Science.gov

Sample records for gamma-ray emission model

  1. Emission model of gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Liang, E. P.

    1983-01-01

    The emission mechanisms of cosmic gamma-ray bursts are reviewed. In particular, the thermal synchrotron model is discussed as the most viable mechanism for the majority of the continuum emission. Within this framework various information about the source region can be extracted. The picture that emerges is that of a hot (kT = .2 - 1.0 sq mc), thin sheet of dense pair-dominated plasma emitting via cyclo-synchrotron radiation in a strong magnetic field (B approximately one-hundred billion to one trillion gauss). Speculations on the origin and structure of this sheet are attempted. The problem of high-energy photons above pair production threshold escaping from the source is also considered.

  2. A model of the diffuse galactic gamma ray emission

    NASA Technical Reports Server (NTRS)

    Sreekumar, Parameswaran

    1990-01-01

    The galaxy was observed to be a source of high energy gamma rays as shown by the two successful satellite experiments, SAS-2 and COS-B. It is generally understood that these diffuse gamma rays result from interactions between energetic cosmic rays and interstellar gas. This work makes use of the most recent data on the distribution of atomic and molecular hydrogen in the galaxy along with new estimates of gamma ray production functions to model the diffuse galactic gamma ray emission. The model allows various spatial distributions for cosmic rays in the Galaxy including non-axisymmetric ones. In the light of the expected data from EGRET (Energetic Gamma-Ray Experiment Telescope), an improved model of cosmic ray-matter-gamma ray interaction will provide new insights into the distribution of cosmic rays and the strength of its coupling to matter.

  3. Modelling Hard Gamma-Ray Emission from Supernova Remnants

    NASA Technical Reports Server (NTRS)

    Baring, Matthew G.

    1999-01-01

    The observation by the CANGAROO (Collaboration of Australia and Nippon Gamma Ray Observatory at Outback) experiment of TeV emission from SN 1006, in conjunction with several instances of non-thermal X-ray emission from supernova remnants, has led to inferences of super-TeV electrons in these extended sources. While this is sufficient to propel the theoretical community in their modelling of particle acceleration and associated radiation, the anticipated emergence in the next decade of a number of new experiments probing the TeV and sub-TeV bands provides further substantial motivation for modellers. In particular, the quest for obtaining unambiguous gamma-ray signatures of cosmic ray ion acceleration defines a "Holy Grail" for observers and theorists alike. This review summarizes theoretical developments in the prediction of MeV-TeV gamma-rays from supernova remnants over the last five years, focusing on how global properties of models can impact, and be impacted by, hard gamma-ray observational programs, thereby probing the supernova remnant environment. Properties of central consideration include the maximum energy of accelerated particles, the density of the unshocked interstellar medium, the ambient magnetic field, and the relativistic electron-to-proton ratio. Criteria for determining good candidate remnants for observability in the TeV band are identified.

  4. Modelling Hard Gamma-Ray Emission from Supernova Remnants

    NASA Technical Reports Server (NTRS)

    Baring, Matthew

    2000-01-01

    The observation by the CANGAROO experiment of TeV emission from SN 1006, in conjunction with several instances of non-thermal X-ray emission from supernova remnants, has led to inferences of super-TeV electrons in these extended sources. While this is sufficient to propel the theoretical community in their modelling of particle acceleration and associated radiation, the anticipated emergence in the next decade of a number of new experiments probing the TeV and sub-TeV bands provides further substantial motivation for modellers. In particular, the quest for obtaining unambiguous gamma-ray signatures of cosmic ray ion acceleration defines a "Holy Grail" for observers and theorists alike. This review summarizes theoretical developments in the prediction of MeV-TeV gamma-rays from supernova remnants over the last five years, focusing on how global properties of models can impact, and be impacted by, hard gamma-ray observational programs, thereby probing the supernova remnant environment. Properties of central consideration include the maximum energy of accelerated particles, the density of the unshocked interstellar medium, the ambient magnetic field, and the relativistic electron-to-proton ratio. Criteria for determining good candidate remnants for observability in the TeV band are identified.

  5. The Diffuse Galactic Gamma-Ray Emission Model for GLAST LAT

    SciTech Connect

    Porter, T.A.; Digel, S.W.; Grenier, I.A.; Moskalenko, I.V.; Strong, A.W.; /Garching, Max Planck Inst., MPE

    2007-06-13

    Diffuse emission from the Milky Way dominates the gamma-ray sky. About 80% of the high-energy luminosity of the Milky Way comes from processes in the interstellar medium. The Galactic diffuse emission traces interactions of energetic particles, primarily protons and electrons, with the interstellar gas and radiation field, thus delivering information about cosmic-ray spectra and interstellar mass in distant locations. Additionally, the Galactic diffuse emission is the celestial foreground for the study of gamma-ray point sources and the extragalactic diffuse gamma-ray emission. We will report on the latest developments in the modeling of the Galactic diffuse emission, which will be used for the Gamma Ray Large Area Space Telescope (GLAST) investigations.

  6. AN ATTEMPT AT A UNIFIED MODEL FOR THE GAMMA-RAY EMISSION OF SUPERNOVA REMNANTS

    SciTech Connect

    Yuan Qiang; Bi Xiaojun; Liu Siming

    2012-12-20

    Shocks of supernova remnants (SNRs) are important (and perhaps the dominant) agents for the production of the Galactic cosmic rays. Recent {gamma}-ray observations of several SNRs have made this case more compelling. However, these broadband high-energy measurements also reveal a variety of spectral shapes demanding more comprehensive modeling of emissions from SNRs. According to the locally observed fluxes of cosmic-ray protons and electrons, the electron-to-proton number ratio is known to be about 1%. Assuming such a ratio is universal for all SNRs and identical spectral shape for all kinds of accelerated particles, we propose a unified model that ascribes the distinct {gamma}-ray spectra of different SNRs to variations of the medium density and the spectral difference between cosmic-ray electrons and protons observed from Earth to transport effects. For low-density environments, the {gamma}-ray emission is inverse-Compton dominated. For high-density environments like systems of high-energy particles interacting with molecular clouds, the {gamma}-ray emission is {pi}{sup 0}-decay dominated. The model predicts a hadronic origin of {gamma}-ray emission from very old remnants interacting mostly with molecular clouds and a leptonic origin for intermediate-age remnants whose shocks propagate in a low-density environment created by their progenitors via, e.g., strong stellar winds. These results can be regarded as evidence in support of the SNR origin of Galactic cosmic rays.

  7. A LEPTONIC MODEL OF STEADY HIGH-ENERGY GAMMA-RAY EMISSION FROM Sgr A*

    SciTech Connect

    Kusunose, Masaaki; Takahara, Fumio E-mail: takahara@vega.ess.sci.osaka-u.ac.jp

    2012-03-20

    Recent observations of Sgr A* by Fermi and HESS have detected steady {gamma}-ray emission in the GeV and TeV bands. We present a new model to explain the GeV {gamma}-ray emission by inverse Compton scattering by nonthermal electrons supplied by the NIR/X-ray flares of Sgr A*. The escaping electrons from the flare regions accumulate in a region with a size of {approx}10{sup 18} cm and magnetic fields of {approx}< 10{sup -4} G. Those electrons produce {gamma}-rays by inverse Compton scattering off soft photons emitted by stars and dust around the central black hole. By fitting the GeV spectrum, we find constraints on the magnetic field and the energy density of optical-UV radiation in the central 1 pc region around the supermassive black hole. While the GeV spectrum is well fitted by our model, the TeV {gamma}-rays, whose spectral index is different from that of the GeV emission, may be from different sources such as pulsar wind nebulae.

  8. Young gamma-ray pulsar: from modeling the gamma-ray emission to the particle-in-cell simulations of the global magnetosphere

    NASA Astrophysics Data System (ADS)

    Brambilla, Gabriele; Kalapotharakos, Constantions; Timokhin, Andrey; Kust Harding, Alice; Kazanas, Demosthenes

    2016-04-01

    Accelerated charged particles flowing in the magnetosphere produce pulsar gamma-ray emission. Pair creation processes produce an electron-positron plasma that populates the magnetosphere, in which the plasma is very close to force-free. However, it is unknown how and where the plasma departs from the ideal force-free condition, which consequently inhibits the understanding of the emission generation. We found that a dissipative magnetosphere outside the light cylinder effectively reproduces many aspects of the young gamma-ray pulsar emission as seen by the Fermi Gamma-ray Space Telescope, and through particle-in-cell simulations (PIC), we started explaining this configuration self-consistently. These findings show that, together, a magnetic field structure close to force-free and the assumption of gamma-ray curvature radiation as the emission mechanism are strongly compatible with the observations. Two main issues from the previously used models that our work addresses are the inability to explain luminosity, spectra, and light curve features at the same time and the inconsistency of the electrodynamics. Moreover, using the PIC simulations, we explore the effects of different pair multiplicities on the magnetosphere configurations and the locations of the accelerating regions. Our work aims for a self-consistent modeling of the magnetosphere, connecting the microphysics of the pair-plasma to the global magnetosphere macroscopic quantities. This direction will lead to a greater understanding of pulsar emission at all wavelengths, as well as to concrete insights into the physics of the magnetosphere.

  9. Gamma-ray burst prompt emission light curves and power density spectra in the ICMART model

    SciTech Connect

    Zhang, Bo; Zhang, Bing E-mail: zhang@physics.unlv.edu

    2014-02-20

    In this paper, we simulate the prompt emission light curves of gamma-ray bursts (GRBs) within the framework of the Internal-Collision-induced MAgnetic Reconnection and Turbulence (ICMART) model. This model applies to GRBs with a moderately high magnetization parameter σ in the emission region. We show that this model can produce highly variable light curves with both fast and slow components. The rapid variability is caused by many locally Doppler-boosted mini-emitters due to turbulent magnetic reconnection in a moderately high σ flow. The runaway growth and subsequent depletion of these mini-emitters as a function of time define a broad slow component for each ICMART event. A GRB light curve is usually composed of multiple ICMART events that are fundamentally driven by the erratic GRB central engine activity. Allowing variations of the model parameters, one is able to reproduce a variety of light curves and the power density spectra as observed.

  10. Gamma-ray Emission from Globular Clusters

    NASA Astrophysics Data System (ADS)

    Tam, Pak-Hin T.; Hui, Chung Y.; Kong, Albert K. H.

    2016-03-01

    Over the last few years, the data obtained using the Large Area Telescope (LAT) aboard the Fermi Gamma-ray Space Telescope has provided new insights on high-energy processes in globular clusters, particularly those involving compact objects such as MilliSecond Pulsars (MSPs). Gamma-ray emission in the 100 MeV to 10 GeV range has been detected from more than a dozen globular clusters in our galaxy, including 47 Tucanae and Terzan 5. Based on a sample of known gammaray globular clusters, the empirical relations between gamma-ray luminosity and properties of globular clusters such as their stellar encounter rate, metallicity, and possible optical and infrared photon energy densities, have been derived. The measured gamma-ray spectra are generally described by a power law with a cut-off at a few gigaelectronvolts. Together with the detection of pulsed γ-rays from two MSPs in two different globular clusters, such spectral signature lends support to the hypothesis that γ-rays from globular clusters represent collective curvature emission from magnetospheres of MSPs in the clusters. Alternative models, involving Inverse-Compton (IC) emission of relativistic electrons that are accelerated close to MSPs or pulsar wind nebula shocks, have also been suggested. Observations at >100 GeV by using Fermi/LAT and atmospheric Cherenkov telescopes such as H.E.S.S.-II, MAGIC-II, VERITAS, and CTA will help to settle some questions unanswered by current data.

  11. Probing gamma-ray emissions of Fermi-LAT pulsars with a non-stationary outer gap model

    NASA Astrophysics Data System (ADS)

    Takata, J.; Ng, C. W.; Cheng, K. S.

    2016-02-01

    We explore a non-stationary outer gap scenario for gamma-ray emission process in pulsar magnetosphere. Electrons/positrons that migrate along the magnetic field line and enter the outer gap from the outer/inner boundaries activate the pair-creation cascade and high-energy emission process. In our model, the rate of the particle injection at the gap boundaries is key physical quantity to control the gap structure and properties of the gamma-ray spectrum. Our model assumes that the injection rate is time variable and the observed gamma-ray spectrum are superposition of the emissions from different gap structures with different injection rates at the gap boundaries. The calculated spectrum superposed by assuming power law distribution of the particle injection rate can reproduce sub-exponential cut-off feature in the gamma-ray spectrum observed by Fermi-LAT. We fit the phase-averaged spectra for 43 young/middle-age pulsars and 14 millisecond pulsars with the model. Our results imply that (1) a larger particle injection at the gap boundaries is more frequent for the pulsar with a larger spin-down power and (2) outer gap with an injection rate much smaller than the Goldreich-Julian value produces observed >10 GeV emissions. Fermi-LAT gamma-ray pulsars show that (i) the observed gamma-ray spectrum below cut-off energy tends to be softer for the pulsar with a higher spin-down rate and (ii) the second peak is more prominent in higher energy bands. Based on the results of the fitting, we describe possible theoretical interpretations for these observational properties. We also briefly discuss Crab-like millisecond pulsars that show phase-aligned radio and gamma-ray pulses.

  12. Prior Emission Model for X-ray Plateau Phase of Gamma-Ray Burst Afterglows

    NASA Astrophysics Data System (ADS)

    Yamazaki, Ryo

    2009-01-01

    The two-component emission model to explain the plateau phase of the X-ray afterglows of gamma-ray bursts (GRBs) is proposed. One component, which is responsible for the plateau and subsequent normal decay phase of the X-ray afterglow, is the prior emission via outflow ejected from the central engine before the main burst. The other is the main outflow, which causes the prompt GRB emission and the initial steep decay phase of the X-ray afterglow. In this model, the transition from the plateau to the subsequent normal decay phase is an artifact of the choice of the zero of time. For events with distinct plateau phase, the central engine is active 103-104 s before the launch of the main outflow. According to this model, a prior emission in the X-ray and/or optical bands 103-104 s before the prompt GRB emission is possibly seen, which will be tested by near-future instruments such as Monitor of All-sky X-ray Image (MAXI), WIDe-field telescope for GRB Early Timing (WIDGET), and so on.

  13. Modeling the Delayed Emission in the 2005 Mkn 501 Very-High-Energy Gamma-Ray Flare

    SciTech Connect

    Bednarek, Wlodek; Wagner, Robert

    2008-12-24

    Recently, the MAGIC collaboration reported evidence for a delay in the arrival times of photons of different energies during a {gamma}-ray flare from the blazar Markarian 501 on 2005 July 9. We describe the observed delayed high-energy emission by applying a homogeneous synchrotron self-Compton (SSC) model under the assumption that the blob, containing relativistic electrons, was observed in its acceleration phase. This modified SSC model predicts the appearance of a {gamma}-ray flare first at lower energies and subsequently at higher energies. Based on the reported time delay, we predict a delay on the order of 1 h if observed between 10 GeV and 100 GeV, which can be tested in the future by simultaneous flare observations using, e.g., the Fermi Gamma-Ray Telescope and Cerenkov telescopes.

  14. Multi-epoch study of the gamma-ray emission within the M87 magnetosphere model

    SciTech Connect

    Vincent, S.

    2015-05-01

    M87 is a nearby radio galaxy that has been detected at energies ranging from radio to very high energy (VHE) gamma-rays. Its proximity and its jet, misaligned from the line of sight allow detailed morphological studies. The imaging atmospheric Cherenkov technique (from 100 GeV to 10 TeV) provides insufficient angular resolution (few arc-minutes) to resolve the M87 emission region. However, the short time scale variability observed by MAGIC, HESS and VERITAS suggests the TeV emission is coming from a very small region, most likely close to the core. We propose that the variable TeV emission may be produced in a pair-starved region of the central black hole (BH) magnetosphere, i.e. a region where the density of the electron-positron plasma is not sufficient to completely screen the accelerating electric field. The funnel, a low density and magnetically dominated region around the poles, appears as a favourable site of low-density where a Blandford-Znajek process may explain the main properties of the TeV γ-ray emission from M87. We produce a broadband spectral energy distribution (SED) of the resulting radiation and compare the model with the observed fluxes from the nucleus of M87, for both low and high γ-ray activities. We finish with a brief discussion on the connection between the accretion rate and the intermittence in the formation of gaps in the magnetosphere.

  15. MODELING THE MULTIWAVELENGTH EMISSION FROM G73.9+0.9: GAMMA RAYS FROM AN SNR–MC INTERACTION

    SciTech Connect

    Araya, Miguel

    2015-11-01

    G73.9+0.9 has been classified as a probable shell-type supernova remnant, though it has also been suggested that it could have a pulsar wind nebula (PWN). Here, a broadband model of the non-thermal emission of G73.9+0.9 from radio to gamma rays is presented. The model includes a new gamma-ray observation obtained by the analysis of seven years of data from the Fermi/LAT telescope. Above 200 MeV, the source is detected with a significance of 13σ and the spectrum of the radiation is best described by a power law with an index of ∼2.5. The leptonic mechanisms are hard to reconcile with the measured radio and gamma-ray spectral energy distribution. A PWN origin for the high-energy emission is also not very likely, due to the lack of detection of pulsars and of X-ray emission in the region, as well as from the shape of the gamma-ray spectrum. Given the possibility that the object is interacting with molecular clouds, a hadronic origin of the high-energy emission is more likely, and the spectral properties of the cosmic rays responsible for this radiation are derived.

  16. Numerical models of blackbody-dominated gamma-ray bursts - II. Emission properties

    NASA Astrophysics Data System (ADS)

    Cuesta-Martínez, C.; Aloy, M. A.; Mimica, P.; Thöne, C.; de Ugarte Postigo, A.

    2015-01-01

    Blackbody-dominated (BBD) gamma-ray bursts (GRBs) are events characterized by long durations and the presence of a significant thermal component following the prompt emission, as well as by the absence of a typical afterglow. GRB 101225A is the most prominent member of this class. A plausible progenitor system for it and for BBD-GRBs is the merger a neutron star and a helium core of an evolved, massive star. Using relativistic hydrodynamic simulations we model the propagation of ultrarelativistic jets through the environments created by such mergers. In a previous paper we showed that the thermal emission in BBD-GRBs is linked to the interaction of an ultrarelativistic jet with the ejected envelope of the secondary star of the binary. Here we focus on explaining the emission properties of BBD-GRBs computing the whole radiative signature (both thermal and non-thermal) of the jet dynamical evolution. The non-thermal emission of the forward shock of the jet is dominant during the early phases of the evolution, when that shock is moderately relativistic. Our models do not produce a classical afterglow because the quick deceleration of the jet results primarily from the mass entrainment in the beam, and not from the process of plowing mass from the external medium in front of the GRB ejecta. The contribution of the reverse shock is of the same magnitude than that of the forward shock during the first 80 min after the GRB. Later, it quickly fades because the jet/environment interaction chocks the ultrarelativistic jet beam and effectively dumps the reverse shock. In agreement with observations, we obtain rather flat light curves during the first 2 d after the GRB, and a spectral evolution consistent with the observed reddening of the system.

  17. Modeling gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Maxham, Amanda

    Discovered serendipitously in the late 1960s, gamma-ray bursts (GRBs) are huge explosions of energy that happen at cosmological distances. They provide a grand physical playground to those who study them, from relativistic effects such as beaming, jets, shocks and blastwaves to radiation mechanisms such as synchrotron radiation to galatic and stellar populations and history. Through the Swift and Fermi space telescopes dedicated to observing GRBs over a wide range of energies (from keV to GeV), combined with accurate pinpointing that allows ground based follow-up observations in the optical, infrared and radio, a rich tapestry of GRB observations has emerged. The general picture is of a mysterious central engine (CE) probably composed of a black hole or neutron star that ejects relativistic shells of matter into intense magnetic fields. These shells collide and combine, releasing energy in "internal shocks" accounting for the prompt emission and flaring we see and the "external shock" or plowing of the first blastwave into the ambient surrounding medium has well-explained the afterglow radiation. We have developed a shell model code to address the question of how X-ray flares are produced within the framework of the internal shock model. The shell model creates randomized GRB explosions from a central engine with multiple shells and follows those shells as they collide, merge and spread, producing prompt emission and X-ray flares. We have also included a blastwave model, which can constrain X-ray flares and explain the origin of high energy (GeV) emission seen by the Fermi telescope. Evidence suggests that gamma-ray prompt emission and X-ray flares share a common origin and that at least some flares can only be explained by long-lasting central engine activity. We pay special attention to the time history of central engine activity, internal shocks, and observed flares. We calculate the gamma-ray (Swift/BAT band) and X-ray (Swift/XRT band) lightcurves for arbitrary

  18. Towards a Unified Model for the Gamma-Ray Burst Prompt Emission

    NASA Astrophysics Data System (ADS)

    Guiriec, Sylvain

    2015-08-01

    We suggest here to replace the historical spectral model (Band function) for the Gamma-Ray Burst (GRB) prompt emission (keV-MeV energy regime) with a new one. We show that the complex GRB spectral shapes are well described with a combination of three separate components: (i) a thermal-like component that we interpret as emission from the GRB jet photosphere, (ii) a non-thermal component that we interpret as synchrotron radiation from charged particles propagating and accelerated within the GRB jet, and (iii) a second non-thermal component that is not always present or detectable and which is most likely of inverse Compton origin. The smooth evolution of all three components during the burst duration reinforces the validity of this new model. Detailed studies of the evolution of these components provide insights on the nature and composition of GRB jets as well as on their magnetic fields. Moreover, this new model enables a new luminosity-hardness relation based on the first non-thermal component showing that GRBs may be standard candles. If statistically confirmed, this relation will be used to (i) constrain the mechanisms powering GRB jets, (ii) estimate GRB distances, (iii) probe the early Universe, and (iv) constrain the cosmological parameters in complement to the Type Ia SNe sample. I will present this new model using analysis of GRBs detected with various observatories and instruments such as Fermi and CGRO/BATSE. I will discuss here the striking similarities of GRB spectral shapes as well as the possible universality of the proposed luminosity-hardness relation in the context of the new model.

  19. Gamma ray emission from radio pulsars

    NASA Technical Reports Server (NTRS)

    Romani, Roger W.

    1994-01-01

    While the proposed research received partial funding under this grant, during the term of support substantial progress was made on the development of a new model for the emission of gamma-rays from isolated rotation-powered pulsars. In phase one of the work, we showed how a modified version of the 'outer gap' model of pulsar emission could reproduce the double peaked profiles seen in CGRO pulsar observations. This work also demonstrated the spectrum of gap radiation varies significantly with position in the magnetosphere, and produced approximate computations of the emission from outer magnetosphere gap zones, including primary curvature radiation, gamma - gamma pair production and synchrotron radiation and inverse Compton scattering by the resulting secondary particles. This work was followed in phase two by a more complete treatment of the geometry of the radiation zone, and improved connections with observations at other wavelengths.

  20. RADIO AND GAMMA-RAY PULSED EMISSION FROM MILLISECOND PULSARS

    SciTech Connect

    Du, Y. J.; Chen, D.; Qiao, G. J.

    2013-01-20

    Pulsed {gamma}-ray emission from millisecond pulsars (MSPs) has been detected by the sensitive Fermi space telescope, which sheds light on studies of the emission region and its mechanism. In particular, the specific patterns of radio and {gamma}-ray emission from PSR J0101-6422 challenge the popular pulsar models, e.g., outer gap and two-pole caustic models. Using the three-dimensional annular gap model, we have jointly simulated radio and {gamma}-ray light curves for three representative MSPs (PSR J0034-0534, PSR J0101-6422, and PSR J0437-4715) with distinct radio phase lags, and present the best simulated results for these MSPs, particularly for PSR J0101-6422 with complex radio and {gamma}-ray pulse profiles, and for PSR J0437-4715 with a radio interpulse. We have found that both the {gamma}-ray and radio emission originate from the annular gap region located in only one magnetic pole, and the radio emission region is not primarily lower than the {gamma}-ray region in most cases. In addition, the annular gap model with a small magnetic inclination angle instead of an 'orthogonal rotator' can account for the MSPs' radio interpulse with a large phase separation from the main pulse. The annular gap model is a self-consistent model not only for young pulsars but also MSPs, and multi-wavelength light curves can be fundamentally explained using this model.

  1. Relativistic feedback models of terrestrial gamma-ray flashes and gamma-ray glows

    NASA Astrophysics Data System (ADS)

    Dwyer, J. R.

    2015-12-01

    Relativistic feedback discharges, also known as dark lightning, are capable of explaining many of the observed properties of terrestrial gamma-ray flashes (TGFs) and gamma-ray glows, both created within thunderstorms. During relativistic feedback discharges, the generation of energetic electrons is self-sustained via the production of backward propagating positrons and back-scattered x-rays, resulting in very larges fluxes of energetic radiation. In addition, ionization produces large electric currents that generate LF/VLF radio emissions and eventually discharge the electric field, terminating the gamma-ray production. In this presentation, new relativistic feedback model results will be presented and compared to recent observations.

  2. Hard Gamma Ray Emission from the Starburst Galaxy NGC 253

    NASA Technical Reports Server (NTRS)

    Jackson, James M.; Marscher, Alan M.

    1996-01-01

    We have completed the study to search for hard gamma ray emission from the starburst galaxy NGC 253. Since supernovae are thought to provide the hard gamma ray emission from the Milky Way, starburst galaxies, with their extraordinarily high supernova rates, are prime targets to search for hard gamma ray emission. We conducted a careful search for hard gamma ray emission from NGC 253 using the archival data from the EGRET experiment aboard the CGRO. Because this starburst galaxy happens to lie near the South Galactic Pole, the Galactic gamma ray background is minimal. We found no significant hard gamma ray signal toward NGC 253, although a marginal signal of about 1.5 sigma was found. Because of the low Galactic background, we obtained a very sensitive upper limit to the emission of greater than 100 MeV gamma-rays of 8 x 10(exp -8) photons/sq cm s. Since we expected to detect hard gamma ray emission, we investigated the theory of gamma ray production in a dense molecular medium. We used a leaky-box model to simulate diffusive transport in a starburst region. Since starburst galaxies have high infrared radiation fields, we included the effects of self-Compton scattering, which are usually ignored. By modelling the expected gamma-ray and synchrotron spectra from NGC 253, we find that roughly 5 - 15% of the energy from supernovae is transferred to cosmic rays in the starburst. This result is consistent with supernova acceleration models, and is somewhat larger than the value derived for the Galaxy (3 - 10%). Our calculations match the EGRET and radio data very well with a supernova rate of 0.08/ yr, a magnetic field B approx. greater than 5 x 10(exp -5) G, a density n approx. less than 100/sq cm, a photon density U(sub ph) approx. 200 eV/sq cm, and an escape time scale tau(sub 0) approx. less than 10 Myr. The models also suggest that NGC 253 should be detectable with only a factor of 2 - 3 improvement in sensitivity. Our results are consistent with the standard picture

  3. High Energy Gamma-Ray Emission from Gamma-Ray Bursts - Before GLAST

    SciTech Connect

    Fan, Yi-Zhong; Piran, Tsvi

    2011-11-29

    Gamma-ray bursts (GRBs) are short and intense emission of soft {gamma}-rays, which have fascinated astronomers and astrophysicists since their unexpected discovery in 1960s. The X-ray/optical/radio afterglow observations confirm the cosmological origin of GRBs, support the fireball model, and imply a long-activity of the central engine. The high-energy {gamma}-ray emission (> 20 MeV) from GRBs is particularly important because they shed some lights on the radiation mechanisms and can help us to constrain the physical processes giving rise to the early afterglows. In this work, we review observational and theoretical studies of the high-energy emission from GRBs. Special attention is given to the expected high-energy emission signatures accompanying the canonical early-time X-ray afterglow that was observed by the Swift X-ray Telescope. We also discuss the detection prospect of the upcoming GLAST satellite and the current ground-based Cerenkov detectors.

  4. THE {gamma}-RAY SPECTRUM OF GEMINGA AND THE INVERSE COMPTON MODEL OF PULSAR HIGH-ENERGY EMISSION

    SciTech Connect

    Lyutikov, Maxim

    2012-09-20

    We reanalyze the Fermi spectra of the Geminga and Vela pulsars. We find that the spectrum of Geminga above the break is well approximated by a simple power law without the exponential cutoff, making Geminga's spectrum similar to that of Crab. Vela's broadband {gamma}-ray spectrum is equally well fit with both the exponential cutoff and the double power-law shapes. In the broadband double power-law fits, for a typical Fermi spectrum of a bright {gamma}-ray pulsar, most of the errors accumulate due to the arbitrary parameterization of the spectral roll-off. In addition, a power law with an exponential cutoff gives an acceptable fit for the underlying double power-law spectrum for a very broad range of parameters, making such fitting procedures insensitive to the underlying Fermi photon spectrum. Our results have important implications for the mechanism of pulsar high-energy emission. A number of observed properties of {gamma}-ray pulsars-i.e., the broken power-law spectra without exponential cutoffs and stretching in the case of Crab beyond the maximal curvature limit, spectral breaks close to or exceeding the maximal breaks due to curvature emission, patterns of the relative intensities of the leading and trailing pulses in the Crab repeated in the X-ray and {gamma}-ray regions, presence of profile peaks at lower energies aligned with {gamma}-ray peaks-all point to the inverse Compton origin of the high-energy emission from majority of pulsars.

  5. The GAMMA-400 gamma-ray telescope for precision gamma-ray emission investigations

    NASA Astrophysics Data System (ADS)

    Topchiev, N. P.; Galper, A. M.; Bonvicini, V.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Bakaldin, A. V.; Bergstrom, L.; Berti, E.; Bigongiari, G.; Bobkov, S. G.; Boezio, M.; Bogomolov, E. A.; Bonechi, L.; Bongi, M.; Bottai, S.; Castellini, G.; Cattaneo, P. W.; Cumani, P.; Dalkarov, O. D.; Dedenko, G. L.; De Donato, C.; Dogiel, V. A.; Finetti, N.; Gascon, D.; Gorbunov, M. S.; Gusakov, Yu V.; Hnatyk, B. I.; Kadilin, V. V.; Kaplin, V. A.; Kaplun, A. A.; Kheymits, M. D.; Korepanov, V. E.; Larsson, J.; Leonov, A. A.; Loginov, V. A.; Longo, F.; Maestro, P.; Marrocchesi, P. S.; Martinez, M.; Men'shenin, A. L.; Mikhailov, V. V.; Mocchiutti, E.; Moiseev, A. A.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu; Papini, P.; Paredes, J. M.; Pearce, M.; Picozza, P.; Rappoldi, A.; Ricciarini, S.; Runtso, M. F.; Ryde, F.; Serdin, O. V.; Sparvoli, R.; Spillantini, P.; Stozhkov, Yu I.; Suchkov, S. I.; Taraskin, A. A.; Tavani, M.; Tiberio, A.; Tyurin, E. M.; Ulanov, M. V.; Vacchi, A.; Vannuccini, E.; Vasilyev, G. I.; Ward, J. E.; Yurkin, Yu T.; Zampa, N.; Zirakashvili, V. N.; Zverev, V. G.

    2016-02-01

    The GAMMA-400 gamma-ray telescope with excellent angular and energy resolutions is designed to search for signatures of dark matter in the fluxes of gamma-ray emission and electrons + positrons. Precision investigations of gamma-ray emission from Galactic Center, Crab, Vela, Cygnus, Geminga, and other regions will be performed, as well as diffuse gamma-ray emission, along with measurements of high-energy electron + positron and nuclei fluxes. Furthermore, it will study gamma-ray bursts and gamma-ray emission from the Sun during periods of solar activity. The GAMMA-400 energy range is expected to be from ∼20 MeV up to TeV energies for gamma rays, up to 10 TeV for electrons + positrons, and up to 1015 eV for cosmic-ray nuclei. For 100-GeV gamma rays, the GAMMA-400 angular resolution is ∼0.01° and energy resolution is ∼1% the proton rejection factor is ∼5x105. GAMMA-400 will be installed onboard the Russian space observatory.

  6. Diffuse gamma-ray emission modeling near the Galactic Center and the 3 GeV excess

    NASA Astrophysics Data System (ADS)

    Albert, Andrea; Maleshev, Dmitry; Franckowiak, Anna; Tibaldo, Luigi; Fermi-LAT Collaboration

    2016-03-01

    Several groups have reported excess emission in gamma rays peaking around 3 GeV relative to expectations from conventional models for the interstellar emission in the Galactic Center (GC). We study the uncertainty of the excess emission in Pass 8 Fermi-LAT data due to modeling of the various emission components in that direction. In particular, we quantify the uncertainties on the excess by refitting with several GALPROP models of Galactic diffuse emission, an alternative distribution of gas along the line of sight based on starlight extinction data, a model of the Fermi bubbles at low latitudes, and including templates for additional sources of cosmic-ray electrons near the GC. In all models that we have tested the excess emission remains significant. The origin of the excess is currently uncertain. To test the robustness of a dark-matter interpretation, we perform fits in controls regions along the Galactic Plane. The uncertainties from our fits in control regions have a similar relative size as the excess in the GC. Therefore a non-dark-matter explanation cannot be ruled out and we consequently set limits on the dark matter annihilation cross section.

  7. Diffuse Galactic low energy gamma ray continuum emission

    NASA Technical Reports Server (NTRS)

    Skibo, J. G.; Ramaty, R.

    1993-01-01

    We investigate the origin of diffuse low-energy Galactic gamma-ray continuum down to about 30 keV. We calculate gamma-ray emission via bremsstrahlung and inverse Compton scattering by propagating an unbroken electron power law injection spectrum and employing a Galactic emmissivity model derived from COSB observations. To maintain the low energy electron population capable of producing the observed continuum via bremsstrahlung, a total power input of 4 x 10 exp 41 erg/s is required. This exceeds the total power supplied to the nuclear cosmic rays by about an order of magnitude.

  8. A Plasma Instability Theory of Gamma-Ray Burst Emission

    NASA Technical Reports Server (NTRS)

    Brainerd, Jerome J.

    1999-01-01

    A plasma instability theory is presented for the prompt radiation from gamma-ray bursts. In the theory, a highly relativistic shell interacts with the interstellar medium through the filamentation and the two-stream instabilities to convert bulk kinetic energy into electron thermal energy and magnetic field energy. The processes are not efficient enough to satisfy the Rankine-Hugoniot conditions, so a shock cannot form through this mechanism. Instead, the interstellar medium passes through the shell, with the electrons radiating during this passage. Gamma-rays are produced by synchrotron self-Compton emission. Prompt optical emission is also produced through this mechanism, while prompt radio emission is produced through synchrotron emission. The model timescales are consistent with the shortest burst timescales. To emit gamma-rays, the shell's bulk Lorentz factor must be $\\simg 10(exp 3)$. For the radiative processes to be efficient, the interstellar medium density must satisfy a lower limit that is a function of the bulk Lorentz factor. Because the limits operate as selection effects, bursts that violate them constitute new classes. In particular, a class of optical and ultraviolet bursts with no gamma-ray emission should exist. The lower limit on the density of the interstellar medium is consistent with the requirements of the Compton attenuation theory, providing an explanation for why all burst spectra appear to be attenuated. Several tests of the theory are discussed, as are the next theoretical investigations that should be conducted.

  9. New Limits on Gamma-Ray Emission from Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Danae Griffin, Rhiannon; Dai, Xinyu; Kochanek, Christopher S.

    2015-01-01

    Galaxy clusters are predicted to produce gamma-ray emission, through cosmic ray interaction and/or dark matter annihilation, potentially detectable by the Fermi Large Area Telescope (Fermi-LAT). Specifically, cosmic ray interactions with the intra-cluster gas results in neutral pion decay, producing gamma-rays. As yet, this emission has not been detected using small samples of clusters. We present a new, independent stacking analysis of Fermi-LAT photon count maps using the 78 richest nearby clusters (z < 0.12) from the Two Micron All-Sky Survey (2MASS) cluster catalog. Our initial search yields non-detections of gamma-ray emission from galaxy clusters but we achieve the lowest upper limits on the photon flux to date. Scaling to recent cosmic ray acceleration and gamma-ray emission models, we find that cosmic rays represent a negligible contribution to the intra-cluster energy density and gas pressure. Furthermore, either merger shocks must have lower Mach numbers than inferred from radio emission, so < 2 - 4, or significantly less than 50% of the baryon mass has been processed through such shocks, and thus, the majority of baryons should be assembled through minor mergers or through cold accretion.

  10. Postburst nebular emission of soft gamma-ray repeaters

    NASA Technical Reports Server (NTRS)

    Tavani, Marco

    1994-01-01

    The soft gamma ray repeater SGR 1806-20 has been shown to be unambiguously associated with the central region of the radio nebula G10.0-0.3. The nebula surrounding SGR 1806-20 is probably a supernova remnant and has a nonthermal radio spectrum typical of a 'plerion,' circumstellar gas energized by a relativistic particle outflow from a central source. The association of soft gamma ray repeaters (SGRs) with supernova remnants is supported by the likely association of another repeater, SGR 0525-66, with the nebula N49 in the Large Magellanic Cloud. Gas nebulae surrounding SGRs provide ideal calorimeters to tap both the impulsive and steady state energy released from these bursting sources. We discuss in this Letter a simple model of high-energy emission produced by impulsive release of relativistic particles in nebulae surrounding SGRs following bursting episodes. This nebular X-ray and gamma ray emission can be detected and monitored by ROSAT, ASCA, and the Compton Gamma Ray Observatory.

  11. AGILE DETECTION OF DELAYED GAMMA-RAY EMISSION FROM THE SHORT GAMMA-RAY BURST GRB 090510

    SciTech Connect

    Giuliani, A.; Vianello, G.; Mereghetti, S.; Caraveo, P.; Chen, A. W.; Contessi, T.; Barbiellini, G.; Longo, F.; Moretti, E.; Cattaneo, P. W.

    2010-01-10

    Short gamma-ray bursts (GRBs), typically lasting less than 2 s, are a special class of GRBs of great interest. We report the detection by the AGILE satellite of the short GRB 090510 which shows two clearly distinct emission phases: a prompt phase lasting {approx}200 ms and a second phase lasting tens of seconds. The prompt phase is relatively intense in the 0.3-10 MeV range with a spectrum characterized by a large peak/cutoff energy near 3 MeV; in this phase, no significant high-energy gamma-ray emission is detected. At the end of the prompt phase, intense gamma-ray emission above 30 MeV is detected showing a power-law time decay of the flux of the type t {sup -1.3} and a broadband spectrum remarkably different from that of the prompt phase. It extends from sub-MeV to hundreds of MeV energies with a photon index {alpha} {approx_equal} 1.5. GRB 090510 provides the first case of a short GRB with delayed gamma-ray emission. We present the timing and spectral data of GRB 090510 and briefly discuss its remarkable properties within the current models of gamma-ray emission of short GRBs.

  12. Fermi Discovery of Gamma-Ray Emission from NGC 1275

    SciTech Connect

    Abdo, Aous A.; Ackermann, M.; Ajello, M.; Asano, K.; Baldini, L.; Ballet, J.; Barbiellini, Guido; Bastieri, Denis; Baughman, B.M.; Bechtol, K.; Bellazzini, R.; Blandford, R.D.; Bloom, Elliott D.; Bonamente, E.; Borgland, A.W.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Burnett, Thompson H.; Caliandro, G.A.; /more authors..

    2009-05-15

    We report the discovery of high-energy (E > 100 MeV) {gamma}-ray emission from NGC 1275, a giant elliptical galaxy lying at the center of the Perseus cluster of galaxies, based on observations made with the Large Area Telescope (LAT) of the Fermi Gamma-ray Space Telescope. The positional center of the {gamma}-ray source is only {approx}3{prime} away from the NGC 1275 nucleus, well within the 95% LAT error circle of {approx}5{prime}. The spatial distribution of {gamma}-ray photons is consistent with a point source. The average flux and power-law photon index measured with the LAT from 2008 August 4 to 2008 December 5 are F{sub {gamma}} = (2.10 {+-} 0.23) x 10{sup -7} ph (>100 MeV) cm{sup -2} s{sup -1} and {Gamma} = 2.17 {+-} 0.05, respectively. The measurements are statistically consistent with constant flux during the four-month LAT observing period. Previous EGRET observations gave an upper limit of F{sub {gamma}} < 3.72 x 10{sup -8} ph (>100 MeV) cm{sup -2} s{sup -1} to the {gamma}-ray flux from NGC 1275. This indicates that the source is variable on timescales of years to decades, and therefore restricts the fraction of emission that can be produced in extended regions of the galaxy cluster. Contemporaneous and historical radio observations are also reported. The broadband spectrum of NGC 1275 is modeled with a simple one-zone synchrotron/synchrotron self-Compton model and a model with a decelerating jet flow.

  13. Flare gamma ray continuum emission from neutral pion decay

    NASA Technical Reports Server (NTRS)

    Alexander, David; Mackinnon, Alec L.

    1992-01-01

    We investigate, in detail, the production of solar flare gamma ray emission above 100 MeV via the interaction of high energy protons with the ambient solar atmosphere. We restrict our considerations to the broadband gamma ray spectrum resulting from the decay of neutral pions produced in p-H reactions. Thick-target calculations are performed to determine the photon fluences. However, proton transport is not considered. Inferences about the form of the proton spectrum at 10-100 MeV have already been drawn from de-excitation gamma ray lines. Our aim is to constrain the proton spectrum at higher energies. Thus, the injected proton spectrum is assumed to have the form of a Bessel Function, characteristics of stochastic energy at higher energies. The detailed shape of the gamma ray spectra around 100 MeV is found to have a strong dependence on the spectral index of the power law and on the turnover energy (from Bessel function to power law). As would be expected, the harder the photon spectrum the wider the 100 MeV feature. The photon spectra are to be compared with observations and used to place limits upon the number of particles accelerated and to constrain acceleration models.

  14. Radio to Gamma-Ray Emission from Shell-Type Supernova Remnants: Predictions from Non-Linear Shock Acceleration Models

    NASA Technical Reports Server (NTRS)

    Baring, Matthew G.; Ellison, Donald C.; Reynolds, Stephen P.; Grenier, Isabelle A.; Goret, Philippe

    1998-01-01

    Supernova remnants (SNRs) are widely believed to be the principal source of galactic cosmic rays, produced by diffusive shock acceleration in the environs of the remnant's expanding blast wave. Such energetic particles can produce gamma-rays and lower energy photons via interactions with the ambient plasma. The recently reported observation of TeV gamma-rays from SN1006 by the CANGAROO Collaboration, combined with the fact that several unidentified EGRET sources have been associated with known radio/optical/X-ray-emitting remnants, provides powerful motivation for studying gamma-ray emission from SNRs. In this paper, we present results from a Monte Carlo simulation of non-linear shock structure and acceleration coupled with photon emission in shell-like SNRs. These non-linearities are a by-product of the dynamical influence of the accelerated cosmic rays on the shocked plasma and result in distributions of cosmic rays which deviate from pure power-laws. Such deviations are crucial to acceleration efficiency considerations and impact photon intensities and spectral shapes at all energies, producing GeV/TeV intensity ratios that are quite different from test particle predictions.

  15. Gamma-Ray Emission From Crushed Clouds in Supernova Remnants

    SciTech Connect

    Uchiyama, Yasunobu; Blandford, Roger D.; Funk, Stefan; Tajima, Hiroyasu; Tanaka, Takaaki; /KIPAC, Menlo Park

    2010-10-27

    It is shown that the radio and gamma-ray emission observed from newly-found 'GeV-bright' supernova remnants (SNRs) can be explained by a model, in which a shocked cloud and shock-accelerated cosmic rays (CRs) frozen in it are simultaneously compressed by the supernova blastwave as a result of formation of a radiative cloud shock. Simple reacceleration of pre-existing CRs is generally sufficient to power the observed gamma-ray emission through the decays of {pi}{sup 0}-mesons produced in hadronic interactions between high-energy protons (nuclei) and gas in the compressed-cloud layer. This model provides a natural account of the observed synchrotron radiation in SNRs W51C, W44 and IC 443 with flat radio spectral index, which can be ascribed to a combination of secondary and reaccelerated electrons and positrons.

  16. Numerical models of blackbody-dominated gamma-ray bursts - I. Hydrodynamics and the origin of the thermal emission

    NASA Astrophysics Data System (ADS)

    Cuesta-Martínez, C.; Aloy, M. A.; Mimica, P.

    2015-01-01

    GRB 101225A is a prototype of the class of blackbody-dominated (BBD) gamma-ray bursts (GRBs). It has been suggested that BBD-GRBs result from the merger of a binary system formed by a neutron star and the helium core of an evolved star. We have modelled the propagation of ultrarelativistic jets through the environment left behind the merger by means of relativistic hydrodynamic simulations. In this paper, the output of our numerical models is post-processed to obtain the (thermal) radiative signature of the resulting outflow. We outline the most relevant dynamical details of the jet propagation and connect them to the generation of thermal radiation in GRB events akin to that of GRB 101225A. A comprehensive parameter study of the jet/environment interaction has been performed and synthetic light curves are confronted with the observational data. The thermal emission in our models originates from the interaction between the jet and the hydrogen envelope ejected during the neutron star/He core merger. We find that the lack of a classical afterglow and the accompanying thermal emission in BBD-GRBs can be explained by the interaction of an ultrarelativistic jet with a toroidally shaped ejecta whose axis coincides with the binary rotation axis. The spectral inversion and reddening happening at about 2 d in GRB 101225A can be related to the time at which the massive shell ejected in an early phase of the common envelope evolution of the progenitor system is completely ablated by the ultrarelativistic jet.

  17. High energy neutrino emission and neutrino background from gamma-ray bursts in the internal shock model

    SciTech Connect

    Murase, Kohta; Nagataki, Shigehiro

    2006-03-15

    High energy neutrino emission from gamma-ray bursts (GRBs) is discussed. In this paper, by using the simulation kit GEANT4, we calculate proton cooling efficiency including pion-multiplicity and proton-inelasticity in photomeson production. First, we estimate the maximum energy of accelerated protons in GRBs. Using the obtained results, neutrino flux from one burst and a diffuse neutrino background are evaluated quantitatively. We also take account of cooling processes of pion and muon, which are crucial for resulting neutrino spectra. We confirm the validity of analytic approximate treatments on GRB fiducial parameter sets, but also find that the effects of multiplicity and high-inelasticity can be important on both proton cooling and resulting spectra in some cases. Finally, assuming that the GRB rate traces the star formation rate, we obtain a diffuse neutrino background spectrum from GRBs for specific parameter sets. We introduce the nonthermal baryon-loading factor, rather than assume that GRBs are main sources of ultra-high energy cosmic rays (UHECRs). We find that the obtained neutrino background can be comparable with the prediction of Waxman and Bahcall, although our ground in estimation is different from theirs. In this paper, we study on various parameters since there are many parameters in the model. The detection of high energy neutrinos from GRBs will be one of the strong evidences that protons are accelerated to very high energy in GRBs. Furthermore, the observations of a neutrino background has a possibility not only to test the internal shock model of GRBs but also to give us information about parameters in the model and whether GRBs are sources of UHECRs or not.

  18. Fermi large area telescope measurements of the diffuse gamma-ray emission at intermediate galactic latitudes.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Anderson, B; Atwood, W B; Axelsson, M; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Dereli, H; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; Di Bernardo, G; Dormody, M; do Couto e Silva, E; Drell, P S; Dubois, R; Dumora, D; Edmonds, Y; Farnier, C; Favuzzi, C; Fegan, S J; Focke, W B; Frailis, M; Fukazawa, Y; Funk, S; Fusco, P; Gaggero, D; Gargano, F; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hughes, R E; Jóhannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Kuehn, F; Kuss, M; Lande, J; Latronico, L; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Mazziotta, M N; McConville, W; McEnery, J E; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Nuss, E; Ohsugi, T; Okumura, A; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rodriguez, A Y; Roth, M; Ryde, F; Sadrozinski, H F-W; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Sellerholm, A; Sgrò, C; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Starck, J-L; Stecker, F W; Striani, E; Strickman, M S; Strong, A W; Suson, D J; Tajima, H; Takahashi, H; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vasileiou, V; Vilchez, N; Vitale, V; Waite, A P; Wang, P; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M

    2009-12-18

    The diffuse galactic gamma-ray emission is produced by cosmic rays (CRs) interacting with the interstellar gas and radiation field. Measurements by the Energetic Gamma-Ray Experiment Telescope (EGRET) instrument on the Compton Gamma-Ray Observatory indicated excess gamma-ray emission greater, > or approximately equal to 1 GeV relative to diffuse galactic gamma-ray emission models consistent with directly measured CR spectra (the so-called "EGRET GeV excess"). The Large Area Telescope (LAT) instrument on the Fermi Gamma-Ray Space Telescope has measured the diffuse gamma-ray emission with improved sensitivity and resolution compared to EGRET. We report on LAT measurements for energies 100 MeV to 10 GeV and galactic latitudes 10 degrees < or = |b| < or = 20 degrees. The LAT spectrum for this region of the sky is well reproduced by a diffuse galactic gamma-ray emission model that is consistent with local CR spectra and inconsistent with the EGRET GeV excess. PMID:20366246

  19. Fermi Large Area Telescope Measurements of the Diffuse Gamma-Ray Emission at Intermediate Galactic Latitudes

    SciTech Connect

    Abdo, A.A.; Ackermann, M.; Ajello, M.; Anderson, B.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B.M.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R.D.; Bloom, E.D.; Bonamente, E.; Borgland, A.W.; Bregeon, J.; Brez, A.; Brigida, M.; /more authors..

    2012-04-11

    The diffuse galactic {gamma}-ray emission is produced by cosmic rays (CRs) interacting with the interstellar gas and radiation field. Measurements by the Energetic Gamma-Ray Experiment Telescope (EGRET) instrument on the Compton Gamma-Ray Observatory indicated excess {gamma}-ray emission {ge}1 GeV relative to diffuse galactic {gamma}-ray emission models consistent with directly measured CR spectra (the so-called 'EGRET GeV excess'). The Large Area Telescope (LAT) instrument on the Fermi Gamma-Ray Space Telescope has measured the diffuse {gamma}-ray emission with improved sensitivity and resolution compared to EGRET. We report on LAT measurements for energies 100 MeV to 10 GeV and galactic latitudes 10{sup o} {le} |b| {le} 20{sup o}. The LAT spectrum for this region of the sky is well reproduced by a diffuse galactic {gamma}-ray emission model that is consistent with local CR spectra and inconsistent with the EGRET GeV excess.

  20. Modelling gamma-ray photon emission and pair production in high-intensity laser–matter interactions

    SciTech Connect

    Ridgers, C.P.; Kirk, J.G.; Duclous, R.; Blackburn, T.G.; Brady, C.S.; Bennett, K.; Arber, T.D.; Bell, A.R.

    2014-03-01

    In high-intensity (>10{sup 21} Wcm{sup −2}) laser–matter interactions gamma-ray photon emission by the electrons can strongly affect the electron's dynamics and copious numbers of electron–positron pairs can be produced by the emitted photons. We show how these processes can be included in simulations by coupling a Monte Carlo algorithm describing the emission to a particle-in-cell code. The Monte Carlo algorithm includes quantum corrections to the photon emission, which we show must be included if the pair production rate is to be correctly determined. The accuracy, convergence and energy conservation properties of the Monte Carlo algorithm are analysed in simple test problems.

  1. Modeling Photodisintegration-induced TeV Photon Emission from Low-luminosity Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Liu, Xue-Wen; Wu, Xue-Feng; Lu, Tan

    2012-05-01

    Ultra-high-energy cosmic-ray heavy nuclei have recently been considered as originating from nearby low-luminosity gamma-ray bursts that are associated with Type Ibc supernovae. Unlike the power-law decay in long duration gamma-ray bursts, the light curve of these bursts exhibits complex UV/optical behavior: shock breakout dominated thermal radiation peaks at about 1 day, and, after that, nearly constant emission sustained by radioactive materials for tens of days. We show that the highly boosted heavy nuclei at PeV energy interacting with the UV/optical photon field will produce considerable TeV photons via the photodisintegration/photo-de-excitation process. It was later predicted that a thermal-like γ-ray spectrum peaks at about a few TeV, which may serve as evidence of nucleus acceleration. The future observations by the space telescope Fermi and by the ground atmospheric Cherenkov telescopes such as H.E.S.S., VERITAS, and MAGIC will shed light on this prediction.

  2. Gamma Ray Emission from Chaotic Winds of Massive Stars

    NASA Technical Reports Server (NTRS)

    White, Richard L.

    2000-01-01

    The purpose of this proposal was to search for gamma-ray emission from the winds of hot, massive stars. According to our theoretical calculations, shocks in the winds of massive stars accelerate particles to high energies. The high-energy particles emit synchrotron radio emission (observed by ground-based radio telescopes) and high-energy gamma-ray emission that we predicted should be detectable by the EGRET instrument on the Compton Gamma Ray Observatory between 100 MeV and a few GeV. We obtained EGRET from phases 1, 2, and 3 of the Cygnus OB2 association, a cluster of massive, young stars, to search for this gamma-ray emission. The data products and analysis show a source consistent with the position of Cyg OB2 with approximately the predicted count rate and spectrum.

  3. Periodic Emission from the Gamma-Ray Binary 1FGL J1018.6-5856

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Gamma-ray binaries are stellar systems containing a neutron star or black hole, with gamma-ray emission produced by an interaction between the components. These systems are rare, even though binary evolution models predict dozens in our Galaxy, A search for gamma-ray binaries with the Fermi Large Area Telescope (LAT) shows that 1FGL ]1018.6-5856 exhibits intensity and spectral modulation with a 16.6 day period. We identified a variable x-ray counterpart, which shows a sharp maximum coinciding with maximum gamma-ray emission, as well as an O6V((f)) star optical counterpart and a radio counterpart that is also apparently modulated on the orbital period. 1FGL ]1018.6-5856 is thus a gamma-ray binary, and its detection suggests the presence of other fainter binaries in the Galaxy.

  4. Periodic emission from the gamma-ray binary 1FGL J1018.6-5856.

    PubMed

    Fermi LAT Collaboration; Ackermann, M; Ajello, M; Ballet, J; Barbiellini, G; Bastieri, D; Belfiore, A; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Cavazzuti, E; Cecchi, C; Çelik, Ö; Charles, E; Chaty, S; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Corbel, S; Corbet, R H D; Cutini, S; de Luca, A; den Hartog, P R; de Palma, F; Dermer, C D; Digel, S W; do Couto e Silva, E; Donato, D; Drell, P S; Drlica-Wagner, A; Dubois, R; Dubus, G; Favuzzi, C; Fegan, S J; Ferrara, E C; Focke, W B; Fortin, P; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grove, J E; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hill, A B; Hughes, R E; Jóhannesson, G; Johnson, A S; Johnson, T J; Kamae, T; Katagiri, H; Kataoka, J; Kerr, M; Knödlseder, J; Kuss, M; Lande, J; Longo, F; Loparco, F; Lovellette, M N; Lubrano, P; Mazziotta, M N; McEnery, J E; Michelson, P F; Mitthumsiri, W; Mizuno, T; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Naumann-Godo, M; Norris, J P; Nuss, E; Ohno, M; Ohsugi, T; Okumura, A; Omodei, N; Orlando, E; Ozaki, M; Paneque, D; Parent, D; Pesce-Rollins, M; Pierbattista, M; Piron, F; Pivato, G; Porter, T A; Rainò, S; Rando, R; Razzano, M; Reimer, A; Reimer, O; Ritz, S; Romani, R W; Roth, M; Saz Parkinson, P M; Sgrò, C; Siskind, E J; Spandre, G; Spinelli, P; Suson, D J; Takahashi, H; Tanaka, T; Thayer, J G; Thayer, J B; Thompson, D J; Tibaldo, L; Tinivella, M; Torres, D F; Tosti, G; Troja, E; Uchiyama, Y; Usher, T L; Vandenbroucke, J; Vianello, G; Vitale, V; Waite, A P; Winer, B L; Wood, K S; Wood, M; Yang, Z; Zimmer, S; Coe, M J; Di Mille, F; Edwards, P G; Filipović, M D; Payne, J L; Stevens, J; Torres, M A P

    2012-01-13

    Gamma-ray binaries are stellar systems containing a neutron star or black hole, with gamma-ray emission produced by an interaction between the components. These systems are rare, even though binary evolution models predict dozens in our Galaxy. A search for gamma-ray binaries with the Fermi Large Area Telescope (LAT) shows that 1FGL J1018.6-5856 exhibits intensity and spectral modulation with a 16.6-day period. We identified a variable x-ray counterpart, which shows a sharp maximum coinciding with maximum gamma-ray emission, as well as an O6V((f)) star optical counterpart and a radio counterpart that is also apparently modulated on the orbital period. 1FGL J1018.6-5856 is thus a gamma-ray binary, and its detection suggests the presence of other fainter binaries in the Galaxy. PMID:22246769

  5. Periodic Emission from the Gamma-ray Binary 1FGL J1018.6-5856

    NASA Technical Reports Server (NTRS)

    Celic, O.; Corbet, R. H. D.; Donato, D.; Ferrara, E. C.; Gehrels, N.; Harding, A. K.; Hays, E.; McEnery, J. E.; Thompson, D. J.; Troja, E.

    2012-01-01

    Gamma-ray binaries are stellar systems containing a neutron star or black hole with gamma-ray emission produced by an interaction between the components. These systems are rare, even though binary evolution models predict dozens in our Galaxy. A search for gamma-ray binaries with the Fermi Large Area Telescope (LAT) shows that IFGL JI018.6-5856 exhibits intensity and spectral modulation with a 16.6 day period. We identified a variable X-ray counterpart, which shows a sharp maximum coinciding with maximum gamma-ray emission, as well as an 06V f) star optical counterpart and a radio counterpart that is also apparently modulated on the orbital period. IFGL J1018.6-5856 is thus a gamma-ray binary, and its detection suggests the presence of other fainter binaries in the Galaxy.

  6. Correlation Analysis of Prompt Emission from Gamma Ray Bursts

    NASA Astrophysics Data System (ADS)

    Pothapragada, Sriharsha

    Prompt emission from gamma-ray bursts (GRBs) exhibits very rapid, complicated temporal and spectral evolution. This diverse variability in the light-curves reflects the complicated nature of the underlying physics, in which inter-penetrating relativistic shells in the outflow are believed to generate strong magnetic fields that vary over very small scales. We use the theory of jitter radiation to model the emission from such regions and the resulting overall prompt gamma ray emission from a series of relativistic collisionless shocks. We present simulated GRB light-curves developed as a series of "pulses" corresponding to instantaneously illuminated "thin-shell" regions emitting via the jitter radiation mechanism. The effects of various geometries, viewing angles, and bulk Lorentz factor profiles of the radiating outflow jets on the spectral features and evolution of these light-curves are explored. Our results demonstrate how an anisotropic jitter radiation pattern, in conjunction with relativistic shock kinematics, can produce certain features observed in the GRB prompt emission spectra, such as the occurrence of hard, synchrotron violating spectra, the "tracking" of observed flux with spectral parameters, and spectral softening below peak energy within individual episodes of the light curve. We highlight predictions in the light of recent advances in the observational sphere of GRBs.

  7. Investigating the Origin of Hadronic Gamma-ray Emission in Galactic Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Ergin, Tulun; Majumdar, Pratik; Saha, Lab; Sezer, Aytap

    2016-07-01

    A number of Galactic supernova remnants (SNRs) were reported to display an off-center gamma-ray emission in the GeV energy range when compared to their radio continuum emission. In this presentation, we show the results of the offset measurements of the GeV gamma-ray emission and investigate the connection between the off-center morphology of an SNR with the molecular environment and its interactions with this environment. In this context, the gamma-ray spectrum is probed for two hadronic models, the interacting cloud scenario and the illuminating cloud scenario, in order to understand the dominating model for these SNRs. We also used archival X-ray data and ASTRO-H simulations to check the existence of recombining plasma (RP) to reveal any connection between the preferred hadronic gamma-ray emission model and the existence of RP in these SNRs.

  8. On the emission region of gamma ray bursts

    NASA Technical Reports Server (NTRS)

    Liang, E. P.

    1985-01-01

    Within the last few years the rapid accumulation of gamma ray burst spectral data, especially those of KONUS and solar maximum mission, has made the confrontation between theories of the gamma ray emission mechanisms and observations much more urgent and challenging. At present the most viable mode seems to be some combination of inverse Comptonization and synchrotron emission. Here, an attempt is made to limit the acceptable parameter space of the emission region by taking into account the maximum set of observational constraints. These are then applied to two specific scenarios: surface emission versus magnetospheric emission. Some observable predictions based on these scenarios are considered.

  9. Gamma-ray emission and electron acceleration in solar flares

    NASA Technical Reports Server (NTRS)

    Petrosian, Vahe; Mctiernan, James M.; Marschhauser, Holger

    1994-01-01

    Recent observations have extended the spectra of the impulsive phase of flares to the GeV range. Such high-energy photons can be produced either by electron bremsstrahlung or by decay of pions produced by accelerated protons. In this paper we investigate the effects of processes which become important at high energies. We examine the effects of synchrotron losses during the transport of electrons as they travel from the acceleration region in the corona to the gamma-ray emission sites deep in the chromosphere and photosphere, and the effects of scattering and absorption of gamma rays on their way from the photosphere to space instruments. These results are compared with the spectra from so-called electron-dominated flares, observed by GRS on the Solar Maximum Mission, which show negligible or no detectable contribution from accelerated protons. The spectra of these flares show a distinct steepening at energies below 100 keV and a rapid falloff at energies above 50 MeV. Following our earlier results based on lower energy gamma-ray flare emission we have modeled these spectra. We show that neither the radiative transfer effects, which are expected to become important at higher energies, nor the transport effects (Coulomb collisions, synchrotron losses, or magnetic field convergence) can explain such sharp spectral deviations from a simple power law. These spectral deviations from a power law are therefore attributed to the acceleration process. In a stochastic acceleration model the low-energy steepening can be attributed to Coulomb collision and the rapid high-energy steepening can result from synchrotron losses during the acceleration process.

  10. The Prompt and High Energy Emission of Gamma Ray Bursts

    SciTech Connect

    Meszaros, P.

    2009-05-25

    I discuss some recent developments concerning the prompt emission of gamma-ray bursts, in particular the jet properties and radiation mechanisms, as exemplified by the naked-eye burst GRB 080319b, and the prompt X-ray emission of XRB080109/SN2008d, where the progenitor has, for the first time, been shown to contribute to the prompt emission. I discuss then some recent theoretical calculations of the GeV/TeV spectrum of GRB in the context of both leptonic SSC models and hadronic models. The recent observations by the Fermi satellite of GRB 080916C are then reviewed, and their implications for such models are discussed, together with its interesting determination of a bulk Lorentz factor, and the highest lower limit on the quantum gravity energy scale so far.

  11. Low energy gamma ray emission from the Cygnus OB2 association

    NASA Technical Reports Server (NTRS)

    Chen, Wan; White, Richard L.

    1992-01-01

    According to our newly developed model of gamma-ray emission from chaotic early-type stellar winds, we predict the combined gamma-ray flux from the circumstellar winds of many very luminous early-type stars in the Cyg OB2 association can be detectable by the Energetic Gamma Ray Experiment Telescope (EGRET) (and maybe also by OSSE) on CGRO. Due to different radiation mechanisms, the gamma-ray spectrum from stellar winds can be quite different from that of CYG X-3; this spectral difference and the time-variation of Cyg X-3 flux will help to distinguish the gamma-ray components from different sources in this small region, which is spatially unresolvable by CGRO.

  12. The sharpness of gamma-ray burst prompt emission spectra

    NASA Astrophysics Data System (ADS)

    Yu, Hoi-Fung; van Eerten, Hendrik J.; Greiner, Jochen; Sari, Re'em; Narayana Bhat, P.; von Kienlin, Andreas; Paciesas, William S.; Preece, Robert D.

    2015-11-01

    Context. We study the sharpness of the time-resolved prompt emission spectra of gamma-ray bursts (GRBs) observed by the Gamma-ray Burst Monitor (GBM) on board the Fermi Gamma-ray Space Telescope. Aims: We aim to obtain a measure of the curvature of time-resolved spectra that can be compared directly to theory. This tests the ability of models such as synchrotron emission to explain the peaks or breaks of GBM prompt emission spectra. Methods: We take the burst sample from the official Fermi GBM GRB time-resolved spectral catalog. We re-fit all spectra with a measured peak or break energy in the catalog best-fit models in various energy ranges, which cover the curvature around the spectral peak or break, resulting in a total of 1113 spectra being analyzed. We compute the sharpness angles under the peak or break of the triangle constructed under the model fit curves and compare them to the values obtained from various representative emission models: blackbody, single-electron synchrotron, synchrotron emission from a Maxwellian or power-law electron distribution. Results: We find that 35% of the time-resolved spectra are inconsistent with the single-electron synchrotron function, and 91% are inconsistent with the Maxwellian synchrotron function. The single temperature, single emission time, and location blackbody function is found to be sharper than all the spectra. No general evolutionary trend of the sharpness angle is observed, neither per burst nor for the whole population. It is found that the limiting case, a single temperature Maxwellian synchrotron function, can only contribute up to % of the peak flux. Conclusions: Our results show that even the sharpest but non-realistic case, the single-electron synchrotron function, cannot explain a large fraction of the observed GRB prompt spectra. Because any combination of physically possible synchrotron spectra added together will always further broaden the spectrum, emission mechanisms other than optically thin

  13. Gamma-Ray Burst Progenitors: Merger Model

    NASA Astrophysics Data System (ADS)

    Ruffert, Maximilian

    2002-04-01

    The mergers of neutron stars and black holes remain a viable model for gamma-ray burst central engines, at least for the class of short bursts: their time scales, occurrence rates and energy output seem to be consistent with observations. We will present results of our latest simulations showing how the orbit of a neutron star around a black hole shrinks due to gravitational radiation, how the neutron star's matter gets accreted by the black hole, and how the tidal forces of the black hole finally shred the neutron star into a thick disk. In this process, huge amounts of energy are radiated away by gravitational waves and by neutrinos emitted from the hot disk. The neutrino luminosities are so large that an appreciable fraction (some few percent!) of neutrinos annihilate with antineutrinos creating the clean fireball necessary to power gamma-ray bursts.

  14. Physics of radio emission in gamma-ray pulsars

    NASA Astrophysics Data System (ADS)

    Petrova, S. A.

    2016-04-01

    > Propagation of radio emission in a pulsar magnetosphere is reviewed. The effects of polarization transfer, induced scattering and reprocessing to high energies are analysed with a special emphasis on the implications for the gamma-ray pulsars. The possibilities of the pulsar plasma diagnostics based on the observed radio pulse characteristics are also outlined. As an example, the plasma number density profiles obtained from the polarization data for the Vela and the gamma-ray millisecond pulsars J1446-4701, J1939+2134 and J1744-1134 are presented. The number densities derived tend to be the highest/lowest when the radio pulse leads/lags the gamma-ray peak. In the PSR J1939+2134, the plasma density profiles for the main pulse and interpulse appear to fit exactly the same curve, testifying to the origin of both radio components above the same magnetic pole and their propagation through the same plasma flow in opposite directions. The millisecond radio pulse components exhibiting flat position angle curves are suggested to result from the induced scattering of the main pulse by the same particles that generate gamma rays. This is believed to underlie the wide-sense radio/gamma-ray correlation in the millisecond pulsars. The radio quietness of young gamma-ray pulsars is attributed to resonant absorption, whereas the radio loudness to the radio beam escape through the periphery of the open field line tube.

  15. Gravitational waves versus X-ray and gamma-ray emission in a short gamma-ray burst

    SciTech Connect

    Oliveira, F. G.; Rueda, Jorge A.; Ruffini, R. E-mail: jorge.rueda@icra.it

    2014-06-01

    Recent progress in the understanding of the physical nature of neutron star equilibrium configurations and the first observational evidence of a genuinely short gamma-ray burst (GRB), GRB 090227B, allows us to give an estimate of the gravitational waves versus the X-ray and gamma-ray emission in a short GRB.

  16. THERMAL X-RAY EMISSION FROM THE SHOCKED STELLAR WIND OF PULSAR GAMMA-RAY BINARIES

    SciTech Connect

    Zabalza, V.; Paredes, J. M.; Bosch-Ramon, V.

    2011-12-10

    Gamma-ray-loud X-ray binaries are binary systems that show non-thermal broadband emission from radio to gamma rays. If the system comprises a massive star and a young non-accreting pulsar, their winds will collide producing broadband non-thermal emission, most likely originated in the shocked pulsar wind. Thermal X-ray emission is expected from the shocked stellar wind, but until now it has neither been detected nor studied in the context of gamma-ray binaries. We present a semi-analytic model of the thermal X-ray emission from the shocked stellar wind in pulsar gamma-ray binaries, and find that the thermal X-ray emission increases monotonically with the pulsar spin-down luminosity, reaching luminosities of the order of 10{sup 33} erg s{sup -1}. The lack of thermal features in the X-ray spectrum of gamma-ray binaries can then be used to constrain the properties of the pulsar and stellar winds. By fitting the observed X-ray spectra of gamma-ray binaries with a source model composed of an absorbed non-thermal power law and the computed thermal X-ray emission, we are able to derive upper limits on the spin-down luminosity of the putative pulsar. We applied this method to LS 5039, the only gamma-ray binary with a radial, powerful wind, and obtain an upper limit on the pulsar spin-down luminosity of {approx}6 Multiplication-Sign 10{sup 36} erg s{sup -1}. Given the energetic constraints from its high-energy gamma-ray emission, a non-thermal to spin-down luminosity ratio very close to unity may be required.

  17. Perspectives on Gamma-Ray Pulsar Emission

    NASA Astrophysics Data System (ADS)

    Baring, Matthew G.

    2011-09-01

    Pulsars are powerful sources of radiation across the electromagnetic spectrum. This paper highlights some theoretical insights into non-thermal, magnetospheric pulsar gamma-ray radiation. These advances have been driven by NASA's Fermi mission, launched in mid-2008. The Large Area Telescope (LAT) instrument on Fermi has afforded the discrimination between polar cap and slot gap/outer gap acceleration zones in young and middle-aged pulsars. Altitude discernment using the highest energy pulsar photons will be addressed, as will spectroscopic interpretation of the primary radiation mechanism in the LAT band, connecting to both polar cap/slot gap and outer gap scenarios. Focuses will mostly be on curvature radiation and magnetic pair creation, including population trends that may afford probes of the magnetospheric accelerating potential.

  18. The progenitors of extended emission gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Gompertz, B. P.

    2015-06-01

    Gamma-ray bursts (GRBs) are the most luminous transient events in the Universe, and as such are associated with some of the most extreme processes in nature. They come in two types: long and short, nominally separated either side of a two second divide in gamma-ray emission duration. The short class (those with durations of less than two seconds) are believed to be due to the merger of two compact objects, most likely neutron stars. Within this population, a small subsection exhibit an apparent extra high-energy emission feature, which rises to prominence several seconds after the initial emission event. These are the extended emission (EE) bursts. This thesis investigates the progenitors of the EE sample, including what drives them, and where they fit in the broader context of short GRBs. The science chapters outline a rigorous test of the magnetar model, in which the compact object merger results in a massive, rapidly-rotating neutron star with an extremely strong magnetic field. The motivation for this central engine is the late-time plateaux seen in some short and EE GRBs, which can be interpreted as energy injection from a long-lived central engine, in this case from the magnetar as it loses angular momentum along open field lines. Chapter 2 addresses the energy budget of such a system, including whether the EE component is consistent with the rotational energy reservoir of a millisecond neutron star, and the implications the model has for the physical properties of the underlying magnetar. Chapter 3 proposes a potential mechanism by which EE may arise, and how both classes may be born within the framework of a single central engine. Chapter 4 addresses the broadband signature of both short and EE GRBs, and provides some observational tests that can be used to either support or contradict the model.

  19. Optical Emissions Associated with Terrestrial Gamma-ray Flashes

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Celestin, Sebastien; Pasko, Victor

    2015-04-01

    Terrestrial Gamma-ray Flashes (TGFs) are high-energy photon bursts originating from the Earth's atmosphere. After their discovery in 1994 by the Burst and Transient Source Experiment (BATSE) detector aboard the Compton Gamma-Ray Observatory [Fishman et al., Science, 264, 1313, 1994], this phenomenon has been further observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) [Smith et al., Science, 307, 1085, 2005], the Fermi Gamma-ray Space Telescope [Briggs et al., JGR, 115, A07323, 2010] and the Astrorivelatore Gamma a Immagini Leggero (AGILE) satellite [Marisaldi et al., JGR, 115, A00E13, 2010]. Measurements have correlated TGFs with initial development stages of normal polarity intracloud lightning that transports negative charge upward (+IC) [e.g., Lu et al., GRL, 37, L11806, 2010; JGR, 116, A03316, 2011]. Moreover, Østgaard et al. [GRL, 40, 2423, 2013] have recently reported, for the first time, space-based observations of optical emissions from TGF-associated IC lightning flashes, and Dwyer et al. [GRL, 40, 4067, 2013] recently quantified optical emissions associated with TGFs based on assumption that these emissions are similar to those produced by extensive air showers. In the present study, we quantify optical emissions resulting from the excitation of air molecules produced by the large population of electrons involved in TGF events based on two possible production mechanisms: relativistic runaway electron avalanches (RREAs) [Dwyer and Smith, GRL, 32, L22804, 2005] and acceleration of thermal runaway electrons produced by high-potential intra-cloud lightning leaders [e.g., Celestin and Pasko, JGR, 116, A03315, 2011; Xu et al., GRL, 39, L08801, 2012]. Using Monte Carlo simulations, we show that electron energy distributions established from these two production mechanisms are inherently different over the full energy range, and also substantially different from those produced in extensive air showers. Moreover, we show that TGFs are

  20. Unified One-Dimensional Simulations of Gamma-Ray Line Emission from Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Milne, P. A.; Hungerford, A. L.; Fryer, C. L.; Evans, T. M.; Urbatsch, T. J.; Boggs, S. E.; Isern, J.; Bravo, E.; Hirschmann, A.; Kumagai, S.; Pinto, P. A.; The, L.-S.

    2004-10-01

    The light curves of Type Ia supernovae (SNe Ia) are powered by gamma rays emitted by the decay of radioactive elements such as 56Ni and its decay products. These gamma rays are downscattered, absorbed, and eventually reprocessed into the optical emission that makes up the bulk of all SN observations. Detection of the gamma rays that escape the expanding star provide the only direct means to study this power source for SN Ia light curves. Unfortunately, disagreements between calculations for the gamma-ray lines have made it difficult to interpret any gamma-ray observations. Here we present a detailed comparison of the major gamma-ray line transport codes for a series of one-dimensional SN Ia models. Discrepancies in past results were due to errors in the codes, and the corrected versions of the seven different codes yield very similar results. This convergence of the simulation results allows us to infer more reliable information from the current set of gamma-ray observations of SNe Ia. The observations of SN 1986G, SN 1991T, and SN 1998bu are consistent with explosion models based on their classification: subluminous, superluminous, and normally luminous, respectively.

  1. Theoretical Modelling of the Diffuse Emission of (gamma)-rays From Extreme Regions of Star Formation: The Case of Arp 220

    SciTech Connect

    Torres, D F

    2004-07-09

    Our current understanding of ultraluminous infrared galaxies suggest that they are recent galaxy mergers in which much of the gas in the former spiral disks, particularly that located at distances less than 5 kpc from each of the pre-merger nuclei, has fallen into a common center, triggering a huge starburst phenomenon. This large nuclear concentration of molecular gas has been detected by many groups, and estimates of molecular mass and density have been made. Not surprisingly, these estimates were found to be orders of magnitude larger than the corresponding values found in our Galaxy. In this paper, a self-consistent model of the high energy emission of the super-starburst galaxy Arp 220 is presented. The model also provides an estimate of the radio emission from each of the components of the central region of the galaxy (western and eastern extreme starbursts, and molecular disk). The predicted radio spectrum is found as a result of the synchrotron and free-free emission, and absorption, of the primary and secondary steady population of electrons and positrons. The latter is output of charged pion decay and knock-on leptonic production, subject to a full set of losses in the interstellar medium. The resulting radio spectrum is in agreement with sub-arcsec radio observations, what allows to estimate the magnetic field. In addition, the FIR emission is modeled with dust emissivity, and the computed FIR photon density is used as a target for inverse Compton process as well as to give account of losses in the {gamma}-ray scape. Bremsstrahlung emission and neutral pion decay are also computed, and the {gamma}-ray spectrum is finally predicted. Future possible observations with GLAST, and the ground based Cherenkov telescopes are discussed.

  2. Optical Emissions Associated with Terrestrial Gamma-ray Flashes

    NASA Astrophysics Data System (ADS)

    Xu, W.; Celestin, S. J.; Pasko, V. P.

    2013-12-01

    Terrestrial Gamma-ray Flashes (TGFs) are high-energy photon bursts originating from the Earth's atmosphere. After their discovery in 1994 by the Burst and Transient Source Experiment (BATSE) detector aboard the Compton Gamma-Ray Observatory [Fishman et al., Science, 264, 1313, 1994], this phenomenon has been further observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) [Smith et al., Science, 307, 1085, 2005], the Fermi Gamma-ray Space Telescope [Briggs et al., JGR, 115, A07323, 2010] and the Astrorivelatore Gamma a Immagini Leggero (AGILE) satellite [Marisaldi et al., JGR, 115, A00E13, 2010]. Measurements have correlated TGFs with initial development stages of normal polarity intracloud lightning that transports negative charge upward (+IC) [e.g., Lu et al., GRL, 37, L11806, 2010; JGR, 116, A03316, 2011]. Moreover, Østgaard et al. [GRL, 40, 2423, 2013] have recently reported, for the first time, space-based observations of optical emissions from TGF-associated IC lightning flashes. The purpose of the present work is to quantify the intensities of optical emissions resulting from the excitation of air molecules produced by conventional streamer discharges in negative corona flashes of stepping negative leaders and by the large amount of electrons involved in TGF events based on two production mechanisms: relativistic runaway electron avalanches (RREAs) [Dwyer and Smith, GRL, 32, L22804, 2005] and production of runaway electrons by high-potential +IC lightning leaders [e.g., Celestin and Pasko, JGR, 116, A03315, 2011; Xu et al., GRL, 39, L08801, 2012]. We employ a Monte Carlo model to simulate the acceleration of electrons in the energy range from sub-eV to GeV in either large-scale homogeneous electric field sustaining RREAs or highly inhomogeneous electric field produced around the lightning leader tip region. With the knowledge of the electron energy distribution function, a model similar to that described in [Liu and Pasko, JGR, 109, A

  3. GRB 090727 AND GAMMA-RAY BURSTS WITH EARLY-TIME OPTICAL EMISSION

    SciTech Connect

    Kopac, D.; Gomboc, A.; Japelj, J.; Kobayashi, S.; Mundell, C. G.; Bersier, D.; Cano, Z.; Smith, R. J.; Steele, I. A.; Virgili, F. J.; Guidorzi, C.; Melandri, A.

    2013-07-20

    We present a multi-wavelength analysis of Swift gamma-ray burst GRB 090727, for which optical emission was detected during the prompt gamma-ray emission by the 2 m autonomous robotic Liverpool Telescope and subsequently monitored for a further two days with the Liverpool and Faulkes Telescopes. Within the context of the standard fireball model, we rule out a reverse shock origin for the early-time optical emission in GRB 090727 and instead conclude that the early-time optical flash likely corresponds to emission from an internal dissipation process. Putting GRB 090727 into a broader observational and theoretical context, we build a sample of 36 gamma-ray bursts (GRBs) with contemporaneous early-time optical and gamma-ray detections. From these GRBs, we extract a sub-sample of 18 GRBs, which show optical peaks during prompt gamma-ray emission, and perform detailed temporal and spectral analysis in gamma-ray, X-ray, and optical bands. We find that in most cases early-time optical emission shows sharp and steep behavior, and notice a rich diversity of spectral properties. Using a simple internal shock dissipation model, we show that the emission during prompt GRB phase can occur at very different frequencies via synchrotron radiation. Based on the results obtained from observations and simulation, we conclude that the standard external shock interpretation for early-time optical emission is disfavored in most cases due to sharp peaks ({Delta}t/t < 1) and steep rise/decay indices, and that internal dissipation can explain the properties of GRBs with optical peaks during gamma-ray emission.

  4. Sky and Elemental Planetary Mapping Via Gamma Ray Emissions

    NASA Technical Reports Server (NTRS)

    Roland, John M.

    2011-01-01

    Low-energy gamma ray emissions ((is) approximately 30keV to (is) approximately 30MeV) are significant to astrophysics because many interesting objects emit their primary energy in this regime. As such, there has been increasing demand for a complete map of the gamma ray sky, but many experiments to do so have encountered obstacles. Using an innovative method of applying the Radon Transform to data from BATSE (the Burst And Transient Source Experiment) on NASA's CGRO (Compton Gamma-Ray Observatory) mission, we have circumvented many of these issues and successfully localized many known sources to 0.5 - 1 deg accuracy. Our method, which is based on a simple 2-dimensional planar back-projection approximation of the inverse Radon transform (familiar from medical CAT-scan technology), can thus be used to image the entire sky and locate new gamma ray sources, specifically in energy bands between 200keV and 2MeV which have not been well surveyed to date. Samples of these results will be presented. This same technique can also be applied to elemental planetary surface mapping via gamma ray spectroscopy. Due to our method's simplicity and power, it could potentially improve a current map's resolution by a significant factor.

  5. Gamma-ray emission from Cataclysmic variables. 1: The Compton EGRET survey

    NASA Technical Reports Server (NTRS)

    Schlegel, Eric M.; Barrett, Paul E.; De Jager, O. C.; Chanmugam, G.; Hunter, S.; Mattox, J.

    1995-01-01

    We report the results of the first gamma-ray survey of cataclysmic variables (CVs) using observations obtained with the Energetic Gamma Ray Experiment Telescope (EGRET) instrument on the Compton Observatory. We briefly describe the theoretical models that are applicable to gamma-ray emission from CVs. These models are particularly relevant to magnetic CVs containing asynchronously rotating white dwarfs. No magnetic CV was detected with an upper limit on the flux at 1 GeV of approximately 2 x 10(exp -8)/sq cm/sec, which corresponds to an upper limit on the gamma-ray luminosity of approximately 10(exp 31) ergs/sec, assuming a typical CV distance of 100 pc.

  6. Optical emissions associated with terrestrial gamma ray flashes

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Celestin, Sebastien; Pasko, Victor P.

    2015-02-01

    Terrestrial gamma ray flashes (TGFs) are high-energy photon bursts produced by high-energy electrons originating in the Earth's atmosphere through bremsstrahlung processes. In this paper, we present modeling studies on optical emissions resulting from the excitation of air molecules produced by the large population of electrons involved in TGF events based on two possible production mechanisms: relativistic runaway electron avalanches (RREAs) and acceleration of thermal runaway electrons produced by high-potential intracloud lightning leaders. Numerical models developed in this study are first validated through the calculation of fluorescence emissions from air excited by energetic electrons and comparison with available laboratory observations. Detailed discussion of the role of excitation and ionization collisions on the formation of the electron energy distribution is presented. Moreover, using Monte Carlo simulations, we show that electron energy distributions established from the two TGF production mechanisms considered here are inherently different over the full energy range. The strong energy dependence of the capability of electrons to generate excited states responsible for optical emissions from neutral and ionized nitrogen molecules leads to intrinsic differences in optical emissions produced by different mechanisms of TGF production. We also show that TGFs are most likely accompanied by detectable levels of optical emissions and that the distinct optical features are of significant interest for constraining and validating current TGF production models.

  7. Search for gamma-ray emissions from AE Aquarii with Fermi LAT

    NASA Astrophysics Data System (ADS)

    Li, Jian; Rea, Nanda; De Ona Wilhelmi, Emma; Torres, Diego F.; Hou, Xian

    2016-07-01

    AE Aquarii is a cataclysmic variable with the fastest known rotating magnetized white dwarf (P_{spin} = 33.08 s). We report on deep searches for gamma-ray emission and pulsations from AE Aquarii in seven years of Fermi-LAT Pass 8 data. Using different X-ray observations spanning 20 years, we substantially extended the timing ephemeris of AE Aquarii. A spin phase jump was discovered between MJD 55122.5 - 56078.64 by X-ray timing analysis. Using the extended timing ephemeris, we searched for gamma-ray pulsations at the spin period and its first harmonic. No gamma-ray pulsation were detected above 3 sigma significance. Neither steady gamma-ray emission nor gamma-ray variability of AE Aquarii were detected by Fermi-LAT. We impose the most restrictive upper limit on the gamma-ray emission from AE Aquarii to date, as 1.23×10^{-12} erg cm^{-2} s^{-1} in 0.1-300 GeV range providing constrains on models.

  8. CONSTRAINTS ON THE EMISSION GEOMETRIES AND SPIN EVOLUTION OF GAMMA-RAY MILLISECOND PULSARS

    SciTech Connect

    Johnson, T. J.; Venter, C.; Harding, A. K.; Çelik, Ö.; Ferrara, E. C.; Guillemot, L.; Smith, D. A.; Hou, X.; Den Hartog, P. R.; Lande, J.; Ray, P. S. E-mail: Christo.Venter@nwu.ac.za

    2014-07-01

    Millisecond pulsars (MSPs) are a growing class of gamma-ray emitters. Pulsed gamma-ray signals have been detected from more than 40 MSPs with the Fermi Large Area Telescope (LAT). The wider radio beams and more compact magnetospheres of MSPs enable studies of emission geometries over a broader range of phase space than non-recycled radio-loud gamma-ray pulsars. We have modeled the gamma-ray light curves of 40 LAT-detected MSPs using geometric emission models assuming a vacuum retarded-dipole magnetic field. We modeled the radio profiles using a single-altitude hollow-cone beam, with a core component when indicated by polarimetry; however, for MSPs with gamma-ray and radio light curve peaks occurring at nearly the same rotational phase, we assume that the radio emission is co-located with the gamma rays and caustic in nature. The best-fit parameters and confidence intervals are determined using a maximum likelihood technique. We divide the light curves into three model classes, with gamma-ray peaks trailing (Class I), aligned (Class II), or leading (Class III) the radio peaks. Outer gap and slot gap (two-pole caustic) models best fit roughly equal numbers of Class I and II, while Class III are exclusively fit with pair-starved polar cap models. Distinguishing between the model classes based on typical derived parameters is difficult. We explore the evolution of the magnetic inclination angle with period and spin-down power, finding possible correlations. While the presence of significant off-peak emission can often be used as a discriminator between outer gap and slot gap models, a hybrid model may be needed.

  9. Constraints On the Emission Geometries and Spin Evolution Of Gamma-Ray Millisecond Pulsars

    NASA Technical Reports Server (NTRS)

    Johnson, T. J.; Venter, C.; Harding, A. K.; Guillemot, L.; Smith, D. A.; Kramer, M.; Celik, O.; den Hartog, P. R.; Ferrara, E. C.; Hou, X.; Lande, J.; Ray, P. S.

    2014-01-01

    Millisecond pulsars (MSPs) are a growing class of gamma-ray emitters. Pulsed gamma-ray signals have been detected from more than 40 MSPs with the Fermi Large Area Telescope (LAT). The wider radio beams and more compact magnetospheres of MSPs enable studies of emission geometries over a broader range of phase space than non-recycled radio-loud gamma-ray pulsars. We have modeled the gamma-ray light curves of 40 LAT-detected MSPs using geometric emission models assuming a vacuum retarded-dipole magnetic field. We modeled the radio profiles using a single-altitude hollow-cone beam, with a core component when indicated by polarimetry; however, for MSPs with gamma-ray and radio light curve peaks occurring at nearly the same rotational phase, we assume that the radio emission is co-located with the gamma rays and caustic in nature. The best-fit parameters and confidence intervals are determined using amaximum likelihood technique.We divide the light curves into three model classes, with gamma-ray peaks trailing (Class I), aligned (Class II), or leading (Class III) the radio peaks. Outer gap and slot gap (two-pole caustic) models best fit roughly equal numbers of Class I and II, while Class III are exclusively fit with pair-starved polar cap models. Distinguishing between the model classes based on typical derived parameters is difficult. We explore the evolution of the magnetic inclination angle with period and spin-down power, finding possible correlations. While the presence of significant off-peak emission can often be used as a discriminator between outer gap and slot gap models, a hybrid model may be needed.

  10. The Structure and Emission Model of the Relativistic Jet in the Quasar 3C 279 Inferred From Radio To High-Energy Gamma-Ray Observations in 2008-2010

    NASA Technical Reports Server (NTRS)

    2012-01-01

    We present time-resolved broad-band observations of the quasar 3C 279 obtained from multiwavelength campaigns conducted during the first two years of the Fermi Gamma-ray Space Telescope mission. While investigating the previously reported gamma-ray/optical flare accompanied by a change in optical polarization, we found that the optical emission appears delayed with respect to the gamma-ray emission by about 10 days. X-ray observations reveal a pair of 'isolated' flares separated. by approx. 90 days, with only weak gamma-ray/optical counterparts. The spectral structure measured by Spitzer reveals a synchrotron component peaking in the mid-infrared band with a sharp break at the far-infrared band during the gamma-ray flare, while the peak appears in the mm/sub-mm band in the low state. Selected spectral energy distributions are fitted with leptonic models including Comptonization of external radiation produced in a dusty torus or the broad-line region. Adopting the interpretation of the polarization swing involving propagation of the emitting region along a curved trajectory, we can explain the evolution of the broad-band spectra during the gamma-ray flaring event by a shift of its location from approx. 1 pc to approx. 4 pc from the central black hole. On the other hand, if the gamma-ray flare is generated instead at sub-pc distance from the central black hole, the far-infrared break can be explained by synchrotron self-absorption. We also model the low spectral state, dominated by the mm/sub-mm peaking synchrotron component, and suggest that the corresponding inverse-Compton component explains the steady X-ray emission.

  11. THE STRUCTURE AND EMISSION MODEL OF THE RELATIVISTIC JET IN THE QUASAR 3C 279 INFERRED FROM RADIO TO HIGH-ENERGY {gamma}-RAY OBSERVATIONS IN 2008-2010

    SciTech Connect

    Hayashida, M.; Madejski, G. M.; Chiang, J.; Blandford, R. D.; Buehler, R.; Sikora, M.; Wehrle, A. E.; Ogle, P.; Collmar, W.; Larsson, S.; Fukazawa, Y.; Itoh, R.; Stawarz, L.; Richards, J. L.; Max-Moerbeck, W.; Readhead, A.; Cavazzuti, E.; Ciprini, S.; Gehrels, N. E-mail: madejski@slac.stanford.edu E-mail: sikora@camk.edu.pl; and others

    2012-08-01

    We present time-resolved broadband observations of the quasar 3C 279 obtained from multi-wavelength campaigns conducted during the first two years of the Fermi Gamma-ray Space Telescope mission. While investigating the previously reported {gamma}-ray/optical flare accompanied by a change in optical polarization, we found that the optical emission appears to be delayed with respect to the {gamma}-ray emission by about 10 days. X-ray observations reveal a pair of 'isolated' flares separated by {approx}90 days, with only weak {gamma}-ray/optical counterparts. The spectral structure measured by Spitzer reveals a synchrotron component peaking in the mid-infrared band with a sharp break at the far-infrared band during the {gamma}-ray flare, while the peak appears in the millimeter (mm)/submillimeter (sub-mm) band in the low state. Selected spectral energy distributions are fitted with leptonic models including Comptonization of external radiation produced in a dusty torus or the broad-line region. Adopting the interpretation of the polarization swing involving propagation of the emitting region along a curved trajectory, we can explain the evolution of the broadband spectra during the {gamma}-ray flaring event by a shift of its location from {approx}1 pc to {approx}4 pc from the central black hole. On the other hand, if the {gamma}-ray flare is generated instead at sub-pc distance from the central black hole, the far-infrared break can be explained by synchrotron self-absorption. We also model the low spectral state, dominated by the mm/sub-mm peaking synchrotron component, and suggest that the corresponding inverse-Compton component explains the steady X-ray emission.

  12. Toward a Unified Model for the Broadband Prompt Emission of Gamma Ray Bursts & a New Luminosity-Hardness Relation for Cosmology

    NASA Astrophysics Data System (ADS)

    Guiriec, Sylvain

    2016-07-01

    We suggest here to replace the historical spectral model (Band function) for the Gamma-Ray Burst (GRB) prompt emission (keV-MeV energy regime) with a new one. We show that the complex GRB spectral shapes are well described with a combination of three separate components: (i) a thermal-like component that we interpret as emission from a non-dissipative GRB jet photosphere, (ii) a non-thermal component that we interpret either as synchrotron radiation from charged particles propagating and accelerated within the GRB jet or as a dissipative photosphere, and (iii) a second non-thermal component that is not always present or detectable and which extends from optical up to hard gamma-rays. The smooth evolution of all three components during the burst duration reinforces the validity of this new model. Detailed studies of the evolution of these components provide insights on the nature and composition of GRB jets as well as on their magnetic fields. Moreover, this new model enables a new luminosity-hardness relation based on the first non-thermal component that may establish GRBs as standard candles. If statistically confirmed, this relation will be used to (i) constrain the mechanisms powering GRB jets, (ii) estimate GRB distances, (iii) probe the early Universe, and (iv) constrain the cosmological parameters in complement to the Type Ia SNe sample. I will present this new model using analysis of GRBs detected with various observatories and instruments such as Fermi, CGRO/BATSE and more recently Swift. I will discuss here the striking similarities of GRB spectral shapes as well as the possible universality of the proposed luminosity-hardness relation in the context of the new model.

  13. The Annular Gap: Gamma-Ray & Radio Emission of Pulsars

    NASA Astrophysics Data System (ADS)

    Qiao, G. J.; Du, Y. J.; Han, J. L.; Xu, R. X.

    2013-01-01

    Pulsars have been found more than 40 years. Observations from radio to gamma-rays present abundant information. However, the radiation mechanism is still an open question. It is found that the annular gap could be formed in the magnetosphere of pulsars (neutron stars or quark stars), which combines the advantages of the polar cap, slot gap and outer gap models. It is emphasized that observations of some radio pulsars, normal and millisecond gamma-ray pulsars (MSGPs) show that the annular gap would play a very important role. Here we show some observational and theoretical evidences about the annular gap. For example, bi-drifting sub-pulses; radio and gamma-ray millisecond pulsars and so on.

  14. High-energy emission in gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Matz, S. M.; Forrest, D. J.; Vestrand, W. T.; Chupp, E. L.; Share, G. H.; Rieger, E.

    1985-01-01

    Between February 1980 and August 1983 the Gamma-Ray Spectrometer on the Solar Maximum Mission Satellite (SMM) detected 72 events identified as being of cosmic origin. These events are an essentially unbiased subset of all gamma-ray bursts. The measured spectra of these events show that high energy (greater than 1 MeV) emission is a common and energetically important feature. There is no evidence for a general high-energy cut-off or a distribution of cut-offs below about 6 MeV. These observations imply a limit on the preferential beaming of high energy emission. This constraint, combined with the assumption of isotropic low energy emission, implies that the typical magnetic field strength at burst radiation sites is less than 1 x 10 to the 12th gauss.

  15. High-energy gamma-ray emission from pion decay in a solar flare magnetic loop

    NASA Technical Reports Server (NTRS)

    Mandzhavidze, Natalie; Ramaty, Reuven

    1992-01-01

    The production of high-energy gamma rays resulting from pion decay in a solar flare magnetic loop is investigated. Magnetic mirroring, MHD pitch-angle scattering, and all of the relevant loss processes and photon production mechanisms are taken into account. The transport of both the primary ions and the secondary positrons resulting from the decay of the positive pions, as well as the transport of the produced gamma-ray emission are considered. The distributions of the gamma rays as a function of atmospheric depth, time, emission angle, and photon energy are calculated and the dependence of these distributions on the model parameters are studied. The obtained angular distributions are not sufficiently anisotropic to account for the observed limb brightening of the greater than 10 MeV flare emission, indicating that the bulk of this emission is bremsstrahlung from primary electrons.

  16. Galactic Diffuse Gamma Ray Emission Is Greater than 10 Gev

    NASA Technical Reports Server (NTRS)

    Hunter, Stanley D.; White, Nicholas E. (Technical Monitor)

    2000-01-01

    AGILE and Gamma-ray Large Area Telescope (GLAST) are the next high-energy gamma-ray telescopes to be flown in space. These instruments will have angular resolution about 5 times better than Energetic Gamma-Ray Experiment Telescope (EGRET) above 10 GeV and much larger field of view. The on-axis effective area of AGILE will be about half that of EGRET, whereas GLAST will have about 6 times greater effective area than EGRET. The capabilities of ground based very high-energy telescopes are also improving, e.g. Whipple, and new telescopes, e.g. Solar Tower Atmospheric Cerenkov Effect Experiment (STACEE), Cerenkov Low Energy Sampling and Timing Experiment (CELESTE), and Mars Advanced Greenhouse Integrated Complex (MAGIC) are expected to have low-energy thresholds and sensitivities that will overlap the GLAST sensitivity above approximately 10 GeV. In anticipation of the results from these new telescopes, our current understanding of the galactic diffuse gamma-ray emission, including the matter and cosmic ray distributions is reviewed. The outstanding questions are discussed and the potential of future observations with these new instruments to resolve these questions is examined.

  17. Diffuse Gamma-Ray Emission from the Starburst Galaxy NGC 253

    NASA Technical Reports Server (NTRS)

    Bertsch, David L.; Paglione, Timothy A. D.; Marscher, Alan P.; Jackson, James M.

    1995-01-01

    The starburst galaxy NGC 253 was observed with the Energetic Gamma Ray Experiment Telescope (EGRET) aboard the Compton Gamma Ray Observatory (CGRO) satellite. We obtain a 2 sigma upper limit to the gamma-ray emission above 100 MeV of 8 x 10(exp -8) photons/sq cm/s. Because of their large gas column densities and supernova rates, nearby starburst galaxies were predicted to have gamma-ray fluxes detectable by EGRET. Our nondetection of gamma-rays from NGC 253 motivates us to reexamine in detail the premise of supernova acceleration of cosmic rays and the effect of enhanced cloud densities, photon densities, and magnetic fields on the high-energy spectra of galaxies. By modeling the expected gamma-ray and synchrotron spectra from NGC 253, we find that up to 20% of the energy from supernovae is transferred to cosmic rays in the starburst, which is consistent with supernova acceleration models. Our calculations match the EGRET and radio data well with a supernova rate of 0.08/yr, a magnetic field B greater than or approximately equal to 5 x 10(exp -5) G, a density n approximately 300/cu cm, a photon density U(sub ph) approximately 200 eV/cu cm, and an escape timescale tau(sub o) less than or approximately equal to 10 Myr.

  18. Constraining extended gamma-ray emission from galaxy clusters

    NASA Astrophysics Data System (ADS)

    Han, Jiaxin; Frenk, Carlos S.; Eke, Vincent R.; Gao, Liang; White, Simon D. M.; Boyarsky, Alexey; Malyshev, Denys; Ruchayskiy, Oleg

    2012-12-01

    Cold dark matter models predict the existence of a large number of substructures within dark matter haloes. If the cold dark matter consists of weakly interacting massive particles, their annihilation within these substructures could lead to diffuse GeV emission that would dominate the annihilation signal of the host halo. In this work we search for GeV emission from three nearby galaxy clusters: Coma, Virgo and Fornax. We first remove known extragalactic and galactic diffuse gamma-ray backgrounds and point sources from the Fermi 2-yr catalogue and find a significant residual diffuse emission in all three clusters. We then investigate whether this emission is due to (i) unresolved point sources, (ii) dark matter annihilation or (iii) cosmic rays (CR). Using 45 months of Fermi-Large Area Telescope (Fermi-LAT) data we detect several new point sources (not present in the Fermi 2-yr point source catalogue) which contaminate the signal previously analysed by Han et al. Including these and accounting for the effects of undetected point sources, we find no significant detection of extended emission from the three clusters studied. Instead, we determine upper limits on emission due to dark matter annihilation and CR. For Fornax and Virgo, the limits on CR emission are consistent with theoretical models, but for Coma the upper limit is a factor of 2 below the theoretical expectation. Allowing for systematic uncertainties associated with the treatment of CR, the upper limits on the cross-section for dark matter annihilation from our clusters are more stringent than those from analyses of dwarf galaxies in the Milky Way. Adopting a boost factor of ˜103 from subhaloes on cluster luminosity as suggested by recent theoretical models, we rule out the thermal cross-section for supersymmetric dark matter particles for masses as large as 100 GeV (depending on the annihilation channel).

  19. The relativistic feedback discharge model of terrestrial gamma ray flashes

    NASA Astrophysics Data System (ADS)

    Dwyer, Joseph R.

    2012-02-01

    As thunderclouds charge, the large-scale fields may approach the relativistic feedback threshold, above which the production of relativistic runaway electron avalanches becomes self-sustaining through the generation of backward propagating runaway positrons and backscattered X-rays. Positive intracloud (IC) lightning may force the large-scale electric fields inside thunderclouds above the relativistic feedback threshold, causing the number of runaway electrons, and the resulting X-ray and gamma ray emission, to grow exponentially, producing very large fluxes of energetic radiation. As the flux of runaway electrons increases, ionization eventually causes the electric field to discharge, bringing the field below the relativistic feedback threshold again and reducing the flux of runaway electrons. These processes are investigated with a new model that includes the production, propagation, diffusion, and avalanche multiplication of runaway electrons; the production and propagation of X-rays and gamma rays; and the production, propagation, and annihilation of runaway positrons. In this model, referred to as the relativistic feedback discharge model, the large-scale electric fields are calculated self-consistently from the charge motion of the drifting low-energy electrons and ions, produced from the ionization of air by the runaway electrons, including two- and three-body attachment and recombination. Simulation results show that when relativistic feedback is considered, bright gamma ray flashes are a natural consequence of upward +IC lightning propagating in large-scale thundercloud fields. Furthermore, these flashes have the same time structures, including both single and multiple pulses, intensities, angular distributions, current moments, and energy spectra as terrestrial gamma ray flashes, and produce large current moments that should be observable in radio waves.

  20. X, Gamma-Rays, and Gravitational Waves Emission in a Short Gamma-Ray Burst

    NASA Astrophysics Data System (ADS)

    Oliveira, F. G.; Rueda, Jorge A.; Ruffini, R.

    The recent progress in the understanding the physical nature of neutron stars (NSs) and the first observational evidence of a genuinely short gamma-ray burst (GRB), GRB 090227B, allow to give an estimate of the gravitational waves versus the X and gamma-rays emission in a short GRB. NS binaries represent good candidates for the detection of gravitational waves emitted during the spiraling-in and final merging phase of the system that leads to the short GRB emission. The data analysis of the GRB 090227B by Muccino et al. (2013) have been shown to be consistent with a NS binary progenitor with masses M1 = M2 = 1.34 M_{⊙}, radii R1 = R2 = 12.2 km, and a crust thickness Δ r ≈ 0. 47 km, obtained from the new mass-radius relation by Belvedere et al. (2012) of NSs fulfilling global charge neutrality. Muccino et al. (2013) estimated that GRB 090227B is located at redshift z ≈ 1. 6, corresponding to a luminosity distance d L ≈ 12. 2 Gpc. We assess the detectability of this source by the Advanced LIGO interferometer computing the signal-to-noise ratio (SNR) averaged over all polarizations and possible positions of the source with respect to the interferometer. We simulate the dynamics of the binary up to the contact point using the effective one-body formalism (EOB) in the fourth post-Newtonian approximation. We find that the gravitational waves signal would have been produced an SNR = 0.32 for a redshift z = 1. 61. We find that, instead, this GRB would have been detected with an SNR = 8 if it would have been located at a redshift z ≈ 0. 05, or d L ≈ 200 Mpc.

  1. Determination of gamma-ray emission probabilities per decay of Ga-68.

    PubMed

    Koskinas, Marina F; Lacerda, Flavio W; Matos, Izabela T; Nascimento, Tatiane S; Yamazaki, Ione M; Takeda, Mauro N; Dias, Mauro S

    2014-05-01

    The measurement of the gamma-ray emission probabilities per decay of 1077 keV of (68)Ga is presented. The standardization system consists of a gas-flow proportional counter in 4π geometry coupled to an HPGe detector for the gamma-ray detection. The gamma-ray emission probabilities per decay were measured in an HPGe gamma-ray spectrometer. The weaker gamma-ray intensities of (68)Ga were measured in a relative way, making use of an uncalibrated ampoule of (68)Ge-(68)Ga in radioactive equilibrium, and considering the absolute result from the 1077 keV gamma-ray.

  2. A method to analyze the diffuse gamma-ray emission with the Fermi Large Area Telescope

    SciTech Connect

    Ackermann, Markus; Johannesson, Gueolaugur; Digel, Seth; Moskalenko, Igor V.; Reimer, Olaf; Porter, Troy; Strong, Andrew

    2008-12-24

    The Fermi Gamma-Ray Space Telescope with its main instrument the LAT is the most sensitive {gamma}-ray telescope in the energy region between 30 MeV and 100 GeV. One of the prime scientific goals of this mission is the measurement and interpretation of the diffuse Galactic and extragalactic {gamma}-ray emission. While not limited by photon statistics, this analysis presents several challenges: Instrumental response functions, residual background from cosmic rays as well as resolved and unresolved foreground {gamma}-ray sources have to be taken carefully into account in the interpretation of the data. Detailed modeling of the diffuse {gamma}-ray emission is being performed and will form the basis of the investigations. We present the analysis approach to be applied to the Fermi LAT data, namely the modeling of the diffuse emission components and the background contributions, followed by an all-sky maximum-likelihood fitting procedure. We also report on the performance of this method evaluated in tests on simulated Fermi LAT and real EGRET data.

  3. FERMI Observations of Gamma -Ray Emission From the Moon

    NASA Technical Reports Server (NTRS)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Atwoo, W. B.; Baldini, I.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bonamente, E.; Borgland, A. W.; Bottacini, E.; Bouvier, A.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Gehrels, N.; Hays, E.; Thompson, D. J.; McEnery, J. E.; Troja, E.

    2012-01-01

    We report on the detection of high-energy ? -ray emission from the Moon during the first 24 months of observations by the Fermi Large Area Telescope (LAT). This emission comes from particle cascades produced by cosmicray (CR) nuclei and electrons interacting with the lunar surface. The differential spectrum of the Moon is soft and can be described as a log-parabolic function with an effective cutoff at 2-3 GeV, while the average integral flux measured with the LAT from the beginning of observations in 2008 August to the end of 2010 August is F(greater than100 MeV) = (1.04 plus or minus 0.01 [statistical error] plus or minus 0.1 [systematic error]) × 10(sup -6) cm(sup -2) s(sup -1). This flux is about a factor 2-3 higher than that observed between 1991 and 1994 by the EGRET experiment on board the Compton Gamma Ray Observatory, F(greater than100 MeV)˜5×10(sup -7) cm(sup -2) s(sup -1), when solar activity was relatively high. The higher gamma -ray flux measured by Fermi is consistent with the deep solar minimum conditions during the first 24 months of the mission, which reduced effects of heliospheric modulation, and thus increased the heliospheric flux of Galactic CRs. A detailed comparison of the light curve with McMurdo Neutron Monitor rates suggests a correlation of the trends. The Moon and the Sun are so far the only known bright emitters of gamma-rays with fast celestial motion. Their paths across the sky are projected onto the Galactic center and high Galactic latitudes as well as onto other areas crowded with high-energy gamma-ray sources. Analysis of the lunar and solar emission may thus be important for studies of weak and transient sources near the ecliptic.

  4. Discovery of VHE gamma-ray emission from the blazar 1ES 1215+303 by the MAGIC telescopes and modeling of the multi-wavelength spectrum

    NASA Astrophysics Data System (ADS)

    Sitarek, J.; Gonzalez, J. Becerra; Colin, P.; Lindfors, E.; Lombardi, S.; Stamerra, A.; Tavecchio, F.; MAGIC Collaboration; Buson, S.; Fermi Collaboration; Lähteenmäki, A.

    2012-12-01

    We present the results of the 2011 multi-wavelength campaign on the BL Lac object 1ES 1215+303. Observations were triggered by an optical outburst and resulted in the first detection of the very high energy (VHE, > 100GeV) gamma-ray emission from this source. We performspectral modeling of the simultaneous and quasi-simultaneous radio, optical, X-ray, HE and VHE emission and compare it with the spectra obtained from a low emission state observed in 2010. The optical photo-polarimetric data seem to suggest that the high state could be caused by a shock traveling down the jet and colliding with a standing shock with different magnetic field orientation. The spectral energy distribution obtained with the 2011 data can be modeled with a simple one zone SSC model, but it requires extreme values for the Doppler factor or the electron energy distribution. This suggests a more complicated scenario than a simple SSC one to occur in this source.

  5. Energy sources in gamma-ray burst models

    NASA Technical Reports Server (NTRS)

    Taam, Ronald E.

    1987-01-01

    The current status of energy sources in models of gamma-ray bursts is examined. Special emphasis is placed on the thermonuclear flash model which has been the most developed model to date. Although there is no generally accepted model, if the site for the gamma-ray burst is on a strongly magnetized neutron star, the thermonuclear model can qualitatively explain the energetics of some, but probably not all burst events. The critical issues that may differentiate between the possible sources of energy for gamma-ray bursts are listed and briefly discussed.

  6. Nuclear gamma rays from solar flares. [analysis of theory of gamma ray line emission from solar flares

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Lingenfelter, R. E.

    1973-01-01

    The theory of gamma-ray line emission from solar flares is reviewed and revised. It is shown that the line emissions at 0.5, 2.2, 4.4, and 6.1 MeV are due to positron annihilation, deuterium deexcitation following neutron capture on hydrogen, and the deexcitation of excited states in carbon and oxygen. From the observed relative line intensities it is possible to determine the spectrum of accelerated protons in the flare region. This spectrum is found to be very similar to that of charged particles from the flare observed near earth. The total number of protons at the sun is deduced from the observed absolute line intensities for various interaction models.

  7. X-RAY AND GAMMA-RAY POLARIZATION IN LEPTONIC AND HADRONIC JET MODELS OF BLAZARS

    SciTech Connect

    Zhang, H.; Boettcher, M.

    2013-09-01

    We present a theoretical analysis of the expected X-ray and {gamma}-ray polarization signatures resulting from synchrotron self-Compton emission in leptonic models compared to the polarization signatures from proton synchrotron and cascade synchrotron emission in hadronic models for blazars. Source parameters resulting from detailed spectral-energy-distribution modeling are used to calculate photon-energy-dependent upper limits on the degree of polarization, assuming a perfectly organized mono-directional magnetic field. In low-synchrotron-peaked blazars, hadronic models exhibit substantially higher maximum degrees of X-ray and gamma-ray polarization than leptonic models, which may be within reach of existing X-ray and {gamma}-ray polarimeters. In high-synchrotron-peaked blazars (with electron-synchrotron-dominated X-ray emission), leptonic and hadronic models predict the same degree of X-ray polarization but substantially higher maximum {gamma}-ray polarization in hadronic models than leptonic ones. These predictions are particularly relevant in view of the new generation of balloon-borne X-ray polarimeters (and possibly GEMS, if revived), and the ability of Fermi-LAT to measure {gamma}-ray polarization at <200 MeV. We suggest observational strategies combining optical, X-ray, and {gamma}-ray polarimetry to determine the degree of ordering of the magnetic field and to distinguish between leptonic and hadronic high-energy emissions.

  8. High energy (gamma)-ray emission from the starburst nucleus of NGC 253

    SciTech Connect

    Domingo-Santamaria, E; Torres, D F

    2005-06-15

    The high density medium that characterizes the central regions of starburst galaxies and its power to accelerate particles up to relativistic energies make these objects good candidates as {gamma}-rays sources. In this paper, a self-consistent model of the multifrequency emission of the starburst galaxy NGC 253, from radio to gamma-rays, is presented. The model is in agreement with all current measurements and provides predictions for the high energy behavior of the NGC 253 central region. Prospects for observations with the HESS array and GLAST satellite are especially discussed.

  9. MULTI-WAVELENGTH EMISSION REGION OF {gamma}-RAY EMITTING PULSARS

    SciTech Connect

    Kisaka, S.; Kojima, Y. E-mail: kojima@theo.phys.sci.hiroshima-u.ac.jp

    2011-09-20

    Using the outer gap model, we investigate the emission region for the multi-wavelength light curve from energetic pulsars. We assume that {gamma}-ray and non-thermal X-ray photons are emitted from a particle acceleration region in the outer magnetosphere, and UV/optical photons originate above that region. We assume that {gamma}-rays are radiated only by outwardly moving particles, whereas the other photons are produced by particles moving inward and outward. We parameterize the altitude of the emission region as the deviation from the rotating dipole in a vacuum and determine it from the observed multi-wavelength pulse profile using the observationally constrained magnetic dipole inclination angle and viewing angle of the pulsars. We find that the outer gap model can explain the multi-wavelength pulse behavior by a simple distribution of emissivity, and discuss the possibility of further improvement. From observational fitting, we also find a general tendency for the altitude of the {gamma}-ray emission region to depend on the inclination angle. In particular, the emission region for low inclination angle is required to be located at very low altitude, which corresponds to the inner region within the last-open field line of the rotating dipole in a vacuum. This model suggests a modification of the statistics for observed {gamma}-ray pulsars: the number of sources with low inclination and viewing angles increases compared with previous estimates.

  10. Fermi LAT upper limits on gamma-ray emission from colliding wind binaries

    NASA Astrophysics Data System (ADS)

    Werner, M.; Reimer, O.; Reimer, A.; Egberts, K.

    2012-12-01

    Colliding wind binaries (CWBs) are thought to give rise to a plethora of physical processes including acceleration and interaction of relativistic particles. Consequently, CWBs have been considered as putative gamma-ray emitters since the COS-B era. On the basis of 24 months of Fermi-LAT data, seven CWB systems are analyzed: WR 11, WR 70, WR 125, WR 137, WR 140, WR 146 and WR 147. Specific theoretical predictions for the gamma-ray emission of CWBs identify these systems as the most promising candidates among known WR-binaries due to their respective stellar and orbital parameters. We find no evidence of gamma-ray emission from any of the studied CWB systems and flux upper limits are determined. In some of the studied CWBs the interplay of orbital and stellar parameters render the Fermi data as not sufficiently sensitive to constrain parameters of the emission model. In others large uncertainties in input parameters of the gamma-ray emission model yield a large variance among model parameters that can be accommodated by the data. However, in the case of WR 140 and WR 147, the Fermi upper limits appear to rule out some early model predictions and constrain later theoretical models over a significant parameter space.

  11. The attenuation of gamma-ray emission in strongly-magnetized pulsars

    NASA Technical Reports Server (NTRS)

    Baring, Matthew G.; Harding, Alice K.; Gonthier, Peter L.

    1997-01-01

    Gamma rays from pulsars can be efficiently attenuated in their magnetospheres via the mechanism of single photon pair production and the exotic quantum electrodynamics (QED) process of photon splitting. The modeling of strongly magnetized gamma ray pulsars focusing on the escape or attenuation of photons emitted near the pole at the neutron star surface in dipole fields in a Schwarzschild metric is considered. It was found that pair production and splitting totally inhibit emission above a value of between 10 and 30 MeV in PSR 1509-58 whose surface field is inferred as being high. The principle predictions of the attenuation analysis are reviewed and the observational diagnostic capabilities of the model are considered. The diagnostics include the energy of the gamma ray turnover and the spectral polarization, which constrain the estimated polar cap size and field strength and can determine the relative strength of splitting and pair creation.

  12. A statistical method of testing the gamma ray emission mechanisms of blazars.

    NASA Astrophysics Data System (ADS)

    Chi, X.; Young, E. C. M.

    1997-09-01

    Models for generation of high energy gamma rays in blazars can be classified into two types of mechanisms in the jet comoving frame: relativistic electron scattering on the internal photons or magnetic field (virtual photons) (SIP) and on the external photons (SEP). These two mechanisms are known to result in a significant difference in the beaming effect. In this work, we propose a statistical test for the two types of mechanisms based on the beaming difference. The random variable is taken to be the K-corrected gamma ray to radio flux ratio and its distribution is shown to be a power-law with an index being model-dependent. The feasibility of such a test is investigated with a limited sample of data which are complied from the EGRET gamma ray survey, low resolution radio surveys and a VLBI radio survey. A correlation study indicates that the VLBI data are more suitable for the purpose than the low resolution data. Due to the limited amount of available data, the current test result is not statistically significant to discriminate the two emission mechanisms. Future generation of high energy gamma ray telescopes are needed to produce a larger sample of data of gamma ray blazars and their simultaneous observations with VLBI are called.

  13. Fermi observations of high-energy gamma-ray emission from GRB 080916C.

    PubMed

    Abdo, A A; Ackermann, M; Arimoto, M; Asano, K; Atwood, W B; Axelsson, M; Baldini, L; Ballet, J; Band, D L; Barbiellini, G; Baring, M G; Bastieri, D; Battelino, M; Baughman, B M; Bechtol, K; Bellardi, F; Bellazzini, R; Berenji, B; Bhat, P N; Bissaldi, E; Blandford, R D; Bloom, E D; Bogaert, G; Bogart, J R; Bonamente, E; Bonnell, J; Borgland, A W; Bouvier, A; Bregeon, J; Brez, A; Briggs, M S; Brigida, M; Bruel, P; Burnett, T H; Burrows, D; Busetto, G; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Ceccanti, M; Cecchi, C; Celotti, A; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Cominsky, L R; Connaughton, V; Conrad, J; Costamante, L; Cutini, S; Deklotz, M; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; Dingus, B L; do Couto E Silva, E; Drell, P S; Dubois, R; Dumora, D; Edmonds, Y; Evans, P A; Fabiani, D; Farnier, C; Favuzzi, C; Finke, J; Fishman, G; Focke, W B; Frailis, M; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giommi, P; Giordano, F; Glanzman, T; Godfrey, G; Goldstein, A; Granot, J; Greiner, J; Grenier, I A; Grondin, M-H; Grove, J E; Guillemot, L; Guiriec, S; Haller, G; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hernando Morat, J A; Hoover, A; Hughes, R E; Jóhannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Kavelaars, A; Kawai, N; Kelly, H; Kennea, J; Kerr, M; Kippen, R M; Knödlseder, J; Kocevski, D; Kocian, M L; Komin, N; Kouveliotou, C; Kuehn, F; Kuss, M; Lande, J; Landriu, D; Larsson, S; Latronico, L; Lavalley, C; Lee, B; Lee, S-H; Lemoine-Goumard, M; Lichti, G G; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Marangelli, B; Mazziotta, M N; McBreen, S; McEnery, J E; McGlynn, S; Meegan, C; Mészáros, P; Meurer, C; Michelson, P F; Minuti, M; Mirizzi, N; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Moretti, E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Nelson, D; Nolan, P L; Norris, J P; Nuss, E; Ohno, M; Ohsugi, T; Okumura, A; Omodei, N; Orlando, E; Ormes, J F; Ozaki, M; Paciesas, W S; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Perri, M; Pesce-Rollins, M; Petrosian, V; Pinchera, M; Piron, F; Porter, T A; Preece, R; Rainò, S; Ramirez-Ruiz, E; Rando, R; Rapposelli, E; Razzano, M; Razzaque, S; Rea, N; Reimer, A; Reimer, O; Reposeur, T; Reyes, L C; Ritz, S; Rochester, L S; Rodriguez, A Y; Roth, M; Ryde, F; Sadrozinski, H F-W; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Schalk, T L; Segal, K N; Sgrò, C; Shimokawabe, T; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Stamatikos, M; Starck, J-L; Stecker, F W; Steinle, H; Stephens, T E; Strickman, M S; Suson, D J; Tagliaferri, G; Tajima, H; Takahashi, H; Takahashi, T; Tanaka, T; Tenze, A; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Turri, M; Tuvi, S; Usher, T L; van der Horst, A J; Vigiani, L; Vilchez, N; Vitale, V; von Kienlin, A; Waite, A P; Williams, D A; Wilson-Hodge, C; Winer, B L; Wood, K S; Wu, X F; Yamazaki, R; Ylinen, T; Ziegler, M

    2009-03-27

    Gamma-ray bursts (GRBs) are highly energetic explosions signaling the death of massive stars in distant galaxies. The Gamma-ray Burst Monitor and Large Area Telescope onboard the Fermi Observatory together record GRBs over a broad energy range spanning about 7 decades of gammaray energy. In September 2008, Fermi observed the exceptionally luminous GRB 080916C, with the largest apparent energy release yet measured. The high-energy gamma rays are observed to start later and persist longer than the lower energy photons. A simple spectral form fits the entire GRB spectrum, providing strong constraints on emission models. The known distance of the burst enables placing lower limits on the bulk Lorentz factor of the outflow and on the quantum gravity mass.

  14. Polarization of the prompt gamma-ray emission from the gamma-ray burst of 6 December 2002.

    PubMed

    Coburn, Wayne; Boggs, Steven E

    2003-05-22

    Observations of the afterglows of gamma-ray bursts (GRBs) have revealed that they lie at cosmological distances, and so correspond to the release of an enormous amount of energy. The nature of the central engine that powers these events and the prompt gamma-ray emission mechanism itself remain enigmatic because, once a relativistic fireball is created, the physics of the afterglow is insensitive to the nature of the progenitor. Here we report the discovery of linear polarization in the prompt gamma-ray emission from GRB021206, which indicates that it is synchrotron emission from relativistic electrons in a strong magnetic field. The polarization is at the theoretical maximum, which requires a uniform, large-scale magnetic field over the gamma-ray emission region. A large-scale magnetic field constrains possible progenitors to those either having or producing organized fields. We suggest that the large magnetic energy densities in the progenitor environment (comparable to the kinetic energy densities of the fireball), combined with the large-scale structure of the field, indicate that magnetic fields drive the GRB explosion.

  15. An Integrated Universal Collapsar Gamma-ray Burst Model

    SciTech Connect

    Salmonson, J D

    2004-01-21

    Starting with two assumptions: (1) gamma-ray bursts originate from stellar death phenomena or so called ''collapsars'' and (2) that these bursts are quasi-universal, whereby the majority of the observed variation is due to our perspective of the jet, an integrated gamma-ray burst model is proposed. It is found that several of the key correlations in the data can be naturally explained with this simple picture and another possible correlation is predicted.

  16. The Spectrum of the Isotropic Diffuse Gamma-Ray Emission Derived From First-Year Fermi Large Area Telescope Data

    SciTech Connect

    Abdo, A. A.

    2011-08-19

    We report on the first Fermi Large Area Telescope (LAT) measurements of the so-called 'extra-galactic' diffuse {gamma}-ray emission (EGB). This component of the diffuse {gamma}-ray emission is generally considered to have an isotropic or nearly isotropic distribution on the sky with diverse contributions discussed in the literature. The derivation of the EGB is based on detailed modelling of the bright foreground diffuse Galactic {gamma}-ray emission (DGE), the detected LAT sources and the solar {gamma}-ray emission. We find the spectrum of the EGB is consistent with a power law with differential spectral index {gamma} = 2.41 {+-} 0.05 and intensity, I(> 100 MeV) = (1.03 {+-} 0.17) x 10{sup -5} cm{sup -2} s{sup -1} sr{sup -1}, where the error is systematics dominated. Our EGB spectrum is featureless, less intense, and softer than that derived from EGRET data.

  17. Polarized gamma-ray emission from the galactic black hole Cygnus X-1.

    PubMed

    Laurent, P; Rodriguez, J; Wilms, J; Cadolle Bel, M; Pottschmidt, K; Grinberg, V

    2011-04-22

    Because of their inherently high flux allowing the detection of clear signals, black hole x-ray binaries are interesting candidates for polarization studies, even if no polarization signals have been observed from them before. Such measurements would provide further detailed insight into these sources' emission mechanisms. We measured the polarization of the gamma-ray emission from the black hole binary system Cygnus X-1 with the International Gamma-Ray Astrophysics Laboratory Imager on Board the Integral Satellite (INTEGRAL/IBIS) telescope. Spectral modeling of the data reveals two emission mechanisms: The 250- to 400-keV (kilo-electron volt) data are consistent with emission dominated by Compton scattering on thermal electrons and are weakly polarized. The second spectral component seen in the 400-keV to 2-MeV band is by contrast strongly polarized, revealing that the MeV emission is probably related to the jet first detected in the radio band. PMID:21436402

  18. Diffuse Gamma Rays Galactic and Extragalactic Diffuse Emission

    NASA Technical Reports Server (NTRS)

    Moskalenko, Igor V.; Strong, Andrew W.; Reimer, Olaf

    2004-01-01

    Diffuse gamma rays consist of several components: truly diffuse emission from the interstellar medium, the extragalactic background, whose origin is not firmly established yet, and the contribution from unresolved and faint Galactic point sources. One approach to unravel these components is to study the diffuse emission from the interstellar medium, which traces the interactions of high energy particles with interstellar gas and radiation fields. Because of its origin such emission is potentially able to reveal much about the sources and propagation of cosmic rays. The extragalactic background, if reliably determined, can be used in cosmological and blazar studies. Studying the derived average spectrum of faint Galactic sources may be able to give a clue to the nature of the emitting objects.

  19. Modeling Gamma-ray Flares in the Crab Nebula

    NASA Astrophysics Data System (ADS)

    Yuan, Yajie; Blandford, R. D.; Simeon, P.

    2013-04-01

    The gamma-ray emission from the Crab Nebula shows variations on a wide range of time scales, with the most dramatic events being the flares observed by Fermi and AGILE: the flux can increase by a factor of ~10 within ~10 hours; the spectrum is characterized by a peak energy ~300 MeV, while no variation in other wavebands was detected. These variations present a great challenge to particle acceleration mechanisms. We consider two possible explanations of these flares. Firstly, we consider emission from a moving relativistic shock terminating the pulsar wind. Secondly, we treat the pulsar and its wind as a current generator and suppose that the current filaments into individual pinches that can undergo radial collapse and become strongly dissipative when the electric field becomes as strong as the magnetic field and Larmor radius of the highest energy particles becomes comparable with the radius. The application of these models to pulsar wind nebulae and relativistic jets will be outlined.

  20. SPATIAL AND SPECTRAL MODELING OF THE GAMMA-RAY DISTRIBUTION IN THE LARGE MAGELLANIC CLOUD

    SciTech Connect

    Foreman, Gary; Chu, You-Hua; Gruendl, Robert; Fields, Brian; Ricker, Paul; Hughes, Annie

    2015-07-20

    We perform spatial and spectral analyses of the LMC gamma-ray emission collected over 66 months by the Fermi Gamma-ray Space Telescope. In our spatial analysis, we model the LMC cosmic-ray distribution and gamma-ray production using observed maps of the LMC interstellar medium, star formation history, interstellar radiation field, and synchrotron emission. We use bootstrapping of the data to quantify the robustness of spatial model performance. We model the LMC gamma-ray spectrum using fitting functions derived from the physics of π{sup 0} decay, Bremsstrahlung, and inverse Compton scattering. We find the integrated gamma-ray flux of the LMC from 200 MeV to 20 GeV to be 1.37 ± 0.02 × 10{sup −7} ph cm{sup −2} s{sup −1}, of which we attribute about 6% to inverse Compton scattering and 44% to Bremsstrahlung. From our work, we conclude that the spectral index of the LMC cosmic-ray proton population is 2.4 ± 0.2, and we find that cosmic-ray energy loss through gamma-ray production is concentrated within a few 100 pc of acceleration sites. Assuming cosmic-ray energy equipartition with magnetic fields, we estimate LMC cosmic rays encounter an average magnetic field strength ∼3 μG.

  1. THE ORTHOGONAL GAMMA-RAY BURST MODEL

    SciTech Connect

    Contopoulos, Ioannis; Pugliese, Daniela; Nathanail, Antonios

    2014-01-01

    We explore the analogy between a rotating magnetized black hole and an axisymmetric pulsar and derive the black hole's electromagnetic spindown after its formation in the core collapse of a supermassive star. The spindown shows two characteristic phases: an early Blandford-Znajek phase that lasts a few hundred seconds and a late pulsar-like afterglow phase that lasts much longer. During the first phase, the spindown luminosity decreases almost exponentially, whereas during the afterglow phase it decreases as t {sup –a} with 1 ≲ a ≲ 1.5. We associate our findings with long duration gamma-ray bursts and compare them with observations.

  2. Gamma-ray Emission from the Sun: A Study with EGRET Data and Perspectives for GLAST

    NASA Astrophysics Data System (ADS)

    Orlando, Elena; Strong, A. W.

    2008-03-01

    The Sun has recently been predicted to be an extended source of gamma-ray emission, produced by inverse-Compton (IC) scattering of cosmic-ray electrons on the solar radiation field. The emission was predicted to be extended and a confusing foreground for the diffuse extragalactic background even at large angular distances from the Sun. The solar disk is also expected to be a steady gamma-ray source. Analyzing the EGRET database, we find evidence of emission from the solar disk and its halo (Orlando and Strong 2008,arXiv:0801.2178). The observations are compared with our model for the extended emission. The spectrum of the solar disk emission and the spectrum of the extended emission have been obtained. The spectrum of the moon is also given. The observed intensity distribution and the flux are consistent with the predicted model of IC gamma-rays from the halo around the Sun. This emission is expected to be readily detectable in the future by GLAST, and we describe the perspectives for what can be learned from this upcoming mission.

  3. SAS-2 galactic gamma-ray results. 1: Diffuse emission

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Fichtel, C. E.; Hartman, R. C.; Kniffen, D. A.; Bignami, G. F.; Lamb, R. C.; Oegelman, H.; Oezel, M. E.; Tuemer, T.

    1977-01-01

    Continuing analysis of the data from the SAS-2 high energy gamma ray experiment has produced an improved picture of the sky at photon energies above 35 MeV. On a large scale, the diffuse emission from the galactic plane is the dominant feature observed by SAS-2. This galactic plane emission is most intense between galactic longitudes 310 deg and 45 deg, corresponding to a region within 7 kpc of the galactic center. Within the high-intensity region, SAS-2 observes peaks around galactic longitudes 315, 330, 345, 0, and 35 deg. These peaks appear to be correlated with galactic features and components such as molecular hydrogen, atomic hydrogen, magnetic fields, cosmic-ray concentrations, and photon fields.

  4. INTEGRAL upper limits on gamma-ray emission associated with the gravitational wave event GW150914

    NASA Astrophysics Data System (ADS)

    Savchenko, Volodymyr; Ferrigno, Carlo; Mereghetti, Sandro; Natalucci, Lorenzo; Bazzano, Angela; Bozzo, Enrico; Courvoisier, Thierry J.-L.; Brandt, Soren; Hanlon, Lorraine; Kuulkers, Erik; Laurent, Philippe; Lebrun, François; Roques, Jean-Pierre; Ubertini, Pietro; Weidenspointner, Georg

    2016-04-01

    Using observations of the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL), we put tight upper limits on the gamma-ray and hard X-ray prompt emission associated with the gravitational wave event GW150914, discovered by the LIGO/Virgo collaboration. The omni-directional view of the INTEGRAL/SPI-ACS has allowed us to constrain the fraction of energy emitted in the hard X-ray electromagnetic component for the full high-probability sky region of LIGO/Virgo trigger. Our upper limits on the hard X-ray fluence at the time of the event range from Fγ=2x10-8 erg cm-2 to Fγ=10-6 erg cm-2 in the 75 keV - 2 MeV energy range for typical spectral models. Our results constrain the ratio of the energy promptly released in gamma-rays in the direction of the observer to the gravitational wave energy Eγ/EGW<10-6. We discuss the implication of gamma-ray limits on the characteristics of the gravitational wave source, based on the available predictions for prompt electromagnetic emission.

  5. INTEGRAL upper limits on gamma-ray emission associated with the gravitational wave event GW150914

    NASA Astrophysics Data System (ADS)

    Savchenko, V.; Ferrigno, C.; Mereghetti, S.; Natalucci, L.; Kuulkers, E.

    2016-06-01

    Using observations of the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL), we put tight upper limits on the gamma-ray and hard X-ray prompt emission associated with the gravitational wave event GW150914, discovered by the LIGO/Virgo collaboration. The omni-directional view of the INTEGRAL/SPI-ACS has allowed us to constrain the fraction of energy emitted in the hard X-ray electromagnetic component for the full high-probability sky region of LIGO/Virgo trigger. Our upper limits on the hard X-ray fluence at the time of the event range from F_{γ}=2 × 10^{-8} erg cm^{-2} to F_{γ}=10^{-6} erg cm^{-2} in the 75 keV - 2 MeV energy range for typical spectral models. Our results constrain the ratio of the energy promptly released in gamma-rays in the direction of the observer to the gravitational wave energy E_γ/E_{GW}<10^{-6}. We discuss the implication of gamma-ray limits on the characteristics of the gravitational wave source, based on the available predictions for prompt electromagnetic emission. This work has been possible thanks to a Memorandum of Understanding with the LIGO-Virgo scientific collaboration and is presented on behalf of a larger collaboration.

  6. Gamma-ray diagnostics of Type Ia supernovae. Predictions of observables from three-dimensional modeling

    NASA Astrophysics Data System (ADS)

    Summa, A.; Ulyanov, A.; Kromer, M.; Boyer, S.; Röpke, F. K.; Sim, S. A.; Seitenzahl, I. R.; Fink, M.; Mannheim, K.; Pakmor, R.; Ciaraldi-Schoolmann, F.; Diehl, R.; Maeda, K.; Hillebrandt, W.

    2013-06-01

    Context. Although the question of progenitor systems and detailed explosion mechanisms still remains a matter of discussion, it is commonly believed that Type Ia supernovae (SNe Ia) are production sites of large amounts of radioactive nuclei. Even though the gamma-ray emission due to radioactive decays is responsible for powering the light curves of SNe Ia, gamma rays themselves are of particular interest as a diagnostic tool because they directly lead to deeper insight into the nucleosynthesis and the kinematics of these explosion events. Aims: We study the evolution of gamma-ray line and continuum emission of SNe Ia with the objective of analyzing the relevance of observations in this energy range. We seek to investigate the chances for the success of future MeV missions regarding their capabilities for constraining the intrinsic properties and the physical processes of SNe Ia. Methods: Focusing on two of the most broadly discussed SN Ia progenitor scenarios - a delayed detonation in a Chandrasekhar-mass white dwarf (WD) and a violent merger of two WDs - we used three-dimensional explosion models and performed radiative transfer simulations to obtain synthetic gamma-ray spectra. Both chosen models produce the same mass of 56Ni and have similar optical properties that are in reasonable agreement with the recently observed supernova SN 2011fe. We examine the gamma-ray spectra with respect to their distinct features and draw connections to certain characteristics of the explosion models. Applying diagnostics, such as line and hardness ratios, the detection prospects for future gamma-ray missions with higher sensitivities in the MeV energy range are discussed. Results: In contrast to the optical regime, the gamma-ray emission of our two chosen models proves to be quite different. The almost direct connection of the emission of gamma rays to fundamental physical processes occurring in SNe Ia permits additional constraints concerning several explosion model properties

  7. Gamma-ray observations of Ophiuchus with EGRET: The diffuse emission and point sources

    NASA Technical Reports Server (NTRS)

    Hunter, S. D.; Digel, S. W.; De Geus, E. J.; Kanbach, G.

    1994-01-01

    Observations of the Ophiuchus region made with the Energetic Gamma-Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory (CGRO) during the first 2 1/2 years of operation show the diffuse emission from the interstellar gas in Ophiuchus as well as variable emission from two point sources. The gamma-ray emission is modeled in terms of cosmic-ray interactions with atomic and molecular hydrogen in Ophiuchus and with low-energy photons along the line of sight. The model also includes the flux from the two point sources and an isotropic diffuse contribution. The cosmic-ray density is assumed to be uniform. The derived ratio of molecular hydrogen column density to integrated CO intensity is (1.1 +/- 0.2) x 10(exp 20) H-mols/sq cm (K km/s)(exp -1). At the sensitivity and resolution of the gamma-ray data, no variation of this ratio over the modeled region is discernible, nor are any regions of enhanced cosmic-ray density apparent. The model was fitted to seven narrow energy bands to obtain the energy depedence of the gamma-ray production function and the spectra of the point sources. The derived production function is in good agreement with theoretical calculations and the local cosmic-ray electron and proton spectra. The positions of the point sources were determined from maximum likelihood analysis of the gamma-ray emission observed in excess of the diffuse model. We identify one point source with the quasar PKS 1622-253, which has an average flux, E greater than 100 MeV, of (2.5 +/- 0.5) x 10(exp -7) photons/sq cm/s and photon spectral index -1.9 +/- 0.3. The other source, denoted GRO J1631-27, has not yet been identified at other wavelengths. Its average flux, E greater than 100 MeV, is (1.1 +/- 0.4) x 10(exp -7) photons/sq cm/s; however, its spectral index is poorly determined. The spectral index and intensity of the isotropic contribution to the model agree well with the extragalactic diffuse emission derived from the SAS 2 data.

  8. A broadband leptonic model for gamma-ray emitting microquasars

    NASA Astrophysics Data System (ADS)

    Bosch-Ramon, V.; Romero, G. E.; Paredes, J. M.

    2006-02-01

    Observational and theoretical studies point to microquasars (MQs) as possible counterparts of a significant fraction of the unidentifiedgamma-ray sources detected so far. At present, a proper scenario to explain the emission beyond soft X-rays from these objects is not known, nor what the precise connection is between the radio and the high-energy radiation. We develop a new model where the MQ jet is dynamically dominated by cold protons and radiatively dominated by relativistic leptons. The matter content and power of the jet are both related with the accretion process. The magnetic field is assumed to be close to equipartition, although it is attached to and dominated by the jet matter. For the relativistic particles in the jet, their maximum energy depends on both the acceleration efficiency and the energy losses. The model takes into account the interaction of the relativistic jet particles with the magnetic field and all the photon and matter fields. Such interaction produces significant amounts of radiation from radio to very high energies through synchrotron, relativistic Bremsstrahlung, and inverse Compton (IC) processes. Variability of the emission produced by changes in the accretion process (e.g. via orbital eccentricity) is also expected. The effects of the gamma-ray absorption by the external photon fields on the gamma-ray spectrum have been taken into account, revealing clear spectral features that might be observed. This model is consistent to the accretion scenario, energy conservation laws, and current observational knowledge, and can provide deeper physical information of the source when tested against multiwavelength data.

  9. Search for Very High Energy Emission from Gamma-Ray Bursts using Milagro

    SciTech Connect

    Saz Parkinson, P. M.

    2007-07-12

    Gamma-Ray Bursts (GRBs) have been detected at GeV energies by EGRET and models predict emission at > 100 GeV. Milagro is a wide field (2 sr) high duty cycle (> 90%) ground based water Cherenkov detector that records extensive air showers in the energy range 100 GeV to 100 TeV. We have searched for very high energy emission from a sample of 106 gamma-ray bursts (GRB) detected since the beginning of 2000 by BATSE, BeppoSax, HETE-2, INTEGRAL, Swift or the IPN. No evidence for emission from any of the bursts has been found and we present upper limits from these bursts.

  10. Fermi Large Area Telescope Measurements of the Diffuse Gamma-Ray Emission at Intermediate Galactic Latitudes

    NASA Astrophysics Data System (ADS)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Anderson, B.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B. M.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Burnett, T. H.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Casandjian, J. M.; Cecchi, C.; Charles, E.; Chekhtman, A.; Cheung, C. C.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Conrad, J.; Dereli, H.; Dermer, C. D.; de Angelis, A.; de Palma, F.; Digel, S. W.; di Bernardo, G.; Dormody, M.; Do Couto E Silva, E.; Drell, P. S.; Dubois, R.; Dumora, D.; Edmonds, Y.; Farnier, C.; Favuzzi, C.; Fegan, S. J.; Focke, W. B.; Frailis, M.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gaggero, D.; Gargano, F.; Gehrels, N.; Germani, S.; Giebels, B.; Giglietto, N.; Giordano, F.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Grondin, M.-H.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hanabata, Y.; Harding, A. K.; Hayashida, M.; Hays, E.; Hughes, R. E.; Jóhannesson, G.; Johnson, A. S.; Johnson, R. P.; Johnson, T. J.; Johnson, W. N.; Kamae, T.; Katagiri, H.; Kataoka, J.; Kawai, N.; Kerr, M.; Knödlseder, J.; Kocian, M. L.; Kuehn, F.; Kuss, M.; Lande, J.; Latronico, L.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Madejski, G. M.; Makeev, A.; Mazziotta, M. N.; McConville, W.; McEnery, J. E.; Meurer, C.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Nuss, E.; Ohsugi, T.; Okumura, A.; Omodei, N.; Orlando, E.; Ormes, J. F.; Paneque, D.; Panetta, J. H.; Parent, D.; Pelassa, V.; Pepe, M.; Pesce-Rollins, M.; Piron, F.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Reimer, A.; Reimer, O.; Reposeur, T.; Ritz, S.; Rodriguez, A. Y.; Roth, M.; Ryde, F.; Sadrozinski, H. F.-W.; Sanchez, D.; Sander, A.; Saz Parkinson, P. M.; Scargle, J. D.; Sellerholm, A.; Sgrò, C.; Smith, D. A.; Smith, P. D.; Spandre, G.; Spinelli, P.; Starck, J.-L.; Stecker, F. W.; Striani, E.; Strickman, M. S.; Strong, A. W.; Suson, D. J.; Tajima, H.; Takahashi, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Thompson, D. J.; Tibaldo, L.; Torres, D. F.; Tosti, G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Vasileiou, V.; Vilchez, N.; Vitale, V.; Waite, A. P.; Wang, P.; Winer, B. L.; Wood, K. S.; Ylinen, T.; Ziegler, M.

    2009-12-01

    The diffuse galactic γ-ray emission is produced by cosmic rays (CRs) interacting with the interstellar gas and radiation field. Measurements by the Energetic Gamma-Ray Experiment Telescope (EGRET) instrument on the Compton Gamma-Ray Observatory indicated excess γ-ray emission ≳1GeV relative to diffuse galactic γ-ray emission models consistent with directly measured CR spectra (the so-called “EGRET GeV excess”). The Large Area Telescope (LAT) instrument on the Fermi Gamma-Ray Space Telescope has measured the diffuse γ-ray emission with improved sensitivity and resolution compared to EGRET. We report on LAT measurements for energies 100 MeV to 10 GeV and galactic latitudes 10°≤|b|≤20°. The LAT spectrum for this region of the sky is well reproduced by a diffuse galactic γ-ray emission model that is consistent with local CR spectra and inconsistent with the EGRET GeV excess.

  11. Gamma ray Emission Spectra from Dark matter annihilation in dwarf galaxy Draco

    NASA Astrophysics Data System (ADS)

    Duorah, Kalpana

    2015-08-01

    The gamma ray emission from Dark Matter annihilation in the dwarf spheroidal galaxy Draco has been studied. Dwarf Spheroidal (dSph) galaxies are through to be the repository of dark matter due to their high mass to light ratio. Draco is believed to emit energy due to certain dark matter candidates. One of the most motivated dark matter appears to be the neutralino as predicted in the Minimal Supersymmetric Standard model(MSSM). The mass of the neutralino is constrained to be in the range 6GeV to 100TeV by the CMB measurements and accelerator searches. Gamma Ray Spectra and fluxes have been calculated for neutral no annihilation over a mass range (10-100) GeV. The gamma ray flux from the annihilation of 100GeVneutralino in the dSph galaxy Draco is found to be ~1.6x10^(-10) cm^(-2)s^(-1)GeV^(-1) . This is found to be agreeable with the observed flux as measured from a NFW density profile for dark matter distribution in Draco. The gamma ray distribution for neutral no annihilation shows a maximum value near the centre and found to falls off as radially.

  12. Understanding Limitations in the Determination of the Diffuse Galactic Gamma-ray Emission

    SciTech Connect

    Moskalenko, Igor V.; Digel, S.W.; Porter, T.A.; Reimer, O.; Strong, A.W.; /Garching, Max Planck Inst., MPE

    2006-10-03

    We discuss uncertainties and possible sources of errors associated with the determination of the diffuse Galactic {gamma}-ray emission using the EGRET data. Most of the issues will be relevant also in the GLAST era. The focus here is on issues that impact evaluation of dark matter annihilation signals against the diffuse {gamma}-ray emission of the Milky Way.

  13. Multiple scattering in wind models of gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Smith, I. A.; Coppi, P. S.; Lamb, D. Q.

    1992-01-01

    In wind models of gamma-ray bursts, it has been assumed that soft X-ray photons are scattered only once by relativistic electrons moving away from the star; this assumes that the scattering optical depth is small. Using the observational data from the bursts, we consider three methods for estimating this optical depth: (1) the luminosity of the burst, (2) the ratio of the gamma-ray flux (greater than 10 keV) to X-ray flux (less than 10 keV), and (3) the presence or lack of cyclotron lines. Within the context of the wind models, we find that multiple scattering is likely to be important in the formation of the spectrum in gamma-ray bursts.

  14. Laser-driven hole boring and gamma-ray emission in high-density plasmas

    NASA Astrophysics Data System (ADS)

    Nerush, E. N.; Kostyukov, I. Y.

    2015-03-01

    Ion acceleration in laser-produced dense plasmas is a key topic of many recent investigations thanks to its potential applications. Indeed, at forthcoming laser intensities (I ≳ 1023 W cm-2) interaction of laser pulses with plasmas can be accompanied by copious gamma-ray emission. Here we demonstrate the mutual influence of gamma-ray emission and ion acceleration during relativistic hole boring in high-density plasmas with ultra-intense laser pulses. If the gamma-ray emission is abundant, laser pulse reflection and hole-boring velocity are lower and gamma-ray radiation pattern is narrower than in the case of low emission. Conservation of energy and momentum allows one to elucidate the effects of the gamma-ray emission which are more pronounced at higher hole-boring velocities.

  15. Monte Carlo Radiation Transfer Simulations of Photospheric Emission in Long-duration Gamma-ray Bursts

    NASA Astrophysics Data System (ADS)

    Lazzati, Davide

    2016-10-01

    We present MCRaT, a Monte Carlo Radiation Transfer code for self-consistently computing the light curves and spectra of the photospheric emission from relativistic, unmagnetized jets. We apply MCRaT to a relativistic hydrodynamic simulation of a long-duration gamma-ray burst jet, and present the resulting light curves and time-dependent spectra for observers at various angles from the jet axis. We compare our results to observational results and find that photospheric emission is a viable model to explain the prompt phase of long-duration gamma-ray bursts at the peak frequency and above, but faces challenges when reproducing the flat spectrum below the peak frequency. We finally discuss possible limitations of these results both in terms of the hydrodynamics and the radiation transfer and how these limitations could affect the conclusions that we present.

  16. Diffuse pionic gamma-ray emission from large-scale structures in the Fermi era

    SciTech Connect

    Dobardžić, A.; Prodanović, T. E-mail: prodanvc@df.uns.ac.rs

    2014-02-20

    For more than a decade now, the complete origin of the diffuse gamma-ray emission background (EGRB) has been unknown. Major components like unresolved star-forming galaxies (making ≲ 50% of the EGRB) and blazars (≲ 23%), have failed to explain the entire background observed by Fermi. Another, though subdominant, contribution is expected to come from the process of large-scale structure formation. The growth of structures is accompanied by accretion and merger shocks, which would, with at least some magnetic field present, give rise to a population of structure-formation cosmic rays (SFCRs). Though expected, this cosmic-ray population is still hypothetical and only very weak limits have been placed to their contribution to the EGRB. The most promising insight into SFCRs was expected to come from Fermi-LAT observations of clusters of galaxies, however, only upper limits and no detection have been placed. Here, we build a model of gamma-ray emission from large-scale accretion shocks implementing a source evolution calibrated with the Fermi-LAT cluster observation limits. Though our limits to the SFCR gamma-ray emission are weak (above the observed EGRB) in some cases, in others, some of our models can provide a good fit to the observed EGRB. More importantly, we show that these large-scale shocks could still give an important contribution to the EGRB, especially at high energies. Future detections of cluster gamma-ray emission would help place tighter constraints on our models and give us a better insight into large-scale shocks forming around them.

  17. EGRET Observations of the Diffuse Gamma-Ray Emission in Orion: Analysis Through Cycle 6

    NASA Technical Reports Server (NTRS)

    Digel, S. W.; Aprile, E.; Hunter, S. D.; Mukherjee, R.; Xu, F.

    1999-01-01

    We present a study of the high-energy diffuse emission observed toward Orion by the Energetic Gamma-Ray Experiment Telescope (EGRET) on the Compton Gamma-Ray Observatory. The total exposure by EGRET in this region has increased by more than a factor of two since a previous study. A simple model for the diffuse emission adequately fits the data; no significant point sources are detected in the region studied (1 = 195 deg to 220 deg and b = -25 deg to -10 deg) in either the composite dataset or in two separate groups of EGRET viewing periods considered. The gamma-ray emissivity in Orion is found to be (1.65 +/- 0.11) x 10(exp -26)/s.sr for E > 100 MeV, and the differential emissivity is well-described as a combination of contributions from cosmic-ray electrons and protons with approximately the local density. The molecular mass calibrating ratio is N(H2)/W(sub CO) = (1.35 +/- 0.15) x 10(exp 20)/sq cm.(K.km/s).

  18. Gamma-ray Spectral Characteristics of Thermal and Non-thermal Emission from Three Black Holes

    NASA Technical Reports Server (NTRS)

    Ling, James C.; Wheaton, William A.

    2004-01-01

    Cygnus X-1 and the gamma-ray transients GROJ0422+32 and GROJ1719-24 displayed similar spectral properties when they underwent transitions between the high and low gamma-ray (30 keV to few MeV) intensity states. When these sources were in the high (gamma)-ray intensity state ((gamma)2, for Cygnus X-l), their spectra featured two components: a Comptonized shape below 200-300 keV with a soft power-law tail (photon index >= 3) that extended to 1 MeV or beyond. When the sources were in the low-intensity state ((gamma)0, for Cygnus X-l), the Comptonized spectral shape below 200 keV typically vanished and the entire spectrum from 30 keV to 1 MeV can be characterized by a single power law with a relatively harder photon index 2-2.7. Consequently the high- and low-intensity gamma-ray spectra intersect, generally in the 400 KeV - 1 MeV range, in contrast to the spectral pivoting seen previously at lower (10 keV) energies. The presence of the power-law component in both the high- and low-intensity gammaray spectra strongly suggests that the non-thermal process is likely to be at work in both the high and the low-intensity situations. We have suggested a possible scenario (Ling & Wheaton, 2003), by combining the ADAF model of Esin et al. (1998) with a separate jet region that produces the non-thermal gamma-ray emission, and which explains the state transitions. Such a scenario will be discussed in the context of the observational evidence, summarized above, from the database produced by EBOP, JPL's BATSE earth occultation analysis system.

  19. On the gamma-ray emission from Markarian 421

    NASA Astrophysics Data System (ADS)

    Cheng, K. S.; Ding, W. K. Y.

    1994-08-01

    Gamma radiation in various energy ranges from 50 MeV to 10 GeV and even up to TeV has been detected from Markarian 421. We suggest that relativistic neutrons with energy approximately 1017 eV are expected to be produced in the acceleration region via the process of photopion production. We predict that ultra-high energy (approximately PeV) gamma rays will be emitted from Mkn 421 resulting from the decay of neutral pions which are produced by collisions between the ultra-high energy neutrons and blobs of material ejected from the accretion disk of the supermassive blackhole. At the same time, the decay of charged pions can eventually decay to produce electrons and positrons, which radiate synchrotron radiation in various energy ranges from TeV to 50 MeV. Comparison with the observed data and model results and the implications to other active galactic nuclei (AGNs) are discussed in the text.

  20. Extended gamma-ray emission from Coy Dark Matter

    SciTech Connect

    Boehm, Céline; McCabe, Christopher; Spannowsky, Michael; Wallace, Chris J.; Dolan, Matthew J. E-mail: mdolan@slac.stanford.edu E-mail: michael.spannowsky@durham.ac.uk

    2014-05-01

    We show that it is possible for WIMP dark matter to produce a large signal in indirect dark matter searches without producing signals elsewhere. We illustrate our point by fitting the Fermi-LAT extended galactic gamma-ray excess with a simple model of Dirac dark matter that annihilates primarily into b quarks via a pseudoscalar. Current collider constraints are weak while the 14 TeV LHC run will constrain a limited portion of the parameter space. No signal is expected in additional indirect searches or at future direct detection experiments. Our results emphasise the importance of fully understanding potential indirect signals of dark matter as they may provide the only information about the dark matter particle.

  1. Inverse Compton Origin of the Hard X-ray and Soft gamma-ray Emission from the Galactic Ridge

    SciTech Connect

    Porter, Troy A.; Moskalenko, Igor V.; Strong, Andrew W.; Orlando, Elena; Bouchet, Laurent

    2008-09-30

    A recent re-determination of the non-thermal component of the hard X-ray to soft {gamma}-ray emission from the Galactic ridge, using the SPI instrument on the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL) Observatory, is shown to be well reproduced as inverse-Compton emission from the interstellar medium. Both cosmic-ray primary electrons and secondary electrons and positrons contribute to the emission. The prediction uses the GALPROP model and includes a new calculation of the interstellar radiation field. This may solve a long-standing mystery of the origin of this emission, and potentially opens a new window on Galactic cosmic rays.

  2. Discovery of TeV Gamma-ray Emission from Tycho's Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Acciari, V. A.; Aliu, E.; Arlen, T.; Aune, T.; Beilicke, M.; Benbow, W.; Bradbury, S. M.; Buckley, J. H.; Bugaev, V.; Byrum, K.; Cannon, A.; Cesarini, A.; Ciupik, L.; Collins-Hughes, E.; Cui, W.; Dickherber, R.; Duke, C.; Errando, M.; Finley, J. P.; Finnegan, G.; Fortson, L.; Furniss, A.; Galante, N.; Gall, D.; Gillanders, G. H.; Godambe, S.; Griffin, S.; Grube, J.; Guenette, R.; Gyuk, G.; Hanna, D.; Holder, J.; Hughes, J. P.; Hui, C. M.; Humensky, T. B.; Kaaret, P.; Karlsson, N.; Kertzman, M.; Kieda, D.; Krawczynski, H.; Krennrich, F.; Lang, M. J.; LeBohec, S.; Madhavan, A. S.; Maier, G.; Majumdar, P.; McArthur, S.; McCann, A.; Moriarty, P.; Mukherjee, R.; Ong, R. A.; Orr, M.; Otte, A. N.; Pandel, D.; Park, N. H.; Perkins, J. S.; Pohl, M.; Quinn, J.; Ragan, K.; Reyes, L. C.; Reynolds, P. T.; Roache, E.; Rose, H. J.; Saxon, D. B.; Schroedter, M.; Sembroski, G. H.; Senturk, G. Demet; Slane, P.; Smith, A. W.; Tešić, G.; Theiling, M.; Thibadeau, S.; Tsurusaki, K.; Varlotta, A.; Vassiliev, V. V.; Vincent, S.; Vivier, M.; Wakely, S. P.; Ward, J. E.; Weekes, T. C.; Weinstein, A.; Weisgarber, T.; Williams, D. A.; Wood, M.; Zitzer, B.

    2011-04-01

    We report the discovery of TeV gamma-ray emission from the Type Ia supernova remnant (SNR) G120.1+1.4, known as Tycho's SNR. Observations performed in the period 2008-2010 with the VERITAS ground-based gamma-ray observatory reveal weak emission coming from the direction of the remnant, compatible with a point source located at 00h25m27.s0, + 64°10'50'' (J2000). The TeV photon spectrum measured by VERITAS can be described with a power law dN/dE = C(E/3.42 TeV)-Γ with Γ = 1.95 ± 0.51stat ± 0.30sys and C = (1.55 ± 0.43stat ± 0.47sys) × 10-14 cm-2 s-1 TeV-1. The integral flux above 1 TeV corresponds to ~0.9% of the steady Crab Nebula emission above the same energy, making it one of the weakest sources yet detected in TeV gamma rays. We present both leptonic and hadronic models that can describe the data. The lowest magnetic field allowed in these models is ~80 μG, which may be interpreted as evidence for magnetic field amplification.

  3. Search for Cosmic-Ray-Induced Gamma-Ray Emission in Galaxy Clusters

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Albert, A.; Allafort, A.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Bloom, E. D.; Bonamente, E.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Cavazzuti, E.; Chaves, R. C. G.; Kuss, M.; Pesce-Rollins, M.; Sgro, C.; Spandre, G.; Tinivella, M.

    2014-01-01

    Current theories predict relativistic hadronic particle populations in clusters of galaxies in addition to the already observed relativistic leptons. In these scenarios hadronic interactions give rise to neutral pions which decay into gamma rays that are potentially observable with the Large Area Telescope (LAT) on board the Fermi space telescope. We present a joint likelihood analysis searching for spatially extended gamma-ray emission at the locations of 50 galaxy clusters in four years of Fermi-LAT data under the assumption of the universal cosmic-ray (CR) model proposed by Pinzke & Pfrommer. We find an excess at a significance of 2.7 delta, which upon closer inspection, however, is correlated to individual excess emission toward three galaxy clusters: A400, A1367, and A3112. We discuss these cases in detail and conservatively attribute the emission to unmodeled background systems (for example, radio galaxies within the clusters).Through the combined analysis of 50 clusters, we exclude hadronic injection efficiencies in simple hadronic models above 21% and establish limits on the CR to thermal pressure ratio within the virial radius, R(sub 200), to be below 1.25%-1.4% depending on the morphological classification. In addition, we derive new limits on the gamma-ray flux from individual clusters in our sample.

  4. DETECTION OF GAMMA-RAY POLARIZATION IN PROMPT EMISSION OF GRB 100826A

    SciTech Connect

    Yonetoku, Daisuke; Murakami, Toshio; Sakashita, Tomonori; Morihara, Yoshiyuki; Takahashi, Takuya; Fujimoto, Hirofumi; Kodama, Yoshiki; Gunji, Shuichi; Toukairin, Noriyuki; Mihara, Tatehiro; Toma, Kenji; Kubo, Shin

    2011-12-20

    We report the polarization measurement in prompt {gamma}-ray emission of GRB 100826A with the Gamma-Ray Burst Polarimeter on board the small solar-power-sail demonstrator IKAROS. We detected the firm change of polarization angle (PA) during the prompt emission with 99.9% (3.5{sigma}) confidence level, and the average polarization degree ({Pi}) of 27% {+-} 11% with 99.4% (2.9{sigma}) confidence level. Here the quoted errors are given at 1{sigma} confidence level for the two parameters of interest. The systematic errors have been carefully included in this analysis, unlike other previous reports. Such a high {Pi} can be obtained in several emission models of gamma-ray bursts (GRBs), including synchrotron and photospheric models. However, it is difficult to explain the observed significant change of PA within the framework of axisymmetric jet as considered in many theoretical works. The non-axisymmetric (e.g., patchy) structures of the magnetic fields and/or brightness inside the relativistic jet are therefore required within the observable angular scale of {approx}{Gamma}{sup -1}. Our observation strongly indicates that the polarization measurement is a powerful tool to constrain the GRB production mechanism, and more theoretical works are needed to discuss the data in more detail.

  5. DISCOVERY OF TeV GAMMA-RAY EMISSION FROM TYCHO'S SUPERNOVA REMNANT

    SciTech Connect

    Acciari, V. A.; Benbow, W.; Aliu, E.; Errando, M.; Arlen, T.; Aune, T.; Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R.; Bradbury, S. M.; Byrum, K.; Cannon, A.; Collins-Hughes, E.; Cesarini, A.; Ciupik, L.; Cui, W.; Finley, J. P.; Duke, C.; Finnegan, G. E-mail: wakely@uchicago.edu

    2011-04-01

    We report the discovery of TeV gamma-ray emission from the Type Ia supernova remnant (SNR) G120.1+1.4, known as Tycho's SNR. Observations performed in the period 2008-2010 with the VERITAS ground-based gamma-ray observatory reveal weak emission coming from the direction of the remnant, compatible with a point source located at 00{sup h}25{sup m}27.{sup s}0, + 64{sup 0}10'50'' (J2000). The TeV photon spectrum measured by VERITAS can be described with a power law dN/dE = C(E/3.42 TeV){sup -}{Gamma} with {Gamma} = 1.95 {+-} 0.51{sub stat} {+-} 0.30{sub sys} and C = (1.55 {+-} 0.43{sub stat} {+-} 0.47{sub sys}) x 10{sup -14} cm{sup -2} s{sup -1} TeV{sup -1}. The integral flux above 1 TeV corresponds to {approx}0.9% of the steady Crab Nebula emission above the same energy, making it one of the weakest sources yet detected in TeV gamma rays. We present both leptonic and hadronic models that can describe the data. The lowest magnetic field allowed in these models is {approx}80 {mu}G, which may be interpreted as evidence for magnetic field amplification.

  6. Gamma-ray Bursts

    NASA Astrophysics Data System (ADS)

    Kouveliotou, Chryssa; Wijers, Ralph A. M. J.; Woosley, Stan

    2012-11-01

    Prologue C. Kouveliotou, R. A . M. J. Wijers and S. E. Woosley; 1. The discovery of the gamma-ray burst phenomenon R. W. Klebesadel; 2. Instrumental principles E. E. Fenimore; 3. The BATSE era G. J. Fishman and C. A. Meegan; 4. The cosmological era L. Piro and K. Hurley; 5. The Swift era N. Gehrels and D. N. Burrows; 6. Discoveries enabled by multi-wavelength afterglow observations of gamma-ray bursts J. Greiner; 7. Prompt emission from gamma-ray bursts T. Piran, R. Sari and R. Mochkovitch; 8. Basic gamma-ray burst afterglows P. Mészáros and R. A. M. J. Wijers; 9. The GRB-supernova connection J. Hjorth and J. S. Bloom; 10. Models for gamma-ray burst progenitors and central engines S. E. Woosley; 11. Jets and gamma-ray burst unification schemes J. Granot and E. Ramirez-Ruiz; 12. High-energy cosmic rays and neutrinos E. Waxman; 13. Long gamma-ray burst host galaxies and their environments J. P. U. Fynbo, D. Malesani and P. Jakobsson; 14. Gamma-ray burst cosmology V. Bromm and A. Loeb; 15. Epilogue R. D. Blandford; Index.

  7. Gamma-Ray Pulsars

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    2011-01-01

    The Fermi Gamma-Ray Space Telescope has revolutionized the study of pulsar physics with the detection of over 80 gamma-ray pulsars. Several new populations have been discovered, including 24 radio quiet pulsars found through gamma-ray pulsations alone and about 20 millisecond gamma-ray pulsars. The gamma-ray pulsations from millisecond pulsars were discovered by both folding at periods of known radio millisecond pulsars or by detecting them as gamma-ray sources that are followed up by radio pulsar searches. The second method has resulted in a phenomenally successful synergy, with -35 new radio MSPs (to date) having been discovered at Fermi unidentified source locations and the gamma-ray pulsations having then been detected in a number of these using the radio timing solutions. The higher sensitivity and larger energy range of the Fermi Large Area Telescope has produced detailed energy-dependent light curves and phase-resolved spectroscopy on brighter pulsars, that have ruled out polar cap models as the major source of the emission in favor of outer magnetosphere accelerators. The large number of gamma-ray pulsars now allows for the first time meaningful population and sub-population studies that are revealing surprising properties of these fascinating sources.

  8. High-energy gamma-ray emission from solar flares: Constraining the accelerated proton spectrum

    NASA Technical Reports Server (NTRS)

    Alexander, David; Dunphy, Philip P.; Mackinnon, Alexander L.

    1994-01-01

    Using a multi-component model to describe the gamma-ray emission, we investigate the flares of December 16, 1988 and March 6, 1989 which exhibited unambiguous evidence of neutral pion decay. The observations are then combined with theoretical calculations of pion production to constrain the accelerated proton spectra. The detection of pi(sup 0) emission alone can indicate much about the energy distribution and spectral variation of the protons accelerated to pion producing energies. Here both the intensity and detailed spectral shape of the Doppler-broadened pi(sup 0) decay feature are used to determine the spectral form of the accelerated proton energy distribution. The Doppler width of this gamma-ray emission provides a unique diagnostic of the spectral shape at high energies, independent of any normalisation. To our knowledge, this is the first time that this diagnostic has been used to constrain the proton spectra. The form of the energetic proton distribution is found to be severely limited by the observed intensity and Doppler width of the pi(sup 0) decay emission, demonstrating effectively the diagnostic capabilities of the pi(sup 0) decay gamma-rays. The spectral index derived from the gamma-ray intensity is found to be much harder than that derived from the Doppler width. To reconcile this apparent discrepancy we investigate the effects of introducing a high-energy cut-off in the accelerated proton distribution. With cut-off energies of around 0.5-0.8 GeV and relatively hard spectra, the observed intensities and broadening can be reproduced with a single energetic proton distribution above the pion production threshold.

  9. Short Gamma-Ray Bursts with Extended Emission

    NASA Technical Reports Server (NTRS)

    Norris, J. P.; Bonnell, J. T.

    2005-01-01

    The recent association of several short gamma-ray bursts (GRBs) with early type galaxies with low star formation rate demonstrates that short bursts arise from a different progenitor mechanism than long bursts. However, since the duration distributions of the two classes overlap, membership is not always easily established. The picture is complicated by the occasional presence of softer, extended emission lasting tens of seconds after the initial spike- like emission comprising an otherwise short burst. Using the large BATSE sample with time-tagged event (TTE) data, we show that the fundamental defining characteristic of the short burst class is that the initial spike exhibits negligible spectral evolution at energies above approx. 25 keV. This is behavior is nearly ubiquitous for the 260 bursts with T(sub 90) less than 2s where the BATSE TTE data type completely included the initial spike: Their spectral lags measured between the 25-50 keV and 100-300 energy ranges are consistent with zero in 90-95% of the cases, with most outliers probably representing the tail of the long burst class. We also analyze a small sample of "short" BATSE bursts - those with the most fluent, intense extended emission. The same lack of evolution on the pulse timescale obtains for the extended emission in the brighter bursts where significant measurements can be made. One possible inference is that both emission components may arise in the same region. We also show that the dynamic range in the ratio of peak intensities, spike : extended, is at least approx. l0(exp 3), and that for some bursts, the extended emission is only a factor of 2-5 lower. However, for our whole sample the total counts fluence of the extended component equals or exceeds that in the spike by a factor of several.

  10. A STATISTICAL MODEL FOR THE {gamma}-RAY VARIABILITY OF THE CRAB NEBULA

    SciTech Connect

    Yuan Qiang; Yin Pengfei; Bi Xiaojun; Wu Xuefeng; Zhang Bing; Liu Siming

    2011-04-01

    A statistical scenario is proposed to explain the {gamma}-ray variability and flares of the Crab Nebula, which were observed recently by the Fermi/LAT. In this scenario electrons are accelerated in a series of knots, whose sizes follow a power-law distribution. These knots presumably move outward from the pulsar and have a distribution in the Doppler boost factor. The maximal electron energy is assumed to be proportional to the size of the knot. Fluctuations at the highest energy end of the overall electron distribution will result in variable {gamma}-ray emission via the synchrotron process in the {approx}100 MeV range. Since highly boosted larger knots are rarer than smaller knots, the model predicts that the variability of the synchrotron emission increases with the photon energy. We realize such a scenario with a Monte Carlo simulation and find that the model can reproduce both the two {gamma}-ray flares over a period of {approx}1 year and the monthly scale {gamma}-ray flux fluctuations as observed by the Fermi/LAT. The observed {gamma}-ray spectra in both the steady and flaring states are also well reproduced.

  11. Periodic gamma-ray emissions from Geminga at or = 10(12) eV

    NASA Technical Reports Server (NTRS)

    Kaul, R. K.; Rawat, H. S.; Sanecha, V. K.; Rannot, R. C.; Sapru, M.; Tickoo, A. K.; Qazi, R. A.; Bhat, C. L.; Razdan, H.; Tonwar, S. C.

    1985-01-01

    Analysis of data from an atmospheric Cerenkov telescope indicated the periodic emission of gamma rays of energy 10 to the 12th power eV, at 60.25 second period, from 2CG 195+4. The gamma ray flux at 99% confidence level is estimated to be 9.5 x 10 to 12 photons/sq cm/s.

  12. Evidence for Temporally-Extended, High-Energy Emission from Gamma Ray Burst 990104

    NASA Technical Reports Server (NTRS)

    Wren, D. N.; Bertsch, D. L.; Ritz, S.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    It is well known that high-energy emission (MeV - GeV) has been observed in several gamma ray bursts and temporally-extended emission from lower-energy gamma rays through radio wavelengths is well established. Observations of extended, high-energy emission are, however, scarce. Here we present evidence for a gamma ray burst emission that is both high-energy and extended, coincident with lower energy emissions. For the very bright and long burst, GRB 990104, we show light curves and spectra that confirm emission above 50 MeV, approximately 152 seconds after the BATSE (Burst and Transient Source Experiment) trigger and initial burst emission. Between the initial output and the main peak, seen at both low and high energy, there was a period of approx. 100 s during which the burst was relatively quiet. This burst was found as part of an ongoing search for high-energy emission in gamma ray bursts.

  13. DISCOVERY OF HIGH-ENERGY AND VERY HIGH ENERGY {gamma}-RAY EMISSION FROM THE BLAZAR RBS 0413

    SciTech Connect

    Aliu, E.; Archambault, S.; Arlen, T.; Aune, T.; Bouvier, A.; Beilicke, M.; Buckley, J. H.; Bugaev, V.; Benbow, W.; Boettcher, M.; Bradbury, S. M.; Byrum, K.; Decerprit, G.; Cannon, A.; Collins-Hughes, E.; Cesarini, A.; Connolly, M. P.; Ciupik, L.; Coppi, P.; Cui, W. E-mail: fortin@llr.in2p3.fr; and others

    2012-05-10

    We report on the discovery of high-energy (HE; E > 0.1 GeV) and very high energy (VHE; E > 100 GeV) {gamma}-ray emission from the high-frequency-peaked BL Lac object RBS 0413. VERITAS, a ground-based {gamma}-ray observatory, detected VHE {gamma} rays from RBS 0413 with a statistical significance of 5.5 standard deviations ({sigma}) and a {gamma}-ray flux of (1.5 {+-} 0.6{sub stat} {+-} 0.7{sub syst}) Multiplication-Sign 10{sup -8} photons m{sup -2} s{sup -1} ({approx}1% of the Crab Nebula flux) above 250 GeV. The observed spectrum can be described by a power law with a photon index of 3.18 {+-} 0.68{sub stat} {+-} 0.30{sub syst}. Contemporaneous observations with the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope detected HE {gamma} rays from RBS 0413 with a statistical significance of more than 9{sigma}, a power-law photon index of 1.57 {+-} 0.12{sub stat}+{sup 0.11}{sub -0.12sys}, and a {gamma}-ray flux between 300 MeV and 300 GeV of (1.64 {+-} 0.43{sub stat}{sup +0.31}{sub -0.22sys}) Multiplication-Sign 10{sup -5} photons m{sup -2} s{sup -1}. We present the results from Fermi-LAT and VERITAS, including a spectral energy distribution modeling of the {gamma}-ray, quasi-simultaneous X-ray (Swift-XRT), ultraviolet (Swift-UVOT), and R-band optical (MDM) data. We find that, if conditions close to equipartition are required, both the combined synchrotron self-Compton/external-Compton and the lepto-hadronic models are preferred over a pure synchrotron self-Compton model.

  14. Expected gamma ray emission spectra from the lunar surface as a function of chemical composition.

    NASA Technical Reports Server (NTRS)

    Reedy, R. C.; Arnold, J. R.; Trombka, J. I.

    1973-01-01

    The gamma rays emitted from the moon or any similar body carry information on the chemical composition of the surface layer. The elements most easily measured are K, U, Th, and major elements such as O, Si, Mg, and Fe. The expected fluxes of gamma ray lines are calculated for four lunar compositions and one chondritic chemistry from a consideration of the important emission mechanisms: natural radioactivity, inelastic scatter, neutron capture, and induced radioactivity. The models used for cosmic ray interactions are those of Reedy and Arnold (1972) and Lingenfelter et al. (1972). The areal resolution of the experiment is calculated to be around 70-140 km under the conditions of the Apollo 15 and 16 experiments. Finally, a method is described for recovering the chemical information from the observed scintillation spectra obtained in these experiments.

  15. Expected gamma-ray emission spectra from the lunar surface as a function of chemical composition

    NASA Technical Reports Server (NTRS)

    Reedy, R. C.; Arnold, J. R.; Trombka, J. I.

    1973-01-01

    The gamma rays emitted from the moon or any similar body carry information on the chemical composition of the surface layer. The elements most easily measured are K, U, Th and major elements such as O, Si, Mg, and Fe. The expected fluxes of gamma ray lines were calculated for four lunar compositions and one chondritic chemistry from a consideration of the important emission mechanisms: natural radioactivity, inelastic scatter, neutron capture, and induced radioactivity. The models used for cosmic ray interactions were those of Reedy and Arnold and Lingenfelter. The areal resolution of the experiment was calculated to be around 70 to 140 km under the conditions of the Apollo 15 and 16 experiments. Finally, a method was described for recovering the chemical information from the observed scintillation spectra obtained in these experiments.

  16. Focusing of Alfvenic wave power in the context of gamma-ray burst emissivity

    NASA Technical Reports Server (NTRS)

    Fatuzzo, Marco; Melia, Fulvio

    1993-01-01

    Highly dynamic magnetospheric perturbations in neutron star environments can naturally account for the features observed in gamma-ray burst spectra. The source distribution, however, appears to be extragalactic. Although noncatastrophic isotropic emission mechanisms may be ruled out on energetic and timing arguments, MHD processes can produce strongly anisotropic gamma rays with an observable flux out to distances of about 1-2 Gpc. Here we show that sheared Alfven waves propagating along open magnetospheric field lines at the poles of magnetized neutron stars transfer their energy dissipationally to the current sustaining the field misalignment and thereby focus their power into a spatial region about 1000 times smaller than that of the crustal disturbance. This produces a strong (observable) flux enhancement along certain directions. We apply this model to a source population of 'turned-off' pulsars that have nonetheless retained their strong magnetic fields and have achieved alignment at a period of approximately greater than 5 sec.

  17. Prediction of ECS and SSC Models for Flux-Limited Samples of Gamma-Ray Blazars

    NASA Technical Reports Server (NTRS)

    Lister, Matthew L.; Marscher, Alan P.

    1999-01-01

    The external Compton scattering (ECS) and synchrotron self-Compton (SSC) models make distinct predictions for the amount of Doppler boosting of high-energy gamma-rays emitted by Nazar. We examine how these differences affect the predicted properties of active galactic nucleus (AGN) samples selected on the basis of Murray emission. We create simulated flux-limited samples based on the ECS and SSC models, and compare their properties to those of identified EGRET blazars. We find that for small gamma-ray-selected samples, the two models make very similar predictions, and cannot be reliably distinguished. This is primarily due to the fact that not only the Doppler factor, but also the cosmological distance and intrinsic luminosity play a role in determining whether an AGN is included in a flux-limited gamma-ray sample.

  18. Spectral evolution of active galactic nuclei Penrose Compton scattering processes and gamma ray emission from Seyfert galaxies

    NASA Technical Reports Server (NTRS)

    Leiter, Darryl; Boldt, Elihu

    1990-01-01

    In black hole spectral evolution models for active galactic nuclei (AGN), present epoch Seyfert galaxies evolve from an earlier precursor active galaxy (PAG) stage at redshift z is approximately 7 where they acted as the thermal sources responsible for the residual cosmic x ray background (RCXB). The Seyfert galaxies which emerge in this context emit Penrose Compton Scattering (PCS) gamma ray transients on the order of hours with a kinematic cutoff in the spectrum less than or equal to 3 MeV. The EGRET (Energetic Gamma-Ray Experimental Telescope/ OSSE (Oriented Scintillation Spectrometer Experiment/ COMPTEL (Compton Telescope)/ BATSE (Burst and Transient Source Experiment) instruments on the Gamma Ray Observatory (GRO) are appropriate instruments to carry out further tests of this model by studying: PCS gamma ray transient emission from individual galaxies and, the possibility that present epoch PCS gamma ray emitting Seyfert galaxies contribute observable temporal variability to the excess diffuse gamma ray background component less than or equal to 3 MeV.

  19. THRESHOLD FOR EXTENDED EMISSION IN SHORT GAMMA-RAY BURSTS

    SciTech Connect

    Norris, Jay P.; Gehrels, Neil

    2010-07-01

    The initial pulse complex (IPC) in short gamma-ray bursts is sometimes accompanied by a softer, low-intensity extended emission (EE) component. In cases where such a component is not observed, it is not clear if it is present but below the detection threshold. Using Bayesian Block (BB) methods, we measure the EE component and show that it is present in one-quarter of a Swift/BAT sample of 51 short bursts, as was found for the Compton/BATSE sample. We simulate bursts with EE to calibrate the BAT threshold for EE detection and show that this component would have been detected in nearly half of BAT short bursts if it were present, to intensities {approx}10{sup -2} counts cm{sup -2} s{sup -1}, a factor of 5 lower than actually observed in short bursts. In the BAT sample, the ratio of average EE intensity to IPC peak intensity, R{sub int}, ranges over a factor of 25, R{sub int} {approx} 3 x 10{sup -3} to 8 x 10{sup -2}. In comparison, for the average of the 39 bursts without an EE component, the 2{sigma} upper limit is R{sub int} < 8 x 10{sup -4}. These results suggest that a physical threshold effect operates near R{sub int} {approx} few x 10{sup -3} below which the EE component is not manifest.

  20. Cosmic-ray induced gamma-ray emission from the starburst galaxy NGC 253

    SciTech Connect

    Wang, Xilu; Fields, Brian D.

    2014-05-09

    Cosmic rays in galaxies interact with the interstellar medium and give us a direct view of nuclear and particle interactions in the cosmos. For example, cosmic-ray proton interactions with interstellar hydrogen produce gamma rays via PcrPism→π{sup 0}→γγ. For a 'normal' star-forming galaxy like the Milky Way, most cosmic rays escape the Galaxy before such collisions, but in starburst galaxies with dense gas and huge star formation rate, most cosmic rays do suffer these interactions [1,2]. We construct a 'thick-target' model for starburst galaxies, in which cosmic rays are accelerated by supernovae, and escape is neglected. This model gives an upper limit to the gamma-ray emission. Only two free parameters are involved in the model: cosmic-ray proton acceleration energy rate from supernova and the proton injection spectral index. The pionic gamma-radiation is calculated from 10 MeV to 10 TeV for the starburst galaxy NGC 253, and compared to Fermi and HESS data. Our model fits NGC 253 well, suggesting that cosmic rays in this starburst are in the thick target limit, and that this galaxy is a gamma-ray calorimeter.

  1. Cosmic-ray induced gamma-ray emission from the starburst galaxy NGC 253

    NASA Astrophysics Data System (ADS)

    Wang, Xilu; Fields, Brian D.

    2014-05-01

    Cosmic rays in galaxies interact with the interstellar medium and give us a direct view of nuclear and particle interactions in the cosmos. For example, cosmic-ray proton interactions with interstellar hydrogen produce gamma rays via PcrPism→π0→γγ. For a "normal" star-forming galaxy like the Milky Way, most cosmic rays escape the Galaxy before such collisions, but in starburst galaxies with dense gas and huge star formation rate, most cosmic rays do suffer these interactions [1,2]. We construct a "thick-target" model for starburst galaxies, in which cosmic rays are accelerated by supernovae, and escape is neglected. This model gives an upper limit to the gamma-ray emission. Only two free parameters are involved in the model: cosmic-ray proton acceleration energy rate from supernova and the proton injection spectral index. The pionic gamma-radiation is calculated from 10 MeV to 10 TeV for the starburst galaxy NGC 253, and compared to Fermi and HESS data. Our model fits NGC 253 well, suggesting that cosmic rays in this starburst are in the thick target limit, and that this galaxy is a gamma-ray calorimeter.

  2. New Neighbours: Modelling the Growing Population of gamma-ray Millisecond Pulsars

    NASA Technical Reports Server (NTRS)

    Venter, C.; Harding, A. K.; Johnson, T. J.

    2010-01-01

    The Fermi Large Area Telescope, in collaboration with several groups from the radio community. have had marvelous success at uncovering new gamma-ray millisecond pulsars (MSPs). In fact, MSPs now make up a sizable fraction of the total number of known gamma-ray pulsars. The MSP population is characterized by a variety of pulse profile shapes, peak separations, and radio-to-gamma phase lags, with some members exhibiting nearly phase-aligned radio and gamma-ray light curves (LCs). The MSPs' short spin periods underline the importance of including special relativistic effects in LC calculations, even for emission originating from near the stellar surface. We present results on modelling and classification of MSP LCs using standard pulsar model geometries.

  3. High-energy emissions from the gamma-ray binary LS 5039

    SciTech Connect

    Takata, J.; Leung, Gene C. K.; Cheng, K. S.; Tam, P. H. T.; Kong, A. K. H.; Hui, C. Y. E-mail: gene930@connect.hku.hk

    2014-07-20

    We study mechanisms of multi-wavelength emissions (X-ray, GeV, and TeV gamma-rays) from the gamma-ray binary LS 5039. This paper is composed of two parts. In the first part, we report on results of observational analysis using 4 yr data of the Fermi Large Area Telescope. Due to the improvement of instrumental response function and increase of the statistics, the observational uncertainties of the spectrum in the ∼100-300 MeV bands and >10 GeV bands are significantly improved. The present data analysis suggests that the 0.1-100 GeV emissions from LS 5039 contain three different components: (1) the first component contributes to <1 GeV emissions around superior conjunction, (2) the second component dominates in the 1-10 GeV energy bands, and (3) the third component is compatible with the lower-energy tail of the TeV emissions. In the second part, we develop an emission model to explain the properties of the phase-resolved emissions in multi-wavelength observations. Assuming that LS 5039 includes a pulsar, we argue that emissions from both the magnetospheric outer gap and the inverse-Compton scattering process of cold-relativistic pulsar wind contribute to the observed GeV emissions. We assume that the pulsar is wrapped by two kinds of termination shock: Shock-I due to the interaction between the pulsar wind and the stellar wind and Shock-II due to the effect of the orbital motion. We propose that the X-rays are produced by the synchrotron radiation at the Shock-I region and the TeV gamma-rays are produced by the inverse-Compton scattering process at the Shock-II region.

  4. Activity measurements and determination of gamma-ray emission intensities in the decay of 65Zn.

    PubMed

    Bé, Marie-Martine

    2006-01-01

    An International EUROMET exercise, Action 721, was organized with the objective of obtaining more reliable decay data on the disintegration of 65Zn. Nine laboratories participated, sending their results relating to activity measurements and 1115-keV gamma-ray emission intensity. Participants mainly used the 4pibeta-gamma coincidence method for the activity measurement, the resulting values and uncertainty budgets are described. New gamma-ray emission intensities were also measured in this exercise and, taking into account previously published values, the intensity of the 1115-keV gamma-ray emission has been determined to be 50.22(11)%.

  5. Limits on neutrino emission from gamma-ray bursts with the 40 string IceCube detector.

    PubMed

    Abbasi, R; Abdou, Y; Abu-Zayyad, T; Adams, J; Aguilar, J A; Ahlers, M; Andeen, K; Auffenberg, J; Bai, X; Baker, M; Barwick, S W; Bay, R; Bazo Alba, J L; Beattie, K; Beatty, J J; Bechet, S; Becker, J K; Becker, K-H; Benabderrahmane, M L; BenZvi, S; Berdermann, J; Berghaus, P; Berley, D; Bernardini, E; Bertrand, D; Besson, D Z; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Bose, D; Böser, S; Botner, O; Braun, J; Brown, A M; Buitink, S; Carson, M; Chirkin, D; Christy, B; Clem, J; Clevermann, F; Cohen, S; Colnard, C; Cowen, D F; D'Agostino, M V; Danninger, M; Daughhetee, J; Davis, J C; De Clercq, C; Demirörs, L; Depaepe, O; Descamps, F; Desiati, P; de Vries-Uiterweerd, G; DeYoung, T; Díaz-Vélez, J C; Dierckxsens, M; Dreyer, J; Dumm, J P; Ehrlich, R; Eisch, J; Ellsworth, R W; Engdegård, O; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Foerster, M M; Fox, B D; Franckowiak, A; Franke, R; Gaisser, T K; Gallagher, J; Geisler, M; Gerhardt, L; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Goodman, J A; Grant, D; Griesel, T; Gross, A; Grullon, S; Gurtner, M; Ha, C; Hallgren, A; Halzen, F; Han, K; Hanson, K; Heinen, D; Helbing, K; Herquet, P; Hickford, S; Hill, G C; Hoffman, K D; Homeier, A; Hoshina, K; Hubert, D; Huelsnitz, W; Hülss, J-P; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobsen, J; Japaridze, G S; Johansson, H; Joseph, J M; Kampert, K-H; Kappes, A; Karg, T; Karle, A; Kelley, J L; Kemming, N; Kenny, P; Kiryluk, J; Kislat, F; Klein, S R; Köhne, J-H; Kohnen, G; Kolanoski, H; Köpke, L; Kopper, S; Koskinen, D J; Kowalski, M; Kowarik, T; Krasberg, M; Krings, T; Kroll, G; Kuehn, K; Kuwabara, T; Labare, M; Lafebre, S; Laihem, K; Landsman, H; Larson, M J; Lauer, R; Lehmann, R; Lünemann, J; Madsen, J; Majumdar, P; Marotta, A; Maruyama, R; Mase, K; Matis, H S; Meagher, K; Merck, M; Mészáros, P; Meures, T; Middell, E; Milke, N; Miller, J; Montaruli, T; Morse, R; Movit, S M; Nahnhauer, R; Nam, J W; Naumann, U; Niessen, P; Nygren, D R; Odrowski, S; Olivas, A; Olivo, M; O'Murchadha, A; Ono, M; Panknin, S; Paul, L; Pérez de los Heros, C; Petrovic, J; Piegsa, A; Pieloth, D; Porrata, R; Posselt, J; Price, P B; Prikockis, M; Przybylski, G T; Rawlins, K; Redl, P; Resconi, E; Rhode, W; Ribordy, M; Rizzo, A; Rodrigues, J P; Roth, P; Rothmaier, F; Rott, C; Ruhe, T; Rutledge, D; Ruzybayev, B; Ryckbosch, D; Sander, H-G; Santander, M; Sarkar, S; Schatto, K; Schmidt, T; Schoenwald, A; Schukraft, A; Schultes, A; Schulz, O; Schunck, M; Seckel, D; Semburg, B; Seo, S H; Sestayo, Y; Seunarine, S; Silvestri, A; Slipak, A; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stephens, G; Stezelberger, T; Stokstad, R G; Stoyanov, S; Strahler, E A; Straszheim, T; Sullivan, G W; Swillens, Q; Taavola, H; Taboada, I; Tamburro, A; Tarasova, O; Tepe, A; Ter-Antonyan, S; Tilav, S; Toale, P A; Toscano, S; Tosi, D; Turčan, D; van Eijndhoven, N; Vandenbroucke, J; Van Overloop, A; van Santen, J; Vehring, M; Voge, M; Voigt, B; Walck, C; Waldenmaier, T; Wallraff, M; Walter, M; Weaver, C; Wendt, C; Westerhoff, S; Whitehorn, N; Wiebe, K; Wiebusch, C H; Williams, D R; Wischnewski, R; Wissing, H; Wolf, M; Woschnagg, K; Xu, C; Xu, X W; Yodh, G; Yoshida, S; Zarzhitsky, P

    2011-04-01

    IceCube has become the first neutrino telescope with a sensitivity below the TeV neutrino flux predicted from gamma-ray bursts if gamma-ray bursts are responsible for the observed cosmic-ray flux above 10(18)  eV. Two separate analyses using the half-complete IceCube detector, one a dedicated search for neutrinos from pγ interactions in the prompt phase of the gamma-ray burst fireball and the other a generic search for any neutrino emission from these sources over a wide range of energies and emission times, produced no evidence for neutrino emission, excluding prevailing models at 90% confidence. PMID:21561178

  6. A MAD model for gamma-ray burst variability

    NASA Astrophysics Data System (ADS)

    Lloyd-Ronning, Nicole M.; Dolence, Joshua C.; Fryer, Christopher L.

    2016-09-01

    We present a model for the temporal variability of long gamma-ray bursts (GRBs) during the prompt phase (the highly variable first 100 s or so), in the context of a magnetically arrested disc (MAD) around a black hole. In this state, sufficient magnetic flux is held on to the black hole such that it stalls the accretion near the inner region of the disc. The system transitions in and out of the MAD state, which we relate to the variable luminosity of the GRB during the prompt phase, with a characteristic time-scale defined by the free-fall time in the region over which the accretion is arrested. We present simple analytic estimates of the relevant energetics and time-scales, and compare them to GRB observations. In particular, we show how this model can reproduce the characteristic one second time-scale that emerges from various analyses of the prompt emission light curve. We also discuss how our model can accommodate the potentially physically important correlation between a burst quiescent time and the duration of its subsequent pulse.

  7. Cosmic-ray transport and gamma-ray emission in supernova shells

    NASA Technical Reports Server (NTRS)

    Harding, A. K.; Mastichiadis, A.; Protheroe, R. J.; Szabo, A. P.

    1991-01-01

    The mixing and transport of cosmic rays accelerated by a pulsar inside an expanding supernova remnant are examined, and the resulting high-energy gamma-ray emission from nuclear interactions of these accelerated particles in the shell is investigated. Rayleigh-Taylor instability at the interface between a pulsar wind cavity and the inner supernova envelope is assumed to be the mixing mechanism. The analysis is applied to the model of Gaisser, Harding, and Stanev (1987), where protons are accelerated at the reverse shock in the pulsar wind. The instability time-scale is estimated from the dynamics of the pulsar wind cavity, and model the injection, diffusion, and interaction of protons in the shell. The resulting gamma-ray flux is lower than previous estimates due to proton adiabatic losses in the expanding pulsar wind. The protons mix and diffuse only into the innermost regions of the envelope before interacting. Energy-dependent diffusion causes the higher energy gamma-ray light curves to decay faster than those at lower energy.

  8. A search of the SAS-2 data for pulsed gamma-ray emission from radio pulsars

    NASA Technical Reports Server (NTRS)

    Ogelman, H. B.; Fichtel, C. E.

    1976-01-01

    Data from the SAS-2 high energy gamma ray experiment were examined for pulsed emission from each of 75 radio pulsars which were viewed by the instrument and which have sufficiently well defined period and period derivative information from radio observations to allow for gamma ray periodicity searches. When gamma ray arrival times were converted to pulsar phase using the radio reference timing information, two pulsars, PSR 1747-46 and PSR 1818-04, showed positive effects, each with a probability less than 0.0001 of being a random fluctuation in the data for that pulsar. These are in addition to PSR 0531+21 and PSR 0833-45, previously reported. The results of this study suggest that gamma-ray astronomy has reached the detection threshold for gamma ray pulsars and that work in the near future should give important information on the nature of pulsars.

  9. Using gamma-ray emission to measure areal density of ICF capsules

    SciTech Connect

    Hoffman, Nelson M; Wilson, Douglas C; Hermann, Hans W; Young, Carlton S

    2010-01-01

    Fusion neutrons streaming from a burning ICF capsule generate gamma rays via nuclear inelastic scattering in the ablator of the capsule. The intensity of gamma-ray emission is proportional to the product of the ablator areal density ('{rho}R') and the yield of fusion neutrons, so by detecting the gamma rays we can infer the ablator areal density, provided we also have a measurement of the capsule's total neutron yield. In plastic-shell capsules, for example, {sup 12}C nuclei emit gamma rays at 4.44 MeV after excitation by 14.1-MeV neutrons from D+T fusion. These gamma rays can be measured by the Gamma Reaction History (GRH) experiment being built at the National Ignition Facility (NIF). A linear error analysis indicates the chief sources of uncertainty in inferred areal density.

  10. Physics of magnetospheric emission in soft gamma-ray repeaters

    NASA Technical Reports Server (NTRS)

    Melia, Fulvio; Fatuzzo, Marco

    1995-01-01

    Soft gamma-ray repeaters appear to be relatively young, strongly magnetized neutron stars embedded within plerions. The observationally inferred presence of teragauss fields and energetic outflows in these sources provides some support for a model in which the bursts results from crustal disturbances that load and energize the magnetosphere with the ensuing generation of sheared Alfven waves. We here determine accurately the structure of the particle efflux and calculate the spectrum of the resultant radiation, incorporating the key effects due to mildly relativistic magnetic bremsstrahlung, a frequency-dependent photospheric radius and angle-dependent boosting of the intensity for emitting elements at different inclinations. We find that the average photospheric radius during the transient event is approximately 4 stellar radii and that the particles attain a Lorentz factor approximately 13.2 by the time the gas becomes optically thin. The calculated spectrum is a weighted integral over the boosted intensity determined from the physical conditions (i.e., magnetic field, particle density, and temperature) at the photospheric radius corresponding to the relevant frequency. When applied to SGR 1806-20, this procedure yields a distance D approximately equals 10 kpc to this source, which appears to be consistent with the range (approximately 8-17 kpc) inferred from its apparent coincidence with the supernova remnant G10.0-0.3.

  11. X-ray emission mechanism for the gamma-ray binary LS 5039

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Masaki

    2012-07-01

    We address an unsolved issue in the model of the gamma-ray binary LS 5039, which consists of an O star and a compact object not yet identified. In previous studies, the X-ray emission observed with Suzaku has been assumed to be due to the synchrotron emission from high energy electrons, and the inverse Compton (IC) emission from low energy electrons has been neglected. However, this IC emission can affect the X-ray emission. In this study, we calculate the IC emission from low energy electrons (γ < 10^4) accelerated near the compact object, including those created by the radiative cooling. We find that the IC emission of the low energy electrons can be responsible for the Suzaku band if the minimum Lorentz factor of injected electrons γ_{min} is around 10^3. In addition, we show that the Suzaku light curve is well reproduced if γ_{min} varies in proportion to the Fermi flux.

  12. COMPTEL observations of Ti-44 gamma-ray line emission from Cas A

    NASA Technical Reports Server (NTRS)

    Iyudin, A. F.; Diehl, R.; Bloemen, H.; Hermsen, W.; Lichti, G. G.; Morris, D.; Ryan, J.; Schoenfelder, V.; Steinle, H.; Varendorff, M.

    1994-01-01

    The Compton Telescope (COMPTEL) telescope aboard the Compton Gamma-Ray Observatory (CGRO) is capable of imaging gamma-ray line sources in the MeV region with a sensitivity of the order 10(exp -5) photons/(sq cm s). During two observations periods in July 1992 and February 1993 the Galactic plane in the region of the young supernova remnant Cas A was observed, showing evidence for line emission at 1.16 MeV from the decay of Ti-44 at a significance level of approximately 4 sigma. This is the first time a supernova remnant has been detected in the gamma-ray line from Ti-44 decay. Adopting a distance of 2.8 kpc to the Cas A remnant, the measured line flux (7.0 +/- 1.7) x 10(exp -5) photons/(sq cm s), can be translated into a Ti-44 mass ejected during the Cas A supernova explosion, between (1.4 +/- 0.4) x 10(exp -4) solar mass and (3.2 +/- 0.8) x 10(exp -4) solar mass, depending on the precise value of the Ti-44 mean life time and on the precise date of the event. Implications of this result for supernova nucleosynthesis models are discussed.

  13. Discovery of TeV Gamma-Ray Emission from the Cygnus Region

    SciTech Connect

    Abdo, A.A.; Allen, B.; Berley, D.; Blaufuss, E.; Casanova, S.; Chen, C.; Coyne, D.G.; Delay, R.S.; Dingus, B.L.; Ellsworth, R.W.; Fleysher, L.; Fleysher, R.; Gonzalez, M.M.; Goodman, J.A.; Hays, E.; Hoffman, C.M.; Kolterman, B.E.; Kelley, L.A.; Lansdell, C.P.; Linnemann, J.T.; McEnery, J.E.

    2006-11-28

    The diffuse gamma radiation arising from the interaction of cosmic ray particles with matter and radiation in the Galaxy is one of the few probes available to study the origin of the cosmic rays. Milagro is a water Cherenkov detector that continuously views the entire overhead sky. The large field-of-view combined with the long observation time makes Milagro the most sensitive instrument available for the study of large, low surface brightness sources such as the diffuse gamma radiation arising from interactions of cosmic radiation with interstellar matter. In this paper we present spatial and flux measurements of TeV gamma-ray emission from the Cygnus Region. The TeV image shows at least one new source MGRO J2019+37 as well as correlations with the matter density in the region as would be expected from cosmic-ray proton interactions. However, the TeV gamma-ray flux as measured at {approx}12 TeV from the Cygnus region (after excluding MGRO J2019+37) exceeds that predicted from a conventional model of cosmic ray production and propagation. This observation indicates the existence of either hard-spectrum cosmic-ray sources and/or other sources of TeV gamma rays in the region.

  14. Polarized gamma-ray emission from the crab.

    PubMed

    Dean, A J; Clark, D J; Stephen, J B; McBride, V A; Bassani, L; Bazzano, A; Bird, A J; Hill, A B; Shaw, S E; Ubertini, P

    2008-08-29

    Pulsar systems accelerate particles to immense energies. The detailed functioning of these engines is still poorly understood, but polarization measurements of high-energy radiation may allow us to locate where the particles are accelerated. We have detected polarized gamma rays from the vicinity of the Crab pulsar using data from the spectrometer on the International Gamma-Ray Astrophysics Laboratory satellite. Our results show polarization with an electric vector aligned with the spin axis of the neutron star, demonstrating that a substantial fraction of the high-energy electrons responsible for the polarized photons are produced in a highly ordered structure close to the pulsar.

  15. Renewed Gamma-Ray Emission from the blazar PKS 1510-089 Detected by AGILE

    NASA Astrophysics Data System (ADS)

    Munar-Adrover, P.; Pittori, C.; Bulgarelli, A.; Lucarelli, F.; Verrecchia, F.; Piano, G.; Fioretti, V.; Zoli, A.; Tavani, M.; Vercellone, S.; Minervini, G.; Striani, E.; Cardillo, M.; Gianotti, F.; Trifoglio, M.; Giuliani, A.; Mereghetti, S.; Caraveo, P.; Perotti, F.; Chen, A.; Argan, A.; Costa, E.; Del Monte, E.; Donnarumma, I.; Evangelista, Y.; Feroci, M.; Lazzarotto, F.; Lapshov, I.; Pacciani, L.; Soffitta, P.; Sabatini, S.; Vittorini, V.; Pucella, G.; Rapisarda, M.; Di Cocco, G.; Fuschino, F.; Galli, M.; Labanti, C.; Marisaldi, M.; Pellizzoni, A.; Pilia, M.; Trois, A.; Barbiellini, G.; Vallazza, E.; Longo, F.; Morselli, A.; Picozza, P.; Prest, M.; Lipari, P.; Zanello, D.; Cattaneo, P. W.; Rappoldi, A.; Colafrancesco, S.; Parmiggiani, N.; Ferrari, A.; Antonelli, A.; Giommi, P.; Salotti, L.; Valentini, G.; D'Amico, F.

    2016-09-01

    AGILE is currently detecting enhanced gamma-ray emission above 100 MeV from a source which position is consistent with the blazar PKS 1510-089. (the last activity of this source was reported in ATel #9350).

  16. Constraining Gamma-Ray Pulsar Gap Models with a Simulated Pulsar Population

    NASA Technical Reports Server (NTRS)

    Pierbattista, Marco; Grenier, I. A.; Harding, A. K.; Gonthier, P. L.

    2012-01-01

    With the large sample of young gamma-ray pulsars discovered by the Fermi Large Area Telescope (LAT), population synthesis has become a powerful tool for comparing their collective properties with model predictions. We synthesised a pulsar population based on a radio emission model and four gamma-ray gap models (Polar Cap, Slot Gap, Outer Gap, and One Pole Caustic). Applying gamma-ray and radio visibility criteria, we normalise the simulation to the number of detected radio pulsars by a select group of ten radio surveys. The luminosity and the wide beams from the outer gaps can easily account for the number of Fermi detections in 2 years of observations. The wide slot-gap beam requires an increase by a factor of 10 of the predicted luminosity to produce a reasonable number of gamma-ray pulsars. Such large increases in the luminosity may be accommodated by implementing offset polar caps. The narrow polar-cap beams contribute at most only a handful of LAT pulsars. Using standard distributions in birth location and pulsar spin-down power (E), we skew the initial magnetic field and period distributions in a an attempt to account for the high E Fermi pulsars. While we compromise the agreement between simulated and detected distributions of radio pulsars, the simulations fail to reproduce the LAT findings: all models under-predict the number of LAT pulsars with high E , and they cannot explain the high probability of detecting both the radio and gamma-ray beams at high E. The beaming factor remains close to 1.0 over 4 decades in E evolution for the slot gap whereas it significantly decreases with increasing age for the outer gaps. The evolution of the enhanced slot-gap luminosity with E is compatible with the large dispersion of gamma-ray luminosity seen in the LAT data. The stronger evolution predicted for the outer gap, which is linked to the polar cap heating by the return current, is apparently not supported by the LAT data. The LAT sample of gamma-ray pulsars

  17. Classifying gamma-ray bursts with Gaussian Mixture Model

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi-Bin; Yang, En-Bo; Choi, Chul-Sung; Chang, Heon-Young

    2016-11-01

    Using Gaussian Mixture Model (GMM) and expectation-maximization algorithm, we perform an analysis of time duration (T90) for Compton Gamma Ray Observatory (CGRO)/BATSE, Swift/BAT and Fermi/GBM gamma-ray bursts (GRBs). The T90 distributions of 298 redshift-known Swift/BAT GRBs have also been studied in both observer and rest frames. Bayesian information criterion has been used to compare between different GMM models. We find that two Gaussian components are better to describe the CGRO/BATSE and Fermi/GBM GRBs in the observer frame. Also, we caution that two groups are expected for the Swift/BAT bursts in the rest frame, which is consistent with some previous results. However, Swift GRBs in the observer frame seem to show a trimodal distribution, of which the superficial intermediate class may result from the selection effect of Swift/BAT.

  18. The Spectrum of Isotropic Diffuse Gamma-Ray Emission Between 100 Mev and 820 Gev

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Albert, A.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Brandt, T. J.; Hays, E.; Perkins, J. S.

    2014-01-01

    The gamma-ray sky can be decomposed into individually detected sources, diffuse emission attributed to the interactions of Galactic cosmic rays with gas and radiation fields, and a residual all-sky emission component commonly called the isotropic diffuse gamma-ray background (IGRB). The IGRB comprises all extragalactic emissions too faint or too diffuse to be resolved in a given survey, as well as any residual Galactic foregrounds that are approximately isotropic. The first IGRB measurement with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope (Fermi) used 10 months of sky-survey data and considered an energy range between 200 MeV and 100 GeV. Improvements in event selection and characterization of cosmic-ray backgrounds, better understanding of the diffuse Galactic emission, and a longer data accumulation of 50 months, allow for a refinement and extension of the IGRB measurement with the LAT, now covering the energy range from 100 MeV to 820 GeV. The IGRB spectrum shows a significant high-energy cutoff feature, and can be well described over nearly four decades in energy by a power law with exponential cutoff having a spectral index of 2.32 plus or minus 0.02 and a break energy of (279 plus or minus 52) GeV using our baseline diffuse Galactic emission model. The total intensity attributed to the IGRB is (7.2 plus or minus 0.6) x 10(exp -6) cm(exp -2) s(exp -1) sr(exp -1) above 100 MeV, with an additional +15%/-30% systematic uncertainty due to the Galactic diffuse foregrounds.

  19. EPISODIC TRANSIENT GAMMA-RAY EMISSION FROM THE MICROQUASAR CYGNUS X-1

    SciTech Connect

    Sabatini, S.; Tavani, M.; Vittorini, V.; Piano, G.; Del Monte, E.; Feroci, M.; Argan, A.; D'Ammando, F.; Costa, E.; De Paris, G.; Bulgarelli, A.; Trifoglio, M.; Gianotti, F.; Di Cocco, G.; Barbiellini, G.; Caraveo, P.; Chen, A. W.

    2010-03-20

    Cygnus X-1 (Cyg X-1) is the archetypal black hole binary system in our Galaxy. We report the main results of an extensive search for transient gamma-ray emission from Cygnus X-1 carried out in the energy range 100 MeV-3 GeV by the AGILE satellite, during the period 2007 July-2009 October. The total exposure time is about 300 days, during which the source was in the 'hard' X-ray spectral state. We divided the observing intervals in 2-4 week periods, and searched for transient and persistent emission. We report an episode of significant transient gamma-ray emission detected on 2009 October 16 in a position compatible with Cyg X-1 optical position. This episode, which occurred during a hard spectral state of Cyg X-1, shows that a 1-2 day time variable emission above 100 MeV can be produced during hard spectral states, having important theoretical implications for current Comptonization models for Cyg X-1 and other microquasars. Except for this one short timescale episode, no significant gamma-ray emission was detected by AGILE. By integrating all available data, we obtain a 2{sigma} upper limit for the total integrated flux of F {sub {gamma}}{sub ,U.L.} = 3 x 10{sup -8} ph cm{sup -2} s{sup -1} in the energy range 100 MeV-3 GeV. We then clearly establish the existence of a spectral cutoff in the energy range 1-100 MeV that applies to the typical hard state outside the flaring period and that confirms the historically known spectral cutoff above 1 MeV.

  20. Accurate Modeling of the Terrestrial Gamma-Ray Background for Homeland Security Applications

    SciTech Connect

    Sandness, Gerald A.; Schweppe, John E.; Hensley, Walter K.; Borgardt, James D.; Mitchell, Allison L.

    2009-10-24

    Abstract–The Pacific Northwest National Laboratory has developed computer models to simulate the use of radiation portal monitors to screen vehicles and cargo for the presence of illicit radioactive material. The gamma radiation emitted by the vehicles or cargo containers must often be measured in the presence of a relatively large gamma-ray background mainly due to the presence of potassium, uranium, and thorium (and progeny isotopes) in the soil and surrounding building materials. This large background is often a significant limit to the detection sensitivity for items of interest and must be modeled accurately for analyzing homeland security situations. Calculations of the expected gamma-ray emission from a disk of soil and asphalt were made using the Monte Carlo transport code MCNP and were compared to measurements made at a seaport with a high-purity germanium detector. Analysis revealed that the energy spectrum of the measured background could not be reproduced unless the model included gamma rays coming from the ground out to distances of at least 300 m. The contribution from beyond about 50 m was primarily due to gamma rays that scattered in the air before entering the detectors rather than passing directly from the ground to the detectors. These skyshine gamma rays contribute tens of percent to the total gamma-ray spectrum, primarily at energies below a few hundred keV. The techniques that were developed to efficiently calculate the contributions from a large soil disk and a large air volume in a Monte Carlo simulation are described and the implications of skyshine in portal monitoring applications are discussed.

  1. MAGIC CONSTRAINTS ON {gamma}-RAY EMISSION FROM CYGNUS X-3

    SciTech Connect

    Aleksic, J.; Blanch, O.; Antonelli, L. A.; Bonnoli, G.; Antoranz, P.; Backes, M.; Baixeras, C.; Barrio, J. A.; Bastieri, D.; Gonzalez, J. Becerra; Bednarek, W.; Berdyugin, A.; Berger, K.; Bernardini, E.; Biland, A.; Boller, A.; Bock, R. K.; Tridon, D. Borla; Bordas, P.; Bosch-Ramon, V. E-mail: tysaito@mpp.mpg.d

    2010-09-20

    Cygnus X-3 is a microquasar consisting of an accreting compact object orbiting around a Wolf-Rayet star. It has been detected at radio frequencies and up to high-energy {gamma} rays (above 100 MeV). However, many models also predict a very high energy (VHE) emission (above hundreds of GeV) when the source displays relativistic persistent jets or transient ejections. Therefore, detecting such emission would improve the understanding of the jet physics. The imaging atmospheric Cherenkov telescope MAGIC observed Cygnus X-3 for about 70 hr between 2006 March and 2009 August in different X-ray/radio spectral states and also during a period of enhanced {gamma}-ray emission. MAGIC found no evidence for a VHE signal from the direction of the microquasar. An upper limit to the integral flux for energies higher than 250 GeV has been set to 2.2 x 10{sup -12} photons cm{sup -2} s{sup -1} (95% confidence level). This is the best limit so far to the VHE emission from this source. The non-detection of a VHE signal during the period of activity in the high-energy band sheds light on the location of the possible VHE radiation favoring the emission from the innermost region of the jets, where absorption is significant. The current and future generations of Cherenkov telescopes may detect a signal under precise spectral conditions.

  2. Comptonization signatures in the prompt emission of gamma-ray bursts

    SciTech Connect

    Frontera, F.; Farinelli, R.; Dichiara, S.; Guidorzi, C.; Titarchuk, L.; Amati, L.; Landi, R.

    2013-12-20

    We report results of a systematic study of the broadband (2-2000 keV) time-resolved prompt emission spectra of a sample of gamma-ray bursts (GRBs) detected with both Wide Field Cameras (WFCs) on board the BeppoSAX satellite and the Burst and Transient Source Experiment (BATSE) on board the Compton Gamma Ray Observatory. The main goal of this paper is to test spectral models of the GRB prompt emission that have recently been proposed. In particular, we test a recent photospheric model proposed, i.e., blackbody plus power law, the addition of a blackbody emission to the Band function in the cases in which this function does not fit the data, and a recent Comptonization model. By considering the few spectra for which the simple Band function does not provide a fully acceptable fit to the data, we find a statistically significant better fit by adding a blackbody to this function only in one case. We confirm earlier results found fitting the BATSE spectra alone with a blackbody plus power law. Instead, when the BATSE GRB spectra are joined to those obtained with WFCs (2-28 keV), this model becomes unacceptable in most time intervals in which we subdivide the GRB light curves. We find instead that the Comptonization model is always acceptable, even in the few cases in which the Band function is inconsistent with the data. We discuss the implications of these results.

  3. A Giant Radio Flare from Cygnus X-3 with Associated Gamma-Ray Emission

    NASA Technical Reports Server (NTRS)

    Corbel, S.; Dubus, G.; Tomsick, J. A.; Szostek, A.; Corbet, R. H. D.; Miller-Jones, J. C. A.; Richards, J. L.; Pooley, G.; Trushkin, S.; Dubois, R.; Hill, A. B.; Kerr, M.; Max-Moerbeck, W.; Readhead, A. C. S.; Bodaghee, A.; Tudose, V.; Parent, D.; Wilms, J.; Pottschmidt, K.

    2012-01-01

    With frequent flaring activity of its relativistic jets, Cygnus X-3 (Cyg X-3) is one of the most active microquasars and is the only Galactic black hole candidate with confirmed high energy gamma-ray emission, thanks to detections by Fermi/LAT and AGILE. In 2011, Cyg X-3 was observed to transit to a soft X-ray state, which is known to be associated with high-energy gamma-ray emission. We present the results of a multiwavelength campaign covering a quenched state, when radio emission from Cyg X-3 is at its weakest and the X-ray spectrum is very soft. A giant (approx 20 Jy) optically thin radio flare marks the end of the quenched state, accompanied by rising non-thermal hard X-rays. Fermi/LAT observations (E greater than or equal 100 MeV) reveal renewed gamma-ray activity associated with this giant radio flare, suggesting a common origin for all non-thermal components. In addition, current observations unambiguously show that the gamma-ray emission is not exclusively related to the rare giant radio flares. A 3-week period of gamma-ray emission is also detected when Cyg X-3 was weakly flaring in radio, right before transition to the radio quenched state. No gamma rays are observed during the one-month long quenched state, when the radio flux is weakest. Our results suggest transitions into and out of the ultrasoft X-ray (radio quenched) state trigger gamma-ray emission, implying a connection to the accretion process, and also that the gamma-ray activity is related to the level of radio flux (and possibly shock formation), strengthening the connection to the relativistic jets.

  4. Modeling and Maximum Likelihood Fitting of Gamma-Ray and Radio Light Curves of Millisecond Pulsars Detected with Fermi

    NASA Technical Reports Server (NTRS)

    Johnson, T. J.; Harding, A. K.; Venter, C.

    2012-01-01

    Pulsed gamma rays have been detected with the Fermi Large Area Telescope (LAT) from more than 20 millisecond pulsars (MSPs), some of which were discovered in radio observations of bright, unassociated LAT sources. We have fit the radio and gamma-ray light curves of 19 LAT-detected MSPs in the context of geometric, outermagnetospheric emission models assuming the retarded vacuum dipole magnetic field using a Markov chain Monte Carlo maximum likelihood technique. We find that, in many cases, the models are able to reproduce the observed light curves well and provide constraints on the viewing geometries that are in agreement with those from radio polarization measurements. Additionally, for some MSPs we constrain the altitudes of both the gamma-ray and radio emission regions. The best-fit magnetic inclination angles are found to cover a broader range than those of non-recycled gamma-ray pulsars.

  5. Modeling of Pulses in Terrestrial Gamma-ray Flashes

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Celestin, Sebastien; Pasko, Victor

    2015-04-01

    Terrestrial Gamma-ray Flashes (TGFs) are high-energy photon bursts originating from the Earth's atmosphere that are associated with lightning activities. After their discovery in 1994 by the Burst and Transient Source Experiment (BATSE) detector aboard the Compton Gamma-Ray Observatory [Fishman et al., Science, 264, 1313, 1994], this phenomenon has been further observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) [Smith et al., Science, 307, 1085, 2005], the Fermi Gamma-ray Space Telescope [Briggs et al., JGR, 115, A07323, 2010] and the Astrorivelatore Gamma a Immagini Leggero (AGILE) satellite [Marisaldi et al., JGR, 115, A00E13, 2010]. Photon spectra corresponding to the mechanism of relativistic runaway electron avalanches (RREAs) usually provide a very good agreement with satellite observations [Dwyer and Smith, GRL, 32, L22804, 2005]. On the other hand, Celestin and Pasko [JGR, 116, A03315, 2011] have shown theoretically that the large flux of thermal runaway electrons generated by streamers during the negative corona flash stage of stepping lightning leaders in intracloud lightning flashes could be responsible for TGFs. Recently, based on analysis of the temporal profiles of 278 TGF events observed by the Fermi Gamma-Ray Burst Monitor, Foley et al. [JGR, 119, 5931, 2014] have suggested that 67% of TGF pulses detected are asymmetric and these asymmetric pulses are consistent with the production mechanism of TGFs by relativistic feedback discharges. In the present work, we employ a Monte Carlo model to study the temporal distribution of photons at low-orbit satellite altitudes during TGF events. Using the pulse fitting method described in [Foley et al., 2014], we further investigate the characteristics of TGF pulses. We mainly focus on the effects of Compton scattering on the symmetry properties and the rise and fall times of TGF pulses.

  6. Pulsed Gamma Rays from the Original Millisecond and Black Widow Pulsars: A Case for Caustic Radio Emission?

    NASA Technical Reports Server (NTRS)

    Guillemot, L.; Johnson, T. J.; Venter, C.; Kerr, M.; Pancrazi, B.; Livingstone, M.; Janssen, G. H.; Jaroenjittichai, P.; Kramer, M.; Cognard, I.; Stappers, B. W.; Harding, A. K.; Camilo, F.; Espinoza, C. M.; Freire, P. C. C.; Gargano, F.; Grove, J. E.; Johnston, S.; Michelson, P. F.; Noutsos, A.; Parent, D.; Ransom, S. M.; Ray, P. S.; Shannon, R.; Smith, D. A.

    2011-01-01

    We report the detection of pulsed gamma-ray emission from the fast millisecond pulsars (MSPs) B1937+21 (also known as J1939+2134) and B1957+20 (J1959+2048) using 18 months of survey data recorded by the Fermi Large Area Telescope (LAT) and timing solutions based on radio observations conducted at the Westerbork and Nancay radio telescopes. In addition, we analyzed archival RXTE and XMM-Newton X-ray data for the two MSPs, confirming the X-ray emission properties of PSR B1937+21 and finding evidence (approx. 4(sigma)) for pulsed emission from PSR B1957+20 for the first time. In both cases the gamma-ray emission profile is characterized by two peaks separated by half a rotation and are in close alignment with components observed in radio and X-rays. These two pulsars join PSRs J0034..0534 and J2214+3000 to form an emerging class of gamma-ray MSPs with phase-aligned peaks in different energy bands. The modeling of the radio and gamma-ray emission pro les suggests co-located emission regions in the outer magnetosphere.

  7. PULSED GAMMA RAYS FROM THE ORIGINAL MILLISECOND AND BLACK WIDOW PULSARS: A CASE FOR CAUSTIC RADIO EMISSION?

    SciTech Connect

    Guillemot, L.; Kramer, M.; Freire, P. C. C.; Noutsos, A.; Johnson, T. J.; Harding, A. K.; Venter, C.; Kerr, M.; Michelson, P. F.; Pancrazi, B.; Livingstone, M.; Janssen, G. H.; Jaroenjittichai, P.; Stappers, B. W.; Espinoza, C. M.; Cognard, I.; Camilo, F.; Gargano, F.; Grove, J. E.; Johnston, S. E-mail: tyrel.j.johnson@gmail.com E-mail: kerrm@stanford.edu; and others

    2012-01-01

    We report the detection of pulsed gamma-ray emission from the fast millisecond pulsars (MSPs) B1937+21 (also known as J1939+2134) and B1957+20 (J1959+2048) using 18 months of survey data recorded by the Fermi Large Area Telescope and timing solutions based on radio observations conducted at the Westerbork and Nancay radio telescopes. In addition, we analyzed archival Rossi X-ray Timing Explorer and XMM-Newton X-ray data for the two MSPs, confirming the X-ray emission properties of PSR B1937+21 and finding evidence ({approx}4{sigma}) for pulsed emission from PSR B1957+20 for the first time. In both cases the gamma-ray emission profile is characterized by two peaks separated by half a rotation and are in close alignment with components observed in radio and X-rays. These two pulsars join PSRs J0034-0534 and J2214+3000 to form an emerging class of gamma-ray MSPs with phase-aligned peaks in different energy bands. The modeling of the radio and gamma-ray emission profiles suggests co-located emission regions in the outer magnetosphere.

  8. SEARCH FOR PROMPT NEUTRINO EMISSION FROM GAMMA-RAY BURSTS WITH ICECUBE

    SciTech Connect

    Aartsen, M. G.; Ackermann, M.; Berghaus, P.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Arguelles, C.; BenZvi, S.; Ahrens, M.; Altmann, D.; Anderson, T.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Tjus, J. Becker; Becker, K.-H.; and others

    2015-05-20

    We present constraints derived from a search of four years of IceCube data for a prompt neutrino flux from gamma-ray bursts (GRBs). A single low-significance neutrino, compatible with the atmospheric neutrino background, was found in coincidence with one of the 506 observed bursts. Although GRBs have been proposed as candidate sources for ultra-high-energy cosmic rays, our limits on the neutrino flux disfavor much of the parameter space for the latest models. We also find that no more than ∼1% of the recently observed astrophysical neutrino flux consists of prompt emission from GRBs that are potentially observable by existing satellites.

  9. Search for Prompt Neutrino Emission from Gamma-Ray Bursts with IceCube

    NASA Astrophysics Data System (ADS)

    Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Brayeur, L.; Bretz, H.-P.; Brown, A. M.; Buzinsky, N.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Christy, B.; Clark, K.; Classen, L.; Clevermann, F.; Coenders, S.; Cowen, D. F.; Cruz Silva, A. H.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; Dunkman, M.; Eagan, R.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Eisch, J.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Frantzen, K.; Fuchs, T.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Gier, D.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Goodman, J. A.; Góra, D.; Grant, D.; Gretskov, P.; Groh, J. C.; Groß, A.; Ha, C.; Haack, C.; Haj Ismail, A.; Hallen, P.; Hallgren, A.; Halzen, F.; Hanson, K.; Hebecker, D.; Heereman, D.; Heinen, D.; Helbing, K.; Hellauer, R.; Hellwig, D.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Homeier, A.; Hoshina, K.; Huang, F.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Japaridze, G. S.; Jero, K.; Jlelati, O.; Jurkovic, M.; Kaminsky, B.; Kappes, A.; Karg, T.; Karle, A.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kheirandish, A.; Kiryluk, J.; Kläs, J.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Koob, A.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Kriesten, A.; Krings, K.; Kroll, G.; Kroll, M.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larsen, D. T.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Lünemann, J.; Madsen, J.; Maggi, G.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meli, A.; Meures, T.; Miarecki, S.; Middell, E.; Middlemas, E.; Milke, N.; Miller, J.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Odrowski, S.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Paul, L.; Penke, Ö.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Pütz, J.; Quinnan, M.; Rädel, L.; Rameez, M.; Rawlins, K.; Redl, P.; Rees, I.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Riedel, B.; Robertson, S.; Rodrigues, J. P.; Rongen, M.; Rott, C.; Ruhe, T.; Ruzybayev, B.; Ryckbosch, D.; Saba, S. M.; Sander, H.-G.; Sandroos, J.; Santander, M.; Sarkar, S.; Schatto, K.; Scheriau, F.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schukraft, A.; Schulte, L.; Schulz, O.; Seckel, D.; Sestayo, Y.; Seunarine, S.; Shanidze, R.; Smith, M. W. E.; Soldin, D.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stanisha, N. A.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Taavola, H.; Taboada, I.; Tamburro, A.; Tepe, A.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Tosi, D.; Tselengidou, M.; Unger, E.; Usner, M.; Vallecorsa, S.; van Eijndhoven, N.; Vandenbroucke, J.; van Santen, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallraff, M.; Weaver, Ch.; Wellons, M.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Whitehorn, N.; Wichary, C.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Ziemann, J.; Zoll, M.

    2015-05-01

    We present constraints derived from a search of four years of IceCube data for a prompt neutrino flux from gamma-ray bursts (GRBs). A single low-significance neutrino, compatible with the atmospheric neutrino background, was found in coincidence with one of the 506 observed bursts. Although GRBs have been proposed as candidate sources for ultra-high-energy cosmic rays, our limits on the neutrino flux disfavor much of the parameter space for the latest models. We also find that no more than ˜1% of the recently observed astrophysical neutrino flux consists of prompt emission from GRBs that are potentially observable by existing satellites.

  10. Predictions of Gamma-ray Emission from Globular Cluster Millisecond Pulsars Above 100 MeV

    NASA Technical Reports Server (NTRS)

    Venter, C.; de Jaker, O.C.; Clapson, A.C.

    2009-01-01

    The recent Fermi detection of the globular cluster (GC) 47 Tucanae highlighted the importance of modeling collective gamma-ray emission of millisecond pulsars (MSPs) in GCs. Steady flux from such populations is also expected in the very high energy (VHE) domain covered by ground-based Cherenkov telescopes. We present pulsed curvature radiation (CR) as well as unpulsed inverse Compton (IC) calculations for an ensemble of MSPs in the GCs 47 Tucanae and Terzan 5. We demonstrate that the CR from these GCs should be easily detectable for Fermi, while constraints on the total number of MSps and the nebular B-field may be derived using the IC flux components.

  11. ORBITAL-PHASE-DEPENDENT {gamma}-RAY EMISSIONS FROM THE BLACK WIDOW PULSAR

    SciTech Connect

    Wu, E. M. H.; Takata, J.; Cheng, K. S.; Huang, R. H. H.; Kong, A. K. H.; Tam, P. H. T.; Wu, J. H. K.; Hui, C. Y. E-mail: takata@hku.hk

    2012-12-20

    We report on evidence for orbital phase dependence of the {gamma}-ray emission from the PSR B1957+20 black widow system using data from the Fermi Large Area Telescope. We divide an orbital cycle into two regions: one containing the inferior conjunction and the other containing the rest of the orbital cycle. We show that the observed spectra for the different orbital regions are fitted by different functional forms. The spectrum of the orbital region containing the inferior conjunction can be described by a power law with an exponential cutoff (PLE) model, which also gives the best-fit model for the orbital phase without the inferior conjunction, plus an extra component above {approx}2.7 GeV. The emission above 3 GeV in this region is detected with a {approx}7{sigma} confidence level. The {gamma}-ray data above {approx}2.7 GeV are observed to be modulated at the orbital period at the {approx}2.3{sigma} level. We anticipate that the PLE component dominant below {approx}2.7 GeV originates from the pulsar magnetosphere. We also show that inverse Compton scattering of the thermal radiation of the companion star off a ''cold'' ultrarelativistic pulsar wind can explain the extra component above {approx}2.7 GeV. The black widow pulsar PSR B1957+20 may be a member of a new class of object, in the sense that the system is showing {gamma}-ray emission with both magnetospheric and pulsar wind origins.

  12. Broad Line Radio Galaxies Observed with Fermi-LAT: The Origin of the GeV Gamma-Ray Emission

    SciTech Connect

    Kataoka, J.; Stawarz, L.; Takahashi, Y.; Cheung, C.C.; Hayashida, M.; Grandi, P.; Burnett, T.H.; Celotti, A.; Fegan, S.J.; Fortin, P.; Maeda, K.; Nakamori, T.; Taylor, G.B.; Tosti, G.; Digel, S.W.; McConville, W.; Finke, J.; D'Ammando, F.; /IASF, Palermo /INAF, Rome

    2012-06-07

    We report on a detailed investigation of the {gamma}-ray emission from 18 broad line radio galaxies (BLRGs) based on two years of Fermi Large Area Telescope (LAT) data. We confirm the previously reported detections of 3C 120 and 3C 111 in the GeV photon energy range; a detailed look at the temporal characteristics of the observed {gamma}-ray emission reveals in addition possible flux variability in both sources. No statistically significant {gamma}-ray detection of the other BLRGs was however found in the considered dataset. Though the sample size studied is small, what appears to differentiate 3C 111 and 3C 120 from the BLRGs not yet detected in {gamma}-rays is the particularly strong nuclear radio flux. This finding, together with the indications of the {gamma}-ray flux variability and a number of other arguments presented, indicate that the GeV emission of BLRGs is most likely dominated by the beamed radiation of relativistic jets observed at intermediate viewing angles. In this paper we also analyzed a comparison sample of high accretion-rate Seyfert 1 galaxies, which can be considered radio-quiet counterparts of BLRGs, and found none were detected in {gamma}-rays. A simple phenomenological hybrid model applied for the broad-band emission of the discussed radio-loud and radio-quiet type 1 active galaxies suggests that the relative contribution of the nuclear jets to the accreting matter is {ge} 1% on average for BLRGs, while {le} 0.1% for Seyfert 1 galaxies.

  13. Polarized Gamma-Ray Emission from the Galactic Black Hole Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Laurent, P.; Rodriquez, J.; Wilms, J.; Bel, M. Cadolle; Pottschmidt, K.; Grinberg, V.

    2011-01-01

    Because of their inherently high flux allowing the detection of clear signals, black hole X-ray binaries are interesting candidates for polarization studies, even if no polarization signals have been observed from them before. Such measurements would provide further detailed insight into these sources' emission mechanisms. We measured the polarization of the gamma-ray emission from the black hole binary system Cygnus X-I with the INTEGRAL/IBIS telescope. Spectral modeling ofthe data reveals two emission mechanisms: The 250-400 keY data are consistent with emission dominated by Compton scattering on thermal electrons and are weakly polarized. The second spectral component seen in the 400keV-2MeV band is by contrast strongly polarized, revealing that the MeV emission is probably related to the jet first detected in the radio band.

  14. Internal energy dissipation of gamma-ray bursts observed with Swift: Precursors, prompt gamma-rays, extended emission, and late X-ray flares

    SciTech Connect

    Hu, You-Dong; Liang, En-Wei; Xi, Shao-Qiang; Peng, Fang-Kun; Lu, Rui-Jing; Lü, Lian-Zhong; Zhang, Bing E-mail: Zhang@physics.unlv.edu

    2014-07-10

    We jointly analyze the gamma-ray burst (GRB) data observed with Burst Alert Telescope (BAT) and X-ray Telescope on board the Swift mission to present a global view on the internal energy dissipation processes in GRBs, including precursors, prompt gamma-ray emission, extended soft gamma-ray emission, and late X-ray flares. The Bayesian block method is utilized to analyze the BAT light curves to identify various emission episodes. Our results suggest that these emission components likely share the same physical origin, which is the repeated activation of the GRB central engine. What we observe in the gamma-ray band may be a small part of more extended underlying activities. The precursor emission, which is detected in about 10% of Swift GRBs, is preferably detected in those GRBs that have a massive star core-collapse origin. The soft extended emission tail, on the other hand, is preferably detected in those GRBs that have a compact star merger origin. Bright X-ray emission is detected during the BAT quiescent phases prior to subsequent gamma-ray peaks, implying that X-ray emission may be detectable prior the BAT trigger time. Future GRB alert instruments with soft X-ray capability are essential for revealing the early stages of GRB central engine activities, and shedding light on jet composition and the jet launching mechanism in GRBs.

  15. An Emerging Class of Gamma-ray Flares from Blazars: Beyond One-zone Models

    NASA Astrophysics Data System (ADS)

    Tavani, M.; Vittorini, V.; Cavaliere, A.

    2015-11-01

    Blazars radiate from relativistic plasma jets with bulk Lorentz factors {{Γ }}∼ 10, closely aligned along our line of sight. In a number of blazars of the flat-spectrum radio quasar type, such as 3C 454.3 and 3C 279, gamma-ray flares have recently been detected with very high luminosity and few or no counterparts in the optical and soft X-ray bands. They challenge the current one-zone leptonic models of emissions from within the broad-line region (BLR). The latter envisage the optical/X-ray emissions to be produced as synchrotron radiation by the same population of highly relativistic electrons in the jet that would also yield the gamma rays by inverse Compton upscattering of surrounding soft photons. To meet the challenge, we present here a model based on primary synchrotron photons emitted in the BLR by a plasmoid moving out with the jet and scattered back toward the incoming plasmoid by an outer plasma clump acting as a mirror. We consider both a scenario based on a static mirror located outside the BLR and an alternative provided by a moving mirror geometry. We show that mirroring phenomena can locally enhance the density and anisotropy with associated relativistic boosting of soft photons within the jet, so as to trigger bright inverse Compton gamma-ray transients from nearly steady optical/X-ray synchrotron emissions. In this picture we interpret the peculiarly asymmetric light curves of the recently detected gamma-ray flares from 3C 279. Our scenario provides a promising start to understanding the widening class of bright and transient gamma-ray activities in blazars.

  16. Detection of high-energy gamma-ray emission from the globular cluster 47 Tucanae with Fermi.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Atwood, W B; Axelsson, M; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Celik, O; Charles, E; Chaty, S; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Cutini, S; Dermer, C D; de Palma, F; Digel, S W; Dormody, M; do Couto e Silva, E; Drell, P S; Dubois, R; Dumora, D; Farnier, C; Favuzzi, C; Fegan, S J; Focke, W B; Frailis, M; Fukazawa, Y; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grove, J E; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Horan, D; Hughes, R E; Jóhannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kawai, N; Kerr, M; Knödlseder, J; Kuehn, F; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Makeev, A; Mazziotta, M N; McConville, W; McEnery, J E; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Pierbattista, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Razzano, M; Rea, N; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, L S; Rodriguez, A Y; Romani, R W; Roth, M; Ryde, F; Sadrozinski, H F-W; Sanchez, D; Sander, A; Saz Parkinson, P M; Sgrò, C; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Starck, J-L; Strickman, M S; Suson, D J; Tajima, H; Takahashi, H; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vasileiou, V; Vilchez, N; Vitale, V; Wang, P; Webb, N; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M

    2009-08-14

    We report the detection of gamma-ray emissions above 200 megaelectron volts at a significance level of 17sigma from the globular cluster 47 Tucanae, using data obtained with the Large Area Telescope onboard the Fermi Gamma-ray Space Telescope. Globular clusters are expected to emit gamma rays because of the large populations of millisecond pulsars that they contain. The spectral shape of 47 Tucanae is consistent with gamma-ray emission from a population of millisecond pulsars. The observed gamma-ray luminosity implies an upper limit of 60 millisecond pulsars present in 47 Tucanae.

  17. Measurement of the high-energy gamma-ray emission from the Moon with the Fermi Large Area Telescope

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; Ajello, M.; Albert, A.; Atwood, W. B.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Blandford, R. D.; Bonino, R.; Bottacini, E.; Bregeon, J.; Bruel, P.; Buehler, R.; Caliandro, G. A.; Cameron, R. A.; Caragiulo, M.; Caraveo, P. A.; Cavazzuti, E.; Cecchi, C.; Chekhtman, A.; Chiang, J.; Chiaro, G.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Costanza, F.; Cuoco, A.; Cutini, S.; D'Ammando, F.; de Angelis, A.; de Palma, F.; Desiante, R.; Digel, S. W.; Di Venere, L.; Drell, P. S.; Favuzzi, C.; Fegan, S. J.; Focke, W. B.; Franckowiak, A.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Giglietto, N.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Grove, J. E.; Guiriec, S.; Harding, A. K.; Hewitt, J. W.; Horan, D.; Hou, X.; Iafrate, G.; Jóhannesson, G.; Kamae, T.; Kuss, M.; Larsson, S.; Latronico, L.; Li, J.; Li, L.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Magill, J.; Maldera, S.; Manfreda, A.; Mayer, M.; Mazziotta, M. N.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Monzani, M. E.; Morselli, A.; Murgia, S.; Nuss, E.; Omodei, N.; Orlando, E.; Ormes, J. F.; Paneque, D.; Perkins, J. S.; Pesce-Rollins, M.; Petrosian, V.; Piron, F.; Pivato, G.; Rainò, S.; Rando, R.; Razzano, M.; Reimer, A.; Reimer, O.; Reposeur, T.; Sgrò, C.; Siskind, E. J.; Spada, F.; Spandre, G.; Spinelli, P.; Takahashi, H.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Torres, D. F.; Tosti, G.; Troja, E.; Vianello, G.; Winer, B. L.; Wood, K. S.; Yassine, M.; Cerutti, F.; Ferrari, A.; Sala, P. R.; Fermi LAT Collaboration

    2016-04-01

    We have measured the gamma-ray emission spectrum of the Moon using the data collected by the Large Area Telescope onboard the Fermi satellite during its first seven years of operation, in the energy range from 30 MeV up to a few GeV. We have also studied the time evolution of the flux, finding a correlation with the solar activity. We have developed a full Monte Carlo simulation describing the interactions of cosmic rays with the lunar surface. The results of the present analysis can be explained in the framework of this model, where the production of gamma rays is due to the interactions of cosmic-ray proton and helium nuclei with the surface of the Moon. Finally, we have used our simulation to derive the cosmic-ray proton and helium spectra near Earth from the Moon gamma-ray data.

  18. Ultra-High Rate Measurements of Spent Fuel Gamma-Ray Emissions

    NASA Astrophysics Data System (ADS)

    Rodriguez, Douglas; Vandevender, Brent; Wood, Lynn; Glasgow, Brian; Taubman, Matthew; Wright, Michael; Dion, Michael; Pitts, Karl; Runkle, Robert; Campbell, Luke; Fast, James

    2014-03-01

    Presently there are over 200,000 irradiated spent nuclear fuel (SNF) assemblies in the world, each containing a concerning amount of weapons-usable material. Both facility operators and safeguards inspectors want to improve composition determination. Current measurements are expensive and difficult so new methods are developed through models. Passive measurements are limited since a few specific decay products and the associated down-scatter overwhelm the gamma rays of interest. Active interrogation methods produce gamma rays beyond 3 MeV, minimizing the impact of the passive emissions that drop off sharply above this energy. New devices like the Ultra-High Rate Germanium (UHRGe) detector are being developed to advance these novel measurement methods. Designed for reasonable resolution at 106 s-1 output rates (compared to ~ 1 - 10 e 3 s-1 standards), SNF samples were directly measured using UHRGe and compared to models. Model verification further enables using Los Alamos National Laboratory SNF assembly models, developed under the Next Generation Safeguards Initiative, to determine emission and signal expectations. Measurement results and future application requirements for UHRGe will be discussed.

  19. REVISITING THE LIGHT CURVES OF GAMMA-RAY BURSTS IN THE RELATIVISTIC TURBULENCE MODEL

    SciTech Connect

    Lin, Da-Bin; Gu, Wei-Min; Hou, Shu-Jin; Liu, Tong; Sun, Mou-Yuan; Lu, Ju-Fu E-mail: lujf@xmu.edu.cn

    2013-10-10

    Rapid temporal variability has been widely observed in the light curves of gamma-ray bursts (GRBs). One possible mechanism for such variability is related to the relativistic eddies in the jet. In this paper, we include the contribution of the inter-eddy medium together with the eddies to the gamma-ray emission. We show that the gamma-ray emission can either lead or lag behind the observed synchrotron emission, where the latter originates in the inter-eddy medium and provides most of the seed photons for producing gamma-ray emission through inverse Compton scattering. As a consequence, we argue that the lead/lag found in non-stationary short-lived light curves may not reveal the intrinsic lead/lag of different emission components. In addition, our results may explain the lead of gamma-ray emission with respect to optical emission observed in GRB 080319B.

  20. Diffuse emission of high-energy neutrinos from gamma-ray burst fireballs

    SciTech Connect

    Tamborra, Irene; Ando, Shin'ichiro E-mail: s.ando@uva.nl

    2015-09-01

    Gamma-ray bursts (GRBs) have been suggested as possible sources of the high-energy neutrino flux recently detected by the IceCube telescope. We revisit the fireball emission model and elaborate an analytical prescription to estimate the high-energy neutrino prompt emission from pion and kaon decays, assuming that the leading mechanism for the neutrino production is lepto-hadronic. To this purpose, we include hadronic, radiative and adiabatic cooling effects and discuss their relevance for long- (including high- and low-luminosity) and short-duration GRBs. The expected diffuse neutrino background is derived, by requiring that the GRB high-energy neutrino counterparts follow up-to-date gamma-ray luminosity functions and redshift evolutions of the long and short GRBs. Although dedicated stacking searches have been unsuccessful up to now, we find that GRBs could contribute up to a few % to the observed IceCube high-energy neutrino flux for sub-PeV energies, assuming that the latter has a diffuse origin. Gamma-ray bursts, especially low-luminosity ones, could however be the main sources of the IceCube high-energy neutrino flux in the PeV range. While high-luminosity and low-luminosity GRBs have comparable intensities, the contribution from the short-duration component is significantly smaller. Our findings confirm the most-recent IceCube results on the GRB searches and suggest that larger exposure is mandatory to detect high-energy neutrinos from high-luminosity GRBs in the near future.

  1. Variable very-high-energy gamma-ray emission from the microquasar LS I +61 303.

    PubMed

    Albert, J; Aliu, E; Anderhub, H; Antoranz, P; Armada, A; Asensio, M; Baixeras, C; Barrio, J A; Bartelt, M; Bartko, H; Bastieri, D; Bavikadi, S R; Bednarek, W; Berger, K; Bigongiari, C; Biland, A; Bisesi, E; Bock, R K; Bordas, P; Bosch-Ramon, V; Bretz, T; Britvitch, I; Camara, M; Carmona, E; Chilingarian, A; Ciprini, S; Coarasa, J A; Commichau, S; Contreras, J L; Cortina, J; Curtef, V; Danielyan, V; Dazzi, F; De Angelis, A; de Los Reyes, R; De Lotto, B; Domingo-Santamaría, E; Dorner, D; Doro, M; Errando, M; Fagiolini, M; Ferenc, D; Fernández, E; Firpo, R; Flix, J; Fonseca, M V; Font, L; Fuchs, M; Galante, N; Garczarczyk, M; Gaug, M; Giller, M; Goebel, F; Hakobyan, D; Hayashida, M; Hengstebeck, T; Höhne, D; Hose, J; Hsu, C C; Isar, P G; Jacon, P; Kalekin, O; Kosyra, R; Kranich, D; Laatiaoui, M; Laille, A; Lenisa, T; Liebing, P; Lindfors, E; Lombardi, S; Longo, F; López, J; López, M; Lorenz, E; Lucarelli, F; Majumdar, P; Maneva, G; Mannheim, K; Mansutti, O; Mariotti, M; Martínez, M; Mase, K; Mazin, D; Merck, C; Meucci, M; Meyer, M; Miranda, J M; Mirzoyan, R; Mizobuchi, S; Moralejo, A; Nilsson, K; Oña-Wilhelmi, E; Orduña, R; Otte, N; Oya, I; Paneque, D; Paoletti, R; Paredes, J M; Pasanen, M; Pascoli, D; Pauss, F; Pavel, N; Pegna, R; Persic, M; Peruzzo, L; Piccioli, A; Poller, M; Pooley, G; Prandini, E; Raymers, A; Rhode, W; Ribó, M; Rico, J; Riegel, B; Rissi, M; Robert, A; Romero, G E; Rügamer, S; Saggion, A; Sánchez, A; Sartori, P; Scalzotto, V; Scapin, V; Schmitt, R; Schweizer, T; Shayduk, M; Shinozaki, K; Shore, S N; Sidro, N; Sillanpää, A; Sobczynska, D; Stamerra, A; Stark, L S; Takalo, L; Temnikov, P; Tescaro, D; Teshima, M; Tonello, N; Torres, A; Torres, D F; Turini, N; Vankov, H; Vitale, V; Wagner, R M; Wibig, T; Wittek, W; Zanin, R; Zapatero, J

    2006-06-23

    Microquasars are binary star systems with relativistic radio-emitting jets. They are potential sources of cosmic rays and can be used to elucidate the physics of relativistic jets. We report the detection of variable gamma-ray emission above 100 gigaelectron volts from the microquasar LS I 61 + 303. Six orbital cycles were recorded. Several detections occur at a similar orbital phase, which suggests that the emission is periodic. The strongest gamma-ray emission is not observed when the two stars are closest to one another, implying a strong orbital modulation of the emission or absorption processes. PMID:16709745

  2. Variable very-high-energy gamma-ray emission from the microquasar LS I +61 303.

    PubMed

    Albert, J; Aliu, E; Anderhub, H; Antoranz, P; Armada, A; Asensio, M; Baixeras, C; Barrio, J A; Bartelt, M; Bartko, H; Bastieri, D; Bavikadi, S R; Bednarek, W; Berger, K; Bigongiari, C; Biland, A; Bisesi, E; Bock, R K; Bordas, P; Bosch-Ramon, V; Bretz, T; Britvitch, I; Camara, M; Carmona, E; Chilingarian, A; Ciprini, S; Coarasa, J A; Commichau, S; Contreras, J L; Cortina, J; Curtef, V; Danielyan, V; Dazzi, F; De Angelis, A; de Los Reyes, R; De Lotto, B; Domingo-Santamaría, E; Dorner, D; Doro, M; Errando, M; Fagiolini, M; Ferenc, D; Fernández, E; Firpo, R; Flix, J; Fonseca, M V; Font, L; Fuchs, M; Galante, N; Garczarczyk, M; Gaug, M; Giller, M; Goebel, F; Hakobyan, D; Hayashida, M; Hengstebeck, T; Höhne, D; Hose, J; Hsu, C C; Isar, P G; Jacon, P; Kalekin, O; Kosyra, R; Kranich, D; Laatiaoui, M; Laille, A; Lenisa, T; Liebing, P; Lindfors, E; Lombardi, S; Longo, F; López, J; López, M; Lorenz, E; Lucarelli, F; Majumdar, P; Maneva, G; Mannheim, K; Mansutti, O; Mariotti, M; Martínez, M; Mase, K; Mazin, D; Merck, C; Meucci, M; Meyer, M; Miranda, J M; Mirzoyan, R; Mizobuchi, S; Moralejo, A; Nilsson, K; Oña-Wilhelmi, E; Orduña, R; Otte, N; Oya, I; Paneque, D; Paoletti, R; Paredes, J M; Pasanen, M; Pascoli, D; Pauss, F; Pavel, N; Pegna, R; Persic, M; Peruzzo, L; Piccioli, A; Poller, M; Pooley, G; Prandini, E; Raymers, A; Rhode, W; Ribó, M; Rico, J; Riegel, B; Rissi, M; Robert, A; Romero, G E; Rügamer, S; Saggion, A; Sánchez, A; Sartori, P; Scalzotto, V; Scapin, V; Schmitt, R; Schweizer, T; Shayduk, M; Shinozaki, K; Shore, S N; Sidro, N; Sillanpää, A; Sobczynska, D; Stamerra, A; Stark, L S; Takalo, L; Temnikov, P; Tescaro, D; Teshima, M; Tonello, N; Torres, A; Torres, D F; Turini, N; Vankov, H; Vitale, V; Wagner, R M; Wibig, T; Wittek, W; Zanin, R; Zapatero, J

    2006-06-23

    Microquasars are binary star systems with relativistic radio-emitting jets. They are potential sources of cosmic rays and can be used to elucidate the physics of relativistic jets. We report the detection of variable gamma-ray emission above 100 gigaelectron volts from the microquasar LS I 61 + 303. Six orbital cycles were recorded. Several detections occur at a similar orbital phase, which suggests that the emission is periodic. The strongest gamma-ray emission is not observed when the two stars are closest to one another, implying a strong orbital modulation of the emission or absorption processes.

  3. EGRET upper limits to the high-energy gamma-ray emission from the millisecond pulsars in nearby globular clusters

    NASA Technical Reports Server (NTRS)

    Michelson, P. F.; Bertsch, D. L.; Brazier, K.; Chiang, J.; Dingus, B. L.; Fichtel, C. E.; Fierro, J.; Hartman, R. C.; Hunter, S. D.; Kanbach, G.

    1994-01-01

    We report upper limits to the high-energy gamma-ray emission from the millisecond pulsars (MSPs) in a number of globular clusters. The observations were done as part of an all-sky survey by the energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory (CGRO) during Phase I of the CGRO mission (1991 June to 1992 November). Several theoretical models suggest that MSPs may be sources of high-energy gamma radiation emitted either as primary radiation from the pulsar magnetosphere or as secondary radiation generated by conversion into photons of a substantial part of the relativistic e(+/-) pair wind expected to flow from the pulsar. To date, no high-energy emission has been detected from an individual MSP. However, a large number of MSPs are expected in globular cluster cores where the formation rate of accreting binary systems is high. Model predictions of the total number of pulsars range in the hundreds for some clusters. These expectations have been reinforced by recent discoveries of a substantial number of radio MSPs in several clusters; for example, 11 have been found in 47 Tucanae (Manchester et al.). The EGRET observations have been used to obtain upper limits for the efficiency eta of conversion of MSP spin-down power into hard gamma rays. The upper limits are also compared with the gamma-ray fluxes predicted from theoretical models of pulsar wind emission (Tavani). The EGRET limits put significant constraints on either the emission models or the number of pulsars in the globular clusters.

  4. Neutrino and cosmic-ray emission from multiple internal shocks in gamma-ray bursts.

    PubMed

    Bustamante, Mauricio; Baerwald, Philipp; Murase, Kohta; Winter, Walter

    2015-04-10

    Gamma-ray bursts (GRBs) are short-lived, luminous explosions at cosmological distances, thought to originate from relativistic jets launched at the deaths of massive stars. They are among the prime candidates to produce the observed cosmic rays at the highest energies. Recent neutrino data have, however, started to constrain this possibility in the simplest models with only one emission zone. In the classical theory of GRBs, it is expected that particles are accelerated at mildly relativistic shocks generated by the collisions of material ejected from a central engine. Here we consider neutrino and cosmic-ray emission from multiple emission regions since these internal collisions must occur at very different radii, from below the photosphere all the way out to the circumburst medium, as a consequence of the efficient dissipation of kinetic energy. We demonstrate that the different messengers originate from different collision radii, which means that multi-messenger observations open windows for revealing the evolving GRB outflows.

  5. Fermi Observations of High-energy Gamma-ray Emission from GRB 090217A

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; Ajello, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bhat, P. N.; Bissaldi, E.; Blandford, R. D.; Bonamente, E.; Borgland, A. W.; Bouvier, A.; Bregeon, J.; Brez, A.; Briggs, M. S.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Carrigan, S.; Casandjian, J. M.; Cecchi, C.; Çelik, Ö.; Charles, E.; Chekhtman, A.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Connaughton, V.; Conrad, J.; Cutini, S.; Dermer, C. D.; de Angelis, A.; de Palma, F.; Digel, S. W.; Silva, E. do Couto e.; Drell, P. S.; Dubois, R.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Frailis, M.; Fukazawa, Y.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Granot, J.; Grenier, I. A.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hadasch, D.; Hays, E.; Horan, D.; Hughes, R. E.; Jóhannesson, G.; Johnson, A. S.; Johnson, W. N.; Kamae, T.; Katagiri, H.; Kippen, R. M.; Knödlseder, J.; Kocevski, D.; Kuss, M.; Lande, J.; Latronico, L.; Lee, S.-H.; Llena Garde, M.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Makeev, A.; Mazziotta, M. N.; McBreen, S.; McEnery, J. E.; McGlynn, S.; Meegan, C.; Mehault, J.; Mészáros, P.; Michelson, P. F.; Mizuno, T.; Moiseev, A. A.; Monte, C.; Monzani, M. E.; Moretti, E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakajima, H.; Nakamori, T.; Naumann-Godo, M.; Nolan, P. L.; Norris, J. P.; Nuss, E.; Ohno, M.; Ohsugi, T.; Okumura, A.; Omodei, N.; Orlando, E.; Ormes, J. F.; Ozaki, M.; Paciesas, W. S.; Paneque, D.; Panetta, J. H.; Parent, D.; Pelassa, V.; Pepe, M.; Pesce-Rollins, M.; Petrosian, V.; Piron, F.; Porter, T. A.; Preece, R.; Racusin, J. L.; Rainò, S.; Rando, R.; Rau, A.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer, O.; Ripken, J.; Roth, M.; Ryde, F.; Sadrozinski, H. F.-W.; Sander, A.; Scargle, J. D.; Schalk, T. L.; Sgrò, C.; Siskind, E. J.; Smith, P. D.; Spandre, G.; Spinelli, P.; Stamatikos, M.; Strickman, M. S.; Suson, D. J.; Tajima, H.; Takahashi, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tibaldo, L.; Torres, D. F.; Tosti, G.; Tramacere, A.; Uehara, T.; Usher, T. L.; Vandenbroucke, J.; van der Horst, A. J.; Vasileiou, V.; Vilchez, N.; Vitale, V.; von Kienlin, A.; Waite, A. P.; Wang, P.; Wilson-Hodge, C.; Winer, B. L.; Wood, K. S.; Wu, X. F.; Yamazaki, R.; Yang, Z.; Ylinen, T.; Ziegler, M.; Fermi LAT Collaboration; Fermi GBM Collaboration

    2010-07-01

    The Fermi observatory is advancing our knowledge of gamma-ray bursts (GRBs) through pioneering observations at high energies, covering more than seven decades in energy with the two on-board detectors, the Large Area Telescope (LAT) and the Gamma-ray Burst Monitor (GBM). Here, we report on the observation of the long GRB 090217A which triggered the GBM and has been detected by the LAT with a significance greater than 9σ. We present the GBM and LAT observations and on-ground analyses, including the time-resolved spectra and the study of the temporal profile from 8 keV up to ~1 GeV. All spectra are well reproduced by a Band model. We compare these observations to the first two LAT-detected, long bursts GRB 080825C and GRB 080916C. These bursts were found to have time-dependent spectra and exhibited a delayed onset of the high-energy emission, which are not observed in the case of GRB 090217A. We discuss some theoretical implications for the high-energy emission of GRBs.

  6. Search for gamma-ray emission from star-forming galaxies with Fermi LAT

    NASA Astrophysics Data System (ADS)

    Rojas-Bravo, César; Araya, Miguel

    2016-11-01

    Recent studies have found a positive correlation between the star formation rate (SFR) of galaxies and their gamma-ray luminosity. Galaxies with a high SFR are expected to produce a large amount of high-energy cosmic rays, which emit gamma-rays when interacting with the interstellar medium and radiation fields. We search for gamma-ray emission from a sample of galaxies within and beyond the Local Group with data from the LAT instrument onboard the Fermi satellite. We exclude recently detected galaxies (NGC 253, M82, NGC 4945, NGC 1068, NGC 2146, Arp 220) and use seven years of cumulative `Pass 8' data from the LAT in the 100 MeV to 100 GeV range. No new detections are seen in the data and upper limits for the gamma-ray fluxes are calculated. The correlation between gamma-ray luminosity and infrared luminosity for galaxies obtained using our new upper limits is in agreement with a previously published correlation, but the new upper limits imply that some galaxies are not as efficient gamma-ray emitters as previously thought.

  7. Search for gamma-ray emission from star-forming galaxies with Fermi LAT

    NASA Astrophysics Data System (ADS)

    Rojas-Bravo, César; Araya, Miguel

    2016-08-01

    Recent studies have found a positive correlation between the star-formation rate of galaxies and their gamma-ray luminosity. Galaxies with a high star-formation rate are expected to produce a large amount of high-energy cosmic rays, which emit gamma-rays when interacting with the interstellar medium and radiation fields. We search for gamma-ray emission from a sample of galaxies within and beyond the Local Group with data from the LAT instrument onboard the Fermi satellite. We exclude recently detected galaxies (NGC 253, M82, NGC 4945, NGC 1068, NGC 2146, Arp 220) and use seven years of cumulative "Pass 8" data from the LAT in the 100 MeV to 100 GeV range. No new detections are seen in the data and upper limits for the gamma-ray fluxes are calculated. The correlation between gamma-ray luminosity and infrared luminosity for galaxies obtained using our new upper limits is in agreement with a previously published correlation, but the new upper limits imply that some galaxies are not as efficient gamma-ray emitters as previously thought.

  8. Galactic dual population models of gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Higdon, J. C.; Lingenfelter, R. E.

    1994-01-01

    We investigate in more detail the properties of two-population models for gamma-ray bursts in the galactic disk and halo. We calculate the gamma-ray burst statistical properties, mean value of (V/V(sub max)), mean value of cos Theta, and mean value of (sin(exp 2) b), as functions of the detection flux threshold for bursts coming from both Galactic disk and massive halo populations. We consider halo models inferred from the observational constraints on the large-scale Galactic structure and we compare the expected values of mean value of (V/V(sub max)), mean value of cos Theta, and mean value of (sin(exp 2) b), with those measured by Burst and Transient Source Experiment (BATSE) and other detectors. We find that the measured values are consistent with solely Galactic populations having a range of halo distributions, mixed with local disk distributions, which can account for as much as approximately 25% of the observed BATSE bursts. M31 does not contribute to these modeled bursts. We also demonstrate, contrary to recent arguments, that the size-frequency distributions of dual population models are quite consistent with the BATSE observations.

  9. Soft gamma-ray galactic ridge emission as unveiled by SPI aboard INTEGRAL

    SciTech Connect

    Knoedlseder, J.; Weidenspointner, G.; Jean, P.; Strong, A.; Diehl, R.; Cordier, B.; Schanne, S.

    2007-07-12

    The origin of the soft gamma-ray (200 keV - 1 MeV) galactic ridge emission is one of the long-standing mysteries in the field of high-energy astrophysics. Population studies at lower energies have shown that emission from accreting compact objects gradually recedes in this domain, leaving place to another source of gamma-ray emission that is characterised by a hard power-law spectrum extending from 100 keV up to 100 MeV The nature of this hard component has remained so far elusive, partly due to the lack of sufficiently sensitive imaging telescopes that would be able to unveil the spatial distribution of the emission. The SPI telescope aboard INTEGRAL allows now for the first time the simultaneous imaging of diffuse and point-like emission in the soft gamma-ray regime. We present here all-sky images of the soft gamma-ray continuum emission that clearly reveal the morphology of the different emission components. We discuss the implications of our results on the nature of underlying emission processes and we put our results in perspective of GLAST studies of diffuse galactic continuum emission.

  10. Detection of gamma-ray emission from the Vela pulsar wind nebula with AGILE.

    PubMed

    Pellizzoni, A; Trois, A; Tavani, M; Pilia, M; Giuliani, A; Pucella, G; Esposito, P; Sabatini, S; Piano, G; Argan, A; Barbiellini, G; Bulgarelli, A; Burgay, M; Caraveo, P; Cattaneo, P W; Chen, A W; Cocco, V; Contessi, T; Costa, E; D'Ammando, F; Del Monte, E; De Paris, G; Di Cocco, G; Di Persio, G; Donnarumma, I; Evangelista, Y; Feroci, M; Ferrari, A; Fiorini, M; Fuschino, F; Galli, M; Gianotti, F; Hotan, A; Labanti, C; Lapshov, I; Lazzarotto, F; Lipari, P; Longo, F; Marisaldi, M; Mastropietro, M; Mereghetti, S; Moretti, E; Morselli, A; Pacciani, L; Palfreyman, J; Perotti, F; Picozza, P; Pittori, C; Possenti, A; Prest, M; Rapisarda, M; Rappoldi, A; Rossi, E; Rubini, A; Santolamazza, P; Scalise, E; Soffitta, P; Striani, E; Trifoglio, M; Vallazza, E; Vercellone, S; Verrecchia, F; Vittorini, V; Zambra, A; Zanello, D; Giommi, P; Colafrancesco, S; Antonelli, A; Salotti, L; D'Amico, N; Bignami, G F

    2010-02-01

    Pulsars are known to power winds of relativistic particles that can produce bright nebulae by interacting with the surrounding medium. These pulsar wind nebulae are observed by their radio, optical, and x-ray emissions, and in some cases also at TeV (teraelectron volt) energies, but the lack of information in the gamma-ray band precludes drawing a comprehensive multiwavelength picture of their phenomenology and emission mechanisms. Using data from the AGILE satellite, we detected the Vela pulsar wind nebula in the energy range from 100 MeV to 3 GeV. This result constrains the particle population responsible for the GeV emission and establishes a class of gamma-ray emitters that could account for a fraction of the unidentified galactic gamma-ray sources. PMID:20044540

  11. Detection of gamma-ray emission from the Vela pulsar wind nebula with AGILE.

    PubMed

    Pellizzoni, A; Trois, A; Tavani, M; Pilia, M; Giuliani, A; Pucella, G; Esposito, P; Sabatini, S; Piano, G; Argan, A; Barbiellini, G; Bulgarelli, A; Burgay, M; Caraveo, P; Cattaneo, P W; Chen, A W; Cocco, V; Contessi, T; Costa, E; D'Ammando, F; Del Monte, E; De Paris, G; Di Cocco, G; Di Persio, G; Donnarumma, I; Evangelista, Y; Feroci, M; Ferrari, A; Fiorini, M; Fuschino, F; Galli, M; Gianotti, F; Hotan, A; Labanti, C; Lapshov, I; Lazzarotto, F; Lipari, P; Longo, F; Marisaldi, M; Mastropietro, M; Mereghetti, S; Moretti, E; Morselli, A; Pacciani, L; Palfreyman, J; Perotti, F; Picozza, P; Pittori, C; Possenti, A; Prest, M; Rapisarda, M; Rappoldi, A; Rossi, E; Rubini, A; Santolamazza, P; Scalise, E; Soffitta, P; Striani, E; Trifoglio, M; Vallazza, E; Vercellone, S; Verrecchia, F; Vittorini, V; Zambra, A; Zanello, D; Giommi, P; Colafrancesco, S; Antonelli, A; Salotti, L; D'Amico, N; Bignami, G F

    2010-02-01

    Pulsars are known to power winds of relativistic particles that can produce bright nebulae by interacting with the surrounding medium. These pulsar wind nebulae are observed by their radio, optical, and x-ray emissions, and in some cases also at TeV (teraelectron volt) energies, but the lack of information in the gamma-ray band precludes drawing a comprehensive multiwavelength picture of their phenomenology and emission mechanisms. Using data from the AGILE satellite, we detected the Vela pulsar wind nebula in the energy range from 100 MeV to 3 GeV. This result constrains the particle population responsible for the GeV emission and establishes a class of gamma-ray emitters that could account for a fraction of the unidentified galactic gamma-ray sources.

  12. Modeling high-energy gamma-rays from the Fermi Bubbles

    SciTech Connect

    Splettstoesser, Megan

    2015-09-17

    In 2010, the Fermi Bubbles were discovered at the galactic center of the Milky Way. These giant gamma-ray structures, extending 55° in galactic latitude and 20°-30° in galactic longitude, were not predicted. We wish to develop a model for the gamma-ray emission of the Fermi Bubbles. To do so, we assume that second order Fermi acceleration requires charged particles and irregular magnetic fields- both of which are present in the disk of the Milky Way galaxy. By solving the steady-state case of the transport equation, I compute the proton spectrum due to second order Fermi acceleration. I compare the analytical solutions of the proton spectrum to a numerical solution. I find that the numerical solution to the transport equation converges to the analytical solution in all cases. The gamma-ray spectrum due to proton-proton interaction is compared to Fermi Bubble data (from Ackermann et al. 2014), and I find that second order Fermi acceleration is a good fit for the gamma-ray spectrum of the Fermi Bubbles at low energies with an injection source term of S = 1.5 x 10⁻¹⁰ GeV⁻¹cm⁻³yr⁻¹. I find that a non-steady-state solution to the gamma-ray spectrum with an injection source term of S = 2 x 10⁻¹⁰ GeV⁻¹cm⁻³yr⁻¹ matches the bubble data at high energies.

  13. Simplified Dark Matter Models for the Galactic Center Gamma-Ray Excess

    SciTech Connect

    Berlin, Asher; Hooper, Dan; McDermott, Samuel D.

    2014-06-01

    Motivated by the gamma-ray excess observed from the region surrounding the Galactic Center, we explore particle dark matter models that could potentially account for the spectrum and normalization of this signal. Taking a model-independent approach, we consider an exhaustive list of tree-level diagrams for dark matter annihilation, and determine which could account for the observed gamma-ray emission while simultaneously predicting a thermal relic abundance equal to the measured cosmological dark matter density. We identify a wide variety of models that can meet these criteria without conflicting with existing constraints from direct detection experiments or the Large Hadron Collider (LHC). The prospects for detection in near future dark matter experiments and/or the upcoming 14 TeV LHC appear quite promising.

  14. Models for Supernovae and Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Woosley, Stan

    Supernovae and gamma-ray bursts are the brightest stellar mass explosions in the universe. As such, they serve as cosmic beacons for probing cosmic structure and diagnosing the properties of stars and the universe when it was young. They also produce black holes and neutron stars, interesting in themselves as laboratories where exotic physics comes into play, and they make the elements from which life arises. Consequently, supernovae and gamma-ray bursts are subject to intense study by many NASA missions. We propose focused studies in five areas of supernova research that are directly relevant to NASA's missions, especially SWIFT, HST, JWST, and planning for WFIRST. Our specific topics are a) models for Type Ia supernovae; b) extreme supernovae and first supernovae; c) magnetar-powered supernovae; d) ultra-long duration gamma-ray bursts; and e) shock breakout in supernovae. These phenomena all have in common their importance to NASA missions and the fact that they can be studied using similar tools - computer codes that do radiation hydrodynamics. Our two principal codes, KEPLER (one-dimension) and CASTRO (one to three dimensions), have been honed to the task by years of supernova modeling, and have some unique capabilities. Type Ia supernovae have long been of interest to NASA, but their importance has increased lately because of their utility in determining cosmic distances and because a string of recent observational breakthroughs has severely limited their progenitors. Responding to these developments, we propose to focus on a class of model we have previously neglected, the merger of two white dwarfs. The mergers will be studied with KEPLER and CASTRO in one and two dimensions, and the spectra and light curves determined. The library of model results will be useful in interpreting the results of present NASA missions and planning new ones. A second important area of investigation will be the study of first generation stars and the supernovae that they produce

  15. Variable VHE gamma-ray emission from Markarian 501

    SciTech Connect

    Albert, Jordi

    2007-02-06

    The blazar Markarian 501 (Mrk 501) was observed at energies above 100 GeV with the MAGIC telescope from May through July 2005. The high sensitivity of the instrument enabled the determination of the flux and spectrum of the source on a night-by-night basis. Throughout our observational campaign, the flux from Mrk 501 was found to vary by an order of magnitude, and to be correlated with spectral changes. Intra-night flux variability with flux-doubling times down to 2 minutes was also observed. The strength of variability increased with the energy of the {gamma}-ray photons. The energy spectra were found to harden significantly with increasing flux, and a spectral peak clearly showed up during very active states. The position of the spectral peak seems to be correlated with the source luminosity.

  16. MODELING PHASE-ALIGNED GAMMA-RAY AND RADIO MILLISECOND PULSAR LIGHT CURVES

    SciTech Connect

    Venter, C.; Johnson, T. J.; Harding, A. K.

    2012-01-01

    Since the discovery of the first eight gamma-ray millisecond pulsars (MSPs) by the Fermi Large Area Telescope, this population has been steadily expanding. Four of the more recent detections, PSR J0034-0534, PSR J1939+2134 (B1937+21; the first MSP ever discovered), PSR J1959+2048 (B1957+20; the first discovery of a black widow system), and PSR J2214+3000, exhibit a phenomenon not present in the original discoveries: nearly phase-aligned radio and gamma-ray light curves (LCs). To account for the phase alignment, we explore models where both the radio and gamma-ray emission originate either in the outer magnetosphere near the light cylinder or near the polar caps. Using a Markov Chain Monte Carlo technique to search for best-fit model parameters, we obtain reasonable LC fits for the first three of these MSPs in the context of 'altitude-limited' outer gap (alOG) and two-pole caustic (alTPC) geometries (for both gamma-ray and radio emission). These models differ from the standard outer gap (OG)/two-pole caustic (TPC) models in two respects: the radio emission originates in caustics at relatively high altitudes compared to the usual conal radio beams, and we allow both the minimum and maximum altitudes of the gamma-ray and radio emission regions to vary within a limited range (excluding the minimum gamma-ray altitude of the alTPC model, which is kept constant at the stellar radius, and that of the alOG model, which is set to the position-dependent null charge surface altitude). Alternatively, phase-aligned solutions also exist for emission originating near the stellar surface in a slot gap scenario ('low-altitude slot gap' (laSG) models). We find that the alTPC models provide slightly better LC fits than the alOG models, and both of these give better fits than the laSG models (for the limited range of parameters considered in the case of the laSG models). Thus, our fits imply that the phase-aligned LCs are likely of caustic origin, produced in the outer magnetosphere

  17. Modeling Phase-Aligned Gamma-Ray and Radio Millisecond Pulsar Light Curves

    NASA Technical Reports Server (NTRS)

    Venter, C.; Johnson, T.; Harding, A.

    2012-01-01

    Since the discovery of the first eight gamma-ray millisecond pulsars (MSPs) by the Fermi Large Area Telescope, this population has been steadily expanding. Four of the more recent detections, PSR J00340534, PSR J1939+2134 (B1937+21; the first MSP ever discovered), PSR J1959+2048 (B1957+20; the first discovery of a black widow system), and PSR J2214+3000, exhibit a phenomenon not present in the original discoveries: nearly phase-aligned radio and gamma-ray light curves (LCs). To account for the phase alignment, we explore models where both the radio and gamma-ray emission originate either in the outer magnetosphere near the light cylinder or near the polar caps. Using a Markov Chain Monte Carlo technique to search for best-fit model parameters, we obtain reasonable LC fits for the first three of these MSPs in the context of altitude-limited outer gap (alOG) and two-pole caustic (alTPC) geometries (for both gamma-ray and radio emission). These models differ from the standard outer gap (OG)/two-pole caustic (TPC) models in two respects: the radio emission originates in caustics at relatively high altitudes compared to the usual conal radio beams, and we allow both the minimum and maximum altitudes of the gamma-ray and radio emission regions to vary within a limited range (excluding the minimum gamma-ray altitude of the alTPC model, which is kept constant at the stellar radius, and that of the alOG model, which is set to the position-dependent null charge surface altitude). Alternatively, phase-aligned solutions also exist for emission originating near the stellar surface in a slot gap scenario (low-altitude slot gap (laSG) models). We find that the alTPC models provide slightly better LC fits than the alOG models, and both of these give better fits than the laSG models (for the limited range of parameters considered in the case of the laSG models). Thus, our fits imply that the phase-aligned LCs are likely of caustic origin, produced in the outer magnetosphere, and

  18. A Search for High-Energy Neutrino Emission from Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Whitehorn, Nathan

    2012-05-01

    A century after their discovery, the origin of cosmic rays remains one of the most enduring mysteries in physics. They can have energies that exceed 1020 eV, a hundred million times as energetic as the most powerful Earth-bound particle accelerators and must therefore be produced in the universe's most violent environments. Direct observation of their origins, however, has proven difficult due to deflection of charged cosmic ray particles in galactic and intergalactic magnetic fields, obscuring their true origins. Astronomy using electrically neutral particles, such as photons and neutrinos, does not, however, share this difficulty. This work presents a search for neutrino emission from one of the primary candidates for the sources of the highest-energy cosmic rays, Gamma-Ray Bursts, using the recently-completed IceCube neutrino telescope located at the South Pole. The null result obtained from this search contradicts well-established predictions for the neutrino flux from Gamma-Ray Bursts if they are the cosmic ray sources, forcing a reevaluation of these theoretical models.

  19. Prompt Emission of GRB 121217A from Gamma-Rays to the Near-Infrared

    NASA Technical Reports Server (NTRS)

    Elliott, J.; Yu, H.-F.; Schmidl, S.; Greiner, J.; Gruber, D.; Oates, S.; Kobayashi, S.; Zhang, B.; Cummings, J. R.; Filgas, R.; Gehrels, N.

    2014-01-01

    The mechanism that causes the prompt-emission episode of gamma-ray bursts (GRBs) is still widely debated despite there being thousands of prompt detections. The favoured internal shock model relates this emission to synchrotron radiation. However, it does not always explain the spectral indices of the shape of the spectrum, which is often fit with empirical functions, such as the Band function. Multi-wavelength observations are therefore required to help investigate the possible underlying mechanisms that causes the prompt emission. We present GRB 121217A, for which we were able to observe its near-infrared (NIR) emission during a secondary prompt-emission episode with the Gamma-Ray burst Optical Near-infrared Detector (GROND) in combination with the Swift and Fermi satellites, which cover an energy range of 5 orders of magnitude (10(exp -3) keV to 100 keV). We determine a photometric redshift of z = 3.1 +/- 0.1 with a line-of-sight with little or no extinction (AV approx. 0 mag) utilising the optical/NIR SED. From the afterglow, we determine a bulk Lorentz factor of Gamma(sub 0) approx. 250 and an emission radius of R < 1018 cm. The prompt-emission broadband spectral energy distribution is well fit with a broken power law with beta1 = -0.3 +/- 0.1 and beta2 = 0.6 +/- 0.1 that has a break at E = 6.6 +/- 0.9 keV, which can be interpreted as the maximum injection frequency. Self-absorption by the electron population below energies of Ea < 6 keV suggest a magnetic field strength of B approx. 10(exp 5) G. However, all the best fit models underpredict the flux observed in the NIR wavelengths, which also only rebrightens by a factor of approx. 2 during the second prompt emission episode, in stark contrast to the X-ray emission, which rebrightens by a factor of approx. 100. This suggests an afterglow component is dominating the emission. We present GRB 121217A, one of the few GRBs that has multi-wavelength observations of the prompt-emission period and shows that it can

  20. Predictions on Optical Emissions Associated with Terrestrial Gamma-ray Flashes

    NASA Astrophysics Data System (ADS)

    Celestin, Sebastien; Xu, Wei; Pasko, Victor

    2014-05-01

    Terrestrial Gamma-ray Flashes (TGFs) are high-energy photon bursts originating from the Earth's atmosphere. After their discovery in 1994 by the Burst and Transient Source Experiment (BATSE) detector aboard the Compton Gamma-Ray Observatory [Fishman et al., Science, 264, 1313, 1994], this phenomenon has been further observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) [Smith et al., Science, 307, 1085, 2005], the Fermi Gamma-ray Space Telescope [Briggs et al., JGR, 115, A07323, 2010] and the Astrorivelatore Gamma a Immagini Leggero (AGILE) satellite [Marisaldi et al., JGR, 115, A00E13, 2010]. Measurements have correlated TGFs with initial development stages of normal polarity intracloud lightning that transports negative charge upward (+IC) [e.g., Lu et al., GRL, 37, L11806, 2010; JGR, 116, A03316, 2011]. Recently, Østgaard et al. [GRL, 40, 2423, 2013] have reported for the first time space-based observations of optical emissions from TGF-associated IC lightning flashes. The purpose of the present work is to predict the intensities of optical emissions resulting from the excitation of air molecules by the large amount of low- and high-energy electrons involved in TGF events based on two production mechanisms: relativistic runaway electron avalanches (RREAs) [Dwyer and Smith, GRL, 32, L22804, 2005] and production of runaway electrons by high-potential +IC lightning leaders [e.g., Celestin and Pasko, JGR, 116, A03315, 2011; Xu et al., GRL, 39, L08801, 2012]. We use a Monte Carlo model to simulate the propagation of electrons in either large-scale homogeneous electric fields sustaining RREAs or highly inhomogeneous electric fields produced around the lightning leaders tips region. A model similar to that described in [Liu and Pasko, JGR, 109, A04301, 2004] is used to estimate intensities from the first and second positive band systems of N2 and the first negative band system of N2+. The optical emissions produced by RREAs are compared to

  1. Constraining Gamma-Ray Emission from Luminous Infrared Galaxies with Fermi-LAT; Tentative Detection of Arp 220

    NASA Astrophysics Data System (ADS)

    Griffin, Rhiannon D.; Dai, Xinyu; Thompson, Todd A.

    2016-05-01

    Star-forming galaxies produce gamma-rays primarily via pion production, resulting from inelastic collisions between cosmic-ray protons and the interstellar medium (ISM). The dense ISM and high star formation rates of luminous and ultra-luminous infrared galaxies (LIRGs and ULIRGs) imply that they should be strong gamma-ray emitters, but so far only two LIRGs have been detected. Theoretical models for their emission depend on the unknown fraction of cosmic-ray protons that escape these galaxies before interacting. We analyze Fermi-LAT data for 82 of the brightest Infrared Astronomical Satellite LIRGs and ULIRGs. We examine each system individually and carry out a stacking analysis to constrain their gamma-ray fluxes. We report the detection of the nearest ULIRG Arp 220 (˜4.6σ). We observe a gamma-ray flux (0.8-100 GeV) of 2.4 × 10-10 phot cm-2 s-1 with a photon index of 2.23 (8.2 × 1041 erg s-1 at 77 Mpc). We also derive upper limits (ULs) for the stacked LIRGs and ULIRGs. The gamma-ray luminosity of Arp 220 and the stacked ULs agree with calorimetric predictions for dense star-forming galaxies. With the detection of Arp 220, we extend the gamma-ray-IR luminosity correlation to the high-luminosity regime with {log}{L}0.1-100{GeV}=1.25× {log}{L}8-1000μ {{m}}+26.7 as well as the gamma-ray-radio continuum luminosity correlation with {log}{L}0.1-100{GeV}=1.22× {log}{L}1.4{GHz}+13.3. The current survey of Fermi-LAT is on the verge of detecting more LIRGs/ULIRGs in the local universe, and we expect even more detections with deeper Fermi-LAT observations or the next generation of gamma-ray detectors.

  2. Modulated high-energy gamma-ray emission from the microquasar Cygnus X-3.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Axelsson, M; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Celik, O; Chaty, S; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Cominsky, L R; Conrad, J; Corbel, S; Corbet, R; Dermer, C D; de Palma, F; Digel, S W; do Couto e Silva, E; Drell, P S; Dubois, R; Dubus, G; Dumora, D; Farnier, C; Favuzzi, C; Fegan, S J; Focke, W B; Fortin, P; Frailis, M; Fusco, P; Gargano, F; Gehrels, N; Germani, S; Giavitto, G; Giebels, B; Giglietto, N; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hill, A B; Hjalmarsdotter, L; Horan, D; Hughes, R E; Jackson, M S; Jóhannesson, G; Johnson, A S; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Koerding, E; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Marchand, L; Marelli, M; Max-Moerbeck, W; Mazziotta, M N; McColl, N; McEnery, J E; Meurer, C; Michelson, P F; Migliari, S; Mitthumsiri, W; Mizuno, T; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Omodei, N; Ong, R A; Ormes, J F; Paneque, D; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Pooley, G; Porter, T A; Pottschmidt, K; Rainò, S; Rando, R; Ray, P S; Razzano, M; Rea, N; Readhead, A; Reimer, A; Reimer, O; Richards, J L; Rochester, L S; Rodriguez, J; Rodriguez, A Y; Romani, R W; Ryde, F; Sadrozinski, H F-W; Sander, A; Saz Parkinson, P M; Sgrò, C; Siskind, E J; Smith, D A; Smith, P D; Spinelli, P; Starck, J-L; Stevenson, M; Strickman, M S; Suson, D J; Takahashi, H; Tanaka, T; Thayer, J B; Thompson, D J; Tibaldo, L; Tomsick, J A; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vasileiou, V; Vilchez, N; Vitale, V; Waite, A P; Wang, P; Wilms, J; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M

    2009-12-11

    Microquasars are accreting black holes or neutron stars in binary systems with associated relativistic jets. Despite their frequent outburst activity, they have never been unambiguously detected emitting high-energy gamma rays. The Fermi Large Area Telescope (LAT) has detected a variable high-energy source coinciding with the position of the x-ray binary and microquasar Cygnus X-3. Its identification with Cygnus X-3 is secured by the detection of its orbital period in gamma rays, as well as the correlation of the LAT flux with radio emission from the relativistic jets of Cygnus X-3. The gamma-ray emission probably originates from within the binary system, opening new areas in which to study the formation of relativistic jets. PMID:19965378

  3. Modulated High-Energy Gamma-Ray Emission from the Microquasar Cygnus X-3

    NASA Astrophysics Data System (ADS)

    Fermi LAT Collaboration; Abdo, A. A.; Ackermann, M.; Ajello, M.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B. M.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Brez, A.; Brigida, M.; Bruel, P.; Burnett, T. H.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Casandjian, J. M.; Cecchi, C.; Çelik, Ö.; Chaty, S.; Cheung, C. C.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Cominsky, L. R.; Conrad, J.; Corbel, S.; Corbet, R.; Dermer, C. D.; de Palma, F.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Dubus, G.; Dumora, D.; Farnier, C.; Favuzzi, C.; Fegan, S. J.; Focke, W. B.; Fortin, P.; Frailis, M.; Fusco, P.; Gargano, F.; Gehrels, N.; Germani, S.; Giavitto, G.; Giebels, B.; Giglietto, N.; Giordano, F.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Grondin, M.-H.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hanabata, Y.; Harding, A. K.; Hayashida, M.; Hays, E.; Hill, A. B.; Hjalmarsdotter, L.; Horan, D.; Hughes, R. E.; Jackson, M. S.; Jóhannesson, G.; Johnson, A. S.; Johnson, T. J.; Johnson, W. N.; Kamae, T.; Katagiri, H.; Kawai, N.; Kerr, M.; Knödlseder, J.; Kocian, M. L.; Koerding, E.; Kuss, M.; Lande, J.; Latronico, J.; Lemoine-Goumard, M.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Madejski, G. M.; Makeev, A.; Marchand, L.; Marelli, M.; Max-Moerbeck, W.; Mazziotta, M. N.; McColl, N.; McEnery, J. E.; Meurer, C.; Michelson, P. F.; Migliari, S.; Mitthumsiri, W.; Mizuno, T.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Norris, J. P.; Nuss, E.; Ohsugi, T.; Omodei, N.; Ong, R. A.; Ormes, J. F.; Paneque, D.; Parent, D.; Pelassa, V.; Pepe, M.; Pesce-Rollins, M.; Piron, F.; Pooley, G.; Porter, T. A.; Pottschmidt, K.; Rainò, S.; Rando, R.; Ray, P. S.; Razzano, M.; Rea, N.; Readhead, A.; Reimer, A.; Reimer, O.; Richards, J. L.; Rochester, L. S.; Rodriguez, J.; Rodriguez, A. Y.; Romani, R. W.; Ryde, F.; Sadrozinski, H. F.-W.; Sander, A.; Saz Parkinson, P. M.; Sgrò, C.; Siskind, E. J.; Smith, D. A.; Smith, P. D.; Spinelli, P.; Starck, J.-L.; Stevenson, M.; Strickman, M. S.; Suson, D. J.; Takahashi, H.; Tanaka, T.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Tomsick, J. A.; Torres, D. F.; Tosti, G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Vasileiou, V.; Vilchez, N.; Vitale, V.; Waite, A. P.; Wang, P.; Wilms, J.; Winer, B. L.; Wood, K. W.; Ylinen, T.; Ziegler, M.

    2009-12-01

    Microquasars are accreting black holes or neutron stars in binary systems with associated relativistic jets. Despite their frequent outburst activity, they have never been unambiguously detected emitting high-energy gamma rays. The Fermi Large Area Telescope (LAT) has detected a variable high-energy source coinciding with the position of the x-ray binary and microquasar Cygnus X-3. Its identification with Cygnus X-3 is secured by the detection of its orbital period in gamma rays, as well as the correlation of the LAT flux with radio emission from the relativistic jets of Cygnus X-3. The gamma-ray emission probably originates from within the binary system, opening new areas in which to study the formation of relativistic jets.

  4. Modulated high-energy gamma-ray emission from the microquasar Cygnus X-3.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Axelsson, M; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Celik, O; Chaty, S; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Cominsky, L R; Conrad, J; Corbel, S; Corbet, R; Dermer, C D; de Palma, F; Digel, S W; do Couto e Silva, E; Drell, P S; Dubois, R; Dubus, G; Dumora, D; Farnier, C; Favuzzi, C; Fegan, S J; Focke, W B; Fortin, P; Frailis, M; Fusco, P; Gargano, F; Gehrels, N; Germani, S; Giavitto, G; Giebels, B; Giglietto, N; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hill, A B; Hjalmarsdotter, L; Horan, D; Hughes, R E; Jackson, M S; Jóhannesson, G; Johnson, A S; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Koerding, E; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Marchand, L; Marelli, M; Max-Moerbeck, W; Mazziotta, M N; McColl, N; McEnery, J E; Meurer, C; Michelson, P F; Migliari, S; Mitthumsiri, W; Mizuno, T; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Omodei, N; Ong, R A; Ormes, J F; Paneque, D; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Pooley, G; Porter, T A; Pottschmidt, K; Rainò, S; Rando, R; Ray, P S; Razzano, M; Rea, N; Readhead, A; Reimer, A; Reimer, O; Richards, J L; Rochester, L S; Rodriguez, J; Rodriguez, A Y; Romani, R W; Ryde, F; Sadrozinski, H F-W; Sander, A; Saz Parkinson, P M; Sgrò, C; Siskind, E J; Smith, D A; Smith, P D; Spinelli, P; Starck, J-L; Stevenson, M; Strickman, M S; Suson, D J; Takahashi, H; Tanaka, T; Thayer, J B; Thompson, D J; Tibaldo, L; Tomsick, J A; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vasileiou, V; Vilchez, N; Vitale, V; Waite, A P; Wang, P; Wilms, J; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M

    2009-12-11

    Microquasars are accreting black holes or neutron stars in binary systems with associated relativistic jets. Despite their frequent outburst activity, they have never been unambiguously detected emitting high-energy gamma rays. The Fermi Large Area Telescope (LAT) has detected a variable high-energy source coinciding with the position of the x-ray binary and microquasar Cygnus X-3. Its identification with Cygnus X-3 is secured by the detection of its orbital period in gamma rays, as well as the correlation of the LAT flux with radio emission from the relativistic jets of Cygnus X-3. The gamma-ray emission probably originates from within the binary system, opening new areas in which to study the formation of relativistic jets.

  5. Compact sources as the origin of the soft gamma-ray emission of the Milky Way.

    PubMed

    Lebrun, F; Terrier, R; Bazzano, A; Bélanger, G; Bird, A; Bouchet, L; Dean, A; Del Santo, M; Goldwurm, A; Lund, N; Morand, H; Parmar, A; Paul, J; Roques, J-P; Schönfelder, V; Strong, A W; Ubertini, P; Walter, R; Winkler, C

    2004-03-18

    The Milky Way is known to be an abundant source of gamma-ray photons, now determined to be mainly diffuse in nature and resulting from interstellar processes. In the soft gamma-ray domain, point sources are expected to dominate, but the lack of sensitive high-resolution observations did not allow for a clear estimate of the contribution from such sources. Even the best imaging experiment revealed only a few point sources, accounting for about 50% of the total Galactic flux. Theoretical studies were unable to explain the remaining intense diffuse emission. Investigating the origin of the soft gamma-rays is therefore necessary to determine the dominant particle acceleration processes and to gain insights into the physical and chemical equilibrium of the interstellar medium. Here we report observations in the soft gamma-ray domain that reveal numerous compact sources. We show that these sources account for the entirety of the Milky Way's emission in soft gamma-rays, leaving at most a minor role for diffuse processes.

  6. Search for VHE gamma-ray emission from the globular cluster M13 with VERITAS

    NASA Astrophysics Data System (ADS)

    McCutcheon, Michael Warren

    2012-06-01

    Globular clusters, such as M13, are very dense star clusters and are known to contain many more millisecond pulsars per unit mass than the galaxy as a whole. These pulsars are concentrated in the core regions of globulars and are expected to generate relativistic winds of electrons. Such energetic electrons may then interact with the intense field of optical photons, which is supported by the numerous normal stars of the cluster, to generate Very High-Energy (VHE) gamma rays. Herein, this emission model, as implemented by Bednarek & Sitarek (2007), is described and justified in more detail and data from observations of M13, undertaken to confront this model, are analysed. No evidence for VHE gamma-ray emission from M13 is found. A decorrelated, integral upper limit of 0.306 × 10-12 cm -2 s-1 above 0.8 TeV, at a confidence level of 95%, is determined. Spectral upper limits are also determined and compared to emission curves presented in Bednarek & Sitarek (2007). A detailed examination of the parameters of the model is performed and it is found that the predicted curves were based upon over-optimistic estimations of several of these. Nonetheless, the model can be related to existing theories of pulsar winds and, thereby, it is found that the acceleration of electrons in millisecond pulsar winds (outside pulsar light-cylinders) to TeV energies is excluded by these observations, under self-consistent assumptions of the properties of this population of millisecond pulsars.

  7. MODELING THE NON-RECYCLED FERMI GAMMA-RAY PULSAR POPULATION

    SciTech Connect

    Perera, B. B. P.; McLaughlin, M. A.; Cordes, J. M.; Kerr, M.; Burnett, T. H.; Harding, A. K.

    2013-10-10

    We use Fermi Gamma-ray Space Telescope detections and upper limits on non-recycled pulsars obtained from the Large Area Telescope (LAT) to constrain how the gamma-ray luminosity L{sub γ} depends on the period P and the period derivative P-dot . We use a Bayesian analysis to calculate a best-fit luminosity law, or dependence of L{sub γ} on P and P-dot , including different methods for modeling the beaming factor. An outer gap (OG) magnetosphere geometry provides the best-fit model, which is L{sub γ}∝P{sup -a} P-dot {sup b} where a = 1.36 ± 0.03 and b = 0.44 ± 0.02, similar to but not identical to the commonly assumed L{sub γ}∝√( E-dot )∝P{sup -1.5} P-dot {sup 0.5}. Given upper limits on gamma-ray fluxes of currently known radio pulsars and using the OG model, we find that about 92% of the radio-detected pulsars have gamma-ray beams that intersect our line of sight. By modeling the misalignment of radio and gamma-ray beams of these pulsars, we find an average gamma-ray beaming solid angle of about 3.7π for the OG model, assuming a uniform beam. Using LAT-measured diffuse fluxes, we place a 2σ upper limit on the average braking index and a 2σ lower limit on the average surface magnetic field strength of the pulsar population of 3.8 and 3.2 × 10{sup 10} G, respectively. We then predict the number of non-recycled pulsars detectable by the LAT based on our population model. Using the 2 yr sensitivity, we find that the LAT is capable of detecting emission from about 380 non-recycled pulsars, including 150 currently identified radio pulsars. Using the expected 5 yr sensitivity, about 620 non-recycled pulsars are detectable, including about 220 currently identified radio pulsars. We note that these predictions significantly depend on our model assumptions.

  8. GAMMA-RAY BURSTS IN THE FERMI ERA: THE SPECTRAL ENERGY DISTRIBUTION OF THE PROMPT EMISSION

    SciTech Connect

    Massaro, F.; Grindlay, J. E.; Paggi, A.

    2010-05-10

    Gamma-ray bursts (GRBs) show evidence of different light curves, duration, afterglows, and host galaxies and explode within a wide redshift range. However, their spectral energy distributions (SEDs) appear to be very similar, showing a curved shape. Band et al. proposed a phenomenological description of the integrated spectral shape for the GRB prompt emission, the so-called Band function. In this Letter, we suggest an alternative scenario to explain the curved shape of GRB SEDs: the log-parabolic model. In comparison with the Band spectral shape our model is statistically favored because it fits the GRB spectra with one parameter less than the Band function and is motivated by a theoretical acceleration scenario. The new Fermi observations of GRBs will be crucial for disentangling these two models.

  9. GRO: Black hole models for gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Ruderman, Malvin

    1995-01-01

    The Burst and Transient Source Experiment (BATSE) on board the Compton Gamma Ray Observatory (CGRO) has established that the distribution of gamma-ray bursts (GRB's) is isotropic but is bound radially. This finding suggests that the bursts are either cosmological or they originate from an extended Galactic halo. The implied luminosities and the observed variability of the GRB's on time scales as short as one millisecond suggest that they originate from compact objects. We are presently studying black hole models for GRB's. Any such model must produce a non-thermal photon spectrum to agree with the observed properties. For a wide range of burst parameters the assumed bursting source consists of a non-thermal electron-positron-photon plasma of very high density. It seems possible to produce such a plasma in accretion onto black holes. In our on-going work, we are developing the kinetic theory for a non-equilibrium pair plasma. The main new features of our work are as follows: (1) We do not assume the presence of a thermal electron bath. (2) Non-thermal, high-energy pairs are allowed to have an arbitrary concentration and energy distribution. (3) There is no soft photon source in our model; initially all the photons in the plasma are either energetic X-rays or gamma-rays. (4) The initial energy distribution of the pairs as well as photons is arbitrary. (5) We collect the analytical expressions for the kinetic kernels for all relevant processes. And (6) we present a different approach to finding the time-evolution of pair and photon spectra, which is a combination of the kinetic-theory and the non-linear Monte-Carlo schemes. We have developed many Monte-Carlo programs to model various process, to take into account the time evolution, and to incorporate various physical effects which are unique to non-thermal plasmas. The hydrodynamics of fireballs in GRB's was studied before. Applying results from kinetic theory will improve our understanding of these systems.

  10. A search for pre- and post-burst emission from well-localized gamma-ray burst locations

    NASA Technical Reports Server (NTRS)

    Emslie, A. Gordon

    1994-01-01

    We present the results from the first long-term search for nonburst gamma-ray emission from the positions of 70 intense, well-localized bursts. Using the BATSE occultation technique, designed for monitoring of discrete sources, these burst positions were measured in the energy range of approximately 15 keV to 1.8 MeV over a 112 day interval during 1991. None of these 70 locations exhibited detectable emission at or above the level of approximately 5 x 10(exp -9) ergs cm(exp -2) s(exp -1) during the 112 day interval. This level is approximately 1000 times less than the typical intensity of the burst associated with the given location. In addition, 35 intense gamma-ray bursts detected by BATSE were examined in a five day interval centered on the time of detection. We find no compelling evidence that these bursts emit preburst emission or display prompt postburst emission at a level of approximately 5 x 10(exp -9) ergs cm(exp 2) s(exp -1) on timescales of approximately 1 hr or longer. The lack of detectable long-term emission or preburst and postburst emission from the positions of gamma-ray bursts has important consequences for a variety of burst production models.

  11. Modelling The TARANIS XGRE Insturment For Terrestrial Gamma Ray Flashes and Associated Electron Beams

    NASA Astrophysics Data System (ADS)

    Sarria, D.; Lebrun, F.; Blelly, P. L.; Forme, F.; Laurent, P.; Pailot, D.; Chipaux, R.

    2015-12-01

    The IDEE and XGRE instruments on-board the TARANIS satellite are key experiences of the mission with ambitious scientific objectives concerning Terrestrial Gamma Ray flashes (TGFs), associated electron beams (TEBs), and couplings between the atmosphere and the radiation belts. At the altitude of the satellite, the instruments will measure X and gamma rays produced from sources at lower altitude, and filtered by the atmosphere, together with secondary produced relativistic electrons and positrons. Such measurements only give an indirect access to the source of the TGF, and we need a numerical model of the transport of these burst emissions through the atmosphere, and their interactions with the satellite, including the response of the detectors. This theoretical-experimental approach provides a way to relate the source region to the observations which will be used to better constrain the TGF production mechanism.A first stage has already been accomplished by developing the MC-PEPTITA Monte Carlo model (see Sarria et al. 2015, JGRA) which is able to model the transport of X/gamma-rays and relativistic electrons/positrons through the atmosphere, from the source region up to the altitude of the satellite. The next step is to extend this model to take into account the detection of the energetic particles by the three XGRE sensors by making a full GEANT4 model, validating it by comparison with laboratory experiments, and building its response matrix (for photons and electrons). In this presentation, we will present this strategy in detail, and discuss some preliminary results.

  12. Background Modelling in Very-High-Energy Gamma-Ray Astronomy

    SciTech Connect

    Berge, David; Funk, S.; Hinton, J.; /Heidelberg, Max Planck Inst. /Heidelberg Observ. /Leeds U.

    2006-11-07

    Ground based Cherenkov telescope systems measure astrophysical {gamma}-ray emission against a background of cosmic-ray induced air showers. The subtraction of this background is a major challenge for the extraction of spectra and morphology of {gamma}-ray sources. The unprecedented sensitivity of the new generation of ground based very-high-energy {gamma}-ray experiments such as H.E.S.S. has lead to the discovery of many previously unknown extended sources. The analysis of such sources requires a range of different background modeling techniques. Here we describe some of the techniques that have been applied to data from the H.E.S.S. instrument and compare their performance. Each background model is introduced and discussed in terms of suitability for image generation or spectral analysis and possible caveats are mentioned. We show that there is not a single multi-purpose model, different models are appropriate for different tasks. To keep systematic uncertainties under control it is important to apply several models to the same data set and compare the results.

  13. Spectral properties of blast-wave models of gamma-ray burst sources

    NASA Technical Reports Server (NTRS)

    Meszaros, P.; Rees, M. J.; Papathanassiou, H.

    1994-01-01

    We calculate the spectrum of blast-wave models of gamma-ray burst sources, for various assumptions about the magnetic field density and the relativistic particle acceleration efficiency. For a range of physically plausible models we find that the radiation efficiency is high and leads to nonthermal spectra with breaks at various energies comparable to those observed in the gamma-ray range. Radiation is also predicted at other wavebands, in particular at X-ray, optical/UV, and GeV/TeV energies. We discuss the spectra as a function of duration for three basic types of models, and for cosmological, halo, and galactic disk distances. We also evaluate the gamma-ray fluences and the spectral characteristics for a range of external densities. Impulsive burst models at cosmological distances can satisfy the conventional X-ray paucity constraint S(sub x)/S(sub gamma)less than a few percent over a wide range of durations, but galactic models can do so only for bursts shorter than a few seconds, unless additional assumptions are made. The emissivity is generally larger for bursts in a denser external environment, with the efficiency increasing up to the point where all the energy input is radiated away.

  14. Detailed Investigation of the Gamma-Ray Emission in the Vicinity of SNR W28 with FERMI-LAT

    NASA Technical Reports Server (NTRS)

    Hanabata, Y.; Katagiri, H.; Hewitt, John William; Ballet, J.; Fukazawa, Y.; Fukui, Y.; Hayakawa, T.; Lemoine-Goumard, M.; Pedaletti, G.; Strong, A. W.; Torres, D. F.; Yamazaki, R.

    2014-01-01

    We present a detailed investigation of the Gamma-ray emission in the vicinity of the supernova remnant (SNR) W28 (G6.4-0.1) observed by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. We detected significant ? -ray emission spatially coincident with TeV sources HESS J1800-240A, B, and C, located outside the radio boundary of the SNR. Their spectra in the 2-100 GeV band are consistent with the extrapolation of the power-law spectra of the TeV sources. We also identified a new source of GeV emission, dubbed Source W, which lies outside the boundary of TeV sources and coincides with radio emission from the western part of W28. All of the GeV Gamma-ray sources overlap with molecular clouds in the velocity range from 0 to 20 km s (exp-1). Under the assumption that the Gamma-ray emission toward HESS J1800-240A, B, and C comes from 3.14(exp0) decay due to the interaction between the molecular clouds and cosmic rays (CRs) escaping from W28, they can be naturally explained by a single model in which the CR diffusion coefficient is smaller than the theoretical expectation in the interstellar space. The total energy of the CRs escaping from W28 is constrained through the same modeling to be larger than is approximately 2 × 10(exp49) erg. The emission from Source W can also be explained with the same CR escape scenario.

  15. Modeling High-Energy Gamma-Rays from the Fermi Bubbles - Oral Presentation

    SciTech Connect

    Splettstoesser, Megan

    2015-08-25

    In 2010, the Fermi Bubbles were discovered at the galactic center of the Milky Way. These giant gamma-ray structures, extending 50 degrees in galactic latitude and 20-30 degrees in galactic longitude, were not predicted. We wish to develop a model for the gamma-ray emission of the Fermi Bubbles. To do so, we assume that second order Fermi acceleration is responsible for the high-energy emission of the bubbles. Second order Fermi acceleration requires charged particles and irregular magnetic fields—both of which are present in the disk of the Milky Way galaxy. I use the assumption of second order Fermi acceleration in the transport equation, which describes the diffusion of particles. By solving the steady-state case of the transport equation, I compute the proton spectrum due to Fermi second order acceleration and compare this analytical solution to a numerical solution provided by Dr. P. Mertsch. Analytical solutions to the transport equation are taken from Becker, Le, & Dermer and are used to further test the numerical solution. I find that the numerical solution converges to the analytical solution in all cases. Thus, we know the numerical solution accurately calculates the proton spectrum. The gamma-ray spectrum follows the proton spectrum, and will be computed in the future.

  16. Search for Hard X-Ray Emission from Aquila X-1: High Energy Emission from Gamma-ray Radio Star 2CG 135+1/LSI 61 305

    NASA Technical Reports Server (NTRS)

    Tavani, Marco

    1998-01-01

    Several investigations supported by these CCRO grant were completed or are close to completion. The study of EGRET data for the unidentified source 2CG 135+01 was very fruitful. We discovered transient gamma-ray emission by combining several data obtained since 1994 through 1997. It is the first time that time variable emission is established for this enigmatic source, and clearly an interpretation in terms of an isolated radio pulsar (Geminga-like) is disfavored now. Our preferred model is a Galactic source, probably an energetic pulsar (such as PSR129-63) in a binary system producing gamma-rays because of pulsar wind/mass outflow interaction. We also accumulated may data concerning the radio source LSI 61 303, the possible counterpart of 2CG 135+01. We show that a possible anti-correlation between radio and gamma-ray emission exists. This anticorrelation is evident only in the energy range above 100 MeV, as demonstrated by the lack of it obtained from OSSE data. If confirmed, this anti-correlation would prove to be very important for the interpretation of the hundreds of unidentified gamma-ray sources currently discovered by EGRET near the Galactic plane, and would point to a new class of sources in addition to AGNs and isolated pulsars. We also completed the analysis of several time variable gamma-ray sources near the Galactic plane, with the discussion of evidence for transient emission from 2EG J1813-12 and 2EG J1828+01. We completed several investigations regarding gamma-ray bursts (GRBs), including the study of the brightness distribution for different spectral/duration GRB sub-classes, an investigation of acceleration processes and their consequences for GRB afterglow emission [61, the application of the synchrotron shock model of GRBs to X-ray energies.

  17. A search of the SAS-2 data for pulsed gamma-ray emission from radio pulsars

    NASA Technical Reports Server (NTRS)

    Ogelman, H.; Fichtel, C. E.; Kniffen, D. A.; Thompson, D. J.

    1976-01-01

    Data from the SAS-2 high-energy (above 35 MeV) gamma-ray experiment have been examined for pulsed emission from each of 75 radio pulsars which were viewed by the instrument and which have sufficiently well-defined period and period-derivative information from radio observations to allow for gamma-ray periodicity searches. When gamma-ray arrival times were converted to pulsar phase using the radio reference timing information, two pulsars, PSR 1747-46 and PSR 1818-04, showed positive effects, each with a probability of less than 1 part in 10,000 of being a random fluctuation in the data for that pulsar. These are in addition to PSR 0531+21 and PSR 0833-45, previously reported. The results of this study suggest that gamma-ray astronomy has reached the detection threshold for gamma-ray pulsars and that work in the near future should give important new information on the nature of pulsars.

  18. X-Ray Emission from the Unidentified Gamma-Ray Transient GRO J1838-0415

    NASA Technical Reports Server (NTRS)

    Tavani, Marco

    1998-01-01

    The gamma-ray transient GRO J1838-04 is one of the most enigmatic sources in the sky. Despite its closeness to the Galactic plane, it showed a strong gamma-ray flare in 1995 typical of blazars. However, no blazar is detected in its approx. 1 deg. error box, and a Galactic source is suspected. Other time variable gamma-ray sources are known in the Galactic disk, and GRO J1838-04 may belong to a new class of sources (isolated young pulsars, the only proven Galactic gamma-ray sources, do not show variability). The Advanced Satellite for Cosmology and Astrophysics (ASCA) observed the centroid of the Energetic Gamma Ray Experiment Telescope (EGRET) error box of GRO J1838-04 in April 1997. Five weak X-ray sources are detected, one of which appears to be diffuse (3 arcmins). No known radio source is coincident with the X-ray sources. A preliminary report of our results appeared and a more systematic report is being written . The fact that no prominent X-ray source appears in the field, excludes an X-ray transient source with strong persistent emission is a possible counterpart of GRO JI838- 04 (such as superluminal transients). To uncover the nature of GRO J1838-04 requires more study of the weak X-ray sources in its error box, and a long-time scale monitoring of their variability.

  19. AGILE Detection of Gamma-Ray Emission from the Microquasar Cygnus X-3

    NASA Astrophysics Data System (ADS)

    Piano, G.; Tavani, M.; Bulgarelli, A.; Verrecchia, F.; Donnarumma, I.; Munar-Adrover, P.; Minervini, G.; Fioretti, V.; Zoli, A.; Pittori, C.; Lucarelli, F.; Vercellone, S.; Striani, E.; Cardillo, M.; Gianotti, F.; Trifoglio, M.; Giuliani, A.; Mereghetti, S.; Caraveo, P.; Perotti, F.; Chen, A.; Argan, A.; Costa, E.; Del Monte, E.; Evangelista, Y.; Feroci, M.; Lazzarotto, F.; Lapshov, I.; Pacciani, L.; Soffitta, P.; Sabatini, S.; Vittorini, V.; Pucella, G.; Rapisarda, M.; Di Cocco, G.; Fuschino, F.; Galli, M.; Labanti, C.; Marisaldi, M.; Pellizzoni, A.; Pilia, M.; Trois, A.; Barbiellini, G.; Vallazza, E.; Longo, F.; Morselli, A.; Picozza, P.; Prest, M.; Lipari, P.; Zanello, D.; Cattaneo, P. W.; Rappoldi, A.; Colafrancesco, S.; Parmiggiani, N.; Ferrari, A.; Antonelli, A.; Giommi, P.; Salotti, L.; Valentini, G.; D'Amico, F.

    2016-08-01

    The AGILE-GRID detector is revealing gamma-ray emission above 100 MeV from a source positionally consistent with the microquasar Cygnus X-3. Integrating from 2016-08-28 UT 09:00:00 to 2016-08-30 UT 09:00:00 (MJD: 57628.375 - 57630.375), a preliminary multi-source likelihood analysis detects a gamma-ray flux F( > 100 MeV) = (4.0 +/- 1.4) x 10^-6 photons/cm^2/s with a significance near 4 sigma.

  20. SEARCH FOR PULSED {gamma}-RAY EMISSION FROM GLOBULAR CLUSTER M28

    SciTech Connect

    Wu, J. H. K.; Kong, A. K. H.; Huang, R. H. H.; Tam, P. H. T.; Hui, C. Y.; Wu, E. M. H.; Takata, J.; Cheng, K. S. E-mail: cyhui@cnu.ac.kr

    2013-03-10

    Using the data from the Large Area Telescope on board the Fermi Gamma-ray Space Telescope, we have searched for {gamma}-ray pulsations from the direction of the globular cluster M28 (NGC 6626). We report the discovery of a signal with a frequency consistent with that of the energetic millisecond pulsar (MSP) PSR B1821-24 in M28. A weighted H-test test statistic of 28.8 is attained, which corresponds to a chance probability of {approx}10{sup -5} (4.3{sigma} detection). With a phase-resolved analysis, the pulsed component is found to contribute {approx}25% of the total observed {gamma}-ray emission from the cluster. However, the unpulsed level provides a constraint for the underlying MSP population and the fundamental plane relations for the scenario of inverse Compton scattering. Follow-up timing observations in radio/X-ray are encouraged to further investigate this periodic signal candidate.

  1. Gamma-ray bursts.

    PubMed

    Gehrels, Neil; Mészáros, Péter

    2012-08-24

    Gamma-ray bursts (GRBs) are bright flashes of gamma rays coming from the cosmos. They occur roughly once per day, typically last for tens of seconds, and are the most luminous events in the universe. More than three decades after their discovery, and after pioneering advances from space and ground experiments, they still remain mysterious. The launch of the Swift and Fermi satellites in 2004 and 2008 brought in a trove of qualitatively new data. In this Review, we survey the interplay between these recent observations and the theoretical models of the prompt GRB emission and the subsequent afterglow. PMID:22923573

  2. New Limits on Gamma-Ray Emission from Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Griffin, Rhiannon D.; Dai, Xinyu; Kochanek, Christopher S.

    2014-11-01

    Galaxy clusters are predicted to produce γ-rays through cosmic ray interactions and/or dark matter annihilation, potentially detectable by the Fermi Large Area Telescope (Fermi-LAT). We present a new, independent stacking analysis of Fermi-LAT photon count maps using the 78 richest nearby clusters (z < 0.12) from the Two Micron All Sky Survey cluster catalog. We obtain the lowest limit on the photon flux to date, 2.3 × 10-11 photons cm-2 s-1 (95% confidence) per cluster in the 0.8-100 GeV band, which corresponds to a luminosity limit of 3.5 × 1044 photons s-1. We also constrain the emission limits in a range of narrower energy bands. Scaling to recent cosmic ray acceleration and γ-ray emission models, we find that cosmic rays represent a negligible contribution to the intra-cluster energy density and gas pressure.

  3. Gamma-ray line emission from Al-26 produced by Wolf-Rayet stars

    NASA Technical Reports Server (NTRS)

    Prantzos, N.; Casse, M.; Gros, M.; Doom, C.; Arnould, M.

    1985-01-01

    The recent satellite observations of the 1.8 MeV line from the decay of Al-26 has given a new impetus to the study of the nucleosynthesis of Al-26. The production and ejection of Al-26 by massive mass-losing stars (Of and WR stars) is discussed in the light of recent stellar models. The longitude distribution of the Al-26 gamma ray line emission produced by the galactic collection of WR stars is derived based on various estimates of their radial distribution. This longitude profile provides: (1) a specific signature of massive stars on the background of other potential Al-26 sources, as novae, supernovae, certain red giants and possibly AGB stars; and (2) a possible tool to improve the data analysis of the HEAO 3 and SMM experiments.

  4. GAMMA-RAY EMISSION OF ACCELERATED PARTICLES ESCAPING A SUPERNOVA REMNANT IN A MOLECULAR CLOUD

    SciTech Connect

    Ellison, Donald C.; Bykov, Andrei M. E-mail: byk@astro.ioffe.ru

    2011-04-20

    We present a model of gamma-ray emission from core-collapse supernovae (SNe) originating from the explosions of massive young stars. The fast forward shock of the supernova remnant (SNR) can accelerate particles by diffusive shock acceleration (DSA) in a cavern blown by a strong, pre-SN stellar wind. As a fundamental part of nonlinear DSA, some fraction of the accelerated particles escape the shock and interact with a surrounding massive dense shell producing hard photon emission. To calculate this emission, we have developed a new Monte Carlo technique for propagating the cosmic rays (CRs) produced by the forward shock of the SNR, into the dense, external material. This technique is incorporated in a hydrodynamic model of an evolving SNR which includes the nonlinear feedback of CRs on the SNR evolution, the production of escaping CRs along with those that remain trapped within the remnant, and the broadband emission of radiation from trapped and escaping CRs. While our combined CR-hydro-escape model is quite general and applies to both core collapse and thermonuclear SNe, the parameters we choose for our discussion here are more typical of SNRs from very massive stars whose emission spectra differ somewhat from those produced by lower mass progenitors directly interacting with a molecular cloud.

  5. Search for Very High Energy Gamma-ray Emission from Pulsar-Pulsar Wind Nebula Systems with the MAGIC Telescope

    NASA Astrophysics Data System (ADS)

    Anderhub, H.; Antonelli, L. A.; Antoranz, P.; Backes, M.; Baixeras, C.; Balestra, S.; Barrio, J. A.; Bastieri, D.; Becerra González, J.; Becker, J. K.; Bednarek, W.; Berger, al K.; Bernardini, E.; Biland, A.; Bock, R. K.; Bonnoli, G.; Bordas, P.; Borla Tridon, D.; Bosch-Ramon, V.; Bose, D.; Braun, I.; Bretz, T.; Britzger, D.; Camara, M.; Carmona, E.; Carosi, A.; Colin, P.; Commichau, S.; Contreras, J. L.; Cortina, J.; Costado, M. T.; Covino, S.; Dazzi, F.; De Angelis, A.; de Cea del Pozo, E.; De los Reyes, R.; De Lotto, B.; De Maria, M.; De Sabata, F.; Delgado Mendez, C.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Elsaesser, D.; Errando, M.; Ferenc, D.; Fernández, E.; Firpo, R.; Fonseca, M. V.; Font, L.; Galante, N.; García López, R. J.; Garczarczyk, M.; Gaug, M.; Godinovic, N.; Goebel, F.; Hadasch, D.; Herrero, A.; Hildebrand, D.; Höhne-Mönch, D.; Hose, J.; Hrupec, D.; Hsu, C. C.; Jogler, T.; Klepser, S.; Kranich, D.; La Barbera, A.; Laille, A.; Leonardo, E.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; Lorenz, E.; Majumdar, P.; Maneva, G.; Mankuzhiyil, N.; Mannheim, K.; Maraschi, L.; Mariotti, M.; Martínez, M.; Mazin, D.; Meucci, M.; Miranda, J. M.; Mirzoyan, R.; Miyamoto, H.; Moldón, J.; Moles, M.; Moralejo, A.; Nieto, D.; Nilsson, K.; Ninkovic, J.; Orito, R.; Oya, I.; Paoletti, R.; Paredes, J. M.; Pasanen, M.; Pascoli, D.; Pauss, F.; Pegna, R. G.; Perez-Torres, M. A.; Persic, M.; Peruzzo, L.; Prada, F.; Prandini, E.; Puchades, N.; Puljak, I.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Rissi, M.; Robert, A.; Rügamer, S.; Saggion, A.; Saito, T. Y.; Salvati, M.; Sánchez-Conde, M.; Satalecka, K.; Scalzotto, V.; Scapin, V.; Schweizer, T.; Shayduk, M.; Shore, S. N.; Sierpowska-Bartosik, A.; Sillanpää, A.; Sitarek, J.; Sobczynska, D.; Spanier, F.; Spiro, S.; Stamerra, A.; Stark, L. S.; Suric, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Tescaro, D.; Teshima, M.; Torres, D. F.; Turini, N.; Vankov, H.; Wagner, R. M.; Zabalza, V.; Zandanel, F.; Zanin, R.; Zapatero, J.; Cognard, I.

    2010-02-01

    The MAGIC collaboration has searched for high-energy gamma-ray emission of some of the most promising pulsar candidates above an energy threshold of 50 GeV, an energy not reachable up to now by other ground-based instruments. Neither pulsed nor steady gamma-ray emission has been observed at energies of 100 GeV from the classical radio pulsars PSR J0205+6449 and PSR J2229+6114 (and their nebulae 3C58 and Boomerang, respectively) and the millisecond pulsar PSR J0218+4232. Here, we present the flux upper limits for these sources and discuss their implications in the context of current model predictions.

  6. Gamma-ray emission from SN2014J near maximum optical light

    NASA Astrophysics Data System (ADS)

    Isern, J.; Jean, P.; Bravo, E.; Knödlseder, J.; Lebrun, F.; Churazov, E.; Sunyaev, R.; Domingo, A.; Badenes, C.; Hartmann, D. H.; Hoeflich, P.; Renaud, M.; Soldi, S.; Elias-Rosa, N.; Hernanz, M.; Domínguez, I.; García-Senz, D.; Lichti, G. G.; Vedrenne, G.; Von Ballmoos, P.

    2016-04-01

    Context. The optical light curve of Type Ia supernovae (SNIa) is powered by thermalized gamma-rays produced by the decay of 56Ni and 56Co, the main radioactive isotopes synthesized by the thermonuclear explosion of a C/O white dwarf. Aims: Gamma-rays escaping the ejecta can be used as a diagnostic tool for studying the characteristics of the explosion. In particular, it is expected that the analysis of the early gamma emission, near the maximum of the optical light curve, could provide information about the distribution of the radioactive elements in the debris. Methods: The gamma data obtained from SN2014J in M 82 by the instruments on board INTEGRAL were analysed paying special attention to the effect that the detailed spectral response has on the measurements of the intensity of the lines. Results: The 158 keV emission of 56Ni has been detected in SN2014J at ~5σ at low energy with both ISGRI and SPI around the maximum of the optical light curve. After correcting the spectral response of the detector, the fluxes in the lines suggest that, in addition to the bulk of radioactive elements buried in the central layers of the debris, there is a plume of 56Ni, with a significance of ~3σ, moving at high velocity and receding from the observer. The mass of the plume is in the range of ~0.03-0.08 M⊙. Conclusions: No SNIa explosion model has ever predicted the mass and geometrical distribution of 56Ni suggested here. According to its optical properties, SN2014J looks like a normal SNIa, so it is extremely important to discern whether it is also representative in the gamma-ray band. Based on observations with INTEGRAL, an ESA project with instruments and the science data centre funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Switzerland, and Spain), the Czech Republic, and Poland and with the participation of Russia and USA.

  7. NEW LIMITS ON GAMMA-RAY EMISSION FROM GALAXY CLUSTERS

    SciTech Connect

    Griffin, Rhiannon D.; Dai, Xinyu; Kochanek, Christopher S. E-mail: xdai@ou.edu

    2014-11-01

    Galaxy clusters are predicted to produce γ-rays through cosmic ray interactions and/or dark matter annihilation, potentially detectable by the Fermi Large Area Telescope (Fermi-LAT). We present a new, independent stacking analysis of Fermi-LAT photon count maps using the 78 richest nearby clusters (z < 0.12) from the Two Micron All Sky Survey cluster catalog. We obtain the lowest limit on the photon flux to date, 2.3 × 10{sup –11} photons cm{sup –2} s{sup –1} (95% confidence) per cluster in the 0.8-100 GeV band, which corresponds to a luminosity limit of 3.5 × 10{sup 44} photons s{sup –1}. We also constrain the emission limits in a range of narrower energy bands. Scaling to recent cosmic ray acceleration and γ-ray emission models, we find that cosmic rays represent a negligible contribution to the intra-cluster energy density and gas pressure.

  8. The Emission Time of Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Mitrofanov, Igor G.; Anfimov, Dmitrij S.; Litvak, Maxim L.; Sanin, Anton B.; Saevich, Yurj Yu.; Briggs, Michael S.; Paciesas, William S.; Pendleton, Geoffrey N.; Preece, Robert D.; Koshut, Thomas M.

    1999-01-01

    The concept of emission time tau N is suggested as a temporal parameter which is complementary to the classical parameters of duration times T 50 and T 90. The emission time is defined as the time of emission of N% of the total fluence. The definition adds the time bins of high fluence in decreasing fluence rank until N% of the fluence has been reached. The emission time interval excludes low-emission intervals of bursts and so the emission time characterizes the state of high power emission. The distribution of this new parameter is found to be bimodal for bright bursts. The distributions of emission time tau-30 and tau-50, for groups based on burst intensity, are also compared.

  9. CONSTRAINING THE EMISSIVITY OF ULTRAHIGH ENERGY COSMIC RAYS IN THE DISTANT UNIVERSE WITH THE DIFFUSE GAMMA-RAY EMISSION

    SciTech Connect

    Wang Xiangyu; Liu Ruoyu; Aharonian, Felix

    2011-08-01

    Ultrahigh cosmic rays (UHECRs) with energies {approx}> 10{sup 19} eV emitted at cosmological distances will be attenuated by cosmic microwave and infrared background radiation through photohadronic processes. Lower energy extragalactic cosmic rays ({approx}10{sup 18}-10{sup 19} eV) can only travel a linear distance smaller than {approx}Gpc in a Hubble time due to the diffusion if the extragalactic magnetic fields are as strong as nano-Gauss. These prevent us from directly observing most of the UHECRs in the universe, and thus the observed UHECR intensity reflects only the emissivity in the nearby universe within hundreds of Mpc. However, UHECRs in the distant universe, through interactions with the cosmic background photons, produce UHE electrons and gamma rays that in turn initiate electromagnetic cascades on cosmic background photons. This secondary cascade radiation forms part of the extragalactic diffuse GeV-TeV gamma-ray radiation and, unlike the original UHECRs, is observable. Motivated by new measurements of extragalactic diffuse gamma-ray background radiation by Fermi/Large Area Telescope, we obtained upper limit placed on the UHECR emissivity in the distant universe by requiring that the cascade radiation they produce not exceed the observed levels. By comparison with the gamma-ray emissivity of candidate UHECR sources (such as gamma-ray bursts (GRBs) and active galactic nuclei) at high redshifts, we find that the obtained upper limit for a flat proton spectrum is {approx_equal} 10{sup 1.5} times larger than the gamma-ray emissivity in GRBs and {approx_equal} 10 times smaller than the gamma-ray emissivity in BL Lac objects. In the case of iron nuclei composition, the derived upper limit of UHECR emissivity is a factor of 3-5 times higher. Robust upper limit on the cosmogenic neutrino flux is further obtained, which is marginally reachable by the Icecube detector and the next-generation detector JEM-EUSO.

  10. Observation and Simulation of the Variable Gamma-ray Emission from PSR J2021+4026

    NASA Astrophysics Data System (ADS)

    Ng, C. W.; Takata, J.; Cheng, K. S.

    2016-07-01

    Pulsars are rapidly spinning and highly magnetized neutron stars, with highly stable rotational periods and a gradual spin-down over a long timescale due to the loss of radiation. Glitches refer to events that suddenly increase the rotational speed of a pulsar. The exact causes of glitches and the resulting processes are not fully understood. It is generally believed that couplings between the normal matter and superfluid components, and starquakes, are the common causes of glitches. In this study, one famous glitching pulsar, PSR J2021+4026, is investigated. PSR J2021+4026 is the first variable gamma-ray pulsar observed by Fermi. From gamma-ray observations, it is found that the pulsar experienced a significant flux drop, an increase in the spin-down rate, a change in the pulse profile and a shift in the spectral cut-off to a lower energy, simultaneously around 2011 October 16. To explain these effects on high-energy emissions by the glitch of PSR J2021+4026, we hypothesized the glitch to be caused by the rearrangement of the surface magnetic field due to crustal plate tectonic activities on the pulsar, which was triggered by a starquake. In this glitch event, the inclination angle of the magnetic dipole axis was slightly shifted. This proposition is then tested by numerical modeling using a three-dimensional two-layer outer gap model. The simulation results indicate that a modification of the inclination angle can affect the pulse profile and the spectral properties, which can explain the observation changes after the glitch.

  11. A NOVEL PARADIGM FOR SHORT GAMMA-RAY BURSTS WITH EXTENDED X-RAY EMISSION

    SciTech Connect

    Rezzolla, Luciano; Kumar, Pawan

    2015-04-01

    The merger of a binary of neutron stars provides natural explanations for many of the features of short gamma-ray bursts (SGRBs), such as the generation of a hot torus orbiting a rapidly rotating black hole, which can then build a magnetic jet and provide the energy reservoir to launch a relativistic outflow. However, this scenario has problems explaining the recently discovered long-term and sustained X-ray emission associated with the afterglows of a subclass of SGRBs. We propose a new model that explains how an X-ray afterglow can be sustained by the product of the merger and how the X-ray emission is produced before the corresponding emission in the gamma-band, though it is observed to follow it. Overall, our paradigm combines in a novel manner a number of well-established features of the emission in SGRBs and results from simulations. Because it involves the propagation of an ultra-relativistic outflow and its interaction with a confining medium, the paradigm also highlights a unifying phenomenology between short and long GRBs.

  12. Scattered emission from a relativistic outflow and its application to gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Shen, R.-F.; Barniol Duran, R.; Kumar, P.

    2008-03-01

    We investigate a scenario of photon scattering by electrons within a relativistic outflow. The outflow is composed of discrete shells with different speeds. One shell emits radiation for a short duration. Some of this radiation is scattered by the shell(s) behind. We calculate in a simple two-shell model the observed scattered flux density as a function of the observed primary flux density, the normalized arrival time delay between the two emission components, the Lorentz factor ratio of the two shells and the scattering shell's optical depth. Thomson scattering in a cold shell and inverse Compton scattering in a hot shell are both considered. The results of our calculations are applied to the gamma-ray bursts and the afterglows. We find that the scattered flux from a cold slower shell is small and likely to be detected only for those bursts with very weak afterglows. A hot scattering shell could give rise to a scattered emission as bright as the X-ray shallow decay component detected in many bursts, on a condition that the isotropically equivalent total energy carried by the hot electrons is large, ~1052-1056 erg. The scattered emission from a faster shell could appear as a late short γ-ray/MeV flash or become part of the prompt emission depending on the delay of the ejection of the shell.

  13. Binary Orbits as the Driver of Gamma-Ray Emission and Mass Ejection in Classical Novae

    NASA Technical Reports Server (NTRS)

    Chomiuk, Laura; Linford, Justin D.; Yang, Jun; O'Brien, T. J.; Paragi, Zsolt; Mioduszewski, Amy J.; Beswick, R. J.; Cheung, C. C.; Mukai, Koji; Nelson, Thomas

    2014-01-01

    Classical novae are the most common astrophysical thermonuclear explosions, occurring on the surfaces of white dwarf stars accreting gas from companions in binary star systems. Novae typically expel about 10 (sup -4) solar masses of material at velocities exceeding 1,000 kilometers per second.However, the mechanism of mass ejection in novae is poorly understood, and could be dominated by the impulsive flash of thermonuclear energy, prolonged optically thick winds or binary interaction with the nova envelope. Classical novae are now routinely detected at giga-electronvolt gamma-ray wavelengths, suggesting that relativistic particles are accelerated by strong shocks in the ejecta. Here we report high-resolution radio imaging of the gamma-ray-emitting nova V959 Mon. We find that its ejecta were shaped by the motion of the binary system: some gas was expelled rapidly along the poles as a wind from the white dwarf, while denser material drifted out along the equatorial plane, propelled by orbital motion..At the interface between the equatorial and polar regions, we observe synchrotron emission indicative of shocks and relativistic particle acceleration, thereby pinpointing the location of gamma-ray production. Binary shaping of the nova ejecta and associated internal shocks are expected to be widespread among novae, explaining why many novae are gamma-ray emitters.

  14. VERY HIGH ENERGY {gamma}-RAY EMISSION FROM PASSIVE SUPERMASSIVE BLACK HOLES: CONSTRAINTS FOR NGC 1399

    SciTech Connect

    Pedaletti, G.; Wagner, S. J.; Rieger, F. M.

    2011-09-10

    Very high energy (VHE, >100 GeV) {gamma}-rays are expected to be emitted from the vicinity of supermassive black holes (SMBHs), irrespective of their activity state. In the magnetosphere of rotating SMBH, efficient acceleration of charged particles can take place through various processes. These particles could reach energies up to E {approx} 10{sup 19} eV. VHE {gamma}-ray emission from these particles is then feasible via leptonic or hadronic processes. Therefore, passive systems, where the lack of a strong photon field allows the VHE {gamma}-rays to escape, are expected to be detected by Cherenkov telescopes. We present results from recent VHE experiments on the passive SMBH in the nearby elliptical galaxy NGC 1399. No {gamma}-ray signal has been found, neither by the H.E.S.S. experiment nor in the Fermi data analyzed here. We discuss possible implications for the physical characteristics of the system. We conclude that in a scenario where particles are accelerated in vacuum gaps in the magnetosphere, only a fraction {approx}0.3 of the gap is available for particle acceleration, indicating that the system is unlikely to be able to accelerate protons up to E {approx} 10{sup 19} eV.

  15. On The gamma-ray emission from Reticulum II and other dwarf galaxies

    SciTech Connect

    Hooper, Dan; Linden, Tim E-mail: trlinden@uchicago.edu

    2015-09-01

    The recent discovery of ten new dwarf galaxy candidates by the Dark Energy Survey (DES) and the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) could increase the Fermi Gamma-Ray Space Telescope's sensitivity to annihilating dark matter particles, potentially enabling a definitive test of the dark matter interpretation of the long-standing Galactic Center gamma-ray excess. In this paper, we compare the previous analyses of Fermi data from the directions of the new dwarf candidates (including the relatively nearby Reticulum II) and perform our own analysis, with the goal of establishing the statistical significance of any gamma-ray signal from these sources. We confirm the presence of an excess from Reticulum II, with a spectral shape that is compatible with the Galactic Center signal. The significance of this emission is greater than that observed from 99.84% of randomly chosen high-latitude blank-sky locations, corresponding to a local detection significance of 3.2σ. We caution that any dark matter interpretation of this excess must be validated through observations of additional dwarf spheroidal galaxies, and improved calculations of the relative J-factor of dwarf spheroidal galaxies. We improve upon the standard blank-sky calibration approach through the use of multi-wavelength catalogs, which allow us to avoid regions that are likely to contain unresolved gamma-ray sources.

  16. COSMIC-RAY STREAMING FROM SUPERNOVA REMNANTS AND GAMMA-RAY EMISSION FROM NEARBY MOLECULAR CLOUDS

    SciTech Connect

    Yan Huirong; Lazarian, A.; Schlickeiser, R.

    2012-02-01

    High-energy gamma-ray emission has been detected recently from supernova remnants (SNRs) and their surroundings. The existence of molecular clouds near some of the SNRs suggests that the gamma rays originate predominantly from p-p interactions with cosmic rays (CRs) accelerated at a closeby SNR shock wave. Here we investigate the acceleration of CRs and the gamma-ray production in the cloud self-consistently by taking into account the interactions of the streaming instability and the background turbulence both at the shock front and in the ensuing propagation to the clouds. We focus on the later evolution of SNRs, when the conventional treatment of the streaming instability is valid but the magnetic field is enhanced due to Bell's current instability and/or the dynamo generation of magnetic field in the precursor region. We calculate the time dependence of the maximum energy of the accelerated particles. This result is then used to determine the diffusive flux of the runaway particles escaping the shock region, from which we obtain the gamma spectrum consistent with observations. Finally, we check the self-consistency of our results by comparing the required level of diffusion with the level of the streaming instability attainable in the presence of turbulence damping. The energy range of CRs subject to the streaming instability is able to produce the observed energy spectrum of gamma rays.

  17. Pair Production and Gamma-Ray Emission in the Outer Magnetospheres of Rapidly Spinning Young Pulsars

    NASA Technical Reports Server (NTRS)

    Ruderman, Malvin; Chen, Kaiyou

    1997-01-01

    Electron-positron pair production and acceleration in the outer magnetosphere may be crucial for a young rapidly spinning canonical pulsar to be a strong Gamma-ray emitter. Collision between curvature radiated GeV photons and soft X-ray photons seems to be the only efficient pair production mechanism. For Crib-like pulsars, the magnetic field near the light cylinder is so strong, such that the synchrotron radiation of secondary pairs will be in the needed X-ray range. However, for majority of the known Gamma-ray pulsars, surface emitted X-rays seem to work as the matches and fuels for a gamma-ray generation fireball in the outer magnetosphere. The needed X-rays could come from thermal emission of a cooling neutron star or could be the heat generated by bombardment of the polar cap by energetic particles generated in the outer magnetosphere. With detection of more Gamma-ray pulsars, it is becoming evident that the neutron star's intrisic geometry (the inclination angle between the rotation and magnetic axes) and observational geometry (the viewing angle with respect to the rotation axis) are crucial to the understanding of varieties of observational properties exhibited by these pulsars. Inclination angles for many known high energy Gamma-ray pulsars appear to be large and the distribution seems to be consistent with random orientation. However, all of them except Geminga are pre-selected from known radio pulsars. The viewing angles are thus limited to be around the respective inclination angles for beamed radio emission, which may induce strong selection effect. The viewing angles as well as the inclination angles of PSR 1509-58 and PSB 0656+14 may be small such that most of the high energy Gamma-rays produced in the outer accelerators may not reach the observer's direction. The observed Gamma-rays below 5 MeV from this pulsar may be synchrotron radiation of secondary electron-positron pairs produced outside the accelerating regions.

  18. POTENTIAL GAMMA-RAY EMISSIONS FROM LOW-MASS X-RAY BINARY JETS

    SciTech Connect

    Zhang, Jian-Fu; Gu, Wei-Min; Liu, Tong; Xue, Li; Lu, Ju-Fu E-mail: guwm@xmu.edu.cn

    2015-06-20

    By proposing a pure leptonic radiation model, we study the potential gamma-ray emissions from the jets of low-mass X-ray binaries. In this model, the relativistic electrons that are accelerated in the jets are responsible for radiative outputs. Nevertheless, jet dynamics are dominated by magnetic and proton–matter kinetic energies. The model involves all kinds of related radiative processes and considers the evolution of relativistic electrons along the jet by numerically solving the kinetic equation. Numerical results show that the spectral energy distributions can extend up to TeV bands, in which synchrotron radiation and synchrotron self-Compton scattering are dominant components. As an example, we apply the model to the low-mass X-ray binary GX 339–4. The results not only can reproduce the currently available observations from GX 339–4, but also predict detectable radiation at GeV and TeV bands by the Fermi and CTA telescopes. Future observations with Fermi and CTA can be used to test our model, which could be employed to distinguish the origin of X-ray emissions.

  19. Modeling Extragalactic Extinction through Gamma-Ray Burst Afterglows

    NASA Astrophysics Data System (ADS)

    Zonca, Alberto; Cecchi-Pestellini, Cesare; Mulas, Giacomo; Casu, Silvia; Aresu, Giambattista

    2016-09-01

    We analyze extragalactic extinction profiles derived through gamma-ray burst afterglows, using a dust model specifically constructed on the assumption that dust grains are not immutable but respond, time-dependently, to the local physics. Such a model includes core-mantle spherical particles of mixed chemical composition (silicate core, sp2, and sp3 carbonaceous layers), and an additional molecular component in the form of free-flying polycyclic aromatic hydrocarbons. We fit most of the observed extinction profiles. Failures occur for lines of sight, presenting remarkable rises blueward of the bump. We find a tendency for the carbon chemical structure to become more aliphatic with the galactic activity, and to some extent with increasing redshifts. Moreover, the contribution of the molecular component to the total extinction is more important in younger objects. The results of the fitting procedure (either successes and failures) may be naturally interpreted through an evolutionary prescription based on the carbon cycle in the interstellar medium of galaxies.

  20. Discovery of TeV gamma-ray emission from the pulsar wind nebula 3C 58 by MAGIC

    NASA Astrophysics Data System (ADS)

    López-Coto, Rubén

    2016-07-01

    The pulsar wind nebula (PWN) 3C 58 is one of the historical very-high-energy (VHE; E>100 GeV) gamma-ray source candidates. It has been compared to the Crab Nebula due to their morphological similarities. This object was detected by Fermi-LAT with a spectrum extending beyond 100 GeV. We analyzed 81 hours of 3C 58 data taken with the MAGIC telescopes and we detected VHE gamma-ray emission for the first time at TeV energies with a significance of 5.7 sigma and an integral flux of 0.65% C.U. above 1 TeV. According to our results 3C 58 is the least luminous PWN ever detected at VHE and the one with the lowest flux at VHE to date. We compare our results with the expectations of time-dependent models in which electrons up-scatter photon fields. The best representation favors a distance to the PWN of 2 kpc and Far Infrared (FIR) comparable to CMB photon fields. Hadronic contribution from the hosting supernova remnant (SNR) requires unrealistic energy budget given the density of the medium, disfavoring cosmic ray acceleration in the SNR as origin of the VHE gamma-ray emission.

  1. Gamma-rays from dark showers with twin Higgs models

    NASA Astrophysics Data System (ADS)

    Freytsis, Marat; Knapen, Simon; Robinson, Dean J.; Tsai, Yuhsin

    2016-05-01

    We consider a twin WIMP scenario whose twin sector contains a full dark copy of the SM hadrons, where the lightest twin particles are twin pions. By analogy to the standard WIMP paradigm, the dark matter (DM) freezes out through twin electroweak interactions, and annihilates into a dark shower of light twin hadrons. These are either stable or decay predominantly to standard model (SM) photons. We show that this `hadrosymmetric' scenario can be consistent with all applicable astrophysical, cosmological and collider constraints. In order to decay the twin hadrons before the big-bang nucleosynthesis epoch, an additional portal between the SM and twin sector is required. In most cases we find this additional mediator is within reach of either the LHC or future intensity frontier experiments. Furthermore, we conduct simulations of the dark shower and consequent photon spectra. We find that fits of these spectra to the claimed galactic center gamma-ray excess seen by Fermi -LAT non-trivially coincide with regions of parameter space that both successfully generate the observed DM abundance and exhibit minimal fine-tuning.

  2. JITTER RADIATION MODEL OF THE CRAB GAMMA-RAY FLARES

    SciTech Connect

    Teraki, Yuto; Takahara, Fumio

    2013-02-15

    The gamma-ray flares of the Crab nebula detected by the Fermi and AGILE satellites challenge our understanding of the physics of pulsars and their nebulae. The central problem is that the peak energy of the flares exceeds the maximum energy E {sub c} determined by synchrotron radiation loss. However, when turbulent magnetic fields exist with scales {lambda}{sub B} smaller than 2{pi}mc {sup 2}/eB, jitter radiation can emit photons with energies higher than E {sub c}. The scale required for the Crab flares is about two orders of magnitude less than the wavelength of the striped wind. We discuss a model in which the flares are triggered by plunging the high-density blobs into the termination shock. The observed hard spectral shape may be explained by the jitter mechanism. We make three observational predictions: first, the polarization degree will become lower in flares; second, no counterpart will be seen in TeV-PeV range; and third, the flare spectrum will not be harder than {nu}F {sub {nu}}{proportional_to}{nu}{sup 1}.

  3. Magnetic Compton-induced pair cascade model for gamma-ray pulsars

    NASA Technical Reports Server (NTRS)

    Sturner, Steven J.; Dermer, Charles D.; Michel, F. Curtis

    1995-01-01

    Electrons accelerated to relativistic energies in pulsar magnetospheres will Compton scatter surface thermal emission and nonthermal optical, UV, and soft X-ray emission to gamma-ray energies, thereby initiating a pair cascade through synchrotron radiation and magnetic pair production. This process is proposed as the origin of the high-energy radiation that has been detected from six isolated pulsars. We construct an analytic model of magnetic Compton scattering near the polar cap of isolated pulsar magnetospheres and present approximate analytic derivations for scattered spectra, electron energy-loss rates, and photon luminosities. A Monte Carlo simulation is used to model the pair cascade induced by relativistic electrons scattering photons through the cyclotron resonance. For simplicity, the primary electrons are assumed to be monoenergetic and the nonresonant emission is omitted. Assuming that the angle phi(sub B) between the magnetic and spin axes is approximately equal to the polar-cap angle theta(sub pc), this model can produce both double-peaked and broad single-peaked pulse profiles and account for the trend of harder gamma-ray spectra observed from older pulsars.

  4. Modeling Gamma-Ray Burst X-Ray Flares Within the Internal Shock Model

    NASA Astrophysics Data System (ADS)

    Maxham, Amanda; Zhang, Bing

    2009-12-01

    X-ray afterglow light curves have been collected for over 400 Swift gamma-ray bursts (GRBs) with nearly half of them having X-ray flares superimposed on the regular afterglow decay. Evidence suggests that gamma-ray prompt emission and X-ray flares share a common origin and that at least some flares can only be explained by long-lasting central engine activity. We have developed a shell model code to address the question of how X-ray flares are produced within the framework of the internal shock model. The shell model creates randomized GRB explosions from a central engine with multiple shells and follows those shells as they collide, merge, and spread, producing prompt emission and X-ray flares. We pay special attention to the time history of central engine activity, internal shocks, and observed flares, but do not calculate the shock dynamics and radiation processes in detail. Using the empirical Ep -E iso (Amati) relation with an assumed Band function spectrum for each collision and an empirical flare temporal profile, we calculate the gamma-ray (Swift/BAT band) and X-ray (Swift/XRT band) lightcurves for arbitrary central engine activity and compare the model results with the observational data. We show that the observed X-ray flare phenomenology can be explained within the internal shock model. The number, width, and occurring time of flares are then used to diagnose the central engine activity, putting constraints on the energy, ejection time, width, and number of ejected shells. We find that the observed X-ray flare time history generally reflects the time history of the central engine, which reactivates multiple times after the prompt emission phase with progressively reduced energy. The same shell model predicts an external shock X-ray afterglow component, which has a shallow decay phase due to the initial pile-up of shells onto the blast wave. However, the predicted X-ray afterglow is too bright as compared with the observed flux level, unless epsilon e is

  5. Extended Source Gamma-Ray Emission from WIMP Annihilation in the Sagittarius Dwarf Elliptical Galaxy (SULI paper)

    SciTech Connect

    Vasu-Devan, Vidya; /Columbia U. /SLAC

    2006-01-04

    The proximity of the dark matter dominated Sagittarius Dwarf Elliptical Galaxy (position (l,b) = 5.6{sup o}, -14{sup o}) allows it to act as an ideal laboratory for the exploration of extended gamma-ray emission from Weakly Interacting Massive Particle (WIMP) annihilation processes in a dark matter-dominated system. Since the matter in our universe is predominantly dark, exploring such processes as WIMP annihilation will lead to a better understanding of cosmology. In order to study this gamma-ray emission, a model for the diffuse background gamma-radiation in the dwarf galaxy's region is extracted from the Energetic Gamma Ray Experiment Telescope (EGRET) data. After validating this model and comparing it to the EGRET diffuse model, the background model is added to effective bleeding-contamination from external point sources and multiple models for the signal-above-background emission. Various models of this emission are tested: (a) no source located in region, (b) unidentified point source 3EG J1847-3219 from the Third EGRET Catalog responsible for the emission and (c) extended emission resulting from WIMP annihilation responsible for the signal above background. These models are created through the employment of Monte Carlo simulation methods, utilizing the response functions of the EGRET instrument to simulate the point spread function, energy dispersion and effects of variable effective area depending on angle of incidence. Energy spectra for point sources are generated from the best predictions of spectral indices listed in the Third EGRET Catalog and the spectrum for the extended dark matter source is generated from Pythia high energy annihilation simulations. Hypothesis testing is conducted to assess the goodness-of-fit of these models to the data taken by EGRET. Additionally, we hope to expand our analysis by employing the response functions of the imminent Gamma Ray Large Area Space Telescope (GLAST) to our models. This extension should highlight the

  6. Fermi-LAT upper limits on gamma-ray emission from colliding wind binaries

    NASA Astrophysics Data System (ADS)

    Werner, M.; Reimer, O.; Reimer, A.; Egberts, K.

    2013-07-01

    Context. Colliding wind binaries (CWBs) are thought to give rise to a plethora of physical processes including acceleration and interaction of relativistic particles. Observation of synchrotron radiation in the radio band confirms there is a relativistic electron population in CWBs. Accordingly, CWBs have been suspected sources of high-energy γ-ray emission since the COS-B era. Theoretical models exist that characterize the underlying physical processes leading to particle acceleration and quantitatively predict the non-thermal energy emission observable at Earth. Aims: We strive to find evidence of γ-ray emission from a sample of seven CWB systems: WR 11, WR 70, WR 125, WR 137, WR 140, WR 146, and WR 147. Theoretical modelling identified these systems as the most favourable candidates for emitting γ-rays. We make a comparison with existing γ-ray flux predictions and investigate possible constraints. Methods: We used 24 months of data from the Large Area Telescope (LAT) on-board the Fermi Gamma Ray Space Telescope to perform a dedicated likelihood analysis of CWBs in the LAT energy range. Results: We find no evidence of γ-ray emission from any of the studied CWB systems and determine corresponding flux upper limits. For some CWBs the interplay of orbital and stellar parameters renders the Fermi -LAT data not sensitive enough to constrain the parameter space of the emission models. In the cases of WR140 and WR147, the Fermi -LAT upper limits appear to rule out some model predictions entirely and constrain theoretical models over a significant parameter space. A comparison of our findings to the CWB η Car is made.

  7. Studies of Gamma-Ray Burst Prompt Emission with RHESSI and NCT

    NASA Astrophysics Data System (ADS)

    Bellm, Eric Christopher

    Gamma-Ray Bursts (GRBs) are the most luminous objects in the universe. They herald a catastrophic energy release which manifests itself in tenths to hundreds of seconds of irregular gamma-ray emission. This initial "prompt" emission is followed by "afterglow" emission at other wavelengths that fades smoothly over hours to years. GRB prompt emission has been observed with ever-increasing sophistication for more than four decades, but many details of its origin remain unknown. While GRBs are under-stood to result from relativistic jets produced by violent reconfigurations of compact objects, the composition of the outflow, the means of energy dissipation, and the radiative processes underlying the observed emission are all uncertain. I review the present understanding of all facets of GRB science in Chapter 1. Gamma-ray spectroscopy and polarimetry provide two channels for testing models of GRB prompt emission with observed data. In Chapters 2--4, I employ the Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) to conduct broad-band time-resolved spectroscopy of bright GRBs. RHESSI is a solar observatory that uses nine coaxial germanium detectors for imaging and spectroscopy of solar flares. Because the detectors are unshielded, RHESSI also records counts from off-axis sources like GRBs. In Chapter 2, I detail the methods I use for analyzing RHESSI GRB data. In Chapter 3, I conduct joint spectral analysis of bursts co-observed by RHESSI and Swift-BAT, enabling spectral modeling over a wide 15 keV--17 MeV band. These results reveal the difficulty of predicting the peak spectral energy of a burst from BAT observations alone. While GRB spectra commonly have been assumed to be non-thermal and have been fit by purely phenomenological models, some authors have proposed that thermal emission from the GRB photosphere may be the source of the GRB spectral peak. In Chapter 4, I perform time-resolved spectroscopy of bright GRBs observed by RHESSI and compare the fit

  8. Observations of medium-energy gamma-ray emission from the galactic center region

    NASA Technical Reports Server (NTRS)

    Kniffen, D. A.; Bertsch, D. L.; Morris, D. J.; Palmeira, R. A. R.; Rao, K. R.

    1978-01-01

    Measurements of the gamma-ray emission in the medium-energy range between 15 and 100 MeV, obtained during two balloon flights from Brazil, are presented. The importance of this energy region in determining whether neutral-pion decay or electron bremsstrahlung is the most likely dominant source mechanism is discussed, along with the implications of such observations. Specifically, the data from this experiment suggest that emission from the galactic plane is similar to the theoretical spectrum calculated by Fichtel et al. (1976), including both source mechanisms but with the bremsstrahlung component enhanced by a factor of about 2. A spectral distribution of gamma-rays produced in the residual atmosphere above the instrument is also presented and compared with other data. A rather smooth spectral variation from high to low energies is found for the atmospheric spectrum.

  9. Observations of medium energy gamma ray emission from the galactic center region

    NASA Technical Reports Server (NTRS)

    Kniffen, D. A.; Bertsch, D. L.; Morris, D. J.; Palmeira, R. A. R.; Rao, K. R.

    1978-01-01

    Measurements of the gamma-ray emission in the medium energy range between 15 and 100 MeV, obtained during two ballon flights from Brazil are presented. The importance of this energy region in determining whether pi deg - decay of electron bremsstrahlung is the most likely dominant source mechanism is discussed along with the implications of such observations. Specifically, the data from this experiment suggest that emission from the galactic plane is similar to theoretical spectrum calculations including both sources mechanisms, but with the bremsstrahlung component enhanced by a factor of about 2. A spectral distribution of gamma-rays produced in the residual atmosphere above the instrument is also presented and compared with other data. A rather smooth spectral variation from high to low energies is found for the atmospheric spectrum.

  10. NEUTRINO CONSTRAINTS TO THE DIFFUSE GAMMA-RAY EMISSION FROM ACCRETION SHOCKS

    SciTech Connect

    Dobardžić, A.; Prodanović, T. E-mail: prodanvc@df.uns.ac.rs

    2015-06-20

    Accretion of gas during the large-scale structure formation has been thought to give rise to shocks that can accelerate cosmic rays. This process then results in an isotropic extragalactic gamma-ray emission contributing to the extragalactic gamma-ray background (EGRB) observed by Fermi-LAT. Unfortunately, this emission has been difficult to constrain and thus presents an uncertain foreground to any attempts to extract a potential dark matter signal. Recently, IceCube has detected high-energy isotropic neutrino flux that could be of an extragalactic origin. In general, neutrinos can be linked to gamma rays since cosmic-ray interactions produce neutral and charged pions where neutral pions decay into gamma rays, while charged pions decay to give neutrinos. By assuming that isotropic high-energy IceCube neutrinos are entirely produced by cosmic rays accelerated in accretion shocks during the process of structure formation, we obtain the strongest constraint to the gamma-ray emission from large-scale structure formation (strong) shocks and find that they can make at best ∼20% of the EGRB, corresponding to neutrino flux with spectral index α{sub ν} = 2, or ∼10% for spectral index α{sub ν} = 2.46. Since typical objects where cosmic rays are accelerated in accretion shocks are galaxy clusters, observed high-energy neutrino fluxes can then be used to determine the gamma-ray emission of a dominant cluster type and constrain acceleration efficiency, and thus probe the process of large-scale structure formation.

  11. AGILE confirmation of enhanced gamma-ray emission from the FSRQ PKS 2023-07

    NASA Astrophysics Data System (ADS)

    Verrecchia, F.; Tavani, M.; Lucarelli, F.; Pittori, C.; Bulgarelli, A.; Fioretti, V.; Zoli, A.; Piano, G.; Striani, E.; Vercellone, S.; Donnarumma, I.; Cardillo, M.; Gianotti, F.; Trifoglio, M.; Giuliani, A.; Mereghetti, S.; Caraveo, P.; Perotti, F.; Chen, A.; Argan, A.; Costa, E.; Del Monte, E.; Evangelista, Y.; Feroci, M.; Lazzarotto, F.; Lapshov, I.; Pacciani, L.; Soffitta, P.; Sabatini, S.; Vittorini, V.; Pucella, G.; Rapisarda, M.; Di Cocco, G.; Fuschino, F.; Galli, M.; Labanti, C.; Marisaldi, M.; Pellizzoni, A.; Pilia, M.; Trois, A.; Barbiellini, G.; Vallazza, E.; Longo, F.; Morselli, A.; Picozza, P.; Prest, M.; Lipari, P.; Zanello, D.; Cattaneo, P. W.; Rappoldi, A.; Colafrancesco, S.; Parmiggiani, N.; Ferrari, A.; Antonelli, A.; Giommi, P.; Salotti, L.; Valentini, G.; D'Amico, F.

    2016-04-01

    AGILE confirms increased gamma-ray emission above 100 MeV from a position consistent with the flat spectrum radio quasar PKS 2023-07 (also known as 5BZQ J2025-0735, 3EG J2025-0744, 1AGLR J2027-0747 and 3FGL J2025.6-0736), recently reported in flaring activity by Fermi (Atel #8932) and previously by AGILE (Atel #8879).

  12. AGILE detection of enhanced gamma-ray emission from the FSRQ 4C +01.02

    NASA Astrophysics Data System (ADS)

    Verrecchia, F.; Lucarelli, F.; Pittori, C.; Bulgarelli, A.; Tavani, M.; Fioretti, V.; Zoli, A.; Piano, G.; Striani, E.; Vercellone, S.; Donnarumma, I.; Cardillo, M.; Gianotti, F.; Trifoglio, M.; Giuliani, A.; Mereghetti, S.; Caraveo, P.; Perotti, F.; Chen, A.; Argan, A.; Costa, E.; Del Monte, E.; Evangelista, Y.; Feroci, M.; Lazzarotto, F.; Lapshov, I.; Pacciani, L.; Soffitta, P.; Sabatini, S.; Vittorini, V.; Pucella, G.; Rapisarda, M.; Di Cocco, G.; Fuschino, F.; Galli, M.; Labanti, C.; Marisaldi, M.; Pellizzoni, A.; Pilia, M.; Trois, A.; Barbiellini, G.; Vallazza, E.; Longo, F.; Morselli, A.; Picozza, P.; Prest, M.; Lipari, P.; Zanello, D.; Cattaneo, P. W.; Rappoldi, A.; Colafrancesco, S.; Parmiggiani, N.; Ferrari, A.; Antonelli, A.; Giommi, P.; Salotti, L.; Valentini, G.; D'Amico, F.

    2016-07-01

    AGILE is detecting increased gamma-ray emission above 100 MeV from a position consistent with the flat spectrum radio quasar 4C +01.02 (also known as 5BZQ J0108+0135, PKS 0106+01 and 3FGL J0108.7+0134), recently reported in flaring activity also by Fermi/LAT during the week Jun 6-12 (http://fermisky.blogspot.it).

  13. Further increase of gamma-ray emission from the HBL 1ES 1959+650

    NASA Astrophysics Data System (ADS)

    Biland, A.; Dorner, D.; Mirzoyan, R.; Mukherjee, R.; Buson, S.; Kapanazde, B.

    2016-06-01

    FACT, MAGIC, VERITAS and Fermi-LAT collaborations report the measurement of a further increase of the gamma-ray flux together with bright X-ray emission seen by Swift-XRT from a position consistent with the high-energy peaked BL Lac type object 1ES 1959+650 (z=0.047, Schachter et al. 1993, ApJ, 412, 541).

  14. A Three-Dimensional Analysis of the Galactic Gamma-Ray Emission Resulting from Cosmic-Ray Interactions with the Interstellar Gas and Radiation Fields

    NASA Technical Reports Server (NTRS)

    Sodroski, Thomas J.; Dwek, Eli

    2000-01-01

    The primary task objective is to construct a 3-D model for the distribution of high-energy (20 MeV - 30 GeV) gamma-ray emission in the Galactic disk. Under this task the contractor will utilize data from the EGRET instrument on the Compton Gamma-Ray Observatory, H I and CO surveys, radio-continuum surveys at 408 MHz, 1420 MHz, 5 GHz, and 19 GHz, the COBE Diffuse Infrared Background Experiment (DIRBE) all-sky maps from 1 to 240 microns, and ground-based B, V, J, H, and K photometry. The respective contributions to the gamma-ray emission from cosmic ray/matter interactions, inverse Compton scattering, and extragalactic emission will be determined.

  15. A 3-Dimensional Analysis of the Galactic Gamma-Ray Emission Resulting from Cosmic-Ray Interactions with the Interstellar Gas and Radiation Fields

    NASA Technical Reports Server (NTRS)

    Sodroski, Thomas J.; Dwek, Eli (Technical Monitor)

    2001-01-01

    The contractor will provide support for the analysis of data under ADP (NRA 96-ADP- 09; Proposal No . 167-96adp). The primary task objective is to construct a 3-D model for the distribution of high-energy (20 MeV - 30 GeV) gamma-ray emission in the Galactic disk. Under this task the contractor will utilize data from the EGRET instrument on the Compton Gamma-Ray Observatory, H I and CO surveys, radio-continuum surveys at 408 MHz, 1420 MHz, 5 GHz, and 19 GHz, the COBE Diffuse Infrared Background Experiment (DIME) all-sky maps from 1 to 240 p, and ground-based B, V, J, H, and K photometry. The respective contributions to the gamma-ray emission from cosmic ray/matter interactions, inverse Compton scattering, and extragalactic emission will be determined.

  16. A Three-Dimensional Analysis of the Galactic Gamma-Ray Emission Resulting from Cosmic-Ray Interaction with the Interstellar Gas and Radiation Fields

    NASA Technical Reports Server (NTRS)

    Sodraski, Thomas J.; Dwek, Eli

    1998-01-01

    This final report outlines the progress of the contractor's support for the analysis of data under ADP (NRA 96-ADP-08; Proposal No. 167-96 adp). The primary task object was to construct a 3-D model for the distribution of high-energy (20 MeV-30 GeV) gamma-ray emission in the Galactic disk. Under this task the contractor was to utilize data from the EGRET instrument on the Compton Gamma-Ray Observatory, HI and CO surveys, radio-continuum surveys at 408 MHz, 1420 MHz, 5 GHz, and 19 GHz, the COBE Diffuse Infrared Background Experiment (DIRBE) all-sky maps from I to 240 um, and ground-based B,V, J, H and K photometry. The respective contributions to the high-latitude gamma-ray emission from cosmic ray-matter interactions, inverse Compton scattering, and extra-galactic emission were to be determined.

  17. Constraining Gamma-Ray Emission from Luminous Infrared Galaxies with Fermi-LAT; Tentative Detection of Arp 220

    NASA Astrophysics Data System (ADS)

    Griffin, Rhiannon D.; Dai, Xinyu; Thompson, Todd A.

    2016-05-01

    Star-forming galaxies produce gamma-rays primarily via pion production, resulting from inelastic collisions between cosmic-ray protons and the interstellar medium (ISM). The dense ISM and high star formation rates of luminous and ultra-luminous infrared galaxies (LIRGs and ULIRGs) imply that they should be strong gamma-ray emitters, but so far only two LIRGs have been detected. Theoretical models for their emission depend on the unknown fraction of cosmic-ray protons that escape these galaxies before interacting. We analyze Fermi-LAT data for 82 of the brightest Infrared Astronomical Satellite LIRGs and ULIRGs. We examine each system individually and carry out a stacking analysis to constrain their gamma-ray fluxes. We report the detection of the nearest ULIRG Arp 220 (˜4.6σ). We observe a gamma-ray flux (0.8–100 GeV) of 2.4 × 10‑10 phot cm‑2 s‑1 with a photon index of 2.23 (8.2 × 1041 erg s‑1 at 77 Mpc). We also derive upper limits (ULs) for the stacked LIRGs and ULIRGs. The gamma-ray luminosity of Arp 220 and the stacked ULs agree with calorimetric predictions for dense star-forming galaxies. With the detection of Arp 220, we extend the gamma-ray–IR luminosity correlation to the high-luminosity regime with {log}{L}0.1-100{GeV}=1.25× {log}{L}8-1000μ {{m}}+26.7 as well as the gamma-ray–radio continuum luminosity correlation with {log}{L}0.1-100{GeV}=1.22× {log}{L}1.4{GHz}+13.3. The current survey of Fermi-LAT is on the verge of detecting more LIRGs/ULIRGs in the local universe, and we expect even more detections with deeper Fermi-LAT observations or the next generation of gamma-ray detectors.

  18. Implications of gamma-ray observations on proton models of ultrahigh energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Supanitsky, A. D.

    2016-09-01

    The origin of ultrahigh energy cosmic rays (UHECR) is still unknown. However, great progress has been achieved in past years due to the good quality and large statistics in experimental data collected by the current observatories. The data of the Pierre Auger Observatory show that the composition of UHECRs becomes progressively lighter starting from 1 017 eV up to ˜1 018.3 eV and then, beyond that energy, it becomes increasingly heavier. These analyses are subject to important systematic uncertainties due to the use of hadronic interaction models that extrapolate lower energy accelerator data to the highest energies. Although proton models of UHECRs are disfavored by these results, they cannot be completely ruled out. It is well known that the energy spectra of gamma rays and neutrinos, produced during propagation of these very energetic particles through the intergalactic medium, are a useful tool to constrain the spectrum models. In particular, it has recently been shown that the neutrino upper limits obtained by IceCube challenge the proton models at 95% C.L. In this work we study the constraints imposed by the extragalactic gamma-ray background, measured by Fermi-LAT, on proton models of UHECRs. In particular, we make use of the extragalactic gamma-ray background flux, integrated from 50 GeV to 2 TeV, that originates in point sources, which has recently been obtained by the Fermi-LAT Collaboration, in combination with the neutrino upper limits, to constrain the emission of UHECRs at high redshifts (z >1 ), in the context of the proton models.

  19. Discovery of TeV Gamma-Ray Emission from CTA 1 by VERITAS

    NASA Astrophysics Data System (ADS)

    Aliu, E.; Archambault, S.; Arlen, T.; Aune, T.; Beilicke, M.; Benbow, W.; Bouvier, A.; Buckley, J. H.; Bugaev, V.; Cesarini, A.; Ciupik, L.; Collins-Hughes, E.; Connolly, M. P.; Cui, W.; Dickherber, R.; Duke, C.; Dumm, J.; Dwarkadas, V. V.; Errando, M.; Falcone, A.; Federici, S.; Feng, Q.; Finley, J. P.; Finnegan, G.; Fortson, L.; Furniss, A.; Galante, N.; Gall, D.; Gillanders, G. H.; Godambe, S.; Gotthelf, E. V.; Griffin, S.; Grube, J.; Gyuk, G.; Hanna, D.; Holder, J.; Hughes, G.; Humensky, T. B.; Kaaret, P.; Kargaltsev, O.; Karlsson, N.; Khassen, Y.; Kieda, D.; Krawczynski, H.; Krennrich, F.; Lang, M. J.; Lee, K.; Madhavan, A. S.; Maier, G.; Majumdar, P.; McArthur, S.; McCann, A.; Moriarty, P.; Mukherjee, R.; Nelson, T.; O'Faoláin de Bhróithe, A.; Ong, R. A.; Orr, M.; Otte, A. N.; Park, N.; Perkins, J. S.; Pohl, M.; Prokoph, H.; Quinn, J.; Ragan, K.; Reyes, L. C.; Reynolds, P. T.; Roache, E.; Roberts, M.; Saxon, D. B.; Schroedter, M.; Sembroski, G. H.; Slane, P.; Smith, A. W.; Staszak, D.; Telezhinsky, I.; Tešić, G.; Theiling, M.; Thibadeau, S.; Tsurusaki, K.; Tyler, J.; Varlotta, A.; Vassiliev, V. V.; Vincent, S.; Vivier, M.; Wakely, S. P.; Weekes, T. C.; Weinstein, A.; Welsing, R.; Williams, D. A.; Zitzer, B.

    2013-02-01

    We report the discovery of TeV gamma-ray emission coincident with the shell-type radio supernova remnant (SNR) CTA 1 using the VERITAS gamma-ray observatory. The source, VER J0006+729, was detected as a 6.5 standard deviation excess over background and shows an extended morphology, approximated by a two-dimensional Gaussian of semimajor (semiminor) axis 0.°30 (0.°24) and a centroid 5' from the Fermi gamma-ray pulsar PSR J0007+7303 and its X-ray pulsar wind nebula (PWN). The photon spectrum is well described by a power-law dN/dE = N 0(E/3 TeV)-Γ, with a differential spectral index of Γ = 2.2 ± 0.2stat ± 0.3sys, and normalization N 0 = (9.1 ± 1.3stat ± 1.7sys) × 10-14 cm-2 s-1 TeV-1. The integral flux, F γ = 4.0 × 10-12 erg cm-2 s-1 above 1 TeV, corresponds to 0.2% of the pulsar spin-down power at 1.4 kpc. The energetics, colocation with the SNR, and the relatively small extent of the TeV emission strongly argue for the PWN origin of the TeV photons. We consider the origin of the TeV emission in CTA 1.

  20. Search for VHE gamma-ray emission from Geminga pulsar and nebula with the MAGIC telescopes

    NASA Astrophysics Data System (ADS)

    Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Antoranz, P.; Babic, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Berti, A.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Buson, S.; Carosi, A.; Chatterjee, A.; Clavero, R.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; de Oña Wilhelmi, E.; Di Pierro, F.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Frantzen, K.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Garrido Terrats, D.; Gaug, M.; Giammaria, P.; Godinović, N.; González Muñoz, A.; Gora, D.; Guberman, D.; Hadasch, D.; Hahn, A.; Hanabata, Y.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Hughes, G.; Idec, W.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; La Barbera, A.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; López-Coto, R.; Majumdar, P.; Makariev, M.; Mallot, K.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Marcote, B.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Miranda, J. M.; Mirzoyan, R.; Moralejo, A.; Moretti, E.; Nakajima, D.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Nishijima, K.; Noda, K.; Nogués, L.; Overkemping, A.; Paiano, S.; Palacio, J.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Pedaletti, G.; Peresano, M.; Perri, L.; Persic, M.; Poutanen, J.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Rodriguez Garcia, J.; Saito, T.; Satalecka, K.; Schultz, C.; Schweizer, T.; Shore, S. N.; Sillanpää, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Stamerra, A.; Steinbring, T.; Strzys, M.; Surić, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Thaele, J.; Torres, D. F.; Toyama, T.; Treves, A.; Vanzo, G.; Verguilov, V.; Vovk, I.; Ward, J. E.; Will, M.; Wu, M. H.; Zanin, R.

    2016-06-01

    The Geminga pulsar, one of the brighest gamma-ray sources, is a promising candidate for emission of very-high-energy (VHE > 100 GeV) pulsed gamma rays. Also, detection of a large nebula has been claimed by water Cherenkov instruments. We performed deep observations of Geminga with the MAGIC telescopes, yielding 63 h of good-quality data, and searched for emission from the pulsar and pulsar wind nebula. We did not find any significant detection, and derived 95% confidence level upper limits. The resulting upper limits of 5.3 × 10-13 TeV cm-2 s-1 for the Geminga pulsar and 3.5 × 10-12 TeV cm-2 s-1 for the surrounding nebula at 50 GeV are the mostconstraining ones obtained so far at VHE. To complement the VHE observations, we also analyzed 5 yr of Fermi-LAT data from Geminga, finding that the sub-exponential cut-off is preferred over the exponential cut-off that has been typically used in the literature. We also find that, above 10 GeV, the gamma-ray spectra from Geminga can be described with a power law with index softer than 5. The extrapolation of the power-law Fermi-LAT pulsed spectra to VHE goes well below the MAGIC upper limits, indicating that the detection of pulsed emission from Geminga with the current generation of Cherenkov telescopes is very difficult.

  1. A NEW MODEL FOR GAMMA-RAY CASCADES IN EXTRAGALACTIC MAGNETIC FIELDS

    SciTech Connect

    Huan, H.; Weisgarber, T.; Wakely, S. P.; Arlen, T.

    2011-07-10

    Very high energy (VHE, E {approx}> 100 GeV) gamma rays emitted by extragalactic sources, such as blazars, initiate electromagnetic cascades in the intergalactic medium. The cascade photons arrive at the Earth with angular and temporal distributions correlated with the extragalactic magnetic field (EGMF). We have developed a new semi-analytical model of the cascade properties which is more accurate than previous analytic approaches and faster than full Monte Carlo simulations. Within its range of applicability, our model can quickly generate cascade spectra for a variety of source emission models, EGMF strengths, and assumptions about the source livetime. In this Letter, we describe the properties of the model and demonstrate its utility by exploring the gamma-ray emission from the blazar RGB J0710+591. In particular, we predict, under various scenarios, the VHE and high-energy (100 MeV {approx}< E {approx}< 300 GeV) fluxes detectable with the VERITAS and Fermi Large Area Telescope observatories. We then develop a systematic framework for comparing the predictions to published results, obtaining constraints on the EGMF strength. At a confidence level of 95%, we find the lower limit on the EGMF strength to be {approx}2 x 10{sup -16} G if no limit is placed on the livetime of the source or {approx}3 x 10{sup -18} G if the source livetime is limited to the past {approx}3 years during which Fermi observations have taken place.

  2. Upper limits to pulsed gamma ray emission from PSR 0833-45, 1747-46, and 1818-04

    NASA Technical Reports Server (NTRS)

    Cherry, M. L.; Dunphy, P. P.; Chupp, E. L.; Forrest, D. J.; Ryan, J. M.

    1982-01-01

    Pulsed gamma ray emission from three pulsars (PSR 0833-45, 1747-46, and 1818-04) have been sought on a balloon flight of the University of New Hampshire Large Gamma Ray Telescope, which incorporates a shielded sodium iodide scintillator array, and was launched from Alice Springs, Australia. Over the energy range 0.1 - 10 MeV, no evidence is found for pulsed gamma rays, and upper limits are set for Vela which are comparable to, or below, the extrapolation to lower energies of the pulsed emission reported by SAS-2 and COS-B.

  3. Evidence of the Exponential Decay Emission in the Swift Gamma-ray Bursts

    NASA Technical Reports Server (NTRS)

    Sakamoto, T.; Sato, G.; Hill, J.E.; Krimm, H.A.; Yamazaki, R.; Takami, K.; Swindell, S.; Osborne, J.P.

    2007-01-01

    We present a systematic study of the steep decay emission of gamma-ray bursts (GRBs) observed by the Swift X-Ray Telescope (XRT). In contrast to the analysis in recent literature, instead of extrapolating the data of Burst Alert Telescope (BAT) down into the XRT energy range, we extrapolated the XRT data up to the BAT energy range, 15-25 keV, to produce the BAT and XRT composite light curve. Based on our composite light curve fitting, we have confirmed the existence of an exponential decay component which smoothly connects the BAT prompt data to the XRT steep decay for several GRBs. We also find that the XRT steep decay for some of the bursts can be well fitted by a combination of a power-law with an exponential decay model. We discuss that this exponential component may be the emission from an external shock and a sign of the deceleration of the outflow during the prompt phase.

  4. CONSTRAINING GAMMA-RAY BURST EMISSION PHYSICS WITH EXTENSIVE EARLY-TIME, MULTIBAND FOLLOW-UP

    SciTech Connect

    Cucchiara, A.; Cenko, S. B.; Bloom, J. S.; Morgan, A.; Perley, D. A.; Li, W.; Butler, N. R.; Filippenko, A. V.; Melandri, A.; Kobayashi, S.; Smith, R. J.; Mundell, C. G.; Steele, I. A.; Hora, J. L.; Da Silva, R. L.; Prochaska, J. X.; Worseck, G.; Fumagalli, M.; Cobb, B.; and others

    2011-12-20

    Understanding the origin and diversity of emission processes responsible for gamma-ray bursts (GRBs) remains a pressing challenge. While prompt and contemporaneous panchromatic observations have the potential to test predictions of the internal-external shock model, extensive multiband imaging has been conducted for only a few GRBs. We present rich, early-time, multiband data sets for two Swift events, GRB 110205A and GRB 110213A. The former shows optical emission since the early stages of the prompt phase, followed by the steep rising in flux up to {approx}1000 s after the burst (t{sup -{alpha}} with {alpha} = -6.13 {+-} 0.75). We discuss this feature in the context of the reverse-shock scenario and interpret the following single power-law decay as being forward-shock dominated. Polarization measurements, obtained with the RINGO2 instrument mounted on the Liverpool Telescope, also provide hints on the nature of the emitting ejecta. The latter event, instead, displays a very peculiar optical to near-infrared light curve, with two achromatic peaks. In this case, while the first peak is probably due to the onset of the afterglow, we interpret the second peak to be produced by newly injected material, signifying a late-time activity of the central engine.

  5. THE CRAB NEBULA SUPER-FLARE IN 2011 APRIL: EXTREMELY FAST PARTICLE ACCELERATION AND GAMMA-RAY EMISSION

    SciTech Connect

    Striani, E.; Tavani, M.; Cardillo, M; Piano, G.; Donnarumma, I.; Vittorini, V.; Trois, A.; Costa, E.; Argan, A.; De Paris, G.; Bulgarelli, A.; Pittori, C.; Verrecchia, F.; Weisskopf, M.; Tennant, A.; Barbiellini, G.; Caraveo, P.; Chen, A. W.

    2011-11-01

    We report on the extremely intense and fast gamma-ray flare above 100 MeV detected by AGILE from the Crab Nebula in mid-April 2011. This event is the fourth of a sequence of reported major gamma-ray flares produced by the Crab Nebula in the period 2007/mid-2011. These events are attributed to strong radiative and plasma instabilities in the inner Crab Nebula, and their properties are crucial for theoretical studies of fast and efficient particle acceleration up to 10{sup 15} eV. Here we study the very rapid flux and spectral evolution of the event that on 2011 April 16 reached the record-high peak flux of F = (26 {+-} 5) x 10{sup -6} photons cm{sup -2} s{sup -1} with a rise-time timescale that we determine to be in the range 6-10 hr. The peak flaring gamma-ray spectrum reaches a distinct maximum near 500 MeV with no substantial emission above 1 GeV. The very rapid rise time and overall evolution of the Crab Nebula flare strongly constrain the acceleration mechanisms and challenge MHD models. We briefly discuss the theoretical implications of our observations.

  6. VERITAS SEARCH FOR VHE GAMMA-RAY EMISSION FROM DWARF SPHEROIDAL GALAXIES

    SciTech Connect

    Acciari, V. A.; Benbow, W.; Arlen, T.; Aune, T.; Furniss, A.; Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R.; Boltuch, D.; Bradbury, S. M.; Byrum, K.; Cannon, A.; Cesarini, A.; Christiansen, J. L.; Ciupik, L.; Cui, W.; Finley, J. P.; Duke, C.; Finnegan, G.

    2010-09-10

    Indirect dark matter searches with ground-based gamma-ray observatories provide an alternative for identifying the particle nature of dark matter that is complementary to that of direct search or accelerator production experiments. We present the results of observations of the dwarf spheroidal galaxies Draco, Ursa Minor, Booetes 1, and Willman 1 conducted by the Very Energetic Radiation Imaging Telescope Array System (VERITAS). These galaxies are nearby dark matter dominated objects located at a typical distance of several tens of kiloparsecs for which there are good measurements of the dark matter density profile from stellar velocity measurements. Since the conventional astrophysical background of very high energy gamma rays from these objects appears to be negligible, they are good targets to search for the secondary gamma-ray photons produced by interacting or decaying dark matter particles. No significant gamma-ray flux above 200 GeV was detected from these four dwarf galaxies for a typical exposure of {approx}20 hr. The 95% confidence upper limits on the integral gamma-ray flux are in the range (0.4-2.2) x 10{sup -12}photonscm{sup -2} s{sup -1}. We interpret this limiting flux in the context of pair annihilation of weakly interacting massive particles (WIMPs) and derive constraints on the thermally averaged product of the total self-annihilation cross section and the relative velocity of the WIMPs (({sigma}v) {approx}< 10{sup -23} cm{sup 3} s{sup -1} for m {sub {chi} {approx}}> 300 GeV c {sup -2}). This limit is obtained under conservative assumptions regarding the dark matter distribution in dwarf galaxies and is approximately 3 orders of magnitude above the generic theoretical prediction for WIMPs in the minimal supersymmetric standard model framework. However, significant uncertainty exists in the dark matter distribution as well as the neutralino cross sections which under favorable assumptions could further lower this limit.

  7. Modeling terrestrial gamma ray flashes produced by relativistic feedback discharges

    NASA Astrophysics Data System (ADS)

    Liu, Ningyu; Dwyer, Joseph R.

    2013-05-01

    This paper reports a modeling study of terrestrial gamma ray flashes (TGFs) produced by relativistic feedback discharges. Terrestrial gamma ray flashes are intense energetic radiation originating from the Earth's atmosphere that has been observed by spacecraft. They are produced by bremsstrahlung interactions of energetic electrons, known as runaway electrons, with air atoms. An efficient physical mechanism for producing large fluxes of the runaway electrons to make the TGFs is the relativistic feedback discharge, where seed runaway electrons are generated by positrons and X-rays, products of the discharge itself. Once the relativistic feedback discharge becomes self-sustaining, an exponentially increasing number of relativistic electron avalanches propagate through the same high-field region inside the thundercloud until the electric field is partially discharged by the ionization created by the discharge. The modeling results indicate that the durations of the TGF pulses produced by the relativistic feedback discharge vary from tens of microseconds to several milliseconds, encompassing all durations of the TGFs observed so far. In addition, when a sufficiently large potential difference is available in thunderclouds, a self-propagating discharge known as the relativistic feedback streamer can be formed, which propagates like a conventional positive streamer. For the relativistic feedback streamer, the positive feedback mechanism of runaway electron production by the positrons and X-rays plays a similar role as the photoionization for the conventional positive streamer. The simulation results of the relativistic feedback streamer show that a sequence of TGF pulses with varying durations can be produced by the streamer. The relativistic streamer may initially propagate with a pulsed manner and turn into a continuous propagation mode at a later stage. Milliseconds long TGF pulses can be produced by the feedback streamer during its continuous propagation. However

  8. AGILE detection of enhanced gamma-ray emission from the Crab Nebula region

    NASA Astrophysics Data System (ADS)

    Tavani, M.; Striani, E.; Bulgarelli, A.; Gianotti, F.; Trifoglio, M.; Pittori, C.; Verrecchia, F.; Argan, A.; Trois, A.; de Paris, G.; Vittorini, V.; D'Ammando, F.; Sabatini, S.; Piano, G.; Costa, E.; Donnarumma, I.; Feroci, M.; Pacciani, L.; Del Monte, E.; Lazzarotto, F.; Soffitta, P.; Evangelista, Y.; Lapshov, I.; Chen, A.; Giuliani, A.; Marisaldi, M.; Di Cocco, G.; Labanti, C.; Fuschino, F.; Galli, M.; Caraveo, P.; Mereghetti, S.; Perotti, F.; Pucella, G.; Rapisarda, M.; Vercellone, S.; Pellizzoni, A.; Pilia, M.; Barbiellini, G.; Longo, F.; Picozza, P.; Morselli, A.; Prest, M.; Lipari, P.; Zanello, D.; Cattaneo, P. W.; Rappoldi, A.; Giommi, P.; Santolamazza, P.; Lucarelli, F.; Colafrancesco, S.; Salotti, L.

    2010-09-01

    AGILE is detecting an increased gamma-ray flux from a source positionally consistent with the Crab Nebula. Integrating during the period 2010-09-19 00:10 UT to 2010-09-21 00:10 UT the AGILE-GRID detected enhanced gamma-ray emission above 100 MeV from a source at Galactic coordinates (l,b) = (184.6, -6.0) +/- 0.4 (stat.) +/- 0.1 (syst.) deg, and flux F > 500 e-8 ph/cm2/sec above 100 MeV, corresponding to an excess with significance above 4.4 sigma with respect to the average flux from the Crab nebula (F = (220 +/- 15)e-8 ph/cm^2/sec, Pittori et al., 2009, A&A, 506, 1563).

  9. GRB 080503: IMPLICATIONS OF A NAKED SHORT GAMMA-RAY BURST DOMINATED BY EXTENDED EMISSION

    SciTech Connect

    Perley, D. A.; Metzger, B. D.; Butler, N. R.; Bloom, J. S.; Miller, A. A.; Filippenko, A. V.; Li, W.; Granot, J.; Sakamoto, T.; Gehrels, N.; Ramirez-Ruiz, E.; Bunker, A.; Chen, H.-W.; Glazebrook, K.; Hall, P. B.; Hurley, K. C.; Kocevski, D.; Norris, J.

    2009-05-10

    We report on observations of GRB 080503, a short gamma-ray burst (GRB) with very bright extended emission (about 30 times the gamma-ray fluence of the initial spike) in conjunction with a thorough comparison to other short Swift events. In spite of the prompt-emission brightness, however, the optical counterpart is extraordinarily faint, never exceeding 25 mag in deep observations starting at {approx}1 hr after the Burst Alert Telescope (BAT) trigger. The optical brightness peaks at {approx}1 day and then falls sharply in a manner similar to the predictions of Li and Paczynski (1998) for supernova-like emission following compact binary mergers. However, a shallow spectral index and similar evolution in X-rays inferred from Chandra observations are more consistent with an afterglow interpretation. The extreme faintness of this probable afterglow relative to the bright gamma-ray emission argues for a very low density medium surrounding the burst (a 'naked' GRB), consistent with the lack of a coincident host galaxy down to 28.5 mag in deep Hubble Space Telescope imaging. The late optical and X-ray peak could be explained by a slightly off-axis jet or by a refreshed shock. Our observations reinforce the notion that short GRBs generally occur outside regions of active star formation, but demonstrate that in some cases the luminosity of the extended prompt emission can greatly exceed that of the short spike, which may constrain theoretical interpretation of this class of events. This extended emission is not the onset of an afterglow, and its relative brightness is probably either a viewing-angle effect or intrinsic to the central engine itself. Because most previous BAT short bursts without observed extended emission are too faint for this signature to have been detectable even if it were present at typical level, conclusions based solely on the observed presence or absence of extended emission in the existing Swift sample are premature.

  10. The anatomy of a long gamma-ray burst: a simple classification scheme for the emission mechanism(s).

    NASA Astrophysics Data System (ADS)

    Bégué, Damien; Burgess, Michael

    2016-07-01

    Ultra-relativistic motion and efficient conversion of kinetic energy to radiation are required by gamma-ray burst (GRB) observations, yet they are difficult to simultaneously achieve. Three leading mechanisms have been proposed to explain the observed emission emanating from GRB outflows: radiation from either relativistic internal or external shocks, or thermal emission from a photosphere. Previous works were mechanisms and arguing for a sole, unique origin of the prompt emission of gamma-ray bursts. In contrast, herein, we first explain why all three models are valid mechanisms and that a contribution from each of them is expected in the prompt phase. Additionally, we show that a single parameter, the dimensionless entropy of the GRB outflow, determines which mechanism contributes the most to the emission. More specifically, internal shocks dominate for low values of the dimensionless entropy, external shocks for intermediate values and finally, photospheric emission for large values. We present a unified framework for the emission mechanisms of GRBs with easily testable predictions for each process.

  11. Phenomenology of reverse-shock emission in the optical afterglows of gamma-ray bursts

    SciTech Connect

    Japelj, J.; Kopač, D.; Gomboc, A.; Kobayashi, S.; Harrison, R.; Virgili, F. J.; Mundell, C. G.; Guidorzi, C.; Melandri, A. E-mail: andreja.gomboc@fmf.uni-lj.si

    2014-04-20

    We use a parent sample of 118 gamma-ray burst (GRB) afterglows, with known redshift and host galaxy extinction, to separate afterglows with and without signatures of dominant reverse-shock (RS) emission and to determine which physical conditions lead to a prominent reverse-shock emission. We identify 10 GRBs with reverse-shock signatures: 990123, 021004, 021211, 060908, 061126, 080319B, 081007, 090102, 090424, and 130427A. By modeling their optical afterglows with reverse- and forward-shock analytic light curves and using Monte Carlo simulations, we estimate the parameter space of the physical quantities describing the ejecta and circumburst medium. We find that physical properties cover a wide parameter space and do not seem to cluster around any preferential values. Comparing the rest-frame optical, X-ray, and high-energy properties of the larger sample of non-RS-dominated GRBs, we show that the early-time (<1 ks) optical spectral luminosity, X-ray afterglow luminosity, and γ-ray energy output of our reverse-shock dominated sample do not differ significantly from the general population at early times. However, the GRBs with dominant reverse-shock emission have fainter than average optical forward-shock emission at late times (>10 ks). We find that GRBs with an identifiable reverse-shock component show a high magnetization parameter R {sub B} = ε{sub B,r}/ε{sub B,f} ∼ 2-10{sup 4}. Our results are in agreement with the mildly magnetized baryonic jet model of GRBs.

  12. Catalogue of isolated emission episodes in gamma-ray bursts from Fermi, Swift and BATSE

    NASA Astrophysics Data System (ADS)

    Charisi, M.; Márka, S.; Bartos, I.

    2015-04-01

    We report a comprehensive catalogue of emission episodes within long gamma-ray bursts (GRBs) that are separated by a quiescent period during which gamma-ray emission falls below the background level. We use a fully automated identification method for an unbiased, large-scale and expandable search. We examine a comprehensive sample of long GRBs from the BATSE (Burst and Transient Source Experiment), Swift and Fermi missions, assembling a total searched set of 2710 GRBs, the largest catalogue of isolated emission episodes so far. Our search extends out to [-1000 s, 750 s] around the burst trigger, expanding the covered time interval beyond previous studies and far beyond the nominal durations (T90) of most bursts. We compare our results to previous works by identifying pre-peak emission (or precursors), defined as isolated emission periods prior to the episode with the highest peak luminosity of the burst. We also systematically search for similarly defined periods after the burst's peak emission. We find that the pre-peak and post-peak emission periods are statistically similar, possibly indicating a common origin. For the analysed GRBs, we identify 24 per cent to have more than one isolated emission episode, with 11 per cent having at least one pre-peak event and 15 per cent having at least one post-peak event. We identify GRB activity significantly beyond their T90, which can be important for understanding the central engine activity as well as, e.g. gravitational-wave searches.

  13. AN OBSERVATIONAL IMPRINT OF THE COLLAPSAR MODEL OF LONG GAMMA-RAY BURSTS

    SciTech Connect

    Bromberg, Omer; Piran, Tsvi; Sari, Re'em; Nakar, Ehud

    2012-04-20

    The Collapsar model provides a theoretical framework for the well-known association between long gamma-ray bursts (GRBs) and collapsing massive stars. A bipolar relativistic jet, launched at the core of a collapsing star, drills its way through the stellar envelope and breaks out of the surface before producing the observed gamma rays. While a wealth of observations associate GRBs with the death of massive stars, as yet there is no direct evidence for the Collapsar model itself. Here we show that a distinct signature of the Collapsar model is the appearance of a plateau in the duration distribution of the prompt GRB emission at times much shorter than the typical breakout time of the jet. This plateau is evident in the data of all three major satellites. Our findings provide evidence that directly supports the Collapsar model. In addition, the model suggests the existence of a large population of choked (failed) GRBs, and implies that the 2 s duration commonly used to separate Collapsars and non-Collapsars is inconsistent with the duration distributions of Swift and Fermi GRBs and only holds for BATSE GRBs.

  14. The Internal-collision-induced Magnetic Reconnection and Turbulence (ICMART) Model of Gamma-ray Bursts

    NASA Astrophysics Data System (ADS)

    Zhang, Bing; Yan, Huirong

    2011-01-01

    The recent Fermi observation of GRB 080916C shows that the bright photosphere emission associated with a putative fireball is missing, which suggests that the central engine likely launches a Poynting-flux-dominated (PFD) outflow. We propose a model of gamma-ray burst (GRB) prompt emission in the PFD regime, namely, the Internal-Collision-induced MAgnetic Reconnection and Turbulence (ICMART) model. It is envisaged that the GRB central engine launches an intermittent, magnetically dominated wind, and that in the GRB emission region, the ejecta is still moderately magnetized (e.g., 1 <~ σ <~ 100). Similar to the internal shock (IS) model, the mini-shells interact internally at the radius R IS ~ Γ2 cΔt. Most of these early collisions, however, have little energy dissipation, but serve to distort the ordered magnetic field lines entrained in the ejecta. At a certain point, the distortion of magnetic field configuration reaches the critical condition to allow fast reconnection seeds to occur, which induce relativistic MHD turbulence in the interaction regions. The turbulence further distorts field lines easing additional magnetic reconnections, resulting in a runway release of the stored magnetic field energy (an ICMART event). Particles are accelerated either directly in the reconnection zone, or stochastically in the turbulent regions, which radiate synchrotron photons that power the observed gamma rays. Each ICMART event corresponds to a broad pulse in the GRB light curve, and a GRB is composed of multiple ICMART events. This model retains the merits of IS and other models, but may overcome several difficulties/issues faced by the IS model (e.g., low efficiency, fast cooling, electron number excess, Amati/Yonetoku relation inconsistency, and missing bright photosphere). Within this model, the observed GRB variability timescales could have two components, one slow component associated with the central engine time history, and another fast component associated with

  15. Prospects for gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The Solar Maximum Mission and the Gamma Ray Experiment aboard the SMM spacecraft are discussed. Mission plans for interplanetary probes are also discussed. The Gamma Ray observatory and its role in future gamma ray astronomy is highlighted. It is concluded that gamma ray astronomy will be of major importance in the development of astronomical models and in the development of comsological theory.

  16. A stacking method to study the gamma-ray emission of source samples based on the co-adding of Fermi-LAT count maps

    NASA Astrophysics Data System (ADS)

    Huber, B.; Farnier, C.; Manalaysay, A.; Straumann, U.; Walter, R.

    2012-11-01

    Aims: We present a stacking method that makes use of co-added maps of gamma-ray counts produced from data taken with the Fermi Large Area Telescope. Sources with low integrated gamma-ray fluxes that are not detected individually may become detectable when their corresponding count maps are added. Methods: The combined data set is analyzed with a maximum likelihood method taking into account the contribution from point-like and diffuse background sources. For both simulated and real data, detection significance and integrated gamma-ray flux are investigated for different numbers of stacked sources using the public Fermi Science Tools for analysis and data preparation. Results: The co-adding is done such that potential source signals add constructively, in contrast to the signals from background sources, which allows the stacked data to be described with simply structured models. We show, for different scenarios, that the stacking method can be used to increase the cumulative significance of a sample of sources and to characterize the corresponding gamma-ray emission. The method can, for instance, help to search for gamma-ray emission from galaxy clusters.

  17. Studies on High Energy Radiation Mechanisms and Gamma-Ray Burst Prompt Emissions

    NASA Astrophysics Data System (ADS)

    Zhang, B.

    2014-07-01

    Gamma-Ray Bursts (GRBs) are the most violent high-energy explosion in the universe. They are randomly happened, pulse-like phenomena with short durations. Since its discovery in 1960's by Vela satellite, GRBs have become a hot topic for astrophysical research. In 1997 the BeppoSAX satellite discovered afterglows of GRBs, and then helped to measure GRB redshifts. Thus it was found that GRBs are the events occurred at cosmological distances. Now it is widely accepted that the long bursts with durations longer than 2 s are from the collapsing massive stars, while the short bursts with durations less than 2 s are results of the merging compact binaries. By studying GRBs, the physical processes in ultrarelativistic and very high energy conditions can be investigated, and the researches on other fields, including constraining the cosmological models, can also get helped. The goal of this thesis is to present some discussions on possible radiation mechanisms and prompt light curves of GRBs. Since radiation mechanisms and prompt emissions are related to GRB central engines directly, studying these topics can help us to get a better understanding of some properties of the central engine. In Chapter 1, we review the discovery and observations of GRBs, presenting major achievements from major GRB-monitoring satellites including Compton Gamma-ray Observatory, BeppoSAX satellite, Swift satellite, as well as the latest Fermi Gamma-ray Space Telescope. The multi-wavelength properties of prompt emission as well as afterglows of GRBs are also summarized in Chapter 1. In Chapter 2 the current GRB standard model is presented. According to standard model, a fireball is ejected by the central engine. The internal shock is produced by collisions between various shells with different velocities inside the fireball. The directional kinetic energy of the fireball is then converted to internal energy, and finally the non-thermal radiation (the prompt emission) is produced by internal shocks

  18. Determination of X- and gamma-ray emission intensities in the decay of (131)I.

    PubMed

    Lépy, Marie-Christine; Brondeau, Laurine; Bobin, Christophe; Lourenço, Valérie; Thiam, Cheick; Bé, Marie-Martine

    2016-03-01

    The activity per unit mass of an iodine-131 solution was absolutely standardized by both the 4πβ-γ coincidence method and the 4πγ counting technique. The calibrated solution was used to prepare point sources after a preliminary deposit of AgNO3 to prevent the loss of volatile iodine. Relative and absolute photon emission intensities of 15 sgamma-rays and those of the two K X-rays of xenon were determined by gamma-ray spectrometry, with relative uncertainties of 0.8% for the three main emissions.

  19. Gamma-ray and X-ray time profiles expected from a trap-plus-precipitation model for the 7 June 1980 and 27 April 1981 solar flares

    NASA Technical Reports Server (NTRS)

    Hulot, E.; Vilmer, N.; Chupp, E. L.; Dennis, B. R.; Kane, S. R.

    1992-01-01

    Hard X-ray and prompt gamma-ray line emissions are the most direct signatures of, respectively, electron and ion acceleration during solar flares. The peak time of the gamma-ray emission for some events is delayed with respect to the peak time of the hard X-ray flux. These delays are either interpreted as evidence of a two-step acceleration process or as the result of the partial trapping and/or propagation of the particles from the acceleration region to the emission sites. It was shown earlier that hard X-ray and prompt gamma-ray line delays can be qualitatively reproduced in the frame of the latter hypothesis with models describing the time-dependent transport of energetic electrons and ions between these two sites. Here we focus on the close examination of the temporal evolution of X-ray and gamma-ray fluxes for the 7 June 1980 and 27 April 1981 events which exhibit delays between X-ray and gamma-ray maxima. The parameters of the ambient medium and of the accelerated particles are deduced for the two events and it is shown that the relative timing of X-ray and gamma-ray emissions is quantitatively reproduced in the present context.

  20. ANOMALOUS X-RAY PULSARS AND SOFT GAMMA-RAY REPEATERS IN THE OUTER GAP MODEL: CONFRONTING FERMI OBSERVATIONS

    SciTech Connect

    Tong, H.; Song, L. M.; Xu, R. X.

    2011-09-01

    Anomalous X-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs) are magnetar candidates, i.e., neutron stars powered by a strong magnetic field. If they are indeed magnetars, they will emit high-energy gamma rays that are detectable by the Fermi Large Area Telescope (LAT), according to the outer gap model. However, no significant detection is reported in recent Fermi-LAT observations of all known AXPs and SGRs. Considering the discrepancy between theory and observations, we calculate the theoretical spectra for all AXPs and SGRs with sufficient observational parameters. Our results show that most AXPs and SGRs are high-energy gamma-ray emitters if they are really magnetars. The four AXPs 1E 1547.0-5408, XTE J1810-197, 1E 1048.1-5937, and 4U 0142+61 should have been detected by Fermi-LAT. There is therefore a conflict between the outer gap model in the case of magnetars and Fermi observations. Possible explanations in the magnetar model are discussed. On the other hand, if AXPs and SGRs are fallback disk systems, i.e., accretion-powered for the persistent emissions, most of them are not high-energy gamma-ray emitters. Future deep Fermi-LAT observations of AXPs and SGRs will help us make clear whether they are magnetars or fallback disk systems.

  1. DETECTION OF EXTENDED VHE GAMMA RAY EMISSION FROM G106.3+2.7 WITH VERITAS

    SciTech Connect

    Acciari, V. A.; Benbow, W.; Aliu, E.; Boltuch, D.; Arlen, T.; Chow, Y. C.; Aune, T.; Bautista, M.; Cogan, P.; Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R.; Bradbury, S. M.; Butt, Y.; Byrum, K.; Cannon, A.; Cesarini, A.; Ciupik, L.; Cui, W. E-mail: wakely@uchicago.ed

    2009-09-20

    We report the detection of very-high-energy (VHE) gamma-ray emission from supernova remnant (SNR) G106.3+2.7. Observations performed in 2008 with the VERITAS atmospheric Cherenkov gamma-ray telescope resolve extended emission overlapping the elongated radio SNR. The 7.3sigma (pre-trials) detection has a full angular extent of roughly 0.{sup 0}6 by 0.{sup 0}4. Most notably, the centroid of the VHE emission is centered near the peak of the coincident {sup 12}CO (J = 1-0) emission, 0.{sup 0}4 away from the pulsar PSR J2229+6114, situated at the northern end of the SNR. Evidently the current-epoch particles from the pulsar wind nebula are not participating in the gamma-ray production. The VHE energy spectrum measured with VERITAS is well characterized by a power law dN/dE = N {sub 0}(E/3 TeV){sup -G}AMMA with a differential index of GAMMA = 2.29 +- 0.33{sub stat} +- 0.30{sub sys} and a flux of N{sub 0} = (1.15 +- 0.27{sub stat} +- 0.35{sub sys}) x 10{sup -13} cm{sup -2} s{sup -1} TeV{sup -1}. The integral flux above 1 TeV corresponds to {approx}5 percent of the steady Crab Nebula emission above the same energy. We describe the observations and analysis of the object and briefly discuss the implications of the detection in a multiwavelength context.

  2. Diffuse Galactic Continuum Gamma Rays. A Model Compatible with EGRET Data and Cosmic-ray Measurements

    NASA Technical Reports Server (NTRS)

    Strong, Andrew W.; Moskalenko, Igor V.; Reimer, Olaf

    2004-01-01

    We present a study of the compatibility of some current models of the diffuse Galactic continuum gamma-rays with EGRET data. A set of regions sampling the whole sky is chosen to provide a comprehensive range of tests. The range of EGRET data used is extended to 100 GeV. The models are computed with our GALPROP cosmic-ray propagation and gamma-ray production code. We confirm that the "conventional model" based on the locally observed electron and nucleon spectra is inadequate, for all sky regions. A conventional model plus hard sources in the inner Galaxy is also inadequate, since this cannot explain the GeV excess away from the Galactic plane. Models with a hard electron injection spectrum are inconsistent with the local spectrum even considering the expected fluctuations; they are also inconsistent with the EGRET data above 10 GeV. We present a new model which fits the spectrum in all sky regions adequately. Secondary antiproton data were used to fix the Galactic average proton spectrum, while the electron spectrum is adjusted using the spectrum of diffuse emission it- self. The derived electron and proton spectra are compatible with those measured locally considering fluctuations due to energy losses, propagation, or possibly de- tails of Galactic structure. This model requires a much less dramatic variation in the electron spectrum than models with a hard electron injection spectrum, and moreover it fits the y-ray spectrum better and to the highest EGRET energies. It gives a good representation of the latitude distribution of the y-ray emission from the plane to the poles, and of the longitude distribution. We show that secondary positrons and electrons make an essential contribution to Galactic diffuse y-ray emission.

  3. Studies on High Energy Radiation Mechanisms and Gamma-Ray Burst Prompt Emissions

    NASA Astrophysics Data System (ADS)

    Zhang, B.

    2014-07-01

    Gamma-Ray Bursts (GRBs) are the most violent high-energy explosion in the universe. They are randomly happened, pulse-like phenomena with short durations. Since its discovery in 1960's by Vela satellite, GRBs have become a hot topic for astrophysical research. In 1997 the BeppoSAX satellite discovered afterglows of GRBs, and then helped to measure GRB redshifts. Thus it was found that GRBs are the events occurred at cosmological distances. Now it is widely accepted that the long bursts with durations longer than 2 s are from the collapsing massive stars, while the short bursts with durations less than 2 s are results of the merging compact binaries. By studying GRBs, the physical processes in ultrarelativistic and very high energy conditions can be investigated, and the researches on other fields, including constraining the cosmological models, can also get helped. The goal of this thesis is to present some discussions on possible radiation mechanisms and prompt light curves of GRBs. Since radiation mechanisms and prompt emissions are related to GRB central engines directly, studying these topics can help us to get a better understanding of some properties of the central engine. In Chapter 1, we review the discovery and observations of GRBs, presenting major achievements from major GRB-monitoring satellites including Compton Gamma-ray Observatory, BeppoSAX satellite, Swift satellite, as well as the latest Fermi Gamma-ray Space Telescope. The multi-wavelength properties of prompt emission as well as afterglows of GRBs are also summarized in Chapter 1. In Chapter 2 the current GRB standard model is presented. According to standard model, a fireball is ejected by the central engine. The internal shock is produced by collisions between various shells with different velocities inside the fireball. The directional kinetic energy of the fireball is then converted to internal energy, and finally the non-thermal radiation (the prompt emission) is produced by internal shocks

  4. Recent Evidence for Gamma-ray Line Emission from Fermi-LAT: WIMP or Artifact?

    NASA Astrophysics Data System (ADS)

    Su, Meng; Finkbeiner, D. P.

    2013-04-01

    The recent claims of a gamma-ray line in the Galactic center at 130 GeV have generated excitement, not least because it could be a signal of dark matter annihilation. I will summarize the current state of the observations of the Galactic center, clusters, and unassociated halo objects. I will also speculate about models of particle dark matter that could explain the data, and possible systematic of the Fermi-LAT instrument that might contaminate the line detection.

  5. Modeling of Gamma-ray Spectra to Direct Efficient Chemical Separations

    SciTech Connect

    Douglas, Matthew; Friese, Judah I.; Warren, Glen A.; Bachelor, Paula P.; Farmer, Orville T.; Choiniere, Andrea D.; Schulte, Shannon M.; Aalseth, Craig E.

    2008-06-15

    In an age of heightened national security regarding nuclear terrorist threats, reliable and rapid analytical methods for the quantification of radionuclides in fission product samples are needed to provide forensic information and sample characterization. Measurement of characteristic gamma-ray emissions by high-purity germanium spectrometers offers one means of analysis. Due to the high-activity and complex nature of samples, chemical separations are necessary to reduce background continuum levels and instances of spectral interference. A project has been initiated at Pacific Northwest National Laboratory (PNNL) to model singles and coincident gamma-ray spectra that would result from various chemical separation strategies. The goal is to use these complementary counting techniques to tailor a series of efficient chemical separations that allow the rapid quantification of signature isotopes in samples. Modeling enables probable instances of spectral interference to be identified and aids in defining the temporal window of detection for radionuclides of interest following a given chemical separation. These data will help future analysts prioritize analytes of interest and separation strategies in the processing of real samples. A description of results to date is described here, demonstrating the utility of this approach for improved processing and analysis of fission product samples.

  6. Effect of cumulated dose on hydrogen emission from polyethylene irradiated under oxidative atmosphere using gamma rays and ion beams

    NASA Astrophysics Data System (ADS)

    Ferry, M.; Pellizzi, E.; Boughattas, I.; Fromentin, E.; Dauvois, V.; de Combarieu, G.; Coignet, P.; Cochin, F.; Ngono-Ravache, Y.; Balanzat, E.; Esnouf, S.

    2016-01-01

    This work reports the effect of very high doses, up to 10 MGy, on the H2 emission from high density polyethylene (HDPE) irradiated with gamma rays and ion beams, in the presence of oxygen. This was obtained through a two-step procedure. First, HDPE films were pre-aged, at different doses, using either gamma rays or ion beams. In the second step, the pre-aged samples were irradiated in closed glass ampoules for gas quantification, using the same beam type as for pre-ageing. The hydrogen emission rate decreases when dose increases for both gamma rays and ion beams. However, the decreasing rate appears higher under gamma rays than under ion beam irradiations and this is assigned to a lesser oxidation level under the latter. Herein, we show the effectiveness of the radiation-induced defects scavenging effect under oxidative atmosphere, under low and high excitation densities.

  7. Spectacular variability of gamma-ray emission in blazar 3C279 during the large outburst in June 2015

    NASA Astrophysics Data System (ADS)

    Madejski, Grzegorz; Hayashida, Masaaki; Asano, Katsuaki; Thompson, David; Nalewajko, Krzysztof; Sikora, Marek; Fermi-LAT Collaboration

    2016-03-01

    The most luminous celestial extragalactic sources of persistent gamma-ray emission are active galaxies with relativistic jets pointing towards the observer. Those are commonly called blazars, and Flat Spectrum Radio Quasar 3C 279 has been one of the brightest gamma-ray blazars in the sky. In Dec. 2013, April 2014, and June 2015 it showed powerful outbursts with the gamma-ray flux at E > 100 MeV higher than 1e-5 ph/cm2/s, measured by the Fermi-LAT gamma-ray detector. The Dec. 2013 outburst showed an unusually hard power-law gamma-ray spectrum (photon index ~1.7), and an asymmetric light curve profile with a few-hour time scale variability. The June 2015 outburst was extreme, with a record-breaking E > 100 MeV flux of 4e-5 ph/cm2/s, more than 10 × higher than the average gamma-ray flux of the Crab Nebula. The high flux prompted a Fermi-LAT Target of Opportunity pointing observation. The increase of exposure and the very high flux state of the source allowed us to resolve the gamma-ray flux on a sub-orbital time scales, revealing variability on time scales of tens of minutes. Here, we present the observational results of those outbursts from 3C279 with a focus on detailed analysis of the 2015 June outburst.

  8. The average GeV-band emission from gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Lange, J.; Pohl, M.

    2013-03-01

    Aims: We analyze the emission in the 0.3-30 GeV energy range of gamma-ray bursts detected with the Fermi Gamma-ray Space Telescope. We concentrate on bursts that were previously only detected with the Gamma-Ray Burst Monitor in the keV energy range. These bursts will then be compared to the bursts that were individually detected with the Large Area Telescope at higher energies. Methods: To estimate the emission of faint GRBs we used nonstandard analysis methods and sum over many GRBs to find an average signal that is significantly above background level. We used a subsample of 99 GRBs listed in the Burst Catalog from the first two years of observation. Results: Although most are not individually detectable, the bursts not detected by the Large Area Telescope on average emit a significant flux in the energy range from 0.3 GeV to 30 GeV, but their cumulative energy fluence is only 8% of that of all GRBs. Likewise, the GeV-to-MeV flux ratio is less and the GeV-band spectra are softer. We confirm that the GeV-band emission lasts much longer than the emission found in the keV energy range. The average allsky energy flux from GRBs in the GeV band is 6.4 × 10-4 erg cm-2 yr-1 or only ~4% of the energy flux of cosmic rays above the ankle at 1018.6 eV.

  9. The Decay of Optical Emission from the gamma-Ray Burst GRB970228

    NASA Technical Reports Server (NTRS)

    Galama, T.; Groot, P. J.; vanParadijs, J.; Kouveliotou, C.; Robinson, C. R.; Fishman, G. J.; Meegan, C. A.; Sahu, K. C.; Livio, M.; Petro, L.; Macchetto, F. D.; Heise, J.; Int Zand, J.; Strom, R. G.; Telting, J.; Rutten, R. G. M.; Pettini, M.; Tanvir, N.; Bloom, J.

    1997-01-01

    The origin of gamma-ray bursts has been one of the great unsolved mysteries in high-energy astrophysics for almost 30 years. The recent discovery of fading sources at X-ray and optical wavelengths coincident with the location of the gamma-ray burst GRB970228 therefore provides an unprecedented opportunity to probe the nature of these high-energy events. The optical counterpart appears to be a transient point source embedded in a region of extended nebulosity, the latter having been tentatively identified as a high-redshift galaxy. This would seem to favour models that place gamma-ray bursts at cosmological distances, although a range of mechanisms for producing the bursts is still allowed. A crucial piece of information for distinguishing between such models is how the brightness of the optical counterpart evolves with time. Here we re-evaluate the existing photometry of the optical counterpart of GRB970228 to construct an optical light curve for the transient event. We find that between 21 hours and six days after the burst, the R-band brightness decreased by a factor of approximately 40, with any subsequent decrease in brightness occurring at a much slower rate. As the point source faded, it also became redder. The initial behaviour of the source appears to be consistent with the 'fireball' model, but the subsequent decrease in the rate of fading may prove harder to explain.

  10. X-Raying Extended Emission and Rapid Decay of Short Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Kagawa, Yasuaki; Yonetoku, Daisuke; Sawano, Tatsuya; Toyanago, Asuka; Nakamura, Takashi; Takahashi, Keitaro; Kashiyama, Kazumi; Ioka, Kunihito

    2015-09-01

    Extended emission in short gamma-ray bursts (SGRBs) is a mystery. By conducting time-resolved spectral analyses of the nine brightest events observed by the Swift-XRT, we classify the early X-ray emission of SGRBs into two types. One is the extended emission with exponentially rapid decay, which shows significant spectral softening for hundreds of seconds after the SGRB trigger and is also detected by the Swift-BAT. The other is a dim afterglow that only shows power-law decay over 104 s. The correlations between the temporal decay and spectral indices of the extended emissions are inconsistent with the α-β correlation expected for the high-latitude curvature emission from a uniform jet. The observed too-rapid decay suggests that the emission is from a photosphere or a patchy surface, and manifests the stopping via a central engine such as magnetic reconnection at the black hole.

  11. X-RAYING EXTENDED EMISSION AND RAPID DECAY OF SHORT GAMMA-RAY BURSTS

    SciTech Connect

    Kagawa, Yasuaki; Yonetoku, Daisuke; Sawano, Tatsuya; Toyanago, Asuka; Nakamura, Takashi; Takahashi, Keitaro; Kashiyama, Kazumi; Ioka, Kunihito E-mail: yonetoku@astro.s.kanazawa-u.ac.jp

    2015-09-20

    Extended emission in short gamma-ray bursts (SGRBs) is a mystery. By conducting time-resolved spectral analyses of the nine brightest events observed by the Swift-XRT, we classify the early X-ray emission of SGRBs into two types. One is the extended emission with exponentially rapid decay, which shows significant spectral softening for  hundreds of seconds after the SGRB trigger and is also detected by the Swift-BAT. The other is a dim afterglow that only shows power-law decay over 10{sup 4} s. The correlations between the temporal decay and spectral indices of the extended emissions are inconsistent with the α–β correlation expected for the high-latitude curvature emission from a uniform jet. The observed too-rapid decay suggests that the emission is from a photosphere or a patchy surface, and manifests the stopping via a central engine such as magnetic reconnection at the black hole.

  12. Celestial diffuse gamma-ray emission observed by SAS-2 and its interpretation

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Kniffen, D. A.; Hartman, R. C.; Thompson, D. J.; Gelman, H.; Ozel, M.; Tumer, T.

    1977-01-01

    A clearly established diffuse celestial gamma-ray component was seen by SAS-2 above 35 MeV, after examining several regions of the sky at different latitudes, including the north celestial pole. For energies above 100 MeV the gamma ray results are consistent with an equation of the form I(b)=C1+C2/sin b with the second term being dominant, suggesting that the radiation above 100 MeV comes largely from the local regions of the galactic disk. Between 35 and 100 MeV, a similar equation is also a reasonable representation of the data, but here the two terms are comparable, with the first, or isotropic term, actually being the larger one. In addition to indicating that the diffuse radiation is partially galactic, these results imply a steepness for the energy spectrum of the diffuse isotropic component which places significant constraints on possible theoretical models of this radiation.

  13. Persistent X-ray emission from a gamma-ray burst source

    NASA Technical Reports Server (NTRS)

    Grindlay, J. E.; Cline, T.; Desai, U. D.; Teegarden, B. J.; Pizzichini, G.; Evans, W. D.; Laros, J. G.; Hurley, K. C.; Niel, M.; Klebesadel, R. W.

    1982-01-01

    A quiescent X-ray source detected with the Einstein X-ray Observatory in a location consistent with that of an intense gamma ray burst is shown to be also consistent with the location of the 1928 optical transient, the likely optical counterpart of the gamma ray burst source GBS0117-29. The system appears to be underluminous in X-rays by a factor of 10; possible reasons for this are discussed. The observed X-ray flux would require an accretion rate of about 10 to the -14th (d/1 kpc/)-squared solar masses per year, which is probably too low to be consistent with published nuclear flash models for gamma bursts, unless the distance is substantially greater than about 1 kpc or the burst recurrence time is greater than about 50 yrs, or the accretion rate is highly variable. Such a long recurrence time appears to be inconsistent with the detection of the optical burst.

  14. GAMMA-RAY EMISSION FROM SUPERNOVA REMNANT INTERACTION WITH MOLECULAR CLUMPS

    NASA Astrophysics Data System (ADS)

    Tang, Xiaping; Chevalier, R.

    2014-01-01

    Observations of the middle-aged supernova remnants IC 443, W28, and W51C indicate that the brightnesses at GeV and TeV energies are correlated with each other and with regions of molecular clump interaction, but not with the radio synchrotron brightness. We suggest that the radio emission is primarily associated with a radiative shell in the interclump medium of a molecular cloud, while the Gamma-ray emission is primarily associated with the interaction of the radiative shell with molecular clumps. The shell interaction produces a high pressure region, so that the Gamma-ray luminosity can be approximately reproduced even if shock acceleration of particles is not efficient, provided that energetic particles are trapped in the cooling shell. In addition, the GeV through TeV emission can be produced in the interaction region if the trapping occurs to sufficiently high energies. Alternatively, diffusive acceleration may be efficient; in this case the observed GeV emission can be approximately reproduced, but not the TeV emission.

  15. Gamma-ray and millimeter-wave emissions from the 1991 June X-class solar flares

    NASA Technical Reports Server (NTRS)

    Ramaty, Reuven; Schwartz, Richard A.; Enome, Shinzo; Nakajima, Hiroshi

    1994-01-01

    We have studied the spectacular 1991 June X-class flares using gamma-ray data from the Charged Particle Detectors (CPDs) of the Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory (CGRO) and 80 GHz millimeter data from Nobeyama, Japan. The CPDs were the only CGRO instrument that did not saturate during the extremely intense 1991 June 4 flare. We have shown that for this flare the CPDs respond to MeV photons, most of which are due to bremsstrahlung produced by relativistic electrons at the Sun. We have further shown that the gamma-ray and millimeter observations agree numerically if the 80 GHz radiation is gyrosynchrotron radiation produced by trapped electrons and the gamma rays are thick-target bremsstrahlung due to electrons precipitating out of the trap. The requirement that the trapping time obtained from the numerical comparison be consistent with the observed time profiles implies a magnetic field between about 200 and 300 G and an electron spectral index between about 3 to 5. By comparing the CPD observations with both the 80 GHz data and nuclear line data from the Energetic Gamma Ray Experiment Telescope (EGRET) and the Oriented Scintillation Spectroscopy Experiment (OSSE) on CGRO for the flares of June 4, 6, 9, and 11, we found that the ratio of the CPD counts to both the millimeter flux densities and the nuclear line fluences decreases with decreasing flare heliocentric angle. All of these flares were produced in the same active region. We interpreted this result in terms of a loop model in which the gyrosynchrotron emission is produced in the coronal portion of the loop where the electrons are kept isotropic by pitch angle scattering due to plasma turbulence, while the bremsstrahlung is produced by precipitating electrons that interact anisotropically. We found that the trapping time in the coronal portion is time dependent, reaching a minimum of about 10 s at the peak of the CPD count rate. We suggested the damping of the

  16. Constraining the High-energy Emission from Gamma-Ray Bursts with Fermi

    NASA Astrophysics Data System (ADS)

    Fermi Large Area Telescope Team; Ackermann, M.; Ajello, M.; Baldini, L.; Barbiellini, G.; Baring, M. G.; Bechtol, K.; Bellazzini, R.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bottacini, E.; Bouvier, A.; Brigida, M.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Cecchi, C.; Charles, E.; Chekhtman, A.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Cutini, S.; D'Ammando, F.; de Palma, F.; Dermer, C. D.; Silva, E. do Couto e.; Drell, P. S.; Drlica-Wagner, A.; Favuzzi, C.; Fukazawa, Y.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Giglietto, N.; Giordano, F.; Giroletti, M.; Glanzman, T.; Granot, J.; Grenier, I. A.; Grove, J. E.; Hadasch, D.; Hanabata, Y.; Harding, A. K.; Hays, E.; Horan, D.; Jóhannesson, G.; Kataoka, J.; Knödlseder, J.; Kocevski, D.; Kuss, M.; Lande, J.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Mazziotta, M. N.; McEnery, J.; McGlynn, S.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moretti, E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Naumann-Godo, M.; Norris, J. P.; Nuss, E.; Nymark, T.; Ohsugi, T.; Okumura, A.; Omodei, N.; Orlando, E.; Panetta, J. H.; Parent, D.; Pelassa, V.; Pesce-Rollins, M.; Piron, F.; Pivato, G.; Racusin, J. L.; Rainò, S.; Rando, R.; Razzaque, S.; Reimer, A.; Reimer, O.; Ritz, S.; Ryde, F.; Sgrò, C.; Siskind, E. J.; Sonbas, E.; Spandre, G.; Spinelli, P.; Stamatikos, M.; Stawarz, Łukasz; Suson, D. J.; Takahashi, H.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Tibaldo, L.; Tinivella, M.; Tosti, G.; Uehara, T.; Vandenbroucke, J.; Vasileiou, V.; Vianello, G.; Vitale, V.; Waite, A. P.; Fermi Gamma-ray Burst Monitor Team; Connaughton, V.; Briggs, M. S.; Guirec, S.; Goldstein, A.; Burgess, J. M.; Bhat, P. N.; Bissaldi, E.; Camero-Arranz, A.; Fishman, J.; Fitzpatrick, G.; Foley, S.; Gruber, D.; Jenke, P.; Kippen, R. M.; Kouveliotou, C.; McBreen, S.; Meegan, C.; Paciesas, W. S.; Preece, R.; Rau, A.; Tierney, D.; van der Horst, A. J.; von Kienlin, A.; Wilson-Hodge, C.; Xiong, S.

    2012-08-01

    We examine 288 gamma-ray bursts (GRBs) detected by the Fermi Gamma-ray Space Telescope's Gamma-ray Burst Monitor (GBM) that fell within the field of view of Fermi's Large Area Telescope (LAT) during the first 2.5 years of observations, which showed no evidence for emission above 100 MeV. We report the photon flux upper limits in the 0.1-10 GeV range during the prompt emission phase as well as for fixed 30 s and 100 s integrations starting from the trigger time for each burst. We compare these limits with the fluxes that would be expected from extrapolations of spectral fits presented in the first GBM spectral catalog and infer that roughly half of the GBM-detected bursts either require spectral breaks between the GBM and LAT energy bands or have intrinsically steeper spectra above the peak of the νF ν spectra (E pk). In order to distinguish between these two scenarios, we perform joint GBM and LAT spectral fits to the 30 brightest GBM-detected bursts and find that a majority of these bursts are indeed softer above E pk than would be inferred from fitting the GBM data alone. Approximately 20% of this spectroscopic subsample show statistically significant evidence for a cutoff in their high-energy spectra, which if assumed to be due to γγ attenuation, places limits on the maximum Lorentz factor associated with the relativistic outflow producing this emission. All of these latter bursts have maximum Lorentz factor estimates that are well below the minimum Lorentz factors calculated for LAT-detected GRBs, revealing a wide distribution in the bulk Lorentz factor of GRB outflows and indicating that LAT-detected bursts may represent the high end of this distribution.

  17. GRO: Black hole models for gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Shaham, Jacob

    1994-01-01

    The possibility of creating gamma ray bursts (GRB's) from accretion flows on to black holes is investigated. The mechanism of initial energy release in the form of a burst is not understood yet. The typical time scales involved in this energy release and the initial distribution of photons as a function of energy are studied. As a first step the problem is formulated in the Minkowski spacetime for a homogeneous and isotropic burst. For an arbitrary initial distribution of photons, the equations of relativistic kinetic theory are formulated for nonequilibrium plasmas which can take into account various particle creation and annihilation processes and various scattering processes.

  18. GRO: Black hole models for gamma ray bursts

    NASA Technical Reports Server (NTRS)

    Shaham, Jacob

    1993-01-01

    This grant deals with the production of gamma-ray bursts (GRB's) close to horizons of black holes (BH's), mainly via accretion of small chunks of matter onto extreme Kerr BH's. In the past year, we laid the ground work for actual calculations close to Kerr BH's. Because of technical reasons, actual work has only started very recently. Following the detailed list of research subprojects as per our original proposal, we have performed research in the following areas: spectrum calculation; burst dynamics; tidal capture and primordial cloud collapse; halo density profile; and capture of other objects.

  19. Time variability in the gamma-ray emission of 3C 279

    NASA Technical Reports Server (NTRS)

    Kniffen, D. A.; Bertsch, D. L.; Fichtel, C. E.; Hatman, R. C.; Hunter, S. D.; Kanbach, G.; Kwok, P. W.; Lin, Y. C.; Mattox, J. R.; Mayer-Hasselwander, H. A.

    1993-01-01

    Following the initial detection of 3C 279 as an intense high-energy gamma-ray emitter during a 1991, June 16-28 observation, the EGRET instrument on the Compton Gamma Ray Observatory made a second observation during 1991, October 3-17. Low-sensitivity observations were also made during 1991, October 12-31 and 1992 April. The relatively intense June fluxes allowed the time structure to be determined down to the level of half-days. During this period a flux enhancement of about a factor of 4 is seen, lasting several days. The October exposures show fluxes somewhat below the minimum June flux, with no significant evidence of time variability. The 1992 April fluxes are well off the main instrument axis, and so the statistics are less compelling, but the evidence appears to show additional time variability. The observations are consistent with a model in which the gamma rays result from Compton scattering of low-energy photons by relativistic electrons in a jet.

  20. Enhanced gamma-ray emission from the microquasar Cygnus X-3 detected by AGILE

    NASA Astrophysics Data System (ADS)

    Piano, G.; Pittori, C.; Verrecchia, F.; Tavani, M.; Bulgarelli, A.; Fioretti, V.; Zoli, A.; Munar-Adrover, P.; Lucarelli, F.; Donnarumma, I.; Vercellone, S.; Striani, E.; Cardillo, M.; Gianotti, F.; Trifoglio, M.; Giuliani, A.; Mereghetti, S.; Caraveo, P.; Perotti, F.; Chen, A.; Argan, A.; Costa, E.; Del Monte, E.; Evangelista, Y.; Feroci, M.; Lazzarotto, F.; Lapshov, I.; Pacciani, L.; Soffitta, P.; Sabatini, S.; Vittorini, V.; Pucella, G.; Rapisarda, M.; Di Cocco, G.; Fuschino, F.; Galli, M.; Labanti, C.; Marisaldi, M.; Pellizzoni, A.; Pilia, M.; Trois, A.; Barbiellini, G.; Vallazza, E.; Longo, F.; Morselli, A.; Picozza, P.; Prest, M.; Lipari, P.; Zanello, D.; Cattaneo, P. W.; Rappoldi, A.; Colafrancesco, S.; Parmiggiani, N.; Ferrari, A.; Antonelli, A.; Giommi, P.; Salotti, L.; Valentini, G.; D'Amico, F.

    2016-04-01

    Integrating from 2016-04-16 00:00 UT to 2016-04-19 00:00 UT, the AGILE-GRID detector is revealing gamma-ray emission above 100 MeV from a source positionally consistent with Cygnus X-3 at Galactic coordinates (l, b) = (79.4, 0.2) +/- 0.6 (stat.) +/- 0.1 (syst.) deg, with flux F( > 100 MeV) = (2.0 +/- 0.8) x 10^-6 photons/cm^2/s, as determined by a multi-source likelihood analysis.

  1. Disintegration rate and gamma ray emission probability per decay measurement of 123I.

    PubMed

    Koskinas, M F; Gishitomi, K C; Brito, A B; Yamazaki, I M; Dias, M S

    2012-09-01

    A series of (123)I measurements have been carried out in a 4π(e(A),X)-γ coincidence system. The experimental extrapolation curve was determined and compared to Monte Carlo simulation, performed by code ESQUEMA. From the slope of the experimental curve, the total conversion coefficient for the 159 keV total gamma transition, α(159), was determined. All radioactive sources were also measured in an HPGe spectrometry system, in order to determine the gamma-ray emission probability per decay for several gamma transitions. All uncertainties involved and their correlations were analyzed applying the covariance matrix methodology and the measured parameters were compared with those from the literature.

  2. The Decay of Optical Emission Form the Gamma-Ray Burst GRB 970228

    NASA Technical Reports Server (NTRS)

    Galama, T.; Groot, P. J.; vanParadijs, J.; Kouvellotou, C.; Robinson, C. R.; Fishmans, G. J.; Meegan, C. A.; Sahu, K. C.; Livio, M.; Petro, L.

    1997-01-01

    The origin of gamma-ray bursts has been one of the great unsolved mysteries in high-energy astrophysics for almost 30 years. The recent discovery of fading sources at X-ray and optical wave-lengths coincident with the location of the gamma-ray burst GRB970228 therefore provides an unprecedented opportunity to probe the nature of these high-energy events. The optical counterpart appears to be a transient point source embedded in a region of extended nebulosity, the latter having been tentatively identified as a high-redshift galaxy. This would seem to favour models that place gamma-ray bursts at cosmological distances, although a range of mechanisms for producing the bursts is still allowed. A crucial piece of information for distinguishing between such models is how the brightness of the optical counterpart evolves with time. Here we re-evaluate the existing photometry of the optical counterpart of GRB970228 to construct an optical light curve for the transient event. We find that between 21 hours and six days after the burst, the R-band brightness decreased by a factor of approx. 50, with any subsequent decrease in brightness occurring at a much slower rate. As the point source faded, it also became redder. The initial behaviour of the source appears to be consistent with the 'fireball' model, in which the burst results from the merger of two neutron stars, but the subsequent decrease in the rate of fading may prove harder to explain. The gamma-ray burst of 28 February 1997, detected with the Gamma-Ray Burst Monitor on board the BeppoSAX satellite, and located with an approx. 3 feet radius position with the Wide Field Camera on the same satellite, was the first for which a fading X-ray and optical counterpart were discovered. The optical Counterpart was discovered from a comparison of V- and I-band images taken with the William Herschel Telescope (WHT) on February 28.99 UT, and the Isaac Newton Telescope (INT; V band) and the WHT (I band) on March 8.8 uT.

  3. VARIABLE GAMMA-RAY EMISSION FROM THE CRAB NEBULA: SHORT FLARES AND LONG 'WAVES'

    SciTech Connect

    Striani, E.; Tavani, M.; Vittorini, V.; Donnarumma, I.; Argan, A.; Cardillo, M.; Costa, E.; Del Monte, E.; Pacciani, L.; Piano, G.; Sabatini, S.; Bulgarelli, A.; Ferrari, A.; Pellizzoni, A.; Pittori, C.; and others

    2013-03-01

    Gamma-ray emission from the Crab Nebula has been recently shown to be unsteady. In this paper, we study the flux and spectral variability of the Crab above 100 MeV on different timescales ranging from days to weeks. In addition to the four main intense and day-long flares detected by AGILE and Fermi-LAT between 2007 September and 2012 September, we find evidence for week-long and less intense episodes of enhanced gamma-ray emission that we call 'waves'. Statistically significant 'waves' show timescales of 1-2 weeks, and can occur by themselves or in association with shorter flares. We present a refined flux and spectral analysis of the 2007 September-October gamma-ray enhancement episode detected by AGILE that shows both 'wave' and flaring behavior. We extend our analysis to the publicly available Fermi-LAT data set and show that several additional 'wave' episodes can be identified. We discuss the spectral properties of the 2007 September 'wave'/flare event and show that the physical properties of the 'waves' are intermediate between steady and flaring states. Plasma instabilities inducing 'waves' appear to involve spatial distances l {approx} 10{sup 16} cm and enhanced magnetic fields B {approx} (0.5-1) mG. Day-long flares are characterized by smaller distances and larger local magnetic fields. Typically, the deduced total energy associated with the 'wave' phenomenon (E{sub w} {approx} 10{sup 42} erg, where E{sub w} is the kinetic energy of the emitting particles) is comparable with that associated to the flares, and can reach a few percent of the total available pulsar spin-down energy. Most likely, flares and waves are the product of the same class of plasma instabilities that we show acting on different timescales and radiation intensities.

  4. Equipartition gamma-ray blazars and the location of the gamma-ray emission site in 3C 279

    SciTech Connect

    Dermer, Charles D.; Cerruti, Matteo; Lott, Benoit

    2014-02-20

    Blazar spectral models generally have numerous unconstrained parameters, leading to ambiguous values for physical properties like Doppler factor δ{sub D} or fluid magnetic field B'. To help remedy this problem, a few modifications of the standard leptonic blazar jet scenario are considered. First, a log-parabola function for the electron distribution is used. Second, analytic expressions relating energy loss and kinematics to blazar luminosity and variability, written in terms of equipartition parameters, imply δ{sub D}, B', and the peak electron Lorentz factor γ{sub pk}{sup ′}. The external radiation field in a blazar is approximated by Lyα radiation from the broad-line region (BLR) and ≈0.1 eV infrared radiation from a dusty torus. When used to model 3C 279 spectral energy distributions from 2008 and 2009 reported by Hayashida et al., we derive δ{sub D} ∼ 20-30, B' ∼ few G, and total (IR + BLR) external radiation field energy densities u ∼ 10{sup –2}-10{sup –3} erg cm{sup –3}, implying an origin of the γ-ray emission site in 3C 279 at the outer edges of the BLR. This is consistent with the γ-ray emission site being located at a distance R ≲ Γ{sup 2} ct {sub var} ∼ 0.1(Γ/30){sup 2}(t {sub var}/10{sup 4} s) pc from the black hole powering 3C 279's jets, where t {sub var} is the variability timescale of the radiation in the source frame, and at farther distances for narrow-jet and magnetic-reconnection models. Excess ≳ 5 GeV γ-ray emission observed with Fermi LAT from 3C 279 challenges the model, opening the possibility of a second leptonic component or a hadronic origin of the emission. For low hadronic content, absolute jet powers of ≈10% of the Eddington luminosity are calculated.

  5. Is the gamma-ray emission from the SNR HESS J1731-347 leptonic dominated ?

    NASA Astrophysics Data System (ADS)

    Acero, Fabio; Renaud, Matthieu; Lemoine-Goumard, Marianne; Rousseau, Romain

    2012-07-01

    HESS J1731-347 is the first supernova remnant (SNR) that has been discovered based on TeV observation. First an unassociated source discovered in the survey of the Galactic plane by the HESS experiment, it has later been identified as a new SNR (through radio and X-rays observations) and is now the 4th object in the restricted club of SNRs with a TeV shell morphology. This new SNR shares many similarities with the brightest TeV SNR RX J1713.7-3946: comparable TeV luminosities, lack of thermal X-ray emission and the remnants from a gravitational core collapse (compact objects observed at the center). Using the spectral and morphological information derived in TeV, the GeV emission of the SNR is investigated with data from the Fermi Gamma-ray Space Telescope in order to test whether the nature of the gamma-ray emission is of leptonic (as it has been found for RX J1713.7-3946) or hadronic origin.

  6. Quark deconfinement in the proto-magnetar model of long gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Pili, A. G.; Bucciantini, N.; Drago, A.; Pagliara, G.; Del Zanna, L.

    2016-10-01

    We investigate the possible implications of quark deconfinement on the phenomenology of long gamma-ray bursts focusing, in particular, on the possibility to describe multiple prompt emission phases in the context of the proto-magnetar model. Starting from numerical models of rotating Hadron Stars and Quark Stars in full general relativity we track the electromagnetic spin-down evolution in both the hadronic and quark phase, linking the two families through conservation of baryon number and angular momentum. We give estimates of the time-scales and the energetics involved in the spin-down process deriving, in the relevant spin range, the relation between the initial and the final masses and rotational energies, whenever hadron-quark conversion is possible. We show how the results can be used in relevant astrophysical cases such as the double burst GRB 110709B.

  7. THE DISCOVERY OF {gamma}-RAY EMISSION FROM THE BLAZAR RGB J0710+591

    SciTech Connect

    Acciari, V. A.; Benbow, W.; Aliu, E.; Arlen, T.; Aune, T.; Bautista, M.; Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R.; Boettcher, M.; Boltuch, D.; Bradbury, S. M.; Byrum, K.; Cannon, A.; Cesarini, A.; Ciupik, L.; Cui, W.; Duke, C.; Falcone, A. E-mail: fortin@llr.in2p3.f

    2010-05-20

    The high-frequency-peaked BL Lacertae object RGB J0710+591 was observed in the very high-energy (VHE; E > 100 GeV) wave band by the VERITAS array of atmospheric Cherenkov telescopes. The observations, taken between 2008 December and 2009 March and totaling 22.1 hr, yield the discovery of VHE gamma rays from the source. RGB J0710+591 is detected at a statistical significance of 5.5 standard deviations (5.5{sigma}) above the background, corresponding to an integral flux of (3.9 {+-} 0.8) x 10{sup -12} cm{sup -2} s{sup -1} (3% of the Crab Nebula's flux) above 300 GeV. The observed spectrum can be fit by a power law from 0.31 to 4.6 TeV with a photon spectral index of 2.69 {+-} 0.26{sub stat} {+-} 0.20{sub sys}. These data are complemented by contemporaneous multiwavelength data from the Fermi Large Area Telescope, the Swift X-ray Telescope, the Swift Ultra-Violet and Optical Telescope, and the Michigan-Dartmouth-MIT observatory. Modeling the broadband spectral energy distribution (SED) with an equilibrium synchrotron self-Compton model yields a good statistical fit to the data. The addition of an external-Compton component to the model does not improve the fit nor brings the system closer to equipartition. The combined Fermi and VERITAS data constrain the properties of the high-energy emission component of the source over 4 orders of magnitude and give measurements of the rising and falling sections of the SED.

  8. Fermi Detection of Delayed GeV Emission from the Short Gamma-Ray Burst 081024B

    NASA Astrophysics Data System (ADS)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Asano, K.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B. M.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bhat, P. N.; Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bouvier, A.; Bregeon, J.; Brez, A.; Briggs, M. S.; Brigida, M.; Bruel, P.; Burgess, J. M.; Burnett, T. H.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Carrigan, S.; Casandjian, J. M.; Cecchi, C.; Çelik, Ö.; Chaplin, V.; Charles, E.; Chekhtman, A.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Cominsky, L. R.; Connaughton, V.; Conrad, J.; Cutini, S.; Dermer, C. D.; de Angelis, A.; de Palma, F.; Digel, S. W.; Silva, E. do Couto e.; Drell, P. S.; Dubois, R.; Dumora, D.; Farnier, C.; Favuzzi, C.; Fegan, S. J.; Fishman, G.; Focke, W. B.; Fortin, P.; Frailis, M.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Giebels, B.; Giglietto, N.; Giommi, P.; Giordano, F.; Glanzman, T.; Godfrey, G.; Granot, J.; Grenier, I. A.; Grondin, M.-H.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hanabata, Y.; Harding, A. K.; Hayashida, M.; Haynes, R. H.; Hays, E.; Horan, D.; Hughes, R. E.; Jackson, M. S.; Jóhannesson, G.; Johnson, A. S.; Johnson, W. N.; Kamae, T.; Katagiri, H.; Kataoka, J.; Kawai, N.; Kerr, M.; Kippen, R. M.; Knödlseder, J.; Kocevski, D.; Kocian, M. L.; Komin, N.; Kouveliotou, C.; Kuehn, F.; Kuss, M.; Lande, J.; Latronico, L.; Lemoine-Goumard, M.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Madejski, G. M.; Makeev, A.; Mazziotta, M. N.; McBreen, S.; McEnery, J. E.; McGlynn, S.; Meegan, C.; Mészáros, P.; Meurer, C.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monte, C.; Monzani, M. E.; Moretti, E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakamori, T.; Nolan, P. L.; Norris, J. P.; Nuss, E.; Ohno, M.; Ohsugi, T.; Omodei, N.; Orlando, E.; Ormes, J. F.; Paciesas, W. S.; Paneque, D.; Panetta, J. H.; Parent, D.; Pelassa, V.; Pepe, M.; Pesce-Rollins, M.; Piron, F.; Porter, T. A.; Preece, R.; Rainò, S.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer, O.; Reposeur, T.; Ripken, J.; Ritz, S.; Rochester, L. S.; Rodriguez, A. Y.; Roth, M.; Ryde, F.; Sadrozinski, H. F.-W.; Sanchez, D.; Sander, A.; Saz Parkinson, P. M.; Scargle, J. D.; Schalk, T. L.; Sgrò, C.; Siskind, E. J.; Smith, D. A.; Smith, P. D.; Spandre, G.; Spinelli, P.; Stamatikos, M.; Strickman, M. S.; Suson, D. J.; Tagliaferri, G.; Tajima, H.; Takahashi, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Thompson, D. J.; Tibaldo, L.; Toma, K.; Torres, D. F.; Tosti, G.; Tramacere, A.; Troja, E.; Uchiyama, Y.; Usher, T. L.; van der Horst, A. J.; Vasileiou, V.; Vilchez, N.; Vitale, V.; von Kienlin, A.; Waite, A. P.; Wang, P.; Wilson-Hodge, C.; Winer, B. L.; Wood, K. S.; Wu, X. F.; Yamazaki, R.; Ylinen, T.; Ziegler, M.

    2010-03-01

    We report on the detailed analysis of the high-energy extended emission from the short gamma-ray burst (GRB) 081024B detected by the Fermi Gamma-ray Space Telescope. Historically, this represents the first clear detection of temporal extended emission from a short GRB. The light curve observed by the Fermi Gamma-ray Burst Monitor lasts approximately 0.8 s whereas the emission in the Fermi Large Area Telescope lasts for about 3 s. Evidence of longer lasting high-energy emission associated with long bursts has been already reported by previous experiments. Our observations, together with the earlier reported study of the bright short GRB 090510, indicate similarities in the high-energy emission of short and long GRBs and open the path to new interpretations.

  9. EARLY THERMAL X-RAY EMISSION FROM LONG GAMMA-RAY BURSTS AND THEIR CIRCUMSTELLAR ENVIRONMENTS

    SciTech Connect

    Suzuki, Akihiro; Shigeyama, Toshikazu

    2013-02-10

    We performed a series of hydrodynamical calculations of an ultrarelativistic jet propagating through a massive star and the circumstellar matter (CSM) to investigate the interaction between the ejecta and the CSM. We succeed in distinguishing two qualitatively different cases in which the ejecta are shocked and adiabatically cool. To examine whether the cocoon expanding at subrelativistic speeds emits any observable signal, we calculate the expected photospheric emission from the cocoon. It is found that the emission can explain early thermal X-ray emission recently found in some long gamma-ray bursts (GRBs). The result implies that the difference of the circumstellar environment of long GRBs can be probed by observing their early thermal X-ray emission.

  10. Cosmic Rays, Magnetic Fields and Diffuse Emissions: Combining Observations from Radio to Gamma Rays

    NASA Astrophysics Data System (ADS)

    Michelson, Peter

    With the advent of WMAP, Planck, and Fermi-LAT telescopes the diffuse emission from the Milky Way has received renewed attention. Observations of the different components of the diffuse emission reveal information on Cosmic Rays (CRs), magnetic fields (B-fields) and the interstellar medium. CRs interact with the interstellar medium and the B-fields in the Milky Way, producing diffuse emission from radio to gamma rays. The fundamental problem is that CRs, B-fields, and the interstellar medium are not precisely known. In fact, despite intensive studies, the B-field intensity and topology, and CR spectra and distribution throughout the Galaxy are still uncertain. As a consequence unequivocally disentangling and describing the diffuse components simultaneously using a single wavelength domain is impossible. Our approach to disentangling and describing the diffuse emission components is to simultaneously consider the diffuse emission in multiple frequency domains. We propose to exploit the entire database of the present radio surveys, microwave observations (WMAP and Planck), X-ray observations (INTEGRAL) and gamma-ray observations (COMPTEL and Fermi-LAT) in order to analyze their diffuse emission in a combined multi-wavelength approach. We will jointly infer information on the spectra and distribution of CRs in the Galaxy, and on Galactic B-fields, with unprecedented accuracy. Finally we will be able to describe the baseline Galactic diffuse emissions and characterize Milky Way structures and their emission mechanisms, which have attracted the attention of the scientific community recently. This project is innovative and essential for maximizing the scientific return from the presently available data in a multidisciplinary view and uses novel approaches. The results will benefit NASA-related science generally and the return from the named missions specifically.

  11. Gamma-ray emission from the shell of supernova remnant W44 revealed by the Fermi LAT.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Baldini, L; Ballet, J; Barbiellini, G; Baring, M G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Celik, O; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cognard, I; Cohen-Tanugi, J; Cominsky, L R; Conrad, J; Cutini, S; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; do Couto e Silva, E; Drell, P S; Dubois, R; Dumora, D; Espinoza, C; Farnier, C; Favuzzi, C; Fegan, S J; Focke, W B; Fortin, P; Frailis, M; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giavitto, G; Giebels, B; Giglietto, N; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hughes, R E; Jackson, M S; Jóhannesson, G; Johnson, A S; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Katsuta, J; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Kramer, M; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Lyne, A G; Madejski, G M; Makeev, A; Mazziotta, M N; McEnery, J E; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Nolan, P L; Norris, J P; Noutsos, A; Nuss, E; Ohsugi, T; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Rochester, L S; Rodriguez, A Y; Romani, R W; Roth, M; Ryde, F; Sadrozinski, H F-W; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Sgrò, C; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Stappers, B W; Stecker, F W; Strickman, M S; Suson, D J; Tajima, H; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thayer, J G; Theureau, G; Thompson, D J; Tibaldo, L; Tibolla, O; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vasileiou, V; Venter, C; Vilchez, N; Vitale, V; Waite, A P; Wang, P; Winer, B L; Wood, K S; Yamazaki, R; Ylinen, T; Ziegler, M

    2010-02-26

    Recent observations of supernova remnants (SNRs) hint that they accelerate cosmic rays to energies close to ~10(15) electron volts. However, the nature of the particles that produce the emission remains ambiguous. We report observations of SNR W44 with the Fermi Large Area Telescope at energies between 2 x 10(8) electron volts and 3 x10(11) electron volts. The detection of a source with a morphology corresponding to the SNR shell implies that the emission is produced by particles accelerated there. The gamma-ray spectrum is well modeled with emission from protons and nuclei. Its steepening above approximately 10(9) electron volts provides a probe with which to study how particle acceleration responds to environmental effects such as shock propagation in dense clouds and how accelerated particles are released into interstellar space.

  12. Milagro Search for Very High Energy Emission from Gamma-Ray Bursts in the Swift Era

    SciTech Connect

    Saz Parkinson, P. M.

    2006-05-19

    The recently launched Swift satellite is providing an unprecedented number of rapid and accurate Gamma-Ray Burst (GRB) localizations, facilitating a flurry of follow-up observations by a large number of telescopes at many different wavelengths. The Very High Energy (VHE, >100 GeV) regime has so far been relatively unexplored. Milagro is a wide field of view (2 sr) and high duty cycle (> 90%) ground-based gamma-ray telescope which employs a water Cherenkov detector to monitor the northern sky almost continuously in the 100 GeV to 100 TeV energy range. We have searched the Milagro data for emission from the most recent GRBs identified within our field of view. These include three Swift bursts which also display late-time X-ray flares. We have searched for emission coincident with these flares. No significant detection was made. A 99% confidence upper limit is provided for each of the GRBs, as well as the flares.

  13. DETECTION OF PERSISTENT GAMMA-RAY EMISSION TOWARD SS433/W50

    SciTech Connect

    Bordas, P.; Yang, R.; Kafexhiu, E.; Aharonian, F. E-mail: ryang@mpi-hd.mpg.de

    2015-07-01

    The microquasar SS433 features the most energetic jets known in our Galaxy. A large fraction of the jet kinetic power is delivered to the surrounding W50 nebula at the jet termination shock, from which high-energy emission and cosmic-ray production have been anticipated. Here, we report on the detection of a persistent gamma-ray signal obtained with the Fermi Large Area Telescope from an unidentified source that we tentatively associate, given its 99.9% confidence level position accuracy and the lack of any other high-energy emitter counterpart in the studied region, with SS433. The obtained spectral energy distribution displays a distinct maximum at ∼250 MeV and only extends up to ∼800 MeV. We discuss the possibility that the observed gamma-ray emission is produced through proton–proton collisions at the SS433/W50 interaction regions. If the same mechanism is operating in other baryon-loaded microquasar jets, their collective contribution could represent a significant fraction of the total galactic cosmic-ray flux at GeV energies.

  14. Two populations and models of gamma ray bursts

    NASA Technical Reports Server (NTRS)

    Katz, J. I.

    1993-01-01

    Gamma-ray burst statistics are best explained by a source population at cosmological distances, while spectroscopy and intensity histories of some individual bursts imply an origin on Galactic neutron stars. To resolve this inconsistency I suggest the presence of two populations, one at cosmological distances and the other Galactic. I build on ideas of Shemi and Piran (1990) and of Rees and Mesozaros (1992) involving the interaction of fireball debris with surrounding clouds to explain the observed intensity histories in bursts at cosmological distances. The distances to the Galactic population are undetermined because they are too few to affect the statistics of intensity and direction; I explain them as resulting from magnetic reconnection in neutron star magnetospheres. An appendix describes the late evolution of the debris as a relativistic blast wave.

  15. GAMMA-RAY BURST PROMPT EMISSION: JITTER RADIATION IN STOCHASTIC MAGNETIC FIELD REVISITED

    SciTech Connect

    Mao, Jirong; Wang Jiancheng

    2011-04-10

    We revisit the radiation mechanism of relativistic electrons in the stochastic magnetic field and apply it to the high-energy emissions of gamma-ray bursts (GRBs). We confirm that jitter radiation is a possible explanation for GRB prompt emission in the condition of a large electron deflection angle. In the turbulent scenario, the radiative spectral property of GRB prompt emission is decided by the kinetic energy spectrum of turbulence. The intensity of the random and small-scale magnetic field is determined by the viscous scale of the turbulent eddy. The microphysical parameters {epsilon}{sub e} and {epsilon}{sub B} can be obtained. The acceleration and cooling timescales are estimated as well. Due to particle acceleration in magnetized filamentary turbulence, the maximum energy released from the relativistic electrons can reach a value of about 10{sup 14} eV. The GeV GRBs are possible sources of high-energy cosmic-ray.

  16. Strong constraints on gamma-ray burst emission in TeV using recent results from VERITAS

    NASA Astrophysics Data System (ADS)

    Weiner, Ori

    2016-04-01

    Recent VERITAS gamma-ray upper limits in the energy range 100 GeV to 30 TeV suggest that gamma-ray burst (GRB) emission in TeV is substantially suppressed compared to X-ray emission, and even compared to typically-observed Fermi-LAT emission in GeV. These results impact on our understanding of the GRB environment. We will present VERITAS results on GRB150323A and put them in context of what has been seen at lower energies by Swift and Fermi, both for this particular burst and for others.

  17. The limitations of resonant Compton scattering as a gamma-ray burst model

    NASA Technical Reports Server (NTRS)

    Brainerd, J. J.

    1992-01-01

    Resonant Compton upscattering is commended as a mechanism that produces a hard gamma-ray spectrum while suppressing X-rays. This model, however, has severe physical and observational limitations. Effective X-ray suppression places a lower limit on the electron density; above this limit X-rays scatter multiple times, so the single-scattering approximation of this mechanism is invalid. Multiple scattering produces a spectrum that is much harder than the single-scattering spectrum. As the Thomson optical depth of a power-law electron beam approaches unity, photon spawning commences at a high rate and physically invalidates the underlying electron distribution. The Compton upscattering model is therefore only valid over a narrow range of electron densities. An observational consequence of this model is the absence of the third cyclotron resonance. Resonant scattering produces gamma-rays that propagate nearly along the magnetic field. The resonant cross section of the third harmonic, which is strongly angle dependent, falls below the Compton continuum for these gamma rays. The observation of a third cyclotron resonance in a gamma-ray burst spectrum would eliminate resonant Compton scattering as a gamma-ray burst process.

  18. Electromagnetic afterglows associated with gamma-ray emission coincident with binary black hole merger event GW150914

    NASA Astrophysics Data System (ADS)

    Yamazaki, Ryo; Asano, Katsuaki; Ohira, Yutaka

    2016-05-01

    The Fermi Gamma-ray Burst Monitor reported the possible detection of the gamma-ray counterpart of a binary black hole merger event, GW150914. We show that the gamma-ray emission is caused by a relativistic outflow with Lorentz factor larger than 10. Subsequently, debris outflow pushes the ambient gas to form a shock, which is responsible for the afterglow synchrotron emission. We find that the 1.4 GHz radio flux peaks at {˜ }10^5 s after the burst trigger. If the ambient matter is dense enough, with density larger than {˜ }10^{-2} cm^{-3}, then the peak radio flux is {˜ }0.1 mJy, which is detectable with radio telescopes such as the Very Large Array. The optical afterglow peaks earlier than the radio, and if the ambient matter density is larger than {˜ }0.1 cm^{-3}, the optical flux is detectable with large telescopes such as the Subaru Hyper Suprime-Cam. To reveal the currently unknown mechanisms of the outflow and its gamma-ray emission associated with the binary black hole merger event, follow-up electromagnetic observations of afterglows are important. Detection of the afterglow will localize the sky position of the gravitational wave and gamma-ray emissions, and it will support the physical association between them.

  19. The Synchrotron Shock Model Confronts a "Line of Death" in the BATSE Gamma-Ray Burst Data

    NASA Technical Reports Server (NTRS)

    Preece, Robert D.; Briggs, Michael S.; Mallozzi, Robert S.; Pendleton, Geoffrey N.; Paciesas, W. S.; Band, David L.

    1998-01-01

    The synchrotron shock model (SSM) for gamma-ray burst emission makes a testable prediction: that the observed low-energy power-law photon number spectral index cannot exceed -2/3 (where the photon model is defined with a positive index: $dN/dE \\propto E{alpha}$). We have collected time-resolved spectral fit parameters for over 100 bright bursts observed by the Burst And Transient Source Experiment on board the {\\it Compton Gamma Ray Observatory}. Using this database, we find 23 bursts in which the spectral index limit of the SSM is violated, We discuss elements of the analysis methodology that affect the robustness of this result, as well as some of the escape hatches left for the SSM by theory.

  20. THE ROLE OF STOCHASTIC ACCELERATION IN THE PROMPT EMISSION OF GAMMA-RAY BURSTS: APPLICATION TO HADRONIC INJECTION

    SciTech Connect

    Murase, Kohta; Asano, Katsuaki; Terasawa, Toshio; Meszaros, Peter

    2012-02-20

    We study effects of particle re-acceleration (or heating) in the post-shock region via magnetohydrodynamic/plasma turbulence, in the context of a mixed hadronic-leptonic model for the prompt emission of gamma-ray bursts, using both analytical and numerical methods. We show that stochastically accelerated (or heated) leptons, which are injected via pp and p{gamma} reactions and subsequent pair cascades, are plausibly able to reproduce the Band function spectra with {alpha} {approx} 1 and {beta} {approx} 2-3 in the {approx}MeV range. An additional hard component coming from the proton-induced cascade emission is simultaneously expected, which can be compatible with observed extra power-law spectra far above the MeV range. We also discuss the specific implications of hadronic models for ongoing high-energy neutrino observations.

  1. Search for VHE {gamma}-ray emission in the vicinity of selected pulsars of the Northern Sky with VERITAS

    SciTech Connect

    Aliu, Ester

    2008-12-24

    It is generally believed that pulsars dissipate their rotational energy through powerful winds of relativistic particles. Confinement of these winds leads to the formation of luminous pulsar wind nebulae (PWNe) seen across the electromagnetic spectrum in synchrotron and inverse Compton emission. Recently, many new detections have been produced at the highest energies by Very High Energy (VHE){gamma}-ray observations, identifying PWNe as among the most common sources of galactic VHE {gamma}-ray emission. We report here on the preliminary results of a search for VHE {gamma}-ray emission towards a selection of energetic and/or close pulsars in the Northern hemisphere in the first year of operations of the full VERITAS array.

  2. Fermi large area telescope observations of the cosmic-ray induced {gamma}-ray emission of the Earth's atmosphere

    SciTech Connect

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Digel, S. W.; Couto e Silva, E. do; Drell, P. S.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.

    2009-12-15

    We report on measurements of the cosmic-ray induced {gamma}-ray emission of Earth's atmosphere by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The Large Area Telescope has observed the Earth during its commissioning phase and with a dedicated Earth limb following observation in September 2008. These measurements yielded {approx}6.4x10{sup 6} photons with energies >100 MeV and {approx}250 hours total live time for the highest quality data selection. This allows the study of the spatial and spectral distributions of these photons with unprecedented detail. The spectrum of the emission--often referred to as Earth albedo gamma-ray emission--has a power-law shape up to 500 GeV with spectral index {gamma}=2.79{+-}0.06.

  3. Evidence for TeV Gamma-Ray Emission from a Region of the Galactic Plane

    SciTech Connect

    Atkins, R.; Gonzalez, M.M.; McEnery, J.E.; Wilson, M.E.; Benbow, W.; Coyne, D.G.; Dorfan, D.E.; Kelley, L.A.; Morales, M.F.; Parkinson, P.M. Saz; Williams, D.A.; Berley, D.; Blaufuss, E.; DeYoung, T.; Goodman, J.A.; Hays, E.; Lansdell, C.P.; Noyes, D.; Smith, A.J.; Sullivan, G.W.

    2005-12-16

    Gamma-ray emission from a narrow band at the galactic equator has previously been detected up to 30 GeV. We report evidence for a TeV gamma-ray signal from a region of the galactic plane by Milagro, a large-field-of-view water Cherenkov detector for extensive air showers. An excess with a significance of 4.5 standard deviations has been observed from the region of galactic longitude l (set-membership sign) (40 deg.,100 deg.) and latitude vertical bar b vertical bar <5 deg. Under the assumption of a simple power law spectrum, with no cutoff in the EGRET-Milagro energy range, the measured integral flux is {phi}{sub {gamma}}(>3.5 TeV)=(6.4{+-}1.4{+-}2.1)x10{sup -11} cm{sup -2} s{sup -1} sr{sup -1}. This flux is consistent with an extrapolation of the EGRET spectrum between 1 and 30 GeV in this galactic region.

  4. The Use of the BAT Instrument on SWIFT for the Detection of Prompt Gamma-Ray Emission from Novae

    NASA Technical Reports Server (NTRS)

    Skinner, Gerry; Senziani, Fabio; Jean, Pierre; Hernanz, Margarita

    2007-01-01

    Gamma-rays are expected to be emitted during and immediately following a nova explosion due to the annihilation of positrons emitted by freshly produced short-lived radioactive isotopes. The expected gammaray emission is relatively short-lived and as nova explosions are unpredictable, the best chance of detecting the gamma-rays is with n wide field instrument. At the time when the flux is expected to rcach its peak, most of the gamma-ray production is at depths such that the photons suffer several Compton scatterings before escaping, degrading their energy down to the hard X-ray band (10s of keV). SWIFT/BAT is a very wide field coded mask instrument working in the energy band 14-190 keV and so is very well suited to the search for such gamma-rays. A retrospective search is being made in the BAT data for evidence for gamma-ray emission from the direction of novae at around the time of their explosion. So far the only positive detection is of RS Ophiuchi and in this case the emission is probably due to shock heating.

  5. Development of marijuana and tobacco detectors using potassium-40 gamma-ray emissions

    NASA Astrophysics Data System (ADS)

    Kirby, John A.; Lindquist, Roy P.

    1994-10-01

    Measurements were made at the Otay Mesa, CA, border crossing between November 30 and December 4, 1992, to demonstrate proof of concept and the practicality of using potassium 40 (K40) gamma emissions to detect the presence of marijuana in vehicles. Lawrence Livermore National Laboratory personnel, with the assistance of the EPA, set up three large volume gamma ray detectors with lead brick shielding and collimation under a stationary trailer and pickup truck. Measurements were performed for various positions and quantities of marijuana. Also, small quantities of marijuana, cigarettes, and other materials were subjected to gamma counting measurements under controlled geometry conditions to determine their K40 concentration. Larger quantities of heroin and cocaine were subjected to undefined geometry gamma counts for significant K40 gamma emissions.

  6. Development of marijuana and tobacco detectors using potassium-40 gamma ray emissions

    SciTech Connect

    Kirby, J.; Lindquist, R.P.

    1994-06-01

    Measurements were made at the Otay Mesa, Ca. border crossing between November 30 and December 4, 1992 to demonstrate proof of concept and the practicality of using potassium 40 (K40) gamma emissions to detect the presence of marijuana in vehicles. Lawrence Livermore National Laboratory (LLNL) personnel, with the assistance of the EPA, set up three large volume gamma ray detectors with lead brick shielding and collimation under a stationary trailer and pickup truck. Measurements were performed for various positions and quantities of marijuana. Also, small quantities of marijuana, cigarettes, and other materials were subjected to gamma counting measurements under controlled geometry conditions to determine their K40 concentration. Larger quantities of heroin and cocaine were subjected to undefined geometry gamma counts for significant K40 gamma emissions.

  7. Discovery of Very High Energy Gamma-Ray Emission from Rbs 0723 with the Magic Telescopes

    NASA Astrophysics Data System (ADS)

    Mirzoyan, Razmik

    2014-01-01

    The MAGIC collaboration reports the discovery of very high energy (VHE; E>100 GeV) gamma-ray emission from RBS 0723 (RA: 08:47:12.9 DEC: +11:33:50, J2000.0) RBS 0723 is a BL Lac object at redshift z=0.198. The source has been detected by Fermi-LAT, in the Second Fermi-LAT source Catalogue (2FGL; Nolan et al. 2012) with F(>1 GeV) = (5.3+-1.2)e-10 cm^-2 s^-1 and with photon index 1.48+-0.16. It also belongs to the first Fermi-LAT catalog of >10 GeV sources (1FHL; Ackermann et al, 2013), showing a hard (photon index = 1.4 +- 0.4) and bright (photon flux = 9.6e-11 ph cm^-2 s^-1) emission above 10 GeV, and identified as a good candidate for VHE detection.

  8. Search for extended gamma ray emission in Markarian 421 using VERITAS observations

    NASA Astrophysics Data System (ADS)

    Fernandez Alonso, M.; VERITAS Collaboration

    Very high energy (VHE: 100 GeV) gamma rays coming from AGN can pair-produce on the intergalactic background light generating an electromagnetic cascade. If the Intergalactic Magnetic Field (IGMF) is sufficiently strong; this cascade may result in an extended isotropic emission of photons around the source; or halo. Using VERITAS observations of the blazar Markarian 421; we search for extended emission by comparing the source angular distribution () from a quiescent period with one coming from a flare period; which can be considered as ``halo-free". test showed no significant statistical differences between the samples; suggesting that the effect is either non-existent or too weak to be detected. We calculated upper limits for the extended flux considering different angle ranges; the most stringent being 8 of the Crab Nebulae flux (C.U); in the range .

  9. Discovery of a tight correlation among the prompt emission properties of long gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Firmani, C.; Ghisellini, G.; Avila-Reese, V.; Ghirlanda, G.

    2006-07-01

    We report the discovery of a correlation among three prompt emission properties of gamma-ray bursts (GRBs). These are the isotropic peak luminosity Liso, the peak energy (in νLν) of the time-integrated prompt emission spectrum Epk, and the `high signal' time-scale T0.45, previously used to characterize the variability behaviour of bursts. In the rest frame of the source, the discovered correlation reads Liso ~ E1.62pkT-0.490.45. We find other strong correlations, but at the cost of increasing the number of variables, involving the variability and the isotropic energy of the prompt emission. With respect to the other tight correlations found in GRBs (i.e. between the collimation corrected energy Eγ and Epk, the so-called Ghirlanda correlation, and the phenomenological correlation among the isotropic emitted energy Eiso,Epk and the jet break time tbreak), the newly found correlation does not require any information from the afterglow phase of the bursts, nor any model-dependent assumption. In the popular scenario in which we are receiving beamed radiation originating in a fireball pointing at us, the discovered correlation preserves its form in the comoving frame. This helps to explain the small scatter of the correlation and underlines the role of the local brightness (i.e. the brightness of the visible fraction of the fireball surface). This correlation has been found with a relatively small number of objects and it is hard to establish if any selection bias affects it. Its connection with the prompt local brightness is promising, but a solid physical understanding is still to be found. Despite all that, we find that some properties of the correlation, which we discuss, support its true existence, and this has important implications for the GRB physics. Furthermore, it is possible to use such correlation as an accurate redshift estimator, and, more importantly, its tightness will allow us to use it as a tool to constrain the cosmological parameters.

  10. Statistical Properties of Multiple Optical Emission Components in Gamma-Ray Bursts and Implications

    NASA Astrophysics Data System (ADS)

    Liang, En-Wei; Li, Liang; Tang, Qing-Wen; Chen, Jie-Min; Zhang, Bing

    2013-01-01

    Well-sampled optical lightcurves of 146 gamma-ray bursts (GRBs) are complied from the literature. Multiple optical emission components are extracted with power-law function fits to these lightcurves. We present a systematical analysis for statistical properties and their relations to prompt gamma-ray emission and X-ray afterglow for each component. We show that peak luminosity in the prompt and late flares are correlated and the evolution of the peak luminosity may signal the evolution of the accretion rate. No tight correlation between the shallow decay phase/plateau and prompt gamma-ray emission is found. Assuming that they are due to a long-lasting wind injected by a compact object, we show that the injected behavior favors the scenarios of a long-lasting wind powered by a Poynting flux from a black hole via the Blandford-Znajek mechanism fed by fall-back mass or by the spin-down energy release of a magnetar after the main burst episode. The peak luminosity of the afterglow onset is tightly correlated with Eγ,iso, and it is dimmer as peaking later. Assuming that the onset bump is due to the fireball deceleration by the external medium, we examine the Γ0 - Eγ,iso relation and find that it is confirmed with the current sample. Optical re-brightening is observed in 30 GRBs in our sample. It shares the same relation between the width and the peak time as found in the onset bump, but no clear correlation between LR,p and Eγ,iso similar to that observed for the onset bumps is found. Although its peak luminosity also decays with time, the slope is much shallower than that of the onset peak, as is the case for the onset bumps. We get L∝ t-1 p, being consistent with off-axis observations to an expanding external fireball in a wind-like circum medium. Therefore, the late re-brightening may signal another jet component. Mixing of different emission components may be the reason for the observed chromatic breaks of the shallow decay segment in different energy bands.

  11. Multiple resonant scattering in the Compton upscatter model of gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Brainerd, J. J.

    1992-01-01

    Resonant Compton scattering, an increasingly popular mechanism for suppressing X-rays and producing gamma rays, must be treated as a multiple-scattering process for conditions thought characteristic of gamma-ray bursts. Photons that multiply scatter with a beamed power-law electron distribution in a uniform magnetic field produce a flat spectrum between the cyclotron frequency and an optical-depth-dependent critical energy; this critical energy ranges between several hundred keV and several MeV. Above this critical energy, the gamma-ray spectrum has a shape determined by the electron distribution and described by a single-scattering model. Only electron distributions that are nearly proportional to the electron momentum are able to simultaneously suppress X-rays and produce a single-scattering spectrum. As the Thomson optical depth approaches unity, photons that experience multiple scatterings often spawn additional photons at a rate that makes the model unphysical.

  12. Gamma-ray astrophysics

    NASA Technical Reports Server (NTRS)

    Stecker, F. W. (Editor); Trombka, J. I. (Editor)

    1973-01-01

    Conference papers on gamma ray astrophysics are summarized. Data cover the energy region from about 0.3 MeV to a few hundred GeV and theoretical models of production mechanisms that give rise to both galactic and extragalactic gamma rays.

  13. Mathematical model of gamma-ray spectrometry borehole logging for quantitative analysis

    USGS Publications Warehouse

    Schimschal, Ulrich

    1981-01-01

    A technique for analyzing gamma-ray spectral-logging data has been developed, in which a digital computer is used to calculate the effects of gamma-ray attentuation in a borehole environment. The computer model allows for the calculation of the effects of lithology, porosity, density, and the thickness of a horizontal layer of uniformly distributed radioactive material surrounding a centralized probe in a cylindrical borehole. The computer program also contains parameters for the calculation of the effects of well casing, drilling fluid, probe housing, and losses through the sodium-iodide crystal. Errors associated with the commonly used mathematical assumption of a point detector are eliminated in this model. (USGS)

  14. Gamma-Ray Line Flux Ratios as Diagnostics of SN Ia Models

    NASA Astrophysics Data System (ADS)

    Lara, Juan; The, Lih-Sin; Leising, Mark

    2004-05-01

    The ^56Ni decay chain that powers the optical output of Type Ia supernovae produces gamma-ray lines at 158, 812 ( ^56Ni decay ) and 847, 1238 keV ( ^56Co decay ). The detection of the line fluxes have been used to show indeed that ^56Ni is produced by explosive nucleosynthesis. We investigate the measurement precision required to use the flux ratios of these lines to each other and to the compton X-ray continuum to distinguish among a variety of SN Ia models. We compare this to using gamma-ray line profiles to distinguish among models.

  15. Modulated gamma-ray emission from compact millisecond pulsar binary systems

    NASA Astrophysics Data System (ADS)

    Bednarek, W.

    2014-01-01

    Context. A significant number of the millisecond pulsars (MSPs) have been discovered within binary systems. Tens of these MSPs emit γ-rays that are modulated with the pulsar period since this emission is produced in the inner pulsar magnetosphere. In several such binary systems, the masses of the companion stars have been derived allowing two classes of objects to be distinguished, which are called the black widow and the redback binaries. Pulsars in these binary systems are expected to produce winds that create conditions for acceleration of electrons, when colliding with stellar winds. These electrons should interact with the anisotropic radiation from the companion stars producing γ-ray emission modulated with the orbital period of the binary system, similar to what is observed in the massive TeV γ-ray binary systems. Aims: We consider the interaction of a MSP wind with a very inhomogeneous stellar wind from the companion star within binary systems of the black widow and redback types. Our aim is to determine the features of γ-ray emission produced in the collision region of the winds from a few typical MSP binary systems. Methods: It is expected that the pulsar wind should mix efficiently with the inhomogeneous stellar wind. The mixed winds move outside the binary with relatively low velocity. Electrons accelerated in such mixed, turbulent winds can interact with the magnetic field and strong radiation from the companion star, producing not only synchrotron radiation but also γ-rays in the inverse Compton process, fluxes of which are expected to be modulated on the periods of the binary systems. Applying numerical methods, we calculated the GeV-TeV gamma-ray spectra and the light curves expected from some MSP binary systems. Results: Gamma-ray emission, produced within the binary systems, is compared with the sensitivities of the present and future gamma-ray telescopes. It is concluded that energetic MSP binary systems create a new class of TeV

  16. SYNCHROTRON SELF-COMPTON EMISSION AS THE ORIGIN OF THE GAMMA-RAY AFTERGLOW OBSERVED IN GRB 980923

    SciTech Connect

    Fraija, N.; Gonzalez, M. M.; Lee, W. H. E-mail: magda@astro.unam.mx

    2012-05-20

    GRB 980923 was one of the brightest bursts observed by the Burst and Transient Source Experiment. Previous studies have detected two distinct components in addition to the main prompt episode, which is well described by a Band function. The first of these is a tail with a duration of {approx_equal} 400 s, while the second is a high-energy component lasting {approx_equal} 2 s. We summarize the observations and argue for a unified model in which the tail can be understood as the early {gamma}-ray afterglow from forward shock synchrotron emission, while the high-energy component arises from synchrotron self-Compton from the reverse shock. Consistency between the main assumption of thick shell emission and agreement between the observed and computed values for fluxes, break energies, starting times, and spectral indices leads to a requirement that the ejecta must be highly magnetized.

  17. CORRELATED X-RAY AND VERY HIGH ENERGY EMISSION IN THE GAMMA-RAY BINARY LS I +61 303

    SciTech Connect

    Anderhub, H.; Biland, A.; Antonelli, L. A.; Antoranz, P.; Balestra, S.; Barrio, J. A.; Backes, M.; Becker, J. K.; Baixeras, C.; Bastieri, D.; Bock, R. K.; Gonzalez, J. Becerra; Bednarek, W.; Berger, K.; Bernardini, E.; Bigas, O. Blanch; Bonnoli, G.; Bordas, P.; Bosch-Ramon, V.; Tridon, D. Borla E-mail: jogler@mppmu.mpg.d

    2009-11-20

    The discovery of very high energy (VHE) gamma-ray emitting X-ray binaries has triggered an intense effort to better understand the particle acceleration, absorption, and emission mechanisms in compact binary systems, which provide variable conditions along eccentric orbits. Despite this, the nature of some of these systems, and of the accelerated particles producing the VHE emission, is unclear. To answer some of these open questions, we conducted a multiwavelength campaign of the VHE gamma-ray emitting X-ray binary LS I +61 303 including the MAGIC telescope, XMM-Newton, and Swift during 60% of an orbit in 2007 September. We detect a simultaneous outburst at X-ray and VHE bands, with the peak at phase 0.62 and a similar shape at both wavelengths. A linear fit to the simultaneous X-ray/VHE pairs obtained during the outburst yields a correlation coefficient of r = 0.97, while a linear fit to all simultaneous pairs provides r = 0.81. Since a variable absorption of the VHE emission towards the observer is not expected for the data reported here, the correlation found indicates a simultaneity in the emission processes. Assuming that they are dominated by a single particle population, either hadronic or leptonic, the X-ray/VHE flux ratio favors leptonic models. This fact, together with the detected photon indices, suggests that in LS I +61 303 the X-rays are the result of synchrotron radiation of the same electrons that produce VHE emission as a result of inverse Compton scattering of stellar photons.

  18. Correlated X-Ray and Very High Energy Emission in the Gamma-Ray Binary LS I +61 303

    NASA Astrophysics Data System (ADS)

    Anderhub, H.; Antonelli, L. A.; Antoranz, P.; Backes, M.; Baixeras, C.; Balestra, S.; Barrio, J. A.; Bastieri, D.; Becerra González, J.; Becker, J. K.; Bednarek, W.; Berger, K.; Bernardini, E.; Biland, A.; Blanch Bigas, O.; Bock, R. K.; Bonnoli, G.; Bordas, P.; Borla Tridon, D.; Bosch-Ramon, V.; Bose, D.; Braun, I.; Bretz, T.; Britzger, D.; Camara, M.; Carmona, E.; Carosi, A.; Colin, P.; Commichau, S.; Contreras, J. L.; Cortina, J.; Costado, M. T.; Covino, S.; Dazzi, F.; De Angelis, A.; de Cea del Pozo, E.; De los Reyes, R.; De Lotto, B.; De Maria, M.; De Sabata, F.; Delgado Mendez, C.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Elsaesser, D.; Errando, M.; Ferenc, D.; Fernández, E.; Firpo, R.; Fonseca, M. V.; Font, L.; Galante, N.; García López, R. J.; Garczarczyk, M.; Gaug, M.; Godinovic, N.; Goebel, F.; Hadasch, D.; Herrero, A.; Hildebrand, D.; Höhne-Mönch, D.; Hose, J.; Hrupec, D.; Hsu, C. C.; Jogler, T.; Klepser, S.; Kranich, D.; La Barbera, A.; Laille, A.; Leonardo, E.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; Lorenz, E.; Majumdar, P.; Maneva, G.; Mankuzhiyil, N.; Mannheim, K.; Maraschi, L.; Mariotti, M.; Martínez, M.; Mazin, D.; Meucci, M.; Miranda, J. M.; Mirzoyan, R.; Miyamoto, H.; Moldón, J.; Moles, M.; Moralejo, A.; Nieto, D.; Nilsson, K.; Ninkovic, J.; Orito, R.; Oya, I.; Paoletti, R.; Paredes, J. M.; Pasanen, M.; Pascoli, D.; Pauss, F.; Pegna, R. G.; Perez-Torres, M. A.; Persic, M.; Peruzzo, L.; Prada, F.; Prandini, E.; Puchades, N.; Puljak, I.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Rissi, M.; Robert, A.; Rügamer, S.; Saggion, A.; Saito, T. Y.; Salvati, M.; Sánchez-Conde, M.; Satalecka, K.; Scalzotto, V.; Scapin, V.; Schweizer, T.; Shayduk, M.; Shore, S. N.; Sidro, N.; Sierpowska-Bartosik, A.; Sillanpää, A.; Sitarek, J.; Sobczynska, D.; Spanier, F.; Spiro, S.; Stamerra, A.; Stark, L. S.; Suric, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Tescaro, D.; Teshima, M.; Torres, D. F.; Turini, N.; Vankov, H.; Wagner, R. M.; Zabalza, V.; Zandanel, F.; Zanin, R.; Zapatero, J.; MAGIC Collaboration; Falcone, A.; Vetere, L.; Gehrels, N.; Trushkin, S.; Dhawan, V.; Reig, P.

    2009-11-01

    The discovery of very high energy (VHE) gamma-ray emitting X-ray binaries has triggered an intense effort to better understand the particle acceleration, absorption, and emission mechanisms in compact binary systems, which provide variable conditions along eccentric orbits. Despite this, the nature of some of these systems, and of the accelerated particles producing the VHE emission, is unclear. To answer some of these open questions, we conducted a multiwavelength campaign of the VHE gamma-ray emitting X-ray binary LS I +61 303 including the MAGIC telescope, XMM-Newton, and Swift during 60% of an orbit in 2007 September. We detect a simultaneous outburst at X-ray and VHE bands, with the peak at phase 0.62 and a similar shape at both wavelengths. A linear fit to the simultaneous X-ray/VHE pairs obtained during the outburst yields a correlation coefficient of r = 0.97, while a linear fit to all simultaneous pairs provides r = 0.81. Since a variable absorption of the VHE emission towards the observer is not expected for the data reported here, the correlation found indicates a simultaneity in the emission processes. Assuming that they are dominated by a single particle population, either hadronic or leptonic, the X-ray/VHE flux ratio favors leptonic models. This fact, together with the detected photon indices, suggests that in LS I +61 303 the X-rays are the result of synchrotron radiation of the same electrons that produce VHE emission as a result of inverse Compton scattering of stellar photons.

  19. Model-dependent high-energy neutrino flux from gamma-ray bursts.

    PubMed

    Zhang, Bing; Kumar, Pawan

    2013-03-22

    The IceCube Collaboration recently reported a stringent upper limit on the high energy neutrino flux from gamma-ray bursts (GRBs), which provides a meaningful constraint on the standard internal shock model. Recent broadband electromagnetic observations of GRBs also challenge the internal shock paradigm for GRBs, and some competing models for γ-ray prompt emission have been proposed. We describe a general scheme for calculating the GRB neutrino flux, and compare the predicted neutrino flux levels for different models. We point out that the current neutrino flux upper limit starts to constrain the standard internal shock model. The dissipative photosphere models are also challenged if the cosmic ray luminosity from GRBs is at least 10 times larger than the γ-ray luminosity. If the neutrino flux upper limit continues to go down in the next few years, then it would suggest the following possibilities: (i) the photon-to-proton luminosity ratio in GRBs is anomalously high for shocks, which may be achieved in some dissipative photosphere models and magnetic dissipation models; or (ii) the GRB emission site is at a larger radius than the internal shock radius, as expected in some magnetic dissipation models such as the internal collision-induced magnetic reconnection and turbulence model.

  20. Study of gamma ray response of R404A superheated droplet detector using a two-state model.

    PubMed

    Mondal, P K; Chatterjee, B K

    2013-07-01

    The superheated droplet detector (SDD) is known to be gamma ray insensitive below a threshold temperature which made them excellent candidates for neutron detection in the presence of gamma rays. Above the threshold temperature, the gamma ray detection efficiency increases with increase in temperature. In this work the gamma ray threshold temperature has been studied for SDD using R404A as the active liquid and is compared to the theoretical prediction. The temperature variation of gamma ray detection efficiency and interstate transition kinetics has also been studied using a two-state model. The experiments are performed at the ambient pressure of 1 atm and in the temperature range of 17-32 °C using a 662 keV (1)(37)Cs gamma ray source. PMID:23528644

  1. FERMI LARGE AREA TELESCOPE OBSERVATIONS OF THE ACTIVE GALAXY 4C +55.17: STEADY, HARD GAMMA-RAY EMISSION AND ITS IMPLICATIONS

    SciTech Connect

    McConville, W.; McEnery, J. E.; Ostorero, L.; Moderski, R.; Stawarz, L.; Cheung, C. C.; Ajello, M.; Monzani, M. E.; Bouvier, A.; Bregeon, J.; Donato, D.; Finke, J.; Furniss, A.; Williams, D. A.; Orienti, M.; Reyes, L. C.; Rossetti, A. E-mail: stawarz@astro.isas.jaxa.jp

    2011-09-10

    We report Fermi Large Area Telescope (LAT) observations and broadband spectral modeling of the radio-loud active galaxy 4C +55.17 (z = 0.896), formally classified as a flat-spectrum radio quasar. Using 19 months of all-sky survey Fermi-LAT data, we detect a {gamma}-ray continuum extending up to an observed energy of 145 GeV, and furthermore we find no evidence of {gamma}-ray variability in the source over its observed history. We illustrate the implications of these results in two different domains. First, we investigate the origin of the steady {gamma}-ray emission, where we re-examine the common classification of 4C +55.17 as a quasar-hosted blazar and consider instead its possible nature as a young radio source. We analyze and compare constraints on the source physical parameters in both blazar and young radio source scenarios by means of a detailed multiwavelength analysis and theoretical modeling of its broadband spectrum. Second, we show that the {gamma}-ray spectrum may be formally extrapolated into the very high energy (VHE, {>=}100 GeV) range at a flux level detectable by the current generation of ground-based Cherenkov telescopes. This enables us to place constraints on models of extragalactic background light within LAT energies and features the source as a promising candidate for VHE studies of the universe at an unprecedented redshift of z = 0.896.

  2. Photosphere emission in the X-ray flares of swift gamma-ray bursts and implications for the fireball properties

    SciTech Connect

    Peng, Fang-Kun; Liang, En-Wei; Xi, Shao-Qiang; Lu, Rui-Jing; Zhang, Bing; Wang, Xiang-Yu; Hou, Shu-Jin; Zhang, Jin E-mail: xywang@nju.edu.cn

    2014-11-10

    X-ray flares of gamma-ray bursts (GRBs) are usually observed in the soft X-ray range and the spectral coverage is limited. In this paper, we present an analysis of 32 GRB X-ray flares that are simultaneously observed by both Burst Alert Telescope and X-Ray Telescope on board the Swift mission, so that a joint spectral analysis with a wider spectral coverage is possible. Our results show that the joint spectra of 19 flares are fitted with the absorbed single power law or the Band function models. More interestingly, the joint spectra of the other 13 X-ray flares are fitted with the absorbed single power-law model plus a blackbody component. Phenomenally, the observed spectra of these 13 flares are analogous to several GRBs with a thermal component, but only with a much lower temperature of kT = 1 ∼ 3 keV. Assuming that the thermal emission is the photosphere emission of the GRB fireball, we derive the fireball properties of the 13 flares that have redshift measurements, such as the bulk Lorentz factor Γ{sub ph} of the outflow. The derived Γ{sub ph} range from 50 to 150 and a relation of Γ{sub ph} to the thermal emission luminosity is found. It is consistent with the Γ{sub 0} – L {sub iso} relations that are derived for the prompt gamma-ray emission. We discuss the physical implications of these results within the content of jet composition and the radiation mechanism of GRBs and X-ray flares.

  3. Measurement and Modeling of Blocking Contacts for Cadmium Telluride Gamma Ray Detectors

    SciTech Connect

    Beck, Patrick R.

    2010-01-07

    Gamma ray detectors are important in national security applications, medicine, and astronomy. Semiconductor materials with high density and atomic number, such as Cadmium Telluride (CdTe), offer a small device footprint, but their performance is limited by noise at room temperature; however, improved device design can decrease detector noise by reducing leakage current. This thesis characterizes and models two unique Schottky devices: one with an argon ion sputter etch before Schottky contact deposition and one without. Analysis of current versus voltage characteristics shows that thermionic emission alone does not describe these devices. This analysis points to reverse bias generation current or leakage through an inhomogeneous barrier. Modeling the devices in reverse bias with thermionic field emission and a leaky Schottky barrier yields good agreement with measurements. Also numerical modeling with a finite-element physics-based simulator suggests that reverse bias current is a combination of thermionic emission and generation. This thesis proposes further experiments to determine the correct model for reverse bias conduction. Understanding conduction mechanisms in these devices will help develop more reproducible contacts, reduce leakage current, and ultimately improve detector performance.

  4. PROPERTIES OF NEARBY STARBURST GALAXIES BASED ON THEIR DIFFUSE GAMMA-RAY EMISSION

    SciTech Connect

    Paglione, Timothy A. D.; Abrahams, Ryan D.

    2012-08-20

    The physical relationship between the far-infrared and radio fluxes of star-forming galaxies has yet to be definitively determined. The favored interpretation, the 'calorimeter model', requires that supernova generated cosmic-ray (CR) electrons cool rapidly via synchrotron radiation. However, this cooling should steepen their radio spectra beyond what is observed, and so enhanced ionization losses at low energies from high gas densities are also required. Further, evaluating the minimum energy magnetic field strength with the traditional scaling of the synchrotron flux may underestimate the true value in massive starbursts if their magnetic energy density is comparable to the hydrostatic pressure of their disks. Gamma-ray spectra of starburst galaxies, combined with radio data, provide a less ambiguous estimate of these physical properties in starburst nuclei. While the radio flux is most sensitive to the magnetic field, the GeV gamma-ray spectrum normalization depends primarily on gas density. To this end, spectra above 100 MeV were constructed for two nearby starburst galaxies, NGC 253 and M82, using Fermi data. Their nuclear radio and far-infrared spectra from the literature are compared to new models of the steady-state CR distributions expected from starburst galaxies. Models with high magnetic fields, favoring galaxy calorimetry, are overall better fits to the observations. These solutions also imply relatively high densities and CR ionization rates, consistent with molecular cloud studies.

  5. Fermi-LAT Discovery of GeV Gamma-ray Emission from the Young Supernova Remnant Cassiopeia A

    SciTech Connect

    Abdo, A.A.

    2011-08-19

    We report on the first detection of GeV high-energy gamma-ray emission from a young supernova remnant with the Large Area Telescope aboard the Fermi Gamma-ray Space Telescope. These observations reveal a source with no discernible spatial extension detected at a significance level of 12.2{sigma} above 500 MeV at a location that is consistent with the position of the remnant of the supernova explosion that occurred around 1680 in the Cassiopeia constellation - Cassiopeia A. The gamma-ray flux and spectral shape of the source are consistent with a scenario in which the gamma-ray emission originates from relativistic particles accelerated in the shell of this remnant. The total content of cosmic rays (electrons and protons) accelerated in Cas A can be estimated as W{sub CR} {approx_equal} (1-4) x 10{sup 49} erg thanks to the well-known density in the remnant assuming that the observed gamma-ray originates in the SNR shell(s). The magnetic field in the radio-emitting plasma can be robustly constrained as B {ge} 0.1 mG, providing new evidence of the magnetic field amplification at the forward shock and the strong field in the shocked ejecta.

  6. FERMI-LAT DISCOVERY OF GeV GAMMA-RAY EMISSION FROM THE YOUNG SUPERNOVA REMNANT CASSIOPEIA A

    SciTech Connect

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Ballet, J.; Baring, M. G.; Bastieri, D.; Baughman, B. M.; Bonamente, E.; Brigida, M. E-mail: uchiyama@slac.stanford.edu

    2010-02-10

    We report on the first detection of GeV high-energy gamma-ray emission from a young supernova remnant (SNR) with the Large Area Telescope aboard the Fermi Gamma-ray Space Telescope. These observations reveal a source with no discernible spatial extension detected at a significance level of 12.2{sigma} above 500 MeV at a location that is consistent with the position of the remnant of the supernova explosion that occurred around 1680 in the Cassiopeia constellation-Cassiopeia A (Cas A). The gamma-ray flux and spectral shape of the source are consistent with a scenario in which the gamma-ray emission originates from relativistic particles accelerated in the shell of this remnant. The total content of cosmic rays (electrons and protons) accelerated in Cas A can be estimated as W {sub CR} {approx_equal} (1-4) x 10{sup 49} erg thanks to the well-known density in the remnant assuming that the observed gamma ray originates in the SNR shell(s). The magnetic field in the radio-emitting plasma can be robustly constrained as B {>=} 0.1 mG, providing new evidence of the magnetic field amplification at the forward shock and the strong field in the shocked ejecta.0.

  7. Constraining the High-Energy Emission from Gamma-Ray Bursts with Fermi

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Harding, A. K.; Hays, E.; Racusin, J. L.; Sonbas, E.; Stamatikos, M.; Guirec, S.

    2012-01-01

    We examine 288 GRBs detected by the Fermi Gamma-ray Space Telescope's Gamma-ray Burst Monitor (GBM) that fell within the field-of-view of Fermi's Large Area Telescope (LAT) during the first 2.5 years of observations, which showed no evidence for emission above 100 MeV. We report the photon flux upper limits in the 0.1-10 GeV range during the prompt emission phase as well as for fixed 30 s and 100 s integrations starting from the trigger time for each burst. We compare these limits with the fluxes that would be expected from extrapolations of spectral fits presented in the first GBM spectral catalog and infer that roughly half of the GBM-detected bursts either require spectral breaks between the GBM and LAT energy bands or have intrinsically steeper spectra above the peak of the nuF(sub v) spectra (E(sub pk)). In order to distinguish between these two scenarios, we perform joint GBM and LAT spectral fits to the 30 brightest GBM-detected bursts and find that a majority of these bursts are indeed softer above E(sub pk) than would be inferred from fitting the GBM data alone. Approximately 20% of this spectroscopic subsample show statistically significant evidence for a cut-off in their high-energy spectra, which if assumed to be due to gamma gamma attenuation, places limits on the maximum Lorentz factor associated with the relativistic outflow producing this emission. All of these latter bursts have maximum Lorentz factor estimates that are well below the minimum Lorentz factors calculated for LAT-detected GRBs, revealing a wide distribution in the bulk Lorentz factor of GRB outflows and indicating that LAT-detected bursts may represent the high end of this distribution.

  8. Gamma ray line astronomy

    NASA Technical Reports Server (NTRS)

    Ramaty, R.

    1984-01-01

    The interpretations and implications of the astrophysical observations of gamma-ray lines are reviewed. At the Galactic Center e(+)-e(-) pairs from a compact object produce an annihilation line that shows no redshift, indicating an annihilation site far removed from this object. In the jets of SS433, gamma-ray lines are produced by inelastic excitations, probably in dust grains, although line emission from fusion reactions has also been considered. Observations of diffuse galactic line emission reveal recently synthesized radioactive aluminum in the interstellar medium. In gamma-ray bursts, redshifted pair annihilation lines are consistent with a neutron star origin for the bursts. In solar flares, gamma-ray line emission reveals the prompt acceleration of protons and nuclei, in close association with the flare energy release mechanism.

  9. Fermi-LAT Discovery of Extended Gamma-Ray Emission in the Direction of Supernova Remnant W51C

    SciTech Connect

    Abdo, A.A.; Ackermann, M.; Ajello, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M.G.; Bastieri, D.; Baughman, B.M.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R.D.; Bloom, E.D.; Bonamente, E.; Borgland, A.W.; Bouvier, A.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; /more authors..

    2012-03-30

    The discovery of bright gamma-ray emission coincident with supernova remnant (SNR) W51C is reported using the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope. W51C is a middle-aged remnant ({approx}10{sup 4} yr) with intense radio synchrotron emission in its shell and known to be interacting with a molecular cloud. The gamma-ray emission is spatially extended, broadly consistent with the radio and X-ray extent of SNR W51C. The energy spectrum in the 0.2-50 GeV band exhibits steepening toward high energies. The luminosity is greater than 1 x 10{sup 36} erg s{sup -1} given the distance constraint of D > 5.5 kpc, which makes this object one of the most luminous gamma-ray sources in our Galaxy. The observed gamma-rays can be explained reasonably by a combination of efficient acceleration of nuclear cosmic rays at supernova shocks and shock-cloud interactions. The decay of neutral p mesons produced in hadronic collisions provides a plausible explanation for the gamma-ray emission. The product of the average gas density and the total energy content of the accelerated protons amounts to {bar n}{sub H} W{sub p} {approx_equal} 5 x 10{sup 51} (D/6 kpc){sup 2} erg cm{sup -3}. Electron density constraints from the radio and X-ray bands render it difficult to explain the LAT signal as due to inverse Compton scattering. The Fermi LAT source coincident with SNR W51C sheds new light on the origin of Galactic cosmic rays.

  10. Simulation and physical model based gamma-ray burst afterglow analysis

    NASA Astrophysics Data System (ADS)

    van Eerten, H. J.

    2015-09-01

    Advances in our numerical and theoretical understanding of gamma-ray burst afterglow processes allow us to construct models capable of dealing with complex relativistic jet dynamics and non-thermal emission, that can be compared directly to data from instruments such as Swift. Because afterglow blast waves and power law spectra are intrinsically scale-invariant under changes of explosion energy and medium density, templates can be generated from large-scale hydrodynamics simulations. This allows for iterative template-based model fitting using the physical model parameters (quantifying the properties of the burster, emission and observer) directly as fit variables. Here I review how such an approach to afterglow analysis works in practice, paying special attention to the underlying model assumptions, possibilities, caveats and limitations of this type of analysis. Because some model parameters can be degenerate in certain regions of parameter space, or unconstrained if data in a limited number of a bands is available, a Bayesian approach is a natural fit. The main features of the standard afterglow model are reviewed in detail.

  11. Average Emissivity Curve of BATSE Gamma-Ray Bursts with Different Intensities

    NASA Technical Reports Server (NTRS)

    Mitrofanov, Igor G.; Anfimov, Dimitrij S.; Litvak, Maxim L.; Briggs, Michael S.; Paciesas, W. S.; Pendleton, Geoffrey N.; Preece, Robert D.

    1998-01-01

    Six intensity groups with $/sim 150$ BATSE gamma-ray bursts each are compared using average emissivity curves. Time-stretch factors for each of the dimmer groups are estimated with respect to the brightest group. Which serves as the reference taking into account the systematics of counts-produced noise effects and choice statistics. The effect of stretching/intensity anti-correlation is found at the average back slopes of bursts with good statistical significance. A stretch factor $/sim 2$ is found between the 150 dimmest bursts with peak flux $less than 0.45$ ph cm$(exp -2)$ s$(exp -1)$, and the 147 brightest bursts with peak flux $greater than 4.1$ ph cm$(exp -2}$ s$(exp -1)$. On the other hand, only a marginally significant stretching effect $V(sub ec) 1.4$ is seen at the average rise fronts.

  12. Development of a Reference Database for Particle-Induced Gamma-ray Emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Dimitriou, P.; Becker, H.-W.; Bogdanović-Radović, I.; Chiari, M.; Goncharov, A.; Jesus, A. P.; Kakuee, O.; Kiss, A. Z.; Lagoyannis, A.; Räisänen, J.; Strivay, D.; Zucchiatti, A.

    2016-03-01

    Particle-Induced Gamma-ray Emission (PIGE) is a powerful analytical technique that exploits the interactions of rapid charged particles with nuclei located near a sample surface to determine the composition and structure of the surface regions of solids by measurement of characteristic prompt γ rays. The potential for depth profiling of this technique has long been recognized, however, the implementation has been limited owing to insufficient knowledge of the physical data and lack of suitable user-friendly computer codes for the applications. Although a considerable body of published data exists in the nuclear physics literature for nuclear reaction cross sections with γ rays in the exit channel, there is no up-to-date, comprehensive compilation specifically dedicated to IBA applications. A number of PIGE cross-section data had already been uploaded to the Ion Beam Analysis Nuclear Data Library (IBANDL)

  13. Boron analysis for neutron capture therapy using particle-induced gamma-ray emission.

    PubMed

    Nakai, Kei; Yamamoto, Yohei; Okamoto, Emiko; Yamamoto, Tetsuya; Yoshida, Fumiyo; Matsumura, Akira; Yamada, Naoto; Kitamura, Akane; Koka, Masashi; Satoh, Takahiro

    2015-12-01

    The neutron source of BNCT is currently changing from reactor to accelerator, but peripheral facilities such as a dose-planning system and blood boron analysis have still not been established. To evaluate the potential application of particle-induced gamma-ray emission (PIGE) for boron measurement in clinical boron neutron capture therapy, boronophenylalanine dissolved within a cell culture medium was measured using PIGE. PIGE detected 18 μgB/mL f-BPA in the culture medium, and all measurements of any given sample were taken within 20 min. Two hours of f-BPA exposure was required to create a boron distribution image. However, even though boron remained in the cells, the boron on the cell membrane could not be distinguished from the boron in the cytoplasm.

  14. High-resolution observations of gamma-ray line emission from SN 1987A

    NASA Technical Reports Server (NTRS)

    Sandie, W. G.; Nakano, G. H.; Chase, L. F., Jr.; Fishman, G. J.; Meegan, C. A.; Wilson, R. B.

    1988-01-01

    Observations of SN 1987A made with a balloon-borne gamma-ray spectrometer comprising an array of high-purity germanium detectors on October 29-31, 1987 are presented. High resolution data, typically 2.5 keV at 1.33 MeV, were obtained for two transists of the supernova with interspersed background data. A preliminary estimation of line flux is presented. It is found that there is evidence of dynamical broadening of the 847 keV line. It is suggested that this line may be an emission from the first excited state of Fe-56 due to the radioactive decay of Co-56 providing evidence for nucleosynthesis in the supernova.

  15. Search for neutrino emission from gamma-ray flaring blazars with the ANTARES telescope

    NASA Astrophysics Data System (ADS)

    Adrián-Martínez, S.; Al Samarai, I.; Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Astraatmadja, T.; Aubert, J.-J.; Baret, B.; Basa, S.; Bertin, V.; Biagi, S.; Bigongiari, C.; Bogazzi, C.; Bou-Cabo, M.; Bouhou, B.; Bouwhuis, M. C.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Cârloganu, C.; Carminati, G.; Carr, J.; Cecchini, S.; Charif, Z.; Charvis, Ph.; Chiarusi, T.; Circella, M.; Core, L.; Costantini, H.; Coyle, P.; Creusot, A.; Curtil, C.; De Bonis, G.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drouhin, D.; Eberl, T.; Emanuele, U.; Enzenhöfer, A.; Ernenwein, J.-P.; Escoffier, S.; Fehn, K.; Fermani, P.; Ferri, M.; Ferry, S.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J.-L.; Galatà, S.; Gay, P.; Geyer, K.; Giacomelli, G.; Giordano, V.; Gómez-González, J. P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Hartman, J.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Herold, B.; Hößl, J.; Hsu, C. C.; de Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U.; Kavatsyuk, O.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lambard, G.; Larosa, G.; Lattuada, D.; Lefèvre, D.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Louis, F.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martínez-Mora, J. A.; Meli, A.; Montaruli, T.; Morganti, N.; Moscoso, L.; Motz, H.; Neff, M.; Nezri, E.; Palioselitis, D.; Păvălaş, G. E.; Payet, K.; Payre, P.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Reed, C.; Riccobene, G.; Richardt, C.; Richter, R.; Rivière, C.; Robert, A.; Roensch, K.; Rostovtsev, A.; Ruiz-Rivas, J.; Rujoiu, M.; Russo, G. V.; Salesa, F.; Samtleben, D. F. E.; Sapienza, P.; Schöck, F.; Schuller, J.-P.; Schüssler, F.; Seitz, T.; Shanidze, R.; Simeone, F.; Spies, A.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Sánchez-Losa, A.; Taiuti, M.; Tamburini, C.; Toscano, S.; Vallage, B.; Vallée, C.; Van Elewyck, V.; Vannoni, G.; Vecchi, M.; Vernin, P.; Visser, E.; Wagner, S.; Wijnker, G.; Wilms, J.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zúñiga, J.

    2012-08-01

    The ANTARES telescope is well-suited to detect neutrinos produced in astrophysical transient sources as it can observe a full hemisphere of the sky at all times with a high duty cycle. Radio-loud active galactic nuclei with jets pointing almost directly towards the observer, the so-called blazars, are particularly attractive potential neutrino point sources. The all-sky monitor LAT on board the Fermi satellite probes the variability of any given gamma-ray bright blazar in the sky on time scales of hours to months. Assuming hadronic models, a strong correlation between the gamma-ray and the neutrino fluxes is expected. Selecting a narrow time window on the assumed neutrino production period can significantly reduce the background. An unbinned method based on the minimization of a likelihood ratio was applied to a subsample of data collected in 2008 (61 days live time). By searching for neutrinos during the high state periods of the AGN light curve, the sensitivity to these sources was improved by about a factor of two with respect to a standard time-integrated point source search. First results on the search for neutrinos associated with ten bright and variable Fermi sources are presented.

  16. X-Ray Emission from the Unidentified Gamma Ray Transient GRO J1838-0415 and X-Ray Localization of Gamma-Ray Transients near the Galactic Plane

    NASA Technical Reports Server (NTRS)

    Tavani, Marco

    1998-01-01

    The investigation was focused on studying the residual X-ray emission from possible counterparts of enigmatic gamma-ray transients near the Galactic plane. These sources (discovered by our group at Columbia) are highly variable gamma-ray sources with no radio-loud spectrally flat blazar in their approx 1 deg. diameter error box. BSAX Narrow Field Instruments pointed the gamma-ray error box of the prominent non-blazar Energetic Gamma Ray Experiment Telescope (EGRET) source GRO 1838-04 twice on April 17, 1997, and on April 20, 1997. Most of the EGRET error box was imaged and several faint X-ray sources were detected. BSAX Wide Field Camera data were also obtained for a variety of sources near the Galactic plane, including GRO J1838-04.

  17. Gamma-ray astronomy

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Lingenfelter, R. E.

    1982-01-01

    Cosmic gamma rays, the physical processes responsible for their production and the astrophysical sites from which they were seen are reported. The bulk of the observed gamma ray emission is in the photon energy range from about 0.1 MeV to 1 GeV, where observations are carried out above the atmosphere. There are also, however, gamma ray observations at higher energies obtained by detecting the Cerenkov light produced by the high energy photons in the atmosphere. Gamma ray emission was observed from sources as close as the Sun and the Moon and as distant as the quasar 3C273, as well as from various other galactic and extragalactic sites. The radiation processes also range from the well understood, e.g. energetic particle interactions with matter, to the still incompletely researched, such as radiation transfer in optically thick electron positron plasmas in intense neutron star magnetic fields.

  18. A reduced model for the ICF gamma-ray reaction history diagnostic

    SciTech Connect

    Schmitt, Mark J; Wilson, Douglas C; Hoffman, Nelson M; Langenbrunner, Jamie R; Hermann, H W; Kim, Y H; Young, C S; Evans, S C; Cerjan, C J; Stoeffl, Wolfgang; Munro, D H; Dauffy, L S; Miller, K M; Horsfield, C J; Rubery, M S

    2009-01-01

    An analytic model for the gamma reaction history (GRH) diagnostic to be fielded on the National Ignition Facility is described. The application of the GRH diagnostic for the measurement of capsule rho-R during burn using 4.4 MeV carbon gamma rays is demonstrated by simulation.

  19. LYNX: An unattended sensor system for detection of gamma-ray and neutron emissions from special nuclear materials

    SciTech Connect

    Runkle, Robert C.; Myjak, Mitchell J.; Kiff, Scott D.; Sidor, Daniel E.; Morris, Scott J.; Rohrer, John S.; Jarman, Kenneth D.; Pfund, David M.; Todd, Lindsay C.; Bowler, Ryan S.; Mullen, Crystal A.

    2009-01-21

    This manuscript profiles an unattended and fully autonomous detection system sensitive to gamma-ray and neutron emissions from special nuclear material. The LYNX design specifically targets applications that require radiation detection capabilities but possess little or no infrastructure. In these settings, users need the capability to deploy sensors for extended periods of time that analyze whatever signal-starved data can be captured, since little or no control may be exerted over measurement conditions. The fundamental sensing elements of the LYNX system are traditional NaI(Tl) and 3He detectors. The new developments reported here center on two themes: low-power electronics and computationally simple analysis algorithms capable of discriminating gamma-ray signatures indicative of special nuclear materials from those of naturally occurring radioactive material. Incorporating tripwire-detection algorithms based on gamma-ray spectral signatures into a low-power electronics package significantly improves performance in environments where sensors encounter nuisance sources.

  20. INTEGRAL Observations of the Galactic 511 keV Emission and MeV Gamma-ray Astrophysics

    NASA Technical Reports Server (NTRS)

    Watanabe, Ken

    2005-01-01

    Although there are a number of interesting phenomena, such as Nucleosynthesis in stars, in the MeV energy region, the observations have been difficult due to a small signal to noise (background) ratio (less than 1%). While NASA's Compton Gamma-ray Observatory (CGRO) enabled us to explore the Gamma-ray universe, ESA's INTEGRAL mission, launched in 2002, is providing us more detailed information with its superior energy and angular resolution. We will briefly discuss some of the current issues in MeV Gamma-ray Astrophysics. Then, we will focus on the Galactic 511 keV emission with the latest INTEGRAL observations, and talk about challenges we currently have.

  1. Prospects for High Energy Detection of Microquasars with the AGILE and GLAST Gamma-Ray Telescopes

    SciTech Connect

    Santolamazza, Patrizia; Pittori, Carlotta; Verrecchia, Francesco

    2007-08-21

    We estimate the sensitivities of the AGILE and GLAST {gamma}-ray experiments taking into account two cases for the galactic {gamma}-ray diffuse background (at high galactic latitude and toward the galactic center). Then we use sensitivities to estimate microquasar observability with the two experiments, assuming the {gamma}-ray emission above 100 MeV of a recent microquasar model.

  2. Detection of Very High Energy Gamma-Ray Emission from 1ES 2037+521 with the MAGIC telescopes

    NASA Astrophysics Data System (ADS)

    Mirzoyan, Razmik

    2016-10-01

    The MAGIC collaboration reports the detection of very high energy (VHE) gamma-ray emission from 1ES 2037+521 (RA 20h39m23.5s, DEC +52d19m50s, J2000.0). The object was observed with the MAGIC telescopes for 11 hours between 2016/09/26 and 2016/09/30.

  3. ATel 7516: VERITAS Detection of Very High-Energy Gamma-Ray Emission from S3 1227+25

    NASA Astrophysics Data System (ADS)

    Mukherjee, Reshmi

    2015-05-01

    The VERITAS Collaboration reports the detection of very high energy(VHE; E > 100 GeV) gamma-ray emission above 120 GeV from the low-synchrotron-peaked BL Lac object S3 1227+25 (z=0.135, see Nass et al. ...

  4. Chandra And HST Observations of Gamma-Ray Blazars: Comparing Jet Emission at Small And Large Scales

    SciTech Connect

    Tavecchio, Fabrizio; Maraschi, L.; Wolter, A.; Cheung, C.C.; Sambruna, R.M.; Urry, C.M.; /Yale U., Dept. Astron.

    2007-03-20

    We present new Chandra and HST data for four gamma-ray blazars selected on the basis of radio morphology with the aim of revealing X-ray and optical emission from their jets at large scales. All the sources have been detected. Spectral Energy Distributions of the large scale jets are obtained as well as new X-ray spectra for the blazar cores. Modeling for each object the core (sub-pc scale) and large-scale ({approx}> 100 kpc) jet SEDs, we derive the properties of the same jet at the two scales. The comparison of speeds and powers at different scales supports a simple scenario for the dynamics and propagation of high power relativistic jets.

  5. Gamma-ray free-electron lasers: Quantum fluid model

    NASA Astrophysics Data System (ADS)

    Silva, H. M.; Serbeto, A.; Galvão, R. M. O.; Mendonça, J. T.; Monteiro, L. F.

    2014-12-01

    A quantum fluid model is used to describe the interaction of a nondegenerate cold relativistic electron beam with an intense optical wiggler taking into account the beam space-charge potential and photon recoil effect. A nonlinear set of coupled equations is obtained and solved numerically. The numerical results indicate that intense γ-ray free-electron laser emission, with intensities approaching the Schwinger limit, can be driven by the strong nonlinear space-charge wave, for feasible values of the electron beam parameters. However, the achievement of this regime of extreme intensities depends rather critically on the choice of the detuning and of the signal initial phase at the entrance of the interaction region.

  6. The Gamma-Ray Burst Afterglow Modeling Project: Foundational Statistics and Absorption & Extinction Models

    NASA Astrophysics Data System (ADS)

    Trotter, Adam Somers

    The Gamma-Ray Burst (GRB) Afterglow Modeling Project (AMP) will model, in a statistically sound and self-consistent way, every GRB afterglow observed since the first detection in 1997, using all available radio, infrared, optical, ultraviolet and X-ray data. The result will be a catalog of fitted empirical model parameters describing the intrinsic afterglow emission, and extinction due to dust and absorption due to gas along the line of sight to the GRB. This ever-growing catalog of fitted model parameters will allow us to infer the astrophysical properties of GRBs and their environments, and to explore their variety and evolution over the history of the universe. First, I present a new, broadly applicable statistical technique, the TRF statistic, for fitting model distributions to data in two dimensions, where the data have intrinsic uncertainties in both dimensions, and extrinsic scatter in both dimensions that is greater than can be accounted for by the intrinsic uncertainties alone. I demonstrate the properties of the TRF statistic, which is invertible but not scalable, and present an algorithm for obtaining an optimum scale for fits to a given data set. I then apply the TRF statistic to observations of interstellar extinction of stars along various Milky Way and Magellanic Cloud lines of sight, and to observations of Lyalpha forest flux deficits in quasars, to construct a comprehensive empirical model for extinction due to interstellar dust in the source frame and in the Milky Way, and absorption due to gas in the source frame and in the intergalactic medium. Combined with theoretical models of synchrotron emission from GRB jets, the resulting parameterization provides a framework for modeling the observed emission from most GRB afterglows. Furthermore, the extinction and absorption models are broadly applicable, in that they may be used to model observations of any extragalactic point source of radiation. Finally, I describe the results of model fitting to

  7. PROMPT X-RAY AND OPTICAL EXCESS EMISSION DUE TO HADRONIC CASCADES IN GAMMA-RAY BURSTS

    SciTech Connect

    Asano, Katsuaki; Inoue, Susumu; Meszaros, Peter E-mail: inoue@tap.scphys.kyoto-u.ac.j

    2010-12-20

    A fraction of gamma-ray bursts (GRBs) exhibit distinct spectral features in their prompt emission below few tens of keV that exceed simple extrapolations of the low-energy power-law portion of the Band spectral model. This is also true for the prompt optical emission observed in several bursts. Through Monte Carlo simulations, we model such low-energy spectral excess components as hadronic cascade emission initiated by photomeson interactions of ultra-high-energy protons accelerated within GRB outflows. Synchrotron radiation from the cascading, secondary electron-positron pairs can naturally reproduce the observed soft spectra in the X-ray band, and in some cases the optical spectra as well. These components can be directly related to the higher energy radiation at GeV energies due to the hadronic cascades. Depending on the spectral shape, the total energy in protons is required to be comparable to or appreciably larger than the observed total photon energy. In particular, we apply our model to the excess X-ray and GeV emission of GRB 090902B, and the bright optical emission of the 'naked-eye' GRB 080319B. Besides the hard GeV components detected by Fermi, such X-ray or optical spectral excesses are further potential signatures of ultra-high-energy cosmic ray production in GRBs.

  8. The Efficiency of Solar Flares With Gamma-ray Emission of Solar Cosmic Rays Production.

    NASA Astrophysics Data System (ADS)

    Belov, A. V.; Kurt, V. G.; Mavromichalaki, H.

    A statistical analysis of solar flares with gamma-ray emission measured by SMM (W.T. Westrand, at al.,1999, Ap.J, Suppl. Series, 409) and proton events occurrence based on the proton events catalog (A.Belov, at al.2001, Proc. 27th ICRC 2001, Ham- burg, 3465) was performed. We obtained the probabilities of the appearence of pro- ton fluxes near the Earth from the different fluence values of gamma-line emission, bremsstrahlung emissions and soft X-ray emission of the parent flares. This statisti- cal approach allows us to obtain if not precise than at least proper quantitative ratios than relate the flares with obvious evidences for proton production with the escaped from the Sun viciniy. We than look at the available data of soft X-ray flares time behaviour and show the exact timing of proton acceleration and probably shock for- mation comparing the soft X-ray injection function. The shock wave influence on the proton escaping process is shortly discussed.

  9. 130 GeV gamma-ray line and generic dark matter model building constraints from continuum gamma rays, radio, and antiproton data

    NASA Astrophysics Data System (ADS)

    Asano, Masaki; Bringmann, Torsten; Sigl, Günter; Vollmann, Martin

    2013-05-01

    An analysis of the Fermi gamma-ray space telescope data has recently revealed a resolved gamma-ray feature close to the galactic center which is consistent with monochromatic photons at an energy of about 130 GeV. If interpreted in terms of dark matter (DM) annihilating into γγ (γZ, γh), this would correspond to a DM particle mass of roughly 130 GeV (145 GeV, 155 GeV). The rate for these loop-suppressed processes, however, is larger than typically expected for thermally produced DM. Correspondingly, one would generically expect even larger tree-level production rates of standard model fermions or gauge bosons. Here, we quantify this expectation in a rather model-independent way by relating the tree level and loop amplitudes with the help of the optical theorem. As an application, we consider bounds from continuum gamma rays, radio, and antiproton data on the tree-level amplitudes and translate them into constraints on the loop amplitudes. We find that, independently of the DM production mechanism, any DM model aiming at explaining the line signal in terms of charged standard model particles running in the loop is in rather strong tension with at least one of these constraints, with the exception of loops dominated by top quarks. We stress that attempts to explain the 130 GeV feature with internal bremsstrahlung do not suffer from such difficulties.

  10. CONSTRAINTS ON THE SYNCHROTRON SHOCK MODEL FOR THE FERMI GRB 090820A OBSERVED BY GAMMA-RAY BURST MONITOR

    SciTech Connect

    Burgess, J. Michael; Preece, Robert D.; Briggs, Michael S.; Connaughton, Valerie; Guiriec, Sylvain; Paciesas, William S.; Bhat, P. N.; Chaplin, Vandiver; Goldstein, Adam; Baring, Matthew G.; Meegan, Charles A.; Bissaldi, Elisabetta; Diehl, Roland; Greiner, Jochen; Gruber, David; Fishman, Gerald J.; Gibby, Melissa; Giles, Misty E-mail: baring@rice.edu

    2011-11-01

    Discerning the radiative dissipation mechanism for prompt emission in gamma-ray bursts (GRBs) requires detailed spectroscopic modeling that straddles the {nu}F{sub {nu}} peak in the 100 keV-1 MeV range. Historically, empirical fits such as the popular Band function have been employed with considerable success in interpreting the observations. While extrapolations of the Band parameters can provide some physical insight into the emission mechanisms responsible for GRBs, these inferences do not provide a unique way of discerning between models. By fitting physical models directly, this degeneracy can be broken, eliminating the need for empirical functions; our analysis here offers a first step in this direction. One of the oldest, and leading, theoretical ideas for the production of the prompt signal is the synchrotron shock model. Here we explore the applicability of this model to a bright Fermi gamma-ray burst monitor (GBM) burst with a simple temporal structure, GRB 090820A. Our investigation implements, for the first time, thermal and non-thermal synchrotron emissivities in the RMFIT forward-folding spectral analysis software often used in GBM burst studies. We find that these synchrotron emissivities, together with a blackbody shape, provide at least as good a match to the data as the Band GRB spectral fitting function. This success is achieved in both time-integrated and time-resolved spectral fits.

  11. Constraints on the Synchrotron Shock Model for the Fermi GRB 090820A Observed by Gamma-Ray Burst Monitor

    NASA Astrophysics Data System (ADS)

    Burgess, J. Michael; Preece, Robert D.; Baring, Matthew G.; Briggs, Michael S.; Connaughton, Valerie; Guiriec, Sylvain; Paciesas, William S.; Meegan, Charles A.; Bhat, P. N.; Bissaldi, Elisabetta; Chaplin, Vandiver; Diehl, Roland; Fishman, Gerald J.; Fitzpatrick, Gerard; Foley, Suzanne; Gibby, Melissa; Giles, Misty; Goldstein, Adam; Greiner, Jochen; Gruber, David; van der Horst, Alexander J.; von Kienlin, Andreas; Kippen, Marc; Kouveliotou, Chryssa; McBreen, Sheila; Rau, Arne; Tierney, Dave; Wilson-Hodge, Colleen

    2011-11-01

    Discerning the radiative dissipation mechanism for prompt emission in gamma-ray bursts (GRBs) requires detailed spectroscopic modeling that straddles the νF ν peak in the 100 keV-1 MeV range. Historically, empirical fits such as the popular Band function have been employed with considerable success in interpreting the observations. While extrapolations of the Band parameters can provide some physical insight into the emission mechanisms responsible for GRBs, these inferences do not provide a unique way of discerning between models. By fitting physical models directly, this degeneracy can be broken, eliminating the need for empirical functions; our analysis here offers a first step in this direction. One of the oldest, and leading, theoretical ideas for the production of the prompt signal is the synchrotron shock model. Here we explore the applicability of this model to a bright Fermi gamma-ray burst monitor (GBM) burst with a simple temporal structure, GRB 090820A. Our investigation implements, for the first time, thermal and non-thermal synchrotron emissivities in the RMFIT forward-folding spectral analysis software often used in GBM burst studies. We find that these synchrotron emissivities, together with a blackbody shape, provide at least as good a match to the data as the Band GRB spectral fitting function. This success is achieved in both time-integrated and time-resolved spectral fits.

  12. Cascade model of gamma-ray bursts: Power-law and annihilation-line components

    NASA Technical Reports Server (NTRS)

    Harding, A. K.; Sturrock, P. A.; Daugherty, J. K.

    1988-01-01

    If, in a neutron star magnetosphere, an electron is accelerated to an energy of 10 to the 11th or 12th power eV by an electric field parallel to the magnetic field, motion of the electron along the curved field line leads to a cascade of gamma rays and electron-positron pairs. This process is believed to occur in radio pulsars and gamma ray burst sources. Results are presented from numerical simulations of the radiation and photon annihilation pair production processes, using a computer code previously developed for the study of radio pulsars. A range of values of initial energy of a primary electron was considered along with initial injection position, and magnetic dipole moment of the neutron star. The resulting spectra was found to exhibit complex forms that are typically power law over a substantial range of photon energy, and typically include a dip in the spectrum near the electron gyro-frequency at the injection point. The results of a number of models are compared with data for the 5 Mar., 1979 gamma ray burst. A good fit was found to the gamma ray part of the spectrum, including the equivalent width of the annihilation line.

  13. Gamma-ray Burst Reverse Shock Emission in Early Radio Afterglows

    NASA Astrophysics Data System (ADS)

    Resmi, Lekshmi; Zhang, Bing

    2016-07-01

    Reverse shock (RS) emission from gamma-ray bursts is an important tool in investigating the nature of the ejecta from the central engine. If the magnetization of the ejecta is not high enough to suppress the RS, a strong RS emission component, usually peaking in the optical/IR band early on, would provide an important contribution to early afterglow light curve. In the radio band, synchrotron self-absorption may suppress early RS emission and also delay the RS peak time. In this paper, we calculate the self-absorbed RS emission in the radio band under different dynamical conditions. In particular, we stress that the RS radio emission is subject to self-absorption in both RSs and forward shocks (FSs). We calculate the ratio between the RS to FS flux at the RS peak time for different frequencies, which is a measure of the detectability of the RS emission component. We then constrain the range of physical parameters for a detectable RS, in particular the role of magnetization. We notice that unlike optical RS emission which is enhanced by moderate magnetization, moderately magnetized ejecta do not necessarily produce a brighter radio RS due to the self-absorption effect. For typical parameters, the RS emission component would not be detectable below 1 GHz unless the medium density is very low (e.g., n < 10-3 cm-3 for the interstellar medium and A * < 5 × 10-4 for wind). These predictions can be tested using the afterglow observations from current and upcoming radio facilities such as the Karl G. Jansky Very Large Array, the Low-Frequency Array, the Five Hundred Meter Aperture Spherical Telescope, and the Square Kilometer Array.

  14. TGF electron avalanches and gamma-ray emission with LEPTRACK - a new detailed simulation software package

    NASA Astrophysics Data System (ADS)

    Connell, Paul

    2014-05-01

    In designing the MXGS coded mask imager of the ASIM mission on the ISS, to detect and locate gamma-rays from Terrestrial Gamma-ray Flashes, it was necessary to write software to simulate the expansion of gamma-ray photons from 15-20 km altitudes for an initial estimate of TGF spectra and diffuse beam structure likely to be observed at orbital altitudes. From this a new detailed LEPTRACK simulation software package has been developed to track all electron-photon scattering via Bremsstrahlung and ionization, and via any spatial electric-magnetic field geometies which will drive the Relativistic Runaway Electron Avalanche (RREA) process at the heart of TGF origin. LEPTRACK uses the standard physics of keV-MeV photon interactions, Bremsstrahlung scattering, Binary-Electron-Bethe models of electron ionization-scattering, positron Bhabha scattering and annihilation. Unlike simulation packages GEANT4, EGS, etc, the physics of these processes is transferred outside the software and controlled by a standard database of text files of total scattering cross sections, differential energy transfer and deflection angle PDFs - easy to read and plot - but which can also be changed, if the user understands the physics involved and wishes to create their own modified database. It also uses a superparticle spatial mesh system to control particle density and flux fields, electric field evolution, and exponential avalanche growth. Results will be presented of TGF simulations using macro electric field geometries expected in storm clouds and micro field geometries expected around streamer tips - and combinations of both - and will include video displays showing the evolving ionization structure of electron trajectories, the time evolution of photon-electron-positron density and flux fields, local molecular ion densities, the dielectric effect of induced local electric fields - and the important effect of the local earth magnetic field on circular lepton feedback and TGF beam direction

  15. Constraining emission mechanisms in gamma-ray bursts using spectral width

    NASA Astrophysics Data System (ADS)

    Axelsson, Magnus

    2016-07-01

    The emission processes active in the highly relativistic jets of gamma-ray bursts (GRBs) remain unknown. The spectra are usually well-fit by the Band function, an empirically motivated smoothly-broken power law, yet this gives little understanding of the underlying radiation mechanisms. In this talk we propose a new measure to describe spectra: the width of the EF _{E} spectrum, a quantity dependent only on finding a good fit to the data. We apply this to the full sample of peak flux GRB spectra observed by CGRO/BATSE combined with the 2nd Fermi/GBM catalog. The results from the two instruments are fully consistent. We find that 78% of long GRBs and 85% of short GRBs cannot be explained by standard slow cooling synchrotron from a Maxwellian distribution of electrons, and almost half the spectra are more narrow than monoenergetic synchrotron. Conversely, photospheric emission can explain the spectra if mechanisms are invoked to give a spectrum much broader than a blackbody. We further find that the median widths of spectra from long and short GRBs are significantly different, and this is thus a new, independent distinction between the two classes. We will discuss the implications of these results and the constraints they place on possible emission mechanisms.

  16. Fermi Detection of Gamma-Ray Emission from the M2 Soft X-Ray Flare on 2010 June 12

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Allafort, A.; Atwood, W. B.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Bhat, P. N.; Blandford, R. D.; Bonamente, E.; Borgland, A. W.; Bregeon, J.; Briggs, M. S.; Brigida, M.; Bruel, P.; Buehler, R.; Burgess, J. M.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Gruber, D.; Troja, E.; Casandjian, J. M.

    2012-01-01

    The GOES M2-class solar flare, SOL2010-06-12T00:57, was modest in many respects yet exhibited remarkable acceleration of energetic particles. The flare produced an approximately 50 s impulsive burst of hard X- and gamma-ray emission up to at least 400 MeV observed by the Fermi GBM and LAT experiments. The remarkably similar hard X-ray and high-energy gamma-ray time profiles suggest that most of the particles were accelerated to energies greater than or equal to 300 MeV with a delay of approximately 10 s from mildly relativistic electrons, but some reached these energies in as little as approximately 3 s. The gamma-ray line fluence from this flare was about ten times higher than that typically observed from this modest GOES class of X-ray flare. There is no evidence for time-extended greater than 100 MeV emission as has been found for other flares with high-energy gamma rays.

  17. DISCOVERY OF VERY HIGH ENERGY {gamma}-RAY EMISSION FROM THE SNR G54.1+0.3

    SciTech Connect

    Acciari, V. A.; Benbow, W.; Aliu, E.; Boltuch, D.; Arlen, T.; Aune, T.; Bautista, M.; Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R.; Bradbury, S. M.; Butt, Y.; Byrum, K.; Cesarini, A.; Ciupik, L.; Cui, W.; Finley, J. P.; Duke, C.; Finnegan, G. E-mail: wakely@uchicago.ed

    2010-08-10

    We report the discovery of very high energy (VHE) gamma-ray emission from the direction of the SNR G54.1+0.3 using the VERITAS ground-based gamma-ray observatory. The TeV signal has an overall significance of 6.8{sigma} and appears pointlike given the resolution of the instrument. The integral flux above 1 TeV is 2.5% of the Crab Nebula flux and significant emission is measured between 250 GeV and 4 TeV, well described by a power-law energy spectrum dN/dE {approx} E {sup -{Gamma}} with a photon index {Gamma} = 2.39 {+-} 0.23{sub stat} {+-} 0.30{sub sys}. We find no evidence of time variability among observations spanning almost two years. Based on the location, the morphology, the measured spectrum, the lack of variability, and a comparison with similar systems previously detected in the TeV band, the most likely counterpart of this new VHE gamma-ray source is the pulsar wind nebula (PWN) in the SNR G54.1+0.3. The measured X-ray to VHE gamma-ray luminosity ratio is the lowest among all the nebulae supposedly driven by young rotation-powered pulsars, which could indicate a particle-dominated PWN.

  18. Measurements of galactic plane gamma ray emission in the energy range from 10 - 80 MeV

    NASA Technical Reports Server (NTRS)

    Bertsch, D. L.; Kniffen, D. A.

    1982-01-01

    A spark chamber gamma ray telescope was developed and flown to observe diffuse gamma ray emission from the central region of the galaxy. The extension of observations down to 10 MeV provides important new data indicating that the galactic diffuse gamma ray spectrum continues as a power law down to about 10 MeV, an observation in good agreement with recent theoretical predictions. Data from other experiments in the range from 100 keV to 10 MeV show a significant departure from the extension of the power-law fit to the medium energy observations reported here, possibly indicating that a different mechanism may be responsible for the emissions below and above a few MeV. The intensity of the spectrum above 10 MeV implies a galactic electron spectrum which is also very intense down to about 10 MeV. Electrons in this energy range cannot be observed in the solar cavity because of solar modulation effects. The galactic gamma ray data are compared with recent theoretical predictions.

  19. Measurements of galactic plane gamma-ray emission in the energy range 10-80 MeV

    NASA Technical Reports Server (NTRS)

    Bertsch, D. L.; Kniffen, D. A.

    1983-01-01

    A spark chamber gamma ray telescope was developed and flown to observe diffuse gamma ray emission from the central region of the galaxy. The extension of observations down to 10 MeV provides important new data indicating that the galactic diffuse gamma ray spectrum continues as a power law down to about 10 MeV, an observation in good agreement with recent theoretical predictions. Data from other experiments in the range from 100 keV to 10 MeV show a significant departure from the extension of the power-law fit to the medium energy observations reported here, possibly indicating that a different mechanism may be responsible for the emissions below and above a few MeV. The intensity of the spectrum above 10 MeV implies a galactic electron spectrum which is also very intense down to about 10 MeV. Electrons in this energy range cannot be observed in the solar cavity because of solar modulation effects. The galactic gamma ray data are compared with recent theoretical predictions. Previously announced in STAR as N83-17444

  20. Extension of an exponential light-curve gamma-ray burst pulse model across energy bands

    NASA Astrophysics Data System (ADS)

    Nemiroff, Robert J.

    2012-01-01

    A simple mathematical model of gamma-ray burst(GRB) pulses in time, suggested by Norris et al., is extended across energy. For a class of isolated pulses, two fit parameters appear to be effectively independent of energy. Specifically, statistical fits indicate that pulse amplitude A and pulse width τ are energy dependent, while pulse start time and pulse shape are effectively energy independent. These results bolster the pulse start and pulse scale conjectures of Nemiroff and add a new pulse shape conjecture which states that a class of pulses all have the same shape. The simple resulting pulse counts model is P(t, E) =A(E) exp[ -t/τ(E) -τ(E)/t], where t is the time since the start of the pulse. This pulse model is found to be an acceptable statistical fit to many of the fluent separable Burst and Transient Source Experiment (BATSE) pulses listed by Norris et al. Even without theoretical interpretation, this cross-energy extension may be immediately useful for fitting prompt emission from GRB pulses across energy channels with a minimal number of free parameters.

  1. Magnetically insulated diode for generating pulsed neutron and gamma ray emissions

    DOEpatents

    Kuswa, Glenn W.; Leeper, Ramon J.

    1987-01-01

    A magnetically insulated diode employs a permanent magnet to generate a magnetic insulating field between a spaced anode and cathode in a vacuum. An ion source is provided in the vicinity of the anode and used to liberate ions for acceleration toward the cathode. The ions are virtually unaffected by the magnetic field and are accelerated into a target for generating an nuclear reaction. The ions and target material may be selected to generate either neutrons or gamma ray emissions from the reaction of the accelerated ions and the target. In another aspect of the invention, a field coil is employed as part of one of the electrodes. A plasma prefill is provided between the electrodes prior to the application of a pulsating potential to one of the electrodes. The field coil multiplies the applied voltage for high diode voltage applications. The diode may be used to generate a .sup.7 Li(p,.gamma.).sup.8 Be reaction to produce 16.5 MeV gamma emission.

  2. Magnetically insulated diode for generating pulsed neutron and gamma ray emissions

    DOEpatents

    Kuswa, G.W.; Leeper, R.J.

    1984-08-16

    A magnetically insulated diode employs a permanent magnet to generate a magnetic insulating field between a spaced anode and cathode in a vacuum. An ion source is provided in the vicinity of the anode and used to liberate ions for acceleration toward the cathode. The ions are virtually unaffected by the magnetic field and are accelerated into a target for generating a nuclear reaction. The ions and target material may be selected to generate either neutrons or gamma ray emissions from the reaction of the accelerated ions and the target. In another aspect of the invention, a field coil is employed as part of one of the electrodes. A plasma prefill is provided between the electrodes prior to the application of a pulsating potential to one of the electrodes. The field coil multiplies the applied voltage for high diode voltage applications. The diode may be used to generate a /sup 7/Li(p,..gamma..)/sup 8/Be reaction to produce 16.5 MeV gamma emission.

  3. The Luminosity Evolution Over the Equitemporal Surfaces in the Prompt Emission of Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Bianco, Carlo Luciano; Massucci, Francesco Alessandro; Ruffini, Remo

    Due to the ultrarelativistic velocity of the expanding "fireshell" (Lorentz gamma factor γ ~ 102-103), photons emitted at the same time from the fireshell surface do not reach the observer at the same arrival time. In interpreting Gamma-Ray Bursts (GRBs) it is crucial to determine the properties of the EQuiTemporal Surfaces (EQTSs): the locus of points which are source of radiation reaching the observer at the same arrival time. In the current literature this analysis is performed only in the latest phases of the afterglow. Here we study the distribution of the GRB bolometric luminosity over the EQTSs, with special attention to the prompt emission phase. We analyze as well the temporal evolution of the EQTS apparent size in the sky. We use the analytic solutions of the equations of motion of the fireshell and the corresponding analytic expressions of the EQTSs which have been presented in recent works and which are valid for both the fully radiative and the adiabatic dynamics. We find the novel result that at the beginning of the prompt emission the most luminous regions of the EQTSs are the ones closest to the line of sight. On the contrary, in the late prompt emission and in the early afterglow phases the most luminous EQTS regions are the ones closest to the boundary of the visible region. This transition in the emitting region may lead to specific observational signatures, i.e. an anomalous spectral evolution, in the rising part or at the peak of the prompt emission. We find as well an expression for the apparent radius of the EQTS in the sky, valid in both the fully radiative and the adiabatic regimes. Such considerations are essential for the theoretical interpretation of the prompt emission phase of GRBs.

  4. Gamma-ray emission from globular clusters. Shock high energy emission from the Be-Star/Pulsar System PSR 1259-63. Echoes in x-ray novae

    NASA Technical Reports Server (NTRS)

    Kaaret, Philip

    1995-01-01

    This grant covers work on the Compton phase 3 investigation, 'Shock High Energy Emission from the Be- Star/Pulsar System PSR 1259-63' and cycle 4 investigations 'Diffuse Gamma-Ray Emission at High Latitudes' and 'Echoes in X-Ray Novae'. Work under the investigation 'Diffuse Gamma-Ray Emission at High Latitudes' has lead to the publication of a paper (attached), describing gamma-ray emissivity variations in the northern galactic hemisphere. Using archival EGRET data, we have found a large irregular region of enhanced gamma-ray emissivity at energies greater 100 MeV. This is the first observation of local structure in the gamma-ray emissivity. Work under the investigation 'Echoes in X-Ray Novae' is proceeding with analysis of data from OSSE from the transient source GRO J1655-40. The outburst of this source last fall triggered this Target of Opportunity investigation. Preliminary spectral analysis shows emission out to 600 keV and a pure power low spectrum with no evidence of an exponential cutoff. Work is complete on the analysis of BATSE data from the Be-Star/Pulsar Sustem PSR 1259-63.

  5. Gravitational-wave Observations May Constrain Gamma-Ray Burst Models: The Case of GW150914-GBM

    NASA Astrophysics Data System (ADS)

    Veres, P.; Preece, R. D.; Goldstein, A.; Mészáros, P.; Burns, E.; Connaughton, V.

    2016-08-01

    The possible short gamma-ray burst (GRB) observed by Fermi/GBM in coincidence with the first gravitational-wave (GW) detection offers new ways to test GRB prompt emission models. GW observations provide previously inaccessible physical parameters for the black hole central engine such as its horizon radius and rotation parameter. Using a minimum jet launching radius from the Advanced LIGO measurement of GW 150914, we calculate photospheric and internal shock models and find that they are marginally inconsistent with the GBM data, but cannot be definitely ruled out. Dissipative photosphere models, however, have no problem explaining the observations. Based on the peak energy and the observed flux, we find that the external shock model gives a natural explanation, suggesting a low interstellar density (˜10-3 cm-3) and a high Lorentz factor (˜2000). We only speculate on the exact nature of the system producing the gamma-rays, and study the parameter space of a generic Blandford-Znajek model. If future joint observations confirm the GW-short-GRB association we can provide similar but more detailed tests for prompt emission models.

  6. Gravitational-wave Observations May Constrain Gamma-Ray Burst Models: The Case of GW150914–GBM

    NASA Astrophysics Data System (ADS)

    Veres, P.; Preece, R. D.; Goldstein, A.; Mészáros, P.; Burns, E.; Connaughton, V.

    2016-08-01

    The possible short gamma-ray burst (GRB) observed by Fermi/GBM in coincidence with the first gravitational-wave (GW) detection offers new ways to test GRB prompt emission models. GW observations provide previously inaccessible physical parameters for the black hole central engine such as its horizon radius and rotation parameter. Using a minimum jet launching radius from the Advanced LIGO measurement of GW 150914, we calculate photospheric and internal shock models and find that they are marginally inconsistent with the GBM data, but cannot be definitely ruled out. Dissipative photosphere models, however, have no problem explaining the observations. Based on the peak energy and the observed flux, we find that the external shock model gives a natural explanation, suggesting a low interstellar density (˜10‑3 cm‑3) and a high Lorentz factor (˜2000). We only speculate on the exact nature of the system producing the gamma-rays, and study the parameter space of a generic Blandford–Znajek model. If future joint observations confirm the GW–short-GRB association we can provide similar but more detailed tests for prompt emission models.

  7. Gamma-ray constraints on supernova nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Leising, Mark D.

    1994-01-01

    Gamma-ray spectroscopy holds great promise for probing nucleosynthesis in individual supernova explosions via short-lived radioactivity, and for measuring current global Galactic supernova nucleosynthesis with longer-lived radioactivity. It was somewhat surprising that the former case was realized first for a Type II supernova, when both Co-56 and Co-57 were detected in SN 1987A. These provide unprecedented constraints on models of Type II explosions and nucleosynthesis. Live Al-26 in the Galaxy might come from Type II supernovae, and if it is eventually shown to be so, can constrain massive star evolution, supernova nucleosynthesis, and the Galactic Type II supernova rate. Type Ia supernovae, thought to be thermonuclear explosions, have not yet been detected in gamma-rays. This is somewhat surprising given current models and recent Co-56 detection attempts. Ultimately, gamma-ray measurements can confirm their thermonuclear nature, probe the nuclear burning conditions, and help evaluate their contributions to Galactic nucleosynthesis. Type Ib/c supernovae are poorly understood. Whether they are core collapse or thermonuclear events might be ultimately settled by gamma-ray observations. Depending on details of the nuclear processing, any of these supernova types might contribute to a detectable diffuse glow of Fe-60 gamma-ray lines. Previous attempts at detection have come very close to expected emission levels. Remnants of any type of age less that a few centuries might be detectable as individual spots of Ti-44 gamma-ray line emission. It is in fact quite surprising that previous surveys have not discovered such spots, and the constraints on the combination of nucleosynthesis yields and supernova rates are very interesting. All of these interesting limits and possibilities mean that the next mission, International Gamma-Ray Astrophysics Laboratory (INTEGRAL), if it has sufficient sensitivity, is very likely to lead to the realization of much of the great potential

  8. Discovery of TeV Gamma-Ray Emission toward Supernova Remnant SNR G78.2+2.1

    NASA Astrophysics Data System (ADS)

    Aliu, E.; Archambault, S.; Arlen, T.; Aune, T.; Beilicke, M.; Benbow, W.; Bird, R.; Bouvier, A.; Bradbury, S. M.; Buckley, J. H.; Bugaev, V.; Byrum, K.; Cannon, A.; Cesarini, A.; Ciupik, L.; Collins-Hughes, E.; Connolly, M. P.; Cui, W.; Dickherber, R.; Duke, C.; Dumm, J.; Dwarkadas, V. V.; Errando, M.; Falcone, A.; Federici, S.; Feng, Q.; Finley, J. P.; Finnegan, G.; Fortson, L.; Furniss, A.; Galante, N.; Gall, D.; Gillanders, G. H.; Godambe, S.; Gotthelf, E. V.; Griffin, S.; Grube, J.; Gyuk, G.; Hanna, D.; Holder, J.; Huan, H.; Hughes, G.; Humensky, T. B.; Kaaret, P.; Karlsson, N.; Kertzman, M.; Khassen, Y.; Kieda, D.; Krawczynski, H.; Krennrich, F.; Lang, M. J.; Lee, K.; Madhavan, A. S.; Maier, G.; Majumdar, P.; McArthur, S.; McCann, A.; Millis, J.; Moriarty, P.; Mukherjee, R.; Nelson, T.; O'Faoláin de Bhróithe, A.; Ong, R. A.; Orr, M.; Otte, A. N.; Pandel, D.; Park, N.; Perkins, J. S.; Pohl, M.; Popkow, A.; Prokoph, H.; Quinn, J.; Ragan, K.; Reyes, L. C.; Reynolds, P. T.; Roache, E.; Rose, H. J.; Ruppel, J.; Saxon, D. B.; Schroedter, M.; Sembroski, G. H.; Şentürk, G. D.; Skole, C.; Telezhinsky, I.; Tešić, G.; Theiling, M.; Thibadeau, S.; Tsurusaki, K.; Tyler, J.; Varlotta, A.; Vassiliev, V. V.; Vincent, S.; Wakely, S. P.; Ward, J. E.; Weekes, T. C.; Weinstein, A.; Weisgarber, T.; Welsing, R.; Williams, D. A.; Zitzer, B.

    2013-06-01

    We report the discovery of an unidentified, extended source of very-high-energy gamma-ray emission, VER J2019+407, within the radio shell of the supernova remnant SNR G78.2+2.1, using 21.4 hr of data taken by the VERITAS gamma-ray observatory in 2009. These data confirm the preliminary indications of gamma-ray emission previously seen in a two-year (2007-2009) blind survey of the Cygnus region by VERITAS. VER J2019+407, which is detected at a post-trials significance of 7.5 standard deviations in the 2009 data, is localized to the northwestern rim of the remnant in a region of enhanced radio and X-ray emission. It has an intrinsic extent of 0{.\\!\\!^\\circ }23 +/- {0{.\\!\\!^\\circ }03_stat} {}^{+0{.\\!\\!^\\circ }04}_{-0{.\\!\\!^\\circ }02sys} and its spectrum is well-characterized by a differential power law (dN/dE = N 0 × (E/TeV)-Γ) with a photon index of Γ = 2.37 ± 0.14stat ± 0.20sys and a flux normalization of N 0 = 1.5 ± 0.2stat ± 0.4sys × 10-12 photon TeV-1 cm-2 s-1. This yields an integral flux of 5.2 ± 0.8stat ± 1.4sys × 10-12 photon cm-2 s-1 above 320 GeV, corresponding to 3.7% of the Crab Nebula flux. We consider the relationship of the TeV gamma-ray emission with the GeV gamma-ray emission seen from SNR G78.2+2.1 as well as that seen from a nearby cocoon of freshly accelerated cosmic rays. Multiple scenarios are considered as possible origins for the TeV gamma-ray emission, including hadronic particle acceleration at the SNR shock.

  9. DISCOVERY OF TeV GAMMA-RAY EMISSION TOWARD SUPERNOVA REMNANT SNR G78.2+2.1

    SciTech Connect

    Aliu, E.; Archambault, S.; Arlen, T.; Aune, T.; Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R.; Benbow, W.; Bird, R.; Cannon, A.; Collins-Hughes, E.; Bouvier, A.; Bradbury, S. M.; Byrum, K.; Cesarini, A.; Connolly, M. P.; Ciupik, L.; Cui, W.; Duke, C.; and others

    2013-06-20

    We report the discovery of an unidentified, extended source of very-high-energy gamma-ray emission, VER J2019+407, within the radio shell of the supernova remnant SNR G78.2+2.1, using 21.4 hr of data taken by the VERITAS gamma-ray observatory in 2009. These data confirm the preliminary indications of gamma-ray emission previously seen in a two-year (2007-2009) blind survey of the Cygnus region by VERITAS. VER J2019+407, which is detected at a post-trials significance of 7.5 standard deviations in the 2009 data, is localized to the northwestern rim of the remnant in a region of enhanced radio and X-ray emission. It has an intrinsic extent of 0.23 Degree-Sign .23 {+-} 0. Degree-Sign 03{sub stat-0 Degree-Sign .02sys}{sup +0 Degree-Sign .04} and its spectrum is well-characterized by a differential power law (dN/dE = N{sub 0} Multiplication-Sign (E/TeV){sup -{Gamma}}) with a photon index of {Gamma} = 2.37 {+-} 0.14{sub stat} {+-} 0.20{sub sys} and a flux normalization of N{sub 0} = 1.5 {+-} 0.2{sub stat} {+-} 0.4{sub sys} Multiplication-Sign 10{sup -12} photon TeV{sup -1} cm{sup -2} s{sup -1}. This yields an integral flux of 5.2 {+-} 0.8{sub stat} {+-} 1.4{sub sys} Multiplication-Sign 10{sup -12} photon cm{sup -2} s{sup -1} above 320 GeV, corresponding to 3.7% of the Crab Nebula flux. We consider the relationship of the TeV gamma-ray emission with the GeV gamma-ray emission seen from SNR G78.2+2.1 as well as that seen from a nearby cocoon of freshly accelerated cosmic rays. Multiple scenarios are considered as possible origins for the TeV gamma-ray emission, including hadronic particle acceleration at the SNR shock.

  10. On the origin of sub-TeV gamma-ray pulsed emission from rotating neutron stars

    NASA Astrophysics Data System (ADS)

    Bednarek, W.

    2012-08-01

    Intriguing sub-TeV tails in the pulsed γ-ray emission from the Crab pulsar have recently been discovered by the Major Atmospheric Gamma-Ray Imaging Cherenkov (MAGIC) telescope and Very Energetic Radiation Imaging Telescope Array System (VERITAS) collaborations. These were not clearly predicted by any pulsar model. At present, it is argued that this emission is produced by electrons in the inverse Compton process that occur either in the outer gap of the pulsar magnetosphere or in the pulsar wind region at some distance from the light cylinder. We analyse another scenario, which is consistent with the basic features of this enigmatic emission. It is proposed that this emission is caused by electrons accelerated very close to the light cylinder where the e± plasma cannot saturate the induced huge electric fields. Electrons reach energies sufficient for the production of hard γ-ray spectra in the curvature radiation process. Because of different curvature radii of the leading and trailing magnetic field lines, the γ-ray spectra from separate pulses should extend to different maximum energies. The scenario can also explain the lower-level γ-ray emission from the interpulse region (between P1 and P2) observed in the light curve of the Crab pulsar. Moreover, we argue that pulsars with parameters close to the Vela pulsar should also show pulsed emission, with the cut-off clearly at lower energies (˜50 GeV) than that observed for the Crab pulsar. However, such tail emission is not expected in pulsars with parameters close to the Geminga pulsar. The model also predicts the tail γ-ray emission extending up to ˜50 GeV from some millisecond pulsars with extreme parameters, such as PSR J0218+4243 and PSR J1823-3021A.

  11. Impulsive and long duration high-energy gamma-ray emission from the very bright 2012 March 7 solar flares

    SciTech Connect

    Ajello, M.; Albert, A.; Allafort, A.; Caliandro, G. A.; Cameron, R. A.; Charles, E.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Buson, S.; Bellazzini, R.; Bregeon, J.; Bissaldi, E.; Bonamente, E.; Cecchi, C.; Brandt, T. J.; Brigida, M.; Bruel, P.; Caraveo, P. A. E-mail: vahep@stanford.edu; and others

    2014-07-01

    The Fermi Large Area Telescope (LAT) detected gamma-rays up to 4 GeV from two bright X-class solar flares on 2012 March 7, showing both an impulsive and temporally extended emission phases. The gamma-rays appear to originate from the same active region as the X-rays associated with these flares. The >100 MeV gamma-ray flux decreases monotonically during the first hour (impulsive phase) followed by a slower decrease for the next 20 hr. A power law with a high-energy exponential cutoff can adequately describe the photon spectrum. Assuming that the gamma rays result from the decay of pions produced by accelerated protons and ions with a power-law spectrum, we find that the index of that spectrum is ∼3, with minor variations during the impulsive phase. During the extended phase the photon spectrum softens monotonically, requiring the proton index varying from ∼4 to >5. The >30 MeV proton flux observed by the GOES satellites also shows a flux decrease and spectral softening, but with a harder spectrum (index ∼2-3). Based on these observations, we explore the relative merits of prompt or continuous acceleration scenarios, hadronic or leptonic emission processes, and acceleration at the solar corona or by the fast coronal mass ejections. We conclude that the most likely scenario is continuous acceleration of protons in the solar corona that penetrate the lower solar atmosphere and produce pions that decay into gamma rays. However, acceleration in the downstream of the shock cannot be definitely ruled out.

  12. Prospects for exploring the local galaxies through the study of their high-energy gamma-ray emission

    NASA Technical Reports Server (NTRS)

    Ozel, Mehmet E.; Fichtel, Carl E.

    1988-01-01

    In the near future, high-energy (E greater than 20 MeV) gamma-ray astronomy offers the promise of a new means of examining the closest galaxies. Three local galaxies, the SMCs, LMCs, and M31, should be visible to the high-energy gamma-ray telescope on the Gamma Ray Observatory and the first two should be seen by GAMMA-1. It is expected that the intensity and the structure of both of the Magellanic Clouds can be examined in sufficient detail to study the cosmic-ray density and its variation, and, thereby, to determine the relevant scale of coupling for the cosmic rays and diffuse matter. With the assumptions of adequate sources and reasonable magnetic field strengths, both of which should likely be satisfied, very specific predictions of the gamma-ray emission can be made separating the three current cosmic-ray containment concepts, namely that it is on the scale of one to a few kiloparsec mass clustering, the whole galaxy, or some much larger scale. Further, because of the markedly different distributions of molecular and atomic hydrogen in the galaxies and the differences between the galaxies, an independent measure of the normalization of the diffuse molecular hydrogen density is possible.

  13. Detecting the Attenuation of Blazar Gamma-ray Emission by Extragalactic Background Light with GLAST

    NASA Technical Reports Server (NTRS)

    Chen, Andrew; Ritz, Steven

    1999-01-01

    Gamma rays with energy above 10 GeV interact with optical-UV photons resulting in pair production. Therefore, a large sample of high redshift sources of these gamma rays can be used to probe the extragalactic background starlight (EBL) by examining the redshift dependence of the attenuation of the flux above 10 GeV. GLAST, the next generation high-energy gamma-ray telescope, will for the first time have the unique capability to detect thousands of gamma-ray blazars up to redshifts of at least z = 4, with enough angular resolution to allow identification of a large fraction of their optical counterparts. By combining recent determinations of the gamma-ray blazar luminosity function, recent calculations of the high energy gamma-ray opacity due to EBL absorption, and the expected GLAST instrument performance to produce simulated samples of blazars that GLAST would detect, including their redshifts and fluxes, we demonstrate that these blazars have the potential to be a highly effective probe of the EBL.

  14. Gamma-ray constraints on maximum cosmogenic neutrino fluxes and UHECR source evolution models

    SciTech Connect

    Gelmini, Graciela B.; Kalashev, Oleg; Semikoz, Dmitri V. E-mail: kalashev@ms2.inr.ac.ru

    2012-01-01

    The dip model assumes that the ultra-high energy cosmic rays (UHECRs) above 10{sup 18} eV consist exclusively of protons and is consistent with the spectrum and composition measure by HiRes. Here we present the range of cosmogenic neutrino fluxes in the dip-model which are compatible with a recent determination of the extragalactic very high energy (VHE) gamma-ray diffuse background derived from 2.5 years of Fermi/LAT data. We show that the largest fluxes predicted in the dip model would be detectable by IceCube in about 10 years of observation and are within the reach of a few years of observation with the ARA project. In the incomplete UHECR model in which protons are assumed to dominate only above 10{sup 19} eV, the cosmogenic neutrino fluxes could be a factor of 2 or 3 larger. Any fraction of heavier nuclei in the UHECR at these energies would reduce the maximum cosmogenic neutrino fluxes. We also consider here special evolution models in which the UHECR sources are assumed to have the same evolution of either the star formation rate (SFR), or the gamma-ray burst (GRB) rate, or the active galactic nuclei (AGN) rate in the Universe and found that the last two are disfavored (and in the dip model rejected) by the new VHE gamma-ray background.

  15. Prospects for GeV-TeV detection of short gamma-ray bursts with extended emission

    SciTech Connect

    Veres, P.; Mészáros, P.

    2014-06-01

    We discuss the GeV to TeV photon emission of gamma-ray bursts (GRBs) within the refreshed shock and the continuous injection scenarios, motivated by the observation of extended emission in a substantial fraction of short GRBs. In the first model we assume that the central engine promptly emits material with a range of Lorentz factors. When the fastest shell starts to decelerate, it drives a forward shock into the ambient medium and a reverse shock into the ejecta. These shocks are reenergized by the slower and later arriving material. In the second model we assume that there is a continued ejection of material over an extended time, and the continuously arriving new material keeps reenergizing the shocks formed by the preceding shells of ejecta. We calculate the synchrotron and synchrotron self-Compton radiation components for the forward and reverse shocks and find that prospective and current GeV-TeV range instruments such as CTA, HAWC, VERITAS, MAGIC, and HESS have a good chance of detecting afterglows of short bursts with extended emission, assuming a reasonable response time.

  16. EMISSION PATTERNS AND LIGHT CURVES OF GAMMA RAYS IN THE PULSAR MAGNETOSPHERE WITH A CURRENT-INDUCED MAGNETIC FIELD

    SciTech Connect

    Li, X.; Zhang, L.

    2011-12-20

    We study the emission patterns and light curves of gamma rays in the pulsar magnetosphere with a current-induced magnetic field perturbation. Based on the solution of a static dipole with the magnetic field induced by some currents (perturbation field), we derive the solutions of a static as well as a retarded dipole with the perturbation field in the Cartesian coordinates. The static (retarded) magnetic field can be expressed as the sum of the pure static (retarded) dipolar magnetic field and the static (retarded) perturbation field. We use the solution of the retarded magnetic field to investigate the influence of the perturbation field on the emission patterns and light curves, and apply the perturbed solutions to calculate the gamma-ray light curves for the case of the Vela pulsar. We find that the perturbation field induced by the currents will change the emission patterns and then the light curves of gamma rays, especially for a larger perturbation field. Our results indicate that the perturbation field created by the outward-flowing (inward-flowing) electrons (positrons) can decrease the rotation effect on the magnetosphere and makes emission pattern appear to be smoother relative to that of the pure retarded dipole, but the perturbation field created by the outward-flowing (inward-flowing) positrons (electrons) can make the emission pattern less smooth.

  17. SUPERORBITAL MODULATION OF X-RAY EMISSION FROM GAMMA-RAY BINARY LSI +61 303

    SciTech Connect

    Chernyakova, M.; Neronov, A.; Molkov, S.; Lutovinov, A.; Pooley, G.

    2012-03-10

    We report the discovery of a systematic constant time lag between the X-ray and radio flares of the gamma-ray binary LSI +61 303, persistent over a long, multi-year timescale. Using the data from the monitoring of the system by RXTE we show that the orbital phase of X-ray flares from the source varies from {phi}{sub X} {approx_equal} 0.35 to {phi}{sub X} {approx_equal} 0.75 on the superorbital 4.6 yr timescale. Simultaneous radio observations show that periodic radio flares always lag the X-ray flare by {Delta}{phi}{sub X-R} {approx_equal} 0.2. We propose that the constant phase lag corresponds to the time of flight of the high-energy particle-filled plasma blobs from inside the binary to the radio emission region at the distance of {approx}10 times the binary separation distance. We put forward a hypothesis that the X-ray bursts correspond to the moments of formation of plasma blobs inside the binary system.

  18. Average Emissivity Curve of Batse Gamma-Ray Bursts with Different Intensities

    NASA Technical Reports Server (NTRS)

    Mitrofanov, Igor G.; Litvak, Maxim L.; Briggs, Michael S.; Paciesas, William S.; Pendleton, Geoffrey N.; Preece, Robert D.; Meegan, Charles A.

    1999-01-01

    Six intensity groups with approximately 150 BATSE gamma-ray bursts each are compared using average emissivity curves. Time stretch factors for each of the dimmer groups are estimated with respect to the brightest group, which serves as the reference, taking into account the systematics of counts-produced noise effects and choice statistics. A stretching/intensity anticorrelation is found with good statistical significance during the average back slopes of bursts. A stretch factor approximately 2 is found between the 150 dimmest bursts, with peak flux less than 0.45 photons/sq cm.s, and the 147 brightest bursts, with peak flux greater than 4.1 photons/sq cm.s. On the other hand, while a trend of increasing stretching factor may exist for rise fronts for bursts with decreasing peak flux from greater than 4.1 photons/sq cm.s down to 0.7 photons/sq cm.s, the magnitude of the stretching factor is less than approximately 1.4 and is therefore inconsistent with stretching factor of back slope.

  19. Prompt and Afterglow Emission Properties of Gamma-Ray Bursts with Spectroscopically Identified Supernovae

    NASA Technical Reports Server (NTRS)

    Kaneko, Yuki; Ramirez-Ruiz, Enrico; Granot, Jonathan; Kouveliotou, Chryssa; Woosley, Stan E.; Patel, Sandeep K.; Rol, Evert; In'TZand, Jean J. M.; VanDerHorst, Alexander J.; Wuers, Ralph A. M. J.; Strom, Richard

    2007-01-01

    We present a detailed spectral analysis of the prompt and afterglow emission of four nearby long-soft gamma-ray bursts (GRBs 980425,030329,031203, and 060218) that were spectroscopically found to be associated with Type Ic supernovae and compare them to the general GRB population. For each event, we investigate the spectral and luminosity evolution and estimate the total energy budget based on broadband observations. The observational inventory for these events has become rich enough to allow estimates of their energy content in relativistic and subrelativistic form. The result is a global portrait of the effects of the physical processes responsible for producing long-soft GRBs. In particular, we find that the values of the energy released in mildly relativistic outflows appears to have a significantly smaller scatter than those found in highly relativistic ejecta. This is consistent with a picture in which the energy released inside the progenitor star is roughly standard, while the fraction of that energy that ends up in highly relativistic ejecta outside the star can vary dramatically between different events.

  20. Prompt and Afterglow Emission Properties of Gamma-Ray Bursts with Spectroscopically Identified Supernovae

    SciTech Connect

    Kaneko, Yuki; Ramirez-Ruiz, E.; Granot, J.; Kouveliotou, C.; Woosley, S.E.; Patel, S.K.; Rol, E.; Zand, J.J.M.in't; a; Wijers, R.A.M.J.; Strom, R.; /USRA, Huntsville /Princeton, Inst. Advanced Study /UC, Santa Cruz /KIPAC, Menlo Park /NASA, Marshall /Leicester U. /SRON, Utrecht /Utrecht, Astron. Inst. /Amsterdam U., Astron. Inst. /NFRA, Dwingeloo

    2006-07-12

    We present a detailed spectral analysis of the prompt and afterglow emission of four nearby long-soft gamma-ray bursts (GRBs 980425, 030329, 031203, and 060218) that were spectroscopically found to be associated with type Ic supernovae, and compare them to the general GRB population. For each event, we investigate the spectral and luminosity evolution, and estimate the total energy budget based upon broadband observations. The observational inventory for these events has become rich enough to allow estimates of their energy content in relativistic and sub-relativistic form. The result is a global portrait of the effects of the physical processes responsible for producing long-soft GRBs. In particular, we find that the values of the energy released in mildly relativistic outflows appears to have a significantly smaller scatter than those found in highly relativistic ejecta. This is consistent with a picture in which the energy released inside the progenitor star is roughly standard, while the fraction of that energy that ends up in highly relativistic ejecta outside the star can vary dramatically between different events.

  1. Simplified Dirac dark matter models and gamma-ray lines

    NASA Astrophysics Data System (ADS)

    Duerr, Michael; Fileviez Pérez, Pavel; Smirnov, Juri

    2015-10-01

    We investigate simplified dark matter models where the dark matter candidate is a Dirac fermion charged only under a new gauge symmetry. In this context one can understand dynamically the stability of the dark matter candidate and the annihilation through the new gauge boson is not velocity suppressed. We present the simplest Dirac dark matter model charged under the local B -L gauge symmetry. We discuss in great detail the theoretical predictions for the annihilation into two photons, into the standard model Higgs and a photon, and into the Z gauge boson and a photon. Our analytical results can be used for any Dirac dark matter model charged under an Abelian gauge symmetry. The numerical results are shown in the B -L dark matter model. We discuss the correlation between the constraints on the model from collider searches and dark matter experiments.

  2. Polar cap models of gamma-ray pulsars: Emision from single poles of nearly aligned rotators

    NASA Technical Reports Server (NTRS)

    Daugherty, Joseph K.; Harding, Alice K.

    1994-01-01

    We compare a new Monte Carlo simulation of polar cap models for gamma-ray pulsars with observations of sources detected above 10 MeV by the Compton Observatory (CGRO). We find that for models in which the inclination of the magnetic axis is comparable to the angular radius of the polar cap, the radiation from a single cap may exhibit a pusle with either a single broad peak as in PSR 1706-44 and PSR 1055-52, or a doubly peaked profile comparable to those observed from the Crab, Vela and Geminga pulsars. In general, double pulses are seen by observers whose line of sight penetrates into the cap interior and are due to enhanced emission near the rim. For cascades induced by culvature radiation, increased rim emission occurs even when electrons are accelerated over the entire cap, since electrons from the interior escape along magnetic field lines with less curvature and hence emit less radiation. However, we obtain better fits to the duty cycles of observed profiles if we make the empirical assumption that acceleration occurs only near the rim. In either case, the model energy spectra are consistent with most of the observed sources. The beaming factors expected from nearly aligned rotators, based on standard estimates for the cap radius, imply that their luminosities need not be as large as in the case of orthogonal rotators. However, small beam angles are also a difficutly with this model because they imply low detection probablities. In either case the polar cap radius is a critical factor, and in this context we point out that plasma loading of the field lines should make the caps larger than the usual estimates based on pure dipole fields.

  3. Analysis of the Konus catalog of gamma-ray bursts with the thermal synchrotron model

    NASA Technical Reports Server (NTRS)

    Liang, E. P.; Jernigan, T. E.; Rodrigues, R.

    1983-01-01

    Approximately 150 reported gamma-ray burst spectra of the Konus catalog are analyzed using the thermal synchrotron model. An overwhelming majority of these spectra can be satisfactorily fitted by theoretical thermal synchrotron spectra of mildly relativistic electrons in strong magnetic fields, making the strong-field neutron star picture at least self-consistent. Valuable additional information is also extracted from various spectral features contained in many of the events.

  4. New constraints on neutron star models of gamma-ray bursts. II - X-ray observations of three gamma-ray burst error boxes

    NASA Technical Reports Server (NTRS)

    Boer, M.; Hurley, K.; Pizzichini, G.; Gottardi, M.

    1991-01-01

    Exosat observations are presented for 3 gamma-ray-burst error boxes, one of which may be associated with an optical flash. No point sources were detected at the 3-sigma level. A comparison with Einstein data (Pizzichini et al., 1986) is made for the March 5b, 1979 source. The data are interpreted in the framework of neutron star models and derive upper limits for the neutron star surface temperatures, accretion rates, and surface densities of an accretion disk. Apart from the March 5b, 1979 source, consistency is found with each model.

  5. PROMPT GeV EMISSION FROM RESIDUAL COLLISIONS IN GAMMA-RAY BURST OUTFLOWS: EVIDENCE FROM FERMI OBSERVATIONS OF GRB 080916c

    SciTech Connect

    Li Zhuo

    2010-01-20

    The gamma-rays from gamma-ray bursts (GRBs) are believed to be produced by internal shocks driven by small timescale, approx1 ms, variation in the GRB outflows, and a pair-production spectral cutoff is generally expected around the GeV range. However, the observed optical flashes accompanying GRBs suggest that the delayed residual collisions due to large timescale variation continue to accelerate electrons. We show here that the inverse-Compton (IC) scattering of the prompt gamma-rays by these residual internal shock electrons leads to a high-energy emission beyond the previously thought spectral cutoff, in agreement with the previous detections of GeV photons by EGRET in several GRBs in conjunction with MeV emission. We expect a spectral break due to the transition from the primary to residual internal shock emission at the previously thought spectral cutoff and expect systematic time delays of high-energy photons relative to MeV emission, the discovery of which would provide stringent constraint on the outflow properties, but requires large enough collection of high-energy photons by, e.g., Fermi and AGILE satellites. The recent Fermi-detected bright GRB 080916c unambiguously shows the shifting of the prompt emission toward later times as the photon energy increases. The second-scale shifting at >100 MeV is much longer than the MeV variability time, as predicted in the residual collision model. The observations imply that there should be emission above 70 GeV in the source frame, which may not be produced by primary internal shocks but by IC emission in residual collisions. With the method involving time delays of high-energy emission, the bulk Lorentz factor of GRB 080916c is determined to be GAMMA approx 300.

  6. Searching for narrow absorption and emission lines in XMM-Newton spectra of gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Campana, S.; Braito, V.; D'Avanzo, P.; Ghirlanda, G.; Melandri, A.; Pescalli, A.; Salafia, O. S.; Salvaterra, R.; Tagliaferri, G.; Vergani, S. D.

    2016-08-01

    We present the results of a spectroscopic search for narrow emission and absorption features in the X-ray spectra of long gamma-ray burst (GRB) afterglows. Using XMM-Newton data, both EPIC and RGS spectra, of six bright (fluence > 10-7 erg cm-2) and relatively nearby (z = 0.54-1.41) GRBs, we performed a blind search for emission or absorption lines that could be related to a high cloud density or metal-rich gas in the environ close to the GRBs. We detected five emission features in four of the six GRBs with an overall statistical significance, assessed through Monte Carlo simulations, of ≲ 3.0σ. Most of the lines are detected around the observed energy of the oxygen edge at ~ 0.5 keV, suggesting that they are not related to the GRB environment but are most likely of Galactic origin. No significant absorption features were detected. A spectral fitting with a free Galactic column density (NH) testing different models for the Galactic absorption confirms this origin because we found an indication of an excess of Galactic NH in these four GRBs with respect to the tabulated values.

  7. The Quark-Deconfinement Nova model for Gamma-Ray Bursts

    SciTech Connect

    Bombaci, I.

    2005-10-21

    We report on a new model which is able to explain how a gamma-ray burst (GRB) can take place days or years after a supernova explosion. We show that above a threshold value of the gravitational mass a pure hadronic star ('neutron star') is metastable to the conversion into a quark star (hybrid star or strange star), i.e. a star made at least in part of deconfined quark matter. The stellar conversion process can be delayed if finite size effects at the interface between hadronic and deconfined quark matter phases are taken into account. A huge amount of energy, on the order of 1052 - 1053 ergs, is released during the conversion process and can produce a powerful gamma-ray burst. The delay between the supernova explosion generating the metastable neutron star and the new collapse can explain the delay inferred in GRB 990705 and in GRB 011211.

  8. Gamma-Ray, Cosmic Ray and Neutrino Tests of Lorentz Invariance and Quantum Gravity Models

    NASA Technical Reports Server (NTRS)

    Stecker, Floyd

    2011-01-01

    High-energy astrophysics observations provide the best possibilities to detect a very small violation of Lorentz invariance such as may be related to the structure of space-time near the Planck scale of approximately 10(exp -35) m. I will discuss here the possible signatures of Lorentz invariance violation (LIV) from observations of the spectra, polarization, and timing of gamma-rays from active galactic nuclei and gamma-ray bursts. Other sensitive tests are provided by observations of the spectra of ultrahigh energy cosmic rays and neutrinos. Using the latest data from the Pierre Auger Observatory one can already derive an upper limit of 4.5 x 10(exp -23) to the amount of LIV of at a proton Lorentz factor of approximately 2 x 10(exp 11). This result has fundamental implications for quantum gravity models. I will also discuss the possibilities of using more sensitive space based detection techniques to improve searches for LIV in the future.

  9. Gamma-ray bursts from magnetospheric plasma oscillations. II - Model spectra

    NASA Technical Reports Server (NTRS)

    Melia, Fulvio

    1990-01-01

    Several mechanisms for the primary release of energy in gamma-ray bursts (GRBs) may result in the excitation of relativistic, magnetospheric plasma oscillations above the polar cap of a neutron star. This paper presents a survey of detailed calculations of the inverse Compton scattering interaction between the sinusoidally accelerated particles in relativistic, magnetospheric plasma oscillations and the self-consistently determined thermal radiation from the stellar surface. The upscattered photons are boosted to gamma-ray energies and a Monte Carlo simulation is used to obtain the spectrum for different viewing angles relative to the magnetic field in the oscillating region. It is shown that several GRB spectral characteristics may be understood in the context of a model wherein the overall spectrum changes with aspect angle as a result of the superposition of four components with different angular distributions.

  10. Exploring the Extreme Universe with the Fermi Gamma-Ray Space Telescope

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.

    2010-01-01

    Because high-energy gamma rays are produced by powerful sources, the Fermi Gamma-ray Space Telescope provides a window on extreme conditions in the Universe. Some key observations of the constantly changing gamma-ray sky include: (1) Gamma-rays from pulsars appear to come from a region well above the surface of the neutron star; (2) Multiwavelength studies of blazars show that simple models of jet emission are not always adequate to explain what is seen; (3) Gamma-ray bursts can constrain models of quantum gravity; (4) Cosmic-ray electrons at energies approaching 1 TeV suggest a local source for some of these particles.

  11. Detailed investigation of the gamma-ray emission in the vicinity of SNR W28 with Fermi-LAT

    SciTech Connect

    Hanabata, Y.; Katagiri, H.; Hewitt, J.W.; Ballet, J.; Fukui, Y.; Hayakawa, T.; Lemoine-Goumard, M.; Strong, A. W.; Yamazaki, R. E-mail: katagiri@mx.ibaraki.ac.jp

    2014-05-10

    We present a detailed investigation of the γ-ray emission in the vicinity of the supernova remnant (SNR) W28 (G6.4–0.1) observed by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. We detected significant γ-ray emission spatially coincident with TeV sources HESS J1800–240A, B, and C, located outside the radio boundary of the SNR. Their spectra in the 2-100 GeV band are consistent with the extrapolation of the power-law spectra of the TeV sources. We also identified a new source of GeV emission, dubbed Source W, which lies outside the boundary of TeV sources and coincides with radio emission from the western part of W28. All of the GeV γ-ray sources overlap with molecular clouds in the velocity range from 0 to 20 km s{sup –1}. Under the assumption that the γ-ray emission toward HESS J1800–240A, B, and C comes from π{sup 0} decay due to the interaction between the molecular clouds and cosmic rays (CRs) escaping from W28, they can be naturally explained by a single model in which the CR diffusion coefficient is smaller than the theoretical expectation in the interstellar space. The total energy of the CRs escaping from W28 is constrained through the same modeling to be larger than ∼2 × 10{sup 49} erg. The emission from Source W can also be explained with the same CR escape scenario.

  12. Detailed Investigation of the Gamma-Ray Emission in the Vicinity of SNR W28 with FERMI-LAT

    NASA Astrophysics Data System (ADS)

    Hanabata, Y.; Katagiri, H.; Hewitt, J. W.; Ballet, J.; Fukazawa, Y.; Fukui, Y.; Hayakawa, T.; Lemoine-Goumard, M.; Pedaletti, G.; Strong, A. W.; Torres, D. F.; Yamazaki, R.

    2014-05-01

    We present a detailed investigation of the γ-ray emission in the vicinity of the supernova remnant (SNR) W28 (G6.4-0.1) observed by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. We detected significant γ-ray emission spatially coincident with TeV sources HESS J1800-240A, B, and C, located outside the radio boundary of the SNR. Their spectra in the 2-100 GeV band are consistent with the extrapolation of the power-law spectra of the TeV sources. We also identified a new source of GeV emission, dubbed Source W, which lies outside the boundary of TeV sources and coincides with radio emission from the western part of W28. All of the GeV γ-ray sources overlap with molecular clouds in the velocity range from 0 to 20 km s-1. Under the assumption that the γ-ray emission toward HESS J1800-240A, B, and C comes from π0 decay due to the interaction between the molecular clouds and cosmic rays (CRs) escaping from W28, they can be naturally explained by a single model in which the CR diffusion coefficient is smaller than the theoretical expectation in the interstellar space. The total energy of the CRs escaping from W28 is constrained through the same modeling to be larger than ~2 × 1049 erg. The emission from Source W can also be explained with the same CR escape scenario.

  13. The Supercritical Pile Gamma-Ray Burst Model: The GRB Afterglow Steep Decline and Plateau Phase

    NASA Technical Reports Server (NTRS)

    Sultana, Joseph; Kazanas, D.; Mastichiadis, A.

    2013-01-01

    We present a process that accounts for the steep decline and plateau phase of the Swift X-Ray Telescope (XRT) light curves, vexing features of gamma-ray burst (GRB) phenomenology. This process is an integral part of the "supercritical pile" GRB model, proposed a few years ago to account for the conversion of the GRB kinetic energy into radiation with a spectral peak at E(sub pk) is approx. m(sub e)C(exp 2). We compute the evolution of the relativistic blast wave (RBW) Lorentz factor Gamma to show that the radiation-reaction force due to the GRB emission can produce an abrupt, small (approx. 25%) decrease in Gamma at a radius that is smaller (depending on conditions) than the deceleration radius R(sub D). Because of this reduction, the kinematic criticality criterion of the "supercritical pile" is no longer fulfilled. Transfer of the proton energy into electrons ceases and the GRB enters abruptly the afterglow phase at a luminosity smaller by approx. m(sub p)/m(sub e) than that of the prompt emission. If the radius at which this slow-down occurs is significantly smaller than R(sub D), the RBW internal energy continues to drive the RBW expansion at a constant (new) Gamma and its X-ray luminosity remains constant until R(sub D) is reached, at which point it resumes its more conventional decay, thereby completing the "unexpected" XRT light curve phase. If this transition occurs at R is approx. equal to R(sub D), the steep decline is followed by a flux decrease instead of a "plateau," consistent with the conventional afterglow declines. Besides providing an account of these peculiarities, the model suggests that the afterglow phase may in fact begin before the RBW reaches R is approx. equal to R(sub D), thus providing novel insights into GRB phenomenology.

  14. The Supercritical Pile Gamma-Ray Burst Model: The GRB Afterglow Steep Decline and Plateau Phase

    NASA Astrophysics Data System (ADS)

    Sultana, J.; Kazanas, D.; Mastichiadis, A.

    2013-12-01

    We present a process that accounts for the steep decline and plateau phase of the Swift X-Ray Telescope (XRT) light curves, vexing features of gamma-ray burst (GRB) phenomenology. This process is an integral part of the "supercritical pile" GRB model, proposed a few years ago to account for the conversion of the GRB kinetic energy into radiation with a spectral peak at E pk ~ mec 2. We compute the evolution of the relativistic blast wave (RBW) Lorentz factor Γ to show that the radiation-reaction force due to the GRB emission can produce an abrupt, small (~25%) decrease in Γ at a radius that is smaller (depending on conditions) than the deceleration radius RD . Because of this reduction, the kinematic criticality criterion of the "supercritical pile" is no longer fulfilled. Transfer of the proton energy into electrons ceases and the GRB enters abruptly the afterglow phase at a luminosity smaller by ~mp /me than that of the prompt emission. If the radius at which this slow-down occurs is significantly smaller than RD , the RBW internal energy continues to drive the RBW expansion at a constant (new) Γ and its X-ray luminosity remains constant until RD is reached, at which point it resumes its more conventional decay, thereby completing the "unexpected" XRT light curve phase. If this transition occurs at R ~= RD , the steep decline is followed by a flux decrease instead of a "plateau," consistent with the conventional afterglow declines. Besides providing an account of these peculiarities, the model suggests that the afterglow phase may in fact begin before the RBW reaches R ~= RD , thus providing novel insights into GRB phenomenology.

  15. Search for High-energy Gamma-ray Emission from Tidal Disruption Events with the Fermi Large Area Telescope

    NASA Astrophysics Data System (ADS)

    Peng, Fang-Kun; Tang, Qing-Wen; Wang, Xiang-Yu

    2016-07-01

    Massive black holes at galaxy center may tear apart a star when the star passes occasionally within the disruption radius, which is the so-called tidal disruption event (TDE). Most TDEs radiate with thermal emission resulting from the acceleration disk, but three TDEs have been detected in bright nonthermal X-ray emission, which is interpreted as arising from the relativistic jets. A search for high-energy gamma-ray emission from one relativistic TDE (Swift J164449.3+573451) with the Fermi Large Area Telescope (LAT) has yielded nondetection. In this paper, we report the search for high-energy emission from the other two relativistic TDEs (Swift J2058.4+0516 and Swift J1112.2-8238) during the flare period. No significant GeV emission is found, with an upper limit fluence in the LAT energy range being less than 1% of that in X-rays. Compared with gamma-ray bursts and blazars, these TDEs have the lowest flux ratio between GeV emission and X-ray emission. The nondetection of high-energy emission from relativistic TDEs could be due to the fact that the high-energy emission is absorbed by soft photons in the source. Based on this hypothesis, upper limits on the bulk Lorentz factors, {{Γ }}≲ 30, are then obtained for the jets in these TDEs. We also search for high-energy gamma-ray emission from the nearest TDE discovered to date, ASASSN-14li. No significant GeV emission is found, and an upper limit of L(0.1{--}10 {GeV})≤slant 4.4× {10}42 erg s‑1 (at 95% confidence level) is obtained for the first 107 s after the disruption.

  16. Time-dependent modelling of the Markarian 501 X-ray and TeV gamma-ray data taken during 1997 March and April

    NASA Astrophysics Data System (ADS)

    Krawczynski, H.; Coppi, P. S.; Aharonian, F.

    2002-11-01

    If the high-energy emission from TeV blazars is produced by the Synchrotron Self-Compton (SSC) mechanism, then simultaneous X-ray and gamma-ray observations of these objects are a powerful probe of the electron (and positron) populations responsible for this emission. Understanding the emitting particle distributions and their temporal evolution in turn allows us to probe physical conditions in the inner blazar jet and test, for example, various acceleration scenarios. Furthermore, by constraining the SSC model parameters, such observations enable us to predict the intrinsic (unabsorbed) gamma-ray energy spectra of these sources, a major uncertainty in current attempts to use gamma-ray observations to constrain the intensity of the Diffuse Extragalactic Background Radiation (DEBRA) at optical/infrared wavelengths. As a next step in testing the SSC model and as a demonstration of the potential power of coordinated X-ray and gamma-ray observations, we model in detail the X-ray and gamma-ray light curves of the TeV blazar Mrk 501 during its 1997 April-May outburst with a time-dependent SSC model. Extensive, quasi-simultaneous X-ray and gamma-ray coverage exists for this period. We discuss and explore quantitatively several of the flare scenarios presented in the literature. We show that simple two-component models (with a soft, steady X-ray component plus a variable SSC component) involving substantial pre-acceleration of electrons to Lorentz factors on the order of γmin= 105 describe the data train surprisingly well. All considered models imply an emission region that is strongly out of equipartition and low radiative efficiencies (ratio between kinetic jet luminosity and comoving radiative luminosity) of 1 per-mill and less. Degeneracy in both, model variant and jet parameters, prevents us from using the time-resolved SSC calculations to tighten substantially the constraints on the amount of extragalactic gamma-ray extinction by the DEBRA in the relevant 0.5-50

  17. Gamma ray irradiated silicon nanowires: An effective model to investigate defects at the interface of Si/SiOx

    SciTech Connect

    Yin, Kui; Zhao, Yi; Liu, Liangbin; Lee, Shuit-Tong; Shao, Mingwang E-mail: xuegi@nju.edu.cn; Wang, Xiaoliang E-mail: xuegi@nju.edu.cn Xue, Gi E-mail: xuegi@nju.edu.cn

    2014-01-20

    The effect of gamma ray irradiation on silicon nanowires was investigated. Here, an additional defect emerged in the gamma-ray-irradiated silicon nanowires and was confirmed with electron spin resonance spectra. {sup 29}Si nuclear magnetic resonance spectroscopy showed that irradiation doses had influence on the Q{sup 4} unit structure. This phenomenon indicated that the unique core/shell structure of silicon nanowires might contribute to induce metastable defects under gamma ray irradiation, which served as a satisfactory model to investigate defects at the interface of Si/SiOx.

  18. On the origin of GeV emission in gamma-ray bursts

    SciTech Connect

    Beloborodov, Andrei M.; Hascoët, Romain; Vurm, Indrek

    2014-06-10

    The most common progenitors of gamma-ray bursts (GRBs) are massive stars with strong stellar winds. We show that the GRB blast wave in the wind should emit a bright GeV flash. It is produced by inverse-Compton cooling of the thermal plasma behind the forward shock. The main part of the flash is shaped by scattering of the prompt MeV radiation (emitted at smaller radii) which streams through the external blast wave. The inverse-Compton flash is bright due to the huge e {sup ±} enrichment of the external medium by the prompt radiation ahead of the blast wave. At late times, the blast wave switches to normal synchrotron-self-Compton cooling. The mechanism is demonstrated by a detailed transfer simulation. The observed prompt MeV radiation is taken as an input of the simulation; we use GRB 080916C as an example. The result reproduces the GeV flash observed by the Fermi telescope. It explains the delayed onset, the steep rise, the peak flux, the time of the peak, the long smooth decline, and the spectral slope of GeV emission. The wind density required to reproduce all these features is typical of Wolf-Rayet stars. Our simulation predicts strong TeV emission 1 minute after the burst trigger; then a cutoff in the observed high-energy spectrum is expected from absorption by extragalactic background light. In addition, a bright optical counterpart of the GeV flash is predicted for plausible values of the magnetic field; such a double (optical+GeV) flash has been observed in GRB 130427A.

  19. THE ROLE OF FAST MAGNETIC RECONNECTION ON THE RADIO AND GAMMA-RAY EMISSION FROM THE NUCLEAR REGIONS OF MICROQUASARS AND LOW LUMINOSITY AGNs

    SciTech Connect

    Kadowaki, L. H. S.; Pino, E. M. de Gouveia Dal; Singh, C. B. E-mail: dalpino@iag.usp.br

    2015-04-01

    Fast magnetic reconnection events can be a very powerful mechanism operating in the core region of microquasars and active galactic nuclei (AGNs). In earlier work, it has been suggested that the power released by fast reconnection events between the magnetic field lines lifting from the inner accretion disk region and the lines anchored into the central black hole could accelerate relativistic particles and produce the observed radio emission from microquasars and low luminosity AGNs (LLAGNs). Moreover, it has been proposed that the observed correlation between the radio emission and the mass of these sources, spanning 10{sup 10} orders of magnitude in mass, might be related to this process. In the present work, we revisit this model comparing two different fast magnetic reconnection mechanisms, namely, fast reconnection driven by anomalous resistivity (AR) and by turbulence. We apply the scenario above to a much larger sample of sources (including also blazars, and gamma-ray bursts—GRBs), and find that LLAGNs and microquasars do confirm the trend above. Furthermore, when driven by turbulence, not only their radio but also their gamma-ray emission can be due to magnetic power released by fast reconnection, which may accelerate particles to relativistic velocities in the core region of these sources. Thus the turbulent-driven fast reconnection model is able to reproduce verywell the observed emission. On the other hand, the emission from blazars and GRBs does not follow the same trend as that of the LLAGNs and microquasars, indicating that the radio and gamma-ray emission in these cases is produced beyond the core, along the jet, by another population of relativistic particles, as expected.

  20. RE-EXAMINATION OF THE EXPECTED GAMMA-RAY EMISSION OF SUPERNOVA REMNANT SN 1987A

    SciTech Connect

    Berezhko, E. G.; Ksenofontov, L. T.; Völk, H. J.

    2015-09-01

    A nonlinear kinetic theory, combining cosmic-ray (CR) acceleration in supernova remnants (SNRs) with their gas dynamics, is used to re-examine the nonthermal properties of the remnant of SN 1987A for an extended evolutionary period of 5–50 year. This spherically symmetric model is approximately applied to the different features of the SNR, consisting of (i) a blue supergiant wind and bubble, and (ii) of the swept-up red supergiant (RSG) wind structures in the form of an H ii region, an equatorial ring (ER), and an hourglass region. The RSG wind involves a mass loss rate that decreases significantly with elevation above and below the equatorial plane. The model adapts recent three-dimensional hydrodynamical simulations by Potter et al. in 2014 that use a significantlysmaller ionized mass of the ER than assumed in the earlier studies by the present authors. The SNR shock recently swept up the ER, which is the densest region in the immediate circumstellar environment. Therefore, the expected gamma-ray energy flux density at TeV energies in the current epoch has already reached its maximal value of ∼10{sup −13} erg cm{sup −2} s{sup −1}. This flux should decrease by a factor of about two over the next 10 years.

  1. Re-examination of the Expected Gamma-Ray Emission of Supernova Remnant SN 1987A

    NASA Astrophysics Data System (ADS)

    Berezhko, E. G.; Ksenofontov, L. T.; Völk, H. J.

    2015-09-01

    A nonlinear kinetic theory, combining cosmic-ray (CR) acceleration in supernova remnants (SNRs) with their gas dynamics, is used to re-examine the nonthermal properties of the remnant of SN 1987A for an extended evolutionary period of 5-50 year. This spherically symmetric model is approximately applied to the different features of the SNR, consisting of (i) a blue supergiant wind and bubble, and (ii) of the swept-up red supergiant (RSG) wind structures in the form of an H ii region, an equatorial ring (ER), and an hourglass region. The RSG wind involves a mass loss rate that decreases significantly with elevation above and below the equatorial plane. The model adapts recent three-dimensional hydrodynamical simulations by Potter et al. in 2014 that use a significantlysmaller ionized mass of the ER than assumed in the earlier studies by the present authors. The SNR shock recently swept up the ER, which is the densest region in the immediate circumstellar environment. Therefore, the expected gamma-ray energy flux density at TeV energies in the current epoch has already reached its maximal value of ˜10-13 erg cm-2 s-1. This flux should decrease by a factor of about two over the next 10 years.

  2. Gamma Ray Large Area Space Telescope (GLAST) Balloon Flight Engineering Model: Overview

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Godfrey, G.; Williams, S. M.; Grove, J. E.; Mizuno, T.; Sadrozinski, H. F.-W.; Kamae, T.; Ampe, J.; Briber, Stuart; Dann, James; White, Nicholas E. (Technical Monitor)

    2001-01-01

    The Gamma Ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) is a pair-production high-energy (greater than 20 MeV) gamma-ray telescope being built by an international partnership of astrophysicists and particle physicists for a satellite launch in 2006, designed to study a wide variety of high-energy astrophysical phenomena. As part of the development effort, the collaboration has built a Balloon Flight Engineering Model (BFEM) for flight on a high-altitude scientific balloon. The BFEM is approximately the size of one of the 16 GLAST-LAT towers and contains all the components of the full instrument: plastic scintillator anticoincidence system (ACD), high-Z foil/Si strip pair-conversion tracker (TKR), CsI hodoscopic calorimeter (CAL), triggering and data acquisition electronics (DAQ), commanding system, power distribution, telemetry, real-time data display, and ground data processing system. The principal goal of the balloon flight was to demonstrate the performance of this instrument configuration under conditions similar to those expected in orbit. Results from a balloon flight from Palestine, Texas, on August 4, 2001, show that the BFEM successfully obtained gamma-ray data in this high-background environment.

  3. Tidal heating and mass loss in neutron star binaries - Implications for gamma-ray burst models

    NASA Technical Reports Server (NTRS)

    Meszaros, P.; Rees, M. J.

    1992-01-01

    A neutron star in a close binary orbit around another neutron star (or stellar-mass black hole) spirals inward owing to gravitational radiation. We discuss the effects of tidal dissipation during this process. Tidal energy dissipated in the neutron star's core escapes mainly as neutrinos, but heating of the crust, and outward diffusion of photons, blows off the outer layers of the star. This photon-driven mass loss precedes the final coalescence. The presence of this eject material impedes the escape of gamma-rays created via neutrino interactions. If an e(+) - e(-) fireball, created in the late stages of coalescence, were loaded with (or surrounded by) material with the mean column density of the ejecta, it could not be an efficient source of gamma-rays. Models for cosmologically distant gamma-rays burst that involve neutron stars must therefore be anisotropic, so that the fireball expands preferentially in directions where the column density of previously blown-off material is far below the spherically averaged value which we have calculated. Some possible 'scenarios' along these lines are briefly discussed.

  4. Modelling the flux distribution function of the extragalactic gamma-ray background from dark matter annihilation

    SciTech Connect

    Feyereisen, Michael R.; Ando, Shin'ichiro; Lee, Samuel K. E-mail: s.ando@uva.nl

    2015-09-01

    The one-point function (i.e., the isotropic flux distribution) is a complementary method to (anisotropic) two-point correlations in searches for a gamma-ray dark matter annihilation signature. Using analytical models of structure formation and dark matter halo properties, we compute the gamma-ray flux distribution due to annihilations in extragalactic dark matter halos, as it would be observed by the Fermi Large Area Telescope. Combining the central limit theorem and Monte Carlo sampling, we show that the flux distribution takes the form of a narrow Gaussian of 'diffuse' light, with an 'unresolved point source' power-law tail as a result of bright halos. We argue that this background due to dark matter constitutes an irreducible and significant background component for point-source annihilation searches with galaxy clusters and dwarf spheroidal galaxies, modifying the predicted signal-to-noise ratio. A study of astrophysical backgrounds to this signal reveals that the shape of the total gamma-ray flux distribution is very sensitive to the contribution of a dark matter component, allowing us to forecast promising one-point upper limits on the annihilation cross-section. We show that by using the flux distribution at only one energy bin, one can probe the canonical cross-section required for explaining the relic density, for dark matter of masses around tens of GeV.

  5. N-SAP and G-SAP neutron and gamma ray albedo model scatter shield analysis program

    NASA Technical Reports Server (NTRS)

    Sapovchak, B. J.; Stephenson, L. D.

    1967-01-01

    Computer program calculates neutron or gamma ray first order scattering from a plane or cylindrical surface to a detector point. The SAP Codes, G-SAP and N-SAP, constitute a multiple scatter albedo model shield analysis.

  6. THERMAL EMISSION IN THE EARLY X-RAY AFTERGLOWS OF GAMMA-RAY BURSTS: FOLLOWING THE PROMPT PHASE TO LATE TIMES

    SciTech Connect

    Friis, Mette; Watson, Darach E-mail: darach@dark-cosmology.dk

    2013-07-01

    Thermal radiation, peaking in soft X-rays, has now been detected in a handful of gamma-ray burst (GRB) afterglows and has to date been interpreted as shock break-out of the GRB's progenitor star. We present a search for thermal emission in the early X-ray afterglows of a sample of Swift bursts selected by their brightness in X-rays at early times. We identify a clear thermal component in eight GRBs and track the evolution. We show that at least some of the emission must come from highly relativistic material since two show an apparent super-luminal expansion of the thermal component. Furthermore, we determine very large luminosities and high temperatures for many of the components-too high to originate in a supernova shock break-out. Instead, we suggest that the component may be modeled as late photospheric emission from the jet, linking it to the apparently thermal component observed in the prompt emission of some GRBs at gamma-ray and hard X-ray energies. By comparing the parameters from the prompt emission and the early afterglow emission, we find that the results are compatible with the interpretation that we are observing the prompt quasi-thermal emission component in soft X-rays at a later point in its evolution.

  7. Discoveries by the Fermi Gamma Ray Space Telescope

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2011-01-01

    Fermi is a large space gamma-ray mission developed by NASA and the DOE with major contributions from France, Germany, Italy, Japan and Sweden. It was launched in June 2008 and has been performing flawlessly since then. The main instrument is the Large Area Telescope (LAT) operating in the 20 MeV to 300 GeV range and a smaller monitor instrument is the Gamma-ray Burst Monitor (GBM) operating in the 8 keV to 40 MeV range. New findings are occurring every week. Some of the key discoveries are: 1) Discovery of many new gamma-ray pulsars, including gamma-ray only and millisecond pulsars. 2) Detection of high energy gamma-ray emission from globular clusters, most likely due to summed emission from msec pulsars. 3) Discovery of delayed and extended high energy gamma-ray emission from short and long gamma-ray busts. 4) Detection of approximately 250 gamma-ray bursts per year with the GBM instrument. 5) Most accurate measurement of the cosmic ray electron spectrum between 30 GeV and 1 TeV, showing some excess above the conventional diffusion model. The talk will present the new discoveries and their implications.

  8. Measurements of nuclear {gamma}-ray line emission in interactions of protons and {alpha} particles with N, O, Ne, and Si

    SciTech Connect

    Benhabiles-Mezhoud, H.; Kiener, J.; Thibaud, J.-P.; Tatischeff, V.; Deloncle, I.; Coc, A.; Duprat, J.; Hamadache, C.; Lefebvre-Schuhl, A.; Dalouzy, J.-C.; Grancey, F. de; Oliveira, F. de; Dayras, F.; Sereville, N. de; Pellegriti, M.-G.; Lamia, L.; Ouichaoui, S.

    2011-02-15

    {gamma}-ray production cross sections have been measured in proton irradiations of N, Ne, and Si and {alpha}-particle irradiations of N and Ne. In the same experiment we extracted also line shapes for strong {gamma}-ray lines of {sup 16}O produced in proton and {alpha}-particle irradiations of O. For the measurements gas targets were used for N, O, and Ne and a thick foil for Si. All targets were of natural isotopic composition. Beams in the energy range up to 26 MeV for protons and 39 MeV for {alpha} particles were delivered by the Institut de Physique Nucleaire-Orsay tandem accelerator. The {gamma} rays were detected with four high-purity Ge detectors in the angular range 30 deg. to 135 deg. We extracted 36 cross-section excitation functions for proton reactions and 14 for {alpha}-particle reactions. For the majority of the excitation functions no other data exist to our knowledge. Where comparison with existing data was possible, usually a very good agreement was found. It is shown that these data are very interesting for constraining nuclear reaction models. In particular, the agreement of cross section calculations in the nuclear reaction code talys with the measured data could be improved by adjusting the coupling schemes of collective levels in the target nuclei {sup 14}N, {sup 20,22}Ne, and {sup 28}Si. The importance of these results for the modeling of nuclear {gamma}-ray line emission in astrophysical sites is discussed.

  9. Fermi Observations of High-energy Gamma-ray Emission from GRB 080825C

    NASA Astrophysics Data System (ADS)

    Abdo, A. A.; Ackermann, M.; Asano, K.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Ballet, J.; Band, D. L.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bhat, P. N.; Bissaldi, E.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bouvier, A.; Bregeon, J.; Brez, A.; Briggs, M. S.; Brigida, M.; Bruel, P.; Burnett, T. H.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Casandjian, J. M.; Cecchi, C.; Chaplin, V.; Chekhtman, A.; Cheung, C. C.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Cominsky, L. R.; Connaughton, V.; Conrad, J.; Cutini, S.; Dermer, C. D.; de Angelis, A.; de Palma, F.; Digel, S. W.; Silva, E. do Couto e.; Drell, P. S.; Dubois, R.; Dumora, D.; Farnier, C.; Favuzzi, C.; Focke, W. B.; Frailis, M.; Fukazawa, Y.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Gibby, L.; Giebels, B.; Giglietto, N.; Giordano, F.; Glanzman, T.; Godfrey, G.; Goldstein, A.; Granot, J.; Grenier, I. A.; Grondin, M.-H.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hanabata, Y.; Harding, A. K.; Hayashida, M.; Hays, E.; Hughes, R. E.; Jóhannesson, G.; Johnson, A. S.; Johnson, W. N.; Kamae, T.; Katagiri, H.; Kataoka, J.; Kawai, N.; Kerr, M.; Knödlseder, J.; Kocevski, D.; Komin, N.; Kouveliotou, C.; Kuehn, F.; Kuss, M.; Latronico, L.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Makeev, A.; Mazziotta, M. N.; McBreen, S.; McEnery, J. E.; McGlynn, S.; Meegan, C.; Meurer, C.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Monte, C.; Monzani, M. E.; Moretti, E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakamori, T.; Nolan, P. L.; Norris, J. P.; Nuss, E.; Ohno, M.; Ohsugi, T.; Omodei, N.; Orlando, E.; Ormes, J. F.; Ozaki, M.; Paciesas, W. S.; Paneque, D.; Panetta, J. H.; Parent, D.; Pelassa, V.; Pepe, M.; Pesce-Rollins, M.; Piron, F.; Porter, T. A.; Preece, R.; Rainò, S.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, O.; Reposeur, T.; Ritz, S.; Rochester, L. S.; Rodriguez, A. Y.; Roth, M.; Ryde, F.; Sadrozinski, H. F.-W.; Sanchez, D.; Sander, A.; Saz Parkinson, P. M.; Scargle, J. D.; Sgrò, C.; Siskind, E. J.; Smith, D. A.; Smith, P. D.; Spandre, G.; Spinelli, P.; Stamatikos, M.; Strickman, M. S.; Suson, D. J.; Tajima, H.; Takahashi, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tibaldo, L.; Torres, D. F.; Tosti, G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; van der Horst, A. J.; Vasileiou, V.; Vilchez, N.; Vitale, V.; von Kienlin, A.; Waite, A. P.; Wang, P.; Wilson-Hodge, C.; Winer, B. L.; Wood, K. S.; Ylinen, T.; Ziegler, M.

    2009-12-01

    The Fermi Gamma-ray Space Telescope has opened a new high-energy window in the study of gamma-ray bursts (GRBs). Here we present a thorough analysis of GRB 080825C, which triggered the Fermi Gamma-ray Burst Monitor (GBM), and was the first firm detection of a GRB by the Fermi Large Area Telescope (LAT). We discuss the LAT event selections, background estimation, significance calculations, and localization for Fermi GRBs in general and GRB 080825C in particular. We show the results of temporal and time-resolved spectral analysis of the GBM and LAT data. We also present some theoretical interpretation of GRB 080825C observations as well as some common features observed in other LAT GRBs.

  10. Determination of photon emission probabilities for the main gamma-rays of ²²³Ra in equilibrium with its progeny.

    PubMed

    Pibida, L; Zimmerman, B; Fitzgerald, R; King, L; Cessna, J T; Bergeron, D E

    2015-07-01

    The currently published (223)Ra gamma-ray emission probabilities display a wide variation in the values depending on the source of the data. The National Institute of Standards and Technology performed activity measurements on a (223)Ra solution that was used to prepare several sources that were used to determine the photon emission probabilities for the main gamma-rays of (223)Ra in equilibrium with its progeny. Several high purity germanium (HPGe) detectors were used to perform the gamma-ray spectrometry measurements.

  11. DISCOVERY OF VARIABILITY IN THE VERY HIGH ENERGY {gamma}-RAY EMISSION OF 1ES 1218+304 WITH VERITAS

    SciTech Connect

    Acciari, V. A.; Benbow, W.; Aliu, E.; Beilicke, M.; Bugaev, V.; Dickherber, R.; Boltuch, D.; Boettcher, M.; Bradbury, S. M.; Byrum, K.; Cesarini, A.; Ciupik, L.; Fortson, L.; Cogan, P.; Cui, W.; Finley, J. P.; Duke, C.; Falcone, A.; Finnegan, G.; Furniss, A.

    2010-02-01

    We present results from an intensive VERITAS monitoring campaign of the high-frequency peaked BL Lac object 1ES 1218+304 in 2008/2009. Although 1ES 1218+304 was detected previously by MAGIC and VERITAS at a persistent level of {approx}6% of the Crab Nebula flux, the new VERITAS data reveal a prominent flare reaching {approx}20% of the Crab. While very high energy (VHE) flares are quite common in many nearby blazars, the case of 1ES 1218+304 (redshift z = 0.182) is particularly interesting since it belongs to a group of blazars that exhibit unusually hard VHE spectra considering their redshifts. When correcting the measured spectra for absorption by the extragalactic background light, 1ES 1218+304 and a number of other blazars are found to have differential photon indices {gamma}{<=} 1.5. The difficulty in modeling these hard spectral energy distributions in blazar jets has led to a range of theoretical {gamma}-ray emission scenarios, one of which is strongly constrained by these new VERITAS observations. We consider the implications of the observed light curve of 1ES 1218+304, which shows day scale flux variations, for shock acceleration scenarios in relativistic jets, and in particular for the viability of kiloparsec-scale jet emission scenarios.

  12. Fermi LAT detection of increase gamma-ray emission from OJ 248

    NASA Astrophysics Data System (ADS)

    Orienti, M.; D'Ammando, F.

    2012-09-01

    The Large Area Telescope (LAT), on board the Fermi Gamma-ray Space Telescope, has observed gamma-ray flaring activity from a source positionally consistent with the flat spectrum radio quasar OJ 248 (also known as 2FGL J0830.5+2407, Nolan et al. 2012, ApJS, 199, 31) with radio coordinates R.A.: 127.7170254 deg, Dec: 24.1832836 deg (J2000, Johnston et al. 1995, AJ, 110, 880) at redshift z=0.94 (Hewitt & Burbidge 1993, ApJS, 87, 451).

  13. Limits on gamma-ray burst prompt radio emission using the LWA1

    SciTech Connect

    Obenberger, K. S.; Taylor, G. B.; Craig, J.; Dowell, J.; Henning, P. A.; Schinzel, F. K.; Hartman, J. M.; Helmboldt, J. F.; Wilson, T. L.

    2014-04-10

    As a backend to the first station of the Long Wavelength Array (LWA1), the Prototype All Sky Imager has been imaging the sky > –26° declination during 34 gamma-ray bursts (GRBs) between 2012 January and 2013 May. Using this data, we were able to put the most stringent limits to date on prompt low-frequency emission from GRBs. While our limits depend on the zenith angle of the observed GRB, we estimate a 1σ rms sensitivity of 68, 65, and 70 Jy for 5 s integrations at 37.9, 52.0, and 74.0 MHz at zenith. These limits are relevant for pulses ≥5 s and are limited by dispersion smearing. For 5 s pulses, we are limited to dispersion measures (DMs) ≤ 220, 570, and 1600 pc cm{sup –3} for the frequencies above. For pulses lasting longer than 5 s, the DM limits increase linearly with the duration of the pulse. We also report two interesting transients, which are, as of yet, of unknown origin and are not coincident with any known GRBs. For general transients, we give rate density limits of ≤7.5 × 10{sup –3}, 2.9 × 10{sup –2}, and 1.4 × 10{sup –2} yr{sup –1} deg{sup –2} with pulse energy densities >1.3 × 10{sup –22}, 1.1 × 10{sup –22}, and 1.4 × 10{sup –22} J m{sup –2} Hz{sup –1} and pulse widths of 5 s at the frequencies given above.

  14. Broad-Band Continuum and Line Emission of the gamma-Ray Blazar PKS 0537-441

    NASA Technical Reports Server (NTRS)

    Pian, E.; Falomo, R.; Hartman, R. C.; Maraschi, L.; Tavecchio, F.; Tornikoski, M.; Treves, A.; Urry, C. M.; Ballo, L.; Mukherjee, R.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    PKS 0537-441, a bright gamma ray emitting blazar was observed at radio, optical, UV and X-ray frequencies during various EGRET paintings, often quasi-simultaneously. In 1995 the object was found in an intense emission state at all wavelengths. BeppoSAX observations made in 1998, non-simultaneously with exposures at other frequencies, allow us to characterize precisely the spectral shape of the high energy blazer component, which we attribute to inverse Compton scatter in The optical-to-gamma-ray spectral energy distributions at the different epochs show that the gamma-ray luminosity dominates the barometric output. This, together with the presence of optical and UV line emission, suggests that, besides the synchrotron self-Compton mechanism, the Compton upscattering of photons external to the jet (e.g., in the broad line region) may have a significant role for high energy radiation. The multiwavelength variability can be reproduced by changes of the plasma bulk Lorentz factor. The spectrum secured by ICE in 1995 appears to be partially absorbed shortward of approximately 1700 Angstroms. However, this signature is not detected in the HST spectrum taker during a lower state of the source. The presence of intervening absorbers is not supported by optical imaging and spectroscopy of the field.

  15. Gamma-ray line astrophysics

    NASA Technical Reports Server (NTRS)

    Lingenfelter, R. E.; Ramaty, R.

    1986-01-01

    Recent observations of gamma-ray line emission from solar flares, gamma-ray bursts, the galactic center, the interstellar medium and the jets of SS433 are reviewed. The implications of these observations on high energy processes in these sources are discussed.

  16. Measurements of the Soft Gamma-Ray Emission from SN2014J with Suzaku

    NASA Astrophysics Data System (ADS)

    Terada, Y.; Maeda, K.; Fukazawa, Y.; Bamba, A.; Ueda, Y.; Katsuda, S.; Enoto, T.; Takahashi, T.; Tamagawa, T.; Röpke, F. K.; Summa, A.; Diehl, R.

    2016-05-01

    The hard X-ray detector (HXD) on board Suzaku measured soft γ-rays from the SN Ia SN2014J at 77 ± 2 days after the explosion. Although the confidence level of the signal is about 90% (i.e., 2σ), the 3σ upper limit has been derived at <2.2 × 10‑4 ph s‑1 cm‑2 in the 170–250 keV band as the first independent measurement of soft γ-rays with an instrument other than INTEGRAL. For this analysis, we have examined the reproducibility of the NXB model of HXD/GSO using blank sky data. We find that the residual count rate in the 90–500 keV band is distributed around an average of 0.19% with a standard deviation of 0.42% relative to the NXB rate. The averaged residual signals are consistent with that expected from the cosmic X-ray background. The flux of SN2014J derived from Suzaku measurements taken in one snapshot at t = 77 ± 2 days after the explosion is consistent with the INTEGRAL values averaged over the period between t = 50 and 100 days and also with explosion models of single or double degenerate scenarios. Being sensitive to the total ejecta mass surrounding the radioactive material, the ratio between continuum and line flux in the soft gamma-ray regime might distinguish different progenitor models. The Suzaku data have been examined with this relation at t = 77 ± 2 days, but could not distinguish models between single and double degenerate-progenitors. We disfavor explosion models with larger 56Ni masses than 1 M ⊙, from our 1σ error on the 170–250 keV X-ray flux of (1.2 ± 0.7) × 10‑4 ph s‑1 cm‑2.

  17. Measurements of the Soft Gamma-Ray Emission from SN2014J with Suzaku

    NASA Astrophysics Data System (ADS)

    Terada, Y.; Maeda, K.; Fukazawa, Y.; Bamba, A.; Ueda, Y.; Katsuda, S.; Enoto, T.; Takahashi, T.; Tamagawa, T.; Röpke, F. K.; Summa, A.; Diehl, R.

    2016-05-01

    The hard X-ray detector (HXD) on board Suzaku measured soft γ-rays from the SN Ia SN2014J at 77 ± 2 days after the explosion. Although the confidence level of the signal is about 90% (i.e., 2σ), the 3σ upper limit has been derived at <2.2 × 10-4 ph s-1 cm-2 in the 170-250 keV band as the first independent measurement of soft γ-rays with an instrument other than INTEGRAL. For this analysis, we have examined the reproducibility of the NXB model of HXD/GSO using blank sky data. We find that the residual count rate in the 90-500 keV band is distributed around an average of 0.19% with a standard deviation of 0.42% relative to the NXB rate. The averaged residual signals are consistent with that expected from the cosmic X-ray background. The flux of SN2014J derived from Suzaku measurements taken in one snapshot at t = 77 ± 2 days after the explosion is consistent with the INTEGRAL values averaged over the period between t = 50 and 100 days and also with explosion models of single or double degenerate scenarios. Being sensitive to the total ejecta mass surrounding the radioactive material, the ratio between continuum and line flux in the soft gamma-ray regime might distinguish different progenitor models. The Suzaku data have been examined with this relation at t = 77 ± 2 days, but could not distinguish models between single and double degenerate-progenitors. We disfavor explosion models with larger 56Ni masses than 1 M ⊙, from our 1σ error on the 170-250 keV X-ray flux of (1.2 ± 0.7) × 10-4 ph s-1 cm-2.

  18. Gravitational waves within the magnetar model of superluminous supernovae and gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Ho, Wynn C. G.

    2016-11-01

    The light curve of many supernovae (SNe) and gamma-ray bursts (GRBs) can be explained by a sustained injection of extra energy from its possible central engine, a rapidly rotating strongly magnetic neutron star (i.e. magnetar). The magnetic dipole radiation power that the magnetar supplies comes at the expense of the star's rotational energy. However, radiation by gravitational waves (GWs) can be more efficient than magnetic dipole radiation because of its stronger dependence on neutron star spin rate Ω, i.e. Ω6 (for a static `mountain') or Ω8 (for an r-mode fluid oscillation) versus Ω4 for magnetic dipole radiation. Here, we use the magnetic field B and initial spin period P0 inferred from SN and GRB observations to obtain simple constraints on the dimensionless amplitude of the mountain of ε < 0.01 and r-mode oscillation of α < 1, the former being similar to that obtained by recent works. We then include GW emission within the magnetar model. We show that when ε > 10-4(B/1014 G)(P0/1 ms) or α > 0.01(B/1014 G)(P0/1 ms)2, light curves are strongly affected, with significant decrease in peak luminosity and increase in time to peak luminosity. Thus, the GW effects studied here are more pronounced for low B and short P0 but are unlikely to be important in modelling SN and GRB light curves since the amplitudes needed for noticeable changes are quite large.

  19. Gravitational waves within the magnetar model of superluminous supernovae and gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Ho, Wynn C. G.

    2016-08-01

    The light curve of many supernovae (SNe) and gamma-ray bursts (GRBs) can be explained by a sustained injection of extra energy from its possible central engine, a rapidly rotating strongly magnetic neutron star (i.e., magnetar). The magnetic dipole radiation power that the magnetar supplies comes at the expense of the star's rotational energy. However radiation by gravitational waves (GWs) can be more efficient than magnetic dipole radiation because of its stronger dependence on neutron star spin rate Ω, i.e., Ω6 (for a static "mountain") or Ω8 (for a r-mode fluid oscillation) versus Ω4 for magnetic dipole radiation. Here we use the magnetic field B and initial spin period P0 inferred from SN and GRB observations to obtain simple constraints on the dimensionless amplitude of the mountain of ε < 0.01 and r-mode oscillation of α < 1, the former being similar to that obtained by recent works. We then include GW emission within the magnetar model. We show that when ε > 10-4(B/1014G)(P0/1ms) or α > 0.01(B/1014G)(P0/1ms)2, light curves are strongly affected, with significant decrease in peak luminosity and increase in time to peak luminosity. Thus the GW effects studied here are more pronounced for low B and short P0 but are unlikely to be important in modeling SN and GRB light curves since the amplitudes needed for noticeable changes are quite large.

  20. Local electron spectrum above 100 MeV derived from gamma-ray emissivity spectra

    NASA Technical Reports Server (NTRS)

    Strong, A. W.

    1985-01-01

    Two new determinations of the local gamma-ray emmissivity spectrum are in good accord and were used to derive constraints on the local electron spectrum. The requirement for an electron intensity above 1 GeV larger than previously believed is confirmed and no low energy upturn is then needed.

  1. Connection of Gamma-Ray Emission to the mm-Wave VLBI Core in Blazars

    NASA Astrophysics Data System (ADS)

    Jorstad, Svetlana; Marscher, Alan

    I will present total and polarized intensity images at ultra-high resolution (0.1 milliarcseconds) of a sample of 33 gamma-ray blazars obtained monthly with the Very Long Baseline Array (VLBA) at 43 GHz, starting in Summer 2008 when the Fermi Gamma-Ray Space Telescope began to operate. The VLBA observations determine the flux and polarization of the millimeter-wave core and other features of the jet, as well as the motions of bright superluminal knots. Comparison of the variability in gamma-rays and in the mm-wave core indicates a similarity as measured by a variability index defined by Aller et al. (2003). Analysis of the variability along with the jet kinematics suggests that in blazars with high variability indices (e.g. AO 0235+164, 3C 279, and PKS 1510-089), strong gamma-ray activity, lasting more than a month, occurs as a new superluminal knot propagates down the inner jet and passes through the core. This research is funded in part by NASA through Fermi Guest Investigator grants NNX08AV65G and NNX08AV61G, and by the National Science Foundation through grant AST-0907893.

  2. Investigating the peculiar emission from the new VHE gamma-ray source H1722+119

    NASA Astrophysics Data System (ADS)

    Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Antoranz, P.; Babic, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Buson, S.; Carosi, A.; Chatterjee, A.; Clavero, R.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; de Oña Wilhelmi, E.; Di Pierro, F.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Frantzen, K.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Garrido Terrats, D.; Gaug, M.; Giammaria, P.; Godinović, N.; González Muñoz, A.; Gora, D.; Guberman, D.; Hadasch, D.; Hahn, A.; Hanabata, Y.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Hughes, G.; Idec, W.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; La Barbera, A.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; López-Coto, R.; Majumdar, P.; Makariev, M.; Mallot, K.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Marcote, B.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Miranda, J. M.; Mirzoyan, R.; Moralejo, A.; Moretti, E.; Nakajima, D.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Nishijima, K.; Noda, K.; Nogués, L.; Orito, R.; Overkemping, A.; Paiano, S.; Palacio, J.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Pedaletti, G.; Perri, L.; Persic, M.; Poutanen, J.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Rhode, W.; Ribó, M.; Rico, J.; Rodriguez Garcia, J.; Saito, T.; Satalecka, K.; Schultz, C.; Schweizer, T.; Sillanpää, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Stamerra, A.; Steinbring, T.; Strzys, M.; Takalo, L.; Takami, H.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Thaele, J.; Torres, D. F.; Toyama, T.; Treves, A.; Verguilov, V.; Vovk, I.; Ward, J. E.; Will, M.; Wu, M. H.; Zanin, R.; D'Ammando, F.; Berdyugin, A.; Hovatta, T.; Max-Moerbeck, W.; Raiteri, C. M.; Readhead, A. C. S.; Reinthal, R.; Richards, J. L.; Verrecchia, F.; Villata, M.

    2016-07-01

    The Major Atmospheric Gamma-ray Imaging Cherenkov (MAGIC) telescopes observed the BL Lac object H1722+119 (redshift unknown) for six consecutive nights between 2013 May 17 and 22, for a total of 12.5 h. The observations were triggered by high activity in the optical band measured by the KVA (Kungliga Vetenskapsakademien) telescope. The source was for the first time detected in the very high energy (VHE, E > 100 GeV) γ-ray band with a statistical significance of 5.9σ. The integral flux above 150 GeV is estimated to be (2.0 ± 0.5) per cent of the Crab nebula flux. We used contemporaneous high energy (HE, 100 MeV < E < 100 GeV) γ-ray observations from Fermi-Large Area Telescope to estimate the redshift of the source. Within the framework of the current extragalactic background light models, we estimate the redshift to be z = 0.34 ± 0.15. Additionally, we used contemporaneous X-ray to radio data collected by the instruments on board the Swift satellite, the KVA, and the Owens Valley Radio Observatory telescope to study multifrequency characteristics of the source. We found no significant temporal variability of the flux in the HE and VHE bands. The flux in the optical and radio wavebands, on the other hand, did vary with different patterns. The spectral energy distribution of H1722+119 shows surprising behaviour in the ˜3 × 1014-1018 Hz frequency range. It can be modelled using an inhomogeneous helical jet synchrotron self-Compton model.

  3. SPECTRAL ANALYSIS AND INTERPRETATION OF THE {gamma}-RAY EMISSION FROM THE STARBURST GALAXY NGC 253

    SciTech Connect

    Abramowski, A.; Acero, F.; Akhperjanian, A. G.; Anton, G.; Balzer, A.; Brucker, J.; Barnacka, A.; Becherini, Y.; Birsin, E.; Biteau, J.; Brun, F.; Bolmont, J.; Brun, P.; Collaboration: H.E.S.S. Collaboration; and others

    2012-10-01

    Very high energy (VHE; E {>=} 100 GeV) and high-energy (HE; 100 MeV {<=} E {<=} 100 GeV) data from {gamma}-ray observations performed with the H.E.S.S. telescope array and the Fermi-LAT instrument, respectively, are analyzed in order to investigate the non-thermal processes in the starburst galaxy NGC 253. The VHE {gamma}-ray data can be described by a power law in energy with differential photon index {Gamma} = 2.14 {+-} 0.18{sub stat} {+-} 0.30{sub sys} and differential flux normalization at 1 TeV of F{sub 0} = (9.6 {+-} 1.5{sub stat}(+ 5.7, -2.9){sub sys}) Multiplication-Sign 10{sup -14} TeV{sup -1} cm{sup -2} s{sup -1}. A power-law fit to the differential HE {gamma}-ray spectrum reveals a photon index of {Gamma} 2.24 {+-} 0.14{sub stat} {+-} 0.03{sub sys} and an integral flux between 200 MeV and 200 GeV of F(0.2-200 GeV) = (4.9 {+-} 1.0{sub stat} {+-} 0.3{sub sys}) Multiplication-Sign 10{sup -9} cm{sup -2} s{sup -1}. No evidence for a spectral break or turnover is found over the dynamic range of both the LAT instrument and the H.E.S.S. experiment: a combined fit of a power law to the HE and VHE {gamma}-ray data results in a differential photon index {Gamma} = 2.34 {+-} 0.03 with a p-value of 30%. The {gamma}-ray observations indicate that at least about 20% of the energy of the cosmic rays (CRs) capable of producing hadronic interactions is channeled into pion production. The smooth alignment between the spectra in the HE and VHE {gamma}-ray domain suggests that the same transport processes dominate in the entire energy range. Advection is most likely responsible for charged particle removal from the starburst nucleus from GeV to multiple TeV energies. In a hadronic scenario for the {gamma}-ray production, the single overall power-law spectrum observed would therefore correspond to the mean energy spectrum produced by the ensemble of CR sources in the starburst region.

  4. Supernovae and Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Livio, Mario; Panagia, Nino; Sahu, Kailash

    2001-07-01

    Participants; Preface; Gamma-ray burst-supernova relation B. Paczynski; Observations of gamma-ray bursts G. Fishman; Fireballs T. Piran; Gamma-ray mechanisms M. Rees; Prompt optical emission from gamma-ray bursts R. Kehoe, C. Akerlof, R. Balsano, S. Barthelmy, J. Bloch, P. Butterworth, D. Casperson, T. Cline, S. Fletcher, F. Frontera, G. Gisler, J. Heise, J. Hills, K. Hurley, B. Lee, S. Marshall, T. McKay, A. Pawl, L. Piro, B. Priedhorsky, J. Szymanski and J. Wren; X-ray afterglows of gamma-ray bursts L. Piro; The first year of optical-IR observations of SN1998bw I. Danziger, T. Augusteijn, J. Brewer, E. Cappellaro, V. Doublier, T. Galama, J. Gonzalez, O. Hainaut, B. Leibundgut, C. Lidman, P. Mazzali, K. Nomoto, F. Patat, J. Spyromilio, M. Turatto, J. Van Paradijs, P. Vreeswijk and J. Walsh; X-ray emission of Supernova 1998bw in the error box of GRB980425 E. Pian; Direct analysis of spectra of type Ic supernovae D. Branch; The interaction of supernovae and gamma-ray bursts with their surroundings R. Chevalier; Magnetars, soft gamma-ray repeaters and gamma-ray bursts A. Harding; Super-luminous supernova remnants Y. -H. Chu, C. -H. Chen and S. -P. Lai; The properties of hypernovae: SNe Ic 1998bw, 1997ef, and SN IIn 1997cy K. Nomoto, P. Mazzali, T. Nakamura, K. Iwanmoto, K. Maeda, T. Suzuki, M. Turatto, I. Danziger and F. Patat; Collapsars, Gamma-Ray Bursts, and Supernovae S. Woosley, A. MacFadyen and A. Heger; Pre-supernova evolution of massive stars N. Panagia and G. Bono; Radio supernovae and GRB 980425 K. Weiler, N. Panagia, R. Sramek, S. Van Dyk, M. Montes and C. Lacey; Models for Ia supernovae and evolutionary effects P. Hoflich and I. Dominguez; Deflagration to detonation A. Khokhlov; Universality in SN Iae and the Phillips relation D. Arnett; Abundances from supernovae F. -K. Thielemann, F. Brachwitz, C. Freiburghaus, S. Rosswog, K. Iwamoto, T. Nakamura, K. Nomoto, H. Umeda, K. Langanke, G. Martinez-Pinedo, D. Dean, W. Hix and M. Strayer; Sne, GRBs, and the

  5. Search for TeV Gamma-ray Emission from GRB 100621A, an extremely bright GRB in X-rays, with H.E.S.S.

    NASA Astrophysics Data System (ADS)

    H.E.S.S. Collaboration; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Angüner, E.; Anton, G.; Balenderan, S.; Balzer, A.; Barnacka, A.; Becherini, Y.; Becker Tjus, J.; Bernlöhr, K.; Birsin, E.; Bissaldi, E.; Biteau, J.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Brucker, J.; Brun, F.; Brun, P.; Bulik, T.; Carrigan, S.; Casanova, S.; Cerruti, M.; Chadwick, P. M.; Chalme-Calvet, R.; Chaves, R. C. G.; Cheesebrough, A.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Conrad, J.; Couturier, C.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; deWilt, P.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; O'C. Drury, L.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Espigat, P.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giebels, B.; Glicenstein, J. F.; Grondin, M.-H.; Grudzińska, M.; Häffner, S.; Hahn, J.; Harris, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Jacholkowska, A.; Jahn, C.; Jamrozy, M.; Janiak, M.; Jankowsky, F.; Jung, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Khélifi, B.; Kieffer, M.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kneiske, T.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lefaucheur, J.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Lennarz, D.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; McComb, T. J. L.; Méhault, J.; Menzler, U.; Meyer, M.; Moderski, R.; Mohamed, M.; Moulin, E.; Murach, T.; Naumann, C. L.; de Naurois, M.; Niemiec, J.; Nolan, S. J.; Oakes, L.; O'Brien, P. T.; Ohm, S.; de Oña Wilhelmi, E.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perez, J.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Raue, M.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Rob, L.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Sanchez, D. A.; Santangelo, A.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sol, H.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Szostek, A.; Tam, P. H. T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tluczykont, M.; Trichard, C.; Valerius, K.; van Eldik, C.; Vasileiadis, G.; Venter, C.; Viana, A.; Vincent, P.; Völk, H. J.; Volpe, F.; Vorster, M.; Wagner, S. J.; Wagner, P.; Ward, M.; Weidinger, M.; Weitzel, Q.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Zacharias, M.; Zajczyk, A.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.

    2014-05-01

    The long gamma-ray burst (GRB) 100621A, at the time the brightest X-ray transient ever detected by Swift-XRT in the 0.3-10 keV range, has been observed with the H.E.S.S. imaging air Cherenkov telescope array, sensitive to gamma radiation in the very-high-energy (VHE, >100 GeV) regime. Due to its relatively small redshift of z ~ 0.5, the favourable position in the southern sky and the relatively short follow-up time (<700 s after the satellite trigger) of the H.E.S.S. observations, this GRB could be within the sensitivity reach of the H.E.S.S. instrument. The analysis of the H.E.S.S. data shows no indication of emission and yields an integral flux upper limit above ~380 GeV of 4.2 × 10-12 cm-2 s-1 (95% confidence level), assuming a simple Band function extension model. A comparison to a spectral-temporal model, normalised to the prompt flux at sub-MeV energies, constraints the existence of a temporally extended and strong additional hard power law, as has been observed in the other bright X-ray GRB 130427A. A comparison between the H.E.S.S. upper limit and the contemporaneous energy output in X-rays constrains the ratio between the X-ray and VHE gamma-ray fluxes to be greater than 0.4. This value is an important quantity for modelling the afterglow and can constrain leptonic emission scenarios, where leptons are responsible for the X-ray emission and might produce VHE gamma rays.

  6. THE NEWLY BORN MAGNETARS POWERING GAMMA-RAY BURST INTERNAL-PLATEAU EMISSION: ARE THERE STRANGE STARS?

    SciTech Connect

    Yu Yunwei; Cao Xiaofeng; Zheng Xiaoping

    2009-12-01

    The internal-plateau X-ray emission of gamma-ray bursts (GRBs) indicates that a newly born magnetar could be the central object of some GRBs. The observed luminosity and duration of the plateaus suggest that, for such a magnetar, a rapid spin with a sub- or millisecond period is sometimes able to last thousands of seconds. In this case, the conventional neutron star (NS) model for the magnetar may be challenged, since the rapid spin of nascent NSs would be remarkably decelerated within hundreds of seconds due to r-mode instability. In contrast, the r-modes can be effectively suppressed in nascent strange stars (SSs). In other words, to a certain extent, only SSs can keep nearly constant extremely rapid spin for a long period of time during the early ages of the stars. We thus propose that the sample of the GRB rapidly spinning magnetars can be used to test the SS hypothesis based on the distinct spin limits of NSs and SSs.

  7. Search for Gamma-Ray Emission from the Coma Cluster with Six Years of Fermi-LAT Data

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; Ajello, M.; Albert, A.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; Bonino, R.; Bottacini, E.; Bregeon, J.; Bruel, P.; Buehler, R.; Caliandro, G. A.; Cameron, R. A.; Caragiulo, M.; Caraveo, P. A.; Casandjian, J. M.; Cavazzuti, E.; Cecchi, C.; Charles, E.; Chekhtman, A.; Chiaro, G.; Ciprini, S.; Cohen-Tanugi, J.; Conrad, J.; Cutini, S.; D'Ammando, F.; de Angelis, A.; de Palma, F.; Desiante, R.; Digel, S. W.; Di Venere, L.; Drell, P. S.; Favuzzi, C.; Fegan, S. J.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Giglietto, N.; Giordano, F.; Giroletti, M.; Godfrey, G.; Green, D.; Grenier, I. A.; Guiriec, S.; Hays, E.; Hewitt, J. W.; Horan, D.; Jóhannesson, G.; Kuss, M.; Larsson, S.; Latronico, L.; Li, J.; Li, L.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Madejski, G. M.; Maldera, S.; Manfreda, A.; Mayer, M.; Mazziotta, M. N.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nuss, E.; Ohsugi, T.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paneque, D.; Pesce-Rollins, M.; Petrosian, V.; Piron, F.; Pivato, G.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Reimer, A.; Reimer, O.; Sánchez-Conde, M.; Sgrò, C.; Siskind, E. J.; Spada, F.; Spandre, G.; Spinelli, P.; Tajima, H.; Takahashi, H.; Thayer, J. B.; Tibaldo, L.; Torres, D. F.; Tosti, G.; Troja, E.; Vianello, G.; Wood, K. S.; Zimmer, S.; Fermi-LAT Collaboration; Rephaeli, Y.

    2016-03-01

    We present results from γ-ray observations of the Coma cluster incorporating six years of Fermi-LAT data and the newly released “Pass 8” event-level analysis. Our analysis of the region reveals low-significance residual structures within the virial radius of the cluster that are too faint for a detailed investigation with the current data. Using a likelihood approach that is free of assumptions on the spectral shape we derive upper limits on the γ-ray flux that is expected from energetic particle interactions in the cluster. We also consider a benchmark spatial and spectral template motivated by models in which the observed radio halo is mostly emission by secondary electrons. In this case, the median expected and observed upper limits for the flux above 100 {MeV} are 1.7 × 10-9 ph cm-2 s-1 and 5.2 × 10-9 ph cm-2 s-1 respectively (the latter corresponds to residual emission at the level of 1.8σ). These bounds are comparable to or higher than predicted levels of hadronic gamma-ray emission in cosmic-ray (CR) models with or without reacceleration of secondary electrons, although direct comparisons are sensitive to assumptions regarding the origin and propagation mode of CRs and magnetic field properties. The minimal expected γ-ray flux from radio and star-forming galaxies within the Coma cluster is roughly an order of magnitude below the median sensitivity of our analysis.

  8. The Fermi LAT/GBM detection of pulsed gamma-ray emission from PSR J1846-0258 up to 100 MeV

    NASA Astrophysics Data System (ADS)

    Kuiper, Lucien; Dekker, Ariane

    2016-05-01

    Applying phase coherent timing models, created using RXTE PCA and Swift XRT monitoring data of PSR J1846-0258 covering the period August 4, 2008 - March 11, 2016 (MJD 54682 - 57458), in timing analyses of Fermi LAT (PASS8) and Fermi GBM (TTE) data yielded for the first time the detection of pulsed gamma-ray emission from PSR J1846-0258 up to 100 MeV. Phase folding the barycentered Fermi LAT events (period MJD 56185-56338, i.e. Sept.

  9. NEUTRINO-COOLED ACCRETION MODEL WITH MAGNETIC COUPLING FOR X-RAY FLARES IN GAMMA-RAY BURSTS

    SciTech Connect

    Luo Yang; Gu Weimin; Liu Tong; Lu Jufu

    2013-08-20

    The neutrino-cooled accretion disk, which was proposed to work as the central engine of gamma-ray bursts, encounters difficulty in interpreting the X-ray flares after the prompt gamma-ray emission. In this paper, the magnetic coupling (MC) between the inner disk and the central black hole (BH) is taken into consideration. For mass accretion rates around 0.001 {approx} 0.1 M{sub Sun} s{sup -1}, our results show that the luminosity of neutrino annihilation can be significantly enhanced due to the coupling effects. As a consequence, after the gamma-ray emission, a remnant disk with mass M{sub disk} {approx}< 0.5 M{sub Sun} may power most of the observed X-ray flares with the rest frame duration less than 100 s. In addition, a comparison between the MC process and the Blandford-Znajek mechanism is shown on the extraction of BH rotational energy.

  10. Broad band simulation of Gamma Ray Bursts (GRB) prompt emission in presence of an external magnetic field

    NASA Astrophysics Data System (ADS)

    Ziaeepour, Houri; Gardner, Brian

    2011-12-01

    The origin of prompt emission in GRBs is not yet well understood. The simplest and most popular model is Synchrotron Self-Compton (SSC) emission produced by internal shocks inside an ultra-relativistic jet. However, recent observations of a delayed high energy component by the Fermi-LAT instrument have encouraged alternative models. Here we use a recently developed formulation of relativistic shocks for GRBs to simulate light curves and spectra of synchrotron and self-Compton emissions in the framework of internal shock model. This model takes into account the evolution of quantities such as densities of colliding shells, and fraction of kinetic energy transferred to electrons and to induced magnetic field. We also extend this formulation by considering the presence of a precessing external magnetic field. These simulations are very realistic and present significant improvement with respect to previous phenomenological GRB simulations. They reproduce light curves of separate peaks of real GRBs and variety of spectral slopes at E > Epeak observed by the Fermi-LAT instrument. The high energy emission can be explained by synchrotron emission and a subdominant contribution from inverse Compton. We also suggest an explanation for extended tail emission and relate it to the screening of the magnetic field and/or trapping of accelerated electrons in the electromagnetic energy structure of the plasma in the shock front. Spectral slopes of simulated bursts at E << Epeak are consistent with theoretical prediction and at E < Epeak can be flatter if the spectrum of electrons is roughly flat or has a shallow slope at low energies. The observed flat spectra at soft gamma-ray and hard x-ray bands is the evidence that there is a significant contribution at E < Epeak from lower Lorentz factor wing of electron distribution which have a roughly random acceleration rather than being thermal. This means that the state of matter in the jet at the time of ejection is most probably

  11. Gamma-Ray Pulsar Revolution

    NASA Astrophysics Data System (ADS)

    Caraveo, Patrizia A.

    2014-08-01

    Isolated neutron stars (INSs) were the first sources identified in the field of high-energy gamma-ray astronomy. In the 1970s, only two sources had been identified, the Crab and Vela pulsars. However, although few in number, these objects were crucial in establishing the very concept of a gamma-ray source. Moreover, they opened up significant discovery space in both the theoretical and phenomenological fronts. The need to explain the copious gamma-ray emission of these pulsars led to breakthrough developments in understanding the structure and physics of neutron star (NS) magnetospheres. In parallel, the 20-year-long chase to understand the nature of Geminga unveiled the existence of a radio-quiet, gamma-ray-emitting INS, adding a new dimension to the INS family. We are living through an extraordinary time of discovery. The current generation of gamma-ray detectors has vastly increased the population of known gamma-ray-emitting NSs. The 100 mark was crossed in 2011, and we are now over 150. The gamma-ray-emitting NS population exhibits roughly equal numbers of radio-loud and radio-quiet young INSs, plus an astonishing, and unexpected, group of isolated and binary millisecond pulsars (MSPs). The number of MSPs is growing so rapidly that they are on their way to becoming the most numerous members of the family of gamma-ray-emitting NSs. Even as these findings have set the stage for a revolution in our understanding of gamma-ray-emitting NSs, long-term monitoring of the gamma-ray sky has revealed evidence of flux variability in the Crab Nebula as well as in the pulsed emission from PSR J2021+4026, challenging a four-decades-old, constant-emission paradigm. Now we know that both pulsars and their nebulae can, indeed, display variable emission.

  12. The Compton Gamma Ray Observatory

    NASA Astrophysics Data System (ADS)

    Gehrels, N.; Chipman, E.; Kniffen, D.

    1994-06-01

    The Arthur Holly Compton Gamma Ray Observatory Compton) is the second in NASA's series of great Observatories. Launched on 1991 April 5, Compton represents a dramatic increase in capability over previous gamma-ray missions. The spacecraft and scientific instruments are all in good health, and many significant discoveries have already been made. We describe the capabilities of the four scientific instruments, and the observing program of the first 2 years of the mission. Examples of early discoveries by Compton are enumerated, including the discovery that gamma-ray bursts are isotropic but spatially inhomogeneous in their distribution; the discovery of a new class of high-energy extragalacatic gamma-ray sources, the gamma-ray AGNs; the discovery of emission from SN 1987A in the nuclear line of Co-57; and the mapping of emission from Al-26 in the interstellar medium (ISM) near the Galactic center. Future observations will include deep surveys of selected regions of the sky, long-tem studies of individual objects, correlative studies of objects at gamma-ray and other energies, a Galactic plane survey at intermediate gamma-ray energies, and improved statistics on gamma-ray bursts to search for small anisotropies. After completion of the all-sky survey, a Guest Investigator program is in progress with guest observers' time share increasing from 30% upward for the late mission phases.

  13. Monte Carlo model for neutron capture prompt gamma-ray analysis of coal in transmission geometry

    SciTech Connect

    Yuan, R.Y.

    1984-01-01

    In order to relate the detector response to the elemental concentration, a great number of elaborate experimental standards are needed. It is tedious and curbs, among other factors, the wider use of the neutron capture prompt gamma-ray analysis (NCPGRA). A Monte Carlo model therefore has been developed to predict the photopeak detector response at all elemental concentrations of interest in the host matrix simultaneously, and an experimental system which simulates the on-line analysis of coal on a conveyor belt has been built to test this model and increase the extent of its readiness for industrial application. Variance reduction techniques, including an expected value technique followed by Russian Roulette, are used extensively to reduce computation effort. Each of the various shielding components of the analyzer is considered with respect to both neutron transport and prompt gamma-ray attenuation. Further, the free gas model is employed to simulate thermal neutron interaction. Results of this Monte Carlo model are generally in good agreement with photopeak detector responses on those major and minor elements measurable by NCPGRA in coal, and the agreement is excellent on the variation in detector response with elemental concentration for sulfur and titanium. Therefore, it gives high confidence in the validity of the Monte Carlo model. The model is thus expected to be generally useful for calibrating NCPGRA analyzers in transmission geometry.

  14. ON THE FORMATION OF Lyalpha EMISSION FROM RESONANTLY SCATTERED CONTINUUM PHOTONS OF GAMMA-RAY BURST's AFTERGLOW

    SciTech Connect

    Xu Wen; Wu Xiangping

    2010-02-20

    The continuum spectrum of gamma-ray burst's (GRB) afterglow at Lyalpha wavelength is known to be otherwise featureless except for the existence of a pair of smooth damping wings. Resonant scattering of photons with the ambient neutral hydrogen around the GRB may alter this picture. We study the formation and evolution of the spectral imprint of these resonantly scattered photons in the context of GRB's afterglow. Based on an analytic model that includes photons that are scattered only once, as well as a complete treatment of all the scatterings using Monte Carlo simulations, we are able to calculate the spectrum and luminosity of this Lyalpha emission from a very early moment up to a late epoch. We find that the amount, the motion, and the geometry of the neutral hydrogen around the GRB, together with the time behavior of the source are the crucial factors that affect the predicted luminosity and spectral profile. The flux of the Lyalpha emission is found to be mainly contributed by photons that are scattered only once. The flux is of the order 10{sup -4}-10{sup -9} relative to the undecayed maximum flux of the transmitted continuum, making the feature negligible but potentially observable. If not obscured by the host galaxy's damped Lyalpha absorption systems or intergalactic neutral hydrogen, the feature may appear sometime from 1 hr to several years when the directly transmitted light has faded away. This scattered emission feature can be distinguished from Lyalpha photons of other origins by its luminosity evolution and by its gradual narrowing of profile with time. The typical timescale for spectral variance is that of the light crossing time of a hydrogen clump close to the GRB. If observed, the resonant peaks' time-dependent behavior is a scanning probe on the distribution of neutral hydrogen in GRB's immediate neighborhood.

  15. Particle acceleration and gamma rays in solar flares: Recent observations and new modeling

    NASA Astrophysics Data System (ADS)

    Miroshnichenko, L. I.; Gan, W. Q.

    2012-09-01

    Experiments on SMM, GAMMA, Yohkoh, GRANAT, Compton GRO, INTEGRAL, RHESSI and CORONAS-F satellites over the past three decades have provided copious data for fundamental research relating to particle acceleration, transport and energetics of flares and to the ambient abundance of the solar corona, chromosphere and photosphere. We summarize main results of solar gamma-astronomy (including some results of several joint Russian-Chinese projects) and try to appraise critically a real contribution of those results into modern understanding of solar flares, particle acceleration at the Sun and some properties of the solar atmosphere. Recent findings based on the RHESSI, INTEGRAL and CORONAS-F measurements (source locations, spectrum peculiarities, 3He abundance etc.) are especially discussed. Some unusual features of extreme solar events (e.g., 28 October 2003 and 20 January 2005) have been found in gamma-ray production and generation of relativistic particles (solar cosmic rays, or SCR). A number of different plausible assumptions are considered concerning the details of underlying physical processes during large flares: (1) existence of a steeper distribution of surrounding medium density as compared to a standard astrophysical model (HSRA) for the solar atmosphere; (2) enhanced content of the 3He isotope; (3) formation of magnetic trap with specific properties; (4) prevailing non-uniform (e.g., fan-like) velocity (angular) distributions of secondary neutrons, etc. It is emphasized that real progress in this field may be achieved only by combination of gamma-ray data in different energy ranges with multi-wave and energetic particle observations during the same event. We especially note several promising lines for the further studies: (1) resonant acceleration of the 3He ions in the corona; (2) timing of the flare evolution by gamma-ray fluxes in energy range above 90 MeV; (3) separation of gamma-ray fluxes from different sources at/near the Sun (e.g., different

  16. Model of gamma sky for the Fermi Gamma-ray Space Telescope (FGST)

    SciTech Connect

    McLeod, Andrew; /UC, San Diego /SLAC /KIPAC, Menlo Park

    2010-08-25

    A number of important parameters of cosmic-ray distribution, propagation, and interaction in the Milky Way can be predicted through the comparison of measured cosmic-ray and gamma-ray spectra to the spectra of simulated Galaxies. These predictions are made by altering the physical parameters governing Galaxy simulations until a best-fit set of parameters is found. Since the accuracy of this method is limited by the quality of available data, the exceptional precision of recent FGST gamma-ray measurements makes unprecedented galactic model refinement possible. Consequently, this data was used as a benchmark in optimizing galactic models derived by GALPROP. An in-depth investigation was performed on a wide range of galactic models, and improvement or degeneration in each was gauged through specialized analysis using novel GaDGET software. By analyzing individual galactic parameters and their effects on observed spectra, a new optimized set of parameters was found that better fits the Fermi data than previous GALPROP models. This result is especially important in refining previous estimates of galactic parameters that cannot be measured directly. It also provides an important check on known galactic parameters and enhances GALPROPs value as a high-level modeling tool.

  17. Gamma-ray emission and nucleosynthesis of lithium by young pulsars

    NASA Technical Reports Server (NTRS)

    Clayton, D. D.; Dwek, E.

    1976-01-01

    It is proposed that Li-7 is produced in the Galaxy primarily by alpha-alpha collisions surrounding newly born pulsars. About 10 percent of the pulsar energy losses are converted to medium-energy alpha-particles which collide in a dominantly He nebula. The problem of the origin of lithium would be solved by the scenario, and clear-cut tests by nuclear gamma-ray astronomy are described.

  18. Nuclear gamma rays from energetic particle interactions

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Kozlovsky, B.; Lingenfelter, R. E.

    1978-01-01

    Gamma ray line emission from nuclear deexcitation following energetic particle reactions is evaluated. The compiled nuclear data and the calculated gamma ray spectra and intensities can be used for the study of astrophysical sites which contain large fluxes of energetic protons and nuclei. A detailed evaluation of gamma ray line production in the interstellar medium is made.

  19. The Gamma-ray Sky with Fermi

    NASA Technical Reports Server (NTRS)

    Thompson, David

    2012-01-01

    Gamma rays reveal extreme, nonthermal conditions in the Universe. The Fermi Gamma-ray Space Telescope has been exploring the gamma-ray sky for more than four years, enabling a search for powerful transients like gamma-ray bursts, novae, solar flares, and flaring active galactic nuclei, as well as long-term studies including pulsars, binary systems, supernova remnants, and searches for predicted sources of gamma rays such as dark matter annihilation. Some results include a stringent limit on Lorentz invariance derived from a gamma-ray burst, unexpected gamma-ray variability from the Crab Nebula, a huge gamma-ray structure associated with the center of our galaxy, surprising behavior from some gamma-ray binary systems, and a possible constraint on some WIMP models for dark matter.

  20. A COMPREHENSIVE STUDY OF GAMMA-RAY BURST OPTICAL EMISSION. I. FLARES AND EARLY SHALLOW-DECAY COMPONENT

    SciTech Connect

    Li Liang; Liang Enwei; Tang Qingwen; Chen Jiemin; Xi Shaoqiang; Zhang Bing; Lu Ruijing; Lue Lianzhong; Lue Houjun; Gao He; Zhang Jin; Wei Jianyan; Yi Shuangxi E-mail: zhang@physics.unlv.edu

    2012-10-10

    Well-sampled optical light curves of 146 gamma-ray bursts (GRBs) are compiled from the literature. By empirical fitting, we identify eight possible emission components and summarize the results in a 'synthetic' light curve. Both optical flare and early shallow-decay components are likely related to long-term central engine activities. We focus on their statistical properties in this paper. Twenty-four optical flares are obtained from 19 GRBs. The isotropic R-band energy is smaller than 1% of E{sub {gamma},iso}. The relation between the isotropic luminosities of the flares and gamma rays follows L{sup F}{sub R,iso}{proportional_to}L {sup 1.11{+-}0.27}{sub {gamma},iso}. Later flares tend to be wider and dimmer, i.e., w{sup F} {approx} t{sup F}{sub p}/2 and L{sup F}{sub R,iso}{proportional_to}[t{sup F}{sub p}/(1 + z)]{sup -1.15{+-}0.15}. The detection probability of the optical flares is much smaller than that of X-ray flares. An optical shallow-decay segment is observed in 39 GRBs. The relation between the break time and break luminosity is a power law, with an index of -0.78 {+-} 0.08, similar to that derived from X-ray flares. The X-ray and optical breaks are usually chromatic, but a tentative correlation is found. We suggest that similar to the prompt optical emission that tracks {gamma}-rays, the optical flares are also related to the erratic behavior of the central engine. The shallow-decay component is likely related to a long-lasting spinning-down central engine or piling up of flare materials onto the blast wave. Mixing of different emission components may be the reason for the diverse chromatic afterglow behaviors.

  1. A Model for Short Gamma-Ray Bursts: Heated Neutron Stars in Close Binary Systems

    SciTech Connect

    Salmonson, J.D.; Wilson, J.R.

    2001-12-17

    In this paper we present a model for the short (< second) population of gamma-ray bursts (GRBs). In this model heated neutron stars in a close binary system near their last stable orbit emit neutrinos at large luminosities ({approx} 10{sup 53} ergs/sec). A fraction of these neutrinos will annihilate to form an e{sup +}e{sup -} pair plasma wind which will, in turn, expand and recombine to photons which make the gamma-ray burst. We study neutrino annihilation and show that a substantial fraction ({approx}1/2) of energy deposited comes from inter-star neutrinos, where each member of the neutrino pair originates from each neutron star. Thus, in addition to the annihilation of neutrinos blowing off of a single star, we have a new source of baryon free energy that is deposited between the stars. To model the e{sup +}e{sup -} pair plasma wind between stars, we do three-dimensional relativistic numerical hydrodynamic calculations. Preliminary results are also presented of new, fully general relativistic calculations of gravitationally attracting stars falling from infinity with no angular momentum. These simulations exhibit a compression effect.

  2. Long-Term Monitoring of the High-Energy Gamma-Ray Emission from LS I +61 deg 303 and LS 5039

    NASA Technical Reports Server (NTRS)

    Hadasch, D.; Torres, D. F.; Tanaka, T.; Corbet, R. H. D.; Hill, A. B.; Dubois, R.; Dubus, G.; Glanzman, T.; Corbel, S.; Li, J.; Chen, Y. P.; Zhang, S.; Caliandro, G. A.; Kerr, M.; Richards, J. L.; Max-Moerbeck, W.; Readhead, A.; Pooley, G.

    2012-01-01

    The Fermi Large Area Telescope (LAT) reported the first definitive gigaelectron volts detections of the binaries LS I +61 deg 303 and LS 5039 in the first year after its launch in 2008 June. These detections were unambiguous as a consequence of the reduced positional uncertainty and the detection of modulated gamma-ray emission on the corresponding orbital periods. An analysis of new data from the LAT, comprising 30 months of observations, identifies a change in the gamma-ray behavior of LS I +61 deg 303. An increase in flux is detected in 2009 March and a steady decline in the orbital flux modulation is observed. Significant emission up to 30 gigaelectron volts is detected by the LAT; prior data sets led to upper limits only. Contemporaneous terraelectron volt observations no longer detected the source, or found it-in one orbit-close to periastron, far from the phases at which the source previously appeared at terraelectron volt energies. The detailed numerical simulations and models that exist within the literature do not predict or explain many of these features now observed at gigaelectron volt and terraelectron volt energies. New ideas and models are needed to fully explain and understand this behavior. A detailed phase-resolved analysis of the spectral characterization of LS I +61 deg 303 in the gigaelectron volt regime ascribes a power law with an exponential cutoff spectrum along each analyzed portion of the system's orbit. The on-source exposure of LS 5039 is also substantially increased with respect to our prior publication. In this case, whereas the general gamma-ray properties remain consistent, the increased statistics of the current data set allows for a deeper investigation of its orbital and spectral evolution.

  3. LONG-TERM MONITORING OF THE HIGH-ENERGY {gamma}-RAY EMISSION FROM LS I +61 Degree-Sign 303 AND LS 5039

    SciTech Connect

    Hadasch, D.; Torres, D. F.; Caliandro, G. A.; Tanaka, T.; Hill, A. B.; Dubois, R.; Glanzman, T.; Kerr, M.; Corbet, R. H. D.; Dubus, G.; Li, J.; Chen, Y. P.; Zhang, S.; Richards, J. L.; Max-Moerbeck, W.; Readhead, A.; Pooley, G.

    2012-04-10

    The Fermi Large Area Telescope (LAT) reported the first definitive GeV detections of the binaries LS I +61 Degree-Sign 303 and LS 5039 in the first year after its launch in 2008 June. These detections were unambiguous as a consequence of the reduced positional uncertainty and the detection of modulated {gamma}-ray emission on the corresponding orbital periods. An analysis of new data from the LAT, comprising 30 months of observations, identifies a change in the {gamma}-ray behavior of LS I +61 Degree-Sign 303. An increase in flux is detected in 2009 March and a steady decline in the orbital flux modulation is observed. Significant emission up to 30 GeV is detected by the LAT; prior data sets led to upper limits only. Contemporaneous TeV observations no longer detected the source, or found it-in one orbit-close to periastron, far from the phases at which the source previously appeared at TeV energies. The detailed numerical simulations and models that exist within the literature do not predict or explain many of these features now observed at GeV and TeV energies. New ideas and models are needed to fully explain and understand this behavior. A detailed phase-resolved analysis of the spectral characterization of LS I +61 Degree-Sign 303 in the GeV regime ascribes a power law with an exponential cutoff spectrum along each analyzed portion of the system's orbit. The on-source exposure of LS 5039 is also substantially increased with respect to our prior publication. In this case, whereas the general {gamma}-ray properties remain consistent, the increased statistics of the current data set allows for a deeper investigation of its orbital and spectral evolution.

  4. LOCATION OF {gamma}-RAY FLARE EMISSION IN THE JET OF THE BL LACERTAE OBJECT OJ287 MORE THAN 14 pc FROM THE CENTRAL ENGINE

    SciTech Connect

    Agudo, Ivan; Jorstad, Svetlana G.; Marscher, Alan P.; D'Arcangelo, Francesca D.; Taylor, Brian; Larionov, Valeri M.; Blinov, Dmitriy A.; Hagen-Thorn, Vladimir A.; Morozova, Daria A.; Gomez, Jose L.; Roca-Sogorb, Mar; Laehteenmaeki, Anne; Nieppola, Elina; Tornikoski, Merja; Gurwell, Mark; Smith, Paul S.; Wiesemeyer, Helmut; Thum, Clemens; Heidt, Jochen; Schmidt, Gary D.

    2011-01-01

    We combine time-dependent multi-waveband flux and linear polarization observations with submilliarcsecond-scale polarimetric images at {lambda} = 7 mm of the BL Lacertae type blazar OJ287 to locate the {gamma}-ray emission in prominent flares in the jet of the source >14 pc from the central engine. We demonstrate a highly significant correlation between the strongest {gamma}-ray and millimeter-wave flares through Monte Carlo simulations. The two reported {gamma}-ray peaks occurred near the beginning of two major millimeter-wave outbursts, each of which is associated with a linear polarization maximum at millimeter wavelengths. Our very long baseline array observations indicate that the two millimeter-wave flares originated in the second of two features in the jet that are separated by >14 pc. The simultaneity of the peak of the higher-amplitude {gamma}-ray flare and the maximum in polarization of the second jet feature implies that the {gamma}-ray and millimeter-wave flares are cospatial and occur >14 pc from the central engine. We also associate two optical flares, accompanied by sharp polarization peaks, with the two {gamma}-ray events. The multi-waveband behavior is most easily explained if the {gamma}-rays arise from synchrotron self-Compton scattering of optical photons from the flares. We propose that flares are triggered by interaction of moving plasma blobs with a standing shock. The {gamma}-ray and optical emission is quenched by inverse Compton losses as synchrotron photons from the newly shocked plasma cross the emission region. The millimeter-wave polarization is high at the onset of a flare, but decreases as the electrons emitting at these wavelengths penetrate less polarized regions.

  5. Discovery of Very High Energy Gamma-Ray Emission from MS1221.8+2452 with the MAGIC telescopes

    NASA Astrophysics Data System (ADS)

    Cortina, Juan

    2013-05-01

    The MAGIC collaboration reports the discovery of very high energy (VHE; E>100 GeV) gamma-ray emission from MS1221.8+2452 (12h24m24.2s +24d36m24s, J2000.0). MS1221.8+2452 is a blazar located at a redshift of 0.218 (Sbarufatti et al., 2005, ApJ 635, 173) and classified as a high synchrotron peaked (HSP) BL Lac. It is one of the very few BL Lacs that has been imaged with the Hubble Space Telescope (Jannuzzi et al., 1997, ApJ 491, 146).

  6. A balloon-borne high-resolution spectrometer for observations of gamma-ray emission from solar flares

    NASA Technical Reports Server (NTRS)

    Crannell, C. J.; Starr, R.; Stottlemyre, A. R.; Trombka, J. I.

    1984-01-01

    The design, development, and balloon-flight verification of a payload for observations of gamma-ray emission from solar flares are reported. The payload incorporates a high-purity germanium semiconductor detector, standard NIM and CAMAC electronics modules, a thermally stabilized pressure housing, and regulated battery power supplies. The flight system is supported on the ground with interactive data-handling equipment comprised of similar electronics hardware. The modularity and flexibility of the payload, together with the resolution and stability obtained throughout a 30-hour flight, make it readily adaptable for high-sensitivity, long-duration balloon fight applications.

  7. Monte Carlo modeling of neutron and gamma-ray imaging systems

    SciTech Connect

    Hall, J.

    1996-04-01

    Detailed numerical prototypes are essential to design of efficient and cost-effective neutron and gamma-ray imaging systems. We have exploited the unique capabilities of an LLNL-developed radiation transport code (COG) to develop code modules capable of simulating the performance of neutron and gamma-ray imaging systems over a wide range of source energies. COG allows us to simulate complex, energy-, angle-, and time-dependent radiation sources, model 3-dimensional system geometries with ``real world`` complexity, specify detailed elemental and isotopic distributions and predict the responses of various ty