8 out of 73 (11%) gamma-ray blazar candidates. The mean low-frequency (120–180 MHz) blazar spectral index is (α low) = 0.57 ± 0.02: blazar spectra are flatter than the rest of the population of low-frequency sources, but are steeper than at ~GHz frequencies. Low-frequency radio flux density and gamma-ray energy flux display a mildly significant and broadly scattered correlation. Ten unidentified gamma-ray sources have a (probably fortuitous) positional match with low radio frequency sources. Low-frequency radio astronomy provides important information about sources with a flat radio spectrum and high energy. However, the relatively low sensitivity of the present surveys still misses a significant fraction of these objects. Finally, upcoming deeper surveys, such as the GaLactic and Extragalactic All-Sky MWA (GLEAM) survey, will provide further insight into this population.« less

  15. High-energy sources at low radio frequency: the Murchison Widefield Array view of Fermi blazars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giroletti, M.; Massaro, F.; D’Abrusco, R.

    Low-frequency radio arrays are opening a new window for the study of the sky, both to study new phenomena and to better characterize known source classes. Being flat-spectrum sources, blazars are so far poorly studied at low radio frequencies. In this paper, we characterize the spectral properties of the blazar population at low radio frequency, compare the radio and high-energy properties of the gamma-ray blazar population, and search for radio counterparts of unidentified gamma-ray sources. We cross-correlated the 6100 deg 2 Murchison Widefield Array Commissioning Survey catalogue with the Roma blazar catalogue, the third catalogue of active galactic nuclei detectedmore » by Fermi-LAT, and the unidentified members of the entire third catalogue of gamma-ray sources detected by Fermi-LAT. When available, we also added high-frequency radio data from the Australia Telescope 20 GHz catalogue. We find low-frequency counterparts for 186 out of 517 (36%) blazars, 79 out of 174 (45%) gamma-ray blazars, and 8 out of 73 (11%) gamma-ray blazar candidates. The mean low-frequency (120–180 MHz) blazar spectral index is (α low) = 0.57 ± 0.02: blazar spectra are flatter than the rest of the population of low-frequency sources, but are steeper than at ~GHz frequencies. Low-frequency radio flux density and gamma-ray energy flux display a mildly significant and broadly scattered correlation. Ten unidentified gamma-ray sources have a (probably fortuitous) positional match with low radio frequency sources. Low-frequency radio astronomy provides important information about sources with a flat radio spectrum and high energy. However, the relatively low sensitivity of the present surveys still misses a significant fraction of these objects. Finally, upcoming deeper surveys, such as the GaLactic and Extragalactic All-Sky MWA (GLEAM) survey, will provide further insight into this population.« less

  16. The Imprint of the Extragalactic Background Light in the Gamma-Ray Spectra of Blazars

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Allafort, A.; Schady, P.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R; Blandford, R. D.; hide

    2012-01-01

    The light emitted by stars and accreting compact objects through the history of the universe is encoded in the intensity of the extragalactic background light (EBL). Knowledge of the EBL isimportant to understand the nature of star formation and galaxy evolution, but direct measurements of the EBL are limited by galactic and other foreground emissions. Here, we report an absorption feature seen in the combined spectra of a sample of gamma-ray blazars out to a redshift of z approx. 1.6. This feature is caused by attenuation of gamma rays by the EBL at optical to ultraviolet frequencies and allowed us to measure the EBL flux density in this frequency band.

  17. Prospects for future very high-energy gamma-ray sky survey: Impact of secondary gamma rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inoue, Yoshiyuki; Kalashev, Oleg E.; Kusenko, Alexander

    2014-02-01

    Very high-energy gamma-ray measurements of distant blazars can be well explained by secondary gamma rays emitted by cascades induced by ultra-high-energy cosmic rays. The secondary gamma rays will enable one to detect a large number of blazars with future ground based gamma-ray telescopes such as Cherenkov Telescope Array (CTA). We show that the secondary emission process will allow CTA to detect 100, 130, 150, 87, and 8 blazars above 30 GeV, 100 GeV, 300 GeV, 1 TeV, and 10 TeV, respectively, up to z~8 assuming the intergalactic magnetic field (IGMF) strength B=10-17 G and an unbiased all sky survey withmore » 0.5 h exposure at each field of view, where total observing time is ~540 h. These numbers will be 79, 96, 110, 63, and 6 up to z~5 in the case of B=10-15 G. This large statistics of sources will be a clear evidence of the secondary gamma-ray scenarios and a new key to studying the IGMF statistically. We also find that a wider and shallower survey is favored to detect more and higher redshift sources even if we take into account secondary gamma rays.« less

  18. The Imprint of the Extragalactic Background Light in the Gamma-Ray Spectra of Blazars

    DOE PAGES

    Ackermann, M.; Ajello, M.; Allafort, A.; ...

    2012-11-30

    The light emitted by stars and accreting compact objects through the history of the universe is encoded in the intensity of the extragalactic background light (EBL). Knowledge of the EBL is important to understand the nature of star formation and galaxy evolution, but direct measurements of the EBL are limited by galactic and other foreground emissions. In this paper, we report an absorption feature seen in the combined spectra of a sample of gamma-ray blazars out to a redshift of z ~ 1.6. Finally, this feature is caused by attenuation of gamma rays by the EBL at optical to ultravioletmore » frequencies and allowed us to measure the EBL flux density in this frequency band.« less

  19. On the Direct Correlation between Gamma-Rays and PeV Neutrinos from Blazars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Shan; Pohl, Martin; Winter, Walter, E-mail: shan.gao@desy.de

    We study the frequently used assumption in multi-messenger astrophysics that the gamma-ray and neutrino fluxes are directly connected because they are assumed to be produced by the same photohadronic production chain. An interesting candidate source for this test is the flat-spectrum radio quasar PKS B1424-418, which recently called attention to a potential correlation between an IceCube PeV neutrino event and its burst phase. We simulate both the multi-waveband photon and the neutrino emission from this source using a self-consistent radiation model. We demonstrate that a simple hadronic model cannot adequately describe the spectral energy distribution for this source, but amore » lepto-hadronic model with a subdominant hadronic component can reproduce the multi-waveband photon spectrum observed during various activity phases of the blazar. As a conclusion, up to about 0.3 neutrino events may coincide with the burst, which implies that the leptonic contribution dominates in the relevant energy band. We also demonstrate that the time-wise correlation between the neutrino event and burst phase is weak.« less

  20. General Physical Properties of CGRaBS Blazars

    NASA Astrophysics Data System (ADS)

    Paliya, Vaidehi S.; Marcotulli, L.; Ajello, M.; Joshi, M.; Sahayanathan, S.; Rao, A. R.; Hartmann, D.

    2017-12-01

    We present the results of a multi-frequency, time-averaged analysis of blazars included in the Candidate Gamma-ray Blazar Survey catalog. Our sample consists of 324 γ-ray detected (γ-ray loud) and 191 γ-ray undetected (γ-ray quiet) blazars; we consider all the data up to 2016 April 1. We find that both the γ-ray loud and γ-ray quiet blazar populations occupy similar regions in the WISE color-color diagram, and γ-ray loud sources are brighter in the radio and X-ray bands. A simple one-zone synchrotron inverse-Compton emission model is applied to derive the physical properties of both populations. We find that the central black hole mass and accretion disk luminosity ({L}{disk}) computed from the modeling of the optical-UV emission with a Shakura-Sunyaev disk reasonably matches that estimated from the optical spectroscopic emission-line information. A significantly larger Doppler boosting in the γ-ray loud blazars is noted, and their jets are more radiatively efficient. On the other hand, the γ-ray quiet objects are more MeV-peaked and thus could be potential targets for next-generation MeV missions. Our results confirm earlier findings about the accretion-jet connection in blazars; however, many of the γ-ray quiet blazars tend to deviate from the recent claim that the jet power exceeds {L}{disk} in blazars. A broadband study, considering a larger set of γ-ray quiet objects and also including BL Lacs, will be needed to confirm/reject this hypothesis as well as to verify the evolution of the powerful high-redshift blazars into their low-power nearby counterparts.

  1. Fermi-LAT Detection of Gravitational Lens Delayed Gamma-Ray Flares from Blazar B0218+357

    NASA Technical Reports Server (NTRS)

    Cheung, C. C.; Larsson, S.; Scargle, J. D.; Amin, M. A.; Blandford, R. D.; Bulmash, D.; Chiang, J.; Ciprini, S.; Corbet, R. D. H.; Falco, E. E.; hide

    2014-01-01

    Using data from the Fermi Large Area Telescope (LAT), we report the first clear gamma-ray measurement of a delay between flares from the gravitationally lensed images of a blazar. The delay was detected in B0218+357, a known double-image lensed system, during a period of enhanced gamma-ray activity with peak fluxes consistently observed to reach greater than 20-50 times its previous average flux. An auto-correlation function analysis identified a delay in the gamma-ray data of 11.46 plus or minus 0.16 days (1 sigma) that is approximately 1 day greater than previous radio measurements. Considering that it is beyond the capabilities of the LAT to spatially resolve the two images, we nevertheless decomposed individual sequences of superposing gamma-ray flares/delayed emissions. In three such approximately 8-10 day-long sequences within an approximately 4-month span, considering confusion due to overlapping flaring emission and flux measurement uncertainties, we found flux ratios consistent with approximately 1, thus systematically smaller than those from radio observations. During the first, best-defined flare, the delayed emission was detailed with a Fermi pointing, and we observed flux doubling timescales of approximately 3-6 hours implying as well extremely compact gamma-ray emitting regions.

  2. THE BRIGHTEST GAMMA-RAY FLARING BLAZAR IN THE SKY: AGILE AND MULTI-WAVELENGTH OBSERVATIONS OF 3C 454.3 DURING 2010 NOVEMBER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vercellone, S.; Romano, P.; Striani, E.

    2011-08-01

    Since 2005, the blazar 3C 454.3 has shown remarkable flaring activity at all frequencies, and during the last four years it has exhibited more than one {gamma}-ray flare per year, becoming the most active {gamma}-ray blazar in the sky. We present for the first time the multi-wavelength AGILE, Swift, INTEGRAL, and GASP-WEBT data collected in order to explain the extraordinary {gamma}-ray flare of 3C 454.3 which occurred in 2010 November. On 2010 November 20 (MJD 55520), 3C 454.3 reached a peak flux (E >100 MeV) of F{sup p}{sub {gamma}} = (6.8 {+-} 1.0) x 10{sup -5} photons cm{sup -2} s{supmore » -1} on a timescale of about 12 hr, more than a factor of six higher than the flux of the brightest steady {gamma}-ray source, the Vela pulsar, and more than a factor of three brighter than its previous super-flare on 2009 December 2-3. The multi-wavelength data make possible a thorough study of the present event: the comparison with the previous outbursts indicates a close similarity to the one that occurred in 2009. By comparing the broadband emission before, during, and after the {gamma}-ray flare, we find that the radio, optical, and X-ray emission varies within a factor of 2-3, whereas the {gamma}-ray flux by a factor of 10. This remarkable behavior is modeled by an external Compton component driven by a substantial local enhancement of soft seed photons.« less

  3. X-Ray Flare Candidates in Short Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Margutti, R.; Chincarini, G.; Granot, J.; Guidorzi, C.; Berger, E.; Bernardini, M. G.; Geherls, N.; Soderberg, A. M.; Stamatikos, M.; Zaninoni, E.

    2012-01-01

    We present the first systematic study of X-ray flare candidates in short gamma-ray bursts (SGRBs) exploiting the large 6-year Swift database with the aim to constrain the physical nature of such fluctuations. We find that flare candidates appear in different types of SGRB host galaxy environments and show no clear correlation with the X-ray afterglow lifetime; flare candidates are detected both in SGRBs with a bright extended emission in the soft gamma-rays and in SGRBs which do not show such component. We furthermore show that SGRB X-ray flare candidates only partially share the set of observational properties of long GRB (LGRB) flares. In particular, the main parameter driving the duration evolution of X-ray variability episodes in both classes is found to be the elapsed time from the explosion, with very limited dependence on the different progenitors, environments, central engine life-times, prompt variability time-scales and energy budgets. On the contrary, SGRB flare candidates significantly differ from LGRB flares in terms of peak luminosity, isotropic energy, flare-to-prompt luminosity ratio and relative variability flux. However, these differences disappear when the central engine time-scales and energy budget are accounted for, suggesting that (i) flare candidates and prompt pulses in SGRBs likely have a common origin; (ii) similar dissipation and/or emission mechanisms are responsible for the prompt and flare emission in long and short GRBs, with SGRBs being less energetic albeit faster evolving versions of the long class. Finally, we show that in strict analogy to the SGRB prompt emission, flares candidates fall off the lag-luminosity relation defined by LGRBs, thus strengthening the SGRB flare-prompt pulse connection.

  4. Blazar Jet Physics in the Age of Fermi

    DTIC Science & Technology

    2010-11-23

    in colliding shells, and whether blazars are sources of ultra-high energy cosmic rays . Keywords. galaxies: jets, gamma rays : observations, gamma rays ...colliding shells ejected from the central supermassive black hole are made. The likelihood that blazars accelerate ultra-high energy cosmic rays is...colliding shells, and whether blazars are sources of ultra-high energy cosmic rays . 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

  5. Optical flare observed in the flaring gamma-ray blazar CGRaBS J0809+5341 (87GB 080551.6+535010)

    NASA Astrophysics Data System (ADS)

    Pursimo, Tapio; Galindo-Guil, F. J.; Serrano, Pere Blay; Ojha, Roopesh

    2017-11-01

    We report optical photometry of the blazar CGRaBS J0809+5341 (87GB 080551.6+535010), obtained with the 2.56m Nordic Optical Telescope in La Palma, to look for any enhanced optical activity associated with a recent flare in the daily averaged gamma-ray flux (ATel#10905).

  6. Spectral properties of bright Fermi-detected blazars in the gamma-ray band

    DOE PAGES

    Abdo, A. A.

    2010-01-28

    We investigated the gamma-ray energy spectra of bright blazars of the LAT Bright AGN Sample (LBAS) using Fermi-LAT data. Spectral properties (hardness, curvature, and variability) established using a data set accumulated over 6 months of operation are presented and discussed for different blazar classes and subclasses: flat spectrum radio quasars (FSRQs), low-synchrotron peaked BLLacs (LSP-BLLacs), intermediate-synchrotron peaked BLLacs (ISP-BLLacs), and high-synchrotron peaked BLLacs (HSP-BLLacs). Furthermore, the distribution of photon index (Γ, obtained from a power-law fit above 100 MeV) is found to correlate strongly with blazar subclass. The change in spectral index from that averaged over the 6 months observingmore » period is < 0.2-0.3 when the flux varies by about an order of magnitude, with a tendency toward harder spectra when the flux is brighter for FSRQs and LSP-BLLacs. A strong departure from a single power-law spectrum appears to be a common feature for FSRQs. Finally, we present this feature for some high-luminosity LSP-BLLacs, and a small number of ISP-BLLacs. It is absent in all LBAS HSP-BLLacs. For 3C 454.3 and AO 0235+164, the two brightest FSRQ source and LSP-BLLac source, respectively, a broken power law (BPL) gives the most acceptable of power law, BPL, and curved forms. The consequences of these findings are discussed.« less

  7. Broad-Band Continuum and Line Emission of the gamma-Ray Blazar PKS 0537-441

    NASA Technical Reports Server (NTRS)

    Pian, E.; Falomo, R.; Hartman, R. C.; Maraschi, L.; Tavecchio, F.; Tornikoski, M.; Treves, A.; Urry, C. M.; Ballo, L.; Mukherjee, R.; hide

    2002-01-01

    PKS 0537-441, a bright gamma ray emitting blazar was observed at radio, optical, UV and X-ray frequencies during various EGRET paintings, often quasi-simultaneously. In 1995 the object was found in an intense emission state at all wavelengths. BeppoSAX observations made in 1998, non-simultaneously with exposures at other frequencies, allow us to characterize precisely the spectral shape of the high energy blazer component, which we attribute to inverse Compton scatter in The optical-to-gamma-ray spectral energy distributions at the different epochs show that the gamma-ray luminosity dominates the barometric output. This, together with the presence of optical and UV line emission, suggests that, besides the synchrotron self-Compton mechanism, the Compton upscattering of photons external to the jet (e.g., in the broad line region) may have a significant role for high energy radiation. The multiwavelength variability can be reproduced by changes of the plasma bulk Lorentz factor. The spectrum secured by ICE in 1995 appears to be partially absorbed shortward of approximately 1700 Angstroms. However, this signature is not detected in the HST spectrum taker during a lower state of the source. The presence of intervening absorbers is not supported by optical imaging and spectroscopy of the field.

  8. VLBI Monitoring of the Bright Gamma-Ray Blazar PKS 0537-441

    DTIC Science & Technology

    2010-06-01

    active state by Fermi. It is one of the brightest ,),-ray blazars detected in the southern sky so far. The TANAMI (Tracking Active Galactic Nuclei...Active Galactic Nuclei with Austral Milliarcsecond Interferometry (TAN AMI) program (Ojha et a1. (2010» has been monitoring south- ern sky blazars such...Telescope. Studying Active Galactic Nuclei (AGN) at different wavelengths is crucial in order to understand AGN-jets and differentiate between

  9. Gamma-Ray Light Curves And Variability Of Bright Fermi -Detected Blazars

    DOE PAGES

    Abdo, A. A.

    2010-09-22

    This paper presents light curves as well as the first systematic characterization of variability of the 106 objects in the high-confidence Fermi Large Area Telescope Bright AGN Sample (LBAS). Weekly light curves of this sample, obtained during the first 11 months of the Fermi survey (2008 August 4-2009 July 4), are tested for variability and their properties are quantified through autocorrelation function and structure function analysis. For the brightest sources, 3 or 4 day binned light curves are extracted in order to determine power density spectra (PDSs) and to fit the temporal structure of major flares. More than 50% ofmore » the sources are found to be variable with high significance, where high states do not exceed 1/4 of the total observation range. Variation amplitudes are larger for flat spectrum radio quasars and low/intermediate synchrotron frequency peaked BL Lac objects. Autocorrelation timescales derived from weekly light curves vary from four to a dozen of weeks. Variable sources of the sample have weekly and 3-4 day bin light curves that can be described by 1/f α PDS, and show two kinds of gamma-ray variability: (1) rather constant baseline with sporadic flaring activity characterized by flatter PDS slopes resembling flickering and red noise with occasional intermittence and (2)—measured for a few blazars showing strong activity—complex and structured temporal profiles characterized by long-term memory and steeper PDS slopes, reflecting a random walk underlying mechanism. The average slope of the PDS of the brightest 22 FSRQs and of the 6 brightest BL Lacs is 1.5 and 1.7, respectively. The study of temporal profiles of well-resolved flares observed in the 10 brightest LBAS sources shows that they generally have symmetric profiles and that their total duration vary between 10 and 100 days. Results presented here can assist in source class recognition for unidentified sources and can serve as reference for more detailed analysis of the

  10. VERITAS Observations of Six Bright, Hard-Spectrum Fermi-LAT Blazars

    DOE PAGES

    Aliu, E.; Archambault, S.; Arlen, T.; ...

    2012-10-25

    In this paper, we report on VERITAS very high energy (VHE; E ≥ 100 GeV) observations of six blazars selected from the Fermi Large Area Telescope First Source Catalog (1FGL). The gamma-ray emission from 1FGL sources was extrapolated up to the VHE band, taking gamma-ray absorption by the extragalactic background light into account. This allowed the selection of six bright, hard-spectrum blazars that were good candidate TeV emitters. Spectroscopic redshift measurements were attempted with the Keck Telescope for the targets without Sloan Digital Sky Survey spectroscopic data. No VHE emission is detected during the observations of the six sources describedmore » here. Corresponding TeV upper limits are presented, along with contemporaneous Fermi observations and non-concurrent Swift UVOT and X-Ray Telescope data. The blazar broadband spectral energy distributions (SEDs) are assembled and modeled with a single-zone synchrotron self-Compton model. Finally, the SED built for each of the six blazars shows a synchrotron peak bordering between the intermediate- and high-spectrum-peak classifications, with four of the six resulting in particle-dominated emission regions.« less

  11. On the origin of X-ray spectra in luminous blazars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sikora, Marek; Janiak, Mateusz; Nalewajko, Krzysztof

    2013-11-26

    Gamma-ray luminosities of some quasar-associated blazars imply jet powers reaching values comparable to the accretion power even if assuming very strong Doppler boosting and very high efficiency of gamma-ray production. With much lower radiative efficiencies of protons than of electrons, and the recent reports of very strong coupling of electrons with shock-heated protons indicated by particle-in-cell simulations, the leptonic models seem to be strongly favored over the hadronic ones. However, the electron-proton coupling combined with the external-radiation-Compton (ERC) models of gamma-ray production in leptonic models predict extremely hard X-ray spectra, with energy indices α x ~ 0. This is inconsistentmore » with the observed 2-10 keV slopes of blazars, which cluster around α x ~ 0.6. This problem can be resolved by assuming that electrons can be efficiently cooled down radiatively to non-relativistic energies, or that blazar spectra are entirely dominated by the synchrotron self-Compton (SSC) component up to at least 10 keV. Here, we show that the required cooling can be sufficiently efficient only at distances r < 0.03 pc. SSC spectra, on the other hand, can be produced roughly co-spatially with the observed synchrotron and ERC components, which are most likely located roughly at a parsec scale. We show that the dominant SSC component can also be produced much further than the dominant synchrotron and ERC components, at distances of gsim 10 pc. Hence, depending on the spatial distribution of the energy dissipation along the jet, one may expect to see γ-ray/optical events with either correlated or uncorrelated X-rays. In all cases the number of e +e – pairs per proton is predicted to be very low. The direct verification of the proposed SSC scenario, and particularly the question of the co-spatiality of the SSC component with other spectral components, requires sensitive observations in the hard X-ray band. Lastly, this is now possible with the

  12. Long-Term Multiwavelength Studies of High-Redshift Blazar 0836+710

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Akyuz, A.; Donato, D.; Perkins, J. S.; Larsson, S.; Sokolovsky, K.; Fuhrmann, L.; Kurtanidze, O.

    2012-01-01

    Following gamma-ray flaring activity of high-redshift (z=2.218) blazar 0836+710 in 2011, we have assembled a long-term multiwavelength study of this object. Although this source is monitored regularly by radio telescopes and the Fermi Large Area Telescope, its coverage at other wavelengths is limited. The optical flux appears generally correlated with the gamma-ray flux, while little variability has been seen at X-ray energies. The gamma-ray/radio correlation is complex compared to some other blazars. As for many blazars, the largest variability is seen at gamma-ray wavelengths.

  13. VERITAS Observations of Six Bright, Hard-Spectrum Fermi-LAT Blazars

    NASA Technical Reports Server (NTRS)

    E. Aliu; Archambault, S.; Arlen, T.; Aune, T.; Beilicke, M.; Benbow, W.; Boettcher, M.; Bouvier, A.; Buckley, J. H.; Bugaev, V.; hide

    2012-01-01

    We report on VERITAS very-high-energy (VHE; E >= 100 GeV) observations of six blazars selected from the Fermi Large Area Telescope First Source Catalog (1FGL). The gamma-ray emission from 1FGL sources was extrapolated up to the VHE band, taking gamma-ray absorption by the extragalactic background light into account. This allowed the selection of six bright, hard-spectrum blazars that were good candidate TeV emitters. Spectroscopic redshift measurements were attempted with the Keck Telescope for the targets without Sloan Digital Sky Survey (SDSS) spectroscopic data. No VHE emission is detected during the observations of the six sources described here. Corresponding TeV upper limits are presented, along with contemporaneous Fermi observations and non-concurrent Swift UVOT and XRT data. The blazar broadband spectral energy distributions (SEDs) are assembled and modeled with a single-zone synchrotron self-Compton model. The SED built for each of the six blazars show a synchrotron peak bordering between the intermediate- and high-spectrum-peak classifications, with four of the six resulting in particle-dominated emission region.

  14. VizieR Online Data Catalog: Gamma-ray bright blazars spectrophotometry (Williamson+, 2014)

    NASA Astrophysics Data System (ADS)

    Williamson, K. E.; Jorstad, S. G.; Marscher, A. P.; Larionov, V. M.; Smith, P. S.; Agudo, I.; Arkharov, A. A.; Blinov, D. A.; Casadio, C.; Efimova, N. V.; Gomez, J. L.; Hagen-Thorn, V. A.; Joshi, M.; Konstantinova, T. S.; Kopatskaya, E. N.; Larionova, E. G.; Larionova, L. V.; Malmrose, M. P.; McHardy, I. M.; Molina, S. N.; Morozova, D. A.; Schmidt, G. D.; Taylor, B. W.; Troitsky, I. S.

    2017-03-01

    Since 2007, we have been collecting multi-waveband fluxes, polarization measurements, and radio images of blazars to provide the data for understanding the physics of the jets (see, e.g., Marscher 2012, arXiv:1201.5402). This study includes 28 of the original 30 objects selected for the monitoring campaign, confirmed as γ-ray sources by EGRET (Energetic γ-Ray Experiment Telescope) on the Compton Gamma Ray Observatory, have an R-band brightness exceeding 18 mag (bright enough for optical polarization measurements at a 1-2 m class optical telescope without needing excessive amounts of telescope time), exceed 0.5 Jy at 43 GHz, and have a declination accessible to the collaboration's observatories (> - 30°). Three additional BL Lacs (1055+018, 1308+326, and 1749+096) and two FSRQs (3C345 and 3C446) included in this analysis were among those added when they were detected as γ-ray sources by the Fermi LAT (Abdo et al. 2009, J/ApJ/700/597). (4 data files).

  15. Observations of blazars with ASCA

    NASA Technical Reports Server (NTRS)

    Makino, F.; Edelson, R.; Fujimoto, R.; Kii, T.; Idesawa, E.; Makishima, K.; Takahashi, T.; Sasaki, K.; Kamae, T.; Kubo, H.; hide

    1996-01-01

    The Advanced Satellite for Cosmology and Astrophysics (ASCA) observations of 3C 279, Mkn 421, PKS 2155-304, BL Lac 0716+714 and OJ 287 blazars are presented. Blazars are a class of active galactic nuclei characterized by high variability, high polarization, flat radio spectrum and featureless spectrum. The X-ray spectra and flux variations of blazars are discussed. The inverse correlation between X-ray flux and index, soft lag, the convex curvature of the spectrum, flat gamma-ray and/or X-ray spectra, fast variability and featureless spectrum are common characteristics of blazars.

  16. Disentangling Hadronic and Leptonic Cascade Scenarios from the Very-High-Energy Gamma-Ray Emission of Distant Hard-Spectrum Blazars

    DOE PAGES

    Takami, Hajime; Murase, Kohta; Dermer, Charles D.

    2013-06-26

    We show that recent data from the Fermi Large Area Telescope have revealed about a dozen distant hard-spectrum blazars that have very-high-energy (VHE; ≳ 100 eV) photons associated with them, but most of them have not yet been detected by imaging atmospheric Cherenkov Telescopes. Most of these high-energy gamma-ray spectra, like those of other extreme high-frequency peaked BL Lac objects, can be well explained either by gamma rays emitted at the source or by cascades induced by ultra-high-energy cosmic rays, as we show specifically for KUV 00311–1938. We consider the prospects for detection of the VHE sources by the plannedmore » Cherenkov Telescope Array (CTA) and show how it can distinguish the two scenarios by measuring the integrated flux above ~500 GeV (depending on source redshift) for several luminous sources with z ≲ 1 in the sample. Strong evidence for the origin of ultra-high-energy cosmic rays could be obtained from VHE observations with CTA. Depending on redshift, if the often quoted redshift of KUV 00311–1938 (z = 0.61) is believed, then preliminary H.E.S.S. data favor cascades induced by ultra-high-energy cosmic rays. Lastly, accurate redshift measurements of hard-spectrum blazars are essential for this study.« less

  17. A low level of extragalactic background light as revealed by gamma-rays from blazars.

    PubMed

    Aharonian, F; Akhperjanian, A G; Bazer-Bachi, A R; Beilicke, M; Benbow, W; Berge, D; Bernlöhr, K; Boisson, C; Bolz, O; Borrel, V; Braun, I; Breitling, F; Brown, A M; Chadwick, P M; Chounet, L-M; Cornils, R; Costamante, L; Degrange, B; Dickinson, H J; Djannati-Ataï, A; Drury, L O'C; Dubus, G; Emmanoulopoulos, D; Espigat, P; Feinstein, F; Fontaine, G; Fuchs, Y; Funk, S; Gallant, Y A; Giebels, B; Gillessen, S; Glicenstein, J F; Goret, P; Hadjichristidis, C; Hauser, D; Hauser, M; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hofmann, W; Holleran, M; Horns, D; Jacholkowska, A; de Jager, O C; Khélifi, B; Klages, S; Komin, Nu; Konopelko, A; Latham, I J; Le Gallou, R; Lemière, A; Lemoine-Goumard, M; Leroy, N; Lohse, T; Martin, J M; Martineau-Huynh, O; Marcowith, A; Masterson, C; McComb, T J L; de Naurois, M; Nolan, S J; Noutsos, A; Orford, K J; Osborne, J L; Ouchrif, M; Panter, M; Pelletier, G; Pita, S; Pühlhofer, G; Punch, M; Raubenheimer, B C; Raue, M; Raux, J; Rayner, S M; Reimer, A; Reimer, O; Ripken, J; Rob, L; Rolland, L; Rowell, G; Sahakian, V; Saugé, L; Schlenker, S; Schlickeiser, R; Schuster, C; Schwanke, U; Siewert, M; Sol, H; Spangler, D; Steenkamp, R; Stegmann, C; Tavernet, J-P; Terrier, R; Théoret, C G; Tluczykont, M; van Eldik, C; Vasileiadis, G; Venter, C; Vincent, P; Völk, H J; Wagner, S J

    2006-04-20

    The diffuse extragalactic background light consists of the sum of the starlight emitted by galaxies through the history of the Universe, and it could also have an important contribution from the 'first stars', which may have formed before galaxy formation began. Direct measurements are difficult and not yet conclusive, owing to the large uncertainties caused by the bright foreground emission associated with zodiacal light. An alternative approach is to study the absorption features imprinted on the gamma-ray spectra of distant extragalactic objects by interactions of those photons with the background light photons. Here we report the discovery of gamma-ray emission from the blazars H 2356 - 309 and 1ES 1101 - 232, at redshifts z = 0.165 and z = 0.186, respectively. Their unexpectedly hard spectra provide an upper limit on the background light at optical/near-infrared wavelengths that appears to be very close to the lower limit given by the integrated light of resolved galaxies. The background flux at these wavelengths accordingly seems to be strongly dominated by the direct starlight from galaxies, thus excluding a large contribution from other sources-in particular from the first stars formed. This result also indicates that intergalactic space is more transparent to gamma-rays than previously thought.

  18. ATCA follow-up of blazar candidates in the H-ATLAS fields

    NASA Astrophysics Data System (ADS)

    Massardi, Marcella; Ricci, Roberto; de Zotti, Gianfranco; White, Glenn; Michalowski, Michal; Ivison, Rob; Baes, Maarten; Lapi, Andrea; Temi, Pasquale; Lopez-Caniego, Marcos; Herranz, Diego; Seymour, Nick; Gonzalez-Nuevo, Joaquin; Bonavera, Laura; Negrello, Mattia

    2012-04-01

    The Herschel-ATLAS (H-ATLAS) survey that is covering 550 sq.deg. in 5 bands from 100 to 500 micron, allows for the first time a flux limited selection of blazars at sub-mm wavelengths. This wavelength range is particularly interesting because it is where the most luminous blazars are expected to show the synchrotron peak. The peak frequency and luminosity carry key information on the blazar physics. However, blazars constitute a tiny fraction of H-ATLAS sources and therefore picking them up isn't easy. A criterion to efficiently select candidate blazars exploiting the roughly flat blazar continuum spectrum from radio to sub-mm wavelengths has been devised by Lopez-Caniego et al. (in prep.). Multifrequency radio follow-up is however a necessary step to assess the nature of candidates. We propose to complete the validation of candidates in the H-ATLAS equatorial fields (partly done during few hours of ATCA DDT allocated time and with Medicina radiotelescope observations) and to extend the investigation to the Southern (SGP) fields reconstructing the blazars SED between 1.1 and 40 GHz. This will provide the first statistically significant blazar sample selected at sub-mm wavelengths.

  19. Probing stochastic inter-galactic magnetic fields using blazar-induced gamma ray halo morphology

    NASA Astrophysics Data System (ADS)

    Duplessis, Francis; Vachaspati, Tanmay

    2017-05-01

    Inter-galactic magnetic fields can imprint their structure on the morphology of blazar-induced gamma ray halos. We show that the halo morphology arises through the interplay of the source's jet and a two-dimensional surface dictated by the magnetic field. Through extensive numerical simulations, we generate mock halos created by stochastic magnetic fields with and without helicity, and study the dependence of the halo features on the properties of the magnetic field. We propose a sharper version of the Q-statistics and demonstrate its sensitivity to the magnetic field strength, the coherence scale, and the handedness of the helicity. We also identify and explain a new feature of the Q-statistics that can further enhance its power.

  20. Gamma-Ray "Raindrops" from Flaring Blazar

    NASA Image and Video Library

    2017-12-08

    This visualization shows gamma rays detected during 3C 279's big flare by the LAT instrument on NASA's Fermi satellite. Gamma rays are represented as expanding circles reminiscent of raindrops on water. The flare is an abrupt shower of "rain" that trails off toward the end of the movie. Both the maximum size of the circle and its color represent the energy of the gamma ray, with white lowest and magenta highest. In a second version of the visualization, a background map shows how the LAT detects 3C 279 and other sources by accumulating high-energy photons over time (brighter squares reflect higher numbers of gamma rays). The movie starts on June 14 and ends June 17. The area shown is a region of the sky five degrees on a side and centered on the position of 3C 279. Read more: go.nasa.gov/1TqximF Credits: NASA/DOE/Fermi LAT Collaboration

  1. A Novel Study Connecting Ultra-High Energy Cosmic Rays, Neutrinos, and Gamma-Rays

    NASA Astrophysics Data System (ADS)

    Coenders, Stefan; Resconi, Elisa; Padovani, Paolo; Giommi, Paolo; Caccianiga, Lorenzo

    We present a novel study connecting ultra-high energy cosmic rays, neutrinos, and gamma-rays with the objective to identify common counterparts of the three astrophysical messengers. In the test presented here, we first identify potential hadronic sources by filtering gamma-ray emitters that are in spatial coincidence with IceCube neutrinos. Subsequently, these objects are correlated against ultra-high energy cosmic rays detected by the Pierre Auger Observatory and the Telescope Array, scanning in gamma-ray flux and angular separation between sources and cosmic rays. A maximal excess of 80 cosmic rays (41.9 expected) is observed for the second catalog of hard Fermi-LAT objects of blazars of the high synchrotron peak type. This corresponds to a deviation from the null-hypothesis of 2.94σ . No excess is observed for objects not in spatial connection with neutrinos. The gamma-ray sources that make up the excess are blazars of the high synchrotron peak type.

  2. Research and characterisation of blazar candidates among the Fermi/LAT 3FGL catalogue using multivariate classifications

    NASA Astrophysics Data System (ADS)

    Lefaucheur, Julien; Pita, Santiago

    2017-06-01

    Context. In the recently published 3FGL catalogue, the Fermi/LAT collaboration reports the detection of γ-ray emission from 3034 sources obtained after four years of observations. The nature of 1010 of those sources is unknown, whereas 2023 have well-identified counterparts in other wavelengths. Most of the associated sources are labelled as blazars (1717/2023), but the BL Lac or FSRQ nature of 573 of these blazars is still undetermined. Aims: The aim of this study was two-fold. First, to significantly increase the number of blazar candidates from a search among the large number of Fermi/LAT 3FGL unassociated sources (case A). Second, to determine the BL Lac or FSRQ nature of the blazar candidates, including those determined as such in this work and the blazar candidates of uncertain type (BCU) that are already present in the 3FGL catalogue (case B). Methods: For this purpose, multivariate classifiers - boosted decision trees and multilayer perceptron neural networks - were trained using samples of labelled sources with no caution flag from the 3FGL catalogue and carefully chosen discriminant parameters. The decisions of the classifiers were combined in order to obtain a high level of source identification along with well controlled numbers of expected false associations. Specifically for case A, dedicated classifications were generated for high (| b | >10◦) and low (| b | ≤10◦) galactic latitude sources; in addition, the application of classifiers to samples of sources with caution flag was considered separately, and specific performance metrics were estimated. Results: We obtained a sample of 595 blazar candidates (high and low galactic latitude) among the unassociated sources of the 3FGL catalogue. We also obtained a sample of 509 BL Lacs and 295 FSRQs from the blazar candidates cited above and the BCUs of the 3FGL catalogue. The number of expected false associations is given for different samples of candidates. It is, in particular, notably low ( 9

  3. DISCOVERY OF VERY HIGH ENERGY gamma-RAYS FROM THE BLAZAR S5 0716+714

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderhub, H.; Biland, A.; Antonelli, L. A.

    The MAGIC Collaboration reports the detection of the blazar S5 0716+714 (z = 0.31 +- 0.08) in very high energy gamma rays. The observations were performed in 2007 November and in 2008 April, and were triggered by the Kungliga Vetenskapliga Akademi telescope due to the high optical state of the object. An overall significance of the signal accounts to S = 5.8sigma for 13.1 hr of data. Most of the signal (S = 6.9sigma) comes from the 2008 April data sample during a higher optical state of the object suggesting a possible correlation between the Very High Energy gamma-ray andmore » optical emissions. The differential energy spectrum of the 2008 data sample follows a power law with a photon index of GAMMA = 3.45 +- 0.54{sub stat} +- 0.2{sub syst}, and the integral flux above 400 GeV is at the level of (7.5 +- 2.2{sub stat} +- 2.3{sub syst}) x 10{sup -12} cm{sup -2} s{sup -1}, corresponding to a 9% Crab Nebula flux. Modeling of the broadband spectral energy distribution indicates that a structured jet model appears to be more promising in describing the available data than a simple one-zone synchrotron self-Compton model.« less

  4. Gamma-Ray Telescopes: 400 Years of Astronomical Telescopes

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Cannizzo, John K.

    2010-01-01

    The last half-century has seen dramatic developments in gamma-ray telescopes, from their initial conception and development through to their blossoming into full maturity as a potent research tool in astronomy. Gamma-ray telescopes are leading research in diverse areas such as gamma-ray bursts, blazars, Galactic transients, and the Galactic distribution of Al-26.

  5. Probing stochastic inter-galactic magnetic fields using blazar-induced gamma ray halo morphology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duplessis, Francis; Vachaspati, Tanmay, E-mail: fdupless@asu.edu, E-mail: tvachasp@asu.edu

    Inter-galactic magnetic fields can imprint their structure on the morphology of blazar-induced gamma ray halos. We show that the halo morphology arises through the interplay of the source's jet and a two-dimensional surface dictated by the magnetic field. Through extensive numerical simulations, we generate mock halos created by stochastic magnetic fields with and without helicity, and study the dependence of the halo features on the properties of the magnetic field. We propose a sharper version of the Q-statistics and demonstrate its sensitivity to the magnetic field strength, the coherence scale, and the handedness of the helicity. We also identify andmore » explain a new feature of the Q-statistics that can further enhance its power.« less

  6. Polarization and photometric observations of the gamma-ray blazar PG 1553+113

    NASA Astrophysics Data System (ADS)

    Andruchow, I.; Combi, J. A.; Muñoz-Arjonilla, A. J.; Romero, G. E.; Cellone, S. A.; Martí, J.

    2011-07-01

    We present the results of an observational photo-polarimetry campaign of the blazar PG 1553+113 at optical wavelengths. The blazar was recently detected at very high energies (>100 GeV) by the HESS and MAGIC γ-ray Cherenkov telescopes. Our high-temporal resolution data show significant variations in the linear polarization percentage and position angle at inter-night time-scales, while at shorter (intra-night) time-scales both parameters varied less significantly, if at all. Changes in the polarization angle seem to be common in γ-ray emitting blazars. Simultaneous differential photometry (through the B and R bands) shows no significant variability in the total optical flux. We provide B and R magnitudes, along with a finding chart, for a set of field stars suitable for differential photometry. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).

  7. Fermi Gamma-Ray Space Telescope: Science Highlights for the First 8 Months

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander

    2010-01-01

    The Fermi Gamma-ray Space Telescope was launched on June 11, 2008 and since August 2008 has successfully been conducting routine science observations of high energy phenomena in the gamma-ray sky. A number of exciting discoveries have been made during its first year of operation, including blazar flares, high-energy gamma-ray bursts, and numerous new,gamma-ray sources of different types, among them pulsars and Active Galactic Nuclei (AGN). fermi-LAT also performed accurate mea.<;urement of the diffuse gamma-radiation which clarifies the Ge V excess reported by EGRET almost 10 years ago, high precision measurement of the high energy electron spectrum, and other observations. An overview of the observatory status and recent results as of April 30, 2009, are presented. Key words: gamma-ray astronomy, cosmic rays, gamma-ray burst, pulsar, blazar. diffuse gamma-radiation

  8. The Hadronic Origin of the Hard Gamma-Ray Spectrum from Blazar 1ES 1101-232

    NASA Astrophysics Data System (ADS)

    Cao, Gang; Wang, Jiancheng

    2014-03-01

    The very hard γ-ray spectrum from distant blazars challenges the traditional synchrotron self-Compton (SSC) model, which may indicate that there is a contribution from an additional high-energy component beyond the SSC emission. In this paper, we study the possible origin of the hard γ-ray spectrum from distant blazars. We develop a model to explain the hard γ-ray spectrum from blazar 1ES 1101-232. In the model, the optical and X-ray radiation would come from the synchrotron radiation of primary electrons and secondary pairs and the GeV emission would be produced by the SSC process, however, the hard γ-ray spectrum would originate from the decay of neutral pion produced through proton-photon interactions with the synchrotron radiation photons within the jet. Our model can explain the observed spectral energy distribution of 1ES 1101-232 well, especially the very hard γ-ray spectrum. However, our model requires a very large proton power to efficiently produce the γ-ray through proton-photon interactions.

  9. Tev Blazars: Status of Observations

    NASA Astrophysics Data System (ADS)

    Krennrich, F.; Biller, S. D.; Bond, I. H.; Boyle, P. J.; Bradbury, S. M.; Breslin, A. C.; Buckley, J. H.; Burdett, A. M.; Bussons Gordo, J.; Carter-Lewis, D. A.; Catanese, M.; Cawley, M. F.; Fegan, D. J.; Finley, J. P.; Gaidos, J. A.; Hall, T.; Hillas, A. M.; Lamb, R. C.; Lessard, R. W.; Masterson, C.; McEnry, J. E.; Mohanty, G.; Moriarty, P.; Quinn, J.; Rodgers, A. J.; Rose, H. J.; Samuelson, F. W.; Sembroski, G. H.; Srinivasan, R.; Vassiliev, V. V.; Weekes, T. C.

    The close relation between ground-based TeV observations and satellite borne $\\gamma$-ray measurements has been important for the understanding of blazars. The observations which involve the TeV component in blazar studies are reviewed.

  10. A Luminous and Isolated Gamma-Ray Flare from the Blazar B2 1215+30

    DOE PAGES

    Abeysekara, A. U.; Archambault, S.; Archer, A.; ...

    2017-02-21

    We report that B2 1215+30 is a BL-Lac-type blazar that was first detected at TeV energies by the MAGIC atmospheric Cherenkov telescopes and subsequently confirmed by the Very Energetic Radiation Imaging Telescope Array System (VERITAS) observatory with data collected between 2009 and 2012. In 2014 February 08, VERITAS detected a large-amplitude flare from B2 1215+30 during routine monitoring observations of the blazar 1ES 1218+304, located in the same field of view. The TeV flux reached 2.4 times the Crab Nebula flux with a variability timescale ofmore » $$\\lt 3.6\\,\\mathrm{hr}$$. Multiwavelength observations with Fermi-LAT, Swift, and the Tuorla Observatory revealed a correlated high GeV flux state and no significant optical counterpart to the flare, with a spectral energy distribution where the gamma-ray luminosity exceeds the synchrotron luminosity. Lastly, when interpreted in the framework of a one-zone leptonic model, the observed emission implies a high degree of beaming, with Doppler factor $$\\delta \\gt 10$$, and an electron population with spectral index $$p\\lt 2.3$$.« less

  11. Extreme Blazars Studied with Fermi-LAT and Suzaku: 1ES 0347-121 and Blazar Candidate HESS J1943+213

    NASA Astrophysics Data System (ADS)

    Tanaka, Y. T.; Stawarz, Ł.; Finke, J.; Cheung, C. C.; Dermer, C. D.; Kataoka, J.; Bamba, A.; Dubus, G.; De Naurois, M.; Wagner, S. J.; Fukazawa, Y.; Thompson, D. J.

    2014-06-01

    We report on our study of high-energy properties of two peculiar TeV emitters: the "extreme blazar" 1ES 0347-121 and the "extreme blazar candidate" HESS J1943+213 located near the Galactic plane. Both objects are characterized by quiescent synchrotron emission with flat spectra extending up to the hard X-ray range, and both were reported to be missing GeV counterparts in the Fermi Large Area Telescope (LAT) two-year Source Catalog. We analyze a 4.5 yr accumulation of the Fermi-LAT data, resulting in the detection of 1ES 0347-121 in the GeV band, as well as in improved upper limits for HESS J1943+213. We also present the analysis results of newly acquired Suzaku data for HESS J1943+213. The X-ray spectrum is well represented by a single power law extending up to 25 keV with photon index 2.00 ± 0.02 and a moderate absorption in excess of the Galactic value, which is in agreement with previous X-ray observations. No short-term X-ray variability was found over the 80 ks duration of the Suzaku exposure. Under the blazar hypothesis, we modeled the spectral energy distributions of 1ES 0347-121 and HESS J1943+213, and we derived constraints on the intergalactic magnetic field strength and source energetics. We conclude that although the classification of HESS J1943+213 has not yet been determined, the blazar hypothesis remains the most plausible option since, in particular, the broadband spectra of the two analyzed sources along with the source model parameters closely resemble each other, and the newly available Wide-field Infrared Survey Explorer and UKIRT Infrared Deep Sky Survey data for HESS J1943+213 are consistent with the presence of an elliptical host at the distance of approximately ~600 Mpc.

  12. Blazar flaring patterns (B-FlaP) classifying blazar candidate of uncertain type in the third Fermi-LAT catalogue by artificial neural networks

    NASA Astrophysics Data System (ADS)

    Chiaro, G.; Salvetti, D.; La Mura, G.; Giroletti, M.; Thompson, D. J.; Bastieri, D.

    2016-11-01

    The Fermi-Large Area Telescope (LAT) is currently the most important facility for investigating the GeV γ-ray sky. With Fermi-LAT, more than three thousand γ-ray sources have been discovered so far. 1144 (˜40 per cent) of the sources are active galaxies of the blazar class, and 573 (˜20 per cent) are listed as blazar candidate of uncertain type (BCU), or sources without a conclusive classification. We use the empirical cumulative distribution functions and the artificial neural networks for a fast method of screening and classification for BCUs based on data collected at γ-ray energies only, when rigorous multiwavelength analysis is not available. Based on our method, we classify 342 BCUs as BL Lacs and 154 as flat-spectrum radio quasars, while 77 objects remain uncertain. Moreover, radio analysis and direct observations in ground-based optical observatories are used as counterparts to the statistical classifications to validate the method. This approach is of interest because of the increasing number of unclassified sources in Fermi catalogues and because blazars and in particular their subclass high synchrotron peak objects are the main targets of atmospheric Cherenkov telescopes.

  13. Gamma rays from blazars

    NASA Astrophysics Data System (ADS)

    Tavecchio, Fabrizio

    2017-01-01

    Blazars are high-energy engines providing us natural laboratories to study particle acceleration, relativistic plasma processes, magnetic field dynamics, black hole physics. Key informations are provided by observations at high-energy (in particular by Fermi/LAT) and very-high energy (by Cherenkov telescopes). I give a short account of the current status of the field, with particular emphasis on the theoretical challenges connected to the observed ultra-fast variability events and to the emission of flat spectrum radio quasars in the very high energy band.

  14. Extreme Blazars Studied With Fermi -Lat And Suzaku : 1es 0347–121 And Blazar Candidate Hess J1943+213

    DOE PAGES

    Tanaka, Y. T.; Stawarz, Ł.; Finke, J.; ...

    2014-05-14

    We report on our study of high-energy properties of two peculiar TeV emitters: the “extreme blazar" 1ES 0347-121 and the “extreme blazar candidate" HESS J1943+213 located near the Galactic Plane. Both objects are characterized by quiescent synchrotron emission with flat spectra extending up to the hard X-ray range, and both were reported to be missing GeV counterparts in the Fermi-LAT 2–year Source Catalog. We analyze a 4.5 year accumulation of the Fermi-LAT data, resulting in the detection of 1ES 0347-121 in the GeV band, as well as in improved upper limits for HESS J1943+213. We also present the analysis resultsmore » of newly acquired Suzaku data for HESS J1943+213. The X-ray spectrum is well represented by a single power law extending up to 25 keV with photon index 2.00±0.02 and a moderate absorption in excess of the Galactic value, in agreementwith previous X-ray observations. No short-term X-ray variability was found over the 80 ks duration of the Suzaku exposure. Under the blazar hypothesis, we modeled the spectral energy distributions of 1ES 0347-121 and HESS J1943+213, and derived constraints on the intergalactic magnetic field strength and source energetics. We conclude that although the classification of HESS J1943+213 has not yet been determined, the blazar hypothesis remains the most plausible option, since in particular the broad-band spectra of the two analyzed sources along with the source model parameters closely resemble each other, and the newly available WISE and UKIDSS data for HESS J1943+213 are consistent with the presence of an elliptical host at the distance of approximatel ~ 600Mpc.« less

  15. Modeling the emission processes in blazars

    NASA Astrophysics Data System (ADS)

    Böttcher, Markus

    2007-06-01

    Blazars are the most violent steady/recurrent sources of high-energy gamma-ray emission in the known Universe. They are prominent emitters of electromagnetic radiation throughout the entire electromagnetic spectrum. The observable radiation most likely originates in a relativistic jet oriented at a small angle with respect to the line of sight. This review starts out with a general overview of the phenomenology of blazars, including results from a recent multiwavelength observing campaign on 3C279. Subsequently, issues of modeling broadband spectra will be discussed. Spectral information alone is not sufficient to distinguish between competing models and to constrain essential parameters, in particular related to the primary particle acceleration and radiation mechanisms in the jet. Short-term spectral variability information may help to break such model degeneracies, which will require snap-shot spectral information on intraday time scales, which may soon be achievable for many blazars even in the gamma-ray regime with the upcoming GLAST mission and current advances in Atmospheric Cherenkov Telescope technology. In addition to pure leptonic and hadronic models of gamma-ray emission from blazars, leptonic/hadronic hybrid models are reviewed, and the recently developed hadronic synchrotron mirror model for TeV γ-ray flares which are not accompanied by simultaneous X-ray flares (“orphan TeV flares”) is revisited.

  16. Studying the High Energy Gamma Ray Sky with Gamma Ray Large Area Space Telescope (GLAST)

    NASA Technical Reports Server (NTRS)

    Kamae, T.; Ohsugi, T.; Thompson, D. J.; Watanabe, K.

    1998-01-01

    Building on the success of the Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory, the Gamma Ray Large Area Space Telescope (GLAST) will make a major step in the study of such subjects as blazars, gamma Ray bursts, the search for dark matter, supernova remnants, pulsars, diffuse radiation, and unidentified high energy sources. The instrument will be built on new and mature detector technologies such as silicon strip detectors, low-power low-noise LSI, and a multilevel data acquisition system. GLAST is in the research and development phase, and one full tower (of 25 total) is now being built in collaborating institutes. The prototype tower will be tested thoroughly at Stanford Linear Accelerator Center (SLAC) in the fall of 1999.

  17. The Extragalactic Background Light and the Gamma-ray Opacity of the Universe

    NASA Technical Reports Server (NTRS)

    Dwek, Eli; Krennrich, Frank

    2012-01-01

    The extragalactic background light (EBL) is one of the fundamental observational quantities in cosmology. All energy releases from resolved and unresolved extragalactic sources, and the light from any truly diffuse background, excluding the cosmic microwave background (CMB), contribute to its intensity and spectral energy distribution. It therefore plays a crucial role in cosmological tests for the formation and evolution of stellar objects and galaxies, and for setting limits on exotic energy releases in the universe. The EBL also plays an important role in the propagation of very high energy gamma-rays which are attenuated en route to Earth by pair producing gamma-gamma interactions with the EBL and CMB. The EBL affects the spectrum of the sources, predominantly blazars, in the approx 10 GeV to 10 TeV energy regime. Knowledge of the EBL intensity and spectrum will allow the determination of the intrinsic blazar spectrum in a crucial energy regime that can be used to test particle acceleration mechanisms and VHE gamma-ray production models. Conversely, knowledge of the intrinsic gamma-ray spectrum and the detection of blazars at increasingly higher redshifts will set strong limits on the EBL and its evolution. This paper reviews the latest developments in the determination of the EBL and its impact on the current understanding of the origin and production mechanisms of gamma-rays in blazars, and on energy releases in the universe. The review concludes with a summary and future directions in Cherenkov Telescope Array techniques and in infrared ground-based and space observatories that will greatly improve our knowledge of the EBL and the origin and production of very high energy gamma-rays.

  18. RoboPol: first season rotations of optical polarization plane in blazars

    DOE PAGES

    Blinov, D.; Pavlidou, V.; Papadakis, I.; ...

    2015-08-26

    Here, we present first results on polarization swings in optical emission of blazars obtained by RoboPol, a monitoring programme of an unbiased sample of gamma-ray bright blazars specially designed for effective detection of such events. A possible connection of polarization swing events with periods of high activity in gamma-rays is investigated using the data set obtained during the first season of operation. It was found that the brightest gamma-ray flares tend to be located closer in time to rotation events, which may be an indication of two separate mechanisms responsible for the rotations. Blazars with detected rotations during non-rotating periodsmore » have significantly larger amplitude and faster variations of polarization angle than blazars without rotations. Our simulations show that the full set of observed rotations is not a likely outcome (probability ≤1.5 × 10 -2) of a random walk of the polarization vector simulated by a multicell model. Furthermore, it is highly unlikely (~5 × 10 -5) that none of our rotations is physically connected with an increase in gamma-ray activity.« less

  19. The Spectral Energy Distribution of Fermi Bright Blazars

    NASA Technical Reports Server (NTRS)

    Abdo, A. A.; Ackermann, M.; Agudo, I.; Ajello, M.; Aller, H. D.; Aller, M. F.; Angelakis, E.; Arkharov, A. A.; Axelsson, M.; Bach, U.; hide

    2010-01-01

    We have conducted a detailed investigation of the broadband spectral properties of the gamma-ray selected blazars of the Fermi LAT Bright AGN Sample (LBAS). By combining our accurately estimated Fermi gamma-ray spectra with Swift, radio, infra-red, optical, and other hard X-ray /gamma-ray data, collected within 3 months of the LBAS data taking period, we were able to assemble high-quality and quasi-simultaneous spectral energy distributions (SED) for 48 LBAS blazars. The SED of these gamma-ray sources is similar to that of blazars discovered at other wavelengths, clearly showing, in the usual log v-log v Fv representation, the typical broadband spectral signatures normally attributed to a combination of low-energy synchrotron radiation followed by inverse Compton emission of one or more components. We have used these SED to characterize the peak intensity of both the low- and the high-energy components. The results have been used to derive empirical relationships that estimate the position of the two peaks from the broadband colors (i.e., the radio to optical, alpha(sub ro) , and optical to X-ray, alpha(sub ox), spectral slopes) and from the gamma-ray spectral index. Our data show that the synchrotron peak frequency (v(sup S) (sub peak)) is positioned between 10(exp 12.5) and 10(exp 14) Hz in broad-lined flat spectrum radio quasars (FSRQs) and between 10(exp 13) and 10(exp 17) Hz in featureless BL Lacertae objects. We find that the gamma-ray spectral slope is strongly correlated with the synchrotron peak energy and with the X-ray spectral index, as expected at first order in synchrotron-inverse Compton scenarios. However, simple homogeneous, one-zone, synchrotron self-Compton (SSC) models cannot explain most of our SED, especially in the case of FSRQs and low energy peaked (LBL) BL Lacs. More complex models involving external Compton radiation or multiple SSC components are required to reproduce the overall SED and the observed spectral variability. While more than

  20. Fermi LAT detection of a GeV gamma-ray flare from blazar CGRaBS J0809+5341 (87GB 080551.6+535010)

    NASA Astrophysics Data System (ADS)

    Gasparrini, Dario

    2017-10-01

    The Large Area Telescope (LAT), one of two instruments on the Fermi Gamma-ray Space Telescope, has observed increasing gamma-ray emission from a source positionally consistent with the flat spectrum radio quasar CGRaBS J0809+5341 (also known as 87GB 080551.6+535010, BZQ J0809+5341 and 3FGL J0809.5+5342) with radio coordinates (J2000) R.A.: 122.4238862 deg, Dec.: 53.6903033 deg (Petrov et al. 2011, AJ, 142, 89). This blazar has a redshift z = 2.133 (Healey et al. 2008, ApJS, 175, 97). Preliminary analysis indicates that on 2017 October 26, CGRaBS J0809+5341 was in a high state with a daily averaged gamma-ray flux (E > 100 MeV) of (0.23+/-0.15) X 10^-6 photons cm^-2 s^-1 (statistical uncertainty only), about 20 times greater than its four-year average flux reported in the third Fermi-LAT source catalog (3FGL, Acero et al. 2015, ApJS, 218, 23). Because Fermi operates in an all-sky scanning mode, regular gamma-ray monitoring of this source will continue.

  1. Blazar emission modeling: going beyond spherical cows

    NASA Astrophysics Data System (ADS)

    Giannios, Dimitrios

    Blazars are a subclass of Active Galactic Nuclei with non-thermal, variable emission extending over most of the electromagnetic spectrum, i.e., from radio up to gamma-rays. The blazar emission is believed to originate in relativistic jets emerging from supermassive black holes at galactic centers, when the jet points close to the line of sight. Because of their very high-energy emission and high luminosity, blazars have long been considered as prime candidates for the acceleration of ultra-high-energy cosmic rays (UHECRs). It comes as no surprise, therefore, that blazars have been the target of multiple observational campaigns. NASA satellite missions in synergy with ground-based facilities have led to huge observational progress in recent years. Yet, the theoretical understanding of the non-thermal processes responsible for the blazar emission lags far behind the observational progress. There is no reliable theory built from first principles for the energy dissipation and particle acceleration mechanisms at work in blazar jets. As a result, there exists no broadly-accepted framework for the particle distribution, geometry and magnetic field in the high-energy emitting regions in blazars. Over the past several years, Co-PI Giannios has argued that blazar emission can be understood as the result of magnetic energy dissipation via magnetic reconnection. In particular, the physical properties in the reconnection layer - where the emission is assumed to take place - can naturally reproduce the extreme energetics and timescales of the observed flaring episodes in blazars. Here, we propose to put the theory of magnetic reconnection in the context of blazar emission on a much more robust footing by capitalizing on new observational constraints and large progress in fully-kinetic particlein-cell (PIC) simulations led by Co-PI Sironi. Thanks to large-scale PIC simulations, we have recently demonstrated that reconnection can satisfy all the basic conditions for the blazar

  2. Astrophysical interpretation of the anisotropies in the unresolved gamma-ray background

    NASA Astrophysics Data System (ADS)

    Ando, Shin'ichiro; Fornasa, Mattia; Fornengo, Nicolao; Regis, Marco; Zechlin, Hannes-S.

    2017-06-01

    Recently, a new measurement of the auto- and cross-correlation angular power spectrum (APS) of the isotropic gamma-ray background was performed, based on 81 months of data of the Fermi Large-Area Telescope (LAT). Here, we fit, for the first time, the new APS data with a model describing the emission of unresolved blazars. These sources are expected to dominate the anisotropy signal. The model we employ in our analysis reproduces well the blazars resolved by Fermi LAT. When considering the APS obtained by masking the sources listed in the 3FGL catalog, we find that unresolved blazars underproduce the measured APS below ˜1 GeV . Contrary to past results, this suggests the presence of a new contribution to the low-energy APS, with a significance of, at least, 5 σ . The excess can be ascribed to a new class of faint gamma-ray emitters. If we consider the APS obtained by masking the sources in the 2FGL catalog, there is no underproduction of the APS below 1 GeV, but the new source class is still preferred over the blazars-only scenario (with a significance larger than 10 σ ). The properties of the new source class and the level of anisotropies induced in the isotropic gamma-ray background are the same, independent of the APS data used. In particular, the new gamma-ray emitters must have a soft energy spectrum, with a spectral index ranging, approximately, from 2.7 to 3.2. This complicates their interpretation in terms of known sources, since, normally, star-forming and radio galaxies are observed with a harder spectrum. The new source class identified here is also expected to contribute significantly to the intensity of the isotropic gamma-ray background.

  3. SBS 0846+513: a New Gamma-ray Emitting Narrow-line Seyfert 1 Galaxy

    NASA Technical Reports Server (NTRS)

    D'Ammando, F.; Orienti, M.; Finke, J.; Raiteri, C. M.; Angelakis, E.; Fuhrmann, L.; Giroletti, M.; Hovatta, T.; Max-Moerbeck, W.; Perkins, J. S.; hide

    2012-01-01

    We report Fermi-LAT observations of the radio-loud AGN SBS 0846+513 (z=0.5835), optically classified as a Narrow-Line Seyfert 1 galaxy, together with new and archival radio-to-X-ray data. The source was not active at ?-ray energies during the first two years of Fermi operation. A significant increase in activity was observed during 2010 October-2011 August. In particular a strong gamma-ray flare was observed in 2011 June reaching an isotropic ?-ray luminosity (0.1-300 GeV) of 1.0×10(sup 48) erg s(sup -1), comparable to that of the brightest flat spectrum radio quasars, and showing spectral evolution in gamma rays. An apparent superluminal velocity of (8.2+/-1.5)c in the jet was inferred from 2011-2012 VLBA images, suggesting the presence of a highly relativistic jet. Both the power released by this object during the flaring activity and the apparent superluminal velocity are strong indications of the presence of a relativistic jet as powerful as those of blazars. In addition, variability and spectral properties in radio and gamma-ray bands indicate blazar-like behaviour, suggesting that, except for some distinct optical characteristics, SBS 0846+513 could be considered as a young blazar at the low end of the blazar's black hole mass distribution.

  4. UNVEILING THE NATURE OF THE UNIDENTIFIED GAMMA-RAY SOURCES. V. ANALYSIS OF THE RADIO CANDIDATES WITH THE KERNEL DENSITY ESTIMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massaro, F.; Funk, S.; D'Abrusco, R.

    2013-11-01

    Nearly one-third of the γ-ray sources detected by Fermi are still unidentified, despite significant recent progress in this area. However, all of the γ-ray extragalactic sources associated in the second Fermi-LAT catalog have a radio counterpart. Motivated by this observational evidence, we investigate all the radio sources of the major radio surveys that lie within the positional uncertainty region of the unidentified γ-ray sources (UGSs) at a 95% level of confidence. First, we search for their infrared counterparts in the all-sky survey performed by the Wide-field Infrared Survey Explorer (WISE) and then we analyze their IR colors in comparison withmore » those of the known γ-ray blazars. We propose a new approach, on the basis of a two-dimensional kernel density estimation technique in the single [3.4] – [4.6] – [12] μm WISE color-color plot, replacing the constraint imposed in our previous investigations on the detection at 22 μm of each potential IR counterpart of the UGSs with associated radio emission. The main goal of this analysis is to find distant γ-ray blazar candidates that, being too faint at 22 μm, are not detected by WISE and thus are not selected by our purely IR-based methods. We find 55 UGSs that likely correspond to radio sources with blazar-like IR signatures. An additional 11 UGSs that have blazar-like IR colors have been found within the sample of sources found with deep recent Australia Telescope Compact Array observations.« less

  5. A Hard X-ray View on Two Distant VHE Blazars: 1ES 1101-232 and 1ES 1553+113

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reimer, A.; Costamente, L.; /Stanford U., HEPL /KIPAC, Menlo Park

    2008-05-02

    TeV-blazars are known as prominent non-thermal emitters across the entire electromagnetic spectrum with their photon power peaking in the X-ray and TeV-band. If distant, absorption of -ray photons by the extragalactic background light (EBL) alters the intrinsic TeV spectral shape, thereby affecting the overall interpretation. Suzaku observations for two of the more distant TeV-blazars known to date, 1ES 1101-232 and 1ES 1553+113, were carried out in May and July 2006, respectively, including a quasi-simultaneous coverage with the state of the art Cherenkov telescope facilities. We report on the resulting data sets with emphasis on the X-ray band, and set intomore » context to their historical behavior. During our campaign, we did not detect any significant X-ray or {gamma}-ray variability. 1ES 1101-232 was found in a quiescent state with the lowest X-ray flux ever measured. The combined XIS and HXD PIN data for 1ES 1101-232 and 1ES 1553+113 clearly indicate spectral curvature up to the highest hard X-ray data point ({approx} 30 keV), manifesting as softening with increasing energy. We describe this spectral shape by either a broken power law or a log-parabolic fit with equal statistical goodness of fits. The combined 1ES 1553+113 very high energy spectrum (90-500 GeV) did not show any significant changes with respect to earlier observations. The resulting contemporaneous broadband spectral energy distributions of both TeV-blazars are discussed in view of implications for intrinsic blazar parameter values, taking into account the {gamma}-ray absorption in the EBL.« less

  6. Masses, Dimensionless Kerr Parameters, and Emission Regions in GeV Gamma-Ray-loud Blazars

    NASA Astrophysics Data System (ADS)

    Xie, G.-Z.; Ma, L.; Liang, E.-W.; Zhou, S.-B.; Xie, Z.-H.

    2003-11-01

    We have compiled sample of 17 GeV γ-ray-loud blazars, for which rapid optical variability and γ-ray fluxes are well observed, from the literature. We derive estimates of the masses, the minimum Kerr parameters amin, and the size of the emission regions of the supermassive black holes (SMBHs) for the blazars in the sample from their minimum optical variability timescales and γ-ray fluxes. The results show that (1) the masses derived from the optical variability timescale (MH) are significantly correlated with the masses from the γ-ray luminosity (MKNH); (2) the values of amin of the SMBHs with masses MH>=108.3 Msolar (three out of 17 objects) range from ~0.5 to ~1.0, suggesting that these SMBHs are likely to be Kerr black holes. For the SMBHs with MH<108.3 Msolar, however, amin=0, suggesting that a nonrotating black hole model cannot be ruled out for these objects. In addition, the values of the size of the emission region, r*, for the two kinds of SMBHs are significantly different. For the SMBHs with amin>0, the sizes of the emission regions are almost within the horizon (2rG) and marginally bound orbit (4rG), while for those with amin=0 they are in the range (4.3-66.4)rG, extending beyond the marginally stable orbit (6rG). These results may imply that (1) the rotational state, the radiating regions, and the physical processes in the inner regions for the two kinds of SMBH are significantly different and (2) the emission mechanisms of GeV γ-ray blazars are related to the SMBHs in their centers but are not related to the two different kinds of SMBH.

  7. A NEW RESULT ON THE ORIGIN OF THE EXTRAGALACTIC GAMMA-RAY BACKGROUND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou Ming; Wang Jiancheng, E-mail: mzhou@ynao.ac.cn

    2013-06-01

    In this paper, we repeatedly use the method of image stacking to study the origin of the extragalactic gamma-ray background (EGB) at GeV bands, and find that the Faint Images of the Radio Sky at Twenty centimeters (FIRST) sources undetected by the Large Area Telescope on the Fermi Gamma-ray Space Telescope can contribute about (56 {+-} 6)% of the EGB. Because FIRST is a flux-limited sample of radio sources with incompleteness at the faint limit, we consider that point sources, including blazars, non-blazar active galactic nuclei, and starburst galaxies, could produce a much larger fraction of the EGB.

  8. PKS 1502+106: A new and distant gamma-ray blazar in outburst discovered by the Fermi Large Area Telescope

    DOE PAGES

    Abdo, A. A.

    2010-01-22

    The Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope discovered a rapid (~5 days duration), high-energy (E > 100 MeV) gamma-ray outburst from a source identified with the blazar PKS 1502+106 (OR 103, S3 1502+10, z = 1.839) starting on 2008 August 5 (~23 UTC, MJD 54683.95), and followed by bright and variable flux over the next few months. Our results on the gamma-ray localization and identification, as well as spectral and temporal behavior during the first months of the Fermi all-sky survey, are reported here in conjunction with a multiwaveband characterization as a result of onemore » of the first Fermi multifrequency campaigns. The campaign included a Swift ToO (followed up by a 16 day observation on August 7-22, MJD 54685-54700), VLBA (within the MOJAVE program), Owens Valley Radio Observatory (OVRO) 40 m, Effelsberg-100 m, Metsähovi-14 m, RATAN-600, and Kanata-Hiroshima radio/optical observations. Results from the analysis of archival observations by INTEGRAL, XMM-Newton, and Spitzer space telescopes are reported for a more complete picture of this new gamma-ray blazar. PKS 1502+106 is a sub-GeV peaked, powerful flat spectrum radio quasar (luminosity at E > 100 MeV, L γ, is about 1.1 × 10 49 erg s –1, and black hole mass likely close to 10 9 M ⊙), exhibiting marked gamma-ray bolometric dominance, in particular during the asymmetric outburst (L γ/L opt ~ 100, and 5 day averaged flux F E > 100 MeV = 2.91 ± 1.4 × 10 –6 ph cm –2 s –1), which was characterized by a factor greater than 3 of flux increase in less than 12 hr. The outburst was observed simultaneously from optical to X-ray bands (F 0.3 – 10 keV = 2.18 +0.15 –0.12 × 10 –12 erg cm –2 s –1, and hard photon index ~1.5, similar to past values) with a flux increase of less than 1 order of magnitude with respect to past observations, and was likely controlled by Comptonization of external-jet photons produced in the broad-line region (BLR) in the gamma-ray

  9. Blazar Artist Concept

    NASA Image and Video Library

    2016-08-24

    Black-hole-powered galaxies called blazars are the most common sources detected by NASA's Fermi Gamma-ray Space Telescope. As matter falls toward the supermassive black hole at the galaxy's center, some of it is accelerated outward at nearly the speed of light along jets pointed in opposite directions. When one of the jets happens to be aimed in the direction of Earth, as illustrated here, the galaxy appears especially bright and is classified as a blazar. http://photojournal.jpl.nasa.gov/catalog/PIA20912

  10. Exploring the Extreme Universe with the Fermi Gamma-Ray Space Telescope

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.

    2010-01-01

    Because high-energy gamma rays are produced by powerful sources, the Fermi Gamma-ray Space Telescope provides a window on extreme conditions in the Universe. Some key observations of the constantly changing gamma-ray sky include: (1) Gamma-rays from pulsars appear to come from a region well above the surface of the neutron star; (2) Multiwavelength studies of blazars show that simple models of jet emission are not always adequate to explain what is seen; (3) Gamma-ray bursts can constrain models of quantum gravity; (4) Cosmic-ray electrons at energies approaching 1 TeV suggest a local source for some of these particles.

  11. Space instrumentation for gamma-ray astronomy

    NASA Astrophysics Data System (ADS)

    Teegarden, B. J.

    1999-02-01

    The decade of the 1990s has witnessed a renaissance in the field of gamma-ray astronomy. The seminal event was the launch of the Compton Gamma-Ray Observatory (CGRO) in April 1991. There have been a flood of major discoveries from CGRO including breakthroughs in gamma-ray bursts, annihilation radiation, and blazars. The Italian SAX satellite was launched in April 1996. Although not primarily a gamma-ray mission, it has added a new dimension to our understanding of gamma-ray bursts. Along with these new discoveries a firm groundwork has been laid for missions and new technology development that should maintain a healthy and vigorous field throughout most of the next decade. These include the ESA INTEGRAL mission (INTErnational Gamma-Ray Astrophysics Laboratory, to be launched in mid-2001) and the NASA GLAST mission (Gamma-Ray Large Area Space Telescope) with a likely launch in the middle of the next decade. These two missions will extend the observational capabilities well beyond those of CGRO. New technologies (to gamma-ray astronomy), such as cooled germanium detectors, silicon strip detectors, and CdTe detectors are planned for these new missions. Additional promising new technologies such as CdZnTe strip detectors, scintillator fibers, and a gamma-ray lens for future gamma-ray astronomy missions are under development in laboratories around the world.

  12. Search for the Identification of 3EG J1835+5918: Evidence for a New Type of High-Energy Gamma-Ray Source

    NASA Technical Reports Server (NTRS)

    Mirabal, N.; Halpern, Jules P.; Eracleous, M.; Becker, R. H.; Oliversen, Ronald (Technical Monitor)

    2001-01-01

    The EGRET source 3EG J1835+5918 is the brightest and most accurately positioned of the as-yet unidentified high-energy gamma-ray sources at high Galactic latitude (l, b = 89 deg, 25 deg). We present a multiwavelength study of the region around it, including X-ray, radio, and optical imaging surveys, as well as optical spectroscopic classification of most of the active objects in this area. Identifications are made of all but one of the ROSAT and ASCA sources in this region to a flux limit of approximately 5 x 10(exp -14) erg/sq cm s, which is 10(exp -4) of the gamma-ray flux. The identified X-ray sources in or near the EGRET error ellipse are radio-quiet QSOs, a galaxy cluster, and coronal emitting stars. We also find eight quasars using purely optical color selection, and we have monitored the entire field for variable optical objects on short and long time scales without any notable discoveries. The radio sources inside the error ellipse are all fainter than 4 mJy at 1.4 GHz. There are no flat-spectrum radio sources in the vicinity; the brightest neighboring radio sources are steep-spectrum radio galaxies or quasars. Since no blazar-like or pulsar-like candidate has been found as a result of these searches, 3EG J1835+5918 must be lacking one or more of the physically essential attributes of these known classes of gamma-ray emitters. If it is an AGN it lacks the beamed emission radio of blazars by at least a factor of 100 relative to identified EGRET blazars. If it is an isolated neutron star, it lacks the steady thermal X-rays from a cooling surface and the magnetospheric non-thermal X-ray emission that is characteristic of all EGRET pulsars. If a pulsar, 3EG J1835+5918 must be either older or more distant than Geminga, and probably an even more efficient or beamed gamma-ray engine. One intermittent ROSA T source falls on a blank optical field to a limit of B greater than 23.4, V greater than 23.3, and R greater than 22.5. In view of this conspicuous absence, RX

  13. Stacking Searches for Greater Than 100 MeV Gamma Ray Emission from Radio Galaxies and Seyfert Galaxies

    NASA Technical Reports Server (NTRS)

    Cillis, A. N.; Hartman, R. C.; Bertsch, D. L.

    2003-01-01

    The EGRET telescope on CGRO detected more than sixty sources of high-energy gamma radiation associated with active galactic nuclei (AGN). All but one of those belong to the blazar subclass; the only exception is the nearby radio galaxy Centaurus A. Since there is no obvious reason other than proximity to expect Cen A to be the only non-blazar AGN emitting in high-energy gamma rays, we have utilized the "stacking" technique to search for $>100$-MeV emission from two non-blazar AGN subclasses, radio galaxies and Seyfert galaxies. Maps of gamma-ray counts, exposure, and diffuse background have been created, then co-added in varying numbers based on sorts by redshift, 5-GHZ flux density, and optical brightness, and finally tested for gamma-ray emission. No detection significance greater than $2\\sigma$ has been found for any subclass, sorting parameter, or number of objects co-added. Monte Carlo simulations have also been performed, to validate the technique and estimate the significance of the results.

  14. EBL constraints with VERITAS gamma-ray observations

    NASA Astrophysics Data System (ADS)

    Fernandez Alonso, M.; VERITAS Collaboration

    2017-10-01

    The extragalactic background light (EBL) contains all the radiation emitted by nuclear and accretion processes since the epoch of recombination. Direct measurements of the EBL in the near-IR to mid-IR waveband are extremely difficult due mainly to the zodiacal light foreground. Instead, gamma-ray astronomy offers the possibility to indirectly set limits to the EBL by studying the effects of gamma-ray absorption in the spectra of detected sources in the very high energy range (VHE: 100 GeV). These effects can be generally seen in the spectra of VHE blazars as a softening (steepening) of the spectrum and/or abrupt changes in the spectral index or breaks. In this work, we use recent VERITAS data of a group of blazars and apply two methods to derive constraints for the EBL spectral properties. We present preliminary results that will be completed with new observations in the near future to enhance the calculated restrictions to the EBL.

  15. Components of the Extragalactic Gamma-Ray Background

    NASA Technical Reports Server (NTRS)

    Stecker, Floyd W.; Venters, Tonia M.

    2011-01-01

    We present new theoretical estimates of the relative contributions of unresolved blazars and star-forming galaxies to the extragalactic gamma-ray background (EGB) and discuss constraints on the contributions from alternative mechanisms such as dark matter annihilation and truly diffuse gamma-ray production. We find that the Fermi source count data do not rule out a scenario in which the EGB is dominated by emission from unresolved blazars, though unresolved star-forming galaxies may also contribute significantly to the background, within order-of-magnitude uncertainties. In addition, we find that the spectrum of the unresolved star-forming galaxy contribution cannot explain the EGB spectrum found by EGRET at energies between 50 and 200 MeV, whereas the spectrum of unresolved flat spectrum radio quasars, when accounting for the energy-dependent effects of source confusion, could be consistent with the combined spectrum of the low-energy EGRET EGB measurements and the Fermi-Large Area Telescope EGB measurements.

  16. Polarization structure of six gamma-ray quasars at 5 and 15 GHz

    NASA Astrophysics Data System (ADS)

    Vetukhnovskaya, Yu. N.; Gabuzda, D. C.; Yakimov, V. E.

    2011-05-01

    The results of 5 and 15 GHz polarization observations of the six blazars 1222+216, 1406-076, 1606+106, 1611+343, 17415-038, and 2022-077 obtained on the American Very Long Baseline Array are presented. The degrees of polarization in the cores and jets of these six gamma-ray quasars do not differ from those for other blazars.

  17. Optical Spectroscopic Observations of γ-Ray Blazar Candidates. III. The 2013/2014 Campaign in the Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Landoni, M.; Massaro, F.; Paggi, A.; D'Abrusco, R.; Milisavljevic, D.; Masetti, N.; Smith, H. A.; Tosti, G.; Chomiuk, L.; Strader, J.; Cheung, C. C.

    2015-05-01

    We report the results of our exploratory program carried out with the southern Astrophysical Research telescope aimed at associating counterparts and establishing the nature of the Fermi Unidentified γ-ray Sources (UGSs). We selected the optical counterparts of six UGSs from the Fermi catalog on the basis of our recently discovered tight connection between infrared and γ-ray emission found for the γ-ray blazars detected by the Wide-Field Infrared Survey Explorer in its all-sky survey. We perform for the first time a spectroscopic study of the low-energy counterparts of the Fermi UGSs, in the optical band, confirming the blazar-like nature of the whole sample. We also present new spectroscopic observations of six active galaxies of uncertain type associated with Fermi sources which appear to be BL Lac objects. Finally, we report the spectra collected for six known γ-ray blazars belonging to the Roma BZCAT that were obtained to establish their nature or better estimate their redshifts. Two interesting cases of high redshift and extremely luminous BL Lac objects (z ≥ 1.18 and z ≥ 1.02, based on the detection of Mg ii intervening systems) are also discussed. Based on observations obtained at the southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).

  18. Connecting blazars with ultrahigh-energy cosmic rays and astrophysical neutrinos

    NASA Astrophysics Data System (ADS)

    Resconi, E.; Coenders, S.; Padovani, P.; Giommi, P.; Caccianiga, L.

    2017-06-01

    We present a strong hint of a connection between high-energy γ-ray emitting blazars, very high energy neutrinos, and ultrahigh-energy cosmic rays. We first identify potential hadronic sources by filtering γ-ray emitters in spatial coincidence with the high-energy neutrinos detected by IceCube. The neutrino filtered γ-ray emitters are then correlated with the ultrahigh-energy cosmic rays from the Pierre Auger Observatory and the Telescope Array by scanning in γ-ray flux (Fγ) and angular separation (θ) between sources and cosmic rays. A maximal excess of 80 cosmic rays (42.5 expected) is found at θ ≤ 10° from the neutrino-filtered γ-ray emitters selected from the second hard Fermi-LAT catalogue (2FHL) and for Fγ(>50 GeV) ≥ 1.8 × 10-11 ph cm-2 s-1. The probability for this to happen is 2.4 × 10-5, which translates to ˜2.4 × 10-3 after compensation for all the considered trials. No excess of cosmic rays is instead observed for the complement sample of γ-ray emitters (I.e. not in spatial connection with IceCube neutrinos). A likelihood ratio test comparing the connection between the neutrino-filtered and the complement source samples with the cosmic rays favours a connection between neutrino-filtered emitters and cosmic rays with a probability of ˜1.8 × 10-3 (2.9σ) after compensation for all the considered trials. The neutrino-filtered γ-ray sources that make up the cosmic rays excess are blazars of the high synchrotron peak type. More statistics is needed to further investigate these sources as candidate cosmic ray and neutrino emitters.

  19. SMARTScience Tools: Interacting With Blazar Data In The Web Browser

    NASA Astrophysics Data System (ADS)

    Hasan, Imran; Isler, Jedidah; Urry, C. Megan; MacPherson, Emily; Buxton, Michelle; Bailyn, Charles D.; Coppi, Paolo S.

    2014-08-01

    The Yale-SMARTS blazar group has accumulated 6 years of optical-IR photometry of more than 70 blazars, mostly bright enough in gamma-rays to be detected with Fermi. Observations were done with the ANDICAM instrument on the SMARTS 1.3 m telescope at the Cerro Tololo Inter-American Observatory. As a result of this long-term, multiwavelength monitoring, we have produced a calibrated, publicly available data set (see www.astro.yale.edu/smarts/glast/home.php), which we have used to find that (i) optical-IR and gamma-ray light curves are well correlated, supporting inverse-Compton models for gamma-ray production (Bonning et al. 2009, 2012), (ii) at their brightest, blazar jets can contribute significantly to the photoionization of the broad-emission-line region, indicating that gamma-rays are produced within 0.1 pc of the black hole in at least some cases (Isler et al. 2014), and (iii) optical-IR and gamma-ray flares are symmetric, implying the time scales are dominated by light-travel-time effects rather than acceleration or cooling (Chatterjee et al. 2012). The volume of data and diversity of projects for which it is used calls out for an efficient means of visualization. To this end, we have developed a suite of visualization tools called SMARTScience Tools, which allow users to interact dynamically with our dataset. The SMARTScience Tools is publicly available via our webpage and can be used to customize multiwavelength light curves and color magnitude diagrams quickly and intuitively. Users can choose specific bands to construct plots, and the plots include features such as band-by-band panning, dynamic zooming, and direct mouse interaction with individual data points. Human and machine readable tables of the plotted data can be directly printed for the user's convenience and for further independent study. The SMARTScience Tools significantly improves the public’s ability to interact with the Yale-SMARTS 6-year data base of blazar photometry, and should make

  20. Simultaneous Planck , Swift , and Fermi observations of X-ray and γ -ray selected blazars

    DOE PAGES

    Giommi, P.; Polenta, G.; Lähteenmäki, A.; ...

    2012-05-22

    We present simultaneous Planck, Swift, Fermi, and ground-based data for 105 blazars belonging to three samples with flux limits in the soft X-ray, hard X-ray, and γ-ray bands, with additional 5GHz flux-density limits to ensure a good probability of a Planck detection. We compare our results to those of a companion paper presenting simultaneous Planck and multi-frequency observations of 104 radio-loud northern active galactic nuclei selected at radio frequencies. While we confirm several previous results, our unique data set allows us to demonstrate that the selection method strongly influences the results, producing biases that cannot be ignored. Almost all themore » BL Lac objects have been detected by the Fermi Large AreaTelescope (LAT), whereas 30% to 40% of the flat-spectrum radio quasars (FSRQs) in the radio, soft X-ray, and hard X-ray selected samples are still below the γ-ray detection limit even after integrating 27 months of Fermi-LAT data. The radio to sub-millimetre spectral slope of blazars is quite flat, with >α> ~ 0 up to about 70GHz, above which it steepens to ~ -0.65. The BL Lacs have significantly flatter spectra than FSRQs at higher frequencies. The distribution of the rest-frame synchrotron peak frequency (ν peak S) in the spectral energy distribution (SED) of FSRQs is the same in all the blazar samples with peak S> = 10 13.1 ± 0.1 Hz, while the mean inverse Compton peak frequency, >ν peak IC>, ranges from 1021 to 1022 Hz. The distributions of ν peak S and ν peak IC of BL Lacs are much broader and are shifted to higher energies than those of FSRQs; their shapes strongly depend on the selection method. The Compton dominance of blazars, defined as the ratio of the inverse Compton to synchrotron peak luminosities, ranges from less than 0.2 to nearly 100, with only FSRQs reaching values larger than about 3. Its distribution is broad and depends strongly on the selection method, with γ-ray selected blazars peaking at ~7 or more, and radio

  1. High-Redshift Blazars Through NuSTAR Eyes

    NASA Astrophysics Data System (ADS)

    Marcotulli, Lea

    MeV blazars are the most powerful sources among the blazar class. With bolometric luminosities exceeding 1048 erg s-1 and powerful relativistic jets, they are usually detected at high-redshifts (z > 2) and they generally harbor extremely massive black holes (MBH 109Msun). Being able to derive their physical properties such as jet power, accretion disk luminosity, bulk Lorentz factor of the jet (Gamma) and black hole mass, enables us to put constraints in the understanding of this not well sampled class of objects and use them for example to probe the formation of massive black holes in the early universe. In this thesis we have analyzed the broadband emission of three high redshift blazars, focusing on the high energy part of their spectral energy distribution. In fact, being able to obtain hard X-ray data from the recently launched NuSTAR and having gamma-ray detections from the Fermi-LAT, we were able to constrain more accurately the high energy peak of their distribution and therefore more precisely infer their jet power, underlying electron distribution, Gamma and viewing angle (theta v). Gathering optical and UV data allowed us to determine the black hole mass of such powerful objects as well as their accretion disk luminosity. This work has recently been published in ApJ (Marcotulli et al., 2017). In Section 1, the broad family of active galactic nuclei (ANGs) and their main physical characteristics are introduced, with a focus on the subclass of blazars and specifically MeV blazars. In Section 2, the main instruments used in our research to gather and analyze data are described, with a particular interest on imaging in the hard X-ray regime. Section 3 contains the data analysis description, the results obtained combining the observations with a one-zone leptonic emission model and the discussion on our findings. In Section 4 we report our conclusions and present an outlook on future MeV blazars studies possibilities. Appendix A, B and C contain an overlook

  2. Multiwavelength studies of the blazars detected by AGILE

    NASA Astrophysics Data System (ADS)

    Filippo D'Ammando

    2010-02-01

    The discovery of emission in the gamma-ray domain from many Active Galactic Nuclei (AGNs) by EGRET on board the Compton Gamma-Ray Observatory and the Cherenkov Telescopes was one of the most breakthrough of high energy astrophysics in the last 20 years, leading to the identification of a new class of AGNs: the blazars. Blazars are the most extreme subclass of AGNs, characterized by the emission of strong non-thermal radiation across the entire electromagnetic spectrum, from radio to very high gamma-ray energies. This emission is interpreted as the result of the electromagnetic radiation from a relativistic jet that is viewed closely aligned to the line of sight of the observer, thus causing strong relativistic amplification. Considering that the large fraction of the total power of blazars is emitted in the gamma-rays, information in this energy band is crucial to study the different radiation models. More than ten years after the EGRET era, the AGILE satellite (and subsequently also the Fermi satellite) filled the gap in the MeV-GeV band giving further impulse to the study of the high-energy astrophysics phenomena in blazars. However, notwithstanding the importance of the information provided by the gamma-ray observations, correlated multiwavelength studies are the key to achieve a better understanding of the structure of the inner jet, the origin of the seed photons for the inverse Compton process and the emission mechanisms at work in blazars. Since its launch in April 2007, the AGILE satellite detected several blazars in high activity state: PKS 1510-089, S5 0716+714, 3C 454.3, 3C 273, 3C 279, W Comae, Mrk 421 and PG 1553+113. In this Thesis I will present the most interesting results on multifrequency analysis of these sources detected by AGILE in gamma-rays, together with the multiwavelength data from other observatories such as Spitzer, Swift, RXTE, Suzaku, INTEGRAL, MAGIC, VERITAS, as well as radio-to-optical coverage by means of GASP-WEBT and REM. This

  3. Long term monitoring of Gamma-Ray emission from the BL Lacertae object (1ES 2200+420)

    NASA Astrophysics Data System (ADS)

    Gunawardhana, Isuru; VERITAS Collaboration

    2016-03-01

    Blazars are a class of Active Galactic Nuclei (AGN) that have relativistic jets pointing along the observer line of sight. Blazars exhibit variable emission extending from radio to TeV energies. The variability timescale of the TeV flux is a key component of understanding the location of the very high energy emission zones. Deep observations of the quiescent state measurements are also required to disentangle the flaring state emission from quiescent state emission, a prerequisite for understanding the origin of blazar spectral variability. BL Lacertae (also known as 1ES 2200+420), as the namesake for all BL Lac objects, is a prime example of one such blazar. The VERITAS Observatory, an Imaging Atmospheric Cherenkov Telescope (IACT) array sensitive to gamma rays in the range from 85 GeV to 30 TeV, dedicates approximately 110 hours per year on deep observations of known gamma-ray blazars. In this talk, I will describe the TeV photon flux variability of BL Lacertae measured by VERITAS from 2013 to 2015.

  4. Extremes of the jet–accretion power relation of blazars, as explored by NuSTAR

    DOE PAGES

    Sbarrato, T.; Ghisellini, G.; Tagliaferri, G.; ...

    2016-07-18

    Hard X-ray observations are crucial to study the non-thermal jet emission from high-redshift, powerful blazars. We observed two bright z > 2 flat spectrum radio quasars (FSRQs) in hard X-rays to explore the details of their relativistic jets and their possible variability. S5 0014+81 (at z = 3.366) and B0222+185 (at z=2.690) have been observed twice by the Nuclear Spectroscopic Telescope Array (NuSTAR) simultaneously with Swift/XRT, showing different variability behaviors. We found that NuSTAR is instrumental to explore the variability of powerful high-redshift blazars, even when no gamma-ray emission is detected. The two sources have proven to have respectively themore » most luminous accretion disk and the most powerful jet among known blazars. Furthermore, thanks to these properties, they are located at the extreme end of the jet-accretion disk relation previously found for gamma-ray detected blazars, to which they are consistent.« less

  5. Extremes of the jet–accretion power relation of blazars, as explored by NuSTAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sbarrato, T.; Ghisellini, G.; Tagliaferri, G.

    Hard X-ray observations are crucial to study the non-thermal jet emission from high-redshift, powerful blazars. We observed two bright z > 2 flat spectrum radio quasars (FSRQs) in hard X-rays to explore the details of their relativistic jets and their possible variability. S5 0014+81 (at z = 3.366) and B0222+185 (at z=2.690) have been observed twice by the Nuclear Spectroscopic Telescope Array (NuSTAR) simultaneously with Swift/XRT, showing different variability behaviors. We found that NuSTAR is instrumental to explore the variability of powerful high-redshift blazars, even when no gamma-ray emission is detected. The two sources have proven to have respectively themore » most luminous accretion disk and the most powerful jet among known blazars. Furthermore, thanks to these properties, they are located at the extreme end of the jet-accretion disk relation previously found for gamma-ray detected blazars, to which they are consistent.« less

  6. Search for the Identification of 3EG J1835+5918: Evidence for a New Type of High-Energy Gamma-Ray Source?

    NASA Technical Reports Server (NTRS)

    Mirabal, N.; Halpern, Jules P.; Eracleous, M.; Becker, R. H.; Oliversen, Ronald (Technical Monitor)

    2001-01-01

    Most of the EGRET high-energy gamma-ray sources remain unidentified. It is highly likely that many of these are fainter blazars or pulsars, but there may also be new types of sources to be discovered. We have focussed our search for novel gamma-ray sources on 3EG 1835+5918, which is the brightest and most accurately positioned of the unidentified EGRET sources at high Galactic latitude (l, b = 89 deg, 25 deg). In this talk, we will summarize the results of X-ray, radio, and optical surveys of this location. In particular, we have made complete optical identifications of all of the ROSAT and ASCA sources in this region to a flux limit of approximately 1 x 10(exp -13) ergs/sq cm s. All of the X-ray sources within the EGRET error circle are radio-quiet quasars or coronally emitting stars. Previous radio pulsar searches have been unsuccessful. We set an upper limit of 3.8 mJy (at 1.4 GHz) on any possible radio counterpart to 3EG 1835+5918. We also find several quasars and white dwarfs using optical color selection, and we have monitored the entire field for variable optical objects on short and long time scales. Since no blazar-like or pulsar-like candidate has been found as a result of these searches, we assert that 3EG 1835+5918 must be lacking in one or more of the physically essential attributes of those classes of gamma-ray emitters. In particular, its radio flux is at least two orders of magnitude fainter than any of the securely identified EGRET blazars, and its soft X-ray flux is at least 30 times fainter than that of Geminga and other EGRET pulsars. If it is an AGN it lacks the beamed radio emission of blazars. If it is an isolated neutron star, it lacks both the thermal X-rays from a cooling surface and the magnetospheric non-thermal X-ray emission that is characteristic of all EGRET pulsars. As such, it is more problematic physically than Geminga, which is an ordinary pulsar that only lacks radio emission. As a pulsar, 3EG 1835+5918 would have to be either

  7. PKS 2123-463: A Confirmed Gamma-ray Blazar at High Redshift

    NASA Technical Reports Server (NTRS)

    D'Ammando, F.; Rau, A.; Schady, P.; Finke, J.; Orienti, M.; Greiner, J.; Kann, D. A.; Ojha, R.; Foley, A. R.; Stevens, J.; hide

    2013-01-01

    The flat spectrum radio quasar (FSRQ) PKS 2123-463 was associated in the first Fermi- Large Area Telescope (LAT) source catalogue with the gamma-ray source 1FGL J2126.1-4603, but when considering the full first two years of Fermi observations, no gamma-ray source at a position consistent with this FSRQ was detected, and thus PKS 2123-463 was not reported in the second Fermi-LAT source catalogue. On 2011 December 14 a gamma-ray source positionally consistent with PKS 2123-463 was detected in flaring activity by Fermi-LAT. This activity triggered radio-to-X-ray observations by the Swift,Gamma-ray Optical/Near-Infrared Detector (GROND), Australia Telescope Compact Array (ATCA), Ceduna and Seven Dishes Karoo Array Telescope (KAT-7) observatories. Results of the localization of the gamma-ray source over 41 months of Fermi-LAT operation are reported here in conjunction with the results of the analysis of radio, optical, ultraviolet (UV) and X-ray data collected soon after the gamma-ray flare. The strict spatial association with the lower energy counterpart together with a simultaneous increase of the activity in optical, UV, X-ray and gamma-ray bands led to a firm identification of the gamma-ray source with PKS 2123-463. A new photometric redshift has been estimated as z = 1.46 plus or minus 0.05 using GROND and Swift Ultraviolet/Optical Telescope (UVOT) observations, in rough agreement with the disputed spectroscopic redshift of z = 1.67.We fit the broad-band spectral energy distribution with a synchrotron/external Compton model. We find that a thermal disc component is necessary to explain the optical/UV emission detected by Swift/UVOT. This disc has a luminosity of approximately 1.8 x 10(exp 46) erg s(exp -1), and a fit to the disc emission assuming a Schwarzschild (i.e. non-rotating) black hole gives a mass of approximately 2 x 10(exp 9) solar mass. This is the first black hole mass estimate for this source.

  8. Fast γ-Ray Variability in Blazars beyond Redshift 3

    NASA Astrophysics Data System (ADS)

    Li, Shang; Xia, Zi-Qing; Liang, Yun-Feng; Liao, Neng-Hui; Fan, Yi-Zhong

    2018-02-01

    High-redshift blazars are one of the most powerful sources in the universe and γ-ray variability carries crucial information about their relativistic jets. In this work we present results of the first systematical temporal analysis of Fermi-LAT data of all known seven γ-ray blazars beyond redshift 3. Significant long-term γ-ray variability is found from five sources in monthly γ-ray light curves, in which three of them are reported for the first time. Furthermore, intraday γ-ray variations are detected from NVSS J053954‑283956 and NVSS J080518+614423. The doubling variability timescale of the former source is limited as short as ≲1 hr (at the source frame). Together with variability amplitude over one order of magnitude, NVSS J053954‑283956 is the most distant γ-ray flaring blazar so far. Meanwhile, intraday optical variability of NVSS J163547+362930 is found based on an archival PTF/iPTF light curve. Benefiting from the multi-wavelength activity of these sources, constraints on their Doppler factors, as well as the locations of the γ-ray radiation region and indications for the SDSS high redshift jetted active galactic nuclei deficit are discussed.

  9. PKS 2123-463: A Confirmed Gamma-ray Blazar at High Redshift

    NASA Technical Reports Server (NTRS)

    DAmmando, F.; Rau, A.; Schady, P.; Finke, J.; Orienti, M.; Greiner, J.; Kann, D. A.; Ojha, R.; Foley, A. R.; Stevens, J.; hide

    2012-01-01

    The flat spectrum radio quasar (FSRQ) PKS 2123-463 was associated in the First Fermi-LAT source catalog with the gamma-ray source 1FGL J2126.1-4603, but when considering the full first two years of Fermi observations, no gamma-ray source at a position consistent with this FSRQ was detected, and thus PKS 2123-463 was not reported in the Second Fermi-LAT source catalog. On 2011 December 14 a gamma-ray source positionally consistent with PKS 2123-463 was detected in flaring activity by Fermi-LAT. This activity triggered radio-to-X-ray observations by the Swift, GROND, ATCA, Ceduna, and KAT-7 observatories. Results of the localization of the gamma-ray source over 41 months of Fermi-LAT operation are reported here in conjunction with the results of the analysis of radio, optical, UV and X-ray data collected soon after the gamma-ray flare. The strict spatial association with the lower energy counterpart together with a simultaneous increase of the activity in optical, UV, X-ray and gamma-ray bands led to a firm identification of the gamma-ray source with PKS 2123-463. A new photometric redshift has been estimated as z = 1.46 +/- 0.05 using GROND and Swift/UVOT observations, in rough agreement with the disputed spectroscopic redshift of z = 1.67. We fit the broadband spectral energy distribution with a synchrotron/external Compton model. We find that a thermal disk component is necessary to explain the optical/UV emis- sion detected by Swift/UVOT. This disk has a luminosity of 1.8x1046 erg s-1, and a fit to the disk emission assuming a Schwarzschild (i.e., nonrotating) black hole gives a mass of 2 x 109 M(solar mass). This is the first black hole mass estimate for this source.

  10. “Orphan” γ-Ray Flares and Stationary Sheaths of Blazar Jets

    NASA Astrophysics Data System (ADS)

    MacDonald, Nicholas R.; Jorstad, Svetlana G.; Marscher, Alan P.

    2017-11-01

    Blazars exhibit flares across the entire electromagnetic spectrum. Many γ-ray flares are highly correlated with flares detected at longer wavelengths; however, a small subset appears to occur in isolation, with little or no correlated variability at longer wavelengths. These “orphan” γ-ray flares challenge current models of blazar variability, most of which are unable to reproduce this type of behavior. MacDonald et al. have developed the Ring of Fire model to explain the origin of orphan γ-ray flares from within blazar jets. In this model, electrons contained within a blob of plasma moving relativistically along the spine of the jet inverse-Compton scatter synchrotron photons emanating off of a ring of shocked sheath plasma that enshrouds the jet spine. As the blob propagates through the ring, the scattering of the ring photons by the blob electrons creates an orphan γ-ray flare. This model was successfully applied to modeling a prominent orphan γ-ray flare observed in the blazar PKS 1510-089. To further support the plausibility of this model, MacDonald et al. presented a stacked radio map of PKS 1510-089 containing the polarimetric signature of a sheath of plasma surrounding the spine of the jet. In this paper, we extend our modeling and stacking techniques to a larger sample of blazars: 3C 273, 4C 71.01, 3C 279, 1055+018, CTA 102, and 3C 345, the majority of which have exhibited orphan γ-ray flares. We find that the model can successfully reproduce these flares, while our stacked maps reveal the existence of jet sheaths within these blazars.

  11. RoboPol: Unveiling the Physics of Blazar Jets from Skinakas

    NASA Astrophysics Data System (ADS)

    Pavlidou, V.

    2016-06-01

    Blazars are powered by relativistic jets and radiate exclusively through extreme, nonthermal particle interactions, energized by accretion onto supermassive black holes. Despite intensive observational and theoretical efforts over the last four decades, the details of blazar astrophysics remain elusive. The launch of NASA's Fermi Gammaray Space Telescope in 2008 provided an unprecedented opportunity for the systematic study of blazar jets and has prompted large-scale blazar monitoring efforts across wavelengths. In such a multi-wavelength campaign, a novel effect was discovered: fast changes in the optical polarization during gamma-ray flares. Optical emission from blazars is significantly polarized and the polarization probes the magnetic field structure in the jet. For this reason, such polarization rotations reveal important information about the evolution of disturbances responsible for blazar flares. The RoboPol program for the polarimetric monitoring of statistically complete samples of blazars was developed in 2013 to systematically study this class of events. RoboPol is a collaboration between the University of Crete, Caltech, the Max-Planck Institute for Radio Astronomy, the Inter-University Centre for Astronomy and Astrophysics in India, and the Nicolaus Copernicus University in Poland. Using a novel polarimeter operating at the 1.3m telescope of the Skinakas Observatory in Crete, it has succeeded in its 3 years of operation in taking optopolarimetric rotations of blazars from novelty status to a well-studied phenomenon that can be used to answer long-standing questions in our theoretical understanding of jets. We review the RoboPol program and its most important results in the classification of the optopolarimetric properties of blazars, the statistical properties of polarization rotations, and their relation to gamma-ray activity in blazar jets.

  12. Detection of very high energy gamma-ray emission from the gravitationally lensed blazar QSO B0218+357 with the MAGIC telescopes

    NASA Astrophysics Data System (ADS)

    Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Antoranz, P.; Arcaro, C.; Babic, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Berti, A.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Buson, S.; Carosi, A.; Chatterjee, A.; Clavero, R.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; de Oña Wilhelmi, E.; Di Pierro, F.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Engelkemeier, M.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Frantzen, K.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Garrido Terrats, D.; Gaug, M.; Giammaria, P.; Godinović, N.; Gora, D.; Guberman, D.; Hadasch, D.; Hahn, A.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Hughes, G.; Idec, W.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; La Barbera, A.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; López-Coto, R.; Majumdar, P.; Makariev, M.; Mallot, K.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Marcote, B.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Miranda, J. M.; Mirzoyan, R.; Moralejo, A.; Moretti, E.; Nakajima, D.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Nishijima, K.; Noda, K.; Nogués, L.; Paiano, S.; Palacio, J.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Pedaletti, G.; Peresano, M.; Perri, L.; Persic, M.; Poutanen, J.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Garcia, J. R.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Saito, T.; Satalecka, K.; Schroeder, S.; Schweizer, T.; Shore, S. N.; Sillanpää, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Stamerra, A.; Strzys, M.; Surić, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Torres, D. F.; Toyama, T.; Treves, A.; Vanzo, G.; Verguilov, V.; Vovk, I.; Ward, J. E.; Will, M.; Wu, M. H.; Zanin, R.; Desiante, R.

    2016-11-01

    Context. QSO B0218+357 is a gravitationally lensed blazar located at a redshift of 0.944. The gravitational lensing splits the emitted radiation into two components that are spatially indistinguishable by gamma-ray instruments, but separated by a 10-12 day delay. In July 2014, QSO B0218+357 experienced a violent flare observed by the Fermi-LAT and followed by the MAGIC telescopes. Aims: The spectral energy distribution of QSO B0218+357 can give information on the energetics of z 1 very high energy gamma-ray sources. Moreover the gamma-ray emission can also be used as a probe of the extragalactic background light at z 1. Methods: MAGIC performed observations of QSO B0218+357 during the expected arrival time of the delayed component of the emission. The MAGIC and Fermi-LAT observations were accompanied by quasi-simultaneous optical data from the KVA telescope and X-ray observations by Swift-XRT. We construct a multiwavelength spectral energy distribution of QSO B0218+357 and use it to model the source. The GeV and sub-TeV data obtained by Fermi-LAT and MAGIC are used to set constraints on the extragalactic background light. Results: Very high energy gamma-ray emission was detected from the direction of QSO B0218+357 by the MAGIC telescopes during the expected time of arrival of the trailing component of the flare, making it the farthest very high energy gamma-ray source detected to date. The observed emission spans the energy range from 65 to 175 GeV. The combined MAGIC and Fermi-LAT spectral energy distribution of QSO B0218+357 is consistent with current extragalactic background light models. The broadband emission can be modeled in the framework of a two-zone external Compton scenario, where the GeV emission comes from an emission region in the jet, located outside the broad line region.

  13. Detection of very high energy gamma-ray emission from the gravitationally lensed blazar QSO B0218+357 with the MAGIC telescopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.

    QSO B0218+357 is a gravitationally lensed blazar located at a redshift of 0.944. The gravitational lensing splits the emitted radiation into two components that are spatially indistinguishable by gamma-ray instruments, but separated by a 10–12 day delay. In July 2014, QSO B0218+357 experienced a violent flare observed by the Fermi-LAT and followed by the MAGIC telescopes. The spectral energy distribution of QSO B0218+357 can give information on the energetics of z ~ 1 very high energy gamma-ray sources. Furthermore, the gamma-ray emission can also be used as a probe of the extragalactic background light at z ~ 1. MAGIC performedmore » observations of QSO B0218+357 during the expected arrival time of the delayed component of the emission. The MAGIC and Fermi-LAT observations were accompanied by quasi-simultaneous optical data from the KVA telescope and X-ray observations by Swift-XRT. We construct a multiwavelength spectral energy distribution of QSO B0218+357 and use it to model the source. The GeV and sub-TeV data obtained by Fermi-LAT and MAGIC are used to set constraints on the extragalactic background light. We detected very high energy gamma-ray emission from the direction of QSO B0218+357 by the MAGIC telescopes during the expected time of arrival of the trailing component of the flare, making it the farthest very high energy gamma-ray source detected to date. We also observed emission spans the energy range from 65 to 175 GeV. The combined MAGIC and Fermi-LAT spectral energy distribution of QSO B0218+357 is consistent with current extragalactic background light models. The broadband emission can be modeled in the framework of a two-zone external Compton scenario, where the GeV emission comes from an emission region in the jet, located outside the broad line region.« less

  14. Detection of very high energy gamma-ray emission from the gravitationally lensed blazar QSO B0218+357 with the MAGIC telescopes

    DOE PAGES

    Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; ...

    2016-11-04

    QSO B0218+357 is a gravitationally lensed blazar located at a redshift of 0.944. The gravitational lensing splits the emitted radiation into two components that are spatially indistinguishable by gamma-ray instruments, but separated by a 10–12 day delay. In July 2014, QSO B0218+357 experienced a violent flare observed by the Fermi-LAT and followed by the MAGIC telescopes. The spectral energy distribution of QSO B0218+357 can give information on the energetics of z ~ 1 very high energy gamma-ray sources. Furthermore, the gamma-ray emission can also be used as a probe of the extragalactic background light at z ~ 1. MAGIC performedmore » observations of QSO B0218+357 during the expected arrival time of the delayed component of the emission. The MAGIC and Fermi-LAT observations were accompanied by quasi-simultaneous optical data from the KVA telescope and X-ray observations by Swift-XRT. We construct a multiwavelength spectral energy distribution of QSO B0218+357 and use it to model the source. The GeV and sub-TeV data obtained by Fermi-LAT and MAGIC are used to set constraints on the extragalactic background light. We detected very high energy gamma-ray emission from the direction of QSO B0218+357 by the MAGIC telescopes during the expected time of arrival of the trailing component of the flare, making it the farthest very high energy gamma-ray source detected to date. We also observed emission spans the energy range from 65 to 175 GeV. The combined MAGIC and Fermi-LAT spectral energy distribution of QSO B0218+357 is consistent with current extragalactic background light models. The broadband emission can be modeled in the framework of a two-zone external Compton scenario, where the GeV emission comes from an emission region in the jet, located outside the broad line region.« less

  15. Some Aspects of the Radio Emission of EGRET-Detected Blazars

    NASA Technical Reports Server (NTRS)

    Lin, Y. C.; Bertsch, D. L.; Bloom, S. D.; Esposito, J. A.; Hartman, R. C.; Hunter, S. D.; Kniffen, D. A.; Kanbach, G.; Mayer-Hasselwander, H. A.; Michelson, P. F.

    1999-01-01

    It has long been recognized that the high-latitude Energetic Gamma Ray Experiment Telescope (EGRET) sources can be identified with blazars of significant radio emission. Many aspects of the relation between high-energy gamma-ray emission and radio emission of EGRET-detected blazars remain uncertain. In this paper, we use the results of the recently published Third EGRET Source Catalog to examine in more detail to what extent the EGRET flux and the radio flux are correlated. In particular we examine the correlation (or the lack of it) in flux level, spectral shape, temporal variation, and detection limit. Many significant previous studies in these areas are also evaluated.

  16. Wide-Range Multiwavelength Observations of Northern TeV Blazars With MAGIC / HESS, Suzaku And KVA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayashida, M.; /Munich, Max Planck Inst.; Rugamer, S.

    2007-11-14

    We have conducted multiwavelength observations of several northern TeV blazars employing the ground-based {gamma}-ray observatories MAGIC and HESS, the optical KVA telescope, and the Suzaku X-ray satellite. The data taken in 2006 establish measurements of the contemporaneous spectral energy distributions of the rapidly variable blazar emission over a wide range of frequencies. Results allow us to test leptonic and hadronic emission and particle acceleration models which predict different correlations between the optical, X-ray, and very high energy {gamma}-ray emissions. In this presentation, we report on the highlights of the results of these observations.

  17. The Diffuse Gamma-Ray Background from Type Ia Supernovae

    NASA Technical Reports Server (NTRS)

    Lien, Amy; Fields, Brian D.

    2012-01-01

    The origin of the diffuse extragalactic gamma-ray background (EGB) has been intensively studied but remains unsettled. Current popular source candidates include unresolved star-forming galaxies, starburst galaxies, and blazars. In this paper we calculate the EGB contribution from the interactions of cosmic rays accelerated by Type Ia supernovae, extending earlier work which only included core-collapse supernovae. We consider Type Ia events in star-forming galaxies, but also in quiescent galaxies that lack star formation. In the case of star-forming galaxies, consistently including Type Ia events makes little change to the star-forming EGB prediction, so long as both supernova types have the same cosmic-ray acceleration efficiencies in star-forming galaxies. Thus our updated EGB estimate continues to show that star-forming galaxies can represent a substantial portion of the signal measured by Fermi. In the case of quiescent galaxies, conversely, we find a wide range of possibilities for the EGB contribution. The dominant uncertainty we investigated comes from the mass in hot gas in these objects, which provides targets for cosmic rays: total gas masses are as yet poorly known, particularly at larger radii. Additionally, the EGB estimation is very sensitive to the cosmic-ray acceleration efficiency and confinement, especially in quiescent galaxies. In the most optimistic allowed scenarios, quiescent galaxies can be an important source of the EGB. In this case, star-forming galaxies and quiescent galaxies together will dominate the EGB and leave little room for other contributions. If other sources, such as blazars, are found to have important contributions to the EGB, then either the gas mass or cosmic-ray content of quiescent galaxies must be significantly lower than in their star-forming counterparts. In any case, improved Fermi EGB measurements will provide important constraints on hot gas and cosmic rays in quiescent galaxies.

  18. An optical view of extragalactic gamma-ray emitters

    NASA Astrophysics Data System (ADS)

    Paiano, Simona; Falomo, Renato; Landoni, Marco; Treves, Aldo; Scarpa, Riccardo

    2017-11-01

    The Fermi Gamma-ray Observatory discovered about a thousand extragalactic sources emitting energy from 100 MeV to 100 GeV. The majority of these sources belong to the class of blazars characterized by a quasi-featureless optical spectrum (BL Lac Objects). This hampers the determination of their redshift and therefore hinders the characterization of this class of objects. To investigate the nature of these sources and to determine their redshift, we are carrying out an extensive campaign at the 10m Gran Telescopio Canarias to secure high signal-to-noise ratio optical spectra. These observations allow us to confirm the blazar nature of the targets, to find new redshifts or to set stringent limits on the redshift based on the minimum equivalent width of absorption features expected from their host galaxy, assuming it is a massive elliptical galaxy.These results are of importance for the multi-frequencies emission models of the blazars, to test their extreme physics, to shed light on their cosmic evolution and abundance in the far Universe.These gamma emitters are also of great importance for the characterization of the extragalactic background light through the absorption by the IR-optical background photons.

  19. The Third EGRET Catalog of High-Energy Gamma-Ray Sources

    NASA Technical Reports Server (NTRS)

    Hartman, R. C.; Bertsch, D. L.; Bloom, S. D.; Chen, A. W.; Deines-Jones, P.; Esposito, J. A.; Fichtel, C. E.; Friedlander, D. P.; Hunter, S. D.; McDonald, L. M.; hide

    1998-01-01

    The third catalog of high-energy gamma-ray sources detected by the EGRET telescope on the Compton Gamma Ray Observatory includes data from 1991 April 22 to 1995 October 3 (Cycles 1, 2, 3, and 4 of the mission). In addition to including more data than the second EGRET catalog (Thompson et al. 1995) and its supplement (Thompson et al. 1996), this catalog uses completely reprocessed data (to correct a number of mostly minimal errors and problems). The 271 sources (E greater than 100 MeV) in the catalog include the single 1991 solar flare bright enough to be detected as a source, the Large Magellanic Cloud, five pulsars, one probable radio galaxy detection (Cen A), and 66 high-confidence identifications of blazars (BL Lac objects, flat-spectrum radio quasars, or unidentified flat-spectrum radio sources). In addition, 27 lower-confidence potential blazar identifications are noted. Finally, the catalog contains 170 sources not yet identified firmly with known objects, although potential identifications have been suggested for a number of those. A figure is presented that gives approximate upper limits for gamma-ray sources at any point in the sky, as well as information about sources listed in the second catalog and its supplement which do not appear in this catalog.

  20. The Third EGRET Catalog of High-Energy Gamma-Ray Sources

    NASA Technical Reports Server (NTRS)

    Hartman, R. C.; Bertsch, D. L.; Bloom, S. D.; Chen, A. W.; Deines-Jones, P.; Esposito, J. A.; Fichtel, C. E.; Friedlander, D. P.; Hunter, S. D.; McDonald, L. M.; hide

    1998-01-01

    The third catalog of high-energy gamma-ray sources detected by the EGRET telescope on the Compton Gamma Ray Observatory includes data from 1991 April 22 to 1995 October 3 (Cycles 1, 2, 3, and 4 of the mission). In addition to including more data than the second EGRET catalog and its supplement, this catalog uses completely reprocessed data (to correct a number of mostly minimal errors and problems). The 271 sources (E greater than 100 MeV) in the catalog include the single 1991 solar flare bright enough to be detected as a source, the Large Magellanic Cloud, five pulsars, one probable radio galaxy detection (Cen A), and 66 high-confidence identifications of blazars (BL Lac objects, flat-spectrum radio quasars, or unidentified flat-spectrum radio sources). In addition, 27 lower-confidence potential blazar identifications are noted. Finally, the catalog contains 170 sources not yet identified firmly with known objects, although potential identifications have been suggested for a number of those. A figure is presented that gives approximate upper limits for gamma-ray sources at any point in the sky, as well as information about sources listed in the second catalog and its supplement which do not appear in this catalog.

  1. THE BLAZAR EMISSION ENVIRONMENT: INSIGHT FROM SOFT X-RAY ABSORPTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furniss, A.; Williams, D. A.; Fumagalli, M.

    Collecting experimental insight into the relativistic particle populations and emission mechanisms at work within TeV-emitting blazar jets, which are spatially unresolvable in most bands and have strong beaming factors, is a daunting task. New observational information has the potential to lead to major strides in understanding the acceleration site parameters. Detection of molecular carbon monoxide (CO) in TeV emitting blazars, however, implies the existence of intrinsic gas, a connection often found in photo-dissociated region models and numerical simulations. The existence of intrinsic gas within a blazar could provide a target photon field for Compton up-scattering of photons to TeV energiesmore » by relativistic particles. We investigate the possible existence of intrinsic gas within the three TeV emitting blazars RGB J0710+591, W Comae, and 1ES 1959+650 which have measurements or upper limits on molecular CO line luminosity using an independent technique that is based on the spectral analysis of soft X-rays. Evidence for X-ray absorption by additional gas beyond that measured within the Milky Way is searched for in Swift X-ray Telescope (XRT) data between 0.3 and 10 keV. Without complementary information from another measurement, additional absorption could be misinterpreted as an intrinsically curved X-ray spectrum since both models can frequently fit the soft X-ray data. After breaking this degeneracy, we do not find evidence for intrinsically curved spectra for any of the three blazars. Moreover, no evidence for intrinsic gas is evident for RGB J0710+591 and W Comae, while the 1ES 1959+650 XRT data support the existence of intrinsic gas with a column density of {approx}1 Multiplication-Sign 10{sup 21} cm{sup -2}.« less

  2. Fermi Large Area Telescope Constraints On The Gamma-Ray Opacity Of The Universe

    DOE PAGES

    Abdo, A. A.

    2010-10-19

    The extragalactic background light (EBL) includes photons with wavelengths from ultraviolet to infrared, which are effective at attenuating gamma rays with energy above ~10 GeV during propagation from sources at cosmological distances. This results in a redshift- and energy-dependent attenuation of the γ-ray flux of extragalactic sources such as blazars and gamma-ray bursts (GRBs). The Large Area Telescope on board Fermi detects a sample of γ-ray blazars with redshift up to z ~ 3, and GRBs with redshift up to z ~ 4.3. Using photons above 10 GeV collected by Fermi over more than one year of observations for thesemore » sources, we investigate the effect of γ-ray flux attenuation by the EBL. We place upper limits on the γ-ray opacity of the universe at various energies and redshifts and compare this with predictions from well-known EBL models. We find that an EBL intensity in the optical-ultraviolet wavelengths as great as predicted by the "baseline" model of Stecker et al. can be ruled out with high confidence.« less

  3. New Gener. High-Energy Spectra of the Blazar 3C 279 with XMM-Newton and GLAST

    NASA Astrophysics Data System (ADS)

    Collmar, Werner

    2007-10-01

    We propose two 20 ksec XMM-Newton observations of the X-ray bright gamma-ray blazar 3C~279 simultaneous with GLAST/LAT. The main goal is to measure its X-ray properties (spectrum, variability) in order to (1) improve our knowledge on the X-ray emission of the blazar, and (2) to supplement and correlate them to simultaneous GLAST/LAT Gamma-ray observations (30 MeV-300 GeV). Simultaneous GLAST observations of 3C 279 are guaranteed (assuming proper operation then). The high-energy data will be supplemented by ground-based measurements, adding finally up to multifrequency spectra which have unprecedented accuracy and will extend up to high-energy gamma-rays. Such high-quality SEDs will provide severe constraints on their modeling and have the potential to discriminate among models.

  4. Gamma-Ray Flaring Activity from the Gravitationally Lensed Blazar PKS 1830-211 Observed by Fermi LAT

    NASA Astrophysics Data System (ADS)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Allafort, A.; Amin, M. A.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Blandford, R. D.; Bonamente, E.; Borgland, A. W.; Bregeon, J.; Brigida, M.; Buehler, R.; Bulmash, D.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Cavazzuti, E.; Cecchi, C.; Charles, E.; Cheung, C. C.; Chiang, J.; Chiaro, G.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Conrad, J.; Corbet, R. H. D.; Cutini, S.; D'Ammando, F.; de Angelis, A.; de Palma, F.; Dermer, C. D.; Drell, P. S.; Drlica-Wagner, A.; Favuzzi, C.; Finke, J.; Focke, W. B.; Fukazawa, Y.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Giglietto, N.; Giordano, F.; Giroletti, M.; Glanzman, T.; Grenier, I. A.; Grove, J. E.; Guiriec, S.; Hadasch, D.; Hayashida, M.; Hays, E.; Hughes, R. E.; Inoue, Y.; Jackson, M. S.; Jogler, T.; Jóhannesson, G.; Johnson, A. S.; Kamae, T.; Knödlseder, J.; Kuss, M.; Lande, J.; Larsson, S.; Latronico, L.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Madejski, G. M.; Mazziotta, M. N.; Mehault, J.; Michelson, P. F.; Mizuno, T.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nemmen, R.; Nuss, E.; Ohno, M.; Ohsugi, T.; Paneque, D.; Perkins, J. S.; Pesce-Rollins, M.; Piron, F.; Pivato, G.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Reimer, A.; Reimer, O.; Reyes, L. C.; Ritz, S.; Romoli, C.; Roth, M.; Saz Parkinson, P. M.; Sgrò, C.; Siskind, E. J.; Spandre, G.; Spinelli, P.; Takahashi, H.; Takeuchi, Y.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Tinivella, M.; Torres, D. F.; Tosti, G.; Troja, E.; Tronconi, V.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Vianello, G.; Vitale, V.; Waite, A. P.; Werner, M.; Winer, B. L.; Wood, K. S.

    2015-02-01

    The Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope routinely detects the MeV-peaked flat-spectrum radio quasar PKS 1830-211 (z = 2.507). Its apparent isotropic γ-ray luminosity (E > 100 MeV), averaged over ~3 years of observations and peaking on 2010 October 14/15 at 2.9 × 1050 erg s-1, makes it among the brightest high-redshift Fermi blazars. No published model with a single lens can account for all of the observed characteristics of this complex system. Based on radio observations, one expects time-delayed variability to follow about 25 days after a primary flare, with flux about a factor of 1.5 less. Two large γ-ray flares of PKS 1830-211 have been detected by the LAT in the considered period, and no substantial evidence for such a delayed activity was found. This allows us to place a lower limit of about 6 on the γ-ray flux ratio between the two lensed images. Swift XRT observations from a dedicated Target of Opportunity program indicate a hard spectrum with no significant correlation of X-ray flux with the γ-ray variability. The spectral energy distribution can be modeled with inverse Compton scattering of thermal photons from the dusty torus. The implications of the LAT data in terms of variability, the lack of evident delayed flare events, and different radio and γ-ray flux ratios are discussed. Microlensing effects, absorption, size and location of the emitting regions, the complex mass distribution of the system, an energy-dependent inner structure of the source, and flux suppression by the lens galaxy for one image path may be considered as hypotheses for understanding our results.

  5. Gamma-ray flaring activity from the gravitationally lensed blazar PKS 1830-211 observed by Fermi LAT

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2015-01-23

    We present that the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope routinely detects the MeV-peaked flat-spectrum radio quasar PKS 1830–211 (z = 2.507). Its apparent isotropic γ-ray luminosity (E > 100 MeV), averaged over ~3 years of observations and peaking on 2010 October 14/15 at 2.9 × 10 50 erg s –1, makes it among the brightest high-redshift Fermi blazars. No published model with a single lens can account for all of the observed characteristics of this complex system. Based on radio observations, one expects time-delayed variability to follow about 25 days after a primary flare,more » with flux about a factor of 1.5 less. Two large γ-ray flares of PKS 1830–211 have been detected by the LAT in the considered period, and no substantial evidence for such a delayed activity was found. This allows us to place a lower limit of about 6 on the γ-ray flux ratio between the two lensed images. Swift XRT observations from a dedicated Target of Opportunity program indicate a hard spectrum with no significant correlation of X-ray flux with the γ-ray variability. The spectral energy distribution can be modeled with inverse Compton scattering of thermal photons from the dusty torus. The implications of the LAT data in terms of variability, the lack of evident delayed flare events, and different radio and γ-ray flux ratios are discussed. Lastly, microlensing effects, absorption, size and location of the emitting regions, the complex mass distribution of the system, an energy-dependent inner structure of the source, and flux suppression by the lens galaxy for one image path may be considered as hypotheses for understanding our results.« less

  6. Investigating Possible Outliers in the Fermi Blazar AGN Sample

    NASA Astrophysics Data System (ADS)

    Shrader, Chris

    2018-01-01

    The Fermi Gamma-Ray Space Telescope (Fermi) has cataloged over 3000 gamma-ray (>100 MeV) point sources of which more than 1100 are likely AGN. These AGN are predominantly among the radio-loud “blazar” subclass. Recently however, a significant sample of bright (F_15GHz >1.5 Jy), radio selected AGN was found to overlap with Fermi at only the ~80% level (Lister et. al., 2015). This could be a result of some selection bias or it could be due to deficient Doppler boosting among that ~20%. Additionally, a recent survey of high-latitude gamma-ray sources by Schinzel et al. (2017) reveals a sample of ~100 objects which are not detected in the 4-10 GHz radio band to a limiting flux of about 2mJy. This apparent lack of radio flux is puzzling, and may indicate either an extreme Compton-dominated sample, or copious gamma-ray emission from a heretofore unknown population such as a subclass of radio-quiet AGN. Speculatively, these radio-loud/gamma-quiet and gamma-loud/radio quiet samples could be odd cases of the blazar phenomena which reside outside of the well-known blazar sequence. To explore this problem further we have undertaken a study to construct or constrain individual source SEDs as a first step towards their classification. In this contribution we present results from our search for emission in the Swift-BAT 15-100-keV hard X-ray band for each of these samples.

  7. A Method for Localizing Energy Dissipation in Blazars Using Fermi Variability

    NASA Technical Reports Server (NTRS)

    Dotson, Amanda; Georganopoulos, Markos; Kazanas, Demosthenes; Perlman, Eric S.

    2013-01-01

    The distance of the Fermi-detected blazar gamma-ray emission site from the supermassive black hole is a matter of active debate. Here we present a method for testing if the GeV emission of powerful blazars is produced within the sub-pc scale broad line region (BLR) or farther out in the pc-scale molecular torus (MT) environment. If the GeV emission takes place within the BLR, the inverse Compton (IC) scattering of the BLR ultraviolet (UV) seed photons that produces the gamma-rays takes place at the onset of the Klein-Nishina regime. This causes the electron cooling time to become practically energy independent and the variation of the gamma-ray emission to be almost achromatic. If on the other hand the -ray emission is produced farther out in the pc-scale MT, the IC scattering of the infrared (IR) MT seed photons that produces the gamma-rays takes place in the Thomson regime, resulting to energy-dependent electron cooling times, manifested as faster cooling times for higher Fermi energies. We demonstrate these characteristics and discuss the applicability and limitations of our method.

  8. Synchrotron pair halo and echo emission from blazars in the cosmic web: application to extreme TeV blazars

    NASA Astrophysics Data System (ADS)

    Oikonomou, Foteini; Murase, Kohta; Kotera, Kumiko

    2014-08-01

    High frequency peaked, high redshift blazars, are extreme in the sense that their spectrum is particularly hard and peaks at TeV energies. Standard leptonic scenarios require peculiar source parameters and/or a special setup in order to account for these observations. Electromagnetic cascades seeded by ultra-high energy cosmic rays (UHECR) in the intergalactic medium have also been invoked, assuming a very low intergalactic magnetic field (IGMF). Here we study the synchrotron emission of UHECR secondaries produced in blazars located in magnetised environments, and show that it can provide an alternative explanation to these challenged channels, for sources embedded in structured regions with magnetic field strengths of the order of 10-7 G. To demonstrate this, we focus on three extreme blazars: 1ES 0229+200, RGB J0710+591, and 1ES 1218+304. We model the expected gamma-ray signal from these sources through a combination of numerical Monte Carlo simulations and solving the kinetic equations of the particles in our simulations, and explore the UHECR source and intergalactic medium parameter space to test the robustness of the emission. We show that the generated synchrotron-pair halo and echo flux at the peak energy is not sensitive to variations in the overall IGMF strength. This signal is unavoidable in contrast to the inverse Compton-pair halo and echo intensity, which is appealing in view of the large uncertainties on the IGMF in voids of large scale structure. It is also shown that the variability of blazar gamma-ray emission can be accommodated by the synchrotron emission of secondary products of UHE neutral beams if these are emitted by UHECR accelerators inside magnetised regions.

  9. Distributions of Gamma-Ray Bursts and Blazars in the L p-E p-Plane and Possible Implications for their Radiation Physics

    NASA Astrophysics Data System (ADS)

    Lyu, Fen; Liang, En-Wei; Liang, Yun-Feng; Wu, Xue-Feng; Zhang, Jin; Sun, Xiao-Na; Lu, Rui-Jing; Zhang, Bing

    2014-09-01

    We present a spectral analysis for a sample of redshift-known gamma-ray bursts (GRBs) observed with Fermi/GBM. Together with the results derived from our systematical spectral energy distribution modeling with the leptonic models for a Fermi/LAT blazar sample, we compare the distributions of the GRBs and the blazars by plotting the synchrotron peak luminosity (L s) and the corresponding peak photon energy E s of blazars in the L p-E p-plane of GRBs, where L p and E p are the peak luminosity and peak photon energy of the GRB time-integrated νf ν spectrum, respectively. The GRBs are in the high-L p, high-E p corner of the plane and a tight L p-E p relation is found, i.e., L_p\\propto E_p2.13^{+0.54-0.46}. Both flat spectrum radio quasars (FSRQs) and low-synchrotron peaking BL Lac objects (LBLs) are clustered in the low-E p, low-L p corner. Intermediate- and high-synchrotron peaking BL Lac objects (IBLs and HBLs) have E s ~ 2 × 10-3-102 keV and L s ~ 1044-1047 erg s-1, but no dependence of L s on E s is found. We show that the tight Lp -Ep relation of GRBs is potentially explained with the synchrotron radiation of fast-cooling electrons in a highly magnetized ejecta, and the weak anti-correlation of L s-E s for FSRQs and LBLs may be attributed to synchrotron radiation of slow-cooling electrons in a moderately magnetized ejecta. The distributions of IBLs and HBLs in the L p-E p-plane may be interpreted with synchrotron radiation of fast-cooling electrons in a matter-dominated ejecta. These results may present a unified picture for the radiation physics of relativistic jets in GRBs and blazars within the framework of the leptonic synchrotron radiation models.

  10. Is the Universe More Transparent to Gamma Rays than Previously Thought?

    NASA Technical Reports Server (NTRS)

    Stecker, Floyd W.; Scully, Sean T.

    2009-01-01

    The MAGIC collaboration has recently reported the detection of the strong gamma-ray blazar 3C279 during a 1-2 day flare. They have used their spectral observations to draw conclusions regarding upper limits on the opacity of the Universe to high energy gamma-rays and, by implication, upper limits on the extragalactic mid-infrared background radiation. In this paper we examine the effect of gamma-ray absorption by the extragalactic infrared radiation on intrinsic spectra for this blazar and compare our results with the observational data on 3C279. We find agreement with our previous results, contrary to the recent assertion of the MAGIC group that the Universe is more transparent to gamma-rays than our calculations indicate. Our analysis indicates that in the energy range between approx. 80 and approx. 500 GeV, 3C279 has a best-fit intrinsic spectrum with a spectral index approx. 1.78 using our fast evolution model and approx. 2.19 using our baseline model. However, we also find that spectral indices in the range of 1.0 to 3.0 are almost as equally acceptable as the best fit spectral indices. Assuming the same intrinsic spectral index for this flare as for the 1991 flare from 3C279 observed by EGRET, viz., 2.02, which lies between our best fit indeces, we estimate that the MAGIC flare was approx.3 times brighter than the EGRET flare observed 15 years earlier.

  11. ON THE ORIGIN OF THE {gamma}-RAY/OPTICAL LAGS IN LUMINOUS BLAZARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janiak, Mateusz; Sikora, Marek; Moderski, Rafal

    2012-12-01

    Blazars are strongly variable sources that occasionally show spectacular flares visible in various energy bands. These flares are often, but not always, correlated. In a number of cases, the peaks of optical flares are found to be somewhat delayed with respect to the {gamma}-ray peaks. One notable example of such a delay was found in 3C 279 by Hayashida et al. and interpreted as a result of steeper drop with a distance of the energy density of an external radiation field than of the magnetic energy density. In this paper, we demonstrate that, in general, depending on the respective energymore » density profile along the jet, such lags can have both signs and that they can take place for any ratio of these energy densities. We study the dependence of such lags on the ratio of these energy densities at a distance of a maximal energy dissipation in a jet, on their gradients, as well as on the time profile of the relativistic electron injection within the moving source. We show how prominent such lags can be, and their expected timescales. We suggest that studies of such lags can provide a powerful tool to resolve the structure of relativistic jets and their radiative environment. As an example we model the lag observed in 3C 279, showing that in this object the flare is produced at a distance of a few parsecs from the central black hole, consistent with our previous inferences based on the spectra and optical polarization properties.« less

  12. Herschel PACS and SPIRE Observations of Blazar PKS 1510-089: A Case for Two Blazar Zones

    DOE PAGES

    Nalewajko, Krzysztof; Sikora, Marek; Madejski, Greg M.; ...

    2012-11-06

    In this paper, we present the results of observations of blazar PKS 1510–089 with the Herschel Space Observatory PACS and SPIRE instruments, together with multiwavelength data from Fermi/LAT, Swift, SMARTS, and Submillimeter Array. The source was found in a quiet state, and its far-infrared spectrum is consistent with a power law with a spectral index of α ≃ 0.7. Our Herschel observations were preceded by two "orphan" gamma-ray flares. The near-infrared data reveal the high-energy cutoff in the main synchrotron component, which cannot be associated with the main gamma-ray component in a one-zone leptonic model. This is because in suchmore » a model the luminosity ratio of the external-Compton (EC) and synchrotron components is tightly related to the frequency ratio of these components, and in this particular case an unrealistically high energy density of the external radiation would be implied. Therefore, we consider a well-constrained two-zone blazar model to interpret the entire data set. Finally, in this framework, the observed infrared emission is associated with the synchrotron component produced in the hot-dust region at the supra-parsec scale, while the gamma-ray emission is associated with the EC component produced in the broad-line region at the sub-parsec scale. In addition, the optical/UV emission is associated with the accretion disk thermal emission, with the accretion disk corona likely contributing to the X-ray emission.« less

  13. Roma-BZCAT: a multifrequency catalogue of blazars

    NASA Astrophysics Data System (ADS)

    Massaro, E.; Giommi, P.; Leto, C.; Marchegiani, P.; Maselli, A.; Perri, M.; Piranomonte, S.; Sclavi, S.

    2009-02-01

    We present a new catalogue of blazars based on multifrequency surveys and on an extensive review of the literature. Blazars are classified as BL Lacertae objects, as flat spectrum radio quasars or as blazars of uncertain/transitional type. Each object is identified by a root name, coded as BZB, BZQ and BZU for these three subclasses respectively, and by its coordinates. This catalogue is being built as a tool useful for the identification of the extragalactic sources that will be detected by present and future experiments for X and gamma-ray astronomy, like Swift, AGILE, Fermi-GLAST and Simbol-X. An electronic version is available from the ASI Science Data Center web site at http://www.asdc.asi.it/bzcat.

  14. Internal absorption of gamma-rays in relativistic blobs of active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Sitarek, Julian; Bednarek, Wlodek

    2007-06-01

    We investigate the production of gamma-rays in the inverse Compton (IC) scattering process by leptons accelerated inside relativistic blobs in jets of active galactic nuclei. Leptons are injected homogeneously inside the spherical blob and initiate IC e ± pair cascade in the synchrotron radiation (produced by the same population of leptons, SSC model), provided that the optical depth for gamma-rays is larger than unity. It is shown that for likely parameters internal absorption of gamma-rays has to be important. We suggest that new type of blazars might be discovered by the future simultaneous X-ray and γ-ray observations, showing peak emissions in the hard X-rays, and in the GeV γ-rays. Moreover, the considered scenario might be also responsible for the orphan X-ray flares recently reported from BL Lac type active galaxies.

  15. Fermi Spots a Record Flare from Blazar

    NASA Image and Video Library

    2015-07-10

    Blazar 3C 279's historic gamma-ray flare can be seen in this image from the Large Area Telescope (LAT) on NASA's Fermi satellite. Gamma rays with energies from 100 million to 100 billion electron volts (eV) are shown; for comparison, visible light has energies between 2 and 3 eV. The image spans 150 degrees, is shown in a stereographic projection, and represents an exposure from June 11 at 00:28 UT to June 17 at 08:17 UT. Credit: NASA/DOE/Fermi LAT Collaboration

  16. Dissecting the Gamma-Ray Background in Search of Dark Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cholis, Ilias; Hooper, Dan; McDermott, Samuel D.

    2014-02-01

    Several classes of astrophysical sources contribute to the approximately isotropic gamma-ray background measured by the Fermi Gamma-Ray Space Telescope. In this paper, we use Fermi's catalog of gamma-ray sources (along with corresponding source catalogs at infrared and radio wavelengths) to build and constrain a model for the contributions to the extragalactic gamma-ray background from astrophysical sources, including radio galaxies, star-forming galaxies, and blazars. We then combine our model with Fermi's measurement of the gamma-ray background to derive constraints on the dark matter annihilation cross section, including contributions from both extragalactic and galactic halos and subhalos. The resulting constraints are competitivemore » with the strongest current constraints from the Galactic Center and dwarf spheroidal galaxies. As Fermi continues to measure the gamma-ray emission from a greater number of astrophysical sources, it will become possible to more tightly constrain the astrophysical contributions to the extragalactic gamma-ray background. We project that with 10 years of data, Fermi's measurement of this background combined with the improved constraints on the astrophysical source contributions will yield a sensitivity to dark matter annihilations that exceeds the strongest current constraints by a factor of ~ 5 - 10.« less

  17. Observations of recent flares of the blazar 1ES1959+650 with VERITAS

    NASA Astrophysics Data System (ADS)

    Zhou, Yuyang; Santander, Marcos; VERITAS Collaboration

    2017-01-01

    VERITAS (Very Energetic Radiation Imaging Telescope Array System) is a an array of imaging atmospheric Cherenkov telescopes that carries out an extensive observation program of the gamma-ray sky at energies above 0.1 TeV. Blazars, active galactic nuclei powered by supermassive black holes, are gamma-ray sources of major interest. The relativistic jets they emit are among the most energetic phenomena in the universe and constitute a significant amount of study in high energy astrophysics. In particular, the blazar 1ES 1959+650 (z=0.048) has garnered special attention due to its emission of an ``orphan'' flare in 2002. An orphan flare is an extremely bright emission in gamma rays that is not coupled to X-rays. This phenomenon is incompatible with our current model of gamma-ray production, the self-synchrotron Compton (SSC) process. This study aims to characterize recent TeV flares of this source by analyzing the time variability of its light curve and spectrum and comparing these findings to observations made in other wavelengths. We hope to determine if these recent flares have also been orphan in nature, put an upper limit on the size of the emission region, and understand the nature of the gamma-ray emission in the source.

  18. RoboPol: blazar astrophysics from Skinakas with a unique optical

    NASA Astrophysics Data System (ADS)

    Pavlidou, V.

    2013-09-01

    Blazars are the most active galaxies known. They are powered by relativistic jets of matter speeding towards us almost head-on at the speed of light, radiating exclusively through extreme, non-thermal particle interactions, energized by accretion onto supermassive black holes. Despite intensive observational and theoretical efforts over the last four decades, the details of blazar astrophysics remain elusive. The launch of NASA's Fermi Gamma-ray Space Telescope in 2008 has provided an unprecedented opportunity for the systematic study of blazar jets and has prompted large-scale blazar monitoring efforts across wavelengths. In such a multi-wavelength campaign, a novel effect was discovered: fast changes in the optical polarization during gamma-ray flares. Such events probe the magnetic field structure in the jet and the evolution of disturbances responsible for blazar flares. Their systematic study can answer long-standing questions in our theoretical understanding of jets; however, until recently, optical polarimetry programs in operation were not adequate to find and follow similar events with the efficiency and time-resolution needed. RoboPol is a massive program of optical polarimetric monitoring of over 100 blazars, using an innovative, specially-designed and built polarimeter mounted on the 1.3 m telescope at Skinakas Observatory, a dynamical observing schedule, and a large amount of dedicated telescope time. The program is a collaboration between the University of Crete and the Foundation for Research and Technology - Hellas in Greece, the Max-Planck Institute for Radioastronomy in Germany, Caltech in the US, the Nicolaus Copernicus University in Poland, and the Inter-University Centre for Astronomy and Astrophysics in India. The instrument was successfully commissioned in March of 2013 and has been taking data since. In this talk we will review the RoboPol program, its potential for discovery in blazar astrophysics, and we will present results from its first

  19. Swift detection of increased X-ray activity from gamma-ray flaring blazar PKS 1424-41

    NASA Astrophysics Data System (ADS)

    Ciprini, Stefano; Cutini, Sara

    2013-01-01

    Following enduring gamma-ray flaring activity of the flat spectrum radio quasar PKS 1424-41 (also known as 2FGL J1428.0-4206, Nolan et al. 2012, ApJS, 199, 31) detected by Fermi LAT during January 2013, two Swift target of opportunity observations were performed on January 24 and 27, 2013. Recent gamma-ray and X-ray flaring activity from the source was observed on January 6 and January 7 (ATel#4714 and ATel #4717).

  20. NuSTAR Detection of the Blazar B2 1023+25 at Redshift 5.3

    NASA Technical Reports Server (NTRS)

    Sbarrato, T.; Tagliaferri, G.; Ghisellini, G.; Perri, M.; Puccetti, S.; Balokovic, M.; Nardini, M.; Stern, D.; Boggs, S. E.; Brandt, W. N.; hide

    2013-01-01

    B2 1023+25 is an extremely radio-loud quasar at zeta = 5.3 that was first identified as a likely high-redshift blazar candidate in the SDSS+FIRST quasar catalog. Here, we use the Nuclear Spectroscopic Telescope Array (NuSTAR) to investigate its non-thermal jet emission, whose high-energy component we detected in the hard X-ray energy band. The X-ray flux is approximately 5.5 × 10 (exp -14) erg cm(exp -2) s(exp -1) (5-10 keV) and the photon spectral index is Gamma(x) approx. =1.3-1.6. Modeling the full spectral energy distribution, we find that the jet is oriented close to the line of sight, with a viewing angle of approximately 3deg, and has significant Doppler boosting, with a large bulk Lorentz factor approximately 13, which confirms the identification of B2 1023+25 as a blazar. B2 1023+25 is the first object at redshift larger than 5 detected by NuSTAR, demonstrating the ability of NuSTAR to investigate the early X-ray universe and to study extremely active supermassive black holes located at very high redshift.

  1. Through the Ring of Fire: Gamma-Ray Variability in Blazars by a Moving Plasmoid Passing a Local Source of Seed Photons

    NASA Astrophysics Data System (ADS)

    MacDonald, Nicholas R.; Marscher, Alan P.; Jorstad, Svetlana G.; Joshi, Manasvita

    2015-05-01

    Blazars exhibit flares across the electromagnetic spectrum. Many γ-ray flares are highly correlated with flares detected at optical wavelengths; however, a small subset appears to occur in isolation, with little or no variability detected at longer wavelengths. These “orphan” γ-ray flares challenge current models of blazar variability, most of which are unable to reproduce this type of behavior. We present numerical calculations of the time-variable emission of a blazar based on a proposal by Marscher et al. to explain such events. In this model, a plasmoid (“blob”) propagates relativistically along the spine of a blazar jet and passes through a synchrotron-emitting ring of electrons representing a shocked portion of the jet sheath. This ring supplies a source of seed photons that are inverse-Compton scattered by the electrons in the moving blob. The model includes the effects of radiative cooling, a spatially varying magnetic field, and acceleration of the blob's bulk velocity. Synthetic light curves produced by our model are compared to the observed light curves from an orphan flare that was coincident with the passage of a superluminal knot through the inner jet of the blazar PKS 1510-089. In addition, we present Very Long Baseline Array polarimetric observations that point to the existence of a jet sheath in PKS 1510-089, thus providing further observational support for the plausibility of our model. An estimate of the bolometric luminosity of the sheath within PKS 1510-089 is made, yielding {{L}sh}˜ 3× {{10}45} erg {{s}-1}. This indicates that the sheath within PKS 1510-089 is potentially a very important source of seed photons.

  2. MULTIWAVELENGTH EVIDENCE FOR QUASI-PERIODIC MODULATION IN THE GAMMA-RAY BLAZAR PG 1553+113

    DOE PAGES

    Ackerman, M.

    2015-11-10

    We report for the first time a γ-ray and multiwavelength nearly-periodic oscillation in an active galactic nucleus. Using the Fermi Large Area Telescope (LAT) we have discovered an apparent quasi-periodicity in the γ-ray flux (E > 100 MeV) from the GeV/TeV BL Lac object PG 1553+113. The marginal significance of the 2.18±0.08 year-period γ-ray cycle is strengthened by correlated oscillations observed in radio and optical fluxes, through data collected in the OVRO, Tuorla, KAIT, and CSS monitoring programs and Swift UVOT. The optical cycle appearing in ~ 10 years of data has a similar period, while the 15 GHz oscillationmore » is less regular than seen in the other bands. Further long-term multi-wavelength monitoring of this blazar may discriminate among the possible explanations for this quasi-periodicity.« less

  3. Electron Acceleration and Efficiency in Nonthermal Gamma-Ray Sources

    NASA Astrophysics Data System (ADS)

    Bykov, A. M.; Meszaros, P.

    1996-04-01

    In energetic nonthermal sources such as gamma-ray bursts, active galactic nuclei, or galactic jets, etc., one expects both relativistic and transrelativistic shocks accompanied by violent motions of moderately relativistic plasma. We present general considerations indicating that these sites are electron and positron accelerators leading to a modified power-law spectrum. The electron (or e+/-) energy index is very hard, ~ gamma -1 or flatter, up to a comoving frame break energy gamma *, and becomes steeper above that. In the example of gamma-ray bursts, the Lorentz factor reaches gamma * ~ 103 for e+/- accelerated by the internal shock ensemble on subhydrodynamical timescales. For pairs accelerated on hydrodynamical timescales in the external shocks, similar hard spectra are obtained, and the break Lorentz factor can be as high as gamma * <~ 105. Radiation from the nonthermal electrons produces photon spectra with shapes and characteristic energies in qualitative agreement with observed generic gamma-ray burst and blazar spectra. The scenario described here provides a plausible way to solve one of the crucial problems of nonthermal high-energy sources, namely, the efficient transfer of energy from the proton flow to an appropriate nonthermal lepton component.

  4. FERMI GAMMA-RAY SPACE TELESCOPE OBSERVATIONS OF THE GAMMA-RAY OUTBURST FROM 3C454.3 IN NOVEMBER 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdo, A. A.; Ackermann, M.; Ajello, M.

    The flat-spectrum radio quasar 3C454.3 underwent an extraordinary 5 day {gamma}-ray outburst in 2010 November when the daily flux measured with the Fermi Large Area Telescope (LAT) at photon energies E > 100 MeV reached (66 {+-} 2) x 10{sup -6} photons cm{sup -2} s{sup -1}. This is a factor of three higher than its previous maximum flux recorded in 2009 December and {approx}> 5 times brighter than the Vela pulsar, which is normally the brightest source in the {gamma}-ray sky. The 3 hr peak flux was (85 {+-} 5)x10{sup -6} photons cm{sup -2} s{sup -1}, corresponding to an apparentmore » isotropic luminosity of (2.1 {+-} 0.2)x10{sup 50} erg s{sup -1}, the highest ever recorded for a blazar. In this Letter, we investigate the features of this exceptional event in the {gamma}-ray band of the Fermi-LAT. In contrast to previous flares of the same source observed with the Fermi-LAT, clear spectral changes are observed during the flare.« less

  5. Search for Gamma-Ray Emission from DES Dwarf Spheroidal Galaxy Candidates with Fermi-LAT Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drlica-Wagner, A.; et al.

    Due to their proximity, high dark-matter (DM) content, and apparent absence of non-thermal processes, Milky Way dwarf spheroidal satellite galaxies (dSphs) are excellent targets for the indirect detection of DM. Recently, eight new dSph candidates were discovered using the first year of data from the Dark Energy Survey (DES). We searched for gamma-ray emission coincident with the positions of these new objects in six years of Fermi Large Area Telescope data. We found no significant excesses of gamma-ray emission. Under the assumption that the DES candidates are dSphs with DM halo properties similar to the known dSphs, we computed individual and combined limits on the velocity-averaged DM annihilation cross section for these new targets. If the estimated DM content of these dSph candidates is confirmed, they will constrain the annihilation cross section to lie below the thermal relic cross section for DM particles with massesmore » $$\\lesssim 20\\,\\mathrm{GeV}$$ annihilating via the $$b\\bar{b}$$ or τ(+)τ(-) channels.« less

  6. Search for gamma-ray emission from des dwarf spheroidal galaxy candidates with Fermi LAT data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drlica-Wagner, A.; Albert, A.; Bechtol, K.

    Due to their proximity, high dark-matter (DM) content, and apparent absence of non-thermal processes, Milky Way dwarf spheroidal satellite galaxies (dSphs) are excellent targets for the indirect detection of DM. Recently, eight new dSph candidates were discovered using the first year of data from the Dark Energy Survey (DES). We searched for gamma-ray emission coincident with the positions of these new objects in six years of Fermi Large Area Telescope data. Here, we found no significant excesses of gamma-ray emission. Under the assumption that the DES candidates are dSphs with DM halo properties similar to the known dSphs, we computed individual and combined limits on the velocity-averaged DM annihilation cross section for these new targets. If the estimated DM content of these dSph candidates is confirmed, they will constrain the annihilation cross section to lie below the thermal relic cross section for DM particles with massesmore » $$\\lesssim 20\\;\\mathrm{GeV}$$ annihilating via the $$b\\bar{b}$$ or τ +τ - channels.« less

  7. Search for gamma-ray emission from des dwarf spheroidal galaxy candidates with Fermi LAT data

    DOE PAGES

    Drlica-Wagner, A.; Albert, A.; Bechtol, K.; ...

    2015-08-04

    Due to their proximity, high dark-matter (DM) content, and apparent absence of non-thermal processes, Milky Way dwarf spheroidal satellite galaxies (dSphs) are excellent targets for the indirect detection of DM. Recently, eight new dSph candidates were discovered using the first year of data from the Dark Energy Survey (DES). We searched for gamma-ray emission coincident with the positions of these new objects in six years of Fermi Large Area Telescope data. Here, we found no significant excesses of gamma-ray emission. Under the assumption that the DES candidates are dSphs with DM halo properties similar to the known dSphs, we computed individual and combined limits on the velocity-averaged DM annihilation cross section for these new targets. If the estimated DM content of these dSph candidates is confirmed, they will constrain the annihilation cross section to lie below the thermal relic cross section for DM particles with massesmore » $$\\lesssim 20\\;\\mathrm{GeV}$$ annihilating via the $$b\\bar{b}$$ or τ +τ - channels.« less

  8. Fast variability of tera-electron volt gamma rays from the radio galaxy M87.

    PubMed

    Aharonian, F; Akhperjanian, A G; Bazer-Bachi, A R; Beilicke, M; Benbow, W; Berge, D; Bernlöhr, K; Boisson, C; Bolz, O; Borrel, V; Braun, I; Brown, A M; Bühler, R; Büsching, I; Carrigan, S; Chadwick, P M; Chounet, L-M; Coignet, G; Cornils, R; Costamante, L; Degrange, B; Dickinson, H J; Djannati-Ataï, A; Drury, L O'c; Dubus, G; Egberts, K; Emmanoulopoulos, D; Espigat, P; Feinstein, F; Ferrero, E; Fiasson, A; Fontaine, G; Funk, Seb; Funk, S; Füssling, M; Gallant, Y A; Giebels, B; Glicenstein, J F; Goret, P; Hadjichristidis, C; Hauser, D; Hauser, M; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hoffmann, A; Hofmann, W; Holleran, M; Hoppe, S; Horns, D; Jacholkowska, A; de Jager, O C; Kendziorra, E; Kerschhaggl, M; Khélifi, B; Komin, Nu; Konopelko, A; Kosack, K; Lamanna, G; Latham, I J; Le Gallou, R; Lemière, A; Lemoine-Goumard, M; Lenain, J-P; Lohse, T; Martin, J M; Martineau-Huynh, O; Marcowith, A; Masterson, C; Maurin, G; McComb, T J L; Moulin, E; de Naurois, M; Nedbal, D; Nolan, S J; Noutsos, A; Orford, K J; Osborne, J L; Ouchrif, M; Panter, M; Pelletier, G; Pita, S; Pühlhofer, G; Punch, M; Ranchon, S; Raubenheimer, B C; Raue, M; Rayner, S M; Reimer, A; Ripken, J; Rob, L; Rolland, L; Rosier-Lees, S; Rowell, G; Sahakian, V; Santangelo, A; Saugé, L; Schlenker, S; Schlickeiser, R; Schröder, R; Schwanke, U; Schwarzburg, S; Schwemmer, S; Shalchi, A; Sol, H; Spangler, D; Spanier, F; Steenkamp, R; Stegmann, C; Superina, G; Tam, P H; Tavernet, J-P; Terrier, R; Tluczykont, M; van Eldik, C; Vasileiadis, G; Venter, C; Vialle, J P; Vincent, P; Völk, H J; Wagner, S J; Ward, M

    2006-12-01

    The detection of fast variations of the tera-electron volt (TeV) (10(12) eV) gamma-ray flux, on time scales of days, from the nearby radio galaxy M87 is reported. These variations are about 10 times as fast as those observed in any other wave band and imply a very compact emission region with a dimension similar to the Schwarzschild radius of the central black hole. We thus can exclude several other sites and processes of the gamma-ray production. The observations confirm that TeV gamma rays are emitted by extragalactic sources other than blazars, where jets are not relativistically beamed toward the observer.

  9. Time-Resolved SEDs of Blazars Flares

    NASA Astrophysics Data System (ADS)

    Kreikenbohm, A.; Dorner, D.; Kadler, M.; Beuchert, T.; Kreter, M.; Kreykenbohm, I.; Langejahn, M.; Leiter, K.; Mannheim, K.; Wilms, J.

    2017-10-01

    The origin of very-high-energy gamma rays in active galactic nuclei is still under debate. While snapshots of spectral energy distributions (SEDs) can usually be explained with simple competing models, the true emission mechanisms may be revealed from dynamic SED studies during exceptional source states. Based on the FACT monitoring program, we have set up a multiwavelength target-of-opportunity program which allows us to measure time-resolved SEDs during blazar flares. While the FACT and Fermi measurements cover the high energy peak continuously, X-ray observations with INTEGRAL and XMM-Newton are triggered in case of a bright flare. To distinguish orphan flares from time lags between the energy bands, this is combined with an X-ray monitoring with the Swift satellite. In December 2015, observations of the X-ray telescopes Swift and INTEGRAL were triggered during a moderately-high flux state of the TeV blazar Mrk 421. Pre- and post observations in X-rays are available from Swift-XRT. In this presentation, the results from the Mrk 421 ToO observations will be summarized.

  10. Gamma-ray monitoring of AGN and galactic black hole candidates by the Gamma-Ray Observatory

    NASA Technical Reports Server (NTRS)

    Wheaton, Wm. A.; Ling, James C.; Skelton, R. T.; Harmon, Alan; Fishman, Gerald J.; Meegan, Charles A.; Paciesas, William S.; Rubin, Brad; Wilson, Robert B.; Gruber, Duane E.

    1992-01-01

    The Burst and Transient Spectroscopy Experiment (BATSE) on the Compton Gamma-Ray Observatory has a powerful capability to provide nearly uninterrupted monitoring in the 25 keV-10 MeV range of both AGN and Galactic black hole candidates such as Cygnus X-1, using the occultation of cosmic sources by the Earth. Progress in background modeling indicates that the data accept region, or fit window tau, around the occultation step can be substantially increased over that conservatively assumed in earlier estimates of BATSE's Earth occultation sensitivity. We show samples of large-tau fits to background and source edges. As a result we expect to be able to perform long-term monitoring of Cygnus X-1 and many of the brighter AGN for the duration of the CGRO mission.

  11. Highlights of recent results from the VERITAS gamma-ray observatory

    NASA Astrophysics Data System (ADS)

    Fortson, Lucy; VERITAS Collaboration

    2016-05-01

    VERITAS is a major ground-based gamma-ray observatory comprising an array of four 12 meter air Cherenkov telescopes operating at the Fred Lawrence Whipple Observatory near Tucson, Arizona. Data taking has continued from 2007 with a major camera upgrade completed in 2012 resulting in the current sensitivity to very-high-energy (VHE) gamma rays between 85 GeV and 30 TeV. VERITAS has detected 54 sources (half of which have been discoveries) leading to many significant contributions to the field of VHE astronomy. These proceedings highlight some of the more recent VERITAS results from the blazar and galactic observing programs as well as measurements of the cosmic-ray electron spectrum, constraints on dark matter and a follow-up program for astrophysical neutrinos.

  12. Discovery of a new TeV gamma-ray source: VER J0521+211

    DOE PAGES

    Archambault, S.; Arlen, T.; Aune, T.; ...

    2013-09-27

    Here, we report the detection of a new TeV gamma-ray source, VER J0521+211, based on observations made with the VERITAS imaging atmospheric Cherenkov Telescope Array. These observations were motivated by the discovery of a cluster of >30 GeV photons in the first year of Fermi Large Area Telescope observations. VER J0521+211 is relatively bright at TeV energies, with a mean photon flux of (1.93 ± 0.13 stat ± 0.78 sys) × 10 –11 cm –2 s –1 above 0.2 TeV during the period of the VERITAS observations. The source is strongly variable on a daily timescale across all wavebands, frommore » optical to TeV, with a peak flux corresponding to ~0.3 times the steady Crab Nebula flux at TeV energies. Follow-up observations in the optical and X-ray bands classify the newly discovered TeV source as a BL Lac-type blazar with uncertain redshift, although recent measurements suggest z = 0.108. VER J0521+211 exhibits all the defining properties of blazars in radio, optical, X-ray, and gamma-ray wavelengths.« less

  13. Extremely Rapid X-Ray Flares of TeV Blazars in the RXTE Era

    NASA Astrophysics Data System (ADS)

    Zhu, S. F.; Xue, Y. Q.; Brandt, W. N.; Cui, W.; Wang, Y. J.

    2018-01-01

    Rapid flares from blazars in very high-energy (VHE) γ-rays challenge the common understanding of jets of active galactic nuclei (AGNs). The same population of ultra-relativistic electrons is often thought to be responsible for both X-ray and VHE emission. We thus systematically searched for X-ray flares at sub-hour timescales of TeV blazars in the entire Rossi X-ray Timing Explorer archival database. We found rapid flares from PKS 2005‑489 and S5 0716+714, and a candidate rapid flare from 1ES 1101‑232. In particular, the characteristic rise timescale of PKS 2005‑489 is less than half a minute, which, to our knowledge, is the shortest among known AGN flares at any wavelengths. The timescales of these rapid flares indicate that the size of the central supermassive black hole is not a hard lower limit on the physical size of the emission region of the flare. PKS 2005‑489 shows possible hard lags in its flare, which could be attributed to particle acceleration (injection); its flaring component has the hardest spectrum when it first appears. For all flares, the flaring components show similar hard spectra with {{Γ }}=1.7{--}1.9, and we estimate the magnetic field strength B ∼ 0.1–1.0 G by assuming synchrotron cooling. These flares could be caused by inhomogeneity of the jets. Models that can only produce rapid γ-ray flares but little synchrotron activity are less favorable.

  14. Exploring the Variability of the Fermi LAT Blazar Population

    NASA Astrophysics Data System (ADS)

    Macomb, Daryl J.; Shrader, C. R.

    2014-01-01

    The flux variability of the approximately 2000 point sources cataloged by the Fermi Gamma-Ray Space Telescope provide important clues to population characteristics. This is particularly true of the more than 1100 source that are likely AGN. By characterizing the intrinsic flux variability and distinguishing this variability from flaring behavior, we can better address questions of flare amplitudes, durations, recurrence times, and temporal profiles. A better understanding of the responsible physical environments, such as the scale and location of jet structures responsible for the high-energy emission, may emerge from such studies. Assessing these characteristics as a function of blazar sub-class is a further goal in order to address questions about the fundamentals of blazar AGN physics. Here we report on progress made in categorizing blazar flare behavior, and correlate these behaviors with blazar sub-type and other source parameters.

  15. Two Active States of the Narrow-Line Gamma-Ray-Loud AGN GB 1310 + 487

    NASA Technical Reports Server (NTRS)

    Sokolovsky, K. V.; Schinzel, F. K.; Tanaka, Y. T.; Abolmasov, P. K.; Angelakis, E.; Bulgarelli, A.; Carrasco, L.; Cenko, S. B.; Cheung, C. C.; Clubb, K. I.; hide

    2014-01-01

    Context. Previously unremarkable, the extragalactic radio source GB1310 487 showed gamma-ray flare on 2009 November 18, reaching a daily flux of approximately 10(exp -6) photons cm(exp -2) s(exp -1) at energies E greater than 100MeV and became one of the brightest GeV sources for about two weeks. Its optical spectrum shows strong forbidden-line emission while lacking broad permitted lines, which is not typical for a blazar. Instead, the spectrum resembles those of narrow emission-line galaxies. Aims. We investigate changes in the object's radio-to-GeV spectral energy distribution (SED) during and after the prominent gamma-ray flare with the aim of determining the nature of the object and of constraining the origin of the variable high-energy emission. Methods. The data collected by the Fermi and AGILE satellites at gamma-ray energies; Swift at X-ray and ultraviolet (UV); the Kanata, NOT, and Keck telescopes at optical; OAGH and WISE at infrared (IR); and IRAM30m, OVRO 40m, Effelsberg 100m, RATAN-600, and VLBA at radio are analyzed together to trace the SED evolution on timescales of months. Results. The gamma-ray radio-loud narrow-line active galactic nucleus (AGN) is located at redshift z = 0.638. It shines through an unrelated foreground galaxy at z = 0.500. The AGN light is probably amplified by gravitational lensing. The AGN SED shows a two-humped structure typical of blazars and gamma-ray-loud narrow-line Seyfert 1 galaxies, with the high-energy (inverse-Compton) emission dominating by more than an order of magnitude over the low-energy (synchrotron) emission during gamma-ray flares. The difference between the two SED humps is smaller during the low-activity state. Fermi observations reveal a strong correlation between the gamma-ray flux and spectral index, with the hardest spectrum observed during the brightest gamma-ray state. The gamma-ray flares occurred before and during a slow rising trend in the radio, but no direct association between gamma-ray and

  16. MULTIWAVELENGTH EVIDENCE FOR QUASI-PERIODIC MODULATION IN THE GAMMA-RAY BLAZAR PG 1553+113

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackermann, M.; Buehler, R.; Ajello, M.

    2015-11-10

    We report for the first time a γ-ray and multiwavelength nearly periodic oscillation in an active galactic nucleus. Using the Fermi Large Area Telescope we have discovered an apparent quasi-periodicity in the γ-ray flux (E > 100 MeV) from the GeV/TeV BL Lac object PG 1553+113. The marginal significance of the 2.18 ± 0.08 year period γ-ray cycle is strengthened by correlated oscillations observed in radio and optical fluxes, through data collected in the Owens Valley Radio Observatory, Tuorla, Katzman Automatic Imaging Telescope, and Catalina Sky Survey monitoring programs and Swift-UVOT. The optical cycle appearing in ∼10 years of datamore » has a similar period, while the 15 GHz oscillation is less regular than seen in the other bands. Further long-term multiwavelength monitoring of this blazar may discriminate among the possible explanations for this quasi-periodicity.« less

  17. Unveiling the nature of two unidentified EGRET blazar candidates through spectroscopic observations

    NASA Astrophysics Data System (ADS)

    Nkundabakura, P.; Meintjes, P. J.

    2012-11-01

    Studies using the Energetic Gamma-Ray Experiment Telescope (EGRET) revealed that blazars [flat-spectrum radio quasars (FSRQs) and BL Lac objects] emit most of their luminosity in the high-energy gamma-ray (E > 100 MeV) range. From the 271 sources observed by EGRET, 131 are still unidentified. A systematic search is conducted to identify possible high-energy gamma-ray blazars among the unidentified EGRET population. Based upon multiwavelength emission properties, 13 extragalactic radio sources were selected in the EGRET error boxes for further investigation. From the above-mentioned sample, results of a multiwavelength follow-up of two EGRET sources, 3EG J0821-5814 and 3EG J0706-3837, are presented. These sources are associated with their radio counterparts PKS J0820-5705 and PMN J0710-3850, respectively. Spectroscopic observations utilizing the SOAR/Goodman spectrograph at the Cerro Tololo Inter-American Observatory in Chile reveal a spectrum of PKS J0820-5705 that corresponds to that of a radio-loud active galactic nucleus (FSRQ) with redshift z = 0.06 ± 0.01, while the visibility of wide and narrow emission lines in the spectrum of PMN J0710-3850 resembles that of a low-ionization nuclear emission-line region (LINER) or type 1 Seyfert galaxy at z = 0.129 ± 0.001. The observed Ca II K&H lines depression ratio at 4000 Å showed a shallow depression of 8.8 ± 2.5 per cent for PKS J0820-5705 and 80 ± 1 per cent for PMN J0710-3850, suggesting the presence of a strong non-thermal optical contribution in PKS J0820-5705, which clearly distinguishes its spectrum from that of a radio galaxy. The weaker optical non-thermal contribution for PMN J0710-3850 is in accordance with that expected of a LINER. For PMN J0710-3850 the line flux ratios [O III] λ5007/Hβ < 3 and [N II] λ6583/Hα > 0.6 which are in agreement with the expected ratios of LINERs. However, the absence of [O II] λ3727 implies an anomalously low [O II]/[O III] < 0.5 ratio for a LINER, and agrees more

  18. Fermi observations of the very hard gamma-ray blazar PG 1553+113

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2009-12-22

    Here, we report the observations of PG 1553+113 during the first ~ 200 days of Fermi Gamma-ray Space Telescope science operations, from 2008 August 4 to 2009 February 22 (MJD 54682.7-54884.2). This is the first detailed study of PG 1553+113 in the GeV gamma-ray regime and it allows us to fill a gap of three decades in energy in its spectral energy distribution (SED). We find PG 1553+113 to be a steady source with a hard spectrum that is best fit by a simple power law in the Fermi energy band. We combine the Fermi data with archival radio, optical,more » X-ray, and very high energy (VHE) gamma-ray data to model its broadband SED and find that a simple, one-zone synchrotron self-Compton model provides a reasonable fit. PG 1553+113 has the softest VHE spectrum of all sources detected in that regime and, out of those with significant detections across the Fermi energy bandpass so far, the hardest spectrum in that energy regime. Thus, it has the largest spectral break of any gamma-ray source studied to date, which could be due to the absorption of the intrinsic gamma-ray spectrum by the extragalactic background light (EBL). Assuming this to be the case, we selected a model with a low level of EBL and used it to absorb the power-law spectrum from PG 1553+113 measured with Fermi (200 MeV-157 GeV) to find the redshift, which gave the best fit to the measured VHE data (90 GeV-1.1 TeV) for this parameterization of the EBL. We show that this redshift can be considered an upper limit on the distance to PG 1553+113.« less

  19. Kinematics of Parsec-scale Jets of Gamma-Ray Blazars at 43 GHz within the VLBA-BU-BLAZAR Program

    NASA Astrophysics Data System (ADS)

    Jorstad, Svetlana G.; Marscher, Alan P.; Morozova, Daria A.; Troitsky, Ivan S.; Agudo, Iván; Casadio, Carolina; Foord, Adi; Gómez, José L.; MacDonald, Nicholas R.; Molina, Sol N.; Lähteenmäki, Anne; Tammi, Joni; Tornikoski, Merja

    2017-09-01

    We analyze the parsec-scale jet kinematics from 2007 June to 2013 January of a sample of γ-ray bright blazars monitored roughly monthly with the Very Long Baseline Array at 43 GHz. In a total of 1929 images, we measure apparent speeds of 252 emission knots in 21 quasars, 12 BL Lacertae objects (BLLacs), and 3 radio galaxies, ranging from 0.02c to 78c; 21% of the knots are quasi-stationary. Approximately one-third of the moving knots execute non-ballistic motions, with the quasars exhibiting acceleration along the jet within 5 pc (projected) of the core, and knots in BLLacs tending to decelerate near the core. Using the apparent speeds of the components and the timescales of variability from their light curves, we derive the physical parameters of 120 superluminal knots, including variability Doppler factors, Lorentz factors, and viewing angles. We estimate the half-opening angle of each jet based on the projected opening angle and scatter of intrinsic viewing angles of knots. We determine characteristic values of the physical parameters for each jet and active galactic nucleus class based on the range of values obtained for individual features. We calculate the intrinsic brightness temperatures of the cores, {T}{{b},{int}}{core}, at all epochs, finding that the radio galaxies usually maintain equipartition conditions in the cores, while ˜30% of {T}{{b},{int}}{core} measurements in the quasars and BLLacs deviate from equipartition values by a factor >10. This probably occurs during transient events connected with active states. In the Appendix, we briefly describe the behavior of each blazar during the period analyzed.

  20. EGRET/COMPTEL Observations of an Unusual, Steep-Spectrum Gamma-Ray Source

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Bertsch, D. L.; Hartman, R. C.; Collmar, W.; Johnson, W. N.

    1999-01-01

    During analysis of sources below the threshold of the third EGRET catalog, we have discovered a source, named GRO J1400-3956 based on the best position, with a remarkably steep spectrum. Archival analysis of COMPTEL data shows that the spectrum must have a strong turn-over in the energy range between COMPTEL and EGRET. The EGRET data show some evidence of time variability, suggesting an AGN, but the spectral change of slope is larger than that seen for most gamma-ray blazars. The sharp cutoff resembles the high-energy spectral breaks seen in some gamma-ray pulsars. There have as yet been no OSSE observations of this source.

  1. ON ULTRA-HIGH-ENERGY COSMIC RAYS AND THEIR RESULTANT GAMMA-RAYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gavish, Eyal; Eichler, David

    2016-05-01

    The Fermi Large Area Telescope collaboration has recently reported on 50 months of measurements of the isotropic extragalactic gamma-ray background (EGRB) spectrum between 100 MeV and 820 GeV. Ultra-high-energy cosmic ray (UHECR) protons interact with the cosmic microwave background photons and produce cascade photons of energies 10 MeV–1 TeV that contribute to the EGRB flux. We examine seven possible evolution models for UHECRs and find that UHECR sources that evolve as the star formation rate (SFR), medium low luminosity active galactic nuclei type-1 ( L = 10{sup 43.5} erg s{sup −1} in the [0.5–2] KeV band), and BL Lacertae objectsmore » (BL Lacs) are the most acceptable given the constraints imposed by the observed EGRB. Other possibilities produce too much secondary γ -radiation. In all cases, the decaying dark matter (DM) contribution improves the fit at high energy, but the contribution of still unresolved blazars, which would leave the smallest role for decaying DM, may yet provide an alternative improvement. The possibility that the entire EGRB can be fitted with resolvable but not-yet-resolved blazars, as recently claimed by Ajello et al., would leave little room in the EGRB to accommodate γ -rays from extragalactic UHECR production, even for many source evolution rates that would otherwise be acceptable. We find that under the assumption of UHECRs being mostly protons, there is not enough room for producing extragalactic UHECRs with active galactic nucleus, gamma-ray burst, or even SFR source evolution. Sources that evolve as BL Lacs, on the other hand, would produce much less secondary γ -radiation and would remain a viable source of UHECRs, provided that they dominate.« less

  2. THE OUTBURST OF THE BLAZAR S5 0716+71 IN 2011 OCTOBER: SHOCK IN A HELICAL JET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larionov, V. M.; Jorstad, S. G.; Morozova, D. A.

    We present the results of optical (R band) photometric and polarimetric monitoring and Very Long Baseline Array (VLBA) imaging of the blazar S5 0716+714 along with Fermi {gamma}-ray data during a multi-waveband outburst in 2011 October. We analyze total and polarized intensity images of the blazar obtained with the VLBA at 43 GHz during and after the outburst. Monotonic rotation of the linear polarization vector at a rate of {approx}> 50 Degree-Sign per night coincided with a sharp maximum in {gamma}-ray and optical flux. At the same time, within the uncertainties, a new superluminal knot appeared with an apparent speedmore » of 21 {+-} 2c. The general multi-frequency behavior of the outburst can be explained within the framework of a shock wave propagating along a helical path in the blazar's jet.« less

  3. Yet another NIR flare of the Blazar BZBJ1454+5124

    NASA Astrophysics Data System (ADS)

    Carrasco, L.; Porras, A.; Recillas, E.; Escobedo, G.; Chavushyan, V.

    2018-05-01

    We call attention on our recent observation of the Gamma Ray source 3FGLJ1454.5+5124 related with the quasar SBS1452+516 (z=1.0831) On March 28th,2018,(JD24582015.0015), we found this blazar to be in a new outburst.

  4. The Fermi Large Area Telescope Thrid Gamma-ray Source Catalog

    NASA Astrophysics Data System (ADS)

    Stephens, Thomas E.; Ballet, Jean; Burnett, Toby; Cavazzuti, Elisabetta; Digel, Seth William; Fermi LAT Collaboration

    2015-01-01

    We present an overview of the third Fermi Large Area Telescope source catalog (3FGL) of sources in the 100 MeV - 300 GeV range. Based on the first four years of science data from the Fermi Gamma-ray Space Telescope mission, it is the deepest yet in this energy range. Relative to the 2FGL catalog (Nolan et al. 2012, ApJS 199, 31), the 3FGL catalog incorporates twice as much data as well as a number of analysis improvements, including improved calibrations at the event reconstruction level, an updated model for Galactic diffuse gamma-ray emission, a refined procedure for source detection, and improved methods for associating LAT sources with potential counterparts at other wavelengths. The 3FGL catalog includes 3033 sources, with source location regions, spectral properties, and monthly light curves for each. For approximately one-third of the sources we have not found counterparts at other wavelengths. More than 1100 of the identified or associated sources are active galaxies of the blazar class; several other classes of non-blazar active galaxies are also represented in the 3FGL. Pulsars represent the largest Galactic source class. From source counts of Galactic sources we estimate the contribution of unresolved sources to the Galactic diffuse emission.

  5. NuSTAR Hard X-Ray Observation of the Gamma-Ray Binary Candidate HESS J1832-093

    NASA Astrophysics Data System (ADS)

    Mori, Kaya; Gotthelf, E. V.; Hailey, Charles J.; Hord, Ben J.; de Oña Wilhelmi, Emma; Rahoui, Farid; Tomsick, John A.; Zhang, Shuo; Hong, Jaesub; Garvin, Amani M.; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Harrison, Fiona A.; Stern, Daniel; Zhang, William W.

    2017-10-01

    We present a hard X-ray observation of the TeV gamma-ray binary candidate HESS J1832-093, which is coincident with the supernova remnant G22.7-0.2, using the Nuclear Spectroscopic Telescope Array. Non-thermal X-ray emission from XMMU J183245-0921539, the X-ray source associated with HESS J1832-093, is detected up to ˜30 keV and is well-described by an absorbed power-law model with a best-fit photon index {{Γ }}=1.5+/- 0.1. A re-analysis of archival Chandra and XMM-Newton data finds that the long-term X-ray flux increase of XMMU J183245-0921539 is {50}-20+40 % (90% C.L.), much less than previously reported. A search for a pulsar spin period or binary orbit modulation yields no significant signal to a pulse fraction limit of {f}p< 19 % in the range 4 ms < P< 40 ks. No red noise is detected in the FFT power spectrum to suggest active accretion from a binary system. While further evidence is required, we argue that the X-ray and gamma-ray properties of XMMU J183245-0921539 are most consistent with a non-accreting binary generating synchrotron X-rays from particle acceleration in the shock formed as a result of the pulsar and stellar wind collision. We also report on three nearby hard X-ray sources, one of which may be associated with diffuse emission from a fast-moving supernova fragment interacting with a dense molecular cloud.

  6. Broadband spectral fitting of blazars using XSPEC

    NASA Astrophysics Data System (ADS)

    Sahayanathan, Sunder; Sinha, Atreyee; Misra, Ranjeev

    2018-03-01

    The broadband spectral energy distribution (SED) of blazars is generally interpreted as radiation arising from synchrotron and inverse Compton mechanisms. Traditionally, the underlying source parameters responsible for these emission processes, like particle energy density, magnetic field, etc., are obtained through simple visual reproduction of the observed fluxes. However, this procedure is incapable of providing confidence ranges for the estimated parameters. In this work, we propose an efficient algorithm to perform a statistical fit of the observed broadband spectrum of blazars using different emission models. Moreover, we use the observable quantities as the fit parameters, rather than the direct source parameters which govern the resultant SED. This significantly improves the convergence time and eliminates the uncertainty regarding initial guess parameters. This approach also has an added advantage of identifying the degenerate parameters, which can be removed by including more observable information and/or additional constraints. A computer code developed based on this algorithm is implemented as a user-defined routine in the standard X-ray spectral fitting package, XSPEC. Further, we demonstrate the efficacy of the algorithm by fitting the well sampled SED of blazar 3C 279 during its gamma ray flare in 2014.

  7. Examining the nature of very-high-energy gamma-ray emission from the AGN PKS 1222+216 and 3C 279

    NASA Astrophysics Data System (ADS)

    Price, Sharleen; Brill, Ari; Mukherjee, Reshmi; VERITAS

    2018-01-01

    Blazars are a type of active galactic nuclei (AGN) that emit jets of ionized matter which move towards the Earth at relativistic speeds. In this research we carried out a study of two objects, 3C 279 and PKS 1222+216, which belong to the subset of blazars known as FSRQs (flat spectrum radio quasars), the most powerful TeV-detected sources at gamma-ray energies with bolometric luminosities exceeding 1048 erg/s. The high-energy emission of quasars peaks in the MeV-GeV band, making these sources very rarely detectable in the TeV energy range. In fact, only six FSRQs have ever been detected in this range by very-high-energy gamma-ray telescopes. We will present results from observing campaigns on 3C 279 in 2014 and 2016, when the object was detected in high flux states by Fermi-LAT. Observations include simultaneous coverage with the Fermi-LAT satellite and the VERITAS ground-based array spanning four decades in energy from 100 MeV to 1 TeV. We will also report VERITAS observations of PKS 1222+216 between 2008 and 2017. The detection/non-detection of TeV emission during flaring episodes at MeV energies will further contribute to our understanding of particle acceleration and gamma-ray emission mechanisms in blazar jets.

  8. Fermi LAT detection of increased gamma-ray activity from blazar S5 0716+71

    NASA Astrophysics Data System (ADS)

    Buson, S.

    2014-04-01

    The Large Area Telescope (LAT), one of two instruments on-board the Fermi Gamma-ray Space Telescope, has observed an increase in gamma-ray activity from a source positionally coincident with the BL Lac object S5 0716+71 (also known as 2FGL J0721.9+7120, Nolan et al. ...

  9. The Blazar 3C 66A in 2003-2004: hadronic versus leptonic model fits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reimer, A.; Joshi, M.; Boettcher, M.

    2008-12-24

    The low-frequency peaked BL Lac object 3C 66A was the subject of an extensive multi-wavelength campaign from July 2003 till April 2004, which included quasi-simultaneous observations at optical, X-rays and very high energy gamma-rays. Here we apply the hadronic Synchrotron-Proton Blazar (SPB) model to the observed spectral energy distribution time-averaged over a flaring state, and compare the resulting model fits to those obtained from the application of the leptonic Synchrotron-Self-Compton (SSC) model. The results are used to identify diagnostic key predictions of the two blazar models for future multi-wavelength observations.

  10. The New Surprising Behaviour of the Two 'Prototype' Blazars PKS 2155-304 and 3C 279

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costamante, Luigi; /Stanford U., HEPL /KIPAC, Menlo Park; Aharonian, Felix

    2011-11-21

    Recent VHE observations have unveiled a surprising behaviour in two well-known blazars at opposite sides of the blazar sequence. PKS 2155-304 have shown for the first time in an HBL a large Compton dominance, high {gamma}-ray luminosities and a cubic relation between X-ray and VHE fluxes. 3C 279 is the first FSRQ detected at VHE. The high luminosity required to overcome the significant absorption caused by the BLR emission cannot be easily reconciled with the historical and quasi-simultaneous SED properties. Both cases shed a new light on the structure and ambient fields of blazars. Contrary to previous claims, it ismore » also shown that 3C 279 - as any FSRQ - cannot provide robust constraints on the EBL.« less

  11. Gamma ray monitoring of a AGN and galactic black hole candidates by the Compton Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Skelton, R. T.; Ling, James C.; Wheaton, William A.; Harmon, Alan; Fishman, G. J.; Meegan, C. A.; Paciesas, William S.; Gruber, Duane E.; Rubin, Brad; Wilson, R. B.

    1992-01-01

    The Compton Gamma-Ray Observatory's Burst and Transient Source Experiment (BATSE) has a powerful capability to provide nearly uninterrupted monitoring in the 25 keV-10 MeV range of both active galactic nuclei (AGN) and galactic black hole candidates (GBHC) such as Cygnus X-1, using the occultation of cosmic sources by the Earth. Since the Crab is detected by the BATSE Large Area Detectors with roughly 25(sigma) significance in the 15-125 keV range in a single rise or set, a variation by a factor of two of a source having one-tenth the strength of Cygnus X-1 should be detectable within a day. Methods of modeling the background are discussed which will increase the accuracy, sensitivity, and reliability of the results beyond those obtainable from a linear background fit with a single rise or set discontinuity.

  12. Redshift measurement of Fermi blazars for the Cherenkov telescope array

    NASA Astrophysics Data System (ADS)

    Pita, S.; Goldoni, P.; Boisson, C.; Cotter, G.; Lefaucheur, J.; Lenain, J.-P.; Lindfors, E.; Williams, D. A.

    2017-01-01

    Blazars are active galactic nuclei, and the most numerous High Energy (HE) and Very High Energy (VHE) γ-ray emitters. Their optical emission is often dominated by non-thermal, and, in the case of BL Lacs, featureless continuum radiation. This makes the determination of their redshift extremely difficult. Indeed, as of today only about 50% of γ-ray blazars have a measured spectroscopic redshift. The knowledge of redshift is fundamental because it allows the precise modeling of the VHE emission and also of its interaction with the extragalactic background light (EBL). The beginning of the Cherenkov Telescope Array (CTA) operations in the near future will allow the detection of several hundreds of new blazars. Using the Fermi catalogue of sources above 50 GeV (2FHL), we performed simulations which indicate that a significant fraction of the 2FHL blazars detectable by CTA will not have a measured redshift. As a matter of fact, the organization of observing campaigns to measure the redshift of these blazars has been recognized as a necessary support for the AGN Key Science Project of CTA. We are planning such an observing campaign. In order to optimize our chances of success, we will perform preliminary deep imaging observations aimed at detecting or setting upper limits to the host galaxy. We will then take spectra of the candidates with the brightest host galaxies. Taking advantage of the recent success of an X-shooter GTO observing campaign, these observations will be different with respect to previous ones due to the use of higher resolution spectrographs and of 8 meter class telescopes. We are starting to submit proposals for these observations. In this paper we briefly describe how candidates are selected and the corresponding observation program.

  13. DISCOVERY OF HIGH-ENERGY AND VERY HIGH ENERGY {gamma}-RAY EMISSION FROM THE BLAZAR RBS 0413

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aliu, E.; Archambault, S.; Arlen, T.

    2012-05-10

    We report on the discovery of high-energy (HE; E > 0.1 GeV) and very high energy (VHE; E > 100 GeV) {gamma}-ray emission from the high-frequency-peaked BL Lac object RBS 0413. VERITAS, a ground-based {gamma}-ray observatory, detected VHE {gamma} rays from RBS 0413 with a statistical significance of 5.5 standard deviations ({sigma}) and a {gamma}-ray flux of (1.5 {+-} 0.6{sub stat} {+-} 0.7{sub syst}) Multiplication-Sign 10{sup -8} photons m{sup -2} s{sup -1} ({approx}1% of the Crab Nebula flux) above 250 GeV. The observed spectrum can be described by a power law with a photon index of 3.18 {+-} 0.68{sub stat}more » {+-} 0.30{sub syst}. Contemporaneous observations with the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope detected HE {gamma} rays from RBS 0413 with a statistical significance of more than 9{sigma}, a power-law photon index of 1.57 {+-} 0.12{sub stat}+{sup 0.11}{sub -0.12sys}, and a {gamma}-ray flux between 300 MeV and 300 GeV of (1.64 {+-} 0.43{sub stat}{sup +0.31}{sub -0.22sys}) Multiplication-Sign 10{sup -5} photons m{sup -2} s{sup -1}. We present the results from Fermi-LAT and VERITAS, including a spectral energy distribution modeling of the {gamma}-ray, quasi-simultaneous X-ray (Swift-XRT), ultraviolet (Swift-UVOT), and R-band optical (MDM) data. We find that, if conditions close to equipartition are required, both the combined synchrotron self-Compton/external-Compton and the lepto-hadronic models are preferred over a pure synchrotron self-Compton model.« less

  14. Polarization swings reveal magnetic energy dissipation in blazars

    DOE PAGES

    Zhang, Haocheng; Chen, Xuhui; Böttcher, Markus; ...

    2015-05-01

    The polarization signatures of blazar emissions are known to be highly variable. In addition to small fluctuations of the polarization angle around a mean value, large (≳ 180°) polarization angle swings are observed. We suggest that such phenomena can be interpreted as arising from light-travel-time effects within an underlying axisymmetric emission region. We present the first simultaneous fitting of the multi-wavelength spectrum, variability, and time-dependent polarization features of a correlated optical and gamma-ray flaring event of the prominent blazar 3C279, which was accompanied by a drastic change in its polarization signatures. This unprecedented combination of spectral, variability, and polarization informationmore » in a coherent physical model allows us to place stringent constraints on the particle acceleration and magnetic-field topology in the relativistic jet of a blazar, strongly favoring a scenario in which magnetic energy dissipation is the primary driver of the flare event.« less

  15. Blazar Astronomy above 50 GeV

    NASA Astrophysics Data System (ADS)

    Smith, D. A.

    This contribution is dedicated to the memory of Chaman L. Bhat, an atmospheric Cherenkov pioneer and a leader of the Indian gamma-ray community, who died in a road accident on Mt. Abu on December 17, just after the workshop. While few blazars have been detected beyond EGRET energies, these extreme cases may be the ones that 'make or break' some models describing blazars in particular, and therefore AGNs in general. This paper first reviews the status of the various atmospheric Cherenkov gamma-ray telescopes. We then describe the most recent results from these instruments, paying particular attention to the recent detection of 1ES 1426+428 by the Whipple, CAT, and HEGRA imagers. We illustrate the dilemma of target selection using the example of W Com. We then discuss the consequences of the first measurements of Mrk 421 below 100 GeV by the solar heliostat arrays CELESTE and STACEE. This first foray into the energy range linking EGRET with the current imagers requires us to start using functional forms for the spectral energy distributions that are more physical than the simple power laws (or parabolas) used up to now to describe the imager or satellite results. We can hope that HESS, followed by MAGIC and VERITAS, as well as CELESTE and STACEE, will make this a recurring problem in 2002 and 2003.

  16. Variations of the Blazar AO 0235+164 in 2006-2015

    NASA Astrophysics Data System (ADS)

    Hagen-Thorn, V. A.; Larionov, V. M.; Morozova, D. A.; Arkharov, A. A.; Hagen-Thorn, E. I.; Shablovinskaya, E. S.; Prokop'eva, M. S.; Yakovleva, V. A.

    2018-02-01

    The results of optical, radio, and gamma-ray observations of the blazar AO 0235+16 are presented, including photometric ( BV RIJHK) and polarimetric ( R)monitoring carried out at St. Petersburg State University and the Central (Pulkovo) Astronomical Observatory in 2007-2015, 43 GHz Very Long Baseline Interferometry radio observations processed at Boston University, and a gamma-ray light curve based on observationswith the Fermi space observatory are presented. Two strong outbursts were detected. The relative spectral energy distributions of the variable components responsible for the outbursts are determined; these follow power laws, but with different spectral indices. The degree of polarization was high in both outbursts; only an average relationship between the brightness and polarization can be found. There was no time lag between the variations in the optical and gamma-ray, suggesting that the sources of the radiation in the optical and gamma-ray are located in the same region of the jet.

  17. Multi-TeV flaring from blazars: Markarian 421 as a case study

    DOE PAGES

    Sahu, Sarira; Miranda, Luis Salvador; Rajpoot, Subhash

    2016-03-07

    The TeV blazar Markarian 421 underwent multi-TeV flaring during April 2004 and simultaneously observations in the X-ray and TeV energies were made. It was observed that the TeV outbursts had no counterparts in the lower energy range. One implication of this is that it might be an orphan flare. We show that Fermi-accelerated protons of energy ≤168 TeV can interact with the low energy tail of the background synchrotron self-Compton photons in the inner region of the blazar to produce the multi-TeV flare and our results fit very well with the observed spectrum. Based on our study, we predict thatmore » the blazars with a deep valley in between the end of the synchrotron spectrum and the beginning of the SSC spectrum are possible candidates for orphan flaring. Future possible candidates for this scenario are the HBLs Mrk 501 and PG 1553 + 113 objects.« less

  18. Gamma-Ray Astrophysics: New Insight Into the Universe

    NASA Technical Reports Server (NTRS)

    Fichtel, Carl E.; Trombka, Jacob I.

    1997-01-01

    During the 15 years that have passed since the first edition of this book was published, there has been a major increase in our knowledge of gamma-ray astronomy. Much of this advance arises from the extensive results that have been forthcoming from the Compton Gamma-Ray Observatory. There has been the discovery of a new class of gamma-ray objects, namely high-energy gamma- ray-emitting blazars, a special class of Active Galactic Nuclei, whose basic high-energy properties now seem to be understood. A much improved picture of our galaxy now exists in the frequency range of gamma rays. The question of whether cosmic rays are galactic or metagalactic now seems settled with certainty. Significant new information exists on the gamma-ray properties of neutron star pulsars, Seyfert galaxies, and gamma-ray bursts. Substantial new insight has been obtained on solar phenomena through gamma-ray observations. Hence, this seemed to be an appropriate time to write a new edition of this book to add the important scientific implications of these many new findings. The special importance of gamma-ray astrophysics had long been recognized by many physicists and astronomers, and theorists had pursued many aspects of the subject well before the experimental results began to become available. The slower development of the experimental side was not because of a lack of incentive, but due to the substantial experimental difficulties that had to be overcome. Thus, as the gamma-ray results became available in much greater number and detail, it was possible to build upon the theoretical work that already existed and to make substantial progress in the study of many of the phenomena involved. Consequently, a much better understanding of many of the astrophysical phenomena mentioned here and others is now possible. Our principal aims in writing this book are the same as they were for the first edition: to provide a text which describes the significance of gamma-ray astrophysics and to assemble

  19. Revisiting Quasi-periodic Modulation in γ -Ray Blazar PKS 2155-304 with Fermi Pass 8 Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Peng-fei; Liao, Neng-hui; Yan, Da-hai

    We examine the gamma-ray quasi-periodic variability of PKS 2155-304 with the latest publicly available Fermi -LAT Pass 8 data, which covers the years from 2008 August to 2016 October. We produce the light curves in two ways: the exposure-weighted aperture photometry and the maximum likelihood optimization. The light curves are then analyzed by using Lomb-Scargle Periodogram (LSP) and Weighted Wavelet Z-transform, and the results reveal a significant quasi-periodicity with a period of 1.74±0.13 years and a significance of ∼4.9 σ . The constraint of multifrequencies quasi-periodic variabilities on blazar emission model is discussed.

  20. Optical flare observed in the flaring gamma-ray blazar Ton 599

    NASA Astrophysics Data System (ADS)

    Pursimo, Tapio; Sagues, Ana; Telting, John; Ojha, Roopesh

    2017-11-01

    We report optical photometry of the flat spectrum radio quasar Ton 599, obtained with the 2.56m Nordic Optical Telescope in La Palma, to look for any enhanced optical activity associated with a recent flare in the daily averaged gamma-ray flux (ATel#10931, ATel#10937).

  1. IGR J12319-0749: Evidence for Another Extreme Blazar Found with INTEGRAL

    NASA Technical Reports Server (NTRS)

    Bassani, L.; Landi, R.; Marshall, F. E.; Malizia, A.; Bazzano, A.; Bird, A. J.; Gehrels, N.; Ubertini, P.; Masetti, N.

    2012-01-01

    We report on the identification of a new soft gamma-ray source, IGR J12319-0749, detected with the IBIS imager on board the INTEGRAL satellite. The source, which has an observed 20-100 keV flux of approx 8.3 × 10(exp -12) erg/sq. cm/ s, is spatially coincident with an active galactic nucleus (AGN) at redshift z = 3.12. The broad-band continuum, obtained by combining XRT and IBIS data, is flat (Gamma = 1.3) with evidence for a spectral break around 25 keV (100 keV in the source restframe). X-ray observations indicate flux variability, which is also supported by a comparison with a previous ROSAT measurement. IGR J12319-0749 is also a radio-emitting object likely characterised by a flat spectrum and high radio loudness; optically it is a broad-line emitting object with a massive black hole (2.8 × 10(exp 9) solar masses) at its centre. The source spectral energy distribution is similar to another high-redshift blazar, 225155+2217 at z = 3.668: both objects are bright, with a high accretion disk luminosity and a Compton peak located in the hard X-ray/soft gamma-ray band. IGR J12319-0749 is likely the second-most distant blazar detected so far by INTEGRAL.

  2. Diffuse Gamma Rays Galactic and Extragalactic Diffuse Emission

    NASA Technical Reports Server (NTRS)

    Moskalenko, Igor V.; Strong, Andrew W.; Reimer, Olaf

    2004-01-01

    Diffuse gamma rays consist of several components: truly diffuse emission from the interstellar medium, the extragalactic background, whose origin is not firmly established yet, and the contribution from unresolved and faint Galactic point sources. One approach to unravel these components is to study the diffuse emission from the interstellar medium, which traces the interactions of high energy particles with interstellar gas and radiation fields. Because of its origin such emission is potentially able to reveal much about the sources and propagation of cosmic rays. The extragalactic background, if reliably determined, can be used in cosmological and blazar studies. Studying the derived average spectrum of faint Galactic sources may be able to give a clue to the nature of the emitting objects.

  3. COLLISION-INDUCED MAGNETIC RECONNECTION AND A UNIFIED INTERPRETATION OF POLARIZATION PROPERTIES OF GRBs AND BLAZARS

    DOE PAGES

    Deng; Zhang; Zhang; ...

    2016-04-11

    The jet composition and energy dissipation mechanism of gamma-ray bursts (GRBs) and blazars are fundamental questions that remain not fully understood. One plausible model is to interpret the γ-ray emission of GRBs and optical emission of blazars as synchrotron radiation of electrons accelerated from the collision-induced magnetic dissipation regions in Poynting-flux-dominated jets. The polarization observation is an important and independent information to test this model. Based on our recent 3D relativistic MHD simulations of collision-induced magnetic dissipation of magnetically dominated blobs, here we perform calculations of the polarization properties of the emission in the dissipation region and apply the resultsmore » to model the polarization observational data of GRB prompt emission and blazar optical emission. In this article, we show that the same numerical model with different input parameters can reproduce well the observational data of both GRBs and blazars, especially the 90° polarization angle (PA) change in GRB 100826A and the 180° PA swing in blazar 3C279. This supports a unified model for GRB and blazar jets, suggesting that collision-induced magnetic reconnection is a common physical mechanism to power the relativistic jet emission from events with very different black hole masses.« less

  4. The Second Catalog of Flaring Gamma-Ray Sources from the Fermi All-sky Variability Analysis

    NASA Astrophysics Data System (ADS)

    Abdollahi, S.; Ackermann, M.; Ajello, M.; Albert, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Becerra Gonzalez, J.; Bellazzini, R.; Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; Bonino, R.; Bottacini, E.; Bregeon, J.; Bruel, P.; Buehler, R.; Buson, S.; Cameron, R. A.; Caragiulo, M.; Caraveo, P. A.; Cavazzuti, E.; Cecchi, C.; Chekhtman, A.; Cheung, C. C.; Chiaro, G.; Ciprini, S.; Conrad, J.; Costantin, D.; Costanza, F.; Cutini, S.; D'Ammando, F.; de Palma, F.; Desai, A.; Desiante, R.; Digel, S. W.; Di Lalla, N.; Di Mauro, M.; Di Venere, L.; Donaggio, B.; Drell, P. S.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Focke, W. B.; Franckowiak, A.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Giglietto, N.; Giomi, M.; Giordano, F.; Giroletti, M.; Glanzman, T.; Green, D.; Grenier, I. A.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hays, E.; Horan, D.; Jogler, T.; Jóhannesson, G.; Johnson, A. S.; Kocevski, D.; Kuss, M.; La Mura, G.; Larsson, S.; Latronico, L.; Li, J.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Magill, J. D.; Maldera, S.; Manfreda, A.; Mayer, M.; Mazziotta, M. N.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Negro, M.; Nuss, E.; Ohsugi, T.; Omodei, N.; Orienti, M.; Orlando, E.; Paliya, V. S.; Paneque, D.; Perkins, J. S.; Persic, M.; Pesce-Rollins, M.; Petrosian, V.; Piron, F.; Porter, T. A.; Principe, G.; Rainò, S.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer, O.; Sgrò, C.; Simone, D.; Siskind, E. J.; Spada, F.; Spandre, G.; Spinelli, P.; Stawarz, L.; Suson, D. J.; Takahashi, M.; Tanaka, K.; Thayer, J. B.; Thompson, D. J.; Torres, D. F.; Torresi, E.; Tosti, G.; Troja, E.; Vianello, G.; Wood, K. S.

    2017-09-01

    We present the second catalog of flaring gamma-ray sources (2FAV) detected with the Fermi All-sky Variability Analysis (FAVA), a tool that blindly searches for transients over the entire sky observed by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. With respect to the first FAVA catalog, this catalog benefits from a larger data set, the latest LAT data release (Pass 8), as well as from an improved analysis that includes likelihood techniques for a more precise localization of the transients. Applying this analysis to the first 7.4 years of Fermi observations, and in two separate energy bands 0.1-0.8 GeV and 0.8-300 GeV, a total of 4547 flares were detected with significance greater than 6σ (before trials), on the timescale of one week. Through spatial clustering of these flares, 518 variable gamma-ray sources were identified. Based on positional coincidence, likely counterparts have been found for 441 sources, mostly among the blazar class of active galactic nuclei. For 77 2FAV sources, no likely gamma-ray counterpart has been found. For each source in the catalog, we provide the time, location, and spectrum of each flaring episode. Studying the spectra of the flares, we observe a harder-when-brighter behavior for flares associated with blazars, with the exception of BL Lac flares detected in the low-energy band. The photon indexes of the flares are never significantly smaller than 1.5. For a leptonic model, and under the assumption of isotropy, this limit suggests that the spectrum of freshly accelerated electrons is never harder than p˜ 2.

  5. Coincidence of a high-fluence blazar outburst with a PeV-energy neutrino event

    DOE PAGES

    Kadler, M.; Krauß, F.; Mannheim, K.; ...

    2016-04-18

    The astrophysical sources of the extraterrestrial, very high-energy neutrinos detected by the IceCube collaboration remain to be identified. Gamma-ray (γ-ray) blazars have been predicted to yield a cumulative neutrino signal exceeding the atmospheric background above energies of 100 TeV, assuming that both the neutrinos and the γ-ray photons are produced by accelerated protons in relativistic jets. As the background spectrum falls steeply with increasing energy, the individual events with the clearest signature of being of extraterrestrial origin are those at petaelectronvolt energies. Inside the large positional-uncertainty fields of the first two petaelectronvolt neutrinos detected by IceCube, the integrated emission ofmore » the blazar population has a sufficiently high electromagnetic flux to explain the detected IceCube events, but fluences of individual objects are too low to make an unambiguous source association. In this paper, we report that a major outburst of the blazar PKS B1424–418 occurred in temporal and positional coincidence with a third petaelectronvolt-energy neutrino event (HESE-35) detected by IceCube. On the basis of an analysis of the full sample of γ-ray blazars in the HESE-35 field, we show that the long-term average γ-ray emission of blazars as a class is in agreement with both the measured all-sky flux of petaelectronvolt neutrinos and the spectral slope of the IceCube signal. Finally, the outburst of PKS B1424–418 provides an energy output high enough to explain the observed petaelectronvolt event, suggestive of a direct physical association.« less

  6. Multiwavelength observations of the gamma-ray blazar PKS 0528+134 in quiescence

    DOE PAGES

    Palma, N. I.; Böttcher, M.; de la Calle, I.; ...

    2011-06-16

    Here, we present multiwavelength observations of the ultraluminous blazar-type radio loud quasar PKS 0528+134 in quiescence during the period July to December 2009. Four Target-of-Opportunity (ToO) observations with the XMM-Newton Satellite in the 0.2 – 10 keV range were supplemented with optical observations.

  7. Fermi LAT detection of increased gamma-ray activity from the blazar TXS 1318+225

    NASA Astrophysics Data System (ADS)

    Torresi, E.; D'Ammando, F.; Tanaka, Y.

    2012-11-01

    The Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope, has observed an increase in the gamma-ray flux from a source positionally consistent with the flat spectrum radio quasar TXS 1318+225 (z=0.943, Sowards-Emmerd et al. 2003, ApJ, 590, 109; RA=200.2966771 deg, Dec=22.2700300 deg, J2000), also known as 2FGL J1321.1+2215 (Nolan et al. 2012, ApJS, 199, 31).

  8. Exploring the multiband emission of TXS 0536+145: the most distant -γray flaring blazar

    DOE PAGES

    Orienti, M.; D'Ammando, F.; Giroletti, M.; ...

    2014-09-15

    We report results of a multi-band monitoring campaign of the flat spectrum radio quasar TXS 0536+145 at redshift 2.69. This source was detected during a very high γ-ray activity state in 2012 March by the Large Area Telescope on board Fermi, becoming the γ-ray flaring blazar at the highest redshift detected so far. At the peak of the flare the source reached an apparent isotropic γ-ray luminosity of 6.6×1049 erg s-1 which is comparable to the values achieved by the most luminous blazars. This activity triggered radio-to-X-rays monitoring observations by Swift, Very Long Baseline Array, European VLBI Network, and Medicinamore » single-dish telescope. Significant variability was observed from radio to X-rays supporting the identification of the γ-ray source with TXS 0536+145. Both the radio and γ-ray light curves show a similar behaviour, with the γ-rays leading the radio variability with a time lag of about 4-6 months. The luminosity increase is associated with a flattening of the radio spectrum. No new superluminal component associated with the flare was detected in high resolution parsec-scale radio images. During the flare the γ-ray spectrum seems to deviate from a power law, showing a curvature that was not present during the average activity state. The γ-ray properties of TXS 0536+145 are consistent with those shown by the high-redshift γ-ray blazar population.« less

  9. Exploring the multiband emission of TXS 0536+145: the most distant γ-ray flaring blazar

    NASA Astrophysics Data System (ADS)

    Orienti, M.; D'Ammando, F.; Giroletti, M.; Finke, J.; Ajello, M.; Dallacasa, D.; Venturi, T.

    2014-11-01

    We report results of a multiband monitoring campaign of the flat spectrum radio quasar TXS 0536+145 at redshift 2.69. This source was detected during a very high γ-ray activity state in 2012 March by the Large Area Telescope on board Fermi, becoming the γ-ray flaring blazar at the highest redshift detected so far. At the peak of the flare the source reached an apparent isotropic γ-ray luminosity of 6.6 × 1049 erg s-1 which is comparable to the values achieved by the most luminous blazars. This activity triggered radio-to-X-rays monitoring observations by Swift, Very Long Baseline Array, European VLBI Network, and Medicina single-dish telescope. Significant variability was observed from radio to X-rays supporting the identification of the γ-ray source with TXS 0536+145. Both the radio and γ-ray light curves show a similar behaviour, with the γ-rays leading the radio variability with a time lag of about 4-6 months. The luminosity increase is associated with a flattening of the radio spectrum. No new superluminal component associated with the flare was detected in high-resolution parsec-scale radio images. During the flare the γ-ray spectrum seems to deviate from a power law, showing a curvature that was not present during the average activity state. The γ-ray properties of TXS 0536+145 are consistent with those shown by the high-redshift γ-ray blazar population.

  10. Discovery of a Nonblazar Gamma-Ray Transient Source Near the Galactic Plane: GRO J1838-04

    NASA Technical Reports Server (NTRS)

    Tavani, M.; Oliversen, Ronald (Technical Monitor)

    2001-01-01

    We report the discovery of a remarkable gamma-ray transient source near the Galactic plane, GRO J1838-04. This source was serendipitously discovered by EGRET in 1995 June with a peak intensity of approx. (4 +/- 1) x 10(exp -6) photons/sq cm s (for photon energies larger than 100 MeV) and a 5.9 sigma significance. At that time, GRO J1838-04 was the second brightest gamma-ray source in the sky. A subsequent EGRET pointing in 1995 late September detected the source at a flux smaller than its peak value by a factor of approx. 7. We determine that no radio-loud spectrally flat blazar is within the error box of GRO J1838-04. We discuss the origin of the gamma-ray transient source and show that interpretations in terms of active galactic nuclei or isolated pulsars are highly problematic. GRO J1838-04 provides strong evidence for the existence of a new class of variable gamma-ray sources.

  11. CdZnTe detector for hard x-ray and low energy gamma-ray focusing telescope

    NASA Astrophysics Data System (ADS)

    Natalucci, L.; Alvarez, J. M.; Barriere, N.; Caroli, E.; Curado da Silva, R. M.; Del Sordo, S.; Di Cosimo, S.; Frutti, M.; Hernanz, M.; Lozano, M.; Quadrini, E.; Pellegrini, G.; Stephen, J. B.; Ubertini, P.; Uslenghi, M. C.; Zoglauer, A.

    2008-07-01

    The science drivers for a new generation soft gamma-ray mission are naturally focused on the detailed study of the acceleration mechanisms in a variety of cosmic sources. Through the development of high energy optics in the energy energy range 0.05-1 MeV it will be possible to achieve a sensitivity about two orders of magnitude better than the currently operating gamma-ray telescopes. This will open a window for deep studies of many classes of sources: from Galactic X-ray binaries to magnetars, from supernova remnants to Galaxy clusters, from AGNs (Seyfert, blazars, QSO) to the determination of the origin of the hard X-/gamma-ray cosmic background, from the study of antimatter to that of the dark matter. In order to achieve the needed performance, a detector with mm spatial resolution and very high peak efficiency is needed. The instrumental characteristics of this device could eventually allow to detect polarization in a number of objects including pulsars, GRBs and bright AGNs. In this work we focus on the characteristics of the focal plane detector, based on CZT or CdTe semiconductor sensors arranged in multiple planes and viewed by a side detector to enhance gamma-ray absorption in the Compton regime. We report the preliminary results of an optimization study based on simulations and laboratory tests, as prosecution of the former design studies of the GRI mission which constitute the heritage of this activity.

  12. The Electrostatic Instability for Realistic Pair Distributions in Blazar/EBL Cascades

    NASA Astrophysics Data System (ADS)

    Vafin, S.; Rafighi, I.; Pohl, M.; Niemiec, J.

    2018-04-01

    This work revisits the electrostatic instability for blazar-induced pair beams propagating through the intergalactic medium (IGM) using linear analysis and PIC simulations. We study the impact of the realistic distribution function of pairs resulting from the interaction of high-energy gamma-rays with the extragalactic background light. We present analytical and numerical calculations of the linear growth rate of the instability for the arbitrary orientation of wave vectors. Our results explicitly demonstrate that the finite angular spread of the beam dramatically affects the growth rate of the waves, leading to the fastest growth for wave vectors quasi-parallel to the beam direction and a growth rate at oblique directions that is only a factor of 2–4 smaller compared to the maximum. To study the nonlinear beam relaxation, we performed PIC simulations that take into account a realistic wide-energy distribution of beam particles. The parameters of the simulated beam-plasma system provide an adequate physical picture that can be extrapolated to realistic blazar-induced pairs. In our simulations, the beam looses only 1% of its energy, and we analytically estimate that the beam would lose its total energy over about 100 simulation times. An analytical scaling is then used to extrapolate the parameters of realistic blazar-induced pair beams. We find that they can dissipate their energy slightly faster by the electrostatic instability than through inverse-Compton scattering. The uncertainties arising from, e.g., details of the primary gamma-ray spectrum are too large to make firm statements for individual blazars, and an analysis based on their specific properties is required.

  13. Exploring the particle nature of dark matter with the All-sky Medium Energy Gamma-ray Observatory (AMEGO)

    NASA Astrophysics Data System (ADS)

    Caputo, Regina; Meyer, Manuel; Sánchez-Conde, Miguel; AMEGO

    2018-01-01

    The era of precision cosmology has revealed that ~80% of the matter in the universe is dark matter. Two leading candidates, motivated by both particle and astrophysics, are Weakly Interacting Massive Particles (WIMPs) and Weakly Interacting Sub-eV Particles (WISPs) like axions and axionlike particles. Both WIMPs and WISPs have distinct gamma-ray signatures. Data from the Fermi Large Area Telescope (Fermi-LAT) continues to be an integral part of the search for these dark matter signatures spanning the 50 MeV to >300 GeV energy range in a variety of astrophysical targets. Thus far, there are no conclusive detections; however, there is an intriguing excess of gamma rays associated with Galactic center (GCE) that could be explained with WIMP annihilation. The angular resolution of the LAT at lower energies makes source selection challenging and the true nature of the detected signal remains unknown. WISP searches using, e.g. supernova explosions, spectra of blazars, or strongly magnetized environments, would also greatly benefit from increased angular and energy resolution, as well as from polarization measurements. To address these, we are developing AMEGO, the All-sky Medium Energy Gamma-ray Observatory. This instrument has a projected energy and angular resolution that will increase sensitivity by a factor of 20-50 over previous instruments. This will allow us to explore new areas of dark matter parameter space and provide unprecedented access to its particle nature.

  14. Constraining the particle spectrum in blazar jets: importance of the hard X-ray spectrum

    NASA Astrophysics Data System (ADS)

    Sinha, Atreyee; Sahayanathan, Sunder; Chitnis, Varsha

    2016-07-01

    Measurement of the spectral curvature in blazar jets can throw light on the underlying particle spectral distribution, and hence, the acceleration and diffusion processes at play. With the advent of NuSTAR and ASTROSAT, and the upcoming ASTRO-H, this curvature can now be measured accurately across the broadband X-ray energies. We will discuss results from our recent works on two HBLs, Mkn421 (Sinha et al, A&A 2015) and 1ES1011+496 (Sinha et al, ApJ submitted), and show how simultaneous measurement at hard and soft X-ray energies can be crucial in understanding the underlying particle spectrum. Detection of lognormality in blazars is beginning to hint at strong disk-jet connections. India's recently launched multiwavelength satellite, the ASTROSAT will provide simultaneous time resolved data between 0.2-80keV, along with measurements at Optical-UV energies. We will discuss prospects from ASTROSAT for studying jet triggering mechanisms in blazars.

  15. X-ray counterpart candidates for six new γ-ray pulsars

    NASA Astrophysics Data System (ADS)

    Zyuzin, Dmitry A.; Karpova, Anna V.; Shibanov, Yuriy A.

    2018-05-01

    Using archival X-ray data, we have found point-like X-ray counterpart candidates positionally coincident with six γ-ray pulsars discovered recently in the Fermi Gamma-ray Space Telescope data by the Einstein@Home project. The candidates for PSRs J0002+6216, J0554+3107, J1844-0346, and J1105-6037 are detected with Swift, and those for PSRs J0359+5414 and J2017+3625 are detected with Chandra. Despite a low count statistics for some candidates, assuming plausible constraints on the absorbing column density towards the pulsars, we show that X-ray spectral properties for all of them are consistent with those observed for other pulsars. J0359+5414 is the most reliably identified object. We detect a nebula around it, whose spectrum and extent suggest that this is a pulsar wind nebula powered by the pulsar. Associations of J0002+6216 and J1844-0346 with supernova remnants CTB 1 and G28.6-0.1 are proposed.

  16. Recent enhancement of the R-band optical flux from the active blazar S5 0716+714

    NASA Astrophysics Data System (ADS)

    Marchini, Alessandro; Bellizzi, Lorenzo; Bonnoli, Giacomo; Millucci, Vincenzo; Stiaccini, Leonardo; Trefoloni, Bartolomeo

    2018-06-01

    We report that the blazar S5 0716+714 (RA: 7 21 53.45 Dec: 71 20 36.36 J2000.0) reached last night (May 31.83) the optical magnitude R=12.16(0.01). The blazar is bright in optical since a few months (see ATel #11107,#11339) and we are monitoring it from the Astronomical Observatory of the University of Siena since the unprecedented flare in VHE gamma rays reported by the MAGIC Collaboration in December 2017 (ATel #11100).

  17. Variable gamma-ray sky at 1 GeV

    NASA Astrophysics Data System (ADS)

    Pshirkov, M. S.; Rubtsov, G. I.

    2013-01-01

    We search for the long-term variability of the gamma-ray sky in the energy range E > 1 GeV with 168 weeks of the gamma-ray telescope Fermi-LAT data. We perform a full sky blind search for regions with variable flux looking for deviations from uniformity. We bin the sky into 12288 pixels using the HEALPix package and use the Kolmogorov-Smirnov test to compare weekly photon counts in each pixel with the constant flux hypothesis. The weekly exposure of Fermi-LAT for each pixel is calculated with the Fermi-LAT tools. We consider flux variations in a pixel significant if the statistical probability of uniformity is less than 4 × 10-6, which corresponds to 0.05 false detections in the whole set. We identified 117 variable sources, 27 of which have not been reported variable before. The sources with previously unidentified variability contain 25 active galactic nuclei (AGN) belonging to the blazar class (11 BL Lacs and 14 FSRQs), one AGN of an uncertain type, and one pulsar PSR J0633+1746 (Geminga).

  18. IGR J12319-0749: Evidence for Another Extreme Blazar Found with INTEGRAL

    NASA Technical Reports Server (NTRS)

    Bassani, L.; Landi, R.; Marshall, F. E.; Malizia, A.; Bazzano, A.; Bird, A. J.; Gehrels, N.; Ubertini, P.; Masetti, N.

    2012-01-01

    We report on the identification of a new soft gamma-ray source, IGR J12319 C0749, detected with the IBIS imager on board the INTEGRAL satellite. The source, which has an observed 20 C100 keV flux of 8.3 10.12 erg cm.2 s.1, is spatially coincident with an AGN at redshift z = 3.12. The broad-band continuum, obtained by combining XRT and IBIS data, is flat ( =1.3) with evidence for a spectral break around 25 keV (100 keV in the source rest frame). X-ray observations indicate flux variability which is further supported by a comparison with a previous ROSAT measurement. IGR J12319 C0749 is also a radio emitting object likely characterized by a flat spectrum and high radio loudness; optically it is a broad-line emitting object with a massive black hole (2.8 109 solar masses) at its center. The source Spectral Energy Distribution is similar to another high redshift blazar, 225155+2217 at z = 3.668: both objects are bright, with a large accretion disk luminosity and a Compton peak located in the hard X-ray/soft gamma-ray band. IGR J12319 C0749 is likely the second most distant blazar detected so far by INTEGRAL.

  19. Investigating broadband variability of the TeV blazar 1ES 1959+650

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aliu, E.; Archambault, S.; Arlen, T.

    We summarize broadband observations of the TeV-emitting blazar 1ES 1959 650, including optical R-band observations by the robotic telescopes Super-LOTIS and iTelescope, UV observations by Swift UVOT, X-ray observations by the Swift X-ray Telescope, high-energy gamma-ray observations with the Fermi Large Area Telescope, and very-high-energy (VHE) gamma-ray observations by VERITAS above 315 GeV, all taken between 2012 April 17 and 2012 June 1 (MJD 56034 and 56079). The contemporaneous variability of the broadband spectral energy distribution is explored in the context of a simple synchrotron self Compton (SSC) model. In the SSC emission scenario, we find that the parameters requiredmore » to represent the high state are significantly different than those in the low state. Motivated by possible evidence of gas in the vicinity of the blazar, we also investigate a reflected emission model to describe the observed variability pattern. This model assumes that the non-thermal emission from the jet is reflected by a nearby cloud of gas, allowing the reflected emission to re-enter the blob and produce an elevated gamma-ray state with no simultaneous elevated synchrotron flux. The model applied here, although not required to explain the observed variability pattern, represents one possible scenario which can describe the observations. As applied to an elevated VHE state of 66% of the Crab Nebula flux, observed on a single night during the observation period, the reflected emission scenario does not support a purely leptonic non-thermal emission mechanism. The reflected model does, however, predict a reflected photon field with sufficient energy to enable elevated gamma-ray emission via pion production with protons of energies between 10 and 100 TeV.« less

  20. INVESTIGATING BROADBAND VARIABILITY OF THE TeV BLAZAR 1ES 1959+650

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aliu, E.; Archambault, S.; Arlen, T.

    We summarize broadband observations of the TeV-emitting blazar 1ES 1959+650, including optical R-band observations by the robotic telescopes Super-LOTIS and iTelescope, UV observations by Swift Ultraviolet and Optical Telescope, X-ray observations by the Swift X-ray Telescope, high-energy gamma-ray observations with the Fermi Large Area Telescope, and very-high-energy (VHE) gamma-ray observations by VERITAS above 315 GeV, all taken between 2012 April 17 and 2012 June 1 (MJD 56034 and 56079). The contemporaneous variability of the broadband spectral energy distribution is explored in the context of a simple synchrotron self Compton (SSC) model. In the SSC emission scenario, we find that themore » parameters required to represent the high state are significantly different than those in the low state. Motivated by possible evidence of gas in the vicinity of the blazar, we also investigate a reflected emission model to describe the observed variability pattern. This model assumes that the non-thermal emission from the jet is reflected by a nearby cloud of gas, allowing the reflected emission to re-enter the blob and produce an elevated gamma-ray state with no simultaneous elevated synchrotron flux. The model applied here, although not required to explain the observed variability pattern, represents one possible scenario which can describe the observations. As applied to an elevated VHE state of 66% of the Crab Nebula flux, observed on a single night during the observation period, the reflected emission scenario does not support a purely leptonic non-thermal emission mechanism. The reflected emission model does, however, predict a reflected photon field with sufficient energy to enable elevated gamma-ray emission via pion production with protons of energies between 10 and 100 TeV.« less

  1. INVESTIGATING BROADBAND VARIABILITY OF THE TeV BLAZAR 1ES 1959+650

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aliu, E.; Archambault, S.; Arlen, T.

    We summarize broadband observations of the TeV-emitting blazar 1ES 1959+650, including optical R-band observations by the robotic telescopes Super-LOTIS and iTelescope, UV observations by Swift Ultraviolet and Optical Telescope, X-ray observations by the Swift X-ray Telescope, high-energy gamma-ray observations with the Fermi Large Area Telescope, and very-high-energy (VHE) gamma-ray observations by VERITAS above 315 GeV, all taken between 2012 April 17 and 2012 June 1 (MJD 56034 and 56079). The contemporaneous variability of the broadband spectral energy distribution is explored in the context of a simple synchrotron self Compton (SSC) model. In the SSC emission scenario, we find that themore » parameters required to represent the high state are significantly different than those in the low state. Motivated by possible evidence of gas in the vicinity of the blazar, we also investigate a reflected emission model to describe the observed variability pattern. This model assumes that the non-thermal emission from the jet is reflected by a nearby cloud of gas, allowing the reflected emission to re-enter the blob and produce an elevated gamma-ray state with no simultaneous elevated synchrotron flux. The model applied here, although not required to explain the observed variability pattern, represents one possible scenario which can describe the observations. As applied to an elevated VHE state of 66% of the Crab Nebula flux, observed on a single night during the observation period, the reflected emission scenario does not support a purely leptonic non-thermal emission mechanism. The reflected emission model does, however, predict a reflected photon field with sufficient energy to enable elevated gamma-ray emission via pion production with protons of energies between 10 and 100 TeV.« less

  2. Investigating broadband variability of the TeV blazar 1ES 1959+650

    DOE PAGES

    Aliu, E.; Archambault, S.; Arlen, T.; ...

    2014-12-03

    We summarize broadband observations of the TeV-emitting blazar 1ES 1959 650, including optical R-band observations by the robotic telescopes Super-LOTIS and iTelescope, UV observations by Swift UVOT, X-ray observations by the Swift X-ray Telescope, high-energy gamma-ray observations with the Fermi Large Area Telescope, and very-high-energy (VHE) gamma-ray observations by VERITAS above 315 GeV, all taken between 2012 April 17 and 2012 June 1 (MJD 56034 and 56079). The contemporaneous variability of the broadband spectral energy distribution is explored in the context of a simple synchrotron self Compton (SSC) model. In the SSC emission scenario, we find that the parameters requiredmore » to represent the high state are significantly different than those in the low state. Motivated by possible evidence of gas in the vicinity of the blazar, we also investigate a reflected emission model to describe the observed variability pattern. This model assumes that the non-thermal emission from the jet is reflected by a nearby cloud of gas, allowing the reflected emission to re-enter the blob and produce an elevated gamma-ray state with no simultaneous elevated synchrotron flux. The model applied here, although not required to explain the observed variability pattern, represents one possible scenario which can describe the observations. As applied to an elevated VHE state of 66% of the Crab Nebula flux, observed on a single night during the observation period, the reflected emission scenario does not support a purely leptonic non-thermal emission mechanism. The reflected model does, however, predict a reflected photon field with sufficient energy to enable elevated gamma-ray emission via pion production with protons of energies between 10 and 100 TeV.« less

  3. First Results & Future Prospects for 30 GeV Gamma Rays from CELESTE

    NASA Astrophysics Data System (ADS)

    de Naurois, Mathieu

    The CELESTE solar farm gamma-ray telescope detected the Crab Nebula at 80 GeV ( Hz) using 18 heliostats in 1998. In March 1999, observations began with a setup extended to 40 heliostats, and with upgraded electronics. Technical delays and bad weather only permitted a very small data set for the Crab nebula. hours of data were taken simultaneously with the CAT imaging telescope showing evidence for a gamma signal. In this talk the analysis method of these data is described. CELESTE has passed major milestones and the groundwork is laid for the blazar and pulsar studies presented elsewhere in this conference (OG 2.1.20, OG 2.2.31). DEDICATION : CELESTE is the brainchild of Eric Pare, who died at the age of 39 in an automobile accident, two weeks after finding our first gamma ray signal. Eric also played a major role in the conception and design of CAT. We dedicate this work to his memory.

  4. Detection of a strong optical and gamma-ray flare from blazar PKS 1424-41

    NASA Astrophysics Data System (ADS)

    D'Ammando, F.; Orienti, M.; Longo, F.; Jankowsky, F.; Schwemmer, S.; Wagn, S.

    2013-01-01

    The Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope has observed an increasing gamma-ray flux from a source positionally coincident with PKS 1424-41 (also known as 2FGL J1428.0-4206, Nolan et al. 2012, ApJS, 199, 31; R.A.= 14h27m56.2975s, Dec.= -42d06m19.437s, J2000, Johnston et al. 1995, AJ, 110, 880), a flat spectrum radio quasar with a redshift of 1.522 (White et al. 1988, ApJ, 327, 561).

  5. Multi-Epoch Multiwavelength Spectra and Models for Blazar 3C 279

    NASA Technical Reports Server (NTRS)

    Hartman, R. C.; Boettcher, M.; Aldering, G.; Aller, H.; Aller, M.; Backman, D. E.; Balonek, T. J.; Bertsch, D. L.; Bloom, S. D.; Bock, H.; hide

    2001-01-01

    Of the blazars detected by EGRET in GeV gamma-rays, 3C 279 is not only the best-observed by EGRET, but also one of the best-monitored at lower frequencies. We have assembled eleven spectra, from GHz radio through GeV gamma-rays, from the time intervals of EGRET observations. Although some of the data have appeared in previous publications, most are new, including data taken during the high states in early 1999 and early 2000. All of the spectra show substantial gamma-ray contribution to the total luminosity of the object; in a high state, the gamma-ray luminosity dominates over that at all other frequencies by a factor of more than 10. There is no clear pattern of time correlation; different bands do not always rise and fall together, even in the optical, X-ray, and gamma-ray bands. The spectra are modeled using a leptonic jet, with combined synchrotron self-Compton + external Compton gamma-ray production. Spectral variability of 3C 279 is consistent with variations of the bulk Lorentz factor of the jet, accompanied by changes in the spectral shape of the electron distribution. Our modeling results are consistent with the UV spectrum of 3C 279 being dominated by accretion disk radiation during times of low gamma-ray intensity.

  6. The Gamma-Ray Emitting Radio-Loud Narrow-Line Seyfert 1 Galaxy PKS 2004-447 II. The Radio View

    NASA Technical Reports Server (NTRS)

    Schulz, R.; Kreikenbohm, A.; Kadler, M.; Ojha, R.; Ros, E.; Stevens, J.; Edwards, P. G.; Carpenter, B.; Elsaesser, D.; Gehrels, N.; hide

    2016-01-01

    Context. gamma-ray-detected radio-loud narrow-line Seyfert 1 (gamma-NLS1) galaxies constitute a small but interesting sample of the gamma-ray-loud AGN. The radio-loudest gamma-NLS1 known, PKS2004447, is located in the southern hemisphere and is monitored in the radio regime by the multiwavelength monitoring programme TANAMI. Aims. We aim for the first detailed study of the radio morphology and long-term radio spectral evolution of PKS2004447, which are essential for understanding the diversity of the radio properties of gamma-NLS1s. Methods. The TANAMI VLBI monitoring program uses the Australian Long Baseline Array (LBA) and telescopes in Antarctica, Chile, New Zealand, and South Africa to monitor the jets of radio-loud active galaxies in the southern hemisphere. Lower resolution radio flux density measurements at multiple radio frequencies over four years of observations were obtained with the Australia Telescope Compact Array (ATCA). Results. The TANAMI VLBI image at 8.4GHz shows an extended one-sided jet with a dominant compact VLBI core. Its brightness temperature is consistent with equipartition, but it is an order of magnitude below other gamma-NLS1s with the sample value varying over two orders of magnitude. We find a compact morphology with a projected large-scale size 11 kpc and a persistent steep radio spectrum with moderate flux-density variability. Conclusions. PKS2004447 appears to be a unique member of the gamma-NLS1 sample. It exhibits blazar-like features, such as a flat featureless X-ray spectrum and a core-dominated, one-sided parsec-scale jet with indications for relativistic beaming. However, the data also reveal properties atypical for blazars, such as a radio spectrum and large-scale size consistent with compact-steep-spectrum (CSS) objects, which are usually associated with young radio sources. These characteristics are unique among all gamma-NLS1s and extremely rare among gamma-ray-loud AGN.

  7. Fermi LAT detection of a GeV flare from the gravitationally lensed blazar S3 0218+35

    NASA Astrophysics Data System (ADS)

    Ciprini, S.

    2012-08-01

    The Large Area Telescope (LAT), one of the two instruments on the Fermi Gamma-ray Space Telescope, has observed gamma-ray flaring activity from a source positionally consistent with the blazar S3 0218+35 (also known as 2FGL J0221.0+3555, Nolan et al. 2012, ApJS, 199, 31, and B2 0218+35, OD 330, lens B0218+357) placed at radio coordinates R.A.: 35.27279 deg, Dec: +35.93715 deg.

  8. VizieR Online Data Catalog: Blazars in the Swift-BAT hard X-ray sky (Maselli+, 2010)

    NASA Astrophysics Data System (ADS)

    Maselli, A.; Cusumano, G.; Massaro, E.; La Parola, V.; Segreto, A.; Sbarufatti, B.

    2010-06-01

    We reported the list of hard X-ray blazars obtained adopting sigma=3 as detection threshold: with this choice a number of three spurious sources over a total of 121 blazars is expected. Each blazar is identified by a three-letter code, where the first two are BZ for blazar and the third one specifies the type, followed by the truncated equatorial coordinates (J2000). The codes are defined in the "Note (1)" below. We obtained 69 FSRQs, 24 BL Lac objects and 28 blazars of uncertain classification, representing 4.4%, 2.4% and 11.0% of the corresponding populations classified in the BZCAT, respectively. This sample has been compared with other lists and catalogues found in literature (Tueller et al., 2010, Cat. J/ApJS/186/378, Ajello et al. 2009ApJ...699..603A, Cusumano et al., 2010, Cat. J/A+A/510/A48). (1 data file).

  9. Gamma ray astronomy and black hole astrophysics

    NASA Technical Reports Server (NTRS)

    Liang, Edison P.

    1990-01-01

    The study of soft gamma emissions from black-hole candidates is identified as an important element in understanding black-hole phenomena ranging from stellar-mass black holes to AGNs. The spectra of Cyg X-1 and observations of the Galactic Center are emphasized, since thermal origins and MeV gamma-ray bumps are evident and suggest a thermal-pair cloud picture. MeV gamma-ray observations are suggested for studying black hole astrophysics such as the theorized escaping pair wind, the anticorrelation between the MeV gamma bump and the soft continuum, and the relationship between source compactness and temperature.

  10. Multi-wavelength Observations of the Flaring Gamma-ray Blazar 3C 66A in 2008 October

    NASA Astrophysics Data System (ADS)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bonamente, E.; Borgland, A. W.; Bouvier, A.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Carrigan, S.; Casandjian, J. M.; Cavazzuti, E.; Cecchi, C.; Çelik, Ö.; Charles, E.; Chekhtman, A.; Cheung, C. C.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Conrad, J.; Costamante, L.; Cutini, S.; Davis, D. S.; Dermer, C. D.; de Palma, F.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Dumora, D.; Favuzzi, C.; Fegan, S. J.; Fortin, P.; Frailis, M.; Fuhrmann, L.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hadasch, D.; Hayashida, M.; Hays, E.; Horan, D.; Hughes, R. E.; Itoh, R.; Jóhannesson, G.; Johnson, A. S.; Johnson, T. J.; Johnson, W. N.; Kamae, T.; Katagiri, H.; Kataoka, J.; Knödlseder, J.; Kuss, M.; Lande, J.; Latronico, L.; Lee, S.-H.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Makeev, A.; Mazziotta, M. N.; McEnery, J. E.; Mehault, J.; Michelson, P. F.; Mizuno, T.; Moiseev, A. A.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakamori, T.; Naumann-Godo, M.; Nestoras, I.; Nolan, P. L.; Norris, J. P.; Nuss, E.; Ohsugi, T.; Okumura, A.; Omodei, N.; Orlando, E.; Ormes, J. F.; Ozaki, M.; Paneque, D.; Panetta, J. H.; Parent, D.; Pelassa, V.; Pepe, M.; Pesce-Rollins, M.; Piron, F.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Reimer, A.; Reimer, O.; Reyes, L. C.; Ripken, J.; Ritz, S.; Romani, R. W.; Roth, M.; Sadrozinski, H. F.-W.; Sanchez, D.; Sander, A.; Scargle, J. D.; Sgrò, C.; Shaw, M. S.; Smith, P. D.; Spandre, G.; Spinelli, P.; Strickman, M. S.; Suson, D. J.; Takahashi, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Thompson, D. J.; Tibaldo, L.; Torres, D. F.; Tosti, G.; Tramacere, A.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Vilchez, N.; Vitale, V.; Waite, A. P.; Wang, P.; Winer, B. L.; Wood, K. S.; Yang, Z.; Ylinen, T.; Ziegler, M.; Acciari, V. A.; Aliu, E.; Arlen, T.; Aune, T.; Beilicke, M.; Benbow, W.; Böttcher, M.; Boltuch, D.; Bradbury, S. M.; Buckley, J. H.; Bugaev, V.; Byrum, K.; Cannon, A.; Cesarini, A.; Christiansen, J. L.; Ciupik, L.; Cui, W.; de la Calle Perez, I.; Dickherber, R.; Errando, M.; Falcone, A.; Finley, J. P.; Finnegan, G.; Fortson, L.; Furniss, A.; Galante, N.; Gall, D.; Gillanders, G. H.; Godambe, S.; Grube, J.; Guenette, R.; Gyuk, G.; Hanna, D.; Holder, J.; Hui, C. M.; Humensky, T. B.; Imran, A.; Kaaret, P.; Karlsson, N.; Kertzman, M.; Kieda, D.; Konopelko, A.; Krawczynski, H.; Krennrich, F.; Lang, M. J.; LeBohec, S.; Maier, G.; McArthur, S.; McCann, A.; McCutcheon, M.; Moriarty, P.; Mukherjee, R.; Ong, R. A.; Otte, A. N.; Pandel, D.; Perkins, J. S.; Pichel, A.; Pohl, M.; Quinn, J.; Ragan, K.; Reynolds, P. T.; Roache, E.; Rose, H. J.; Schroedter, M.; Sembroski, G. H.; Senturk, G. Demet; Smith, A. W.; Steele, D.; Swordy, S. P.; Tešić, G.; Theiling, M.; Thibadeau, S.; Varlotta, A.; Vassiliev, V. V.; Vincent, S.; Wakely, S. P.; Ward, J. E.; Weekes, T. C.; Weinstein, A.; Weisgarber, T.; Williams, D. A.; Wissel, S.; Wood, M.; Villata, M.; Raiteri, C. M.; Gurwell, M. A.; Larionov, V. M.; Kurtanidze, O. M.; Aller, M. F.; Lähteenmäki, A.; Chen, W. P.; Berduygin, A.; Agudo, I.; Aller, H. D.; Arkharov, A. A.; Bach, U.; Bachev, R.; Beltrame, P.; Benítez, E.; Buemi, C. S.; Dashti, J.; Calcidese, P.; Capezzali, D.; Carosati, D.; Da Rio, D.; Di Paola, A.; Diltz, C.; Dolci, M.; Dultzin, D.; Forné, E.; Gómez, J. L.; Hagen-Thorn, V. A.; Halkola, A.; Heidt, J.; Hiriart, D.; Hovatta, T.; Hsiao, H.-Y.; Jorstad, S. G.; Kimeridze, G. N.; Konstantinova, T. S.; Kopatskaya, E. N.; Koptelova, E.; Leto, P.; Ligustri, R.; Lindfors, E.; Lopez, J. M.; Marscher, A. P.; Mommert, M.; Mujica, R.; Nikolashvili, M. G.; Nilsson, K.; Palma, N.; Pasanen, M.; Roca-Sogorb, M.; Ros, J. A.; Roustazadeh, P.; Sadun, A. C.; Saino, J.; Sigua, L. A.; Sillanää, A.; Sorcia, M.; Takalo, L. O.; Tornikoski, M.; Trigilio, C.; Turchetti, R.; Umana, G.; Belloni, T.; Blake, C. H.; Bloom, J. S.; Angelakis, E.; Fumagalli, M.; Hauser, M.; Prochaska, J. X.; Riquelme, D.; Sievers, A.; Starr, D. L.; Tagliaferri, G.; Ungerechts, H.; Wagner, S.; Zensus, J. A.; Fermi LAT Collaboration; VERITAS Collaboration; GASP-WEBT Consortium

    2011-01-01

    The BL Lacertae object 3C 66A was detected in a flaring state by the Fermi Large Area Telescope (LAT) and VERITAS in 2008 October. In addition to these gamma-ray observations, F-GAMMA, GASP-WEBT, PAIRITEL, MDM, ATOM, Swift, and Chandra provided radio to X-ray coverage. The available light curves show variability and, in particular, correlated flares are observed in the optical and Fermi-LAT gamma-ray band. The resulting spectral energy distribution can be well fitted using standard leptonic models with and without an external radiation field for inverse Compton scattering. It is found, however, that only the model with an external radiation field can accommodate the intra-night variability observed at optical wavelengths.

  11. ANTARES constrains a blazar origin of two IceCube PeV neutrino events

    NASA Astrophysics Data System (ADS)

    ANTARES Collaboration; Adrián-Martínez, S.; Albert, A.; André, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Baret, B.; Barrios, J.; Basa, S.; Bertin, V.; Biagi, S.; Bogazzi, C.; Bormuth, R.; Bou-Cabo, M.; Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; De Rosa, G.; Dekeyser, I.; Deschamps, A.; De Bonis, G.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drouhin, D.; Dumas, A.; Eberl, T.; Enzenhöfer, A.; Escoffier, S.; Fehn, K.; Felis, I.; Fermani, P.; Folger, F.; Fusco, L. A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Gómez-González, J. P.; Gracia-Ruiz, R.; Graf, K.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Herrero, A.; Hößl, J.; Hofestädt, J.; Hugon, C.; James, C. W.; de Jong, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kooijman, P.; Kouchner, A.; Kulikovskiy, V.; Lahmann, R.; Lattuada, D.; Lefèvre, D.; Leonora, E.; Loehner, H.; Loucatos, S.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martínez-Mora, J. A.; Martini, S.; Mathieu, A.; Michael, T.; Migliozzi, P.; Neff, M.; Nezri, E.; Palioselitis, D.; Păvălaş, G. E.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Racca, C.; Riccobene, G.; Richter, R.; Roensch, K.; Rostovtsev, A.; Saldaña, M.; Samtleben, D. F. E.; Sánchez-Losa, A.; Sanguineti, M.; Sapienza, P.; Schmid, J.; Schnabel, J.; Schulte, S.; Schüssler, F.; Seitz, T.; Sieger, C.; Spies, A.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Taiuti, M.; Tamburini, C.; Tayalati, Y.; Trovato, A.; Tselengidou, M.; Tönnis, C.; Vallage, B.; Vallée, C.; Van Elewyck, V.; Visser, E.; Vivolo, D.; Wagner, S.; de Wolf, E.; Yepes, H.; Zornoza, J. D.; Zúñiga, J.; TANAMI Collaboration; Krauß, F.; Kadler, M.; Mannheim, K.; Schulz, R.; Trüstedt, J.; Wilms, J.; Ojha, R.; Ros, E.; Baumgartner, W.; Beuchert, T.; Blanchard, J.; Bürkel, C.; Carpenter, B.; Edwards, P. G.; Eisenacher Glawion, D.; Elsässer, D.; Fritsch, U.; Gehrels, N.; Gräfe, C.; Großberger, C.; Hase, H.; Horiuchi, S.; Kappes, A.; Kreikenbohm, A.; Kreykenbohm, I.; Langejahn, M.; Leiter, K.; Litzinger, E.; Lovell, J. E. J.; Müller, C.; Phillips, C.; Plötz, C.; Quick, J.; Steinbring, T.; Stevens, J.; Thompson, D. J.; Tzioumis, A. K.

    2015-04-01

    Context. The source(s) of the neutrino excess reported by the IceCube Collaboration is unknown. The TANAMI Collaboration recently reported on the multiwavelength emission of six bright, variable blazars which are positionally coincident with two of the most energetic IceCube events. Objects like these are prime candidates to be the source of the highest-energy cosmic rays, and thus of associated neutrino emission. Aims: We present an analysis of neutrino emission from the six blazars using observations with the ANTARES neutrino telescope. Methods: The standard methods of the ANTARES candidate list search are applied to six years of data to search for an excess of muons - and hence their neutrino progenitors - from the directions of the six blazars described by the TANAMI Collaboration, and which are possibly associated with two IceCube events. Monte Carlo simulations of the detector response to both signal and background particle fluxes are used to estimate the sensitivity of this analysis for different possible source neutrino spectra. A maximum-likelihood approach, using the reconstructed energies and arrival directions of through-going muons, is used to identify events with properties consistent with a blazar origin. Results: Both blazars predicted to be the most neutrino-bright in the TANAMI sample (1653-329 and 1714-336) have a signal flux fitted by the likelihood analysis corresponding to approximately one event. This observation is consistent with the blazar-origin hypothesis of the IceCube event IC 14 for a broad range of blazar spectra, although an atmospheric origin cannot be excluded. No ANTARES events are observed from any of the other four blazars, including the three associated with IceCube event IC20. This excludes at a 90% confidence level the possibility that this event was produced by these blazars unless the neutrino spectrum is flatter than -2.4. Figures 2, 3 and Appendix A are available in electronic form at http://www.aanda.org

  12. Multi-wavelength observations of the flaring gamma-ray blazar 3C 66A in 2008 October

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2010-12-14

    We report that Tthe BL Lacertae object 3C 66A was detected in a flaring state by the Fermi Large Area Telescope (LAT) and VERITAS in 2008 October. In addition to these gamma-ray observations, F-GAMMA, GASP-WEBT, PAIRITEL, MDM, ATOM, Swift, and Chandra provided radio to X-ray coverage. The available light curves show variability and, in particular, correlated flares are observed in the optical and Fermi-LAT gamma-ray band. The resulting spectral energy distribution can be well fitted using standard leptonic models with and without an external radiation field for inverse Compton scattering. It is found, however, that only the model with anmore » external radiation field can accommodate the intra-night variability observed at optical wavelengths.« less

  13. Statistical Measurement of the Gamma-Ray Source-count Distribution as a Function of Energy

    NASA Astrophysics Data System (ADS)

    Zechlin, Hannes-S.; Cuoco, Alessandro; Donato, Fiorenza; Fornengo, Nicolao; Regis, Marco

    2016-08-01

    Statistical properties of photon count maps have recently been proven as a new tool to study the composition of the gamma-ray sky with high precision. We employ the 1-point probability distribution function of six years of Fermi-LAT data to measure the source-count distribution dN/dS and the diffuse components of the high-latitude gamma-ray sky as a function of energy. To that aim, we analyze the gamma-ray emission in five adjacent energy bands between 1 and 171 GeV. It is demonstrated that the source-count distribution as a function of flux is compatible with a broken power law up to energies of ˜50 GeV. The index below the break is between 1.95 and 2.0. For higher energies, a simple power-law fits the data, with an index of {2.2}-0.3+0.7 in the energy band between 50 and 171 GeV. Upper limits on further possible breaks as well as the angular power of unresolved sources are derived. We find that point-source populations probed by this method can explain {83}-13+7% ({81}-19+52%) of the extragalactic gamma-ray background between 1.04 and 1.99 GeV (50 and 171 GeV). The method has excellent capabilities for constraining the gamma-ray luminosity function and the spectra of unresolved blazars.

  14. Discovery of a GeV blazar shining through the galactic plane

    DOE PAGES

    Vandenbroucke, J.; Buehler, R.; Ajello, M.; ...

    2010-07-14

    The Fermi Large Area Telescope (LAT) discovered a new gamma-ray source near the Galactic plane, Fermi J0109+6134, when it flared brightly in 2010 February. The low Galactic latitude (b = –1more » $$ο\\atop{.}$$2) indicated that the source could be located within the Galaxy, which motivated rapid multi-wavelength follow-up including radio, optical, and X-ray observations. Here, we report the results of analyzing all 19 months of LAT data for the source, and of X-ray observations with both Swift and the Chandra X-ray Observatory. We determined the source redshift, z = 0.783, using a Keck Low-Resolution Imaging Spectrometer observation. Finally, we compiled a broadband spectral energy distribution (SED) from both historical and new observations contemporaneous with the 2010 February flare. The redshift, SED, optical line width, X-ray absorption, and multi-band variability indicate that this new GeV source is a blazar seen through the Galactic plane. Because several of the optical emission lines have equivalent width >5 Å, this blazar belongs in the flat-spectrum radio quasar category.« less

  15. Transparency of the Universe to VHE Gamma rays and EBL Models

    NASA Astrophysics Data System (ADS)

    Singh, Krishna Kumar; Sahayanathan, Sunder; Bhatt, Nilay; Tickoo, Avtar K.

    2012-07-01

    GeV/TeV emission spectrum coming from distant blazars is modified en route due to absorption via pair production in presence of extragalactic background (EBL) photons. Hence the knowledge of EBL spectrum from IR to optical-UV band is important to estimate the intrinsic spectra of VHE blazars. Also, this information will help in understanding the evolution of galaxies. Here we study the opacity of VHE gamma rays at different redshifts by considering different EBL models available in the literature. The optical depth values corresponding to different gamma ray energies at a given redshift, are approximated as a fifth order polynomial and a table of the coefficients at different redshifts is produced. We use these estimates to find the intrinsic VHE spectra of the FSRQ 3C279 (z=0.536) and BL Lac object PKS 2155-304 (z=0.116) corresponding to different EBL models. The inferred intrinsic VHE spectra along with the broadband data available for these sources are then modelled using one zone models involving synchrotron and inverse Compton emission mechanisms. For PKS 2155-304 we considered synchrotron and synchrotron self Compton (SSC) emission where as for 3C 279, external Compton (EC) scattering of IR photons from dusty torus is considered in addition to these emission processes. The broadband spectrum including the VHE spectra corresponding to different EBL models is fitted to obtain the parameters using chi-square minimisation. We then compare the EBL models on the basis of minimum chi-square obtained.

  16. SAS-2 gamma-ray observations of PSR 1747-46. [radio pulsar

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Fichtel, C. E.; Kniffen, D. A.; Ogelman, H. B.; Lamb, R. C.

    1976-01-01

    Evidence is reported for the observation of gamma-ray emission from the radio pulsar PSR 1747-46 by the gamma-ray telescope aboard SAS 2. The evidence is based on the presence of both an approximately 3-sigma enhancement of gamma rays at the pulsar's location and an approximately 4-sigma peak in the phase plot of 79 gamma-ray events whose phase was calculated from the pulsar's known period. The gamma-ray pulsation is found to appear at a phase lag of about 0.16 from that predicted by the radio observations. The pulsed gamma-ray fluxes above 35 MeV and 100 MeV are estimated, and it is shown that the gamma-ray pulse width is similar to the radio pulse width. It is concluded that PSR 1747-46 is a most likely candidate for pulsed gamma-ray emission.

  17. Fermi Spots a Record Flare from Blazar

    NASA Image and Video Library

    2015-07-10

    Blazar 3C 279's historic gamma-ray flare can be seen in this image from the Large Area Telescope (LAT) on NASA's Fermi satellite. Gamma rays with energies from 100 million to 100 billion electron volts (eV) are shown; for comparison, visible light has energies between 2 and 3 eV. The image spans 150 degrees, is shown in a stereographic projection, and represents an exposure from June 11 at 00:28 UT to June 17 at 08:17 UT. Read more: go.nasa.gov/1TqBAdJ Credit: NASA/DOE/Fermi LAT Collaboration NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  18. First broadband characterization and redshift determination of the VHE blazar MAGIC J2001+439

    DOE PAGES

    Aleksić, J.; Ansoldi, S.; Antonelli, L. A.; ...

    2014-12-09

    We aim to characterize the broadband emission from 2FGL J2001.1+4352, which has been associated with the unknown-redshift blazar MG4 J200112+4352. Based on its gamma-ray spectral properties, it was identified as a potential very high energy (VHE; E> 100 GeV) gamma-ray emitter. We investigate whether this object is aVHE emitter, characterize its gamma-ray spectrum, and study the broadband emission within the one-zone synchrotron self-Compton (SSC) scenario, which is commonly used to describe the emission in blazars. Moreover, we also intend to determine the redshift of this object, which is a crucial parameter for its scientific interpretation. Here, the source was observedmore » with MAGIC first in 2009 and later in 2010 within a multi-instrument observation campaign. The MAGIC observations yielded 14.8 h of good quality stereoscopic data. Besides MAGIC, the campaign involved, observations with Fermi-LAT, Swift-XRT/UVOT, the optical telescopes KVA, Goddard Robotic Telescope, Galaxy View observatory, Crimean Astrophysical observatory, St. Petersburg observatory, and the Owens Valley Radio Observatory. The object was monitored at radio, optical and gamma-ray energies during the years 2010 and 2011. We characterize the radio to VHE spectral energy distribution and quantify the multiband variability and correlations over short (few days) and long (many months) timescales. We also organized deep imaging optical observations with the Nordic Optical Telescope in 2013 to determine the source redshift. As a result, the source, named MAGIC J2001+439, is detected for the first time at VHE with MAGIC at a statistical significance of 6.3σ (E > 70 GeV) during a 1.3 h long observation on 2010 July 16. The multi-instrument observations show variability in all energy bands with the highest amplitude of variability in the X-ray and VHE bands. Besides the variability on few-day timescales, the long-term monitoring of MAGIC J2001+439 shows that, the gamma-ray, optical, and radio

  19. Gamma-Ray Emission from the Broad-Line Radio Galaxy 3C 111

    NASA Technical Reports Server (NTRS)

    Hartman, Robert C.; Kadler, M.; Tueller, Jack

    2008-01-01

    The broad-line radio galaxy 3C 111 has been suggested as the counterpart of the y-ray source 3EG J0416+3650. While 3C 111 meets most of the criteria for a high-probability identification, like a bright flat-spectrum radio core and a blazar-like broadband SED, in the Third EGRET Catalog, the large positional offset of about 1.5' put 3C 111 outside the 99% probability region for 3EG J0416+3650, making this association questionable. We present a re-analysis of all available archival data for 3C 111 from the EGRET archives, resulting in detection of variable hard-spectrum high-energy gamma-ray emission above 1000 MeV from a position close to the nominal position of 3C 111, in three separate viewing periods (VPs), at a 3sigma level in each. A second variable hard-spectrum source is present nearby. At >100 MeV, one variable soft-spectrum source seems to account for most of the EGRET-detected emission of 3EG J0416+3650. A follow-up Swift UVOT/XRT observation reveals one moderately bright X-ray source in the error box of 3EG J0416+3650, but because of the large EGRET position uncertainty, it is not certain that the X-ray and gamma-ray sources are associated. Another Swift observation near the second (unidentified) hard gamma-ray source detected no X-ray source nearby.

  20. Radio core dominance of Fermi blazars

    NASA Astrophysics Data System (ADS)

    Pei, Zhi-Yuan; Fan, Jun-Hui; Liu, Yi; Yuan, Yi-Hai; Cai, Wei; Xiao, Hu-Bing; Lin, Chao; Yang, Jiang-He

    2016-07-01

    During the first 4 years of mission, Fermi/LAT detected 1444 blazars (3FGL) (Ackermann et al. in Astrophys. J. 810:14, 2015). Fermi/LAT observations of blazars indicate that Fermi blazars are luminous and strongly variable with variability time scales, for some cases, as short as hours. Those observations suggest a strong beaming effect in Fermi/LAT blazars. In the present work, we will investigate the beaming effect in Fermi/LAT blazars using a core-dominance parameter, R = S_{core}/ S_{ext.}, where S_{core} is the core emission, while S_{ext.} is the extended emission. We compiled 1335 blazars with available core-dominance parameter, out of which 169 blazars have γ-ray emission (from 3FGL). We compared the core-dominance parameters, log R, between the 169 Fermi-detected blazars (FDBs) and the rest non-Fermi-detected blazars (non-FDBs), and we found that the averaged values are < log Rrangle = 0.99±0.87 for FDBs and < log Rrangle = -0.62±1.15 for the non-FDBs. A K-S test shows that the probability for the two distributions of FDBs and non-FDBs to come from the same parent distribution is near zero (P =9.12×10^{-52}). Secondly, we also investigated the variability index (V.I.) in the γ-ray band for FDBs, and we found V.I.=(0.12 ±0.07) log R+(2.25±0.10), suggesting that a source with larger log R has larger V.I. value. Thirdly, we compared the mean values of radio spectral index for FDBs and non-FDBs, and we obtained < α_{radio}rangle =0.06±0.35 for FDBs and < α_{radio}rangle =0.57±0.46 for non-FDBs. If γ-rays are composed of two components like radio emission (core and extended components), then we can expect a correlation between log R and the γ-ray spectral index. When we used the radio core-dominance parameter, log R, to investigate the relationship, we found that the spectral index for the core component is α_{γ}|_{core} = 1.11 (a photon spectral index of α_{γ}^{ph}|_{core} = 2.11) and that for the extended component is α_{γ}|_{ext.} = 0

  1. Statistical measurement of the gamma-ray source-count distribution as a function of energy

    DOE PAGES

    Zechlin, Hannes-S.; Cuoco, Alessandro; Donato, Fiorenza; ...

    2016-07-29

    Statistical properties of photon count maps have recently been proven as a new tool to study the composition of the gamma-ray sky with high precision. Here, we employ the 1-point probability distribution function of six years of Fermi-LAT data to measure the source-count distribution dN/dS and the diffuse components of the high-latitude gamma-ray sky as a function of energy. To that aim, we analyze the gamma-ray emission in five adjacent energy bands between 1 and 171 GeV. It is demonstrated that the source-count distribution as a function of flux is compatible with a broken power law up to energies of ~50 GeV. Furthermore, the index below the break is between 1.95 and 2.0. For higher energies, a simple power-law fits the data, with an index ofmore » $${2.2}_{-0.3}^{+0.7}$$ in the energy band between 50 and 171 GeV. Upper limits on further possible breaks as well as the angular power of unresolved sources are derived. We find that point-source populations probed by this method can explain $${83}_{-13}^{+7}$$% ($${81}_{-19}^{+52}$$%) of the extragalactic gamma-ray background between 1.04 and 1.99 GeV (50 and 171 GeV). Our method has excellent capabilities for constraining the gamma-ray luminosity function and the spectra of unresolved blazars.« less

  2. Statistical measurement of the gamma-ray source-count distribution as a function of energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zechlin, Hannes-S.; Cuoco, Alessandro; Donato, Fiorenza

    Statistical properties of photon count maps have recently been proven as a new tool to study the composition of the gamma-ray sky with high precision. Here, we employ the 1-point probability distribution function of six years of Fermi-LAT data to measure the source-count distribution dN/dS and the diffuse components of the high-latitude gamma-ray sky as a function of energy. To that aim, we analyze the gamma-ray emission in five adjacent energy bands between 1 and 171 GeV. It is demonstrated that the source-count distribution as a function of flux is compatible with a broken power law up to energies of ~50 GeV. Furthermore, the index below the break is between 1.95 and 2.0. For higher energies, a simple power-law fits the data, with an index ofmore » $${2.2}_{-0.3}^{+0.7}$$ in the energy band between 50 and 171 GeV. Upper limits on further possible breaks as well as the angular power of unresolved sources are derived. We find that point-source populations probed by this method can explain $${83}_{-13}^{+7}$$% ($${81}_{-19}^{+52}$$%) of the extragalactic gamma-ray background between 1.04 and 1.99 GeV (50 and 171 GeV). Our method has excellent capabilities for constraining the gamma-ray luminosity function and the spectra of unresolved blazars.« less

  3. EXTERNAL COMPTON SCATTERING IN BLAZAR JETS AND THE LOCATION OF THE GAMMA-RAY EMITTING REGION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finke, Justin D., E-mail: justin.finke@nrl.navy.mil

    2016-10-20

    I study the location of the γ -ray emission in blazar jets by creating a Compton-scattering approximation that is valid for all anisotropic radiation fields in the Thomson through Klein–Nishina regimes, is highly accurate, and can speed up numerical calculations by up to a factor of ∼10. I apply this approximation to synchrotron self-Compton, external Compton scattering of photons from the accretion disk, broad line region (BLR), and dust torus. I use a stratified BLR model and include detailed Compton-scattering calculations of a spherical and flattened BLR. I create two dust torus models, one where the torus is an annulusmore » and one where it is an extended disk. I present detailed calculations of the photoabsorption optical depth using my detailed BLR and dust torus models, including the full angle dependence. I apply these calculations to the emission from a relativistically moving blob traveling through these radiation fields. The ratio of γ -ray to optical flux produces a predictable pattern that could help locate the γ -ray emission region. I show that the bright flare from 3C 454.3 in 2010 November detected by the Fermi Large Area Telescope is unlikely to originate from a single blob inside the BLR. This is because it moves outside the BLR in a time shorter than the flare duration, although emission by multiple blobs inside the BLR is possible. Also, γ -rays are unlikely to originate from outside of the BLR, due to the scattering of photons from an extended dust torus, since the cooling timescale would be too long to explain the observed short variability.« less

  4. Discovery of very high energy γ-ray emission from the blazar 1ES 0033+595 by the MAGIC telescopes

    DOE PAGES

    Aleksi , J.; Ansoldi, S.; Antonelli, L. A.; ...

    2014-11-11

    The number of known very high energy (VHE) blazars is ~50, which is very small in comparison to the number of blazars detected in other frequencies. This situation is a handicap for population studies of blazars, which emit about half of their luminosity in the γ-ray domain. Moreover, VHE blazars, if distant, allow for the study of the environment that the high-energy γ-rays traverse in their path towards the Earth, like the extragalactic background light (EBL) and the intergalactic magnetic field (IGMF), and hence they have a special interest for the astrophysics community. In this papaer, we present the firstmore » VHE detection of 1ES 0033+595 with a statistical significance of 5.5σ. The VHE emission of this object is constant throughout the MAGIC observations (2009 August and October), and can be parametrized with a power law with an integral flux above 150 GeV of (7.1 ± 1.3) × 10 -12 photons cm -2 s -1 and a photon index of (3.8 ± 0.7). We model its spectral energy distribution (SED) as the result of inverse Compton scattering of synchrotron photons. For the study of the SED, we used simultaneous optical R-band data from the KVA telescope, archival X-ray data by Swift as well as INTEGRAL, and simultaneous high-energy (HE, 300 MeV–10 GeV) γ-ray data from the Fermi Large Area Telescope (LAT) observatory. Using the empirical approach of Prandini et al. (2010) and the Fermi LAT and MAGIC spectra for this object, we estimate the redshift of this source to be 0.34 ± 0.08 ± 0.05. Also, this is a relevant result because this source is possibly one of the 10 most distant VHE blazars known to date, and with further (simultaneous) observations could play an important role in blazar population studies, as well as future constraints on the EBL and IGMF.« less

  5. Discovery of very high energy γ-ray emission from the blazar 1ES 0033+595 by the MAGIC telescopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aleksi , J.; Ansoldi, S.; Antonelli, L. A.

    The number of known very high energy (VHE) blazars is ~50, which is very small in comparison to the number of blazars detected in other frequencies. This situation is a handicap for population studies of blazars, which emit about half of their luminosity in the γ-ray domain. Moreover, VHE blazars, if distant, allow for the study of the environment that the high-energy γ-rays traverse in their path towards the Earth, like the extragalactic background light (EBL) and the intergalactic magnetic field (IGMF), and hence they have a special interest for the astrophysics community. In this papaer, we present the firstmore » VHE detection of 1ES 0033+595 with a statistical significance of 5.5σ. The VHE emission of this object is constant throughout the MAGIC observations (2009 August and October), and can be parametrized with a power law with an integral flux above 150 GeV of (7.1 ± 1.3) × 10 -12 photons cm -2 s -1 and a photon index of (3.8 ± 0.7). We model its spectral energy distribution (SED) as the result of inverse Compton scattering of synchrotron photons. For the study of the SED, we used simultaneous optical R-band data from the KVA telescope, archival X-ray data by Swift as well as INTEGRAL, and simultaneous high-energy (HE, 300 MeV–10 GeV) γ-ray data from the Fermi Large Area Telescope (LAT) observatory. Using the empirical approach of Prandini et al. (2010) and the Fermi LAT and MAGIC spectra for this object, we estimate the redshift of this source to be 0.34 ± 0.08 ± 0.05. Also, this is a relevant result because this source is possibly one of the 10 most distant VHE blazars known to date, and with further (simultaneous) observations could play an important role in blazar population studies, as well as future constraints on the EBL and IGMF.« less

  6. Discovery of very high energy γ-ray emission from the blazar 1ES 0033+595 by the MAGIC telescopes

    NASA Astrophysics Data System (ADS)

    Aleksić, J.; Ansoldi, S.; Antonelli, L. A.; Antoranz, P.; Babic, A.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Berger, K.; Bernardini, E.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Carmona, E.; Carosi, A.; Carreto Fidalgo, D.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; da Vela, P.; Dazzi, F.; de Angelis, A.; de Caneva, G.; de Lotto, B.; Delgado Mendez, C.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher, D.; Elsaesser, D.; Farina, E.; Ferenc, D.; Fonseca, M. V.; Font, L.; Frantzen, K.; Fruck, C.; García López, R. J.; Garczarczyk, M.; Garrido Terrats, D.; Gaug, M.; Godinović, N.; González Muñoz, A.; Gozzini, S. R.; Hadasch, D.; Hayashida, M.; Herrera, J.; Herrero, A.; Hildebrand, D.; Hose, J.; Hrupec, D.; Idec, W.; Kadenius, V.; Kellermann, H.; Kodani, K.; Konno, Y.; Krause, J.; Kubo, H.; Kushida, J.; La Barbera, A.; Lelas, D.; Lewandowska, N.; Lindfors, E.; Lombardi, S.; López, M.; López-Coto, R.; López-Oramas, A.; Lorenz, E.; Lozano, I.; Makariev, M.; Mallot, K.; Maneva, G.; Mankuzhiyil, N.; Mannheim, K.; Maraschi, L.; Marcote, B.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Meucci, M.; Miranda, J. M.; Mirzoyan, R.; Moralejo, A.; Munar-Adrover, P.; Nakajima, D.; Niedzwiecki, A.; Nilsson, K.; Nishijima, K.; Noda, K.; Nowak, N.; Orito, R.; Overkemping, A.; Paiano, S.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Partini, S.; Persic, M.; Prada, F.; Moroni, P. G. Prada; Prandini, E.; Preziuso, S.; Puljak, I.; Reinthal, R.; Rhode, W.; Ribó, M.; Rico, J.; Rodriguez Garcia, J.; Rügamer, S.; Saggion, A.; Saito, T.; Saito, K.; Satalecka, K.; Scalzotto, V.; Scapin, V.; Schultz, C.; Schweizer, T.; Shore, S. N.; Sillanpää, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Spanier, F.; Stamatescu, V.; Stamerra, A.; Steinbring, T.; Storz, J.; Sun, S.; Surić, T.; Takalo, L.; Takami, H.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Thaele, J.; Tibolla, O.; Torres, D. F.; Toyama, T.; Treves, A.; Uellenbeck, M.; Vogler, P.; Wagner, R. M.; Zandanel, F.; Zanin, R.; MAGIC Collaboration; Tronconi, V.; Buson, S.; Borghese, A.

    2015-01-01

    The number of known very high energy (VHE) blazars is ˜50, which is very small in comparison to the number of blazars detected in other frequencies. This situation is a handicap for population studies of blazars, which emit about half of their luminosity in the γ-ray domain. Moreover, VHE blazars, if distant, allow for the study of the environment that the high-energy γ-rays traverse in their path towards the Earth, like the extragalactic background light (EBL) and the intergalactic magnetic field (IGMF), and hence they have a special interest for the astrophysics community. We present the first VHE detection of 1ES 0033+595 with a statistical significance of 5.5σ. The VHE emission of this object is constant throughout the MAGIC observations (2009 August and October), and can be parametrized with a power law with an integral flux above 150 GeV of (7.1 ± 1.3) × 10-12 photons cm-2 s-1 and a photon index of (3.8 ± 0.7). We model its spectral energy distribution (SED) as the result of inverse Compton scattering of synchrotron photons. For the study of the SED, we used simultaneous optical R-band data from the KVA telescope, archival X-ray data by Swift as well as INTEGRAL, and simultaneous high-energy (HE, 300 MeV-10 GeV) γ-ray data from the Fermi Large Area Telescope (LAT) observatory. Using the empirical approach of Prandini et al. (2010) and the Fermi LAT and MAGIC spectra for this object, we estimate the redshift of this source to be 0.34 ± 0.08 ± 0.05. This is a relevant result because this source is possibly one of the 10 most distant VHE blazars known to date, and with further (simultaneous) observations could play an important role in blazar population studies, as well as future constraints on the EBL and IGMF.

  7. Very high-energy gamma rays from gamma-ray bursts.

    PubMed

    Chadwick, Paula M

    2007-05-15

    Very high-energy (VHE) gamma-ray astronomy has undergone a transformation in the last few years, with telescopes of unprecedented sensitivity having greatly expanded the source catalogue. Such progress makes the detection of a gamma-ray burst at the highest energies much more likely than previously. This paper describes the facilities currently operating and their chances for detecting gamma-ray bursts, and reviews predictions for VHE gamma-ray emission from gamma-ray bursts. Results to date are summarized.

  8. Constraints on the Location of γ-Ray Sample of Blazars with Radio Core-shift Measurements

    NASA Astrophysics Data System (ADS)

    Wu, Linhui; Wu, Qingwen; Yan, Dahai; Chen, Liang; Fan, Xuliang

    2018-01-01

    We model simultaneous or quasi-simultaneous multi-band spectral energy distributions (SEDs) for a sample of 25 blazars that have radio core-shift measurements, where a one-zone leptonic model and Markov chain Monte Carlo technique are adopted. In the SED fitting for 23 low-synchrotron-peaked (LSP) blazars, the seed photons from the broad-line (BLR) and molecular torus are considered respectively in the external Compton process. We find that the SED fitting with the seed photons from the torus are better than those utilizing BLR photons, which suggest that the γ-ray emitting region may be located outside the BLR. Assuming the magnetic field strength in the γ-ray emitting region as constrained from the SED fitting follows the magnetic field distribution as derived from the radio core-shift measurements (i.e., B{(R)≃ {B}1{pc}(R/1{pc})}-1, where R is the distance from the central engine and {B}1{pc} is the magnetic field strength at 1 pc), we further calculate the location of the γ-ray emitting region, {R}γ , for these blazars. We find that {R}γ ∼ 2× {10}4{R}{{S}}≃ 10 {R}{BLR} ({R}{{S}} is the Schwarzschild radius and {R}{BLR} is the BLR size), where {R}{BLR} is estimated from the broad-line luminosities using the empirical correlations obtained using the reverberation mapping methods.

  9. Detection of significant cm to sub-mm band radio and  γ-ray correlated variability in Fermi bright blazars

    DOE PAGES

    Fuhrmann, L.; Larsson, S.; Chiang, J.; ...

    2014-05-12

    The exact location of the γ-ray emitting region in blazars is still controversial. In order to attack this problem we present first results of a cross-correlation analysis between radio (11 cm to 0.8 mm wavelength, F-GAMMA programme) and γ-ray (0.1–300 GeV) ~3.5 yr light curves of 54 Fermi-bright blazars. We perform a source stacking analysis and estimate significances and chance correlations using mixed source correlations. These results reveal: (i) the first highly significant multiband radio and γ-ray correlations (radio lagging γ rays) when averaging over the whole sample, (ii) average time delays (source frame: 76 ± 23 to 7 ±more » 9 d), systematically decreasing from cm to mm/sub-mm bands with a frequency dependence τr, γ(ν) ∝ ν -1, in good agreement with jet opacity dominated by synchrotron self-absorption, (iii) a bulk γ-ray production region typically located within/upstream of the 3 mm core region (τ3mm, γ = 12 ± 8 d), (iv) mean distances between the region of γ-ray peak emission and the radio ‘τ = 1 photosphere’ decreasing from 9.8 ± 3.0 pc (11 cm) to 0.9 ± 1.1 pc (2 mm) and 1.4 ± 0.8 pc (0.8 mm), (v) 3 mm/γ-ray correlations in nine individual sources at a significance level where one is expected by chance (probability: 4 × 10 -6), (vi) opacity and ‘time lag core shift’ estimates for quasar 3C 454.3 providing a lower limit for the distance of the bulk γ-ray production region from the supermassive black hole (SMBH) of ~0.8–1.6 pc, i.e. at the outer edge of the broad-line region (BLR) or beyond. A 3 mm τ = 1 surface at ~2–3 pc from the jet base (i.e. well outside the ‘canonical BLR’) finally suggests that BLR material extends to several parsec distances from the SMBH.« less

  10. Fermi-LAT detection of a gamma-ray flare from the high-z blazar PKS 2149-306

    NASA Astrophysics Data System (ADS)

    D'Ammando, F.; Orienti, M.

    2013-01-01

    The Large Area Telescope (LAT), one of the two instruments on the Fermi Gamma-ray Space Telescope, has observed an increasing gamma-ray flux from a source positionally consistent with PKS 2149-306 (also known as 2FGL J2151.5-3021, Nolan et al. 2012, ApJS, 199, 31; R.A.= 21h51m55.5239s, Dec.= -30d27m53.697s, J2000.0, Johnston et al. 1995, AJ, 110, 880), a flat spectrum radio quasar at redshift z = 2.345 (Wilkes 1986, MNRAS, 218, 331).

  11. Fermi-LAT detection of a GeV gamma-ray flare from the blazar PKS 1313-333

    NASA Astrophysics Data System (ADS)

    Ciprini, Stefano

    2016-01-01

    The Large Area Telescope (LAT), one of the two instruments on the Fermi Gamma-ray Space Telescope, has observed increasing gamma-ray flux from a source positionally consistent with the flat spectrum radio quasar PKS 1313-333 (also known as TXS 1313-333, OP -322, 2EG J1314-3430 and 3FGL J1316.0-3338), with radio counterpart position R.A.: 199.033275 deg, Dec.: -33.64977 deg, (J2000.0, Johnston et al. 1995, AJ, 110, 880) and with redshift z=1.210 (Jauncey et al. 1982, AJ, 87, 763).

  12. Current Topics in Gamma-Ray Astrophysics

    PubMed Central

    Mathews, Grant J.; Maronetti, P.; Salmonson, Jay; Wilson, J. R.

    2000-01-01

    This paper reports on recent progress toward unraveling the origin of gamma-ray bursts. It is concluded that neutron-star binaries are one of the few remaining candidates. A model is proposed based upon general relativistic hydrodynamic studies which indicate a new physical process by which to power a gamma-ray burst. Relativistically driven compression, heating, and collapse of the individual neutron stars can occur many seconds before inspiral and merger. This compression may produce a neutrino burst of ∼1053 ergs lasting several seconds. The associated thermal neutrino emission produces an e+–e − pair plasma by vv¯ annihilation. We show first results of a simulated burst which produces ∼1051 erg in γ rays of the correct spectral and temporal properties. PMID:27551592

  13. Current Topics in Gamma-Ray Astrophysics.

    PubMed

    Mathews, G J; Maronetti, P; Salmonson, J; Wilson, J R

    2000-01-01

    This paper reports on recent progress toward unraveling the origin of gamma-ray bursts. It is concluded that neutron-star binaries are one of the few remaining candidates. A model is proposed based upon general relativistic hydrodynamic studies which indicate a new physical process by which to power a gamma-ray burst. Relativistically driven compression, heating, and collapse of the individual neutron stars can occur many seconds before inspiral and merger. This compression may produce a neutrino burst of ∼10(53) ergs lasting several seconds. The associated thermal neutrino emission produces an e (+)-e (-) pair plasma by [Formula: see text] annihilation. We show first results of a simulated burst which produces ∼10(51) erg in γ rays of the correct spectral and temporal properties.

  14. Kernel analysis in TeV gamma-ray selection

    NASA Astrophysics Data System (ADS)

    Moriarty, P.; Samuelson, F. W.

    2000-06-01

    We discuss the use of kernel analysis as a technique for selecting gamma-ray candidates in Atmospheric Cherenkov astronomy. The method is applied to observations of the Crab Nebula and Markarian 501 recorded with the Whipple 10 m Atmospheric Cherenkov imaging system, and the results are compared with the standard Supercuts analysis. Since kernel analysis is computationally intensive, we examine approaches to reducing the computational load. Extension of the technique to estimate the energy of the gamma-ray primary is considered. .

  15. The Ringo2 Optical Polarisation Catalogue of 13 High-Energy Blazars

    NASA Astrophysics Data System (ADS)

    Barres de Almeida, Ulisses; Jermak, Helen; Mundell, Carole; Lindfors, Elina; Nilsson, Kari; Steele, Iain

    2015-08-01

    We present the findings of the Ringo2 3-year survey of 13 blazars (3 FSRQs and 10 BL Lacs) with regular coverage and reasonably fast cadence of one to three observations a week. Ringo2 was installed on the Liverpool Robotic Telescope (LT) on the Canary Island of La Palma between 2009 and 2012 and monitored thirteen high-energy-emitting blazars in the northern sky. The objects selected as well as the observational strategy were tuned to maximise the synergies with high-energy X- to gamma-ray observations. Therefore this sample stands out as a well-sampled, long-term view of high-energy AGN jets in polarised optical light. Over half of the sources exhibited an increase in optical flux during this period and almost a quarter were observed in outburst. We compare the optical data to gamma (Fermi/LAT) and X-ray data during these periods of outburst. In this talk we present the data obtained for all sources over the lifetime of Ringo2 with additional optical data from the KVA telescope and the SkyCamZ wide-field camera (on the LT), we explore the relationship between the change in polarisation angle as a function of time (dEVPA/dMJD), flux and polarisation degree along with cross correlation comparisons of optical and high-energy flux.

  16. Discovery of an Extreme MeV Blazar with the Swift Burst Alert Telescope

    NASA Technical Reports Server (NTRS)

    Sambruna, R. M.; Markwardt, C. B.; Mushotzky, R. F.; Tueller, J.; Hartman, R.; Brandt, W. N.; Schneider, D> P.; Falcone, A.; Cucchiara, A.; hide

    2006-01-01

    The Burst Alert Telescope (BAT) onboard Swift detected bright emission from 15-195 keV from the source SWIFT J0746.3+2548 (J0746 in the following), identified with the optically-faint (R approx. 19), z=2.979 quasar SDSS J074625.87+244901.2. Here we present Swift and multiwavelength observations of this source. The X-ray emission from J0746 is variable on timescales of hours to weeks in 0.5-8 keV and of a few months in 15-195 keV, but there is no accompanying spectral variability in the 0.5-8 keV band. There is a suggestion that the BAT spectrum, initially very hard (photon index Gamma approx. 0.7), steepened to Gamma approx. 1.3 in a few months, together with a decrease of the 15-195 keV flux by a factor approx. 2. The 0.5-8 keV continuum is well described by a power law with Gamma approx. 1.3, and spectral flattening below 1 keV. The latter can be described with a column density in excess of the Galactic value with intrinsic column density Nz(sub H) approx. 10(exp 22)/sq cm , or with a flatter power law, implying a sharp (Delta(Gamma) less than or approx. 1) break across 16 keV in the quasar's rest-frame. The Spectral Energy Distribution of J0746 is double-humped, with the first component peaking at IR wavelengths and the second component at MeV energies. These properties suggest that J0746 is a a blazar with high gamma-ray luminosity and low peak energy (MeV) stretching the blazar sequence to an extreme.

  17. Broadband radio jet emission and variability of γ-ray blazars

    NASA Astrophysics Data System (ADS)

    Nestoras, Ioannis

    2015-07-01

    AGN (Active Galactic Nuclei) and in particular their subclass blazars, are among the most energetic objects observed in the universe, featuring extreme phenomenological characteristics such as rapid broadband flux density and polarization variability, fast super--luminal motion, high degree of polarization and a broadband, double-humped spectral energy distribution (SED). The details of the emission processes and violent variability of blazars are still poorly understood. Variability studies give important clues about the size, structure, physics and dynamics of the emitting region making AGN/blazar monitoring programs of uttermost importance in providing the necessary constraints for understanding the origin of energy production. In this framework the F-gamma program was initiated, monitoring monthly 60 fermi detected AGN/blazars at 12 frequencies between 2.6 and 345GHz since 2007. For the thesis in hand observations and data analysis were performed within the realms of the F-gamma program, using the Effelsberg (EB) 100m and Pico Veleta (PV) 30m telescopes at 10 frequency bands ranging from 2.64 to 142GHz. The cm to short-mm variability/spectral characteristics are monitored for a sample of 59 sources for a period of five years enabling for the first time a detailed study of the observed flaring activity in both the light curve and spectral domains for such a large number of sources and such high cadence. Also the observing systems and methods are introduced as well as the data reduction techniques. The thesis at hand is structured as follows: Chapter 3 presents the reduction methods and post measurement corrections applied to the data such as pointing offsets, gain--elevation and sensitivity corrections as well as specific corrections applied for each of the Effelsberg and Pico Veleta observing systems respectively. Chapter 4 presents the analysis tools and methods that were used such as: variability characteristics, flare amplitudes with a new method for

  18. Air shower detectors in gamma-ray astronomy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinnis, Gus

    2008-01-01

    Extensive air shower (EAS) arrays directly detect the particles in an EAS that reach the observation altitude. This detection technique effectively makes air shower arrays synoptic telescopes -- they are capable of simultaneously and continuously viewing the entire overhead sky. Typical air shower detectors have an effective field-of-view of 2 sr and operate nearly 100% of the time. These two characteristics make them ideal instruments for studying the highest energy gamma rays, extended sources and transient phenomena. Until recently air shower arrays have had insufficient sensitivity to detect gamma-ray sources. Over the past decade, the situation has changed markedly. Milagro,more » in the US, and the Tibet AS{gamma} array in Tibet, have detected very-high-energy gamma-ray emission from the Crab Nebula and the active galaxy Markarian 421 (both previously known sources). Milagro has discovered TeV diffuse emission from the Milky Way, three unidentified sources of TeV gamma rays, and several candidate sources of TeV gamma rays. Given these successes and the suite of existing and planned instruments in the GeV and TeV regime (AGILE, GLAST, HESS, VERITAS, CTA, AGIS and IceCube) there are strong reasons for pursuing a next generation of EAS detectors. In conjunction with these other instruments the next generation of EAS instruments could answer long-standing problems in astrophysics.« less

  19. Interpretation of Blazar Flux Variations as Music

    NASA Astrophysics Data System (ADS)

    Webb, J. R.

    2003-12-01

    Blazars are believed to be distant galaxies in the process of formation. They emit electromagnetic radiation (light) over the entire electromagnetic spectrum from radio waves to gamma-rays. The emission varies with time in most frequency ranges and the causes for the variation are yet to be adequately explained. Astronomers have been monitoring these objects with optical telescopes for over 50 years now and we have collected a large database of brightnesses over these fifty years. This paper presents some of these light curves, and adopts a computational method to translate the brightness fluctuations into musical tones. These tones are then converted to sound using a midi synthesizer on a PC.

  20. Probing the diffuse optical-IR background with TeV blazars detected with the MAGIC Telescopes

    NASA Astrophysics Data System (ADS)

    Prandini, Elisa; Domínguez, Alberto; Fallah Ramazani, Vandad; Hassan, Tarek; Mazin, Daniel; Moralejo, Abelardo; Nievas Rosillo, Mireia; Vanzo, Gaia; Vazquez Acosta, Monica

    2017-11-01

    Blazars are radio loud quasars whose jet points toward the observer. The observed emission is mostly non-thermal, dominated by the jet emission, and in some cases extends up to the very high energy gamma rays (VHE; E > 100 GeV). To date, more than 60 blazars have been detected at VHE mainly with ground-based imaging atmospheric Cherenkov telescopes (IACTs) such as MAGIC, H.E.S.S. and VERITAS. Energetic photons from a blazar may interact with the diffuse optical and IR background (the extragalactic background light, EBL) leaving an imprint on the blazar energy spectrum. This effect can be used to constrain the EBL, with basic assumptions on the intrinsic energy spectrum. Current generation of IACTs is providing valuable measurements of the EBL density and energy spectrum from optical to infrared frequencies. In this contribution, we present the latest results obtained with the data taken with the MAGIC telescopes: using 32 spectra from 12 blazars, the scale factor of the optical density predicted by the EBL model from Domínguez et al. (2011) is constrained to be 0.95 (+0.11, -0.12)_{stat} (+0.16, -0.07)_{sys}, where a value of 1 means the perfect match with the model.

  1. Analysis of Multi-band Photometry of Violently Variable Gamma-Ray Sources

    NASA Astrophysics Data System (ADS)

    Kadowaki, Jennifer; Malkan, M. A.

    2013-01-01

    We studied the relationship between rapid variations in the jet intensities and changes in accretion disk activity of blazar subtype, Flat Spectrum Radio Quasar (FSRQ). Fifteen known FSRQs were specifically chosen for their prominent big blue bumps with redshifts near z=1, in order for the rest-frame UV to be redshifted into the blue-band pass. Flux changes for these 15 FSRQs were monitored for 15 observational nights in BVRI-bands and 20 nights in JHK-bands over a 12 month period using NASA's Fermi Gamma-ray Space Telescope, Lick Observatory's Nickel Telescope, and Kitt Peak National Observatory's 2.1 m Telescope. With 6.3’ x 6.3’ field of view for Nickel’s Direct Imaging Camera and 20’ x 20’ for Flamingos IR Imaging Spectrometer, approximately a half dozen, bright and non-variable stars were available to compare the concurrent changes in each of the quasar’s brightness. This process of differential photometry yielded photometric measurements of quasar brightness with 1-2% level precision. Light curves were then created for these 15 monitored quasars in optical, infrared, and gamma-ray energy bands. Dominating the redder emission spectrum due to non-thermal, synchrotron radiation and compton scattering of gamma-rays off high energy electrons, jet activity was compared to bluer spectral regions having strong accretion disk component with rest frame of approximately 2000 Angstroms. Most of the targeted FSRQs varied significantly over the 12 month monitoring period, with varying levels of fluctuations for each observed wavelength. Some correlations between gamma-ray and optical wavelengths were also present, which will be further discussed in the poster.

  2. Chandra X-Ray Observations of the Two Brightest Unidentified High Galactic Latitude Fermi-LAT Gamma-Ray Sources

    NASA Technical Reports Server (NTRS)

    Cheung, C. C.; Donato, D.; Gehrels, N.; Sokolovsky, K. V.; Giroletti, M.

    2012-01-01

    We present Chandra ACIS-I X-ray observations of 0FGL J1311.9-3419 and 0FGL J1653.4-0200, the two brightest high Galactic latitude (absolute value (beta) >10 deg) gamma-ray sources from the three-month Fermi Large Area Telescope (LAT) bright source list that are still unidentified. Both were also detected previously by EGRET, and despite dedicated multi-wavelength follow-up, they are still not associated with established classes of gamma-ray emitters like pulsars or radio-loud active galactic nuclei. X-ray sources found in the ACIS-I fields of view are cataloged, and their basic properties are determined. These are discussed as candidate counterparts to 0FGL J1311.9-3419 and 0FGL J1653.4-0200, with particular emphasis on the brightest of the 9 and 13 Chandra sources detected within the respective Fermi-LAT 95% confidence regions. Further follow-up studies, including optical photometric and spectroscopic observations, are necessary to identify these X-ray candidate counterparts in order to ultimately reveal the nature of these enigmatic gamma-ray objects.

  3. Search for Magnetically Broadened Cascade Emission from Blazars with VERITAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archambault, S.; Griffin, S.; Archer, A.

    2017-02-01

    We present a search for magnetically broadened gamma-ray emission around active galactic nuclei (AGNs), using VERITAS observations of seven hard-spectrum blazars. A cascade process occurs when multi-TeV gamma-rays from an AGN interact with extragalactic background light (EBL) photons to produce electron–positron pairs, which then interact with cosmic microwave background photons via inverse-Compton scattering to produce gamma-rays. Due to the deflection of the electron–positron pairs, a non-zero intergalactic magnetic field (IGMF) would potentially produce detectable effects on the angular distribution of the cascade emission. In particular, an angular broadening compared to the unscattered emission could occur. Through non-detection of angularly broadenedmore » emission from 1ES 1218+304, the source with the largest predicted cascade fraction, we exclude a range of IGMF strengths around 10{sup −14} G at the 95% confidence level. The extent of the exclusion range varies with the assumptions made about the intrinsic spectrum of 1ES 1218+304 and the EBL model used in the simulation of the cascade process. All of the sources are used to set limits on the flux due to extended emission.« less

  4. Gamma-ray emission from black holes

    NASA Technical Reports Server (NTRS)

    Ling, James C.

    1991-01-01

    Strong continuum gamma-ray emission at about 1 MeV possibly correlated with a narrow annihilation line at 511 keV has been observed from both Cygnus X-1 and the Galactic center. Such correlated emission has been interpreted as a unique gamma-ray signature for theoretically predicted relativistic, positron-electron pair-dominated plasma in regions surrounding the black holes. In this paper, the Cygnus X-1 results, which have provided important new insights about the source, are reviewed. Cygnus X-1 may be considered a canonical reference stellar black hole whose spectral and temporal characteristics can be used for comparison with those of other black-hole candidates including the Galactic center and AGN.

  5. Very high-energy gamma-ray follow-up program using neutrino triggers from IceCube

    NASA Astrophysics Data System (ADS)

    IceCube Collaboration; Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Archinger, M.; Argüelles, C.; Auffenberg, J.; Axani, S.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blot, S.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Bron, S.; Burgman, A.; Carver, T.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cross, R.; Day, M.; de André, J. P. A. M.; De Clercq, C.; del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Eller, P.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Fösig, C.-C.; Franckowiak, A.; Franke, R.; Friedman, E.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Giang, W.; Gladstone, L.; Glauch, T.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Grant, D.; Griffith, Z.; Haack, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, T.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Hoshina, K.; Huang, F.; Huber, M.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Jurkovic, M.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kheirandish, A.; Kim, M.; Kintscher, T.; Kiryluk, J.; Kittler, T.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, M.; Krückl, G.; Krüger, C.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lauber, F.; Lennarz, D.; Lesiak-Bzdak, M.; Leuermann, M.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Mandelartz, M.; Maruyama, R.; Mase, K.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Mohrmann, L.; Montaruli, T.; Moulai, M.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Peiffer, P.; Penek, Ö.; Pepper, J. A.; Pérez de los Heros, C.; Pieloth, D.; Pinat, E.; Price, P. B.; Przybylski, G. T.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relethford, B.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk, D.; Sabbatini, L.; Sanchez Herrera, S. E.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Satalecka, K.; Schlunder, P.; Schmidt, T.; Schoenen, S.; Schöneberg, S.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stanev, T.; Stasik, A.; Stettner, J.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Tenholt, F.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Rossem, M.; van Santen, J.; Veenkamp, J.; Vehring, M.; Voge, M.; Vogel, E.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Weiss, M. J.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wickmann, S.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wolf, M.; Wood, T. R.; Woolsey, E.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.; MAGIC Collaboration; Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Antoranz, P.; Babic, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Berti, A.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Buson, S.; Carosi, A.; Chatterjee, A.; Clavero, R.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; de Oña Wilhelmi, E.; Di Pierro, F.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Engelkemeier, M.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Frantzen, K.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Garrido Terrats, D.; Gaug, M.; Giammaria, P.; Godinović, N.; González Muñoz, A.; Góra, D.; Guberman, D.; Hadasch, D.; Hahn, A.; Hanabata, Y.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Hughes, G.; Idec, W.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; La Barbera, A.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; López-Coto, R.; Majumdar, P.; Makariev, M.; Mallot, K.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Marcote, B.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Miranda, J. M.; Mirzoyan, R.; Moralejo, A.; Moretti, E.; Nakajima, D.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Nishijima, K.; Noda, K.; Nogués, L.; Overkemping, A.; Paiano, S.; Palacio, J.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Pedaletti, G.; Peresano, M.; Perri, L.; Persic, M.; Poutanen, J.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Rodriguez Garcia, J.; Saito, T.; Satalecka, K.; Schroeder, S.; Schultz, C.; Schweizer, T.; Sillanpää, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Stamerra, A.; Steinbring, T.; Strzys, M.; Surić, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Thaele, J.; Torres, D. F.; Toyama, T.; Treves, A.; Vanzo, G.; Verguilov, V.; Vovk, I.; Ward, J. E.; Will, M.; Wu, M. H.; Zanin, .; VERITAS Collaboration; Abeysekara, A. U.; Archambault, S.; Archer, A.; Benbow, W.; Bird, R.; Bourbeau, E.; Buchovecky, M.; Bugaev, V.; Byrum, K.; Cardenzana, J. V.; Cerruti, M.; Ciupik, L.; Connolly, M. P.; Cui, W.; Dickinson, H. J.; Dumm, J.; Eisch, J. D.; Errando, M.; Falcone, A.; Feng, Q.; Finley, J. P.; Fleischhack, H.; Flinders, A.; Fortson, L.; Furniss, A.; Gillanders, G. H.; Griffin, S.; Hütten, J. Grube M.; Håkansson, N.; Hervet, O.; Holder, J.; Humensky, T. B.; Johnson, C. A.; Kaaret, P.; Kar, P.; Kelley-Hoskins, N.; Kertzman, M.; Kieda, D.; Krause, M.; Krennrich, F.; Kumar, S.; Lang, M. J.; Maier, G.; McArthur, S.; McCann, A.; Moriarty, P.; Mukherjee, R.; Nguyen, T.; Nieto, D.; O'Brien, S.; Ong, R. A.; Otte, A. N.; Park, N.; Pohl, M.; Popkow, A.; Pueschel, E.; Quinn, J.; Ragan, K.; Reynolds, P. T.; Richards, G. T.; Roache, E.; Rulten, C.; Sadeh, I.; Santander, M.; Sembroski, G. H.; Shahinyan, K.; Staszak, D.; Telezhinsky, I.; Tucci, J. V.; Tyler, J.; Wakely, S. P.; Weinstein, A.; Wilcox, P.; Wilhelm, A.; Williams, D. A.; Zitzer, B.

    2016-11-01

    We describe and report the status of a neutrino-triggered program in IceCube that generates real-time alerts for gamma-ray follow-up observations by atmospheric-Cherenkov telescopes (MAGIC and VERITAS). While IceCube is capable of monitoring the whole sky continuously, high-energy gamma-ray telescopes have restricted fields of view and in general are unlikely to be observing a potential neutrino-flaring source at the time such neutrinos are recorded. The use of neutrino-triggered alerts thus aims at increasing the availability of simultaneous multi-messenger data during potential neutrino flaring activity, which can increase the discovery potential and constrain the phenomenological interpretation of the high-energy emission of selected source classes (e.g. blazars). The requirements of a fast and stable online analysis of potential neutrino signals and its operation are presented, along with first results of the program operating between 14 March 2012 and 31 December 2015.

  6. PATCHY BLAZAR HEATING: DIVERSIFYING THE THERMAL HISTORY OF THE INTERGALACTIC MEDIUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamberts, Astrid; Chang, Philip; Pfrommer, Christoph

    TeV-blazars potentially heat the intergalactic medium (IGM) as their gamma rays interact with photons of the extragalactic background light to produce electron–positron pairs, which lose their kinetic energy to the surrounding medium through plasma instabilities. This results in a heating mechanism that is only weakly sensitive to the local density, and therefore approximately spatially uniform, naturally producing an inverted temperature–density relation in underdense regions. In this paper we go beyond the approximation of uniform heating and quantify the heating rate fluctuations due to the clustered distribution of blazars and how this impacts the thermal history of the IGM. We analyticallymore » compute a filtering function that relates the heating rate fluctuations to the underlying dark matter density field. We implement it in the cosmological code GADGET-3 and perform large-scale simulations to determine the impact of inhomogeneous heating. We show that because of blazar clustering, blazar heating is inhomogeneous for z ≳ 2. At high redshift, the temperature–density relation shows an important scatter and presents a low temperature envelope of unheated regions, in particular at low densities and within voids. However, the median temperature of the IGM is close to that in the uniform case, albeit slightly lower at low redshift. We find that blazar heating is more complex than initially assumed and that the temperature–density relation is not unique. Our analytic model for the heating rate fluctuations couples well with large-scale simulations and provides a cost-effective alternative to subgrid models.« less

  7. Morphology of blazar-induced gamma ray halos due to a helical intergalactic magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Andrew J.; Vachaspati, Tanmay, E-mail: andrewjlong@asu.edu, E-mail: tvachasp@asu.edu

    We study the characteristic size and shape of idealized blazar-induced cascade halos in the 1–100,GeV energy range assuming various non-helical and helical configurations for the intergalactic magnetic field (IGMF). While the magnetic field creates an extended halo, the helicity provides the halo with a twist. Under simplifying assumptions, we assess the parameter regimes for which it is possible to measure the size and shape of the halo from a single source and then to deduce properties of the IGMF. We find that blazar halo measurements with an experiment similar to Fermi-LAT are best suited to probe a helical magnetic fieldmore » with strength and coherence length today in the ranges 10{sup −17} ∼< B{sub 0} / Gauss ∼< 10{sup −13} and 10 Mpc ∼< λ ∼< 10 Gpc where H ∼ B{sub 0}{sup 2} / λ is the magnetic helicity density. Stronger magnetic fields or smaller coherence scales can still potentially be investigated, but the connection between the halo morphology and the magnetic field properties is more involved. Weaker magnetic fields or longer coherence scales require high photon statistics or superior angular resolution.« less

  8. Multiwavelength Observations of Markarian 421 During a TeV/X-Ray Flare

    NASA Technical Reports Server (NTRS)

    Bertsch, D. L.; Bruhweiler, F.; Macomb, D. J.; Cheng, K.-P.; Carter-Lewis, D. A.; Akerlof, C. W.; Aller, H. D.; Aller, M. F.; Buckley, J. H.; Cawley, M. F.

    1995-01-01

    A TeV flare from the BL Lac object Mrk 421 was detected in May of 1994 by the Whipple Observatory air Cherenkov experiment during which the flux above 250 GeV increased by nearly an order of magnitude over a 2-day period. Contemporaneous observations by ASCA showed the X-ray flux to be in a very high state. We present these results, combined with the first ever simultaneous or nearly simultaneous observations at GeV gamma-ray, UV, IR, mm, and radio energies for this nearest BL Lac object. While the GeV gamma-ray flux increased slightly, there is little evidence for variability comparable to that seen at TeV and X-ray energies. Other wavelengths show even less variability. This provides important constraints on the emission mechanisms at work. We present the multiwavelength spectrum of this gamma-ray blazar for both quiescent and flaring states and discuss the data in terms of current models of blazar emission.

  9. Finding Sub-threshold Short Gamma-ray Bursts in Fermi GBM Data

    NASA Astrophysics Data System (ADS)

    Burns, Eric; Fermi Gamma-ray Burst Monitor Team

    2018-01-01

    The all-sky monitoring capability of Fermi GBM makes it ideal for finding transients, and the most prolific detector of short gamma-ray bursts with about 40 on-board triggers per year. Because the observed brightness of short gamma-ray bursts has no correlation with redshift, weak short gamma-ray bursts are important during the gravitational wave era. With this in mind, we discuss two searches of GBM data to find short gamma-ray which were below the on-board trigger threshold. The untargeted search looks for significant background-subtracted signals in two or more detectors at various timescales in the continuous data, detecting ~80 additional short GRB candidates per year. The targeted search is the most sensitive search for weak gamma-ray signals in GBM data and is run over limited time intervals around sources of interest like gravitational waves.

  10. Looking for blazars in a sample of unidentified high-energy emitting Fermi sources

    NASA Astrophysics Data System (ADS)

    Marchesini, E. J.; Masetti, N.; Chavushyan, V.; Cellone, S. A.; Andruchow, I.; Bassani, L.; Bazzano, A.; Jiménez-Bailón, E.; Landi, R.; Malizia, A.; Palazzi, E.; Patiño-Álvarez, V.; Rodríguez-Castillo, G. A.; Stephen, J. B.; Ubertini, P.

    2016-11-01

    Context. Based on their overwhelming dominance among associated Fermi γ-ray catalogue sources, it is expected that a large fraction of the unidentified Fermi objects are blazars. Through crossmatching between the positions of unidentified γ-ray sources from the First Fermi Catalog of γ-ray sources emitting above 10 GeV (1FHL) and the ROSAT and Swift/XRT catalogues of X-ray objects and between pointed XRT observations, a sample of 36 potential associations was found in previous works with less than 15 arcsec of positional offset. One-third of them have recently been classified; the remainder, though believed to belong to the blazar class, still lack spectroscopic classifications. Aims: We study the optical spectrum of the putative counterparts of these unidentified gamma-ray sources in order to find their redshifts and to determine their nature and main spectral characteristics. Methods: An observational campaign was carried out on the putative counterparts of 13 1FHL sources using medium-resolution optical spectroscopy from the Osservatorio Astronomico di Bologna in Loiano, Italy; the Telescopio Nazionale Galileo and the Nordic Optical Telescope, both in the Canary Islands, Spain; and the Observatorio Astronómico Nacional San Pedro Mártir in Baja California, Mexico. Results: We were able to classify 14 new objects based on their continuum shapes and spectral features. Conclusions: Twelve new blazars were found, along with one new quasar and one new narrow line Seyfert 1 (NLS1) to be potentially associated with the 1FHL sources of our sample. Redshifts or lower limits were obtained when possible alongside central black hole mass and luminosity estimates for the NLS1 and the quasar.

  11. Time-dependent Electron Acceleration in Blazar Transients: X-Ray Time Lags and Spectral Formation

    NASA Astrophysics Data System (ADS)

    Lewis, Tiffany R.; Becker, Peter A.; Finke, Justin D.

    2016-06-01

    Electromagnetic radiation from blazar jets often displays strong variability, extending from radio to γ-ray frequencies. In a few cases, this variability has been characterized using Fourier time lags, such as those detected in the X-rays from Mrk 421 using BeppoSAX. The lack of a theoretical framework to interpret the data has motivated us to develop a new model for the formation of the X-ray spectrum and the time lags in blazar jets based on a transport equation including terms describing stochastic Fermi acceleration, synchrotron losses, shock acceleration, adiabatic expansion, and spatial diffusion. We derive the exact solution for the Fourier transform of the electron distribution and use it to compute the Fourier transform of the synchrotron radiation spectrum and the associated X-ray time lags. The same theoretical framework is also used to compute the peak flare X-ray spectrum, assuming that a steady-state electron distribution is achieved during the peak of the flare. The model parameters are constrained by comparing the theoretical predictions with the observational data for Mrk 421. The resulting integrated model yields, for the first time, a complete first-principles physical explanation for both the formation of the observed time lags and the shape of the peak flare X-ray spectrum. It also yields direct estimates of the strength of the shock and the stochastic magnetohydrodynamical wave acceleration components in the Mrk 421 jet.

  12. TIME-DEPENDENT ELECTRON ACCELERATION IN BLAZAR TRANSIENTS: X-RAY TIME LAGS AND SPECTRAL FORMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Tiffany R.; Becker, Peter A.; Finke, Justin D., E-mail: pbecker@gmu.edu, E-mail: tlewis13@gmu.edu, E-mail: justin.finke@nrl.navy.mil

    2016-06-20

    Electromagnetic radiation from blazar jets often displays strong variability, extending from radio to γ -ray frequencies. In a few cases, this variability has been characterized using Fourier time lags, such as those detected in the X-rays from Mrk 421 using Beppo SAX. The lack of a theoretical framework to interpret the data has motivated us to develop a new model for the formation of the X-ray spectrum and the time lags in blazar jets based on a transport equation including terms describing stochastic Fermi acceleration, synchrotron losses, shock acceleration, adiabatic expansion, and spatial diffusion. We derive the exact solution formore » the Fourier transform of the electron distribution and use it to compute the Fourier transform of the synchrotron radiation spectrum and the associated X-ray time lags. The same theoretical framework is also used to compute the peak flare X-ray spectrum, assuming that a steady-state electron distribution is achieved during the peak of the flare. The model parameters are constrained by comparing the theoretical predictions with the observational data for Mrk 421. The resulting integrated model yields, for the first time, a complete first-principles physical explanation for both the formation of the observed time lags and the shape of the peak flare X-ray spectrum. It also yields direct estimates of the strength of the shock and the stochastic magnetohydrodynamical wave acceleration components in the Mrk 421 jet.« less

  13. Astrophysical gamma-ray production by inverse Compton interactions of relativistic electrons

    NASA Technical Reports Server (NTRS)

    Schlickeiser, R.

    1979-01-01

    The inverse Compton scattering of background photon gases by relativistic electrons is a good candidate for the production of high-energy gamma rays in the diffuse interstellar medium as well as in discrete sources. By discussing the special case of the scattering of the diffuse starlight in the interstellar medium by cosmic ray electrons, we demonstrate that previous derivations of the gamma ray source function for this process on the basis of the Thomson limit of the Klein-Nishina cross section lead to incorrect values for gamma-ray energies above 100 MeV. It is shown that the Thomson limit is not applicable for the calculation of gamma-ray source functions in astrophysical circumstances in which target photons with energies greater than 1 eV are scattered by relativistic electrons.

  14. First multi-wavelength campaign on the gamma-ray-loud active galaxy IC 310

    NASA Astrophysics Data System (ADS)

    Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Arcaro, C.; Babić, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Berti, A.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Carosi, R.; Carosi, A.; Chatterjee, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Cumani, P.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; de Oña Wilhelmi, E.; Di Pierro, F.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Engelkemeier, M.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Gaug, M.; Giammaria, P.; Godinović, N.; Gora, D.; Guberman, D.; Hadasch, D.; Hahn, A.; Hassan, T.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Hughes, G.; Idec, W.; Ishio, K.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; Majumdar, P.; Makariev, M.; Mallot, K.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Mirzoyan, R.; Moralejo, A.; Moretti, E.; Nakajima, D.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Nishijima, K.; Noda, K.; Nogués, L.; Nöthe, M.; Paiano, S.; Palacio, J.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Pedaletti, G.; Peresano, M.; Perri, L.; Persic, M.; Poutanen, J.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Garcia, J. R.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Saito, T.; Satalecka, K.; Schroeder, S.; Schweizer, T.; Shore, S. N.; Sillanpää, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Stamerra, A.; Strzys, M.; Surić, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Torres, D. F.; Torres-Albà, N.; Toyama, T.; Treves, A.; Vanzo, G.; Vazquez Acosta, M.; Vovk, I.; Ward, J. E.; Will, M.; Wu, M. H.; Krauß, F.; Schulz, R.; Kadler, M.; Wilms, J.; Ros, E.; Bach, U.; Beuchert, T.; Langejahn, M.; Wendel, C.; Gehrels, N.; Baumgartner, W. H.; Markwardt, C. B.; Müller, C.; Grinberg, V.; Hovatta, T.; Magill, J.

    2017-07-01

    Context. The extragalactic very-high-energy gamma-ray sky is rich in blazars. These are jetted active galactic nuclei that are viewed at a small angle to the line-of-sight. Only a handful of objects viewed at a larger angle are so far known to emit above 100 GeV. Multi-wavelength studies of such objects up to the highest energies provide new insights into the particle and radiation processes of active galactic nuclei. Aims: We aim to report the results from the first multi-wavelength campaign observing the TeV detected nucleus of the active galaxy IC 310, whose jet is observed at a moderate viewing angle of 10°-20°. Methods: The multi-instrument campaign was conducted between 2012 November and 2013 January, and involved observations with MAGIC, Fermi, INTEGRAL, Swift, OVRO, MOJAVE and EVN. These observations were complemented with archival data from the AllWISE and 2MASS catalogs. A one-zone synchrotron self-Compton model was applied to describe the broadband spectral energy distribution. Results: IC 310 showed an extraordinary TeV flare at the beginning of the campaign, followed by a low, but still detectable TeV flux. Compared to previous measurements in this energy range, the spectral shape was found to be steeper during the low emission state. Simultaneous observations in the soft X-ray band showed an enhanced energy flux state and a harder-when-brighter spectral shape behavior. No strong correlated flux variability was found in other frequency regimes. The broadband spectral energy distribution obtained from these observations supports the hypothesis of a double-hump structure. Conclusions: The harder-when-brighter trend in the X-ray and VHE emission, observed for the first time during this campaign, is consistent with the behavior expected from a synchrotron self-Compton scenario. The contemporaneous broadband spectral energy distribution is well described with a one-zone synchrotron self-Compton model using parameters that are comparable to those found for

  15. Long-term monitoring of blazars - the DWARF network

    NASA Astrophysics Data System (ADS)

    Backes, Michael; Biland, Adrian; Boller, Andrea; Braun, Isabel; Bretz, Thomas; Commichau, Sebastian; Commichau, Volker; Dorner, Daniela; von Gunten, Hanspeter; Gendotti, Adamo; Grimm, Oliver; Hildebrand, Dorothée; Horisberger, Urs; Krähenbühl, Thomas; Kranich, Daniel; Lustermann, Werner; Mannheim, Karl; Neise, Dominik; Pauss, Felicitas; Renker, Dieter; Rhode, Wolfgang; Rissi, Michael; Rollke, Sebastian; Röser, Ulf; Stark, Luisa Sabrina; Stucki, Jean-Pierre; Viertel, Gert; Vogler, Patrick; Weitzel, Quirin

    The variability of the very high energy (VHE) emission from blazars seems to be connected with the feeding and propagation of relativistic jets and with their origin in supermassive black hole binaries. The key to understanding their properties is measuring well-sampled gamma-ray lightcurves, revealing the typical source behavior unbiased by prior knowledge from other wavebands. Using ground-based gamma-ray observatories with exposures limited by dark-time, a global network of several telescopes is needed to carry out fulltime measurements. Obviously, such observations are time-consuming and, therefore, cannot be carried out with the present state of the art instruments. The DWARF telescope on the Canary Island of La Palma is dedicated to monitoring observations. It is currently being set up, employing a costefficient and robotic design. Part of this project is the future construction of a distributed network of small telescopes. The physical motivation of VHE long-term monitoring will be outlined in detail and the perspective for a network for 24/7 observations will be presented.

  16. VLT/X-Shooter spectrum of the blazar TXS 0506+056 (located inside the IceCube-170922A error box)

    NASA Astrophysics Data System (ADS)

    Coleiro, Alexis; Chaty, Sylvain

    2017-10-01

    The blazar TXS 0506+056 (PMN J0509+0541) is currently reported to show increased gamma-ray and optical activity (ATel #10791, #10792, #10794, #10799, #10801, #10817, #10830, #10831, #10838) and has been proposed as the counterpart to the high-energy neutrino event IceCube-170922A (https://gcn.gsfc.nasa.gov/notices_amon/50579430_130033.amon).

  17. Gamma ray sources observation with the ARGO-YBJ detector

    NASA Astrophysics Data System (ADS)

    Vernetto, S.; ARGO-YBJ Collaboration

    2011-02-01

    In this paper we report on the observations of TeV gamma ray sources performed by the air shower detector ARGO-YBJ. The objects studied in this work are the blazar Markarian 421 and the extended galactic source MGROJ1908+06, monitored during ~2 years of operation. Mrk421 has been detected by ARGO-YBJ with a statistical significance of ~11 standard deviations. The observed TeV emission was highly variable, showing large enhancements of the flux during active periods. The study of the spectral behaviour during flares revealed a positive correlation of the hardness with the flux, as already reported in the past by the Whipple telescope, suggesting that this is a long term property of the source. ARGO-YBJ observed a strong correlation between TeV gamma rays and the X-ray flux measured by RXTM/ASM and SWIFT/BAT during the whole period, with a time lag compatible with zero, supporting the one-zone SSC model to describe the emission mechanism. MGROJ1908+06 has been detected by ARGO-YBJ with ~5 standard deviation of significance. From our data the source appears extended and the measured extension is σext = 0.48° --> σext = 0.48° -0.28+0.26 --> -0.28+0.26, in agreement with a previous HESS observation. The average flux is in marginal agreement with that reported by MILAGRO, but significantly higher than that obtained by HESS, suggesting a possible flux variability.

  18. Systematic search for very-high-energy gamma-ray emission from bow shocks of runaway stars

    NASA Astrophysics Data System (ADS)

    H.E.S.S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Andersson, T.; Angüner, E. O.; Arakawa, M.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Capasso, M.; Carr, J.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Chrétien, M.; Coffaro, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Cui, Y.; Davids, I. D.; Decock, J.; Degrange, B.; Deil, C.; Devin, J.; deWilt, P.; Dirson, L.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O.'C.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Kerszberg, D.; Khangulyan, D.; Khélifi, B.; Kieffer, M.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach, T.; Nakashima, S.; de Naurois, M.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Öttl, S.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Richter, S.; Rieger, F.; Romoli, C.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Saito, S.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stycz, K.; Sushch, I.; Takahashi, T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.

    2018-04-01

    Context. Runaway stars form bow shocks by ploughing through the interstellar medium at supersonic speeds and are promising sources of non-thermal emission of photons. One of these objects has been found to emit non-thermal radiation in the radio band. This triggered the development of theoretical models predicting non-thermal photons from radio up to very-high-energy (VHE, E ≥ 0.1 TeV) gamma rays. Subsequently, one bow shock was also detected in X-ray observations. However, the data did not allow discrimination between a hot thermal and a non-thermal origin. Further observations of different candidates at X-ray energies showed no evidence for emission at the position of the bow shocks either. A systematic search in the Fermi-LAT energy regime resulted in flux upper limits for 27 candidates listed in the E-BOSS catalogue. Aim. Here we perform the first systematic search for VHE gamma-ray emission from bow shocks of runaway stars. Methods: Using all available archival H.E.S.S. data we search for very-high-energy gamma-ray emission at the positions of bow shock candidates listed in the second E-BOSS catalogue release. Out of the 73 bow shock candidates in this catalogue, 32 have been observed with H.E.S.S. Results: None of the observed 32 bow shock candidates in this population study show significant emission in the H.E.S.S. energy range. Therefore, flux upper limits are calculated in five energy bins and the fraction of the kinetic wind power that is converted into VHE gamma rays is constrained. Conclusions: Emission from stellar bow shocks is not detected in the energy range between 0.14 and 18 TeV.The resulting upper limits constrain the level of VHE gamma-ray emission from these objects down to 0.1-1% of the kinetic wind energy.

  19. Search for Sub-TeV Gamma Rays Coincident with BATSE Gamma Ray Bursts

    NASA Astrophysics Data System (ADS)

    D'Andrea, C. P.; D'Andrea, Christopher; Gress, Joseph; Race, Doran

    2003-07-01

    project GRAND is a 100m × 100m air shower array of proportional wire chambers (PWCs). There are 64 stations each with eight 1.29 m2 PWC planes arranged in four orthogonal pairs placed vertically above one another to geometrically measure the angles of charged secondaries. A steel plate above the bottom pair of PWCs differentiates muons (which pass undeflected through the steel) from non-p enetrating particles. FLUKA Monte Carlo studies show that a TeV gamma ray striking the atmosphere at normal incidence produces 0.23 muons which reach ground level where their angles and identities are measured. Thus, paradoxically, secondary muons are used as a signature for gamma ray primaries. The data are examined for possible angular and time coincidences with eight gamma ray bursts (GRBs) detected by BATSE. Seven of the GRBs were selected because of their good acceptance by GRAND and high BATSE fluence. The eighth GRB was added due to its possible coincident detection by Milagrito. For each of the eight candidate GRBs, the number of excess counts during the BATSE T90 time interval and within ±5° of BATSE's direction was obtained. The highest statistical significance reported in this paper (2.7σ ) is for the event that was predicted to be the most likely to be observed (GRB 971110).

  20. The lightest supersymmetric particle and the extragalactic gamma-ray background

    NASA Technical Reports Server (NTRS)

    Gao, Yi-Tian; Stecker, Floyd W.; Cline, David B.

    1991-01-01

    The possibility that cosmological photino annihilation is caused by the extragalactic gamma-ray background (EGB) is examined with particular attention given to the lightest supersymmetric particle (LSP). The LSP is considered a general type of the best-motivated candidates for cosmic dark matter (CDM). The theoretical analysis employs a corrected assumption for the annihilation cross section, and cosmological integrations are performed through the early phases of the universe. Romberg's method is used for numerical integration, and the total optical depth is developed for the gamma-ray region. The computed LSP-type annihilation fluxes are found to be negligible when compared to the total EGB observed, suggesting that the LSP candidates for CDM are not significant contributors to the EGB.

  1. Population Studies of Radio and Gamma-Ray Pulsars

    NASA Technical Reports Server (NTRS)

    Harding, Alice K; Gonthier, Peter; Coltisor, Stefan

    2004-01-01

    Rotation-powered pulsars are one of the most promising candidates for at least some of the 40-50 EGRET unidentified gamma-ray sources that lie near the Galactic plane. Since the end of the EGRO mission, the more sensitive Parkes Multibeam radio survey has detected mere than two dozen new radio pulsars in or near unidentified EGRET sources, many of which are young and energetic. These results raise an important question about the nature of radio quiescence in gamma-ray pulsars: is the non-detection of radio emission a matter of beaming or of sensitivity? The answer is very dependent on the geometry of the radio and gamma-ray beams. We present results of a population synthesis of pulsars in the Galaxy, including for the first time the full geometry of the radio and gamma-ray beams. We use a recent empirically derived model of the radio emission and luminosity, and a gamma-ray emission geometry and luminosity derived theoretically from pair cascades in the polar slot gap. The simulation includes characteristics of eight radio surveys of the Princeton catalog plus the Parkes MB survey. Our results indicate that EGRET was capable of detecting several dozen pulsars as point sources, with the ratio of radio-loud to radio-quiet gamma-ray pulsars increasing significantly to about ten to one when the Parkes Survey is included. Polar cap models thus predict that many of the unidentified EGRET sources could be radio-loud gamma- ray pulsars, previously undetected as radio pulsars due to distance, large dispersion and lack of sensitivity. If true, this would make gamma-ray telescopes a potentially more sensitive tool for detecting distant young neutron stars in the Galactic plane.

  2. Search for gamma-ray emission from Galactic novae with the Fermi -LAT

    NASA Astrophysics Data System (ADS)

    Franckowiak, A.; Jean, P.; Wood, M.; Cheung, C. C.; Buson, S.

    2018-02-01

    Context. A number of novae have been found to emit high-energy gamma rays (>100 MeV). However, the origin of this emission is not yet understood. We report on the search for gamma-ray emission from 75 optically detected Galactic novae in the first 7.4 years of operation of the Fermi Large Area Telescope using the Pass 8 data set. Aims: We compile an optical nova catalog including light curves from various resources and estimate the optical peak time and optical peak magnitude in order to search for gamma-ray emission to determine whether all novae are gamma-ray emitters. Methods: We repeated the analysis of the six novae previously identified as gamma-ray sources and developed a unified analysis strategy that we then applied to all novae in our catalog. We searched for emission in a 15 day time window in two-day steps ranging from 20 days before to 20 days after the optical peak time. We performed a population study with Monte Carlo simulations to set constraints on the properties of the gamma-ray emission of novae. Results: Two new novae candidates have been found at 2σ global significance. Although these two novae candidates were not detected at a significant level individually, taking them together with the other non-detected novae, we found a sub-threshold nova population with a cumulative 3σ significance. We report the measured gamma-ray flux for detected sources and flux upper limits for novae without significant detection. Our results can be reproduced by several gamma-ray emissivity models (e.g., a power-law distribution with a slope of 2), while a constant emissivity model (i.e., assuming novae are standard candles) can be rejected.

  3. Search for gamma-ray emission from Galactic novae with the Fermi-LAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franckowiak, A.; Jean, P.; Wood, M.

    Context. A number of novae have been found to emit high-energy gamma rays (>100 MeV). However, the origin of this emission is not yet understood. We report on the search for gamma-ray emission from 75 optically detected Galactic novae in the first 7.4 years of operation of the Fermi Large Area Telescope using the Pass 8 data set. Aims. We compile an optical nova catalog including light curves from various resources and estimate the optical peak time and optical peak magnitude in order to search for gamma-ray emission to determine whether all novae are gamma-ray emitters. Methods. We repeated themore » analysis of the six novae previously identified as gamma-ray sources and developed a unified analysis strategy that we then applied to all novae in our catalog. We searched for emission in a 15 day time window in two-day steps ranging from 20 days before to 20 days after the optical peak time. We performed a population study with Monte Carlo simulations to set constraints on the properties of the gamma-ray emission of novae. Results. Two new novae candidates have been found at ~ 2σ global significance. Although these two novae candidates were not detected at a significant level individually, taking them together with the other non-detected novae, we found a sub-threshold nova population with a cumulative 3σ significance. We report the measured gamma-ray flux for detected sources and flux upper limits for novae without significant detection. Lastly, our results can be reproduced by several gamma-ray emissivity models (e.g., a power-law distribution with a slope of 2), while a constant emissivity model (i.e., assuming novae are standard candles) can be rejected.« less

  4. Search for gamma-ray emission from Galactic novae with the Fermi-LAT

    DOE PAGES

    Franckowiak, A.; Jean, P.; Wood, M.; ...

    2018-02-05

    Context. A number of novae have been found to emit high-energy gamma rays (>100 MeV). However, the origin of this emission is not yet understood. We report on the search for gamma-ray emission from 75 optically detected Galactic novae in the first 7.4 years of operation of the Fermi Large Area Telescope using the Pass 8 data set. Aims. We compile an optical nova catalog including light curves from various resources and estimate the optical peak time and optical peak magnitude in order to search for gamma-ray emission to determine whether all novae are gamma-ray emitters. Methods. We repeated themore » analysis of the six novae previously identified as gamma-ray sources and developed a unified analysis strategy that we then applied to all novae in our catalog. We searched for emission in a 15 day time window in two-day steps ranging from 20 days before to 20 days after the optical peak time. We performed a population study with Monte Carlo simulations to set constraints on the properties of the gamma-ray emission of novae. Results. Two new novae candidates have been found at ~ 2σ global significance. Although these two novae candidates were not detected at a significant level individually, taking them together with the other non-detected novae, we found a sub-threshold nova population with a cumulative 3σ significance. We report the measured gamma-ray flux for detected sources and flux upper limits for novae without significant detection. Lastly, our results can be reproduced by several gamma-ray emissivity models (e.g., a power-law distribution with a slope of 2), while a constant emissivity model (i.e., assuming novae are standard candles) can be rejected.« less

  5. Cosmic Gamma-Rays

    Science.gov Websites

    [Argonne Logo] [DOE Logo] Cosmic Gamma-Rays Home Publications Talks People Students Argonne > ; HEP > Cosmic Gamma-Rays Projects VERITAS Past Projects TrICE What's New CTA Cosmic Gamma-Rays The

  6. Discovery of very high energy gamma rays associated with an x-ray binary.

    PubMed

    Aharonian, F; Akhperjanian, A G; Aye, K-M; Bazer-Bachi, A R; Beilicke, M; Benbow, W; Berge, D; Berghaus, P; Bernlöhr, K; Boisson, C; Bolz, O; Borrel, V; Braun, I; Breitling, F; Brown, A M; Bussons Gordo, J; Chadwick, P M; Chounet, L-M; Cornils, R; Costamante, L; Degrange, B; Dickinson, H J; Djannati-Ataï, A; Drury, L O'c; Dubus, G; Emmanoulopoulos, D; Espigat, P; Feinstein, F; Fleury, P; Fontaine, G; Fuchs, Y; Funk, S; Gallant, Y A; Giebels, B; Gillessen, S; Glicenstein, J F; Goret, P; Hadjichristidis, C; Hauser, M; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hofmann, W; Holleran, M; Horns, D; Jacholkowska, A; de Jager, O C; Khélifi, B; Komin, Nu; Konopelko, A; Latham, I J; Le Gallou, R; Lemière, A; Lemoine-Goumard, M; Leroy, N; Lohse, T; Marcowith, A; Martin, J-M; Martineau-Huynh, O; Masterson, C; McComb, T J L; de Naurois, M; Nolan, S J; Noutsos, A; Orford, K J; Osborne, J L; Ouchrif, M; Panter, M; Pelletier, G; Pita, S; Pühlhofer, G; Punch, M; Raubenheimer, B C; Raue, M; Raux, J; Rayner, S M; Reimer, A; Reimer, O; Ripken, J; Rob, L; Rolland, L; Rowell, G; Sahakian, V; Saugé, L; Schlenker, S; Schlickeiser, R; Schuster, C; Schwanke, U; Siewert, M; Sol, H; Spangler, D; Steenkamp, R; Stegmann, C; Tavernet, J-P; Terrier, R; Théoret, C G; Tluczykont, M; Vasileiadis, G; Venter, C; Vincent, P; Völk, H J; Wagner, S J

    2005-07-29

    X-ray binaries are composed of a normal star in orbit around a neutron star or stellar-mass black hole. Radio and x-ray observations have led to the presumption that some x-ray binaries called microquasars behave as scaled-down active galactic nuclei. Microquasars have resolved radio emission that is thought to arise from a relativistic outflow akin to active galactic nuclei jets, in which particles can be accelerated to large energies. Very high energy gamma-rays produced by the interactions of these particles have been observed from several active galactic nuclei. Using the High Energy Stereoscopic System, we find evidence for gamma-ray emission of >100 gigaelectron volts from a candidate microquasar, LS 5039, showing that particles are also accelerated to very high energies in these systems.

  7. Modelling the flaring activity of the high-z, hard X-ray-selected blazar IGR J22517+2217: Flaring activity of IGR J22517+2217

    DOE PAGES

    Lanzuisi, G.; De Rosa, A.; Ghisellini, G.; ...

    2012-03-21

    We present new Suzaku and Fermi data and re-analysed archival hard X-ray data from the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL) and Swift–Burst Alert Telescope (BAT) surveys to investigate the physical properties of the luminous, high-redshift, hard X-ray-selected blazar IGR J22517+2217, through the modelling of its broad-band spectral energy distribution (SED) in two different activity states. Through analysis of new Suzaku data and flux-selected data from archival hard X-ray observations, we build the source SED in two different states, one for the newly discovered flare that occurred in 2005 and one for the following quiescent period. Both SEDs are strongly dominatedmore » by the high-energy hump peaked at 10 20–10 22 Hz, which is at least two orders of magnitude higher than the low-energy (synchrotron) one at 10 11–10 14 Hz and varies by a factor of 10 between the two states. In both states the high-energy hump is modelled as inverse Compton emission between relativistic electrons and seed photons produced externally to the jet, while the synchrotron self-Compton component is found to be negligible. In our model the observed variability can be accounted for by a variation of the total number of emitting electrons and by a dissipation region radius changing from inside to outside the broad-line region as the luminosity increases. In its flaring activity, IGR J22517+2217 is revealed as one of the most powerful jets among the population of extreme, hard X-ray-selected, high-redshift blazars observed so far.« less

  8. MAGIC discovers VHE gamma-ray emission from the blazar 1ES 1727+502

    NASA Astrophysics Data System (ADS)

    Mariotti, Mose

    2011-11-01

    The MAGIC Collaboration reports the discovery of Very High Energy (VHE; E>100 GeV) gamma-ray emission from the BL Lac object 1ES 1727+502 (also known as OT546) with redshift z=0.055. The source was selected from the compilation of Costamante, L. & Ghisellini, G. 2002, A&A, 384, 56. Previous observations with the single MAGIC-I telescope yielded an upper limit on the level of 11.8% of the Crab Nebula flux above 140 GeV (J.

  9. GLAST answers about high-energy peaked BL Lacs: double-humped {gamma}-ray peak and extreme accelerators?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costamante, L.; Aharonian, F.; Khangulyan, D.

    2007-07-12

    An often overlooked fact is that the MeV-GeV emission from High-energy peaked BL Lacs (HBL) is basically unknown: there are only 3 objects of this type among all EGRET identified blazars with measured spectra. GLAST will be able to measure the spectrum for many of them, in particular TeV-blazars, and surprises are expected. GLAST will tell if the {gamma}-ray peak in some HBL is actually a ''double peak'', as suggested by the comparison of EGRET and HESS data in PKS 2155-304, We also remind and argue that a new class of BL Lacs could exist, where particles are shock-accelerated nearmore » the maximum possible rate, characterized by the synchrotron emission peaking in the GLAST band (100 MeV - few GeV). Such objects could easily have escaped detection or identification so far, and could now be unveiled by GLAST.« less

  10. High-redshift Blazars through NuSTAR eyes

    DOE PAGES

    Marcotulli, L.; Paliya, V. S.; Ajello, M.; ...

    2017-04-20

    The most powerful sources among the blazar family are MeV blazars. Often detected at z > 2, they usually display high X- and γ-ray luminosities, larger-than-average jet powers, and black hole masses ≳10 9 M ⊙. In the present work, we perform a multiwavelength study of three high-redshift blazars: 3FGL J0325.5+2223 (z = 2.06), 3FGL J0449.0+1121 (z = 2.15), and 3FGL J0453.2–2808 (z = 2.56), analyzing quasi-simultaneous data from GROND, Swift-UVOT and XRT, Nuclear Spectroscopic Telescope Array (NuSTAR), and Fermi-LAT. Our main focus is on the hard X-ray band recently unveiled by NuSTAR (3–79 keV) where these objects show amore » hard spectrum that enables us to constrain the inverse Compton (IC) peak and the jet power. We found that all three targets resemble the most powerful blazars, with the synchrotron peak located in the submillimeter range and the IC peak in the MeV range, and therefore belong to the MeV blazar class. Using a simple one-zone leptonic emission model to reproduce the spectral energy distributions, we conclude that a simple combination of synchrotron and accretion disk emission reproduces the infrared–optical spectra, while the X-ray to γ-ray part is well reproduced by the IC scattering of low-energy photons supplied by the broad-line region. The black hole masses for each of the three sources are calculated to be ≳4 × 10 8 M ⊙. Finally, the three studied sources have jet power at the level of, or beyond, the accretion luminosity.« less

  11. Modelling Hard Gamma-Ray Emission from Supernova Remnants

    NASA Technical Reports Server (NTRS)

    Baring, Matthew G.

    1999-01-01

    The observation by the CANGAROO (Collaboration of Australia and Nippon Gamma Ray Observatory at Outback) experiment of TeV emission from SN 1006, in conjunction with several instances of non-thermal X-ray emission from supernova remnants, has led to inferences of super-TeV electrons in these extended sources. While this is sufficient to propel the theoretical community in their modelling of particle acceleration and associated radiation, the anticipated emergence in the next decade of a number of new experiments probing the TeV and sub-TeV bands provides further substantial motivation for modellers. In particular, the quest for obtaining unambiguous gamma-ray signatures of cosmic ray ion acceleration defines a "Holy Grail" for observers and theorists alike. This review summarizes theoretical developments in the prediction of MeV-TeV gamma-rays from supernova remnants over the last five years, focusing on how global properties of models can impact, and be impacted by, hard gamma-ray observational programs, thereby probing the supernova remnant environment. Properties of central consideration include the maximum energy of accelerated particles, the density of the unshocked interstellar medium, the ambient magnetic field, and the relativistic electron-to-proton ratio. Criteria for determining good candidate remnants for observability in the TeV band are identified.

  12. Exploring the blazar zone in high-energy flares of FSRQs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pacciani, L.; Donnarumma, I.; Tavecchio, F.

    2014-07-20

    The gamma-ray emission offers a powerful diagnostic tool to probe jets and their surroundings in flat-spectrum radio quasars (FSRQs). In particular, sources emitting at high energies (>10 GeV) give us the strongest constraints. This motivates us to start a systematic study of flares with bright emission above 10 GeV, examining archival data of the Fermi-LAT gamma-ray telescope. At the same time, we began to trigger Target of Opportunity observations to the Swift observatory at the occurrence of high-energy flares, obtaining a wide coverage of the spectral energy distributions (SEDs) for several FSRQs during flares. Among others, we investigate the SEDmore » of a peculiar flare of 3C 454.3, showing a remarkably hard gamma-ray spectrum, quite different from the brightest flares of this source, and a bright flare of CTA 102. We modeled the SED in the framework of the one-zone leptonic model, using also archival optical spectroscopic data to derive the luminosity of the broad lines and thus estimate the disk luminosity, from which the structural parameters of the FSRQ nucleus can be inferred. The model allowed us to evaluate the magnetic field intensity in the blazar zone and to locate the emitting region of gamma-rays in the particular case in which gamma-ray spectra show neither absorption from the broad-line region (BLR) nor the Klein-Nishina curvature expected in leptonic models assuming the BLR as the source of seed photons for the External Compton scenario. For FSRQs bright above 10 GeV, we were able to identify short periods lasting less than one day characterized by a high rate of high-energy gamma-rays and hard gamma-ray spectra. We discussed the observed spectra and variability timescales in terms of injection and cooling of energetic particles, arguing that these flares could be triggered by magnetic reconnection events or turbulence in the flow.« less

  13. Reconstructing the Gamma-Ray Photon Optical Depth of the Universe To Z Approx. 4 from Multiwavelength Galaxy Survey Data

    NASA Technical Reports Server (NTRS)

    Helgason, Kari; Kashlinsky, Alexander

    2012-01-01

    Reconstructing the Gamma-Ray Photon Optical Depth of the Universe To Z Approx. 4fFrom Multiwavelength Galaxy Survey Data We reconstruct the gamma-ray opacity of the universe out to z approx. < 3–4 using an extensive library of 342 observed galaxy luminosity function (LF) surveys extending to high redshifts .We cover the whole range from UV to mid-IR (0.15–25 micron ) providing for the first time a robust empirical calculation of the gamma gamma optical depth out to several TeV. Here, we use the same database as Helgason et al. where the extragalactic background light was reconstructed from LFs out to 4.5 micron and was shown to recover observed galaxy counts to high accuracy. We extend our earlier library Of LFs to 25micron such that it covers the energy range of pair production with gamma -rays (1) in the entire Fermi/LAT energy range, and (2) at higher TeV energies probed by ground-based Cherenkov telescopes. In the absence of significant contributions to the cosmic diffuse background from unknown populations, such as the putative Population III era sources, the universe appears to be largely transparent to gamma-rays at all Fermi/LAT energies out to z approx.. 2 whereas it becomes opaque to TeV photons already at z approx. < 0.2 and reaching tau approx 10 at z = 1. Comparing with the currently available Fermi/LAT gamma-ray burst and blazar data shows that there is room for significant emissions originating in the first stars era.

  14. V/V(max) test applied to SMM gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Matz, S. M.; Higdon, J. C.; Share, G. H.; Messina, D. C.; Iadicicco, A.

    1992-01-01

    We have applied the V/V(max) test to candidate gamma-ray bursts detected by the Gamma-Ray Spectrometer (GRS) aboard the SMM satellite to examine quantitatively the uniformity of the burst source population. For a sample of 132 candidate bursts identified in the GRS data by an automated search using a single uniform trigger criterion we find average V/V(max) = 0.40 +/- 0.025. This value is significantly different from 0.5, the average for a uniform distribution in space of the parent population of burst sources; however, the shape of the observed distribution of V/V(max) is unusual and our result conflicts with previous measurements. For these reasons we can currently draw no firm conclusion about the distribution of burst sources.

  15. Second-Order Fermi Acceleration and Emission in Blazar Jets

    NASA Astrophysics Data System (ADS)

    Asano, Katsuaki; Takahara, Fumio; Toma, Kenji; Kusunose, Masaaki; Kakuwa, Jun

    The second-order Fermi acceleration (Fermi-II) driven by turbulence may be responsible for the electron acceleration in blazar jets. We test this model with time-dependent simulations, adopt it for 1ES 1101-232, and Mrk 421. The Fermi-II model with radial evolution of the electron injection rate and/or diffusion coefficient can reproduce the spectra from the radio to the gamma-ray regime. For Mrk 421, an external radio photon field with a luminosity of 4.9 begin{math} {times} 10 (38) erg s (-1) is required to agree with the observed GeV flux. The temporal variability of the diffusion coefficient or injection rate causes flare emission. The observed synchronicity of X-ray and TeV flares implies a decrease of the magnetic field in the flaring source region.

  16. The 2HWC HAWC Observatory Gamma-Ray Catalog

    NASA Astrophysics Data System (ADS)

    Abeysekara, A. U.; Albert, A.; Alfaro, R.; Alvarez, C.; Álvarez, J. D.; Arceo, R.; Arteaga-Velázquez, J. C.; Ayala Solares, H. A.; Barber, A. S.; Baughman, B.; Bautista-Elivar, N.; Becerra Gonzalez, J.; Becerril, A.; Belmont-Moreno, E.; BenZvi, S. Y.; Berley, D.; Bernal, A.; Braun, J.; Brisbois, C.; Caballero-Mora, K. S.; Capistrán, T.; Carramiñana, A.; Casanova, S.; Castillo, M.; Cotti, U.; Cotzomi, J.; Coutiño de León, S.; de la Fuente, E.; De León, C.; Diaz Hernandez, R.; Dingus, B. L.; DuVernois, M. A.; Díaz-Vélez, J. C.; Ellsworth, R. W.; Engel, K.; Fiorino, D. W.; Fraija, N.; García-González, J. A.; Garfias, F.; Gerhardt, M.; González Muñoz, A.; González, M. M.; Goodman, J. A.; Hampel-Arias, Z.; Harding, J. P.; Hernandez, S.; Hernandez-Almada, A.; Hinton, J.; Hui, C. M.; Hüntemeyer, P.; Iriarte, A.; Jardin-Blicq, A.; Joshi, V.; Kaufmann, S.; Kieda, D.; Lara, A.; Lauer, R. J.; Lee, W. H.; Lennarz, D.; León Vargas, H.; Linnemann, J. T.; Longinotti, A. L.; Raya, G. Luis; Luna-García, R.; López-Coto, R.; Malone, K.; Marinelli, S. S.; Martinez, O.; Martinez-Castellanos, I.; Martínez-Castro, J.; Martínez-Huerta, H.; Matthews, J. A.; Miranda-Romagnoli, P.; Moreno, E.; Mostafá, M.; Nellen, L.; Newbold, M.; Nisa, M. U.; Noriega-Papaqui, R.; Pelayo, R.; Pretz, J.; Pérez-Pérez, E. G.; Ren, Z.; Rho, C. D.; Rivière, C.; Rosa-González, D.; Rosenberg, M.; Ruiz-Velasco, E.; Salazar, H.; Salesa Greus, F.; Sandoval, A.; Schneider, M.; Schoorlemmer, H.; Sinnis, G.; Smith, A. J.; Springer, R. W.; Surajbali, P.; Taboada, I.; Tibolla, O.; Tollefson, K.; Torres, I.; Ukwatta, T. N.; Vianello, G.; Villaseñor, L.; Weisgarber, T.; Westerhoff, S.; Wisher, I. G.; Wood, J.; Yapici, T.; Younk, P. W.; Zepeda, A.; Zhou, H.

    2017-07-01

    We present the first catalog of TeV gamma-ray sources realized with data from the newly completed High Altitude Water Cherenkov Observatory (HAWC). It is the most sensitive wide field-of-view TeV telescope currently in operation, with a one-year survey sensitivity of ˜5%-10% of the flux of the Crab Nebula. With an instantaneous field of view >1.5 sr and >90% duty cycle, it continuously surveys and monitors the sky for gamma-ray energies between hundreds of GeV and tens of TeV. HAWC is located in Mexico, at a latitude of 19° N, and was completed in 2015 March. Here, we present the 2HWC catalog, which is the result of the first source search performed with the complete HAWC detector. Realized with 507 days of data, it represents the most sensitive TeV survey to date for such a large fraction of the sky. A total of 39 sources were detected, with an expected number of false detections of 0.5 due to background fluctuation. Out of these sources, 19 are new sources that are not associated with previously known TeV sources (association criteria: <0.°5 away). The source list, including the position measurement, spectrum measurement, and uncertainties, is reported, then each source is briefly discussed. Of the 2HWC associated sources, 10 are reported in TeVCat as PWN or SNR: 2 as blazars and the remaining eight as unidentified.

  17. Gamma-ray burst models.

    PubMed

    King, Andrew

    2007-05-15

    I consider various possibilities for making gamma-ray bursts, particularly from close binaries. In addition to the much-studied neutron star+neutron star and black hole+neutron star cases usually considered good candidates for short-duration bursts, there are also other possibilities. In particular, neutron star+massive white dwarf has several desirable features. These systems are likely to produce long-duration gamma-ray bursts (GRBs), in some cases definitely without an accompanying supernova, as observed recently. This class of burst would have a strong correlation with star formation and occur close to the host galaxy. However, rare members of the class need not be near star-forming regions and could have any type of host galaxy. Thus, a long-duration burst far from any star-forming region would also be a signature of this class. Estimates based on the existence of a known progenitor suggest that this type of GRB may be quite common, in agreement with the fact that the absence of a supernova can only be established in nearby bursts.

  18. Testing the Equivalence Principle and Lorentz Invariance with PeV Neutrinos from Blazar Flares.

    PubMed

    Wang, Zi-Yi; Liu, Ruo-Yu; Wang, Xiang-Yu

    2016-04-15

    It was recently proposed that a giant flare of the blazar PKS B1424-418 at redshift z=1.522 is in association with a PeV-energy neutrino event detected by IceCube. Based on this association we here suggest that the flight time difference between the PeV neutrino and gamma-ray photons from blazar flares can be used to constrain the violations of equivalence principle and the Lorentz invariance for neutrinos. From the calculated Shapiro delay due to clusters or superclusters in the nearby universe, we find that violation of the equivalence principle for neutrinos and photons is constrained to an accuracy of at least 10^{-5}, which is 2 orders of magnitude tighter than the constraint placed by MeV neutrinos from supernova 1987A. Lorentz invariance violation (LIV) arises in various quantum-gravity theories, which predicts an energy-dependent velocity of propagation in vacuum for particles. We find that the association of the PeV neutrino with the gamma-ray outburst set limits on the energy scale of possible LIV to >0.01E_{pl} for linear LIV models and >6×10^{-8}E_{pl} for quadratic order LIV models, where E_{pl} is the Planck energy scale. These are the most stringent constraints on neutrino LIV for subluminal neutrinos.

  19. MODELING THE HARD TeV SPECTRA OF BLAZARS 1ES 0229+200 AND 3C 66A WITH AN INTERNAL ABSORPTION SCENARIO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zacharopoulou, O.; Aharonian, F. A.; Khangulyan, D.

    2011-09-10

    We study the applicability of the idea of internal absorption of {gamma}-rays produced through synchrotron radiation of ultrarelativistic protons in highly magnetized blobs to 1ES 0229+200 and 3C 66A, the two TeV blazars which show unusually hard intrinsic {gamma}-ray spectra after being corrected for the intergalactic absorption. We show that for certain combinations of reasonable model parameters, even with quite modest energy requirements, the scenario allows a self-consistent explanation of the non-thermal emission of these objects in the keV, GeV, and TeV energy bands.

  20. Star-Jet Interactions and Gamma-Ray Outbursts from 3C454.3

    NASA Astrophysics Data System (ADS)

    Khangulyan, D. V.; Barkov, M. V.; Bosch-Ramon, V.; Aharonian, F. A.; Dorodnitsyn, A. V.

    2013-09-01

    We propose a model to explain the ultra-bright GeV gamma-ray flares observed from the blazar 3C454.3. The model is based on the concept of a relativistic jet interacting with compact gas condensations produced when a star (a red giant) crosses the jet close to the central black hole. The study includes an analytical treatment of the evolution of the envelope lost by the star within the jet, and calculations of the related high-energy radiation. The model readily explains the day-long that varies on timescales of hours, GeV gamma-ray flare from 3C454.3, observed during 2010 November on top of a plateau lasting weeks. In the proposed scenario, the plateau state is caused by a strong wind generated by the heating of the stellar atmosphere due to nonthermal particles accelerated at the jet-star interaction region. The flare itself could be produced by a few clouds of matter lost by the red giant after the initial impact of the jet. In the framework of the proposed scenario, the observations constrain the key model parameters of the source, including the mass of the central black hole: M BH ~= 109 M ⊙, the total jet power: L j ~= 1048 erg s-1, and the Doppler factor of the gamma-ray emitting clouds: δ ~= 20. Whereas we do not specify the particle acceleration mechanisms, the potential gamma-ray production processes are discussed and compared in the context of the proposed model. We argue that synchrotron radiation of protons has certain advantages compared to other radiation channels of directlyaccelerated electrons. An injected proton distribution vpropE -1 or harder below the relevant energies would be favored to alleviate the tight energetic constraints and to avoid the violation of the observational low-energy constraints.

  1. Discovery of very high energy gamma-ray emission from the blazar 1ES 1727+502 with the MAGIC Telescopes

    DOE PAGES

    Aleksić, J.; Antonelli, L. A.; Antoranz, P.; ...

    2014-03-14

    Motivated by the prediction of a high TeV luminosity we investigated whether the blazar 1ES 1727+502 (z = 0.055) is emitting very high energy (VHE, E > 100 GeV) γ rays. Here, we observed the BL Lac object 1ES 1727+502 in stereoscopic mode with the two MAGIC telescopes for 14 nights between May 6th and June 10th 2011, for a total effective observing time of 12.6 h. To study the multiwavelength spectral energy distribution (SED), we also oused simultaneous optical R-band data from the KVA telescope, archival UV/optical and X-ray observations from instruments UVOT and XRT on board of themore » Swift satellite, and high energy (HE, 0.1 GeV–100 GeV) γ-ray data from the Fermi-LAT instrument. We detected, for the first time, VHE γ-ray emission from 1ES 1727+502 at a statistical significance of 5.5σ. The integral flux above 150 GeV is estimated to be (2.1 ± 0.4)% of the Crab nebula flux and the de-absorbed VHE spectrum has a photon index of (2.7 ± 0.5). Furthermore, there were no significant short-term variability found in any of the wavebands presented here. We model the SED using a one-zone synchrotron self-Compton model obtaining parameters typical for this class of sources.« less

  2. Nuclear isomer suitable for gamma ray laser

    NASA Technical Reports Server (NTRS)

    Jha, S.

    1979-01-01

    The operation of gamma ray lasers (gasers) are studied. It is assumed that the nuclear isomers mentioned in previously published papers have inherent limitations. It is further assumed that the judicious use of Bormann effect or the application of the total external reflection of low energy gamma radiation at grazing angle of incidence may permit the use of a gaser crystal sufficiently long to achieve observable stimulated emission. It is suggested that a long lived 0(+) isomer decaying by low energy gamma ray emission to a short lived 2(+) excited nuclear state would be an attractive gaser candidate. It is also suggested that the nuclear isomer be incorporated in a matrix of refractory material having an electrostatic field gradient whose principal axis lies along the length of the medium. This results in the preferential transmission of electric quadrupole radiation along the length of the medium.

  3. NRAO Teams With NASA Gamma-Ray Satellite

    NASA Astrophysics Data System (ADS)

    2007-06-01

    The National Radio Astronomy Observatory (NRAO) is teaming with NASA's upcoming Gamma-ray Large Area Space Telescope (GLAST) to allow astronomers to use both the orbiting facility and ground-based radio telescopes to maximize their scientific payoff. Under the new, streamlined process, astronomers can compete for coordinated observing time and support from both GLAST and NRAO's radio telescopes. GLAST satellite Artist's rendering of the GLAST spacecraft in orbit above the Earth. CREDIT: General Dynamics C4 Systems Click on Image for Larger File Images of NRAO Telescopes Robert C. Byrd Green Bank Telescope Very Long Baseline Array Very Large Array Atacama Large Millimeter/submillimeter Array GLAST is scheduled for launch no earlier than December 14. It will perform a survey of the entire sky at gamma-ray wavelengths every 3 hours using its primary instrument, the Large Area Telescope (LAT). NRAO operates the Very Large Array (VLA) in New Mexico, the continent-wide Very Long Baseline Array (VLBA), and the Robert C. Byrd Green Bank Telescope (GBT) in West Virginia. The NRAO is a research facility of the National Science Foundation (NSF). "Coordinated gamma-ray and radio observations of celestial objects will greatly enhance the ability to fully understand those objects. Astronomy today requires such multiwavelength studies, and this agreement paves the way for exciting, cutting-edge research," said Fred K.Y. Lo, NRAO Director. GLAST will be vastly more capable than previous gamma-ray satellites, and will carry an instrument, the GLAST Burst Monitor, specifically designed to detect gamma-ray bursts. GLAST observers will study objects such as active galaxies, pulsars, and supernova remnants, which are also readily studied with radio telescopes. By working together, NASA's GLAST mission and NSF's NRAO facilities can study flares from blazars over the widest possible range of energies, which is crucial to understanding how black holes, notorious for drawing matter in, can

  4. The inner jet of an active galactic nucleus as revealed by a radio-to-gamma-ray outburst.

    PubMed

    Marscher, Alan P; Jorstad, Svetlana G; D'Arcangelo, Francesca D; Smith, Paul S; Williams, G Grant; Larionov, Valeri M; Oh, Haruki; Olmstead, Alice R; Aller, Margo F; Aller, Hugh D; McHardy, Ian M; Lähteenmäki, Anne; Tornikoski, Merja; Valtaoja, Esko; Hagen-Thorn, Vladimir A; Kopatskaya, Eugenia N; Gear, Walter K; Tosti, Gino; Kurtanidze, Omar; Nikolashvili, Maria; Sigua, Lorand; Miller, H Richard; Ryle, Wesley T

    2008-04-24

    Blazars are the most extreme active galactic nuclei. They possess oppositely directed plasma jets emanating at near light speeds from accreting supermassive black holes. According to theoretical models, such jets are propelled by magnetic fields twisted by differential rotation of the black hole's accretion disk or inertial-frame-dragging ergosphere. The flow velocity increases outward along the jet in an acceleration and collimation zone containing a coiled magnetic field. Detailed observations of outbursts of electromagnetic radiation, for which blazars are famous, can potentially probe the zone. It has hitherto not been possible to either specify the location of the outbursts or verify the general picture of jet formation. Here we report sequences of high-resolution radio images and optical polarization measurements of the blazar BL Lacertae. The data reveal a bright feature in the jet that causes a double flare of radiation from optical frequencies to TeV gamma-ray energies, as well as a delayed outburst at radio wavelengths. We conclude that the event starts in a region with a helical magnetic field that we identify with the acceleration and collimation zone predicted by the theories. The feature brightens again when it crosses a standing shock wave corresponding to the bright 'core' seen on the images.

  5. A luminous gamma-ray binary in the large magellanic cloud

    DOE PAGES

    Corbet, R. H. D.; Chomiuk, L.; Coe, M. J.; ...

    2016-09-27

    Gamma-ray binaries consist of a neutron star or a black hole interacting with a normal star to produce gamma-ray emission that dominates the radiative output of the system. Previously, only a handful of such systems have been discovered, all within our Galaxy. We report the discovery of a luminous gamma-ray binary in the Large Magellanic Cloud, found with the Fermi Large Area Telescope (LAT), from a search for periodic modulation in all sources in the third Fermi LAT catalog. This is the first such system to be found outside the Milky Way. Furthermore, the system has an orbital period ofmore » 10.3 days, and is associated with a massive O5III star located in the supernova remnant DEM L241, previously identified as the candidate high-mass X-ray binary (HMXB) CXOU J053600.0–673507. X-ray and radio emission are also modulated on the 10.3 day period, but are in anti-phase with the gamma-ray modulation. Optical radial velocity measurements suggest that the system contains a neutron star. The source is significantly more luminous than similar sources in the Milky Way, at radio, optical, X-ray, and gamma-ray wavelengths. The detection of this extra-galactic system, but no new Galactic systems, raises the possibility that the predicted number of gamma-ray binaries in our Galaxy has been overestimated, and that HMXBs may be born containing relatively slowly rotating neutron stars.« less

  6. How gravitational lensing helps γ-ray photons avoid γ – γ absorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnacka, Anna; Böttcher, Markus; Sushch, Iurii, E-mail: abarnacka@cfa.harvard.edu, E-mail: Markus.Bottcher@nwu.ac.za

    2014-08-01

    We investigate potential γ – γ absorption of γ-ray emission from blazars arising from inhomogeneities along the line of sight, beyond the diffuse Extragalactic Background Light (EBL). As plausible sources of excess γ – γ opacity, we consider (1) foreground galaxies, including cases in which this configuration leads to strong gravitational lensing, (2) individual stars within these foreground galaxies, and (3) individual stars within our own galaxy, which may act as lenses for microlensing events. We found that intervening galaxies close to the line of sight are unlikely to lead to significant excess γ – γ absorption. This opens upmore » the prospect of detecting lensed gamma-ray blazars at energies above 10 GeV with their gamma-ray spectra effectively only affected by the EBL. The most luminous stars located either in intervening galaxies or in our galaxy provide an environment in which these gamma-rays could, in principle, be significantly absorbed. However, despite a large microlensing probability due to stars located in intervening galaxies, γ-rays avoid absorption by being deflected by the gravitational potentials of such intervening stars to projected distances ({sup i}mpact parameters{sup )} where the resulting γ – γ opacities are negligible. Thus, neither of the intervening excess photon fields considered here, provide a substantial source of excess γ – γ opacity beyond the EBL, even in the case of very close alignments between the background blazar and a foreground star or galaxy.« less

  7. GRB 050117: Simultaneous Gamma-ray and X-ray Observations with the Swift Satellite

    NASA Technical Reports Server (NTRS)

    Hill, J. E.; Morris, D. C.; Sakamoto, T.; Sato, G.; Burrows, D. N.; Angelini, L.; Pagani, C.; Moretti, A.; Abbey, A. F.; Barthelmy, S.

    2005-01-01

    The Swift Gamma-Ray Burst Explorer performed its first autonomous, X-ray follow-up to a newly detected GRB on 2005 January 17, within 193 seconds of the burst trigger by the Swift Burst Alert Telescope. While the burst was still in progress, the X-ray Telescope obtained a position and an image for an un-catalogued X-ray source; simultaneous with the gamma-ray observation. The XRT observed flux during the prompt emission was 1.1 x 10(exp -8) ergs/sq cm/s in the 0.5-10 keV energy band. The emission in the X-ray band decreased by three orders of magnitude within 700 seconds, following the prompt emission. This is found to be consistent with the gamma-ray decay when extrapolated into the XRT energy band. During the following 6.3 hours, the XRT observed the afterglow in an automated sequence for an additional 947 seconds, until the burst became fully obscured by the Earth limb. A faint, extremely slowly decaying afterglow, alpha=-0.21, was detected. Finally, a break in the lightcurve occurred and the flux decayed with alpha<-1.2. The X-ray position triggered many follow-up observations: no optical afterglow could be confirmed, although a candidate was identified 3 arcsecs from the XRT position.

  8. Very high energy γ-rays from the universe's middle age: detection of the z = 0.940 blazar PKS 1441+25 with magic

    DOE PAGES

    Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; ...

    2015-12-15

    The flat-spectrum radio quasar PKS 1441+25 at a redshift of z = 0.940 is detected between 40 and 250 GeV with a significance of 25.5σ using the MAGIC telescopes. Together with the gravitationally lensed blazar QSO B0218+357 (z = 0.944), PKS 1441+25 is the most distant very high energy (VHE) blazar detected to date. The observations were triggered by an outburst in 2015 April seen at GeV energies with the Large Area Telescope on board Fermi. Multi-wavelength observations suggest a subdivision of the high state into two distinct flux states. In the band covered by MAGIC, the variability timescale ismore » estimated to be 6.4 ± 1.9 days. Modeling the broadband spectral energy distribution with an external Compton model, the location of the emitting region is understood as originating in the jet outside the broad-line region (BLR) during the period of high activity, while being partially within the BLR during the period of low (typical) activity. In conclusion, the observed VHE spectrum during the highest activity is used to probe the extragalactic background light at an unprecedented distance scale for ground-based gamma-ray astronomy.« less

  9. A search for spectral lines in gamma-ray bursts using TGRS

    NASA Astrophysics Data System (ADS)

    Kurczynski, P.; Palmer, D.; Seifert, H.; Teegarden, B. J.; Gehrels, N.; Cline, T. L.; Ramaty, R.; Hurley, K.; Madden, N. W.; Pehl, R. H.

    1998-05-01

    We present the results of an ongoing search for narrow spectral lines in gamma-ray burst data. TGRS, the Transient Gamma-Ray Spectrometer aboard the Wind satellite is a high energy-resolution Ge device. Thus it is uniquely situated among the array of space-based, burst sensitive instruments to look for line features in gamma-ray burst spectra. Our search strategy adopts a two tiered approach. An automated `quick look' scan searches spectra for statistically significant deviations from the continuum. We analyzed all possible time accumulations of spectra as well as individual spectra for each burst. Follow-up analysis of potential line candidates uses model fitting with F-test and χ2 tests for statistical significance.

  10. The gamma-ray observatory

    NASA Technical Reports Server (NTRS)

    1991-01-01

    An overview is given of the Gamma Ray Observatory (GRO) mission. Detection of gamma rays and gamma ray sources, operations using the Space Shuttle, and instruments aboard the GRO, including the Burst and Transient Source Experiment (BATSE), the Oriented Scintillation Spectrometer Experiment (OSSE), the Imaging Compton Telescope (COMPTEL), and the Energetic Gamma Ray Experiment Telescope (EGRET) are among the topics surveyed.

  11. The Spectral Energy Distribution of Fermi bright blazars

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Agudo, I.; ...

    2010-05-13

    We have conducted a detailed investigation of the broadband spectral properties of the γ-ray selected blazars of the Fermi LAT Bright AGN Sample (LBAS). By combining our accurately estimated Fermi γ-ray spectra with Swift, radio, infra-red, optical, and other hard X-ray/γ-ray data, collected within 3 months of the LBAS data taking period, we were able to assemble high-quality and quasi-simultaneous spectral energy distributions (SED) for 48 LBAS blazars. The SED of these γ-ray sources is similar to that of blazars discovered at other wavelengths, clearly showing, in the usual log ν-log ν F ν representation, the typical broadband spectral signaturesmore » normally attributed to a combination of low-energy synchrotron radiation followed by inverse Compton emission of one or more components. Here, we have used these SED to characterize the peak intensity of both the low- and the high-energy components. The results have been used to derive empirical relationships that estimate the position of the two peaks from the broadband colors (i.e., the radio to optical, α ro, and optical to X-ray, α ox, spectral slopes) and from the γ-ray spectral index. Our data show that the synchrotron peak frequency (ν S peak) is positioned between 10 12.5 and 10 14.5 Hz in broad-lined flat spectrum radio quasars (FSRQs) and between 10 13 and 10 17 Hz in featureless BL Lacertae objects. We find that the γ-ray spectral slope is strongly correlated with the synchrotron peak energy and with the X-ray spectral index, as expected at first order in synchrotron-inverse Compton scenarios. However, simple homogeneous, one-zone, synchrotron self-Compton (SSC) models cannot explain most of our SED, especially in the case of FSRQs and low energy peaked (LBL) BL Lacs. More complex models involving external Compton radiation or multiple SSC components are required to reproduce the overall SED and the observed spectral variability. While more than 50% of known radio bright high energy peaked

  12. Effective spectral index properties for Fermi blazars

    NASA Astrophysics Data System (ADS)

    Yang, JiangHe; Fan, JunHui; Liu, Yi; Zhang, YueLian; Tuo, ManXian; Nie, JianJun; Yuan, YuHai

    2018-05-01

    Blazars are a special subclass of active galactic nuclei with extreme observation properties. This subclass can be divided into two further subclasses of flat spectrum radio quasars (FSRQs) and BL Lacertae objects (BL Lacs) according to their emission line features. To compare the spectral properties of FSRQs and BL Lacs, the 1.4 GHz radio, optical R-band, 1 keV X-ray, and 1 GeV γ-ray flux densities for 1108 Fermi blazars are calculated to discuss the properties of the six effective spectral indices of radio to optical ( α RO), radio to X-ray ( α RX), radio to γ ray ( α Rγ), optical to X-ray ( α OX), optical to γ ray ( α Oγ), and X-ray to γ ray ( α Xγ). The main results are as follows: For the averaged effective spectral indices, \\overline {{α _{OX}}} > \\overline {{α _{Oγ }}} > \\overline {{α _{Xγ }}} > \\overline {{α _{Rγ }}} > \\overline {{α _{RX}}} > \\overline {{α _{RO}}} for samples of whole blazars and BL Lacs; \\overline {{α _{Xγ }}} ≈ \\overline {{α _{Rγ }}} ≈ \\overline {{α _{RX}}} for FSRQs and low-frequency-peaked BL Lacs (LBLs); and \\overline {{α _{OX}}} ≈ \\overline {{α _{Oγ }}} ≈ \\overline {{α _{Xγ }}} for high-synchrotron-frequency-peaked BL Lacs (HBLs). The distributions of the effective spectral indices involving optical emission ( α RO, α OX, and α Oγ) for LBLs are different from those for FSRQs, but if the effective spectral index does not involve optical emission ( α RX, α Rγ, and α Xγ), the distributions for LBLs and FSRQs almost come from the same parent population. X-ray emissions from blazars include both synchrotron and inverse Compton (IC) components; the IC component for FSRQs and LBLs accounts for a larger proportion than that for HBLs; and the radiation mechanism for LBLs is similar to that for FSRQs, but the radiation mechanism for HBLs is different from that for both FSRQs and LBLs in X-ray bands. The tendency of α Rγ decreasing from LBLs to HBLs suggests that the synchrotron self

  13. Gamma ray transients

    NASA Technical Reports Server (NTRS)

    Cline, Thomas L.

    1987-01-01

    The discovery of cosmic gamma ray bursts was made with systems designed at Los Alamos Laboratory for the detection of nuclear explosions beyond the atmosphere. HELIOS-2 was the first gamma ray burst instrument launched; its initial results in 1976, seemed to deepen the mystery around gamma ray transients. Interplanetary spacecraft data were reviewed in terms of explaining the behavior and source of the transients.

  14. Revisiting the Gamma-Ray Source 2FGL J1823.8+4312

    NASA Astrophysics Data System (ADS)

    Stern, Daniel; Assef, Roberto J.

    2013-02-01

    One of the great challenges of gamma-ray astronomy is identifying the lower energy counterparts to these high-energy sources. Recently, in this journal, Massaro et al. attempted to find the counterpart of 2FGL J1823.8+4312, a gamma-ray active galactic nucleus (AGN) of uncertain type from the Second Fermi Large Area Telescope catalog. After considering mid-infrared data in the field from the Wide-field Infrared Survey Explorer (WISE), those authors conclude that the preferred identification of 2FGL J1823.8+4312 is WISE J182352.33+431452.5, despite the fact that the mid-infrared source is undetected at radio energies. They claim that WISE J182352.33+431452.5 constitutes the discovery of a new class of extragalactic X-ray source, either a radio-faint blazar or the prototype of a new class of active galaxy with an enigmatic spectral energy distribution. This conclusion is claimed to be independent of whether or not the WISE source is the actual counterpart to 2FGL J1823.8+4312. Based on a re-analysis of public data in this field and new spectroscopy from Palomar, we conclude that WISE J182352.33+431452.5 is a dust-reddened quasar at z = 0.560, a representative example of a very common extragalactic AGN class. Were WISE J182352.33+431452.5 to be associated with the gamma-ray emission, this would be an unusual and exciting discovery. However, we argue that 2FGL J1823.8+4312 is more likely associated with either WISE J182409.25+431404.7 or, more likely, WISE J182419.04+430949.6, two radio-loud sources in the field. The former is a radio-loud quasar and the latter is an optically variable source with a featureless blue spectrum.

  15. X-ray and gamma ray astronomy detectors

    NASA Technical Reports Server (NTRS)

    Decher, Rudolf; Ramsey, Brian D.; Austin, Robert

    1994-01-01

    X-ray and gamma ray astronomy was made possible by the advent of space flight. Discovery and early observations of celestial x-rays and gamma rays, dating back almost 40 years, were first done with high altitude rockets, followed by Earth-orbiting satellites> once it became possible to carry detectors above the Earth's atmosphere, a new view of the universe in the high-energy part of the electromagnetic spectrum evolved. Many of the detector concepts used for x-ray and gamma ray astronomy were derived from radiation measuring instruments used in atomic physics, nuclear physics, and other fields. However, these instruments, when used in x-ray and gamma ray astronomy, have to meet unique and demanding requirements related to their operation in space and the need to detect and measure extremely weak radiation fluxes from celestial x-ray and gamma ray sources. Their design for x-ray and gamma ray astronomy has, therefore, become a rather specialized and rapidly advancing field in which improved sensitivity, higher energy and spatial resolution, wider spectral coverage, and enhanced imaging capabilities are all sought. This text is intended as an introduction to x-ray and gamma ray astronomy instruments. It provides an overview of detector design and technology and is aimed at scientists, engineers, and technical personnel and managers associated with this field. The discussion is limited to basic principles and design concepts and provides examples of applications in past, present, and future space flight missions.

  16. Basics of Gamma Ray Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stinnett, Jacob; Venkataraman, Ram

    The objective of this training is to explain the origin of x-rays and gamma rays, gamma ray interactions with matter, detectors and electronics used in gamma ray-spectrometry, and features of a gamma-ray spectrum for nuclear material that is safeguarded.

  17. SUZAKU X-RAY FOLLOW-UP OBSERVATIONS OF SEVEN UNASSOCIATED FERMI-LAT GAMMA-RAY SOURCES AT HIGH GALACTIC LATITUDES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Y.; Kataoka, J.; Nakamori, T.

    2012-03-01

    We report on our second-year campaign of X-ray follow-up observations of unidentified Fermi Large Area Telescope (LAT) {gamma}-ray sources at high Galactic latitudes (|b| > 10 Degree-Sign ) using the X-ray Imaging Spectrometer on board the Suzaku X-ray Observatory. In this second year of the project, seven new targets were selected from the First Fermi-LAT Catalog, and studied with 20-40 ks effective Suzaku exposures. We detected an X-ray point source coincident with the position of the recently discovered millisecond pulsar (MSP) PSR J2302+4442 within the 95% confidence error circle of 1FGL J2302.8+4443. The X-ray spectrum of the detected counterpart wasmore » well fit by a blackbody model with temperature of kT {approx_equal} 0.3 keV, consistent with an origin of the observed X-ray photons from the surface of a rotating magnetized neutron star. For four other targets that were also recently identified with a normal pulsar (1FGL J0106.7+4853) and MSPs (1FGL J1312.6+0048, J1902.0-5110, and J2043.2+1709), only upper limits in the 0.5-10 keV band were obtained at the flux levels of {approx_equal} 10{sup -14} erg cm{sup -2} s{sup -1}. A weak X-ray source was found in the field of 1FGL J1739.4+8717, but its association with the variable {gamma}-ray emitter could not be confirmed with the available Suzaku data alone. For the remaining Fermi-LAT object 1FGL J1743.8-7620 no X-ray source was detected within the LAT 95% error ellipse. We briefly discuss the general properties of the observed high Galactic-latitude Fermi-LAT objects by comparing their multiwavelength properties with those of known blazars and MSPs.« less

  18. Method of incident low-energy gamma-ray direction reconstruction in the GAMMA-400 gamma-ray space telescope

    NASA Astrophysics Data System (ADS)

    Kheymits, M. D.; Leonov, A. A.; Zverev, V. G.; Galper, A. M.; Arkhangelskaya, I. V.; Arkhangelskiy, A. I.; Suchkov, S. I.; Topchiev, N. P.; Yurkin, Yu T.; Bakaldin, A. V.; Dalkarov, O. D.

    2016-02-01

    The GAMMA-400 gamma-ray space-based telescope has as its main goals to measure cosmic γ-ray fluxes and the electron-positron cosmic-ray component produced, theoretically, in dark-matter-particles decay or annihilation processes, to search for discrete γ-ray sources and study them in detail, to examine the energy spectra of diffuse γ-rays — both galactic and extragalactic — and to study gamma-ray bursts (GRBs) and γ-rays from the active Sun. Scientific goals of GAMMA-400 telescope require fine angular resolution. The telescope is of a pair-production type. In the converter-tracker, the incident gamma-ray photon converts into electron-positron pair in the tungsten layer and then the tracks are detected by silicon- strip position-sensitive detectors. Multiple scattering processes become a significant obstacle in the incident-gamma direction reconstruction for energies below several gigaelectronvolts. The method of utilising this process to improve the resolution is proposed in the presented work.

  19. Gamma Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    2000-01-01

    The project has progressed successfully during this period of performance. The highlights of the Gamma Ray Astronomy teams efforts are: (1) Support daily BATSE data operations, including receipt, archival and dissemination of data, quick-look science analysis, rapid gamma-ray burst and transient monitoring and response efforts, instrument state-of-health monitoring, and instrument commanding and configuration; (2) On-going scientific analysis, including production and maintenance of gamma-ray burst, pulsed source and occultation source catalogs, gamma-ray burst spectroscopy, studies of the properties of pulsars and black holes, and long-term monitoring of hard x-ray sources; (3) Maintenance and continuous improvement of BATSE instrument response and calibration data bases; (4) Investigation of the use of solid state detectors for eventual application and instrument to perform all sky monitoring of X-Ray and Gamma sources with high sensitivity; and (5) Support of BATSE outreach activities, including seminars, colloquia and World Wide Web pages. The highlights of this efforts can be summarized in the publications and presentation list.

  20. A Method for Locating a High-energy Dissipation Region in a Blazar

    NASA Astrophysics Data System (ADS)

    Yan, Dahai; Wu, Qingwen; Fan, Xuliang; Wang, Jiancheng; Zhang, Li

    2018-06-01

    The production site of gamma-rays in a blazar jet is an unresolved problem. We present a method to locate a gamma-ray emission region in the framework of a one-zone emission model. From measurements of the core-shift effect, the relation between the magnetic field strengths (B‧) in the radio cores of the jet and the distances (R) of these radio cores from the central supermassive black hole (SMBH) can be inferred. Therefore, once the magnetic field strength in the gamma-ray emission region ({B}diss}{\\prime }) is obtained, one can use the relation of B‧–R to derive the distance (R diss) of the gamma-ray emission region from the SMBH. Here, we evaluate the lower limit of {B}diss}{\\prime } by using the criteria that the optical variability timescale t var should be longer than or equal to the synchrotron radiation cooling timescale of the electrons that emit optical photons. We test the method with the observations of PSK 1510-089 and BL Lacertae, and derive {R}diss}< 0.15{δ }{{D}}1/3{(1+A)}2/3 pc for PSK 1510-089 with t var ∼ a few hours and {R}diss}< 0.003{δ }{{D}}1/3{(1+A)}2/3 pc for BL Lacertae with t var ∼ a few minutes. Here, δ D is the Doppler factor and A is the Compton dominance (i.e., the ratio of the Compton to the synchrotron peak luminosities).

  1. Blazars: The accelerating inner jet model.

    NASA Astrophysics Data System (ADS)

    Georganopoulos, M.; Marscher, A. P.

    1996-05-01

    The standard interpretation of the nonthermal continuum radiation of blazars from radio to gamma -rays is thought to be synchrotron and inverse Compton radiation from a relativistic jet. The inner jet of a blazar is the section of the jet that connects the central engine with the VLBI core of the radio jet. This is a small (la 1 pc) region where the jet is formed, collimated and accelerated to speeds close to that of light. In the accelerating inner jet model ultrarelativistic plasma is generated continuously near the central engine of the AGN and is accelerated hydrodynamically. An external hydrostatic and/or magnetohydrodynamic pressure collimates the flow. In this work a simple relativistic hydrodynamic scheme that produces a simultaneously accelerating and converging flow is coupled with a detailed calculation of the evolution of the electron energy distribution and synchrotron emissivity due to relativistic electrons radiating in a mostly random magnetic field. Higher frequency radiation emanates from smaller distances from the central engine, implying shorter flux variation timescales at higher frequencies, as observed. The velocity of the jet increases with distance; this implies larger Doppler boosting for greater distances down the jet up to the point where the Lorentz factor Gamma la theta (-1) , where theta is the angle between the velocity vector and the line of sight, and therefore at lower frequencies. This can explain some of the differences between RBLs and XBLs as a line-of-sight orientation effect. A square density wave is propagated with the jet velocity and the variability thus induced is studied, taking into account time delay effects. The model is found to agree qualitatively with the observed steady state spectra as well as with the observed variability properties of BL Lac objects.

  2. The 2HWC HAWC Observatory Gamma-Ray Catalog

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abeysekara, A. U.; Barber, A. S.; Albert, A.

    2017-07-01

    We present the first catalog of TeV gamma-ray sources realized with data from the newly completed High Altitude Water Cherenkov Observatory (HAWC). It is the most sensitive wide field-of-view TeV telescope currently in operation, with a one-year survey sensitivity of ∼5%–10% of the flux of the Crab Nebula. With an instantaneous field of view >1.5 sr and >90% duty cycle, it continuously surveys and monitors the sky for gamma-ray energies between hundreds of GeV and tens of TeV. HAWC is located in Mexico, at a latitude of 19° N, and was completed in 2015 March. Here, we present the 2HWCmore » catalog, which is the result of the first source search performed with the complete HAWC detector. Realized with 507 days of data, it represents the most sensitive TeV survey to date for such a large fraction of the sky. A total of 39 sources were detected, with an expected number of false detections of 0.5 due to background fluctuation. Out of these sources, 19 are new sources that are not associated with previously known TeV sources (association criteria: <0.°5 away). The source list, including the position measurement, spectrum measurement, and uncertainties, is reported, then each source is briefly discussed. Of the 2HWC associated sources, 10 are reported in TeVCat as PWN or SNR: 2 as blazars and the remaining eight as unidentified.« less

  3. A change in the optical polarization associated with a gamma-ray flare in the blazar 3C 279.

    PubMed

    2010-02-18

    It is widely accepted that strong and variable radiation detected over all accessible energy bands in a number of active galaxies arises from a relativistic, Doppler-boosted jet pointing close to our line of sight. The size of the emitting zone and the location of this region relative to the central supermassive black hole are, however, poorly known, with estimates ranging from light-hours to a light-year or more. Here we report the coincidence of a gamma (gamma)-ray flare with a dramatic change of optical polarization angle. This provides evidence for co-spatiality of optical and gamma-ray emission regions and indicates a highly ordered jet magnetic field. The results also require a non-axisymmetric structure of the emission zone, implying a curved trajectory for the emitting material within the jet, with the dissipation region located at a considerable distance from the black hole, at about 10(5) gravitational radii.

  4. VERY HIGH ENERGY γ-RAYS FROM THE UNIVERSE’S MIDDLE AGE: DETECTION OF THE z = 0.940 BLAZAR PKS 1441+25 WITH MAGIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahnen, M. L.; Biland, A.; Ansoldi, S.

    2015-12-20

    The flat-spectrum radio quasar PKS 1441+25 at a redshift of z = 0.940 is detected between 40 and 250 GeV with a significance of 25.5σ using the MAGIC telescopes. Together with the gravitationally lensed blazar QSO B0218+357 (z = 0.944), PKS 1441+25 is the most distant very high energy (VHE) blazar detected to date. The observations were triggered by an outburst in 2015 April seen at GeV energies with the Large Area Telescope on board Fermi. Multi-wavelength observations suggest a subdivision of the high state into two distinct flux states. In the band covered by MAGIC, the variability timescale is estimated to bemore » 6.4 ± 1.9 days. Modeling the broadband spectral energy distribution with an external Compton model, the location of the emitting region is understood as originating in the jet outside the broad-line region (BLR) during the period of high activity, while being partially within the BLR during the period of low (typical) activity. The observed VHE spectrum during the highest activity is used to probe the extragalactic background light at an unprecedented distance scale for ground-based gamma-ray astronomy.« less

  5. The Impact of Electromagnetic Cascades of Very-high Energy Gamma Rays on the Extragalactic Gamma-ray Background

    NASA Technical Reports Server (NTRS)

    Venters, Tonia

    2012-01-01

    As very high energy (VHE) photons propagate through the extragalactic background light (EBL), they interact with the soft photons of the EBL and initiate electromagnetic cascades of photons and electrons. The collective intensity of a cosmological population emitting at VHEs (such as blazars) will be attenuated at the highest energies through interactions with the EBL and enhanced at lower energies by the resulting cascade. As such, depending on the space density and spectra of the sources and the model of the EBL, cascade radiation can provide a significant contribution to the extragalactic gamma-ray background (EGB). Through deflections of the charged particles of the cascade, an intergalactic magnetic field (IGMF) may leave an imprint on the anisotropy properties of the EGB. The impact of a strong IGMF is to isotropize lower energy cascade photons, inducing a modulation in the anisotropy energy spectrum of the EGB. We discuss the implications of cascade radiation for the origins of the EGB and the nature of the IGMF, as well as insight that will be provided by data from the Fermi Large Area Telescope in the upcoming years.

  6. A physical classification scheme for blazars

    NASA Astrophysics Data System (ADS)

    Landt, Hermine; Padovani, Paolo; Perlman, Eric S.; Giommi, Paolo

    2004-06-01

    Blazars are currently separated into BL Lacertae objects (BL Lacs) and flat spectrum radio quasars based on the strength of their emission lines. This is performed rather arbitrarily by defining a diagonal line in the Ca H&K break value-equivalent width plane, following Marchã et al. We readdress this problem and put the classification scheme for blazars on firm physical grounds. We study ~100 blazars and radio galaxies from the Deep X-ray Radio Blazar Survey (DXRBS) and 2-Jy radio survey and find a significant bimodality for the narrow emission line [OIII]λ5007. This suggests the presence of two physically distinct classes of radio-loud active galactic nuclei (AGN). We show that all radio-loud AGN, blazars and radio galaxies, can be effectively separated into weak- and strong-lined sources using the [OIII]λ5007-[OII]λ3727 equivalent width plane. This plane allows one to disentangle orientation effects from intrinsic variations in radio-loud AGN. Based on DXRBS, the strongly beamed sources of the new class of weak-lined radio-loud AGN are made up of BL Lacs at the ~75 per cent level, whereas those of the strong-lined radio-loud AGN include mostly (~97 per cent) quasars.

  7. Gamma ray camera

    DOEpatents

    Perez-Mendez, Victor

    1997-01-01

    A gamma ray camera for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array.

  8. LOCATION OF {gamma}-RAY FLARE EMISSION IN THE JET OF THE BL LACERTAE OBJECT OJ287 MORE THAN 14 pc FROM THE CENTRAL ENGINE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agudo, Ivan; Jorstad, Svetlana G.; Marscher, Alan P.

    We combine time-dependent multi-waveband flux and linear polarization observations with submilliarcsecond-scale polarimetric images at {lambda} = 7 mm of the BL Lacertae type blazar OJ287 to locate the {gamma}-ray emission in prominent flares in the jet of the source >14 pc from the central engine. We demonstrate a highly significant correlation between the strongest {gamma}-ray and millimeter-wave flares through Monte Carlo simulations. The two reported {gamma}-ray peaks occurred near the beginning of two major millimeter-wave outbursts, each of which is associated with a linear polarization maximum at millimeter wavelengths. Our very long baseline array observations indicate that the two millimeter-wavemore » flares originated in the second of two features in the jet that are separated by >14 pc. The simultaneity of the peak of the higher-amplitude {gamma}-ray flare and the maximum in polarization of the second jet feature implies that the {gamma}-ray and millimeter-wave flares are cospatial and occur >14 pc from the central engine. We also associate two optical flares, accompanied by sharp polarization peaks, with the two {gamma}-ray events. The multi-waveband behavior is most easily explained if the {gamma}-rays arise from synchrotron self-Compton scattering of optical photons from the flares. We propose that flares are triggered by interaction of moving plasma blobs with a standing shock. The {gamma}-ray and optical emission is quenched by inverse Compton losses as synchrotron photons from the newly shocked plasma cross the emission region. The millimeter-wave polarization is high at the onset of a flare, but decreases as the electrons emitting at these wavelengths penetrate less polarized regions.« less

  9. Discovery of localized TeV gamma-ray sources and diffuse TeV gamma-ray emission from the galactic plane with Milagro using a new background rejection technique

    NASA Astrophysics Data System (ADS)

    Abdo, Aws Ahmad

    2007-08-01

    Very high energy gamma-rays can be used to probe some of the most powerful astrophysical objects in the universe, such as active galactic nuclei, supernova remnants and pulsar-powered nebulae. The diffuse gamma radiation arising from the interaction of cosmic-ray particles with matter and radiation in the Galaxy is one of the few probes available to study the origin of cosmic- rays. Milagro is a water Cherenkov detector that continuously views the entire overhead sky. The large field-of-view combined with the long observation time makes Milagro the most sensitive instrument available for the study of large, low surface brightness sources such as the diffuse gamma radiation arising from interactions of cosmic radiation with interstellar matter. In this thesis I present a new background rejection technique for the Milagro detector through the development of a new gamma hadron separation variable. The Abdo variable, A 4 , coupled with the weighting analysis technique significantly improves the sensitivity of the Milagro detector. This new analysis technique resulted in the first discoveries in Milagro. Four localized sources of TeV gamma-ray emission have been discovered, three of which are in the Cygnus region of the Galaxy and one closer to the Galactic center. In addition to these localized sources, a diffuse emission of TeV gamma-rays has been discovered from the Cygnus region of the Galaxy as well. However, the TeV gamma-ray flux as measured at ~12 TeV from the Cygnus region exceeds that predicted from a conventional model of cosmic-ray production and propagation. This observation indicates the existence of either hard-spectrum cosmic-ray sources and/or other sources of TeV gamma rays in the region. Other TeV gamma-ray source candidates with post-trial statistical significances of > 4s have also been observed in the Galactic plane.

  10. Modelling Hard Gamma-Ray Emission from Supernova Remnants

    NASA Technical Reports Server (NTRS)

    Baring, Matthew

    2000-01-01

    The observation by the CANGAROO experiment of TeV emission from SN 1006, in conjunction with several instances of non-thermal X-ray emission from supernova remnants, has led to inferences of super-TeV electrons in these extended sources. While this is sufficient to propel the theoretical community in their modelling of particle acceleration and associated radiation, the anticipated emergence in the next decade of a number of new experiments probing the TeV and sub-TeV bands provides further substantial motivation for modellers. In particular, the quest for obtaining unambiguous gamma-ray signatures of cosmic ray ion acceleration defines a "Holy Grail" for observers and theorists alike. This review summarizes theoretical developments in the prediction of MeV-TeV gamma-rays from supernova remnants over the last five years, focusing on how global properties of models can impact, and be impacted by, hard gamma-ray observational programs, thereby probing the supernova remnant environment. Properties of central consideration include the maximum energy of accelerated particles, the density of the unshocked interstellar medium, the ambient magnetic field, and the relativistic electron-to-proton ratio. Criteria for determining good candidate remnants for observability in the TeV band are identified.

  11. The search for MeV gamma-ray pulsars with COMPTEL

    NASA Technical Reports Server (NTRS)

    Bennett, K.; Buccheri, R.; Busetta, M.; Carraminana, A.; Connors, A.; Diehl, R.; Hermsen, W.; Kuiper, L.; Lichti, G. G.; Much, R.

    1995-01-01

    The Compton Gamma Ray Observatory (CGRO) completed a full sky survey in November 1993 during which the number of known gamma-ray pulsars more than doubled. During this survey the Compton Telescope (COMPTEL) observed the classical isolated pulsars Crab and Vela and detected PSR 1509-58. Attempts to detect the newly discovered pulsars, Geminga, PSR 1706-44 and PSR 1055-52, in the COMPTEL energy range provide only upper limits. The results of these analyses are presented together with the outcome of a search for further candidate radio pulsars whose ephemerides are given in the Princeton Pulsar Catalogue.

  12. Fermi Large Area Telescope Detection of Gamma-Ray Emission from the Direction of Supernova iPTF14hls

    NASA Astrophysics Data System (ADS)

    Yuan, Qiang; Liao, Neng-Hui; Xin, Yu-Liang; Li, Ye; Fan, Yi-Zhong; Zhang, Bing; Hu, Hong-Bo; Bi, Xiao-Jun

    2018-02-01

    The remnant of a supernova explosion is widely believed to be the acceleration site of high-energy cosmic-ray particles. The acceleration timescale is, however, typically very long. Here, we report the detection of a variable γ-ray source with the Fermi Large Area Telescope, which is positionally and temporally consistent with a peculiar supernova, iPTF14hls. A quasi-stellar object SDSS J092054.04+504251.5, which is probably a blazar candidate according to the infrared data, is found in the error circle of the γ-ray source. More data about the γ-ray source and SDSS J092054.04+504251.5 are needed to confirm their association. On the other hand, if the association between the γ-ray source and the supernova is confirmed, this would be the first time detecting high-energy γ-ray emission from a supernova, suggesting very fast particle acceleration by supernova explosions.

  13. The Gamma-ray Sky with Fermi

    NASA Technical Reports Server (NTRS)

    Thompson, David

    2012-01-01

    Gamma rays reveal extreme, nonthermal conditions in the Universe. The Fermi Gamma-ray Space Telescope has been exploring the gamma-ray sky for more than four years, enabling a search for powerful transients like gamma-ray bursts, novae, solar flares, and flaring active galactic nuclei, as well as long-term studies including pulsars, binary systems, supernova remnants, and searches for predicted sources of gamma rays such as dark matter annihilation. Some results include a stringent limit on Lorentz invariance derived from a gamma-ray burst, unexpected gamma-ray variability from the Crab Nebula, a huge gamma-ray structure associated with the center of our galaxy, surprising behavior from some gamma-ray binary systems, and a possible constraint on some WIMP models for dark matter.

  14. Fermi LAT detection of renewed GeV gamma-ray activity from the gravitationally lensed blazar PKS 1830-211

    NASA Astrophysics Data System (ADS)

    Ciprini, Stefano

    2012-06-01

    The Large Area Telescope (LAT), one of the two instruments on the Fermi Gamma-ray Space Telescope, has observed increasing gamma-ray flux from a source positionally consistent with PKS 1830-211 (also known as 2FGL J1833.6-2104, Nolan et al. 2012, ApJS, 199, 31, placed at RA: 18h 33m 39.9s, Dec -21d 03m 40s, J2000, van Ommen et al., 1995, ApJ, 444, 561). PKS 1830-211 (z=2.507, Lovell et al. 1998, ApJ, 508, L51) is a distant and peculiar flat spectrum radio quasar with intervening absorption systems and being subject to gravitational lensing by a galaxy placed at z=0.886 (Wiklind & Combes 1996, Nature, 379, 11).

  15. On The gamma-ray emission from Reticulum II and other dwarf galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hooper, Dan; Linden, Tim

    2015-09-01

    The recent discovery of ten new dwarf galaxy candidates by the Dark Energy Survey (DES) and the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) could increase the Fermi Gamma-Ray Space Telescope's sensitivity to annihilating dark matter particles, potentially enabling a definitive test of the dark matter interpretation of the long-standing Galactic Center gamma-ray excess. In this paper, we compare the previous analyses of Fermi data from the directions of the new dwarf candidates (including the relatively nearby Reticulum II) and perform our own analysis, with the goal of establishing the statistical significance of any gamma-ray signal from these sources.more » We confirm the presence of an excess from Reticulum II, with a spectral shape that is compatible with the Galactic Center signal. The significance of this emission is greater than that observed from 99.84% of randomly chosen high-latitude blank-sky locations, corresponding to a local detection significance of 3.2σ. We caution that any dark matter interpretation of this excess must be validated through observations of additional dwarf spheroidal galaxies, and improved calculations of the relative J-factor of dwarf spheroidal galaxies. We improve upon the standard blank-sky calibration approach through the use of multi-wavelength catalogs, which allow us to avoid regions that are likely to contain unresolved gamma-ray sources.« less

  16. Interferometric Monitoring of Gamma-Ray Bright AGNs: S5 0716+714

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jee Won; Lee, Sang-Sung; Hodgson, Jeffrey A.

    We present the results of very long baseline interferometry (VLBI) observations of gamma-ray bright blazar S5 0716+714 using the Korean VLBI Network (KVN) at the 22, 43, 86, and 129 GHz bands, as part of the Interferometric Monitoring of Gamma-ray Bright active galactic nuclei (iMOGABA) KVN key science program. Observations were conducted in 29 sessions from 2013 January 16 to 2016 March 1, with the source being detected and imaged at all available frequencies. In all epochs, the source was compact on the milliarcsecond scale, yielding a compact VLBI core dominating the synchrotron emission on these scales. Based on themore » multiwavelength data between 15 GHz (Owens Valley Radio Observatory) and 230 GHz (Submillimeter Array), we found that the source shows multiple prominent enhancements of the flux density at the centimeter (cm) and millimeter (mm) wavelengths, with mm enhancements leading cm enhancements by −16 ± 8 days. The turnover frequency was found to vary between 21 and 69 GHz during our observations. By assuming a synchrotron self-absorption model for the relativistic jet emission in S5 0716+714, we found the magnetic field strength in the mas emission region to be ≤5 mG during the observing period, yielding a weighted mean of 1.0 ± 0.6 mG for higher turnover frequencies (e.g., >45 GHz).« less

  17. Future Hard X-ray and Gamma-Ray Missions

    NASA Astrophysics Data System (ADS)

    Krawczynski, Henric; Physics of the Cosmos (PCOS) Gamma Ray Science Interest Group (GammaSIG) Team

    2017-01-01

    With four major NASA and ESA hard X-ray and gamma-ray missions in orbit (Swift, NuSTAR, INTEGRAL, and Fermi) hard X-ray and gamma-ray astronomy is making major contributions to our understanding of the cosmos. In this talk, I will summarize the current and upcoming activities of the Physics of the Cosmos Gamma Ray Science Interest Group and highlight a few of the future hard X-ray and gamma-ray mission discussed by the community. HK thanks NASA for the support through the awards NNX14AD19G and NNX16AC42G and for PCOS travel support.

  18. Gamma ray camera

    DOEpatents

    Perez-Mendez, V.

    1997-01-21

    A gamma ray camera is disclosed for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array. 6 figs.

  19. Reconciling Models of Luminous Blazars with Magnetic Fluxes Determined by Radio Core-shift Measurements

    NASA Astrophysics Data System (ADS)

    Nalewajko, Krzysztof; Sikora, Marek; Begelman, Mitchell C.

    2014-11-01

    Estimates of magnetic field strength in relativistic jets of active galactic nuclei, obtained by measuring the frequency-dependent radio core location, imply that the total magnetic fluxes in those jets are consistent with the predictions of the magnetically arrested disk (MAD) scenario of jet formation. On the other hand, the magnetic field strength determines the luminosity of the synchrotron radiation, which forms the low-energy bump of the observed blazar spectral energy distribution (SED). The SEDs of the most powerful blazars are strongly dominated by the high-energy bump, which is most likely due to the external radiation Compton mechanism. This high Compton dominance may be difficult to reconcile with the MAD scenario, unless (1) the geometry of external radiation sources (broad-line region, hot-dust torus) is quasi-spherical rather than flat, or (2) most gamma-ray radiation is produced in jet regions of low magnetization, e.g., in magnetic reconnection layers or in fast jet spines.

  20. RECONCILING MODELS OF LUMINOUS BLAZARS WITH MAGNETIC FLUXES DETERMINED BY RADIO CORE-SHIFT MEASUREMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nalewajko, Krzysztof; Begelman, Mitchell C.; Sikora, Marek, E-mail: knalew@stanford.edu

    2014-11-20

    Estimates of magnetic field strength in relativistic jets of active galactic nuclei, obtained by measuring the frequency-dependent radio core location, imply that the total magnetic fluxes in those jets are consistent with the predictions of the magnetically arrested disk (MAD) scenario of jet formation. On the other hand, the magnetic field strength determines the luminosity of the synchrotron radiation, which forms the low-energy bump of the observed blazar spectral energy distribution (SED). The SEDs of the most powerful blazars are strongly dominated by the high-energy bump, which is most likely due to the external radiation Compton mechanism. This high Comptonmore » dominance may be difficult to reconcile with the MAD scenario, unless (1) the geometry of external radiation sources (broad-line region, hot-dust torus) is quasi-spherical rather than flat, or (2) most gamma-ray radiation is produced in jet regions of low magnetization, e.g., in magnetic reconnection layers or in fast jet spines.« less

  1. DISCOVERY OF A WANDERING RADIO JET BASE AFTER A LARGE X-RAY FLARE IN THE BLAZAR MARKARIAN 421

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niinuma, K.; Kino, M.; Doi, A.

    2015-07-01

    We investigate the location of the radio jet bases (“radio cores”) of blazars in radio images and their stationarity by means of dense very long baseline interferometry (VLBI) observations. In order to measure the position of a radio core, we conducted a 12 epoch astrometric observation of the blazar Markarian 421 with the VLBI Exploration of Radio Astrometry at 22 GHz immediately after a large X-ray flare, which occurred in the middle of 2011 September. For the first time,we find that the radio core is not stationary but rather changes its location toward 0.5 mas downstream. This angular scale correspondsmore » to the de-projected length of a scale of 10{sup 5} Schwarzschild radii (R{sub s}) at the distance of Markarian 421. This radio-core wandering may be a new type of manifestation associated with the phenomena of large X-ray flares.« less

  2. The X-Ray Spectra of Blazars: Analysis of the Complete EXOSAT Archive: Erratum

    NASA Astrophysics Data System (ADS)

    Sambruna, Rita M.; Barr, Paul; Giommi, Paolo; Maraschi, Laura; Tagliaferri, Gianpiero; Treves, Aldo

    1995-07-01

    In the paper "The X-Ray Spectra of Blazars: Analysis of the Complete EXOSAT Archive" by Rita M. Sambruna, Paul Barr, Paolo Giommi, Laura Maraschi, Gianpiero Tagliaferri, and Aldo Treves (ApJS, 95,371 [1994]), the section regarding the object PKS 1510-08 (Section 4.4.14) contains an erroneous quotation. K. P. Singh, A.R. Rao, and M.N. Vahia (ApJ, 365,455 [1990]) in fact detected: emission line only in the 1984 data, and not in the 1985 spectrum, as stated.

  3. Star-jet Interactions and Gamma-ray Outbursts from 3C454.3

    NASA Technical Reports Server (NTRS)

    Khangulyan, D. V.; Barkov, M. V.; Bosch-Romon, V.; Aharonian, F. A.; Dorodnitsyn, A. V.

    2013-01-01

    We propose a model to explain the ultra-bright GeV gamma-ray flares observed from the blazar 3C454.3. The model is based on the concept of a relativistic jet interacting with compact gas condensations produced when a star (a red giant) crosses the jet close to the central black hole. The study includes an analytical treatment of the evolution of the envelope lost by the star within the jet, and calculations of the related high-energy radiation. The model readily explains the day-long that varies on timescales of hours, GeV gamma-ray flare from 3C454.3, observed during 2010 November on top of a plateau lasting weeks. In the proposed scenario, the plateau state is caused by a strong wind generated by the heating of the stellar atmosphere due to nonthermal particles accelerated at the jet-star interaction region. The flare itself could be produced by a few clouds of matter lost by the red giant after the initial impact of the jet. In the framework of the proposed scenario, the observations constrain the key model parameters of the source, including the mass of the central black hole: Blackhole Mass is approx. equal to 10(exp 9) Solar Mass, the total jet power: L(j) is approx. equal to 10(exp 48) erg s(exp -1), and the Doppler factor of the gamma-ray emitting clouds: Delta is approx. equal to 20. Whereas we do not specify the particle acceleration mechanisms, the potential gamma-ray production processes are discussed and compared in the context of the proposed model.We argue that synchrotron radiation of protons has certain advantages compared to other radiation channels of directlyaccelerated electrons. An injected proton distribution varies as E(exp -1) or harder below the relevant energies would be favored to alleviate the tight energetic constraints and to avoid the violation of the observational low-energy constraints.

  4. γ-Ray And Parsec-Scale Jet Properties Of A Complete Sample Of Blazars From The Mojave Program

    DOE PAGES

    Lister, M. L.

    2011-11-02

    We investigate the Fermi LAT -ray and 15 GHz VLBA radio properties of a joint -ray- and radio-selected sample of AGNs obtained during the first 11 months of the Fermi mission (2008 Aug 4 - 2009 Jul 5). Our sample contains the brightest 173 AGNs in these bands above declination -30° during this period, and thus probes the full range of -ray loudness ( -ray to radio band luminosity ratio) in the bright blazar population. The latter quantity spans at least four orders ofmagnitude, reflecting a wide range of spectral energy distribution (SED) parameters in the bright blazar population. Themore » BL Lac objects, however, display a linear correlation of increasing -ray loudness with synchrotron SED peak frequency, suggesting a universal SED shape for objects of this class. The synchrotron self-Compton model is favored for the -ray emission in these BL Lacs over external seed photon models, since the latter predict a dependence of Compton dominance on Doppler factor that would destroy any observed synchrotron SED peak - -ray loudness correlation. The high-synchrotron peaked (HSP) BL Lac objects are distinguished by lower than average radio core brightness temperatures, and none display large radio modulation indices or high linear core polarization levels. No equivalent trends are seen for the flat-spectrum radio quasars (FSRQ) in our sample. Given the association of such properties with relativistic beaming, we suggest that the HSP BL Lacs have generally lower Doppler factors than the lower-synchrotron peaked BL Lacs or FSRQs in our sample.« less

  5. Terrestrial Gamma-Ray Flashes (TGFs)

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    2010-01-01

    This slide presentation reviews the observation of Terrestrial Gamma Ray Flashes (TGFs) by Gamma-Ray Telescopes. These were: (1) BATSE /Compton Observatory, (2) Solar Spectroscopic Imager, (3) AGILE Gamma-ray Telescope, and (4) Gamma-ray Burst Monitor (GBM) on the Fermi Gamma-ray Space Telescope. It contains charts which display the counts over time, a map or the TGFs observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). and a map showing the latitude and longitude of 85 of the TGFs observed by the Fermi GBM.

  6. Gamma-ray astrophysics

    NASA Technical Reports Server (NTRS)

    Stecker, F. W. (Editor); Trombka, J. I. (Editor)

    1973-01-01

    Conference papers on gamma ray astrophysics are summarized. Data cover the energy region from about 0.3 MeV to a few hundred GeV and theoretical models of production mechanisms that give rise to both galactic and extragalactic gamma rays.

  7. The bright optical flash and afterglow from the gamma-ray burst GRB 130427A.

    PubMed

    Vestrand, W T; Wren, J A; Panaitescu, A; Wozniak, P R; Davis, H; Palmer, D M; Vianello, G; Omodei, N; Xiong, S; Briggs, M S; Elphick, M; Paciesas, W; Rosing, W

    2014-01-03

    The optical light generated simultaneously with x-rays and gamma rays during a gamma-ray burst (GRB) provides clues about the nature of the explosions that occur as massive stars collapse. We report on the bright optical flash and fading afterglow from powerful burst GRB 130427A. The optical and >100-megaelectron volt (MeV) gamma-ray flux show a close correlation during the first 7000 seconds, which is best explained by reverse shock emission cogenerated in the relativistic burst ejecta as it collides with surrounding material. At later times, optical observations show the emergence of emission generated by a forward shock traversing the circumburst environment. The link between optical afterglow and >100-MeV emission suggests that nearby early peaked afterglows will be the best candidates for studying gamma-ray emission at energies ranging from gigaelectron volts to teraelectron volts.

  8. The Gamma-ray Universe through Fermi

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2012-01-01

    Gamma rays, the most powerful form of light, reveal extreme conditions in the Universe. The Fermi Gamma-ray Space Telescope and its smaller cousin AGILE have been exploring the gamma-ray sky for several years, enabling a search for powerful transients like gamma-ray bursts, novae, solar flares, and flaring active galactic nuclei, as well as long-term studies including pulsars, binary systems, supernova remnants, and searches for predicted sources of gamma rays such as dark matter annihilation. Some results include a stringent limit on Lorentz invariance derived from a gamma-ray burst, unexpected gamma-ray variability from the Crab Nebula, a huge ga.nuna-ray structure associated with the center of our galaxy, surprising behavior from some gamma-ray binary systems, and a possible constraint on some WIMP models for dark matter.

  9. Gamma-ray astronomy

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Lingenfelter, R. E.

    1982-01-01

    Cosmic gamma rays, the physical processes responsible for their production and the astrophysical sites from which they were seen are reported. The bulk of the observed gamma ray emission is in the photon energy range from about 0.1 MeV to 1 GeV, where observations are carried out above the atmosphere. There are also, however, gamma ray observations at higher energies obtained by detecting the Cerenkov light produced by the high energy photons in the atmosphere. Gamma ray emission was observed from sources as close as the Sun and the Moon and as distant as the quasar 3C273, as well as from various other galactic and extragalactic sites. The radiation processes also range from the well understood, e.g. energetic particle interactions with matter, to the still incompletely researched, such as radiation transfer in optically thick electron positron plasmas in intense neutron star magnetic fields.

  10. Dark Matter Limits from Dwarf Spheroidal Galaxies with the HAWC Gamma-Ray Observatory

    NASA Astrophysics Data System (ADS)

    Albert, A.; Alfaro, R.; Alvarez, C.; Álvarez, J. D.; Arceo, R.; Arteaga-Velázquez, J. C.; Avila Rojas, D.; Ayala Solares, H. A.; Bautista-Elivar, N.; Becerril, A.; Belmont-Moreno, E.; BenZvi, S. Y.; Bernal, A.; Braun, J.; Brisbois, C.; Caballero-Mora, K. S.; Capistrán, T.; Carramiñana, A.; Casanova, S.; Castillo, M.; Cotti, U.; Cotzomi, J.; Coutiño de León, S.; De León, C.; De la Fuente, E.; Diaz Hernandez, R.; Dingus, B. L.; DuVernois, M. A.; Díaz-Vélez, J. C.; Ellsworth, R. W.; Engel, K.; Fiorino, D. W.; Fraija, N.; García-González, J. A.; Garfias, F.; González, M. M.; Goodman, J. A.; Hampel-Arias, Z.; Harding, J. P.; Hernandez, S.; Hernandez-Almada, A.; Hona, B.; Hüntemeyer, P.; Iriarte, A.; Jardin-Blicq, A.; Joshi, V.; Kaufmann, S.; Kieda, D.; Lauer, R. J.; Lennarz, D.; León Vargas, H.; Linnemann, J. T.; Longinotti, A. L.; Longo Proper, M.; Raya, G. Luis; Luna-García, R.; López-Coto, R.; Malone, K.; Marinelli, S. S.; Martinez-Castellanos, I.; Martínez-Castro, J.; Martínez-Huerta, H.; Matthews, J. A.; Miranda-Romagnoli, P.; Moreno, E.; Mostafá, M.; Nellen, L.; Newbold, M.; Nisa, M. U.; Noriega-Papaqui, R.; Pelayo, R.; Pretz, J.; Pérez-Pérez, E. G.; Ren, Z.; Rho, C. D.; Rivière, C.; Rosa-González, D.; Rosenberg, M.; Ruiz-Velasco, E.; Salesa Greus, F.; Sandoval, A.; Schneider, M.; Schoorlemmer, H.; Sinnis, G.; Smith, A. J.; Springer, R. W.; Surajbali, P.; Taboada, I.; Tibolla, O.; Tollefson, K.; Torres, I.; Vianello, G.; Weisgarber, T.; Westerhoff, S.; Wood, J.; Yapici, T.; Younk, P. W.; Zhou, H.

    2018-02-01

    The High Altitude Water Cherenkov (HAWC) gamma-ray observatory is a wide field of view observatory sensitive to 500 GeV–100 TeV gamma-rays and cosmic rays. It can also perform diverse indirect searches for dark matter annihilation and decay. Among the most promising targets for the indirect detection of dark matter are dwarf spheroidal galaxies. These objects are expected to have few astrophysical sources of gamma-rays but high dark matter content, making them ideal candidates for an indirect dark matter detection with gamma-rays. Here we present individual limits on the annihilation cross section and decay lifetime for 15 dwarf spheroidal galaxies within the field of view, as well as their combined limit. These are the first limits on the annihilation cross section and decay lifetime using data collected with HAWC. We also present the HAWC flux upper limits of the 15 dwarf spheroidal galaxies in half-decade energy bins.

  11. Topics in gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Lingenfelter, R. E.

    1986-01-01

    Observations of gamma rays from solar flares, gamma ray bursts, the Galactic center, galactic nucleosynthesis, SS433, and Cygnus X-3, and their effects on astrophysical problems are discussed. It is observed that gamma ray spectra from solar flares are applicable to the study of particle acceleration and confinement and the determination of chemical abundances in the solar atmosphere. The gamma ray lines from the compact galactic object SS433 are utilized to examine the acceleration of jets, and analysis of the gamma ray lines of Cygnus X-3 reveal that particles can be accelerated in compact sources to ultrahigh energies.

  12. EBL Inhomogeneity and Hard-Spectrum Gamma-Ray Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdalla, Hassan; Böttcher, Markus

    2017-02-01

    The unexpectedly hard very-high-energy (VHE; E > 100 GeV) γ -ray spectra of a few distant blazars have been interpreted as evidence of a reduction of the γγ opacity of the universe due to the interaction of VHE γ -rays with the extragalactic background light (EBL) compared to the expectation from current knowledge of the density and cosmological evolution of the EBL. One of the suggested solutions to this problem involves the inhomogeneity of the EBL. In this paper, we study the effects of such inhomogeneity on the energy density of the EBL (which then also becomes anisotropic) and themore » resulting γγ opacity. Specifically, we investigate the effects of cosmic voids along the line of sight to a distant blazar. We find that the effect of such voids on the γγ opacity, for any realistic void size, is only of the order of ≲1% and much smaller than expected from a simple linear scaling of the γγ opacity with the line-of-sight galaxy underdensity due to a cosmic void.« less

  13. Characterizing the Optical Variability of Bright Blazars: Variability-based Selection of Fermi Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Ruan, John J.; Anderson, Scott F.; MacLeod, Chelsea L.; Becker, Andrew C.; Burnett, T. H.; Davenport, James R. A.; Ivezić, Željko; Kochanek, Christopher S.; Plotkin, Richard M.; Sesar, Branimir; Stuart, J. Scott

    2012-11-01

    We investigate the use of optical photometric variability to select and identify blazars in large-scale time-domain surveys, in part to aid in the identification of blazar counterparts to the ~30% of γ-ray sources in the Fermi 2FGL catalog still lacking reliable associations. Using data from the optical LINEAR asteroid survey, we characterize the optical variability of blazars by fitting a damped random walk model to individual light curves with two main model parameters, the characteristic timescales of variability τ, and driving amplitudes on short timescales \\hat{\\sigma }. Imposing cuts on minimum τ and \\hat{\\sigma } allows for blazar selection with high efficiency E and completeness C. To test the efficacy of this approach, we apply this method to optically variable LINEAR objects that fall within the several-arcminute error ellipses of γ-ray sources in the Fermi 2FGL catalog. Despite the extreme stellar contamination at the shallow depth of the LINEAR survey, we are able to recover previously associated optical counterparts to Fermi active galactic nuclei with E >= 88% and C = 88% in Fermi 95% confidence error ellipses having semimajor axis r < 8'. We find that the suggested radio counterpart to Fermi source 2FGL J1649.6+5238 has optical variability consistent with other γ-ray blazars and is likely to be the γ-ray source. Our results suggest that the variability of the non-thermal jet emission in blazars is stochastic in nature, with unique variability properties due to the effects of relativistic beaming. After correcting for beaming, we estimate that the characteristic timescale of blazar variability is ~3 years in the rest frame of the jet, in contrast with the ~320 day disk flux timescale observed in quasars. The variability-based selection method presented will be useful for blazar identification in time-domain optical surveys and is also a probe of jet physics.

  14. BLAZAR ANTI-SEQUENCE OF SPECTRAL VARIATION WITHIN INDIVIDUAL BLAZARS: CASES FOR MRK 501 AND 3C 279

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jin; Zhang, Shuang-Nan; Liang, En-Wei, E-mail: zhang.jin@hotmail.com

    2013-04-10

    The jet properties of Mrk 501 and 3C 279 are derived by fitting broadband spectral energy distributions (SEDs) with lepton models. The derived {gamma}{sub b} (the break Lorenz factor of the electron distribution) is 10{sup 4}-10{sup 6} for Mrk 501 and 200 {approx} 600 for 3C 279. The magnetic field strength (B) of Mrk 501 is usually one order of magnitude lower than that of 3C 279, but their Doppler factors ({delta}) are comparable. A spectral variation feature where the peak luminosity is correlated with the peak frequency, which is opposite from the blazar sequence, is observed in the twomore » sources. We find that (1) the peak luminosities of the two bumps in the SEDs for Mrk 501 depend on {gamma}{sub b} in both the observer and co-moving frames, but they are not correlated with B and {delta} and (2) the luminosity variation of 3C 279 is dominated by the external Compton (EC) peak and its peak luminosity is correlated with {gamma}{sub b} and {delta}, but anti-correlated with B. These results suggest that {gamma}{sub b} may govern the spectral variation of Mrk 501 and {delta} and B would be responsible for the spectral variation of 3C 279. The narrow distribution of {gamma}{sub b} and the correlation of {gamma}{sub b} and B in 3C 279 would be due to the cooling from the EC process and the strong magnetic field. Based on our brief discussion, we propose that this spectral variation feature may originate from the instability of the corona but not from the variation of the accretion rate as does the blazar sequence.« less

  15. A hard X-ray view on two distant TeV-blazars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reimer, A.; Costamante, L.; Reimer, O.

    2008-12-24

    We present a data set derived from {approx}50 ksec continuous Suzaku observations and covered with quasi-simultaneous TeV-observations (HESS, MAGIC) of two of the more distant TeV-blazars detected to date: 1ES 1101-232 and 1ES 1553+113. Both sources are found in a non-variable state with combined XIS-PIN spectra indicating downward curvature up to several tens of keV. 1ES 101-232 was found in a quiet state with the lowest X-ray flux ever measured. We discuss the contemporaneous broadband spectral energy distribution (SED) of both sources and implications from absorption in the EBL for the redshift of 1ES 1553+113.

  16. Compton Gamma-Ray Observatory

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This photograph shows the Compton Gamma-Ray Observatory (GRO) being deployed by the Remote Manipulator System (RMS) arm aboard the Space Shuttle Atlantis during the STS-37 mission in April 1991. The GRO reentered Earth atmosphere and ended its successful mission in June 2000. For nearly 9 years, the GRO Burst and Transient Source Experiment (BATSE), designed and built by the Marshall Space Flight Center (MSFC), kept an unblinking watch on the universe to alert scientists to the invisible, mysterious gamma-ray bursts that had puzzled them for decades. By studying gamma-rays from objects like black holes, pulsars, quasars, neutron stars, and other exotic objects, scientists could discover clues to the birth, evolution, and death of stars, galaxies, and the universe. The gamma-ray instrument was one of four major science instruments aboard the Compton. It consisted of eight detectors, or modules, located at each corner of the rectangular satellite to simultaneously scan the entire universe for bursts of gamma-rays ranging in duration from fractions of a second to minutes. In January 1999, the instrument, via the Internet, cued a computer-controlled telescope at Las Alamos National Laboratory in Los Alamos, New Mexico, within 20 seconds of registering a burst. With this capability, the gamma-ray experiment came to serve as a gamma-ray burst alert for the Hubble Space Telescope, the Chandra X-Ray Observatory, and major gound-based observatories around the world. Thirty-seven universities, observatories, and NASA centers in 19 states, and 11 more institutions in Europe and Russia, participated in the BATSE science program.

  17. Compton Gamma-Ray Observatory

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This photograph shows the Compton Gamma-Ray Observatory being released from the Remote Manipulator System (RMS) arm aboard the Space Shuttle Atlantis during the STS-35 mission in April 1991. The GRO reentered the Earth's atmosphere and ended its successful mission in June 2000. For nearly 9 years, GRO's Burst and Transient Source Experiment (BATSE), designed and built by the Marshall Space Flight Center, kept an unblinking watch on the universe to alert scientist to the invisible, mysterious gamma-ray bursts that had puzzled them for decades. By studying gamma-rays from objects like black holes, pulsars, quasars, neutron stars, and other exotic objects, scientists could discover clues to the birth, evolution, and death of star, galaxies, and the universe. The gamma-ray instrument was one of four major science instruments aboard the Compton. It consisted of eight detectors, or modules, located at each corner of the rectangular satellite to simultaneously scan the entire universe for bursts of gamma-rays ranging in duration from fractions of a second to minutes. In January 1999, the instrument, via the Internet, cued a computer-controlled telescope at Las Alamos National Laboratory in Los Alamos, New Mexico, within 20 seconds of registering a burst. With this capability, the gamma-ray experiment came to serve as a gamma-ray burst alert for the Hubble Space Telescope, the Chandra X-Ray Observatory, and major gound-based observatories around the world. Thirty-seven universities, observatories, and NASA centers in 19 states, and 11 more institutions in Europe and Russia, participated in BATSE's science program.

  18. A Search for the X-ray Counterpart of the Unidentified Gamma-ray Source 3EG J2020+4017 (2CG078+2)

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin; Swartz, Douglas A.; Carraminana, Alberto; Carrasco, Luis; Kaplan, David L.; Becker, Werner; Elsner, Ronald F.; Kanbach, Gottfried; ODell, Stephen L.; Tennant, Allyn F.

    2006-01-01

    We report observations with the Chandra X-ray Observatory of a field in the gamma-Cygni supernova remnant (SNR78.2+2.1) centered on the cataloged location of the unidentified, bright gamma-ray source 3EG J2020+4017. In this search for an X-ray counterpart to the gamma-ray source, we detected 30 X-ray sources. Of these, we found 17 strong-candidate counterparts in optical (visible through near-infrared) cataloged and an additional 3 through our optical observations. Based upon colors and (for several objects) optical spectra, nearly all the optically identified objects appear to be reddened main-sequence stars: None of the X-ray sources with an optical counterpart is a plausible X-ray counterpart to 3EG J2020+4017-if that gamma-ray source is a spin-powered pulsar. Many of the 10 X-ray sources lacking optical counterparts are likely (extragalactic) active galactic nuclei, based upon the sky density of such sources. Although one of the 10 optically unidentified X-ray sources could be the gamma-ray source, there is no auxiliary evidence supporting such an identification

  19. Gamma rays from Centaurus A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Nayantara, E-mail: nayan@phy.iitb.ac.in

    2008-06-15

    Centaurus A, the cosmic ray accelerator a few Mpc away from us, is possibly one of the nearest sources of extremely high energy cosmic rays. We investigate whether the gamma ray data currently available from Centaurus A in the GeV-TeV energy band can be explained with only proton-proton interactions. We show that for a single power law proton spectrum, mechanisms of {gamma}-ray production other than proton-proton interactions are needed inside this radio-galaxy to explain the gamma ray flux observed by EGRET, upper limits from HESS/CANGAROO-III and the correlated extremely energetic cosmic ray events observed by the Pierre Auger experiment. Inmore » future, with better {gamma}-ray data, and simultaneous observation with {gamma}-ray and cosmic ray detectors, it will be possible to carry out such studies on different sources in more detail.« less

  20. Effects of Magnetic Field Geometry on the Broadband Emission of Blazars

    NASA Astrophysics Data System (ADS)

    Joshi, Manasvita; Marscher, Alan; Boettcher, Markus

    2018-01-01

    The knowledge of the structure of the magnetic field inside a blazar jet, as deduced from polarization observations at radio to opticalwavelengths, is closely related to the formation and propagation of relativistic jets that result from accretion onto supermassive blackholes. However, a largely unexplored aspect of the theoretical understanding of radiation transfer physics in blazar jets has beenthe magnetic field geometry as revealed by the polarized emission and the connection between the variability in polarization and flux acrossthe spectrum.Here, we explore the effects of various magnetic geometries that can exist inside a blazar jet: parallel, transverse, oblique, toroidal,helical, and tangled. We investigate the effects of changing the orientation of the magnetic field, according to the above-mentionedgeometries, on the resulting high-energy spectral energy distributions (SEDs) and spectral variability patterns (SVPs) of a typicalblazar. We use the MUlti-ZOne Radiation Feedback (MUZORF) model to carry out this study and to relate the geometry of the field to the observed SEDs. One of the goals of the study is to address the issue of the reason for the appearance of some of the gamma-ray "orphan flares" observed in a few blazars. This can be associated with the directionality of the magnetic field, which creates a difference in the radiation field as seen by an observer versus that seen by the electrons in the emission region.This research was supported in part by NASA through Fermi grants NNX10AO59G, NNX08AV65G, and NNX08AV61G, NASA through Swift grants NNX09AR11G, NNX10AL13G, and NNX10AF88G, and by NSF grant AST-0907893.

  1. HESS J1844-030: A New Gamma-Ray Binary?

    NASA Astrophysics Data System (ADS)

    McCall, Hannah; Errando, Manel

    2018-01-01

    Gamma-ray binaries are comprised of a massive, main-sequence star orbiting a neutron star or black hole that generates bright gamma-ray emission. Only six of these systems have been discovered. Here we report on a candidate stellar-binary system associated with the unidentified gamma-ray source HESS J1844-030, whose detection was revealed in the H.E.S.S. galactic plane survey. Analysis of 60 ks of archival Chandra data and over 100 ks of XMM-Newton data reveal a spatially associated X-ray counterpart to this TeV-emitting source (E>1012 eV), CXO J1845-031. The X-ray spectra derived from these exposures yields column density absorption in the range nH = (0.4 - 0.7) x 1022 cm-2, which is below the total galactic value for that part of the sky, indicating that the source is galactic. The flux from CXO J1845-031 increases with a factor of up to 2.5 in a 60 day timescale, providing solid evidence for flux variability at a confidence level exceeding 7 standard deviations. The point-like nature of the source, the flux variability of the nearby X-ray counterpart, and the low column density absorption are all indicative of a binary system. Once confirmed, HESS J1844-030 would represent only the seventh known gamma-ray binary, providing valuable data to advance our understanding of the physics of pulsars and stellar winds and testing high-energy astrophysical processes at timescales not present in other classes of objects.

  2. Terrestrial gamma-ray flashes in the BeppoSAX data archive

    NASA Astrophysics Data System (ADS)

    Ursi, A.; Guidorzi, C.; Marisaldi, M.; Sarria, D.; Frontera, F.

    2017-04-01

    Up to now, Terrestrial Gamma-ray Flashes (TGFs) have been mostly observed by instruments on-board satellites devoted to astrophysics: after the discovery by the BATSE/CGRO experiment in the early 90's, this elusive phenomenon has been further detected by RHESSI, by the AGILE satellite and by the Fermi space telescope. The Italian/Dutch satellite BeppoSAX (1996-2002) was one of the most important high-energy astrophysics missions, especially for what concerns the field of Gamma-Ray Bursts (GRBs). Its payload housed the Gamma-Ray Burst Monitor (GRBM), a segmented detector that could, in principle, have observed TGFs as well. Motivated by this possibility, we carried out, for the first time, a systematic search for TGFs in the BeppoSAX data archive, ending up with a sample of 12 TGF candidates. Among them, we also found a peculiar event, whose light curve characteristics may represent the signature of a mirrored Terrestrial Electron Beam (TEB).

  3. Future prospects for gamma-ray

    NASA Technical Reports Server (NTRS)

    Fichtel, C.

    1980-01-01

    Astrophysical phenomena discussed are: the very energetic and nuclear processes associated with compact objects; astrophysical nucleo-synthesis; solar particle acceleration; the chemical composition of the planets and other bodies of the solar system; the structure of our galaxy; the origin and dynamic pressure effects of the cosmic rays; the high energy particles and energetic processes in other galaxies, especially active ones; and the degree of matter antimater symmetry of the universe. The gamma ray results of GAMMA-I, the gamma ray observatory, the gamma ray burst network, solar polar, and very high energy gamma ray telescopes on the ground provide justification for more sophisticated telescopes.

  4. A Multiwavelength View of the TeV Blazar Markarian 421: Correlated Variability, Flaring, and Spectral Evolution

    NASA Astrophysics Data System (ADS)

    Błażejowski, M.; Blaylock, G.; Bond, I. H.; Bradbury, S. M.; Buckley, J. H.; Carter-Lewis, D. A.; Celik, O.; Cogan, P.; Cui, W.; Daniel, M.; Duke, C.; Falcone, A.; Fegan, D. J.; Fegan, S. J.; Finley, J. P.; Fortson, L.; Gammell, S.; Gibbs, K.; Gillanders, G. G.; Grube, J.; Gutierrez, K.; Hall, J.; Hanna, D.; Holder, J.; Horan, D.; Humensky, B.; Kenny, G.; Kertzman, M.; Kieda, D.; Kildea, J.; Knapp, J.; Kosack, K.; Krawczynski, H.; Krennrich, F.; Lang, M.; LeBohec, S.; Linton, E.; Lloyd-Evans, J.; Maier, G.; Mendoza, D.; Milovanovic, A.; Moriarty, P.; Nagai, T. N.; Ong, R. A.; Power-Mooney, B.; Quinn, J.; Quinn, M.; Ragan, K.; Reynolds, P. T.; Rebillot, P.; Rose, H. J.; Schroedter, M.; Sembroski, G. H.; Swordy, S. P.; Syson, A.; Valcarel, L.; Vassiliev, V. V.; Wakely, S. P.; Walker, G.; Weekes, T. C.; White, R.; Zweerink, J.; VERITAS Collaboration; Mochejska, B.; Smith, B.; Aller, M.; Aller, H.; Teräsranta, H.; Boltwood, P.; Sadun, A.; Stanek, K.; Adams, E.; Foster, J.; Hartman, J.; Lai, K.; Böttcher, M.; Reimer, A.; Jung, I.

    2005-09-01

    We report results from an intensive multiwavelength monitoring campaign on the TeV blazar Mrk 421 over the period of 2003-2004. The source was observed simultaneously at TeV energies with the Whipple 10 m telescope and at X-ray energies with the Rossi X-Ray Timing Explorer (RXTE) during each clear night within the Whipple observing windows. Supporting observations were also frequently carried out at optical and radio wavelengths to provide simultaneous or contemporaneous coverages. The large amount of simultaneous data has allowed us to examine the variability of Mrk 421 in detail, including cross-band correlation and broadband spectral variability, over a wide range of flux. The variabilities are generally correlated between the X-ray and gamma-ray bands, although the correlation appears to be fairly loose. The light curves show the presence of flares with varying amplitudes on a wide range of timescales at both X-ray and TeV energies. Of particular interest is the presence of TeV flares that have no coincident counterparts at longer wavelengths, because the phenomenon seems difficult to understand in the context of the proposed emission models for TeV blazars. We have also found that the TeV flux reached its peak days before the X-ray flux did during a giant flare (or outburst) in 2004 (with the peak flux reaching ~135 mcrab in X-rays, as seen by the RXTE ASM, and ~3 crab in gamma rays). Such a difference in the development of the flare presents a further challenge to both the leptonic and hadronic emission models. Mrk 421 varied much less at optical and radio wavelengths. Surprisingly, the normalized variability amplitude in the optical seems to be comparable to that in the radio, perhaps suggesting the presence of different populations of emitting electrons in the jet. The spectral energy distribution of Mrk 421 is seen to vary with flux, with the two characteristic peaks moving toward higher energies at higher fluxes. We have failed to fit the measured

  5. Fermi Gamma-Ray Space Telescope Observations Of Gamma-Ray Outbursts From 3C 454.3 In 2009 December And 2010 April

    DOE PAGES

    Ackermann, M.

    2010-09-09

    The flat spectrum radio quasar 3C 454.3 underwent an extraordinary outburst in December 2009 when it became the brightest -ray source in the sky for over one week. Its daily flux measured with the Fermi Large Area Telescope at photon energies E > 100 MeV reached F100 = 22 ± 1 × 10 -6 ph cm -2 s -1, representing the highest daily flux of any blazar ever recorded in high-energy -rays. It again became the brightest source in the sky in 2010 April, triggering a pointed-mode observation by Fermi. The correlated -ray temporal and spectral properties during these exceptionalmore » events are presented and discussed. The main results show flux variability over time scales less than 3 h and very mild spectral variability with an indication of gradual hardening preceding major flares. No consistent loop pattern emerged in the -ray spectral index vs flux plane. A minimum Doppler factor of ≈15 is derived, and the maximum energy of a photon from 3C 454.3 is ≈ 20 GeV. The spectral break at a few GeV is inconsistent with Klein-Nishina softening from power-law electrons scattering Lyα line radiation, and a break in the underlying electron spectrum in blazar leptonic models is implied.« less

  6. Multi-wavelength Observations of Blazar AO 0235+164 in the 2008-2009 Flaring State

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; Ajello, M.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bottacini, E.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Casandjian, J. M.; Cavazzuti, E.; Cecchi, C.; Charles, E.; Chekhtman, A.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Cutini, S.; D'Ammando, F.; de Palma, F.; Dermer, C. D.; Silva, E. do Couto e.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Focke, W. B.; Fortin, P.; Fuhrmann, L.; Fukazawa, Y.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Guiriec, S.; Hadasch, D.; Hayashida, M.; Hughes, R. E.; Itoh, R.; Jóhannesson, G.; Johnson, A. S.; Katagiri, H.; Kataoka, J.; Knödlseder, J.; Kuss, M.; Lande, J.; Larsson, S.; Lee, S.-H.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Madejski, G. M.; Mazziotta, M. N.; McEnery, J. E.; Mehault, J.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Naumann-Godo, M.; Nishino, S.; Norris, J. P.; Nuss, E.; Ohsugi, T.; Okumura, A.; Omodei, N.; Orlando, E.; Ozaki, M.; Paneque, D.; Panetta, J. H.; Pelassa, V.; Pesce-Rollins, M.; Pierbattista, M.; Piron, F.; Pivato, G.; Porter, T. A.; Rainò, S.; Rando, R.; Rastawicki, D.; Razzano, M.; Readhead, A.; Reimer, A.; Reimer, O.; Reyes, L. C.; Richards, J. L.; Sbarra, C.; Sgrò, C.; Siskind, E. J.; Spandre, G.; Spinelli, P.; Szostek, A.; Takahashi, H.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Thompson, D. J.; Tinivella, M.; Torres, D. F.; Tosti, G.; Troja, E.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Vianello, G.; Vitale, V.; Waite, A. P.; Winer, B. L.; Wood, K. S.; Yang, Z.; Zimmer, S.; Fermi-LAT Collaboration; Moderski, R.; Nalewajko, K.; Sikora, M.; Villata, M.; Raiteri, C. M.; Aller, H. D.; Aller, M. F.; Arkharov, A. A.; Benítez, E.; Berdyugin, A.; Blinov, D. A.; Boettcher, M.; Bravo Calle, O. J. A.; Buemi, C. S.; Carosati, D.; Chen, W. P.; Diltz, C.; Di Paola, A.; Dolci, M.; Efimova, N. V.; Forné, E.; Gurwell, M. A.; Heidt, J.; Hiriart, D.; Jordan, B.; Kimeridze, G.; Konstantinova, T. S.; Kopatskaya, E. N.; Koptelova, E.; Kurtanidze, O. M.; Lähteenmäki, A.; Larionova, E. G.; Larionova, L. V.; Larionov, V. M.; Leto, P.; Lindfors, E.; Lin, H. C.; Morozova, D. A.; Nikolashvili, M. G.; Nilsson, K.; Oksman, M.; Roustazadeh, P.; Sievers, A.; Sigua, L. A.; Sillanpää, A.; Takahashi, T.; Takalo, L. O.; Tornikoski, M.; Trigilio, C.; Troitsky, I. S.; Umana, G.; GASP-WEBT Consortium; Angelakis, E.; Krichbaum, T. P.; Nestoras, I.; Riquelme, D.; F-GAMMA; Krips, M.; Trippe, S.; Iram-PdBI; Arai, A.; Kawabata, K. S.; Sakimoto, K.; Sasada, M.; Sato, S.; Uemura, M.; Yamanaka, M.; Yoshida, M.; Kanata; Belloni, T.; Tagliaferri, G.; RXTE; Bonning, E. W.; Isler, J.; Urry, C. M.; SMARTS; Hoversten, E.; Falcone, A.; Pagani, C.; Stroh, M.; (Swift-XRT

    2012-06-01

    The blazar AO 0235+164 (z = 0.94) has been one of the most active objects observed by Fermi Large Area Telescope (LAT) since its launch in Summer 2008. In addition to the continuous coverage by Fermi, contemporaneous observations were carried out from the radio to γ-ray bands between 2008 September and 2009 February. In this paper, we summarize the rich multi-wavelength data collected during the campaign (including F-GAMMA, GASP-WEBT, Kanata, OVRO, RXTE, SMARTS, Swift, and other instruments), examine the cross-correlation between the light curves measured in the different energy bands, and interpret the resulting spectral energy distributions in the context of well-known blazar emission models. We find that the γ-ray activity is well correlated with a series of near-IR/optical flares, accompanied by an increase in the optical polarization degree. On the other hand, the X-ray light curve shows a distinct 20 day high state of unusually soft spectrum, which does not match the extrapolation of the optical/UV synchrotron spectrum. We tentatively interpret this feature as the bulk Compton emission by cold electrons contained in the jet, which requires an accretion disk corona with an effective covering factor of 19% at a distance of 100 R g. We model the broadband spectra with a leptonic model with external radiation dominated by the infrared emission from the dusty torus.

  7. A Giant Radio Flare from Cygnus X-3 with Associated Gamma-Ray Emission

    NASA Technical Reports Server (NTRS)

    Corbel, S.; Dubus, G.; Tomsick, J. A.; Szostek, A.; Corbet, R. H. D.; Miller-Jones, J. C. A.; Richards, J. L.; Pooley, G.; Trushkin, S.; Dubois, R.; hide

    2012-01-01

    With frequent flaring activity of its relativistic jets, Cygnus X-3 (Cyg X-3) is one of the most active microquasars and is the only Galactic black hole candidate with confirmed high energy gamma-ray emission, thanks to detections by Fermi/LAT and AGILE. In 2011, Cyg X-3 was observed to transit to a soft X-ray state, which is known to be associated with high-energy gamma-ray emission. We present the results of a multiwavelength campaign covering a quenched state, when radio emission from Cyg X-3 is at its weakest and the X-ray spectrum is very soft. A giant (approx 20 Jy) optically thin radio flare marks the end of the quenched state, accompanied by rising non-thermal hard X-rays. Fermi/LAT observations (E greater than or equal 100 MeV) reveal renewed gamma-ray activity associated with this giant radio flare, suggesting a common origin for all non-thermal components. In addition, current observations unambiguously show that the gamma-ray emission is not exclusively related to the rare giant radio flares. A 3-week period of gamma-ray emission is also detected when Cyg X-3 was weakly flaring in radio, right before transition to the radio quenched state. No gamma rays are observed during the one-month long quenched state, when the radio flux is weakest. Our results suggest transitions into and out of the ultrasoft X-ray (radio quenched) state trigger gamma-ray emission, implying a connection to the accretion process, and also that the gamma-ray activity is related to the level of radio flux (and possibly shock formation), strengthening the connection to the relativistic jets.

  8. Gamma ray astrophysics to the year 2000. Report of the NASA Gamma Ray Program Working Group

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Important developments in gamma-ray astrophysics up to energies of 100 GeV during the last decade are reviewed. Also, the report seeks to define the major current scientific goals of the field and proposes a vigorous program to pursue them, extending to the year 2000. The goals of gamma-ray astronomy include the study of gamma rays which provide the most direct means of studying many important problems in high energy astrophysics including explosive nucleosynthesis, accelerated particle interactions and sources, and high-energy processes around compact objects. The current research program in gamma-ray astronomy in the U.S. including the space program, balloon program and foreign programs in gamma-ray astronomy is described. The high priority recommendations for future study include an Explorer-class high resolution gamma-ray spectroscopy mission and a Get Away Special cannister (GAS-can) or Scout class multiwavelength experiment for the study of gamma-ray bursts. Continuing programs include an extended Gamma Ray Observatory mission, continuation of the vigorous program of balloon observations of the nearby Supernova 1987A, augmentation of the balloon program to provide for new instruments and rapid scientific results, and continuation of support for theoretical research. Long term recommendations include new space missions using advanced detectors to better study gamma-ray sources, the development of these detectors, continued study for the assembly of large detectors in space, collaboration with the gamma-ray astronomy missions initiated by other countries, and consideration of the Space Station attached payloads for gamma-ray experiments.

  9. γ-Ray and Parsec-scale Jet Properties of a Complete Sample of Blazars From the MOJAVE Program

    NASA Astrophysics Data System (ADS)

    Lister, M. L.; Aller, M.; Aller, H.; Hovatta, T.; Kellermann, K. I.; Kovalev, Y. Y.; Meyer, E. T.; Pushkarev, A. B.; Ros, E.; MOJAVE Collaboration; Ackermann, M.; Antolini, E.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Boeck, M.; Bonamente, E.; Borgland, A. W.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Casandjian, J. M.; Cavazzuti, E.; Cecchi, C.; Chang, C. S.; Charles, E.; Chekhtman, A.; Cheung, C. C.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Conrad, J.; Cutini, S.; de Palma, F.; Dermer, C. D.; Silva, E. do Couto e.; Drell, P. S.; Drlica-Wagner, A.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Finke, J.; Focke, W. B.; Fortin, P.; Fukazawa, Y.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Giglietto, N.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Guiriec, S.; Hadasch, D.; Hayashida, M.; Hays, E.; Horan, D.; Hughes, R. E.; Jóhannesson, G.; Johnson, A. S.; Kadler, M.; Katagiri, H.; Kataoka, J.; Knödlseder, J.; Kuss, M.; Lande, J.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Madejski, G. M.; Mazziotta, M. N.; McConville, W.; McEnery, J. E.; Mehault, J.; Michelson, P. F.; Mizuno, T.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Naumann-Godo, M.; Nishino, S.; Nolan, P. L.; Norris, J. P.; Nuss, E.; Ohno, M.; Ohsugi, T.; Okumura, A.; Omodei, N.; Orlando, E.; Ozaki, M.; Paneque, D.; Parent, D.; Pesce-Rollins, M.; Pierbattista, M.; Piron, F.; Pivato, G.; Rainò, S.; Readhead, A.; Reimer, A.; Reimer, O.; Richards, J. L.; Ritz, S.; Sadrozinski, H. F.-W.; Sgrò, C.; Shaw, M. S.; Siskind, E. J.; Spandre, G.; Spinelli, P.; Takahashi, H.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Thompson, D. J.; Tosti, G.; Tramacere, A.; Troja, E.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Vianello, G.; Vitale, V.; Waite, A. P.; Wang, P.; Winer, B. L.; Wood, K. S.; Zimmer, S.; Fermi LAT Collaboration

    2011-11-01

    We investigate the Fermi Large Area Telescope γ-ray and 15 GHz Very Long Baseline Array radio properties of a joint γ-ray and radio-selected sample of active galactic nuclei (AGNs) obtained during the first 11 months of the Fermi mission (2008 August 4-2009 July 5). Our sample contains the brightest 173 AGNs in these bands above declination -30° during this period, and thus probes the full range of γ-ray loudness (γ-ray to radio band luminosity ratio) in the bright blazar population. The latter quantity spans at least 4 orders of magnitude, reflecting a wide range of spectral energy distribution (SED) parameters in the bright blazar population. The BL Lac objects, however, display a linear correlation of increasing γ-ray loudness with synchrotron SED peak frequency, suggesting a universal SED shape for objects of this class. The synchrotron self-Compton model is favored for the γ-ray emission in these BL Lac objects over external seed photon models, since the latter predict a dependence of Compton dominance on Doppler factor that would destroy any observed synchrotron SED-peak-γ-ray-loudness correlation. The high-synchrotron peaked (HSP) BL Lac objects are distinguished by lower than average radio core brightness temperatures, and none display large radio modulation indices or high linear core polarization levels. No equivalent trends are seen for the flat-spectrum radio quasars (FSRQs) in our sample. Given the association of such properties with relativistic beaming, we suggest that the HSP BL Lac objects have generally lower Doppler factors than the lower-synchrotron peaked BL Lac objects or FSRQs in our sample.

  10. Gamma ray detector shield

    DOEpatents

    Ohlinger, R.D.; Humphrey, H.W.

    1985-08-26

    A gamma ray detector shield comprised of a rigid, lead, cylindrical-shaped vessel having upper and lower portions with an pneumatically driven, sliding top assembly. Disposed inside the lead shield is a gamma ray scintillation crystal detector. Access to the gamma detector is through the sliding top assembly.

  11. Gamma-Ray Bursts: An Overview

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    1995-01-01

    A history and overview of the observed properties of gamma-ray bursts are presented. The phenomenon of gamma-ray bursts is without precedent in astronomy, having no observed property that would be a direct indicator of their distance and no counterpart object in another wavelength region. Their brief, random appearance only in the gamma-ray region has made their study difficult. The observed time profiles, spectral properties, and durations of gamma-ray bursts cover a wide range. All proposed models for their origin must be considered speculative. It is humbling to think that even after 25 years since their discovery, the distance scale of gamma-ray bursts is still very much debatable.

  12. Multiwaveband Variability of Blazars from Turbulent Plasma Passing through a Standing Shock: The Mother of Multi-zone Models

    NASA Astrophysics Data System (ADS)

    Marscher, Alan P.

    2011-09-01

    Multi-wavelength light curves of bright gamma-ray blazars (e.g., 3C 454.3) are compared with the model proposed by Marscher and Jorstad. In this scenario, much of the optical and high-energy radiation in a blazar is emitted near the 43 GHz core of the jet as seen in VLBA images, parsecs from the central engine. The main physical features are a turbulent ambient jet plasma that passes through a standing recollimation shock in the jet. The model allows for short time-scales of optical and gamma-ray variability by restricting the highest-energy electrons radiating at these frequencies to a small fraction of the turbulent cells, perhaps those with a particular orientation of the magnetic field relative to the shock front. Because of this, the volume filling factor at high frequencies is relatively low, while that of the electrons radiating below about 10 THz is near unity. Such a model is consistent with the (1) red-noise power spectra of flux variations, (2) shorter time-scales of variability at higher frequencies, (3) frequency dependence of polarization and its variability, and (4) breaks in the synchrotron spectrum by more than the radiative loss value of 0.5. Simulated light curves are generated by a numerical code that (as of May 2011) includes synchrotron radiation as well as inverse Compton scattering of seed photons from both a dust torus and a Mach disk at the jet axis. The latter source of seed photons produces more pronounced variability in gamma-ray than in optical light curves, as is often observed. More features are expected to be added to the code by the time of the presentation. This research is supported in part by NASA through Fermi grants NNX08AV65G and NNX10AO59G, and by NSF grant AST-0907893.

  13. High energy gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Fichtel, Carl E.

    1987-01-01

    High energy gamma ray astronomy has evolved with the space age. Nonexistent twenty-five years ago, there is now a general sketch of the gamma ray sky which should develop into a detailed picture with the results expected to be forthcoming over the next decade. The galactic plane is the dominant feature of the gamma ray sky, the longitude and latitude distribution being generally correlated with galactic structural features including the spiral arms. Two molecular clouds were already seen. Two of the three strongest gamma ray sources are pulsars. The highly variable X-ray source Cygnus X-3 was seen at one time, but not another in the 100 MeV region, and it was also observed at very high energies. Beyond the Milky Way Galaxy, there is seen a diffuse radiation, whose origin remains uncertain, as well as at least one quasar, 3C 273. Looking to the future, the satellite opportunities for high energy gamma ray astronomy in the near term are the GAMMA-I planned to be launched in late 1987 and the Gamma Ray Observatory, scheduled for launch in 1990. The Gamma Ray Observatory will carry a total of four instruments covering the entire energy range from 30,000 eV to 3 x 10 to the 10th eV with over an order of magnitude increase in sensitivity relative to previous satellite instruments.

  14. Evidence for Secondary Emission as the Origin of Hard Spectra in TeV Blazars

    NASA Astrophysics Data System (ADS)

    Zheng, Y. G.; Kang, T.

    2013-02-01

    We develop a model for the possible origin of hard, very high energy (VHE) spectra from a distant blazar. In the model, both the primary photons produced in the source and secondary photons produced outside it contribute to the observed high-energy γ-ray emission. That is, the primary photons are produced through the synchrotron self-Compton process, and the secondary photons are produced through high-energy proton interactions with background photons along the line of sight. We apply the model to a characteristic case of VHE γ-ray emission in the distant blazar 1ES 1101-232. Assuming suitable electron and proton spectra, we obtain excellent fits to the observed spectra of this blazar. This indicated that the surprisingly low attenuation of the high-energy γ-rays, especially the shape of the VHE γ-ray tail of the observed spectra, can be explained by secondary γ-rays produced in interactions of cosmic-ray protons with background photons in intergalactic space.

  15. Fermi LAT detection of renewed and strong GeV gamma-ray flares from blazars PKS 0903-57 and PKS 0346-27

    NASA Astrophysics Data System (ADS)

    Ciprini, Stefano

    2018-05-01

    The Large Area Telescope (LAT), one of the two instruments on the Fermi Gamma-ray Space Telescope, has observed high-level gamma-ray activity from sources positionally consistent with the active galaxy PKS 0903-57 (also known as MRC 0903-573 and 3FGL J0904.8-5734, Acero et al. 2015, ApJS, 218, 23) and with the flat spectrum radio quasar PKS 0346-27 (also known as OE -278, TXS 0346-279, MRC 0346-279 and 3FGL J0348.6-2748).

  16. Fermi/LAT detection of a transient gamma-ray flare in the vicinity of the binary star DG CVn

    DOE PAGES

    Loh, Alan; Corbel, Stéphane; Dubus, Guillaume

    2017-02-16

    Solar flares are regularly detected by the Large Area Telescope (LAT) on board the Fermi satellite, however no γ-ray emission from other stellar eruptions has ever been captured. The Swift detection in 2014 April of a powerful outburst originating from DG CVn, with associated optical and radio emissions, enticed us to search for possible 0.1–100 GeV emission from this flaring nearby binary star using the Fermi/LAT. No γ-ray emission is detected from DG CVn in 2014, but we report a significant γ-ray excess in 2012 November, at a position consistent with that of the binary. There are no reports ofmore » contemporary flaring at other wavelengths from DG CVn or any other source within the error circle of the γ-ray source. As a result, we argue that the γ-ray flare is more likely to have been associated with a background blazar than with DG CVn and identify a candidate for follow-up study.« less

  17. Physics from Time Variability of the VHE Blazar PKS 2155-304

    NASA Astrophysics Data System (ADS)

    Barres de Almeida, Ulisses

    2010-10-01

    Blazars are the principal extragalactic sources of very high energy gamma-ray emission in the Universe. These objects constitute a sub-class of Active Galactic Nuclei whose emission is dominated by Doppler boosted non-thermal radiation from plasma outflow- ing at relativistic speeds from the central engine. This plasma outflow happens in the form of large-scale collimated structures called jets, which can extend for Mpc in length and transport energy from the central engine of the galaxy to the larger scale intergalac- tic medium. Over thirty such sources have been discovered to date by ground-based gamma-ray telescopes such as H.E.S.S., and PKS 2155-304 is the prototypical southern- hemisphere representative of this population of objects. In this thesis we have studied in detail some aspects of the temporal variability of the jet emission from PKS 2155-304, combining coordinated observations across the electro- magnetic spectrum, from optical polarimetric measurements to X-ray and ground-based gamma-ray data. The temporal properties of the dataset allowed us to derive important physical information about the structure and emission mechanisms of the source and put constraints to the location of the sites of VHE emission and particle acceleration within the jet. We have also derived a sensitive statistical measure, called Kolmogorov distance, which we applied to the large outburst observed from PKS 2155-304 in July 2006, to de- rive the most stringent constraints to date on limits for the violation of Lorentz invariance induced by quantum-gravity effects from AGN measurements.

  18. Gamma-sky.net: Portal to the gamma-ray sky

    NASA Astrophysics Data System (ADS)

    Voruganti, Arjun; Deil, Christoph; Donath, Axel; King, Johannes

    2017-01-01

    http://gamma-sky.net is a novel interactive website designed for exploring the gamma-ray sky. The Map View portion of the site is powered by the Aladin Lite sky atlas, providing a scalable survey image tesselated onto a three-dimensional sphere. The map allows for interactive pan and zoom navigation as well as search queries by sky position or object name. The default image overlay shows the gamma-ray sky observed by the Fermi-LAT gamma-ray space telescope. Other survey images (e.g. Planck microwave images in low/high frequency bands, ROSAT X-ray image) are available for comparison with the gamma-ray data. Sources from major gamma-ray source catalogs of interest (Fermi-LAT 2FHL, 3FGL and a TeV source catalog) are overlaid over the sky map as markers. Clicking on a given source shows basic information in a popup, and detailed pages for every source are available via the Catalog View component of the website, including information such as source classification, spectrum and light-curve plots, and literature references. We intend for gamma-sky.net to be applicable for both professional astronomers as well as the general public. The website started in early June 2016 and is being developed as an open-source, open data project on GitHub (https://github.com/gammapy/gamma-sky). We plan to extend it to display more gamma-ray and multi-wavelength data. Feedback and contributions are very welcome!

  19. Suzaku Observations of Luminous Quasars: Revealing the Nature of High-Energy Blazar Emission in Low-level activity States

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2010-05-21

    We present the results from the Suzaku X-ray observations of five flat-spectrum radio quasars (FSRQs), namely PKS 0208–512, Q 0827+243, PKS 1127–145, PKS 1510–089, and 3C 454.3. Here, all these sources were additionally monitored simultaneously or quasi-simultaneously by the Fermi satellite in gamma rays and the Swift UVOT in the UV and optical bands, respectively. Here, we constructed their broadband spectra covering the frequency range from 10 14 Hz up to 10 25 Hz, and those reveal the nature of high-energy emission of luminous blazars in their low-activity states. The analyzed X-ray spectra are well fitted by a power-law modelmore » with photoelectric absorption. In the case of PKS 0208–512, PKS 1127–145, and 3C 454.3, the X-ray continuum showed indication of hardening at low energies. Moreover, when compared with the previous X-ray observations, we see a significantly increasing contribution of low-energy photons to the total X-ray fluxes when the sources are getting fainter. The same behavior can be noted in the Suzaku data alone. A likely explanation involves a variable, flat-spectrum component produced via inverse-Compton emission, plus an additional, possibly steady soft X-ray component prominent when the source gets fainter. This soft X-ray excess is represented either by a steep power-law (photon indices Γ ~ 3-5) or a blackbody-type emission with temperatures kT ~ 0.1-0.2 keV. We model the broadband spectra of the five observed FSRQs using synchrotron self-Compton and/or external-Compton radiation models. Lastly, our modeling suggests that the difference between the low- and high-activity states in luminous blazars is due to the different total kinetic power of the jet, most likely related to varying bulk Lorentz factor of the outflow within the blazar emission zone.« less

  20. AGILE confirmation of gamma-ray activity from the IceCube-170922A error region

    NASA Astrophysics Data System (ADS)

    Lucarelli, F.; Piano, G.; Pittori, C.; Verrecchia, F.; Tavani, M.; Bulgarelli, A.; Munar-Adrover, P.; Minervini, G.; Ursi, A.; Vercellone, S.; Donnarumma, I.; Fioretti, V.; Zoli, A.; Striani, E.; Cardillo, M.; Gianotti, F.; Trifoglio, M.; Giuliani, A.; Mereghetti, S.; Caraveo, P.; Perotti, F.; Chen, A.; Argan, A.; Costa, E.; Del Monte, E.; Evangelista, Y.; Feroci, M.; Lazzarotto, F.; Lapshov, I.; Pacciani, L.; Soffitta, P.; Sabatini, S.; Vittorini, V.; Pucella, G.; Rapisarda, M.; Di Cocco, G.; Fuschino, F.; Galli, M.; Labanti, C.; Marisaldi, M.; Pellizzoni, A.; Pilia, M.; Trois, A.; Barbiellini, G.; Vallazza, E.; Longo, F.; Morselli, A.; Picozza, P.; Prest, M.; Lipari, P.; Zanello, D.; Cattaneo, P. W.; Rappoldi, A.; Colafrancesco, S.; Parmiggiani, N.; Ferrari, A.; Paoletti, F.; Antonelli, A.; Giommi, P.; Salotti, L.; Valentini, G.; D'Amico, F.

    2017-09-01

    Following the IceCube observation of a high-energy neutrino candidate event, IceCube-170922A, at T0 = 17/09/22 20:54:30.43 UT (https://gcn.gsfc.nasa.gov/gcn3/21916.gcn3), and the detection of increased gamma-ray activity from a previously known Fermi-LAT gamma-ray source (3FGL J0509.4+0541) in the IceCube-170922A error region (ATel #10791), we have analysed the AGILE-GRID data acquired in the days before and after the neutrino event T0, searching for significant gamma-ray excess above 100 MeV from a position compatible with the IceCube and Fermi-LAT error regions.

  1. The Gamma-Ray Imager GRI

    NASA Astrophysics Data System (ADS)

    Wunderer, Cornelia B.; GRI Collaboration

    2006-09-01

    Observations of the gamma-ray sky reveal the most powerful sources and the most violent events in the Universe. While at lower wavebands the observed emission is generally dominated by thermal processes, the gamma-ray sky provides us with a view on the non-thermal Universe. Here particles are accelerated to extreme relativistic energies by mechanisms which are still poorly understood, and nuclear reactions are synthesizing the basic constituents of our world. Cosmic accelerators and cosmic explosions are the major science themes that are addressed in the gamma-ray regime. With the INTEGRAL observatory, ESA has provided a unique tool to the astronomical community revealing hundreds of sources, new classes of objects, extraordinary views of antimatter annihilation in our Galaxy, and fingerprints of recent nucleosynthesis processes. While INTEGRAL provides the global overview over the soft gamma-ray sky, there is a growing need to perform deeper, more focused investigations of gamma-ray sources. In soft X-rays a comparable step was taken going from the Einstein and the EXOSAT satellites to the Chandra and XMM/Newton observatories. Technological advances in the past years in the domain of gamma-ray focusing using Laue diffraction and multilayer coated mirror techniques have paved the way towards a gamma-ray mission, providing major improvements compared to past missions regarding sensitivity and angular resolution. Such a future Gamma-Ray Imager will allow to study particle acceleration processes and explosion physics in unprecedented detail, providing essential clues on the innermost nature of the most violent and most energetic processes in the Universe.

  2. Discovery of Very High Energy Gamma-Ray Emission from BL Lac object H1722+119 by the MAGIC Telescopes

    NASA Astrophysics Data System (ADS)

    Cortina, Juan

    2013-05-01

    H1722+119 is a BL Lac object, that was listed as candidate TeV blazar in Costamante & Ghisellini (2002) based on its X-ray and radio properties. Its redshift is uncertain; Sbarufatti et al. 2006 give z>0.17. The source has been detected by Fermi-LAT, in the Second Fermi Catalog with F(>1 GeV) (3.7+-0.3)e-09 cm^-2 s^-1 and with spectral index 1.92+-0.06. H1722+119 was observed for five nights by the MAGIC telescopes starting May 17th 2013 and collecting 11 hours of good quality data.

  3. HESS and Fermi-LAT discovery of γ-rays from the blazar 1ES 1312-423

    DOE PAGES

    Abramowski, A.; Acero, F.; Aharonian, F.; ...

    2013-08-01

    In this study, a deep observation campaign carried out by the High Energy Stereoscopic System (HESS) on Centaurus A enabled the discovery of γ-rays from the blazar 1ES 1312-423, 2° away from the radio galaxy. With a differential flux at 1 TeV of (Φ1 TeV) = (1.9 ± 0.6stat ± 0.4sys) × 10 -13 cm -2 s -1 TeV -1 corresponding to 0.5 percent of the Crab nebula differential flux and a spectral index Γ = 2.9 ± 0.5stat ± 0.2sys, 1ES 1312-423 is one of the faintest sources ever detected in the very high energy (E > 100 GeV)more » extragalactic sky. A careful analysis using three and a half years of Fermi Large Area Telescope (Fermi-LAT) data allows the discovery at high energies (E > 100 MeV) of a hard spectrum (Γ = 1.4 ± 0.4stat ± 0.2sys) source coincident with 1ES 1312-423. Radio, optical, UV and X-ray observations complete the spectral energy distribution of this blazar, now covering 16 decades in energy. Lastly, the emission is successfully fitted with a synchrotron self-Compton model for the non-thermal component, combined with a blackbody spectrum for the optical emission from the host galaxy.« less

  4. Gamma Ray Pulsars: Multiwavelength Observations

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2004-01-01

    High-energy gamma rays are a valuable tool for studying particle acceleration and radiation in the magnetospheres of energetic pulsars. The seven or more pulsars seen by instruments on the Compton Gamma Ray Observatory (CGRO) show that: the light curves usually have double-peak structures (suggesting a broad cone of emission); gamma rays are frequently the dominant component of the radiated power; and all the spectra show evidence of a high-energy turnover. For all the known gamma-ray pulsars, multiwavelength observations and theoretical models based on such observations offer the prospect of gaining a broad understanding of these rotating neutron stars. The Gamma-ray Large Area Space Telescope (GLAST), now in planning for a launch in 2006, will provide a major advance in sensitivity, energy range, and sky coverage.

  5. Gamma-ray Flares from Mrk421 in 2008 Observed with the ARGO-YBJ Detector

    NASA Astrophysics Data System (ADS)

    Aielli, G.; Bacci, C.; Bartoli, B.; Bernardini, P.; Bi, X. J.; Bleve, C.; Branchini, P.; Budano, A.; Bussino, S.; Calabrese Melcarne, A. K.; Camarri, P.; Cao, Z.; Cappa, A.; Cardarelli, R.; Catalanotti, S.; Cattaneo, C.; Celio, P.; Chen, S. Z.; Chen, Y.; Cheng, N.; Creti, P.; Cui, S. W.; Dai, B. Z.; D'Alí Staiti, G.; Danzengluobu; Dattoli, M.; De Mitri, I.; D'Ettorre Piazzoli, B.; De Vincenzi, M.; Di Girolamo, T.; Ding, X. H.; Di Sciascio, G.; Feng, C. F.; Feng, Zhaoyang; Feng, Zhenyong; Galeazzi, F.; Galeotti, P.; Gargana, R.; Gou, Q. B.; Guo, Y. Q.; He, H. H.; Hu, Haibing; Hu, Hongbo; Huang, Q.; Iacovacci, M.; Iuppa, R.; James, I.; Jia, H. Y.; Labaciren; Li, H. J.; Li, J. Y.; Li, X. X.; Liberti, B.; Liguori, G.; Liu, C.; Liu, C. Q.; Liu, M. Y.; Liu, J.; Lu, H.; Ma, X. H.; Mancarella, G.; Mari, S. M.; Marsella, G.; Martello, D.; Mastroianni, S.; Meng, X. R.; Montini, P.; Ning, C. C.; Pagliaro, A.; Panareo, M.; Perrone, L.; Pistilli, P.; Qu, X. B.; Rossi, E.; Ruggieri, F.; Saggese, L.; Salvini, P.; Santonico, R.; Shen, P. R.; Sheng, X. D.; Shi, F.; Stanescu, C.; Surdo, A.; Tan, Y. H.; Vallania, P.; Vernetto, S.; Vigorito, C.; Wang, B.; Wang, H.; Wu, C. Y.; Wu, H. R.; Xu, B.; Xue, L.; Yan, Y. X.; Yang, Q. Y.; Yang, X. C.; Yuan, A. F.; Zha, M.; Zhang, H. M.; Zhang, Jilong; Zhang, Jianli; Zhang, L.; Zhang, P.; Zhang, X. Y.; Zhang, Y.; Zhaxisangzhu; Zhou, X. X.; Zhu, F. R.; Zhu, Q. Q.; Zizzi, G.; ARGO-YBJ Collaboration

    2010-05-01

    In 2008, the blazar Markarian 421 entered a very active phase and was one of the brightest sources in the sky at TeV energies, showing frequent flaring episodes. Using the data of ARGO-YBJ, a full coverage air shower detector located at Yangbajing (4300 m a.s.l., Tibet), we monitored the source at gamma-ray energies E>0.3 TeV during the whole year. The observed flux was variable, with the strongest flares in March and June, in correlation with X-ray enhanced activity. While during specific episodes the TeV flux could be several times larger than the Crab Nebula one, the average emission from day 41 to 180 was almost twice the Crab level, with an integral flux of (3.6 ± 0.6) × 10-11 photons cm-2 s-1 for energies E>1 TeV, and decreased afterward. This Letter concentrates on the flares that occurred in the first half of June. This period has been deeply studied from optical to 100 MeV gamma rays, and partially up to TeV energies, since the moonlight hampered the Cherenkov telescope observations during the most intense part of the emission. Our data complete these observations, with the detection of a signal with a statistical significance of 3.8 standard deviations on June 11-13, corresponding to a gamma-ray flux about 6 times larger than the Crab one above 1 TeV. The reconstructed differential spectrum, corrected for the intergalactic absorption, can be represented by a power law with an index α = -2.1+0.7 -0.5 extending up to several TeV. The spectrum slope is fully consistent with previous observations reporting a correlation between the flux and the spectral index, suggesting that this property is maintained in different epochs and characterizes the source emission processes.

  6. AWAKENING OF THE HIGH-REDSHIFT BLAZAR CGRaBS J0809+5341

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paliya, Vaidehi S.; Stalin, C. S.; Parker, M. L.

    2015-04-20

    CGRaBS J0809+5341, a high-redshift blazar at z = 2.144, underwent a giant optical outburst on 2014 April 19 when it brightened by ∼5 mag and reached an unfiltered apparent magnitude of 15.7 mag. This implies an absolute magnitude of −30.5 mag, making it one of the brightest quasars in the universe. This optical flaring triggered us to carry out observations during the decaying part of the flare covering a wide energy range using the Nuclear Spectroscopic Telescope Array, Swift, and ground-based optical facilities. For the first time, the source is detected in γ-rays by the Large Area Telescope on boardmore » the Fermi Gamma-Ray Space Telescope. A high optical polarization of ∼10% is also observed. Using the Sloan Digital Sky Survey spectrum, the accretion disk luminosity and black hole mass are estimated as 1.5 × 10{sup 45} erg s{sup −1} and 10{sup 8.4} M{sub ⊙}, respectively. Using a single zone leptonic emission model, we reproduce the spectral energy distribution of the source during the flaring activity. This analysis suggests that the emission region is probably located outside the broad-line region, and the jet becomes radiatively efficient. We also show that the overall properties of CGRaBS J0809+5341 seem to not be in agreement with the general properties observed in high-redshift blazars up to now.« less

  7. Is There Evidence for X-Ray Emitting Plasma Very Close to the Photospheres of O Stars?

    NASA Technical Reports Server (NTRS)

    Leutenegger, Maurice A.

    2008-01-01

    Aims. We reexamine the implications of the recent HESS observations of the blazar 1ES0229+200 for constraining the extragalactic mid-infrared background radiation. Methods. We examine the effect of gamma-ray absorption by the extragalactic infrared radiation on predicted intrinsic spectra for this blazar and compare our results with the observational data. Results. We find agreement with our previous results on the shape of the infrared spectral energy distribution, contrary to the recent assertion of the HESS group. Our analysis indicates that 1ES0229+200 has a very hard intrinsic spectrum with a spectral index between 1.1 +/- 0.3 and 1.5 +/- 0.3 in the energy range between approx.0.5 TeV and approx.15 TeV. Conclusions. Under the assumptions that (1) the models of Stecker et al. (2006, ApJ, 648, 774) as derived from numerous detailed infrared observations are reasonable, and (2) spectral indexes in the range 1 < gamma < 1.5 are obtainable from relativistic shock acceleration under the astrophysical conditions extant in blazar flares (Stecker et al. 2007, ApJ, 667, L29), the fits to the observations of 1ES0229+200 using our previous infrared spectral energy distributions are consistent with both the infrared and gamma-ray observations. Our analysis presents evidence indicating that the energy spectrum of relativistic particles in 1ES0229+200 is produced by relativistic shock acceleration, producing an intrinsic -ray spectrum with index 1 < gamma < 1.5 and with no evidence of a peak in the spectral energy distribution up to energies approx.15 TeV.

  8. Gamma ray pulsars

    NASA Technical Reports Server (NTRS)

    Oegelman, H.; Ayasli, S.; Hacinliyan, A.

    1976-01-01

    Recent data from the high energy gamma ray experiment have revealed the existence of four pulsars emitting photons above 35 MeV. An attempt is made to explain the gamma ray emission from these pulsars in terms of an electron-photon cascade that develops in the magnetosphere of the pulsar. Although there is very little material above the surface of the pulsar, the very intense magnetic fields correspond to many radiation lengths which cause electrons to emit photons via magnetic bremsstrahlung and these photons to pair produce. The cascade develops until the mean photon energy drops below the pair production threshold which happens to be in the gamma ray range; at this stage the photons break out from the source.

  9. On the observability of the gamma-ray line flux from dark matter annihilation

    NASA Technical Reports Server (NTRS)

    Rudaz, S.; Stecker, F. W.

    1991-01-01

    The limits on the possible cosmic gamma-ray line flux from the two-photon annihilation of dark matter in the Galaxy are discussed. These limits are derived using both particle physics and cosmological constraints on dark matter candidates which arise in supersymmetric extensions of the standard model of particle physics. Results are given in terms of allowed and prescribed areas in the flux-energy plane. Then these bounds are used to consider the observability of the line flux above continuum background fluxes using future high-resolution gamma-ray telescopes.

  10. Gamma-Ray Astronomy Technology Needs

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Cannizzo, J. K.

    2012-01-01

    In recent decades gamma-ray observations have become a valuable tool for studying the universe. Progress made in diverse 8re1lS such as gamma-ray bursts (GRBs), nucleosynthesis, and active galactic nuclei (AGNs) has complimented and enriched our astrophysical understanding in many ways. We present an overview of current and future planned space y-ray missions and discussion technology needs for- the next generation of space gamma-ray instruments.

  11. The Andromeda galaxy in gamma-rays

    NASA Technical Reports Server (NTRS)

    Oezel, M. E.; Berkhuijsen, E. M.

    1987-01-01

    Implications of high-energy gamma-ray observations of the Andromeda galaxy with the next generation of satellites Gamma-1 and GRO are discussed in the context of the origin of cosmic rays and gamma-ray processes. The present estimate of the total gamma-ray flux of this galaxy at energies above 100 MeV is a factor of about three less than previous estimates.

  12. Gamma-ray burster recurrence timescales

    NASA Technical Reports Server (NTRS)

    Schaefer, B. E.; Cline, T. L.

    1984-01-01

    Three optical transients have been found which are associated with gamma-ray bursters (GRBs). The deduced recurrence timescale for these optical transients (tau sub opt) will depend on the minimum brightness for which a flash would be detected. A detailed analysis using all available data of tau sub opt as a function of E(gamma)/E(opt) is given. For flashes similar to those found in the Harvard archives, the best estimate of tau sub opt is 0.74 years, with a 99% confidence interval from 0.23 years to 4.7 years. It is currently unclear whether the optical transients from GRBs also give rise to gamma-ray events. One way to test this association is to measure the recurrence timescale of gamma-ray events tau sub gamma. A total of 210 gamma-ray error boxes were examined and it was found that the number of observed overlaps is not significantly different from the number expected from chance coincidence. This observation can be used to place limits on tau sub gamma for an assumed luminosity function. It was found that tau sub gamma is approx. 10 yr if bursts are monoenergetic. However, if GRBs have a power law luminosity function with a wide dynamic range, then the limit is tau sub gamma 0.5 yr. Hence, the gamma-ray data do not require tau sub gamma and tau sub opt to be different.

  13. GRI: The Gamma-Ray Imager mission

    NASA Astrophysics Data System (ADS)

    Knödlseder, J.; Gri Consortium

    Observations of the gamma-ray sky reveal the most powerful sources and the most violent events in the Universe While at lower wavebands the observed emission is generally dominated by thermal processes the gamma-ray sky provides us with a view on the non-thermal Universe Here particles are accelerated to extreme relativistic energies by mechanisms which are still poorly understood and nuclear reactions are synthesizing the basic constituents of our world Cosmic accelerators and cosmic explosions are the major science themes that are addressed in the gamma-ray regime With the INTEGRAL observatory ESA has provided a unique tool to the astronomical community and has put Europe in the lead in the field of gamma-ray astronomy INTEGRAL provides an unprecedented survey of the soft gamma-ray sky revealing hundreds of sources new classes of objects extraordinary views of antimatter annihilation in our Galaxy and fingerprints of recent nucleosynthesis processes While INTEGRAL has provided the global overview over the soft gamma-ray sky there is a growing need to perform deeper more focused investigations of gamma-ray sources In soft X-rays a comparable step was taken going from the Einstein satellite to the XMM Newton observatory Technological advances in the past years in the domain of gamma-ray focusing using Laue diffraction and multilayer-coated mirror techniques have paved the way towards a gamma-ray mission providing major improvements compared to past missions regarding sensitivity and angular resolution Such a

  14. Gamma ray spectroscopy in astrophysics. [conferences

    NASA Technical Reports Server (NTRS)

    Cline, T. L. (Editor); Ramaty, R. (Editor)

    1978-01-01

    Experimental and theoretical aspects of gamma ray spectroscopy in high energy astrophysics are discussed. Line spectra from solar, stellar, planetary, and cosmic gamma rays are examined as well as HEAO investigations, the prospects of a gamma ray observatory, and follow-on X-ray experiments in space.

  15. Effelsberg Monitoring of a Sample of RadioAstron Blazars: Analysis of Intra-Day Variability

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Bignall, Hayley; Krichbaum, Thomas; Liu, Xiang; Kraus, Alex; Kovalev, Yuri; Sokolovsky, Kirill; Angelakis, Emmanouil; Zensus, J.

    2018-04-01

    We present the first results of an ongoing intra-day variability (IDV) flux density monitoring program of 107 blazars, which were selected from a sample of RadioAstron space very long baseline interferometry (VLBI) targets. The~IDV observations were performed with the Effelsberg 100-m radio telescope at 4.8\\,GHz, focusing on the statistical properties of IDV in a relatively large sample of compact active galactic nuclei (AGN). We investigated the dependence of rapid ($<$3 day) variability on various source properties through a likelihood approach. We found that the IDV amplitude depends on flux density and that fainter sources vary by about a factor of 3 more than their brighter counterparts. We also found a significant difference in the variability amplitude between inverted- and flat-spectrum radio sources, with the former exhibiting stronger variations. $\\gamma$-ray loud sources were found to vary by up to a factor 4 more than $\\gamma$-ray quiet ones, with 4$\\sigma$ significance. However a galactic latitude dependence was barely observed, which suggests that it is predominantly the intrinsic properties (e.g., angular size, core-dominance) of the blazars that determine how they scintillate, rather than the directional dependence in the interstellar medium (ISM). We showed that the uncertainty in the VLBI brightness temperatures obtained from the space VLBI data of the RadioAstron satellite can be as high as $\\sim$70\\% due to the presence of the rapid flux density variations. Our statistical results support the view that IDV at centimeter wavelengths is predominantly caused by interstellar scintillation (ISS) of the emission from the most compact, core-dominant region in an AGN.

  16. Gamma-ray line astrophysics

    NASA Technical Reports Server (NTRS)

    Lingenfelter, R. E.; Ramaty, R.

    1986-01-01

    Recent observations of gamma-ray line emission from solar flares, gamma-ray bursts, the galactic center, the interstellar medium and the jets of SS433 are reviewed. The implications of these observations on high energy processes in these sources are discussed.

  17. Are PSR 0656+14, PSR 0950+08, and PSR 1822-09 gamma ray pulsars?

    NASA Technical Reports Server (NTRS)

    Brown, Lawrence E.; Hartmann, Dieter H.

    1993-01-01

    The possible discovery of three new gamma-ray pulsars PSR 0656+14, PSR 0950+08, and PSR 1822-09 (Ma, Lu, Yu, and Young, 1993) in data obtained with the COS-B experiment is reinvestigated using a refined technique for pulsar light curve analysis. The results of this study do not confirm the previously claimed gamma-ray pulsar nature of any of these pulsars. Even when using the standard epoch folding technique in conjunction with energy-dependent acceptance cones, we do not detect pulsed gamma-ray emission from these sources. We suspect that insufficient position accuracy is the cause for the discrepancy between our results and those of Ma et al. (1993). We do not rule out that any one of the three candidates, or all of them, is in fact a gamma-ray pulsar, but their spin properties must differ from those derived by Ma et al. (1993). More work is needed to determine the correct high-energy properties of these three sources.

  18. Measurement of the Multi-TEV Gamma-Ray Flare Spectra of Markarian 421 and Markarian 501

    NASA Astrophysics Data System (ADS)

    Krennrich, F.; Biller, S. D.; Bond, I. H.; Boyle, P. J.; Bradbury, S. M.; Breslin, A. C.; Buckley, J. H.; Burdett, A. M.; Gordo, J. Bussons; Carter-Lewis, D. A.; Catanese, M.; Cawley, M. F.; Fegan, D. J.; Finley, J. P.; Gaidos, J. A.; Hall, T.; Hillas, A. M.; Lamb, R. C.; Lessard, R. W.; Masterson, C.; McEnery, J. E.; Mohanty, G.; Moriarty, P.; Quinn, J.; Rodgers, A. J.; Rose, H. J.; Samuelson, F. W.; Sembroski, G. H.; Srinivasan, R.; Vassiliev, V. V.; Weekes, T. C.

    1999-01-01

    The energy spectrum of Markarian 421 in flaring states has been measured from 0.3 to 10 TeV using both small and large zenith angle observations with the Whipple Observatory 10 m imaging telescope. The large zenith angle technique is useful for extending spectra to high energies, and the extraction of spectra with this technique is discussed. The resulting spectrum of Markarian 421 is fitted reasonably well by a simple power law: J(E)=E-2.54+/-0.03+/-0.10 photons m-1 s-1 TeV-1, where the first set of errors is statistical and the second set is systematic. This is in contrast to our recently reported spectrum of Markarian 501, which over a similar energy range has substantial curvature. The differences in TeV energy spectra of gamma-ray blazars reflect both the physics of the gamma-ray production mechanism and possibly differential absorption effects at the source or in the intergalactic medium. Since Markarian 421 and Markarian 501 have almost the same redshift (0.031 and 0.033, respectively), the difference in their energy spectra must be intrinsic to the sources and not due to intergalactic absorption, assuming the intergalactic infrared background is uniform.

  19. Intrinsic Correlations for Flaring Blazars Detected by Fermi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, J. H.; Xiao, H. B.; Lin, C.

    2017-02-01

    Blazars are an extreme subclass of active galactic nuclei. Their rapid variability, luminous brightness, superluminal motion, and high and variable polarization are probably due to a beaming effect. However, this beaming factor (or Doppler factor) is very difficult to measure. Currently, a good way to estimate it is to use the timescale of their radio flares. In this Letter, we use multiwavelength data and Doppler factors reported in the literature for a sample of 86 flaring blazars detected by Fermi to compute their intrinsic multiwavelength data and intrinsic spectral energy distributions and investigate the correlations among observed and intrinsic data.more » Quite interestingly, intrinsic data show a positive correlation between luminosity and peak frequency, in contrast with the behavior of observed data, and a tighter correlation between γ -ray luminosity and the lower-energy ones. For flaring blazars detected by Fermi , we conclude that (1) observed emissions are strongly beamed; (2) the anti-correlation between luminosity and peak frequency from the observed data is an apparent result, the correlation between intrinsic data being positive; and (3) intrinsic γ -ray luminosity is strongly correlated with other intrinsic luminosities.« less

  20. Highlights of GeV Gamma-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2010-01-01

    Because high-energy gamma rays are primarily produced by high-energy particle interactions, the gamma-ray survey of the sky by the Fermi Gamma-ray Space Telescope offers a view of sites of cosmic ray production and interactions. Gamma-ray bursts, pulsars, pulsar wind nebulae, binary sources, and Active Galactic Nuclei are all phenomena that reveal particle acceleration through their gamma-ray emission. Diffuse Galactic gamma radiation, Solar System gamma-ray sources, and energetic radiation from supernova remnants are likely tracers of high-energy particle interactions with matter and photon fields. This paper will present a broad overview of the constantly changing sky seen with the Large Area Telescope (LAT) on the Fermi spacecraft.

  1. Portable compton gamma-ray detection system

    DOEpatents

    Rowland, Mark S [Alamo, CA; Oldaker, Mark E [Pleasanton, CA

    2008-03-04

    A Compton scattered gamma-ray detector system. The system comprises a gamma-ray spectrometer and an annular array of individual scintillators. The scintillators are positioned so that they are arrayed around the gamma-ray spectrometer. The annular array of individual scintillators includes a first scintillator. A radiation shield is positioned around the first scintillator. A multi-channel analyzer is operatively connected to the gamma-ray spectrometer and the annular array of individual scintillators.

  2. TANAMI blazars in the IceCube PeV-neutrino fields

    DOE PAGES

    Krauß, F.

    2014-06-01

    The IceCube Collaboration has announced the discovery of a neutrino flux in excess of the atmospheric background. Owing to the steeply falling atmospheric background spectrum, events at PeV energies most likely have an extraterrestrial origin. We present the multiwavelength properties of the six radio-brightest blazars that are positionally coincident with these events using contemporaneous data of the TANAMI blazar sample, including high-resolution images and spectral energy distributions. Assuming the X-ray to γ-ray emission originates in the photoproduction of pions by accelerated protons, the integrated predicted neutrino luminosity of these sources is high enough to explain the two detected PeV events.

  3. Fermi Large Area Telescope observations of the active galaxy 4C +55.17: Steady, hard gamma-ray emission and its implications

    DOE PAGES

    McConville, W.; Ostorero, L.; Moderski, R.; ...

    2011-08-19

    Here, we report Fermi Large Area Telescope (LAT) observations and broadband spectral modeling of the radio-loud active galaxy 4C +55.17 (z = 0.896), formally classified as a flat-spectrum radio quasar. Using 19 months of all-sky survey Fermi-LAT data, we detect a γ-ray continuum extending up to an observed energy of 145 GeV, and furthermore we find no evidence of γ-ray variability in the source over its observed history. We illustrate the implications of these results in two different domains. First, we investigate the origin of the steady γ-ray emission, where we re-examine the common classification of 4C +55.17 as amore » quasar-hosted blazar and consider instead its possible nature as a young radio source. We analyze and compare constraints on the source physical parameters in both blazar and young radio source scenarios by means of a detailed multiwavelength analysis and theoretical modeling of its broadband spectrum. Second, we show that the γ-ray spectrum may be formally extrapolated into the very high energy (VHE, ≥100 GeV) range at a flux level detectable by the current generation of ground-based Cherenkov telescopes. This enables us to place constraints on models of extragalactic background light within LAT energies and features the source as a promising candidate for VHE studies of the universe at an unprecedented redshift of z = 0.896.« less

  4. Very High-Energy Gamma-Ray Sources.

    ERIC Educational Resources Information Center

    Weekes, Trevor C.

    1986-01-01

    Discusses topics related to high-energy, gamma-ray astronomy (including cosmic radiation, gamma-ray detectors, high-energy gamma-ray sources, and others). Also considers motivation for the development of this field, the principal results to date, and future prospects. (JN)

  5. Fermi LAT detection of gamma-ray flaring activity from the blazar MG J221916+1806 through the Fermi All-sky Variability Analysis (FAVA)

    NASA Astrophysics Data System (ADS)

    Ajello, M.; Kocevski, D.; Gasparrini, D.; Buehler, R.; Thompson, D.; Ciprini, S.

    2014-03-01

    During the week between March 17 and March 24, 2014, the Large Area Telescope (LAT), one of the two instruments on the Fermi Gamma-ray Space Telescope, has observed increased gamma-ray activity from a source positionally coincident with the flat-spectrum radio quasar MG J221916+1806 (also known as 2FGL J2219.1+1805, Nolan et al., 2012, ApJS, 199, 31, and CGRaBS J2219+1806, Healey et al. ...

  6. Gamma Ray Bursts-Afterglows and Counterparts

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J

    1998-01-01

    Several breakthrough discoveries were made last year of x-ray, optical and radio afterglows and counterparts to gamma-ray bursts, and a redshift has been associated with at least one of these. These discoveries were made possible by the fast, accurate gamma-ray burst locations of the BeppoSAX satellite. It is now generally believed that the burst sources are at cosmological distances and that they represent the most powerful explosions in the Universe. These observations also open new possibilities for the study of early star formation, the physics of extreme conditions and perhaps even cosmology. This session will concentrate on recent x-ray, optical and radio afterglow observations of gamma-ray bursts, associated redshift measurements, and counterpart observations. Several review and theory talks will also be presented, along with a summary of the astrophysical implications of the observations. There will be additional poster contributions on observations of gamma-ray burst source locations at wavelengths other than gamma rays. Posters are also solicited that describe new observational capabilities for rapid follow-up observations of gamma-ray bursts.

  7. Characteristics of gamma-ray line flares

    NASA Technical Reports Server (NTRS)

    Bai, T.; Dennis, B.

    1983-01-01

    Observations of solar gamma rays by the Solar Maximum Mission (SMM) demonstrate that energetic protons and ions are rapidly accelerated during the impulsive phase. To understand the acceleration mechanisms for these particles, the characteristics of the gamma ray line flares observed by SMM were studied. Some very intense hard X-ray flares without detectable gamma ray lines were also investigated. Gamma ray line flares are distinguished from other flares by: (1) intense hard X-ray and microwave emissions; (2) delay of high energy hard X-rays; (3) emission of type 2 and/or type 4 radio bursts; and (4) flat hard X-ray spectra (average power law index: 3.1). The majority of the gamma ray line flares shared all these characteristics, and the remainder shared at least three of them. Positive correlations were found between durations of spike bursts and spatial sizes of flare loops as well as between delay times and durations of spike bursts.

  8. About cosmic gamma ray lines

    NASA Astrophysics Data System (ADS)

    Diehl, Roland

    2017-06-01

    Gamma ray lines from cosmic sources convey the action of nuclear reactions in cosmic sites and their impacts on astrophysical objects. Gamma rays at characteristic energies result from nuclear transitions following radioactive decays or high-energy collisions with excitation of nuclei. The gamma-ray line from the annihilation of positrons at 511 keV falls into the same energy window, although of different origin. We present here the concepts of cosmic gamma ray spectrometry and the corresponding instruments and missions, followed by a discussion of recent results and the challenges and open issues for the future. Among the lessons learned are the diffuse radioactive afterglow of massive-star nucleosynthesis in 26Al and 60Fe gamma rays, which is now being exploited towards the cycle of matter driven by massive stars and their supernovae; large interstellar cavities and superbubbles have been recognised to be of key importance here. Also, constraints on the complex processes making stars explode as either thermonuclear or core-collapse supernovae are being illuminated by gamma-ray lines, in this case from shortlived radioactivities from 56Ni and 44Ti decays. In particular, the three-dimensionality and asphericities that have recently been recognised as important are enlightened in different ways through such gamma-ray line spectroscopy. Finally, the distribution of positron annihilation gamma ray emission with its puzzling bulge-dominated intensity disctribution is measured through spatially-resolved spectra, which indicate that annihilation conditions may differ in different parts of our Galaxy. But it is now understood that a variety of sources may feed positrons into the interstellar medium, and their characteristics largely get lost during slowing down and propagation of positrons before annihilation; a recent microquasar flare was caught as an opportunity to see positrons annihilate at a source.

  9. Near-infrared and gamma-ray monitoring of TANAMI gamma-ray bright sources

    DOE PAGES

    Nesci, R.; Tosti, G.; Pursimo, T.; ...

    2013-06-18

    Context. We present that spectral energy distribution and its variability are basic tools for understanding the physical processes operating in active galactic nuclei (AGN). Aims. In this paper we report the results of a one-year near-infrared (NIR) and optical monitoring of a sample of 22 AGN known to be gamma-ray emitters, aimed at discovering correlations between optical and gamma-ray emission. Methods. We observed our objects with the Rapid Eye Mount (REM) telescope in J,H,K, and R bands nearly twice every month during their visibility window and derived light curves and spectral indexes. We also analyzed the gamma-ray data from themore » Fermi gamma-ray Space Telescope, making weekly averages. Results. Six sources were never detected during our monitoring, proving to be fainter than their historical Two micron all sky survey (2MASS) level. All of the sixteen detected sources showed marked flux density variability, while the spectral indexes remained unchanged within our sensitivity limits. Steeper sources showed, on average, a larger variability. From the NIR light curves we also computed a variability speed index for each detected source. Only one source (PKS 0208-512) underwent an NIR flare during our monitoring. Half of the sources showed a regular flux density trend on a one-year time scale, but do not show any other peculiar characteristic. The broadband spectral index α ro appears to be a good proxy of the NIR spectral index only for BL Lac objects. No clear correlation between NIR and gamma-ray data is evident in our data, save for PKS 0537-441, PKS 0521-360, PKS 2155-304, and PKS 1424-418. In conclusion, the gamma-ray/NIR flux ratio showed a large spread, QSO being generally gamma-louder than BL Lac, with a marked correlation with the estimated peak frequency (ν peak) of the synchrotron emission.« less

  10. The Study on the Physical Properties of Blazar Jets

    NASA Astrophysics Data System (ADS)

    Kang, S. J.

    2017-09-01

    Active galactic nuclei (AGNs) belong to a special class of active galaxies, and have violent active phenomena and intense physical processes in the nuclei. Blazar is a subclass of AGNs, and has a relativistic jet with a small jet viewing angle. Therefore, the boosting effect is very important, and almost all the observed radiation is dominated by the jet. The relativistic jet physics is not very clear yet, such as the jet formation, collimation, and matter content etc. The multi-waveband radiation of blazar is dominated by jet, which provides an ideal laboratory for studying the jet physics. The first chapter of this thesis introduces the recent progress of AGNs and blazars. We further introduce the jet model that commonly used in blazars in the second chapter. In the third chapter, we fit simultaneously (or quasi-simultaneously) the multi-waveband spectral energy distributions (SEDs) for a sample of low-synchrotron-peaked (LSP) blazars with the jet model and χ2 procedure, which takes into account different soft photon fields (broad line region or a molecular torus). We find that the SED fitting with an external soft photon from IR torus is systematically better than that from the broad line region (BLR) based on a χ2 test, which suggests that the γ-ray emitting region most possibly stays outside the BLR. The minimum electron Lorentz factor, γmin, is constrained from the modeling of these LSP blazars with good soft X-ray data, and in a range from 5 to 160 (with a median value of 55), which plays a key role in jet power estimation. Assuming one-to-one ratio of proton and electron, we find that the jet power for LSP blazars is systematically higher than that of Fanaroff-Riley type II (FR II) radio galaxies. A possible reason for this is that there are some positrons in the jets of these blazars. If this is the case, the jet power will be reduced. Therefore, we propose a mixed composition of e±-p in the jets of these LSP blazars. If we assume that the jet power

  11. Lunar occultations for gamma-ray source measurements

    NASA Technical Reports Server (NTRS)

    Koch, David G.; Hughes, E. B.; Nolan, Patrick L.

    1990-01-01

    The unambiguous association of discrete gamma-ray sources with objects radiating at other wavelengths, the separation of discrete sources from the extended emission within the Galaxy, the mapping of gamma-ray emission from nearby galaxies and the measurement of structure within a discrete source cannot presently be accomplished at gamma-ray energies. In the past, the detection processes used in high-energy gamma-ray astronomy have not allowed for good angular resolution. This problem can be overcome by placing gamma-ray detectors on the moon and using the horizon as an occulting edge to achieve arcsec resolution. For purposes of discussion, this concept is examined for gamma rays above 100 MeV for which pair production dominates the detection process and locally-generated nuclear gamma rays do not contribute to the background.

  12. AGILE detects enhanced gamma-ray emission above 100 MeV from the blazar S4 0554+58 region

    NASA Astrophysics Data System (ADS)

    Lucarelli, F.; Pittori, C.; Verrecchia, F.; Tavani, M.; Piano, G.; Bulgarelli, A.; Fioretti, V.; Striani, E.; Vercellone, S.; Donnarumma, I.; Cardillo, M.; Gianotti, F.; Trifoglio, M.; Giuliani, A.; Mereghetti, S.; Caraveo, P.; Perotti, F.; Chen, A.; Argan, A.; Costa, E.; Del Monte, E.; Evangelista, Y.; Feroci, M.; Lazzarotto, F.; Lapshov, I.; Pacciani, L.; Soffitta, P.; Sabatini, S.; Vittorini, V.; Pucella, G.; Rapisarda, M.; Di Cocco, G.; Fuschino, F.; Galli, M.; Labanti, C.; Marisaldi, M.; Pellizzoni, A.; Trois, A.; Pilia, M.; Barbiellini, G.; Vallazza, E.; Longo, F.; Morselli, A.; Picozza, P.; Prest, M.; Lipari, P.; Zanello, D.; Cattaneo, P. W.; Rappoldi, A.; Colafrancesco, S.; Parmiggiani, N.; Ferrari, A.; Giommi, P.; Salotti, L.; Valentini, G.; D'Amico, F.

    2015-02-01

    AGILE is detecting increased gamma-ray emission above 100 MeV from a source positionally consistent with the flat spectrum radio quasar S4 0554+58 (also known as BZQ J0559+5804), with radio coordinates R.A.: 89.8058092 deg, Dec.: 58.0676239 deg (J2000, A. J. Beasley et al., 2002ApJS..141...13B).

  13. Simultaneous Multiwavelength Observations of the Blazar 1ES 1959+650 at a Low TeV Flux

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tagliaferri, G.; Ghisellini, G.; Foschini, L.

    We present the results from a multiwavelength campaign on the TeV blazar 1ES 1959+650, performed in 2006 May. Data from the optical, UV, soft- and hard-X-ray, and very high energy (VHE) gamma-ray (E > 100 GeV) bands were obtained with the Suzaku and Swift satellites, the MAGIC telescope, and other ground-based facilities. The source spectral energy distribution (SED), derived from Suzaku and MAGIC observations at the end of 2006 May, shows the usual double hump shape, with the synchrotron peak at a higher flux level than the Compton peak. With respect to historical values, during our campaign the source exhibitedmore » a relatively high state in X-rays and optical, while in the VHE band it was at one of the lowest level so far recorded. We also monitored the source for flux spectral variability on a time window of 10 days in the optical-UV and X-ray bands and 7 days in the VHE band. The source varies more in the X-ray than in the optical band, with the 2-10 keV X-ray flux varying by a factor of {approx}2. The synchrotron peak is located in the X-ray band and moves to higher energies as the source gets brighter, with the X-ray fluxes above it varying more rapidly than the X-ray fluxes at lower energies. The variability behavior observed in the X-ray band cannot be produced by emitting regions varying independently and suggests instead some sort of 'standing shock' scenario. The overall SED is well represented by a homogeneous one-zone synchrotron inverse Compton emission model, from which we derive physical parameters that are typical of high-energy peaked blazars.« less

  14. First light from the Vela pulsar with the Fermi Gamma-ray Space Telescope

    NASA Astrophysics Data System (ADS)

    Razzano, M.

    2009-04-01

    The Fermi Gamma-ray Space Telescope, launched in June 2008, is an international space mission entirely devoted to the study of the high-energy gamma rays from the Universe. The main instrument aboard Fermi is the Large Area Telescope (LAT), a pair conversion telescope equipped with the state-of-the art in gamma-ray detectors technology. Thanks to its large field of view and effective area, combined with its excellent timing capability, Fermi-LAT is a perfect instrument for probing physics of gamma-ray emission in pulsars. LAT is expected to discover tens of new pulsars, both radio-loud and radio-quiet (Geminga-like). Moreover, LAT will observe with unprecedented statistics the brightest pulsars, investigating the details of magnetospheric emission. The first two months of the mission have been focused on the commissioning and first light, during which the LAT firmly detected the six previously known EGRET gamma-ray pulsars. One of the main sources of interest during our first light observations has been the Vela pulsar, the brightest persistent source in the whole gamma-ray sky. Thanks to its brightness, the Vela pulsar is an ideal candidate for calibrating the LAT and testing its performance. In addition, observations of Vela will help answer many questions related to the physics of pulsar emission processes. We present here some recent results obtained by the LAT on the Vela pulsar, using high-quality timing solutions provided by radio observations carried out within the Fermi pulsar radio timing campaign.

  15. Mercuric iodine room temperature gamma-ray detectors

    NASA Technical Reports Server (NTRS)

    Patt, Bradley E.; Markakis, Jeffrey M.; Gerrish, Vernon M.; Haymes, Robert C.; Trombka, Jacob I.

    1990-01-01

    high resolution mercuric iodide room temperature gamma-ray detectors have excellent potential as an essential component of space instruments to be used for high energy astrophysics. Mercuric iodide detectors are being developed both as photodetectors used in combination with scintillation crystals to detect gamma-rays, and as direct gamma-ray detectors. These detectors are highly radiation damage resistant. The list of applications includes gamma-ray burst detection, gamma-ray line astronomy, solar flare studies, and elemental analysis.

  16. The Gamma-Ray Imager GRI

    NASA Astrophysics Data System (ADS)

    Wunderer, Cornelia B.; GRI Collaboration

    2008-03-01

    Observations of the gamma-ray sky reveal the most powerful sources and the most violent events in the Universe. While at lower wavebands the observed emission is generally dominated by thermal processes, the gamma-ray sky provides us with a view on the non-thermal Universe. Here particles are accelerated to extreme relativistic energies by mechanisms which are still poorly understood, and nuclear reactions are synthesizing the basic constituents of our world. Cosmic accelerators and cosmic explosions are major science themes that are addressed in the gamma-ray regime. ESA's INTEGRAL observatory currently provides the astronomical community with a unique tool to investigate the sky up to MeV energies and hundreds of sources, new classes of objects, extraordinary views of antimatter annihilation in our Galaxy, and fingerprints of recent nucleosynthesis processes have been discovered. NASA's GLAST mission will similarly take the next step in surveying the high-energy ( GeV) sky, and NuSTAR will pioneer focusing observations at hard X-ray energies (to 80 keV). There will be clearly a growing need to perform deeper, more focused investigations of gamma-ray sources in the 100-keV to MeV regime. Recent technological advances in the domain of gamma-ray focusing using Laue diffraction and multilayer-coated mirror techniques have paved the way towards a gamma-ray mission, providing major improvements compared to past missions regarding sensitivity and angular resolution. Such a future Gamma-Ray Imager will allow the study of particle acceleration processes and explosion physics in unprecedented detail, providing essential clues on the innermost nature of the most violent and most energetic processes in the Universe.

  17. Observation of gamma ray bursts and flares by the EGRET telescope on the Compton Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Schneid, E. J.; Bertsch, D. L.; Fichtel, C. E.; Hartman, R. C.; Hunter, S. D.; Kwok, P. W.; Mattox, J. R.; Sreekumar, P.; Thompson, D. J.; Kanbach, G.

    1992-01-01

    The Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory has observed energetic gamma ray bursts and flares. On May 3, 1991, EGRET detected a gamma ray burst both in the energy measuring NaI (Tl) scintillator and independently in the spark chamber imaging assembly. The NaI spectra were accumulated by a special BURST mode of EGRET. The spectra were measured over a range from 1 to 200 MeV, in three sequential spectra of 1,2, and 4 seconds. During the peak of the burst, six individual gamma rays were detected in the spark chamber, allowing a determination of the burst arrival direction. The intense flares of June were also detected. A solar flare on June 4 was observed to last for several minutes and for a brief time, less than a minute, had significant emission of gamma rays exceeding 150 MeV.

  18. iPTF17cw: An Engine-driven Supernova Candidate Discovered Independent of a Gamma-Ray Trigger

    NASA Astrophysics Data System (ADS)

    Corsi, A.; Cenko, S. B.; Kasliwal, M. M.; Quimby, R.; Kulkarni, S. R.; Frail, D. A.; Goldstein, A. M.; Blagorodnova, N.; Connaughton, V.; Perley, D. A.; Singer, L. P.; Copperwheat, C. M.; Fremling, C.; Kupfer, T.; Piascik, A. S.; Steele, I. A.; Taddia, F.; Vedantham, H.; Kutyrev, A.; Palliyaguru, N. T.; Roberts, O.; Sollerman, J.; Troja, E.; Veilleux, S.

    2017-09-01

    We present the discovery, classification, and radio-to-X-ray follow-up observations of iPTF17cw, a broad-lined (BL) type Ic supernova (SN) discovered by the intermediate Palomar Transient Factory (iPTF). Although it is unrelated to the gravitational wave trigger, this SN was discovered as a happy by-product of the extensive observational campaign dedicated to the follow-up of Advanced LIGO event GW 170104. The spectroscopic properties and inferred peak bolometric luminosity of iPTF17cw are most similar to the gamma-ray-burst (GRB)-associated SN, SN 1998bw, while the shape of the r-band light curve is most similar to that of the relativistic SN, SN 2009bb. Karl G. Jansky Very Large Array (VLA) observations of the iPTF17cw field reveal a radio counterpart ≈10 times less luminous than SN 1998bw, and with a peak radio luminosity comparable to that of SN 2006aj/GRB 060218 and SN 2010bh/GRB 100316D. Our radio observations of iPTF17cw imply a relativistically expanding outflow. However, further late-time observations with the VLA in its most extended configuration are needed to confirm fading of the iPTF17cw radio counterpart at all frequencies. X-ray observations carried out with Chandra reveal the presence of an X-ray counterpart with a luminosity similar to that of SN 2010bh/GRB 100316D. Searching the Fermi catalog for possible γ-rays reveals that GRB 161228B is spatially and temporally compatible with iPTF17cw. The similarity to SN 1998bw and SN 2009bb, the radio and X-ray detections, and the potential association with GRB 161228B all point to iPTF17cw being a new candidate member of the rare sample of optically discovered engine-driven BL-Ic SNe associated with relativistic ejecta.

  19. iPTF17cw: An Engine-driven Supernova Candidate Discovered Independent of a Gamma-Ray Trigger

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corsi, A.; Palliyaguru, N. T.; Cenko, S. B.

    We present the discovery, classification, and radio-to-X-ray follow-up observations of iPTF17cw, a broad-lined (BL) type Ic supernova (SN) discovered by the intermediate Palomar Transient Factory (iPTF). Although it is unrelated to the gravitational wave trigger, this SN was discovered as a happy by-product of the extensive observational campaign dedicated to the follow-up of Advanced LIGO event GW 170104. The spectroscopic properties and inferred peak bolometric luminosity of iPTF17cw are most similar to the gamma-ray-burst (GRB)-associated SN, SN 1998bw, while the shape of the r -band light curve is most similar to that of the relativistic SN, SN 2009bb. Karl G.more » Jansky Very Large Array (VLA) observations of the iPTF17cw field reveal a radio counterpart ≈10 times less luminous than SN 1998bw, and with a peak radio luminosity comparable to that of SN 2006aj/GRB 060218 and SN 2010bh/GRB 100316D. Our radio observations of iPTF17cw imply a relativistically expanding outflow. However, further late-time observations with the VLA in its most extended configuration are needed to confirm fading of the iPTF17cw radio counterpart at all frequencies. X-ray observations carried out with Chandra reveal the presence of an X-ray counterpart with a luminosity similar to that of SN 2010bh/GRB 100316D. Searching the Fermi catalog for possible γ -rays reveals that GRB 161228B is spatially and temporally compatible with iPTF17cw. The similarity to SN 1998bw and SN 2009bb, the radio and X-ray detections, and the potential association with GRB 161228B all point to iPTF17cw being a new candidate member of the rare sample of optically discovered engine-driven BL-Ic SNe associated with relativistic ejecta.« less

  20. CONSTRAINING THE EMISSIVITY OF ULTRAHIGH ENERGY COSMIC RAYS IN THE DISTANT UNIVERSE WITH THE DIFFUSE GAMMA-RAY EMISSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Xiangyu; Liu Ruoyu; Aharonian, Felix

    Ultrahigh cosmic rays (UHECRs) with energies {approx}> 10{sup 19} eV emitted at cosmological distances will be attenuated by cosmic microwave and infrared background radiation through photohadronic processes. Lower energy extragalactic cosmic rays ({approx}10{sup 18}-10{sup 19} eV) can only travel a linear distance smaller than {approx}Gpc in a Hubble time due to the diffusion if the extragalactic magnetic fields are as strong as nano-Gauss. These prevent us from directly observing most of the UHECRs in the universe, and thus the observed UHECR intensity reflects only the emissivity in the nearby universe within hundreds of Mpc. However, UHECRs in the distant universe,more » through interactions with the cosmic background photons, produce UHE electrons and gamma rays that in turn initiate electromagnetic cascades on cosmic background photons. This secondary cascade radiation forms part of the extragalactic diffuse GeV-TeV gamma-ray radiation and, unlike the original UHECRs, is observable. Motivated by new measurements of extragalactic diffuse gamma-ray background radiation by Fermi/Large Area Telescope, we obtained upper limit placed on the UHECR emissivity in the distant universe by requiring that the cascade radiation they produce not exceed the observed levels. By comparison with the gamma-ray emissivity of candidate UHECR sources (such as gamma-ray bursts (GRBs) and active galactic nuclei) at high redshifts, we find that the obtained upper limit for a flat proton spectrum is {approx_equal} 10{sup 1.5} times larger than the gamma-ray emissivity in GRBs and {approx_equal} 10 times smaller than the gamma-ray emissivity in BL Lac objects. In the case of iron nuclei composition, the derived upper limit of UHECR emissivity is a factor of 3-5 times higher. Robust upper limit on the cosmogenic neutrino flux is further obtained, which is marginally reachable by the Icecube detector and the next-generation detector JEM-EUSO.« less

  1. Gamma-ray astronomy: From Fermi up to the HAWC high-energy {gamma}-ray observatory in Sierra Negra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carraminana, Alberto; Collaboration: HAWC Collaboration

    Gamma-rays represent the most energetic electromagnetic window for the study of the Universe. They are studied both from space at MeV and GeV energies, with instruments like the Fermi{gamma}-ray Space Telescope, and at TeV energies with ground based instruments profiting of particle cascades in the atmosphere and of the Cerenkov radiation of charged particles in the air or in water. The Milagro gamma-ray observatory represented the first instrument to successfully implement the water Cerenkov technique for {gamma}-ray astronomy, opening the ground for the more sensitive HAWC {gamma}-ray observatory, currently under development in the Sierra Negra site and already providing earlymore » science results.« less

  2. New Fermi-LAT event reconstruction reveals more high-energy gamma rays from gamma-ray bursts

    DOE PAGES

    Atwood, W. B.; Baldini, L.; Bregeon, J.; ...

    2013-08-19

    Here, based on the experience gained during the four and a half years of the mission, the Fermi-LAT Collaboration has undertaken a comprehensive revision of the event-level analysis going under the name of Pass 8. Although it is not yet finalized, we can test the improvements in the new event reconstruction with the special case of the prompt phase of bright gamma-ray bursts (GRBs), where the signal-to-noise ratio is large enough that loose selection cuts are sufficient to identify gamma rays associated with the source. Using the new event reconstruction, we have re-analyzed 10 GRBs previously detected by the Largemore » Area Telescope (LAT) for which an X-ray/optical follow-up was possible and found four new gamma rays with energies greater than 10 GeV in addition to the seven previously known. Among these four is a 27.4 GeV gamma ray from GRB 080916C, which has a redshift of 4.35, thus making it the gamma ray with the highest intrinsic energy (~147 GeV) detected from a GRB. We present here the salient aspects of the new event reconstruction and discuss the scientific implications of these new high-energy gamma rays, such as constraining extragalactic background light models, Lorentz invariance violation tests, the prompt emission mechanism, and the bulk Lorentz factor of the emitting region.« less

  3. Cosmic ray albedo gamma rays from the quiet sun

    NASA Technical Reports Server (NTRS)

    Seckel, D.; Stanev, T.; Gaisser, T. K.

    1992-01-01

    We estimate the flux of gamma-rays that result from collisions of high energy galactic cosmic rays with the solar atmosphere. An important aspect of our model is the propagation of cosmic rays through the magnetic fields of the inner solar systems. We use diffusion to model propagation down to the bottom of the corona. Below the corona we trace particle orbits through the photospheric fields to determine the location of cosmic ray interactions in the solar atmosphere and evolve the resultant cascades. For our nominal choice of parameters, we predict an integrated flux of gamma rays (at 1 AU) of F(E(sub gamma) greater than 100 MeV) approximately = 5 x 10(exp -8)/sq cm sec. This can be an order of magnitude above the galactic background and should be observable by the Energetic Gamma Ray experiment telescope (EGRET).

  4. A New Determination of the Extragalactic Diffuse X-Ray Background from EGRET Data

    NASA Technical Reports Server (NTRS)

    Strong, Andrew W.; Moskalenko, Igor V.; Reimer, Olaf

    2004-01-01

    We use the GALPROP model for cosmic-ray propagation to obtain a new estimate of the Galactic component of gamma rays, and show that away from the Galactic plane it gives an accurate prediction of the observed EGRET intensities in the energy range 30 MeV - 50 GeV. On this basis we re-evaluate the extragalactic gamma-ray background. We find that for some energies previous work underestimated the Galactic contribution at high latitudes and hence overestimated the background. Our new background spectrum shows a positive curvature similar to that expected for models of the extragalactic emission based on the blazar population.

  5. A link between prompt optical and prompt gamma-ray emission in gamma-ray bursts.

    PubMed

    Vestrand, W T; Wozniak, P R; Wren, J A; Fenimore, E E; Sakamoto, T; White, R R; Casperson, D; Davis, H; Evans, S; Galassi, M; McGowan, K E; Schier, J A; Asa, J W; Barthelmy, S D; Cummings, J R; Gehrels, N; Hullinger, D; Krimm, H A; Markwardt, C B; McLean, K; Palmer, D; Parsons, A; Tueller, J

    2005-05-12

    The prompt optical emission that arrives with the gamma-rays from a cosmic gamma-ray burst (GRB) is a signature of the engine powering the burst, the properties of the ultra-relativistic ejecta of the explosion, and the ejecta's interactions with the surroundings. Until now, only GRB 990123 had been detected at optical wavelengths during the burst phase. Its prompt optical emission was variable and uncorrelated with the prompt gamma-ray emission, suggesting that the optical emission was generated by a reverse shock arising from the ejecta's collision with surrounding material. Here we report prompt optical emission from GRB 041219a. It is variable and correlated with the prompt gamma-rays, indicating a common origin for the optical light and the gamma-rays. Within the context of the standard fireball model of GRBs, we attribute this new optical component to internal shocks driven into the burst ejecta by variations of the inner engine. The correlated optical emission is a direct probe of the jet isolated from the medium. The timing of the uncorrelated optical emission is strongly dependent on the nature of the medium.

  6. The solar gamma ray and neutron capabilities of COMPTEL on the Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Ryan, James M.; Lockwood, John A.

    1989-01-01

    The imaging Compton telescope COMPTEL on the Gamma Ray Observatory (GRO) has unusual spectroscopic capabilities for measuring solar gamma-ray and neutron emission. The launch of the GRO is scheduled for June 1990 near the peak of the sunspot cycle. With a 30 to 40 percent probability for the Sun being in the COMPTEL field-of-view during the sunlit part of an orbit, a large number of flares will be observed above the 800 keV gamma-ray threshold of the telescope. The telescope energy range extends to 30 MeV with high time resolution burst spectra available from 0.1 to 10 MeV. Strong Compton tail suppression of instrumental gamma-ray interactions will facilitate improved spectral analysis of solar flare emissions. In addition, the high signal to noise ratio for neutron detection and measurement will provide new neutron spectroscopic capabilities. Specifically, a flare similar to that of 3 June 1982 will provide spectroscopic data on greater than 1500 individual neutrons, enough to construct an unambiguous spectrum in the energy range of 20 to 200 MeV. Details of the instrument and its response to solar gamma-rays and neutrons will be presented.

  7. GRI: the gamma-ray imager mission

    NASA Astrophysics Data System (ADS)

    Knödlseder, Jürgen

    2006-06-01

    Observations of the gamma-ray sky reveal the most powerful sources and the most violent events in the Universe. While at lower wavebands the observed emission is generally dominated by thermal processes, the gamma-ray sky provides us with a view on the non-thermal Universe. Here particles are accelerated to extreme relativistic energies by mechanisms which are still poorly understood, and nuclear reactions are synthesizing the basic constituents of our world. Cosmic accelerators and cosmic explosions are the major science themes that are addressed in the gamma-ray regime. With the INTEGRAL observatory, ESA has provided a unique tool to the astronomical community revealing hundreds of sources, new classes of objects, extraordinary views of antimatter annihilation in our Galaxy, and fingerprints of recent nucleosynthesis processes. While INTEGRAL provides the global overview over the soft gamma-ray sky, there is a growing need to perform deeper, more focused investigations of gamma-ray sources. In soft X-rays a comparable step was taken going from the Einstein and the EXOSAT satellites to the Chandra and XMM/Newton observatories. Technological advances in the past years in the domain of gamma-ray focusing using Laue diffraction and multilayer-coated mirror techniques hav paved the way towards a gamma-ray mission, providing major improvements compared to past missions regarding sensitivity and angular resolution. Such a future Gamma-Ray Imager will allow to study particle acceleration processes and explosion physics in unprecedented detail, providing essential clues on the innermost nature of the most violent and most energetic processes in the Universe.

  8. What Can Gamma-rays from Space tell us About the Madala Hypothesis?

    NASA Astrophysics Data System (ADS)

    Beck, Geoff; Colafrancesco, Sergio

    2017-09-01

    The recent Madala hypothesis, a conjecture that seeks to explain anomalies within Large Hadron Collider (LHC) data (particularly in the transverse momentum of the Higgs boson), is interesting for more than just a statistical hint at unknown and unpredicted physics. This is because the model itself contains additional new particles that may serve as Dark Matter (DM) candidates. These particles interact with the Standard Model via a scalar mediator boson S. More interesting still, the conjectured mass range for the DM candidate (65 - 100 GeV) lies within the region of models viable to try explain the recent Galactic Centre (GC) gamma-ray excess seen by Fermi Large Area Telescope (Fermi-LAT) and the High Energy Stereoscopic System (HESS). Therefore, assuming S decays promptly, it should be possible to check what constraints are imposed upon the effective DM annihilation cross-section in the Madala scenario by hunting signatures of S decay that follows DM annihilation within dense astrophysical structures. In order to make use of existing data, we use the Reticulum II dwarf galaxy and the galactic centre gamma-ray excess data sets from Fermi-LAT, and compare these to the consequences of various decay paths for S in the aforementioned environments. We find that, based on this existing data, we can limit τ lepton, quark, direct gamma-ray, and weak boson channels to levels below the canonical relic cross-section. This allows us to set new limits on the branching ratios of S decay, which can rule out a Higgs-like decay branching for S, in the case where the Madala DM candidate is assumed to comprise all DM.

  9. Unusual flaring activity in the blazar PKS 1424-418 during 2008-2011

    DOE PAGES

    Buson, S.; Longo, F.; Larsson, S.; ...

    2014-09-01

    Context. Blazars are a subset of active galactic nuclei (AGN) with jets that are oriented along our line of sight. Variability and spectral energy distribution (SED) studies are crucial tools for understanding the physical processes responsible for observed AGN emission. Aims. We report peculiar behaviour in the bright γ-ray blazar PKS 1424-418 and use its strong variability to reveal information about the particle acceleration and interactions in the jet. Methods. Correlation analysis of the extensive optical coverage by the ATOM telescope and nearly continuous γ-ray coverage by the Fermi Large Area Telescope is combined with broadband, time-dependent modeling of themore » SED incorporating supplemental information from radio and X-ray observations of this blazar. Results. We analyse in detail four bright phases at optical-GeV energies. These flares of PKS 1424-418 show high correlation between these energy ranges, with the exception of one large optical flare that coincides with relatively low γ-ray activity. Although the optical/ γ-ray behaviour of PKS 1424-418 shows variety, the multiwavelength modeling indicates that these differences can largely be explained by changes in the flux and energy spectrum of the electrons in the jet that are radiating. We find that for all flares the SED is adequately represented by a leptonic model that includes inverse Compton emission from external radiation fields with similar parameters. Conclusions. Detailed studies of individual blazars like PKS 1424-418 during periods of enhanced activity in different wavebands are helping us identify underlying patterns in the physical parameters in this class of AGN.« less

  10. The Mystery of Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    2004-01-01

    Gamma-ray bursts remain one of the greatest mysteries in astrophysics. Observations of gamma-ray bursts made by the BATSE experiment on the Compton Gamma-Ray Observatory will be described. Most workers in the field now believe that they originate from cosmological distances. This view has been reinforced by observations this year of several optical afterglow counterparts to gamma-ray bursts. A summary of these recent discoveries will be presented, along with their implications for models of the burst emission mechanism and the energy source of the bursts.

  11. Investigating the X-ray and Gamma-ray Properties of the Galactic Supernova Remnants Kes 69, 3C 396, 3C 400.2

    NASA Astrophysics Data System (ADS)

    Ergin, Tülün; Sezer, Aytap; Yamazaki, Ryo

    2016-06-01

    Kes 69, 3C 396, and 3C 400.2 are mixed-morphology (MM) Galactic supernova remnants (SNRs), where Kes 69 and 3C 396 are interacting with molecular clouds (MCs). Previous X-ray studies showed that the emission from these SNRs is thermal. It has been suggested that MM SNRs interacting with MCs are potential candidates for recombining plasma (RP) in X-rays and hadronic gamma-ray emission. Recently, Chandra observations revealed signs of RP in 3C 400.2. Our preliminary analyses show that the X-ray emission of NW and SE region of 3C 400.2 arises from recombining plasma. We detected GeV gamma-ray emission from Kes 69 and 3C 396 above 5σ

  12. Hard X-ray and low-energy gamma-ray spectrometers

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Crannell, C. J.; Orwig, L. E.; Forrest, D. J.; Lin, R. P.; Starr, R.

    1988-01-01

    Basic principles of operation and characteristics of scintillation and semi-conductor detectors used for solar hard X-ray and gamma-ray spectrometers are presented. Scintillation materials such as NaI offer high stopping power for incident gamma rays, modest energy resolution, and relatively simple operation. They are, to date, the most often used detector in solar gamma-ray spectroscopy. The scintillator BGO has higher stopping power than NaI, but poorer energy resolution. The primary advantage of semi-conductor materials such as Ge is their high-energy resolution. Monte-Carlo simulations of the response of NaI and Ge detectors to model solar flare inputs show the benefit of high resoluton for studying spectral lines. No semi-conductor material besides Ge is currently available with adequate combined size and purity to make general-use hard X-ray and gamma-ray detectors for solar studies.

  13. Fermi Gamma-Ray Space Telescope

    NASA Technical Reports Server (NTRS)

    McEnery, Julie E.; Michelson, Peter F.; Paclesas, William S.; Ritz, Steven

    2012-01-01

    The Fermi Gamma-ray Space Telescope, launched in June 2008, is an observatory designed to survey the high-energy gamma-ray sky. The primary instrument, the Large Area Telescope (LAT), provides observations from 20 MeV to greater than 300 GeV. A second instrument, the Gamma-ray Burst Monitor (GBM), provides observations of transients from less than 10 keV to 40 MeV. We describe the design and performance of the instruments and their subsystems, the spacecraft and the ground system.

  14. Identifying the TeV gamma-ray source MGRO J2228+61, FINALLY!

    NASA Astrophysics Data System (ADS)

    Aliu, Ester

    2012-09-01

    New VERITAS observations of MGRO J2228+61 allow us to associate its TeV emission with the enigmatic radio supernova remnant SNR G106.3+2.7. This remnant is part of a large complex that includes the Boomerang pulsar and nebula. The reduced field suggests that the TeV emission is not powered by the Boomerang, but instead associated with a much larger remnant. A recent SUZAKU X-ray observation of the smaller gamma-ray error box reveals two possible pulsar candidates. We propose short ACIS exposures to identify these sources to determine if one or both can be responsible for the gamma-ray emission. This will allow us to address the long standing problem on the nature of both MGRO J2228+61 and SNR G106.3+2.7.

  15. Cosmic rays, gamma rays and synchrotron radiation from the Galaxy

    DOE PAGES

    Orlando, Elena

    2012-07-30

    Galactic cosmic rays (CR), interstellar gamma-ray emission and synchrotron radiation are related topics. CR electrons propagate in the Galaxy and interact with the interstellar medium, producing inverse-Compton emission measured in gamma rays and synchrotron emission measured in radio. I present an overview of the latest results with Fermi/LAT on the gamma-ray diffuse emission induced by CR nuclei and electrons. Then I focus on the recent complementary studies of the synchrotron emission in the light of the latest gamma-ray results. Relevant observables include spectral indices and their variations, using surveys over a wide range of radio frequencies. As a result, thismore » paper emphasizes the importance of using the parallel study of gamma rays and synchrotron radiation in order to constrain the low-energy interstellar CR electron spectrum, models of propagation of CRs, and magnetic fields.« less

  16. THE SECOND CATALOG OF ACTIVE GALACTIC NUCLEI DETECTED BY THE FERMI LARGE AREA TELESCOPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackermann, M.; Ajello, M.; Allafort, A.

    The second catalog of active galactic nuclei (AGNs) detected by the Fermi Large Area Telescope (LAT) in two years of scientific operation is presented. The second LAT AGN catalog (2LAC) includes 1017 {gamma}-ray sources located at high Galactic latitudes (|b| > 10 Degree-Sign ) that are detected with a test statistic (TS) greater than 25 and associated statistically with AGNs. However, some of these are affected by analysis issues and some are associated with multiple AGNs. Consequently, we define a Clean Sample which includes 886 AGNs, comprising 395 BL Lacertae objects (BL Lac objects), 310 flat-spectrum radio quasars (FSRQs), 157more » candidate blazars of unknown type (i.e., with broadband blazar characteristics but with no optical spectral measurement yet), 8 misaligned AGNs, 4 narrow-line Seyfert 1 (NLS1s), 10 AGNs of other types, and 2 starburst galaxies. Where possible, the blazars have been further classified based on their spectral energy distributions (SEDs) as archival radio, optical, and X-ray data permit. While almost all FSRQs have a synchrotron-peak frequency <10{sup 14} Hz, about half of the BL Lac objects have a synchrotron-peak frequency >10{sup 15} Hz. The 2LAC represents a significant improvement relative to the first LAT AGN catalog (1LAC), with 52% more associated sources. The full characterization of the newly detected sources will require more broadband data. Various properties, such as {gamma}-ray fluxes and photon power-law spectral indices, redshifts, {gamma}-ray luminosities, variability, and archival radio luminosities and their correlations are presented and discussed for the different blazar classes. The general trends observed in 1LAC are confirmed.« less

  17. Design and Performance of the GAMMA-400 Gamma-Ray Telescope for Dark Matter Searches

    NASA Technical Reports Server (NTRS)

    Galper, A.M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A.I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu. V.; hide

    2012-01-01

    The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons + positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is approx. 0.01 deg (E(sub gamma) > 100 GeV), the energy resolution approx. 1% (E(sub gamma) > 10 GeV), and the proton rejection factor approx 10(exp 6). GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.

  18. Gamma-ray Albedo of the Moon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moskalenko, Igor V.; Porter, Troy A.

    2007-06-14

    We use the GEANT4 Monte Carlo framework to calculate the gamma-ray albedo of the Moon due to interactions of cosmic ray (CR) nuclei with moon rock. Our calculation of the albedo spectrum agrees with the EGRET data. We show that the spectrum of gamma-rays from the Moon is very steep with an effective cutoff around 3 GeV (600 MeV for the inner part of the Moon disc). Since it is the only (almost) black spot in the gamma-ray sky, it provides a unique opportunity for calibration of gamma-ray telescopes, such as the forthcoming Gamma Ray Large Area Space Telescope (GLAST).more » The albedo flux depends on the incident CR spectrum which changes over the solar cycle. Therefore, it is possible to monitor the CR spectrum using the albedo gamma-ray flux. Simultaneous measurements of CR proton and helium spectra by the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA), and observations of the albedo -rays by the GLAST Large Area Telescope (LAT), can be used to test the model predictions and will enable the GLAST LAT to monitor the CR spectrum near the Earth beyond the lifetime of PAMELA.« less

  19. Observation of Markarian 421 in TeV Gamma Rays Over a 14-Year Time Span

    NASA Technical Reports Server (NTRS)

    Acciari, V. A.; Arlen, T.; Aune, T.; Benbow, W.; Bird, R.; Bouvier, A.; Bradbury, S. M.; Buckley, J. H.; Bugaev, V.; McEnery, Julie E.

    2013-01-01

    The variability of the blazar Markarian 421 in TeV gamma rays over a 14-year time period has been explored with theWhipple 10 m telescope. It is shown that the dynamic range of its flux variations is large and similar to that in X-rays. A correlation between the X-ray and TeV energy bands is observed during some bright flares and when the complete data sets are binned on long timescales. The main database consists of 878.4 hours of observation with theWhipple telescope, spread over 783 nights. The peak energy response of the telescope was 400 GeV with 20% uncertainty. This is the largest database of any TeV-emitting active galactic nucleus (AGN) and hence was used to explore the variability profile of Markarian 421. The time-averaged flux from Markarian 421 over this period was 0.446+/-0.008 Crab flux units. The flux exceeded 10 Crab flux units on three separate occasions. For the 2000-2001 season the average flux reached 1.86 Crab units, while in the 1996-1997 season the average flux was only 0.23 Crab units.

  20. Low-mass X-ray binaries and gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Lasota, J. P.; Frank, J.; King, A. R.

    1992-01-01

    More than twenty years after their discovery, the nature of gamma-ray burst sources (GRBs) remains mysterious. The results from BATSE experiment aboard the Compton Observatory show however that most of the sources of gamma-ray bursts cannot be distributed in the galactic disc. The possibility that a small fraction of sites of gamma-ray bursts is of galactic disc origin cannot however be excluded. We point out that large numbers of neutron-star binaries with orbital periods of 10 hr and M dwarf companions of mass 0.2-0.3 solar mass are a natural result of the evolution of low-mass X-ray binaries (LMXBs). The numbers and physical properties of these systems suggest that some gamma-ray burst sources may be identified with this endpoint of LMXB evolution. We suggest an observational test of this hypothesis.

  1. GRI: The Gamma-Ray Imager mission

    NASA Astrophysics Data System (ADS)

    Knödlseder, Jürgen; GRI Consortium

    With the INTEGRAL observatory ESA has provided a unique tool to the astronomical community revealing hundreds of sources, new classes of objects, extraordinary views of antimatter annihilation in our Galaxy, and fingerprints of recent nucleosynthesis processes. While INTEGRAL provides the global overview over the soft gamma-ray sky, there is a growing need to perform deeper, more focused investigations of gamma-ray sources. In soft X-rays a comparable step was taken going from the Einstein and the EXOSAT satellites to the Chandra and XMM/Newton observatories. Technological advances in the past years in the domain of gamma-ray focusing using Laue diffraction have paved the way towards a new gamma-ray mission, providing major improvements regarding sensitivity and angular resolution. Such a future Gamma-Ray Imager will allow studies of particle acceleration processes and explosion physics in unprecedented detail, providing essential clues on the innermost nature of the most violent and most energetic processes in the Universe.

  2. GRI: The Gamma-Ray Imager mission

    NASA Astrophysics Data System (ADS)

    Knödlseder, Jürgen; GRI Consortium

    2006-06-01

    With the INTEGRAL observatory, ESA has provided a unique tool to the astronomical community revealing hundreds of sources, new classes of objects, extraordinary views of antimatter annihilation in our Galaxy, and fingerprints of recent nucleosynthesis processes. While INTEGRAL provides the global overview over the soft gamma-ray sky, there is a growing need to perform deeper, more focused investigations of gamma-ray sources. In soft X-rays a comparable step was taken going from the Einstein and the EXOSAT satellites to the Chandra and XMM/Newton observatories. Technological advances in the past years in the domain of gamma-ray focusing using Laue diffraction have paved the way towards a new gamma-ray mission, providing major improvements regarding sensitivity and angular resolution. Such a future Gamma-Ray Imager will allow the study of particle acceleration processes and explosion physics in unprecedented detail, providing essential clues on the innermost nature of the most violent and most energetic processes in the Universe.

  3. DETECTION OF VERY HARD γ -RAY SPECTRUM FROM THE TEV BLAZAR MRK 501

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukla, A.; Chitnis, V. R.; Acharya, B. S.

    2016-12-01

    The occasional hardening of the GeV-to-TeV spectrum observed from the blazar Mrk 501 has reopened the debate on the physical origin of radiation and particle acceleration processes in TeV blazars. We have used the ∼7 years of Fermi -LAT data to search for the time intervals with unusually hard spectra from the nearby TeV blazar Mrk 501. We detected hard spectral components above 10 GeV with photon index <1.5 at a significance level of more than 5 sigma on 17 occasions, each with 30 day integration time. The photon index of the hardest component reached a value of 0.89 ± 0.29. We interpretmore » these hard spectra as signatures of intermittent injection of sharply peaked and localized particle distributions from the base of the jet.« less

  4. Design and Performance of the GAMMA-400 Gamma-Ray Telescope for Dark Matter Searches

    NASA Technical Reports Server (NTRS)

    Galper, A. M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu V.; hide

    2012-01-01

    The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons (+) positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is approximately 0.01deg (E(sub gamma) greater than 100 GeV), the energy resolution approximately 1% (E(sub gamma) greater than 10 GeV), and the proton rejection factor approximately 10(exp 6). GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.

  5. Simultaneous optical/gamma-ray observations of GRBs

    NASA Technical Reports Server (NTRS)

    Greiner, J.; Wenzel, W.; Hudec, R.; Moskalenko, E. I.; Metlov, V.; Chernych, N. S.; Getman, V. S.; Ziener, Rainer; Birkle, K.; Bade, N.

    1994-01-01

    Details on the project to search for serendipitous time correlated optical photographic observations of Gamma Ray Bursters (GRB's) are presented. The ongoing photographic observations at nine observatories are used to look for plates which were exposed simultaneously with a gamma ray burst detected by the gamma ray instrument team (BATSE) and contain the burst position. The results for the first two years of the gamma ray instrument team operation are presented.

  6. Design and performance of the GAMMA-400 gamma-ray telescope for dark matter searches

    NASA Astrophysics Data System (ADS)

    Galper, A. M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu. V.; Kaplin, V. A.; Kachanov, V. A.; Kheymits, M. D.; Leonov, A. A.; Longo, F.; Mazets, E. P.; Maestro, P.; Marrocchesi, P.; Mereminskiy, I. A.; Mikhailov, V. V.; Moiseev, A. A.; Mocchiutti, E.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu.; Papini, P.; Picozza, P.; Rodin, V. G.; Runtso, M. F.; Sparvoli, R.; Spillantini, P.; Suchkov, S. I.; Tavani, M.; Topchiev, N. P.; Vacchi, A.; Vannuccini, E.; Yurkin, Yu. T.; Zampa, N.; Zverev, V. G.; Zirakashvili, V. N.

    2013-02-01

    The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons + positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is ~0.01° (Eγ > 100 GeV), the energy resolution ~1% (Eγ > 10 GeV), and the proton rejection factor ~106. GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.

  7. The Animated Gamma-ray Sky Revealed by the Fermi Gamma-ray Space Telescope

    ScienceCinema

    Isabelle Grenier

    2018-04-17

    The Fermi Gamma-ray Space Telescope has been observing the sky in gamma-rays since August 2008.  In addition to breakthrough capabilities in energy coverage (20 MeV-300 GeV) and angular resolution, the wide field of view of the Large Area Telescope enables observations of 20% of the sky at any instant, and of the whole sky every three hours. It has revealed a very animated sky with bright gamma-ray bursts flashing and vanishing in minutes, powerful active galactic nuclei flaring over hours and days, many pulsars twinkling in the Milky Way, and X-ray binaries shimmering along their orbit. Most of these variable sources had not been seen by the Fermi predecessor, EGRET, and the wealth of new data already brings important clues to the origin of the high-energy emission and particles powered by the compact objects. The telescope also brings crisp images of the bright gamma-ray emission produced by cosmic-ray interactions in the interstellar medium, thus allowing to measure the cosmic nuclei and electron spectra across the Galaxy, to weigh interstellar clouds, in particular in the dark-gas phase. The telescope sensitivity at high energy will soon provide useful constraints on dark-matter annihilations in a variety of environments. I will review the current results and future prospects of the Fermi mission.

  8. Gamma-ray lens development status for a European gamma-ray imager

    NASA Astrophysics Data System (ADS)

    Frontera, F.; Pisa, A.; Carassiti, V.; Evangelisti, F.; Loffredo, G.; Pellicciotta, D.; Andersen, K. H.; Courtois, P.; Amati, L.; Caroli, E.; Franceschini, T.; Landini, G.; Silvestri, S.; Stephen, J. B.

    2006-06-01

    A breakthrough in the sensitivity level of the hard X-/gamma-ray telescopes, which today are based on detectors that view the sky through (or not) coded masks, is expected when focusing optics will be available also in this energy range. Focusing techniques are now in an advanced stage of development. To date the most efficient technique to focus hard X-rays with energies above 100 keV appears to be the Bragg diffraction from crystals in transmission configuration (Laue lenses). Crystals with mosaic structure appear to be the most suitable to build a Laue lens with a broad passband, even though other alternative structures are being investigated. The goal of our project is the development of a broad band focusing telescope based on gamma-ray lenses for the study of the continuum emission of celestial sources from 60 keV up to >600 keV. We will report details of our project, its development status and results of our assessment study of a lens configuration for the European Gamma Ray Imager (GRI) mission now under study for the ESA plan Cosmic Vision 2015-2025.

  9. GAMMA-RAY FLARES FROM Mrk421 IN 2008 OBSERVED WITH THE ARGO-YBJ DETECTOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aielli, G.; Camarri, P.; Bacci, C.

    2010-05-10

    In 2008, the blazar Markarian 421 entered a very active phase and was one of the brightest sources in the sky at TeV energies, showing frequent flaring episodes. Using the data of ARGO-YBJ, a full coverage air shower detector located at Yangbajing (4300 m a.s.l., Tibet), we monitored the source at gamma-ray energies E>0.3 TeV during the whole year. The observed flux was variable, with the strongest flares in March and June, in correlation with X-ray enhanced activity. While during specific episodes the TeV flux could be several times larger than the Crab Nebula one, the average emission from daymore » 41 to 180 was almost twice the Crab level, with an integral flux of (3.6 {+-} 0.6) x 10{sup -11} photons cm{sup -2} s{sup -1} for energies E>1 TeV, and decreased afterward. This Letter concentrates on the flares that occurred in the first half of June. This period has been deeply studied from optical to 100 MeV gamma rays, and partially up to TeV energies, since the moonlight hampered the Cherenkov telescope observations during the most intense part of the emission. Our data complete these observations, with the detection of a signal with a statistical significance of 3.8 standard deviations on June 11-13, corresponding to a gamma-ray flux about 6 times larger than the Crab one above 1 TeV. The reconstructed differential spectrum, corrected for the intergalactic absorption, can be represented by a power law with an index {alpha} = -2.1{sup +0.7} {sub -0.5} extending up to several TeV. The spectrum slope is fully consistent with previous observations reporting a correlation between the flux and the spectral index, suggesting that this property is maintained in different epochs and characterizes the source emission processes.« less

  10. Gamma ray astrophysics. [emphasizing processes and absorption

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1974-01-01

    Gamma ray production processes are reviewed, including Compton scattering, synchrotron radiation, bremsstrahlung interactions, meson decay, nucleon-antinucleon annihilations, and pion production. Gamma ray absorption mechanisms through interactions with radiation and with matter are discussed, along with redshifts and gamma ray fluxes.

  11. QUASI-PERIODICITIES AT YEAR-LIKE TIMESCALES IN BLAZARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandrinelli, A.; Treves, A.; Covino, S.

    2016-03-15

    We searched for quasi-periodicities on year-like timescales in the light curves of six blazars in the optical—near-infrared bands and we made a comparison with the high energy emission. We obtained optical/NIR light curves from Rapid Eye Mounting photometry plus archival Small and Moderate Aperture Research Telescope System data and we accessed the Fermi light curves for the γ-ray data. The periodograms often show strong peaks in the optical and γ-ray bands, which in some cases may be inter-related. The significance of the revealed peaks is then discussed, taking into account that the noise is frequency dependent. Quasi-periodicities on a year-likemore » timescale appear to occur often in blazars. No straightforward model describing these possible periodicities is yet available, but some plausible interpretations for the physical mechanisms causing periodic variabilities of these sources are examined.« less

  12. X-Ray Bursts from the Transient Magnetar Candidate XTE J1810-197

    NASA Technical Reports Server (NTRS)

    Kouveliotou, Chryssa; Woods, Peter M.; Gavriil, Fotis P.; Kaspi, Victoria M.; Roberts, Mallory S. E.; Ibrahim, Alaa; Markwardt, Craig B.; Swank, Jean H.; Finger, Mark H.

    2005-01-01

    We have discovered four X-ray bursts, recorded with the Rossi X-ray Timing Explorer Proportional Counter Array between 2003 September and 2004 April, that we show to originate from the transient magnetar candidate XTE 51810-197. The burst morphologies consist of a short spike or multiple spikes lasting approx. 1 s each followed by extended tails of emission where the pulsed flux from XTE 51810-197 is significantly higher. The burst spikes are likely correlated with the pulse maxima, having a chance probability of a random phase distribution of 0.4%. The burst spectra are best fit to a blackbody with temperatures 4-8 keV, considerably harder than the persistent X-ray emission. During the X-ray tails following these bursts, the temperature rapidly cools as the flux declines, maintaining a constant emitting radius after the initial burst peak. The temporal and spectral characteristics of these bursts closely resemble the bursts seen from 1E 1048.1-5937 and a subset of the bursts detected from 1E 2259+586, thus establishing XTE J1810-197 as a magnetar candidate. The bursts detected from these three objects are sufficiently similar to one another, yet si,g&cantly differe2t from those seen from soft gamma repeaters, that they likely represent a new class of bursts from magnetar candidates exclusive (thus far) to the anomalous X-ray pulsar-like sources.

  13. The RINGO2 and DIPOL optical polarization catalogue of blazars

    NASA Astrophysics Data System (ADS)

    Jermak, H.; Steele, I. A.; Lindfors, E.; Hovatta, T.; Nilsson, K.; Lamb, G. P.; Mundell, C.; Barres de Almeida, U.; Berdyugin, A.; Kadenius, V.; Reinthal, R.; Takalo, L.

    2016-11-01

    We present ˜2000 polarimetric and ˜3000 photometric observations of 15 γ-ray bright blazars over a period of 936 days (2008-10-11 to 2012-10-26) using data from the Tuorla blazar monitoring program (KVA DIPOL) and Liverpool Telescope (LT) RINGO2 polarimeters (supplemented with data from SkyCamZ (LT) and Fermi-LAT γ-ray data). In 11 out of 15 sources we identify a total of 19 electric vector position angle (EVPA) rotations and 95 flaring episodes. We group the sources into subclasses based on their broad-band spectral characteristics and compare their observed optical and γ-ray properties. We find that (1) the optical magnitude and γ-ray flux are positively correlated, (2) EVPA rotations can occur in any blazar subclass, four sources show rotations that go in one direction and immediately rotate back, (3) we see no difference in the γ-ray flaring rates in the sample; flares can occur during and outside of rotations with no preference for this behaviour, (4) the average degree of polarization (DoP), optical magnitude and γ-ray flux are lower during an EVPA rotation compared with during non-rotation and the distribution of the DoP during EVPA rotations is not drawn from the same parent sample as the distribution outside rotations, (5) the number of observed flaring events and optical polarization rotations are correlated, however we find no strong evidence for a temporal association between individual flares and rotations and (6) the maximum observed DoP increases from ˜10 per cent to ˜30 per cent to ˜40 per cent for subclasses with synchrotron peaks at high, intermediate and low frequencies, respectively.

  14. Photodetectors for the Advanced Gamma-ray Imaging System (AGIS)

    NASA Astrophysics Data System (ADS)

    Wagner, Robert G.; Advanced Gamma-ray Imaging System AGIS Collaboration

    2010-03-01

    The Advanced Gamma-Ray Imaging System (AGIS) is a concept for the next generation very high energy gamma-ray observatory. Design goals include an order of magnitude better sensitivity, better angular resolution, and a lower energy threshold than existing Cherenkov telescopes. Each telescope is equipped with a camera that detects and records the Cherenkov-light flashes from air showers. The camera is comprised of a pixelated focal plane of blue sensitive and fast (nanosecond) photon detectors that detect the photon signal and convert it into an electrical one. Given the scale of AGIS, the camera must be reliable and cost effective. The Schwarzschild-Couder optical design yields a smaller plate scale than present-day Cherenkov telescopes, enabling the use of more compact, multi-pixel devices, including multianode photomultipliers or Geiger avalanche photodiodes. We present the conceptual design of the focal plane for the camera and results from testing candidate! focal plane sensors.

  15. Found: A Galaxy's Missing Gamma Rays

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-04-01

    Recent reanalysis of data from the Fermi Gamma-ray Space Telescope has resulted in the first detection of high-energy gamma rays emitted from a nearby galaxy. This discovery reveals more about how supernovae interact with their environments.Colliding Supernova RemnantAfter a stellar explosion, the supernovas ejecta expand, eventually encountering the ambient interstellar medium. According to models, this generates a strong shock, and a fraction of the kinetic energy of the ejecta is transferred into cosmic rays high-energy radiation composed primarily of protons and atomic nuclei. Much is still unknown about this process, however. One open question is: what fraction of the supernovas explosion power goes into accelerating these cosmic rays?In theory, one way to answer this is by looking for gamma rays. In a starburst galaxy, the collision of the supernova-accelerated cosmic rays with the dense interstellar medium is predicted to produce high-energy gamma rays. That radiation should then escape the galaxy and be visible to us.Pass 8 to the RescueObservational tests of this model, however, have beenstumped by Arp 220. This nearby ultraluminous infrared galaxy is the product of a galaxy merger ~700 million years ago that fueled a frenzy of starbirth. Due to its dusty interior and extreme levels of star formation, Arp 220 has long been predicted to emit the gamma rays produced by supernova-accelerated cosmic rays. But though weve looked, gamma-ray emission has never been detected from this galaxy until now.In a recent study, a team of scientists led by Fang-Kun Peng (Nanjing University) reprocessed 7.5 years of Fermi observations using the new Pass 8 analysis software. The resulting increase in resolution revealed the first detection of GeV emission from Arp 220!Acceleration EfficiencyGamma-ray luminosity vs. total infrared luminosity for LAT-detected star-forming galaxies and Seyferts. Arp 220s luminosities are consistent with the scaling relation. [Peng et al. 2016

  16. Search of the energetic gamma-ray experiment telescope (EGRET) data for high-energy gamma-ray microsecond bursts

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Bertsch, D. L.; Dingus, B. L.; Esposito, J. A.; Hartman, R. C.; Hunter, S. D.; Kanbach, G.; Kniffen, D. A.; Lin, Y. C.; Mattox, J. R.

    1994-01-01

    Hawking (1974) and Page & Hawking (1976) investigated theoretically the possibility of detecting high-energy gamma rays produced by the quantum-mechanical decay of a small black hole created in the early universe. They concluded that, at the very end of the life of the small black hole, it would radiate a burst of gamma rays peaked near 250 MeV with a total energy of about 10(exp 34) ergs in the order of a microsecond or less. The characteristics of a black hole are determined by laws of physics beyond the range of current particle accelerators; hence, the search for these short bursts of high-energy gamma rays provides at least the possibility of being the first test of this region of physics. The Compton Observatory Energetic Gamma-Ray Experiment Telescope (EGRET) has the capability of detecting directly the gamma rays from such bursts at a much fainter level than SAS 2, and a search of the EGRET data has led to an upper limit of 5 x 10(exp -2) black hole decays per cu pc per yr, placing constraints on this and other theories predicting microsecond high-energy gamma-ray bursts.

  17. The characterization of the distant blazar GB6 J1239+0443 from flaring and low activity periods

    DOE PAGES

    Pacciani, L.; Donnarumma, I.; Denney, K. D.; ...

    2012-08-27

    In 2008, AGILE and Fermi detected gamma-ray flaring activity from the unidentified EGRET source 3EG J1236+0457, recently associated with a flat spectrum radio quasar (GB6 J1239+0443) at z = 1.762. The optical counterpart of the gamma-ray source underwent a flux enhancement of a factor of 15–30 in six years, and of ~10 in six months. Here, we interpret this flare-up in terms of a transition from an accretion-disc-dominated emission to a synchrotron-jet-dominated one. We analysed a Sloan Digital Sky Survey (SDSS) archival optical spectrum taken during a period of low radio and optical activity of the source. We estimated themore » mass of the central black hole using the width of the C iv emission line. In our work, we have also investigated SDSS archival optical photometric data and ultraviolet GALEX observations to estimate the thermal disc emission contribution of GB6 J1239+0443. This analysis of the gamma-ray data taken during the flaring episodes indicates a flat gamma-ray spectrum, with an extension of up to 15 GeV, with no statistically relevant sign of absorption from the broad-line region, suggesting that the blazar zone is located beyond the broad-line region. Our result is confirmed by the modelling of the broad-band spectral energy distribution (well constrained by the available multiwavelength data) of the flaring activity periods and by the accretion disc luminosity and black hole mass estimated by us using archival data.« less

  18. X-rays and gamma-rays from accretion flows onto black holes in Seyferts and X-ray binaries

    NASA Technical Reports Server (NTRS)

    Zdziarski, Andrzej A.; Johnson, W. Neil; Poutanen, Juri; Magdziarz, Pawel; Gierlinski, Marek

    1997-01-01

    Observations and theoretical models of X-ray/gamma ray spectra of radio quiet Seyfert galaxies and Galactic black hole candidates are reviewed. The spectra from these objects share the following characteristics: an underlying power law with a high energy cutoff above 200 keV; a Compton reflection component with a Fe K alpha line, and a low energy absorption by intervening cold matter. The X-ray energy spectral index, alpha, is typically in the range between 0.8 and 1 in Seyfert spectra, and that of the hard state spectra of the black hole candidates Cygnus X-1 and GX 339-4 is typically between 0.6 and 0.8. The Compton reflection component corresponds with cold matter covering a solid angle of between 0.8pi and 2pi as seen from the X-ray source. The broadband spectra of both classes of sources are well fitted by Compton upscattering of soft photons in thermal plasma. The fits yield a thermal plasma temperature of 100 keV and the Thomson optical depth of 1. All the spectra presented are cut off before the electron rest energy 511 keV, indicating that electron/positron pair production is an important process.

  19. Gamma-ray Astrophysics with AGILE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longo, Francesco; Tavani, M.; Barbiellini, G.

    2007-07-12

    AGILE will explore the gamma-ray Universe with a very innovative instrument combining for the first time a gamma-ray imager and a hard X-ray imager. AGILE will be operational in spring 2007 and it will provide crucial data for the study of Active Galactic Nuclei, Gamma-Ray Bursts, unidentified gamma-ray sources. Galactic compact objects, supernova remnants, TeV sources, and fundamental physics by microsecond timing. The AGILE instrument is designed to simultaneously detect and image photons in the 30 MeV - 50 GeV and 15 - 45 keV energy bands with excellent imaging and timing capabilities, and a large field of view coveringmore » {approx} 1/5 of the entire sky at energies above 30 MeV. A CsI calorimeter is capable of GRB triggering in the energy band 0.3-50 MeV AGILE is now (March 2007) undergoing launcher integration and testing. The PLSV launch is planned in spring 2007. AGILE is then foreseen to be fully operational during the summer of 2007.« less

  20. Gamma-ray Output Spectra from 239 Pu Fission

    DOE PAGES

    Ullmann, John

    2015-05-25

    The gamma-ray multiplicities, individual gamma-ray energy spectra, and total gamma energy spectra following neutron-induced fission of 239Pu were measured using the DANCE detector at Los Alamos. Corrections for detector response were made using a forward-modeling technique based on propagating sets of gamma rays generated from a paramaterized model through a GEANT model of the DANCE array and adjusting the parameters for best fit to the measured spectra. The results for the gamma-ray spectrum and multiplicity are in general agreement with previous results, but the measured total gamma-ray energy is about 10% higher. We found that a dependence of the gamma-raymore » spectrum on the gamma-ray multplicity was also observed. Finally, global model calculations of the multiplicity and gamma energy distributions are in good agreement with the data, but predict a slightly softer total-energy distribution.« less

  1. GLAST and Ground-Based Gamma-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    McEnery, Julie

    2008-01-01

    The launch of the Gamma-ray Large Area Space Telescope together with the advent of a new generation of ground-based gamma-ray detectors such as VERITAS, HESS, MAGIC and CANGAROO, will usher in a new era of high-energy gamma-ray astrophysics. GLAST and the ground based gamma-ray observatories will provide highly complementary capabilities for spectral, temporal and spatial studies of high energy gamma-ray sources. Joint observations will cover a huge energy range, from 20 MeV to over 20 TeV. The LAT will survey the entire sky every three hours, allowing it both to perform uniform, long-term monitoring of variable sources and to detect flaring sources promptly. Both functions complement the high-sensitivity pointed observations provided by ground-based detectors. Finally, the large field of view of GLAST will allow a study of gamma-ray emission on large angular scales and identify interesting regions of the sky for deeper studies at higher energies. In this poster, we will discuss the science returns that might result from joint GLAST/ground-based gamma-ray observations and illustrate them with detailed source simulations.

  2. Gamma-Ray Emission from Galaxy Clusters : DARK MATTER AND COSMIC-RAYS

    NASA Astrophysics Data System (ADS)

    Pinzke, Anders

    The quest for the first detection of a galaxy cluster in the high energy gamma-ray regime is ongoing, and even though clusters are observed in several other wave-bands, there is still no firm detection in gamma-rays. To complement the observational efforts we estimate the gamma-ray contributions from both annihilating dark matter and cosmic-ray (CR) proton as well as CR electron induced emission. Using high-resolution simulations of galaxy clusters, we find a universal concave shaped CR proton spectrum independent of the simulated galaxy cluster. Specifically, the gamma-ray spectra from decaying neutral pions, which are produced by CR protons, dominate the cluster emission. Furthermore, based on our derived flux and luminosity functions, we identify the galaxy clusters with the brightest galaxy clusters in gamma-rays. While this emission is challenging to detect using the Fermi satellite, major observations with Cherenkov telescopes in the near future may put important constraints on the CR physics in clusters. To extend these predictions, we use a dark matter model that fits the recent electron and positron data from Fermi, PAMELA, and H.E.S.S. with remarkable precision, and make predictions about the expected gamma-ray flux from nearby clusters. In order to remain consistent with the EGRET upper limit on the gamma-ray emission from Virgo, we constrain the minimum mass of substructures for cold dark matter halos. In addition, we find comparable levels of gamma-ray emission from CR interactions and dark matter annihilations without Sommerfeld enhancement.

  3. BiI 3 Crystals for High Energy Resolution Gamma-Ray Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nino, Juan C.; Baciak, James; Johns, Paul

    2017-04-12

    BiI 3 had been investigated for its unique properties as a layered compound semiconductor for many decades. However, despite the exceptional atomic, physical, and electronic properties of this material, good resolution gamma ray spectra had never been reported for BiI 3. The shortcomings that previously prevented BiI 3 from reaching success as a gamma ray sensor were, through this project, identified and suppressed to unlock the performance of this promising compound. Included in this work were studies on a number of methods which have, for the first time, enabled BiI 3 to exhibit spectral performance rivaling many other candidate semiconductorsmore » for room temperature gamma ray sensors. New approaches to crystal growth were explored that allow BiI 3 spectrometers to be fabricated with up to 2.2% spectral resolution at 662 keV. Fundamental studies on trap states, dopant incorporation, and polarization were performed to enhance performance of this compound. Additionally, advanced detection techniques were applied to display the capabilities of high quality BiI 3 spectrometers. Overall, through this work, BiI 3 has been revealed as a potentially transformative material for nuclear security and radiation detection sciences.« less

  4. A New View of the High Energy Gamma-Ray Sky with the Ferrni Gamma-Ray Space Telescope

    NASA Technical Reports Server (NTRS)

    McEnery, Julie

    2009-01-01

    Following its launch in June 2008, high energy gamma-ray observations by the Fermi Gamma-ray Space Telescope have opened a new and important window on a wide variety of phenomena, including pulsars, black holes and active galactic nuclei, gamma-ray bursts, supernova remnants and the origin of cosmic rays, and searches for hypothetical new phenomena such as super symmetric dark matter annihilations. In this talk I will describe the current status of the Fermi observatory and review the science highlights from the first year of observations.

  5. H.E.S.S. and CTA, present and perspectives in ground-based gamma-ray astronomy

    NASA Astrophysics Data System (ADS)

    Sol, H.

    2016-12-01

    Very high energy (VHE) gamma-ray astronomy emerged as a new branch of astronomy about ten years ago with the major discoveries achieved by the High Energy Stereocopic System (H.E.S.S.) operating in Namibia, quickly followed by the Major Atmospheric Gamma Imaging Cherenkov Telescopes (MAGIC) in the Canary Islands and the Very Energetic Radiation Imaging Telescope Array System (VERITAS) in the USA. These experiments succeeded to start exploring the cosmos at TeV energies, with the present detection of 178 sources in this range, mostly pulsar wind nebulae, supernova remnants, binary systems, blazars, and a variety of other types of sources. Based on these promizing results, the scientific community soon defined a next generation global project with significantly improved performance, the Cherenkov Telescope Array (CTA), in order to implement an open observatory at extreme energies, allowing a deep analysis of the sky in the highest part of the electromagnetic spectrum, from 20 GeV to 300 TeV. The CTA preparation phase is now completed. Production of the first telescopes should start in 2017 for deployment in 2018, in the perspective of an array fully operational at the horizon 2022.

  6. Fermi: The Gamma-Ray Large Area Telescope

    NASA Technical Reports Server (NTRS)

    McEnery, Julie

    2015-01-01

    Following its launch in June 2008, high-energy gamma-ray observations by the Fermi Gamma-ray Space Telescope have unveiled over 1000 new sources and opened an important and previously unexplored window on a wide variety of phenomena. These have included the discovery of an population of pulsars pulsing only in gamma rays; the detection of photons up to 10s of GeV from gamma-ray bursts, enhancing our understanding of the astrophysics of these powerful explosions; the detection of hundreds of active galaxies; a measurement of the high energy cosmic-ray electron spectrum which may imply the presence of nearby astrophysical particle accelerators; the determination of the diffuse gamma-ray emission with unprecedented accuracy and the constraints on phenomena such as supersymmetric dark-matter annihilations and exotic relics from the Big Bang. Continuous monitoring of the high-energy gamma-ray sky has uncovered numerous outbursts from active galaxies and the discovery of transient sources in our galaxy. In this talk I will describe the current status of the Fermi observatory and review the science highlights from Fermi.

  7. Fermi: The Gamma-Ray Large Area Telescope

    NASA Technical Reports Server (NTRS)

    McEnery, Julie

    2014-01-01

    Following its launch in June 2008, high-energy gamma-ray observations by the Fermi Gamma-ray Space Telescope have unveiled over 1000 new sources and opened an important and previously unexplored window on a wide variety of phenomena. These have included the discovery of an population of pulsars pulsing only in gamma rays; the detection of photons up to 10 seconds of gigaelectronvolts from gamma-ray bursts, enhancing our understanding of the astrophysics of these powerful explosions; the detection of hundreds of active galaxies; a measurement of the high energy cosmic-ray electron spectrum which may imply the presence of nearby astrophysical particle accelerators; the determination of the diffuse gamma-ray emission with unprecedented accuracy and the constraints on phenomena such as super-symmetric dark-matter annihilations and exotic relics from the Big Bang. Continuous monitoring of the high-energy gamma-ray sky has uncovered numerous outbursts from active galaxies and the discovery of transient sources in our galaxy. In this talk I will describe the current status of the Fermi observatory and review the science highlights from Fermi.

  8. Gamma Ray Bursts

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Meszaros, Peter

    2012-01-01

    Gamma-ray bursts (GRBs) are bright flashes of gamma-rays coming from the cosmos. They occur roughly once per day ,last typically lOs of seconds and are the most luminous events in the universe. More than three decades after their discovery, and after pioneering advances from space and ground experiments, they still remain mysterious. The launch of the Swift and Fermi satellites in 2004 and 2008 brought in a trove of qualitatively new data. In this review we survey the interplay between these recent observations and the theoretical models of the prompt GRB emission and the subsequent afterglows.

  9. Key Results from the Oriented Scintillation Spectrometer Experiment

    DTIC Science & Technology

    1995-10-09

    OSSE data provide strong evidence for beamed gamma ray emission from blazars, based on gamma ray trans- parency arguments. 4.3. Centaurus A The nearby...radio galaxy Centaurus A may represent an intermediate spectral class between the Seyfert galaxies and blazars. Cen A, at a distance of 3.2 Mpc, is the

  10. Discoveries by the Fermi Gamma Ray Space Telescope

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2011-01-01

    Fermi is a large space gamma-ray mission developed by NASA and the DOE with major contributions from France, Germany, Italy, Japan and Sweden. It was launched in June 2008 and has been performing flawlessly since then. The main instrument is the Large Area Telescope (LAT) operating in the 20 MeV to 300 GeV range and a smaller monitor instrument is the Gamma-ray Burst Monitor (GBM) operating in the 8 keV to 40 MeV range. New findings are occurring every week. Some of the key discoveries are: 1) Discovery of many new gamma-ray pulsars, including gamma-ray only and millisecond pulsars. 2) Detection of high energy gamma-ray emission from globular clusters, most likely due to summed emission from msec pulsars. 3) Discovery of delayed and extended high energy gamma-ray emission from short and long gamma-ray busts. 4) Detection of approximately 250 gamma-ray bursts per year with the GBM instrument. 5) Most accurate measurement of the cosmic ray electron spectrum between 30 GeV and 1 TeV, showing some excess above the conventional diffusion model. The talk will present the new discoveries and their implications.

  11. Gamma Rays at Very High Energies

    NASA Astrophysics Data System (ADS)

    Aharonian, Felix

    This chapter presents the elaborated lecture notes on Gamma Rays at Very High Energies given by Felix Aharonian at the 40th Saas-Fee Advanced Course on "Astrophysics at Very High Energies". Any coherent description and interpretation of phenomena related to gammarays requires deep knowledge of many disciplines of physics like nuclear and particle physics, quantum and classical electrodynamics, special and general relativity, plasma physics, magnetohydrodynamics, etc. After giving an introduction to gamma-ray astronomy the author discusses the astrophysical potential of ground-based detectors, radiation mechanisms, supernova remnants and origin of the galactic cosmic rays, TeV emission of young supernova remnants, gamma-emission from the Galactic center, pulsars, pulsar winds, pulsar wind nebulae, and gamma-ray loud binaries.

  12. Future Facilities for Gamma-Ray Pulsar Studies

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.

    2003-01-01

    Pulsars seen at gamma-ray energies offer insight into particle acceleration to very high energies, along with information about the geometry and interaction processes in the magnetospheres of these rotating neutron stars. During the next decade, a number of new gamma-ray facilities will become available for pulsar studies. This brief review describes the motivation for gamma-ray pulsar studies, the opportunities for such studies, and some specific discussion of the capabilities of the Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) for pulsar measurements.

  13. F-GAMMA program: Unification and physical interpretation of the radio spectra variability patterns in Fermi blazars and detection of radio jet emission from NLSY1 galaxies

    NASA Astrophysics Data System (ADS)

    Angelakis, E.

    2012-01-01

    The F-GAMMA program aims at understanding the physics at work in AGN via a multi-frequency monitoring approach. A number of roughly 65 Fermi-GST detectable blazars are being monitored monthly since January 2007 at radio wavelengths. The core program relies on the 100-m Effelsberg telescope operating at 8 frequencies between 2.6 and 43 GHz, the 30-m IRAM telescope observing at 86, 145 and 240 GHz and the APEX 12-m telescope at 345 GHz. For the targeted sources the LAT instrument onboard Fermi-GST provides gamma-ray light curves sampled daily. Here we discuss two recent findings: A). On the basis of their variability pattern, the observed quasi-simultaneous broad-band spectra can be classified to merely 5 classes. The variability for the first 4 is clearly dominated by spectral-evolution. Sources of the last class vary self-similarly with almost no apparent shift of the peak frequency. The former classes can be attributed to a two-component principal system made of a quiescent optically thin spectrum and a super-imposed flaring event. The later class must be interpreted in terms of a completely different mechanism. The apparent differences among the classes are explained in terms of a redshift modulus and an intrinsic-source/flare parameters modulus. Numerical simulations have shown that a shock-in-jet model can very well describe the observed behavior. It is concluded therefore that only two mechanisms seem to be producing variability. None of the almost 90 sources used for this study show a switch of class indicating that the variability mechanism is either (a) a finger-print of the source, or (b) remains stable on timescales far longer than the monitoring period of almost 4 years. B). Recently it has been disclosed that Narrow Line Seyfert 1 galaxies show gamma-ray emission. Within the F-GAMMA program radio jet emission has been detected from 3 such sources challenging the belief that jets are associated with elliptical galaxies. The recent findings in this area

  14. Cosmological gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Paczynski, Bohdan

    1991-01-01

    The distribution in angle and flux of gamma-ray bursts indicates that the majority of gamma-ray bursters are at cosmological distances, i.e., at z of about 1. The rate is then about 10 exp -8/yr in a galaxy like the Milky Way, i.e., orders of magnitude lower than the estimated rate for collisions between neutron stars in close binary systems. The energy per burst is about 10 exp 51 ergs, assuming isotropic emission. The events appear to be less energetic and more frequent if their emission is strongly beamed. Some tests for the distance scale are discussed: a correlation between the burst's strength and its spectrum; the absorption by the Galactic gas below about 2 keV; the X-ray tails caused by forward scattering by the Galactic dust; about 1 month recurrence of some bursts caused by gravitational lensing by foreground galaxies; and a search for gamma-ray bursts in M31. The bursts appear to be a manifestation of something exotic, but conventional compact objects can provide an explanation. The best possibility is offered by a decay of a bindary composed of a spinning-stellar-mass black-hole primary and a neutron or a strange-quark star secondary. In the final phase the secondary is tidally disrupted, forms an accretion disk, and up to 10 exp 54 ergs are released. A very small fraction of this energy powers the gamma-ray burst.

  15. Significance of medium energy gamma ray astronomy in the study of cosmic rays

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Kniffen, D. A.; Thompson, D. J.; Bignami, G. F.; Cheung, C. Y.

    1975-01-01

    Medium energy (about 10 to 30 MeV) gamma ray astronomy provides information on the product of the galactic electron cosmic ray intensity and the galactic matter to which the electrons are dynamically coupled by the magnetic field. Because high energy (greater than 100 MeV) gamma ray astronomy provides analogous information for the nucleonic cosmic rays and the relevant matter, a comparison between high energy and medium energy gamma ray intensities provides a direct ratio of the cosmic ray electrons and nucleons throughout the galaxy. A calculation of gamma ray production by electron bremsstrahlung shows that: bremsstrahlung energy loss is probably not negligible over the lifetime of the electrons in the galaxy; and the approximate bremsstrahlung calculation often used previously overestimates the gamma ray intensity by about a factor of two. As a specific example, expected medium energy gamma ray intensities are calculated for the speral arm model.

  16. Multiwavelength Spectral Variability of Mkn 501 in Outburst

    NASA Astrophysics Data System (ADS)

    Hempfling, Christina

    2012-10-01

    We propose simultaneous multiwavelength observations of the blazar Mrk501 in flaring state with XMM-Newton, FACT and Swift. Bright TeV gamma-ray flares have been detected repeatedly from Mrk501. Leptonic blazar models predict an simultaneous increase in the gamma-ray and X-ray bands. However, Mrk 501 also showed so-called orphan flares, as well as flares featuring time lags that are hard to explain by current models. Available data lack detailed light curves and hence are not sufficient to make strong statements on the nature of the responsible processes. These observations of a flare of Mrk501 in the gamma-ray and X-ray band with high spectral sensitivity and time resolution will yield a big contribution to the comprehension of blazar emission processes.

  17. Nuclear gamma rays from energetic particle interactions

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Kozlovsky, B.; Lingenfelter, R. E.

    1978-01-01

    Gamma ray line emission from nuclear deexcitation following energetic particle reactions is evaluated. The compiled nuclear data and the calculated gamma ray spectra and intensities can be used for the study of astrophysical sites which contain large fluxes of energetic protons and nuclei. A detailed evaluation of gamma ray line production in the interstellar medium is made.

  18. Fermi gamma-ray imaging of a radio galaxy.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cavazzuti, E; Cecchi, C; Celik, O; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Colafrancesco, S; Cominsky, L R; Conrad, J; Costamante, L; Cutini, S; Davis, D S; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; do Couto e Silva, E; Drell, P S; Dubois, R; Dumora, D; Farnier, C; Favuzzi, C; Fegan, S J; Finke, J; Focke, W B; Fortin, P; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Georganopoulos, M; Germani, S; Giebels, B; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grove, J E; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hughes, R E; Jackson, M S; Jóhannesson, G; Johnson, A S; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Mazziotta, M N; McConville, W; McEnery, J E; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Razzano, M; Razzaque, S; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, L S; Rodriguez, A Y; Romani, R W; Roth, M; Ryde, F; Sadrozinski, H F-W; Sambruna, R; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Sgrò, C; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Starck, J-L; Stawarz, Ł; Strickman, M S; Suson, D J; Tajima, H; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vasileiou, V; Vilchez, N; Vitale, V; Waite, A P; Wallace, E; Wang, P; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M; Hardcastle, M J; Kazanas, D

    2010-05-07

    The Fermi Gamma-ray Space Telescope has detected the gamma-ray glow emanating from the giant radio lobes of the radio galaxy Centaurus A. The resolved gamma-ray image shows the lobes clearly separated from the central active source. In contrast to all other active galaxies detected so far in high-energy gamma-rays, the lobe flux constitutes a considerable portion (greater than one-half) of the total source emission. The gamma-ray emission from the lobes is interpreted as inverse Compton-scattered relic radiation from the cosmic microwave background, with additional contribution at higher energies from the infrared-to-optical extragalactic background light. These measurements provide gamma-ray constraints on the magnetic field and particle energy content in radio galaxy lobes, as well as a promising method to probe the cosmic relic photon fields.

  19. Signature of inverse Compton emission from blazars

    NASA Astrophysics Data System (ADS)

    Gaur, Haritma; Mohan, Prashanth; Wierzcholska, Alicja; Gu, Minfeng

    2018-01-01

    Blazars are classified into high-, intermediate- and low-energy-peaked sources based on the location of their synchrotron peak. This lies in infra-red/optical to ultra-violet bands for low- and intermediate-peaked blazars. The transition from synchrotron to inverse Compton emission falls in the X-ray bands for such sources. We present the spectral and timing analysis of 14 low- and intermediate-energy-peaked blazars observed with XMM-Newton spanning 31 epochs. Parametric fits to X-ray spectra help constrain the possible location of transition from the high-energy end of the synchrotron to the low-energy end of the inverse Compton emission. In seven sources in our sample, we infer such a transition and constrain the break energy in the range 0.6-10 keV. The Lomb-Scargle periodogram is used to estimate the power spectral density (PSD) shape. It is well described by a power law in a majority of light curves, the index being flatter compared to general expectation from active galactic nuclei, ranging here between 0.01 and 1.12, possibly due to short observation durations resulting in an absence of long-term trends. A toy model involving synchrotron self-Compton and external Compton (EC; disc, broad line region, torus) mechanisms are used to estimate magnetic field strength ≤0.03-0.88 G in sources displaying the energy break and infer a prominent EC contribution. The time-scale for variability being shorter than synchrotron cooling implies steeper PSD slopes which are inferred in these sources.

  20. Gamma-400 Science Objectives Built on the Current HE Gamma-Ray and CR Results

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander; Mitchell, John; Thompson, David

    2012-01-01

    The main scientific interest of the Russian Gamma-400 team: Observe gamma-rays above approximately 50 GeV with excellent energy and angular resolution with the goals of: (1) Studying the fine spectral structure of the isotropic high-energy gamma-radiation, (2) Attempting to identify the many still-unidentified Fermi-LAT gamma-ray sources. Gamma-400 will likely be the only space-based gamma-ray observatory operating at the end of the decade. In our proposed Gamma-400-LE version, it will substantially improve upon the capabilities of Fermi LAT and AGILE in both LE and HE energy range. Measuring gamma-rays from approx 20 MeV to approx 1 TeV for at least 7 years, Gamma-400-LE will address the topics of dark matter, cosmic ray origin and propagation, neutron stars, flaring pulsars, black holes, AGNs, GRBs, and actively participate in multiwavelength campaigns.

  1. The Gamma-Ray Albedo of the Moon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moskalenko, I.V.; /Stanford U., HEPL /KIPAC, Menlo Park; Porter, T.A.

    2008-03-25

    We use the GEANT4 Monte Carlo framework to calculate the {gamma}-ray albedo of the Moon due to interactions of cosmic ray (CR) nuclei with moon rock. Our calculation of the albedo spectrum agrees with the EGRET data. We show that the spectrum of {gamma}-rays from the Moon is very steep with an effective cutoff around 3-4 GeV (600 MeV for the inner part of the Moon disk) and exhibits a narrow pion-decay line at 67.5 MeV, perhaps unique in astrophysics. Apart from other astrophysical sources, the albedo spectrum of the Moon is well understood, including its absolute normalization; this makesmore » it a useful 'standard candle' for {gamma}-ray telescopes. The steep albedo spectrum also provides a unique opportunity for energy calibration of {gamma}-ray telescopes, such as the forthcoming Gamma Ray Large Area Space Telescope (GLAST). Since the albedo flux depends on the incident CR spectrum which changes over the solar cycle, it is possible to monitor the CR spectrum using the albedo {gamma}-ray flux. Simultaneous measurements of CR proton and helium spectra by the Payload for Antimatter-Matter Exploration and Light-nuclei Astrophysics (PAMELA), and observations of the albedo {gamma}-rays by the GLAST Large Area Telescope (LAT), can be used to test the model predictions and will enable the LAT to monitor the CR spectrum near the Earth beyond the lifetime of the PAMELA.« less

  2. The Gamma-ray Albedo of the Moon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moskalenko, Igor V.; /Stanford U., HEPL; Porter, Troy A.

    2007-09-28

    We use the GEANT4 Monte Carlo framework to calculate the {gamma}-ray albedo of the Moon due to interactions of cosmic ray (CR) nuclei with moon rock. Our calculation of the albedo spectrum agrees with the EGRET data. We show that the spectrum of {gamma}-rays from the Moon is very steep with an effective cutoff around 3-4 GeV (600 MeV for the inner part of the Moon disk) and exhibits a narrow pion-decay line at 67.5 MeV, perhaps unique in astrophysics. Apart from other astrophysical sources, the albedo spectrum of the Moon is well understood, including its absolute normalization; this makesmore » it a useful 'standard candle' for {gamma}-ray telescopes. The steep albedo spectrum also provides a unique opportunity for energy calibration of {gamma}-ray telescopes, such as the forthcoming Gamma Ray Large Area Space Telescope (GLAST). Since the albedo flux depends on the incident CR spectrum which changes over the solar cycle, it is possible to monitor the CR spectrum using the albedo {gamma}-ray flux. Simultaneous measurements of CR proton and helium spectra by the Payload for Antimatter-Matter Exploration and Light-nuclei Astrophysics (PAMELA), and observations of the albedo {gamma}-rays by the GLAST Large Area Telescope (LAT), can be used to test the model predictions and will enable the LAT to monitor the CR spectrum near the Earth beyond the lifetime of the PAMELA.« less

  3. Observational techniques for solar flare gamma-rays, hard X-rays, and neutrons

    NASA Technical Reports Server (NTRS)

    Lin, Robert P.

    1989-01-01

    The development of new instrumentation and techniques for solar hard X-ray, gamma ray and neutron observations from spacecraft and/or balloon-borne platforms is examined. The principal accomplishments are: (1) the development of a two segment germanium detector which is near ideal for solar hard X-ray and gamma ray spectroscopy; (2) the development of long duration balloon flight techniques and associated instrumentation; and (3) the development of innovative new position sensitive detectors for hard X-ray and gamma rays.

  4. Gamma-ray transfer and energy deposition in supernovae

    NASA Technical Reports Server (NTRS)

    Swartz, Douglas A.; Sutherland, Peter G.; Harkness, Robert P.

    1995-01-01

    Solutions to the energy-independent (gray) radiative transfer equations are compared to results of Monte Carlo simulations of the Ni-56 and Co-56 decay gamma-ray energy deposition in supernovae. The comparison shows that an effective, purely absorptive, gray opacity, kappa(sub gamma) approximately (0. 06 +/- 0.01)Y(sub e) sq cm/g, where Y is the total number of electrons per baryon, accurately describes the interaction of gamma-rays with the cool supernova gas and the local gamma-ray energy deposition within the gas. The nature of the gamma-ray interaction process (dominated by Compton scattering in the relativistic regime) creates a weak dependence of kappa(sub gamma) on the optical thickness of the (spherically symmetric) supernova atmosphere: The maximum value of kappa(sub gamma) applies during optically thick conditions when individual gamma-rays undergo multiple scattering encounters and the lower bound is reached at the phase characterized by a total Thomson optical depth to the center of the atmosphere tau(sub e) approximately less than 1. Gamma-ray deposition for Type Ia supernova models to within 10% for the epoch from maximum light to t = 1200 days. Our results quantitatively confirm that the quick and efficient solution to the gray transfer problem provides an accurate representation of gamma-ray energy deposition for a broad range of supernova conditions.

  5. NEAR Gamma Ray Spectrometer Characterization and Repair

    NASA Technical Reports Server (NTRS)

    Groves, Joel Lee; Vajda, Stefan

    1998-01-01

    This report covers the work completed in the third year of the contract. The principle activities during this period were (1) the characterization of the NEAR 2 Gamma Ray Spectrometer using a neutron generator to generate complex gamma ray spectra and a large Ge Detecter to identify all the major peaks in the spectra; (2) the evaluation and repair of the Engineering Model Unit of the Gamma Ray Spectrometer for the NEAR mission; (3) the investigation of polycapillary x-ray optics for x-ray detection; and (4) technology transfer from NASA to forensic science.

  6. Extragalactic gamma-ray background from AGN winds and star-forming galaxies in cosmological galaxy-formation models

    NASA Astrophysics Data System (ADS)

    Lamastra, A.; Menci, N.; Fiore, F.; Antonelli, L. A.; Colafrancesco, S.; Guetta, D.; Stamerra, A.

    2017-10-01

    We derive the contribution to the extragalactic gamma-ray background (EGB) from active galactic nuclei (AGN) winds and star-forming galaxies by including a physical model for the γ-ray emission produced by relativistic protons accelerated by AGN-driven and supernova-driven shocks into a state-of-the-art semi-analytic model of galaxy formation. This is based on galaxy interactions as triggers of AGN accretion and starburst activity and on expanding blast waves as the mechanism to communicate outwards the energy injected into the interstellar medium by the active nucleus. We compare the model predictions with the latest measurement of the EGB spectrum performed by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope (Fermi) in the range between 100 MeV and 820 GeV. We find that AGN winds can provide 35 ± 15% of the observed EGB in the energy interval Eγ = 0.1-1 GeV, for 73 ± 15% at Eγ = 1-10 GeV, and for 60 ± 20% at Eγ ≳10 GeV. The AGN wind contribution to the EGB is predicted to be larger by a factor of 3-5 than that provided by star-forming galaxies (quiescent plus starburst) in the hierarchical clustering scenario. The cumulative γ-ray emission from AGN winds and blazars can account for the amplitude and spectral shape of the EGB, assuming the standard acceleration theory, and AGN wind parameters that agree with observations. We also compare the model prediction for the cumulative neutrino background from AGN winds with the most recent IceCube data. We find that for AGN winds with accelerated proton spectral index p = 2.2-2.3, and taking into account internal absorption of γ-rays, the Fermi-LAT and IceCube data could be reproduced simultaneously.

  7. Terrestrial gamma-ray flashes

    NASA Astrophysics Data System (ADS)

    Marisaldi, Martino; Fuschino, Fabio; Labanti, Claudio; Tavani, Marco; Argan, Andrea; Del Monte, Ettore; Longo, Francesco; Barbiellini, Guido; Giuliani, Andrea; Trois, Alessio; Bulgarelli, Andrea; Gianotti, Fulvio; Trifoglio, Massimo

    2013-08-01

    Lightning and thunderstorm systems in general have been recently recognized as powerful particle accelerators, capable of producing electrons, positrons, gamma-rays and neutrons with energies as high as several tens of MeV. In fact, these natural systems turn out to be the highest energy and most efficient natural particle accelerators on Earth. Terrestrial Gamma-ray Flashes (TGFs) are millisecond long, very intense bursts of gamma-rays and are one of the most intriguing manifestation of these natural accelerators. Only three currently operative missions are capable of detecting TGFs from space: the RHESSI, Fermi and AGILE satellites. In this paper we review the characteristics of TGFs, including energy spectrum, timing structure, beam geometry and correlation with lightning, and the basic principles of the associated production models. Then we focus on the recent AGILE discoveries concerning the high energy extension of the TGF spectrum up to 100 MeV, which is difficult to reconcile with current theoretical models.

  8. Candidate counterparts to the soft gamma-ray flare in the direction of LS I +61 303

    NASA Astrophysics Data System (ADS)

    Muñoz-Arjonilla, A. J.; Martí, J.; Combi, J. A.; Luque-Escamilla, P.; Sánchez-Sutil, J. R.; Zabalza, V.; Paredes, J. M.

    2009-04-01

    Context: A short duration burst reminiscent of a soft gamma-ray repeater/anomalous X-ray pulsar behaviour was detected in the direction of LS I +61 303 by the Swift satellite. While the association with this well known gamma-ray binary is likely, a different origin cannot be excluded. Aims: We explore the error box of this unexpected flaring event and establish the radio, near-infrared and X-ray sources in our search for any peculiar alternative counterpart. Methods: We carried out a combined analysis of archive Very Large Array radio data of LS I +61 303 sensitive to both compact and extended emission. We also reanalysed previous near infrared observations with the 3.5 m telescope of the Centro Astronómico Hispano Alemán and X-ray observations with the Chandra satellite. Results: Our deep radio maps of the LS I +61 303 environment represent a significant advancement on previous work and 16 compact radio sources in the LS I +61 303 vicinity are detected. For some detections, we also identify near infrared and X-ray counterparts. Extended emission features in the field are also detected and confirmed. The possible connection of some of these sources with the observed flaring event is considered. Based on these data, we are unable to claim a clear association between the Swift-BAT flare and any of the sources reported here. However, this study represents the most sophisticated attempt to determine possible alternative counterparts other than LS I +61 303.

  9. The supernova-gamma-ray burst-jet connection.

    PubMed

    Hjorth, Jens

    2013-06-13

    The observed association between supernovae and gamma-ray bursts represents a cornerstone in our understanding of the nature of gamma-ray bursts. The collapsar model provides a theoretical framework for this connection. A key element is the launch of a bipolar jet (seen as a gamma-ray burst). The resulting hot cocoon disrupts the star, whereas the (56)Ni produced gives rise to radioactive heating of the ejecta, seen as a supernova. In this discussion paper, I summarize the observational status of the supernova-gamma-ray burst connection in the context of the 'engine' picture of jet-driven supernovae and highlight SN 2012bz/GRB 120422A--with its luminous supernova but intermediate high-energy luminosity--as a possible transition object between low-luminosity and jet gamma-ray bursts. The jet channel for supernova explosions may provide new insights into supernova explosions in general.

  10. Search for medium-energy gamma-ray pulsars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sweeney, W.E. Jr.

    1987-01-01

    Results are presented from a search for pulsed gamma rays from four radio pulsars, chosen for their interest to gamma-ray astronomers in previous studies. The data set used for the search consists of gamma-ray events at energies of 1-30 MeV, detected during a 40-hour balloon flight of the UCR double Compton scatter telescope launched at the National Scientific Balloon Facility in Palestine, Texas, USA on September 30, 1978. No statistically significant signals were detected from any of the pulsars. Three sigma upper limits to pulsed 1-30 MeV gamma ray flux from PSR 0950+08, PSR 1822+09, PSR 1929+10, and PSR 1953+29more » are presented. Two complete exposures to PSR 0950+08 were obtained. The reported tentative detection of 1-20 MeV gamma rays from PSR 0950+08 is not confirmed.« less

  11. BLAZAR SPECTRAL PROPERTIES AT 74 MHz

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massaro, F.; Funk, S.; Giroletti, M.

    2013-10-01

    Blazars are the most extreme class of active galactic nuclei. Despite a previous investigation at 102 MHz for a small sample of BL Lac objects and our recent analysis of blazars detected in the Westerbork Northern Sky Survey, a systematic study of the blazar spectral properties at frequencies below 100 MHz has been never carried out. In this paper, we present the first analysis of the radio spectral behavior of blazars based on the recent Very Large Array Low-frequency Sky Survey (VLSS) at 74 MHz. We search for blazar counterparts in the VLSS catalog, confirming that they are detected atmore » 74 MHz. We then show that blazars present radio-flat spectra (i.e., radio spectral indices of ∼0.5) when evaluated, which also about an order of magnitude in frequency lower than previous analyses. Finally, we discuss the implications of our findings in the context of the blazars-radio galaxies connection since the low-frequency radio data provide a new diagnostic tool to verify the expectations of the unification scenario for radio-loud active galaxies.« less

  12. Gamma ray energy tracking in GRETINA

    NASA Astrophysics Data System (ADS)

    Lee, I. Y.

    2011-10-01

    The next generation of stable and exotic beam accelerators will provide physics opportunities to study nuclei farther away from the line of stability. However, these experiments will be more demanding on instrumentation performance. These come from the lower production rate for more exotic beams, worse beam impurities, and large beam velocity from the fragmentation and inverse reactions. Gamma-ray spectroscopy will be one of the most effective tools to study exotic nuclei. However, to fully exploit the physics reach provided by these new facilities, better gamma-ray detector will be needed. In the last 10 years, a new concept, gamma-ray energy tracking array, was developed. Tracking arrays will increase the detection sensitivity by factors of several hundred compared to current arrays used in nuclear physics research. Particularly, the capability of reconstructing the position of the interaction with millimeters resolution is needed to correct the Doppler broadening of gamma rays emitted from high velocity nuclei. GRETINA is a gamma-ray tracking array which uses 28 Ge crystals, each with 36 segments, to cover ¼ of the 4 π of the 4 π solid angle. The gamma ray tracking technique requires detailed pulse shape information from each of the segments. These pulses are digitized using 14-bit 100 MHz flash ADCs, and digital signal analysis algorithms implemented in the on-board FPGAs provides energy, time and selection of pulse traces. A digital trigger system, provided flexible trigger functions including a fast trigger output, and also allows complicated trigger decisions to be made up to 20 microseconds. Further analyzed, carried out in a computer cluster, determine the energy, time, and three-dimensional positions of all gamma-ray interactions in the array. This information is then utilized, together with the characteristics of Compton scattering and pair-production processes, to track the scattering sequences of the gamma rays. GRETINA construction is completed in

  13. Near-equipartition Jets with Log-parabola Electron Energy Distribution and the Blazar Spectral-index Diagrams

    NASA Astrophysics Data System (ADS)

    Dermer, Charles D.; Yan, Dahai; Zhang, Li; Finke, Justin D.; Lott, Benoit

    2015-08-01

    Fermi-LAT analyses show that the γ-ray photon spectral indices {{{Γ }}}γ of a large sample of blazars correlate with the ν {F}ν peak synchrotron frequency {ν }s according to the relation {{{Γ }}}γ =d-k{log} {ν }s. The same function, with different constants d and k, also describes the relationship between {{{Γ }}}γ and peak Compton frequency {ν }{{C}}. This behavior is derived analytically using an equipartition blazar model with a log-parabola description of the electron energy distribution (EED). In the Thomson regime, k={k}{EC}=3b/4 for external Compton (EC) processes and k={k}{SSC}=9b/16 for synchrotron self-Compton (SSC) processes, where b is the log-parabola width parameter of the EED. The BL Lac object Mrk 501 is fit with a synchrotron/SSC model given by the log-parabola EED, and is best fit away from equipartition. Corrections are made to the spectral-index diagrams for a low-energy power-law EED and departures from equipartition, as constrained by absolute jet power. Analytic expressions are compared with numerical values derived from self-Compton and EC scattered γ-ray spectra from Lyα broad-line region and IR target photons. The {{{Γ }}}γ versus {ν }s behavior in the model depends strongly on b, with progressively and predictably weaker dependences on γ-ray detection range, variability time, and isotropic γ-ray luminosity. Implications for blazar unification and blazars as ultra-high energy cosmic-ray sources are discussed. Arguments by Ghisellini et al. that the jet power exceeds the accretion luminosity depend on the doubtful assumption that we are viewing at the Doppler angle.

  14. Broadband Observations of High Redshift Blazars

    NASA Astrophysics Data System (ADS)

    Paliya, Vaidehi S.; Parker, M. L.; Fabian, A. C.; Stalin, C. S.

    2016-07-01

    We present a multi-wavelength study of four high redshift blazars, S5 0014+81 (z = 3.37), CGRaBS J0225+1846 (z = 2.69), BZQ J1430+4205 (z = 4.72), and 3FGL J1656.2-3303 (z = 2.40) using quasi-simultaneous data from the Swift, Nuclear Spectroscopic Telescope Array (NuSTAR) and the Fermi-Large Area Telescope (LAT) and also archival XMM-Newton observations. Other than 3FGL J1656.2-3303, none of the sources were known as γ-ray emitters, and our analysis of ˜7.5 yr of LAT data reveals the first time detection of statistically significant γ-ray emission from CGRaBS J0225+1846. We generate the broadband spectral energy distributions (SED) of all the objects, centering at the epoch of NuSTAR observations and reproduce them using a one-zone leptonic emission model. The optical-UV emission in all the objects can be explained by radiation from the accretion disk, whereas the X-ray to γ-ray windows of the SEDs are found to be dominated by inverse Compton scattering off the broad line region photons. All of them host black holes that are billions of solar masses. Comparing the accretion disk luminosity and the jet power of these sources with a large sample of blazars, we find them to occupy a high disk luminosity-jet power regime. We also investigate the X-ray spectral properties of the sources in detail with a major focus on studying the causes of soft X-ray deficit, a feature generally seen in high redshift radio-loud quasars. We summarize that this feature could be explained based on the intrinsic curvature in the jet emission rather than being due to the external effects predicted in earlier studies, such as host galaxy and/or warm absorption.

  15. BROADBAND OBSERVATIONS OF HIGH REDSHIFT BLAZARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paliya, Vaidehi S.; Parker, M. L.; Fabian, A. C.

    We present a multi-wavelength study of four high redshift blazars, S5 0014+81 ( z = 3.37), CGRaBS J0225+1846 ( z = 2.69), BZQ J1430+4205 ( z = 4.72), and 3FGL J1656.2−3303 ( z = 2.40) using quasi-simultaneous data from the Swift , Nuclear Spectroscopic Telescope Array ( NuSTAR ) and the Fermi -Large Area Telescope (LAT) and also archival XMM-Newton observations. Other than 3FGL J1656.2−3303, none of the sources were known as γ -ray emitters, and our analysis of ∼7.5 yr of LAT data reveals the first time detection of statistically significant γ -ray emission from CGRaBS J0225+1846. We generatemore » the broadband spectral energy distributions (SED) of all the objects, centering at the epoch of NuSTAR observations and reproduce them using a one-zone leptonic emission model. The optical−UV emission in all the objects can be explained by radiation from the accretion disk, whereas the X-ray to γ -ray windows of the SEDs are found to be dominated by inverse Compton scattering off the broad line region photons. All of them host black holes that are billions of solar masses. Comparing the accretion disk luminosity and the jet power of these sources with a large sample of blazars, we find them to occupy a high disk luminosity–jet power regime. We also investigate the X-ray spectral properties of the sources in detail with a major focus on studying the causes of soft X-ray deficit, a feature generally seen in high redshift radio-loud quasars. We summarize that this feature could be explained based on the intrinsic curvature in the jet emission rather than being due to the external effects predicted in earlier studies, such as host galaxy and/or warm absorption.« less

  16. Possible Detection of Gamma Ray Air Showers in Coincidence with BATSE Gamma Ray Bursts

    NASA Astrophysics Data System (ADS)

    Lin, Tzu-Fen

    1999-08-01

    Project GRAND presents the results of a search for coincident high-energy gamma ray events in the direction and at the time of nine Gamma Ray Bursts (GRBs) detected by BATSE. A gamma ray has a non-negligible hadron production cross section; for each gamma ray of energy of 100 GeV, there are 0.015 muons which reach detection level (Fasso & Poirier, 1999). These muons are identified and their angles are measured in stations of eight planes of proportional wire chambers (PWCs). A 50 mm steel plate above the bottom pair of planes is used to distinguish muons from electrons. The mean angular resolution is 0.26o over a ± 61o range in the XZ and YZ planes. The BATSE GRB catalogue is examined for bursts which are near zenith for Project GRAND. The geometrical acceptance is calculated for each of these events. The product is then taken of the GRB flux and GRANDÕs geometrical acceptance. The nine sources with the best combination of detection efficiency and BATSEÕs intensity are selected to be examined in the data. The most significant detection of these nine sources is at a statistical significance of +3.7s; this is also the GRB with the highest product of GRB flux and geometrical acceptance.

  17. Solar Gamma Rays Above 8 MeV

    NASA Technical Reports Server (NTRS)

    Crannell, C. J.; Crannell, H.; Ramaty, R.

    1978-01-01

    Processes which lead to the production of gamma rays with energy greater than 8 MeV in solar flares are reviewed and evaluated. Excited states produced by inelastic scattering, charge exchange, and spallation reactions in the abundant nuclear species are considered in order to identify nuclear lines which may contribute to the Gamma ray spectrum of solar flares. The flux of 15.11 MeV Gamma rays relative to the flux of 4.44 MeV Gamma rays from the de-excitation of the corresponding states in C12 is calculated for a number of assumed distributions of exciting particles. This flux ratio is a sensitive diagnostic of accelerated particle spectra. Other high energy nuclear levels are not so isolated as the 15.11 MeV state and are not expected to be so strong. The spectrum of Gamma rays from the decay of Pi dey is sensitive to the energy distribution of particles accelerated to energies greater than 100 MeV.

  18. Gamma ray constraints on the Galactic supernova rate

    NASA Technical Reports Server (NTRS)

    Hartmann, D.; The, L.-S.; Clayton, Donald D.; Leising, M.; Mathews, G.; Woosley, S. E.

    1991-01-01

    We perform Monte Carlo simulations of the expected gamma ray signatures of Galactic supernovae of all types to estimate the significance of the lack of a gamma ray signal due to supernovae occurring during the last millenium. Using recent estimates of the nuclear yields, we determine mean Galactic supernova rates consistent with the historic supernova record and the gamma ray limits. Another objective of these calculations of Galactic supernova histories is their application to surveys of diffuse Galactic gamma ray line emission.

  19. Gamma ray constraints on the galactic supernova rate

    NASA Technical Reports Server (NTRS)

    Hartmann, D.; The, L.-S.; Clayton, D. D.; Leising, M.; Mathews, G.; Woosley, S. E.

    1992-01-01

    Monte Carlo simulations of the expected gamma-ray signatures of galactic supernovae of all types are performed in order to estimate the significance of the lack of a gamma-ray signal due to supernovae occurring during the last millenium. Using recent estimates of nuclear yields, we determine galactic supernova rates consistent with the historic supernova record and the gamma-ray limits. Another objective of these calculations of galactic supernova histories is their application to surveys of diffuse galactic gamma-ray line emission.

  20. Telescope for x ray and gamma ray studies in astrophysics

    NASA Technical Reports Server (NTRS)

    Weaver, W. D.; Desai, Upendra D.

    1993-01-01

    Imaging of x-rays has been achieved by various methods in astrophysics, nuclear physics, medicine, and material science. A new method for imaging x-ray and gamma-ray sources avoids the limitations of previously used imaging devices. Images are formed in optical wavelengths by using mirrors or lenses to reflect and refract the incoming photons. High energy x-ray and gamma-ray photons cannot be reflected except at grazing angles and pass through lenses without being refracted. Therefore, different methods must be used to image x-ray and gamma-ray sources. Techniques using total absorption, or shadow casting, can provide images in x-rays and gamma-rays. This new method uses a coder made of a pair of Fresnel zone plates and a detector consisting of a matrix of CsI scintillators and photodiodes. The Fresnel zone plates produce Moire patterns when illuminated by an off-axis source. These Moire patterns are deconvolved using a stepped sine wave fitting or an inverse Fourier transform. This type of coder provides the capability of an instantaneous image with sub-arcminute resolution while using a detector with only a coarse position-sensitivity. A matrix of the CsI/photodiode detector elements provides the necessary coarse position-sensitivity. The CsI/photodiode detector also allows good energy resolution. This imaging system provides advantages over previously used imaging devices in both performance and efficiency.