Science.gov

Sample records for gamma-ray burst models

  1. Modeling gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Maxham, Amanda

    Discovered serendipitously in the late 1960s, gamma-ray bursts (GRBs) are huge explosions of energy that happen at cosmological distances. They provide a grand physical playground to those who study them, from relativistic effects such as beaming, jets, shocks and blastwaves to radiation mechanisms such as synchrotron radiation to galatic and stellar populations and history. Through the Swift and Fermi space telescopes dedicated to observing GRBs over a wide range of energies (from keV to GeV), combined with accurate pinpointing that allows ground based follow-up observations in the optical, infrared and radio, a rich tapestry of GRB observations has emerged. The general picture is of a mysterious central engine (CE) probably composed of a black hole or neutron star that ejects relativistic shells of matter into intense magnetic fields. These shells collide and combine, releasing energy in "internal shocks" accounting for the prompt emission and flaring we see and the "external shock" or plowing of the first blastwave into the ambient surrounding medium has well-explained the afterglow radiation. We have developed a shell model code to address the question of how X-ray flares are produced within the framework of the internal shock model. The shell model creates randomized GRB explosions from a central engine with multiple shells and follows those shells as they collide, merge and spread, producing prompt emission and X-ray flares. We have also included a blastwave model, which can constrain X-ray flares and explain the origin of high energy (GeV) emission seen by the Fermi telescope. Evidence suggests that gamma-ray prompt emission and X-ray flares share a common origin and that at least some flares can only be explained by long-lasting central engine activity. We pay special attention to the time history of central engine activity, internal shocks, and observed flares. We calculate the gamma-ray (Swift/BAT band) and X-ray (Swift/XRT band) lightcurves for arbitrary

  2. Gamma-Ray Burst Progenitors: Merger Model

    NASA Astrophysics Data System (ADS)

    Ruffert, Maximilian

    2002-04-01

    The mergers of neutron stars and black holes remain a viable model for gamma-ray burst central engines, at least for the class of short bursts: their time scales, occurrence rates and energy output seem to be consistent with observations. We will present results of our latest simulations showing how the orbit of a neutron star around a black hole shrinks due to gravitational radiation, how the neutron star's matter gets accreted by the black hole, and how the tidal forces of the black hole finally shred the neutron star into a thick disk. In this process, huge amounts of energy are radiated away by gravitational waves and by neutrinos emitted from the hot disk. The neutrino luminosities are so large that an appreciable fraction (some few percent!) of neutrinos annihilate with antineutrinos creating the clean fireball necessary to power gamma-ray bursts.

  3. Emission model of gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Liang, E. P.

    1983-01-01

    The emission mechanisms of cosmic gamma-ray bursts are reviewed. In particular, the thermal synchrotron model is discussed as the most viable mechanism for the majority of the continuum emission. Within this framework various information about the source region can be extracted. The picture that emerges is that of a hot (kT = .2 - 1.0 sq mc), thin sheet of dense pair-dominated plasma emitting via cyclo-synchrotron radiation in a strong magnetic field (B approximately one-hundred billion to one trillion gauss). Speculations on the origin and structure of this sheet are attempted. The problem of high-energy photons above pair production threshold escaping from the source is also considered.

  4. Energy sources in gamma-ray burst models

    NASA Technical Reports Server (NTRS)

    Taam, Ronald E.

    1987-01-01

    The current status of energy sources in models of gamma-ray bursts is examined. Special emphasis is placed on the thermonuclear flash model which has been the most developed model to date. Although there is no generally accepted model, if the site for the gamma-ray burst is on a strongly magnetized neutron star, the thermonuclear model can qualitatively explain the energetics of some, but probably not all burst events. The critical issues that may differentiate between the possible sources of energy for gamma-ray bursts are listed and briefly discussed.

  5. Gamma-ray Bursts

    NASA Astrophysics Data System (ADS)

    Kouveliotou, Chryssa; Wijers, Ralph A. M. J.; Woosley, Stan

    2012-11-01

    Prologue C. Kouveliotou, R. A . M. J. Wijers and S. E. Woosley; 1. The discovery of the gamma-ray burst phenomenon R. W. Klebesadel; 2. Instrumental principles E. E. Fenimore; 3. The BATSE era G. J. Fishman and C. A. Meegan; 4. The cosmological era L. Piro and K. Hurley; 5. The Swift era N. Gehrels and D. N. Burrows; 6. Discoveries enabled by multi-wavelength afterglow observations of gamma-ray bursts J. Greiner; 7. Prompt emission from gamma-ray bursts T. Piran, R. Sari and R. Mochkovitch; 8. Basic gamma-ray burst afterglows P. Mészáros and R. A. M. J. Wijers; 9. The GRB-supernova connection J. Hjorth and J. S. Bloom; 10. Models for gamma-ray burst progenitors and central engines S. E. Woosley; 11. Jets and gamma-ray burst unification schemes J. Granot and E. Ramirez-Ruiz; 12. High-energy cosmic rays and neutrinos E. Waxman; 13. Long gamma-ray burst host galaxies and their environments J. P. U. Fynbo, D. Malesani and P. Jakobsson; 14. Gamma-ray burst cosmology V. Bromm and A. Loeb; 15. Epilogue R. D. Blandford; Index.

  6. An Integrated Universal Collapsar Gamma-ray Burst Model

    SciTech Connect

    Salmonson, J D

    2004-01-21

    Starting with two assumptions: (1) gamma-ray bursts originate from stellar death phenomena or so called ''collapsars'' and (2) that these bursts are quasi-universal, whereby the majority of the observed variation is due to our perspective of the jet, an integrated gamma-ray burst model is proposed. It is found that several of the key correlations in the data can be naturally explained with this simple picture and another possible correlation is predicted.

  7. THE ORTHOGONAL GAMMA-RAY BURST MODEL

    SciTech Connect

    Contopoulos, Ioannis; Pugliese, Daniela; Nathanail, Antonios

    2014-01-01

    We explore the analogy between a rotating magnetized black hole and an axisymmetric pulsar and derive the black hole's electromagnetic spindown after its formation in the core collapse of a supermassive star. The spindown shows two characteristic phases: an early Blandford-Znajek phase that lasts a few hundred seconds and a late pulsar-like afterglow phase that lasts much longer. During the first phase, the spindown luminosity decreases almost exponentially, whereas during the afterglow phase it decreases as t {sup –a} with 1 ≲ a ≲ 1.5. We associate our findings with long duration gamma-ray bursts and compare them with observations.

  8. Multiple scattering in wind models of gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Smith, I. A.; Coppi, P. S.; Lamb, D. Q.

    1992-01-01

    In wind models of gamma-ray bursts, it has been assumed that soft X-ray photons are scattered only once by relativistic electrons moving away from the star; this assumes that the scattering optical depth is small. Using the observational data from the bursts, we consider three methods for estimating this optical depth: (1) the luminosity of the burst, (2) the ratio of the gamma-ray flux (greater than 10 keV) to X-ray flux (less than 10 keV), and (3) the presence or lack of cyclotron lines. Within the context of the wind models, we find that multiple scattering is likely to be important in the formation of the spectrum in gamma-ray bursts.

  9. Gamma-ray bursts.

    PubMed

    Gehrels, Neil; Mészáros, Péter

    2012-08-24

    Gamma-ray bursts (GRBs) are bright flashes of gamma rays coming from the cosmos. They occur roughly once per day, typically last for tens of seconds, and are the most luminous events in the universe. More than three decades after their discovery, and after pioneering advances from space and ground experiments, they still remain mysterious. The launch of the Swift and Fermi satellites in 2004 and 2008 brought in a trove of qualitatively new data. In this Review, we survey the interplay between these recent observations and the theoretical models of the prompt GRB emission and the subsequent afterglow. PMID:22923573

  10. Classifying gamma-ray bursts with Gaussian Mixture Model

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi-Bin; Yang, En-Bo; Choi, Chul-Sung; Chang, Heon-Young

    2016-11-01

    Using Gaussian Mixture Model (GMM) and expectation-maximization algorithm, we perform an analysis of time duration (T90) for Compton Gamma Ray Observatory (CGRO)/BATSE, Swift/BAT and Fermi/GBM gamma-ray bursts (GRBs). The T90 distributions of 298 redshift-known Swift/BAT GRBs have also been studied in both observer and rest frames. Bayesian information criterion has been used to compare between different GMM models. We find that two Gaussian components are better to describe the CGRO/BATSE and Fermi/GBM GRBs in the observer frame. Also, we caution that two groups are expected for the Swift/BAT bursts in the rest frame, which is consistent with some previous results. However, Swift GRBs in the observer frame seem to show a trimodal distribution, of which the superficial intermediate class may result from the selection effect of Swift/BAT.

  11. Galactic dual population models of gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Higdon, J. C.; Lingenfelter, R. E.

    1994-01-01

    We investigate in more detail the properties of two-population models for gamma-ray bursts in the galactic disk and halo. We calculate the gamma-ray burst statistical properties, mean value of (V/V(sub max)), mean value of cos Theta, and mean value of (sin(exp 2) b), as functions of the detection flux threshold for bursts coming from both Galactic disk and massive halo populations. We consider halo models inferred from the observational constraints on the large-scale Galactic structure and we compare the expected values of mean value of (V/V(sub max)), mean value of cos Theta, and mean value of (sin(exp 2) b), with those measured by Burst and Transient Source Experiment (BATSE) and other detectors. We find that the measured values are consistent with solely Galactic populations having a range of halo distributions, mixed with local disk distributions, which can account for as much as approximately 25% of the observed BATSE bursts. M31 does not contribute to these modeled bursts. We also demonstrate, contrary to recent arguments, that the size-frequency distributions of dual population models are quite consistent with the BATSE observations.

  12. Gamma-Ray Bursts

    SciTech Connect

    Paciesas, W.S. ); Fishman, G.J. )

    1992-01-01

    This proceedings represents the works presented at the Gamma-Ray Bursts Workshop -- 1991 which was held on the campus of theUniversity of Alabama in Huntsville, October 16-18. The emphasis ofthe Workshop was to present and discuss new observations of gamma-ray bursts made recently by experiments on the Compton Gamma-RayObservatory (CGRO), Granat, Ginga, Pioneer Venus Orbiter, Prognozand Phobos. These presentations were complemented by some groundbased observations, reanalysis of older data, descriptions offuture gamma-ray burst experiments and a wide-ranging list oftheoretical discussions. Over seventy papers are included in theproceedings. Eleven of them are abstracted for the database. (AIP)

  13. GRO: Black hole models for gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Ruderman, Malvin

    1995-01-01

    The Burst and Transient Source Experiment (BATSE) on board the Compton Gamma Ray Observatory (CGRO) has established that the distribution of gamma-ray bursts (GRB's) is isotropic but is bound radially. This finding suggests that the bursts are either cosmological or they originate from an extended Galactic halo. The implied luminosities and the observed variability of the GRB's on time scales as short as one millisecond suggest that they originate from compact objects. We are presently studying black hole models for GRB's. Any such model must produce a non-thermal photon spectrum to agree with the observed properties. For a wide range of burst parameters the assumed bursting source consists of a non-thermal electron-positron-photon plasma of very high density. It seems possible to produce such a plasma in accretion onto black holes. In our on-going work, we are developing the kinetic theory for a non-equilibrium pair plasma. The main new features of our work are as follows: (1) We do not assume the presence of a thermal electron bath. (2) Non-thermal, high-energy pairs are allowed to have an arbitrary concentration and energy distribution. (3) There is no soft photon source in our model; initially all the photons in the plasma are either energetic X-rays or gamma-rays. (4) The initial energy distribution of the pairs as well as photons is arbitrary. (5) We collect the analytical expressions for the kinetic kernels for all relevant processes. And (6) we present a different approach to finding the time-evolution of pair and photon spectra, which is a combination of the kinetic-theory and the non-linear Monte-Carlo schemes. We have developed many Monte-Carlo programs to model various process, to take into account the time evolution, and to incorporate various physical effects which are unique to non-thermal plasmas. The hydrodynamics of fireballs in GRB's was studied before. Applying results from kinetic theory will improve our understanding of these systems.

  14. Models for Supernovae and Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Woosley, Stan

    Supernovae and gamma-ray bursts are the brightest stellar mass explosions in the universe. As such, they serve as cosmic beacons for probing cosmic structure and diagnosing the properties of stars and the universe when it was young. They also produce black holes and neutron stars, interesting in themselves as laboratories where exotic physics comes into play, and they make the elements from which life arises. Consequently, supernovae and gamma-ray bursts are subject to intense study by many NASA missions. We propose focused studies in five areas of supernova research that are directly relevant to NASA's missions, especially SWIFT, HST, JWST, and planning for WFIRST. Our specific topics are a) models for Type Ia supernovae; b) extreme supernovae and first supernovae; c) magnetar-powered supernovae; d) ultra-long duration gamma-ray bursts; and e) shock breakout in supernovae. These phenomena all have in common their importance to NASA missions and the fact that they can be studied using similar tools - computer codes that do radiation hydrodynamics. Our two principal codes, KEPLER (one-dimension) and CASTRO (one to three dimensions), have been honed to the task by years of supernova modeling, and have some unique capabilities. Type Ia supernovae have long been of interest to NASA, but their importance has increased lately because of their utility in determining cosmic distances and because a string of recent observational breakthroughs has severely limited their progenitors. Responding to these developments, we propose to focus on a class of model we have previously neglected, the merger of two white dwarfs. The mergers will be studied with KEPLER and CASTRO in one and two dimensions, and the spectra and light curves determined. The library of model results will be useful in interpreting the results of present NASA missions and planning new ones. A second important area of investigation will be the study of first generation stars and the supernovae that they produce

  15. GRO: Black hole models for gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Shaham, Jacob

    1994-01-01

    The possibility of creating gamma ray bursts (GRB's) from accretion flows on to black holes is investigated. The mechanism of initial energy release in the form of a burst is not understood yet. The typical time scales involved in this energy release and the initial distribution of photons as a function of energy are studied. As a first step the problem is formulated in the Minkowski spacetime for a homogeneous and isotropic burst. For an arbitrary initial distribution of photons, the equations of relativistic kinetic theory are formulated for nonequilibrium plasmas which can take into account various particle creation and annihilation processes and various scattering processes.

  16. A MAD model for gamma-ray burst variability

    NASA Astrophysics Data System (ADS)

    Lloyd-Ronning, Nicole M.; Dolence, Joshua C.; Fryer, Christopher L.

    2016-09-01

    We present a model for the temporal variability of long gamma-ray bursts (GRBs) during the prompt phase (the highly variable first 100 s or so), in the context of a magnetically arrested disc (MAD) around a black hole. In this state, sufficient magnetic flux is held on to the black hole such that it stalls the accretion near the inner region of the disc. The system transitions in and out of the MAD state, which we relate to the variable luminosity of the GRB during the prompt phase, with a characteristic time-scale defined by the free-fall time in the region over which the accretion is arrested. We present simple analytic estimates of the relevant energetics and time-scales, and compare them to GRB observations. In particular, we show how this model can reproduce the characteristic one second time-scale that emerges from various analyses of the prompt emission light curve. We also discuss how our model can accommodate the potentially physically important correlation between a burst quiescent time and the duration of its subsequent pulse.

  17. GRO: Black hole models for gamma ray bursts

    NASA Technical Reports Server (NTRS)

    Shaham, Jacob

    1993-01-01

    This grant deals with the production of gamma-ray bursts (GRB's) close to horizons of black holes (BH's), mainly via accretion of small chunks of matter onto extreme Kerr BH's. In the past year, we laid the ground work for actual calculations close to Kerr BH's. Because of technical reasons, actual work has only started very recently. Following the detailed list of research subprojects as per our original proposal, we have performed research in the following areas: spectrum calculation; burst dynamics; tidal capture and primordial cloud collapse; halo density profile; and capture of other objects.

  18. Modeling Extragalactic Extinction through Gamma-Ray Burst Afterglows

    NASA Astrophysics Data System (ADS)

    Zonca, Alberto; Cecchi-Pestellini, Cesare; Mulas, Giacomo; Casu, Silvia; Aresu, Giambattista

    2016-09-01

    We analyze extragalactic extinction profiles derived through gamma-ray burst afterglows, using a dust model specifically constructed on the assumption that dust grains are not immutable but respond, time-dependently, to the local physics. Such a model includes core-mantle spherical particles of mixed chemical composition (silicate core, sp2, and sp3 carbonaceous layers), and an additional molecular component in the form of free-flying polycyclic aromatic hydrocarbons. We fit most of the observed extinction profiles. Failures occur for lines of sight, presenting remarkable rises blueward of the bump. We find a tendency for the carbon chemical structure to become more aliphatic with the galactic activity, and to some extent with increasing redshifts. Moreover, the contribution of the molecular component to the total extinction is more important in younger objects. The results of the fitting procedure (either successes and failures) may be naturally interpreted through an evolutionary prescription based on the carbon cycle in the interstellar medium of galaxies.

  19. Gamma Ray Bursts - Observations

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Cannizzo, J. K.

    2010-01-01

    We are in an exciting period of discovery for gamma-ray bursts. The Swift observatory is detecting 100 bursts per year, providing arcsecond localizations and sensitive observations of the prompt and afterglow emission. The Fermi observatory is observing 250 bursts per year with its medium-energy GRB instrument and about 10 bursts per year with its high-energy LAT instrument. In addition, rapid-response telescopes on the ground are providing new capabilities to study optical emission during the prompt phase and spectral signatures of the host galaxies. The combined data set is enabling great advances in our understanding of GRBs including afterglow physics, short burst origin, and high energy emission.

  20. Two populations and models of gamma ray bursts

    NASA Technical Reports Server (NTRS)

    Katz, J. I.

    1993-01-01

    Gamma-ray burst statistics are best explained by a source population at cosmological distances, while spectroscopy and intensity histories of some individual bursts imply an origin on Galactic neutron stars. To resolve this inconsistency I suggest the presence of two populations, one at cosmological distances and the other Galactic. I build on ideas of Shemi and Piran (1990) and of Rees and Mesozaros (1992) involving the interaction of fireball debris with surrounding clouds to explain the observed intensity histories in bursts at cosmological distances. The distances to the Galactic population are undetermined because they are too few to affect the statistics of intensity and direction; I explain them as resulting from magnetic reconnection in neutron star magnetospheres. An appendix describes the late evolution of the debris as a relativistic blast wave.

  1. Gamma-ray burst spectra

    NASA Technical Reports Server (NTRS)

    Teegarden, B. J.

    1982-01-01

    A review of recent results in gamma-ray burst spectroscopy is given. Particular attention is paid to the recent discovery of emission and absorption features in the burst spectra. These lines represent the strongest evidence to date that gamma-ray bursts originate on or near neutron stars. Line parameters give information on the temperature, magnetic field and possibly the gravitational potential of the neutron star. The behavior of the continuum spectrum is also discussed. A remarkably good fit to nearly all bursts is obtained with a thermal-bremsstrahlung-like continuum. Significant evolution is observed of both the continuum and line features within most events.

  2. POPULATION SYNTHESIS AND GAMMA RAY BURST PROGENITORS

    SciTech Connect

    C. L. FREYER

    2000-12-11

    Population synthesis studies of binaries are always limited by a myriad of uncertainties from the poorly understood effects of binary mass transfer and common envelope evolution to the many uncertainties that still remain in stellar evolution. But the importance of these uncertainties depends both upon the objects being studied and the questions asked about these objects. Here I review the most critical uncertainties in the population synthesis of gamma-ray burst progenitors. With a better understanding of these uncertainties, binary population synthesis can become a powerful tool in understanding, and constraining, gamma-ray burst models. In turn, as gamma-ray bursts become more important as cosmological probes, binary population synthesis of gamma-ray burst progenitors becomes an important tool in cosmology.

  3. The limitations of resonant Compton scattering as a gamma-ray burst model

    NASA Technical Reports Server (NTRS)

    Brainerd, J. J.

    1992-01-01

    Resonant Compton upscattering is commended as a mechanism that produces a hard gamma-ray spectrum while suppressing X-rays. This model, however, has severe physical and observational limitations. Effective X-ray suppression places a lower limit on the electron density; above this limit X-rays scatter multiple times, so the single-scattering approximation of this mechanism is invalid. Multiple scattering produces a spectrum that is much harder than the single-scattering spectrum. As the Thomson optical depth of a power-law electron beam approaches unity, photon spawning commences at a high rate and physically invalidates the underlying electron distribution. The Compton upscattering model is therefore only valid over a narrow range of electron densities. An observational consequence of this model is the absence of the third cyclotron resonance. Resonant scattering produces gamma-rays that propagate nearly along the magnetic field. The resonant cross section of the third harmonic, which is strongly angle dependent, falls below the Compton continuum for these gamma rays. The observation of a third cyclotron resonance in a gamma-ray burst spectrum would eliminate resonant Compton scattering as a gamma-ray burst process.

  4. Swift's 500th Gamma Ray Burst

    NASA Video Gallery

    On April 13, 2010, NASA's Swift Gamma-ray Burst Explorer satellite discovered its 500th burst. Swift's main job is to quickly localize each gamma-ray burst (GRB), report its position so that others...

  5. Cosmological gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Paczynski, Bohdan

    1991-01-01

    The distribution in angle and flux of gamma-ray bursts indicates that the majority of gamma-ray bursters are at cosmological distances, i.e., at z of about 1. The rate is then about 10 exp -8/yr in a galaxy like the Milky Way, i.e., orders of magnitude lower than the estimated rate for collisions between neutron stars in close binary systems. The energy per burst is about 10 exp 51 ergs, assuming isotropic emission. The events appear to be less energetic and more frequent if their emission is strongly beamed. Some tests for the distance scale are discussed: a correlation between the burst's strength and its spectrum; the absorption by the Galactic gas below about 2 keV; the X-ray tails caused by forward scattering by the Galactic dust; about 1 month recurrence of some bursts caused by gravitational lensing by foreground galaxies; and a search for gamma-ray bursts in M31. The bursts appear to be a manifestation of something exotic, but conventional compact objects can provide an explanation. The best possibility is offered by a decay of a bindary composed of a spinning-stellar-mass black-hole primary and a neutron or a strange-quark star secondary. In the final phase the secondary is tidally disrupted, forms an accretion disk, and up to 10 exp 54 ergs are released. A very small fraction of this energy powers the gamma-ray burst.

  6. Cosmological gamma-ray bursts

    SciTech Connect

    Fenimore, E.; Epstein, R.; Ho, C.; Intzand, J.

    1996-04-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Gamma-ray bursts are brief events that dominate the emission from all other gamma-ray objects in the sky, flicker for tens of seconds, and then turn off. Their nature remains uncertain despite years of efforts to understand them. One hypothesis is that the bursts arise within our galaxy albeit in an extended halo of neutron stars. Another hypothesis uses the isotropic distribution of gamma-ray bursts to argue that they come from nearly the edge of the universe. If gamma-ray bursts originate from cosmological distances, then the expansion of the universe should cause the dimmer (and presumably further) bursts to last longer. The authors have developed methods for measuring this time stretching, related the time stretching to the distance to the bursts, determined how the detailed physics causes temporal variations, and found the amount of total energy and peak luminosity that the events must be producing.

  7. Multiple resonant scattering in the Compton upscatter model of gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Brainerd, J. J.

    1992-01-01

    Resonant Compton scattering, an increasingly popular mechanism for suppressing X-rays and producing gamma rays, must be treated as a multiple-scattering process for conditions thought characteristic of gamma-ray bursts. Photons that multiply scatter with a beamed power-law electron distribution in a uniform magnetic field produce a flat spectrum between the cyclotron frequency and an optical-depth-dependent critical energy; this critical energy ranges between several hundred keV and several MeV. Above this critical energy, the gamma-ray spectrum has a shape determined by the electron distribution and described by a single-scattering model. Only electron distributions that are nearly proportional to the electron momentum are able to simultaneously suppress X-rays and produce a single-scattering spectrum. As the Thomson optical depth approaches unity, photons that experience multiple scatterings often spawn additional photons at a rate that makes the model unphysical.

  8. Spectral properties of blast-wave models of gamma-ray burst sources

    NASA Technical Reports Server (NTRS)

    Meszaros, P.; Rees, M. J.; Papathanassiou, H.

    1994-01-01

    We calculate the spectrum of blast-wave models of gamma-ray burst sources, for various assumptions about the magnetic field density and the relativistic particle acceleration efficiency. For a range of physically plausible models we find that the radiation efficiency is high and leads to nonthermal spectra with breaks at various energies comparable to those observed in the gamma-ray range. Radiation is also predicted at other wavebands, in particular at X-ray, optical/UV, and GeV/TeV energies. We discuss the spectra as a function of duration for three basic types of models, and for cosmological, halo, and galactic disk distances. We also evaluate the gamma-ray fluences and the spectral characteristics for a range of external densities. Impulsive burst models at cosmological distances can satisfy the conventional X-ray paucity constraint S(sub x)/S(sub gamma)less than a few percent over a wide range of durations, but galactic models can do so only for bursts shorter than a few seconds, unless additional assumptions are made. The emissivity is generally larger for bursts in a denser external environment, with the efficiency increasing up to the point where all the energy input is radiated away.

  9. Cascade model of gamma-ray bursts: Power-law and annihilation-line components

    NASA Technical Reports Server (NTRS)

    Harding, A. K.; Sturrock, P. A.; Daugherty, J. K.

    1988-01-01

    If, in a neutron star magnetosphere, an electron is accelerated to an energy of 10 to the 11th or 12th power eV by an electric field parallel to the magnetic field, motion of the electron along the curved field line leads to a cascade of gamma rays and electron-positron pairs. This process is believed to occur in radio pulsars and gamma ray burst sources. Results are presented from numerical simulations of the radiation and photon annihilation pair production processes, using a computer code previously developed for the study of radio pulsars. A range of values of initial energy of a primary electron was considered along with initial injection position, and magnetic dipole moment of the neutron star. The resulting spectra was found to exhibit complex forms that are typically power law over a substantial range of photon energy, and typically include a dip in the spectrum near the electron gyro-frequency at the injection point. The results of a number of models are compared with data for the 5 Mar., 1979 gamma ray burst. A good fit was found to the gamma ray part of the spectrum, including the equivalent width of the annihilation line.

  10. New constraints on neutron star models of gamma-ray bursts. II - X-ray observations of three gamma-ray burst error boxes

    NASA Technical Reports Server (NTRS)

    Boer, M.; Hurley, K.; Pizzichini, G.; Gottardi, M.

    1991-01-01

    Exosat observations are presented for 3 gamma-ray-burst error boxes, one of which may be associated with an optical flash. No point sources were detected at the 3-sigma level. A comparison with Einstein data (Pizzichini et al., 1986) is made for the March 5b, 1979 source. The data are interpreted in the framework of neutron star models and derive upper limits for the neutron star surface temperatures, accretion rates, and surface densities of an accretion disk. Apart from the March 5b, 1979 source, consistency is found with each model.

  11. Do gamma-ray burst sources repeat?

    NASA Technical Reports Server (NTRS)

    Meegan, C. A.; Hartmann, D. H.; Brainerd, J. J.; Briggs, M.; Paciesas, W. S.; Pendleton, G.; Kouveliotou, C.; Fishman, G.; Blumenthal, G.; Brock, M.

    1994-01-01

    The demonstration of repeated gamma-ray bursts from an individual source would severely constrain burst source models. Recent reports of evidence for repetition in the first BATSE burst catalog have generated renewed interest in this issue. Here, we analyze the angular distribution of 585 bursts of the second BATSE catalog (Meegan et al. 1994). We search for evidence of burst recurrence using the nearest and farthest neighbor statistic ad the two-point angular correlation function. We find the data to be consistent with the hypothesis that burst sources do not repeat; however, a repeater fraction of up to about 20% of the bursts cannot be excluded.

  12. Supernovae and Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Livio, Mario; Panagia, Nino; Sahu, Kailash

    2001-07-01

    Participants; Preface; Gamma-ray burst-supernova relation B. Paczynski; Observations of gamma-ray bursts G. Fishman; Fireballs T. Piran; Gamma-ray mechanisms M. Rees; Prompt optical emission from gamma-ray bursts R. Kehoe, C. Akerlof, R. Balsano, S. Barthelmy, J. Bloch, P. Butterworth, D. Casperson, T. Cline, S. Fletcher, F. Frontera, G. Gisler, J. Heise, J. Hills, K. Hurley, B. Lee, S. Marshall, T. McKay, A. Pawl, L. Piro, B. Priedhorsky, J. Szymanski and J. Wren; X-ray afterglows of gamma-ray bursts L. Piro; The first year of optical-IR observations of SN1998bw I. Danziger, T. Augusteijn, J. Brewer, E. Cappellaro, V. Doublier, T. Galama, J. Gonzalez, O. Hainaut, B. Leibundgut, C. Lidman, P. Mazzali, K. Nomoto, F. Patat, J. Spyromilio, M. Turatto, J. Van Paradijs, P. Vreeswijk and J. Walsh; X-ray emission of Supernova 1998bw in the error box of GRB980425 E. Pian; Direct analysis of spectra of type Ic supernovae D. Branch; The interaction of supernovae and gamma-ray bursts with their surroundings R. Chevalier; Magnetars, soft gamma-ray repeaters and gamma-ray bursts A. Harding; Super-luminous supernova remnants Y. -H. Chu, C. -H. Chen and S. -P. Lai; The properties of hypernovae: SNe Ic 1998bw, 1997ef, and SN IIn 1997cy K. Nomoto, P. Mazzali, T. Nakamura, K. Iwanmoto, K. Maeda, T. Suzuki, M. Turatto, I. Danziger and F. Patat; Collapsars, Gamma-Ray Bursts, and Supernovae S. Woosley, A. MacFadyen and A. Heger; Pre-supernova evolution of massive stars N. Panagia and G. Bono; Radio supernovae and GRB 980425 K. Weiler, N. Panagia, R. Sramek, S. Van Dyk, M. Montes and C. Lacey; Models for Ia supernovae and evolutionary effects P. Hoflich and I. Dominguez; Deflagration to detonation A. Khokhlov; Universality in SN Iae and the Phillips relation D. Arnett; Abundances from supernovae F. -K. Thielemann, F. Brachwitz, C. Freiburghaus, S. Rosswog, K. Iwamoto, T. Nakamura, K. Nomoto, H. Umeda, K. Langanke, G. Martinez-Pinedo, D. Dean, W. Hix and M. Strayer; Sne, GRBs, and the

  13. Analysis of the Konus catalog of gamma-ray bursts with the thermal synchrotron model

    NASA Technical Reports Server (NTRS)

    Liang, E. P.; Jernigan, T. E.; Rodrigues, R.

    1983-01-01

    Approximately 150 reported gamma-ray burst spectra of the Konus catalog are analyzed using the thermal synchrotron model. An overwhelming majority of these spectra can be satisfactorily fitted by theoretical thermal synchrotron spectra of mildly relativistic electrons in strong magnetic fields, making the strong-field neutron star picture at least self-consistent. Valuable additional information is also extracted from various spectral features contained in many of the events.

  14. The Quark-Deconfinement Nova model for Gamma-Ray Bursts

    SciTech Connect

    Bombaci, I.

    2005-10-21

    We report on a new model which is able to explain how a gamma-ray burst (GRB) can take place days or years after a supernova explosion. We show that above a threshold value of the gravitational mass a pure hadronic star ('neutron star') is metastable to the conversion into a quark star (hybrid star or strange star), i.e. a star made at least in part of deconfined quark matter. The stellar conversion process can be delayed if finite size effects at the interface between hadronic and deconfined quark matter phases are taken into account. A huge amount of energy, on the order of 1052 - 1053 ergs, is released during the conversion process and can produce a powerful gamma-ray burst. The delay between the supernova explosion generating the metastable neutron star and the new collapse can explain the delay inferred in GRB 990705 and in GRB 011211.

  15. Neutrinos and Nucleosynthesis in Gamma Ray Bursts

    SciTech Connect

    Surman, Rebecca; Mclaughlin, Gail C; Hix, William Raphael

    2006-01-01

    Gamma-ray bursts, while rare, may be important contributors to galactic nucleosynthesis. Here we consider the types of nucleosynthesis that can occur as material is ejected from a gamma-ray burst accretion disk. We calculate the composition of material within the disk as it dissociates into protons and neutrons and then use a parameterized outflow model to follow nuclear recombination in the wind. From the resulting nucleosynthesis we delineate the disk and outflow conditions in which iron peak, r-process, or light p-process nuclei may form. In all cases the neutrinos have an important impact on the final abundance distributions.

  16. High Redshift Gamma Ray Bursts

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2012-01-01

    The Swift Observatory has been detecting 100 gamma-ray bursts per year for 7 years and has greatly stimulated the field with new findings. Observations are made of the X-ray and optical afterglow from 1 minute after the burst, continuing for days. GRBs are providing a new tool to study the high redshift universe. Swift has detected several events at z>5 and one at z=9.4 giving information on metallicity, star formation rate and reionization. The talk will present the latest results.

  17. Gamma-ray bursts from magnetospheric plasma oscillations. II - Model spectra

    NASA Technical Reports Server (NTRS)

    Melia, Fulvio

    1990-01-01

    Several mechanisms for the primary release of energy in gamma-ray bursts (GRBs) may result in the excitation of relativistic, magnetospheric plasma oscillations above the polar cap of a neutron star. This paper presents a survey of detailed calculations of the inverse Compton scattering interaction between the sinusoidally accelerated particles in relativistic, magnetospheric plasma oscillations and the self-consistently determined thermal radiation from the stellar surface. The upscattered photons are boosted to gamma-ray energies and a Monte Carlo simulation is used to obtain the spectrum for different viewing angles relative to the magnetic field in the oscillating region. It is shown that several GRB spectral characteristics may be understood in the context of a model wherein the overall spectrum changes with aspect angle as a result of the superposition of four components with different angular distributions.

  18. Naked-Eye Gamma-ray Burst Model for GRB 080319B

    NASA Video Gallery

    Gamma-ray bursts (GRBs) that are longer than two seconds are caused by the detonation of a rapidly rotating massive star at the end of its life. Jets of particles and gamma radiation are emitted in...

  19. Tidal heating and mass loss in neutron star binaries - Implications for gamma-ray burst models

    NASA Technical Reports Server (NTRS)

    Meszaros, P.; Rees, M. J.

    1992-01-01

    A neutron star in a close binary orbit around another neutron star (or stellar-mass black hole) spirals inward owing to gravitational radiation. We discuss the effects of tidal dissipation during this process. Tidal energy dissipated in the neutron star's core escapes mainly as neutrinos, but heating of the crust, and outward diffusion of photons, blows off the outer layers of the star. This photon-driven mass loss precedes the final coalescence. The presence of this eject material impedes the escape of gamma-rays created via neutrino interactions. If an e(+) - e(-) fireball, created in the late stages of coalescence, were loaded with (or surrounded by) material with the mean column density of the ejecta, it could not be an efficient source of gamma-rays. Models for cosmologically distant gamma-rays burst that involve neutron stars must therefore be anisotropic, so that the fireball expands preferentially in directions where the column density of previously blown-off material is far below the spherically averaged value which we have calculated. Some possible 'scenarios' along these lines are briefly discussed.

  20. REVISITING THE LIGHT CURVES OF GAMMA-RAY BURSTS IN THE RELATIVISTIC TURBULENCE MODEL

    SciTech Connect

    Lin, Da-Bin; Gu, Wei-Min; Hou, Shu-Jin; Liu, Tong; Sun, Mou-Yuan; Lu, Ju-Fu E-mail: lujf@xmu.edu.cn

    2013-10-10

    Rapid temporal variability has been widely observed in the light curves of gamma-ray bursts (GRBs). One possible mechanism for such variability is related to the relativistic eddies in the jet. In this paper, we include the contribution of the inter-eddy medium together with the eddies to the gamma-ray emission. We show that the gamma-ray emission can either lead or lag behind the observed synchrotron emission, where the latter originates in the inter-eddy medium and provides most of the seed photons for producing gamma-ray emission through inverse Compton scattering. As a consequence, we argue that the lead/lag found in non-stationary short-lived light curves may not reveal the intrinsic lead/lag of different emission components. In addition, our results may explain the lead of gamma-ray emission with respect to optical emission observed in GRB 080319B.

  1. MAGNETICALLY AND BARYONICALLY DOMINATED PHOTOSPHERIC GAMMA-RAY BURST MODEL FITS TO FERMI-LAT OBSERVATIONS

    SciTech Connect

    Veres, Peter; Meszaros, Peter; Zhang, Bin-Bin

    2013-02-10

    We consider gamma-ray burst models where the radiation is dominated by a photospheric region providing the MeV Band spectrum, and an external shock region responsible for the GeV radiation via inverse Compton scattering. We parameterize the initial dynamics through an acceleration law {Gamma}{proportional_to}r {sup {mu}}, with {mu} between 1/3 and 1 to represent the range between an extreme magnetically dominated and a baryonically dominated regime, depending also on the magnetic field configuration. We compare these models to several bright Fermi-LAT bursts, and show that both the time-integrated and the time-resolved spectra, where available, can be well described by these models. We discuss the parameters which result from these fits, and discuss the relative merits and shortcomings of the two models.

  2. A Model for Short Gamma-Ray Bursts: Heated Neutron Stars in Close Binary Systems

    SciTech Connect

    Salmonson, J.D.; Wilson, J.R.

    2001-12-17

    In this paper we present a model for the short (< second) population of gamma-ray bursts (GRBs). In this model heated neutron stars in a close binary system near their last stable orbit emit neutrinos at large luminosities ({approx} 10{sup 53} ergs/sec). A fraction of these neutrinos will annihilate to form an e{sup +}e{sup -} pair plasma wind which will, in turn, expand and recombine to photons which make the gamma-ray burst. We study neutrino annihilation and show that a substantial fraction ({approx}1/2) of energy deposited comes from inter-star neutrinos, where each member of the neutrino pair originates from each neutron star. Thus, in addition to the annihilation of neutrinos blowing off of a single star, we have a new source of baryon free energy that is deposited between the stars. To model the e{sup +}e{sup -} pair plasma wind between stars, we do three-dimensional relativistic numerical hydrodynamic calculations. Preliminary results are also presented of new, fully general relativistic calculations of gravitationally attracting stars falling from infinity with no angular momentum. These simulations exhibit a compression effect.

  3. Quark deconfinement in the proto-magnetar model of long gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Pili, A. G.; Bucciantini, N.; Drago, A.; Pagliara, G.; Del Zanna, L.

    2016-10-01

    We investigate the possible implications of quark deconfinement on the phenomenology of long gamma-ray bursts focusing, in particular, on the possibility to describe multiple prompt emission phases in the context of the proto-magnetar model. Starting from numerical models of rotating Hadron Stars and Quark Stars in full general relativity we track the electromagnetic spin-down evolution in both the hadronic and quark phase, linking the two families through conservation of baryon number and angular momentum. We give estimates of the time-scales and the energetics involved in the spin-down process deriving, in the relevant spin range, the relation between the initial and the final masses and rotational energies, whenever hadron-quark conversion is possible. We show how the results can be used in relevant astrophysical cases such as the double burst GRB 110709B.

  4. Do gamma-ray burst sources repeat?

    NASA Technical Reports Server (NTRS)

    Meegan, Charles A.; Hartmann, Dieter H.; Brainerd, J. J.; Briggs, Michael S.; Paciesas, William S.; Pendleton, Geoffrey; Kouveliotou, Chryssa; Fishman, Gerald; Blumenthal, George; Brock, Martin

    1995-01-01

    The demonstration of repeated gamma-ray bursts from an individual source would severely constrain burst source models. Recent reports (Quashnock and Lamb, 1993; Wang and Lingenfelter, 1993) of evidence for repetition in the first BATSE burst catalog have generated renewed interest in this issue. Here, we analyze the angular distribution of 585 bursts of the second BATSE catalog (Meegan et al., 1994). We search for evidence of burst recurrence using the nearest and farthest neighbor statistic and the two-point angular correlation function. We find the data to be consistent with the hypothesis that burst sources do not repeat; however, a repeater fraction of up to about 20% of the observed bursts cannot be excluded.

  5. Constraints on Short Gamma-ray Burst Models with Optical Limits of GRB 050509b

    NASA Technical Reports Server (NTRS)

    Hjorth, J.; Sollerman, J.; Gorosabel, J.; Granot, J.; Klose, S.; Kouveliotou, C.; Melinder, J.; Ramirez-Ruiz, E.; Starling, R.; Thomsen, B.

    2005-01-01

    We have obtained deep optical images with the Very Large Telescope at ESO of the first well-localized short-duration gamma-ray burst, GRB 050509b. We observed in the V and R bands at epochs starting at approx. 2 days after the GRB trigger and lasting up to three weeks. We detect no variable objects inside the small Swift/XRT X-ray error circle down to 5(sigma) limiting magnitudes of V = 26.5 and R = 25.2. The X-ray error circle includes a giant elliptical galaxy at z = 0.225, which has been proposed as the likely host of this GRB. Our limits indicate that if the GRB originated at z = 0.225, any supernova-like event accompanying the GRB would have to be over 100 times fainter than normal Type Ia SNe or Type IC hypernovae, 5 times fainter than the faintest known Ia or IC SNe, and fainter than the faintest known Type II SNe. Moreover, we use the optical limits to constrain the energetics of the GRB outflow, and conclude that there was very little radioactive material produced during the GRB explosion. These limits strongly constrain progenitor models for this short GRB. Subject headings: gamma rays: bursts - supernovae

  6. Modeling Gamma-Ray Burst X-Ray Flares Within the Internal Shock Model

    NASA Astrophysics Data System (ADS)

    Maxham, Amanda; Zhang, Bing

    2009-12-01

    X-ray afterglow light curves have been collected for over 400 Swift gamma-ray bursts (GRBs) with nearly half of them having X-ray flares superimposed on the regular afterglow decay. Evidence suggests that gamma-ray prompt emission and X-ray flares share a common origin and that at least some flares can only be explained by long-lasting central engine activity. We have developed a shell model code to address the question of how X-ray flares are produced within the framework of the internal shock model. The shell model creates randomized GRB explosions from a central engine with multiple shells and follows those shells as they collide, merge, and spread, producing prompt emission and X-ray flares. We pay special attention to the time history of central engine activity, internal shocks, and observed flares, but do not calculate the shock dynamics and radiation processes in detail. Using the empirical Ep -E iso (Amati) relation with an assumed Band function spectrum for each collision and an empirical flare temporal profile, we calculate the gamma-ray (Swift/BAT band) and X-ray (Swift/XRT band) lightcurves for arbitrary central engine activity and compare the model results with the observational data. We show that the observed X-ray flare phenomenology can be explained within the internal shock model. The number, width, and occurring time of flares are then used to diagnose the central engine activity, putting constraints on the energy, ejection time, width, and number of ejected shells. We find that the observed X-ray flare time history generally reflects the time history of the central engine, which reactivates multiple times after the prompt emission phase with progressively reduced energy. The same shell model predicts an external shock X-ray afterglow component, which has a shallow decay phase due to the initial pile-up of shells onto the blast wave. However, the predicted X-ray afterglow is too bright as compared with the observed flux level, unless epsilon e is

  7. Observations of Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Fishman, G. J.

    1995-01-01

    Some basic observed properties of gamma-ray bursts are reviewed. Although some properties were known 25 years ago, new and more detailed observations have been made by the Compton Observatory in the past three years. The new observation with the greatest impact has been the observed isotropic distribution of bursts along with a deficiency of weak bursts which would be expected from a homogeneous burst distribution. This is not compatible with any known Galactic population of objects. Gamma-ray bursts show an enormous variety of burst morphologies and a wide spread in burst durations. The spectra of gamma-ray bursts are characterized by rapid variations and peak power which is almost entirely in the gamma-ray energy range. Delayed gamma-ray burst photons extending to GeV energies have been detected for the first time. A time dilation effect has also been reported to be observed in gamma-ray, bursts. The observation of a gamma-ray burst counterpart in another wavelength region has yet to be made.

  8. AN OBSERVATIONAL IMPRINT OF THE COLLAPSAR MODEL OF LONG GAMMA-RAY BURSTS

    SciTech Connect

    Bromberg, Omer; Piran, Tsvi; Sari, Re'em; Nakar, Ehud

    2012-04-20

    The Collapsar model provides a theoretical framework for the well-known association between long gamma-ray bursts (GRBs) and collapsing massive stars. A bipolar relativistic jet, launched at the core of a collapsing star, drills its way through the stellar envelope and breaks out of the surface before producing the observed gamma rays. While a wealth of observations associate GRBs with the death of massive stars, as yet there is no direct evidence for the Collapsar model itself. Here we show that a distinct signature of the Collapsar model is the appearance of a plateau in the duration distribution of the prompt GRB emission at times much shorter than the typical breakout time of the jet. This plateau is evident in the data of all three major satellites. Our findings provide evidence that directly supports the Collapsar model. In addition, the model suggests the existence of a large population of choked (failed) GRBs, and implies that the 2 s duration commonly used to separate Collapsars and non-Collapsars is inconsistent with the duration distributions of Swift and Fermi GRBs and only holds for BATSE GRBs.

  9. Cosmological model-independent Gamma-ray bursts calibration and its cosmological constraint to dark energy

    SciTech Connect

    Xu, Lixin

    2012-04-01

    As so far, the redshift of Gamma-ray bursts (GRBs) can extend to z ∼ 8 which makes it as a complementary probe of dark energy to supernova Ia (SN Ia). However, the calibration of GRBs is still a big challenge when they are used to constrain cosmological models. Though, the absolute magnitude of GRBs is still unknown, the slopes of GRBs correlations can be used as a useful constraint to dark energy in a completely cosmological model independent way. In this paper, we follow Wang's model-independent distance measurement method and calculate their values by using 109 GRBs events via the so-called Amati relation. Then, we use the obtained model-independent distances to constrain ΛCDM model as an example.

  10. Cloaked Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Eichler, David

    2014-06-01

    It is suggested that many gamma-ray bursts (GRBs) are cloaked by an ultrarelativistic baryonic shell that has high optical depth when the photons are manufactured. Such a shell would not fully block photons reflected or emitted from its inner surface, because the radial velocity of the photons can be less than that of the shell. This avoids the standard problem associated with GRBs that the thermal component should be produced where the flow is still obscured by high optical depth. The radiation that escapes high optical depth obeys the Amati relation. Observational implications may include (1) anomalously high ratios of afterglow to prompt emission, such as may have been the case in the recently discovered PTF 11agg, and (2) ultrahigh-energy neutrino pulses that are non-coincident with detectable GRB. It is suggested that GRB 090510, a short, very hard GRB with very little afterglow, was an exposed GRB, in contrast to those cloaked by baryonic shells.

  11. CLOAKED GAMMA-RAY BURSTS

    SciTech Connect

    Eichler, David

    2014-06-01

    It is suggested that many gamma-ray bursts (GRBs) are cloaked by an ultrarelativistic baryonic shell that has high optical depth when the photons are manufactured. Such a shell would not fully block photons reflected or emitted from its inner surface, because the radial velocity of the photons can be less than that of the shell. This avoids the standard problem associated with GRBs that the thermal component should be produced where the flow is still obscured by high optical depth. The radiation that escapes high optical depth obeys the Amati relation. Observational implications may include (1) anomalously high ratios of afterglow to prompt emission, such as may have been the case in the recently discovered PTF 11agg, and (2) ultrahigh-energy neutrino pulses that are non-coincident with detectable GRB. It is suggested that GRB 090510, a short, very hard GRB with very little afterglow, was an exposed GRB, in contrast to those cloaked by baryonic shells.

  12. Gamma-ray burst prompt emission light curves and power density spectra in the ICMART model

    SciTech Connect

    Zhang, Bo; Zhang, Bing E-mail: zhang@physics.unlv.edu

    2014-02-20

    In this paper, we simulate the prompt emission light curves of gamma-ray bursts (GRBs) within the framework of the Internal-Collision-induced MAgnetic Reconnection and Turbulence (ICMART) model. This model applies to GRBs with a moderately high magnetization parameter σ in the emission region. We show that this model can produce highly variable light curves with both fast and slow components. The rapid variability is caused by many locally Doppler-boosted mini-emitters due to turbulent magnetic reconnection in a moderately high σ flow. The runaway growth and subsequent depletion of these mini-emitters as a function of time define a broad slow component for each ICMART event. A GRB light curve is usually composed of multiple ICMART events that are fundamentally driven by the erratic GRB central engine activity. Allowing variations of the model parameters, one is able to reproduce a variety of light curves and the power density spectra as observed.

  13. PROGENITOR MODELS OF THE ELECTROMAGNETIC TRANSIENT ASSOCIATED WITH THE SHORT GAMMA RAY BURST 130603B

    SciTech Connect

    Hotokezaka, Kenta; Kyutoku, Koutarou; Tanaka, Masaomi; Wanajo, Shinya; Kiuchi, Kenta; Sekiguchi, Yuichiro; Shibata, Masaru

    2013-11-20

    An electromagnetic transient powered by the radioactive decay of r-process elements, a so-called kilonova/macronova, is one of the possible observable consequences of compact binary mergers including at least one neutron star. Recent observations strongly suggest the discovery of the first electromagnetic transient, which is associated with the short gamma ray burst 130603B. We explore a possible progenitor of this event by combining numerical-relativity simulations and radiative transfer simulations of the dynamical ejecta of binary neutron star and black hole-neutron star mergers. We show that the ejecta models within a realistic parameter range consistently reproduce the observed near-infrared excess. We also show that the soft equation-of-state models for binary neutron star mergers and the stiff equation-of-state models for black hole-neutron star mergers are suitable for reproducing the observed luminosity.

  14. The supernova-gamma-ray burst-jet connection.

    PubMed

    Hjorth, Jens

    2013-06-13

    The observed association between supernovae and gamma-ray bursts represents a cornerstone in our understanding of the nature of gamma-ray bursts. The collapsar model provides a theoretical framework for this connection. A key element is the launch of a bipolar jet (seen as a gamma-ray burst). The resulting hot cocoon disrupts the star, whereas the (56)Ni produced gives rise to radioactive heating of the ejecta, seen as a supernova. In this discussion paper, I summarize the observational status of the supernova-gamma-ray burst connection in the context of the 'engine' picture of jet-driven supernovae and highlight SN 2012bz/GRB 120422A--with its luminous supernova but intermediate high-energy luminosity--as a possible transition object between low-luminosity and jet gamma-ray bursts. The jet channel for supernova explosions may provide new insights into supernova explosions in general.

  15. Making Clean Energy with a Kerr Black Hole: A Tokamak Model for Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Li, Li-Xin

    2000-11-01

    In this paper we present a model for making clean energy with a Kerr black hole. Consider a Kerr black hole with a dense plasma torus spinning around it. A toroidal electric current flows on the surface of the torus, which generates a poloidal magnetic field outside the torus. On the surface of the torus the magnetic field is parallel to the surface. The closed magnetic field lines winding around the torus compress and confine the plasma in the torus, as in the case of tokamaks. Although it is unclear whether such a model is stable, we look into the consequences if the model is stable. If the magnetic field is strong enough, the baryonic contamination from the plasma in the torus is greatly suppressed by the magnetic confinement, and a clean magnetosphere of electron-positron pairs is built up around the black hole. Since there are no open magnetic field lines threading the torus and no accretion, the power of the torus is zero. If some magnetic field lines threading the black hole are open and connect with loads, clean energy can be extracted from the Kerr black hole by the Blandford-Znajek mechanism. The model may be relevant to gamma-ray bursts. The energy in the Poynting flux produced by the Blandford-Znajek mechanism is converted into the kinetic energy of the electron-positron pairs in the magnetosphere around the black hole, which generates two oppositely directed jets of electron-positron pairs with superhigh bulk Lorentz factors. The jets collide and interact with the interstellar medium, which may produce gamma-ray bursts and the afterglows.

  16. The Internal-collision-induced Magnetic Reconnection and Turbulence (ICMART) Model of Gamma-ray Bursts

    NASA Astrophysics Data System (ADS)

    Zhang, Bing; Yan, Huirong

    2011-01-01

    The recent Fermi observation of GRB 080916C shows that the bright photosphere emission associated with a putative fireball is missing, which suggests that the central engine likely launches a Poynting-flux-dominated (PFD) outflow. We propose a model of gamma-ray burst (GRB) prompt emission in the PFD regime, namely, the Internal-Collision-induced MAgnetic Reconnection and Turbulence (ICMART) model. It is envisaged that the GRB central engine launches an intermittent, magnetically dominated wind, and that in the GRB emission region, the ejecta is still moderately magnetized (e.g., 1 <~ σ <~ 100). Similar to the internal shock (IS) model, the mini-shells interact internally at the radius R IS ~ Γ2 cΔt. Most of these early collisions, however, have little energy dissipation, but serve to distort the ordered magnetic field lines entrained in the ejecta. At a certain point, the distortion of magnetic field configuration reaches the critical condition to allow fast reconnection seeds to occur, which induce relativistic MHD turbulence in the interaction regions. The turbulence further distorts field lines easing additional magnetic reconnections, resulting in a runway release of the stored magnetic field energy (an ICMART event). Particles are accelerated either directly in the reconnection zone, or stochastically in the turbulent regions, which radiate synchrotron photons that power the observed gamma rays. Each ICMART event corresponds to a broad pulse in the GRB light curve, and a GRB is composed of multiple ICMART events. This model retains the merits of IS and other models, but may overcome several difficulties/issues faced by the IS model (e.g., low efficiency, fast cooling, electron number excess, Amati/Yonetoku relation inconsistency, and missing bright photosphere). Within this model, the observed GRB variability timescales could have two components, one slow component associated with the central engine time history, and another fast component associated with

  17. The Synchrotron Shock Model Confronts a "Line of Death" in the BATSE Gamma-Ray Burst Data

    NASA Technical Reports Server (NTRS)

    Preece, Robert D.; Briggs, Michael S.; Mallozzi, Robert S.; Pendleton, Geoffrey N.; Paciesas, W. S.; Band, David L.

    1998-01-01

    The synchrotron shock model (SSM) for gamma-ray burst emission makes a testable prediction: that the observed low-energy power-law photon number spectral index cannot exceed -2/3 (where the photon model is defined with a positive index: $dN/dE \\propto E{alpha}$). We have collected time-resolved spectral fit parameters for over 100 bright bursts observed by the Burst And Transient Source Experiment on board the {\\it Compton Gamma Ray Observatory}. Using this database, we find 23 bursts in which the spectral index limit of the SSM is violated, We discuss elements of the analysis methodology that affect the robustness of this result, as well as some of the escape hatches left for the SSM by theory.

  18. ASTRONOMY: Neighborhood Gamma Ray Burst Boosts Theory.

    PubMed

    Schilling, G

    2000-07-01

    Titanic explosions that emit powerful flashes of energetic gamma rays are one of astronomy's hottest mysteries. Now an analysis of the nearest gamma ray burst yet detected has added weight to the popular theory that they are expelled during the death throes of supermassive stars.

  19. Gamma-ray burst cosmology

    NASA Astrophysics Data System (ADS)

    Wang, F. Y.; Dai, Z. G.; Liang, E. W.

    2015-08-01

    Gamma-ray bursts (GRBs) are the most luminous electromagnetic explosions in the Universe, which emit up to 8.8 × 1054 erg isotropic equivalent energy in the hard X-ray band. The high luminosity makes them detectable out to the largest distances yet explored in the Universe. GRBs, as bright beacons in the deep Universe, would be the ideal tool to probe the properties of high-redshift universe: including the cosmic expansion and dark energy, star formation rate, the reionization epoch and the metal enrichment history of the Universe. In this article, we review the luminosity correlations of GRBs, and implications for constraining the cosmological parameters and dark energy. Observations show that the progenitors of long GRBs are massive stars. So it is expected that long GRBs are tracers of star formation rate. We also review the high-redshift star formation rate derived from GRBs, and implications for the cosmic reionization history. The afterglows of GRBs generally have broken power-law spectra, so it is possible to extract intergalactic medium (IGM) absorption features. We also present the capability of high-redshift GRBs to probe the pre-galactic metal enrichment and the first stars.

  20. Prior Emission Model for X-ray Plateau Phase of Gamma-Ray Burst Afterglows

    NASA Astrophysics Data System (ADS)

    Yamazaki, Ryo

    2009-01-01

    The two-component emission model to explain the plateau phase of the X-ray afterglows of gamma-ray bursts (GRBs) is proposed. One component, which is responsible for the plateau and subsequent normal decay phase of the X-ray afterglow, is the prior emission via outflow ejected from the central engine before the main burst. The other is the main outflow, which causes the prompt GRB emission and the initial steep decay phase of the X-ray afterglow. In this model, the transition from the plateau to the subsequent normal decay phase is an artifact of the choice of the zero of time. For events with distinct plateau phase, the central engine is active 103-104 s before the launch of the main outflow. According to this model, a prior emission in the X-ray and/or optical bands 103-104 s before the prompt GRB emission is possibly seen, which will be tested by near-future instruments such as Monitor of All-sky X-ray Image (MAXI), WIDe-field telescope for GRB Early Timing (WIDGET), and so on.

  1. Extension of an exponential light-curve gamma-ray burst pulse model across energy bands

    NASA Astrophysics Data System (ADS)

    Nemiroff, Robert J.

    2012-01-01

    A simple mathematical model of gamma-ray burst(GRB) pulses in time, suggested by Norris et al., is extended across energy. For a class of isolated pulses, two fit parameters appear to be effectively independent of energy. Specifically, statistical fits indicate that pulse amplitude A and pulse width τ are energy dependent, while pulse start time and pulse shape are effectively energy independent. These results bolster the pulse start and pulse scale conjectures of Nemiroff and add a new pulse shape conjecture which states that a class of pulses all have the same shape. The simple resulting pulse counts model is P(t, E) =A(E) exp[ -t/τ(E) -τ(E)/t], where t is the time since the start of the pulse. This pulse model is found to be an acceptable statistical fit to many of the fluent separable Burst and Transient Source Experiment (BATSE) pulses listed by Norris et al. Even without theoretical interpretation, this cross-energy extension may be immediately useful for fitting prompt emission from GRB pulses across energy channels with a minimal number of free parameters.

  2. Distribution of Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Diaz Rodriguez, Mariangelly; Smith, M.; Tešic, G.

    2014-01-01

    Gamma-Ray Bursts (GRBs) are known to be bright, irregular flashes of gamma rays that typically last just a few seconds, believed to be caused by stellar collapse or the merger of a pair of compact objects. Through previous work, it has been found that GRBs are distributed roughly uniformly over the entire sky, rather than being confined to the relatively narrow band of the Milky Way. Using the Python programming language, we generated a model of GRBs over cosmological distances, based on current empirical GRB distributions. The grbsim python module uses the acceptance-rejection Monte Carlo method to simulate the luminosity and redshift of a large population of GRBs, including cosmological effects such as dark energy and dark matter terms that modify the large-scale structure of space-time. The results of running grbsim are demonstrated to match the distribution of GRBs observed by the Burst Alert Telescope on NASA’s Swift satellite. The grbsim module will subsequently be used to simulate gamma ray and neutrino events for the Astrophysical Multimessenger Observatory Network.

  3. Overview Animation of Gamma-ray Burst

    NASA Video Gallery

    Gamma-ray bursts are the most luminous explosions in the cosmos. Astronomers think most occur when the core of a massive star runs out of nuclear fuel, collapses under its own weight, and forms a b...

  4. Supernovae and gamma-ray bursts connection

    NASA Astrophysics Data System (ADS)

    Valle, Massimo Della

    2015-12-01

    I'll review the status of the Supernova/Gamma-Ray Burst connection. Several pieces of evidence suggest that long duration Gamma-ray Bursts are associated with bright SNe-Ic. However recent works suggest that GRBs might be produced in tight binary systems composed of a massive carbon-oxygen cores and a neutron star companion. Current estimates of the SN and GRB rates yield a ratio GRB/SNe-Ibc in the range ˜ 0.4% - 3%.

  5. Supernovae and gamma-ray bursts connection

    SciTech Connect

    Valle, Massimo Della

    2015-12-17

    I’ll review the status of the Supernova/Gamma-Ray Burst connection. Several pieces of evidence suggest that long duration Gamma-ray Bursts are associated with bright SNe-Ic. However recent works suggest that GRBs might be produced in tight binary systems composed of a massive carbon-oxygen cores and a neutron star companion. Current estimates of the SN and GRB rates yield a ratio GRB/SNe-Ibc in the range ∼ 0.4% − 3%.

  6. Gamma-Ray Bursts and Cosmology

    NASA Technical Reports Server (NTRS)

    Norris, Jay P.

    2003-01-01

    The unrivalled, extreme luminosities of gamma-ray bursts (GRBs) make them the favored beacons for sampling the high redshift Universe. To employ GRBs to study the cosmic terrain -- e.g., star and galaxy formation history -- GRB luminosities must be calibrated, and the luminosity function versus redshift must be measured or inferred. Several nascent relationships between gamma-ray temporal or spectral indicators and luminosity or total energy have been reported. These measures promise to further our understanding of GRBs once the connections between the luminosity indicators and GRB jets and emission mechanisms are better elucidated. The current distribution of 33 redshifts determined from host galaxies and afterglows peaks near z $\\sim$ 1, whereas for the full BATSE sample of long bursts, the lag-luminosity relation predicts a broad peak z $\\sim$ 1--4 with a tail to z $\\sim$ 20, in rough agreement with theoretical models based on star formation considerations. For some GRB subclasses and apparently related phenomena -- short bursts, long-lag bursts, and X-ray flashes -- the present information on their redshift distributions is sparse or entirely lacking, and progress is expected in Swift era when prompt alerts become numerous.

  7. The rotation curve conspiracy and neutron star/asteroid models for Gamma Ray Bursts

    NASA Technical Reports Server (NTRS)

    Salpeter, Edwin E.; Wasserman, Ira

    1993-01-01

    Gamma Ray Bursts (GRB) were analyzed using new GRO/BATSE results in conjunction with older PVO and KONUS data. It is suggested that the distribution in space of the GRB sources must have an outer bounding surface which is approximately a sphere centered on the location. Neutron stars in some kind of extended halo around the Galaxy with the required mass of an infalling object of order about 10 exp 21 to 10 exp 23 gm are considered.

  8. Model-dependent high-energy neutrino flux from gamma-ray bursts.

    PubMed

    Zhang, Bing; Kumar, Pawan

    2013-03-22

    The IceCube Collaboration recently reported a stringent upper limit on the high energy neutrino flux from gamma-ray bursts (GRBs), which provides a meaningful constraint on the standard internal shock model. Recent broadband electromagnetic observations of GRBs also challenge the internal shock paradigm for GRBs, and some competing models for γ-ray prompt emission have been proposed. We describe a general scheme for calculating the GRB neutrino flux, and compare the predicted neutrino flux levels for different models. We point out that the current neutrino flux upper limit starts to constrain the standard internal shock model. The dissipative photosphere models are also challenged if the cosmic ray luminosity from GRBs is at least 10 times larger than the γ-ray luminosity. If the neutrino flux upper limit continues to go down in the next few years, then it would suggest the following possibilities: (i) the photon-to-proton luminosity ratio in GRBs is anomalously high for shocks, which may be achieved in some dissipative photosphere models and magnetic dissipation models; or (ii) the GRB emission site is at a larger radius than the internal shock radius, as expected in some magnetic dissipation models such as the internal collision-induced magnetic reconnection and turbulence model.

  9. Afterglow Radiation from Gamma Ray Bursts

    SciTech Connect

    Desmond, Hugh; /Leuven U. /SLAC

    2006-08-28

    Gamma-ray bursts (GRB) are huge fluxes of gamma rays that appear randomly in the sky about once a day. It is now commonly accepted that GRBs are caused by a stellar object shooting off a powerful plasma jet along its rotation axis. After the initial outburst of gamma rays, a lower intensity radiation remains, called the afterglow. Using the data from a hydrodynamical numerical simulation that models the dynamics of the jet, we calculated the expected light curve of the afterglow radiation that would be observed on earth. We calculated the light curve and spectrum and compared them to the light curves and spectra predicted by two analytical models of the expansion of the jet (which are based on the Blandford and McKee solution of a relativistic isotropic expansion; see Sari's model [1] and Granot's model [2]). We found that the light curve did not decay as fast as predicted by Sari; the predictions by Granot were largely corroborated. Some results, however, did not match Granot's predictions, and more research is needed to explain these discrepancies.

  10. Simulation and physical model based gamma-ray burst afterglow analysis

    NASA Astrophysics Data System (ADS)

    van Eerten, H. J.

    2015-09-01

    Advances in our numerical and theoretical understanding of gamma-ray burst afterglow processes allow us to construct models capable of dealing with complex relativistic jet dynamics and non-thermal emission, that can be compared directly to data from instruments such as Swift. Because afterglow blast waves and power law spectra are intrinsically scale-invariant under changes of explosion energy and medium density, templates can be generated from large-scale hydrodynamics simulations. This allows for iterative template-based model fitting using the physical model parameters (quantifying the properties of the burster, emission and observer) directly as fit variables. Here I review how such an approach to afterglow analysis works in practice, paying special attention to the underlying model assumptions, possibilities, caveats and limitations of this type of analysis. Because some model parameters can be degenerate in certain regions of parameter space, or unconstrained if data in a limited number of a bands is available, a Bayesian approach is a natural fit. The main features of the standard afterglow model are reviewed in detail.

  11. Testing Models for the Shallow Decay Phase of Gamma-Ray Burst Afterglows with Polarization Observations

    NASA Astrophysics Data System (ADS)

    Lan, Mi-Xiang; Wu, Xue-Feng; Dai, Zi-Gao

    2016-08-01

    The X-ray afterglows of almost one-half of gamma-ray bursts have been discovered by the Swift satellite to have a shallow decay phase of which the origin remains mysterious. Two main models have been proposed to explain this phase: relativistic wind bubbles (RWBs) and structured ejecta, which could originate from millisecond magnetars and rapidly rotating black holes, respectively. Based on these models, we investigate polarization evolution in the shallow decay phase of X-ray and optical afterglows. We find that in the RWB model, a significant bump of the polarization degree evolution curve appears during the shallow decay phase of both optical and X-ray afterglows, while the polarization position angle abruptly changes its direction by 90°. In the structured ejecta model, however, the polarization degree does not evolve significantly during the shallow decay phase of afterglows whether the magnetic field configuration in the ejecta is random or globally large-scale. Therefore, we conclude that these two models for the shallow decay phase and relevant central engines would be testable with future polarization observations.

  12. Gamma-ray burst theory after Swift.

    PubMed

    Piran, Tsvi; Fan, Yi-Zhong

    2007-05-15

    Afterglow observations in the pre-Swift era confirmed to a large extend the relativistic blast wave model for gamma-ray bursts (GRBs). Together with the observations of properties of host galaxies and the association with (type Ic) SNe, this has led to the generally accepted collapsar origin of long GRBs. However, most of the afterglow data was collected hours after the burst. The X-ray telescope and the UV/optical telescope onboard Swift are able to slew to the direction of a burst in real time and record the early broadband afterglow light curves. These observations, and in particular the X-ray observations, resulted in many surprises. While we have anticipated a smooth transition from the prompt emission to the afterglow, many observed that early light curves are drastically different. We review here how these observations are changing our understanding of GRBs.

  13. Gamma-Ray Burst Physics with GLAST

    SciTech Connect

    Omodei, N.; /INFN, Pisa

    2006-10-06

    The Gamma-ray Large Area Space Telescope (GLAST) is an international space mission that will study the cosmos in the energy range 10 keV-300 GeV, the upper end of which is one of the last poorly observed region of the celestial electromagnetic spectrum. The ancestor of the GLAST/LAT was the Energetic Gamma Ray Experiment Telescope (EGRET) detector, which flew onboard the Compton Gamma Ray Observatory (CGRO). The amount of information and the step forward that the high energy astrophysics made thanks to its 9 years of observations are impressive. Nevertheless, EGRET uncovered the tip of the iceberg, raising many questions, and it is in the light of EGRET's results that the great potential of the next generation gamma-ray telescope can be appreciated. GLAST will have an imaging gamma-ray telescope, the Large Area Telescope (LAT) vastly more capable than instruments own previously, as well as a secondary instrument, the GLAST Bursts Monitor, or GBM, to augment the study of gamma-ray bursts. Gamma-Ray Bursts (GRBs) science is one of the most exciting challenges for the GLAST mission, exploring the high energy emission of one of the most intense phenomena in the sky, shading light on various problems: from the acceleration of particles to the emission processes, to more exotic physics like Quantum Gravity effect. In this paper we report the work done so far in the simulation development as well as the study of the LAT sensitivity to GRB.

  14. Toward cosmological-model-independent calibrations for the luminosity relations of Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Ding, Xuheng; Li, Zhengxiang; Zhu, Zong-Hong

    2015-05-01

    Gamma-ray bursts (GRBs), have been widely used as distance indicators to measure the cosmic expansion and explore the nature of dark energy. A popular method adopted in previous works is to calibrate the luminosity relations which are responsible for distance estimation of GRBs with more primary (low redshift) cosmic distance ladder objects, type Ia supernovae (SNe Ia). Since distances of SNe Ia in all SN Ia samples used to calibrate GRB luminosity relations were usually derived from the global fit in a specific cosmological model, the distance of GRB at a given redshift calibrated with matching SNe Ia was still cosmological-model-dependent. In this paper, we first directly determine the distances of SNe Ia with the Angular Diameter Distances (ADDs) of galaxy clusters without any assumption for the background of the universe, and then calibrate GRB luminosity relations with our cosmology-independent distances of SNe Ia. The results suggest that, compared to the previous original manner where distances of SNe Ia used as calibrators are determined from the global fit in a particular cosmological model, our treatments proposed here yield almost the same calibrations of GRB luminosity relations and the cosmological implications of them do not suffer any circularity.

  15. Towards a Unified Model for the Gamma-Ray Burst Prompt Emission

    NASA Astrophysics Data System (ADS)

    Guiriec, Sylvain

    2015-08-01

    We suggest here to replace the historical spectral model (Band function) for the Gamma-Ray Burst (GRB) prompt emission (keV-MeV energy regime) with a new one. We show that the complex GRB spectral shapes are well described with a combination of three separate components: (i) a thermal-like component that we interpret as emission from the GRB jet photosphere, (ii) a non-thermal component that we interpret as synchrotron radiation from charged particles propagating and accelerated within the GRB jet, and (iii) a second non-thermal component that is not always present or detectable and which is most likely of inverse Compton origin. The smooth evolution of all three components during the burst duration reinforces the validity of this new model. Detailed studies of the evolution of these components provide insights on the nature and composition of GRB jets as well as on their magnetic fields. Moreover, this new model enables a new luminosity-hardness relation based on the first non-thermal component showing that GRBs may be standard candles. If statistically confirmed, this relation will be used to (i) constrain the mechanisms powering GRB jets, (ii) estimate GRB distances, (iii) probe the early Universe, and (iv) constrain the cosmological parameters in complement to the Type Ia SNe sample. I will present this new model using analysis of GRBs detected with various observatories and instruments such as Fermi and CGRO/BATSE. I will discuss here the striking similarities of GRB spectral shapes as well as the possible universality of the proposed luminosity-hardness relation in the context of the new model.

  16. Microsecond flares in gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Schaefer, Bradley E.; Cohen, Justin; Teegarden, Bonnard J.; Cline, Thomas L.; Fishman, Gerald J.; Meegan, Charles A.; Wilson, Robert B.; Paciesas, William S.; Pendleton, Geoffrey N.; Matteson, James L.

    1993-01-01

    It has been suggested that gamma-ray burst light curves may consist of many superposed flares with a duration shorter than 30/microsec. If true, the implications for the interpretation of burst data are enormous. With the launch of the Compton Gamma-Ray Observatory, four predictions of Mitrofanov's (1989) suggestion can be tested. Our results which contradict this suggestion are (1) the photon arrival times are not correlated between independent detectors, (2) the spectral hardness and intensity does not depend on the detector area, (3) the bursts seen by detectors which measure photon positions do not see microsecond flares, and (4) burst positions deduced from detectors with different projected areas are close to the positions deduced from time-of-flight differences between separated spacecraft. We conclude, therefore, that gamma-ray bursts are not composed of microsecond flares.

  17. The Gamma-Ray Burst Afterglow Modeling Project: Foundational Statistics and Absorption & Extinction Models

    NASA Astrophysics Data System (ADS)

    Trotter, Adam Somers

    The Gamma-Ray Burst (GRB) Afterglow Modeling Project (AMP) will model, in a statistically sound and self-consistent way, every GRB afterglow observed since the first detection in 1997, using all available radio, infrared, optical, ultraviolet and X-ray data. The result will be a catalog of fitted empirical model parameters describing the intrinsic afterglow emission, and extinction due to dust and absorption due to gas along the line of sight to the GRB. This ever-growing catalog of fitted model parameters will allow us to infer the astrophysical properties of GRBs and their environments, and to explore their variety and evolution over the history of the universe. First, I present a new, broadly applicable statistical technique, the TRF statistic, for fitting model distributions to data in two dimensions, where the data have intrinsic uncertainties in both dimensions, and extrinsic scatter in both dimensions that is greater than can be accounted for by the intrinsic uncertainties alone. I demonstrate the properties of the TRF statistic, which is invertible but not scalable, and present an algorithm for obtaining an optimum scale for fits to a given data set. I then apply the TRF statistic to observations of interstellar extinction of stars along various Milky Way and Magellanic Cloud lines of sight, and to observations of Lyalpha forest flux deficits in quasars, to construct a comprehensive empirical model for extinction due to interstellar dust in the source frame and in the Milky Way, and absorption due to gas in the source frame and in the intergalactic medium. Combined with theoretical models of synchrotron emission from GRB jets, the resulting parameterization provides a framework for modeling the observed emission from most GRB afterglows. Furthermore, the extinction and absorption models are broadly applicable, in that they may be used to model observations of any extragalactic point source of radiation. Finally, I describe the results of model fitting to

  18. Constraints on Short Gamma-Ray Burst Models with Optical Limits of GRB 050509b

    SciTech Connect

    Hjorth, Jens; Sollerman, J.; Gorosabel, J.; Granot, J.; Klose, S.; Kouveliotou, C.; Melinder, J.; Ramirez-Ruiz, E.; Starling, R.; Thomsen, B.; Andersen, M.I.; Fynbo, J.P.U.; Jensen, B.L.; Vreeswijk, P.M.; Castro-Ceron, J.M.; Jakobsson, P.; Levan, A.; Pedersen, K.; Rhoads, J.E.; Tanvir, N.R.; Watson, D.; /Bohr Inst. /Stockholm U. /IAA, Granada /KIPAC, Menlo Park /TLS, Tautenburg /NASA, Marshall /Princeton, Inst. Advanced Study /Amsterdam U., Astron. Inst. /Aarhus U. /Potsdam, Astrophys. Inst. /European Southern Obs., Chile /Leicester U. /Baltimore, Space Telescope Sci. /Hertfordshire U.

    2005-06-15

    We have obtained deep optical images with the Very Large Telescope at ESO of the first well-localized short-duration gamma-ray burst, GRB 050509b. We observed in the V and R bands at epochs starting at {approx}2 days after the GRB trigger and lasting up to three weeks. We detect no variable objects inside the small Swift/XRT X-ray error circle down to 5{sigma} limiting magnitudes of V = 26.5 and R = 25.2. The X-ray error circle includes a giant elliptical galaxy at z = 0.225, which has been proposed as the likely host of this GRB. Our limits indicate that if the GRB originated at z = 0.225, any supernova-like event accompanying the GRB would have to be over 100 times fainter than normal Type Ia SNe or Type Ic hypernovae, 5 times fainter than the faintest known Ia or Ic SNe, and fainter than the faintest known Type II SNe. Moreover, we use the optical limits to constrain the energetics of the GRB outflow, and conclude that there was very little radioactive material produced during the GRB explosion. These limits strongly constrain progenitor models for this short GRB.

  19. Helium Star/Black Hole Mergers: A New Gamma-Ray Burst Model

    NASA Astrophysics Data System (ADS)

    Fryer, C. L.; Woosley, S. E.

    1998-07-01

    We present a model for gamma-ray bursts (GRBs) in which a stellar mass black hole acquires a massive accretion disk by merging with the helium core of its red giant companion. The black hole enters the helium core after it, or its neutron star progenitor, first experiences a common envelope phase that carries it inward through the hydrogen envelope. Accretion of the last several solar masses of helium occurs on a timescale of roughly a minute and provides a neutrino luminosity of approximately 1051-1052 ergs s-1. Neutrino annihilation, 0.01%-0.1% efficient, along the rotational axis then gives a baryon-loaded fireball of electron-positron pairs and radiation (about 1050 ergs total) whose beaming and relativistic interaction with the circumstellar material makes the GRB (see, e.g., Rees & Mészáros). The useful energy can be greatly increased if energy can be extracted from the rotational energy of the black hole by magnetic interaction with the disk. Such events should occur at a rate comparable to that of merging neutron stars and black hole neutron star pairs and may be responsible for long complex GRBs but not short hard ones.

  20. On the nature of gamma-ray burst time dilations

    NASA Technical Reports Server (NTRS)

    Wijers, Ralph A. M. J.; Paczynski, Bohdan

    1994-01-01

    The recent discovery that faint gamma-ray bursts are stretched in time relative to bright ones has been interpreted as support for cosmological distances: faint bursts have their durations redshifted relative to bright ones. It was pointed out, however, that the relative time stretching can also be produced by an intrinsic correlation bewteen duration and luminosity of gamma-ray bursts in a nearby, bounded distribution. While both models can explain the average amount of time stretching, we find a difference between them in the way the duration distribution of faint bursts deviates from that of bright ones, assuming the luminosity function of gamma-ray bursts is independent of distance. This allows us to distinguish between these two broad classes of model on the basis of the duration distributions of gamma-ray bursts, leading perhaps to an unambiguous determination of the distance scale of gamma-ray bursts. We apply our proposed test to the second Burst and Transient Source Experiment (BATSE) catalog and conclude, with some caution, that the data favor a cosmological interpretation of the time dilation.

  1. Physics of gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Lamb, D. Q.

    1984-01-01

    Attention is given to the accumulating evidence for the view that gamma-ray bursts come from strongly magnetic neutron stars, discussing the physical properties of the emission region and the radiation processes expected in strong magnetic fields, and emphasizing that the observed burst spectra require that the emission region be optically thin. This entails that the energy of the emitting plasma and/or the plasma itself be continuously replenished during a burst, and that the cooling time scale of the emitting plasma be much shorter than the observed duration of the bursts. This characteristic of the cooling time scale implies that the burst intensity and spectrum can vary on extremely short time scales, and that the burst duration must have a separate explanation. It is emphasized that synchrotron emission is favored as the gamma-ray production mechanism; it is the only mechanism capable of satisfying the optical thinness constraint while producing the observed luminosity.

  2. Bursts of gamma rays from Compton scattering at cosmological distances

    NASA Technical Reports Server (NTRS)

    Zdziarski, Andrzej A.; Svensson, Roland; Paczynski, Bohdan

    1991-01-01

    Compton scattering of the microwave background photons by beams of ultrarelativistic electrons at large redshifts, z much greater than 1, is proposed as a source of some gamma-ray bursts. Such beams may be produced by cusps on superconducting cosmic strings. In the present model, a very narrow beam of ultrarelativistic electron-positron pairs scatters the microwave background photons into a very narrow beam of gamma rays. While the pairs lose energy, the beam of gamma rays opens up and sweeps the observer. The expected time variability and spectra of the resulting gamma-ray burst are calculated. The bursts have a rapid rise time, followed by a more gradual decline. The spectra are initially very hard and become softer during the decline.

  3. The Supercritical Pile Gamma-Ray Burst Model: The GRB Afterglow Steep Decline and Plateau Phase

    NASA Technical Reports Server (NTRS)

    Sultana, Joseph; Kazanas, D.; Mastichiadis, A.

    2013-01-01

    We present a process that accounts for the steep decline and plateau phase of the Swift X-Ray Telescope (XRT) light curves, vexing features of gamma-ray burst (GRB) phenomenology. This process is an integral part of the "supercritical pile" GRB model, proposed a few years ago to account for the conversion of the GRB kinetic energy into radiation with a spectral peak at E(sub pk) is approx. m(sub e)C(exp 2). We compute the evolution of the relativistic blast wave (RBW) Lorentz factor Gamma to show that the radiation-reaction force due to the GRB emission can produce an abrupt, small (approx. 25%) decrease in Gamma at a radius that is smaller (depending on conditions) than the deceleration radius R(sub D). Because of this reduction, the kinematic criticality criterion of the "supercritical pile" is no longer fulfilled. Transfer of the proton energy into electrons ceases and the GRB enters abruptly the afterglow phase at a luminosity smaller by approx. m(sub p)/m(sub e) than that of the prompt emission. If the radius at which this slow-down occurs is significantly smaller than R(sub D), the RBW internal energy continues to drive the RBW expansion at a constant (new) Gamma and its X-ray luminosity remains constant until R(sub D) is reached, at which point it resumes its more conventional decay, thereby completing the "unexpected" XRT light curve phase. If this transition occurs at R is approx. equal to R(sub D), the steep decline is followed by a flux decrease instead of a "plateau," consistent with the conventional afterglow declines. Besides providing an account of these peculiarities, the model suggests that the afterglow phase may in fact begin before the RBW reaches R is approx. equal to R(sub D), thus providing novel insights into GRB phenomenology.

  4. Gravitational waves within the magnetar model of superluminous supernovae and gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Ho, Wynn C. G.

    2016-11-01

    The light curve of many supernovae (SNe) and gamma-ray bursts (GRBs) can be explained by a sustained injection of extra energy from its possible central engine, a rapidly rotating strongly magnetic neutron star (i.e. magnetar). The magnetic dipole radiation power that the magnetar supplies comes at the expense of the star's rotational energy. However, radiation by gravitational waves (GWs) can be more efficient than magnetic dipole radiation because of its stronger dependence on neutron star spin rate Ω, i.e. Ω6 (for a static `mountain') or Ω8 (for an r-mode fluid oscillation) versus Ω4 for magnetic dipole radiation. Here, we use the magnetic field B and initial spin period P0 inferred from SN and GRB observations to obtain simple constraints on the dimensionless amplitude of the mountain of ε < 0.01 and r-mode oscillation of α < 1, the former being similar to that obtained by recent works. We then include GW emission within the magnetar model. We show that when ε > 10-4(B/1014 G)(P0/1 ms) or α > 0.01(B/1014 G)(P0/1 ms)2, light curves are strongly affected, with significant decrease in peak luminosity and increase in time to peak luminosity. Thus, the GW effects studied here are more pronounced for low B and short P0 but are unlikely to be important in modelling SN and GRB light curves since the amplitudes needed for noticeable changes are quite large.

  5. Gravitational waves within the magnetar model of superluminous supernovae and gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Ho, Wynn C. G.

    2016-08-01

    The light curve of many supernovae (SNe) and gamma-ray bursts (GRBs) can be explained by a sustained injection of extra energy from its possible central engine, a rapidly rotating strongly magnetic neutron star (i.e., magnetar). The magnetic dipole radiation power that the magnetar supplies comes at the expense of the star's rotational energy. However radiation by gravitational waves (GWs) can be more efficient than magnetic dipole radiation because of its stronger dependence on neutron star spin rate Ω, i.e., Ω6 (for a static "mountain") or Ω8 (for a r-mode fluid oscillation) versus Ω4 for magnetic dipole radiation. Here we use the magnetic field B and initial spin period P0 inferred from SN and GRB observations to obtain simple constraints on the dimensionless amplitude of the mountain of ε < 0.01 and r-mode oscillation of α < 1, the former being similar to that obtained by recent works. We then include GW emission within the magnetar model. We show that when ε > 10-4(B/1014G)(P0/1ms) or α > 0.01(B/1014G)(P0/1ms)2, light curves are strongly affected, with significant decrease in peak luminosity and increase in time to peak luminosity. Thus the GW effects studied here are more pronounced for low B and short P0 but are unlikely to be important in modeling SN and GRB light curves since the amplitudes needed for noticeable changes are quite large.

  6. Numerical models of blackbody-dominated gamma-ray bursts - II. Emission properties

    NASA Astrophysics Data System (ADS)

    Cuesta-Martínez, C.; Aloy, M. A.; Mimica, P.; Thöne, C.; de Ugarte Postigo, A.

    2015-01-01

    Blackbody-dominated (BBD) gamma-ray bursts (GRBs) are events characterized by long durations and the presence of a significant thermal component following the prompt emission, as well as by the absence of a typical afterglow. GRB 101225A is the most prominent member of this class. A plausible progenitor system for it and for BBD-GRBs is the merger a neutron star and a helium core of an evolved, massive star. Using relativistic hydrodynamic simulations we model the propagation of ultrarelativistic jets through the environments created by such mergers. In a previous paper we showed that the thermal emission in BBD-GRBs is linked to the interaction of an ultrarelativistic jet with the ejected envelope of the secondary star of the binary. Here we focus on explaining the emission properties of BBD-GRBs computing the whole radiative signature (both thermal and non-thermal) of the jet dynamical evolution. The non-thermal emission of the forward shock of the jet is dominant during the early phases of the evolution, when that shock is moderately relativistic. Our models do not produce a classical afterglow because the quick deceleration of the jet results primarily from the mass entrainment in the beam, and not from the process of plowing mass from the external medium in front of the GRB ejecta. The contribution of the reverse shock is of the same magnitude than that of the forward shock during the first 80 min after the GRB. Later, it quickly fades because the jet/environment interaction chocks the ultrarelativistic jet beam and effectively dumps the reverse shock. In agreement with observations, we obtain rather flat light curves during the first 2 d after the GRB, and a spectral evolution consistent with the observed reddening of the system.

  7. The Supercritical Pile Gamma-Ray Burst Model: The GRB Afterglow Steep Decline and Plateau Phase

    NASA Astrophysics Data System (ADS)

    Sultana, J.; Kazanas, D.; Mastichiadis, A.

    2013-12-01

    We present a process that accounts for the steep decline and plateau phase of the Swift X-Ray Telescope (XRT) light curves, vexing features of gamma-ray burst (GRB) phenomenology. This process is an integral part of the "supercritical pile" GRB model, proposed a few years ago to account for the conversion of the GRB kinetic energy into radiation with a spectral peak at E pk ~ mec 2. We compute the evolution of the relativistic blast wave (RBW) Lorentz factor Γ to show that the radiation-reaction force due to the GRB emission can produce an abrupt, small (~25%) decrease in Γ at a radius that is smaller (depending on conditions) than the deceleration radius RD . Because of this reduction, the kinematic criticality criterion of the "supercritical pile" is no longer fulfilled. Transfer of the proton energy into electrons ceases and the GRB enters abruptly the afterglow phase at a luminosity smaller by ~mp /me than that of the prompt emission. If the radius at which this slow-down occurs is significantly smaller than RD , the RBW internal energy continues to drive the RBW expansion at a constant (new) Γ and its X-ray luminosity remains constant until RD is reached, at which point it resumes its more conventional decay, thereby completing the "unexpected" XRT light curve phase. If this transition occurs at R ~= RD , the steep decline is followed by a flux decrease instead of a "plateau," consistent with the conventional afterglow declines. Besides providing an account of these peculiarities, the model suggests that the afterglow phase may in fact begin before the RBW reaches R ~= RD , thus providing novel insights into GRB phenomenology.

  8. Gamma ray bursts: a 1983 overview

    SciTech Connect

    Cline, T.L.

    1983-10-01

    Gamma ray burst observations are reviewed with mention of new gamma-ray and optical transient measurements and with discussions of the controversial, contradictory and unresolved issues that have recently emerged: burst spectra appear to fluctuate in time as rapidly as they are measured, implying that any one spectrum may be incorrect. Energy spectra can be obligingly fitted to practically any desired shape, implying, in effect, that no objective spectral resolution exists at all. Burst fluxes and temporal quantities, including the total event energy, are characterized very differently with differing instruments, implying that even elementary knowledge of their properties is instrumentally subjective. Finally, the log N-log S determinations are deficient in the weak bursts, while there is no detection of a source direction anisotropy, implying that Ptolemy was right or that burst source distance estimates are basically guesswork. These issues may remain unsolved until vastly improved instruments are flown.

  9. Gamma Ray Bursts: a 1983 Overview

    NASA Technical Reports Server (NTRS)

    Cline, T. L.

    1983-01-01

    Gamma ray burst observations are reviewed with mention of new gamma-ray and optical transient measurements and with discussions of the controversial, contradictory and unresolved issues that have recently emerged: burst spectra appear to fluctuate in time as rapidly as they are measured, implying that any one spectrum may be incorrect; energy spectra can be obligingly fitted to practically any desired shape, implying, in effect, that no objective spectral resolution exists at all; burst fluxes and temporal quantities, including the total event energy, are characterized very differently with differing instruments, implying that even elementary knowledge of their properties is instrumentally subjective; finally, the log N-log S determinations are deficient in the weak bursts, while there is no detection of a source direction anisotropy, implying that Ptolemy was right or that burst source distance estimates are basically guesswork. These issues may remain unsolved until vastly improved instruments are flown.

  10. Iron K Lines from Gamma Ray Bursts

    NASA Technical Reports Server (NTRS)

    Kallman, T. R.; Meszaros, P.; Rees, M. J.

    2003-01-01

    We present models for reprocessing of an intense flux of X-rays and gamma rays expected in the vicinity of gamma ray burst sources. We consider the transfer and reprocessing of the energetic photons into observable features in the X-ray band, notably the K lines of iron. Our models are based on the assumption that the gas is sufficiently dense to allow the microphysical processes to be in a steady state, thus allowing efficient line emission with modest reprocessing mass and elemental abundances ranging from solar to moderately enriched. We show that the reprocessing is enhanced by down-Comptonization of photons whose energy would otherwise be too high to absorb on iron, and that pair production can have an effect on enhancing the line production. Both "distant" reprocessors such as supernova or wind remnants and "nearby" reprocessors such as outer stellar envelopes can reproduce the observed line fluxes with Fe abundances 30-100 times above solar, depending on the incidence angle. The high incidence angles required arise naturally only in nearby models, which for plausible values can reach Fe line to continuum ratios close to the reported values.

  11. CONSTRAINTS ON THE SYNCHROTRON SHOCK MODEL FOR THE FERMI GRB 090820A OBSERVED BY GAMMA-RAY BURST MONITOR

    SciTech Connect

    Burgess, J. Michael; Preece, Robert D.; Briggs, Michael S.; Connaughton, Valerie; Guiriec, Sylvain; Paciesas, William S.; Bhat, P. N.; Chaplin, Vandiver; Goldstein, Adam; Baring, Matthew G.; Meegan, Charles A.; Bissaldi, Elisabetta; Diehl, Roland; Greiner, Jochen; Gruber, David; Fishman, Gerald J.; Gibby, Melissa; Giles, Misty E-mail: baring@rice.edu

    2011-11-01

    Discerning the radiative dissipation mechanism for prompt emission in gamma-ray bursts (GRBs) requires detailed spectroscopic modeling that straddles the {nu}F{sub {nu}} peak in the 100 keV-1 MeV range. Historically, empirical fits such as the popular Band function have been employed with considerable success in interpreting the observations. While extrapolations of the Band parameters can provide some physical insight into the emission mechanisms responsible for GRBs, these inferences do not provide a unique way of discerning between models. By fitting physical models directly, this degeneracy can be broken, eliminating the need for empirical functions; our analysis here offers a first step in this direction. One of the oldest, and leading, theoretical ideas for the production of the prompt signal is the synchrotron shock model. Here we explore the applicability of this model to a bright Fermi gamma-ray burst monitor (GBM) burst with a simple temporal structure, GRB 090820A. Our investigation implements, for the first time, thermal and non-thermal synchrotron emissivities in the RMFIT forward-folding spectral analysis software often used in GBM burst studies. We find that these synchrotron emissivities, together with a blackbody shape, provide at least as good a match to the data as the Band GRB spectral fitting function. This success is achieved in both time-integrated and time-resolved spectral fits.

  12. Constraints on the Synchrotron Shock Model for the Fermi GRB 090820A Observed by Gamma-Ray Burst Monitor

    NASA Astrophysics Data System (ADS)

    Burgess, J. Michael; Preece, Robert D.; Baring, Matthew G.; Briggs, Michael S.; Connaughton, Valerie; Guiriec, Sylvain; Paciesas, William S.; Meegan, Charles A.; Bhat, P. N.; Bissaldi, Elisabetta; Chaplin, Vandiver; Diehl, Roland; Fishman, Gerald J.; Fitzpatrick, Gerard; Foley, Suzanne; Gibby, Melissa; Giles, Misty; Goldstein, Adam; Greiner, Jochen; Gruber, David; van der Horst, Alexander J.; von Kienlin, Andreas; Kippen, Marc; Kouveliotou, Chryssa; McBreen, Sheila; Rau, Arne; Tierney, Dave; Wilson-Hodge, Colleen

    2011-11-01

    Discerning the radiative dissipation mechanism for prompt emission in gamma-ray bursts (GRBs) requires detailed spectroscopic modeling that straddles the νF ν peak in the 100 keV-1 MeV range. Historically, empirical fits such as the popular Band function have been employed with considerable success in interpreting the observations. While extrapolations of the Band parameters can provide some physical insight into the emission mechanisms responsible for GRBs, these inferences do not provide a unique way of discerning between models. By fitting physical models directly, this degeneracy can be broken, eliminating the need for empirical functions; our analysis here offers a first step in this direction. One of the oldest, and leading, theoretical ideas for the production of the prompt signal is the synchrotron shock model. Here we explore the applicability of this model to a bright Fermi gamma-ray burst monitor (GBM) burst with a simple temporal structure, GRB 090820A. Our investigation implements, for the first time, thermal and non-thermal synchrotron emissivities in the RMFIT forward-folding spectral analysis software often used in GBM burst studies. We find that these synchrotron emissivities, together with a blackbody shape, provide at least as good a match to the data as the Band GRB spectral fitting function. This success is achieved in both time-integrated and time-resolved spectral fits.

  13. Is there cosmological time dilation in gamma-ray bursts?

    NASA Technical Reports Server (NTRS)

    Band, David L.

    1994-01-01

    Norris et al. report that the temporal structure of faint gamma-ray bursts is longer than that of bright bursts, as expected for time dilation in the cosmological models of burst origin. I show that the observed trends can easily be produced by a burst luminosity function and thus may not result from cosmological effects. A cosmological signature may be present, but the tests Norris et al. present are not powerful enough to detect these signatures.

  14. Spectral evolution in gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Norris, J. P.; Share, G. H.; Messina, D. C.; Matz, M.; Kouveliotou, C.; Dennis, B. R.; Desai, U. D.; Cline, T. L.

    1986-01-01

    The Hard X-ray Burst Spectrometer (HXRBS) and the Gamma-Ray Spectrometer (GRS) on NASA's Solar Maximum Mission satellite have independently monitored cosmic gamma-ray bursts since launch in February 1980. Several bursts with relatively simple pulse structure and sufficient intensity have been analyzed for evidence of spectral variability on time scales shorter than the pulse durations. In many of these bursts pulse structures are found, ranging in duration from 1 to 10 seconds, which exhibit a trend of hard-to-soft spectral evolution. No significant evidence for soft-to-hard evolution has been found. The HXRBS data above 100 keV and the GRS data above 1 MeV indicate that the spectral evolution generally is not due to time-varying absorption features at energies below 100 keV.

  15. A distance limit for a class of model gamma-ray burst sources

    NASA Technical Reports Server (NTRS)

    Schmidt, W. K. H.

    1977-01-01

    Gamma ray burst sources are presumably not larger than 10 to the 9th power cm as inferred from observed flux variations. If they are homogeneous and isotropically radiating, then from photon density considerations, they would have to be optically thick due to gamma-gamma pair production when assumed to be too far away. Deviations of observed photo spectra from an exponential shape around 1 MeV lead to an upper limit of the possible distance of such sources of only 2 kpc from the sun. Thus the sources must be galactic unless the radiation is highly beamed or emerges from a relativistically moving shell. This conclusion depends only on observed parameters. The possible presence of particles and fields in the sources would require them to be even closer.

  16. Resonant Compton scattering and gamma-ray burst continuum spectra

    NASA Technical Reports Server (NTRS)

    Baring, M. G.

    1995-01-01

    The Thomson limit of resonant inverse Compton scattering in the strong magnetic fields of neutron stars is considered as a mechanism for producing gamma-ray burst continuum spectra. Photon production spectra and electron cooling rates are presented using the full magnetic Thomson cross-section. Model emission spectra are obtained as self-consistent solutions of a set of photon and electron kinetic equations, displaying spectral breaks and other structure at gamma-ray energies.

  17. "Short, Hard Gamma-Ray Bursts - Mystery Solved?????"

    NASA Technical Reports Server (NTRS)

    Parsons, A.

    2006-01-01

    After over a decade of speculation about the nature of short-duration hard-spectrum gamma-ray bursts (GRBs), the recent detection of afterglow emission from a small number of short bursts has provided the first physical constraints on possible progenitor models. While the discovery of afterglow emission from long GRBs was a real breakthrough linking their origin to star forming galaxies, and hence the death of massive stars, the progenitors, energetics, and environments for short gamma-ray burst events remain elusive despite a few recent localizations. Thus far, the nature of the host galaxies measured indicates that short GRBs arise from an old (> 1 Gyr) stellar population, strengthening earlier suggestions and providing support for coalescing compact object binaries as the progenitors. On the other hand, some of the short burst afterglow observations cannot be easily explained in the coalescence scenario. These observations raise the possibility that short GRBs may have different or multiple progenitors systems. The study of the short-hard GRB afterglows has been made possible by the Swift Gamma-ray Burst Explorer, launched in November of 2004. Swift is equipped with a coded aperture gamma-ray telescope that can observe up to 2 steradians of the sky and can compute the position of a gamma-ray burst to within 2-3 arcmin in less than 10 seconds. The Swift spacecraft can slew on to this burst position without human intervention, allowing its on-board x ray and optical telescopes to study the afterglow within 2 minutes of the original GRB trigger. More Swift short burst detections and afterglow measurements are needed before we can declare that the mystery of short gamma-ray burst is solved.

  18. A MULTIVARIATE FIT LUMINOSITY FUNCTION AND WORLD MODEL FOR LONG GAMMA-RAY BURSTS

    SciTech Connect

    Shahmoradi, Amir

    2013-04-01

    It is proposed that the luminosity function, the rest-frame spectral correlations, and distributions of cosmological long-duration (Type-II) gamma-ray bursts (LGRBs) may be very well described as a multivariate log-normal distribution. This result is based on careful selection, analysis, and modeling of LGRBs' temporal and spectral variables in the largest catalog of GRBs available to date: 2130 BATSE GRBs, while taking into account the detection threshold and possible selection effects. Constraints on the joint rest-frame distribution of the isotropic peak luminosity (L{sub iso}), total isotropic emission (E{sub iso}), the time-integrated spectral peak energy (E{sub p,z}), and duration (T{sub 90,z}) of LGRBs are derived. The presented analysis provides evidence for a relatively large fraction of LGRBs that have been missed by the BATSE detector with E{sub iso} extending down to {approx}10{sup 49} erg and observed spectral peak energies (E{sub p} ) as low as {approx}5 keV. LGRBs with rest-frame duration T{sub 90,z} {approx}< 1 s or observer-frame duration T{sub 90} {approx}< 2 s appear to be rare events ({approx}< 0.1% chance of occurrence). The model predicts a fairly strong but highly significant correlation ({rho} = 0.58 {+-} 0.04) between E{sub iso} and E{sub p,z} of LGRBs. Also predicted are strong correlations of L{sub iso} and E{sub iso} with T{sub 90,z} and moderate correlation between L{sub iso} and E{sub p,z}. The strength and significance of the correlations found encourage the search for underlying mechanisms, though undermine their capabilities as probes of dark energy's equation of state at high redshifts. The presented analysis favors-but does not necessitate-a cosmic rate for BATSE LGRBs tracing metallicity evolution consistent with a cutoff Z/Z{sub Sun} {approx} 0.2-0.5, assuming no luminosity-redshift evolution.

  19. THE FERMI GAMMA-RAY BURST MONITOR

    SciTech Connect

    Meegan, Charles; Lichti, Giselher; Bissaldi, Elisabetta; Diehl, Roland; Greiner, Jochen; Von Kienlin, Andreas; Steinle, Helmut; Bhat, P. N.; Briggs, Michael S.; Connaughton, Valerie; Paciesas, W. S.; Preece, Robert; Wilson, Robert B.; Fishman, Gerald; Kouveliotou, Chryssa; Van der Horst, Alexander J.; McBreen, Sheila

    2009-09-01

    The Gamma-Ray Burst Monitor (GBM) will significantly augment the science return from the Fermi Observatory in the study of gamma-ray bursts (GRBs). The primary objective of GBM is to extend the energy range over which bursts are observed downward from the energy range of the Large Area Telescope (LAT) on Fermi into the hard X-ray range where extensive previous data sets exist. A secondary objective is to compute burst locations onboard to allow re-orienting the spacecraft so that the LAT can observe delayed emission from bright bursts. GBM uses an array of 12 sodium iodide scintillators and two bismuth germanate scintillators to detect gamma rays from {approx}8 keV to {approx}40 MeV over the full unocculted sky. The onboard trigger threshold is {approx}0.7 photons cm{sup -2} s{sup -1} (50-300 keV, 1 s peak). GBM generates onboard triggers for {approx}250 GRBs per year.

  20. The Compatibility of Friedmann Cosmological Models with Observed Properties of Gamma-Ray Bursts and a Large Hubble Constant

    NASA Technical Reports Server (NTRS)

    Horack, John M.; Koshut, Thomas M.; Mallozzi, Robert S.; Emslie, A. Gordon; Meegan, Charles A.

    1996-01-01

    The distance scale to cosmic gamma-ray bursts (GRB's) is still uncertain by many orders of magnitude; however, one viable scenario places GRB's at cosmological distances, thereby permitting them to be used as tracers of the cosmological expansion over a significant range of redshifts zeta. Also, several recent measurements of the Hubble constant H(sub 0) appearing in the referred literature report values of 70-80 km/s /Mpc. Although there is significant debate regarding these measurements, we proceed here under the assumption that they are evidence of a large value for H(sub 0). This is done in order to investigate the additional constraints on cosmological models that can be obtained under this hypothesis when combined with the age of the universe and the brightness distribution of cosmological gamma-ray bursts. We show that the range of cosmological models that can be consistent with the GRB brightness distribution, a Hubble constant of 70-80 km/s/Mpc, and a minimum age of the universe of 13-15 Gyr is constrained significantly, largely independent of a wide range of assumptions regarding the evolutionary nature of the burst population. Low-density, Lambda greater than 0 cosmological models with deceleration parameter in the range -1 less than q(sub 0) less than 0 and density parameter sigma(sub 0) in the range approximately equals 0.10-0.25(Omega(sub 0) approximately equals 0.2-0.5) are strongly favored.

  1. Very high-energy gamma rays from gamma-ray bursts.

    PubMed

    Chadwick, Paula M

    2007-05-15

    Very high-energy (VHE) gamma-ray astronomy has undergone a transformation in the last few years, with telescopes of unprecedented sensitivity having greatly expanded the source catalogue. Such progress makes the detection of a gamma-ray burst at the highest energies much more likely than previously. This paper describes the facilities currently operating and their chances for detecting gamma-ray bursts, and reviews predictions for VHE gamma-ray emission from gamma-ray bursts. Results to date are summarized.

  2. Gamma-ray Burst Energetics an the Gamma-ray Burst Hubble Diagram: Promises and Limitations

    NASA Technical Reports Server (NTRS)

    Bloom, J. S.; Frail, D. A.; Kulkarni, S. R.

    2003-01-01

    We present a complete sample of 29 gamma-ray bursts (GRBs) for which it has been possible to determine temporal breaks (or limits) from their afterglow light curves. We interpret these breaks within the framework of the uniform conical jet model, incorporating realistic estimates of the ambient density and propagating error estimates on the measured quantities. In agreement with our previous analysis of a smaller sample, the derived jet opening angles of those 16 bursts with redshifts result in a narrow clustering of geometrically corrected gamma-ray energies about 1.33 x 10(exp 51) ergs; the burst-to-burst variance about this value is 0.35 dex, a factor of 2.2. Despite this rather small scatter, we demonstrate in a series of GRB Hubble diagrams that the current sample cannot place meaningful constraints upon the fundamental parameters of the universe. Indeed, for GRBs to ever be useful in cosmographic measurements, we argue the necessity of two directions. First, GRB Hubble diagrams should be based upon fundamental physical quantities such as energy, rather than empirically derived and physically ill-understood distance indicators (such as those based upon prompt burst time-profiles and spectra). Second, a more homogeneous set should be constructed by culling subclasses from the larger sample. These subclasses, although now first recognizable by deviant energies, ultimately must be identifiable by properties other than those directly related to energy. We identify a new subclass of GRBs (" f-GRBs ") that appear both underluminous by factors of at least 10 and exhibit a rapid fading (f(sub nu is proportional to t(sup -2) at early times (t < or = 0.5 day). About 10%-20% of observed long-duration bursts appear to be f-GRBs.

  3. HETEROGENEITY IN SHORT GAMMA-RAY BURSTS

    SciTech Connect

    Norris, Jay P.; Gehrels, Neil

    2011-07-01

    We analyze the Swift/BAT sample of short gamma-ray bursts, using an objective Bayesian Block procedure to extract temporal descriptors of the bursts' initial pulse complexes (IPCs). The sample is comprised of 12 and 41 bursts with and without extended emission (EE) components, respectively. IPCs of non-EE bursts are dominated by single pulse structures, while EE bursts tend to have two or more pulse structures. The medians of characteristic timescales-durations, pulse structure widths, and peak intervals-for EE bursts are factors of {approx}2-3 longer than for non-EE bursts. A trend previously reported by Hakkila and colleagues unifying long and short bursts-the anti-correlation of pulse intensity and width-continues in the two short burst groups, with non-EE bursts extending to more intense, narrower pulses. In addition, we find that preceding and succeeding pulse intensities are anti-correlated with pulse interval. We also examine the short burst X-ray afterglows as observed by the Swift/X-Ray Telescope (XRT). The median flux of the initial XRT detections for EE bursts ({approx}6x10{sup -10} erg cm{sup -2} s{sup -1}) is {approx}>20x brighter than for non-EE bursts, and the median X-ray afterglow duration for EE bursts ({approx}60,000 s) is {approx}30x longer than for non-EE bursts. The tendency for EE bursts toward longer prompt-emission timescales and higher initial X-ray afterglow fluxes implies larger energy injections powering the afterglows. The longer-lasting X-ray afterglows of EE bursts may suggest that a significant fraction explode into denser environments than non-EE bursts, or that the sometimes-dominant EE component efficiently powers the afterglow. Combined, these results favor different progenitors for EE and non-EE short bursts.

  4. Heterogeneity in Short Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Norris, Jay P.; Gehrels Neil; Scargle, Jeffrey D.

    2011-01-01

    We analyze the Swift/BAT sample of short gamma-ray bursts, using an objective Bayesian Block procedure to extract temporal descriptors of the bursts' initial pulse complexes (IPCs). The sample comprises 12 and 41 bursts with and without extended emission (EE) components, respectively. IPCs of non-EE bursts are dominated by single pulse structures, while EE bursts tend to have two or more pulse structures. The medians of characteristic timescales - durations, pulse structure widths, and peak intervals - for EE bursts are factors of approx 2-3 longer than for non-EE bursts. A trend previously reported by Hakkila and colleagues unifying long and short bursts - the anti-correlation of pulse intensity and width - continues in the two short burst groups, with non-EE bursts extending to more intense, narrower pulses. In addition we find that preceding and succeeding pulse intensities are anti-correlated with pulse interval. We also examine the short burst X-ray afterglows as observed by the Swift/XRT. The median flux of the initial XRT detections for EE bursts (approx 6 X 10(exp -10) erg / sq cm/ s) is approx > 20 x brighter than for non-EE bursts, and the median X-ray afterglow duration for EE bursts (approx 60,000 s) is approx 30 x longer than for non-EE bursts. The tendency for EE bursts toward longer prompt-emission timescales and higher initial X-ray afterglow fluxes implies larger energy injections powering the afterglows. The longer-lasting X-ray afterglows of EE bursts may suggest that a significant fraction explode into more dense environments than non-EE bursts, or that the sometimes-dominant EE component efficiently p()wers the afterglow. Combined, these results favor different progenitors for EE and non-EE short bursts.

  5. Plasma Instabilities in Gamma-Ray Bursts

    SciTech Connect

    Tautz, Robert C.

    2008-12-24

    Magnetic fields are important in a variety of astrophysical scenarios, ranging from possible creation mechanisms of cosmological magnetic fields through relativistic jets such as that from Active Galactic Nuclei and gamma-ray bursts to local phenomena in the solar system. Here, the outstanding importance of plasma instabilities to astrophysics is illustrated by applying the so-called neutral point method to gamma-ray bursts (GRBs), which are assumed to have a homogeneous background magnetic field. It is shown how magnetic turbulence, which is a prerequisite for the creation of dissipation and, subsequently, radiation, is created by the highly relativistic particles in the GRB jet. Using the fact that different particle compositions lead to different instability conditions, conclusions can be drawn about the particle composition of the jet, showing that it is more likely of baryonic nature.

  6. Gamma-Ray Bursts: A Mystery Story

    NASA Technical Reports Server (NTRS)

    Parsons, Ann

    2007-01-01

    With the success of the Swift Gamma-Ray Burst Explorer currently in orbit, this is quite an exciting time in the history of Gamma Ray Bursts (GRBs). The study of GRBs is a modern astronomical mystery story that began over 30 years ago with the serendipitous discovery of these astronomical events by military satellites in the late 1960's. Until the launch of BATSE on the Compton Gamma-ray Observatory, astronomers had no clue whether GRBs originated at the edge of our solar system, in our own Milky Way Galaxy or incredibly far away near the edge of the observable Universe. Data from BATSE proved that GRBs are distributed isotropically on the sky and thus could not be the related to objects in the disk of our Galaxy. Given the intensity of the gamma-ray emission, an extragalactic origin would require an astounding amount of energy. Without sufficient data to decide the issue, a great debate continued about whether GRBs were located in the halo of our own galaxy or were at extragalactic - even cosmological distances. This debate continued until 1997 when the BeppoSAX mission discovered a fading X-ray afterglow signal in the same location as a GRB. This discovery enabled other telescopes, to observe afterglow emission at optical and radio wavelengths and prove that GRBs were at cosmological distances by measuring large redshifts in the optical spectra. Like BeppoSAX Swift, slews to new GRB locations to measure afterglow emission. In addition to improved GRB sensitivity, a significant advantage of Swift over BeppoSAX and other missions is its ability to slew very quickly, allowing x-ray and optical follow-up measurements to be made as early as a minute after the gamma-ray burst trigger rather than the previous 6-8 hour delay. Swift afterglow measurements along with follow-up ground-based observations, and theoretical work have allowed astronomers to identify two plausible scenarios for the creation of a GRB: either through core collapse of super massive stars or

  7. Radio Flares from Gamma-ray Bursts

    NASA Astrophysics Data System (ADS)

    Kopač, D.; Mundell, C. G.; Kobayashi, S.; Virgili, F. J.; Harrison, R.; Japelj, J.; Guidorzi, C.; Melandri, A.; Gomboc, A.

    2015-06-01

    We present predictions of centimeter and millimeter radio emission from reverse shocks (RSs) in the early afterglows of gamma-ray bursts (GRBs) with the goal of determining their detectability with current and future radio facilities. Using a range of GRB properties, such as peak optical brightness and time, isotropic equivalent gamma-ray energy, and redshift, we simulate radio light curves in a framework generalized for any circumburst medium structure and including a parameterization of the shell thickness regime that is more realistic than the simple assumption of thick- or thin-shell approximations. Building on earlier work by Mundell et al. and Melandri et al. in which the typical frequency of the RS was suggested to lie at radio rather than optical wavelengths at early times, we show that the brightest and most distinct RS radio signatures are detectable up to 0.1-1 day after the burst, emphasizing the need for rapid radio follow-up. Detection is easier for bursts with later optical peaks, high isotropic energies, lower circumburst medium densities, and at observing frequencies that are less prone to synchrotron self-absorption effects—typically above a few GHz. Given recent detections of polarized prompt gamma-ray and optical RS emission, we suggest that detection of polarized radio/millimeter emission will unambiguously confirm the presence of low-frequency RSs at early time.

  8. RADIO FLARES FROM GAMMA-RAY BURSTS

    SciTech Connect

    Kopač, D.; Mundell, C. G.; Kobayashi, S.; Virgili, F. J.; Harrison, R.; Japelj, J.; Gomboc, A.; Guidorzi, C.; Melandri, A.

    2015-06-20

    We present predictions of centimeter and millimeter radio emission from reverse shocks (RSs) in the early afterglows of gamma-ray bursts (GRBs) with the goal of determining their detectability with current and future radio facilities. Using a range of GRB properties, such as peak optical brightness and time, isotropic equivalent gamma-ray energy, and redshift, we simulate radio light curves in a framework generalized for any circumburst medium structure and including a parameterization of the shell thickness regime that is more realistic than the simple assumption of thick- or thin-shell approximations. Building on earlier work by Mundell et al. and Melandri et al. in which the typical frequency of the RS was suggested to lie at radio rather than optical wavelengths at early times, we show that the brightest and most distinct RS radio signatures are detectable up to 0.1–1 day after the burst, emphasizing the need for rapid radio follow-up. Detection is easier for bursts with later optical peaks, high isotropic energies, lower circumburst medium densities, and at observing frequencies that are less prone to synchrotron self-absorption effects—typically above a few GHz. Given recent detections of polarized prompt gamma-ray and optical RS emission, we suggest that detection of polarized radio/millimeter emission will unambiguously confirm the presence of low-frequency RSs at early time.

  9. The Most Remote Gamma-Ray Burst

    NASA Astrophysics Data System (ADS)

    2000-10-01

    ESO Telescopes Observe "Lightning" in the Young Universe Summary Observations with telescopes at the ESO La Silla and Paranal observatories (Chile) have enabled an international team of astronomers [1] to measure the distance of a "gamma-ray burst", an extremely violent, cosmic explosion of still unknown physical origin. It turns out to be the most remote gamma-ray burst ever observed . The exceedingly powerful flash of light from this event was emitted when the Universe was very young, less than about 1,500 million years old, or only 10% of its present age. Travelling with the speed of light (300,000 km/sec) during 11,000 million years or more, the signal finally reached the Earth on January 31, 2000. The brightness of the exploding object was enormous, at least 1,000,000,000,000 times that of our Sun, or thousands of times that of the explosion of a single, heavy star (a "supernova"). The ESO Very Large Telescope (VLT) was also involved in trail-blazing observations of another gamma-ray burst in May 1999, cf. ESO PR 08/99. PR Photo 28a/00 : Sky field near GRB 000131 . PR Photo 28b/00 : The fading optical counterpart of GRB 000131 . PR Photo 28c/00 : VLT spectrum of GRB 000131 . What are Gamma-Ray Bursts? One of the currently most active fields of astrophysics is the study of the mysterious events known as "gamma-ray bursts" . They were first detected in the late 1960's by instruments on orbiting satellites. These short flashes of energetic gamma-rays last from less than a second to several minutes. Despite much effort, it is only within the last few years that it has become possible to locate the sites of some of these events (e.g. with the Beppo-Sax satellite ). Since the beginning of 1997, astronomers have identified about twenty optical sources in the sky that are associated with gamma-ray bursts. They have been found to be situated at extremely large (i.e., "cosmological") distances. This implies that the energy release during a gamma-ray burst within a few

  10. MAGNETIC STRUCTURES IN GAMMA-RAY BURST JETS PROBED BY GAMMA-RAY POLARIZATION

    SciTech Connect

    Yonetoku, Daisuke; Murakami, Toshio; Morihara, Yoshiyuki; Takahashi, Takuya; Wakashima, Yudai; Yonemochi, Hajime; Sakashita, Tomonori; Fujimoto, Hirofumi; Kodama, Yoshiki; Gunji, Shuichi; Toukairin, Noriyuki; Mihara, Tatehiro; Toma, Kenji

    2012-10-10

    We report polarization measurements in two prompt emissions of gamma-ray bursts, GRB 110301A and GRB 110721A, observed with the gamma-ray burst polarimeter (GAP) on borad the IKAROS solar sail mission. We detected linear polarization signals from each burst with polarization degree of {Pi} = 70 {+-} 22% with statistical significance of 3.7{sigma} for GRB 110301A, and {Pi} = 84{sup +16}{sub -28}% with 3.3{sigma} confidence level for GRB 110721A. We did not detect any significant change of polarization angle. These two events had shorter durations and dimmer brightness compared with GRB 100826A, which showed a significant change of polarization angle, as reported in Yonetoku et al. Synchrotron emission model can be consistent with the data of the three GRBs, while the photospheric quasi-thermal emission model is not favored. We suggest that magnetic field structures in the emission region are globally ordered fields advected from the central engine.

  11. LOCALIZATION OF GAMMA-RAY BURSTS USING THE FERMI GAMMA-RAY BURST MONITOR

    SciTech Connect

    Connaughton, V.; Briggs, M. S.; Burgess, J. M.; Goldstein, A.; Wilson-Hodge, C. A.; Paciesas, W. S.; Preece, R. D.; Gibby, M. H.; Greiner, J.; Yu, H.-F.; Gruber, D.; Kippen, R. M.; Byrne, D.; Fitzpatrick, G.; Foley, S.; and others

    2015-02-01

    The Fermi Gamma-ray Burst Monitor (GBM) has detected over 1400 gamma-ray bursts (GRBs) since it began science operations in 2008 July. We use a subset of over 300 GRBs localized by instruments such as Swift, the Fermi Large Area Telescope, INTEGRAL, and MAXI, or through triangulations from the InterPlanetary Network, to analyze the accuracy of GBM GRB localizations. We find that the reported statistical uncertainties on GBM localizations, which can be as small as 1°, underestimate the distance of the GBM positions to the true GRB locations and we attribute this to systematic uncertainties. The distribution of systematic uncertainties is well represented (68% confidence level) by a 3.°7 Gaussian with a non-Gaussian tail that contains about 10% of GBM-detected GRBs and extends to approximately 14°. A more complex model suggests that there is a dependence of the systematic uncertainty on the position of the GRB in spacecraft coordinates, with GRBs in the quadrants on the Y axis better localized than those on the X axis.

  12. Localization of Gamma-Ray Bursts Using the Fermi Gamma-Ray Burst Monitor

    NASA Astrophysics Data System (ADS)

    Connaughton, V.; Briggs, M. S.; Goldstein, A.; Meegan, C. A.; Paciesas, W. S.; Preece, R. D.; Wilson-Hodge, C. A.; Gibby, M. H.; Greiner, J.; Gruber, D.; Jenke, P.; Kippen, R. M.; Pelassa, V.; Xiong, S.; Yu, H.-F.; Bhat, P. N.; Burgess, J. M.; Byrne, D.; Fitzpatrick, G.; Foley, S.; Giles, M. M.; Guiriec, S.; van der Horst, A. J.; von Kienlin, A.; McBreen, S.; McGlynn, S.; Tierney, D.; Zhang, B.-B.

    2015-02-01

    The Fermi Gamma-ray Burst Monitor (GBM) has detected over 1400 gamma-ray bursts (GRBs) since it began science operations in 2008 July. We use a subset of over 300 GRBs localized by instruments such as Swift, the Fermi Large Area Telescope, INTEGRAL, and MAXI, or through triangulations from the InterPlanetary Network, to analyze the accuracy of GBM GRB localizations. We find that the reported statistical uncertainties on GBM localizations, which can be as small as 1°, underestimate the distance of the GBM positions to the true GRB locations and we attribute this to systematic uncertainties. The distribution of systematic uncertainties is well represented (68% confidence level) by a 3.°7 Gaussian with a non-Gaussian tail that contains about 10% of GBM-detected GRBs and extends to approximately 14°. A more complex model suggests that there is a dependence of the systematic uncertainty on the position of the GRB in spacecraft coordinates, with GRBs in the quadrants on the Y axis better localized than those on the X axis.

  13. Observing gamma-ray bursts with the INTEGRAL spectrometer SPI

    NASA Technical Reports Server (NTRS)

    Skinner, G. K.; Connell, P. H.; Naya, J. E.; Seifert, H.; Teegarden, B. J.

    1997-01-01

    The spectrometer for INTEGRAL (SPI) is a germanium spectrometer with a wide field of view and will provide the International Gamma Ray Astrophysics Laboratory (INTEGRAL) mission with the opportunity of studying gamma ray bursts. Simulations carried out to assess the response of the instrument using data from real burst data as input are reported on. It is shown that, despite the angular resolution of 3 deg, it is possible to locate the direction of bursts with an accuracy of a few arcmin, while offering the high spectral resolution of the germanium detectors. It is remarked that the SPI field of view is similar to the size of the halo of bursts expected around M 31 on galactic models. The detectability of bursts with such a halo is discussed.

  14. A Plasma Instability Theory of Gamma-Ray Burst Emission

    NASA Technical Reports Server (NTRS)

    Brainerd, Jerome J.

    1999-01-01

    A plasma instability theory is presented for the prompt radiation from gamma-ray bursts. In the theory, a highly relativistic shell interacts with the interstellar medium through the filamentation and the two-stream instabilities to convert bulk kinetic energy into electron thermal energy and magnetic field energy. The processes are not efficient enough to satisfy the Rankine-Hugoniot conditions, so a shock cannot form through this mechanism. Instead, the interstellar medium passes through the shell, with the electrons radiating during this passage. Gamma-rays are produced by synchrotron self-Compton emission. Prompt optical emission is also produced through this mechanism, while prompt radio emission is produced through synchrotron emission. The model timescales are consistent with the shortest burst timescales. To emit gamma-rays, the shell's bulk Lorentz factor must be $\\simg 10(exp 3)$. For the radiative processes to be efficient, the interstellar medium density must satisfy a lower limit that is a function of the bulk Lorentz factor. Because the limits operate as selection effects, bursts that violate them constitute new classes. In particular, a class of optical and ultraviolet bursts with no gamma-ray emission should exist. The lower limit on the density of the interstellar medium is consistent with the requirements of the Compton attenuation theory, providing an explanation for why all burst spectra appear to be attenuated. Several tests of the theory are discussed, as are the next theoretical investigations that should be conducted.

  15. SuperAGILE and Gamma Ray Bursts

    SciTech Connect

    Pacciani, Luigi; Costa, Enrico; Del Monte, Ettore; Donnarumma, Immacolata; Evangelista, Yuri; Feroci, Marco; Frutti, Massimo; Lazzarotto, Francesco; Lapshov, Igor; Rubini, Alda; Soffitta, Paolo; Tavani, Marco; Barbiellini, Guido; Mastropietro, Marcello; Morelli, Ennio; Rapisarda, Massimo

    2006-05-19

    The solid-state hard X-ray imager of AGILE gamma-ray mission -- SuperAGILE -- has a six arcmin on-axis angular resolution in the 15-45 keV range, a field of view in excess of 1 steradian. The instrument is very light: 5 kg only. It is equipped with an on-board self triggering logic, image deconvolution, and it is able to transmit the coordinates of a GRB to the ground in real-time through the ORBCOMM constellation of satellites. Photon by photon Scientific Data are sent to the Malindi ground station at every contact. In this paper we review the performance of the SuperAGILE experiment (scheduled for a launch in the middle of 2006), after its first onground calibrations, and show the perspectives for Gamma Ray Bursts.

  16. Statistical properties of the time histories of cosmic gamma-ray bursts detected by the BATSE experiment of the Compton gamma-ray observatory

    NASA Technical Reports Server (NTRS)

    Sagdeev, Roald

    1995-01-01

    The main scientific objectives of the project were: (1) Calculation of average time history for different subsets of BATSE gamma-ray bursts; (2) Comparison of averaged parameters and averaged time history for different Burst And Transient Source Experiments (BASTE) Gamma Ray Bursts (GRB's) sets; (3) Comparison of results obtained with BATSE data with those obtained with APEX experiment at PHOBOS mission; and (4) Use the results of (1)-(3) to compare current models of gamma-ray bursts sources.

  17. Gravitational-wave Observations May Constrain Gamma-Ray Burst Models: The Case of GW150914-GBM

    NASA Astrophysics Data System (ADS)

    Veres, P.; Preece, R. D.; Goldstein, A.; Mészáros, P.; Burns, E.; Connaughton, V.

    2016-08-01

    The possible short gamma-ray burst (GRB) observed by Fermi/GBM in coincidence with the first gravitational-wave (GW) detection offers new ways to test GRB prompt emission models. GW observations provide previously inaccessible physical parameters for the black hole central engine such as its horizon radius and rotation parameter. Using a minimum jet launching radius from the Advanced LIGO measurement of GW 150914, we calculate photospheric and internal shock models and find that they are marginally inconsistent with the GBM data, but cannot be definitely ruled out. Dissipative photosphere models, however, have no problem explaining the observations. Based on the peak energy and the observed flux, we find that the external shock model gives a natural explanation, suggesting a low interstellar density (˜10-3 cm-3) and a high Lorentz factor (˜2000). We only speculate on the exact nature of the system producing the gamma-rays, and study the parameter space of a generic Blandford-Znajek model. If future joint observations confirm the GW-short-GRB association we can provide similar but more detailed tests for prompt emission models.

  18. Gravitational-wave Observations May Constrain Gamma-Ray Burst Models: The Case of GW150914–GBM

    NASA Astrophysics Data System (ADS)

    Veres, P.; Preece, R. D.; Goldstein, A.; Mészáros, P.; Burns, E.; Connaughton, V.

    2016-08-01

    The possible short gamma-ray burst (GRB) observed by Fermi/GBM in coincidence with the first gravitational-wave (GW) detection offers new ways to test GRB prompt emission models. GW observations provide previously inaccessible physical parameters for the black hole central engine such as its horizon radius and rotation parameter. Using a minimum jet launching radius from the Advanced LIGO measurement of GW 150914, we calculate photospheric and internal shock models and find that they are marginally inconsistent with the GBM data, but cannot be definitely ruled out. Dissipative photosphere models, however, have no problem explaining the observations. Based on the peak energy and the observed flux, we find that the external shock model gives a natural explanation, suggesting a low interstellar density (˜10‑3 cm‑3) and a high Lorentz factor (˜2000). We only speculate on the exact nature of the system producing the gamma-rays, and study the parameter space of a generic Blandford–Znajek model. If future joint observations confirm the GW–short-GRB association we can provide similar but more detailed tests for prompt emission models.

  19. Neutrino astronomy and gamma-ray bursts.

    PubMed

    Waxman, Eli

    2007-05-15

    The construction of large-volume detectors of high energy, greater than 1TeV, neutrinos is mainly driven by the search for extragalactic neutrino sources. The existence of such sources is implied by the observations of ultra-high-energy, greater than or equal to 1019eV, cosmic rays, the origin of which is a mystery. In this lecture, I briefly discuss the expected extragalactic neutrino signal and the current state of the experimental efforts. Neutrino emission from gamma-ray bursts (GRBs), which are probably sources of both high-energy protons and neutrinos, is discussed in some detail. The detection of the predicted GRB neutrino signal, which may become possible in the coming few years, will allow one to identify the sources of ultra-high-energy cosmic rays and to resolve open questions related to the underlying physics of GRB models. Moreover, detection of GRB neutrinos will allow one to test for neutrino properties (e.g. flavour oscillations and coupling to gravity) with an accuracy many orders of magnitude better than is currently possible.

  20. Supernovae, hypernovae and gamma ray bursts

    NASA Astrophysics Data System (ADS)

    Dar, Arnon

    2001-05-01

    Recent observations suggest that gamma ray bursts (GRBs) and their afterglows are produced by highly relativistic jets emitted in core collapse supernova explosions (SNe). The result of the event, probably, is not just a compact object plus a spherical ejecta: within a day, a fraction of the parent star falls back to produce a thick accretion disk around the compact object. Instabilities in the disk induce a sudden collapse with ejection of jets of highly relativistic ``cannonballs'' of plasma in opposite directions, similar to those ejected by microquasars. The jet of cannonballs exit the supernova shell/ejecta reheated by their collision with it, emitting highly forward-collimated radiation which is Doppler shifted to γ-ray energy. Each cannonball corresponds to an individual pulse in a GRB. They decelerate by sweeping up the ionized interstellar matter in front of them, part of which is accelerated to cosmic-ray energies and emits synchrotron radiation: the afterglow. The Cannonball Model cannot predict the timing sequence of these pulses, but it fares very well in describing the total energy, energy spectrum, and time-dependence of the individual γ-ray pulses and afterglows. It also predicts that GRB pulses are accompanied by detectable short pulses of TeV neutrinos and sub TeV γ-rays, that are much more energetic and begin and peak a little earlier. .

  1. Gamma-Ray Bursts and Particle Acceleration

    SciTech Connect

    Asano, Katsuaki

    2008-08-28

    Gamma-ray bursts (GRBs) are possible sources of ultra-high-energy cosmic rays (UHE-CRs). To test the GRB origin of UHECRs, it is essential to search for characteristic, proton-induced signatures of secondary radiation. In this paper we present our recent results of Monte Carlo simulations that model the broadband prompt emission of GRBs including various processes associated with electrons and protons accelerated to high energies. The most notable effect of accelerated protons on the high-energy spectra is the synchrotron emission from secondary electron-positron pairs injected by photomeson interactions. Secondary photons tend to make the spectra flat, so a spectral flattening in the GeV-TeV bands may serve as a signature of UHECR acceleration. In some cases, the proton-induced photons overwhelm the photon field, resulting in a spectral peak due to inverse Compton emission from secondary pairs located around 10{sup 7} eV. We can expect to detect synchrotron photons from protons or muons. Observations with GLAST or with atmospheric Cerenkov telescopes can provide useful estimates of the bulk Lorents factor and can constrain the proton acceleration efficiency.

  2. Gamma-ray bursts from extragalactic radio pulsars

    NASA Technical Reports Server (NTRS)

    Melia, Fulvio; Fatuzzo, Marco

    1992-01-01

    It is argued here that the recent BATSE results on the distribution of gamma-ray bursts (GRBs) does not require the abandonment of the isolated neutron stars model in which most of the bursts have a magnetospheric origin. It is demonstrated that GRBs may be produced on relatively young radio pulsars residing in galaxies out to a redshift of about 2.5, consistent with the cosmological hypothesis. These sources may therefore be beacons that trace galactic evolution.

  3. Gamma-ray bursts and cosmology.

    PubMed

    Lamb, D Q

    2007-05-15

    I review the current status of the use of gamma-ray bursts (GRBs) as probes of the early Universe and cosmology. I describe the promise of long GRBs as probes of the high redshift (z>4) and very high redshift (z>5) Universe, and several key scientific results that have come from observations made possible by accurate, rapid localizations of these bursts by Swift. I then estimate the fraction of long GRBs that lie at very high redshifts and discuss ways in which it may be possible to rapidly identify-and therefore study-a larger number of these bursts. Finally, I discuss the ways in which both long and short GRBs can be made 'standard candles' and used to constrain the properties of dark energy. PMID:17301023

  4. Gamma-ray bursts during neutron star formation. Gamma-ray bursts and transient X-ray sources

    NASA Technical Reports Server (NTRS)

    Cohen, J. M.; Desai, U. D.; Holt, S. S.

    1973-01-01

    Discussions are presented of the associations between cosmic gamma ray bursts and transient X-ray sources, and the release of gravitational binding energy during the formation of neutron stars. The model for studying the associations is described along with the release of neutrinos during the collapse of white dwarfs.

  5. Gamma ray burst outflows and afterglows

    NASA Astrophysics Data System (ADS)

    Morsony, Brian J.

    2008-08-01

    We carry out a theoretical investigation of jet propagation in Gamma Ray Bursts and examine the jitter radiation mechanism as a means of producing prompt and afterglow emission. We study the long-term evolution of relativistic jets in collapsars and examine the effects of viewing angle on the subsequent gamma ray bursts. Our simulations allow us to single out three phases in the jet evolution: a precursor phase in which relativistic material turbulently shed from the head of the jet first emerges from the star; a shocked jet phase where a fully shocked jet of material is emerging; and an unshocked jet phase where the jet consists of a free-streaming, unshocked core surrounded by a thin boundary layer of shocked jet material. We also carry out a series of simulations with central engines that vary on long time periods comparable to the breakout time of the jet, on short time periods (0.1s) much less than the breakout time, and finally that decay as a power law at late times. We conclude that rapid variability seen in prompt GRB emission, as well as shallow decays and flares seen in the X-ray afterglow, can be caused by central engine variability. Finally, we present a detailed computation of the jitter radiation spectrum, including self-absorption, for electrons inside Weibel-like shock- generated magnetic fields. We apply our results to the case of the prompt and afterglow emission of gamma-ray bursts. We conclude that jitter and synchrotron afterglows can be distinguished from each other with good quality observations. However, it is unlikely that the difference can explain the peculiar behavior of several recent observations, such as flat X-ray slopes and uncorrelated optical and X-ray behavior.

  6. Long-Lag, Wide-pulse Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Norris, J. P.; Bonnell, J. T.; Kazanas, D.; Scargle, . D.; Hakkila, J.; Giblin, T. W.

    2004-01-01

    Currently, the best available probe of the early phase of gamma-ray burst (GRB) jet attributes is the prompt gamma-ray emission, in which several intrinsic and extrinsic variables determine GRB pulse evolution. Bright, usually complex bursts have many narrow pulses that are difficult to model due to overlap. However, the relatively simple, long spectral lag, wide-pulse bursts may have simpler physics and are easier to model. In this work we analyze the temporal and spectral behavior of wide pulses in 24 long-lag bursts, using a pulse model with two shape parameters - width and asymmetry - and the Band spectral model with three shape parameters. We find that pulses in long-lag bursts are distinguished both temporally and spectrally from those in bright bursts: the pulses in long spectral lag bursts are few in number, and approximately 100 times wider (10s of seconds), have systematically lower peaks in vF(v), harder low-energy spectra and softer high-energy spectra. We find that these five pulse descriptors are essentially uncorrelated for our long-lag sample, suggesting that at least approximately 5 parameters are needed to model burst temporal and spectral behavior. However, pulse width is strongly correlated with spectral lag; hence these two parameters may be viewed as mutual surrogates. We infer that accurate formulations for estimating GRB luminosity and total energy will depend on several gamma-ray attributes, at least for long-lag bursts. The prevalence of long-lag bursts near the BATSE trigger threshold, their predominantly low vF(v) spectral peaks, and relatively steep upper power-law spectral indices indicate that Swift will detect many such bursts.

  7. ESA's Integral detects closest cosmic gamma-ray burst

    NASA Astrophysics Data System (ADS)

    2004-08-01

    5 August 2004 A gamma-ray burst detected by ESA's Integral gamma-ray observatory on 3 December 2003 has been thoroughly studied for months by an armada of space and ground-based observatories. Astronomers have now concluded that this event, called GRB 031203, is the closest cosmic gamma-ray burst on record, but also the faintest. This also suggests that an entire population of sub-energetic gamma-ray bursts has so far gone unnoticed... Gamma ray burst model hi-res Size hi-res: 22 KB Credits: CXC/M. Weiss Artist impression of a low-energy gamma-ray burst This illustration describes a model for a gamma-ray burst, like the one detected by Integral on 3 December 2003 (GRB 031203). A jet of high-energy particles from a rapidly rotating black hole interacts with surrounding matter. Observations with Integral on 3 December 2003 and data on its afterglow, collected afterwards with XMM-Newton, Chandra and the Very Large Array telescope, show that GRB 031203 radiated only a fraction of the energy of normal gamma-ray bursts. Like supernovae, gamma-ray bursts are thought to be produced by the collapse of the core of a massive star. However, while the process leading to supernovae is relatively well understood, astronomers still do not know what happens when a core collapses to form a black hole. The discovery of 'under-energetic' gamma-ray bursts, like GRB 031203, should provide valuable clues as to links between supernovae, black holes and gamma-ray bursts. Lo-res JPG (22 Kb) Hi-res TIFF (5800 Kb) Cosmic gamma-ray bursts (GRBs) are flashes of gamma rays that can last from less than a second to a few minutes and occur at random positions in the sky. A large fraction of them is thought to result when a black hole is created from a dying star in a distant galaxy. Astronomers believe that a hot disc surrounding the black hole, made of gas and matter falling onto it, somehow emits an energetic beam parallel to the axis of rotation. According to the simplest picture, all GRBs

  8. Gamma ray bursts: Current status of observations and theory

    NASA Technical Reports Server (NTRS)

    Meegan, Charles A.

    1990-01-01

    Gamma ray bursts display a wide range of temporal and spectral characteristics, but typically last several seconds and emit most of their energy in a low energy, gamma ray region. The burst sources appear to be isotropically distributed on the sky. Several lines of evidence suggest magnetic neutron stars as sources for bursts. A variety of energy sources and emission mechanisms are proposed.

  9. High energy neutrinos from gamma-ray burst fireballs

    NASA Astrophysics Data System (ADS)

    Tamborra, Irene

    2016-05-01

    The diffuse high-energy neutrino emission from long and short gamma-ray bursts (GRBs) is studied within the fireball emission model. By requiring that the GRB high-energy neutrino counterparts follow up-to-date gamma-ray luminosity functions and redshift evolutions, we find that GRBs could contribute up to a few percents to the observed IceCube high-energy neutrino flux for sub-PeV energies, if the latter has a diffuse origin. Our findings suggest that larger exposure is mandatory to detect neutrinos from GRBs in future stacking searches.

  10. The interplanetary gamma ray burst network

    NASA Astrophysics Data System (ADS)

    Cline, T.

    The Interplanetary Gamma-Ray Burst Network (IPN) is providing gamma-ray burst (GRB) alerts and localizations at the maximum rate anticipated before the launch of the Swift mission. The arc-minute source precision of the IPN is again permitting searches for GRB afterglows in the radio and optical regimes with delays of only hours up to 2 days. The successful addition of the Mars Odyssey mission has compensated for the loss of the asteroid mission NEAR, to reconstitute a fully long- baseline interplanetary network, with Ulysses at > 5 AU and Konus-Wind and HETE-2 near the Earth. In addition to making unassisted GRB localizations that enable a renewed supply of counterpart observations, the Mars/Ulysses/Wind IPN is confirming and reinforcing GRB source localizations with HETE-2. It has also confirmed and reinforced localizations with the BeppoSAX mission before the BeppoSAX termination in May and has detected and localized both SGRs and an unusual hard x-ray transient that is neither an SGR nor a GRB. This IPN is expected to operate until at least 2004.

  11. Measuring Cosmological Parameters with Gamma Ray Bursts

    NASA Astrophysics Data System (ADS)

    Amati, Lorenzo; Della Valle, Massimo

    2013-12-01

    In a few dozen seconds, gamma ray bursts (GRBs) emit up to 1054 erg in terms of an equivalent isotropically radiated energy Eiso, so they can be observed up to z 10. Thus, these phenomena appear to be very promising tools to describe the expansion rate history of the universe. Here, we review the use of the Ep,i-Eiso correlation of GRBs to measure the cosmological density parameter ΩM. We show that the present data set of GRBs, coupled with the assumption that we live in a flat universe, can provide independent evidence, from other probes, that ΩM 0.3. We show that current (e.g. Swift, Fermi/GBM, Konus-WIND) and forthcoming gamma ray burst (GRB) experiments (e.g. CALET/GBM, SVOM, Lomonosov/UFFO, LOFT/WFM) will allow us to constrain ΩM with an accuracy comparable to that currently exhibited by Type Ia supernovae (SNe-Ia) and to study the properties of dark energy and their evolution with time.

  12. The Chase to Capture Gamma Ray Bursts

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2008-01-01

    Gamma-ray bursts are the most powerful explosions in the universe, thought to be the birth cries of black holes. It has taken 40 years of international cooperation and competition to begin to unravel the mystery of their origin. The most recent chapter in this field is being written by the SWIFT mission, a fast-response satellite with 3 power telescopes. An international team from countries all over the world participates in the chase to capture the fading light of bursts detected by SWIFT. This talk will discuss the challenges and excitement of building this space observatory. New results will be presented on our growing understanding of exploding stars and fiery mergers of orbiting stars.

  13. MIRAX sensitivity for Gamma Ray Bursts

    NASA Astrophysics Data System (ADS)

    Sacahui, J. R.; Penacchioni, A. V.; Braga, J.; Castro, M. A.; D'Amico, F.

    2016-03-01

    In this work we present the detection capability of the MIRAX (Monitor e Imageador de RAios-X) experiment for Gamma-Ray Bursts (GRBs). MIRAX is an X-ray astronomy mission designed to perform a wide band hard X-ray (10-200 keV) survey of the sky, especially in the Galactic plane. With a total detection area of 169 cm2, large field of view (FoV, 20 ° × 20 °), angular resolution of 1°45‧ and good spectral and time resolution (∼8% at 60 keV, 10 μs), MIRAX will be optimized for the detection and study of transient sources, such as accreting neutron stars (NS), black holes (BH), Active Galactic Nuclei (AGNs), and both short and long GRBs. This is especially important because MIRAX is expected to operate in an epoch when probably no other hard X-ray wide-field imager will be active. We have performed detailed simulations of MIRAX GRB observations using the GEANT4 package, including the background spectrum and images of GRB sources in order to provide accurate predictions of the sensitivity for the expected GRB rate to be observed. MIRAX will be capable of detecting ∼44 GRBs per year up to redshifts of ∼4.5. The MIRAX mission will be able to contribute significantly to GRB science by detecting a large number of GRBs per year with wide band spectral response. The observations will contribute mainly to the part of GRB spectra where a thermal emission is predicted by the Fireball model. We also discuss the possibility of detecting GRB afterglows in the X-ray band with MIRAX.

  14. The Most Remote Gamma-Ray Burst

    NASA Astrophysics Data System (ADS)

    2000-10-01

    ESO Telescopes Observe "Lightning" in the Young Universe Summary Observations with telescopes at the ESO La Silla and Paranal observatories (Chile) have enabled an international team of astronomers [1] to measure the distance of a "gamma-ray burst", an extremely violent, cosmic explosion of still unknown physical origin. It turns out to be the most remote gamma-ray burst ever observed . The exceedingly powerful flash of light from this event was emitted when the Universe was very young, less than about 1,500 million years old, or only 10% of its present age. Travelling with the speed of light (300,000 km/sec) during 11,000 million years or more, the signal finally reached the Earth on January 31, 2000. The brightness of the exploding object was enormous, at least 1,000,000,000,000 times that of our Sun, or thousands of times that of the explosion of a single, heavy star (a "supernova"). The ESO Very Large Telescope (VLT) was also involved in trail-blazing observations of another gamma-ray burst in May 1999, cf. ESO PR 08/99. PR Photo 28a/00 : Sky field near GRB 000131 . PR Photo 28b/00 : The fading optical counterpart of GRB 000131 . PR Photo 28c/00 : VLT spectrum of GRB 000131 . What are Gamma-Ray Bursts? One of the currently most active fields of astrophysics is the study of the mysterious events known as "gamma-ray bursts" . They were first detected in the late 1960's by instruments on orbiting satellites. These short flashes of energetic gamma-rays last from less than a second to several minutes. Despite much effort, it is only within the last few years that it has become possible to locate the sites of some of these events (e.g. with the Beppo-Sax satellite ). Since the beginning of 1997, astronomers have identified about twenty optical sources in the sky that are associated with gamma-ray bursts. They have been found to be situated at extremely large (i.e., "cosmological") distances. This implies that the energy release during a gamma-ray burst within a few

  15. Analyses of the Konus catalogue of gamma-ray bursts with the thermal synchrotron model

    NASA Technical Reports Server (NTRS)

    Liang, E. P.; Jernigan, T.; Rodrigues, R.

    1982-01-01

    Approximately 150 reported gamma bursts of the Konus catalogue using the thermal synchrotron model are analyzed. An overwhelming majority of these spectra can be satsifactorily fitted by theoretical thermal synchrotron spectra of mildly relativistic electrons in strong magnetic fields, making the strong-field neutron star picture at least self-consistent. Valuable additional information is also extracted from various spectral features contained in many of the events.

  16. NEUTRINO-COOLED ACCRETION MODEL WITH MAGNETIC COUPLING FOR X-RAY FLARES IN GAMMA-RAY BURSTS

    SciTech Connect

    Luo Yang; Gu Weimin; Liu Tong; Lu Jufu

    2013-08-20

    The neutrino-cooled accretion disk, which was proposed to work as the central engine of gamma-ray bursts, encounters difficulty in interpreting the X-ray flares after the prompt gamma-ray emission. In this paper, the magnetic coupling (MC) between the inner disk and the central black hole (BH) is taken into consideration. For mass accretion rates around 0.001 {approx} 0.1 M{sub Sun} s{sup -1}, our results show that the luminosity of neutrino annihilation can be significantly enhanced due to the coupling effects. As a consequence, after the gamma-ray emission, a remnant disk with mass M{sub disk} {approx}< 0.5 M{sub Sun} may power most of the observed X-ray flares with the rest frame duration less than 100 s. In addition, a comparison between the MC process and the Blandford-Znajek mechanism is shown on the extraction of BH rotational energy.

  17. The Swift Gamma Ray Burst Mission

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Chincarini, G.; Giommi, P.; Mason, K. O.; Nousek, J. A.; Wells, A. A.; White, N. E.; Barthelmy, S. D.; Burrows, D. N.; Cominsky, L. R.

    2004-01-01

    The Swift mission: scheduled for launch in early 2004: is a multiwavelength observatory for gamma-ray burst (GRB) astronomy. It is the first-of-its-kind autonomous rapid-slewing satellite for transient astronomy and pioneers the way for future rapid-reaction and multiwavelength missions. It will be far more powerful than any previous GRB mission, observing more than 100 bursts per year and performing detailed X-ray and UV/optical afterglow observations spanning timescales from 1 minute to several days after the burst. The objectives are to: 1) determine the origin of GFU3s; 2) classify GRBs and search for new types; 3) study the interaction of the ultra-relativistic outflows of GRBs with their surrounding medium; and 4) use GRBs to study the early universe out to z greater than 10. The mission is being developed by a NASA-led international collaboration. It will carry three instruments: a new-generation wide-field gamma-ray (15-150 keV) detector that will detect bursts, calculate 1-4 arcmin positions: and trigger autonomous spacecraft slews; a narrow-field X-ray telescope that will give 5 arcsec positions and perform spectroscopy in the 0.2 to 10 keV band; and a narrow-field UV/optical telescope that will operate in the 170-600 nm band and provide 0.3 arcsec positions and optical finding charts. Redshift determinations will be made for most bursts. In addition to the primary GRB science, the mission will perform a hard X-ray survey to a sensitivity of approx. 1 mCrab (approx. 2 x l0(exp -11) erg/sq cm s in the 15-150 keV band), more than an order of magnitude better than HEAO A-4. A flexible data and operations system will allow rapid follow-up observations of all types of high-energy transients. with rapid data downlink and uplink available through the NASA TDRSS system. Swift transient data will be rapidly distributed to the astronomical community and all interested observers are encouraged to participate in follow-up measurements. A Guest Investigator program

  18. VERITAS Observations of Gamma-Ray Bursts Detected by Swift

    NASA Astrophysics Data System (ADS)

    Acciari, V. A.; Aliu, E.; Arlen, T.; Aune, T.; Beilicke, M.; Benbow, W.; Bradbury, S. M.; Buckley, J. H.; Bugaev, V.; Byrum, K.; Cannon, A.; Cesarini, A.; Christiansen, J. L.; Ciupik, L.; Collins-Hughes, E.; Connolly, M. P.; Cui, W.; Duke, C.; Errando, M.; Falcone, A.; Finley, J. P.; Finnegan, G.; Fortson, L.; Furniss, A.; Galante, N.; Gall, D.; Godambe, S.; Griffin, S.; Grube, J.; Guenette, R.; Gyuk, G.; Hanna, D.; Holder, J.; Hughes, G.; Hui, C. M.; Humensky, T. B.; Jackson, D. J.; Kaaret, P.; Karlsson, N.; Kertzman, M.; Kieda, D.; Krawczynski, H.; Krennrich, F.; Lang, M. J.; Madhavan, A. S.; Maier, G.; McArthur, S.; McCann, A.; Moriarty, P.; Newbold, M. D.; Ong, R. A.; Orr, M.; Otte, A. N.; Park, N.; Perkins, J. S.; Pohl, M.; Prokoph, H.; Quinn, J.; Ragan, K.; Reyes, L. C.; Reynolds, P. T.; Roache, E.; Rose, H. J.; Ruppel, J.; Saxon, D. B.; Schroedter, M.; Sembroski, G. H.; Şentürk, G. D.; Smith, A. W.; Staszak, D.; Swordy, S. P.; Tešić, G.; Theiling, M.; Thibadeau, S.; Tsurusaki, K.; Varlotta, A.; Vassiliev, V. V.; Vincent, S.; Vivier, M.; Wakely, S. P.; Ward, J. E.; Weekes, T. C.; Weinstein, A.; Weisgarber, T.; Williams, D. A.; Wood, M.

    2011-12-01

    We present the results of 16 Swift-triggered Gamma-ray burst (GRB) follow-up observations taken with the Very Energetic Radiation Imaging Telescope Array System (VERITAS) telescope array from 2007 January to 2009 June. The median energy threshold and response time of these observations were 260 GeV and 320 s, respectively. Observations had an average duration of 90 minutes. Each burst is analyzed independently in two modes: over the whole duration of the observations and again over a shorter timescale determined by the maximum VERITAS sensitivity to a burst with a t -1.5 time profile. This temporal model is characteristic of GRB afterglows with high-energy, long-lived emission that have been detected by the Large Area Telescope on board the Fermi satellite. No significant very high energy (VHE) gamma-ray emission was detected and upper limits above the VERITAS threshold energy are calculated. The VERITAS upper limits are corrected for gamma-ray extinction by the extragalactic background light and interpreted in the context of the keV emission detected by Swift. For some bursts the VHE emission must have less power than the keV emission, placing constraints on inverse Compton models of VHE emission.

  19. VERITAS OBSERVATIONS OF GAMMA-RAY BURSTS DETECTED BY SWIFT

    SciTech Connect

    Acciari, V. A.; Benbow, W.; Aliu, E.; Errando, M.; Arlen, T.; Aune, T.; Beilicke, M.; Buckley, J. H.; Bugaev, V.; Bradbury, S. M.; Byrum, K.; Cannon, A.; Collins-Hughes, E.; Cesarini, A.; Connolly, M. P.; Christiansen, J. L.; Ciupik, L.; Cui, W.; Duke, C.; Falcone, A.; and others

    2011-12-10

    We present the results of 16 Swift-triggered Gamma-ray burst (GRB) follow-up observations taken with the Very Energetic Radiation Imaging Telescope Array System (VERITAS) telescope array from 2007 January to 2009 June. The median energy threshold and response time of these observations were 260 GeV and 320 s, respectively. Observations had an average duration of 90 minutes. Each burst is analyzed independently in two modes: over the whole duration of the observations and again over a shorter timescale determined by the maximum VERITAS sensitivity to a burst with a t{sup -1.5} time profile. This temporal model is characteristic of GRB afterglows with high-energy, long-lived emission that have been detected by the Large Area Telescope on board the Fermi satellite. No significant very high energy (VHE) gamma-ray emission was detected and upper limits above the VERITAS threshold energy are calculated. The VERITAS upper limits are corrected for gamma-ray extinction by the extragalactic background light and interpreted in the context of the keV emission detected by Swift. For some bursts the VHE emission must have less power than the keV emission, placing constraints on inverse Compton models of VHE emission.

  20. The First FERMI-LAT Gamma-Ray Burst Catalog

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Asano, K.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Bhat, P. N.; Bissaldi, E.; Bloom, E. D.; Bonamente, E.; Bonnell, J.; Bouvier, A.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Burgess, J. Michael; Buson, S.; Byrne, D.; Caliandro, G. A.; Ferrara, E. C.; Gehrels, N.; Guiriec, S.; McEnery, J. E.; Nemmen, R.; Perkins, J. S.; Racusin, J. L.; Thompson, D. J.; Kouveliotou, C.

    2013-01-01

    In three years of observations since the beginning of nominal science operations in 2008 August, the Large Area Telescope (LAT) on board the Fermi Gamma-Ray Space Telescope has observed high-energy great than (20 MeV) gamma-ray emission from 35 gamma-ray bursts (GRBs). Among these, 28 GRBs have been detected above 100 MeV and 7 GRBs above approximately 20 MeV. The first Fermi-LAT catalog of GRBs is a compilation of these detections and provides a systematic study of high-energy emission from GRBs for the first time. To generate the catalog, we examined 733 GRBs detected by the Gamma-Ray Burst Monitor (GBM) on Fermi and processed each of them using the same analysis sequence. Details of the methodology followed by the LAT collaboration for the GRB analysis are provided. We summarize the temporal and spectral properties of the LAT-detected GRBs. We also discuss characteristics of LAT-detected emission such as its delayed onset and longer duration compared with emission detected by the GBM, its power-law temporal decay at late times, and the fact that it is dominated by a power-law spectral component that appears in addition to the usual Band model.

  1. Applying an accurate spherical model to gamma-ray burst afterglow observations

    NASA Astrophysics Data System (ADS)

    Leventis, K.; van der Horst, A. J.; van Eerten, H. J.; Wijers, R. A. M. J.

    2013-05-01

    We present results of model fits to afterglow data sets of GRB 970508, GRB 980703 and GRB 070125, characterized by long and broad-band coverage. The model assumes synchrotron radiation (including self-absorption) from a spherical adiabatic blast wave and consists of analytic flux prescriptions based on numerical results. For the first time it combines the accuracy of hydrodynamic simulations through different stages of the outflow dynamics with the flexibility of simple heuristic formulas. The prescriptions are especially geared towards accurate description of the dynamical transition of the outflow from relativistic to Newtonian velocities in an arbitrary power-law density environment. We show that the spherical model can accurately describe the data only in the case of GRB 970508, for which we find a circumburst medium density n ∝ r-2. We investigate in detail the implied spectra and physical parameters of that burst. For the microphysics we show evidence for equipartition between the fraction of energy density carried by relativistic electrons and magnetic field. We also find that for the blast wave to be adiabatic, the fraction of electrons accelerated at the shock has to be smaller than 1. We present best-fitting parameters for the afterglows of all three bursts, including uncertainties in the parameters of GRB 970508, and compare the inferred values to those obtained by different authors.

  2. The BATSE Gamma-Ray Burst E-Peak Distribution

    NASA Technical Reports Server (NTRS)

    Brainerd, Jerome J.; Pendleton, Geoffrey N.; Mallozzi, Robert S.; Briggs, Michael S.; Preece, Robert D.

    2000-01-01

    Gamma-ray burst observed by BATSE are found to have approximately the same characteristic energy, denoted as E_p. We examine whether instrumental effects can give rise to this observation. We simulate the derivation of E-p and determine that the values in the BATSE sample are accurate and complete above a minimum fluence. We simulate the triggering of BATSE on gamma-ray bursts, deriving the efficiency of detecting bursts as a function of characteristic energy. From this simulation, we model the observed E_p distribution function expected when the intrinsic distribution function is a power-law. We find that this distribution produces poor fits to the observations. We find that a log-normal intrinsic distribution with a power-law tail gives a good fit to the data. From these fits, we conclude that instrumental effects cannot produce the observed E_p distribution, and that the observed distribution is a consequence of a narrow intrinsic distribution of E_p in gamma-ray bursts.

  3. The BATSE 5B Gamma-Ray Burst Spectral Catalog

    NASA Astrophysics Data System (ADS)

    Goldstein, Adam; Preece, Robert D.; Mallozzi, Robert S.; Briggs, Michael S.; Fishman, Gerald J.; Kouveliotou, Chryssa; Paciesas, William S.; Burgess, J. Michael

    2013-10-01

    We present systematic spectral analyses of gamma-ray bursts (GRBs) detected with the Burst and Transient Source Experiment (BATSE) on board the Compton Gamma-Ray Observatory during its entire nine years of operation. This catalog contains two types of spectra extracted from 2145 GRBs, and fitted with five different spectral models resulting in a compendium of over 19,000 spectra. The models were selected based on their empirical importance to the spectral shape of many GRBs, and the analysis performed was devised to be as thorough and objective as possible. We describe in detail our procedures and criteria for the analyses, and present the bulk results in the form of parameter distributions. This catalog should be considered an official product from the BATSE Science Team, and the data files containing the complete results are available from the High-Energy Astrophysics Science Archive Research Center (HEASARC).

  4. THE BATSE 5B GAMMA-RAY BURST SPECTRAL CATALOG

    SciTech Connect

    Goldstein, Adam; Preece, Robert D.; Briggs, Michael S.; Burgess, J. Michael; Mallozzi, Robert S.; Fishman, Gerald J.; Kouveliotou, Chryssa

    2013-10-01

    We present systematic spectral analyses of gamma-ray bursts (GRBs) detected with the Burst and Transient Source Experiment (BATSE) on board the Compton Gamma-Ray Observatory during its entire nine years of operation. This catalog contains two types of spectra extracted from 2145 GRBs, and fitted with five different spectral models resulting in a compendium of over 19,000 spectra. The models were selected based on their empirical importance to the spectral shape of many GRBs, and the analysis performed was devised to be as thorough and objective as possible. We describe in detail our procedures and criteria for the analyses, and present the bulk results in the form of parameter distributions. This catalog should be considered an official product from the BATSE Science Team, and the data files containing the complete results are available from the High-Energy Astrophysics Science Archive Research Center (HEASARC)

  5. Cosmology with Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Ghisellini, G.; Ghirlanda, G.; Firmani, C.; Lazzati, D.; Avila-Reese, V.

    2005-07-01

    Apparently, Gamma-Ray Bursts (GRBs) are all but standard candles. Their emission is collimated into a cone and the received flux depends on the cone aperture angle. Fortunately we can derive the aperture angle through an achromatic steepening of the lightcurve of the afterglow, and thus we can measure the “true” energetics of the prompt emission. Ghirlanda et al. (2004a) found that this collimation-corrected energy correlates tightly with the frequency at which most of the radiation of the prompt is emitted. Through this correlation we can infer the burst energy accurately enough for a cosmological use. Using the best known 15 GRBs we find very encouraging results that emphasize the cosmological GRB role. Probing the universe with high accuracy up to high redshifts, GRBs establish a new insight on the cosmic expanding acceleration history and accomplish the role of “missing link” between the Cosmic Microwave Background and type Ia supernovae, motivating the most optimistic hopes for what can be obtained from the bursts detected by SWIFT.

  6. Gamma Ray Bursts and Their Links With Supernovae and Cosmology

    NASA Technical Reports Server (NTRS)

    Meszaros, Peter; Gehrels, Neil

    2012-01-01

    Gamma-ray bursts are the most luminous explosions in the Universe, whose origin and mechanism is the focus of intense interest. They appear connected to supernova remnants from massive stars or the merger of their remnants, and their brightness makes them temporarily detectable out to the largest distances yet explored in the Universe. After pioneering breakthroughs from space and ground experiments, their study is entering a new phase with observations from the recently launched Fermi satellite, as well as the prospect of detections or limits from large neutrino and gravitational wave detectors. The interplay between such observations and theoretical models of gamma-ray bursts is reviewed, as well as their connections to supernovae and cosmology.

  7. Central Engine Memory of Gamma-Ray Bursts and Soft Gamma-Ray Repeaters

    NASA Astrophysics Data System (ADS)

    Zhang, Bin-Bin; Zhang, Bing; Castro-Tirado, Alberto J.

    2016-04-01

    Gamma-ray bursts (GRBs) are bursts of γ-rays generated from relativistic jets launched from catastrophic events such as massive star core collapse or binary compact star coalescence. Previous studies suggested that GRB emission is erratic, with no noticeable memory in the central engine. Here we report a discovery that similar light curve patterns exist within individual bursts for at least some GRBs. Applying the Dynamic Time Warping method, we show that similarity of light curve patterns between pulses of a single burst or between the light curves of a GRB and its X-ray flare can be identified. This suggests that the central engine of at least some GRBs carries “memory” of its activities. We also show that the same technique can identify memory-like emission episodes in the flaring emission in soft gamma-ray repeaters (SGRs), which are believed to be Galactic, highly magnetized neutron stars named magnetars. Such a phenomenon challenges the standard black hole central engine models for GRBs, and suggest a common physical mechanism behind GRBs and SGRs, which points toward a magnetar central engine of GRBs.

  8. Gamma Ray Bursts: an Enigma Being Unraveled

    SciTech Connect

    De Rujula, Alvaro

    2003-05-14

    The best astrophysical accelerators are quasars and the 'progenitors' of GRBs which, after decades of observations and scores of theories, we still do not understand. But, I shall argue, we now know quite well where GRBs come from, and we understand how their 'beams' behave, as they make short pulses of gamma rays and long-duration X-ray, optical and radio 'afterglows'. I shall argue that our understanding of these phenomena, based on the 'Cannonball Model', is unusually simple, precise and successful. The 'sociology' of GRBs is interesting per se and, in this sense, the avatars of the Cannonball Model in confronting the generally accepted 'fireball models' are also quite revealing.

  9. ESA's Integral detects closest cosmic gamma-ray burst

    NASA Astrophysics Data System (ADS)

    2004-08-01

    5 August 2004 A gamma-ray burst detected by ESA's Integral gamma-ray observatory on 3 December 2003 has been thoroughly studied for months by an armada of space and ground-based observatories. Astronomers have now concluded that this event, called GRB 031203, is the closest cosmic gamma-ray burst on record, but also the faintest. This also suggests that an entire population of sub-energetic gamma-ray bursts has so far gone unnoticed... Gamma ray burst model hi-res Size hi-res: 22 KB Credits: CXC/M. Weiss Artist impression of a low-energy gamma-ray burst This illustration describes a model for a gamma-ray burst, like the one detected by Integral on 3 December 2003 (GRB 031203). A jet of high-energy particles from a rapidly rotating black hole interacts with surrounding matter. Observations with Integral on 3 December 2003 and data on its afterglow, collected afterwards with XMM-Newton, Chandra and the Very Large Array telescope, show that GRB 031203 radiated only a fraction of the energy of normal gamma-ray bursts. Like supernovae, gamma-ray bursts are thought to be produced by the collapse of the core of a massive star. However, while the process leading to supernovae is relatively well understood, astronomers still do not know what happens when a core collapses to form a black hole. The discovery of 'under-energetic' gamma-ray bursts, like GRB 031203, should provide valuable clues as to links between supernovae, black holes and gamma-ray bursts. Lo-res JPG (22 Kb) Hi-res TIFF (5800 Kb) Cosmic gamma-ray bursts (GRBs) are flashes of gamma rays that can last from less than a second to a few minutes and occur at random positions in the sky. A large fraction of them is thought to result when a black hole is created from a dying star in a distant galaxy. Astronomers believe that a hot disc surrounding the black hole, made of gas and matter falling onto it, somehow emits an energetic beam parallel to the axis of rotation. According to the simplest picture, all GRBs

  10. Improved Limits on Gamma-Ray Burst Repetition from BATSE

    NASA Technical Reports Server (NTRS)

    Tegmark, Max; Hartmann, Dieter H.; Briggs, Michael S.; Hakkila, Jon; Meegan, Charles A.

    1996-01-01

    We tighten previous upper limits on gamma-ray burst repetition by analyzing the angular power spectrum of the BATSE 3B catalog of 1122 bursts. At 95% confidence, we find that no more than 2% of all observed bursts can be labeled as repeaters, even if no sources are observed to repeat more than once. If a fraction f of all observed bursts can be labeled as repeaters that are observed to burst upsilon times each, then all models with (upsilon - 1)f greater than or equal to 0.05 are ruled out at 99% confidence, as compared to the best previous 99% limit (upsilon - 1)f greater than or equal to 0.27. At 95% confidence, our new limit is (upsilon - 1)f greater than or equal to 0.02. Thus, even a cluster of six events from a single source would have caused excess power above that present in the 3B catalog. We conclude that the current BATSE data are consistent with no repetition of classical gamma-ray bursts and that any repeater model is severely constrained by the near-perfect isotropy of their angular distribution.

  11. Improved Limits on Gamma-Ray Burst Repetition from BATSE

    NASA Technical Reports Server (NTRS)

    Tegmark, Max; Hartmann, Dieter H.; Briggs, Michael S.; Meegan, Charles A.; Hakkila, Jon

    1996-01-01

    We tighten previous upper limits on gamma-ray burst repetition by analyzing the angular power spectrum of the BATSE 3B catalog of 1122 bursts. At 95% confidence, we find that no more than 2% of all observed bursts can be labeled as repeaters, even if no sources are observed to repeat more than once. If a fraction f of all observed bursts can be labeled as repeaters that are observed to burst nu times each, then all models with (nu - 1)f greater than or equal to 0.05 are ruled out at 99% confidence, as compared to the best previous 99% limit (nu - 1)f greater than or equal to 0.27. At 95% confidence, our new limit is (nu - 1)f greater than or equal to 0.02. Thus, even a cluster of six events from a single source would have caused excess power above that present in the 3B catalog. We conclude that the current BATSE data are consistent with no repetition of classical gamma-ray bursts and that any repeater model is severely constrained by the near-perfect isotropy of their angular dis- tribution.

  12. Theoretical Aspects of Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Beloborodov, A. M.

    Cosmological GRBs are discussed with an emphasis on their plausible connection with black holes. GRBs can be triggered by collapse of stellar-mass objects that leads to formation of a black hole and a transient debris disk with a huge accretion rate. The disk is believed to produce a relativistic jet (``fireball'') that expands and emits to infinity the observed burst of gamma-rays. This accretion-jet picture is similar to quasars and X-ray binaries, however, there are important differences: the physical conditions and the cooling mechanism in the disk are very different. The observed radiation is emitted when the expanding fireball becomes transparent, at distances much larger than the Schwarzschild radius. The burst is then observed as a powerful relativistic explosion and the transient accretion disk in its center serves as a brief source of energy that drives the explosion. The explosion picture depends on the fireball nuclear composition which is shaped close to the black hole. A large amount of free neutrons survive till the emission phase and link the physics of the central engine to observed radiation.

  13. Probing the Expansion History of the Universe by Model-independent Reconstruction from Supernovae and Gamma-Ray Burst Measurements

    NASA Astrophysics Data System (ADS)

    Feng, Chao-Jun; Li, Xin-Zhou

    2016-04-01

    To probe the late evolution history of the universe, we adopt two kinds of optimal basis systems. One of them is constructed by performing the principle component analysis, and the other is built by taking the multidimensional scaling approach. Cosmological observables such as the luminosity distance can be decomposed into these basis systems. These basis systems are optimized for different kinds of cosmological models that are based on different physical assumptions, even for a mixture model of them. Therefore, the so-called feature space that is projected from the basis systems is cosmological model independent, and it provides a parameterization for studying and reconstructing the Hubble expansion rate from the supernova luminosity distance and even gamma-ray burst (GRB) data with self-calibration. The circular problem when using GRBs as cosmological candles is naturally eliminated in this procedure. By using the Levenberg–Marquardt technique and the Markov Chain Monte Carlo method, we perform an observational constraint on this kind of parameterization. The data we used include the “joint light-curve analysis” data set that consists of 740 Type Ia supernovae and 109 long GRBs with the well-known Amati relation.

  14. The history of gamma-ray burst observations

    SciTech Connect

    Klebesadel, R.W.

    1988-01-01

    Cosmic gamma-ray bursts have been observed for 1-1/2 decades since their fortuitous discovery by nuclear test detection instruments flown on the Vela satellites. Although the volume and detail of data available through these observations has considerably refined our knowledge of the characteristics of these events, there is no confident identification of source objects or reliable model of the processes involved. The observations do suggest, however, that the bursts originate at neutron stars (probably highly-magnetized neutron stars). 17 refs., 16 figs.

  15. Gamma ray bursts: Current status of observations and theory

    NASA Technical Reports Server (NTRS)

    Meegan, Charles A.

    1990-01-01

    Gamma-ray bursts display a wide range of temporal and spectral characteristics, but typically last several seconds and emit most of their energy in the low-energy gamma-ray region. The burst sources appear to be isotropically distributed on the sky. Several lines of evidence suggest magnetic neutron stars as sources for bursts. A variety of energy sources and emission mechanisms were proposed.

  16. Blue supergiant model for ultra-long gamma-ray burst with superluminous-supernova-like bump

    SciTech Connect

    Nakauchi, Daisuke; Nakamura, Takashi; Kashiyama, Kazumi; Suwa, Yudai

    2013-11-20

    Long gamma-ray bursts (LGRBs) have a typical duration of ∼30 s, and some of them are associated with hypernovae, such as Type Ic SN 1998bw. Wolf-Rayet stars are the most plausible LGRB progenitors, since the free fall time of the envelope is consistent with the duration, and the natural outcome of the progenitor is a Type Ic SN. While a new population of ultra-long GRBs (ULGRBs), GRB 111209A, GRB 101225A, and GRB 121027A, has a duration of ∼10{sup 4} s, two of them are accompanied by superluminous-supernova-like (SLSN-like) bumps, which are ≲ 10 times brighter than typical hypernovae. Wolf-Rayet progenitors cannot explain ULGRBs because of durations that are too long and SN-like bumps that are too bright. A blue supergiant (BSG) progenitor model, however, can explain the duration of ULGRBs. Moreover, SLSN-like bumps can be attributed to the so-called cocoon fireball photospheric emissions (CFPEs). Since a large cocoon is inevitably produced during the relativistic jet piercing though the BSG envelope, this component can be smoking gun evidence of the BSG model for ULGRBs. In this paper, we examine u-, g-, r-, i-, and J-band light curves of three ULGRBs and demonstrate that they can be fitted quite well by our BSG model with the appropriate choices of the jet opening angle and the number density of the ambient gas. In addition, we predict that for 121027A, SLSN-like bump could have been observed for ∼20-80 days after the burst. We also propose that some SLSNe might be CFPEs of off-axis ULGRBs without visible prompt emissions.

  17. High energy neutrino emission and neutrino background from gamma-ray bursts in the internal shock model

    SciTech Connect

    Murase, Kohta; Nagataki, Shigehiro

    2006-03-15

    High energy neutrino emission from gamma-ray bursts (GRBs) is discussed. In this paper, by using the simulation kit GEANT4, we calculate proton cooling efficiency including pion-multiplicity and proton-inelasticity in photomeson production. First, we estimate the maximum energy of accelerated protons in GRBs. Using the obtained results, neutrino flux from one burst and a diffuse neutrino background are evaluated quantitatively. We also take account of cooling processes of pion and muon, which are crucial for resulting neutrino spectra. We confirm the validity of analytic approximate treatments on GRB fiducial parameter sets, but also find that the effects of multiplicity and high-inelasticity can be important on both proton cooling and resulting spectra in some cases. Finally, assuming that the GRB rate traces the star formation rate, we obtain a diffuse neutrino background spectrum from GRBs for specific parameter sets. We introduce the nonthermal baryon-loading factor, rather than assume that GRBs are main sources of ultra-high energy cosmic rays (UHECRs). We find that the obtained neutrino background can be comparable with the prediction of Waxman and Bahcall, although our ground in estimation is different from theirs. In this paper, we study on various parameters since there are many parameters in the model. The detection of high energy neutrinos from GRBs will be one of the strong evidences that protons are accelerated to very high energy in GRBs. Furthermore, the observations of a neutrino background has a possibility not only to test the internal shock model of GRBs but also to give us information about parameters in the model and whether GRBs are sources of UHECRs or not.

  18. Gamma-Ray Bursts 2012 Conference

    NASA Astrophysics Data System (ADS)

    It is a pleasure to announce the next combined Fermi/Swift GRB conference covering recent advances in all aspects of gamma-ray burst observations and theory. This conference will be held in Munich, Germany, on 7-11 May 2012, and follows similar previous combined Fermi/Swift meetings in Huntsville (Oct. 2008) and Annapolis (Nov. 2010). Gamma-ray bursts are the most energetic explosions in the Universe and are thought to be the birth signatures of black holes. This is an exciting time in the GRB field as various missions provide a wealth of new data on this still puzzling phenomenon. The Fermi misson provides unprecedented spectral coverage over 7 decades in energy, and among others discovered new spectral components which challenge our standard picture of the prompt emission. The Swift mission continuous to swiftly monitor and locate GRBs in multiple wavebands, providing the basis for all ground-based follow-up observations towards redshift measurements and afterglow and host property investigations. AGILE, INTEGRAL, Suzaku and Konus continue to provide crucial information on GRB properties, and the MAXI mission provides an all sky X-ray monitoring of transients. There is also growing capability for follow-up observations by ground-based telescopes at basically all wavelengths. Besides the classical optical/infrared/radio observations, searches are underway for TeV emission, neutrinos and gravitational waves. Moreover, new experiments are expected to have returned first data, among others POGO on the prompt polarization properties, UFFO on very early optical emission, or ALMA on sub-millimeter properties. And last but not least, the unexpected is bringing us child-like astonishments at least once per year with a "GRB-trigger" which turns out to be not related to GRBs. Complementing all these new observational results, a huge theoretical effort is underway to understand the GRB phenomenon and keep up with the constant new puzzles coming from the data. This conference

  19. High Energy Gamma-Ray Emission from Gamma-Ray Bursts - Before GLAST

    SciTech Connect

    Fan, Yi-Zhong; Piran, Tsvi

    2011-11-29

    Gamma-ray bursts (GRBs) are short and intense emission of soft {gamma}-rays, which have fascinated astronomers and astrophysicists since their unexpected discovery in 1960s. The X-ray/optical/radio afterglow observations confirm the cosmological origin of GRBs, support the fireball model, and imply a long-activity of the central engine. The high-energy {gamma}-ray emission (> 20 MeV) from GRBs is particularly important because they shed some lights on the radiation mechanisms and can help us to constrain the physical processes giving rise to the early afterglows. In this work, we review observational and theoretical studies of the high-energy emission from GRBs. Special attention is given to the expected high-energy emission signatures accompanying the canonical early-time X-ray afterglow that was observed by the Swift X-ray Telescope. We also discuss the detection prospect of the upcoming GLAST satellite and the current ground-based Cerenkov detectors.

  20. Understanding soft gamma-ray repeaters in the context of the extragalactic radio pulsar origin of gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Melia, Fulvio; Fatuzzo, Marco

    1993-01-01

    Gamma-ray burst (GRB) sources and soft gamma-ray repeaters (SGRs) may be neutron stars undergoing structural adjustments that produce transient gamma-ray events. A unified scenario is proposed in which young radio pulsars are responsible for SGRs and classical GRB sources. The radiative emission associated with a pulsar 'glitch' is seen as a GRB or an SGR event depending on the direction of our line of sight. Burst spectra, energetics, and statistics of GRBs and SGRs are discussed. It is shown that classical GRB spectra arise from Compton upscattering by charges accelerated along the viewing direction and SGR burst spectra are due to the thermalization of Alfven wave energy away from this direction. If crustal adjustments occur within the first 50,000 years of a pulsar's lifetime, the model predicts two SGR sources within the galaxy, in agreement with current observations.

  1. Gamma-Ray Bursts in the Swift Era

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Ramirez-Ruiz, E.; Fox, D. B.

    2010-01-01

    With its rapid-response capability and multiwavelength complement of instruments, the Swift satellite has transformed our physical understanding of gamma-ray bursts. Providing high-quality observations of hundreds of bursts, and facilitating a wide range of follow-up observations within seconds of each event, Swift has revealed an unforeseen richness in observed burst properties, shed light on the nature of short-duration bursts, and helped realize the promise of gamma-ray bursts as probes of the processes and environments of star formation out to the earliest cosmic epochs. These advances have opened new perspectives on the nature and properties of burst central engines, interactions with the burst environment from microparsec to gigaparsec scales, and the possibilities for non-photonic signatures. Our understanding of these extreme cosmic sources has thus advanced substantially; yet more than forty years after their discovery, gamma-ray bursts continue to present major challenges on both observational and theoretical fronts.

  2. Gamma-ray bursts from sheared Alfven waves

    NASA Technical Reports Server (NTRS)

    Melia, Fulvio; Fatuzzo, Marco

    1991-01-01

    The physical process by which sheared Alfven waves can accelerate electrons to a Lorentz factor of 10,000 to 100,000 within 5 km of the stellar surface is applied to a study of gamma-ray bursts, taking both resonant and nonresonant scattering into account. Several very encouraging features of the model are discussed. Although the field is oscillatory, virtually all the charges are ejected from the system, resulting in very little backheating of the stellar surface. The particle number density is accounted for naturally in terms of BA0 and m, which in principle are known from the physical manifestation of the agent causing the crustal disturbance. The resulting gamma-ray spectrum compares very favorably with the observation. The model restricts the geometry of the emission region, in the sense that only the Compton upscattering of soft photons from a warm polar cap can produce the correct spectral shape.

  3. Measuring dark energy with the Eiso - Ep correlation of gamma-ray bursts using model-independent methods

    NASA Astrophysics Data System (ADS)

    Wang, J. S.; Wang, F. Y.; Cheng, K. S.; Dai, Z. G.

    2016-01-01

    We use two model-independent methods to standardize long gamma-ray bursts (GRBs) using the Eiso - Ep correlation (log Eiso = a + blog Ep), where Eiso is the isotropic-equivalent gamma-ray energy and Ep is the spectral peak energy. We update 42 long GRBs and attempt to constrain the cosmological parameters. The full sample contains 151 long GRBs with redshifts from 0.0331 to 8.2. The first method is the simultaneous fitting method. We take the extrinsic scatter σext into account and assign it to the parameter Eiso. The best-fitting values are a = 49.15 ± 0.26, b = 1.42 ± 0.11, σext = 0.34 ± 0.03 and Ωm = 0.79 in the flat ΛCDM model. The constraint on Ωm is 0.55 < Ωm< 1 at the 1σ confidence level. If reduced χ2 method is used, the best-fit results are a = 48.96 ± 0.18, b = 1.52 ± 0.08, and Ωm = 0.50 ± 0.12. The second method uses type Ia supernovae (SNe Ia) to calibrate the Eiso - Ep correlation. We calibrate 90 high-redshift GRBs in the redshift range from 1.44 to 8.1. The cosmological constraints from these 90 GRBs are Ωm = 0.23+0.06-0.04 for flat ΛCDM and Ωm = 0.18 ± 0.11 and ΩΛ = 0.46 ± 0.51 for non-flat ΛCDM. For the combination of GRB and SNe Ia sample, we obtain Ωm = 0.271 ± 0.019 and h = 0.701 ± 0.002 for the flat ΛCDM and the non-flat ΛCDM, and the results are Ωm = 0.225 ± 0.044, ΩΛ = 0.640 ± 0.082, and h = 0.698 ± 0.004. These results from calibrated GRBs are consistent with that of SNe Ia. Meanwhile, the combined data can improve cosmological constraints significantly, compared to SNe Ia alone. Our results show that the Eiso - Ep correlation is promising to probe the high-redshift Universe.

  4. On the cosmological origin of gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Mao, Shude; Paczynski, Bohdan

    1992-01-01

    Statistical properties of gamma-ray bursts are analyzed assuming that the bursters are cosmological. The model adopted is the simplest possible - it has no adjustable parameters. All the bursts are assumed to be standard candles with identical power-law spectra. Their burst rate is assumed to be constant per unit comoving volume per unit comoving cosmological time in a Friedmann universe with Omega of 1 and Lambda of 0. The calculated distribution of burst intensities is consistent with that found by the BATSE experiment for the weak events and by the PVO for the strong events. The range of observations is estimated to be about 1.5 z sub BATSE and about 0.2 z sub PVO.

  5. Gamma Ray Bursts and recent Swift Results .

    NASA Astrophysics Data System (ADS)

    Chincarini, G.

    Due to the large activity we had during these last months with the Swift satellite I started the writing of the presentation I gave at the SAIt Catania meeting only in the middle of September. The Swift satellite, however, never rested. Since then and in addition to the results I showed at the meeting in relation to the early and steep light curves observed with the XRT telescope in the 0.2 - 10 keV band, we had fundamental discoveries among which the detection and localization of short bursts and the detection of the largest redshift ever. It obviously would be improper to discuss here the most recent results but it would also be silly in such a fast evolving topics where the day by day observations show excellent results and the observer is far ahead of the theoretician, to write an article that, from the observational point of view, would be completely obsolete. The best approach here seems to be a brief description of what was presented during the meeting briefly mentioning also some of the most recent results. We remind the reader, however, that a copious literature written, and in preparation, exists so that we urge the reader to refer to the specialized articles. This brief article will touch on the basic characteristics of the Gamma Ray Bursts (GRBs) in the Introduction (section 1) and illustrate the basic characteristics of the Swift mission in section 2. Preliminary science results will be discussed in section 3 and finally we will mention one, among many, of the main goal we plan to achieve in Cosmology via the observations of very distant GRBs.

  6. THE FIRST FERMI-LAT GAMMA-RAY BURST CATALOG

    SciTech Connect

    Ackermann, M.; Ajello, M.; Asano, K.; Axelsson, M.; Baldini, L.; Ballet, J.; Bastieri, D.; Bechtol, K.; Bloom, E. D.; Bellazzini, R.; Bregeon, J.; Bhat, P. N.; Bissaldi, E.; Bonamente, E.; Bonnell, J.; Brandt, T. J.; Bouvier, A. E-mail: giacomov@slac.stanford.edu; and others

    2013-11-01

    In three years of observations since the beginning of nominal science operations in 2008 August, the Large Area Telescope (LAT) on board the Fermi Gamma-Ray Space Telescope has observed high-energy (∼> 20 MeV) γ-ray emission from 35 gamma-ray bursts (GRBs). Among these, 28 GRBs have been detected above 100 MeV and 7 GRBs above ∼20 MeV. The first Fermi-LAT catalog of GRBs is a compilation of these detections and provides a systematic study of high-energy emission from GRBs for the first time. To generate the catalog, we examined 733 GRBs detected by the Gamma-Ray Burst Monitor (GBM) on Fermi and processed each of them using the same analysis sequence. Details of the methodology followed by the LAT collaboration for the GRB analysis are provided. We summarize the temporal and spectral properties of the LAT-detected GRBs. We also discuss characteristics of LAT-detected emission such as its delayed onset and longer duration compared with emission detected by the GBM, its power-law temporal decay at late times, and the fact that it is dominated by a power-law spectral component that appears in addition to the usual Band model.

  7. The First Fermi-LAT Gamma-Ray Burst Catalog

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; Ajello, M.; Asano, K.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Bhat, P. N.; Bissaldi, E.; Bloom, E. D.; Bonamente, E.; Bonnell, J.; Bouvier, A.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Burgess, J. Michael; Buson, S.; Byrne, D.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Cecchi, C.; Charles, E.; Chaves, R. C. G.; Chekhtman, A.; Chiang, J.; Chiaro, G.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Connaughton, V.; Conrad, J.; Cutini, S.; D'Ammando, F.; de Angelis, A.; de Palma, F.; Dermer, C. D.; Desiante, R.; Digel, S. W.; Dingus, B. L.; Di Venere, L.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Favuzzi, C.; Ferrara, E. C.; Fitzpatrick, G.; Foley, S.; Franckowiak, A.; Fukazawa, Y.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Goldstein, A.; Granot, J.; Grenier, I. A.; Grove, J. E.; Gruber, D.; Guiriec, S.; Hadasch, D.; Hanabata, Y.; Hayashida, M.; Horan, D.; Hou, X.; Hughes, R. E.; Inoue, Y.; Jackson, M. S.; Jogler, T.; Jóhannesson, G.; Johnson, A. S.; Johnson, W. N.; Kamae, T.; Kataoka, J.; Kawano, T.; Kippen, R. M.; Knödlseder, J.; Kocevski, D.; Kouveliotou, C.; Kuss, M.; Lande, J.; Larsson, S.; Latronico, L.; Lee, S.-H.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Massaro, F.; Mayer, M.; Mazziotta, M. N.; McBreen, S.; McEnery, J. E.; McGlynn, S.; Michelson, P. F.; Mizuno, T.; Moiseev, A. A.; Monte, C.; Monzani, M. E.; Moretti, E.; Morselli, A.; Murgia, S.; Nemmen, R.; Nuss, E.; Nymark, T.; Ohno, M.; Ohsugi, T.; Omodei, N.; Orienti, M.; Orlando, E.; Paciesas, W. S.; Paneque, D.; Panetta, J. H.; Pelassa, V.; Perkins, J. S.; Pesce-Rollins, M.; Piron, F.; Pivato, G.; Porter, T. A.; Preece, R.; Racusin, J. L.; Rainò, S.; Rando, R.; Rau, A.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer, O.; Reposeur, T.; Ritz, S.; Romoli, C.; Roth, M.; Ryde, F.; Saz Parkinson, P. M.; Schalk, T. L.; Sgrò, C.; Siskind, E. J.; Sonbas, E.; Spandre, G.; Spinelli, P.; Suson, D. J.; Tajima, H.; Takahashi, H.; Takeuchi, Y.; Tanaka, Y.; Thayer, J. G.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Tierney, D.; Tinivella, M.; Torres, D. F.; Tosti, G.; Troja, E.; Tronconi, V.; Usher, T. L.; Vandenbroucke, J.; van der Horst, A. J.; Vasileiou, V.; Vianello, G.; Vitale, V.; von Kienlin, A.; Winer, B. L.; Wood, K. S.; Wood, M.; Xiong, S.; Yang, Z.

    2013-11-01

    In three years of observations since the beginning of nominal science operations in 2008 August, the Large Area Telescope (LAT) on board the Fermi Gamma-Ray Space Telescope has observed high-energy (gsim 20 MeV) γ-ray emission from 35 gamma-ray bursts (GRBs). Among these, 28 GRBs have been detected above 100 MeV and 7 GRBs above ~20 MeV. The first Fermi-LAT catalog of GRBs is a compilation of these detections and provides a systematic study of high-energy emission from GRBs for the first time. To generate the catalog, we examined 733 GRBs detected by the Gamma-Ray Burst Monitor (GBM) on Fermi and processed each of them using the same analysis sequence. Details of the methodology followed by the LAT collaboration for the GRB analysis are provided. We summarize the temporal and spectral properties of the LAT-detected GRBs. We also discuss characteristics of LAT-detected emission such as its delayed onset and longer duration compared with emission detected by the GBM, its power-law temporal decay at late times, and the fact that it is dominated by a power-law spectral component that appears in addition to the usual Band model.

  8. Modeling Photodisintegration-induced TeV Photon Emission from Low-luminosity Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Liu, Xue-Wen; Wu, Xue-Feng; Lu, Tan

    2012-05-01

    Ultra-high-energy cosmic-ray heavy nuclei have recently been considered as originating from nearby low-luminosity gamma-ray bursts that are associated with Type Ibc supernovae. Unlike the power-law decay in long duration gamma-ray bursts, the light curve of these bursts exhibits complex UV/optical behavior: shock breakout dominated thermal radiation peaks at about 1 day, and, after that, nearly constant emission sustained by radioactive materials for tens of days. We show that the highly boosted heavy nuclei at PeV energy interacting with the UV/optical photon field will produce considerable TeV photons via the photodisintegration/photo-de-excitation process. It was later predicted that a thermal-like γ-ray spectrum peaks at about a few TeV, which may serve as evidence of nucleus acceleration. The future observations by the space telescope Fermi and by the ground atmospheric Cherenkov telescopes such as H.E.S.S., VERITAS, and MAGIC will shed light on this prediction.

  9. A Strange Supernova with a Gamma-Ray Burst

    NASA Astrophysics Data System (ADS)

    1998-10-01

    1998bw is obviously an unusual supernova. It is therefore of particular significance that a Gamma-Ray Burst was observed from the same sky region just before it was discovered in optical light. It is very unlikely that these two very rare events would happen in the same region of the sky without being somehow related. Most astronomers therefore tend to believe that the gamma-rays do indeed originate in the supernova explosion. But can a single supernova be sufficiently energetic to produce a powerful Gamma-Ray Burst? New theoretical calculations, also published today in Nature, indicate that this may be so. Moreover, if the Gamma-Ray Burst observed on April 25 did originate in this supernova that is located in a relatively nearby galaxy, it was intrinsically much fainter than some of the other Gamma-Ray Bursts that are known to have taken place in extremely distant galaxies. The main idea is that while the centres of most other supernovae collapse into neutron stars at the moment of explosion, a black hole was created in a very massive star consisting mostly of carbon and oxygen. If so, a very strong shockwave may be produced that is capable of generating the observed gamma rays. A comparison of synthetic spectra from such a supernova model, based on a new spectrum-modelling technique developed by Leon Lucy at the ESA/ESO Space Telescope/European Coordinating Facility (ST/ECF), with the spectra of SN 1998bw observed at La Silla, show good agreement, thus lending credibility to the new models. Future work Much data has already been collected at ESO on the strange supernova SN 1998bw . More observations will be obtained by the astronomers at the ESO observatories in the future during a long-term monitoring programme of SN 1998bw . There is a good chance that this effort will ultimately provide fundamental information on the explosion mechanism and the nature of the progenitor star of this exceptional object. This supernova's connection with a Gamma-Ray Burst will

  10. Gamma-ray bursts at high and very high energies

    NASA Astrophysics Data System (ADS)

    Piron, Frédéric

    2016-06-01

    Gamma-Ray Bursts (GRBs) are extra-galactic and extremely energetic transient emissions of gamma rays, which are thought to be associated with the death of massive stars or the merger of compact objects in binary systems. Their huge luminosities involve the presence of a newborn stellar-mass black hole emitting a relativistic collimated outflow, which accelerates particles and produces non-thermal emissions from the radio domain to the highest energies. In this article, I review recent progresses in the understanding of GRB jet physics above 100 MeV, based on Fermi observations of bright GRBs. I discuss the physical implications of these observations and their impact on GRB modeling, and I present some prospects for GRB observation at very high energies in the near future. xml:lang="fr"

  11. The Gamma-ray Large Area Space Telescope and Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    McEnery, Julie; Ritz, Steve

    2006-01-01

    The Gamma-ray Large Area Telescope (GLAST) is a satellite-based observatory to study the high energy gamma-ray sky. The main instrument on GLAST, the Large Area Telescope (LAT) is a pair-conversion telescope that will survey the sky from 20 MeV to greater than 300 GeV. With the GLAST launch in 2007, the LAT will open a new and important window on a wide variety of high energy phenomena, including supermassive black holes and active galactic nuclei, gamma-ray bursts, supernova remnants and cosmic ray acceleration and dark matter. A second instrument, the GLAST Burst Monitor (GBM), greatly enhances GLAST s capability to study GRB by providing important spectral and timing information in the 10 keV to 30 MeV range. We describe how the instruments, spacecraft and ground system work together to provide observations of gamma-ray bursts from 8 keV - 300 GeV and to provide rapid notification of bursts to the wider gamma-ray burst community.

  12. Galactic neutron stars and gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Hartmann, Dieter; Woosley, S. E.; Epstein, Richard I.

    1990-01-01

    The association of the gamma-ray burst phenomenon with Galactic neutron stars is investigated statistically, and the distance to presently observable gamma-ray bursts is constrained. This is done by calculating the spatial distribution and kinematic properties of a sample of Population I neutron stars and comparing their properties to those of observed gamma-ray bursts. Both brightness distribution and angular distribution on the celestial sphere are employed. Current observations suggest negligible correlation on small angular scales, large-scale isotropy, and a radial distribution that is approximately uniform to the distances currently observed. It is concluded that the distribution of Population I neutron stars is consistent with current observations if gamma-ray bursts occur continuously throughout the neutron star lifetime and if the current sampling depth is at least about 150 pc but not more than roughly 2 kpc.

  13. Cosmic Forensics Confirms Gamma-Ray Burst And Supernova Connection

    NASA Astrophysics Data System (ADS)

    2003-03-01

    Scientists announced today that they have used NASA's Chandra X-ray Observatory to confirm that a gamma-ray burst was connected to the death of a massive star. This result is an important step in understanding the origin of gamma-ray bursts, the most violent events in the present-day universe. "If a gamma-ray burst were a crime, then we now have strong circumstantial evidence that a supernova explosion was at the scene," said Nathaniel Butler of Massachusetts Institute of Technology in Cambridge, lead author of a paper presented today at the meeting of the High Energy Division of the American Astronomical Society. Chandra was able to obtain an unusually long observation (approximately 21 hours) of the afterglow of GRB 020813 (so named because the High-Energy Transient Explorer, HETE, discovered it on August 13, 2002.) A grating spectrometer aboard Chandra revealed an overabundance of elements characteristically dispersed in a supernova explosion. Narrow lines, or bumps, due to silicon and sulfur ions (atoms stripped of most of their electrons) were clearly identified in the X-ray spectrum of GRB 020813. "Our observation of GRB 020813 supports two of the most important features of the popular supra-nova model for gamma-ray bursts," said Butler. "An extremely massive star likely exploded less than two months prior to the gamma-ray burst, and the radiation from the gamma-ray burst was beamed into a narrow cone." An analysis of the data showed that the ions were moving away from the site of the gamma-ray burst at a tenth the speed of light, probably as part of a shell of matter ejected in the supernova explosion. The line features were observed to be sharply peaked, indicating that they were coming from a narrow region of the expanding shell. This implies that only a small fraction of the shell was illuminated by the gamma-ray burst, as would be expected if the burst was beamed into a narrow cone. The observed duration of the afterglow suggests a delay of about 60 days

  14. Testing the Gamma-Ray Burst Energy Relationships

    NASA Technical Reports Server (NTRS)

    Band, David L.; Preece, Robert D.

    2005-01-01

    Building on Nakar & Piran's analysis of the Amati relation relating gamma-ray burst peak energies E(sub p) and isotropic energies E(sub iso ) we test the consistency of a large sample of BATSE bursts with the Amati and Ghirlanda (which relates peak energies and actual gamma-ray energies E(sub gamma)) relations. Each of these relations can be exp ressed as a ratio of the different energies that is a function of red shift (for both the Amati and Ghirlanda relations) and beaming fraction f(sub B) (for the Ghirlanda relation). The most rigorous test, whic h allows bursts to be at any redshift, corroborates Nakar & Piran's r esult - 88% of the BATSE bursts are inconsistent with the Amati relat ion - while only l.6% of the bursts are inconsistent with the Ghirlan da relation if f(sub B) = 1. Modelling the redshift distribution resu lts in an energy ratio distribution for the Amati relation that is sh ifted by an order of magnitude relative to the observed distributions; any sub-population satisfying the Amati relation can comprise at mos t approx. 18% of our burst sample. A similar analysis of the Ghirland a relation depends sensitively on the beaming fraction distribution f or small values of f(sub B); for reasonable estimates of this distrib ution about a third of the burst sample is inconsistent with the Ghir landa relation. Our results indicate that these relations are an artifact of the selection effects of the burst sample in which they were f ound; these selection effects may favor sub-populations for which the se relations are valid.

  15. Constraints on cosmological models and reconstructing the acceleration history of the Universe with gamma-ray burst distance indicators

    SciTech Connect

    Liang Nan; Wu Puxun; Zhang Shuangnan

    2010-04-15

    Gamma-ray bursts (GRBs) have been regarded as standard candles at very high redshift for cosmology research. We have proposed a new method to calibrate GRB distance indicators with Type Ia supernova (SNe Ia) data in a completely cosmology-independent way to avoid the circularity problem that had limited the direct use of GRBs to probe cosmology [N. Liang, W. K. Xiao, Y. Liu, and S. N. Zhang, Astrophys. J. 685, 354 (2008).]. In this paper, a simple method is provided to combine GRB data into the joint observational data analysis to constrain cosmological models; in this method those SNe Ia data points used for calibrating the GRB data are not used to avoid any correlation between them. We find that the {Lambda}CDM model is consistent with the joint data in the 1-{sigma} confidence region, using the GRB data at high redshift calibrated with the interpolating method, the Constitution set of SNe Ia, the cosmic microwave background radiation from Wilkinson Microwave Anisotropy Probe five year observation, the baryonic acoustic oscillation from the spectroscopic Sloan Digital Sky Survey Data Release 7 galaxy sample, the x-ray baryon mass fraction in clusters of galaxies, and the observational Hubble parameter versus redshift data. Comparing to the joint constraints with GRBs and without GRBs, we find that the contribution of GRBs to the joint cosmological constraints is a slight shift in the confidence regions of cosmological parameters to better enclose the {Lambda}CDM model. Finally, we reconstruct the acceleration history of the Universe up to z>6 with the distance moduli of SNe Ia and GRBs and find some features that deviate from the {Lambda}CDM model and seem to favor oscillatory cosmology models; however, further investigations are needed to better understand the situation.

  16. Search for Short Bursts of Gamma Rays with SGARFACE

    NASA Astrophysics Data System (ADS)

    Schroedter, M.; Manseri, H.; LeBohec, S.; Krennrich, F.; Downdall, C.; Falcone, A.; Fegan, S.; Horan, D.; Smith, A.; Toner, J.; Weekes, T.

    The Short GAmma Ray Front Air Cherenkov Experiment is designed to search for bursts of gamma rays above 200 MeV lasting from 60 nanoseconds to longer than 20 microseconds. The custom-designed trigger and data-acquisition system of SGARFACE piggy-backs on the existing Whipple 10m telescope. The experiment has operated for more than 3 years during which time about 1.2 million events were recorded. The majority of events originate from cosmic-ray showers from which we see, both, Cherenkov emission and fluorescence light. Rejection of background events is achieved through timing and imaging information available for each event. Potential sources of bursts of gamma rays are evaporation of primordial black holes within about 240 pc and gamma-ray emission accompanying giant radio pulses. Results are presented on the search for evaporation of primordial black holes and gamma-ray emission coincident with giant pulses from the Crab Nebula.

  17. The dependence of gamma-ray burst X-ray column densities on the model for Galactic hydrogen

    NASA Astrophysics Data System (ADS)

    Arcodia, R.; Campana, S.; Salvaterra, R.

    2016-05-01

    We study the X-ray absorption of a complete sample of 99 bright Swift gamma-ray bursts (GRBs). In recent years, a strong correlation has been found between the intrinsic X-ray absorbing column density (NH(z)) and the redshift. This absorption excess in high-z GRBs is now thought to be due to the overlooked contribution of the absorption along the intergalactic medium (IGM), by means of both intervening objects and the diffuse warm-hot intergalactic medium along the line of sight. In this work we neglect the absorption along the IGM, because our purpose is to study the eventual effect of a radical change in the Galactic absorption model on the NH(z) distribution. Therefore, we derive the intrinsic absorbing column densities using two different Galactic absorption models: the Leiden Argentine Bonn HI survey and the more recent model that includes molecular hydrogen. We find that if, on the one hand, the new Galactic model considerably affects the single column density values, on the other hand, there is no drastic change in the distribution as a whole. It becomes clear that the contribution of Galactic column densities alone, no matter how improved, is not sufficient to change the observed general trend and it has to be considered as a second order correction. The cosmological increase of NH(z) as a function of redshift persists and, to explain the observed distribution, it is necessary to include the contribution of both the diffuse intergalactic medium and the intervening systems along the line of sight of the GRBs.

  18. Can Gamma Ray Bursts be Detected Using Infrasound

    NASA Astrophysics Data System (ADS)

    Palmer, Jahi; McGruder, C.; Hetzer, C.

    2010-01-01

    CAN GAMMA RAY BURST BE DETECTED USING INFRASOUND Infrasound has been used to detect sonic disturbances in earth's atmosphere caused by terrestrial events such as earthquakes and lightning. It may be possible to detect celestial events such as Gamma Ray Bursts (GRB's) through this method. We have searched for GRB's which are known to have caused ionospheric disturbances in infrasonic data. None of the selected GRB's were found to be associated with infrasonic disturbances.

  19. High-entropy fireballs and jets in gamma-ray burst sources

    NASA Technical Reports Server (NTRS)

    Meszaros, P.; Rees, M. J.

    1992-01-01

    Two mechanisms whereby compact coalescing binaries can produce relatively 'clean' fireballs via neutrino-antineutrino annihilation are proposed. Preejected mass due to tidal heating will collimate the fireball into jets. The resulting anisotropic gamma-ray emission can be efficient and intense enough to provide an acceptable model for gamma-ray bursts, if these originate at cosmological distances.

  20. First search for neutrinos in correlation with gamma-ray bursts with the ANTARES neutrino telescope

    SciTech Connect

    2013-03-01

    A search for neutrino-induced muons in correlation with a selection of 40 gamma-ray bursts that occurred in 2007 has been performed with the ANTARES neutrino telescope. During that period, the detector consisted of 5 detection lines. The ANTARES neutrino telescope is sensitive to TeV–PeV neutrinos that are predicted from gamma-ray bursts. No events were found in correlation with the prompt photon emission of the gamma-ray bursts and upper limits have been placed on the flux and fluence of neutrinos for different models.

  1. Numerical models of blackbody-dominated gamma-ray bursts - I. Hydrodynamics and the origin of the thermal emission

    NASA Astrophysics Data System (ADS)

    Cuesta-Martínez, C.; Aloy, M. A.; Mimica, P.

    2015-01-01

    GRB 101225A is a prototype of the class of blackbody-dominated (BBD) gamma-ray bursts (GRBs). It has been suggested that BBD-GRBs result from the merger of a binary system formed by a neutron star and the helium core of an evolved star. We have modelled the propagation of ultrarelativistic jets through the environment left behind the merger by means of relativistic hydrodynamic simulations. In this paper, the output of our numerical models is post-processed to obtain the (thermal) radiative signature of the resulting outflow. We outline the most relevant dynamical details of the jet propagation and connect them to the generation of thermal radiation in GRB events akin to that of GRB 101225A. A comprehensive parameter study of the jet/environment interaction has been performed and synthetic light curves are confronted with the observational data. The thermal emission in our models originates from the interaction between the jet and the hydrogen envelope ejected during the neutron star/He core merger. We find that the lack of a classical afterglow and the accompanying thermal emission in BBD-GRBs can be explained by the interaction of an ultrarelativistic jet with a toroidally shaped ejecta whose axis coincides with the binary rotation axis. The spectral inversion and reddening happening at about 2 d in GRB 101225A can be related to the time at which the massive shell ejected in an early phase of the common envelope evolution of the progenitor system is completely ablated by the ultrarelativistic jet.

  2. Microlensing of Gamma Ray Bursts by Stars and Machos

    SciTech Connect

    Baltz, E

    2003-12-17

    The microlensing interpretation of the optical afterglow of GRB 000301C seems naively surprising, since a simple estimate of the stellar microlensing rate gives less than one in four hundred for a flat {Omega}{sub {lambda}} = 0.7 cosmology, whereas one event was seen in about thirty afterglows. Considering baryonic MACHOs making up half of the baryons in the universe, the microlensing probability per burst can be roughly 5% for a GRB at redshift z = 2. We explore two effects that may enhance the probability of observing microlensed gamma-ray burst afterglows: binary lenses and double magnification bias. We find that the consideration of binary lenses can increase the rate only at the {approx} 15% level. On the other hand, because gamma-ray bursts for which afterglow observations exist are typically selected based on fluxes at widely separated wavebands which are not necessarily well correlated (e.g. localization in X-ray, afterglow in optical/infrared), magnification bias can operate at an enhanced level compared to the usual single-bias case. Using a simple model for the selection process in two bands, we compute the enhancement to microlensing rate due to magnification bias in two cases: perfect correlation and complete independence of the flux in the two bands. We find that existing estimates of the slope of the luminosity function of gamma-ray bursts, while as yet quite uncertain, point to enhancement factors of more than three above the simple estimates of the microlensing rate. We find that the probability to observe at least one microlensing event in the sample of 27 measured afterglows can be 3-4% for stellar lenses, or as much as 25 {Omega}{sub lens} for baryonic MACHOs. We note that the probability to observe at least one event over the available sample of afterglows is significant only if a large fraction of the baryons in the universe are condensed in stellar-mass objects.

  3. BATSE spectroscopy catalog of bright gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Schaefer, Bradley E.; Teegarden, Bonnard J.; Fantasia, Stephan F.; Palmer, David; Cline, Thomas L.; Matteson, James L.; Band, David L.; Ford, Lyle A.; Fishman, Gerald J.; Meegar, Charles A.

    1994-01-01

    This paper presents comprehensive results on the spectra of 30 bright gamma ray bursts (GRBs) as observed by the Spectroscopy Detectors (SDs) of the Burst And Transient Source Experiment (BATSE). The data selection was strict in including only spectra that are of high reliability for continuum shape studies. This BATSE Spectroscopy Catalog presents fluences, model fits (for five spectral models for three energy ranges), and photon spectra in a standard manner for each burst. Complete information is provided to describe the data selection and analysis procedures. The catalog results are also presented in electronic format (from the Compton Observatory Science Support Center) and CD-ROM format (AAS CD-ROM series, Vol. 2). These electronic formats also present the count spectra and detector response matrices so as to allow for independent study and fitting by researchers outside the BATSE Team. This BATSE Spectroscopy Catalog complements the catalog from BATSE Large Area Detector (LAD) data by Fishman et al. (1994).

  4. Gamma-ray bursts from massive Population-III stars: clues from the radio band

    NASA Astrophysics Data System (ADS)

    Burlon, D.; Murphy, T.; Ghirlanda, G.; Hancock, P. J.; Parry, R.; Salvaterra, R.

    2016-07-01

    Current models suggest gamma-ray bursts could be used as a way of probing Population-III stars - the first stars in the early Universe. In this paper, we use numerical simulations to demonstrate that late-time radio observations of gamma-ray burst afterglows could provide a means of identifying bursts that originate from Population-III stars, if these were highly massive, independently from their redshift. We then present the results from a pilot study using the Australia Telescope Compact Array at 17 GHz, designed to test the hypothesis that there may be Population-III gamma-ray bursts amongst the current sample of known events. We observed three candidates plus a control gamma-ray burst, and make no detections with upper limits of 20-40 μJy at 500-1300 d post-explosion.

  5. Search for neutrinos from gamma-ray bursts with ANTARES

    SciTech Connect

    Schmid, Julia; Collaboration: ANTARES Collaboration

    2014-11-18

    ANTARES is the largest high-energy neutrino telescope in the Northern Hemisphere. A search for neutrinos in coincidence with gamma-ray bursts using ANTARES data from late 2007 to 2011 is presented here. An extended maximum likelihood ratio search was employed to optimise the discovery potential for a neutrino signal as predicted by a second-generation numerical model. No significant excess was found, so 90% confidence upper limits on the fluences as expected from analytically approximated neutrino-emission models as well as on up-to-date numerical predictions were placed.

  6. A test of the millisecond magnetar central engine model of gamma-ray bursts with swift data

    SciTech Connect

    Lü, Hou-Jun; Zhang, Bing E-mail: zhang@physics.unlv.edu

    2014-04-10

    A rapidly spinning, strongly magnetized neutron star (magnetar) has been proposed as one possible candidate of the central engine of gamma-ray bursts (GRBs). We systematically analyze the Swift/XRT light curves of long GRBs detected before 2013 August, and characterize them into four categories based on how likely they may harbor a magnetar central engine: Gold, Silver, Aluminum, and Non-magnetar. We also independently analyze the data of short GRBs with a putative magnetar central engine. We then perform a statistical study of various properties of the magnetar samples and the non-magnetar sample, and investigate whether the data are consistent with the hypothesis that there exist two types of central engines. By deriving the physical parameters of the putative magnetars, we find that the observations of the Gold and Silver samples are generally consistent with the predictions of the magnetar model. For a reasonable beaming factor for long GRBs, the derived magnetar surface magnetic field B{sub p} and initial spin period P {sub 0} fall into the reasonable range. Magnetar winds in short GRBs, on the other hand, are consistent with being isotropic. No GRB in the magnetar sample has a beam-corrected total energy exceeding the maximum energy budget defined by the initial spin energy of the magnetar, while some non-magnetar GRBs do violate such a limit. With beaming correction, on average the non-magnetar sample is more energetic and luminous than the magnetar samples. Our analysis hints that millisecond magnetars are likely operating in a good fraction, but probably not all, GRBs.

  7. A gamma-ray burst monitor for GLAST

    NASA Astrophysics Data System (ADS)

    von Kienlin, A.; Briggs, M. S.; Diehl, R.; Fishman, G. J.; Georgii, R.; Kippen, R. M.; Kouveliotou, C.; Lichti, G. G.; Meegan, C. A.; Paciesas, W. S.; Preece, R. D.; Schönfelder, V.

    2001-09-01

    The Gamma-Ray Large-Area Space Telescope GLAST is the next NASA mission in the high-energy γ-ray regime (10 MeV to about 500 GeV), with launch anticipated in 2006 (Gehrels, 1999). Recently a design using silicon strips for the electron-positron pair tracking was selected for the main instrument. One of the key scientific objectives of the GLAST mission is to determine the high-energy behaviour of gamma-ray bursts and transients. The importance of studying bursts with GLAST has been emphasized by choosing a burst monitor as the secondary instrument on GLAST. A proposal to the NASA AO for such a burst monitor was submitted jointly by a collaboration between the Marshall Space-Flight Center/University of Alabama (both in Huntsville/Alabama) and the Max-Planck-Institut für extraterrestrische Physik in Garching. This GLAST Burst Monitor will complement the main instrument information about bursts in the energy range between 5 keV and 30 MeV. It will provide real-time burst locations over a wide FOV with sufficient accuracy to repoint the GLAST spacecraft. Time-resolved spectra of many bursts recorded with GLAST and the burst monitor will cover unprecedented 6 decades of energy. This will help to advance our understanding of the mechanisms by which gamma-rays are generated in gamma-ray bursts. Mid of March 2000 this proposal for GLAST's burst monitor has been selected.

  8. Can Gamma-ray Bursts Help Constrain Cosmological Parameters?

    NASA Astrophysics Data System (ADS)

    Anderson, J. M.

    2002-05-01

    Although Gamma-ray bursts (GRBs) are observed to have a wide range of apparent burst energies, recent studies suggest that beaming significantly affects the observed fluxes. Correcting for this effect, Frail et al. (2001) find that GRBs have a common burst energy with a 1 σ multiplicative spread of 2.0. This is small enough to provide interesting constraints on the cosmological parameters Ω { M} and Ω Λ when combined with available type 1a supernovae data. GRBs are currently detected to much higher redshifts than supernovae, allowing improved tests of dust/dark energy models to be made. If GRBs are conclusively shown to be monoenergetic, they will provide a useful probe of cosmology at moderately high redshifts.

  9. Gamma-ray bursts and radio pulsar glitches

    SciTech Connect

    Hartmann, D.; Hurley, K.; Niel, M. California University, Berkeley Centre d'Etude Spatiale des Rayonnements, Toulouse, )

    1992-03-01

    Upper limits to gamma-ray fluxes produced in conjunction with a radio pulsar glitch are presented. The glitch occurred on the Vela pulsar on December 24, 1988 and was the first to be observed as it occurred. Sensitive gamma-ray burst detectors aboard the Phobos 2 spacecraft were operating at this time, but recorded no significant burst at the time of the glitch. It is concluded that if a gamma-ray burst was generated in the energy range to which the Phobos detectors were sensitive, and if it was not beamed away from the spacecraft, the efficiency of glitch energy conversion into gamma-rays could not have exceeded 10 exp -4. 27 refs.

  10. Gamma Ray Bursts in the Swift-Fermi Era

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Razzaque, Soebur

    2013-01-01

    Gamma-ray bursts (GRBs) are among the most violent occurrences in the universe. They are powerful explosions, visible to high redshift, and thought to be the signature of black hole birth. They are highly luminous events and provide excellent probes of the distant universe. GRB research has greatly advanced over the past 10 years with the results from Swift, Fermi and an active follow-up community. In this review we survey the interplay between these recent observations and the theoretical models of the prompt GRB emission and the subsequent afterglows.

  11. Long gamma-ray bursts trace the star formation history

    SciTech Connect

    Dado, Shlomo; Dar, Arnon

    2014-04-10

    We show that if the broad-line supernova explosions of Type Ic (SNeIc) produce the bulk of the observed long duration gamma-ray bursts (LGRBs), including high- and low-luminosity LGRBs and X-ray flashes, and if the LGRBs have the geometry assumed in the cannonball model of LGRBs, then their rate, measured by Swift, and their redshift distribution are consistent with the star formation rate (SFR) over the entire range of redshifts where the SFR has been measured with sufficient accuracy.

  12. Gamma Ray Burst with a delayed Supernovae explosion

    NASA Astrophysics Data System (ADS)

    Fargion, Daniele

    2016-07-01

    The Gamma Ray Burst models didn't find yet an explanation of a few percent well known GRB-SN events. The puzzle is based on the difficulties to make twice an explosion in the same place by a single collapsing star.The possible presence of a persistent and precessing jet from a neutron star or a Black hole whose blazing to us is observed as a GRB cannot naturally explain the additional late Supernova explosion. We Show that there is a new simple and well based astrophysical configuration able to make both the GRB and the late Supernova-like explosion, solving the main puzzle of GRB-SN signature.

  13. Observation of gamma-ray bursts with the SMM gamma-ray spectrometer

    NASA Technical Reports Server (NTRS)

    Share, G. H.; Strickman, M. S.; Kinzer, R. L.; Chupp, E. L.; Forrest, D. J.; Ryan, J. M.; Rieger, E.; Reppin, C.; Kanbach, G.

    1982-01-01

    The gamma-ray spectrometer on SMM is sensitive to bursts within its field of view with intensities greater than 0.000005 erg/sq cm above 100 keV. It has detected 17 events between February 1980 and March 1981 with the characteristics of cosmic gamma-ray bursts. The most intense burst, on 19 April 1980, had a photon spectrum consistent with a power law with spectral index - 2.5 from 300 keV to approximately 7 MeV. It is not possible at present to exclude the sun as the source of this burst. Spectra of 11 of the bursts have been studied for line features with no clear evidence for line emission greater than 300 keV. The continuum radiation from about half of these events have hard emission extending to approximately equal to or greater than 2 MeV.

  14. NEW FERMI-LAT EVENT RECONSTRUCTION REVEALS MORE HIGH-ENERGY GAMMA RAYS FROM GAMMA-RAY BURSTS

    SciTech Connect

    Atwood, W. B.; Baldini, L.; Bregeon, J.; Pesce-Rollins, M.; Sgro, C.; Tinivella, M.; Bruel, P.; Cohen-Tanugi, J.; Granot, J.; Longo, F.; Razzaque, S.; Zimmer, S. E-mail: nicola.omodei@stanford.edu

    2013-09-01

    Based on the experience gained during the four and a half years of the mission, the Fermi-LAT Collaboration has undertaken a comprehensive revision of the event-level analysis going under the name of Pass 8. Although it is not yet finalized, we can test the improvements in the new event reconstruction with the special case of the prompt phase of bright gamma-ray bursts (GRBs), where the signal-to-noise ratio is large enough that loose selection cuts are sufficient to identify gamma rays associated with the source. Using the new event reconstruction, we have re-analyzed 10 GRBs previously detected by the Large Area Telescope (LAT) for which an X-ray/optical follow-up was possible and found four new gamma rays with energies greater than 10 GeV in addition to the seven previously known. Among these four is a 27.4 GeV gamma ray from GRB 080916C, which has a redshift of 4.35, thus making it the gamma ray with the highest intrinsic energy ({approx}147 GeV) detected from a GRB. We present here the salient aspects of the new event reconstruction and discuss the scientific implications of these new high-energy gamma rays, such as constraining extragalactic background light models, Lorentz invariance violation tests, the prompt emission mechanism, and the bulk Lorentz factor of the emitting region.

  15. GAMMA-RAY BURSTS ARE OBSERVED OFF-AXIS

    SciTech Connect

    Ryan, Geoffrey; Van Eerten, Hendrik; MacFadyen, Andrew; Zhang, Bin-Bin

    2015-01-20

    We constrain the jet opening angle and, for the first time, the off-axis observer angle for gamma-ray bursts in the Swift-XRT catalog by using the ScaleFit package to fit afterglow light curves directly to hydrodynamic simulations. The ScaleFit model uses scaling relations in the hydrodynamic and radiation equations to compute synthetic light curves directly from a set of high-resolution two-dimensional relativistic blast wave simulations. The data sample consists of all Swift-XRT afterglows from 2005 to 2012 with sufficient coverage and a known redshift, 226 bursts in total. We find that the jet half-opening angle varies widely but is commonly less than 0.1 rad. The distribution of the electron spectral index is also broad, with a median at 2.30. We find the observer angle to have a median value of 0.57 of the jet opening angle over our sample, which has profound consequences for the predicted rate of observed jet breaks and affects the beaming-corrected total energies of gamma-ray bursts.

  16. Probing bulk viscous matter-dominated models with gamma-ray bursts

    SciTech Connect

    Montiel, A.; Bretón, N. E-mail: nora@fis.cinvestav.mx

    2011-08-01

    In this paper we extend the range of consistency of a constant bulk viscosity model to redshifts up to z ∼ 8.1. In this model the dark sector of the cosmic substratum is a viscous fluid with pressure p = −ζθ, where θ is the fluid-expansion scalar and ζ is the coefficient of bulk viscosity. Using the sample of 59 high-redshift GRBs reported by Wei (2010), we calibrate GRBs at low redshifts with the Union 2 sample of SNe Ia, thus avoiding the circularity problem. Testing the constant bulk viscosity model with GRBs we found the best fit for the viscosity parameter ζ-tilde in the range 0 < ζ-tilde < 3, so that it be consistent with previous probes; we also determined the deceleration parameter q{sub 0} and the redshift of transition to accelerated expansion. Besides, we present an updated analysis of the model with CMB5-year data and CMB7-year data, as well as with the baryon acoustic peak BAO. From the statistics with CMB it turns out that the model does not describe in a feasible way to such a far epoch of recombination of the universe, but is in very good concordance for epochs as far as z ∼ 8.1 till present.

  17. Optical radiation associated with gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    London, R. A.; Cominsky, L. R.

    1983-01-01

    Calculations are made of the approximate characteristics of the reprocessed optical radiation resulting from the absorption of a gamma-ray burst by a nearby star. The overall reprocessing time scale, including contributions from gamma-ray transfer and diffusion of the optical radiation, is estimated. It is noted that diffusive cooling occurs by either a 'self-similar' or a 'transparency' wave of postabsorption stellar surface temperatures greater or less than 10,000 K, respectively. Depending on the combination of stellar and gamma-ray burst properties, the reprocessing time scale can vary from the duration of the gamma-ray burst (approximately 1 s) to the maximum calculated cooling time (approximately 1000 s). Calculations for close binary systems are made of the number of optical photons per square centimeter expected at earth as a function of the observed gamma-ray burst fluences and likely distances. It is predicted that, if all gamma-ray bursters are in close binaries, the number of detections per year by an all sky monitor of 200 photons per sq cm sensitivity will be about 100.

  18. Evidence for cyclotron absorption from spectral features in gamma-ray bursts seen with Ginga

    NASA Technical Reports Server (NTRS)

    Murakami, T.; Fujii, M.; Hayashida, K.; Itoh, M.; Nishimura, J.

    1988-01-01

    New observations by the gamma-ray burst detector on board the Ginga satellite, which has two well-calibrated detectors covering a wide energy range of 1.5 to 375 keV, are reported. The spectral features obtained are consistent with first and second cyclotron harmonics. This finding is taken as strong evidence for the magnetized neutron star model of gamma-ray bursts.

  19. The Prompt and High Energy Emission of Gamma Ray Bursts

    SciTech Connect

    Meszaros, P.

    2009-05-25

    I discuss some recent developments concerning the prompt emission of gamma-ray bursts, in particular the jet properties and radiation mechanisms, as exemplified by the naked-eye burst GRB 080319b, and the prompt X-ray emission of XRB080109/SN2008d, where the progenitor has, for the first time, been shown to contribute to the prompt emission. I discuss then some recent theoretical calculations of the GeV/TeV spectrum of GRB in the context of both leptonic SSC models and hadronic models. The recent observations by the Fermi satellite of GRB 080916C are then reviewed, and their implications for such models are discussed, together with its interesting determination of a bulk Lorentz factor, and the highest lower limit on the quantum gravity energy scale so far.

  20. Theoretical Aspects of Magnetic Fields for Gamma Ray Bursts

    NASA Astrophysics Data System (ADS)

    Hanami, Hitoshi

    We propose magnetic cannon ball mechanism in which the collapse of a magnetosphere onto a black hole can generate strong outward Poynting flux which drives a baryon-free fireball called the magnetic cannon ball. In the early stage, the magnetic fields in the cannon ball can prepare the explanation for the cycrotoron absorptions observed by GINGA. The magnetic cannon ball can drive, in general, a relativistic outflow which interacts with the interstellar matter and forms a shock. The magnetic field in the shock approximately equal to 104 G can induce the synchrotron radiations with peaks at approximately equal to 10^2 keV observed. This magnetic field in the cannon ball can also confine the high energy protons (gamma_p > 30) which are required for delayed photons (>25 GeV) following a burst on 1994 February 17. Accretion induced collapse of a white dwarf of > 109 G, merger of a close binary and failed type Ib supernovae are possible scenarios even without the rotation of the central object. This mechanism works at the final phase of gravitational collapse even after a neutrino driven fireball proposed in most scenarios for gamma ray bursts. Twice bursts, which consist of primary neutrino driven fireball and secondary magnetic cannon ball can be induced sometime, can be explained in this model. It suggests that the magnetic cannon ball works some parts in multiple populations and delayed or multiple burst events. The final remnant in the model should be a black hole. It implies that any gamma ray bursts can have no optical counter part if they do not have a companion in a binary.

  1. How much can 56Ni be synthesized by the magnetar model for long gamma-ray bursts and hypernovae?

    NASA Astrophysics Data System (ADS)

    Suwa, Yudai; Tominaga, Nozomu

    2015-07-01

    A rapidly rotating neutron star with strong magnetic fields, called a magnetar, is a possible candidate for the central engine of long gamma-ray bursts and hypernovae (HNe). We solve the evolution of a shock wave driven by the wind from a magnetar and we evaluate the temperature evolution, by which we estimate the amount of 56Ni that produces the bright emission of HNe. We obtain a constraint on the magnetar parameters (i.e. the poloidal magnetic field strength Bp and initial angular velocity Ωi) for synthesizing enough 56Ni mass to explain HNe (M_{^{56}Ni}≳ 0.2 M_{{⊙}}), that is, (Bp/1016 G)1/2 (Ωi/104 rad s-1) ≳ 0.7.

  2. Afterglows of Elusive Short Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    2005-12-01

    An international team of astronomers1 has for the first time observed the visible light from a short gamma-ray burst (GRB). Using the 1.5-m Danish telescope at La Silla (Chile), they showed that these short, intense bursts of gamma-ray emission most likely originate from the violent collision of two merging neutron stars. The same team has also used the VLT to constrain the birthplace of the first ever short burst whose position could be pinpointed with high precision. The results were published in the October 6 issue of the journal Nature.

  3. Effects of Goldstone bosons on gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Tu, Huitzu; Ng, Kin-Wang

    2016-03-01

    Gamma-ray bursts (GRBs) are the most energetic explosion events in the universe. An amount of gravitational energy of the order of the rest-mass energy of the Sun is released from a small region within a short time. This should lead to the formation of a fireball of temperature in the MeV range, consisting of electrons/positrons, photons, and a small fraction of baryons. We exploit the potential of GRB fireballs for being a laboratory for testing particle physics beyond the Standard Model, where we find that Weinberg's Higgs portal model serves as a good candidate for this purpose. Due to the resonance effects, the Goldstone bosons can be rapidly produced by electron-positron annihilation process in the initial fireballs of the gamma-ray bursts. On the other hand, the mean free path of the Goldstone bosons is larger than the size of the GRB initial fireballs, so they are not coupled to the GRB's relativistic flow and can lead to significant energy loss. Using generic values for the GRB initial fireball energy, temperature, radius, expansion rate, and baryon number density, we find that the GRB bounds on the parameters of Weinberg's Higgs portal model are indeed competitive to current laboratory constraints.

  4. Flash Heating of Circumstellar Clouds by Gamma-Ray Bursts.

    PubMed

    Dermer; Böttcher

    2000-05-10

    The blast-wave model for gamma-ray bursts (GRBs) has been called into question by observations of spectra from GRBs that are harder than can be produced through optically thin synchrotron emission. If GRBs originate from the collapse of massive stars, then circumstellar clouds near burst sources will be illuminated by intense gamma radiation, and the electrons in these clouds will be rapidly scattered to energies as large as several hundred keV. Low-energy photons that subsequently pass through the hot plasma will be scattered to higher energies, hardening the intrinsic spectrum. This effect resolves the "line-of-death" objection to the synchrotron shock model. Illuminated clouds near GRBs will form relativistic plasmas containing large numbers of electron-positron pairs that can be detected within approximately 1-2 days of the explosion before expanding and dissipating. Localized regions of pair annihilation radiation in the Galaxy would reveal past GRB explosions.

  5. Gamma Ray Burst Follow-Ups with Bootes-4

    NASA Astrophysics Data System (ADS)

    Guziy, Sergey; Castro-Tirado, Guziy, Alberto J.; Jelinek, Martin; Gorosabel, Javier; Kubanek, Petr; Cunniffe, Ronan; Lara-Gil, Oscar; Tello, Juan C.; Jeong, Soomin; Oates, Samantha R.; Xu, Youdong; Perez-Ramirez, Dolores; Cui, Chenzou; Fan, Yufeng; Wan, Chuanjun; Bai, Jinming; Kheyfets, I.

    The Burst Observer and Optical Transient Exploring System (BOOTES), is a global robotic observatory network, which started in 1998 with Spanish leadership devoted to study optical emissions from gamma ray bursts (GRBs) that occur in the Universe. We present shot history and current status of BOOTES-4 telescope. Some details of 38 GRBs followed-up with BOOTES-4 are discussed.

  6. Gamma-Ray Bursts Analyses with Photographic Plates

    NASA Astrophysics Data System (ADS)

    Hudec, R.; Krizek, M.

    2006-04-01

    The Optical Monitors, despite of lower detection limits, are still valuable for detection of prompt real-time and (hypothetical) pre-burst optical emission of Gamma-Ray Bursts. We refer on the ongoing project at the Astronomical Institute in Ondrejov based on digitized data from the photographic EN network.

  7. REDSHIFT CATALOG FOR SWIFT LONG GAMMA-RAY BURSTS

    SciTech Connect

    Xiao Limin; Schaefer, Bradley E.

    2011-04-20

    We present a catalog of the redshifts for most long-duration gamma-ray bursts (GRBs) by Swift from 2004 December 20 to 2008 July 23 (258 bursts in total). All available information is collected, including spectroscopic redshifts, photometric redshift limits, and redshifts calculated from various luminosity relations. Error bars for the redshifts derived from the luminosity relations are asymmetric, with tails extended to the high-redshift end, and this effect is evaluated by looking at the 30% of Swift bursts with spectroscopic redshifts. A simulation is performed to eliminate this asymmetric effect, and the resultant redshift distribution is deconvolved. We test and confirm this simulation on the sample of bursts with known spectroscopic redshifts and then apply it to the 70% of Swift bursts that do not have spectroscopic measures. A final intrinsic redshift distribution is then made for almost all Swift bursts, and the efficiency of the spectroscopic detections is evaluated. The efficiency of spectroscopic redshifts varies from near unity at low redshift to 0.5 at z = 1, to near 0.3 at z = 4, and to 0.1 at z = 6. We also find that the fraction of GRBs with z>5 is {approx}10%, and this fraction is compared with simulations from a cosmological model.

  8. Gamma-ray bursts spectral correlations and their cosmological use.

    PubMed

    Ghirlanda, Giancarlo

    2007-05-15

    The correlations involving the long-gamma-ray bursts (GRBs) prompt emission energy represent a new key to understand the GRB physics. These correlations have been proved to be the tool that makes long-GRBs a new class of standard candles. Gamma Ray Bursts, being very powerful cosmological sources detected in the hard X-ray band, represent a new tool to investigate the Universe in a redshift range, which is complementary to that covered by other cosmological probes (SNIa and CMB). A review of the Ep-Eiso, Ep-Egamma, Ep-Eiso-tbreak and Liso-Ep-T0.45 correlations is presented. Open issues related to these correlations (e.g. presence of outliers and selection effects) and to their use for cosmographic purposes (e.g. dependence on model assumptions) are discussed. Finally, the relevance of thermal components in GRB spectra is discussed in the light of some of the models recently proposed for the interpretation of the spectral-energy correlations. PMID:17293334

  9. Gamma-ray-burst beaming and gravitational-wave observations.

    PubMed

    Chen, Hsin-Yu; Holz, Daniel E

    2013-11-01

    Using the observed rate of short-duration gamma-ray bursts (GRBs) it is possible to make predictions for the detectable rate of compact binary coalescences in gravitational-wave detectors. We show that the nondetection of mergers in the existing LIGO/Virgo data constrains the beaming angles and progenitor masses of gamma-ray bursts, although these limits are fully consistent with existing expectations. We make predictions for the rate of events in future networks of gravitational-wave observatories, finding that the first detection of a neutron-star-neutron-star binary coalescence associated with the progenitors of short GRBs is likely to happen within the first 16 months of observation, even in the case of only two observatories (e.g., LIGO-Hanford and LIGO-Livingston) operating at intermediate sensitivities (e.g., advanced LIGO design sensitivity, but without signal recycling mirrors), and assuming a conservative distribution of beaming angles (e.g., all GRBs beamed within θ(j) = 30°). Less conservative assumptions reduce the waiting time until first detection to a period of weeks to months, with an event detection rate of >/~10/yr. Alternatively, the compact binary coalescence model of short GRBs can be ruled out if a binary is not seen within the first two years of operation of a LIGO-Hanford, LIGO-Livingston, and Virgo network at advanced design sensitivity. We also demonstrate that the gravitational wave detection rate of GRB triggered sources (i.e., those seen first in gamma rays) is lower than the rate of untriggered events (i.e., those seen only in gravitational waves) if θ(j)≲30°, independent of the noise curve, network configuration, and observed GRB rate. The first detection in gravitational waves of a binary GRB progenitor is therefore unlikely to be associated with the observation of a GRB.

  10. Cyclotron resonant scattering and absorption. [in gamma ray bursts

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.; Daugherty, Joseph K.

    1991-01-01

    The relativistic cross-sections for first-order absorption and second-order scattering are compared to determine the conditions under which the absorption cross-section is a good approximation to the much more complex scattering cross-section for purposes of modeling cyclotron lines in gamma-ray bursts. Differences in both the cross-sections and the line profiles are presented for a range of field strengths, angles, and electron temperatures. The relative difference of the cross-sections at one line width from resonance was found to increase with field strength and harmonic number. The difference is also strongly dependent on the photon angle to the magnetic field. For the field strength, 1.7 x 10 to the 12th G, and the angle inferred from the Ginga burst features, absorption is an excellent approximation for the profiles at the first and second harmonics.

  11. On the origin of gamma-ray bursts.

    PubMed

    Ryde, Felix

    2008-12-13

    Gamma-ray bursts are the most energetic explosions in the Universe, occurring at cosmological distances. The initial phase of the emission from these bursts is predominantly of gamma rays and stems from a highly relativistic outflow. The nature of this emission is still under debate. Here, I present the interpretation that the peak in the photon spectrum can be attributed to the black-body emission of the photosphere of the outflow, having a temperature of approximately 109K. An additional non-thermal spectral component can be attributed to additional dissipation of the kinetic energy in the outflow. This two-component model can be well fitted to most instantaneous spectra. Interestingly, the thermal component exhibits a recurring behaviour over emission pulse structures. Both the temperature and the energy flux vary as broken power laws. During the pre-break phase, the temperature is approximately constant while the energy flux rises. Furthermore, the ratio of the observed thermal flux to the emergent flux increases as a power law over the whole pulse. It is argued that these observations hold the key to our understanding of the prompt emission and the properties of the site from which it emanates.

  12. VHE-UHE Properties of Gamma Ray Bursts

    SciTech Connect

    Measzaros, P.

    2008-12-24

    Gamma-ray bursts are observed to emit at least up to GeV energies, and their photon spectrum at the source is expected to extend up to TeV, due to either or both leptonic and hadronic mechanisms. I review some recent developments in GRB phenomenology in the light of Swift and other sub-MeV measurement, as well as recent theoretical work. I discuss then the acceleration of cosmic rays in GRB, which can extend to GZK energies, and the possibility of acceleration in GRB-related or other hypernovae. In both, synchrotron and inverse Compton, as well as hadronic processes, can lead to GeV-TeV gamma-rays measurable by GLAST, AGILE, or ACTs, providing useful probes of the burst physics and model parameters. Photo-meson and pp interactions also produce neutrinos at energies ranging from sub-TeV to EeV, which are targets for experiments such as IceCube, ANITA and KM3NeT.

  13. NO CORRELATION BETWEEN HOST GALAXY METALLICITY AND GAMMA-RAY ENERGY RELEASE FOR LONG-DURATION GAMMA-RAY BURSTS

    SciTech Connect

    Levesque, Emily M.; Kewley, Lisa J.; Soderberg, Alicia M.; Berger, Edo E-mail: kewley@ifa.hawaii.ed E-mail: eberger@cfa.harvard.ed

    2010-12-10

    We compare the redshifts, host galaxy metallicities, and isotropic (E{sub {gamma}},iso) and beaming-corrected (E{sub {gamma}}) gamma-ray energy release of 16 long-duration gamma-ray bursts (LGRBs) at z < 1. From this comparison, we find no statistically significant correlation between host metallicity and redshift, E{sub {gamma}},iso, or E{sub {gamma}}. These results are at odds with previous theoretical and observational predictions of an inverse correlation between gamma-ray energy release and host metallicity, as well as the standard predictions of metallicity-driven wind effects in stellar evolutionary models. We consider the implications that these results have for LGRB progenitor scenarios, and discuss our current understanding of the role that metallicity plays in the production of LGRBs.

  14. Gamma-ray burst locations from the Burst and Transient Source Experiment

    NASA Technical Reports Server (NTRS)

    Brock, M. N.; Meegan, C. A.; Roberts, F. E.; Fishman, G. J.; Wilson, R. B.; Paciesas, W. S.; Pendleton, G. N.

    1992-01-01

    The Burst and Transient Source Experiment (BATSE) consists of eight anisotropic gamma-ray spectrometers at the corners of the Compton Gamma Ray Observatory. BATSE monitors the full sky from a fixed orientation and determines the direction of gamma-ray bursts with an accuracy appropriate for studying the bursts' celestial distribution. We describe the calculation of gamma-ray burst directions from measurements made by BATSE. We present a sample of calculated directions from BATSE's measurement of solar flaxes and compare the calculated directions with the solar direction. We describe the systematic errors apparent in these data and discuss ongoing efforts to correct them.

  15. Gamma-Ray Bursts: Sans Second Postulate

    NASA Astrophysics Data System (ADS)

    Fritzius, R.

    stars starting with Cepheid variables. The author cleared up a critical flaw in Sekerin's reasoning regarding the computed value of the periodic spectral variations involved, and created software simulations of binary star orbits which produce the light curves and spectral variations predicted by the Ritzian theory. (Constant speed-of-light simulations do not produce the variations.) A limited number of these simulations including some for various kinds of Gamma-Ray Bursts (GRBs) are to be shown as part of this presentation. High-resolution spectral studies of variable stars, including GRBs, may eventually help us decide whether or not Ritz was as wrong as is currently generally thought. Further information on this topic is available at: http://www.ebicom.net/~rsf1/binaries.htm

  16. Detection of gamma-ray bursts from Andromeda

    SciTech Connect

    Bulik, Tomasz; Coppi, Paolo S.; Lamb, Donald Q.

    1996-08-01

    If gamma-ray bursts originate in a corona around the Milky Way, it should also be possible to detect them from a similar corona around Andromeda. Adopting a simple model of high velocity neutron star corona, we evaluate the ability of instruments on existing missions to detect an excess of bursts toward Andromeda. We also calculate the optimal properties of an instrument designed to detect such an excess. We find that if the bursts radiate isotropically, an experiment with a sampling distance d{sub max} > or approx. 500 kpc could detect a significant excess of bursts in the direction of Andromeda in a few years of observation. If the radiation is beamed along the neutron star's direction of motion, an experiment with d{sub max} > or approx. 800 kpc would detect such an excess in a similar amount of time, provided that the width of the beam is greater than 10 deg. Lack of an excess toward Andromeda would therefore be compelling evidence that the bursts are cosmological in origin if made by an instrument at least 50 times more sensitive than BATSE, given current constraints on Galactic corona models. Comparisons with detailed dynamical calculations of the spatial distribution of high velocity neutron stars in the coronae around the Milky Way and Andromeda confirm these conclusions.

  17. The Fourth BATSE Gamma-Ray Burst Catalog. Revised

    NASA Technical Reports Server (NTRS)

    Paciesas W. S.; Meegan, Charles A.; Pendleton, Geoffrey N.; Briggs, Michael S.; Kouveliotou, Chryssa; Koshut, Thomas M.; Lastrade, J. P.; McCollough, M. L.; Brainerd, Jerome J.; Hakkila, Jon; Henze, W.; Preece, Robert D

    1998-01-01

    The Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory (CGRO) has triggered on 1637 cosmic gamma-ray bursts between 1991 April 19 and 1996 August 29. These events constitute the Fourth BATSE burst catalog. The current version (4Br) has been revised from the version first circulated on CD-ROM in September 1997 (4B) to include improved locations for a subset of bursts that have been reprocessed using additional data. A significant difference from previous BATSE catalogs is the inclusion of bursts from periods when the trigger energy range differed from the nominal 50-300 keV. We present tables of the burst occurrence times, locations, peak fluxes, fluences, and durations. In general, results from previous BATSE catalogs are confirmed here with greater statistical significance.

  18. The Fourth BATSE Gamma-Ray Burst Catalog. Revised

    NASA Technical Reports Server (NTRS)

    Paciesas, William S.; Meegan, Charles A.; Pendleton, Geoffrey N.; Briggs, Michael S.; Kouveliotou, Chryssa; Koshut, Thomas M.; Lestrade, John Patrick; McCollough, Michael L.; Brainerd, Jerome J.; Hakkila, Jon

    1999-01-01

    The Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory (CGRO) has triggered on 1637 cosmic gamma-ray bursts between 1991 April 19 and 1996 August 29. These events constitute the Fourth BATSE burst catalog. The current version (4Br) has been revised from the version first circulated on CD-ROM in 1997 September (4B) to include improved locations for a subset of bursts that have been reprocessed using additional data. A significant difference from previous BATSE catalogs is the inclusion of bursts from periods when the trigger energy range differed from the nominal 50-300 keV. We present tables of the burst occurrence times, locations, peak fluxes, fluences, and durations. In general, results from previous BATSE catalogs are confirmed here with greater statistical significance.

  19. The Fermi Gamma-ray Burst Monitor Instrument

    SciTech Connect

    Bhat, P. N.; Briggs, M. S.; Connaughton, V.; Paciesas, W. S.; Preece, R. D.; Meegan, C. A.; Lichti, G. G.; Diehl, R.; Greiner, J.; Kienlin, A. von; Fishman, G. J.; Kouveliotou, C.; Kippen, R. M.

    2009-05-25

    The Fermi Gamma-ray Space Telescope launched on June 11, 2008 carries two experiments onboard--the Large Area Telescope (LAT) and the Gamma-ray Burst Monitor (GBM). The primary mission of the GBM instrument is to support the LAT in observing {gamma}-ray bursts (GRBs) by providing low-energy measurements with high temporal and spectral resolution as well as rapid burst locations over a large field-of-view ({>=}8 sr). The GBM will complement the LAT measurements by observing GRBs in the energy range 8 keV to 40 MeV, the region of the spectral turnover in most GRBs. The GBM detector signals are processed by the onboard digital processing unit (DPU). We describe some of the hardware features of the DPU and its expected limitations during intense triggers.

  20. The sharpness of gamma-ray burst prompt emission spectra

    NASA Astrophysics Data System (ADS)

    Yu, Hoi-Fung; van Eerten, Hendrik J.; Greiner, Jochen; Sari, Re'em; Narayana Bhat, P.; von Kienlin, Andreas; Paciesas, William S.; Preece, Robert D.

    2015-11-01

    Context. We study the sharpness of the time-resolved prompt emission spectra of gamma-ray bursts (GRBs) observed by the Gamma-ray Burst Monitor (GBM) on board the Fermi Gamma-ray Space Telescope. Aims: We aim to obtain a measure of the curvature of time-resolved spectra that can be compared directly to theory. This tests the ability of models such as synchrotron emission to explain the peaks or breaks of GBM prompt emission spectra. Methods: We take the burst sample from the official Fermi GBM GRB time-resolved spectral catalog. We re-fit all spectra with a measured peak or break energy in the catalog best-fit models in various energy ranges, which cover the curvature around the spectral peak or break, resulting in a total of 1113 spectra being analyzed. We compute the sharpness angles under the peak or break of the triangle constructed under the model fit curves and compare them to the values obtained from various representative emission models: blackbody, single-electron synchrotron, synchrotron emission from a Maxwellian or power-law electron distribution. Results: We find that 35% of the time-resolved spectra are inconsistent with the single-electron synchrotron function, and 91% are inconsistent with the Maxwellian synchrotron function. The single temperature, single emission time, and location blackbody function is found to be sharper than all the spectra. No general evolutionary trend of the sharpness angle is observed, neither per burst nor for the whole population. It is found that the limiting case, a single temperature Maxwellian synchrotron function, can only contribute up to % of the peak flux. Conclusions: Our results show that even the sharpest but non-realistic case, the single-electron synchrotron function, cannot explain a large fraction of the observed GRB prompt spectra. Because any combination of physically possible synchrotron spectra added together will always further broaden the spectrum, emission mechanisms other than optically thin

  1. Cosmological Gamma-Ray Bursts and Hypernovae Conclusively Linked

    NASA Astrophysics Data System (ADS)

    2003-06-01

    radiation. The team concludes that it is likely to be due to the nearly instantaneous, non-symmetrical collapse of the inner region of a highly developed star (known as the "collapsar" model) . The March 29 gamma-ray burst will pass into the annals of astrophysics as a rare "type-defining event", providing conclusive evidence of a direct link between cosmological gamma-ray bursts and explosions of very massive stars . PR Photo 17a/03 : Image of the optical afterglow of GRB 030329 (VLT FORS1+2). PR Photo 17b/03 : A series of VLT spectra of the optical afterglow of GRB 030329. What are Gamma-Ray Bursts? One of the currently most active fields of astrophysics is the study of the dramatic events known as "gamma-ray bursts (GRBs)" . They were first detected in the late 1960's by sensitive instruments on-board orbiting military satellites, launched for the surveillance and detection of nuclear tests. Originating, not on the Earth, but far out in space, these short flashes of energetic gamma-rays last from less than a second to several minutes. Despite major observational efforts, it is only within the last six years that it has become possible to pinpoint with some accuracy the sites of some of these events. With the invaluable help of comparatively accurate positional observations of the associated X-ray emission by various X-ray satellite observatories since early 1997, astronomers have until now identified about fifty short-lived sources of optical light associated with GRBs (the "optical afterglows"). Most GRBs have been found to be situated at extremely large ("cosmological") distances. This implies that the energy released in a few seconds during such an event is larger than that of the Sun during its entire lifetime of more than 10,000 million years. The GRBs are indeed the most powerful events since the Big Bang known in the Universe, cf. ESO PR 08/99 and ESO PR 20/00 . During the past years circumstantial evidence has mounted that GRBs signal the collapse of massive

  2. The width of the gamma-ray burst luminosity function

    NASA Technical Reports Server (NTRS)

    Ulmer, Andrew; Wijers, Ralph A. M. J.

    1995-01-01

    We examine the width of the gamma-ray burst (GRB) luminosity function through the distribution of GRB peak count rates, C(sub peak), as detected by Burst and Transient Source Experiment (BATSE) (1993). In the context of Galactic corona spatial distribution models, we attempt to place constaints on the characteristic width of the luminosity function by comparing the observed intensity distribution with those produced by a range of density and luminosity functions. We find that the intrinsic width of the luminosity function cannot be very well restricted. However, the distribution of intrinsic luminosities of detected bursts can be limited: we find that most observed bursts have luminosities that are in a range of one to two decades, but a significant population of undetected less luminous bursts cannot be excluded. These findings demonstrate that the assumption that GRB are standard candles is sufficient but not necessary to explain the observed intensity distribution. We show that the main reason for the relatively poor constraints is the fact that the bright-end part of the GRB flux distribution is not yet sampled by BATSE, and better sampling in the future may lead to significantly stronger constraints on the width of the luminosity function.

  3. An internally consistent gamma ray burst time history phenomenology

    NASA Technical Reports Server (NTRS)

    Cline, T. L.

    1985-01-01

    A phenomenology for gamma ray burst time histories is outlined. Order of their generally chaotic appearance is attempted, based on the speculation that any one burst event can be represented above 150 keV as a superposition of similarly shaped increases of varying intensity. The increases can generally overlap, however, confusing the picture, but a given event must at least exhibit its own limiting characteristic rise and decay times if the measurements are made with instruments having adequate temporal resolution. Most catalogued observations may be of doubtful or marginal utility to test this hypothesis, but some time histories from Helios-2, Pioneer Venus Orbiter and other instruments having one-to several-millisecond capabilities appear to provide consistency. Also, recent studies of temporally resolved Solar Maximum Mission burst energy spectra are entirely compatible with this picture. The phenomenology suggested here, if correct, may assist as an analytic tool for modelling of burst processes and possibly in the definition of burst source populations.

  4. The First Swift BAT Gamma-Ray Burst Catalog

    NASA Technical Reports Server (NTRS)

    Sakamoto, T.; Barthelmy, S. D.; Barbier, L.; Cummings, J. R.; Fenimore, E. E.; Gehrels, N.; Hullinger, D.; Krimm, H. A.; Markwardt, C. B.; Palmer, D. M.; Parsons, A. M.; Sato, G.; Stamatikos, M.; Tueller, J.; Ukwatta, T. N.; Zhang, B.

    2007-01-01

    We present the first Swift Burst Alert Telescope (BAT) catalog of gamma ray bursts (GRBs), which contains bursts detected by the BAT between 2004 December 19 and 2007 June 16. This catalog (hereafter BAT1 catalog) contains burst trigger time, location, 90% error radius, duration, fluence, peak flux, and time averaged spectral parameters for each of 237 GRBs, as measured by the BAT. The BAT-determined position reported here is within 1.75' of the Swift X-ray Telescope (XRT)-determined position for 90% of these GRBs. The BAT T(sub 90) and T(sub 50) durations peak at 80 and 20 seconds, respectively. From the fluence-fluence correlation, we conclude that about 60% of the observed peak energies, E(sup obs)(sub peak) of BAT GRBs could be less than 100 keV. We confirm that GRB fluence to hardness and GRB peak flux to hardness are correlated for BAT bursts in analogous ways to previous missions' results. The correlation between the photon index in a simple power-law model and E(sup obs)(sub peak) is also confirmed. We also report the current status for the on-orbit BAT calibrations based on observations of the Crab Nebula.

  5. Swift and Fermi Observations of the Early Afterglow of the Short Gamma-Ray Burst 090510

    NASA Astrophysics Data System (ADS)

    De Pasquale, M.; Schady, P.; Kuin, N. P. M.; Page, M. J.; Curran, P. A.; Zane, S.; Oates, S. R.; Holland, S. T.; Breeveld, A. A.; Hoversten, E. A.; Chincarini, G.; Grupe, D.; Abdo, A. A.; Ackermann, M.; Ajello, M.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bouvier, A.; Bregeon, J.; Brez, A.; Briggs, M. S.; Brigida, M.; Bruel, P.; Burnett, T. H.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Carrigan, S.; Casandjian, J. M.; Cecchi, C.; Çelik, Ö.; Chekhtman, A.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Connaughton, V.; Conrad, J.; Dermer, C. D.; de Angelis, A.; de Palma, F.; Dingus, B. L.; Silva, E. do Couto e.; Drell, P. S.; Dubois, R.; Dumora, D.; Farnier, C.; Favuzzi, C.; Fegan, S. J.; Fishman, G.; Focke, W. B.; Frailis, M.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Giglietto, N.; Giordano, F.; Glanzman, T.; Godfrey, G.; Granot, J.; Greiner, J.; Grenier, I. A.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Harding, A. K.; Hayashida, M.; Hays, E.; Horan, D.; Hughes, R. E.; Jackson, M. S.; Jóhannesson, G.; Johnson, A. S.; Johnson, W. N.; Kamae, T.; Katagiri, H.; Kataoka, J.; Kawai, N.; Kerr, M.; Kippen, R. M.; Knödlseder, J.; Kocevski, D.; Kuss, M.; Lande, J.; Latronico, L.; Lemoine-Goumard, M.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Makeev, A.; Mazziotta, M. N.; McEnery, J. E.; McGlynn, S.; Meegan, C.; Mészáros, P.; Meurer, C.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Monte, C.; Monzani, M. E.; Moretti, E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Norris, J. P.; Nuss, E.; Ohno, M.; Ohsugi, T.; Omodei, N.; Orlando, E.; Ormes, J. F.; Paciesas, W. S.; Paneque, D.; Panetta, J. H.; Parent, D.; Pelassa, V.; Pepe, M.; Pesce-Rollins, M.; Piron, F.; Porter, T. A.; Preece, R.; Rainò, S.; Rando, R.; Razzano, M.; Reimer, A.; Reimer, O.; Reposeur, T.; Ritz, S.; Rochester, L. S.; Rodriguez, A. Y.; Roth, M.; Ryde, F.; Sadrozinski, H. F.-W.; Sander, A.; Saz Parkinson, P. M.; Scargle, J. D.; Schalk, T. L.; Sgrò, C.; Siskind, E. J.; Smith, P. D.; Spandre, G.; Spinelli, P.; Stamatikos, M.; Starck, J.-L.; Stecker, F. W.; Strickman, M. S.; Suson, D. J.; Tajima, H.; Takahashi, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Thompson, D. J.; Tibaldo, L.; Toma, K.; Torres, D. F.; Tosti, G.; Tramacere, A.; Uchiyama, Y.; Uehara, T.; Usher, T. L.; van der Horst, A. J.; Vasileiou, V.; Vilchez, N.; Vitale, V.; von Kienlin, A.; Waite, A. P.; Wang, P.; Winer, B. L.; Wood, K. S.; Wu, X. F.; Yamazaki, R.; Ylinen, T.; Ziegler, M.

    2010-02-01

    We present the observations of GRB090510 performed by the Fermi Gamma-Ray Space Telescope and the Swift observatory. This is a bright, short burst that shows an extended emission detected in the GeV range. Furthermore, its optical emission initially rises, a feature so far observed only in long bursts, while the X-ray flux shows an initial shallow decrease, followed by a steeper decay. This exceptional behavior enables us to investigate the physical properties of the gamma-ray burst outflow, poorly known in short bursts. We discuss internal and external shock models for the broadband energy emission of this object.

  6. The Error Distribution of BATSE Gamma-Ray Burst Locations

    NASA Technical Reports Server (NTRS)

    Briggs, Michael S.; Pendleton, Geoffrey N.; Kippen, R. Marc; Brainerd, J. J.; Hurley, Kevin; Connaughton, Valerie; Meegan, Charles A.

    1999-01-01

    Empirical probability models for BATSE gamma-ray burst (GRB) location errors are developed via a Bayesian analysis of the separations between BATSE GRB locations and locations obtained with the Interplanetary Network (IPN). Models are compared and their parameters estimated using 392 GRBs with single IPN annuli and 19 GRBs with intersecting IPN annuli. Most of the analysis is for the 4Br BATSE catalog; earlier catalogs are also analyzed. The simplest model that provides a good representation of the error distribution has 78% of the probability in a "core" term with a systematic error of 1.85 deg and the remainder in an extended tail with a systematic error of 5.1 deg, which implies a 68% confidence radius for bursts with negligible statistical uncertainties of 2.2 deg. There is evidence for a more complicated model in which the error distribution depends on the BATSE data type that was used to obtain the location. Bright bursts are typically located using the CONT data type, and according to the more complicated model, the 68% confidence radius for CONT-located bursts with negligible statistical uncertainties is 2.0 deg.

  7. Systematic Effects on Duration Measurements of Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Koshut, Thomas M.; Paciesas, William S.; Kouveliotou, Chryssa; vanParadijs, Jan; Pendleton, Geoffrey N.; Fishman, Gerald J.; Meegan, Charles A.

    1996-01-01

    The parameters T(sub 90) and T(sub 50) have recently been introduced as a measurement of the duration of gamma-ray bursts. We present here a description of the method of measuring T(sub 90) and T(sub 50) and its application to gamma-ray bursts observed with the Burst and Transient Source Experiment (BATSE) onboard the Compton Gamma-Ray Observatory (CGRO). We use simulated as well as observed time profiles to address some of the possible systematic effects affecting individual T(sub 90) (T(sub 50)) measurements. We show that these systematic effects do not mimic those effects that would result from time dilation if the burst sources are at distances of several Gpc. We discuss the impact of these systematic effects on the T(sub 90) (T(sub 50)) distributions for the gamma-ray bursts observed with BATSE. We distinguish between various types of T(sub 90) (T(sub 50)) distributions, and discuss the ways in which distributions observed with different experiments can vary, even though the measurements for commonly observed bursts may be the same. We then discuss the distributions observed with BATSE and compare them to those observed with other experiments.

  8. AGILE DETECTION OF DELAYED GAMMA-RAY EMISSION FROM THE SHORT GAMMA-RAY BURST GRB 090510

    SciTech Connect

    Giuliani, A.; Vianello, G.; Mereghetti, S.; Caraveo, P.; Chen, A. W.; Contessi, T.; Barbiellini, G.; Longo, F.; Moretti, E.; Cattaneo, P. W.

    2010-01-10

    Short gamma-ray bursts (GRBs), typically lasting less than 2 s, are a special class of GRBs of great interest. We report the detection by the AGILE satellite of the short GRB 090510 which shows two clearly distinct emission phases: a prompt phase lasting {approx}200 ms and a second phase lasting tens of seconds. The prompt phase is relatively intense in the 0.3-10 MeV range with a spectrum characterized by a large peak/cutoff energy near 3 MeV; in this phase, no significant high-energy gamma-ray emission is detected. At the end of the prompt phase, intense gamma-ray emission above 30 MeV is detected showing a power-law time decay of the flux of the type t {sup -1.3} and a broadband spectrum remarkably different from that of the prompt phase. It extends from sub-MeV to hundreds of MeV energies with a photon index {alpha} {approx_equal} 1.5. GRB 090510 provides the first case of a short GRB with delayed gamma-ray emission. We present the timing and spectral data of GRB 090510 and briefly discuss its remarkable properties within the current models of gamma-ray emission of short GRBs.

  9. Profiles of Gamma-Ray Bursts and Their Component Pulses

    NASA Technical Reports Server (NTRS)

    Scargle, Jeff D.; Norris, J. P.; Nemiroff, R. J.; Bonnell, J. T.; Cuzzi, Jeffery N. (Technical Monitor)

    1995-01-01

    One physically informative regularity of their otherwise heterogeneous ensemble, is that many Gamma-Ray Bursts consist of well defined pulses. To objectively quantify the temporal structure of BATSE bursts, we have developed an automatic modeling procedure that separates overlapping pulses and determines the energy-dependence of the pulse-shape parameters. No binning of photon arrival times is needed, so when applied to time-tagged events (TTE) the procedure captures variability information down to the shortest time scales present in the raw data. Maximizing the Bayesian likelihood function Pr(data/model) yields estimates of the model parameters, including the number of pulses present, and allows intercomparison of models of different forms. As with any nonlinear optimization, good initial guesses are crucial to avoid convergence to undesirable local minima. We find excellent initial pulse decompositions by wavelet-denoising a cumulative distribution of the raw photon arrival data; differentiation then gives a time profile mostly free of the systematic effects of degraded resolution (as in ordinary Fourier smoothing) and binning. We present statistical information on pulse rise-time, decay-time, peakedness, and amplitudes, plus their energy dependences - both within a single burst and for a large ensemble of bursts.

  10. On the bimodal distribution of gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Mao, Shude; Narayan, Ramesh; Piran, Tsvi

    1994-01-01

    Kouveliotou et al. recently confirmed that gamma-ray bursts are bimodal in duration. In this paper we compute the statistical properties of the short (less than or = 2 s) and long (greater than 2 s) bursts using a method of analysis that makes no assumption regarding the location of the bursts, whether in the Galaxy or at a cosmological distance. We find the 64 ms channel on Burst and Transient Source Experiment (BATSE) to be more sensitive to short bursts and the 1024 ms channel to be more sensitive to long bursts. We show that all the currently available data are consistent with the simple hypothesis that both short and long bursts have the same spatial distribution and that within each population the sources are standard candles. The rate of short bursts per unit volume is about 40% of the rate of long bursts. Although the durations of short and long gamma-ray bursts span several orders of magnitude and the total energy of a typical short burst is smaller than that of a typical long burst by a factor of about 20, surprisingly the peak luminosities of the two kinds of bursts are equal to within a factor of about 2.

  11. Cosmology and the Subgroups of Gamma-ray Bursts

    NASA Astrophysics Data System (ADS)

    Mészáros, A.; Řípa, J.; Balázs, L. G.; Bagoly, Z.; Veres, P.; Horváth, I.

    Both short and intermediate gamma-ray bursts are distributed anisotropically in the sky (Mészáros, A. et al. ApJ, 539, 98 (2000), Vavrek, R. et al. MNRAS, 391, 1 741 (2008)). Hence, in the redshift range, where these bursts take place, the cosmological principle is in doubt. It has already been noted that short bursts should be mainly at redshifts smaller than one (Mészáros, A. et al. Gamma-ray burst: Sixth Huntsville Symp., AIP, Vol. 1 133, 483 (2009); Mészáros, A. et al. Baltic Astron., 18, 293 (2009)). Here we show that intermediate bursts should be at redshifts up to three.

  12. The INTEGRAL view of Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Ubertini, Pietro; Corsi, A.; Foley, S.; McGlynn, S.; De Cesare, G.; Bazzano, A.

    2011-04-01

    After more than six and half years in orbit, the ESA space observatory INTEGRAL has provided new, exciting results in the soft gamma-ray energy range (from a few keV to a few MeV). With the discovery of about 700 hard X-Ray sources, it has changed our previous view of a sky composed of peculiar and “monster” sources. The new high energy sky is in fact full of a large variety of normal, very energetic emitters, characterized by new accretion and acceleration processes (see also IBIS cat4 (Bird et al., 2010). At the same time, about one GRB/month is detected and imaged by the two main gamma-ray instruments on board: IBIS and SPI. In this paper, we review the major achievements of the INTEGRAL observatory in the field of Gamma-Ray Bursts. We summarize the global properties of Gamma-Ray Bursts detected by INTEGRAL, with respect to their duration, spectral index, and peak flux distributions. We recall INTEGRAL results on the spectral lag analysis, showing how long-lag GRBs appear to form a separate population at low peak fluxes. We review the outcome of polarisation studies performed by using INTEGRAL data. Finally, concerning single GRB studies, we highlight the properties of particularly interesting Gamma-Ray Bursts in the INTEGRAL sample.

  13. Dark Gamma-Ray Bursts and their Host Galaxies

    NASA Astrophysics Data System (ADS)

    Volnova, Alina; Pozanenko, Alexei

    Despite the rapid GRB follow-up with robotic telescopes, 20-40% of long duration GRBs show a lack or even total absence of the optical afterglow. These events are called optically dark bursts. Only observations of X-ray afterglow and host galaxy of those dark bursts allow us to study the parameters of dark GRB sources and their environment and to determine the nature of the burst darkness. We review recent observations and present statistical studies of optically dark gamma-ray bursts and their host galaxies. Also we discuss their properties in comparison ordinary bright bursts.

  14. Gamma-ray burst spectra and time histories from 2 to 400keV

    NASA Astrophysics Data System (ADS)

    Fenimore, E. E.

    1999-01-01

    The Gamma-Ray burst detector on Ginga consisted of a proportional counter to observe the x-rays and a scintillation counter to observe the gamma-rays. It was ideally suited to study the x-rays associated with gamma-ray bursts (GRBs). Ginga detected ~120 GRBs and 22 of them had sufficient statistics to determine spectra from 2 to 400keV. Although the Ginga and BATSE trigger criteria were very similar, the distribution of spectral parameters was different. Ginga observed bend energies in the spectra down to 2keV and had a larger fraction of bursts with low energy power law indexes greater than zero. The average ratio of energy in the x-ray band (2 to 10keV) compared to the gamma-ray band (50 to 300keV) was 24%. Some events had more energy in the x-ray band than in the gamma-ray band. One Ginga event had a period of time preceding the gamma rays that was effectively pure x-ray emission. This x-ray ``preactivity'' might be due to the penchant for the GRB time structure to be broader at lower energy rather than a different physical process. The x-rays tend to rise and fall slower than the gamma rays but they both tend to peak at about the same time. This argues against models involving the injection of relativistic electrons that cool by synchrotron radiation.

  15. ON THE RECENTLY DISCOVERED CORRELATIONS BETWEEN GAMMA-RAY AND X-RAY PROPERTIES OF GAMMA-RAY BURSTS

    SciTech Connect

    Dado, Shlomo; Dar, Arnon

    2013-09-20

    Recently, many correlations between the prompt {gamma}-ray emission properties and the X-ray afterglow properties of gamma-ray bursts (GRBs) have been inferred from a comprehensive analysis of the X-ray light curves of more than 650 GRBs measured with the Swift X-Ray Telescope (Swift/XRT) during the years 2004-2010. We show that these correlations are predicted by the cannonball (CB) model of GRBs. They result from the dependence of GRB observables on the bulk motion Lorentz factor and viewing angle of the jet of highly relativistic plasmoids (CBs) that produces the observed radiations by interaction with the medium through which it propagates. Moreover, despite their different physical origins, long GRBs (LGRBs) and short-hard bursts (SHBs) in the CB model share similar kinematic correlations, which can be combined into triple correlations satisfied by both LGRBs and SHBs.

  16. Short Gamma-ray Bursts: Observations and Physics

    NASA Astrophysics Data System (ADS)

    Janka, H.-Thomas

    2007-04-01

    The aim of the workshop, which will be held at the scenic Ringberg castle, is supposed to bring together astrophysicists, physicists, and astronomers from different fields in order to discuss recent observational and theoretical discoveries and developments on short gamma-ray bursts. In particular, we plan to address the following topics: * recent short GRB observations * environments and host galaxies of short GRBs * is there a 3rd class of GRBs? * modeling GRB engines and jet outflows * rate and redshift predictions for short GRBs * the fireball model and short GRBs * gravitational-wave signals from short GRBs * neutrino signals from short GRBs * microphysics needed for modeling short GRBs and their engines Scientific and Local organizing committee members: H.-Thomas Janka (Max Planck Institute for Astrophysics, Garching), Miguel Aloy (University of Valencia), Jochen Greiner (Max Planck Institute for Extraterrestrial Physics), Sandra Savaglio (Max Planck Institute for Extraterrestrial Physics), Shri Kulkarni (California Institute of Technology, Pasadena)

  17. Search for simultaneous optical counterparts of gamma-ray bursts

    SciTech Connect

    Park, H S; Porrata, R A; Bionta, R M; Williams, G G

    2000-09-05

    Gamma Ray Bursts (GRBs) are brief, randomly located, releases of gamma-ray energy from unknown celestial sources that occur almost daily. The study of GRBs has undergone a revolution in the past three years due to an international effort of follow-up observations made possible by the instantaneous distribution of reliable GRB coordinate information over the internet provided by NASA's GCN (GRB Coordinates Network). The 3-year LDRD project described here, done in collaboration with the workers responsible for the GCN, was the very first serious system to actively utilize the GCN and thus played a major role in the development of the GCN and the dramatic increase in our understanding of GRBs. The scientific objective of this project was to measure the intensity of any prompt visible radiation accompanying the gamma-ray emission utilizing a small but sensitive robotic telescope that responded to GCN triggers by rapidly taking images of the GCN error box. The instrument developed for this project, LOTIS, was the first of its kind, and the longest running, collecting data on over 75 GRBs during its 3 year running period. The results of LOTIS and the other follow-up programs have now shown that GRBs are at cosmological distances and interact with surrounding material as described by the ''fireball model.'' Visible, prompt, optical counterparts have only been seen in one case and are therefore very rare or much dimmer than the sensitivity of the current instruments. This places numerical limits on the surrounding matter density, and other physical parameters in the GRB environment. A much more sensitive instrument, Super-LOTIS, has been developed for operation at Kitt-Peak.

  18. Photon-deficient Compton scattering by nonthermal electrons - Comparison with gamma-ray burst spectra

    NASA Technical Reports Server (NTRS)

    Zdziarski, Andrzej A.; Lamb, Don Q.

    1986-01-01

    The model of gamma-ray-burst spectra proposed by Zdziarski and Lamb (1986, 1987) is reviewed and compared with observed spectra. In the model, the spectrum arises from multiple Compton scatterings in a nonthermal source with a deficit of soft photons. The steady-state electron distribution in such a source is a nonthermal power law that joins at low energies onto a thermal distribution that may be either optically thick or thin. Both cases lead naturally to a two-component spectrum with a photon-energy index in the X-ray spectrum which is much less than one and a photon-energy index in the gamma-ray spectrum which is larger than the X-ray photon-energy index. Fits to the observed gamma-ray-burst spectra (where data exist for both X-ray and gamma-ray energies) show good agreement with the model.

  19. Gamma ray bursts as a signature for entangled gravitational systems

    NASA Astrophysics Data System (ADS)

    Basini, Giuseppe; Capozziello, Salvatore; Longo, Giuseppe

    2004-01-01

    Gamma ray bursts (GRBs), due to their features, can be considered not only extremely energetic, but also as the most relativistic astrophysical objects discovered. Their phenomenology is still matter of debate and, till now, no fully satisfactory model has been formulated to explain the nature of their origin. In the framework of a recently developed new theory, where general conservation laws are always and absolutely conserved in nature, we propose an alternative model where an ``entangled'' gravitational system, dynamically constituted by a black holes connected to a white hole through a worm hole, seems capable of explaining most of the properties inferred for the GRB engine. In particular, it leads to a natural explanation of energetics, beaming, polarization, and, very likely, distribution. On the other hand, GRBs can be considered a signature of such entangled gravitational systems.

  20. Gamma Ray Bursts and the Birth of Black Holes

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2009-01-01

    Black holes have been predicted since the 1940's from solutions of Einstein's general relativity field equation. There is strong evidence of their existence from astronomical observations, but their origin has remained an open question of great interest. Gamma-ray bursts may the clue. They are powerful explosions, visible to high redshift, and appear to be the birth cries of black holes. The Swift and Fermi missions are two powerful NASA observatories currently in orbit that are discovering how gamma-ray bursts work. Evidence is building that the long and short duration subcategories of GRBs have very different origins: massive star core collapse to a black hole for long bursts and binary neutron star coalescence to a black hole for short bursts. The similarity to Type II and Ia supernovae originating from young and old stellar progenitors is striking. Bursts are tremendously luminous and are providing a new tool to study the high redshift universe. One Swift burst at z=8.3 is the most distant object known in the universe. The talk will present the latest gamma-ray burst results from Swift and Fermi and will highlight what they are teaching us about black holes and jet outflows.

  1. POET: a SMEX mission for gamma ray burst polarimetry

    NASA Astrophysics Data System (ADS)

    McConnell, Mark L.; Baring, Matthew; Bloser, Peter; Dwyer, Joseph F.; Emslie, A. Gordon; Ertley, Camden D.; Greiner, Jochen; Harding, Alice K.; Hartmann, Dieter H.; Hill, Joanne E.; Kaaret, Philip; Kippen, R. M.; Mattingly, David; McBreen, Sheila; Pearce, Mark; Produit, Nicolas; Ryan, James M.; Ryde, Felix; Sakamoto, Takanori; Toma, Kenji; Vestrand, W. Thomas; Zhang, Bing

    2014-07-01

    Polarimeters for Energetic Transients (POET) is a mission concept designed to t within the envelope of a NASA Small Explorer (SMEX) mission. POET will use X-ray and gamma-ray polarimetry to uncover the energy release mechanism associated with the formation of stellar-mass black holes and investigate the physics of extreme magnetic ields in the vicinity of compact objects. Two wide-FoV, non-imaging polarimeters will provide polarization measurements over the broad energy range from about 2 keV up to about 500 keV. A Compton scatter polarimeter, using an array of independent scintillation detector elements, will be used to collect data from 50 keV up to 500 keV. At low energies (2{15 keV), data will be provided by a photoelectric polarimeter based on the use of a Time Projection Chamber for photoelectron tracking. During a two-year baseline mission, POET will be able to collect data that will allow us to distinguish between three basic models for the inner jet of gamma-ray bursts.

  2. UNCOVERING THE INTRINSIC VARIABILITY OF GAMMA-RAY BURSTS

    NASA Astrophysics Data System (ADS)

    Golkhou, V. Zach; Butler, Nathaniel R

    2014-08-01

    We develop a robust technique to determine the minimum variability timescale for gamma-ray burst (GRB) light curves, utilizing Haar wavelets. Our approach averages over the data for a given GRB, providing an aggregate measure of signal variation while also retaining sensitivity to narrow pulses within complicated time series. In contrast to previous studies using wavelets, which simply define the minimum timescale in reference to the measurement noise floor, our approach identifies the signature of temporally smooth features in the wavelet scaleogram and then additionally identifies a break in the scaleogram on longer timescales as a signature of a true, temporally unsmooth light curve feature or features. We apply our technique to the large sample of Swift GRB gamma-ray light curves and for the first time—due to the presence of a large number of GRBs with measured redshift—determine the distribution of minimum variability timescales in the source frame. We find a median minimum timescale for long-duration GRBs in the source frame of Δtmin = 0.5 s, with the shortest timescale found being on the order of 10 ms. This short timescale suggests a compact central engine (3000 km). We discuss further implications for the GRB fireball model and present a tantalizing correlation between the minimum timescale and redshift, which may in part be due to cosmological time dilation.

  3. Correlation Analysis of Prompt Emission from Gamma Ray Bursts

    NASA Astrophysics Data System (ADS)

    Pothapragada, Sriharsha

    Prompt emission from gamma-ray bursts (GRBs) exhibits very rapid, complicated temporal and spectral evolution. This diverse variability in the light-curves reflects the complicated nature of the underlying physics, in which inter-penetrating relativistic shells in the outflow are believed to generate strong magnetic fields that vary over very small scales. We use the theory of jitter radiation to model the emission from such regions and the resulting overall prompt gamma ray emission from a series of relativistic collisionless shocks. We present simulated GRB light-curves developed as a series of "pulses" corresponding to instantaneously illuminated "thin-shell" regions emitting via the jitter radiation mechanism. The effects of various geometries, viewing angles, and bulk Lorentz factor profiles of the radiating outflow jets on the spectral features and evolution of these light-curves are explored. Our results demonstrate how an anisotropic jitter radiation pattern, in conjunction with relativistic shock kinematics, can produce certain features observed in the GRB prompt emission spectra, such as the occurrence of hard, synchrotron violating spectra, the "tracking" of observed flux with spectral parameters, and spectral softening below peak energy within individual episodes of the light curve. We highlight predictions in the light of recent advances in the observational sphere of GRBs.

  4. Rossi Prize Lecture: Gamma Ray Bursts: Origins and Consequences

    NASA Astrophysics Data System (ADS)

    Meszaros, P.

    2000-12-01

    Some of the major stepping stones towards uncovering the mystery of gamma ray bursts will be discussed. This is an unfinished process, new observations being expected in the near future. I will review the current observational status, and discuss the present theoretical understanding of GRB, as well as the possible impact of future missions and experiments.

  5. Constraints on relativity violations from gamma-ray bursts.

    PubMed

    Kostelecký, V Alan; Mewes, Matthew

    2013-05-17

    Tiny violations of the Lorentz symmetry of relativity and the associated discrete CPT symmetry could emerge in a consistent theory of quantum gravity such as string theory. Recent evidence for linear polarization in gamma-ray bursts improves existing sensitivities to Lorentz and CPT violation involving photons by factors ranging from ten to a million.

  6. On the extragalactic origin of gamma-ray bursts

    SciTech Connect

    Johnson, M.; Teller, E.

    1984-11-02

    A theory to explain the origin of extragalactic gamma ray bursts is presented. Collisions of black dwarf and neutron stars with a subsequent fragmentation of the dwarf producing relativistic particle accelerations toward the neutron star and a resulting turbulent flow of material at the neutron star surface is postulated. (DWL)

  7. The NuSTAR View of Gamma Ray Bursts

    NASA Technical Reports Server (NTRS)

    Kouveliotou, C.

    2014-01-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) mission was launched June 13, 2012. During the next two pears NuSTAR observed two Gamma Ray Bursts, GRBs 130427A and 130925A. I will describe here the NuSTAR GRB results and discuss their implications on the GRB field.

  8. Gamma-Ray Bursts: Outstanding Problems in the Swift Era

    NASA Astrophysics Data System (ADS)

    Zhang, Bing

    2008-01-01

    The study of gamma-ray bursts has entered a new era since the successful launch of NASA's dedicated mission Swift. I discuss several new outstanding problems raised in the Swift era, including GRB classification schemes, diverse manifestations of the delayed GRB central engine activity, as well as mysterious temporal breaks in the multi-wavelength afterglows.

  9. Constraints on relativity violations from gamma-ray bursts.

    PubMed

    Kostelecký, V Alan; Mewes, Matthew

    2013-05-17

    Tiny violations of the Lorentz symmetry of relativity and the associated discrete CPT symmetry could emerge in a consistent theory of quantum gravity such as string theory. Recent evidence for linear polarization in gamma-ray bursts improves existing sensitivities to Lorentz and CPT violation involving photons by factors ranging from ten to a million. PMID:25167393

  10. Spectral evolution of pulse structures in gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Norris, J. P.; Share, G. H.; Messina, D. C.; Dennis, B. R.; Desai, U. D.; Cline, T. L.

    1986-01-01

    The Hard X-Ray Burst Spectrometer (HXRBS) and Gamma-Ray Spectrometer (GRS) data from the Solar Maximum Mission satellite have been searched for gamma-ray bursts with sufficient intensities and relatively simple time profiles such that their spectral behavior may be studied on a time scale of about 1 s. Ten such events were observed with the GRS experiment, and four of these were also detected within the HXRBS field of view. Details are presented for two moderately intense bursts with relatively simple structure. The spectral evolutions of the remaining events are summarized briefly. Results suggest a pattern in the spectral evolution within burst pulses: a tendency for the high-energy emission to lead the low-energy emission, in contrast to the correlation of intensity and spectral hardness reported by Golenetskii et al. (1983).

  11. LAT Onboard Science: Gamma-Ray Burst Identification

    SciTech Connect

    Kuhn, Frederick; Bonnell, Jerry; Hughes, Richard; Norris, Jay; Ritz, Steven; Russell, James; Smith, Patrick; Winer, Brian; /Ohio State U.

    2007-10-15

    The main goal of the Large Area Telescope (LAT) onboard science program is to provide quick identification and localization of Gamma Ray Bursts (GRB) onboard the LAT for follow-up observations by other observatories. The GRB identification and localization algorithm will provide celestial coordinates with an error region that will be distributed via the Gamma ray burst Coordinate Network (GCN). We present results that show our sensitivity to bursts as characterized using Monte Carlo simulations of the GLAST observatory. We describe and characterize the method of onboard track determination and the GRB identification and localization algorithm. Onboard track determination is considerably different than in the onground case, resulting in a substantially altered point spread function. The algorithm contains tunable parameters which may be adjusted after launch when real bursts characteristics at very high energies have been identified.

  12. LAT Onboard Science: Gamma-Ray Burst Identification

    SciTech Connect

    Kuehn, Frederick; Hughes, Richard; Smith, Patrick; Winer, Brian; Bonnell, Jerry; Norris, Jay; Ritz, Steven; Russell, James

    2007-07-12

    The main goal of the Large Area Telescope (LAT) onboard science program is to provide quick identification and localization of Gamma Ray Bursts (GRB) onboard the LAT for follow-up observations by other observatories. The GRB identification and localization algorithm will provide celestial coordinates with an error region that will be distributed via the Gamma ray burst Coordinate Network (GCN). We present results that show our sensitivity to bursts as characterized using Monte Carlo simulations of the GLAST observatory. We describe and characterize the method of onboard track determination and the GRB identification and localization algorithm. Onboard track determination is considerably different than in the on-ground case, resulting in a substantially altered point spread function. The algorithm contains tunable parameters which may be adjusted after launch when real bursts characteristics at very high energies have been identified.

  13. AGILE and Gamma-Ray Bursts

    SciTech Connect

    Longo, Francesco; Tavani, M.; Barbiellini, G.; Argan, A.; Basset, M.; Boffelli, F.; Bulgarelli, A.; Caraveo, P.; Cattaneo, P.; Chen, A.; Costa, E.; Del Monte, E.; Di Cocco, G.; Di Persio, G.; Donnarumma, I.; Feroci, M.; Fiorini, M.; Foggetta, L.; Froysland, T.; Frutti, M.

    2006-05-19

    AGILE is a Scientific Mission dedicated to high-energy astrophysics supported by ASI with scientific participation of INAF and INFN. The AGILE instrument is designed to simultaneously detect and image photons in the 30 MeV - 50 GeV and 15 - 45 keV energy bands with excellent imaging and timing capabilities, and a large field of view covering {approx} 1/5 of the entire sky at energies above 30 MeV. A CsI calorimeter is capable of GRB triggering in the energy band 0.3-50 MeV. The broadband detection of GRBs and the study of implications for particle acceleration and high energy emission are primary goals of th emission. AGILE can image GRBs with 2-3 arcminutes error boxes in the hard X-ray range, and provide broadband photon-by photon detection in the 15-45 keV, 03-50 MeV, and 30 MeV-30 GeV energy ranges. Microsecond on-board photon tagging and a {approx} 100 microsecond gamma-ray detection deadtime will be crucial for fast GRB timing. On-board calculated GRB coordinates and energy fluxes will be quickly transmitted to the ground by an ORBCOMM transceiver. AGILE have recently (December 2005) completed its gamma-ray calibration. It is now (January 2006) undergoing satellite integration and testing. The PLSV launch is planned in early 2006. AGILE is then foreseen to be fully operational during the summer of 2006. It will be the only mission entirely dedicated to high-energy astrophysics above 30 MeV during the period mid-2006/mid-2007.

  14. The progenitors of extended emission gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Gompertz, B. P.

    2015-06-01

    Gamma-ray bursts (GRBs) are the most luminous transient events in the Universe, and as such are associated with some of the most extreme processes in nature. They come in two types: long and short, nominally separated either side of a two second divide in gamma-ray emission duration. The short class (those with durations of less than two seconds) are believed to be due to the merger of two compact objects, most likely neutron stars. Within this population, a small subsection exhibit an apparent extra high-energy emission feature, which rises to prominence several seconds after the initial emission event. These are the extended emission (EE) bursts. This thesis investigates the progenitors of the EE sample, including what drives them, and where they fit in the broader context of short GRBs. The science chapters outline a rigorous test of the magnetar model, in which the compact object merger results in a massive, rapidly-rotating neutron star with an extremely strong magnetic field. The motivation for this central engine is the late-time plateaux seen in some short and EE GRBs, which can be interpreted as energy injection from a long-lived central engine, in this case from the magnetar as it loses angular momentum along open field lines. Chapter 2 addresses the energy budget of such a system, including whether the EE component is consistent with the rotational energy reservoir of a millisecond neutron star, and the implications the model has for the physical properties of the underlying magnetar. Chapter 3 proposes a potential mechanism by which EE may arise, and how both classes may be born within the framework of a single central engine. Chapter 4 addresses the broadband signature of both short and EE GRBs, and provides some observational tests that can be used to either support or contradict the model.

  15. GRAVITATIONAL WAVES OF JET PRECESSION IN GAMMA-RAY BURSTS

    SciTech Connect

    Sun Mouyuan; Liu Tong; Gu Weimin; Lu Jufu

    2012-06-10

    The physical nature of gamma-ray bursts (GRBs) is believed to involve an ultra-relativistic jet. The observed complex structure of light curves motivates the idea of jet precession. In this work, we study the gravitational waves of jet precession based on neutrino-dominated accretion disks around black holes, which may account for the central engine of GRBs. In our model, the jet and the inner part of the disk may precess along with the black hole, which is driven by the outer part of the disk. Gravitational waves are therefore expected to be significant from this black-hole-inner-disk precession system. By comparing our numerical results with the sensitivity of some detectors, we find that it is possible for DECIGO and BBO to detect such gravitational waves, particularly for GRBs in the Local Group.

  16. Gamma-Ray Bursts Shower the Universe with Metals

    SciTech Connect

    Hazi, A

    2006-01-13

    According to the results from a Livermore computer model, some of the small change jingling in your pocket contains zinc and copper created in massive gamma-ray bursts (GRBs) that rank as the most impressive light shows in the universe. Livermore astrophysicist Jason Pruet and his colleagues Rebecca Surman and Gail McLaughlin from North Carolina State University (NCSU) reported on their calculations in the February 20, 2004, issue of ''Astrophysical Journal Letters''. They found that GRBs from black holes surrounded by a disk of dense, hot plasma may have contributed heavily to the galactic inventory of elements such as calcium, scandium, titanium, zinc, and copper. ''A typical GRB of this kind briefly outshines all the stars in millions of galaxies combined'', says Pruet. ''Plus it makes about 100 times as much of some common elements as an ordinary supernova''.

  17. Gamma-ray bursts: huge explosion in the early Universe.

    PubMed

    Cusumano, G; Mangano, V; Chincarini, G; Panaitescu, A; Burrows, D N; La Parola, V; Sakamoto, T; Campana, S; Mineo, T; Tagliaferri, G; Angelini, L; Barthelemy, S D; Beardmore, A P; Boyd, P T; Cominsky, L R; Gronwall, C; Fenimore, E E; Gehrels, N; Giommi, P; Goad, M; Hurley, K; Kennea, J A; Mason, K O; Marshall, F; Mészáros, P; Nousek, J A; Osborne, J P; Palmer, D M; Roming, P W A; Wells, A; White, N E; Zhang, B

    2006-03-01

    Long gamma-ray bursts (GRBs) are bright flashes of high-energy photons that can last for tens of minutes; they are generally associated with galaxies that have a high rate of star formation and probably arise from the collapsing cores of massive stars, which produce highly relativistic jets (collapsar model). Here we describe gamma- and X-ray observations of the most distant GRB ever observed (GRB 050904): its redshift (z) of 6.29 means that this explosion happened 12.8 billion years ago, corresponding to a time when the Universe was just 890 million years old, close to the reionization era. This means that not only did stars form in this short period of time after the Big Bang, but also that enough time had elapsed for them to evolve and collapse into black holes. PMID:16525462

  18. SCIENCE Magazine: BATSE 1000 gamma-ray burst perspective

    NASA Technical Reports Server (NTRS)

    Horack, John M.

    1995-01-01

    A historical highlight and analysis of the Burst and Transient Source Experiment (BATSE), which has been in operation for more than three years and has detected more than 1,000 cosmic gamma-ray bursts is presented. The questions BATSE has answered and those it has not are assessed, along with the problems and data correlation and processing that has occured from the BATSE operation.

  19. Expanding relativistic shells and gamma-ray burst temporal structure

    SciTech Connect

    Fenimore, E.E.; Madras, C.D.; Nayakshin, S.

    1996-12-01

    Many models of gamma-ray bursts (GRBs) involve a shell expanding at extreme relativistic speeds. The shell of material expands in a photon-quiet phase for a period {ital t}{sub 0} and then becomes gamma-ray active, perhaps due to inhomogeneities in the interstellar medium or the generation of shocks. Based on kinematics, we relate the envelope of the emission of the event to the characteristics of the photon-quiet and photon-active phases. We initially assume local spherical symmetry wherein, on average, the same conditions prevail over the shell`s surface within angles the order of {Gamma}{sup {minus}1}, where {Gamma} is the Lorentz factor for the bulk motion. The contribution of the curvature to the temporal structure is comparable to the contribution from the overall expansion. As a result, GRB time histories from a shell should have an envelope similar to {open_quotes}FRED{close_quotes} (fast rise, exponential decay) events in which the rise time is related to the duration of the photon-active phase and the fall time is related to the duration of the photon-quiet phase. This result depends only on local spherical symmetry and, since most GRBs do not have such envelopes, we introduce the {open_quotes}shell symmetry{close_quotes} problem: the observed time history envelopes of most GRBs do not agree with that expected for a relativistic expanding shell. Although FREDs have the signature of a relativistic shell, they may not be due to a single shell, as required by some cosmological models. Some FREDs have precursors in which the peaks are separated by more than the expansion time required to explain FRED shape. Such a burst is most likely explained by a central engine; that is, the separation of the multiple peaks occurs because the central site produced multiple releases of energy on timescales comparable to the duration of the event. (Abstract Truncated)

  20. Constraints on the hadronic content of gamma ray bursts

    SciTech Connect

    Yacobi, Lee; Guetta, Dafne; Behar, Ehud

    2014-09-20

    The IceCube High-energy Neutrino Telescope has been collecting data since 2006. Conversely, hundreds of gamma-ray bursts (GRBs) have been detected by the GRB Monitor on board Fermi since its launch in 2008. So far no neutrino event has been associated with a GRB, despite many models predicting the generation of high-energy neutrinos through GRB photon interaction with PeV protons in the GRB jet. We use the non-detection of neutrinos to constrain the hadronic content of GRB jets independent of jet model parameters. Assuming a generic particle spectrum of E {sup –α} with α = 2, we find that the ratio of the energy carried by pions to that in electrons has to be small f {sub π}/f{sub e} ≲ 0.24 at 95% confidence level. A distribution of spectral slopes can lower f {sub π}/f{sub e} by orders of magnitude. Another limit, independent of neutrinos, is obtained if one ascribes the measured Fermi/Large Area Telescope GeV gamma-ray emission to pair-photon cascades of high-energy photons resulting from (the same photon-hadronic interactions and subsequent) neutral pion decays. Based on the generally observed MeV-to-GeV GRB fluence ratio of ≈10, we show that f {sub π}/f{sub e} ≲ 0.3. In some bursts, this ratio is as low as unity, f {sub π}/f{sub e} ≲ 0.03. These findings add to mounting doubts regarding the presence of PeV protons in GRB jets.

  1. Fermi-LAT Observations of the Gamma-Ray Burst GRB 130427A

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Asano, K.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Gehrels, Cornelis

    2013-01-01

    The observations of the exceptionally bright gamma-ray burst (GRB) 130427A by the Large Area Telescope aboard the Fermi Gamma-ray Space Telescope provide constraints on the nature of these unique astrophysical sources. GRB 130427A had the largest fluence, highest-energy photon (95 GeV), longest gamma-ray duration (20 hours), and one of the largest isotropic energy releases ever observed from a GRB. Temporal and spectral analyses of GRB 130427A challenge the widely accepted model that the nonthermal high-energy emission in the afterglow phase of GRBs is synchrotron emission radiated by electrons accelerated at an external shock.

  2. Gamma Ray Burst Discoveries by the Swift Mission

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2006-01-01

    Gamma-ray bursts are among the most fascinating occurrences in the cosmos. They are thought to be the birth cries of black holes throughout the universe. The NASA Swift mission is an innovative new multiwavelength observatory designed to determine the origin of bursts and use them to probe the early Universe. Swift is now in orbit after a beautiful launch on November 20, 2004. A new-technology wide-field gamma-ray camera detects more than a hundred bursts per year. Sensitive narrow-field X-ray and UV/optical telescopes, built in collaboration with UK and Italian partners, are pointed at the burst location in 20 to 70 sec by an autonomously controlled "swift" spacecraft. For each burst, arcsec positions are determined and optical/UV/X-ray/gamma-ray spectrophotometry performed. Information is also rapidly sent to the ground to a team of more than 50 observers at telescopes around the world. The first year of findings from the mission will be presented. The long-standing mystery of short GRBs has been solved, and the answer is the most interesting possible scenario. High redshift bursts have been detected leading to a better understanding of star formation rates and distant galaxy environments. GRBs have been found with giant X-ray flares occurring in their afterglow. These, and other topics, will be discussed.

  3. Prevalent properties of gamma-ray burst variability

    NASA Technical Reports Server (NTRS)

    Link, Bennett; Epstein, Richard I.; Priedhorsky, William C.

    1993-01-01

    With the aim of isolating universal characteristics of gamma-ray burst variability, we compare time histories for 20 bright bursts detected by the Burst and Transient Source Experiment (Fishman et al., 1992). Using an autocorrelation function method, we find that the durations of individual structures within a burst, as well as the burst as a whole, become shorter with increasing energy in most events. We introduce the skewness function, a measure of temporal asymmetry. We find that most bursts exhibit a net skewness, in the sense that the intensity rises more rapidly than it falls. Over short time scales, bursts exhibit no preferred asymmetry. Taken together, these properties suggest that the overall time structure of a burst is due to an explosive phenomenon in which the evolution is initially energetic and rapid and is later slower during a 'cooling' period. We cannot rule out the possibility that short time-scale variability is caused by radiation beams sweeping past the observer.

  4. Light Dawns on Dark Gamma-ray Bursts

    NASA Astrophysics Data System (ADS)

    2010-12-01

    Gamma-ray bursts are among the most energetic events in the Universe, but some appear curiously faint in visible light. The biggest study to date of these so-called dark gamma-ray bursts, using the GROND instrument on the 2.2-metre MPG/ESO telescope at La Silla in Chile, has found that these gigantic explosions don't require exotic explanations. Their faintness is now fully explained by a combination of causes, the most important of which is the presence of dust between the Earth and the explosion. Gamma-ray bursts (GRBs), fleeting events that last from less than a second to several minutes, are detected by orbiting observatories that can pick up their high energy radiation. Thirteen years ago, however, astronomers discovered a longer-lasting stream of less energetic radiation coming from these violent outbursts, which can last for weeks or even years after the initial explosion. Astronomers call this the burst's afterglow. While all gamma-ray bursts [1] have afterglows that give off X-rays, only about half of them were found to give off visible light, with the rest remaining mysteriously dark. Some astronomers suspected that these dark afterglows could be examples of a whole new class of gamma-ray bursts, while others thought that they might all be at very great distances. Previous studies had suggested that obscuring dust between the burst and us might also explain why they were so dim. "Studying afterglows is vital to further our understanding of the objects that become gamma-ray bursts and what they tell us about star formation in the early Universe," says the study's lead author Jochen Greiner from the Max-Planck Institute for Extraterrestrial Physics in Garching bei München, Germany. NASA launched the Swift satellite at the end of 2004. From its orbit above the Earth's atmosphere it can detect gamma-ray bursts and immediately relay their positions to other observatories so that the afterglows could be studied. In the new study, astronomers combined Swift

  5. On the emission region of gamma ray bursts

    NASA Technical Reports Server (NTRS)

    Liang, E. P.

    1985-01-01

    Within the last few years the rapid accumulation of gamma ray burst spectral data, especially those of KONUS and solar maximum mission, has made the confrontation between theories of the gamma ray emission mechanisms and observations much more urgent and challenging. At present the most viable mode seems to be some combination of inverse Comptonization and synchrotron emission. Here, an attempt is made to limit the acceptable parameter space of the emission region by taking into account the maximum set of observational constraints. These are then applied to two specific scenarios: surface emission versus magnetospheric emission. Some observable predictions based on these scenarios are considered.

  6. STATISTICAL PROPERTIES OF GAMMA-RAY BURST POLARIZATION

    SciTech Connect

    Toma, Kenji; Sakamoto, Takanori; Hill, Joanne E.; Zhang, Bing; McConnell, Mark L.; Bloser, Peter F.; Yamazaki, Ryo; Ioka, Kunihito; Nakamura, Takashi

    2009-06-20

    The emission mechanism and the origin and structure of magnetic fields in gamma-ray burst (GRB) jets are among the most important open questions concerning the nature of the central engine of GRBs. In spite of extensive observational efforts, these questions remain to be answered and are difficult or even impossible to infer with the spectral and light-curve information currently collected. Polarization measurements will lead to unambiguous answers to several of these questions. Recent developments in X-ray and {gamma}-ray polarimetry techniques have demonstrated a significant increase in sensitivity, enabling several new mission concepts, e.g., Polarimeters for Energetic Transients (POET), providing wide field of view and broadband polarimetry measurements. If launched, missions of this kind would finally provide definitive measurements of GRB polarizations. We perform Monte Carlo simulations to derive the distribution of GRB polarizations in three emission models; the synchrotron model with a globally ordered magnetic field (SO model), the synchrotron model with a small-scale random magnetic field (SR model), and the Compton drag model (CD model). The results show that POET, or other polarimeters with similar capabilities, can constrain the GRB emission models by using the statistical properties of GRB polarizations. In particular, the ratio of the number of GRBs for which the polarization degrees can be measured to the number of GRBs that are detected (N{sub m} /N{sub d} ) and the distributions of the polarization degrees ({pi}) can be used as the criteria. If N{sub m} /N{sub d} > 30% and {pi} is clustered between 0.2 and 0.7, the SO model will be favored. If, instead, N{sub m} /N{sub d} < 15%, then the SR or CD model will be favored. If several events with {pi}>0.8 are observed, then the CD model will be favored.

  7. Repeating sources of classical gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Wang, V. C.; Lingenfelter, R. E.

    1995-01-01

    From an analysis of the first catalog of the Burst and Transient Source Experiment (BATSE) experiment (Fishman et al. 1993, 1994a) on the Compton Gamma Ray Observatory (CGRO), we find an excessive number of pairs of gamma-ray bursts which are clustered in both a space and time . The angular separation between the two bursts in each pair is less than their positional uncertainties, and the interval between their occurrence times is within several days. Optimizing the signal, we find that the probability of observing such a clustered excess froma Poisson ensemble is approximately 2 x 10(exp -5). We suggest that these bursts arise from repeating sources. A detailed study of the most prolific source, GBS 0855-00, is presented in a separate paper (Wang & Lingenfelter 1993a, b). Unlike most of the 'soft' gamma-ray repeaters, these repeating bursts have relatively hard spectra, complex light curves, and widely varying durations, that are indistinguishable from classical gamma-ray bursts. Although the significance of the clustered excess was optimized a posteriori, because it depends on temporal and spatial bin sized that could not be defined a priori, we can use the optimizations from the first catalog to test subsequent BATSE data sets. Unfortunately, the failure of the on-board tape recorders during the second catalog period seriously reduced the number of accurately positioned bursts (Fishman et al. 1994b), so that we can neither confirm, nor refute, the predicted repitition in that sample, and we must await the results of the third catalog.

  8. Energy Injections in Gamma Ray Bursts

    NASA Astrophysics Data System (ADS)

    Yu, Y. B.; Wu, X. F.; Huang, Y. F.; Xu, M.

    2016-06-01

    In this study, we will introduce some special events, such as GRBs 081029, 100814A and 111209A. Unexpected features, such as multiple X-ray flares and significant optical rebrightenings, are observed in their afterglow light curves, unveiling the late-time activities of the central engines. Here, we will summarize our previous numerical results of these three bursts by using the energy injection model. Especially, we will focus on GRB 100814A, with an early-time shallow decay phase and a late-time significant rebrightening in its optical afterglow light curve. To explain the complex multi-band afterglow emission of GRB 100814A, we invoke a magnetar with spin evolution as its central engine. We argue that the optical shallow decay phase and the X-ray plateau are due to energy injection from t he magnetar in its early spin-down stage, while the significant optical rebrightening observed at late time naturally comes from the spin-up process of the magnetar, which is caused by subsequent fall back accretion.

  9. Gamma Ray Bursts: Selected Results From The Swift Mission

    NASA Astrophysics Data System (ADS)

    Hurkett, Cheryl

    2008-12-01

    Gamma Ray Bursts (GRBs) are short, energetic events that mark the most violent explosions in the Universe. Current hypotheses associate them with the births of stellar-sized black holes or rapidly spinning, highly magnetized stars. The introduction to this work places GRBs in their historical and theoretical context and provides a description of the current models describing them. This study makes use of data from the Swift satellite. Chapter two is a multi-wavelength study of the high redshift GRB 050505, which indicates that this burst has properties consistent with the general lower z GRB sample. Furthermore there is evidence for a 'jet-break' in the X-ray light curve; a phenomena rarely seen in Swift era bursts. The next two chapters investigate the presence of X-ray emission lines in GRB spectra. Chapter three provides a discussion of the pre-Swift observations and a comparison of three methods already extant in the literature for assessing the significance of such s! pectral features. The detection limits for each method were determined for emission line strengths in bursts with spectral parameters typical of the Swift era sample. Chapter four applies these methods to a sampel of 40 Swift bursts; no strong evidence was found for emission lines in early time X-ray spectra once host galaxy absorption was accurately modelled. Chapter five investigates the phenomena of 'precursors' and 'quiescent intervals', indicating a common origin for events normally ascribed to 'prompt emission' and 'flares', in line with previous studies, and extending it to cover 'precursor' emission. Evidence was also found to reinforce (anti-)correlations seen between pulse temporal and energetic properties also seen in previous studies. The final chapter summarises the important results for each section and proposes future studies that could be conducted in each field.

  10. Is the Narrow E-Peak Distribution of Gamma-Ray Bursts Real?

    NASA Technical Reports Server (NTRS)

    Brainerd, Jerome J.

    2000-01-01

    Over the performance period of the research grant, the authors conducted a study of the role that the detector response plays in the detection of gamma-ray bursts. The goal of the study was to determine whether the fact that the gamma-ray bursts observed by the BATSE instrument on the Compton Gamma-ray Observatory are characterized by approximately the same characteristic energy is a consequence of the instrument's characteristics, or whether the distribution is a physical attribute of gamma-ray bursts. The authors succeeded in showing that instrumental effects are mild, and that the observed characteristic energy is a physical attribute of bursts. In the course of this research, the authors ported the computer code for calculating the BATSE detector response matrices to the Sun Solaris platform, and created a version of the code that runs under any platform that supports a Fortran 77 compiler with DEC extensions. This code has already been used by other investigators to analyze BATSE data. The authors constructed a Monte Carlo simulation of the BATSE burst trigger, with which they determined the efficiency of detecting a burst as a function of characteristic burst spectral energy. The results were then applied to BATSE observations to determine the physical model for the distribution of burst characteristic energies.

  11. Gamma-Ray Burst Subclasses: Separating Instrumental Biases from Potential Source Populations

    NASA Technical Reports Server (NTRS)

    Hakkila, Jon

    1999-01-01

    Instrumental effects mar gamma-ray burst observations. These effects can alter whether or not bursts trigger, as well as changing measured burst properties. The Burst And Transient Source Experiment (BATSE) on NASA's Compton Gamma-Ray Observatory (CGRO) has provided the largest database of gamma-ray bursts observed to date. It also provides an excellent laboratory for studying instrumental biases. We examine trigger biases and burst property biases as they pertain to previously identified gamma-ray burst classes. We also study some burst class properties in the new age of burst afterglow studies.

  12. Analysis of the Swift Gamma-Ray Bursts duration

    SciTech Connect

    Horvath, I.; Veres, P.; Balazs, L. G.; Kelemen, J.; Bagoly, Z.

    2008-10-22

    Two classes of gamma-ray bursts have been identified in the BATSE catalogs characterized by durations shorter and longer than about 2 seconds. There are, however, some indications for the existence of a third type of burst. Swift satellite detectors have different spectral sensitivity than pre-Swift ones for gamma-ray bursts. Therefore it is worth to reanalyze the durations and their distribution and also the classification of GRBs. Using The First BAT Catalog the maximum likelihood estimation was used to analyzed the duration distribution of GRBs. The three log-normal fit is significantly (99.54% probability) better than the two for the duration distribution. Monte-Carlo simulations also confirm this probability (99.2%)

  13. MAGIC Telescope Observations of Gamma-Ray Bursts

    SciTech Connect

    Garczarczyk, M.; Becerra-Gonzalez, J.; Gaug, M.; Antonelli, A.; Carosi, A.; La Barbera, A.; Spiro, S.; Bastieri, D.; Covino, S.; Dominguez, A.; Longo, F.; Scapin, V.

    2010-10-15

    MAGIC is built to perform observations of prompt and early afterglow emission from Gamma-Ray Bursts (GRBs) above 25 GeV. The instrument is designed to have the lowest possible energy threshold among the ground based {gamma}-ray detectors and the fastest reaction time to alerts distributed over the GRB Coordinates Network (GCN). The MAGIC-I telescope observed 57 GRBs during the first six years. In no cases Very High Energy (VHE){gamma}-ray emission above the threshold energy could be detected. The telescope has undergone several major improvements in sensitivity and repositioning performance. The biggest improvement in sensitivity was achieved with the installation of the second MAGIC-II telescope. Since more than one year both telescopes are observing in stereo mode. MAGIC are the only telescopes fast and sensitive enough to extend the observational energy range of satellite detectors, while GRB prompt and early afterglow emission is still ongoing.

  14. The First Fermi Gamma-ray Burst Monitor (GBM) Terrestrial Gamma-ray Flash (TGF) Catalog

    NASA Astrophysics Data System (ADS)

    Briggs, Michael; Connaughton, Valerie; Stanbro, Matthew; Zhang, Binbin; Bhat, Narayana; Fishman, Gerald; Roberts, Oliver; Fitzpatrick, Gerard; McBreen, Shelia; Grove, Eric; Chekhtman, Alexandre

    2015-04-01

    We present summary results from the first catalog of Terrestrial Gamma-ray Flashes (TGFs) detected with the Gamma-ray Burst Monitor (GBM) on the Fermi Space Telescope. The catalog reports parameters for over 2700 TGFs. Since the launch of Fermi in 2008 the TGF detection sensitivity of GBM has been improved several times, both in the flight software and in ground analysis. Starting in 2010 July individual photons were downloaded for portions of the orbits, enabling an off-line search that found weaker and shorter TGFs. Since 2012 November 26 this telemetry mode has been extended to continuous coverage. The TGF sample is reliable, with cosmic rays rejected using data both from Fermi GBM and from the Large Area Telescope on Fermi. The online catalog include times (UTC and solar), spacecraft geographic positions, durations, count intensities and Bayesian Block durations. The catalog includes separate tables for bright TGFs detected by the flight software and for Terrestrial Electron Beams (TEBs).

  15. The First Gamma-Ray Bursts in the Universe

    NASA Astrophysics Data System (ADS)

    Mesler, R. A.; Whalen, Daniel J.; Smidt, Joseph; Fryer, Chris L.; Lloyd-Ronning, N. M.; Pihlström, Y. M.

    2014-05-01

    Gamma-ray bursts (GRBs) are the ultimate cosmic lighthouses, capable of illuminating the universe at its earliest epochs. Could such events probe the properties of the first stars at z ~ 20, the end of the cosmic Dark Ages? Previous studies of Population III (Pop III) GRBs only considered explosions in the diffuse relic H II regions of their progenitors or bursts that are far more energetic than those observed to date. However, the processes that produce GRBs at the highest redshifts likely reset their local environments, creating much more complicated structures than those in which relativistic jets have been modeled so far. These structures can greatly affect the luminosity of the afterglow and hence the redshift at which it can be detected. We have now simulated Pop III GRB afterglows in H II regions, winds, and dense shells ejected by the star during the processes that produce the burst. We find that GRBs with E iso, γ = 1051-1053 erg will be visible at z >~ 20 to the next generation of near infrared and radio observatories. In many cases, the environment of the burst, and hence progenitor type, can be inferred from the afterglow light curve. Although some Pop III GRBs are visible to Swift and the Very Large Array now, the optimal strategy for their detection will be future missions like the proposed EXIST and JANUS missions with large survey areas and onboard X-ray and infrared telescopes that can track their near-infrared flux from the moment of the burst, thereby identifying their redshifts.

  16. The first gamma-ray bursts in the universe

    SciTech Connect

    Mesler, R. A.; Pihlström, Y. M.; Whalen, Daniel J.; Smidt, Joseph; Fryer, Chris L.; Lloyd-Ronning, N. M.

    2014-05-20

    Gamma-ray bursts (GRBs) are the ultimate cosmic lighthouses, capable of illuminating the universe at its earliest epochs. Could such events probe the properties of the first stars at z ∼ 20, the end of the cosmic Dark Ages? Previous studies of Population III (Pop III) GRBs only considered explosions in the diffuse relic H II regions of their progenitors or bursts that are far more energetic than those observed to date. However, the processes that produce GRBs at the highest redshifts likely reset their local environments, creating much more complicated structures than those in which relativistic jets have been modeled so far. These structures can greatly affect the luminosity of the afterglow and hence the redshift at which it can be detected. We have now simulated Pop III GRB afterglows in H II regions, winds, and dense shells ejected by the star during the processes that produce the burst. We find that GRBs with E {sub iso,γ} = 10{sup 51}-10{sup 53} erg will be visible at z ≳ 20 to the next generation of near infrared and radio observatories. In many cases, the environment of the burst, and hence progenitor type, can be inferred from the afterglow light curve. Although some Pop III GRBs are visible to Swift and the Very Large Array now, the optimal strategy for their detection will be future missions like the proposed EXIST and JANUS missions with large survey areas and onboard X-ray and infrared telescopes that can track their near-infrared flux from the moment of the burst, thereby identifying their redshifts.

  17. The Locations of Gamma-Ray Bursts Measured by Comptel

    NASA Technical Reports Server (NTRS)

    Kippen, R. Marc; Ryan, James M.; Connors, Alanna; Hartmann, Dieter H.; Winkler, Christoph; Kuiper, Lucien; Varendorff, Martin; McConnell, Mark L.; Hurley, Kevin; Hermsen, Wim; Schoenfelder, Volker

    1998-01-01

    The COMPTEL instrument on the Compton Gamma Ray Observatory is used to measure the locations of gamma-ray bursts through direct imaging of MeV photons. In a comprehensive search, we have detected and localized 29 bursts observed between 1991 April 19 and 1995 May 31. The average location accuracy of these events is 1.25 deg (1 sigma), including a systematic error of approx. 0.5 deg, which is verified through comparison with Interplanetary Network (IPN) timing annuli. The combination of COMPTEL and IPN measurements results in locations for 26 of the bursts with an average "error box" area of only approx. 0.3 deg (1 sigma). We find that the angular distribution of COMPTEL burst locations is consistent with large-scale isotropy and that there is no statistically significant evidence of small-angle autocorrelations. We conclude that there is no compelling evidence for burst repetition since no more than two of the events (or approx. 7% of the 29 bursts) could possibly have come from the same source. We also find that there is no significant correlation between the burst locations and either Abell clusters of galaxies or radio-quiet quasars. Agreement between individual COMPTEL locations and IPN annuli places a lower limit of approx. 100 AU (95% confidence) on the distance to the stronger bursts.

  18. Gravitational waves versus X-ray and gamma-ray emission in a short gamma-ray burst

    SciTech Connect

    Oliveira, F. G.; Rueda, Jorge A.; Ruffini, R. E-mail: jorge.rueda@icra.it

    2014-06-01

    Recent progress in the understanding of the physical nature of neutron star equilibrium configurations and the first observational evidence of a genuinely short gamma-ray burst (GRB), GRB 090227B, allows us to give an estimate of the gravitational waves versus the X-ray and gamma-ray emission in a short GRB.

  19. Ulysses/BATSE observations of cosmic gamma ray bursts

    NASA Technical Reports Server (NTRS)

    Hurley, K.; Boer, M.; Sommer, M.; Fishman, G.; Meegan, C.; Paciesas, W.; Wilson, R.; Kouveliotou, C.; Cline, T.

    1992-01-01

    The gamma ray burst detector aboard the ESA-NASA Ulysses spacecraft, in operation since Nov. 1990, has detected numerous gamma bursts in conjunction with the BATSE experiment aboard the Compton Observatory. Initial results are presented on burst locations for three events (21 April, 2 May, and 3 May, 1991) obtained by arrival time analysis, and they are compared with the BATSE locations. The arrival time analysis annuli have typical widths of 5'. The preliminary analysis indicates that both experiments are likely to have unresolved systematic errors, but that further work will improve the location accuracy substantially.

  20. Constraints on galactic distributions of gamma-ray burst sources from BATSE observations

    NASA Technical Reports Server (NTRS)

    Hakkila, Jon; Meegan, Charles A.; Pendleton, Geoffrey N.; Fishman, Gerald J.; Wilson, Robert B.; Paciesas, William S.; Brock, Martin N.; Horack, John M.

    1994-01-01

    The paradigm that gamma-ray bursts originate from Galactic sources is studied in detail using the angular and intensity distributions observed by the Burst and Transient Source Experiment (BATSE) on NASA's Compton Gamma Ray Observatory (CGRO). Monte Carlo models of gamma-ray burst spatial distributions and luminosity functions are used to simulate bursts, which are then folded through mathematical models of BATSE selection effects. The observed and computed angular intensity distributions are analyzed using modifications of standard statistical homogeneity and isotropy studies. Analysis of the BATSE angular and intensity distributions greatly constrains the origins and luminosities of burst sources. In particular, it appears that no single population of sources confined to a Galactic disk, halo, or localized spiral arm satisfactorily explains BATSE observations and that effects of the burst luminosity function are secondary when considering such models. One family of models that still satisfies BATSE observations comprises sources located in an extended spherical Galactic corona. Coronal models are limited to small ranges of burst luminosity and core radius, and the allowed parameter space for such models shrinks with each new burst BATSE observes. Multiple-population models of bursts are found to work only if (1) the primary population accounts for the general isotropy and inhomogeneity seen in the BATSE observations and (2) secondary populations either have characteristics similar to the primary population or contain numbers that are small relative to the primary population.

  1. Gamma Ray Burst 150518a measured at different wavelengths

    NASA Astrophysics Data System (ADS)

    Apala, Ellizabeth Ann; Soderberg, Alicia Margarita; West, Michael

    2016-01-01

    Gamma Ray Burst (GRB's), extremely energetic flashes of Gamma Rays, are caused by either deaths of massive unstable stars or colliding binary neutron stars. A unique burst, GRB 150518a, had two recorded bursts fifteen minutes apart which is very rare and is considered to be ultra-long, lasting around thirty minutes total and is associated with a Supernova explosion. GBR 150518a is also extremely close compared to the average burst being measured to have a redshift of .2, this is important to note because GRB's measuring less than a redshift of .3 only are seen every ten years. Gamma rays are emitted by supernovae, neutron stars, black holes, and quasars and by studying GRB's it allows us to see more deeply into how these objects function. The first few days of GRB 150518as' detected afterglow was plotted in different wavelengths, including optical, x-ray, radio, and infrared, in flux verses time. Data is continuously being added as time goes on. This research is funded by the NSF, grant number 1358990.

  2. Observations of cosmic gamma ray bursts with WATCH on EURECA

    NASA Astrophysics Data System (ADS)

    Brandt, S.; Lund, N.; Castro-Tirado, A. J.

    19 Cosmic Gamma-Ray Bursts were detected by the Wide Angle Telescope for Cosmic Hard X-rays (WATCH) instruments during the 11 months flight of the European Retrievable Carrier (EURECA). The identification of the bursts was complicated by a high frequency of background of events caused by a high energy cosmic ray interactions in the detector and by low energy, trapped particle streams. These background events may simulate the count rate increases characteristic of cosmic gamma bursts. For 12 of the detected events, their true cosmic nature have been confirmed through consistent localizations of the burst sources based on several independent WATCH data sets. The derived positions of the bursts are reported. Additionally, most of the events have been confirmed by coincident detections with instruments on other spacecraft. The features of two of the bursts and the results of searches for related events in the optical are described.

  3. Precursors of Short Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Troja, E.; Rosswog, S.; Gehrels, N.

    2010-01-01

    We carried out a systematic search of precursors on the sample of short GRBs observed by Swift. We found that approx. 8-10% of short GRBs display such early episode of emission. One burst (GRB 090510) shows two precursor events, the former approx.13 s and the latter approx. 0.5 s before the GRB. We did not find any substantial difference between the precursor and the main GRB emission, and between short GRBs with and without precursors. We discuss possible mechanisms to reproduce the observed precursor emission within the scenario of compact object mergers. The implications of our results on quantum gravity constraints are also discussed.

  4. A search for the radio counterpart to the 1994 March 1 gamma-ray burst

    NASA Technical Reports Server (NTRS)

    Frail, D. A.; Kulkarni, S. R.; Hurley, K. C.; Fishman, G. J.; Kouveliotou, C.; Meegan, C. A.; Sommer, M.; Boer, M.; Niel, M.; Cline, T.

    1994-01-01

    We report on the results of a search for the radio counterpart to the bright gamma-ray burst of 1994 March 1. Using the Dominion Radio Astrophysical Observatory Synthesis Telescope sensitive, wide-field radio images at 1.4 GHz and 0.4 GHz were made of a region around GRB 940301. A total of 15 separate radio images were obtained at each frequency, sampling a near-continuous range of post-burst timescales between 3 and 15 days, as well as 26, 47, and 99 days. We place an upper limit of 3.5 mJy on a fading/flaring radio counterpart at 1.4 GHz and 55 mJy at 0.4 GHz. Unlike past efforts our counterpart search maintains high sensitivity over two decades of post-burst time durations. Time-variable radio emission after the initial gamma-ray burst is a prediction of all fireball models, currently the most popular model for gamma-ray bursts. Our observations allow us to put significant constraints on the fireball parameters for cosmological models of gamma-ray bursts.

  5. The Fermi Gamma-ray Burst Monitor (GBM) Terrestrial Gamma-ray Flash (TGF) Catalog

    NASA Astrophysics Data System (ADS)

    Stanbro, M.; Briggs, M. S.; Roberts, O.; McBreen, S.; Bhat, N.; Fitzpatrick, G.

    2015-12-01

    We present results from the catalog of Terrestrial Gamma-ray Flashes (TGFs) detected with the Gamma-ray Burst Monitor (GBM) on the Fermi Gamma-ray Space Telescope. The first release, in January 2015, provided data on 2700 TGFs. Updates are extending the catalog at a rate of ~800 TGFs per year. The TGF sample is reliable, with cosmic rays rejected using data both from Fermi GBM and from the Large Area Telescope on Fermi. The online catalog include times (UTC and solar), spacecraft geographic positions, durations, count intensities and other Bayesian Block durations. The catalog includes separate tables for bright TGFs detected by the flight software and for Terrestrial Electron Beams (TEBs). In January 2016 additional data will be released online from correlating these TGFs with sferics detected by the World Wide Lightning Location Network (WWLLN). Maps of sferics in the vicinity of each TGF will be provided, as will the locations and times of sferics found to be associated with TGFs.

  6. Toward a Unified Model for the Broadband Prompt Emission of Gamma Ray Bursts & a New Luminosity-Hardness Relation for Cosmology

    NASA Astrophysics Data System (ADS)

    Guiriec, Sylvain

    2016-07-01

    We suggest here to replace the historical spectral model (Band function) for the Gamma-Ray Burst (GRB) prompt emission (keV-MeV energy regime) with a new one. We show that the complex GRB spectral shapes are well described with a combination of three separate components: (i) a thermal-like component that we interpret as emission from a non-dissipative GRB jet photosphere, (ii) a non-thermal component that we interpret either as synchrotron radiation from charged particles propagating and accelerated within the GRB jet or as a dissipative photosphere, and (iii) a second non-thermal component that is not always present or detectable and which extends from optical up to hard gamma-rays. The smooth evolution of all three components during the burst duration reinforces the validity of this new model. Detailed studies of the evolution of these components provide insights on the nature and composition of GRB jets as well as on their magnetic fields. Moreover, this new model enables a new luminosity-hardness relation based on the first non-thermal component that may establish GRBs as standard candles. If statistically confirmed, this relation will be used to (i) constrain the mechanisms powering GRB jets, (ii) estimate GRB distances, (iii) probe the early Universe, and (iv) constrain the cosmological parameters in complement to the Type Ia SNe sample. I will present this new model using analysis of GRBs detected with various observatories and instruments such as Fermi, CGRO/BATSE and more recently Swift. I will discuss here the striking similarities of GRB spectral shapes as well as the possible universality of the proposed luminosity-hardness relation in the context of the new model.

  7. High-energy emission in gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Matz, S. M.; Forrest, D. J.; Vestrand, W. T.; Chupp, E. L.; Share, G. H.; Rieger, E.

    1985-01-01

    Between February 1980 and August 1983 the Gamma-Ray Spectrometer on the Solar Maximum Mission Satellite (SMM) detected 72 events identified as being of cosmic origin. These events are an essentially unbiased subset of all gamma-ray bursts. The measured spectra of these events show that high energy (greater than 1 MeV) emission is a common and energetically important feature. There is no evidence for a general high-energy cut-off or a distribution of cut-offs below about 6 MeV. These observations imply a limit on the preferential beaming of high energy emission. This constraint, combined with the assumption of isotropic low energy emission, implies that the typical magnetic field strength at burst radiation sites is less than 1 x 10 to the 12th gauss.

  8. The ISEE-C gamma ray burst spectrometer

    NASA Technical Reports Server (NTRS)

    Teegarden, B. J.; Porreca, G.; Stilwell, D.; Desai, U. D.; Cline, T. L.; Hovestadt, D.

    1978-01-01

    The technical properties, operation, and expected sensitivity are discussed for an experiment intended to search for narrow lines in the spectra of gamma ray bursts during the ISEE-C mission. At the heart of the experiment is a radiatively cooled germanium solid state photon detector. The instrumentation is capable of storing the entire spectrum of all but the largest bursts in the energy range 0.05-6.5 MeV. In addition, it analyzes the signals from two CsI detectors in two other experiments on the spacecraft and records event time histories from these to a few millisecond accuracy. A background mode permits spectral analysis during quiet times and will allow the determination of physically interesting upper limits for narrow lines in the diffuse gamma ray background radiation.

  9. A NEW CLASSIFICATION METHOD FOR GAMMA-RAY BURSTS

    SciTech Connect

    Lue Houjun; Liang Enwei; Zhang Binbin; Zhang Bing E-mail: zhang@physics.unlv.ed

    2010-12-20

    Recent Swift observations suggest that the traditional long versus short gamma-ray burst (GRB) classification scheme does not always associate GRBs to the two physically motivated model types, i.e., Type II (massive star origin) versus Type I (compact star origin). We propose a new phenomenological classification method of GRBs by introducing a new parameter {epsilon} = E{sub {gamma},iso,52}/E {sup 5/3}{sub p,z,2}, where E{sub {gamma},iso} is the isotropic gamma-ray energy (in units of 10{sup 52} erg) and E{sub p,z} is the cosmic rest-frame spectral peak energy (in units of 100 keV). For those short GRBs with 'extended emission', both quantities are defined for the short/hard spike only. With the current complete sample of GRBs with redshift and E{sub p} measurements, the {epsilon} parameter shows a clear bimodal distribution with a separation at {epsilon} {approx} 0.03. The high-{epsilon} region encloses the typical long GRBs with high luminosity, some high-z 'rest-frame-short' GRBs (such as GRB 090423 and GRB 080913), as well as some high-z short GRBs (such as GRB 090426). All these GRBs have been claimed to be of Type II origin based on other observational properties in the literature. All the GRBs that are argued to be of Type I origin are found to be clustered in the low-{epsilon} region. They can be separated from some nearby low-luminosity long GRBs (in 3{sigma}) by an additional T{sub 90} criterion, i.e., T{sub 90,z} {approx}< 5 s in the Swift/BAT band. We suggest that this new classification scheme can better match the physically motivated Type II/I classification scheme.

  10. A revised analysis of gamma-ray bursts' prompt efficiencies

    NASA Astrophysics Data System (ADS)

    Beniamini, Paz; Nava, Lara; Piran, Tsvi

    2016-09-01

    The prompt gamma-ray bursts' (GRBs) efficiency is an important clue on the emission mechanism producing the γ-rays. Previous estimates of the kinetic energy of the blast waves, based on the X-ray afterglow luminosity LX, suggested that this efficiency is large, with values above 90 per cent in some cases. This poses a problem to emission mechanisms and in particular to the internal shocks model. These estimates are based, however, on the assumption that the X-ray emitting electrons are fast cooling and that their Inverse Compton (IC) losses are negligible. The observed correlations between LX (and hence the blast wave energy) and Eγ, iso, the isotropic equivalent energy in the prompt emission, has been considered as observational evidence supporting this analysis. It is reasonable that the prompt gamma-ray energy and the blast wave kinetic energy are correlated and the observed correlation corroborates, therefore, the notion LX is indeed a valid proxy for the latter. Recent findings suggest that the magnetic field in the afterglow shocks is significantly weaker than was earlier thought and its equipartition fraction, ɛB, could be as low as 10-4 or even lower. Motivated by these findings we reconsider the problem, taking now IC cooling into account. We find that the observed LX - Eγ, iso correlation is recovered also when IC losses are significant. For small ɛB values the blast wave must be more energetic and we find that the corresponding prompt efficiency is significantly smaller than previously thought. For example, for ɛB ˜ 10-4 we infer a typical prompt efficiency of ˜15 per cent.

  11. Observations of short-duration gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Pozanenko, Alexei; Volnova, Alina; Tungalag, Namkhai; Elenin, Leonid; Molotov, Igor; Voropaev, Victor; Schmalz, Sergey

    2014-09-01

    Gamma-ray bursts (GRB) are the most powerful cosmological catastrophes in the Universe, with energy releases of 1048 - 1053 erg within a few tens of seconds. It is widely believed that progenitors of the short-duration class of GRB can be merging relativistic binary systems such as a neutron star (NS) and a black hole (BH) or NS-NS. We review the physics of GRBs, their phenomenological properties and observational evidence of GRBs, emphasizing optical observations of GRBs from Mongolia.

  12. THE ENGINES BEHIND SUPERNOVAE AND GAMMA-RAY BURSTS

    SciTech Connect

    FRYER, CHRISTOPHER LEE

    2007-01-23

    The authors review the different engines behind supernova (SNe) and gamma-ray bursts (GRBs), focusing on those engines driving explosions in massive stars: core-collapse SNe and long-duration GRBs. Convection and rotation play important roles in the engines of both these explosions. They outline the basic physics and discuss the wide variety of ways scientists have proposed that this physics can affect the supernova explosion mechanism, concluding with a review of the current status in these fields.

  13. Fast Fourier transformation results from gamma-ray burst profiles

    NASA Technical Reports Server (NTRS)

    Kouveliotou, Chryssa; Norris, Jay P.; Fishman, Gerald J.; Meegan, Charles A.; Wilson, Robert B.; Paciesas, W. S.

    1992-01-01

    Several gamma-ray bursts in the BATSE data have sufficiently long durations and complex temporal structures with pulses that appear to be spaced quasi-periodically. In order to test and quantify these periods we have applied fast Fourier transformations (FFT) to all these events. We have also performed cross spectral analyses of the FFT of the two extreme (high-low) energy bands in each case to determine the lead/lag of the pulses in different energies.

  14. OPTICAL CLASSIFICATION OF GAMMA-RAY BURSTS IN THE SWIFT ERA

    SciTech Connect

    Van der Horst, A. J.; Kouveliotou, C.; Gehrels, N.; Cannizzo, J. K.; Rol, E.; Wijers, R. A. M. J.; Racusin, J.; Burrows, D. N.

    2009-07-10

    We propose a new method for the classification of optically dark gamma-ray bursts (GRBs), based on the X-ray and optical-to-X-ray spectral indices of GRB afterglows, and utilizing the spectral capabilities of Swift. This method depends less on model assumptions than previous methods, and can be used as a quick diagnostic tool to identify optically sub-luminous bursts. With this method we can also find GRBs that are extremely bright at optical wavelengths. We show that the previously suggested correlation between the optical darkness and the X-ray/gamma-ray brightness is merely an observational selection effect.

  15. The Third BATSE Gamma-Ray Burst Catalog

    NASA Technical Reports Server (NTRS)

    Meegan, Charles A.; Pendleton, Geoffrey N.; Briggs, Michael S.; Kouveliotou, Chryssa; Koshut, Thomas M.; Lestrade, John Patrick; Paciesas, William S.; McCollough, Michael L.; Brainerd, Jerome J.; Horack, John M.; Hakkila, Jon; Henze, William; Preece, Robert D.; Mallozzi, Robert S.; Fishman, Gerald J.

    1996-01-01

    The Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory (CGRO) has triggered on 1122 cosmic gamma-ray bursts between 1991 April 19 and 1994 September 19. These events constitute the Third BATSE (3B) burst catalog. This catalog includes the events previously reported in the 2B catalog, which covered the time interval 1991 April 19 to 1993 March 9. We present tables of the burst occurrence times, locations, peak fluxes, fluences, and durations. In general, results from previous BATSE catalogs are confirmed here with greater statistical significance. The angular distribution is consistent with isotropy. The mean galactic dipole and quadrupole moments are within 0.6 a and 0.3 a, respectively, of the values expected for isotropy. The intensity distribution is not consistent with a homogeneous distribution of burst sources, with V/V(sub max) = 0.33 +/- 0.01. The duration distribution (T(sub 90)) exhibits bimodality, with peaks at approx. 0.5 and approx. 30 s. There is no compelling evidence for burst repetition, but only weak limits can be placed on the repetition rate.

  16. Constraints on the gamma-ray burst luminosity function from Pioneer Venus Orbiter and BATSE observations

    NASA Technical Reports Server (NTRS)

    Ulmer, Andrew; Wijers, Ralph A. M. J.; Fenimore, Edward E.

    1995-01-01

    We examine the width of the gamma ray burst luminosity function through the distribution of Gamma Ray Burst (GRB) peak fluxes as detected by the Pioneer Venus Orbiter (PVO) and the Burst and Transient Source Experiment (BATSE). The strength of the analysis is greatly enhanced by using a merged catalog of peak fluxes from both instruments with good cross-calibration of their sensitivities. The range of peak fluxes is increased by approximately a factor of 20 relative to the BATSE catalog. Thus, more sensitive investigations of the log N - log P distribution are possible. We place constraints on the width of the luminosity function of gamma-ray bursts brighter than the BATSE completeness limit by comparing the intensity distribution in the merged catalog with those produced by a variety of spatial density and luminosity functions. For the models examined, 90% of the detectable bursts have peak luminosities within a range of 10, indicating that the peak luminosities of gamma-ray bursts span a markedly less wide range of values than many other of their measurable properties. We also discuss for which slopes of a power-law luminosity function the observed width is at the upper end of the constrained range. This is essential in determining the power-law slopes for which luminosity-duration correlations could be important.

  17. Further Constraints on Galactic Coronal Models of BATSE Gamma-Ray Bursts: (1) Limits on Local Group Member Contributions, and (2) Implications for Spiral Arm Plus Coronal Distributions

    NASA Astrophysics Data System (ADS)

    Hakkila, J.; Meegan, C. A.; Horack, J. M.; Fishman, G. J.; Pendleton, G. N.; Wilson, R. B.; Brock, M. N.; Paciesas, W. S.; Briggs, M. S.

    1994-05-01

    Galactic coronal/extended halo models of gamma-ray burst spatial distributions and luminosity functions are analyzed and compared to BATSE observations using techniques described in Hakkila et al. (1994a, ApJ 422, 664) and Hakkila et al. (1994b, Proc. 1993 Hunts. Workshop). Local Group Galaxies other than the Milky Way and M31 do not appear able to contribute significantly in any coronal/extended halo scenario, as they would (1) raise the overall of the sample, and (2) show up in the two-point angular correlation function. Also, Galactic spiral arm/disk populations have been combined with coronal/extended halo populations to determine the extent to which they can be added without severely affecting sample isotropy. The models favor very low-luminosity spiral arm bursts (those that are so close that no spiral structure is noticeable) and/or small observed numbers of such bursts (less than 20% of the BATSE sample), while simultaneously constraining the spatial and luminosity properties of the coronal/extended halo population. This work has been supported by NASA grants NAG8-192 and NRA 92-OSSA-17.

  18. The SWIFT Gamma-Ray Burst X-Ray Telescope

    NASA Technical Reports Server (NTRS)

    Hill, J. E.; Burrows, D. N.; Nousek, J. A.; Wells, A.; Chincarini, G.; Abbey, A. F.; Angelini, L.; Beardmore, A.; Brauninger, H. W.; Chang, W.

    2006-01-01

    The Swift Gamma-Ray Burst Explorer is designed to make prompt multi-wavelength observations of Gamma-Ray Bursts and GRB afterglows. The X-ray Telescope enables Swift to determine GRB positions with a few arcseconds accuracy within 100 seconds of the burst onset. The XRT utilizes a mirror set built for JET-X and an XMM-Newton/ EPIC MOS CCD detector to provide a sensitive broad-band (0.2-10 keV) X-ray imager with an effective area of more than 120 sq cm at 1.5 keV, a field of view of 23.6 x 23.6 arcminutes, and an angular resolution of 18 arcseconds (HPD). The detection sensitivity is 2x10(exp 14) erg/sq cm/s in 10(exp 4) seconds. The instrument provides automated source detection and position reporting within 5 seconds of target acquisition. It can also measure the redshifts of GRBs with Iron line emission or other spectral features. The XRT operates in an auto-exposure mode, adjusting the CCD readout mode automatically to optimize the science return as the source intensity fades. The XRT measures spectra and lightcurves of the GRB afterglow beginning about a minute after the burst and follows each burst for days or weeks. We provide an overview of the X-ray Telescope scientific background from which the systems engineering requirements were derived, with specific emphasis on the design and qualification aspects from conception through to launch. We describe the impact on cleanliness and vacuum requirements for the instrument low energy response and to maintain the high sensitivity to the fading signal of the Gamma-ray Bursts.

  19. The Hurst Exponent of Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Sonbas, Eda; MacLachlan, Glen A.; Dhuga, Kalvir S.; Landay, Justin

    2016-07-01

    Using a wavelet decomposition technique, we have extracted the Hurst exponent for a sample of long and short Gamma-Ray Bursts (GRBs) detected by the Burst Alert Telescope (BAT) aboard the Swift satellite. The Hurst exponent is a scaling parameter that can be used to gauge the long-range behavior in a time series. The mean Hurst exponent for the short GRB sample is significantly smaller than that for the long GRB sample, suggesting that this index may serve as an unbiased criterion for distinguishing short and long GRBs. In addition, a K-S test for the two samples suggest that the null hypothesis can be rejected.

  20. Recent DMSP satellite detections of gamma-ray bursts

    SciTech Connect

    Terrell, J.; Lee, P.; Klebesadel, R. W.; Griffee, J. W.

    1998-05-16

    Gamma-ray burst detectors are aboard seven U.S. Air Force Defense Meteorological Satellite Program (DMSP) spacecraft, two of which are currently in use. Their 800 km altitude orbits give a field of view to 117 degrees from the zenith. A great many bursts have been detected, usually in coincidence with detections by GRO or other satellites such as PVO or Ulysses. The directions of the sources can be determined with considerable accuracy from such correlated observations, even when neither GRO nor BeppoSAX is involved. Results obtained from the most recently launched satellites (DMSP 13 and DMSP 14) are given in this paper.

  1. Three precise gamma-ray burst source locations

    NASA Technical Reports Server (NTRS)

    Cline, T. L.; Desai, U. D.; Teegarden, B. J.; Barat, C.; Hurley, K.; Niel, M.; Vedrenne, G.; Evans, W. D.; Klebesadel, R. W.; Laros, J. G.

    1984-01-01

    The precise source regions of three moderately intense gamma ray bursts are derived. These events were observed with the first interplanetary burst sensor network. The optimum locations of the detectors, widely separated throughout the inner solar system, allowed for high accuracy, over-determined source fields of size 0.7 to 7.0 arc-min(2). All three locations are at fairly high galactic latitude in regions of low source confusion; none can be identified with a steady source object. Archived photographs were searched for optical transients that are able to be associated with these source fields; one such association was made.

  2. Are Abell Clusters Correlated with Gamma-Ray Bursts?

    NASA Technical Reports Server (NTRS)

    Hurley, K.; Hartmann, D.; Kouveliotou, C.; Fishman, G.; Laros, J.; Cline, T.; Boer, M.

    1997-01-01

    A recent study has presented marginal statistical evidence that gamma-ray burst (GRB) sources are correlated with Abell clusters, based on analyses of bursts in the BATSE 3B catalog. Using precise localization information from the Third Interplanetary Network, we have reanalyzed this possible correlation. We find that most of the Abell clusters that are in the relatively large 3B error circles are not in the much smaller IPN/BATSE error regions. We believe that this argues strongly against an Abell cluster-GRB correlation.

  3. Background Information: Deciphering Gamma Ray Burst Physics With Radio Telescopes

    NASA Astrophysics Data System (ADS)

    For 30 years, Gamma Ray Bursts, now known to be the most energetic explosions in the sky, have intrigued scientists and constituted one of the greatest mysteries in astrophysics. Such basic details as their exact locations in the sky and their distances from Earth remained unknown or subject to intense debate until just last year. With the discovery of "afterglows" at X-ray, visible, infrared and radio wavelengths, scientists have been able to study the physics of these explosive fireballs for the first time. Radio telescopes, the NSF's VLA in particular, are vitally important in this quest for the answers about Gamma Ray Bursts. Planned improvements to the VLA will make it an even more valuable tool in this field. Since their first identification in 1967 by satellites orbited to monitor compliance with the atmospheric nuclear test ban, more than 2,000 Gamma Ray Bursts have been detected. The celestial positions of the bursts have only been well-localized since early 1997, when the Italian- Dutch satellite Beppo-SAX went into operation. Since Beppo-SAX began providing improved information on burst positions, other instruments, both orbiting and ground-based, have been able to study the afterglows. So far, X-ray afterglows have been seen in about a dozen bursts, visible-light afterglows in six and radio afterglows in three. The search for radio emission from Gamma Ray Bursts has been an ongoing, target-of-opportunity program at the VLA for more than four years, led by NRAO scientist Dale Frail. The detection of afterglows "opens up a new era in the studies of Gamma Ray Bursts," Princeton University theorist Bohdan Paczynski wrote in a recent scientific paper. Optical studies of GRB 970508 indicated a distance of at least seven billion light-years, the first distance measured for a Gamma Ray Burst. VLA studies of the same burst showed that the fireball was about a tenth of a light-year in diameter a few days after the explosion and that it was expanding at very

  4. The effects of pure density evolution on the brightness distribution of cosmological gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Horack, J. M.; Emslie, A. G.; Hartmann, D. H.

    1995-01-01

    In this work, we explore the effects of burst rate density evolution on the observed brightness distribution of cosmological gamma-ray bursts. Although the brightness distribution of gamma-ray bursts observed by the BATSE experiment has been shown to be consistent with a nonevolving source population observed to redshifts of order unity, evolution of some form is likely to be present in the gamma-ray bursts. Additionally, nonevolving models place significant constraints on the range of observed burst luminosities, which are relaxed if evolution of the burst population is present. In this paper, three analytic forms of density evolution are examined. In general, forms of evolution with densities that increase monotonically with redshift require that the BATSE data correspond to bursts at larger redshifts, or to incorporate a wider range of burst luminosities, or both. Independent estimates of the maximum observed redshift in the BATSE data and/or the range of luminosity from which a large fraction of the observed bursts are drawn therefore allow for constraints to be placed on the amount of evolution that may be present in the burst population. Specifically, if recent measurements obtained from analysis of the BATSE duration distribution of the actual limiting redshift in the BATSE data at z(sub lim) = 2 are correct, the BATSE N(P) distribution in a Lambda = 0 universe is inconsistent at a level of approximately 3 alpha with nonevolving gamma-ray bursts and some form of evolution in the population is required. The sense of this required source evolution is to provide a higher density, larger luminosities, or both with increasing redshift.

  5. Fermi/GAMMA-RAY BURST MONITOR OBSERVATIONS OF SGR J0501+4516 BURSTS

    SciTech Connect

    Lin Lin; Zhang Shuangnan; Kouveliotou, Chryssa; Van der Horst, Alexander J.; Finger, Mark H.; Guiriec, Sylvain; Preece, Robert; Chaplin, Vandiver; Bhat, Narayan; Woods, Peter M.; Goegues, Ersin; Kaneko, Yuki; Scargle, Jeffrey; Von Kienlin, Andreas; Watts, Anna L.; Wijers, Ralph A. M. J.; Gehrels, Neil; Harding, Alice

    2011-10-01

    We present our temporal and spectral analyses of 29 bursts from SGR J0501+4516, detected with the gamma-ray burst monitor on board the Fermi Gamma-ray Space Telescope during 13 days of the source's activation in 2008 (August 22- September 3). We find that the T{sub 90} durations of the bursts can be fit with a log-normal distribution with a mean value of {approx}123 ms. We also estimate for the first time event durations of soft gamma repeater (SGR) bursts in photon space (i.e., using their deconvolved spectra) and find that these are very similar to the T{sub 90} values estimated in count space (following a log-normal distribution with a mean value of {approx}124 ms). We fit the time-integrated spectra for each burst and the time-resolved spectra of the five brightest bursts with several models. We find that a single power law with an exponential cutoff model fits all 29 bursts well, while 18 of the events can also be fit with two blackbody functions. We expand on the physical interpretation of these two models and we compare their parameters and discuss their evolution. We show that the time-integrated and time-resolved spectra reveal that E{sub peak} decreases with energy flux (and fluence) to a minimum of {approx}30 keV at F = 8.7 x 10{sup -6} erg cm{sup -2} s{sup -1}, increasing steadily afterward. Two more sources exhibit a similar trend: SGRs J1550-5418 and 1806-20. The isotropic luminosity, L{sub iso}, corresponding to these flux values is roughly similar for all sources (0.4-1.5 x 10{sup 40} erg s{sup -1}).

  6. Fermi/Gamma-Ray Burst Monitor Observations of SGR J0501+4516 Bursts

    NASA Astrophysics Data System (ADS)

    Lin, Lin; Kouveliotou, Chryssa; Baring, Matthew G.; van der Horst, Alexander J.; Guiriec, Sylvain; Woods, Peter M.; Göǧüş, Ersin; Kaneko, Yuki; Scargle, Jeffrey; Granot, Jonathan; Preece, Robert; von Kienlin, Andreas; Chaplin, Vandiver; Watts, Anna L.; Wijers, Ralph A. M. J.; Zhang, Shuang Nan; Bhat, Narayan; Finger, Mark H.; Gehrels, Neil; Harding, Alice; Kaper, Lex; Kaspi, Victoria; Mcenery, Julie; Meegan, Charles A.; Paciesas, William S.; Pe'er, Asaf; Ramirez-Ruiz, Enrico; van der Klis, Michiel; Wachter, Stefanie; Wilson-Hodge, Colleen

    2011-10-01

    We present our temporal and spectral analyses of 29 bursts from SGR J0501+4516, detected with the gamma-ray burst monitor on board the Fermi Gamma-ray Space Telescope during 13 days of the source's activation in 2008 (August 22- September 3). We find that the T 90 durations of the bursts can be fit with a log-normal distribution with a mean value of ~123 ms. We also estimate for the first time event durations of soft gamma repeater (SGR) bursts in photon space (i.e., using their deconvolved spectra) and find that these are very similar to the T 90 values estimated in count space (following a log-normal distribution with a mean value of ~124 ms). We fit the time-integrated spectra for each burst and the time-resolved spectra of the five brightest bursts with several models. We find that a single power law with an exponential cutoff model fits all 29 bursts well, while 18 of the events can also be fit with two blackbody functions. We expand on the physical interpretation of these two models and we compare their parameters and discuss their evolution. We show that the time-integrated and time-resolved spectra reveal that E peak decreases with energy flux (and fluence) to a minimum of ~30 keV at F = 8.7 × 10-6 erg cm-2 s-1, increasing steadily afterward. Two more sources exhibit a similar trend: SGRs J1550-5418 and 1806-20. The isotropic luminosity, L iso, corresponding to these flux values is roughly similar for all sources (0.4-1.5 × 1040 erg s-1).

  7. Persistent X-ray emission from a gamma-ray burst source

    NASA Technical Reports Server (NTRS)

    Grindlay, J. E.; Cline, T.; Desai, U. D.; Teegarden, B. J.; Pizzichini, G.; Evans, W. D.; Laros, J. G.; Hurley, K. C.; Niel, M.; Klebesadel, R. W.

    1982-01-01

    A quiescent X-ray source detected with the Einstein X-ray Observatory in a location consistent with that of an intense gamma ray burst is shown to be also consistent with the location of the 1928 optical transient, the likely optical counterpart of the gamma ray burst source GBS0117-29. The system appears to be underluminous in X-rays by a factor of 10; possible reasons for this are discussed. The observed X-ray flux would require an accretion rate of about 10 to the -14th (d/1 kpc/)-squared solar masses per year, which is probably too low to be consistent with published nuclear flash models for gamma bursts, unless the distance is substantially greater than about 1 kpc or the burst recurrence time is greater than about 50 yrs, or the accretion rate is highly variable. Such a long recurrence time appears to be inconsistent with the detection of the optical burst.

  8. Gamma-Ray Bursts: Relativistic shells or central engines?

    SciTech Connect

    Fenimore, E.E.; Summer, M.C.

    1997-08-01

    In many models of Gamma-Ray Bursts (GRBs) relativistic shells are responsible for the overall envelope of emission. The authors use kinematics and symmetry to calculate the time history and spectral evolution expected from a relativistic shell including effects from intrinsic variations in the shell`s intensity and spectra. They find that the decay phase of an envelope is produced by photons delayed by the shell`s curvature. These delayed photons are produced by regions that are off-axis such that the spectra evolve according to a universal function ({proportional_to} T{sup {minus}1}) regardless of intrinsic variations in the rest frame of the shell. They compare these predictions to the overall envelope of emission of GRBs. The observed spectra evolve faster ({approximately} T{sup {minus}3}). Intrinsic variations cannot make the spectra evolve that fast, which adds strength to the shell symmetry problem: models, in particular, the external shock model, that involve relativistic shells must either confine the material to narrow pencil beams, be very inefficient, or break the local spherical symmetry so that the shell acts like a parallel slab. In the case of the internal shock models involving winds (i.e., central engines), it will probably be easier to break the local spherical symmetry, but the none must postulate nearly continuous energy generation at 10{sup 51} erg s{sup {minus}1} lasting up to hundreds of seconds at the central site.

  9. Gamma Ray Bursts from a Quantum Critical Surface

    SciTech Connect

    Chapline, G; Santiago, D I

    2002-11-20

    The logical inconsistency of quantum mechanics and general relativity can be avoided if the relativity principle fails for length scales smaller than the quantum coherence length for the vacuum state. Ordinarily this corresponds to energies near the Planck energy, but recently it has been pointed out that near to the event horizon of a black hole the coherence length can be much larger and Planck scale physics can take over at macroscopic distances from the event horizon. This has dramatic consequences for the phenomenology of black holes. If we assume that at the Planck scale elementary particles interact via a universal 4-point interaction and baryon number conservation is violated, then the rest mass of a star hitting the event horizon of a large black hole would be rapidly converted into a burst of gamma rays followed by a pulse of hard X-rays whose duration is on the order of the light transit time across the black hole. Predictions for the gamma ray spectra are strikingly similar to those observed for cosmic gamma ray bursts.

  10. Synchrotron cooling in energetic gamma-ray bursts observed by the Fermi Gamma-Ray Burst Monitor

    NASA Astrophysics Data System (ADS)

    Yu, Hoi-Fung; Greiner, Jochen; van Eerten, Hendrik; Burgess, J. Michael; Narayana Bhat, P.; Briggs, Michael S.; Connaughton, Valerie; Diehl, Roland; Goldstein, Adam; Gruber, David; Jenke, Peter A.; von Kienlin, Andreas; Kouveliotou, Chryssa; Paciesas, William S.; Pelassa, Véronique; Preece, Robert D.; Roberts, Oliver J.; Zhang, Bin-Bin

    2015-01-01

    Context. We study the time-resolved spectral properties of energetic gamma-ray bursts (GRBs) with good high-energy photon statistics observed by the Gamma-Ray Burst Monitor (GBM) onboard the Fermi Gamma-Ray Space Telescope. Aims: We aim to constrain in detail the spectral properties of GRB prompt emission on a time-resolved basis and to discuss the theoretical implications of the fitting results in the context of various prompt emission models. Methods: Our sample comprises eight GRBs observed by the Fermi GBM in its first five years of mission, with 1 keV-1 MeV fluence f> 1.0 × 10-4 erg cm-2 and a signal-to-noise ratio level of S/N ≥ 10.0 above 900 keV. We performed a time-resolved spectral analysis using a variable temporal binning technique according to optimal S/N criteria, resulting in a total of 299 time-resolved spectra. We performed Band function fits to all spectra and obtained the distributions for the low-energy power-law index α, the high-energy power-law index β, the peak energy in the observed νFν spectrum Ep, and the difference between the low- and high-energy power-law indices Δs = α - β. We also applied a physically motivated synchrotron model, which is a triple power-law with constrained power-law indices and a blackbody component, to test the prompt emission for consistency with a synchrotron origin and obtain the distributions for the two break energies Eb,1 and Eb,2, the middle segment power-law index β, and the Planck function temperature kT. Results: The Band function parameter distributions are α = -0.73+0.16-0.21, β =ي-2.13+0.28-0.56, Ep = 374.4+307.3-187.7 , , keV (log10Ep = 2.57+0.26-0.30), and Δs = 1.38+0.54-0.31 , with average errors σα ~ 0.1, σβ ~ 0.2, and σEp ~ 0.1Ep. Using the distributions of Δs and β, the electron population index p is found to be consistent with the "moderately fast" scenario, in which fast- and slow-cooling scenarios cannot be distinguished. The physically motivated synchrotron

  11. Gamma ray bursts and cosmic ray origin

    NASA Astrophysics Data System (ADS)

    Dermer, C. D.

    This paper presents the theoretical basis of the fireball/blast wave model, and some implications of recent results on GRB source models and cosmic-ray production from GRBs. BATSE observations of the prompt γ-ray luminous phase, and Beppo-SAX and long wavelength afterglow observations of GRBs are briefly summarized. Derivation of spectral and temporal indices of an adiabatic blast wave decelerating in a uniform surrounding medium in the limiting case of a nonrelativistic reverse shock, both for spherical and collimated outflows, is presented as an example of the elementary theory. External shock model fits for the afterglow lead to the conclusion that GRB outflows are jetted. The external shock model also explains the temporal duration distribution and clustering of peak energies in prompt spectra of long-duration GRBs, from which the redshift dependence of the GRB source rate density can be derived. Source models are reviewed in light of the constant energy reservoir result of Frail et al. that implies a total GRB energy of a few ×1051 ergs and an average beaming fraction of ≈ 1/500 of full sky. Paczy´nski's isotropic hypernova model is ruled out. The Vietri-Stella model two-step collapse process is preferred over a hypernova/collapsar model in view of the X-ray observations of GRBs and the constant energy reservoir result. Second-order processes in GRB blast waves can accelerate particles to ultra-high energies. GRBs may be the sources of UHECRs and cosmic rays with energies above the knee of the cosmic ray spectrum. High-energy neutrino and γ-ray observations with GLAST and ground-based γ-ray telescopes will be crucial to test GRB source models.

  12. The AGILE Mission and Gamma-Ray Bursts

    SciTech Connect

    Longo, Francesco; Tavani, M.; Barbiellini, G.; Argan, A.; Basset, M.; Boffelli, F.; Bulgarelli, A.; Caraveo, P.; Cattaneo, P.; Chen, A.; Costa, E.; Del Monte, E.; Di Cocco, G.; Di Persio, G.; Donnarumma, I.; Feroci, M.; Fiorini, M.; Foggetta, L.; Froysland, T.; Frutti, M.

    2007-05-01

    The AGILE Mission will explore the gamma-ray Universe with a very innovative instrument combining for the first time a gamma-ray imager and a hard X-ray imager. AGILE will be operational at the beginning of 2007 and it will provide crucial data for the study of Active Galactic Nuclei, Gamma-Ray Bursts, unidentified gamma-ray sources, Galactic compact objects, supernova remnants, TeV sources, and fundamental physics by microsecond timing. The AGILE instrument is designed to simultaneously detect and image photons in the 30 MeV - 50 GeV and 15 - 45 keV energy bands with excellent imaging and timing capabilities, and a large field of view covering {approx} 1/5 of the entire sky at energies above 30 MeV. A CsI calorimeter is capable of GRB triggering in the energy band 0.3-50 MeV. The broadband detection of GRBs and the study of implications for particle acceleration and high energy emission are primary goals of the mission. AGILE can image GRBs with 2-3 arcminute error boxes in the hard X-ray range, and provide broadband photon-by photon detection in the 15-45 keV, 03-50 MeV, and 30 MeV-30 GeV energy ranges. Microsecond on-board photon tagging and a {approx} 100 microsecond gamma-ray detection deadtime will be crucial for fast GRB timing. On-board calculated GRB coordinates and energy fluxes will be quickly transmitted to the ground by an ORBCOMM transceiver. AGILE is now (January 2007) undergoing final satellite integration and testing. The PLS V launch is planned in spring 2007. AGILE is then foreseen to be fully operational during the summer of 2007.

  13. Luminosity function and jet structure of Gamma-Ray Burst

    NASA Astrophysics Data System (ADS)

    Pescalli, A.; Ghirlanda, G.; Salafia, O. S.; Ghisellini, G.; Nappo, F.; Salvaterra, R.

    2015-02-01

    The structure of gamma-ray burst (GRB) jets impacts on their prompt and afterglow emission properties. The jet of GRBs could be uniform, with constant energy per unit solid angle within the jet aperture, or it could be structured, namely with energy and velocity that depend on the angular distance from the axis of the jet. We try to get some insight about the still unknown structure of GRBs by studying their luminosity function. We show that low (1046-48 erg s-1) and high (i.e. with L ≥ 1050 erg s-1) luminosity GRBs can be described by a unique luminosity function, which is also consistent with current lower limits in the intermediate luminosity range (1048-50 erg s-1). We derive analytical expressions for the luminosity function of GRBs in uniform and structured jet models and compare them with the data. Uniform jets can reproduce the entire luminosity function with reasonable values of the free parameters. A structured jet can also fit adequately the current data, provided that the energy within the jet is relatively strongly structured, i.e. E ∝ θ-k with k ≥ 4. The classical E ∝ θ-2 structured jet model is excluded by the current data.

  14. Gamma-ray burst spectrum with decaying magnetic field

    SciTech Connect

    Zhao, Xiaohong; Bai, Jinming; Li, Zhuo; Liu, Xuewen; Zhang, Bin-bin; Mészáros, Peter E-mail: zhuo.li@pku.edu.cn

    2014-01-01

    In the internal shock model for gamma-ray bursts (GRBs), the synchrotron spectrum from the fast cooling electrons in a homogeneous downstream magnetic field (MF) is too soft to produce the low-energy slope of GRB spectra. However, the MF may decay downstream with distance from the shock front. Here we show that the synchrotron spectrum becomes harder if electrons undergo synchrotron and inverse-Compton cooling in a decaying MF. To reconcile this with the typical GRB spectrum with low-energy slope νF {sub ν}∝ν, the postshock MF decay time must be comparable to the cooling time of the bulk electrons (corresponding to a MF decaying length typically of ∼10{sup 5} skin depths); that the inverse-Compton cooling should dominate synchrotron cooling after the MF decay time; and/or that the MF decays with comoving time roughly as B∝t {sup –1.5}. An internal shock synchrotron model with a decaying MF can account for the majority of GRBs with low-energy slopes not harder than ν{sup 4/3}.

  15. The Diversity and Versatility of Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Laskar, Tanmoy

    2015-11-01

    Gamma-ray bursts (GRBs) are the most energetic explosions in the Universe, thus providing a unique laboratory for the study of extreme astrophysical processes. In parallel, their large luminosity makes GRBs a premier probe of the early Universe. My thesis has explored and exploited both aspects of GRB science by addressing the following fundamental open questions: 1) what is the nature of the GRB ejecta?, 2) how does the GRB progenitor population evolve with redshift, and 3) how can GRBs be used to probe the high-redshift Universe? To answer these questions, I present the first multi-wavelength detection and modeling of a GRB reverse shock, a comprehensive analysis of the plateau phase of GRB light curves, studies of the evolution of the progenitor population to redshifts, z~9, and demonstrate the use of GRBs as probes of galaxy formation and evolution through the first galaxy mass-metallicity relation at z~3-5. I find support for baryonic ejecta in GRB 130427A, evidence that GRB jets contain a large amount of energy in slow-moving ejecta, and proof that the GRB progenitor population does not evolve to the highest redshifts at which it has yet been observed. Building on the decade of observations by the Swift GRB mission, future observations and modeling of GRBs and their host galaxies will provide clues to these and other open questions in GRB science, allowing for the first statistical studies of their progenitors and host environments to the epoch of reionization and beyond.

  16. The Complex Evolution of Gamma-Ray Burst Pulses

    NASA Astrophysics Data System (ADS)

    Hakkila, Jon; Lien, Amy; Sakamoto, Takanori; Morris, David; Neff, James; Giblin, Tim

    2015-08-01

    Isolated Swift and BATSE gamma-ray burst (GRB) GRB pulses exhibit two distinct yet linked components. The bulk of pulsed emission comes in the form of a hard-to-soft component that can be fitted by the Norris et al. (2005) empirical pulse model. The second is a fainter, three-peaked signal overlaying the hard-to-soft component that can be fitted by an empirical wave-like function (Hakkila & Preece 2014). The two fits combine to produce GRB pulses with distinctive three-peaked shapes. The precursor peak appears on or before the pulse rise and is typically the hardest component of a pulse. The central peak is the brightest and most pronounced peak of a pulse. The decay peak occurs during the decay portion of the pulse, and converts an exponential decay into a long, soft, power-law decay. GRB pulses are dominated by hard-to-soft evolution. However, they also exhibit weaker intensity tracking behaviors that are tied to the three peaks found to varying degrees within each pulse. Hard pulses soften rapidly, but re-harden during the pulse's decay peak. Soft pulses soften slowly and re-harden during the central peak; additional hardening may occur during the decay peak. These results argue that theoretical GRB pulse models should have more than one temporally evolving spectral component in order to explain the complex observed pulse characteristics.

  17. Nucleosynthesis, neutrino bursts and gamma-rays from coalescing neutron stars

    NASA Technical Reports Server (NTRS)

    Eichler, David; Livio, Mario; Piran, Tsvi; Schramm, David N.

    1989-01-01

    It is pointed out here that neutron-star collisions should synthesize neutron-rich heavy elements, thought to be formed by rapid neutron capture (the r-process). Furthermore, these collisions should produce neutrino bursts and resultant bursts of gamma rays; the latter should comprise a subclass of observable gamma-ray bursts. It is argued that observed r-process abundances and gamma-ray burst rates predict rates for these collisions that are both significant and consistent with other estimates.

  18. Strategies for Studying the Sources of Gamma Ray Bursts

    NASA Technical Reports Server (NTRS)

    Cline, T. L.; Norris, J. P.; Hurley, K. C.

    2003-01-01

    The study of gamma ray bursts (GRBs) has rapidly evolved in recent years with the discovery of their cosmological nature and with BATSE, BeppoSAX, HETE and the IPN enabling a wide variety of associated . afterglow measurements. Multiwavelength observations ranging through the radio, optical, soft and hard x-ray, and gamma-ray regimes have exploded the field of GRB interpretation. Also, the Amanda, Milagro and LIGO experiments can search for related neutrino, cosmic-ray photon, and gravitational radiation events, even with the delayed alerts, such as from the IPN. The infrared region, where the optical emissions from sources at the extreme distances may be shifted, will become important but is undersubscribed. The soon-to-be launched Swift mission will greatly broaden the GRB discipline, and a strategy for associated ground-based measurements is outlined. The need for the improved global distribution of all instruments, in particular, robotic infrared detectors, is cited.

  19. Search for optical bursts from gamma-ray bursters. I

    NASA Technical Reports Server (NTRS)

    Hudec, R.; Borovicka, J.; Wenzel, W.; Atteia, J.-L.; Barat, C.; Hurley, K.; Niel, M.; Cline, T.; Desai, U.; Teegarden, B.

    1987-01-01

    Preliminary results of an examination of the Ondrejov and Sonneberg plate collections for possible optical counterparts to gamma-ray bursters are presented. The investigation proceeds in three different directions: (1) time-correlated searches for gamma-ray bursts (GRB) with known positions, (2) time-correlated searches for GRB without know positions, and (3) archival searches. 3 GRB with known positions and 28 GRB without known positions were studied in this way; archival searches representing a total exposure of 2.75 yr were done for 10 GRB positions, with limiting magnitudes for a 1 s flash between 3 and 8. No evidence for true optical images associated with GRB was found. Some statistical conclusions are drawn and the results obtained are discussed.

  20. Light speed variation from gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Xu, Haowei; Ma, Bo-Qiang

    2016-09-01

    The effect of quantum gravity can bring a tiny light speed variation which is detectable through energetic photons propagating from gamma ray bursts (GRBs) to an observer such as the space observatory. Through an analysis of the energetic photon data of the GRBs observed by the Fermi Gamma-ray Space Telescope (FGST), we reveal a surprising regularity of the observed time lags between photons of different energies with respect to the Lorentz violation factor due to the light speed energy dependence. Such regularity suggests a linear form correction of the light speed v(E) = c(1 - E /ELV) , where E is the photon energy and ELV =(3.60 ± 0.26) ×1017 GeV is the Lorentz violation scale measured by the energetic photon data of GRBs. The results support an energy dependence of the light speed in cosmological space.

  1. BATSE Observations of the Large-Scale Isotropy of Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Briggs, Michael S.; Paciesas, William S.; Pendleton, Geoffrey N.; Meegan, Charles A.; Fishman, Gerald J.; Horack, John M.; Brock, Martin N.; Kouveliotou, Chryssa; Hartmann, Dieter H.; Hakkila, Jon

    1996-01-01

    We use dipole and quadrupole statistics to test the large-scale isotropy of the first 1005 gamma-ray bursts observed by the Burst and Transient Source Experiment (BATSE). In addition to the entire sample of 1005 gamma-ray bursts, many subsets are examined. We use a variety of dipole and quadrupole statistics to search for Galactic and other predicted anisotropies and for anisotropies in a coordinate-system independent manner. We find the gamma-ray burst locations to be consistent with isotropy, e.g., for the total sample the observed Galactic dipole moment (cos theta) differs from the value predicted for isotropy by 0.9 sigma and the observed Galactic quadrupole moment (sin(exp 2) b - 1/3) by 0.3 sigma. We estimate for various models the anisotropies that could have been detected. If one-half of the locations were within 86 deg of the Galactic center, or within 28 deg of the Galactic plane, the ensuing dipole or quadrupole moment would have typically been detected at the 99% confidence level. We compare the observations with the dipole and quadrupole moments of various Galactic models. Several Galactic gamma-ray bursts models have moments within 2 sigma of the observations; most of the Galactic models proposed to date are no longer in acceptable agreement with the data. Although a spherical dark matter halo distribution could be consistent with the data, the required core radius is larger than the core radius of the dark matter halo used to explain the Galaxy's rotation curve. Gamma-ray bursts are much more isotropic than any observed Galactic population, strongly favoring but not requiring an origin at cosmological distances.

  2. Are long gamma-ray bursts standard candles?

    NASA Astrophysics Data System (ADS)

    Lin, Hai-Nan; Li, Xin; Wang, Sai; Chang, Zhe

    2015-10-01

    Gamma-ray bursts (GRBs) are widely proposed as an effective probe to trace the Hubble diagram of the Universe in high-redshift range. However, the calibration of GRBs is not as easy as that of Type-Ia supernovae (SNe Ia). Most calibrating methods at present make use one or some of the empirical luminosity correlations, e.g. Amati relation. One of the underlying assumptions of these calibrating methods is that the empirical correlation is universal over all redshifts. In this paper, we check to what extent this assumption holds. Assuming that SNe Ia exactly trace the Hubble diagram of the Universe, we re-investigate the Amati relation for low-redshift (z < 1.4) and high-redshift (z > 1.4) GRBs, respectively. It is found that the Amati relation of low-z GRBs differs from that of high-z GRBs at more than 3σ confidence level. This result is insensitive to cosmological models. We should be cautious when using Amati relation to reconstruct the Hubble diagram of the Universe.

  3. RELATIVISTIC JET DYNAMICS AND CALORIMETRY OF GAMMA-RAY BURSTS

    SciTech Connect

    Wygoda, N.; Waxman, E.; Frail, D. A.

    2011-09-10

    We present numerical solutions of the two-dimensional relativistic hydrodynamics equations describing the deceleration and expansion of highly relativistic conical jets, of opening angles 0.05 {<=} {theta}{sub 0} {<=} 0.2, propagating into a medium of uniform density. Jet evolution is followed from a collimated relativistic outflow to the quasi-spherical non-relativistic phase. We show that relativistic sideways expansion becomes significant beyond the radius r{sub {theta}} at which the expansion Lorentz factor drops to {theta}{sup -1}{sub 0}. This is consistent with simple analytic estimates, which predict faster sideways expansion than has been claimed based on earlier numerical modeling. For t > t{sub s} = r{sub {theta}}/c the emission of radiation from the jet blast wave is similar to that of a spherical blast wave carrying the same energy (significant deviations at t {approx} t{sub s} occur only for well off-axis observers, {theta}{sub obs} {approx} 1 >> {theta}{sub 0}). Thus, the total (calorimetric) energy of gamma-ray burst blast waves may be estimated with only a small fractional error based on t > t{sub s} observations.

  4. Relativistic Jet Dynamics and Calorimetry of Gamma-ray Bursts

    NASA Astrophysics Data System (ADS)

    Wygoda, N.; Waxman, E.; Frail, D. A.

    2011-09-01

    We present numerical solutions of the two-dimensional relativistic hydrodynamics equations describing the deceleration and expansion of highly relativistic conical jets, of opening angles 0.05 <= θ0 <= 0.2, propagating into a medium of uniform density. Jet evolution is followed from a collimated relativistic outflow to the quasi-spherical non-relativistic phase. We show that relativistic sideways expansion becomes significant beyond the radius r θ at which the expansion Lorentz factor drops to θ-1 0. This is consistent with simple analytic estimates, which predict faster sideways expansion than has been claimed based on earlier numerical modeling. For t > ts = r θ/c the emission of radiation from the jet blast wave is similar to that of a spherical blast wave carrying the same energy (significant deviations at t ~ ts occur only for well off-axis observers, θobs ~ 1 Gt θ0). Thus, the total (calorimetric) energy of gamma-ray burst blast waves may be estimated with only a small fractional error based on t > ts observations.

  5. Gamma-Ray Bursts and Marine Primary Producers

    NASA Astrophysics Data System (ADS)

    Thomas, Brian; Neale, P. J.

    2011-01-01

    Gamma-ray bursts (GRB) have been recognized as a potential threat to life on Earth, primarily through long-term depletion of stratospheric ozone, leading to greatly increased solar ultraviolet (UV) irradiance at the surface. It has been suggested that a GRB may have initiated the late Ordovician mass extinction - one of the "big five" known extinctions. Past efforts by our group to estimate the biological impact of a GRB have used a simplified Beer-Lambert calculation with an ozone column density to estimate surface UV irradiance. Biological damage was then computed by combining the irradiance with a biological weighting function (BWF) for DNA damage. We are currently engaged in a project to greatly increase the accuracy of these estimates, with a focus on the impact on primary producers in the Earth's oceans. These organisms make up the base of the marine food web and produce half the world's oxygen. Our approach features full radiative transfer modeling to determine surface UV irradiance, combined with newly measured biological weighting functions for some of the most abundant marine primary producers. Here, we report on preliminary results of this study, including computed spectral irradiance at the surface and in ocean water under conditions following a GRB, along with the impact on primary productivity as computed using preliminary BWF results. This work is supported by NASA's Astrobiology: Exobiology and Evolutionary Biology program, grant #NNX09AM85G.

  6. APPLICATION OF JITTER RADIATION: GAMMA-RAY BURST PROMPT POLARIZATION

    SciTech Connect

    Mao, Jirong; Wang, Jiancheng

    2013-10-10

    A high degree of polarization of gamma-ray burst (GRB) prompt emission has been confirmed in recent years. In this paper, we apply jitter radiation to study the polarization feature of GRB prompt emission. In our framework, relativistic electrons are accelerated by turbulent acceleration. Random and small-scale magnetic fields are generated by turbulence. We further determine that the polarization property of GRB prompt emission is governed by the configuration of the random and small-scale magnetic fields. A two-dimensional compressed slab, which contains a stochastic magnetic field, is applied in our model. If the jitter condition is satisfied, the electron deflection angle in the magnetic field is very small and the electron trajectory can be treated as a straight line. A high degree of polarization can be achieved when the angle between the line of sight and the slab plane is small. Moreover, micro-emitters with mini-jet structures are considered to be within a bulk GRB jet. The jet 'off-axis' effect is intensely sensitive to the observed polarization degree. We discuss the depolarization effect on GRB prompt emission and afterglow. We also speculate that the rapid variability of GRB prompt polarization may be correlated with the stochastic variability of the turbulent dynamo or the magnetic reconnection of plasmas.

  7. Cosmic gamma-ray bursts from BATSE - Another great debate

    NASA Technical Reports Server (NTRS)

    Hartmann, Dieter H.; The, Lih-Sin; Clayton, Donald D.; Schnepf, Neil G.; Linder, Eric V.

    1992-01-01

    The BATSE detectors aboard Compton Observatory record about one cosmic gamma-ray burst (GRB) per day. Preliminary data analysis shows a highly isotropic sky map and a nonuniform brightness distribution. Anisotropies expected from a Galactic neutron star population, the most frequently considered source model, did not emerge from the data. Taken at face value, the data seem to suggest a heliocentric solution of the GRB puzzle. The observed isotropy can be achieved if sources are either very near or extragalactic. Pop I neutron stars in the disk do not simultaneously fit sky and brightness distributions. A possibility are sources in an extended Galactic halo with scale length large enough to avoid strong anisotropies due to the solar offset from the Galactic center. If GRBs are located in an extended halo we ask whether the neutron star paradigm can survive. We show that the recently discovered high velocity radio pulsars may provide a natural source population for GRBs. If these pulsars formed in the halo, as suggested by the radio data, the possibility arises that GRBs and high velocity pulsars are two related phenomena that provide observational evidence of the dark Galactic corona. We also discuss cosmological redshift constraints that follow from the observed brightness distribution.

  8. Identifying high-redshift gamma-ray bursts with RATIR

    SciTech Connect

    Littlejohns, O. M.; Butler, N. R.; Cucchiara, A.; Watson, A. M.; Lee, W. H.; Richer, M. G.; De Diego, J. A.; Georgiev, L.; González, J.; Román-Zúñiga, C. G.; Kutyrev, A. S.; Troja, E.; Gehrels, N.; Moseley, H.; Klein, C. R.; Fox, O. D.; Bloom, J. S.; Prochaska, J. X.; Ramirez-Ruiz, E.

    2014-07-01

    We present a template-fitting algorithm for determining photometric redshifts, z {sub phot}, of candidate high-redshift gamma-ray bursts (GRBs). Using afterglow photometry, obtained by the Reionization and Transients InfraRed (RATIR) camera, this algorithm accounts for the intrinsic GRB afterglow spectral energy distribution, host dust extinction, and the effect of neutral hydrogen (local and cosmological) along the line of sight. We present the results obtained by this algorithm and the RATIR photometry of GRB 130606A, finding a range of best-fit solutions, 5.6 < z {sub phot} < 6.0, for models of several host dust extinction laws (none, the Milky Way, Large Magellanic Clouds, and Small Magellanic Clouds), consistent with spectroscopic measurements of the redshift of this GRB. Using simulated RATIR photometry, we find that our algorithm provides precise measures of z {sub phot} in the ranges of 4 < z {sub phot} ≲ 8 and 9 < z {sub phot} < 10 and can robustly determine when z {sub phot} > 4. Further testing highlights the required caution in cases of highly dust-extincted host galaxies. These tests also show that our algorithm does not erroneously find z {sub phot} < 4 when z {sub sim} > 4, thereby minimizing false negatives and allowing us to rapidly identify all potential high-redshift events.

  9. Search of the energetic gamma-ray experiment telescope (EGRET) data for high-energy gamma-ray microsecond bursts

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Bertsch, D. L.; Dingus, B. L.; Esposito, J. A.; Hartman, R. C.; Hunter, S. D.; Kanbach, G.; Kniffen, D. A.; Lin, Y. C.; Mattox, J. R.

    1994-01-01

    Hawking (1974) and Page & Hawking (1976) investigated theoretically the possibility of detecting high-energy gamma rays produced by the quantum-mechanical decay of a small black hole created in the early universe. They concluded that, at the very end of the life of the small black hole, it would radiate a burst of gamma rays peaked near 250 MeV with a total energy of about 10(exp 34) ergs in the order of a microsecond or less. The characteristics of a black hole are determined by laws of physics beyond the range of current particle accelerators; hence, the search for these short bursts of high-energy gamma rays provides at least the possibility of being the first test of this region of physics. The Compton Observatory Energetic Gamma-Ray Experiment Telescope (EGRET) has the capability of detecting directly the gamma rays from such bursts at a much fainter level than SAS 2, and a search of the EGRET data has led to an upper limit of 5 x 10(exp -2) black hole decays per cu pc per yr, placing constraints on this and other theories predicting microsecond high-energy gamma-ray bursts.

  10. Threshold effects on V/V(max) for gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Hartmann, D. H.; The, L.-S.

    1993-01-01

    The interpretation of the observed gamma-ray burst V/V(max) statistic in terms of spatial distributions is model-dependent. Detection of gamma-ray bursts requires the counting rate in one or more detectors to exceed a threshold C(lim) determined from a time-dependent background rate B(t). The sampling depth of the burst detector is thus time-dependent, and, if burst sources are nonuniform in space, the observed V/V(max) distribution will be affected by B(t). We demonstrate this effect with a simple geometric distribution of standard candles and argue that V/V(max) statistic without information on threshold variations is insufficient for rigorous data analysis. Peak count rates and threshold values must be given separately for all events in order to facilitate a meaningful comparison of observations with theoretical distribution models.

  11. The Average Intensity and Spectral Evolution of Batse Cosmic Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Mitrofanov, Igor G.; Chernenko, Anton M.; Pozanenko, Alexei S.; Briggs, Michael S.; Paciesas, William S.; Fishman, Gerald J.; Meegan, Charles A.; Sagdeev, Roald Z.

    1996-01-01

    Statistical studies of BATSE gamma-ray bursts are presented: we average the time profiles, aligning the events at their highest peaks. Using the time histories in different energy channels, we summarize the general features of the average intensity and spectral evolution of gamma-ray bursts (GRBS) and compare the average evolution of bright and dim events. While no differences are found between the average intensity histories, the average hardness ratio histories demonstrate a hardness/brightness correlation. The observed lack of differences between the intensity histories of bright and dim bursts is incompatible with cosmological time dilation effects predicted by simple cosmological models. The combined results of no intensity history difference but a hardness history difference between bright and dim bursts places constraints on galactic models for the origin of GRBS.

  12. The First Fermi Gamma-ray Burst Monitor (GBM) Terrestrial Gamma-ray Flash (TGF) Catalog

    NASA Astrophysics Data System (ADS)

    Briggs, M. S.; Connaughton, V.; Stanbro, M.; Zhang, B.; Bhat, N.; Fishman, G. J.; Roberts, O.; Fitzpatrick, G.; McBreen, S.; Grove, J. E.; Chekhtman, A.

    2014-12-01

    We present summary results from the first catalog of Terrestrial Gamma-ray Flashes (TGFs) detected with the Gamma-ray Burst Monitor (GBM) on the Fermi Space Telescope. The catalog is expected to contain about 2600 TGFs and will be released both online, to conveniently provide the community with TGF parameters, and as a publication. Since the launch of Fermi in 2008 the TGF detection sensitivity of GBM has been improved several times, both in the flight software and in ground analysis. Starting in 2010 July individual photons were downloaded for portions of the orbits, enabling an off-line search that found weaker and shorter TGFs. Since 2012 November 26 this telemetry mode has been extended to continuous coverage -- in the first year of this data mode 841 TGFs were detected. The TGF sample is reliable, with cosmic rays rejected using data both from Fermi GBM and from the Large Area Telescope on Fermi. The online catalog will include times (UTC and solar), spacecraft geographic positions, durations, count intensities and other parameters (e.g., see the Bayesian Block analysis by O. Roberts). There will be separate tables for bright TGFs detected by the flight software and Terrestrial Electron Beams (TEBs).

  13. Accessing the population of high-redshift Gamma Ray Bursts

    NASA Astrophysics Data System (ADS)

    Ghirlanda, G.; Salvaterra, R.; Ghisellini, G.; Mereghetti, S.; Tagliaferri, G.; Campana, S.; Osborne, J. P.; O'Brien, P.; Tanvir, N.; Willingale, D.; Amati, L.; Basa, S.; Bernardini, M. G.; Burlon, D.; Covino, S.; D'Avanzo, P.; Frontera, F.; Götz, D.; Melandri, A.; Nava, L.; Piro, L.; Vergani, S. D.

    2015-04-01

    Gamma Ray Bursts (GRBs) are a powerful probe of the high-redshift Universe. We present a tool to estimate the detection rate of high-z GRBs by a generic detector with defined energy band and sensitivity. We base this on a population model that reproduces the observed properties of GRBs detected by Swift, Fermi and CGRO in the hard X-ray and γ-ray bands. We provide the expected cumulative distributions of the flux and fluence of simulated GRBs in different energy bands. We show that scintillator detectors, operating at relatively high energies (e.g. tens of keV to the MeV), can detect only the most luminous GRBs at high redshifts due to the link between the peak spectral energy and the luminosity (Epeak-Liso) of GRBs. We show that the best strategy for catching the largest number of high-z bursts is to go softer (e.g. in the soft X-ray band) but with a very high sensitivity. For instance, an imaging soft X-ray detector operating in the 0.2-5 keV energy band reaching a sensitivity, corresponding to a fluence, of ˜10-8 erg cm-2 is expected to detect ≈40 GRBs yr-1 sr-1 at z ≥ 5 (≈3 GRBs yr-1 sr-1 at z ≥ 10). Once high-z GRBs are detected the principal issue is to secure their redshift. To this aim we estimate their NIR afterglow flux at relatively early times and evaluate the effectiveness of following them up and construct usable samples of events with any forthcoming GRB mission dedicated to explore the high-z Universe.

  14. PROBING EXTRAGALACTIC DUST THROUGH NEARBY GAMMA-RAY BURST AFTERGLOWS

    SciTech Connect

    Liang, S. L.; Li Aigen E-mail: lia@missouri.ed

    2010-02-10

    The quantities and wavelength dependencies of the dust extinction along the lines of sight toward 33 nearby gamma-ray bursts (GRBs) with redshifts z < 2 are derived from fitting their afterglow spectral energy distributions. Unlike previous studies which often assume a specific extinction law like that of the Milky Way (MW) and the Large and Small Magellanic Clouds (LMC/SMC), our approach-we call it the 'Drude' approach-is more flexible in determining the true wavelength dependence of the extinction (while the shape of the extinction curve inferred from that relying on a priori assumption of a template extinction law is, of course, fixed). The extinction curves deduced from the Drude approach display a wide diversity of shapes, ranging from relatively flat curves to curves which are featureless and steeply rise toward the far-ultraviolet, and from curves just like that of the MW, LMC, and SMC to curves resembling that of the MW and LMC but lacking the 2175 A bump. The visual extinction A{sub V} derived from the Drude approach is generally larger by a factor of {approx}2-5 than that inferred by assuming a SMC-type template extinction law. Consistent with previous studies, the extinction-to-gas ratio is mostly smaller than that of the MW, and does not seem to correlate with the shape of the extinction curve. It is shown that the standard silicate-graphite interstellar grain model closely reproduces the extinction curves of all 33 GRBs host galaxies. For these 33 bursts at z < 2, we find no evidence for the evolution of the dust extinction, dust sizes, and relative abundances of silicate to graphite on redshifts.

  15. HYPERACCRETING BLACK HOLE AS GAMMA-RAY BURST CENTRAL ENGINE. I. BARYON LOADING IN GAMMA-RAY BURST JETS

    SciTech Connect

    Lei Weihua; Zhang Bing; Liang Enwei E-mail: zhang@physics.unlv.edu

    2013-03-10

    A hyperaccreting stellar-mass black hole has been long speculated as the best candidate for the central engine of gamma-ray bursts (GRBs). Recent rich observations of GRBs by space missions such as Swift and Fermi pose new constraints on GRB central engine models. In this paper, we study the baryon-loading processes of a GRB jet launched from a black hole central engine. We consider a relativistic jet powered by {nu} {nu}-bar -annihilation or by the Blandford-Znajek (BZ) mechanism. We consider baryon loading from a neutrino-driven wind launched from a neutrino-cooling-dominated accretion flow. For a magnetically dominated BZ jet, we consider neutron drifting from the magnetic wall surrounding the jet and subsequent positron capture and proton-neutron inelastic collisions. The minimum baryon loads in both types of jet are calculated. We find that in both cases a more luminous jet tends to be more baryon poor. A neutrino-driven ''fireball'' is typically ''dirtier'' than a magnetically dominated jet, while a magnetically dominated jet can be much cleaner. Both models have the right scaling to interpret the empirical {Gamma}-L{sub iso} relation discovered recently. Since some neutrino-driven jets have too much baryon loading as compared with the data, we suggest that at least a good fraction of GRBs should have a magnetically dominated central engine.

  16. Properties of gamma-ray burst progenitor stars.

    PubMed

    Kumar, Pawan; Narayan, Ramesh; Johnson, Jarrett L

    2008-07-18

    We determined some basic properties of stars that produce spectacular gamma-ray bursts at the end of their lives. We assumed that accretion of the outer portion of the stellar core by a central black hole fuels the prompt emission and that fall-back and accretion of the stellar envelope later produce the plateau in the x-ray light curve seen in some bursts. Using x-ray data for three bursts, we estimated the radius of the stellar core to be approximately (1 - 3) x 10(10) cm and that of the stellar envelope to be approximately (1 - 2) x 10(11) cm. The density profile in the envelope is fairly shallow, with rho approximately r(-2) (where rho is density and r is distance from the center of the explosion). The rotation speeds of the core and envelope are approximately 0.05 and approximately 0.2 of the local Keplerian speed, respectively.

  17. Search for Very High Energy Emission from Gamma-Ray Bursts using Milagro

    SciTech Connect

    Saz Parkinson, P. M.

    2007-07-12

    Gamma-Ray Bursts (GRBs) have been detected at GeV energies by EGRET and models predict emission at > 100 GeV. Milagro is a wide field (2 sr) high duty cycle (> 90%) ground based water Cherenkov detector that records extensive air showers in the energy range 100 GeV to 100 TeV. We have searched for very high energy emission from a sample of 106 gamma-ray bursts (GRB) detected since the beginning of 2000 by BATSE, BeppoSax, HETE-2, INTEGRAL, Swift or the IPN. No evidence for emission from any of the bursts has been found and we present upper limits from these bursts.

  18. GRB 090727 AND GAMMA-RAY BURSTS WITH EARLY-TIME OPTICAL EMISSION

    SciTech Connect

    Kopac, D.; Gomboc, A.; Japelj, J.; Kobayashi, S.; Mundell, C. G.; Bersier, D.; Cano, Z.; Smith, R. J.; Steele, I. A.; Virgili, F. J.; Guidorzi, C.; Melandri, A.

    2013-07-20

    We present a multi-wavelength analysis of Swift gamma-ray burst GRB 090727, for which optical emission was detected during the prompt gamma-ray emission by the 2 m autonomous robotic Liverpool Telescope and subsequently monitored for a further two days with the Liverpool and Faulkes Telescopes. Within the context of the standard fireball model, we rule out a reverse shock origin for the early-time optical emission in GRB 090727 and instead conclude that the early-time optical flash likely corresponds to emission from an internal dissipation process. Putting GRB 090727 into a broader observational and theoretical context, we build a sample of 36 gamma-ray bursts (GRBs) with contemporaneous early-time optical and gamma-ray detections. From these GRBs, we extract a sub-sample of 18 GRBs, which show optical peaks during prompt gamma-ray emission, and perform detailed temporal and spectral analysis in gamma-ray, X-ray, and optical bands. We find that in most cases early-time optical emission shows sharp and steep behavior, and notice a rich diversity of spectral properties. Using a simple internal shock dissipation model, we show that the emission during prompt GRB phase can occur at very different frequencies via synchrotron radiation. Based on the results obtained from observations and simulation, we conclude that the standard external shock interpretation for early-time optical emission is disfavored in most cases due to sharp peaks ({Delta}t/t < 1) and steep rise/decay indices, and that internal dissipation can explain the properties of GRBs with optical peaks during gamma-ray emission.

  19. Observations of optical counterparts of Gamma-Ray bursts

    NASA Technical Reports Server (NTRS)

    Knight, Frederick K.

    1992-01-01

    This is a final report for a contract begun in Dec. 1987 and ended in Mar. 1989 to use the existing Lincoln Laboratory Experimental Test Site in Socorro, NM to search for optical counterparts to gamma-ray bursts. The objective was to develop an autonomous staring system to search for stationary, transient optical flashes. The search was to use an existing 31-inch telescope equipped with a sensitive video detector. The approach for the search was to develop real-time processing software to monitor the video signal from the detector and to record any transient, point-like flashes that occurred in the field of view. The system would have been able to detect fainter flashes (B is approximately 15(sup m) in 1/30 s, delta(m(sub v)) = 0.25(sup m)) than other systems but lacked a large field of view (only 1.2 deg diameter) necessary to give a high probability of detecting a random flash on the sky. As such, the plan was to monitor known gamma-ray burst error boxes and wait for a repetition of an earlier event. The high payoff of good sensitivity with high angular resolution (1 pixel = 10sec) and good time resolution (30 s) to allow post-burst searches warranted funding if the cost was not prohibitive. The contract began in the middle of the three-year cycle for High Energy Astrophysics Gamma-Ray Astronomy Research and Analysis Program. This final report briefly describes the portion of the plan completed under the original contract.

  20. TWO POPULATIONS OF GAMMA-RAY BURST RADIO AFTERGLOWS

    SciTech Connect

    Hancock, P. J.; Gaensler, B. M.; Murphy, T.

    2013-10-20

    The detection rate of gamma-ray burst (GRB) afterglows is ∼30% at radio wavelengths, much lower than in the X-ray (∼95%) or optical (∼70%) bands. The cause of this low radio detection rate has previously been attributed to limited observing sensitivity. We use visibility stacking to test this idea, and conclude that the low detection rate is instead due to two intrinsically different populations of GRBs: radio-bright and radio-faint. We calculate that no more than 70% of GRB afterglows are truly radio-bright, leaving a significant population of GRBs that lack a radio afterglow. These radio-bright GRBs have higher gamma-ray fluence, isotropic energies, X-ray fluxes, and optical fluxes than the radio-faint GRBs, thus confirming the existence of two physically distinct populations. We suggest that the gamma-ray efficiency of the prompt emission is responsible for the difference between the two populations. We also discuss the implications for future radio and optical surveys.

  1. Cyclotron scattering lines in gamma-ray burst spectra

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.; Preece, Robert D.

    1989-01-01

    If cyclotron scattering, rather than absorption, is responsible for the line features observed recently in two gamma-ray burst spectra (Murakami et al., 1988), then the second and higher harmonics are due to resonant scattering events that excite the electron to Landau levels above the ground state. Here, relativistic Compton scattering cross sections are used to estimate the expected ratio of third to second harmonics in the presence of Doppler broadening. At the field strength (1.7 TG) required to give first and second harmonics at 19 keV and 38 keV, there should be no detectable third harmonic in the spectrum.

  2. Hydrodynamic collimation of gamma-ray-burst fireballs

    PubMed

    Levinson; Eichler

    2000-07-10

    Analytic solutions are presented for the hydrodynamic collimation of a relativistic fireball by a surrounding baryonic wind emanating from a torus. The opening angle is shown to be the ratio of the power output of the inner fireball to that of the exterior baryonic wind. The gamma ray burst 990123 might thus be interpreted as a baryon-poor jet (BPJ) with an energy output of order 10(50) erg or less, collimated by a baryonic wind from a torus with an energy output of order 10(52.5) erg, roughly the geometric mean of the BPJ and its isotropic equivalent.

  3. Gravitational waves and neutrinos from gamma-ray bursts

    SciTech Connect

    Fryer, Christopher Lee

    2010-01-01

    Gamma-Ray Bursts (GRBs) are not only strong sources of gammaray emission, but also of neutrinos and gravitational waves (GWs). Observat.ions of these particles can provide a good deal of insight into the progenitor and engine behind these outbursts. But to do so, these particles must be detected . Here we review the different phases of GW and neutrino emission from a range of GRB progenitors, outlining the features and detectability of these phases. Unfortunately, except for a few cases, the detection of non-photon emission is very difficult. But the potential gain from any detection make understanding these sources critically important.

  4. Gamma-Ray Bursts as Sources of Strong Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Granot, Jonathan; Piran, Tsvi; Bromberg, Omer; Racusin, Judith L.; Daigne, Frédéric

    2015-10-01

    Gamma-Ray Bursts (GRBs) are the strongest explosions in the Universe, which due to their extreme character likely involve some of the strongest magnetic fields in nature. This review discusses the possible roles of magnetic fields in GRBs, from their central engines, through the launching, acceleration and collimation of their ultra-relativistic jets, to the dissipation and particle acceleration that power their γ-ray emission, and the powerful blast wave they drive into the surrounding medium that generates their long-lived afterglow emission. An emphasis is put on particular areas in which there have been interesting developments in recent years.

  5. Light speed variation from gamma ray burst GRB 160509A

    NASA Astrophysics Data System (ADS)

    Xu, Haowei; Ma, Bo-Qiang

    2016-09-01

    It is postulated in Einstein's relativity that the speed of light in vacuum is a constant for all observers. However, the effect of quantum gravity could bring an energy dependence of light speed. Even a tiny speed variation, when amplified by the cosmological distance, may be revealed by the observed time lags between photons with different energies from astrophysical sources. From the newly detected long gamma ray burst GRB 160509A, we find evidence to support the prediction for a linear form modification of light speed in cosmological space.

  6. Delayed hard photons from gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Katz, J. I.

    1994-01-01

    The delayed hard (up to 25 GeV) photons observed more than an hour following a gamma-ray burst on 1994 February 17 may result from the collisions of relativistic nucleons with a dense cloud, producing pi(0). The required cloud density is approx. 2 x 10(exp 11)/cu cm. This cloud may be the remains of the disrupted envelope of a neutron star, and may survive as an excretion disk of approx. 10(exp 14) - 10 (exp 15) cm radius around the coalescing binary.

  7. Cosmological blueshifting may explain the gamma ray bursts

    NASA Astrophysics Data System (ADS)

    Krasiński, Andrzej

    2016-02-01

    It is shown that the basic observed properties of the gamma-ray bursts (GRBs) are accounted for if one assumes that the GRBs arise by blueshifting the emission radiation of hydrogen and helium generated during the last scattering epoch. The blueshift generator for a single GRB is a region with a nonconstant bang-time function tB(r ) (described by a Lemaître-Tolman (L-T) exact solution of Einstein's equations) matched into a homogeneous and isotropic (Friedmann) background. Blueshift visible to the present observer arises only on those rays that are emitted radially in an L-T region. The paper presents three L-T models with different Big Bang profiles, adapted for the highest and the lowest end of the GRB frequency range. The models account for (1) the observed frequency range of the GRBs; (2) their limited duration; (3) the afterglows; (4) their hypothetical collimation into narrow jets; (5) the large distances to their sources; (6) the multitude of the observed GRBs. Properties (2), (3) and (6) are accounted for only qualitatively. With a small correction of the parameters of the model, the implied perturbations of the CMB radiation will be consistent with those actually caused by the GRBs. A complete model of the Universe would consist of many L-T regions with different tB(r ) profiles, matched into the same Friedmann background. This paper is meant to be an initial exploration of the possibilities offered by models of this kind; the actual fitting of all parameters to observational results requires fine-tuning of several interconnected variables and is left for a separate study.

  8. Relationships between log N-log S and celestial distribution of gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Nishimura, J.; Yamagami, T.

    1985-01-01

    The apparent conflict between log N-log S curve and isotropic celestial distribution of the gamma ray bursts is discussed. A possible selection effect due to the time profile of each burst is examined. It is shown that the contradiction is due to this selection effect of the gamma ray bursts.

  9. Fermi-LAT Observations of the Gamma-Ray Burst GRB 130427A

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; Ajello, M.; Asano, K.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Bissaldi, E.; Bonamente, E.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Burgess, J. Michael; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Cecchi, C.; Chaplin, V.; Charles, E.; Chekhtman, A.; Cheung, C. C.; Chiang, J.; Chiaro, G.; Ciprini, S.; Claus, R.; Cleveland, W.; Cohen-Tanugi, J.; Collazzi, A.; Cominsky, L. R.; Connaughton, V.; Conrad, J.; Cutini, S.; D'Ammando, F.; de Angelis, A.; DeKlotz, M.; de Palma, F.; Dermer, C. D.; Desiante, R.; Diekmann, A.; Di Venere, L.; Drell, P. S.; Drlica-Wagner, A.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Finke, J.; Fitzpatrick, G.; Focke, W. B.; Franckowiak, A.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gehrels, N.; Germani, S.; Gibby, M.; Giglietto, N.; Giles, M.; Giordano, F.; Giroletti, M.; Godfrey, G.; Granot, J.; Grenier, I. A.; Grove, J. E.; Gruber, D.; Guiriec, S.; Hadasch, D.; Hanabata, Y.; Harding, A. K.; Hayashida, M.; Hays, E.; Horan, D.; Hughes, R. E.; Inoue, Y.; Jogler, T.; Jóhannesson, G.; Johnson, W. N.; Kawano, T.; Knödlseder, J.; Kocevski, D.; Kuss, M.; Lande, J.; Larsson, S.; Latronico, L.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Mayer, M.; Mazziotta, M. N.; McEnery, J. E.; Michelson, P. F.; Mizuno, T.; Moiseev, A. A.; Monzani, M. E.; Moretti, E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nemmen, R.; Nuss, E.; Ohno, M.; Ohsugi, T.; Okumura, A.; Omodei, N.; Orienti, M.; Paneque, D.; Pelassa, V.; Perkins, J. S.; Pesce-Rollins, M.; Petrosian, V.; Piron, F.; Pivato, G.; Porter, T. A.; Racusin, J. L.; Rainò, S.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer, O.; Ritz, S.; Roth, M.; Ryde, F.; Sartori, A.; Parkinson, P. M. Saz; Scargle, J. D.; Schulz, A.; Sgrò, C.; Siskind, E. J.; Sonbas, E.; Spandre, G.; Spinelli, P.; Tajima, H.; Takahashi, H.; Thayer, J. G.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Tinivella, M.; Torres, D. F.; Tosti, G.; Troja, E.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Vianello, G.; Vitale, V.; Winer, B. L.; Wood, K. S.; Yamazaki, R.; Younes, G.; Yu, H.-F.; Zhu, S. J.; Bhat, P. N.; Briggs, M. S.; Byrne, D.; Foley, S.; Goldstein, A.; Jenke, P.; Kippen, R. M.; Kouveliotou, C.; McBreen, S.; Meegan, C.; Paciesas, W. S.; Preece, R.; Rau, A.; Tierney, D.; van der Horst, A. J.; von Kienlin, A.; Wilson-Hodge, C.; Xiong, S.; Cusumano, G.; La Parola, V.; Cummings, J. R.

    2014-01-01

    The observations of the exceptionally bright gamma-ray burst (GRB) 130427A by the Large Area Telescope aboard the Fermi Gamma-ray Space Telescope provide constraints on the nature of these unique astrophysical sources. GRB 130427A had the largest fluence, highest-energy photon (95 GeV), longest γ-ray duration (20 hours), and one of the largest isotropic energy releases ever observed from a GRB. Temporal and spectral analyses of GRB 130427A challenge the widely accepted model that the nonthermal high-energy emission in the afterglow phase of GRBs is synchrotron emission radiated by electrons accelerated at an external shock.

  10. Short Gamma-Ray Bursts with Extended Emission

    NASA Technical Reports Server (NTRS)

    Norris, J. P.; Bonnell, J. T.

    2005-01-01

    The recent association of several short gamma-ray bursts (GRBs) with early type galaxies with low star formation rate demonstrates that short bursts arise from a different progenitor mechanism than long bursts. However, since the duration distributions of the two classes overlap, membership is not always easily established. The picture is complicated by the occasional presence of softer, extended emission lasting tens of seconds after the initial spike- like emission comprising an otherwise short burst. Using the large BATSE sample with time-tagged event (TTE) data, we show that the fundamental defining characteristic of the short burst class is that the initial spike exhibits negligible spectral evolution at energies above approx. 25 keV. This is behavior is nearly ubiquitous for the 260 bursts with T(sub 90) less than 2s where the BATSE TTE data type completely included the initial spike: Their spectral lags measured between the 25-50 keV and 100-300 energy ranges are consistent with zero in 90-95% of the cases, with most outliers probably representing the tail of the long burst class. We also analyze a small sample of "short" BATSE bursts - those with the most fluent, intense extended emission. The same lack of evolution on the pulse timescale obtains for the extended emission in the brighter bursts where significant measurements can be made. One possible inference is that both emission components may arise in the same region. We also show that the dynamic range in the ratio of peak intensities, spike : extended, is at least approx. l0(exp 3), and that for some bursts, the extended emission is only a factor of 2-5 lower. However, for our whole sample the total counts fluence of the extended component equals or exceeds that in the spike by a factor of several.

  11. Gamma Ray Burst Discoveries with the Swift Mission

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2009-01-01

    Gamma-ray bursts (GRBs) are among the most fascinating occurrences in the universe. They are powerful explosions, visible to high redshift, and thought to be the signature of black hole formation. The Swift Observatory has been detecting 100 bursts per year for 4 years and has greatly stimulated the field with new findings. Observations are made of the X-ray and optical afterglow from approximately 1 minute after the burst, continuing for days. Evidence is building that the long and short duration subcategories of GRBs have very different origins: massive star core collapse to a black hole for long bursts and binary neutron star coalescence to a black hole for short bursts. The similarity to Type II and Ia supernovae originating from young and old stellar progenitors is striking. Bursts are providing a new tool to study the high redshift universe. Swift has detected several events at z>5 and one at z=6.7 giving metallicity measurements and other data on galaxies at previously inaccessible distances. The talk will present the latest results from Swift in GRB astronomy.

  12. Gamma Ray Burst Discoveries with the Swift Mission

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2008-01-01

    Gamma-ray bursts (GRBs) are among the most fascinating occurrences in the universe. They are powerful explosions, visible to high redshift, and thought to be the signature of black hole formation. The Swift Observatory has been detecting 100 bursts per year for 3 years and has greatly stimulated the field with new findings. Observations are made of the X-ray and optical afterglow from - 1 minute after the burst, continuing for days. Evidence is building that the long and short duration subcategories of GRBs have very different origins: massive star core collapse to a black hole for long bursts and binary neutron star coalescence to a black hole for short bursts. The similarity to Type I1 and Ia supernovae originating from young and old stellar progenitors is striking. Bursts are providing a new tool to study the high redshift universe. Swift has detected several events at z>5 and one at z=6.3 giving metallicity measurements and other data on galaxies at previously inaccessible distances. The talk will present the latest results from Swift in GRB astronomy.

  13. Gamma Ray Burst Discoveries with the Swift Mission

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2008-01-01

    Gamma-ray bursts (GRBs) are among the most fascinating occurrences in the universe. They are powerful explosions, visible to high redshift, and thought to be the signature of black hole formation. The Swift Observatory has been detecting 100 bursts per year for 3 years and has greatly stimulated the field with new findings. Observations are made of the X-ray and optical afterglow from approximately 1 minute after the burst, continuing for days. Evidence is building that the long and short duration subcategories of GRBs have very different origins: massive star core collapse to a black hole for long bursts and binary neutron star coalescence to a black hole for short bursts. The similarity to Type II and Ia supernovae originating from young and old stellar progenitors is striking. Bursts are providing a new tool to study the high redshift universe. Swift has detected several events at z greater than 5 and one at z=6.3 giving metallicity measurements and other data on galaxies at previously inaccessible distances. The talk will present the latest results from Swift in GRB astronomy.

  14. THRESHOLD FOR EXTENDED EMISSION IN SHORT GAMMA-RAY BURSTS

    SciTech Connect

    Norris, Jay P.; Gehrels, Neil

    2010-07-01

    The initial pulse complex (IPC) in short gamma-ray bursts is sometimes accompanied by a softer, low-intensity extended emission (EE) component. In cases where such a component is not observed, it is not clear if it is present but below the detection threshold. Using Bayesian Block (BB) methods, we measure the EE component and show that it is present in one-quarter of a Swift/BAT sample of 51 short bursts, as was found for the Compton/BATSE sample. We simulate bursts with EE to calibrate the BAT threshold for EE detection and show that this component would have been detected in nearly half of BAT short bursts if it were present, to intensities {approx}10{sup -2} counts cm{sup -2} s{sup -1}, a factor of 5 lower than actually observed in short bursts. In the BAT sample, the ratio of average EE intensity to IPC peak intensity, R{sub int}, ranges over a factor of 25, R{sub int} {approx} 3 x 10{sup -3} to 8 x 10{sup -2}. In comparison, for the average of the 39 bursts without an EE component, the 2{sigma} upper limit is R{sub int} < 8 x 10{sup -4}. These results suggest that a physical threshold effect operates near R{sub int} {approx} few x 10{sup -3} below which the EE component is not manifest.

  15. Energy Injection in Gamma-Ray Burst Afterglows

    NASA Astrophysics Data System (ADS)

    Laskar, Tanmoy; Berger, Edo; Margutti, Raffaella; Perley, Daniel; Zauderer, B. Ashley; Sari, Re'em; Fong, Wen-fai

    2015-11-01

    We present multi-wavelength observations and modeling of gamma-ray bursts (GRBs) that exhibit a simultaneous re-brightening in their X-ray and optical light curves, and are also detected at radio wavelengths. We show that the re-brightening episodes can be modeled by injection of energy into the blastwave and that in all cases the energy injection rate falls within the theoretical bounds expected for a distribution of energy with ejecta Lorentz factor. Our measured values of the circumburst density, jet opening angle, and beaming-corrected kinetic energy are consistent with the distribution of these parameters for long-duration GRBs at both z˜ 1 and z≳ 6, suggesting that the jet launching mechanism and environment of these events are similar to that of GRBs that do not have bumps in their light curves. However, events exhibiting re-brightening episodes have lower radiative efficiencies than average, suggesting that a majority of the kinetic energy of the outflow is carried by slow-moving ejecta, which is further supported by steep measured distributions of the ejecta energy as a function of Lorentz factor. We do not find evidence for reverse shocks over the energy injection period, implying that the onset of energy injection is a gentle process. We further show that GRBs exhibiting simultaneous X-ray and optical re-brightenings are likely the tail of a distribution of events with varying rates of energy injection, forming the most extreme events in their class. Future X-ray observations of GRB afterglows with Swift and its successors will thus likely discover several more such events, while radio follow-up and multi-wavelength modeling of similar events will unveil the role of energy injection in GRB afterglows.

  16. On the Prompt Signals of Gamma Ray Bursts

    NASA Astrophysics Data System (ADS)

    Chen, P.; Tajima, T.; Takahashi, Y.

    2013-07-01

    We introduce a new model of gamma ray burst (GRB) that explains its observed prompt signals, namely, its primary quasi-thermal spectrum and high energy tail. This mechanism can be applied to either assumption of GRB progenitor: coalescence of compact objects or hypernova explosion. The key ingredients of our model are: (1) The initial stage of a GRB is in the form of a relativistic quark-gluon plasma lava; (2) The expansion and cooling of this lava results in a QCD phase transition that induces a sudden gravitational stoppage of the condensed non-relativistic baryons and form a hadrosphere; (3) Acoustic shocks and Alfven waves (magnetoquakes) that erupt in episodes from the epicenter efficiently transport the thermal energy to the hadrospheric surface and induce a rapid detachment of leptons and photons from the hadrons; (4) The detached e + e - and γ form an opaque, relativistically hot leptosphere, which expands and cools to T ~ mc2, or 0.5 MeV, where e + e - → 2γ and its reverse process becomes unbalanced, and the GRB photons are finally released; (5) The mode-conversion of Alfven waves into electromagnetic waves in the leptosphere provides a snowplow acceleration and deceleration that gives rise to both the high energy spectrum of GRB and the erosion of its thermal spectrum down to a quasi-thermal distribution. According to this model, the observed GRB photons should have a redshifted peak frequency at Ep ~ Γ(1 + β/2)mc2/(1 + z), where Γ ~ O(1) is the Lorentz factor of the bulk flow of the lava, which may be determined from the existing GRB data.

  17. Optical telescope BIRT in ORIGIN for gamma ray burst observing

    NASA Astrophysics Data System (ADS)

    Content, Robert; Sharples, Ray; Page, Mathew J.; Cole, Richard; Walton, David M.; Winter, Berend; Pedersen, Kristian; Hjorth, Jens; Andersen, Michael; Hornstrup, Allan; den Herder, Jan-Willem A.; Piro, Luigi

    2012-09-01

    The ORIGIN concept is a space mission with a gamma ray, an X-ray and an optical telescope to observe the gamma ray bursts at large Z to determine the composition and density of the intergalactic matter in the line of sight. It was an answer to the ESA M3 call for proposal. The optical telescope is a 0.7-m F/1 with a very small instrument box containing 3 instruments: a slitless spectrograph with a resolution of 20, a multi-imager giving images of a field in 4 bands simultaneously, and a cross-dispersed Échelle spectrograph giving a resolution of 1000. The wavelength range is 0.5 μm to 1.7 μm. All instruments fit together in a box of 80 mm x 80 mm x 200 mm. The low resolution spectrograph uses a very compact design including a special triplet. It contains only spherical surfaces except for one tilted cylindrical surface to disperse the light. To reduce the need for a high precision pointing, an Advanced Image Slicer was added in front of the high resolution spectrograph. This spectrograph uses a simple design with only one mirror for the collimator and another for the camera. The Imager contains dichroics to separate the bandwidths and glass thicknesses to compensate the differences in path length. All 3 instruments use the same 2k x 2k detector simultaneously so that telescope pointing and tip-tilt control of a fold mirror permit to place the gamma ray burst on the desired instrument without any other mechanism.

  18. A search for pre- and post-burst emission from well-localized gamma-ray burst locations

    NASA Technical Reports Server (NTRS)

    Emslie, A. Gordon

    1994-01-01

    We present the results from the first long-term search for nonburst gamma-ray emission from the positions of 70 intense, well-localized bursts. Using the BATSE occultation technique, designed for monitoring of discrete sources, these burst positions were measured in the energy range of approximately 15 keV to 1.8 MeV over a 112 day interval during 1991. None of these 70 locations exhibited detectable emission at or above the level of approximately 5 x 10(exp -9) ergs cm(exp -2) s(exp -1) during the 112 day interval. This level is approximately 1000 times less than the typical intensity of the burst associated with the given location. In addition, 35 intense gamma-ray bursts detected by BATSE were examined in a five day interval centered on the time of detection. We find no compelling evidence that these bursts emit preburst emission or display prompt postburst emission at a level of approximately 5 x 10(exp -9) ergs cm(exp 2) s(exp -1) on timescales of approximately 1 hr or longer. The lack of detectable long-term emission or preburst and postburst emission from the positions of gamma-ray bursts has important consequences for a variety of burst production models.

  19. The ionosphere as a gamma ray burst detector

    NASA Technical Reports Server (NTRS)

    Mcgruder, Charles H., III

    1992-01-01

    Unlike all man made detectors, which are only sensitive to relative narrow regions of the electromagnetic spectrum, the ionosphere is practically a perfect detector for high energy radiation because it absorbs all radiation from the far-ultraviolet to the higher energy gamma-rays. Therefore, it may be possible to employ the terrestrial atmosphere as a detector of high energy celestial photons. As early as the 1940's solar flares were detected by the disturbance they caused to the ionosphere. The VLF (3 - 30 kHz) approach for detecting ionospheric disturbances is based on the following physical circumstance: celestial high energy radiation ionizes the atoms of the earth's ionosphere leading to the production of free electrons. These free electrons influence the propagation of electromagnetic waves. By studying the phase and amplitude changes of VLF radio wave propagating in the earth-ionosphere waveguide, it was hoped to ascertain the electron density in these regions and draw conclusions about the celestial radiation which caused them. To detect gamma-ray bursts, two conditions for the optimal detection are: (1) large zenith angle; and (2) alignment of burst and propagation path.

  20. Measuring Cosmological Parameters with Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Amati, Lorenzo; Valle, Massimo Della

    2015-01-01

    Gamma-Ray Bursts (GRB) emit in a few dozen of seconds up to ~1054 erg, in terms of isotropic equivalent radiated energy Eiso, therefore they can be observed up to z ~ 10 and appear very promising tools to describe the expansion rate history of the Universe. In this paper we review the use of the Ep,i-Eiso correlation of Gamma-Ray Bursts to measure ΩM. We show that the present data set of GRBs, coupled with the assumption that we live in a flat universe, can provide indipendent evidence, from other probes, that ΩM~0.3. We show that current (e.g., Swift, Fermi/GBM, Konus-WIND) and next GRB experiments (e.g., CALET/GBM, SVOM, Lomonosov/UFFO, LOFT/WFM) will allow us, within a few years, to constrain ΩM and the evolution of dark energy with time, with an accuracy comparable to that currently exhibited by SNe-Ia.

  1. Predicting supernova associated to gamma-ray burst 130427a

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Ruffini, R.; Kovacevic, M.; Bianco, C. L.; Enderli, M.; Muccino, M.; Penacchioni, A. V.; Pisani, G. B.; Rueda, J. A.

    2015-07-01

    Binary systems constituted by a neutron star and a massive star are not rare in the universe. The Induced Gravitational Gamma-ray Burst (IGC) paradigm interprets Gamma-ray bursts as the outcome of a neutron star that collapses into a black hole due to the accretion of the ejecta coming from its companion massive star that underwent a supernova event. GRB 130427A is one of the most luminous GRBs ever observed, of which isotropic energy exceeds 1054 erg. And it is within one of the few GRBs obtained optical, X-ray and GeV spectra simultaneously for hundreds of seconds, which provides an unique opportunity so far to understand the multi-wavelength observation within the IGC paradigm, our data analysis found low Lorentz factor blackbody emission in the Episode 3 and its X-ray light curve overlaps typical IGC Golden Sample, which comply to the IGC mechanisms. We consider these findings as clues of GRB 130427A belonging to the IGC GRBs. We predicted on GCN the emergence of a supernova on May 2, 2013, which was later successfully detected on May 13, 2013.

  2. The Decay of Optical Emission from the gamma-Ray Burst GRB970228

    NASA Technical Reports Server (NTRS)

    Galama, T.; Groot, P. J.; vanParadijs, J.; Kouveliotou, C.; Robinson, C. R.; Fishman, G. J.; Meegan, C. A.; Sahu, K. C.; Livio, M.; Petro, L.; Macchetto, F. D.; Heise, J.; Int Zand, J.; Strom, R. G.; Telting, J.; Rutten, R. G. M.; Pettini, M.; Tanvir, N.; Bloom, J.

    1997-01-01

    The origin of gamma-ray bursts has been one of the great unsolved mysteries in high-energy astrophysics for almost 30 years. The recent discovery of fading sources at X-ray and optical wavelengths coincident with the location of the gamma-ray burst GRB970228 therefore provides an unprecedented opportunity to probe the nature of these high-energy events. The optical counterpart appears to be a transient point source embedded in a region of extended nebulosity, the latter having been tentatively identified as a high-redshift galaxy. This would seem to favour models that place gamma-ray bursts at cosmological distances, although a range of mechanisms for producing the bursts is still allowed. A crucial piece of information for distinguishing between such models is how the brightness of the optical counterpart evolves with time. Here we re-evaluate the existing photometry of the optical counterpart of GRB970228 to construct an optical light curve for the transient event. We find that between 21 hours and six days after the burst, the R-band brightness decreased by a factor of approximately 40, with any subsequent decrease in brightness occurring at a much slower rate. As the point source faded, it also became redder. The initial behaviour of the source appears to be consistent with the 'fireball' model, but the subsequent decrease in the rate of fading may prove harder to explain.

  3. Recent DMSP satellite detections of gamma-ray bursts

    SciTech Connect

    Terrell, J.; Lee, P.; Klebesadel, R.W.; Griffee, J.W.

    1998-05-01

    Gamma-ray burst detectors are aboard seven U.S. Air Force Defense Meteorological Satellite Program (DMSP) spacecraft, two of which are currently in use. Their 800 km altitude orbits give a field of view to 117 degrees from the zenith. A great many bursts have been detected, usually in coincidence with detections by GRO or other satellites such as PVO or Ulysses. The directions of the sources can be determined with considerable accuracy from such correlated observations, even when neither GRO nor BeppoSAX is involved. Results obtained from the most recently launched satellites (DMSP 13 and DMSP 14) are given in this paper. {copyright} {ital 1998 American Institute of Physics.}

  4. Null Result in gamma-ray burst lensed echo search

    NASA Technical Reports Server (NTRS)

    Nemiroff, R. J.; Wickramasinghe, W. A. D. T.; Norris, J. P.; Kouveliotou, C.; Fishman, G. J.; Meegan, C. A.; Paciesas, W. S.; Horack, J.

    1994-01-01

    We have searched for gravitational-lens-induced echoes between gamma-ray bursts (GRBs) in Burst and Transient Source Experiment (BATSE) data. The search was conducted in two phases. In the first phase we compared all GRBs in a brightness-complete sample of the first 260 GRBs with recorded angular positions having at least a 5% chance of being coincident from their combined positional error. In the second phase, we compared all GRB light curves of the first 611 GRBs with recorded angular positions having at least a 55% chance of being coincident from their combined positional error. No unambiguous gravitational lens candidate pairs were found in either phase, although a 'library of close calls' was accumulated for future reference. This result neither excludes nor significantly constrains a cosmological origin for GRBs.

  5. X, Gamma-Rays, and Gravitational Waves Emission in a Short Gamma-Ray Burst

    NASA Astrophysics Data System (ADS)

    Oliveira, F. G.; Rueda, Jorge A.; Ruffini, R.

    The recent progress in the understanding the physical nature of neutron stars (NSs) and the first observational evidence of a genuinely short gamma-ray burst (GRB), GRB 090227B, allow to give an estimate of the gravitational waves versus the X and gamma-rays emission in a short GRB. NS binaries represent good candidates for the detection of gravitational waves emitted during the spiraling-in and final merging phase of the system that leads to the short GRB emission. The data analysis of the GRB 090227B by Muccino et al. (2013) have been shown to be consistent with a NS binary progenitor with masses M1 = M2 = 1.34 M_{⊙}, radii R1 = R2 = 12.2 km, and a crust thickness Δ r ≈ 0. 47 km, obtained from the new mass-radius relation by Belvedere et al. (2012) of NSs fulfilling global charge neutrality. Muccino et al. (2013) estimated that GRB 090227B is located at redshift z ≈ 1. 6, corresponding to a luminosity distance d L ≈ 12. 2 Gpc. We assess the detectability of this source by the Advanced LIGO interferometer computing the signal-to-noise ratio (SNR) averaged over all polarizations and possible positions of the source with respect to the interferometer. We simulate the dynamics of the binary up to the contact point using the effective one-body formalism (EOB) in the fourth post-Newtonian approximation. We find that the gravitational waves signal would have been produced an SNR = 0.32 for a redshift z = 1. 61. We find that, instead, this GRB would have been detected with an SNR = 8 if it would have been located at a redshift z ≈ 0. 05, or d L ≈ 200 Mpc.

  6. Gamma-ray burst constraints on the galactic frequency of extrasolar Oort Clouds

    NASA Technical Reports Server (NTRS)

    Shull, J. Michael; Stern, S. Alan

    1995-01-01

    With the strong Compton Gamma-Ray Observatory/Burst and Transient Source Experiment (CGRO/BATSE) evidence that most gamma-ray bursts do not come from galactic neutron stars, models involving the accretion of a comet onto a neutron star (NS) no longer appear to be strong contenders for explaining the majority of bursts. If this is the case, then it is worth asking whether the lack of an observed galactic gamma-ray burst population provides a useful constraint on the number of comets and comet clouds in the galaxy. Owing to the previously unrecognized structural weakness of cometary nuclei, we find the capture cross sections for comet-NS events to be much higher than previously published estimates, with tidal breakup at distances R(sub b) approx. equals 4 x 10(exp 10) cm from the NS. As a result, impacts of comets onto field NSs penetrating the Oort Clouds of other stars are found to dominate all other galactic NS-comet capture rates by a factor of 100. This in turn predicts that if comet clouds are common, there should be a significant population of repeater sources with (1) a galactic distribution, (2) space-correlated repetition, and (3) a wide range of peak luminosities and luminosity time histories. If all main sequence stars have Oort Clouds like our own, we predict approximately 4000 such repeater sources in the Milky Way at any time, each repeating on time scales of months to years. Based on estimates of the sensitivity of the CGRO/BATSE instrument and assuming isotropic gamma-ray beaming from such events, we estimate that a population of approximately 20-200 of these galactic NS-Oort Cloud gamma-ray repeater sources should be detectable by CGRO. In addition, if giant planet formation is common in the galaxy, we estimate that the accretion of isolated comets injected to the interstellar medium by giant planet formation should produce an additional source of galactic, nonrepeating, events. Comparing these estimates to the 3-4 soft gamma-ray repeater sources

  7. THERMAL RADIATION FROM GAMMA-RAY BURST JETS

    SciTech Connect

    Mizuta, Akira; Nagataki, Shigehiro; Aoi, Junichi

    2011-05-01

    In this study, the light curves and spectrum of the photospheric thermal radiation from ultrarelativistic gamma-ray burst (GRB) jets are calculated using two-dimensional relativistic hydrodynamic simulations of jets from a collapsar. As the jet advances, the density around the head of the jet decreases, and its Lorentz factor reaches as high as 200 at the photosphere and 400 inside the photosphere. For an on-axis observer, the photosphere appears concave due to the low density and high beaming factor of the jet. The luminosity varies because of the abrupt change in the position of the photosphere due to the internal structure of the jet. Comparing our results with GRB 090902B, the flux level of the thermal-like component is similar to our model, although the peak energy appears slightly higher (but still within a factor of two). From the comparison, we estimate that the bulk Lorentz factor of GRB 090902B is {Gamma} {approx} 2.4 x 10{sup 2}(r/10{sup 12} cm), where r is the radius of the photosphere. The spectrum for an on-axis observer is harder than that for an off-axis observer. There is a time lag of a few seconds for high energy bands in the light curve. This may be the reason for the delayed onset of GeV emission seen in GRB 080916C. The spectrum below the peak energy is a power law and the index is 2.3-2.6, which is softer than that of a single temperature Planck distribution but still harder than that of the typical value of the observed spectrum.

  8. Broad-band modelling of short gamma-ray bursts with energy injection from magnetar spin-down and its implications for radio detectability

    NASA Astrophysics Data System (ADS)

    Gompertz, B. P.; van der Horst, A. J.; O'Brien, P. T.; Wynn, G. A.; Wiersema, K.

    2015-03-01

    The magnetar model has been proposed to explain the apparent energy injection in the X-ray light curves of short gamma-ray bursts (SGRBs), but its implications across the full broad-band spectrum are not well explored. We investigate the broad-band modelling of four SGRBs with evidence for energy injection in their X-ray light curves, applying a physically motivated model in which a newly formed magnetar injects energy into a forward shock as it loses angular momentum along open field lines. By performing an order of magnitude search for the underlying physical parameters in the blast wave, we constrain the characteristic break frequencies of the synchrotron spectrum against their manifestations in the available multiwavelength observations for each burst. The application of the magnetar energy injection profile restricts the successful matches to a limited family of models that are self-consistent within the magnetic dipole spin-down framework. We produce synthetic light curves that describe how the radio signatures of these SGRBs ought to have looked given the restrictions imposed by the available data, and discuss the detectability of these signatures with present-day and near-future radio telescopes. Our results show that both the Atacama Large Millimeter Array (ALMA) and the upgraded Very Large Array are now sensitive enough to detect the radio signature within two weeks of trigger in most SGRBs, assuming our sample is representative of the population as a whole. We also find that the upcoming Square Kilometre Array will be sensitive to depths greater than those of our lower limit predictions.

  9. ARE ULTRA-LONG GAMMA-RAY BURSTS DIFFERENT?

    SciTech Connect

    Boër, M.; Gendre, B.; Stratta, G.

    2015-02-10

    The discovery of a number of gamma-ray bursts (GRBs) with duration exceeding 1000 s has opened the debate on whether these bursts form a new class of sources, the so-called ultra-long GRBs, or if they are rather the tail of the distribution of the standard long GRB duration. Using the long GRB sample detected by Swift, we investigate the statistical properties of long GRBs and compare them with the ultra-long burst properties. We compute the burst duration of long GRBs using the start epoch of the so-called ''steep decay'' phase detected with Swift/XRT. We discuss also the differences observed in their spectral properties. We find that ultra-long GRBs are statistically different from the standard long GRBs with typical burst duration less than 100-500 s, for which a Wolf-Rayet star progenitor is usually invoked. Together with the presence of a thermal emission component we interpret this result as indication that the usual long GRB progenitor scenario cannot explain the extreme duration of ultra-long GRBs, their energetics, as well as the mass reservoir and size that can feed the central engine for such a long time.

  10. Why galactic gamma-ray bursts might depend on environment: Blast waves around neutron stars

    NASA Technical Reports Server (NTRS)

    Rees, Martin J.; Meszaros, Peter; Begelman, Mitchell C.

    1994-01-01

    Although galactic models for gamma-ray bursts are hard to reconcile with the isotropy data, the issue is still sufficiently open that both options should be explored. The most likely 'triggers' for bursts in our Galaxy would be violent disturbances in the magnetospheres of neutron stars. Any event of this kind is likely to expel magnetic flux and plasma at relativistic speed. Such ejecta would be braked by the interstellar medium (ISM), and a gamma-ray flash may result from this interaction. The radiative efficiency, of this mechanism would depend on the density of the circumstellar ISM. Therefore, even if neutron stars were uniformly distributed in space (at least within 1-2 kpc of the Sun), the observed locations of bursts would correlate with regions of above-average ISM density.

  11. Mimicking within Euclidean space a cosmological time dilation of gamma-ray burst durations

    NASA Technical Reports Server (NTRS)

    Brainerd, J. J.

    1994-01-01

    If gamma-ray burst sources are cosmological in origin, then the time dilation at large z can correlate a burst's duration with its peak flux. Detection of this effect is thought by many to be strong evidence for a cosmological burst origin. In this Letter I show that an apparent time distortion--either a dilation or contraction--is generally expected for an ensemble of bursts that is spatially limited within Euclidean space. The appearance of this effect is correlated with the falling away of the log N-log P curve from a -3/2 slope line. An example of this effect is provided by the relativistic bulk motion model, which produces a strong time dilation when spatially limited in Euclidean space. As a consequence, envidence that weak bursts have longer durations than strong bursts is not evidence of a cosmological burst origin.

  12. Individual power density spectra of Swift gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Guidorzi, C.; Dichiara, S.; Amati, L.

    2016-05-01

    Context. Timing analysis can be a powerful tool with which to shed light on the still obscure emission physics and geometry of the prompt emission of gamma-ray bursts (GRBs). Fourier power density spectra (PDS) characterise time series as stochastic processes and can be used to search for coherent pulsations and, more in general, to investigate the dominant variability timescales in astrophysical sources. Because of the limited duration and of the statistical properties involved, modelling the PDS of individual GRBs is challenging, and only average PDS of large samples have been discussed in the literature thus far. Aims: We aim at characterising the individual PDS of GRBs to describe their variability in terms of a stochastic process, to explore their variety, and to carry out for the first time a systematic search for periodic signals and for a link between PDS properties and other GRB observables. Methods: We present a Bayesian procedure that uses a Markov chain Monte Carlo technique and apply it to study the individual PDS of 215 bright long GRBs detected with the Swift Burst Alert Telescope in the 15-150 keV band from January 2005 to May 2015. The PDS are modelled with a power-law either with or without a break. Results: Two classes of GRBs emerge: with or without a unique dominant timescale. A comparison with active galactic nuclei (AGNs) reveals similar distributions of PDS slopes. Unexpectedly, GRBs with subsecond-dominant timescales and duration longer than a few tens of seconds in the source frame appear to be either very rare or altogether absent. Three GRBs are found with possible evidence for a periodic signal at 3.0-3.2σ (Gaussian) significance, corresponding to a multi-trial chance probability of ~1%. Thus, we found no compelling evidence for periodic signal in GRBs. Conclusions: The analogy between the PDS of GRBs and of AGNs could tentatively indicate similar stochastic processes that rule BH accretion across different BH mass scales and objects

  13. TEMPORAL DECONVOLUTION STUDY OF LONG AND SHORT GAMMA-RAY BURST LIGHT CURVES

    SciTech Connect

    Bhat, P. N.; Briggs, Michael S.; Connaughton, Valerie; Paciesas, William; Burgess, Michael; Chaplin, Vandiver; Goldstein, Adam; Guiriec, Sylvain; Kouveliotou, Chryssa; Fishman, Gerald; Bissaldi, Elisabetta; Diehl, Roland; Foley, Suzanne; Greiner, Jochen; Gruber, David; Fitzpatrick, Gerard; Gibby, Melissa; Giles, Misty M.; and others

    2012-01-10

    The light curves of gamma-ray bursts (GRBs) are believed to result from internal shocks reflecting the activity of the GRB central engine. Their temporal deconvolution can reveal potential differences in the properties of the central engines in the two populations of GRBs which are believed to originate from the deaths of massive stars (long) and from mergers of compact objects (short). We present here the results of the temporal analysis of 42 GRBs detected with the Gamma-ray Burst Monitor onboard the Fermi Gamma-ray Space Telescope. We deconvolved the profiles into pulses, which we fit with lognormal functions. The distributions of the pulse shape parameters and intervals between neighboring pulses are distinct for both burst types and also fit with lognormal functions. We have studied the evolution of these parameters in different energy bands and found that they differ between long and short bursts. We discuss the implications of the differences in the temporal properties of long and short bursts within the framework of the internal shock model for GRB prompt emission.

  14. Temporal Deconvolution Study of Long and Short Gamma-Ray Burst Light Curves

    NASA Astrophysics Data System (ADS)

    Bhat, P. N.; Briggs, Michael S.; Connaughton, Valerie; Kouveliotou, Chryssa; van der Horst, Alexander J.; Paciesas, William; Meegan, Charles A.; Bissaldi, Elisabetta; Burgess, Michael; Chaplin, Vandiver; Diehl, Roland; Fishman, Gerald; Fitzpatrick, Gerard; Foley, Suzanne; Gibby, Melissa; Giles, Misty M.; Goldstein, Adam; Greiner, Jochen; Gruber, David; Guiriec, Sylvain; von Kienlin, Andreas; Kippen, Marc; McBreen, Sheila; Preece, Robert; Rau, Arne; Tierney, Dave; Wilson-Hodge, Colleen

    2012-01-01

    The light curves of gamma-ray bursts (GRBs) are believed to result from internal shocks reflecting the activity of the GRB central engine. Their temporal deconvolution can reveal potential differences in the properties of the central engines in the two populations of GRBs which are believed to originate from the deaths of massive stars (long) and from mergers of compact objects (short). We present here the results of the temporal analysis of 42 GRBs detected with the Gamma-ray Burst Monitor onboard the Fermi Gamma-ray Space Telescope. We deconvolved the profiles into pulses, which we fit with lognormal functions. The distributions of the pulse shape parameters and intervals between neighboring pulses are distinct for both burst types and also fit with lognormal functions. We have studied the evolution of these parameters in different energy bands and found that they differ between long and short bursts. We discuss the implications of the differences in the temporal properties of long and short bursts within the framework of the internal shock model for GRB prompt emission.

  15. An Analysis of Gamma-ray Burst Time Profiles from the Burst and Transient Source Experiment

    NASA Technical Reports Server (NTRS)

    Lestrade, John Patrick

    1996-01-01

    This proposal requested funding to measure the durations of gamma-ray bursts (GRB) in the 4B catalog as well as to study the structure of GRB time profiles returned by the Burst And Transient Source Experiment (BATSE) on board the Compton Gamma-Ray Observatory. The duration (T90) was to be measured using the same techniques and algorithms developed by the principal investigator for the 3B data. The profile structure studies fall into the two categories of variability and fractal analyses.

  16. The duration distribution of Swift Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Horváth, I.; Tóth, B. G.

    2016-05-01

    Decades ago two classes of gamma-ray bursts were identified and delineated as having durations shorter and longer than about 2 s. Subsequently indications also supported the existence of a third class. Using maximum likelihood estimation we analyze the duration distribution of 888 Swift BAT bursts observed before October 2015. Fitting three log-normal functions to the duration distribution of the bursts provides a better fit than two log-normal distributions, with 99.9999% significance. Similarly to earlier results, we found that a fourth component is not needed. The relative frequencies of the distribution of the groups are 8% for short, 35% for intermediate and 57% for long bursts which correspond to our previous results. We analyse the redshift distribution for the 269 GRBs of the 888 GRBs with known redshift. We find no evidence for the previously suggested difference between the long and intermediate GRBs' redshift distribution. The observed redshift distribution of the 20 short GRBs differs with high significance from the distributions of the other groups.

  17. GRB 070724B: the first Gamma Ray Burst localized by SuperAGILE

    SciTech Connect

    Del Monte, E.; Costa, E.; Donnarumma, I.; Feroci, M.; Lapshov, I.; Lazzarotto, F.; Soffitta, P.; Argan, A.; Pucella, G.; Trois, A.; Vittorini, V.; Evangelista, Y.; Rapisarda, M.; Barbiellini, G.; Longo, F.; Basset, M.; Foggetta, L.; Vallazza, E.; Bulgarelli, A.; Di Cocco, G.

    2008-05-22

    GRB070724B is the first Gamma Ray Burst localized by the SuperAGILE instrument aboard the AGILE space mission. The SuperAGILE localization has been confirmed after the after-glow observation by the XRT aboard the Swift satellite. No significant gamma ray emission above 50 MeV has been detected for this GRB. In this paper we describe the SuperAGILE capabilities in detecting Gamma Ray Burst and the AGILE observation of GRB 070724B.

  18. Chasing short duration gamma-ray bursts with Swift and Fermi

    NASA Astrophysics Data System (ADS)

    Troja, Eleonora; Lien, A. Y.; Connaughton, V.; Gehrels, N.; Pelassa, V.; Troja, E.

    2014-01-01

    Short duration gamma-ray bursts (GRBs) are intense flashes of gamma-rays lasting less than two seconds. The common notion that short bursts originate from coalescing compact binaries, either neutron star-neutron star (NS-NS) or neutron star-black hole (NS-BH) mergers, makes them the most promising tool to aid in the direct detection of gravitational waves (GWs) by forthcoming facilities, such as advanced LIGO/Virgo. The Fermi and Swift satellites offer unique, and complementary capabilities for the study of short GRBs. Thanks to its wide field of view, broad energy bandpass, and sophisticated trigger algorithms, the Gamma-Ray Burst Monitor (GBM) on-board Fermi is currently the most prolific detector of short GRBs. The Burst Alert Telescope (BAT) on-board Swift detects only a few short bursts/year, but provides accurate localizations required for follow-up observations. We present a correlative analysis of the Fermi/GBM and the Swift/BAT data aimed at increasing the sensitivity to short-hard bursts, their rate of detection, and our chance of localization. By comparing the two populations of bursts we characterize the biases introduced by the trigger algorithms, and how they shape the observed population of short bursts. This allows us to calculate a more realistic number for the expected rate of Fermi/GBM events within the ALIGO horizon, and estimate the timescale over which robust constraints to the merger model can be placed by future Fermi/ALIGO searches. We discuss how the current Swift and Fermi strategies could be optimized to increase the number of well-localized short bursts.

  19. Earth Occultation Monitoring with the Fermi Gamma Ray Burst Monitor

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2014-01-01

    Using the Gamma Ray Burst Monitor (GBM) on-board Fermi, we are monitoring the hard X-ray/soft gamma ray sky using the Earth occultation technique (EOT). Each time a source in our catalog is occulted by (or exits occultation by) the Earth, we measure its flux using the change in count rates due to the occultation. Currently we are using CTIME data with 8 energy channels spanning 8 keV to 1 MeV for the GBM NaI detectors for daily monitoring. Light curves, updated daily, are available on our website http://heastro.phys.lsu.edu/gbm. Our software is also capable of performing the Earth occultation monitoring using up to 128 energy bands, or any combination of those bands, using our 128-channel, 4-s CSPEC data. The GBM BGO detectors, sensitive from about 200 keV to 40 keV, can also be used with this technique. In our standard application of the EOT, we use a catalog of sources to drive the measurements. To ensure that our catalog is complete, our team has developed an Earth occultation imaging method. In this talk, I will describe both techniques and the current data products available. I will highlight recent and important results from the GBM EOT, including the current status of our observations of hard X-ray variations in the Crab Nebula.

  20. The Second Swift BAT Gamma-Ray Burst Catalog

    NASA Technical Reports Server (NTRS)

    Barthelmy, S. D.; Baumgartner, W. H.; Cummings, J. R.; Fenimore, E. E.; Gehrels, N.; Krimm, H. A.; Markwardt, C. B.; Palmer, D. M.; Parsons, A. M.; Sato, G.; Stamatikos, M.; Tueller, J.; Ukwatta, T. N.; Zhang, B.

    2010-01-01

    We present the second Swift Burst Alert Telescope (BAT) catalog of gamma-ray bursts (GRBs), which contains 476 bursts detected by the BAT between 2004 December 19 and 2009 December 21. This catalog (hereafter the BAT2 catalog) presents burst trigger time, location, 90% error radius, duration, fluence, peak flux, time-averaged spectral parameters and time-resolved spectral parametert:; measured by the BAT. In the correlation study of various observed parameters extracted from the BAT prompt emission data, we distinguish among long-duration GRBs (L-GRBs), short-duration GRBs (S-GRBs), and short-duration GRBs with extended emission (S-GRBs with E.E.) to investigate differences in the prompt emission properties. The fraction of L-GRBs, S-GRBs and S-GRBs with E.E. in the catalog are 89%, 8% and 2% respectively. We compare the BAT prompt emission properties with the BATSE, BeppoSAX and HETE-2 GRB samples. We also correlate the observed prompt emission properties with the redshifts for the GRBs with known redshift. The BAT T90 and T50 durations peak at 70 s and 30 s, respectively. We confirm that the spectra of the BAT S-GRBs are generally harder than those of the L-GRBs. The time-averaged spectra of the BAT S GRBs with E.E. are similar to those of the L-GRBs. Whereas, the spectra of the initial short spikes of the S-GRBs with E.E. are similar to those of the S-GRBs. We show that the BAT GRB samples are significantly softer than the BATSE bright GRBs, and that the time-averaged E obs/peak of the BAT GRBs peaks at 80 keV which is significantly lower energy than those of the BATSE sample which peak at 320 keV. The time-averaged spectral properties of the BAT GRB sample are similar to those of the HETE-2 GRB samples. By time-resolved spectral analysis, we find that 10% of the BAT observed photon indices are outside the allowed region of the synchrotron shock model. The observed durations of the BAT high redshift GRBs are not systematically longer than those of the moderate

  1. The duration-photon energy relation in gamma-ray bursts and its interpretations

    NASA Technical Reports Server (NTRS)

    Kazanas, Demosthenes; Titarchuk, Lev G.; Hua, Xin-Min

    1997-01-01

    A correlation between the spectral and temporal structure in gamma ray bursts was presented elsewhere, where it was discovered that the duration of the constituent subpulses of the time profile of a given gamma ray burst have a well-defined power law dependence, of approximately index 0.45, on the energy of the observed photons. Two models are presented which account for the observed correlation. These models involve: the impulsive injection of a population of relativistic electrons; their subsequent cooling by synchrotron radiation; the impulsive injection of mono-energetic high energy photons in a medium of a Thomson depth of approximately 5, and their subsequent downgrading in energy due to electron scattering. Arguments are presented for distinguishing between these two models from the existing data.

  2. The Decay of Optical Emission Form the Gamma-Ray Burst GRB 970228

    NASA Technical Reports Server (NTRS)

    Galama, T.; Groot, P. J.; vanParadijs, J.; Kouvellotou, C.; Robinson, C. R.; Fishmans, G. J.; Meegan, C. A.; Sahu, K. C.; Livio, M.; Petro, L.

    1997-01-01

    The origin of gamma-ray bursts has been one of the great unsolved mysteries in high-energy astrophysics for almost 30 years. The recent discovery of fading sources at X-ray and optical wave-lengths coincident with the location of the gamma-ray burst GRB970228 therefore provides an unprecedented opportunity to probe the nature of these high-energy events. The optical counterpart appears to be a transient point source embedded in a region of extended nebulosity, the latter having been tentatively identified as a high-redshift galaxy. This would seem to favour models that place gamma-ray bursts at cosmological distances, although a range of mechanisms for producing the bursts is still allowed. A crucial piece of information for distinguishing between such models is how the brightness of the optical counterpart evolves with time. Here we re-evaluate the existing photometry of the optical counterpart of GRB970228 to construct an optical light curve for the transient event. We find that between 21 hours and six days after the burst, the R-band brightness decreased by a factor of approx. 50, with any subsequent decrease in brightness occurring at a much slower rate. As the point source faded, it also became redder. The initial behaviour of the source appears to be consistent with the 'fireball' model, in which the burst results from the merger of two neutron stars, but the subsequent decrease in the rate of fading may prove harder to explain. The gamma-ray burst of 28 February 1997, detected with the Gamma-Ray Burst Monitor on board the BeppoSAX satellite, and located with an approx. 3 feet radius position with the Wide Field Camera on the same satellite, was the first for which a fading X-ray and optical counterpart were discovered. The optical Counterpart was discovered from a comparison of V- and I-band images taken with the William Herschel Telescope (WHT) on February 28.99 UT, and the Isaac Newton Telescope (INT; V band) and the WHT (I band) on March 8.8 uT.

  3. Evidence for Temporally-Extended, High-Energy Emission from Gamma Ray Burst 990104

    NASA Technical Reports Server (NTRS)

    Wren, D. N.; Bertsch, D. L.; Ritz, S.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    It is well known that high-energy emission (MeV - GeV) has been observed in several gamma ray bursts and temporally-extended emission from lower-energy gamma rays through radio wavelengths is well established. Observations of extended, high-energy emission are, however, scarce. Here we present evidence for a gamma ray burst emission that is both high-energy and extended, coincident with lower energy emissions. For the very bright and long burst, GRB 990104, we show light curves and spectra that confirm emission above 50 MeV, approximately 152 seconds after the BATSE (Burst and Transient Source Experiment) trigger and initial burst emission. Between the initial output and the main peak, seen at both low and high energy, there was a period of approx. 100 s during which the burst was relatively quiet. This burst was found as part of an ongoing search for high-energy emission in gamma ray bursts.

  4. Cosmological Parameters from Supernovae Associated with Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Li, Xue; Hjorth, Jens; Wojtak, Radosław

    2014-11-01

    We report estimates of the cosmological parameters Ω m and ΩΛ obtained using supernovae (SNe) associated with gamma-ray bursts (GRBs) at redshifts up to 0.606. Eight high-fidelity GRB-SNe with well-sampled light curves across the peak are used. We correct their peak magnitudes for a luminosity-decline rate relation to turn them into accurate standard candles with dispersion σ = 0.18 mag. We also estimate the peculiar velocity of the low-redshift host galaxy of SN 1998bw using constrained cosmological simulations. In a flat universe, the resulting Hubble diagram leads to best-fit cosmological parameters of (Ω _m, Ω Λ ) = (0.58+0.22-0.25,0.42 +0.25-0.22). This exploratory study suggests that GRB-SNe can potentially be used as standardizable candles to high redshifts to measure distances in the universe and constrain cosmological parameters.

  5. Gamma ray bursts and extreme energy cosmic rays

    SciTech Connect

    Scarsi, Livio

    1998-06-15

    Extreme Energy Cosmic Ray particles (EECR) with E>10{sup 20} eV arriving on Earth with very low flux ({approx}1 particle/Km{sup 2}-1000yr) require for their investigation very large detecting areas, exceeding values of 1000 km{sup 2} sr. Projects with these dimensions are now being proposed: Ground Arrays ('Auger' with 2x3500 km{sup 2} sr) or exploiting the Earth Atmosphere as seen from space ('AIR WATCH' and OWL,'' with effective area reaching 1 million km{sup 2} sr). In this last case, by using as a target the 10{sup 13} tons of air viewed, also the high energy neutrino flux can be investigated conveniently. Gamma Rays Bursts are suggested as a possible source for EECR and the associated High Energy neutrino flux.

  6. The low energy spectra of gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Bussard, R. W.; Lamb, F. K.

    1982-01-01

    The implications of observed gamma-ray burst spectra for the physical conditions and geometries of the sources are examined. It is noted that an explanation of the continua in terms of optically thin thermal bremsstrahlung requires a relatively large area but a fairly shallow depth. On the other hand, a spectrum similar to that observed could be produced by rapid flickering of sources with less extreme geometries if each flicker emits a Comptonized thermal spectrum. Either field inhomogeneities or plasma motions are required to interpret the low energy features as cyclotron extinction. An alternative explanation is photoelectric absorption by heavy atoms; this requires a field strength high enough to make one-photon electron positron annihilation possible. Observational tests of these possibilities are proposed

  7. High-z Universe with Gamma Ray Bursts

    NASA Technical Reports Server (NTRS)

    Kouveliotou, C.

    2011-01-01

    Gamma-Ray Bursts (GRBs) are the most luminous explosions in space and trace the cosmic star formation history back to the first generations of stars. Their bright afterglows allow us to trace the abundances of heavy elements to large distances, thereby measuring cosmic chemical evolution. To date GRBs have been detected up to distances of z=8.23 and possibly even beyond z9. This makes GRBs a unique and powerful tool to probe the high-z Universe up to the re-ionization era. We discuss the current status of the field, place it in context with other probes, and also discuss new mission concepts that have been planned to utilize GRBs as probes.

  8. Four luminosity indicators for gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Schaefer, B.

    Recently, two luminosity indicators involving gamma-ray data alone have been discovered. The first is the spectral lag, which is roughly the time between peaks in the light curve as viewed with ~30 and ~200 keV photons, such that high luminosity events have short lags and low luminosities are indicated by lags as long as 1 second or more. The second luminosity indicator is the variability, which is a quantitative measure of how 'spiky' the burst light curve is, with spiky bursts having high luminosity while smooth bursts have low luminosity. These two indicators were originally proposed with either 6 or 7 bursts with redshifts. The validity of both indicators is proven by the existence of a lag/variability relation exactly as predicted for a sample of 112 BATSE bursts as well as by 3 additional bursts which also fall onto the claimed relations. Now, two new luminosity indicators have been identified. The third is the minimum risetime for pulses in a burst light curve, where fast rises indicate high luminosities and slow rises are for low luminosity events. The fourth indicator is the number of distinct peaks in the burst light curve, although this only sets a limit where the luminosity must be greater than roughly 1050 erg/s times the square of the number of peaks (for more than one peak). This talk will also present simple and general explanations for all four luminosity indicators. The lag/luminosity relation is a simple and forced result from the empirical Liang-Kargatis relation which simply implies that radiative cooling is dominating. The fastest rise in a light curve is related to the bulk Lorentz factor (Gamma) simply due to the geometrical rise time for a region subtending an angle of 1/Gamma (given that the minimal radius for which the optical depth of the jet material is of order unity is empirically a near constant). The luminosity of the burst is also a power law of Gamma, which scales as Gamma^N for 3

  9. GRB 081029: A Gamma-Ray Burst with a Multi-Component Afterglow

    NASA Technical Reports Server (NTRS)

    Holland, Stephen T.; DePasquale, Massimiliano; Mao, Jirong; Sakamoto, Taka; Shady, Patricia; Covino, Stefano; Yi-Zhong, Fan; Zhi-Ping, Jin; D'Avanzo, Paolo; Antonelli, Angelo; D'Elia, Valerio; Chincarini, Guido; Fiore, Fabrizio; Pandey, Shashi Bhushan

    2011-01-01

    We present an analysis of the unusual optical light curve of the gamma-ray burst GRB 081029, a long-soft burst with a redshift of z = 3.8479. We combine X-ray and optical observations from the Swift X-Ray Telescope and the Swift UltraViolet Optical Telescope with ground-based optical and infrared data obtained using the REM and ROTSE telescopes to construct a detailed data set extending from 86 s to approx. 100000 s after the BAT trigger. Our data cover a wide energy range, from 10 keV to 0.77 eV (1.24 A to 16000 A). The X-ray afterglow shows a shallow initial decay followed by a rapid decay starting at about 18000 s. The optical and infrared afterglow, however, shows an uncharacteristic rise at about 5000 s that does not correspond to any feature in the X-ray light curve. Our data are not consistent with synchrotron radiation from a jet interacting with an external medium, a two-component jet, or continuous energy injection from the central engine. We find that the the optical light curves can be broadly explained by a collision between two ejecta shells within a two-component jet. A growing number of gamma-ray burst afterglows are consistent with complex jets, which suggests that some (or all) gamma-ray burst jets are complex and will require detailed modelling to fully understand them.

  10. GRB 081029: A GAMMA-RAY BURST WITH A MULTI-COMPONENT AFTERGLOW

    SciTech Connect

    Holland, Stephen T.; Sakamoto, Takanori; De Pasquale, Massimiliano; Schady, Patricia; Mao, Jirong; Covino, Stefano; Jin, Zhi-Ping; D'Avanzo, Paolo; Chincarini, Guido; Fan, Yi-Zhong; Antonelli, Angelo; D'Elia, Valerio; Fiore, Fabrizio; Pandey, Shashi Bhushan; Cobb, Bethany E.

    2012-01-20

    We present an analysis of the unusual optical light curve of the gamma-ray burst GRB 081029, a long-soft burst with a redshift of z = 3.8479. We combine X-ray and optical observations from the Swift X-Ray Telescope and the Swift UltraViolet/Optical Telescope with ground-based optical and infrared data obtained using the REM, ROTSE, and CTIO 1.3 m telescopes to construct a detailed data set extending from 86 s to {approx}100000 s after the BAT trigger. Our data cover a wide energy range from 10 keV to 0.77 eV (1.24 A-16000 A). The X-ray afterglow shows a shallow initial decay followed by a rapid decay starting at about 18000 s. The optical and infrared afterglow, however, shows an uncharacteristic rise at about 3000 s that does not correspond to any feature in the X-ray light curve. Our data are not consistent with synchrotron radiation from a jet interacting with an external medium, a two-component jet, or continuous energy injection from the central engine. We find that the optical light curves can be broadly explained by a collision between two ejecta shells within a two-component jet. A growing number of gamma-ray-burst afterglows are consistent with complex jets, which suggests that some (or all) gamma-ray-burst jets are complex and will require detailed modeling to fully understand them.

  11. Gamma-ray bursts: afterglows from cylindrical jets

    NASA Astrophysics Data System (ADS)

    Cheng, K. S.; Huang, Y. F.; Lu, T.

    2001-08-01

    Nearly all previous discussions on beaming effects in gamma-ray bursts (GRBs) have assumed a conical geometry. However, more and more observations on relativistic jets in radio galaxies, active galactic nuclei, and `microquasars' in the Galaxy have shown that many of these outflows are not conical, but cylindrical, i.e. they maintain constant cross-sections at large scales. Thus it is necessary to discuss the possibility of gamma-ray bursts being due to highly collimated cylindrical jets, not conical ones. Here we study the dynamical evolution of cylindrical jets and discuss their afterglows. Both analytical and numerical results are presented. It is shown that when the lateral expansion is not taken into account, a cylindrical jet typically remains highly relativistic for ~108-109s. During this relativistic phase, the optical afterglow at first decays as Sν~t-p/2, where p is the index characterizing the power-law energy distribution of electrons. Then the light curve steepens to Sν~t-(p+1)/2 due to cooling of electrons. After entering the non-relativistic phase (i.e. t>=1011s), the afterglow is Sν~t-(5p-4)/6. However, if the cylindrical jet expands laterally at the comoving sound speed, then the decay becomes Sν~t-p and Sν~t-(15p-21)/10-t-(15p-20)/10 in the ultrarelativistic and in the non-relativistic phase respectively. Note that in both cases the light curve turns flatter after the relativistic-Newtonian transition point, which differs markedly from the behaviour of a conical jet. It is suggested that some GRBs with afterglows decaying as t-1.1-t-1.3 may be due to cylindrical jets, not necessarily isotropic fireballs.

  12. Experimental search for gamma-ray bursts from evaporating primordial black holes

    SciTech Connect

    Petkov, V. B.; Bugaev, E. V.; Klimai, P. A. Andreev, M. V.; Volchenko, V. I.; Volchenko, G. V.; Dzaparova, I. M.; Dzhappuev, D. D.; Gaponenko, A. N.; Guliev, Zh. Sh.; Klimenko, N. F.; Kudzhaev, A. U.; Sergeev, A. V.; Khaerdinov, N. S.; Chernyaev, A. B.; Yanin, A. F.

    2010-03-15

    The energy spectra and temporal characteristics of high-energy gamma-ray bursts from evaporating primordial black holes have been calculated using various evaporation models. The currently existing theoretical uncertainties in the shape of the evaporated photon spectrum are discussed. The data from the Andyrchy and Carpet-2 arrays of the Baksan Neutrino Observatory (Institute for Nuclear Research, Russian Academy of Sciences) obtained in the mode of detection of a single cosmic-ray component are used to search for cosmic gamma-ray bursts with a primary photon energy of about 8 GeV. New upper limits have been obtained for the number density of evaporating black holes in a local region of space with a characteristic size of {approx}10{sup -3} pc for various evaporation models.

  13. THE FERMI GBM GAMMA-RAY BURST SPECTRAL CATALOG: THE FIRST TWO YEARS

    SciTech Connect

    Goldstein, Adam; Burgess, J. Michael; Preece, Robert D.; Briggs, Michael S.; Guiriec, Sylvain; Connaughton, Valerie; Paciesas, William S.; Bhat, P. N.; Chaplin, Vandiver; Van der Horst, Alexander J.; Meegan, Charles A.; Wilson-Hodge, Colleen A.; Fishman, Gerald J.; Fitzpatrick, Gerard; Gibby, Melissa; Giles, Misty; and others

    2012-03-01

    We present systematic spectral analyses of gamma-ray bursts (GRBs) detected by the Fermi Gamma-Ray Burst Monitor (GBM) during its first two years of operation. This catalog contains two types of spectra extracted from 487 GRBs, and by fitting four different spectral models, this results in a compendium of over 3800 spectra. The models were selected based on their empirical importance to the spectral shape of many GRBs, and the analysis performed was devised to be as thorough and objective as possible. We describe in detail our procedure and criteria for the analyses, and present the bulk results in the form of parameter distributions. This catalog should be considered an official product from the Fermi GBM Science Team, and the data files containing the complete results are available from the High-Energy Astrophysics Science Archive Research Center.

  14. The Fermi GBM Gamma-Ray Burst Spectral Catalog: The First Two Years

    NASA Astrophysics Data System (ADS)

    Goldstein, Adam; Burgess, J. Michael; Preece, Robert D.; Briggs, Michael S.; Guiriec, Sylvain; van der Horst, Alexander J.; Connaughton, Valerie; Wilson-Hodge, Colleen A.; Paciesas, William S.; Meegan, Charles A.; von Kienlin, Andreas; Bhat, P. N.; Bissaldi, Elisabetta; Chaplin, Vandiver; Diehl, Roland; Fishman, Gerald J.; Fitzpatrick, Gerard; Foley, Suzanne; Gibby, Melissa; Giles, Misty; Greiner, Jochen; Gruber, David; Kippen, R. Marc; Kouveliotou, Chryssa; McBreen, Sheila; McGlynn, Sinéad; Rau, Arne; Tierney, Dave

    2012-03-01

    We present systematic spectral analyses of gamma-ray bursts (GRBs) detected by the Fermi Gamma-Ray Burst Monitor (GBM) during its first two years of operation. This catalog contains two types of spectra extracted from 487 GRBs, and by fitting four different spectral models, this results in a compendium of over 3800 spectra. The models were selected based on their empirical importance to the spectral shape of many GRBs, and the analysis performed was devised to be as thorough and objective as possible. We describe in detail our procedure and criteria for the analyses, and present the bulk results in the form of parameter distributions. This catalog should be considered an official product from the Fermi GBM Science Team, and the data files containing the complete results are available from the High-Energy Astrophysics Science Archive Research Center.

  15. Swift Observations of Gamma-Ray Bursts and Supernovae

    NASA Astrophysics Data System (ADS)

    Gehrels, Neil; Cannizzo, John K.

    2007-10-01

    Swift is a NASA MIDEX mission with primary objective to study GRBs and use them to study the Universe. The mission was launched on 20 November 2004 and is detecting ~100 gamma-ray bursts (GRBs) each year. For almost every burst there is a prompt (within ~90 s) spacecraft repointing to give X-ray and UV/optical observations of the afterglow. Swift has already collected an impressive database including prompt emission to higher sensitivities than BATSE, uniform monitoring of afterglows, and rapid follow-up by other observatories notified through the GCN. In addition to providing extensive information on the traditional long GRBs, Swift has provided the first precise localizations of short GRBs, and has also demonstrated that supernova GRBs may comprise a yet third subset in a Venn diagram of isotropic energy versus intrinsic burst duration. The energies of these SN/GRBs are comensurate with short GRBs, while their durations are significantly longer. The acquisition of more short GRBS and of SN/GRBs over the coming years of the Swift mission will further enhance and delineate the statistical relationships among the different GRB types.

  16. Gamma-Ray Bursts and Their Links with Supernovae and Cosmology

    NASA Technical Reports Server (NTRS)

    Meszaros, Peter; Gehrels, Neil

    2012-01-01

    Gamma-ray bursts are the most luminous explosions in the Universe, whose origin and mechanism are the focus of intense interest. They appear connected to supernova remnants from massive stars or the merger of their remnants, and their brightness makes them temporarily detectable out to the largest distances yet explored in the universe. After pioneering breakthroughs from space and ground experiments, their study is entering a new phase with observations from the recently launched Fermi satellite, as well as the prospect of detections or limits from large neutrino and gravitational wave detectors. The interplay between such observations and theoretical models of gamma-ray bursts is reviewed, as well as their connections to supernovae and cosmology.

  17. Monte Carlo Radiation Transfer Simulations of Photospheric Emission in Long-duration Gamma-ray Bursts

    NASA Astrophysics Data System (ADS)

    Lazzati, Davide

    2016-10-01

    We present MCRaT, a Monte Carlo Radiation Transfer code for self-consistently computing the light curves and spectra of the photospheric emission from relativistic, unmagnetized jets. We apply MCRaT to a relativistic hydrodynamic simulation of a long-duration gamma-ray burst jet, and present the resulting light curves and time-dependent spectra for observers at various angles from the jet axis. We compare our results to observational results and find that photospheric emission is a viable model to explain the prompt phase of long-duration gamma-ray bursts at the peak frequency and above, but faces challenges when reproducing the flat spectrum below the peak frequency. We finally discuss possible limitations of these results both in terms of the hydrodynamics and the radiation transfer and how these limitations could affect the conclusions that we present.

  18. Gamma-ray bursts, QSOs and active galaxies.

    PubMed

    Burbidge, Geoffrey

    2007-05-15

    The similarity of the absorption spectra of gamma-ray burst (GRB) sources or afterglows with the absorption spectra of quasars (QSOs) suggests that QSOs and GRB sources are very closely related. Since most people believe that the redshifts of QSOs are of cosmological origin, it is natural to assume that GRBs or their afterglows also have cosmological redshifts. For some years a few of us have argued that there is much optical evidence suggesting a very different model for QSOs, in which their redshifts have a non-cosmological origin, and are ejected from low-redshift active galaxies. In this paper I extend these ideas to GRBs. In 2003, Burbidge (Burbidge 2003 Astrophys. J. 183, 112-120) showed that the redshift periodicity in the spectra of QSOs appears in the redshift of GRBs. This in turn means that both the QSOs and the GRB sources are similar objects ejected from comparatively low-redshift active galaxies. It is now clear that many of the GRBs of low redshift do appear in, or very near, active galaxies.A new and powerful result supporting this hypothesis has been produced by Prochter et al. (Prochter et al. 2006 Astrophys. J. Lett. 648, L93-L96). They show that in a survey for strong MgII absorption systems along the sightlines to long-duration GRBs, nearly every sightline shows at least one absorber. If the absorbers are intervening clouds or galaxies, only a small fraction should show absorption of this kind. The number found by Prochter et al. is four times higher than that normally found for the MgII absorption spectra of QSOs. They believe that this result is inconsistent with the intervening hypothesis and would require a statistical fluctuation greater than 99.1% probability. This is what we expect if the absorption is intrinsic to the GRBs and the redshifts are not associated with their distances. In this case, the absorption must be associated with gas ejected from the QSO. This in turn implies that the GRBs actually originate in comparatively low

  19. Gamma-ray bursts, QSOs and active galaxies.

    PubMed

    Burbidge, Geoffrey

    2007-05-15

    The similarity of the absorption spectra of gamma-ray burst (GRB) sources or afterglows with the absorption spectra of quasars (QSOs) suggests that QSOs and GRB sources are very closely related. Since most people believe that the redshifts of QSOs are of cosmological origin, it is natural to assume that GRBs or their afterglows also have cosmological redshifts. For some years a few of us have argued that there is much optical evidence suggesting a very different model for QSOs, in which their redshifts have a non-cosmological origin, and are ejected from low-redshift active galaxies. In this paper I extend these ideas to GRBs. In 2003, Burbidge (Burbidge 2003 Astrophys. J. 183, 112-120) showed that the redshift periodicity in the spectra of QSOs appears in the redshift of GRBs. This in turn means that both the QSOs and the GRB sources are similar objects ejected from comparatively low-redshift active galaxies. It is now clear that many of the GRBs of low redshift do appear in, or very near, active galaxies.A new and powerful result supporting this hypothesis has been produced by Prochter et al. (Prochter et al. 2006 Astrophys. J. Lett. 648, L93-L96). They show that in a survey for strong MgII absorption systems along the sightlines to long-duration GRBs, nearly every sightline shows at least one absorber. If the absorbers are intervening clouds or galaxies, only a small fraction should show absorption of this kind. The number found by Prochter et al. is four times higher than that normally found for the MgII absorption spectra of QSOs. They believe that this result is inconsistent with the intervening hypothesis and would require a statistical fluctuation greater than 99.1% probability. This is what we expect if the absorption is intrinsic to the GRBs and the redshifts are not associated with their distances. In this case, the absorption must be associated with gas ejected from the QSO. This in turn implies that the GRBs actually originate in comparatively low

  20. Gamma-ray burst constraints on the galactic frequency of extra-solar Oort clouds

    NASA Technical Reports Server (NTRS)

    Shull, J. Michael; Stern, S. Alan

    1994-01-01

    With the strong CGRO/BATSE evidence that most gamma-ray bursts do not come from galactic neutron stars, models involving the accretion of a comet onto a neutron star (NS) no longer appear to be strong contenders for explaining the majority of bursts. If this is the case, then it is worth asking whether the lack of an observed galactic gamma-ray burst population provides a useful constraint on the number of comets and comet clouds in the galaxy. Owing to the previously unrecognized structural weakness of cometary nuclei, we find the capture cross sections for comet-NS events to be much higher than previously published estimates, with tidal breakup at distances R(sub b) approximately equals to 4 x 10(exp 10) cm from the NS. As a result, impacts of comets onto field NS's penetrating the Oort Clouds of other stars are found to dominate all other galactic NS-comet capture rates by a factor of 100. This in turn predicts that if comet clouds are common, there should be a significant population of repeater sources with (1) a galactic distribution, (2) space-correlated repetition, and (3) a wide range of peak luminosities and luminosity time histories. If all main sequences stars have Oort Clouds like our own, we predict approximately 4000 such repeater sources in the Milky Way at any time, each repeating on timescales of months to years. Based on estimates of the sensitivity of the CGRO/BATSE instrument and assuming isotropic gamma-ray beaming from such events, we estimate that a population of approximately 20-200 of these galactic NS-Oort Cloud gamma-ray repeater sources should be detectable by CGRO. In addition, if giant planet formation is common in the galaxy, we estimate that the accretion of isolated comets injected to the interstellar medium by giant planet formation should produce an additional source of galactic, nonrepeating events. Comparing these estimates to the three to four soft gamma-ray repeater sources detected by BATSE, one is forced to conclude that (1

  1. Strong gamma-ray bursts observed by COMPTEL during its second year of operation

    NASA Technical Reports Server (NTRS)

    Kippen, R. M.; Connors, A.; Mcconnell, M.; Ryan, J.; Collmar, W.; Greiner, J.; Schonfelder, V.; Varendorff, M.; Hermsen, W.; Kuiper, L.

    1995-01-01

    The imaging Compton telescope (COMPTEL) onboard the Compton Gamma Ray Observatory (CGRO) can localize gamma-ray bursts occurring inside its approximately 1 sr field-of-view in the energy range from 0.75 to 30 MeV with location accuracy of 1 deg. Additional time-resolved spectral measurements in the energy range 0.1 to 10 MeV are made by individual COMPTEL 'burst' detectors. During its second year of operation COMPTEL observed several gamma-ray bursts. Locations of five strong bursts (including the rapidly imaged events GRB 930131 and GRB 930309) are presented here along with the findings from preliminary spectral analysis.

  2. The X-ray afterglows of Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Watson, D.

    2014-07-01

    Gamma-ray bursts are renowned for being the brightest explosions since the Big Bang. They are extremely useful probes with which to study the cosmos, primarily because of their bright afterglows. While the afterglow is panchromatic, the X-ray afterglow has proved extremely useful: the first localisations of both short and long-duration GRBs were made via their X-ray afterglows, an X-ray afterglow is associated with almost every burst, and spectroscopy of the X-ray afterglow informs us of the material close to the GRB as well as providing an unobscured measurement of the afterglow flux for virtually every GRB. We now have an incredibly rich database of ten years worth of GRBs and their afterglows from the Swift satellite, where its rapid autonomous repointing has allowed its X-Ray Telescope to be on target only minutes after the GRB. Here I will review what we have learnt from the X-ray afterglows of GRBs and describe some exciting recent results.

  3. Gamma-Ray Bursts: New Rulers to Measure the Universe

    NASA Astrophysics Data System (ADS)

    Ghirlanda, Giancarlo; Ghisellini, Gabriele; Lazzati, Davide; Firmani, Claudio

    2004-09-01

    The best measure of the universe should be done using a standard ``ruler'' at any redshift. Type Ia supernovae (SN Ia) probe the universe up to z~1.5, while the cosmic microwave background (CMB) primary anisotropies concern basically z~1000. Apparently, gamma-ray bursts (GRBs) are all but standard candles. However, their emission is collimated, and the collimation-corrected energy correlates tightly with the frequency at which most of the radiation of the prompt is emitted, as found by Ghirlanda et al. Through this correlation we can infer the burst energy accurately enough to probe the intermediate-redshift (z<10) universe. Using the best known 15 GRBs we find very encouraging results that emphasize the cosmological GRB role. A combined fit with SN Ia yields ΩM=0.37+/-0.10 and ΩΛ=0.87+/-0.23. Assuming in addition a flat universe, the parameters are constrained to be ΩM=0.29+/-0.04 and ΩΛ=0.71+/-0.05. GRBs accomplish the role of ``missing link'' between SN Ia and CMB primary anisotropies. They can provide a new insight on the cosmic effects of dark energy, complementary to the one supplied by CMB secondary anisotropies through the integrated Sachs-Wolfe effect. The unexpected standard candle cosmological role of GRBs motivates us with the most optimistic hopes for what can be obtained when the GRB-dedicated satellite, Swift, is launched.

  4. Observations of Gamma-Ray Bursts by HETE-2

    NASA Technical Reports Server (NTRS)

    Kawai, N.; Matsuoka, M.; Yoshida, A.; Shirasaki, Y.; Ricker, G.; Doty, J.; Vanderspek, R.; Crew, G.; Villasenor, J.; Atteia, J.-L.; Fenimore, E. E.; Galassi, M.; Lamb, D. Q.; Graziani, C.; Hurley, K.; Jernigan, J. G.; Woosley, S.; Martel, F.; Monnelly, G.; Prigozhin, G.; Olive, J.-F.; Dezalay, J.P.; Boer, M.; Pizzichini, G.; Cline, T.

    2004-01-01

    The High Energy Transient Explorer 2 (HETE-2), launched in October 2000, is currently localizing gamma-ray bursts (GRBs) at a rate of approximately 20/yr, many in real time. As of August 2003, HETE-2 had localized 43 GRBs; 16 localizations had led to the detection of an X-ray, optical, or radio afterglows. The prompt position notification of HETE-2 enabled probing the nature of so-called "dark bursts" for which no optical afterglows were found despite of accurate localizations. In some cases, the optical afterglow was found to be intrinsically faint , and its flux declined rapidly. In another case, the optical emission was likely to be extinguished by the dust in the vicinity of the GRB source. The bright afterglows of GRB021004 and GRB030329 were observed in unprecedented details by telescopes around the world. Strong evidence for the association of long GRBs with the core-collapse supernovae was found. HETE-2 has localized almost as many X-ray rich GRBs as classical GRBs. The nature of the X-ray rich GRBs and X-ray flashes have been studied systematically with HETE-2, and they are found to have many properties in common with the classical GRBs, suggesting that they are a single phenomenon.

  5. ON PARTICLE ACCELERATION RATE IN GAMMA-RAY BURST AFTERGLOWS

    SciTech Connect

    Sagi, Eran; Nakar, Ehud

    2012-04-10

    It is well known that collisionless shocks are major sites of particle acceleration in the universe, but the details of the acceleration process are still not well understood. The particle acceleration rate, which can shed light on the acceleration process, is rarely measured in astrophysical environments. Here, we use observations of gamma-ray burst (GRB) afterglows, which are weakly magnetized relativistic collisionless shocks in ion-electron plasma, to constrain the rate of particle acceleration in such shocks. We find, based on X-ray and GeV afterglows, an acceleration rate that is most likely very fast, approaching the Bohm limit, when the shock Lorentz factor is in the range of {Gamma} {approx} 10-100. In that case X-ray observations may be consistent with no amplification of the magnetic field in the shock upstream region. We examine the X-ray afterglow of GRB 060729, which is observed for 642 days showing a sharp decay in the flux starting about 400 days after the burst, when the shock Lorentz factor is {approx}5. We find that inability to accelerate X-ray-emitting electrons at late time provides a natural explanation for the sharp decay, and that also in that case acceleration must be rather fast, and cannot be more than a 100 times slower than the Bohm limit. We conclude that particle acceleration is most likely fast in GRB afterglows, at least as long as the blast wave is ultrarelativistic.

  6. GAMMA-RAY BURST FLARES: ULTRAVIOLET/OPTICAL FLARING. I

    SciTech Connect

    Swenson, C. A.; Roming, P. W. A.; De Pasquale, M.; Oates, S. R.

    2013-09-01

    We present a previously unused method for the detection of flares in gamma-ray burst (GRB) light curves and use this method to detect flares in the ultraviolet/optical. The algorithm makes use of the Bayesian Information Criterion to analyze the residuals of the fitted light curve, removing all major features, and to determine the statistically best fit to the data by iteratively adding additional ''breaks'' to the light curve. These additional breaks represent the individual components of the detected flares: T{sub start}, T{sub stop}, and T{sub peak}. We present the detection of 119 unique flaring periods detected by applying this algorithm to light curves taken from the Second Swift Ultraviolet/Optical Telescope (UVOT) GRB Afterglow Catalog. We analyzed 201 UVOT GRB light curves and found episodes of flaring in 68 of the light curves. For those light curves with flares, we find an average number of {approx}2 flares per GRB. Flaring is generally restricted to the first 1000 s of the afterglow, but can be observed and detected beyond 10{sup 5} s. More than 80% of the flares detected are short in duration with {Delta}t/t of <0.5. Flares were observed with flux ratios relative to the underlying light curve of between 0.04 and 55.42. Many of the strongest flares were also seen at greater than 1000 s after the burst.

  7. The SKA View of Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Burlon, D.; Ghirlanda, G.; van der Horst, A.; Murphy, T.; Wijers, R. A. M. J.; Gaensler, B.; Ghisellini, G.; Prandoni, I.

    2015-04-01

    Gamma-ray bursts (GRBs) are some of the most extreme events in the Universe. As well as providing a natural laboratory for investigating fundamental physical processes, they might trace the cosmic star formation rate up to extreme redshifts and probe the composition of the intergalactic medium over most of the Universe's history. Radio observations of GRBs play a key part in determining their physical properties, but currently they are largely limited to follow-up observations of $\\gamma$-ray-detected objects. The SKA will significantly increase our ability to study GRB afterglows, following up several hundred objects in the high frequency bands already in the "early science" implementation of the telescope. SKA1-MID Bands 4 (4 GHz) and 5 (9.2 GHz) will be particularly suited to the detection of these transient phenomena. The SKA will trace the peak of the emission, sampling the thick-to-thin transition of the evolving spectrum, and follow-up the afterglow down to the time the ejecta slow down to non-relativistic speeds. The full SKA will be able to observe the afterglows across the non-relativistic transition, for ~25% of the whole GRB population. This will allow us to get a significant insight into the true energy budget of GRBs, probe their surrounding density profile, and the shock microphysics. The SKA will also be able to routinely detect the elusive "orphan afterglow" emission, from the population of GRBs whose jets are not pointed towards the Earth. We expect that a deep all-sky survey such as SKA1-SUR will see around 300 orphan afterglows every week. We predict these detection to be >1000 when the full SKA telescope will be operational.

  8. BATSE Observations of Gamma-Ray Burst Spectra. Part 3; Low-Energy Behavior of Time-Averaged Spectra

    NASA Technical Reports Server (NTRS)

    Preece, R. D.; Briggs, M. S.; Pendleton, G. N.; Paciesas, W. S.; Matteson, J. L.; Band, D. L.; Skelton, R. T.; Meegan, C. A.

    1996-01-01

    We analyze time-averaged spectra from 86 bright gamma-ray bursts from the first 5 years of the Burst And Transient Source Experiment (BATSE) on board the Compton Gamma Ray Observatory to determine whether the lowest energy data are consistent with a standard spectra form fit to the data at all energies. The BATSE Spectroscopy Detectors have the capability to observe photons as low as 5 keV. Using the gamma-ray burst locations obtained with the BATSE Large Area Detectors, the Spectroscopy Detectors' low-energy response can be modeled accurately. This, together with a postlaunch calibration of the lowest energy Spectroscopy Detector discriminator channel, which can lie in the range 5-20 keV, allows spectral deconvolution over a broad energy range, approx. 5 keV to 2 MeV. The additional coverage allows us to search for evidence of excess emission, or for a deficit, below 20 keV. While no burst has a significant (greater than or equal to 3 sigma) deficit relative to a standard spectra model, we find that 12 bursts have excess low-energy emission, ranging between 1.2 and 5.8 times the model flux, that exceeds 5 sigma in significance. This is evidence for an additional low-energy spectral component in at least some bursts, or for deviations from the power-law spectral form typically used to model gamma-ray bursts at energies below 100 keV.

  9. High-precision source location of the 1978 November 19 gamma-ray burst

    NASA Technical Reports Server (NTRS)

    Cline, T. L.; Desai, U. D.; Teegarden, B. J.; Pizzichini, G.; Evans, W. D.; Klebesadel, R. W.; Laros, J. G.; Barat, C.; Hurley, K.; Niel, M.

    1981-01-01

    The celestial source location of the November 19, 1978, intense gamma ray burst has been determined from data obtained with the interplanetary gamma-ray sensor network by means of long-baseline wave front timing instruments. Each of the instruments was designed for studying events with observable spectra of approximately greater than 100 keV, and each provides accurate event profile timing in the several millisecond range. The data analysis includes the following: the triangulated region is centered at (gamma, delta) 1950 = (1h16m32s, -28 deg 53 arcmin), at -84 deg galactic latitude, where the star density is very low and the obscuration negligible. The gamma-ray burst source region, consistent with that of a highly polarized radio source described by Hjellming and Ewald (1981), may assist in the source modeling and may facilitate the understanding of the source process. A marginally identifiable X-ray source was also found by an Einstein Observatory investigation. It is concluded that the burst contains redshifted positron annihilation and nuclear first-excited iron lines, which is consistent with a neutron star origin.

  10. SEARCH FOR PROMPT NEUTRINO EMISSION FROM GAMMA-RAY BURSTS WITH ICECUBE

    SciTech Connect

    Aartsen, M. G.; Ackermann, M.; Berghaus, P.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Arguelles, C.; BenZvi, S.; Ahrens, M.; Altmann, D.; Anderson, T.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Tjus, J. Becker; Becker, K.-H.; and others

    2015-05-20

    We present constraints derived from a search of four years of IceCube data for a prompt neutrino flux from gamma-ray bursts (GRBs). A single low-significance neutrino, compatible with the atmospheric neutrino background, was found in coincidence with one of the 506 observed bursts. Although GRBs have been proposed as candidate sources for ultra-high-energy cosmic rays, our limits on the neutrino flux disfavor much of the parameter space for the latest models. We also find that no more than ∼1% of the recently observed astrophysical neutrino flux consists of prompt emission from GRBs that are potentially observable by existing satellites.

  11. Search for Prompt Neutrino Emission from Gamma-Ray Bursts with IceCube

    NASA Astrophysics Data System (ADS)

    Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Brayeur, L.; Bretz, H.-P.; Brown, A. M.; Buzinsky, N.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Christy, B.; Clark, K.; Classen, L.; Clevermann, F.; Coenders, S.; Cowen, D. F.; Cruz Silva, A. H.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; Dunkman, M.; Eagan, R.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Eisch, J.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Frantzen, K.; Fuchs, T.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Gier, D.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Goodman, J. A.; Góra, D.; Grant, D.; Gretskov, P.; Groh, J. C.; Groß, A.; Ha, C.; Haack, C.; Haj Ismail, A.; Hallen, P.; Hallgren, A.; Halzen, F.; Hanson, K.; Hebecker, D.; Heereman, D.; Heinen, D.; Helbing, K.; Hellauer, R.; Hellwig, D.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Homeier, A.; Hoshina, K.; Huang, F.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Japaridze, G. S.; Jero, K.; Jlelati, O.; Jurkovic, M.; Kaminsky, B.; Kappes, A.; Karg, T.; Karle, A.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kheirandish, A.; Kiryluk, J.; Kläs, J.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Koob, A.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Kriesten, A.; Krings, K.; Kroll, G.; Kroll, M.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larsen, D. T.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Lünemann, J.; Madsen, J.; Maggi, G.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meli, A.; Meures, T.; Miarecki, S.; Middell, E.; Middlemas, E.; Milke, N.; Miller, J.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Odrowski, S.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Paul, L.; Penke, Ö.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Pütz, J.; Quinnan, M.; Rädel, L.; Rameez, M.; Rawlins, K.; Redl, P.; Rees, I.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Riedel, B.; Robertson, S.; Rodrigues, J. P.; Rongen, M.; Rott, C.; Ruhe, T.; Ruzybayev, B.; Ryckbosch, D.; Saba, S. M.; Sander, H.-G.; Sandroos, J.; Santander, M.; Sarkar, S.; Schatto, K.; Scheriau, F.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schukraft, A.; Schulte, L.; Schulz, O.; Seckel, D.; Sestayo, Y.; Seunarine, S.; Shanidze, R.; Smith, M. W. E.; Soldin, D.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stanisha, N. A.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Taavola, H.; Taboada, I.; Tamburro, A.; Tepe, A.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Tosi, D.; Tselengidou, M.; Unger, E.; Usner, M.; Vallecorsa, S.; van Eijndhoven, N.; Vandenbroucke, J.; van Santen, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallraff, M.; Weaver, Ch.; Wellons, M.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Whitehorn, N.; Wichary, C.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Ziemann, J.; Zoll, M.

    2015-05-01

    We present constraints derived from a search of four years of IceCube data for a prompt neutrino flux from gamma-ray bursts (GRBs). A single low-significance neutrino, compatible with the atmospheric neutrino background, was found in coincidence with one of the 506 observed bursts. Although GRBs have been proposed as candidate sources for ultra-high-energy cosmic rays, our limits on the neutrino flux disfavor much of the parameter space for the latest models. We also find that no more than ˜1% of the recently observed astrophysical neutrino flux consists of prompt emission from GRBs that are potentially observable by existing satellites.

  12. Methodological problems with gamma-ray burst hardness/intensity correlations

    NASA Technical Reports Server (NTRS)

    Schaefer, Bradley E.

    1993-01-01

    The hardness and intensity are easily measured quantities for all gamma-ray bursts (GRBs), and so, many past and current studies have sought correlations between them. This Letter presents many serious methodological problems with the practical definitions for both hardness and intensity. These difficulties are such that significant correlations can be easily introduced as artifacts of the reduction procedure. In particular, cosmological models of GRBs cannot be tested with hardness/intensity correlations with current instrumentation and the time evolution of the hardness in a given burst may be correlated with intensity for reasons that are unrelated to intrinsic change in the spectral shape.

  13. A Non-Triggered Burst Supplement to the BATSE Gamma-Ray Burst Catalogs

    NASA Technical Reports Server (NTRS)

    Kommers, J.; Lewin, W. H.; Kouveliotou, C.; vanParadijs, J.; Pendleton, G. N.; Meegan, C. A.; Fishman, G. J.

    1998-01-01

    The Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory detects gamma-ray bursts (GRBs) with a real-time burst detection (or "trigger") system running onboard the spacecraft. Under some circumstances, however, a GRB may not activate the onboard burst trigger. For example, the burst may be too faint to exceed the onboard detection threshold, or it may occur while the onboard burst trigger is disabled for technical reasons. This paper is a catalog of such "non-triggered" GRBs that were detected in a search of the archival continuous data from BATSE. It lists 873 non-triggered bursts that were recorded between 1991 December 9.0 and 1997 December 17.0. For each burst, the catalog gives an estimated source direction, duration, peak flux, and fluence. Similar data are presented for 50 additional bursts of unknown origin that were detected in the 25-50 keV range; these events may represent the low-energy "tail" of the GRB spectral distribution. This catalog increases the number of GRBs detected with BATSE by 48% during the time period covered by the search.

  14. Gamma ray burst source locations with the Ulysses/Compton/PVO network

    NASA Technical Reports Server (NTRS)

    Cline, T. L.; Hurley, K. C.; Boer, M.; Sommer, M.; Niel, M.; Fishman, G. J.; Kouveliotou, C.; Meegan, C. A.; Paciesas, W. S.; Wilson, R. B.

    1992-01-01

    The new interplanetary gamma-ray burst network will determine source fields with unprecedented accuracy. The baseline of the Ulysses mission and the locations of Pioneer-Venus Orbiter and of Mars Observer will ensure precision to a few tens of arc seconds. Combined with the event phenomenologies of the Burst and Transient Source Experiment on Compton Observatory, the source locations to be achieved with this network may provide a basic new understanding of the puzzle of gamma ray bursts.

  15. Gamma-Ray bursts: accumulating afterglow implications, progenitor clues, and prospects.

    PubMed

    Mészáros, P

    2001-01-01

    Gamma-ray bursts (GRBs) are sudden, intense flashes of gamma rays that, for a few blinding seconds, light up in an otherwise fairly dark gamma-ray sky. They are detected at the rate of about once a day, and while they are on, they outshine every other gamma-ray source in the sky, including the sun. Major advances have been made in the last 3 or 4 years, including the discovery of slowly fading x-ray, optical, and radio afterglows of GRBs, the identification of host galaxies at cosmological distances, and evidence showing that many GRBs are associated with star-forming regions and possibly supernovae. Progress has been made in understanding how the GRB and afterglow radiation arises in terms of a relativistic fireball shock model. These advances have opened new vistas and questions on the nature of the central engine, the identity of their progenitors, the effects of the environment, and their possible gravitational wave, cosmic ray, and neutrino luminosity. The debates on these issues indicate that GRBs remain among the most mysterious puzzles in astrophysics. PMID:11141551

  16. Gamma-Ray bursts: accumulating afterglow implications, progenitor clues, and prospects.

    PubMed

    Mészáros, P

    2001-01-01

    Gamma-ray bursts (GRBs) are sudden, intense flashes of gamma rays that, for a few blinding seconds, light up in an otherwise fairly dark gamma-ray sky. They are detected at the rate of about once a day, and while they are on, they outshine every other gamma-ray source in the sky, including the sun. Major advances have been made in the last 3 or 4 years, including the discovery of slowly fading x-ray, optical, and radio afterglows of GRBs, the identification of host galaxies at cosmological distances, and evidence showing that many GRBs are associated with star-forming regions and possibly supernovae. Progress has been made in understanding how the GRB and afterglow radiation arises in terms of a relativistic fireball shock model. These advances have opened new vistas and questions on the nature of the central engine, the identity of their progenitors, the effects of the environment, and their possible gravitational wave, cosmic ray, and neutrino luminosity. The debates on these issues indicate that GRBs remain among the most mysterious puzzles in astrophysics.

  17. A New Variability Parameter for Gamma-Ray Burst Time Profiles

    NASA Technical Reports Server (NTRS)

    Lestrade, John Patrick

    1994-01-01

    We present a parameter that measures the structure of gamma-ray burst time profiles. This parameter is based on the statistics of runs and is a good measure of time profile variability. It is shown to be independent of burst duration and less sensitive to burst distance than algorithms that depend directly on the intensity of a burst.

  18. Closest Gamma Ray Burst Providing Scientists With Crucial Test for Burst Physics

    NASA Astrophysics Data System (ADS)

    2003-05-01

    The closest Gamma Ray Burst (GRB) yet known is providing astronomers with a rare opportunity to gain information vital to understanding these powerful cosmic explosions. Extremely precise radio-telescope observations already have ruled out one proposed mechanism for the bursts. "This is the closest and brightest GRB we've ever seen, and we can use it to decipher the physics of how these bursts work," said Greg Taylor of the National Radio Astronomy Observatory (NRAO) in Socorro, NM. Taylor worked with Dale Frail, also of the NRAO, along with Prof. Shri Kulkarni and graduate student Edo Berger of Caltech in studying a GRB detected on March 29, 2003. The scientists presented their findings to the American Astronomical Society's meeting in Nashville, TN. VLBA image of GRB 030329 VLBA IMAGE of GRB 030329 CREDIT: NRAO/AUI/NSF (Click on Image for Larger Version) Taylor and Frail used the National Science Foundation's (NSF) Very Long Baseline Array (VLBA) and other radio telescopes to study the burst, known as GRB 030329. In a series of observations from April 1 to May 19, they determined the size of the expanding "fireball" from the burst and measured its position in the sky with great precision. At a distance of about 2.6 billion light-years, GRB 030329 is hardly next door. However, compared to other GRBs at typical distances of 8-10 billion light-years, it presents an easier target for study. "We only expect to see one burst per decade this close," said Frail. The precise measurement of the object's position allowed the scientists to show that one theoretical model for GRBs can be ruled out. This model, proposed in 2000, says that the radio-wave energy emitted by the GRB comes from "cannonballs" of material shot from the explosion at extremely high speeds. "The 'cannonball model' predicted that we should see the radio-emitting object move across the sky by a specific amount. We have not seen that motion," Taylor said. The currently standard "fireball model" of GRBs

  19. A Nontriggered Burst Supplement to the BATSE Gamma-Ray Burst Catalogs

    NASA Technical Reports Server (NTRS)

    Kommers, Jefferson M.; Lewin, Walter H. G.; Kouveliotou, Chryssa; vanParadijs, Jan; Pendleton, Geoffrey N.; Meegan, Charles A.; Fishman, Gerald J.

    2001-01-01

    The Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory detects gamma-ray bursts (GRBs) with a real-time burst detection (or "trigger") system running onboard the spacecraft. Under some circumstances, however, a GRB may not activate the on-board burst trigger. For example, the burst may be too faint to exceed the on-board detection threshold, or it may occur while the on-board burst trigger is disabled for technical reasons. This paper describes a catalog of 873 "nontriggered" GRBs that were detected in a search of the archival continuous data from BATSE recorded between 1991 December 9.0 and 1997 December 17.0. For each burst, the catalog gives an estimated source direction, duration, peak flux, and fluence. Similar data are presented for 50 additional bursts of unknown origin that were detected in the 25-50 keV range; these events may represent the low-energy "tail" of the GRB spectral distribution. This catalog increases the number of GRBs detected with BATSE by 48% during the time period covered by the search.

  20. BeppoSAX/Ulysses observations of cosmic gamma-ray bursts

    SciTech Connect

    Hurley, K.; Cline, T.; Frontera, F.; Dal Fiume, D.; Orlandini, M.

    1998-05-16

    BeppoSAX has been added to the 3rd Interplanetary Network of gamma-ray burst detectors. Of the {approx_equal}8 events observed to date by Ulysses and the BeppoSAX Gamma-Ray Burst Monitor (GRBM), four have been localized by triangulation, resulting in annuli whose 3 {sigma} widths are as small as 63{sup ''}. These data give error boxes whose sizes can be as much as an order of magnitude smaller than those obtained with the SAX Wide Field Camera (WFC). They can be used to confirm the association between fading X-ray and optical sources and gamma-ray bursts.

  1. Effects of Cosmic Infrared Background on High Energy Delayed Gamma-Rays From Gamma-Ray Bursts

    SciTech Connect

    Murase, Kohta; Asano, Katsuaki; Nagataki, Shigehiro; /Kyoto U., Yukawa Inst., Kyoto /KIPAC, Menlo Park

    2007-04-06

    Regenerated high energy emissions from gamma-ray bursts (GRBs) are studied in detail. If the primary emission spectrum extends to TeV range, these very high energy photons will be absorbed by the cosmic infrared background (CIB). The created high energy electron-positron pairs up-scatter not only cosmic microwave background (CMB) photons but also CIB photons, and secondary photons are generated in the GeV-TeV range. These secondary delayed photons may be observed in the near future, and useful for a consistency check for the primary spectra and GRB physical parameters. The up-scattered CIB photons cannot be neglected for low redshift bursts and/or GRBs with a relatively low maximum photon energy. The secondary gamma-rays also give us additional information on the CIB, which is uncertain in observations so far.

  2. ARE LOW-LUMINOSITY GAMMA-RAY BURSTS GENERATED BY RELATIVISTIC JETS?

    SciTech Connect

    Bromberg, Omer; Piran, Tsvi; Nakar, Ehud

    2011-10-01

    Low-luminosity gamma-ray bursts (ll-GRBs) constitute a subclass of GRBs that play a central role in the GRB-supernova connection. While ll-GRBs differ from typical long GRBs (LGRBs) in many aspects, they also share some common features. Therefore, the question whether the gamma-ray emission of ll-GRBs and LGRBs has a common origin is of great interest. Here we address this question by testing whether ll-GRBs, like LGRBs according to the Collapsar model, can be generated by relativistic jets that punch holes in the envelopes of their progenitor stars. The Collapsar model predicts that the durations of most observed bursts will be comparable to, or longer than, the time it takes the jets to break out of the star. We calculate the jet breakout times of ll-GRBs and compare them to the observed durations. We find that there is a significant excess of ll-GRBs with durations that are much shorter than the jet breakout time and that these are inconsistent with the Collapsar model. We conclude that the processes that dominate the gamma-ray emission of ll-GRBs and of LGRBs are most likely fundamentally different.

  3. Constraints on the luminosity function of gamma-ray bursts detected by BATSE

    NASA Technical Reports Server (NTRS)

    Horack, J. M.; Emslie, A. G.; Meegan, C. A.

    1994-01-01

    We have utilized the integral moment analysis technique of Horack & Emslie to extract information on the allowable form of the luminosity function for gamma-ray bursts observed by Burst and Transient Source Experiment (BATSE). Using the general properties of moments, we are able to derive constraints on the range of luminosity from which the gamma-ray bursts must be sampled. These constraints are independent of the form of the radial distribution of the gamma-ray bursts, and depend only on the assumptions that space is Euclidean and that the luminosity function phi(L) is distance independent. For power-law luminosity functions of the form phi(L) = A(sub 0)L(exp -alpha), we find that the range of luminosity from which 80% of the gamma-ray bursts must be sampled cannot exceed approximately 6.5, with a 3 sigma upper limit of 12-15, regardless of the value of alpha.

  4. Time-resolved Spectroscopy of the Three Brightest and Hardest Short Gamma-ray Bursts Observed with the Fermi Gamma-ray Burst Monitor

    NASA Astrophysics Data System (ADS)

    Guiriec, Sylvain; Briggs, Michael S.; Connaugthon, Valerie; Kara, Erin; Daigne, Frédéric; Kouveliotou, Chryssa; van der Horst, Alexander J.; Paciesas, William; Meegan, Charles A.; Bhat, P. N.; Foley, Suzanne; Bissaldi, Elisabetta; Burgess, Michael; Chaplin, Vandiver; Diehl, Roland; Fishman, Gerald; Gibby, Melissa; Giles, Misty M.; Goldstein, Adam; Greiner, Jochen; Gruber, David; von Kienlin, Andreas; Kippen, Marc; McBreen, Sheila; Preece, Robert; Rau, Arne; Tierney, Dave; Wilson-Hodge, Colleen

    2010-12-01

    From 2008 July to 2009 October, the Gamma-ray Burst Monitor (GBM) on board the Fermi Gamma-ray Space Telescope has detected 320 gamma-ray bursts (GRBs). About 20% of these events are classified as short based on their T 90 duration below 2 s. We present here for the first time time-resolved spectroscopy at timescales as short as 2 ms for the three brightest short GRBs observed with GBM. The time-integrated spectra of the events deviate from the Band function, indicating the existence of an additional spectral component, which can be fit by a power law with index ~-1.5. The time-integrated E peak values exceed 2 MeV for two of the bursts and are well above the values observed in the brightest long GRBs. Their E peak values and their low-energy power-law indices (α) confirm that short GRBs are harder than long ones. We find that short GRBs are very similar to long ones, but with light curves contracted in time and with harder spectra stretched toward higher energies. In our time-resolved spectroscopy analysis, we find that the E peak values range from a few tens of keV up to more than 6 MeV. In general, the hardness evolutions during the bursts follow their flux/intensity variations, similar to long bursts. However, we do not always see the E peak leading the light-curve rises and confirm the zero/short average light-curve spectral lag below 1 MeV, already established for short GRBs. We also find that the time-resolved low-energy power-law indices of the Band function mostly violate the limits imposed by the synchrotron models for both slow and fast electron cooling and may require additional emission processes to explain the data. Finally, we interpreted these observations in the context of the current existing models and emission mechanisms for the prompt emission of GRBs.

  5. PROGRESS ON MARGIE, A GAMMA-RAY BURST ULTRA-LONG DURATION BALLOON MISSION

    SciTech Connect

    D. BAND; ET AL

    2001-02-01

    We are designing the Minute of Arc Resolution Gamma-ray Imaging Experiment (MARGIE) as a 100 day Ultra Long Duration Balloon (ULDB) mission to: (1) detect and localize gamma-ray bursts; and (2) survey the hard X-ray sky. Major advances in designing the CZT detectors increase the sensitivity to higher energy. Design of the gondola has also progressed.

  6. The NASA/Marshall Space Flight Center program in gamma-ray burst astronomy

    NASA Technical Reports Server (NTRS)

    Fishman, G. J.

    1981-01-01

    The research program in gamma-ray burst astronomy at the NASA/Marshall Space Flight Center is described. Large-area scintillation detector arrays have been flown on high-altitude balloons, and an array is being developed for the Gamma-Ray Observatory. The design of these detectors is described along with results obtained from previous balloon flights.

  7. Limits on neutrino emission from gamma-ray bursts with the 40 string IceCube detector.

    PubMed

    Abbasi, R; Abdou, Y; Abu-Zayyad, T; Adams, J; Aguilar, J A; Ahlers, M; Andeen, K; Auffenberg, J; Bai, X; Baker, M; Barwick, S W; Bay, R; Bazo Alba, J L; Beattie, K; Beatty, J J; Bechet, S; Becker, J K; Becker, K-H; Benabderrahmane, M L; BenZvi, S; Berdermann, J; Berghaus, P; Berley, D; Bernardini, E; Bertrand, D; Besson, D Z; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Bose, D; Böser, S; Botner, O; Braun, J; Brown, A M; Buitink, S; Carson, M; Chirkin, D; Christy, B; Clem, J; Clevermann, F; Cohen, S; Colnard, C; Cowen, D F; D'Agostino, M V; Danninger, M; Daughhetee, J; Davis, J C; De Clercq, C; Demirörs, L; Depaepe, O; Descamps, F; Desiati, P; de Vries-Uiterweerd, G; DeYoung, T; Díaz-Vélez, J C; Dierckxsens, M; Dreyer, J; Dumm, J P; Ehrlich, R; Eisch, J; Ellsworth, R W; Engdegård, O; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Foerster, M M; Fox, B D; Franckowiak, A; Franke, R; Gaisser, T K; Gallagher, J; Geisler, M; Gerhardt, L; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Goodman, J A; Grant, D; Griesel, T; Gross, A; Grullon, S; Gurtner, M; Ha, C; Hallgren, A; Halzen, F; Han, K; Hanson, K; Heinen, D; Helbing, K; Herquet, P; Hickford, S; Hill, G C; Hoffman, K D; Homeier, A; Hoshina, K; Hubert, D; Huelsnitz, W; Hülss, J-P; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobsen, J; Japaridze, G S; Johansson, H; Joseph, J M; Kampert, K-H; Kappes, A; Karg, T; Karle, A; Kelley, J L; Kemming, N; Kenny, P; Kiryluk, J; Kislat, F; Klein, S R; Köhne, J-H; Kohnen, G; Kolanoski, H; Köpke, L; Kopper, S; Koskinen, D J; Kowalski, M; Kowarik, T; Krasberg, M; Krings, T; Kroll, G; Kuehn, K; Kuwabara, T; Labare, M; Lafebre, S; Laihem, K; Landsman, H; Larson, M J; Lauer, R; Lehmann, R; Lünemann, J; Madsen, J; Majumdar, P; Marotta, A; Maruyama, R; Mase, K; Matis, H S; Meagher, K; Merck, M; Mészáros, P; Meures, T; Middell, E; Milke, N; Miller, J; Montaruli, T; Morse, R; Movit, S M; Nahnhauer, R; Nam, J W; Naumann, U; Niessen, P; Nygren, D R; Odrowski, S; Olivas, A; Olivo, M; O'Murchadha, A; Ono, M; Panknin, S; Paul, L; Pérez de los Heros, C; Petrovic, J; Piegsa, A; Pieloth, D; Porrata, R; Posselt, J; Price, P B; Prikockis, M; Przybylski, G T; Rawlins, K; Redl, P; Resconi, E; Rhode, W; Ribordy, M; Rizzo, A; Rodrigues, J P; Roth, P; Rothmaier, F; Rott, C; Ruhe, T; Rutledge, D; Ruzybayev, B; Ryckbosch, D; Sander, H-G; Santander, M; Sarkar, S; Schatto, K; Schmidt, T; Schoenwald, A; Schukraft, A; Schultes, A; Schulz, O; Schunck, M; Seckel, D; Semburg, B; Seo, S H; Sestayo, Y; Seunarine, S; Silvestri, A; Slipak, A; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stephens, G; Stezelberger, T; Stokstad, R G; Stoyanov, S; Strahler, E A; Straszheim, T; Sullivan, G W; Swillens, Q; Taavola, H; Taboada, I; Tamburro, A; Tarasova, O; Tepe, A; Ter-Antonyan, S; Tilav, S; Toale, P A; Toscano, S; Tosi, D; Turčan, D; van Eijndhoven, N; Vandenbroucke, J; Van Overloop, A; van Santen, J; Vehring, M; Voge, M; Voigt, B; Walck, C; Waldenmaier, T; Wallraff, M; Walter, M; Weaver, C; Wendt, C; Westerhoff, S; Whitehorn, N; Wiebe, K; Wiebusch, C H; Williams, D R; Wischnewski, R; Wissing, H; Wolf, M; Woschnagg, K; Xu, C; Xu, X W; Yodh, G; Yoshida, S; Zarzhitsky, P

    2011-04-01

    IceCube has become the first neutrino telescope with a sensitivity below the TeV neutrino flux predicted from gamma-ray bursts if gamma-ray bursts are responsible for the observed cosmic-ray flux above 10(18)  eV. Two separate analyses using the half-complete IceCube detector, one a dedicated search for neutrinos from pγ interactions in the prompt phase of the gamma-ray burst fireball and the other a generic search for any neutrino emission from these sources over a wide range of energies and emission times, produced no evidence for neutrino emission, excluding prevailing models at 90% confidence. PMID:21561178

  8. Terrestrial Gamma-ray Flash (TGF) Observations with the Gamma-ray Burst Monitor on the Fermi Observatory

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    2009-01-01

    Terrestrial Gamma-ray Flashes (TGFs) have now been detected with four different orbiting spacecraft. The latest observations are being made with the scintillation detectors of Gamma-ray Burst Monitor (GBM) on the Fermi Gamma-ray Space Telescope Observatory (Fermi). Although this experiment was designed and optimized for the observation of cosmic gamma-ray bursts (GRBs), it has unprecedented capabilities for TGF observations, surpassing those of the experiment that discovered TGFs, the BATSE experiment on the Compton Gamma-ray Observatory. Launched in June 2008 from the Kennedy Space Center, the Fermi-GBM has been detecting about one TGF every four weeks. The thick bismuth germinate (BGO) scintillation detectors of the GBM have now observed photon energies from TGFs at energies up to approx.40 MeV. Individual photons are detected with an absolute timing accuracy of 2 microsec. Unlike the BATSE instrument, the GBM data system allows higher counting rates to be recorded and deadtime characteristics are well-known and correctable; thus the saturation effects seen with BATSE are avoided. TGF pulses as narrow as approx.0.1ms have been observed with the GBM. Like BATSE (and unlike RHESSI) an on-board trigger is required to detect TGFs. The minimum time window for this trigger is 16ms. A trigger window this wide greatly reduces the number of detected TGFs, since they most often have a much shorter duration than this window, thus reducing the signal-to-background. New on-board trigger algorithms based on detected photon energies are about to be implemented; this should increase the number of TGF triggers. High-energy spectra from TGFs observed with Fermi-GBM will be described.

  9. Gamma-ray burst polarization via Compton scattering process

    SciTech Connect

    Chang, Zhe; Lin, Hai-Nan; Jiang, Yunguo

    2014-03-01

    Synchrotron radiation and Compton scattering are widely accepted as the most likely emission mechanisms of some astrophysical phenomena, such as gamma-ray bursts (GRBs) and active galactic nuclei. The measurement of the polarization of photons provides a useful tool to distinguish different emission mechanisms and structures of the emission region. Based on the differential cross section of a polarized photon scattered by an unpolarized electron of any initial momentum, we derive an analytical formula of polarization for beamed photons scattered by isotropic electrons with a power-law distribution. Numerical calculations are carried out in four special cases: electrons at rest, Thomson limit, head-on collision, and monochromatic electrons. It is found that the maximum polarization can be as high as 100% for low energy photons, if the electrons are at rest. Although polarization is highly suppressed due to the isotropic electrons, a maximum value of ∼10%-20% can still be achieved. The Compton scattering process can be used to explain the polarization of GRB 041219A and GRB 100826A.

  10. COSMOLOGICAL PARAMETERS FROM SUPERNOVAE ASSOCIATED WITH GAMMA-RAY BURSTS

    SciTech Connect

    Li, Xue; Hjorth, Jens; Wojtak, Radosław

    2014-11-20

    We report estimates of the cosmological parameters Ω {sub m} and Ω{sub Λ} obtained using supernovae (SNe) associated with gamma-ray bursts (GRBs) at redshifts up to 0.606. Eight high-fidelity GRB-SNe with well-sampled light curves across the peak are used. We correct their peak magnitudes for a luminosity-decline rate relation to turn them into accurate standard candles with dispersion σ = 0.18 mag. We also estimate the peculiar velocity of the low-redshift host galaxy of SN 1998bw using constrained cosmological simulations. In a flat universe, the resulting Hubble diagram leads to best-fit cosmological parameters of (Ω{sub m},Ω{sub Λ})=(0.58{sub −0.25}{sup +0.22},0.42{sub −0.22}{sup +0.25}). This exploratory study suggests that GRB-SNe can potentially be used as standardizable candles to high redshifts to measure distances in the universe and constrain cosmological parameters.

  11. Gamma-Ray Burst Associated Supernovae: Outliers Become Mainstream

    NASA Technical Reports Server (NTRS)

    Pian, E.; Mazzali, P.; Masetti, N.; Ferrero, P.; Klose, S.; Palazzi, E.; Ramirez-Ruiz, E.; Woosley, S. E.; Kouveliotou, C.; Deng, J.

    2006-01-01

    During the last eight years a clear connection has been established-between the two most powerful explosions in our Universe: core-collapse supernovae (SNe) and long gamma ray bursts (GRBs). Theory suggests4 that every GRB is simultaneously accompanied by a SN, but in only a few nearby cases have these two phenomena been observed together. We report the discovery and daily monitoring of SN 2006aj associated with the GRB 060218. Because the event was the second closest GRB, both explosions could be examined in detail. GRB 060218 had an unusually soft spectrum, long duration, and a total energy 100 to 1000 times less than most other GRBs. Yet SN 2006aj was similar to those in other GRBs, aside from rising more rapidly and being approximately 40% fainter. Taken together, these observations suggest that GRBs have two components: a broad, energetic, but only mildly relativistic outflow that makes a SN, and a more narrowly focused, highly relativistic jet responsible for the GRB. The properties of the GRB jet apparently vary greatly from event to event, while the broad SN outflow varies much less. Low energy transients like GRB 060218 may be the most common events in the Universe.

  12. Fermi and Swift Gamma-Ray Burst Afterglow Population Studies

    NASA Technical Reports Server (NTRS)

    Racusin, J. L.; Oates, S. R.; Schady, P.; Burrows, D. N.; de Pasquale, M.; Donato, D.; Gehrels, N.; Koch, S.; McEnery, J.; Piran, T.; Roming, P.; Sakamoto, T.; Swenson, C.; Virgili, F.; Wanderman, D.; Zhang, B.

    2011-01-01

    The new and extreme population of GRBs detected by Fermi-LAT shows several new features in high energy gamma-rays that are providing interesting and unexpected clues into GRB prompt and afterglow emission mechanisms. Over the last 6 years, it has been Swift that has provided the robust data set of UV/optical and X-ray afterglow observations that opened many windows into components of GRB emission structure. The relationship between the LAT GRBs and the well studied, fainter, less energetic GRBs detected by Swift-BAT is only beginning to be explored by multiwavelength studies. We explore the large sample of GRBs detected by BAT only, BAT and Fermi-GBM, and GBM and LAT, focusing on these samples separately in order to search for statistically significant differences between the populations, using only those GRBs with measured redshifts in order to physically characterize these objects. We disentangle which differences are instrumental selection effects versus intrinsic properties, in order to better understand the nature of the special characteristics of the LAT bursts.

  13. Fermi and Swift Gamma-Ray Burst Afterglow Population Studies

    NASA Technical Reports Server (NTRS)

    Racusin, Judith I.

    2011-01-01

    The new and extreme population of GRBs detected by Fermi-LAT shows several new features in high energy gamma-rays that are providing interesting and unexpected clues into GRB prompt and afterglow emission mechanisms. Over the last 6 years, it has been Swift that has provided the robust data set of UV/optical and X-ray afterglow observations that opened many windows into components of GRB emission structure. The relationship between the LAT GRBs and the well studied, fainter, less energetic GRBs detected by Swift-BAT is only beginning to be explored by multi-wavelength studies. We explore the large sample of GRBs detected by BAT only, BAT and Fermi-GBM, and GBM and LAT, focusing on these samples separately in order to search for statistically significant differences between the populations, using only those GRBs with measured redshifts in order to physically characterize these objects. We disentangle which differences are instrumental selection effects versus intrinsic properties, in order to better understand the nature of the special characteristics of the LAT bursts.

  14. Fermi and Swift Gamma-Ray Burst Afterglow Population Studies

    NASA Technical Reports Server (NTRS)

    Racusin, Judith L.; Oates, S. R.; Schady, P.; Burrows, D. N.; dePasquale, M.; Donato, D.; Gehrels, N.; Koch, S.; McEnery, J.; Piran, T.; Roming, P.; Sakamoto, T.; Swenson, C.; Troja, E.; Vasileiou, V.; Virgili, F.; Wanderman, D.; Zhang, B.

    2011-01-01

    The new and extreme population of GRBs detected by Fermi -LAT shows several new features in high energy gamma-rays that are providing interesting and unexpected clues into GRB prompt and afterglow emission mechanisms. Over the last 6 years, it has been Swift that has provided the robust dataset of UV/optical and X-ray afterglow observations that opened many windows into components of GRB emission structure. The relationship between the LAT detected GRBs and the well studied, fainter, less energetic GRBs detected by Swift -BAT is only beginning to be explored by multi-wavelength studies. We explore the large sample of GRBs detected by BAT only, BAT and Fermi -GBM, and GBM and LAT, focusing on these samples separately in order to search for statistically significant differences between the populations, using only those GRBs with measured redshifts in order to physically characterize these objects. We disentangle which differences are instrumental selection effects versus intrinsic properties, in order to better understand the nature of the special characteristics of the LAT bursts.

  15. MAGNETIZATION DEGREE OF GAMMA-RAY BURST FIREBALLS: NUMERICAL STUDY

    SciTech Connect

    Harrison, Richard; Kobayashi, Shiho

    2013-08-01

    The relative strength between forward and reverse shock emission in early gamma-ray burst (GRB) afterglow reflects that of magnetic energy densities in the two shock regions. We numerically show that with the current standard treatment, the fireball magnetization is underestimated by up to two orders of magnitude. This discrepancy is especially large in the sub-relativistic reverse shock regime (i.e., the thin shell and intermediate regime), where most optical flashes were detected. We provide new analytic estimates of the reverse shock emission based on a better shock approximation, which well describe numerical results in the intermediate regime. We show that the reverse shock temperature at the onset of afterglow is constant, ( {Gamma}-bar{sub d}-1){approx}8 Multiplication-Sign 10{sup -2}, when the dimensionless parameter {xi}{sub 0} is more than several. Our approach is applied to case studies of GRB 990123 and 090102, and we find that magnetic fields in the fireballs are even stronger than previously believed. However, these events are still likely to be due to a baryonic jet with {sigma} {approx} 10{sup -3} for GRB 990123 and {approx}3 Multiplication-Sign 10{sup -4} to 3 for GRB 090102.

  16. Gamma-ray burst flares: X-ray flaring. II

    SciTech Connect

    Swenson, C. A.; Roming, P. W. A.

    2014-06-10

    We present a catalog of 498 flaring periods found in gamma-ray burst (GRB) light curves taken from the online Swift X-Ray Telescope GRB Catalogue. We analyzed 680 individual light curves using a flare detection method developed and used on our UV/optical GRB Flare Catalog. This method makes use of the Bayesian Information Criterion to analyze the residuals of fitted GRB light curves and statistically determines the optimal fit to the light curve residuals in an attempt to identify any additional features. These features, which we classify as flares, are identified by iteratively adding additional 'breaks' to the light curve. We find evidence of flaring in 326 of the analyzed light curves. For those light curves with flares, we find an average number of ∼1.5 flares per GRB. As with the UV/optical, flaring in our sample is generally confined to the first 1000 s of the afterglow, but can be detected to beyond 10{sup 5} s. Only ∼50% of the detected flares follow the 'classical' definition of Δt/t ≤ 0.5, with many of the largest flares exceeding this value.

  17. The Optical Afterglow of a Short Gamma-ray Burst

    NASA Technical Reports Server (NTRS)

    Hjorth, Jens; Watson, Darach; Flynbo, Johan P.U.; Price, Paul A.; Jensen, Brian L.; Jorgensen, Uffe G.; Kubas, Daniel; Gorosabel, Javier; Jakobssonk, Pall; Sollerman, Jesper

    2005-01-01

    It has long been known that there are two classes of gamma-ray bursts (GRBs), principally distinguished by their durations. The breakthrough in our understanding of long-duration GRBs (greater than 2 seconds in duration), that ultimately linked them with energetic Type Ic supernovae, came about from the discovery of their long-lived X-ray and optical "afterglow", when precise and rapid localizations of the sources could finally be obtained. Recently, X-ray localizations have become available for short (less than 2 seconds in duration) GRBs, a hitherto elusive GRB population, that has evaded optical detection for more than thirty years. Here we report the discovery of transient optical emission (R approximately 23 mag) associated with a short GRB. This first short GRB afterglow is localized with sub-arcsecond accuracy onto the outskirts of a blue dwarf galaxy. Unless the optical and X-ray afterglow arise from different mechanisms our observations 33 h after the GRB suggest that, analogously to long GRBs, we observe synchrotron emission from ultrarelativistic ejecta (ZZZ CAN WE LIMIT GAMMA?). In contrast, we did not detect a bright supernova, as found in most nearby long GRB afterglows, which suggests a different origidstrongly constrain the nature of the short GRB progenitors.

  18. Broadband turbulent spectra in gamma-ray burst light curves

    SciTech Connect

    Van Putten, Maurice H. P. M.; Guidorzi, Cristiano; Frontera, Filippo

    2014-05-10

    Broadband power density spectra offer a window to understanding turbulent behavior in the emission mechanism and, at the highest frequencies, in the putative inner engines powering long gamma-ray bursts (GRBs). We describe a chirp search method alongside Fourier analysis for signal detection in the Poisson noise-dominated, 2 kHz sampled, BeppoSAX light curves. An efficient numerical implementation is described in O(Nnlog n) operations, where N is the number of chirp templates and n is the length of the light-curve time series, suited for embarrassingly parallel processing. For the detection of individual chirps over a 1 s duration, the method is one order of magnitude more sensitive in signal-to-noise ratio than Fourier analysis. The Fourier-chirp spectra of GRB 010408 and GRB 970816 show a continuation of the spectral slope with up to 1 kHz of turbulence identified in low-frequency Fourier analysis. The same continuation is observed in an average spectrum of 42 bright, long GRBs. An outlook on a similar analysis of upcoming gravitational wave data is included.

  19. Gamma-ray burst supernovae as standardizable candles

    SciTech Connect

    Cano, Z.

    2014-10-20

    A long-duration gamma-ray burst (GRB) marks the violent end of a massive star. GRBs are rare in the universe, and their progenitor stars are thought to possess unique physical properties such as low metal content and rapid rotation, while the supernovae (SNe) that are associated with GRBs are expected to be highly aspherical. To date, it has been unclear whether GRB-SNe could be used as standardizable candles, with contrasting conclusions found by different teams. In this paper, I present evidence that GRB-SNe have the potential to be used as standardizable candles and show that a statistically significant relation exists between the brightness and width of their decomposed light curves relative to a template SN. Every single nearby spectroscopically identified GRB-SN for which the rest frame and host contributions have been accurately determined follows this relation. Additionally, it is shown that not only GRB-SNe, but perhaps all SNe whose explosions are powered by a central engine may eventually be used as a standardizable candle. Finally, I suggest that the use of GRB-SNe as standardizable candles likely arises from a combination of the viewing angle and similar explosion geometry in each event, the latter of which is influenced by the explosion mechanism of GRB-SNe.

  20. Simulating high-z gamma-ray burst host galaxies

    NASA Astrophysics Data System (ADS)

    Salvaterra, R.; Maio, U.; Ciardi, B.; Campisi, M. A.

    2013-03-01

    We investigate the nature of high-z host galaxies of long gamma-ray bursts (LGRBs) by means of state-of-the-art numerical simulations of cosmic structure formation and evolution of galaxies. We combine results from different runs with various box sizes and resolutions. By assigning to each simulated galaxy the probability to host an LGRB, assumed to be proportional to the mass of young stars, we provide a full description of the physical properties of high-z LGRB host galaxy population. We find that LGRBs at z > 6 are hosted in galaxies with typical star formation rates SFR ≃ 0.03-0.3 M⊙ yr-1, stellar masses M⋆ ≃ 106-108 M⊙ and metallicities Z ≃ 0.01-0.1 Z⊙. Furthermore, the ratio between their doubling time and the corresponding cosmic time seems to be universally equal to ˜0.1-0.3, independently from the redshift. The distribution of their UV luminosity places LGRB hosts in the faint end of the galaxy luminosity function, well below the current capabilities of space- or ground-based optical facilities. This is in line with recent reports of non-detection of LGRB hosts using extremely deep Hubble Space Telescope and Very Large Telescope observations. In conclusion, high-z LGRBs are found to trace the position of those faint galaxies that are thought to be the major actors in the re-ionization of the Universe.

  1. The Progenitor Stars of Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Woosley, S. E.; Heger, A.

    2006-02-01

    Those massive stars that give rise to gamma-ray bursts (GRBs) during their deaths must be endowed with an unusually large amount of angular momentum in their inner regions, 1-2 orders of magnitude greater than the ones that make common pulsars. Yet the inclusion of mass loss and angular momentum transport by magnetic torques during the precollapse evolution is known to sap the core of the necessary rotation. Here we explore the evolution of very rapidly rotating massive stars, including stripped-down helium cores that might result from mergers or mass transfer in a binary, and single stars that rotate unusually rapidly on the main sequence. For the highest possible rotation rates (about 400 km s-1), a novel sort of evolution is encountered in which single stars mix completely on the main sequence, never becoming red giants. Such stars, essentially massive ``blue stragglers,'' produce helium-oxygen cores that rotate unusually rapidly. Such stars might comprise roughly 1% of all stars above 10 Msolar and can, under certain circumstances, retain enough angular momentum to make GRBs. Because this possibility is very sensitive to mass loss, GRBs are much more probable in regions of low metallicity.

  2. EPISODIC JETS AS THE CENTRAL ENGINE OF GAMMA-RAY BURSTS

    SciTech Connect

    Yuan Feng; Zhang Bing E-mail: zhang@physics.unlv.edu

    2012-09-20

    Most gamma-ray bursts (GRBs) have erratic light curves, which demand that the GRB central engine launches an episodic outflow. Recent Fermi observations of some GRBs indicate a lack of the thermal photosphere component as predicted by the baryonic fireball model, which suggests a magnetic origin of GRBs. Given that powerful episodic jets have been observed along with continuous jets in other astrophysical black hole systems, here we propose an intrinsically episodic, magnetically dominated jet model for the GRB central engine. Accumulation and eruption of free magnetic energy in the corona of a differentially rotating, turbulent accretion flow around a hyperaccreting black hole lead to ejections of episodic, magnetically dominated plasma blobs. These blobs are accelerated magnetically, collide with each other at large radii, trigger rapid magnetic reconnection and turbulence, efficient particle acceleration, and radiation, and power the observed episodic prompt gamma-ray emission from GRBs.

  3. Burst ArcSecond Imaging & Spectroscopy (BASIS): A Gamma-Ray Burst Mission Concept

    NASA Astrophysics Data System (ADS)

    Gehrels, N.; Teegarden, B.; Barbier, L.; Cline, T.; Parsons, A.; Tueller, J.; Barthelmy, S.; Palmer, D.; Krizmanic, J.; Fenimore, E.; Fishman, G.; Kouveliotou, C.; Hurley, K.; Paciesas, W.; van Paradijs, J.; Woosley, S.; Leventhal, M.; McCammon, D.; Sanders, W.; Schaefer, B.

    1996-12-01

    We are studying a gamma-ray burst mission concept called Burst ArcSecond Imaging and Spectroscopy (BASIS) as part of NASA's New Mission Concepts for Astrophysics program. The scientific objectives are to accurately locate bursts, determine their distance scale, and measure the physical characteristics of the emission region. Arcsecond burst positions (angular resolution ~ 30 arcsec, source positions ~ 3 arcsec for >10(-6) erg/cm(2) bursts) would be obtained for ~ 100 bursts per year using the 10-100 keV emission. This would allow the first deep, unconfused counterpart searches at other wavelengths. The key technological breakthrough that makes such measurements possible is the development of CdZnTe room-temperature semiconductor detectors with fine ( ~ 100 micron) spatial resolution. A secondary scientific objective is to perform a sensitive hard x-ray all-sky survey. A description of the mission concept and its scientific objectives will be presented.

  4. Terrestrial Ozone Depletion Due to a Milky Way Gamma-Ray Burst

    NASA Technical Reports Server (NTRS)

    Thomas, Brian C.; Jackman, Charles H.; Melott, Adrian L.; Laird, Claude M.; Stolarski, Richard S.; Gehrels, Neil; Cannizzo, John K.; Hogan, Daniel P.

    2005-01-01

    Based on cosmological rates, it is probable that at least once in the last Gy the Earth has been irradiated by a gamma-ray burst in our Galaxy from within 2 kpc. Using a two-dimensional atmospheric model we have computed the effects upon the Earth's atmosphere of one such burst. A ten second burst delivering 100 kJ/sq m to the Earth results in globally averaged ozone depletion of 35%, with depletion reaching 55% at some latitudes. Significant global depletion persists for over 5 years after the burst. This depletion would have dramatic implications for life since a 50% decrease in ozone column density results in approximately three times the normal UVB flux. Widespread extinctions are likely, based on extrapolation from UVB sensitivity of modern organisms.

  5. Gamma-ray bursts as the death throes of massive binary stars

    NASA Technical Reports Server (NTRS)

    Narayan, Ramesh; Paczynski, Bohdan; Piran, Tsvi

    1992-01-01

    We propose that gamma-ray bursts are created in the mergers of double neutron star binaries and black hole neutron star binaries at cosmological distances. Two different processes provide the electromagnetic energy for the bursts: neutrino-antineutrino annihilation into electron-position pairs during the merger, and magnetic flares generated by the Parker instability in a postmerger differentially rotating disk. In both cases, an optically thick fireball of size less than or approximately equal to 100 km is initially created, which expands ultrarelativistically to large radii before radiating. The scenario is only qualitative at this time, but it eliminates many previous objections to the cosmological merger model. The strongest bursts should be found close to, but not at the centers of, galaxies at redshifts of order 0.1, and should be accompanied by bursts of gravitational radiation from the spiraling-in binary which could be detected by LIGO.

  6. Light curves and spectra from off-axis gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Salafia, O. S.; Ghisellini, G.; Pescalli, A.; Ghirlanda, G.; Nappo, F.

    2016-10-01

    If gamma-ray burst prompt emission originates at a typical radius, and if material producing the emission moves at relativistic speed, then the variability of the resulting light curve depends on the viewing angle. This is due to the fact that the pulse evolution time-scale is Doppler contracted, while the pulse separation is not. For off-axis viewing angles θview ≳ θjet + Γ-1, the pulse broadening significantly smears out the light-curve variability. This is largely independent of geometry and emission processes. To explore a specific case, we set up a simple model of a single pulse under the assumption that the pulse rise and decay are dominated by the shell curvature effect. We show that such a pulse observed off-axis is (i) broader, (ii) softer and (iii) displays a different hardness-intensity correlation with respect to the same pulse seen on-axis. For each of these effects, we provide an intuitive physical explanation. We then show how a synthetic light curve made by a superposition of pulses changes with increasing viewing angle. We find that a highly variable light curve (as seen on-axis) becomes smooth and apparently single-pulsed (when seen off-axis) because of pulse overlap. To test the relevance of this fact, we estimate the fraction of off-axis gamma-ray bursts detectable by Swift as a function of redshift, finding that a sizeable fraction (between 10 per cent and 80 per cent) of nearby (z < 0.1) bursts are observed with θview ≳ θjet + Γ-1. Based on these results, we argue that low-luminosity gamma-ray bursts are consistent with being ordinary bursts seen off-axis.

  7. A Gamma-Ray Burst Monitor for Lobster-ISS

    NASA Astrophysics Data System (ADS)

    Amati, L.; Frontera, F.; Auricchio, N.; Bogliolo, A.; Caroli, E.; di Domenico, G.; Guidorzi, C.; Lazzati, D.; Montanari, E.; Ventura, A.

    Lobster-ISS is an X-ray (0.1--3.5 keV) all-sky monitor experiment selected by ESA for a Phase A study (ended in December 2003) for a future flight (2009) aboard the Columbus Exposed Payload Facility of the International Space Station. The instrument, based on MCP optics, will cover a large FOV (162x22.5 deg.) with an unprecedented spatial resolution of 4-6 arcmin and a daily sensitivity as low as 2×10-12 erg cm-2 s-1 . A Gamma-Ray Burst Monitor (GRBM) is assumed to be part of the final instrument configuration with the minimum goal of detecting and roughly localizing those GRBs occurring in the Lobster FOV, thus allowing the identification of their weak X-ray emission. We participated to the Phase A study with the responsability of the definition of the scientific goals and the design of the GRBM. The instrument we propose, in addition to satisfying the minimum requirements, will extend significantly the scientific capability of the mission for the study of GRBs and X-ray transients. In particular, joined with the X-ray telescope, it will allow a sensitive spectral study of the prompt emission of GRBs both in the hard X-ray range (where they emit most of their energy) and in the soft X-ray energy band (down to 0.1 keV). The latter spectral region is fundamental for the search of absorption and emission features and thus for the study of the circum--burst environment and ultimately the nature of the progenitor, and will not be covered by Swift or other GRB experiments foreseen in the next decade.

  8. The physics of gamma-ray bursts & relativistic jets

    NASA Astrophysics Data System (ADS)

    Kumar, Pawan; Zhang, Bing

    2015-02-01

    We provide a comprehensive review of major developments in our understanding of gamma-ray bursts, with particular focus on the discoveries made within the last fifteen years when their true nature was uncovered. We describe the observational properties of photons from the radio to 100s GeV bands, both in the prompt emission and the afterglow phases. Mechanisms for the generation of these photons in GRBs are discussed and confronted with observations to shed light on the physical properties of these explosions, their progenitor stars and the surrounding medium. After presenting observational evidence that a powerful, collimated, jet moving at close to the speed of light is produced in these explosions, we describe our current understanding regarding the generation, acceleration, and dissipation of the jet. We discuss mounting observational evidence that long duration GRBs are produced when massive stars die, and that at least some short duration bursts are associated with old, roughly solar mass, compact stars. The question of whether a black-hole or a strongly magnetized, rapidly rotating neutron star is produced in these explosions is also discussed. We provide a brief summary of what we have learned about relativistic collisionless shocks and particle acceleration from GRB afterglow studies, and discuss the current understanding of radiation mechanism during the prompt emission phase. We discuss theoretical predictions of possible high-energy neutrino emission from GRBs and the current observational constraints. Finally, we discuss how these explosions may be used to study cosmology, e.g. star formation, metal enrichment, reionization history, as well as the formation of first stars and galaxies in the universe.

  9. Testing black hole neutrino-dominated accretion discs for long-duration gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Song, Cui-Ying; Liu, Tong; Gu, Wei-Min; Tian, Jian-Xiang

    2016-05-01

    Long-duration gamma-ray bursts (LGRBs) are generally considered to originate from the massive collapsars. It is believed that the central engine of gamma-ray bursts (GRBs) is a neutrino-dominated accretion flow (NDAF) around a rotating stellar-mass black hole (BH). The neutrino annihilation above the NDAF is a feasible mechanism to power GRB. In this work, we analyse the distributions of the isotropic gamma-ray-radiated energy and jet kinetic energy of 48 LGRBs. According to the NDAF and fireball models, we estimate the mean accreted masses of LGRBs in our sample to investigate whether the NDAFs can power LGRBs with the reasonable BH parameters and conversion efficiency of neutrino annihilation. The results indicate that most of the values of the accreted masses are less than 5 M⊙ for the extreme Kerr BHs and high conversion efficiency. It suggests that the NDAFs may be suitable for most of LGRBs except for some extremely high energy sources.

  10. Revisiting the formation rate and redshift distribution of long gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Kanaan, C.; de Freitas Pacheco, J. A.

    2013-11-01

    Using a novel approach, the distribution of fluences of long gamma-ray bursts derived from the Swift-BAT catalog was reproduced by a jet-model characterized by the distribution of the total radiated energy in γ-rays and the distribution of the aperture angle of the emission cone. The best fit between simulated and observed fluence distributions permits one to estimate the parameters of the model. An evolution of the median energy of the bursts is required to adequately reproduce the observed redshift distribution of the events when the formation rate of γ-ray bursts follows the cosmic star formation rate. For our preferred model, the median jet energy evolves as EJ ∝ e0.5(1 + z) and the mean expected jet energy is 3.0 × 1049 erg, which agrees with the mean value derived from afterglow data. The estimated local formation rate is Rgrb = 290 Gpc-3 yr-1, representing less than 9% of the local formation rate of type Ibc supernovae. This result also suggests that the progenitors of long gamma-ray bursts have masses ≥ 90 M⊙ when a Miller-Scalo initial mass function is assumed.

  11. Calibration of gamma-ray burst luminosity indicators

    NASA Astrophysics Data System (ADS)

    Liang, Enwei; Zhang, Bing

    2006-06-01

    Several gamma-ray burst (GRB) luminosity indicators have been proposed which can be generally written in the form of , where c is the coefficient, xi is the ith observable, and ai is its corresponding power-law index. Unlike in Type Ia supernovae, calibration of GRB luminosity indicators using a low-redshift sample is difficult. This is because the GRB rate drops rapidly at low redshifts, and some nearby GRBs may be different from their cosmological brethren. Calibrating the standard candles using GRBs in a narrow redshift range (Δz) near a fiducial redshift has been proposed recently. Here we elaborate such a possibility and propose to calibrate {ai} based on the Bayesian theory and to marginalize the c value over a reasonable range of cosmological parameters. We take our newly discovered multivariable GRB luminosity indicator, Eiso=cEa1pta2b, as an example and test the validity of this approach through simulations, where Eiso is the isotropic energy of prompt gamma-rays, Ep is the spectral break energy, and tb is the temporal break time of the optical afterglow light curve. We show that while c strongly depends on the cosmological parameters, neither a1 nor a2 does as long as Δz is small enough. The selection of Δz for a particular GRB sample could be judged according to the size and the observational uncertainty of the sample. There is no preferable redshift to perform the calibration of the indices {ai}, while a lower redshift is preferable for c-marginalization. The best strategy would be to collect GRBs within a narrow redshift bin around a fiducial intermediate redshift (e.g. zc~ 1 or zc~ 2), as the observed GRB redshift distribution is found to peak around this range. Our simulation suggests that with the current observational precisions of measuring Eiso, Ep and tb, 25 GRBs within a redshift bin of Δz~ 0.30 would give fine calibration to the Liang-Zhang luminosity indicator.

  12. Polarization of the prompt gamma-ray emission from the gamma-ray burst of 6 December 2002.

    PubMed

    Coburn, Wayne; Boggs, Steven E

    2003-05-22

    Observations of the afterglows of gamma-ray bursts (GRBs) have revealed that they lie at cosmological distances, and so correspond to the release of an enormous amount of energy. The nature of the central engine that powers these events and the prompt gamma-ray emission mechanism itself remain enigmatic because, once a relativistic fireball is created, the physics of the afterglow is insensitive to the nature of the progenitor. Here we report the discovery of linear polarization in the prompt gamma-ray emission from GRB021206, which indicates that it is synchrotron emission from relativistic electrons in a strong magnetic field. The polarization is at the theoretical maximum, which requires a uniform, large-scale magnetic field over the gamma-ray emission region. A large-scale magnetic field constrains possible progenitors to those either having or producing organized fields. We suggest that the large magnetic energy densities in the progenitor environment (comparable to the kinetic energy densities of the fireball), combined with the large-scale structure of the field, indicate that magnetic fields drive the GRB explosion.

  13. Limits on expanding relativistic shells from Gamma-Ray Burst temporal structure

    SciTech Connect

    Fenimore, E.E.

    1996-12-31

    The author calculates the expected envelope of emission for relativistic shells under the assumption of local spherical symmetry. Gamma-Ray Burst envelopes rarely conform to the expected shape, which has a fast rise and a smooth, slower decay. Furthermore, the duration of the decay phase is related to the time the shell expands before converting its energy to gamma rays. From this, one can estimate the energy required for the shell to sweep up the ISM. The energy greatly exceeds 10{sup 53} erg unless the bulk Lorentz factor is less than 75. This puts extreme limits on the {open_quotes}external{close_quotes} shock models. However, the alternative, {open_quotes}internal{close_quotes} shocks from a central engine, has one extremely large problem: the entire long complex time history lasting hundreds of seconds must be postulated at the central site.

  14. Variabilities of gamma-ray bursts from black hole hyper-accretion discs

    NASA Astrophysics Data System (ADS)

    Lin, Da-Bin; Lu, Zu-Jia; Mu, Hui-Jun; Liu, Tong; Hou, Shu-Jin; Lü, Jing; Gu, Wei-Min; Liang, En-Wei

    2016-11-01

    The emission from black hole binaries (BHBs) and active galactic nuclei (AGNs) display significant aperiodic variabilities. The most promising explanation for these variabilities is the propagating fluctuations in the accretion flow. It is natural to expect that the mechanism driving variabilities in BHBs and AGNs may operate in a black hole hyper-accretion disc, which is believed to power gamma-ray bursts (GRBs). We study the variabilities of jet power in GRBs based on the model of propagating fluctuations. It is found that the variabilities of jet power and the temporal profile of erratic spikes in this scenario are similar to those in observed light curves of prompt gamma-ray emission of GRBs. Our results show that the mechanism driving X-ray variabilities in BHBs and AGNs may operate in the central engine to drive the variabilities of GRBs.

  15. Focusing of Alfvenic wave power in the context of gamma-ray burst emissivity

    NASA Technical Reports Server (NTRS)

    Fatuzzo, Marco; Melia, Fulvio

    1993-01-01

    Highly dynamic magnetospheric perturbations in neutron star environments can naturally account for the features observed in gamma-ray burst spectra. The source distribution, however, appears to be extragalactic. Although noncatastrophic isotropic emission mechanisms may be ruled out on energetic and timing arguments, MHD processes can produce strongly anisotropic gamma rays with an observable flux out to distances of about 1-2 Gpc. Here we show that sheared Alfven waves propagating along open magnetospheric field lines at the poles of magnetized neutron stars transfer their energy dissipationally to the current sustaining the field misalignment and thereby focus their power into a spatial region about 1000 times smaller than that of the crustal disturbance. This produces a strong (observable) flux enhancement along certain directions. We apply this model to a source population of 'turned-off' pulsars that have nonetheless retained their strong magnetic fields and have achieved alignment at a period of approximately greater than 5 sec.

  16. Variabilities of Gamma-ray Bursts from Black Hole Hyper-accretion Disks

    NASA Astrophysics Data System (ADS)

    Lin, Da-Bin; Lu, Zu-Jia; Mu, Hui-Jun; Liu, Tong; Hou, Shu-Jin; Lü, Jing; Gu, Wei-Min; Liang, En-Wei

    2016-08-01

    The emission from black hole binaries (BHBs) and active galactic nuclei (AGNs) displays significant aperiodic variabilities. The most promising explanation for these variabilities is the propagating fluctuations in the accretion flow. It is natural to expect that the mechanism driving variabilities in BHBs and AGNs may operate in a black hole hyper-accretion disk, which is believed to power gamma-ray bursts (GRBs). We study the variabilities of jet power in GRBs based on the model of propagating fluctuations. It is found that the variabilities of jet power and the temporal profile of erratic spikes in this scenario are similar to those in observed light curves of prompt gamma-ray emission of GRBs. Our results show that the mechanism driving X-ray variabilities in BHBs and AGNs may operate in the central engine to drive the variabilities of GRBs.

  17. GRB 110205A: ANATOMY OF A LONG GAMMA-RAY BURST

    SciTech Connect

    Gendre, B.; Stratta, G.; Atteia, J. L.; Klotz, A.; Boeer, M.; Colas, F.; Vachier, F.; Kugel, F.; Rinner, C.; Laas-Bourez, M.

    2012-03-20

    The Swift burst GRB 110205A was a very bright burst visible in the Northern Hemisphere. GRB 110205A was intrinsically long and very energetic and it occurred in a low-density interstellar medium environment, leading to delayed afterglow emission and a clear temporal separation of the main emitting components: prompt emission, reverse shock, and forward shock. Our observations show several remarkable features of GRB 110205A: the detection of prompt optical emission strongly correlated with the Burst Alert Telescope light curve, with no temporal lag between the two; the absence of correlation of the X-ray emission compared to the optical and high-energy gamma-ray ones during the prompt phase; and a large optical re-brightening after the end of the prompt phase, that we interpret as a signature of the reverse shock. Beyond the pedagogical value offered by the excellent multi-wavelength coverage of a gamma-ray burst with temporally separated radiating components, we discuss several questions raised by our observations: the nature of the prompt optical emission and the spectral evolution of the prompt emission at high energies (from 0.5 keV to 150 keV); the origin of an X-ray flare at the beginning of the forward shock; and the modeling of the afterglow, including the reverse shock, in the framework of the classical fireball model.

  18. Computational Astrophysics Consortium 3 - Supernovae, Gamma-Ray Bursts and Nucleosynthesis

    SciTech Connect

    Woosley, Stan

    2014-08-29

    Final project report for UCSC's participation in the Computational Astrophysics Consortium - Supernovae, Gamma-Ray Bursts and Nucleosynthesis. As an appendix, the report of the entire Consortium is also appended.

  19. Bright x-ray flares in gamma-ray burst afterglows.

    PubMed

    Burrows, D N; Romano, P; Falcone, A; Kobayashi, S; Zhang, B; Moretti, A; O'brien, P T; Goad, M R; Campana, S; Page, K L; Angelini, L; Barthelmy, S; Beardmore, A P; Capalbi, M; Chincarini, G; Cummings, J; Cusumano, G; Fox, D; Giommi, P; Hill, J E; Kennea, J A; Krimm, H; Mangano, V; Marshall, F; Mészáros, P; Morris, D C; Nousek, J A; Osborne, J P; Pagani, C; Perri, M; Tagliaferri, G; Wells, A A; Woosley, S; Gehrels, N

    2005-09-16

    Gamma-ray burst (GRB) afterglows have provided important clues to the nature of these massive explosive events, providing direct information on the nearby environment and indirect information on the central engine that powers the burst. We report the discovery of two bright x-ray flares in GRB afterglows, including a giant flare comparable in total energy to the burst itself, each peaking minutes after the burst. These strong, rapid x-ray flares imply that the central engines of the bursts have long periods of activity, with strong internal shocks continuing for hundreds of seconds after the gamma-ray emission has ended.

  20. Modeling of Pulses in Terrestrial Gamma-ray Flashes

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Celestin, Sebastien; Pasko, Victor

    2015-04-01

    Terrestrial Gamma-ray Flashes (TGFs) are high-energy photon bursts originating from the Earth's atmosphere that are associated with lightning activities. After their discovery in 1994 by the Burst and Transient Source Experiment (BATSE) detector aboard the Compton Gamma-Ray Observatory [Fishman et al., Science, 264, 1313, 1994], this phenomenon has been further observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) [Smith et al., Science, 307, 1085, 2005], the Fermi Gamma-ray Space Telescope [Briggs et al., JGR, 115, A07323, 2010] and the Astrorivelatore Gamma a Immagini Leggero (AGILE) satellite [Marisaldi et al., JGR, 115, A00E13, 2010]. Photon spectra corresponding to the mechanism of relativistic runaway electron avalanches (RREAs) usually provide a very good agreement with satellite observations [Dwyer and Smith, GRL, 32, L22804, 2005]. On the other hand, Celestin and Pasko [JGR, 116, A03315, 2011] have shown theoretically that the large flux of thermal runaway electrons generated by streamers during the negative corona flash stage of stepping lightning leaders in intracloud lightning flashes could be responsible for TGFs. Recently, based on analysis of the temporal profiles of 278 TGF events observed by the Fermi Gamma-Ray Burst Monitor, Foley et al. [JGR, 119, 5931, 2014] have suggested that 67% of TGF pulses detected are asymmetric and these asymmetric pulses are consistent with the production mechanism of TGFs by relativistic feedback discharges. In the present work, we employ a Monte Carlo model to study the temporal distribution of photons at low-orbit satellite altitudes during TGF events. Using the pulse fitting method described in [Foley et al., 2014], we further investigate the characteristics of TGF pulses. We mainly focus on the effects of Compton scattering on the symmetry properties and the rise and fall times of TGF pulses.

  1. Spectral feature of 31 December 1981 gamma-ray burst not confirmed

    NASA Technical Reports Server (NTRS)

    Nolan, P. L.; Share, G. H.; Chupp, E. L.; Forrest, D. J.; Matz, S. M.

    1984-01-01

    Measurements of a gamma ray burst at 01:37 UT on December 31, 1981 using the SMM gamma ray spectrometer (GRS) are compared with those made by the Konus instruments on Veneras 11-14. Burst time profiles, photon spectra, and detector energy loss spectra for three time intervals are compared for the GRS and the Konus instruments. It is concluded that the SMM spectra exhibit no evidence for the presence of emission features reported by the Konus group.

  2. High-redshift gamma-ray bursts: observational signatures of superconducting cosmic strings?

    PubMed

    Cheng, K S; Yu, Yun-Wei; Harko, T

    2010-06-18

    The high-redshift gamma-ray bursts (GRBs), GRBs 080913 and 090423, challenge the conventional GRB progenitor models by their short durations, typical for short GRBs, and their high energy releases, typical for long GRBs. Meanwhile, the GRB rate inferred from high-redshift GRBs also remarkably exceeds the prediction of the collapsar model, with an ordinary star formation history. We show that all these contradictions could be eliminated naturally, if we ascribe some high-redshift GRBs to electromagnetic bursts of superconducting cosmic strings. High-redshift GRBs could become a reasonable way to test the superconducting cosmic string model because the event rate of cosmic string bursts increases rapidly with increasing redshifts, whereas the collapsar rate decreases. PMID:20867291

  3. A Proposed Student Built and Operated Satellite: The Gamma Ray Burst Polarization Observer (PolOSat)

    NASA Astrophysics Data System (ADS)

    Malphrus, Benjamin K.; Jernigan, J. G.; Bloom, J. S.; Boggs, S.; Butler, N. R.; Cominsky, L. R.; Doering, T. J.; Doty, J. P.; Erb, D. M.; Figer, D. F.; Hurley, K. C.; Kimel, K. W.; Lumpp, J. E.; Labov, S.

    2009-01-01

    The Polarization Observer (PolOSat) is small satellite mission whose goal is to measure the polarization of bright gamma-ray bursts (GRBs). A precise measurement of the polarization of GRBs will constrain the models of radiative mechanisms associated with GRBs as supermassive stars undergo collapse into black holes. The primary goal of PolOSat is the detection of strongly linearly polarized GRBs (≥20; %) and/or to set upper limits on polarization for a few GRBs (≤30; %). PolOSat is designed to have a sensitivity to polarization that exceeds all prior experiments. The primary scientific instrument, the Gamma-ray Polarization Monitor (GPM) is based on a CMOS hybrid array that is optimized for performance in the low energy gamma-ray band (20-200 keV). The GPM has two passive Beryllium (Be) scattering elements which provide signal gamma-rays within a large field of view (two 45 degree radius cones). Gamma-rays impinge on the Be scatterers and are then Compton scattered into the CZT arrays and detected. A bright GRB (occurring 5 times a year) will produce 100,000s of direct gamma-rays and 1000s of Compton scattered gamma-rays detected by the CZT array. The PolOSat satellite with the GPM is rotated ( 1 Hz) inducing a strong temporal component at twice the spin frequency that is proportional to the linear polarization in the GRB signal. The team includes the University of California, Berkeley, the Kentucky Space Program including the Kentucky Science and Technology Corporation, the University of Kentucky, Morehead State University, Sonoma State University, the Rochester Institute of Technology, the University of Rochester and the Lawrence Livermore National Laboratory. PolOSat features significant participation by undergraduate and graduate students in all phases of development and operation of the spacecraft and instruments and in data analysis. PolOSat was initially proposed as a small complete NASA Mission of Opportunity and is currently seeking funding.

  4. Rest-frame properties of 32 gamma-ray bursts observed by the Fermi Gamma-ray Burst Monitor

    NASA Astrophysics Data System (ADS)

    Gruber, D.; Greiner, J.; von Kienlin, A.; Rau, A.; Briggs, M. S.; Connaughton, V.; Goldstein, A.; van der Horst, A. J.; Nardini, M.; Bhat, P. N.; Bissaldi, E.; Burgess, J. M.; Chaplin, V. L.; Diehl, R.; Fishman, G. J.; Fitzpatrick, G.; Foley, S.; Gibby, M. H.; Giles, M. M.; Guiriec, S.; Kippen, R. M.; Kouveliotou, C.; Lin, L.; McBreen, S.; Meegan, C. A.; Olivares E., F.; Paciesas, W. S.; Preece, R. D.; Tierney, D.; Wilson-Hodge, C.

    2011-07-01

    Aims: In this paper we study the main spectral and temporal properties of gamma-ray bursts (GRBs) observed by Fermi/GBM. We investigate these key properties of GRBs in the rest-frame of the progenitor and test for possible intra-parameter correlations to better understand the intrinsic nature of these events. Methods: Our sample comprises 32 GRBs with measured redshift that were observed by GBM until August 2010. 28 of them belong to the long-duration population and 4 events were classified as short/hard bursts. For all of these events we derive, where possible, the intrinsic peak energy in the νFν spectrum (Ep,rest), the duration in the rest-frame, defined as the time in which 90% of the burst fluence was observed (T90,rest) and the isotropic equivalent bolometric energy (Eiso). Results: The distribution of Ep,rest has mean and median values of 1.1 MeV and 750 keV, respectively. A log-normal fit to the sample of long bursts peaks at ~800 keV. No high-Ep population is found but the distribution is biased against low Ep values. We find the lowest possible Ep that GBM can recover to be ≈ 15 keV. The T90,rest distribution of long GRBs peaks at ~10 s. The distribution of Eiso has mean and median values of 8.9 × 1052 erg and 8.2 × 1052 erg, respectively. We confirm the tight correlation between Ep,rest and Eiso (Amati relation) and the one between Ep,rest and the 1-s peak luminosity (Lp) (Yonetoku relation). Additionally, we observe a parameter reconstruction effect, i.e. the low-energy power law index α gets softer when Ep is located at the lower end of the detector energy range. Moreover, we do not find any significant cosmic evolution of neither Ep,rest nor T90,rest.

  5. Are gamma-ray bursts the sources of ultra-high energy cosmic rays?

    NASA Astrophysics Data System (ADS)

    Baerwald, Philipp; Bustamante, Mauricio; Winter, Walter

    2015-03-01

    We reconsider the possibility that gamma-ray bursts (GRBs) are the sources of the ultra-high energy cosmic rays (UHECRs) within the internal shock model, assuming a pure proton composition of the UHECRs. For the first time, we combine the information from gamma-rays, cosmic rays, prompt neutrinos, and cosmogenic neutrinos quantitatively in a joint cosmic ray production and propagation model, and we show that the information on the cosmic energy budget can be obtained as a consequence. In addition to the neutron model, we consider alternative scenarios for the cosmic ray escape from the GRBs, i.e., that cosmic rays can leak from the sources. We find that the dip model, which describes the ankle in UHECR observations by the pair production dip, is strongly disfavored in combination with the internal shock model because (a) unrealistically high baryonic loadings (energy in protons versus energy in electrons/gamma-rays) are needed for the individual GRBs and (b) the prompt neutrino flux easily overshoots the corresponding neutrino bound. On the other hand, GRBs may account for the UHECRs in the ankle transition model if cosmic rays leak out from the source at the highest energies. In that case, we demonstrate that future neutrino observations can efficiently test most of the parameter space - unless the baryonic loading is much larger than previously anticipated.

  6. Gamma-ray bursts from the accretion of solid bodies onto high-velocity Galactic neutron stars

    SciTech Connect

    Colgate, S.A.; Leonard, P.J.T.

    1993-12-31

    We propose a simple model for the gamma-ray bursts based on high- velocity Galactic neutron stars that have accretion disks. The latter are formed from a mixture of material from the supernova shell and that ablated from a pre-supernova binary companion. Accretion onto the neutron star from this disk when the disk is still largely gaseous may result in a soft gamma-ray repeater phase. Much later, after the neutron star has moved away from its birthplace, solid bodies form in the disk, and some are perturbed into hitting the neutron star to create gamma-ray bursts. This model makes several predictions that are consistent with the observations. The observed combination of a high degree of isotropy on the sky coupled with the observed value of < V/V{sub max}> is not, at first glance, predicted, but is not impossible to attain in our model.

  7. GRB 081029: A Gamma-Ray Burst with a Multi-Component Afterglow

    NASA Technical Reports Server (NTRS)

    Holland, Stephen T.; De Pasquale, Massimiliano; Mao, Jirong; Sakamoto, Takanori; Schady, Patricia; Covino, Stefano; Fan, Yi-Zhong; Jin, Zhi-Ping; D'Avanzo, Paolo; Antonelli, Angelo; D'Elia, Valerio; Ohincarini, Guido; Fiore, Fabrizio; Pandey, Shashi Bhushan; Cobb, Bethany E.

    2012-01-01

    We present an analysis of the unusual optical light curve of the gamma-ray burst GRB 081029, a long-soft burst with a redshift of z = 3.8479. We combine X-ray and optical observations from the Swift X-Ray Telescope and the Swift Ultra Violet/Optical Telescope with ground-based optical and infrared data obtained using the REM, ROTSE, and CTIO 1.3-m telescopes to construct a detailed data set extending from 86 s to approx.100,000 s after the BAT trigger. Our data covers a wide energy range, from 10 keV to 0.77 eV (1.24 A to 16000 A). The X-ray afterglow shows a shallow initial decay followed by a rapid decay starting at about 18,000 s. The optical and infrared afterglow, however, shows an uncharacteristic rise at about 3000 s that does not correspond to any feature in the X-ray light curve. Our data are not consistent with synchrotron radiation from a jet interacting with an external medium, a two-component jet, or continuous energy injection from the central engine. We find that the optical light curves can be broadly explained by a collision between two ejecta shells within a two-component jet. A growing number of gamma-ray burst afterglows are consistent with complex jets, which suggests that some (or all) gamma-ray burst jets are complex and will require detailed modelling to fully understand them.injection

  8. Smoking Gun Found for Gamma-Ray Burst in Milky Way

    NASA Astrophysics Data System (ADS)

    2004-06-01

    plane of the sky by about 20 degrees. W49B Chandra Fe K-line Image of W49B Four rings about 25 light years in diameter can be identified in the infrared image. These rings, which are due to warm gas, were presumably flung out by the rapid rotation of the massive star a few hundred thousand years before the star exploded. The rings were pushed outward by a hot wind from the star a few thousand years before it exploded. Chandra's image and spectral data show that the jets of multimillion-degree-Celsius gas extending along the axis of the barrel are rich in iron and nickel ions, consistent with their being ejected from the center of the star. This distinguishes the explosion from a conventional type II supernova in which most of the Fe and Ni goes into making the neutron star, and the outer part of the star is what is flung out. In contrast, in the collapsar model of gamma ray bursts iron and nickel from the center is ejected along the jet. At the ends of the barrel, the X-ray emission flares out to make a hot cap. The X-ray cap is surrounded by a flattened cloud of hydrogen molecules detected in the infrared. These features indicate that the shock wave produced by the explosion has encountered a large, dense cloud of gas and dust. The scenario that emerges is one in which a massive star formed from a dense cloud of dust, shone brightly for a few million years while spinning off rings of gas and pushing them away, forming a nearly empty cavity around the star. The star then underwent a collapsar-type supernova explosion that resulted in a gamma-ray burst. The observations of W49B may help to resolve a problem that has bedeviled the collapsar model for gamma-ray bursts. On the one hand, the model is based on the collapse of a massive star, which is normally formed from a dense cloud. On the other hand, observations of the afterglow of many gamma-ray bursts indicate that the explosion occurred in a low-density gas. Based on the W49B data, the resolution proposed by Keohane

  9. The gamma-ray burst monitor for Lobster-ISS

    NASA Astrophysics Data System (ADS)

    Amati, L.; Frontera, F.; Auricchio, N.; Caroli, E.; Basili, A.; Bogliolo, A.; di Domenico, G.; Franceschini, T.; Guidorzi, C.; Landini, G.; Masetti, N.; Montanari, E.; Orlandini, M.; Palazzi, E.; Silvestri, S.; Stephen, J. B.; Ventura, G.

    2006-01-01

    Lobster-ISS is an X-ray all-sky monitor experiment selected by ESA two years ago for a Phase A study (now almost completed) for a future flight (2009) aboard the Columbus Exposed Payload Facility of the International Space Station. The main instrument, based on MCP optics with Lobster-eye geometry, has an energy passband from 0.1 to 3.5 keV, an unprecedented daily sensitivity of 2 × 10-12 erg cm-2 s-1, and it is capable to scan, during each orbit, the entire sky with an angular resolution of 4 6‧. This X-ray telescope is flanked by a Gamma Ray Burst Monitor, with the minimum requirement of recognizing true GRBs from other transient events. In this paper we describe the GRBM. In addition to the minimum requirement, the instrument proposed is capable to roughly localize GRBs which occur in the Lobster FOV (162 × 22.5°) and to significantly extend the scientific capabilities of the main instrument for the study of GRBs and X-ray transients. The combination of the two instruments will allow an unprecedented spectral coverage (from 0.1 up to 300/700 keV) for a sensitive study of the GRB prompt emission in the passband where GRBs and X-Ray Flashes emit most of their energy. The low-energy spectral band (0.1 10 keV) is of key importance for the study of the GRB environment and the search of transient absorption and emission features from GRBs, both goals being crucial for unveiling the GRB phenomenon. The entire energy band of Lobster-ISS is not covered by either the Swift satellite or other GRB missions foreseen in the next decade.

  10. Generation of circular polarization of gamma ray bursts

    NASA Astrophysics Data System (ADS)

    Batebi, S.; Mohammadi, R.; Ruffini, R.; Tizchang, S.; Xue, S.-S.

    2016-09-01

    The generation of the circular polarization of gamma ray burst (GRB) photons is discussed in this paper via their interactions with astroparticles in the presence or absence of background fields such as magnetic fields and noncommutative space-time geometry. Solving the quantum Boltzmann equation for GRB photons as a photon ensemble, we discuss the generation of circular polarization (as Faraday conversion phase shift Δ ϕFC) of GRBs in the following cases: (i) intermediate interactions, i.e., the Compton scattering of GRBs in the galaxy cluster magnetic field and in the presence of noncommutative space-time geometry, as well as the scattering of GRBs in the cosmic neutrino background (CNB) and cosmic microwave background (CMB); (ii) interactions with particles and fields in shockwaves, i.e., the Compton scattering of GRBs with accelerated charged particles in the presence of magnetic fields. We found that (i) after shockwave crossing, the greatest contribution of Δ ϕFC for energetic GRBs (of the order of GeV and larger) comes from GRB-CMB interactions, but for low-energy GRBs the contributions of the Compton scattering of GRBs in the galaxy cluster magnetic field dominate; (ii) in shockwave crossing, the magnetic field has significant effects on converting a GRB's linear polarization to a circular one, and this effect can be used to better understand the magnetic profile in shockwaves. The main aim of this work is to study and measure the circular polarization of GRBs for a better understanding of the physics and mechanism of the generation of GRBs and their interactions before reaching us.

  11. Toward Tight Gamma-Ray Burst Luminosity Relations

    NASA Astrophysics Data System (ADS)

    Qi, Shi; Lu, Tan

    2012-04-01

    The large scatters of luminosity relations of gamma-ray bursts (GRBs) have been one of the most important reasons preventing the extensive application of GRBs in cosmology. Many efforts have been made to seek tight luminosity relations. With the latest sample of 116 GRBs with measured redshift and spectral parameters, we investigate 6 two-dimensional (2D) correlations and 14 derived three-dimensional (3D) correlations of GRBs to explore the possibility of decreasing the intrinsic scatters of the luminosity relations of GRBs. We find the 3D correlation of E peak-τRT-L to be evidently tighter (at the 2σ confidence level) than its corresponding 2D correlations, i.e., the E peak-L and τRT-L correlations. In addition, the coefficients before the logarithms of E peak and τRT in the E peak-τRT-L correlation are almost exact opposites of each other. Inputting this situation as a prior reduces the relation to Lvprop(E'peak/τRT')0.842 ± 0.064, where E'peak and τ'RT denote the peak energy and minimum rise time in the GRB rest frame. We discuss how our findings can be interpreted/understood in the framework of the definition of the luminosity (energy released in units of time). Our argument about the connection between the luminosity relations of GRBs and the definition of the luminosity provides a clear direction for exploring tighter luminosity relations of GRBs in the future.

  12. Compact Binary Progenitors of Short Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Giacomazzo, Bruno; Perna, Rosalba; Rezzolla, Luciano; Troja, Eleonora; Lazzati, Davide

    2013-01-01

    In recent years, detailed observations and accurate numerical simulations have provided support to the idea that mergers of compact binaries containing either two neutron stars (NSs) or an NS and a black hole (BH) may constitute the central engine of short gamma-ray bursts (SGRBs). The merger of such compact binaries is expected to lead to the production of a spinning BH surrounded by an accreting torus. Several mechanisms can extract energy from this system and power the SGRBs. Here we connect observations and numerical simulations of compact binary mergers, and use the current sample of SGRBs with measured energies to constrain the mass of their powering tori. By comparing the masses of the tori with the results of fully general-relativistic simulations, we are able to infer the properties of the binary progenitors that yield SGRBs. By assuming a constant efficiency in converting torus mass into jet energy epsilon(sub jet) = 10%, we find that most of the tori have masses smaller than 0.01 Solar M, favoring "high-mass" binary NSs mergers, i.e., binaries with total masses approx >1.5 the maximum mass of an isolated NS. This has important consequences for the gravitational wave signals that may be detected in association with SGRBs, since "high-mass" systems do not form a long-lived hypermassive NS after the merger. While NS-BH systems cannot be excluded to be the engine of at least some of the SGRBs, the BH would need to have an initial spin of approx. 0.9 or higher.

  13. TOWARD TIGHT GAMMA-RAY BURST LUMINOSITY RELATIONS

    SciTech Connect

    Qi Shi; Lu Tan E-mail: t.lu@pmo.ac.cn

    2012-04-20

    The large scatters of luminosity relations of gamma-ray bursts (GRBs) have been one of the most important reasons preventing the extensive application of GRBs in cosmology. Many efforts have been made to seek tight luminosity relations. With the latest sample of 116 GRBs with measured redshift and spectral parameters, we investigate 6 two-dimensional (2D) correlations and 14 derived three-dimensional (3D) correlations of GRBs to explore the possibility of decreasing the intrinsic scatters of the luminosity relations of GRBs. We find the 3D correlation of E{sub peak}-{tau}{sub RT}-L to be evidently tighter (at the 2{sigma} confidence level) than its corresponding 2D correlations, i.e., the E{sub peak}-L and {tau}{sub RT}-L correlations. In addition, the coefficients before the logarithms of E{sub peak} and {tau}{sub RT} in the E{sub peak}-{tau}{sub RT}-L correlation are almost exact opposites of each other. Inputting this situation as a prior reduces the relation to L{proportional_to}(E'{sub peak}/{tau}{sub RT}'){sup 0.842{+-}0.064}, where E'{sub peak} and {tau}'{sub RT} denote the peak energy and minimum rise time in the GRB rest frame. We discuss how our findings can be interpreted/understood in the framework of the definition of the luminosity (energy released in units of time). Our argument about the connection between the luminosity relations of GRBs and the definition of the luminosity provides a clear direction for exploring tighter luminosity relations of GRBs in the future.

  14. On The Origin Of High Energy Correlations in Gamma-ray Bursts

    SciTech Connect

    Kocevski, Daniel

    2012-04-03

    I investigate the origin of the observed correlation between a gamma-ray burst's {nu}F{sub {nu}} spectral peak E{sub pk} and its isotropic equivalent energy E{sub iso} through the use of a population synthesis code to model the prompt gamma-ray emission from GRBs. By using prescriptions for the distribution of prompt spectral parameters as well as the population's luminosity function and co-moving rate density, I generate a simulated population of GRBs and examine how bursts of varying spectral properties and redshift would appear to a gamma-ray detector here on Earth. I find that a strong observed correlation can be produced between the source frame Epk and Eiso for the detected population despite the existence of only a weak and broad correlation in the original simulated population. The energy dependance of a gamma-ray detector's flux-limited detection threshold acts to produce a correlation between the source frame E{sub pk} and E{sub iso} for low luminosity GRBs, producing the left boundary of the observed correlation. Conversely, very luminous GRBs are found at higher redshifts than their low luminosity counterparts due to the standard Malquest bias, causing bursts in the low E{sub pk}, high E{sub iso} regime to go undetected because their E{sub pk} values would be redshifted to energies at which most gamma-ray detectors become less sensitive. I argue that it is this previously unexamined effect which produces the right boundary of the observed correlation. Therefore, the origin of the observed correlation is a complex combination of the instrument's detection threshold, the intrinsic cutoff in the GRB luminosity function, and the broad range of redshifts over which GRBs are detected. Although the GRB model presented here is a very simplified representation of the complex nature of GRBs, these simulations serve to demonstrate how selection effects caused by a combination of instrumental sensitivity and the cosmological nature of an astrophysical population

  15. Small-Scale Density Variations in the Environment of the Gamma-Ray Burst GRB 011211

    NASA Astrophysics Data System (ADS)

    Holland, S. T.; Soszyński, I.; Gladders, M. D.; Barrientos, L. F.; Berlind, P.; Bersier, D.; Garnavich, P. M.; Jha, S.; Stanek, K. Z.

    2002-05-01

    We present early-time optical photometry and spectroscopy of the optical afterglow of the gamma-ray burst GRB 011211. The afterglow has a redshift of 2.140 +/- 0.001 and follows a power-law decay with f t{0.83 +/- 0.04} for approximately two days after the burst. There is evidence for a break between 1.5 and 2.7 days after the burst and a late-time slope increasing to >= 1.4. The total energy in the burst was 1.6--2.4 x 1050 erg, consistent with the Frail et al. (2001, ApJL, 562, L55) ``standard'' value of (5 +/- 2) x 1050 erg. Comparing the observed colour of the optical afterglow with predictions of the standard beaming model suggests that the rest-frame V-band extinction in the host galaxy is less than approximately 0.03 mag. The magnitude of the break in the light curve, and the observed total energy, suggest that the burst expanded into an ambient medium that is homogeneous on large scales with a local particle density between ≈ 0.1 and 10 cm-3. We find that the R-band optical decay deviates from a power law at the 95% confidence level ≈ 0.5 days after the burst. The magnitude and duration of these deviations are consistent with density fluctuations on spatial scales of ≈ 30--200 pc in the circumburst medium within ≈ 0.05--0.20 pc of the gamma-ray burst's progenitor. STH and PMG acknowledge support from the NASA LTSA grant NAG5--9364. DB has been supported by NSF grand AST--9979812.

  16. Gamma-ray burst spectra from photon-deficient Compton scattering by nonthermal electrons

    NASA Technical Reports Server (NTRS)

    Zdziarski, Andrzej A.; Lamb, Don Q.

    1986-01-01

    Consideration is given to a model of gamma-ray burst sources based on repeated Compton scatterings of soft photons by relativistic nonthermal electrons. Relativistic electrons which are continuously produced in the source radiate the total power L supplied to them. Higher order Compton scatterings, which occur when L(soft) is much less than L make the model distinct. The spectrum having an X-ray energy index of about one results from the superposition of the spectral components from several orders of Compton scattering; the change of the slope at several hundred keV arises from the Klein-Nishina decline of the scattering cross section.

  17. A search for luminosity - Spectral hardness correlations in SIGNE gamma-ray burst data

    NASA Technical Reports Server (NTRS)

    Kargatis, Vincent E.; Liang, Edison P.; Hurley, Kevin C.

    1992-01-01

    We use simple 2-parameter models to fit gamma-ray burst spectra from the SIGNE experiments aboard the Venera 13 and 14 spacecraft in order to estimate burst luminosity and spectral hardness. We then look for correlations between these two parameters. The hardness is characterized by kT and Ec for thermal bremsstrahlung and thermal synchrotron fits, respectively. The spectra are integrated over 1/2 s or longer, depending on photon statistics. We find that generally luminosity increases with spectral hardness. We fit power laws of the form L varies as kT sup gamma to 12 bursts. A wide range of indices with gamma = 0.5-2.5 is found, broader than that reported by Golenetskii et al. (1983).

  18. Cyclotron resonant scattering in the spectra of gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Lamb, D. Q.; Wang, J. C. L.; Loredo, T. J.; Wasserman, I.; Fenimore, E. E.

    1989-01-01

    Data on the GB880205 gamma-ray bursts are presented that have implications for the nature of gamma-ray burst sources. It is shown that cyclotron resonant scattering and Raman scattering account well for the positions, strengths, and shapes of the relative strengths of the first and second harmonics and their narrow widths. These results imply the existence of a superstrong (B of about 2 x 10 to the 12th G) magnetic field in the vicinity of the X-ray emission region of GB880205. Such a superstrong magnetic field points to a strongly magnetic neutron star as the origin of gamma-ray bursts, and to the fact that the gamma-ray sources belong to the Galaxy.

  19. The Ulysses Supplement to the BATSE 3B Catalog of Cosmic Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Hurley, K.

    1998-01-01

    We present Interplanetary Network Localization information for 219 gamma-ray burst of the 3rd BATSE catalog, obtained by analyzing the arrival times of these bursts at the Ulysses and Compton Gamma Ray Observatory (CGRO) spacecraft. For any given burst observed by these two spacecraft, arrival time analysis (triangulation) results in an annulus of possible arrival directions whose width varies between 7 arcseconds and 32 arcminutes, depending on the intensity and time history of the burst, and the distance of the Ulysses spacecraft from Earth. This annulus generally intersects the BATSE error circle, resulting in an average reduction of the error box area by a factor of 30.

  20. Relativistic feedback models of terrestrial gamma-ray flashes and gamma-ray glows

    NASA Astrophysics Data System (ADS)

    Dwyer, J. R.

    2015-12-01

    Relativistic feedback discharges, also known as dark lightning, are capable of explaining many of the observed properties of terrestrial gamma-ray flashes (TGFs) and gamma-ray glows, both created within thunderstorms. During relativistic feedback discharges, the generation of energetic electrons is self-sustained via the production of backward propagating positrons and back-scattered x-rays, resulting in very larges fluxes of energetic radiation. In addition, ionization produces large electric currents that generate LF/VLF radio emissions and eventually discharge the electric field, terminating the gamma-ray production. In this presentation, new relativistic feedback model results will be presented and compared to recent observations.

  1. A search for optical counterparts of gamma-ray bursts. Final report

    SciTech Connect

    Park, Hye-Sook

    1995-03-09

    Gamma Ray Bursts (GRBS) are mysterious flashes of gamma rays lasting several tens to hundreds of seconds that occur approximately once per day. NASA launched the orbiting Compton Gamma Ray Observatory to study GRBs and other gamma ray phenomena. CGRO carries the Burst and Transient Experiment (BATSE) specifically to study GRBS. Although BATSE has collected data on over 600 GRBS, and confirmed that GRBs are localized, high intensity point sources of MeV gamma rays distributed isotropically in the sky, the nature and origin of GRBs remains a fundamental problem in astrophysics. BATSE`s 8 gamma ray sensors located on the comers of the box shaped CGRO can detect the onset of GRBs and record their intensity and energy spectra as a function of time. The position of the burst on the sky can be determined to < {plus_minus}10{degrees} from the BATSE data stream. This position resolution is not sufficient to point a large, optical telescope at the exact position of a GRB which would determine its origin by associating it with a star. Because of their brief duration it is not known if GRBs are accompanied by visible radiation. Their seemingly large energy output suggests thatthis should be. Simply scaling the ratio of visible to gamma ray intensities of the Crab Nebula to the GRB output suggests that GRBs ought to be accompanied by visible flashes of magnitude 10 or so. A few photographs of areas containing a burst location that were coincidentally taken during the burst yield lower limits on visible output of magnitude 4. The detection of visible light during the GRB would provide information on burst physics, provide improved pointing coordinates for precise examination of the field by large telescope and provide the justification for larger dedicated optical counterpart instruments. The purpose of this experiment is to detect or set lower limits on optical counterpart radiation simultaneously accompanying the gamma rays from

  2. 1979 January 13 - An intense gamma-ray burst with a possible associated optical transient

    NASA Technical Reports Server (NTRS)

    Barat, C.; Hurley, K.; Niel, M.; Vedrenne, G.; Cline, T.; Desai, U.; Schaefer, B.; Teegarden, B.; Evans, W. D.; Fenimore, E. E.

    1984-01-01

    The time history, energy spectra, and precise localization of the intense January 13, 1979 gamma-ray burst, observed by five spacecraft in the interplanetary network, are presented. The time history displays a pulse-afterpulse structure suggestive of periodicity. Fine time resolution spectral analysis shows that a wide variety of models can be used to fit individual spectra, while spectra integrated over longer periods are well fitted by a thermal synchrotron law, making it difficult to identify any specific emission mechanism. The precise localization may be consistent with an archival optical transient having no quiescent counterpart down to 22d mag on recent plates.

  3. Closest Gamma Ray Burst Providing Scientists With Crucial Test for Burst Physics

    NASA Astrophysics Data System (ADS)

    2003-05-01

    The closest Gamma Ray Burst (GRB) yet known is providing astronomers with a rare opportunity to gain information vital to understanding these powerful cosmic explosions. Extremely precise radio-telescope observations already have ruled out one proposed mechanism for the bursts. "This is the closest and brightest GRB we've ever seen, and we can use it to decipher the physics of how these bursts work," said Greg Taylor of the National Radio Astronomy Observatory (NRAO) in Socorro, NM. Taylor worked with Dale Frail, also of the NRAO, along with Prof. Shri Kulkarni and graduate student Edo Berger of Caltech in studying a GRB detected on March 29, 2003. The scientists presented their findings to the American Astronomical Society's meeting in Nashville, TN. VLBA image of GRB 030329 VLBA IMAGE of GRB 030329 CREDIT: NRAO/AUI/NSF (Click on Image for Larger Version) Taylor and Frail used the National Science Foundation's (NSF) Very Long Baseline Array (VLBA) and other radio telescopes to study the burst, known as GRB 030329. In a series of observations from April 1 to May 19, they determined the size of the expanding "fireball" from the burst and measured its position in the sky with great precision. At a distance of about 2.6 billion light-years, GRB 030329 is hardly next door. However, compared to other GRBs at typical distances of 8-10 billion light-years, it presents an easier target for study. "We only expect to see one burst per decade this close," said Frail. The precise measurement of the object's position allowed the scientists to show that one theoretical model for GRBs can be ruled out. This model, proposed in 2000, says that the radio-wave energy emitted by the GRB comes from "cannonballs" of material shot from the explosion at extremely high speeds. "The 'cannonball model' predicted that we should see the radio-emitting object move across the sky by a specific amount. We have not seen that motion," Taylor said. The currently standard "fireball model" of GRBs

  4. Low-Energy Study of Gamma-Ray Bursts Using Two BATSE Spectroscopy Detectors

    NASA Technical Reports Server (NTRS)

    Pangia, Michael J.

    2002-01-01

    Gamma-ray bursts (GRBs) are energetic, short-duration emissions of gamma-rays from astronomical sources typically well beyond our galaxy. The Burst and Transient Source Experiment (BATSE) that was onboard NASA's Compton Gamma-Ray Observatory (CGRO) had detected an unprecedented 2704 GRBs during CGRO's nine-year mission. BATSE consisted of eight detector assemblies located at the corners of CGRO to give full sky coverage. Each assembly consisted of two detectors, a Large Area Detector (LAD) and a Spectroscopy Detector (SD). In determining the detail features of GRBs, the degree to which they possess a low-energy component (approx. 10 keV) is of interest. Preece has developed a method to study the low-energy characteristics and concluded that 14% of the 86 bright GRBs they studied had a definite low-energy component, referred to as a low-energy excess. Their study, and the present study as well, needed to use SD data, because it extends down to the low-energy range when operating in a high-gain mode. For their study, low-energy data was used from just one SD. To better quantify the low-energy behavior, this study will consider bursts for which two SDs satisfy the same criteria as used by Preece. The procedure developed by Preece to study the low-energy aspects of GRBs with BATSE data is to fit the data to a representative spectral function. In particular, two components are used, one corresponding to the low-energy component, and another representing the main part of the spectrum. The low-energy function used is the optically thin thermal bremsstrahlung (OTTB) model.

  5. Choked Jets and Low-Luminosity Gamma-Ray Bursts as Hidden Neutrino Sources

    NASA Astrophysics Data System (ADS)

    Senno, Nicholas; Murase, Kohta; Mészáros, Peter

    2016-03-01

    I will discuss choked gamma-ray burst (GRB) jets as possible sources of very high-energy (VHE) cosmic neutrinos. The jet propagation physics and radiation constraints are taken into account. We find that efficient shock acceleration of cosmic rays inside a high density stellar environment is possible for sufficiently low-powered jets and/or jets buried in an extended optically think envelope. Such conditions are favorable also for the GRB jets to become stalled. Such choked jets may explain transrelativistic SNe or low-luminosity GRBs by launching quasi-spherical shocks that breakout in the optically thick wind. Focusing on this possibility, we calculate the resulting diffuse neutrino spectra using the latest results of the local llGRB rate and luminosity function. We confirm that llGRBs can potentially give a significant contribution to the measured neutrino flux. The results are compatible with the IceCube (IC) data around 10-100 TeV without contradicting other IC limits on classical GRBs. Choked and llGRBs are dark in GeV-TeV gamma rays, and do not contribute significantly to the Fermi diffuse gamma-ray background. Precursor TeV neutrinos emerging prior to the shock breakout emission can be used as smoking gun evidence for a choked jet model for llGRBs.

  6. Gamma-Ray Burst Arrival Time Localizations: Simultaneous Observations by Mars Observer, Compton Gamma Ray Observatory and Ulysses

    NASA Technical Reports Server (NTRS)

    Laros, J. G.; Boynton, W. V.; Hurley, K.; Kouveliotou, C.; McCollough, M. L.; Fishman, G. J.; Meegan, C. A.

    1997-01-01

    Between 1992 October 4 and 1993 August 1, concurrent coverage by the Compton Gamma Ray Observatory (CGRO), Mars Observer (MO), and Ulysses spacecraft was obtained for 78 gamma-ray bursts (GRBs). Although most of these were below the MO and Ulysses thresholds, nine were positively detected by all three spacecraft, with data quality adequate for quantitative localization analysis. All were localized independently to approximately 2 deg accuracy by the CGRO Burst and Transient Source Experiment (BATSE). We computed arrival-time error boxes with larger dimensions ranging from a few arcminutes to the diameters of the BATSE-only boxes and with smaller dimensions in the arcminute range. Three events are of particular interest: GB 930704 (BATSE 2428) has been described as a possible repeater. The arrival-time information is consistent with that hypothesis, but only just so. The GB 930706 (2431) box, at approximately 1 min x 4 min, is the only one this small obtained since Pioneer Venus Orbiter (PVO) entered the Venusian atmosphere in 1992 October. Sensitive radio and optical observations of this location were made within 8 and 9 days of the burst, but no counterpart candidates were identified. GB 930801 (2477) is the first GRB that had its localization improved by taking into account BATSE Earth occultation.

  7. Terrestrial Gamma-ray Flashes (TGFs) Observed with the Fermi-Gamma-ray Burst Monitor: Temporal and Spectral Properties

    NASA Technical Reports Server (NTRS)

    Fishman, G. J.; Briggs, M. S.; Connaughton, W.; Wilson-Hodge, C.; Bhat, P. N.

    2010-01-01

    The Gamma-ray Burst Monitor (GBM) on the Fermi Gamma-ray Space Telescope Observatory (Fermi) was detecting 2.1 TGFs per week. This rate has increased by a factor of 8 since new flight software was uploaded to the spacecraft in November 2009 in order to increase the sensitivity of GBM to TGFs. Further upgrades to Fermi-GBM to allow observations of weaker TGFs are in progress. The high time resolution (2 s) allows temporal features to be resolved so that some insight may be gained on the origin and transport of the gamma-ray photons through the atmosphere. The absolute time of the TGFs, known to several microseconds, also allows accurate correlations of TGFs with lightning networks and other lightning-related phenomena. The thick bismuth germanate (BGO) scintillation detectors of the GBM system have observed photon energies from TGFs at energies above 40 MeV. New results on the some temporal aspects of TGFs will be presented along with spectral characteristics and properties of several electron-positron TGF events that have been identified.

  8. Comptonization signatures in the prompt emission of gamma-ray bursts

    SciTech Connect

    Frontera, F.; Farinelli, R.; Dichiara, S.; Guidorzi, C.; Titarchuk, L.; Amati, L.; Landi, R.

    2013-12-20

    We report results of a systematic study of the broadband (2-2000 keV) time-resolved prompt emission spectra of a sample of gamma-ray bursts (GRBs) detected with both Wide Field Cameras (WFCs) on board the BeppoSAX satellite and the Burst and Transient Source Experiment (BATSE) on board the Compton Gamma Ray Observatory. The main goal of this paper is to test spectral models of the GRB prompt emission that have recently been proposed. In particular, we test a recent photospheric model proposed, i.e., blackbody plus power law, the addition of a blackbody emission to the Band function in the cases in which this function does not fit the data, and a recent Comptonization model. By considering the few spectra for which the simple Band function does not provide a fully acceptable fit to the data, we find a statistically significant better fit by adding a blackbody to this function only in one case. We confirm earlier results found fitting the BATSE spectra alone with a blackbody plus power law. Instead, when the BATSE GRB spectra are joined to those obtained with WFCs (2-28 keV), this model becomes unacceptable in most time intervals in which we subdivide the GRB light curves. We find instead that the Comptonization model is always acceptable, even in the few cases in which the Band function is inconsistent with the data. We discuss the implications of these results.

  9. Long gamma-ray bursts and core-collapse supernovae have differentenvironments

    SciTech Connect

    Fruchter, A.S.; Levan, A.J.; Strolger, L.; Vreeswijk, P.M.; Thorsett, S.E.; Bersier, D.; Burud, I.; Castro Ceren, J.M.; Castro-Tirado, A.J.; Conselice, C.; Dahlen, T.; Ferguson, H.C.; Fynbo,J.P.U.; Garnavich, P.M.; Gibbons, R.A.; Gorosabel, J.; Gull, T.R.; Hjorth, J.; Holland, S.T.; Kouveliotou, C.; Levay, Z.; Livio, M.; Metzger, M.R.; Nugent, P.E.; Petro, L.; Pian, E.; Rhoads, J.E.; Riess,A.G.; Sahu, K.C.; Smette, A.; Tanvir, N.R.; Wijers, R.A.M.J.; Woosley, S.E.

    2006-05-01

    When massive stars exhaust their fuel they collapse andoften produce the extraordinarily bright explosions known ascore-collapse supernovae. On occasion, this stellar collapse also powersan even more brilliant relativistic explosion known as a long-durationgamma-ray burst. One would then expect that long gamma-ray bursts andcore-collapse supernovae should be found in similar galacticenvironments. Here we show that this expectation is wrong. We find thatthe long gamma-ray bursts are far more concentrated on the very brightestregions of their host galaxies than are the core-collapse supernovae.Furthermore, the host galaxies of the long gamma-ray bursts aresignificantly fainter and more irregular than the hosts of thecore-collapse supernovae. Together theseresults suggest thatlong-duration gamma-ray bursts are associated with the most massive starsand may be restricted to galaxies of limited chemical evolution. Ourresults directly imply that long gamma-ray bursts are relatively rare ingalaxies such as our own MilkyWay.

  10. THE SECOND SWIFT BURST ALERT TELESCOPE GAMMA-RAY BURST CATALOG

    SciTech Connect

    Sakamoto, T.; Baumgartner, W. H.; Cummings, J. R.; Krimm, H. A.; Barthelmy, S. D.; Gehrels, N.; Markwardt, C. B.; Parsons, A. M.; Tueller, J.; Fenimore, E. E.; Palmer, D. M.; Sato, G.; Stamatikos, M.; Ukwatta, T. N.; Zhang, B.

    2011-07-01

    We present the second Swift Burst Alert Telescope (BAT) catalog of gamma-ray bursts (GRBs), which contains 476 bursts detected by the BAT between 2004 December 19 and 2009 December 21. This catalog (hereafter the BAT2 catalog) presents burst trigger time, location, 90% error radius, duration, fluence, peak flux, time-averaged spectral parameters, and time-resolved spectral parameters measured by the BAT. In the correlation study of various observed parameters extracted from the BAT prompt emission data, we distinguish among long-duration GRBs (L-GRBs), short-duration GRBs (S-GRBs), and short-duration GRBs with extended emission (S-GRBs with E.E.) to investigate differences in the prompt emission properties. The fraction of L-GRBs, S-GRBs, and S-GRBs with E.E. in the catalog are 89%, 8%, and 2%, respectively. We compare the BAT prompt emission properties with the BATSE, BeppoSAX, and HETE-2 GRB samples. We also correlate the observed prompt emission properties with the redshifts for the GRBs with known redshift. The BAT T{sub 90} and T{sub 50} durations peak at 70 s and 30 s, respectively. We confirm that the spectra of the BAT S-GRBs are generally harder than those of the L-GRBs. The time-averaged spectra of the BAT S-GRBs with E.E. are similar to those of the L-GRBs. Whereas, the spectra of the initial short spikes of the S-GRBs with E.E. are similar to those of the S-GRBs. We show that the BAT GRB samples are significantly softer than the BATSE bright GRBs and that the time-averaged E {sup obs}{sub peak} of the BAT GRBs peaks at 80 keV, which is significantly lower energy than those of the BATSE sample, which peak at 320 keV. The time-averaged spectral properties of the BAT GRB sample are similar to those of the HETE-2 GRB samples. By time-resolved spectral analysis, we find that only 10% of the BAT observed photon indices are outside the allowed region of the synchrotron shock model. We see no obvious observed trend in the BAT T{sub 90} and the observed spectra

  11. IACT observations of gamma-ray bursts: prospects for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Gilmore, Rudy C.; Bouvier, Aurelien; Connaughton, Valerie; Goldstein, Adam; Otte, Nepomuk; Primack, Joel R.; Williams, David A.

    2013-04-01

    Gamma rays at rest frame energies as high as 90 GeV have been reported from gamma-ray bursts (GRBs) by the Fermi Large Area Telescope (LAT). There is considerable hope that a confirmed GRB detection will be possible with the upcoming Cherenkov Telescope Array (CTA), which will have a larger effective area and better low-energy sensitivity than current-generation imaging atmospheric Cherenkov telescopes (IACTs). To estimate the likelihood of such a detection, we have developed a phenomenological model for GRB emission between 1 GeV and 1 TeV that is motivated by the high-energy GRB detections of Fermi-LAT, and allows us to extrapolate the statistics of GRBs seen by lower energy instruments such as the Swift-BAT and BATSE on the Compton Gamma-ray Observatory. We show a number of statistics for detected GRBs, and describe how the detectability of GRBs with CTA could vary based on a number of parameters, such as the typical observation delay between the burst onset and the start of ground observations. We also consider the possibility of using GBM on Fermi as a finder of GRBs for rapid ground follow-up. While the uncertainty of GBM localization is problematic, the small field-of-view for IACTs can potentially be overcome by scanning over the GBM error region. Overall, our results indicate that CTA should be able to detect one GRB every 20-30 months with our baseline instrument model, assuming consistently rapid pursuit of GRB alerts, and provided that spectral breaks below ~100 GeV are not a common feature of the bright GRB population. With a more optimistic instrument model, the detection rate can be as high as 1 to 2 GRBs per year.

  12. Rapid optical variability of the gamma-ray burst grb 080319b and its central engine

    NASA Astrophysics Data System (ADS)

    Beskin, G.; Karpov, S.; Bondar, S.; Guarnieri, A.; Bartolini, C.; Greco, D.; Piccioni, A.

    2010-07-01

    The results of observations of the optical emission that accompanied the gamma-ray burst GRB 080319B are reported. Observations were made using the TORTORA fast wide-field camera mounted on the REM robotic telescope in Chile. The behavior of the light curve before, during, and after the gamma-ray burst is described. The light curve consists of four, possibly periodic, 5-7 s long peaks 8-9 s apart. The behavior of the burst in the gamma and optical energy ranges are compared and the results of the theoretical interpretation of this comparison are reported.

  13. Ring of nine Gamma Ray Burst overlap with the hot spot of my hypothesis

    NASA Astrophysics Data System (ADS)

    Cao, Dayong

    2016-03-01

    During 2004 to 2014, a symmetry axis and a cold spot (a structure of one billion light years across) of CMB were observed, and I supposed there is a hot spot, and there is a symmetry between the cold spot and the hot spot of CMB. http://www.dailymail.co.uk/sciencetech/article-2430415 http://meetings.aps.org/link/BAPS.2014.MAR.Y33.9 In 2015, a Ring of Nine Gamma Ray Burst (a structure of FIVE BILLION light years across) which is a part of structure of double helix and overlap with the hot spot was observed. http://www.dailymail.co.uk/sciencetech/article-3185193 The Ring of Nine Gamma Ray Burst could be explained by the hot spot. There is a balance systemic model with structure of double helix of the flat universe between cold spot and hot spot-a balance between stellar matter and dark massenergy (include dark matter and dark energy). The model can explain of the Hubble's redshift. There is a larger dark hole instead of the huge black hole of the center of the Milky Way galaxy, and a dark hole builds up a balance system with sun. This model should explain of the seasonal Extinctions. http://meetings.aps.org/link/BAPS.2015.APR.H14.8

  14. Owens Valley Interferometric Observations of the Gamma-Ray Bursts GRB 970228 and GRB 970508

    NASA Astrophysics Data System (ADS)

    Shepherd, D. S.; Frail, D. A.; Kulkarni, S. R.; Metzger, M. R.

    1998-04-01

    We have obtained new observations of the gamma-ray bursts GRB 970228 and GRB 970508 with the Owens Valley Radio Observatory. GRB 970228 was observed in the 1 and 3 mm continuum bands. The field was centered on the position of the optical counterpart approximately 17 days after the initial GRB burst. GRB 970228 was not detected at either wavelength, which places 3 σ upper limits of 2.16 mJy at 92.7 GHz and 38.1 mJy at 242.4 GHz. GRB 970508 was observed in the 3 mm continuum band, centered first on the position of the X-ray source SAX J0653.8+7916 and then on the position of the optical counterpart and the transient source detected by the Very Large Array. A series of five observations were made from 1997 May 10 (~2 days after initial burst detection) to 1997 May 16 (~8 days after burst). GRB 970508 was not detected during any observation. We combine data from May 12 to May 16 to place a solid 3 σ upper limit of 3.0 mJy at 86.8 GHz. Assuming the gamma-ray burst can be modeled by a cosmological fireball, our nondetection supports the interpretation by Frail and coworkers that large fluctuations seen in the centimeter-wave radio fluxes during this time are not due to changes in the source itself but are instead due to interstellar scintillation when the early fireball is nearly a point source.

  15. Investigation of primordial black hole bursts using interplanetary network gamma-ray bursts

    DOE PAGES

    Ukwatta, Tilan Niranjan; Hurley, Kevin; MacGibbon, Jane H.; Svinkin, D. S.; Aptekar, R. L.; Golenetskii, S. V.; Frederiks, D. D.; Pal'Shin, V. D.; Goldsten, J.; Boynton, W.; et al

    2016-07-25

    The detection of a gamma-ray burst (GRB) in the solar neighborhood would have very important implications for GRB phenomenology. The leading theories for cosmological GRBs would not be able to explain such events. The final bursts of evaporating primordial black holes (PBHs), however, would be a natural explanation for local GRBs. We present a novel technique that can constrain the distance to GRBs using detections from widely separated, non-imaging spacecraft. This method can determine the actual distance to the burst if it is local. We applied this method to constrain distances to a sample of 36 short-duration GRBs detected bymore » the Interplanetary Network (IPN) that show observational properties that are expected from PBH evaporations. These bursts have minimum possible distances in the 1013–1018 cm (7–105 au) range, which are consistent with the expected PBH energetics and with a possible origin in the solar neighborhood, although none of the bursts can be unambiguously demonstrated to be local. Furthermore, assuming that these bursts are real PBH events, we estimate lower limits on the PBH burst evaporation rate in the solar neighborhood.« less

  16. Investigation of Primordial Black Hole Bursts Using Interplanetary Network Gamma-ray Bursts

    NASA Astrophysics Data System (ADS)

    Ukwatta, T. N.; Hurley, K.; MacGibbon, J. H.; Svinkin, D. S.; Aptekar, R. L.; Golenetskii, S. V.; Frederiks, D. D.; Pal'shin, V. D.; Goldsten, J.; Boynton, W.; Kozyrev, A. S.; Rau, A.; von Kienlin, A.; Zhang, X.; Connaughton, V.; Yamaoka, K.; Ohno, M.; Ohmori, N.; Feroci, M.; Frontera, F.; Guidorzi, C.; Cline, T.; Gehrels, N.; Krimm, H. A.; McTiernan, J.

    2016-07-01

    The detection of a gamma-ray burst (GRB) in the solar neighborhood would have very important implications for GRB phenomenology. The leading theories for cosmological GRBs would not be able to explain such events. The final bursts of evaporating primordial black holes (PBHs), however, would be a natural explanation for local GRBs. We present a novel technique that can constrain the distance to GRBs using detections from widely separated, non-imaging spacecraft. This method can determine the actual distance to the burst if it is local. We applied this method to constrain distances to a sample of 36 short-duration GRBs detected by the Interplanetary Network (IPN) that show observational properties that are expected from PBH evaporations. These bursts have minimum possible distances in the 1013–1018 cm (7–105 au) range, which are consistent with the expected PBH energetics and with a possible origin in the solar neighborhood, although none of the bursts can be unambiguously demonstrated to be local. Assuming that these bursts are real PBH events, we estimate lower limits on the PBH burst evaporation rate in the solar neighborhood.

  17. Gamma-ray bursts as a probe of large-scale structure in the universe

    NASA Technical Reports Server (NTRS)

    Lamb, D. Q.; Quashnock, Jean M.

    1993-01-01

    If gamma-ray bursts are cosmological in origin, the sources of the bursts are expected to trace the large-scale structure of luminous matter in the universe. We show that, if this is so and if the Burst and Transient Source Experiment yields the locations of approximately greater than 3000 gamma-ray bursts, it may be possible to use them to probe the structure of luminous matter on the largest scales known, consistent with recent determinations from pencil beam surveys and studies of superclusters. A positive result would provide compelling evidence that most gamma-ray bursts are cosmological in origin and would allow comparison between the distributions of luminous matter and dark matter on large scales. Conversely, a negative result might cast doubt on the cosmological origin of the bursts, provide evidence that the clustering of burst sources on large scales is less than that expected from pencil beam surveys and studies of superclusters, or indicate that gamma-ray bursts have some more exotic origin.

  18. A catalog of gamma-ray bursts with earth crossing times

    NASA Technical Reports Server (NTRS)

    Klebesadel, R.; Evans, W. D.; Laros, J. G.; Strong, I. B.; Cline, T. L.; Desai, U.; Teegarden, B. J.; Barat, C.; Hurley, K.; Niel, M.

    1982-01-01

    A catalog of 111 confirmed gamma-ray bursts detected between 1967 July and 1979 June is presented. Both localization information and earth crossing times for the gamma-ray wave fronts are given. Data which have appeared in some previous catalogs have been revised; many previously unpublished events detected by an international network of dedicated deep space and near-earth experiments since 1976 are also presented.

  19. Spectra of X-ray and Gamma-ray Bursts Produced by Stepping Lightning Leaders

    NASA Astrophysics Data System (ADS)

    Celestin, Sebastien; Xu, Wei; Pasko, Victor

    2013-04-01

    Terrestrial gamma-ray flashes (TGFs) are bursts of high-energy photons originating from the Earth's atmosphere in association with thunderstorm activity. TGFs were serendipitously discovered by BATSE detector aboard the Compton Gamma-Ray Observatory originally launched to perform observations of celestial gamma-ray sources [Fishman et al., Science, 264, 1313, 1994]. These events have also been detected by the RHESSI satellite [Smith et al., Science, 307, 1085, 2005], the AGILE satellite [Marisaldi et al., JGR, 115, A00E13, 2010], and the Fermi Gamma-ray Space Telescope [Briggs et al., JGR, 115, A07323, 2010]. Moreover, measurements have correlated TGFs with initial development stages of normal polarity intra-cloud lightning that transports negative charge upward (+IC) [e.g, Lu et al., JGR, 116, A03316, 2011]. Photon spectra corresponding to well-established model of relativistic runaway electron avalanches (RREAs) usually provide a very good agreement with satellite observations [Dwyer and Smith, GRL, 32, L22804, 2005]. However, it has been suggested that high-potential +IC lightning leaders could produce a sufficient number of energetic electrons to explain TGFs [Celestin and Pasko, JGR, 116, A03315, 2011] and Xu et al. [GRL, 39, L08801, 2012] have shown that this mechanism could explain the TGF spectrum for lightning potentials higher than 100 MV. In addition to TGFs, X-ray bursts are produced by negative lightning leaders in association with stepping processes and are observed from the ground [Dwyer et al., GRL, 32, L01803, 2005]. However, the energy spectrum of X-ray bursts from lightning is still poorly known, mainly due to the low fluence detected from the ground. In this work, we use Monte Carlo models to study the acceleration of runaway electrons in the electric field produced around lightning leader tip and the associated bremsstrahlung photon spectra observed by low-orbit satellites in the case of high potential +IC discharges and from the ground in the

  20. Properties of long gamma-ray bursts from massive compact binaries.

    PubMed

    Church, Ross P; Levan, Andrew J; Davies, Melvyn B; Kim, Chunglee

    2013-06-13

    We consider the implications of a model for long-duration gamma-ray bursts in which the progenitor is spun up in a close binary by tidal interactions with a massive black-hole companion. We investigate a sample of such binaries produced by a binary population synthesis, and show that the model predicts several common features in the accretion on to the newly formed black hole. In all cases, the accretion rate declines as approximately t(-5/3) until a break at a time of order 10(4) s. The accretion rate declines steeply thereafter. Subsequently, there is flaring activity, with the flare peaking between 10(4) and 10(5) s, the peak time being correlated with the flare energy. We show that these times are set by the semi-major axis of the binary, and hence the process of tidal spin-up; furthermore, they are consistent with flares seen in the X-ray light curves of some long gamma-ray bursts. PMID:23630369