Science.gov

Sample records for gamma-ray induced chromosome

  1. Early and Late Chromosome Damages in Human Lymphocytes Induced by Gamma Rays and Fe Ions

    NASA Technical Reports Server (NTRS)

    Sunagawa, Mayumi; Zhang, Ye; Yeshitla, Samrawit; Kadhim, Munira; Wilson, Bobby; Wu, Honglu

    2014-01-01

    Chromosomal translocations and inversions are considered stable, and cells containing these types of chromosome aberrations can survive multiple cell divisions. An efficient method to detect an inversion is multi-color banding fluorescent in situ hybridization (mBAND) which allows identification of both inter- and intrachromosome aberrations simultaneously. Post irradiation, chromosome aberrations may also arise after multiple cell divisions as a result of genomic instability. To investigate the stable or late-arising chromosome aberrations induced after radiation exposure, we exposed human lymphocytes to gamma rays and Fe ions ex vivo, and cultured the cells for multiple generations. Chromosome aberrations were analyzed in cells collected at first mitosis and at several time intervals during the culture period post irradiation. With gamma irradiation, about half of the damages observed at first mitosis remained after 7 day- and 14 day- culture, suggesting the transmissibility of damages to the surviving progeny. Detailed analysis of chromosome break ends participating in exchanges revealed a greater fraction of break ends involved in intrachromosome aberrations in the 7- and 14-day samples in comparison to the fraction at first mitosis. In particular, simple inversions were found at 7 and 14 days, but not at the first mitosis, suggesting that some of the aberrations might be formed days post irradiation. In contrast, at the doses that produced similar frequencies of gamma-induced chromosome aberrations as observed at first mitosis, a significantly lower yield of aberrations remained at the same population doublings after Fe ion exposure. At these equitoxic doses, more complex type aberrations were observed for Fe ions, indicating that Fe ion-induced initial chromosome damages are more severe and may lead to cell death. Comparison between low and high doses of Fe ion irradiation in the induction of late damages will also be discussed.

  2. Radioprotective-antimutagenic effects of rosemary phenolics against chromosomal damage induced in human lymphocytes by gamma-rays.

    PubMed

    Del Baño, M J; Castillo, J; Benavente-García, O; Lorente, J; Martín-Gil, R; Acevedo, C; Alcaraz, M

    2006-03-22

    The radioprotective effects of carnosic acid (CA), carnosol (COL), and rosmarinic acid (RO) against chromosomal damage induced by gamma-rays, compared with those of L-ascorbic acid (AA) and the S-containing compound dimethyl sulfoxide (DMSO), were determined by use of the micronucleus test for antimutagenic activity, evaluating the reduction in the frequency of micronuclei (MN) in cytokinesis-blocked cells of human lymphocytes before and after gamma-ray irradiation. With treatment before gamma-irradiation, the most effective compounds were, in order, CA > RO > or = COL > AA > DMSO. The radioprotective effects (antimutagenic) with treatment after gamma-irradiation were lower, and the most effective compounds were CA and COL. RO and AA presented small radioprotective activity, and the sulfur-containing compound DMSO lacked gamma-ray radioprotection capacity. Therefore, CA and COL are the only compounds that showed a significant antimutagenic activity both before and after gamma-irradiation treatments. These results are closely related to those reported by other authors on the antioxidant activity of the same compounds, and the degree of effectiveness depends on their structure. Furthermore, the results for treatments before and after gamma-ray irradiation suggest the existence of different radioprotective mechanisms in each case.

  3. The repair of gamma-ray-induced chromosomal damage in human lymphocytes after exposure to extremely low frequency electromagnetic fields.

    PubMed

    Lloyd, D; Hone, P; Edwards, A; Cox, R; Halls, J

    2004-01-01

    G(0) human blood lymphocytes were irradiated with 2.0 Gy gamma-rays and cultured to metaphase whilst held in a 50-Hz power frequency magnetic field of 0.23, 0.47 or 0.7 mT. No differences were found in the frequencies of gamma-induced chromosome aberrations observed in cells held in the EM fields compared with replicates held in a sham coil. Similar field conditions have been reported to increase the frequency of gamma-induced HPRT mutations, leading to a suggestion that the EM fields alter the fidelity of repair of genomic lesions. This was not confirmed by the chromosome aberration assay described here.

  4. mBAND Analysis of Late Chromosome Aberrations in Human Lymphocytes Induced by Gamma Rays and Fe Ions

    NASA Technical Reports Server (NTRS)

    Sunagawa, Mayumi; Zhang, Ye; Yeshitla, Samrawit; Kadhim, Munira; Wilson, Bobby; Wu, Honglu

    2014-01-01

    Chromosomal translocations and inversions are considered stable, and cells containing these types of chromosome aberrations can survive multiple cell divisions. An efficient method to detect an inversion is multi-color banding fluorescent in situ hybridization (mBAND) which allows identification of both inter- and intrachromosome aberrations simultaneously. Post irradiation, chromosome aberrations may also arise after multiple cell divisions as a result of genomic instability. To investigate the stable or late-arising chromosome aberrations induced after radiation exposure, we exposed human lymphocytes to gamma rays and Fe ions ex vivo, and cultured the cells for multiple generations. Chromosome aberrations were analyzed in cells collected at first mitosis and at several time intervals during the culture period post irradiation. With gamma irradiation, about half of the damages observed at first mitosis remained after 7 day- and 14 day- culture, suggesting the transmissibility of damages to the surviving progeny. Detailed analysis of chromosome break ends participating in exchanges revealed a greater fraction of break ends involved in intrachromosome aberrations in the 7- and 14-day samples in comparison to the fraction at first mitosis. In particular, simple inversions were found at 7 and 14 days, but not at the first mitosis, suggesting that some of the aberrations might be formed days post irradiation. In contrast, at the doses that produced similar frequencies of gamma-induced chromosome aberrations as observed at first mitosis, a significantly lower yield of aberrations remained at the same population doublings after Fe ion exposure. At these equitoxic doses, more complex type aberrations were observed for Fe ions, indicating that Fe ion-induced initial chromosome damages are more severe and may lead to cell death. Comparison between low and high doses of Fe ion irradiation in the induction of late damages will also be discussed.

  5. Variation in sensitivity to. gamma. -ray-induced chromosomal aberrations during the mitotic cycle of the sea urchin egg

    SciTech Connect

    Ejima, Y.; Nakamura, I.; Shiroya, T.

    1982-11-01

    Sea urchin eggs were irradiated with /sup 137/Cs ..gamma.. rays at various stages of the mitotic cycle, and chromosomal aberrations at the first postirradiation mitosis and embryonic abnormalities at later developmental stages were examined. The radiosensitivity of the eggs to both endpoints varied in parallel with the mitotic stage at the time of irradiation, suggesting a possible relationship between chromosomal damage and embryonic abnormalities.

  6. mBAND analysis of chromosome aberrations in human epithelial cells induced by gamma-rays and secondary neutrons of low dose rate.

    PubMed

    Hada, M; Gersey, B; Saganti, P B; Wilkins, R; Cucinotta, F A; Wu, H

    2010-08-14

    Human risks from chronic exposures to both low- and high-LET radiation are of intensive research interest in recent years. In the present study, human epithelial cells were exposed in vitro to gamma-rays at a dose rate of 17 mGy/h or secondary neutrons of 25 mGy/h. The secondary neutrons have a broad energy spectrum that simulates the Earth's atmosphere at high altitude, as well as the environment inside spacecrafts like the Russian MIR station and the International Space Station (ISS). Chromosome aberrations in the exposed cells were analyzed using the multicolor banding in situ hybridization (mBAND) technique with chromosome 3 painted in 23 colored bands that allows identification of both inter- and intrachromosome exchanges including inversions. Comparison of present dose responses between gamma-rays and neutron irradiations for the fraction of cells with damaged chromosome 3 yielded a relative biological effectiveness (RBE) value of 26+/-4 for the secondary neutrons. Our results also revealed that secondary neutrons of low dose rate induced a higher fraction of intrachromosome exchanges than gamma-rays, but the fractions of inversions observed between these two radiation types were indistinguishable. Similar to the previous findings after acute radiation exposures, most of the inversions observed in the present study were accompanied by other aberrations. The fractions of complex type aberrations and of unrejoined chromosomal breakages were also found to be higher in the neutron-exposed cells than after gamma-rays. We further analyzed the location of the breaks involved in chromosome aberrations along chromosome 3, and observed hot spots after gamma-ray, but not neutron, exposures.

  7. Analysis of gamma-rays induced chromosome aberrations: a fingerprint evaluation with a combination of pan-centromeric and pan-telomeric probes.

    PubMed

    Benkhaled, L; Barrios, L; Mestres, M; Caballin, M R; Ribas, M; Barquinero, J F

    2006-12-01

    To evaluate the types of induced chromosome aberrations after the exposure of peripheral blood to gamma-rays by the simultaneous detection of all centromeres and telomeres; and to analyse the suitability of different radiation fingerprints for the assessment of radiation quality in cases of recent exposures. Peripheral blood samples were irradiated at 2, 4 and 6 Gy of gamma-rays. Cytogenetic analysis was carried out by fluorescence in situ hybridization (FISH) technique with pan-centromeric and peptide nucleic acid (PNA)-telomeric DNA probes. Cells were analysed using a Cytovision FISH workstation, chromosome aberrations and the length of the acentric fragments were recorded. The total number of the incomplete chromosome elements was 276. The ratio between incomplete elements and multicentrics was 0.38. The number of acentrics was 1096, 71% were complete acentrics, 15% incomplete acentrics, and 14% interstitial fragments. The relative length of complete, incomplete and interstitial acentrics fragments were 2.70 +/- 0.04, 1.91 +/- 0.07, and 1.42 +/- 0.04 respectively. The mean value of the F-ratio was 11.5 higher than the one, 5.5, previously obtained for alpha-particles. For the G-ratio there was no difference between gamma-rays and alpha-particles, 2.8 and 2.8 respectively. The mean value of the H-ratio for gamma-rays, 0.25, was lower than for alpha-particles 0.40. The results support that the percentage of incomplete chromosome aberrations depends on radiation type; low-linear energy transfer (LET) radiation would produces less incomplete aberrations than high-LET radiation. The F- and H-ratios seem to be good indicators of radiation quality, although a real estimation of the H-ratio is only possible using pan-telomeric probes.

  8. Dose response of multiple parameters for calyculin A-induced premature chromosome condensation in human peripheral blood lymphocytes exposed to high doses of cobalt-60 gamma-rays.

    PubMed

    Lu, Xue; Zhao, Hua; Feng, Jiang-Bin; Zhao, Xiao-Tao; Chen, De-Qing; Liu, Qing-Jie

    2016-09-01

    Many studies have investigated exposure biomarkers for high dose radiation. However, no systematic study on which biomarkers can be used in dose estimation through premature chromosome condensation (PCC) analysis has been conducted. The present study aims to screen the high-dose radiation exposure indicator in calyculin A-induced PCC. The dose response of multiple biological endpoints, including G2/A-PCC (G2/M and M/A-PCC) index, PCC ring (PCC-R), ratio of the longest/shortest length (L/L ratio), and length and width ratio of the longest chromosome (L/B ratio), were investigated in calyculin A-induced G2/A-PCC spreads in human peripheral blood lymphocytes exposed to 0-20Gy (dose-rate of 1Gy/min) cobalt-60 gamma-rays. The G2/A-PCC index was decreased with enhanced absorbed doses of 4-20Gy gamma-rays. The G2/A PCC-R at 0-12Gy gamma-rays conformed to Poisson distribution. Three types of PCC-R were scored according to their shape and their solidity or hollowness. The frequencies of hollow PCC-R and PCC-R including or excluding solid ring in G2/A-PCC spreads were enhanced with increased doses. The length and width of the longest chromosome, as well as the length of the shortest chromosome in each G2/M-PCC or M/A-PCC spread, were measured. All L/L or L/B ratios in G2/M-PCC or M/A-PCC spread increased with enhanced doses. A blind test with two new irradiated doses was conducted to validate which biomarker could be used in dose estimation. Results showed that hollow PCC-R and PCC-R including solid ring can be utilized for accurate dose estimation, and that hollow PCC-R was optimal for practical application. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Calibration Curve for Dicentric Chromosomes Induced in Human Blood Lymphocytes Exposed to Gamma Rays at a Dose Rate of 12.5 mGy/s

    PubMed Central

    Que, Tran; Duy, Pham Ngoc; Luyen, Bui Thi Kim

    2016-01-01

    To develop a calibration curve for induction of dicentric chromosomes by radiation, we have used a 60Co gamma-ray source with dose rate of 12.5 mGy/s. Whole blood from 15 healthy donors was collected. Whole blood from each donor was divided equally into 8 parts for exposing to supposedly physical doses 0, 0.30, 0.50, 1.00, 1.50, 2.00, 3.00 and 4.00 Gy for a independent calibration curve. Whole blood from 15 donors was used to calibrate dose – effect and statistical for general calibration curve. Using Poisson test (U-test) for the distribution of dicentric chromosomes in the metaphases to determine the uniformity of the radiation field. The average from 15 independent calibration curves of linear correlated coefficient was determined to be r (y, d) = 0.5136 ± 0.0038. The model equation derived is y = aD + bD2 + C. The calibration equation of dose-effect was y = 1.01D + 4.43D2 + 0.56. PMID:28217278

  10. Calibration Curve for Dicentric Chromosomes Induced in Human Blood Lymphocytes Exposed to Gamma Rays at a Dose Rate of 12.5 mGy/s.

    PubMed

    Que, Tran; Duy, Pham Ngoc; Luyen, Bui Thi Kim

    2016-01-01

    To develop a calibration curve for induction of dicentric chromosomes by radiation, we have used a 60Co gamma-ray source with dose rate of 12.5 mGy/s. Whole blood from 15 healthy donors was collected. Whole blood from each donor was divided equally into 8 parts for exposing to supposedly physical doses 0, 0.30, 0.50, 1.00, 1.50, 2.00, 3.00 and 4.00 Gy for a independent calibration curve. Whole blood from 15 donors was used to calibrate dose - effect and statistical for general calibration curve. Using Poisson test (U-test) for the distribution of dicentric chromosomes in the metaphases to determine the uniformity of the radiation field. The average from 15 independent calibration curves of linear correlated coefficient was determined to be r (y, d) = 0.5136 ± 0.0038. The model equation derived is y = aD + bD(2) + C. The calibration equation of dose-effect was y = 1.01D + 4.43D(2) + 0.56.

  11. Gamma-ray background induced by atmospheric neutrons

    SciTech Connect

    Ma Yu-qian

    1984-01-01

    A small piggyback detector system is used to study the reduction of ..gamma..-ray background induced by atmospheric neutrons in the type of active shielded ..gamma..-ray spectroscopes. The system consists of two phi1X5 x 1X5 NaI crystal units, one of which is surrounded by some neutron shield material. The results of a balloon flight in 1981 are presented. The data show that a shield of 3-cm-thick pure paraffin cannot reduce the ..gamma..-ray background. On the contrary, it may even cause some enhancement.

  12. Southern Analysis of Genomic Alterations in Gamma-Ray-Induced Aprt- Hamster Cell Mutants

    PubMed Central

    Grosovsky, Andrew J.; Drobetsky, Elliot A.; deJong, Pieter J.; Glickman, Barry W.

    1986-01-01

    The role of genomic alterations in mutagenesis induced by ionizing radiation has been the subject of considerable speculation. By Southern blotting analysis we show here that 9 of 55 (approximately 1/6) gamma-ray-induced mutants at the adenine phosphoribosyl transferase (aprt) locus of Chinese hamster ovary (CHO) cells have a detectable genomic rearrangement. These fall into two classes: intragenic deletions and chromosomal rearrangements. In contrast, no major genomic alterations were detected among 67 spontaneous mutants, although two restriction site loss events were observed. Three gamma-ray-induced mutants were found to be intragenic deletions; all may have identical break-points. The remaining six gamma-ray-induced mutants demonstrating a genomic alteration appear to be the result of chromosomal rearrangements, possibly translocation or inversion events. None of the remaining gamma-ray-induced mutants showed any observable alteration in blotting pattern indicating a substantial role for point mutation in gamma-ray-induced mutagenesis at the aprt locus. PMID:3013724

  13. Neutron-induced gamma-ray production

    SciTech Connect

    Nelson, R.O.; Drake, D.M.; Haight, R.C.; Laymon, C.M.; Wender, S.A.; Young, P.G. ); Drosg, M.; Pavlik, A.; Vonach, H. . Inst. fuer Radiumforschung und Kernphysik); Larson, D.C. )

    1990-01-01

    High resolution Ge detectors coupled with the WNR high-intensity, high-energy, pulsed neutron source at LAMPF recently have been used to measure a variety of reactions including (n,xn) for 1 {le} x {le} 11, (n,n{alpha}), (n,np), etc. The reactions are identified by the known gamma-ray energies of prompt transitions between the low lying states in the final nuclei. With our spallation neutron source cross section data are obtained at all neutron energies from a few MeV to over 200 MeV. Applications of the data range from assisting the interpretation of the planned Mars Observer mission to map the elemental composition of the martian surface, to providing data for nuclear model verification and understanding reaction mechanisms. For example, a study of the Pb(n,xn) reactions for 2 {le} x {le} 11 populating the first excited states of the even Pb isotopes is underway. These data will be used to test preequilibrium and other reaction models. 9 refs., 5 figs.

  14. Induced Background in the Mars Observer Gamma-Ray Spectrometer

    NASA Technical Reports Server (NTRS)

    Boynton, William V.; Evans, Larry G.; Starr, Richard; Bruekner, Johnnes; Bailey, S. H.; Trombka, Jacob I.

    1997-01-01

    Gamma-Ray Spectrometers in space must necessarily work in an environment of a background of lines due to natural and cosmic-ray induced radioactivity and lines due to prompt emission following nuclear reactions caused by primary and secondary cosmic rays. The Gamma-Ray Spectrometer (GRS) on the Mar Observer mission has provided important data allowing one to estimate for future missions the extent of the background due to cosmic rays. These data will help in the design of instruments and in calculation of realistic background intensities that may effect the sensitivity of determining the intensity of lines of interest.

  15. Induced Background in the Mars Observer Gamma-Ray Spectrometer

    NASA Astrophysics Data System (ADS)

    Boynton, W. V.; Evans, L. G.; Starr, R.; Brückner, J.; Bailey, S. H.; Trombka, J. I.

    Gamma-Ray Spectrometers in space must necessarily work in an environment of a background of lines due to natural and cosmic-ray induced radioactivity and lines due to prompt emission following nuclear reactions caused by primary and secondary cosmic rays. The Gamma-Ray Spectrometer (GRS) on the Mar Observer mission has provided important data allowing one to estimate for future missions the extent of the background due to cosmic rays. These data will help in the design of instruments and in calculation of realistic background intensities that may effect the sensitivity of determining the intensity of lines of interest.

  16. The measurement of gamma ray induced heating in a mixed neutron and gamma ray environment

    SciTech Connect

    Chiu, H.K.

    1991-10-01

    The problem of measuring the gamma heating in a mixed DT neutron and gamma ray environment was explored. A new detector technique was developed to make this measurement. Gamma heating measurements were made in a low-Z assembly irradiated with 14-Mev neutrons and (n, n{prime}) gammas produced by a Texas Nuclear Model 9400 neutron generator. Heating measurements were made in the mid-line of the lattice using a proportional counter operating in the Continuously-varied Bias-voltage Acquisition mode. The neutron-induced signal was separated from the gamma-induced signal by exploiting the signal rise-time differences inherent to radiations of different linear energy transfer coefficient, which are observable in a proportional counter. The operating limits of this measurement technique were explored by varying the counter position in the low-Z lattice, hence changing the irradiation spectrum observed. The experiment was modelled numerically to help interpret the measured results. The transport of neutrons and gamma rays in the assembly was modelled using the one- dimensional radiation transport code ANISN/PC. The cross-section set used for these calculations was derived from the ENDF/B-V library using the code MC{sup 2}-2 for the case of DT neutrons slowing down in a low-Z material. The calculated neutron and gamma spectra in the slab and the relevant mass-stopping powers were used to construct weighting factors which relate the energy deposition in the counter fill-gas to that in the counter wall and in the surrounding material. The gamma energy deposition at various positions in the lattice is estimated by applying these weighting factors to the measured gamma energy deposition in the counter at those locations.

  17. Chromosome aberrations induced in vitro in human lymphocytes by monoenergetic 2.5 MeV neutrons and 60Co gamma rays.

    PubMed

    Hellin, H; Paulsen, A; Liskien, H; Decat, G; Wambersie, A; Léonard, A; Baugnet-Mahieu, L

    1990-08-01

    The aim of the present experiments was to evaluate the relative biological effectiveness (RBE) of monoenergetic 2.5 MeV neutrons, in view of the scarcity of data on the RBE of neutrons in this energy range. Human peripheral blood lymphocytes from two donors were exposed to doses of neutrons ranging from 0.005 Gy to 0.5 Gy. Gamma rays produced by a telecobalt therapy unit were used as reference radiation. RBE values were of the same order of magnitude, whatever was the model of the dose-response curve chosen for the neutrons (linear or linear-quadratic). As expected, RBE increased markedly with decreasing doses and went beyond 30 at a dose level of 0.2 Gy. The present results, compared with RBE values obtained with neutrons of higher energy (6.5, 14 and 21 MeV), confirm that low energy neutrons are more effective in producing genetic effects, especially at low doses.

  18. The identification of gamma ray induced EAS

    NASA Astrophysics Data System (ADS)

    Blake, P. R.; Nash, W. F.

    1985-08-01

    Recently Stanev et al. have suggested that some of the penetrating particles in "gamma-induced" EAS from Cygnus X-3 observed by the Kiel EAS group using a single layer of flash-bulbs under 880 g cm-2 concrete, may be "punched through" photons rather than muons. This paper presents an analysis of the shielded flash-tube response from EAS detected at Haverah Park. The penetration of the electromagnetic component through 20 cm of Pb has been observed at core distances ⪉10 m.

  19. Did gamma ray burst induce Cambrian explosion?

    NASA Astrophysics Data System (ADS)

    Chen, Pisin; Ruffini, R.

    2015-06-01

    One longstanding mystery in bio-evolution since Darwin's time is the origin of the Cambrian explosion that happened around 540 million years ago (Mya), where an extremely rapid increase of species occurred. Here we suggest that a nearby GRB event 500 parsecs away, which should occur about once per 5 Gy, might have triggered the Cambrian explosion. Due to a relatively lower cross section and the conservation of photon number in Compton scattering, a substantial fraction of the GRB photons can reach the sea level and would induce DNA mutations in organisms protected by a shallow layer of water or soil, thus expediting the bio-diversification. This possibility of inducing genetic mutations is unique among all candidate sources for major incidents in the history of bio-evolution. A possible evidence would be the anomalous abundance of certain nuclear isotopes with long half-lives transmuted by the GRB photons in geological records from the Cambrian period. Our notion also imposes constraints on the evolution of exoplanet organisms and the migration of panspermia.

  20. M-BAND Analysis of Chromosome Aberration In Human Epithelial Cells exposed to Gamma-ray and Secondary Neutrons of Low Dose Rate

    NASA Technical Reports Server (NTRS)

    Hada, M.; Saganti, P. B.; Gersey, B.; Wilkins, R.; Cucinotta, F. A.; Wu, H.

    2007-01-01

    High-energy secondary neutrons, produced by the interaction of galactic cosmic rays with the atmosphere, spacecraft structure and planetary surfaces, contribute to a significant fraction to the dose equivalent in crew members and passengers during commercial aviation travel, and astronauts in space missions. The Los Alamos Nuclear Science Center (LANSCE) neutron facility's "30L" beam line is known to generate neutrons that simulate the secondary neutron spectrum of the Earth's atmosphere at high altitude. The neutron spectrum is also similar to that measured onboard spacecraft like the MIR and the International Space Station (ISS). To evaluate the biological damage, we exposed human epithelial cells in vitro to the LANSCE neutron beams at an entrance dose rate of 2.5 cGy/hr or gamma-ray at 1.7cGy/hr, and assessed the induction of chromosome aberrations that were identified with mBAND. With this technique, individually painted chromosomal bands on one chromosome allowed the identification of inter-chromosomal aberrations (translocation to unpainted chromosomes) and intra-chromosomal aberrations (inversions and deletions within a single painted chromosome). Compared to our previous results for gamma-rays and 600 MeV/nucleon Fe ions of high dose rate, the neutron data showed a higher frequency of chromosome aberrations. However, detailed analysis of the inversion type revealed that all of the three radiation types in the study induced a low incidence of simple inversions. The low dose rate gamma-rays induced a lower frequency of chromosome aberrations than high dose rate gamma-rays, but the inversion spectrum was similar for the same cytotoxic effect. The distribution of damage sites on chromosome 3 for different radiation types will also be discussed.

  1. M-BAND Analysis of Chromosome Aberration In Human Epithelial Cells exposed to Gamma-ray and Secondary Neutrons of Low Dose Rate

    NASA Technical Reports Server (NTRS)

    Hada, M.; Saganti, P. B.; Gersey, B.; Wilkins, R.; Cucinotta, F. A.; Wu, H.

    2007-01-01

    High-energy secondary neutrons, produced by the interaction of galactic cosmic rays with the atmosphere, spacecraft structure and planetary surfaces, contribute to a significant fraction to the dose equivalent in crew members and passengers during commercial aviation travel, and astronauts in space missions. The Los Alamos Nuclear Science Center (LANSCE) neutron facility's "30L" beam line is known to generate neutrons that simulate the secondary neutron spectrum of the Earth's atmosphere at high altitude. The neutron spectrum is also similar to that measured onboard spacecraft like the MIR and the International Space Station (ISS). To evaluate the biological damage, we exposed human epithelial cells in vitro to the LANSCE neutron beams at an entrance dose rate of 2.5 cGy/hr or gamma-ray at 1.7cGy/hr, and assessed the induction of chromosome aberrations that were identified with mBAND. With this technique, individually painted chromosomal bands on one chromosome allowed the identification of inter-chromosomal aberrations (translocation to unpainted chromosomes) and intra-chromosomal aberrations (inversions and deletions within a single painted chromosome). Compared to our previous results for gamma-rays and 600 MeV/nucleon Fe ions of high dose rate, the neutron data showed a higher frequency of chromosome aberrations. However, detailed analysis of the inversion type revealed that all of the three radiation types in the study induced a low incidence of simple inversions. The low dose rate gamma-rays induced a lower frequency of chromosome aberrations than high dose rate gamma-rays, but the inversion spectrum was similar for the same cytotoxic effect. The distribution of damage sites on chromosome 3 for different radiation types will also be discussed.

  2. Repair of I-SceI induced DSB at a specific site of chromosome in human cells: influence of low-dose, low-dose-rate gamma-rays.

    PubMed

    Yatagai, Fumio; Suzuki, Masao; Ishioka, Noriaki; Ohmori, Hitoshi; Honma, Masamitsu

    2008-11-01

    We investigated the influence of low-dose, low-dose-rate gamma-ray irradiation on DNA double strand break (DSB) repair in human lymphoblastoid TK6 cells. A single DSB was introduced at intron 4 of the TK+ allele (chromosome 17) by transfection with the I-SceI expression vector pCBASce. We assessed for DSB repair due to non-homologous end-joining (NHEJ) by determining the generation of TK-deficient mutants in the TK6 derivative TSCE5 (TK +/-) carrying an I-SceI recognition site. We similarly estimated DSB repair via homologous recombination (HR) at the same site in the derived compound heterozygote (TK-/-) cell line TSCER2 that carries an additional point mutation in exon 5. The NHEJ repair of DSB was barely influenced by pre-irradiation of the cells with 30 mGy gamma-rays at 1.2 mGy h(-1). DSB repair by HR, in contrast, was enhanced by approximately 50% after pre-irradiation of the cells under these conditions. Furthermore, when I-SceI digestion was followed by irradiation at a dose of 8.5 mGy, delivered at a dose rate of only 0.125 mGy h(-1), HR repair efficiency was enhanced by approximately 80%. This experimental approach can be applied to characterize DSB repair in the low-dose region of ionizing radiation.

  3. Whisker growth on Sn thin film accelerated under gamma-ray induced electric field

    NASA Astrophysics Data System (ADS)

    Killefer, Morgan; Borra, Vamsi; Al-Bayati, Ahmed; Georgiev, Daniel G.; Karpov, Victor G.; Ishmael Parsai, E.; Shvydka, Diana

    2017-10-01

    We report on the growth of tin metal whiskers significantly accelerated under non-destructive gamma-ray irradiation. Sn thin film, evaporated on glass substrate, was subjected to a total of 60 h of irradiation. The irradiated samples demonstrated enhanced whisker development, in both densities and lengths, resulting in an acceleration factor of  ∼50. We attribute the observed enhancement to gamma-ray induced electrostatic fields, affecting whisker kinetics. These fields are due to the substrate charging under gamma-rays. We propose that gamma-ray irradiation can be a much needed tool for accelerated testing of whisker propensity.

  4. Break Point Distribution on Chromosome 3 of Human Epithelial Cells exposed to Gamma Rays, Neutrons and Fe Ions

    NASA Technical Reports Server (NTRS)

    Hada, M.; Saganti, P. B.; Gersey, B.; Wilkins, R.; Cucinotta, F. A.; Wu, H.

    2007-01-01

    Most of the reported studies of break point distribution on the damaged chromosomes from radiation exposure were carried out with the G-banding technique or determined based on the relative length of the broken chromosomal fragments. However, these techniques lack the accuracy in comparison with the later developed multicolor banding in situ hybridization (mBAND) technique that is generally used for analysis of intrachromosomal aberrations such as inversions. Using mBAND, we studied chromosome aberrations in human epithelial cells exposed in vitro to both low or high dose rate gamma rays in Houston, low dose rate secondary neutrons at Los Alamos National Laboratory and high dose rate 600 MeV/u Fe ions at NASA Space Radiation Laboratory. Detailed analysis of the inversion type revealed that all of the three radiation types induced a low incidence of simple inversions. Half of the inversions observed after neutron or Fe ion exposure, and the majority of inversions in gamma-irradiated samples were accompanied by other types of intrachromosomal aberrations. In addition, neutrons and Fe ions induced a significant fraction of inversions that involved complex rearrangements of both inter- and intrachromosome exchanges. We further compared the distribution of break point on chromosome 3 for the three radiation types. The break points were found to be randomly distributed on chromosome 3 after neutrons or Fe ions exposure, whereas non-random distribution with clustering break points was observed for gamma-rays. The break point distribution may serve as a potential fingerprint of high-LET radiation exposure.

  5. Break Point Distribution on Chromosome 3 of Human Epithelial Cells exposed to Gamma Rays, Neutrons and Fe Ions

    NASA Technical Reports Server (NTRS)

    Hada, M.; Saganti, P. B.; Gersey, B.; Wilkins, R.; Cucinotta, F. A.; Wu, H.

    2007-01-01

    Most of the reported studies of break point distribution on the damaged chromosomes from radiation exposure were carried out with the G-banding technique or determined based on the relative length of the broken chromosomal fragments. However, these techniques lack the accuracy in comparison with the later developed multicolor banding in situ hybridization (mBAND) technique that is generally used for analysis of intrachromosomal aberrations such as inversions. Using mBAND, we studied chromosome aberrations in human epithelial cells exposed in vitro to both low or high dose rate gamma rays in Houston, low dose rate secondary neutrons at Los Alamos National Laboratory and high dose rate 600 MeV/u Fe ions at NASA Space Radiation Laboratory. Detailed analysis of the inversion type revealed that all of the three radiation types induced a low incidence of simple inversions. Half of the inversions observed after neutron or Fe ion exposure, and the majority of inversions in gamma-irradiated samples were accompanied by other types of intrachromosomal aberrations. In addition, neutrons and Fe ions induced a significant fraction of inversions that involved complex rearrangements of both inter- and intrachromosome exchanges. We further compared the distribution of break point on chromosome 3 for the three radiation types. The break points were found to be randomly distributed on chromosome 3 after neutrons or Fe ions exposure, whereas non-random distribution with clustering break points was observed for gamma-rays. The break point distribution may serve as a potential fingerprint of high-LET radiation exposure.

  6. Neutron induced background in the COMPTEL detector on the Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Morris, D. J.; Aarts, H.; Bennett, K.; Busetta, M.; Byrd, R.; Collmar, W.; Connors, A.; Diehl, R.; Eymann, G.; Foster, C.

    1992-01-01

    Interactions of neutrons in a prototype of the Compton imaging telescope (COMPTEL) gamma ray detector for the Gamma Ray Observatory were studied to determine COMPTEL's sensitivity as a neutron telescope and to estimate the gamma ray background resulting from neutron interactions. The IUCF provided a pulsed neutron beam at five different energies between 18 and 120 MeV. These measurements showed that the gamma ray background from neutron interactions is greater than previously expected. It was thought that most such events would be due to interactions in the upper detector modules of COMPTEL and could be distinguished by pulse shape discrimination. Rather, the bulk of the gamma ray background appears to be due to interactions in passive material, primarily aluminum, surrounding the D1 modules. In a considerable fraction of these interactions, two or more gamma rays are produced simultaneously, with one interacting in the D1 module and the other interacting in the module of the lower (D2) detector. If the neutron interacts near the D1 module, the D1 D2 time of flight cannot distinguish such an event from a true gamma ray event. In order to assess the significance of this background, the flux of neutrons in orbit has been estimated based on observed events with neutron pulse shape signature in D1. The strength of this neutron induced background is estimated. This is compared with the rate expected from the isotropic cosmic gamma ray flux.

  7. Effect of gamma-ray radiation on physiological, morphological characters and chromosome aberrations of minitubers in Solanum tuberosum L.

    PubMed

    Cheng, Lixiang; Yang, Hongyu; Lin, Bibo; Wang, Yuping; Li, Wenjian; Wang, Di; Zhang, Feng

    2010-09-01

    To investigate the effects of gamma-ray radiation on the physiological, morphological characters and chromosome aberrations of minitubers. Minitubers of one potato cultivar, 'Shepody', were irradiated with 8 doses of gamma-rays (0, 10, 20, 30, 40, 50, 60, 70 and 80 Gy [Gray]) to investigate the effects of radiation on emergence ability, plant height and root length, morphological variations, chromosome aberrations, M(1) (first generation mutants) tuber number and size of minituber plants. Compared with the non-irradiated controls, the whole period of emergence was prolonged by 10-15 days for minitubers treated with gamma-ray radiation, but low doses of radiation (10, 20 and 30 Gy) promoted the emergence percentage of minitubers. With an increase in radiation dose, the emergence percentage, plant height and root length of minituber plants were significantly inhibited at 40 and 50 Gy. No emergence occurred at 60 Gy and higher doses. After radiation, a series of morphological variations and chromosome aberrations appeared in minituber plants. Radiation with 20 Gy promoted tuber formation, and the average number and diameter of M(1) tubers per plant were significantly increased over the control by 71% and 34%, respectively. Low doses of radiation (10-30 Gy) might be used as a valuable parameter to study the improvement of minitubers by gamma-ray radiation treatment.

  8. Genome-wide survey of artificial mutations induced by ethyl methanesulfonate and gamma rays in tomato.

    PubMed

    Shirasawa, Kenta; Hirakawa, Hideki; Nunome, Tsukasa; Tabata, Satoshi; Isobe, Sachiko

    2016-01-01

    Genome-wide mutations induced by ethyl methanesulfonate (EMS) and gamma irradiation in the tomato Micro-Tom genome were identified by a whole-genome shotgun sequencing analysis to estimate the spectrum and distribution of whole-genome DNA mutations and the frequency of deleterious mutations. A total of ~370 Gb of paired-end reads for four EMS-induced mutants and three gamma-ray-irradiated lines as well as a wild-type line were obtained by next-generation sequencing technology. Using bioinformatics analyses, we identified 5920 induced single nucleotide variations and insertion/deletion (indel) mutations. The predominant mutations in the EMS mutants were C/G to T/A transitions, while in the gamma-ray mutants, C/G to T/A transitions, A/T to T/A transversions, A/T to G/C transitions and deletion mutations were equally common. Biases in the base composition flanking mutations differed between the mutagenesis types. Regarding the effects of the mutations on gene function, >90% of the mutations were located in intergenic regions, and only 0.2% were deleterious. In addition, we detected 1,140,687 spontaneous single nucleotide polymorphisms and indel polymorphisms in wild-type Micro-Tom lines. We also found copy number variation, deletions and insertions of chromosomal segments in both the mutant and wild-type lines. The results provide helpful information not only for mutation research, but also for mutant screening methodology with reverse-genetic approaches.

  9. Effects of 900-MHz microwave radiation on gamma-ray-induced damage to mouse hematopoietic system.

    PubMed

    Cao, Yi; Xu, Qian; Jin, Zong-Da; Zhang, Jun; Lu, Min-Xia; Nie, Ji-Hua; Tong, Jian

    2010-01-01

    Exposure of humans simultaneously to microwave and gamma-ray irradiation may be a commonly encountered phenomenon. In a previous study data showed that low-dose microwave radiation increased the survival rate of mice irradiated with 8Gy gamma-ray; however, the mechanisms underlying these findings remain unclear. Consequently, studies were undertaken to examine the effects of microwave exposure on hematopoietic system adversely altered by gamma-ray irradiation in mice. Preexposure to low-dose microwaves attenuated the damage produced by gamma-ray irradiation as evidenced by less severe pathological alterations in bone marrow and spleen. The protective effects of microwaves were postulated to be due to up-expression of some hematopoietic growth factors, stimulation of proliferation of the granulocyte-macrophages in bone marrow, and inhibition of the gamma-ray induced suppression of hematopoietic stem cells/hematopoietic progenitor cells. Data thus indicate that prior exposure to microwaves may be beneficial in providing protection against injuries produced by gamma-ray on the hematopoietic system in mice.

  10. Neutron-induced gamma-ray spectroscopy: simulations for chemical mapping of planetary surfaces

    SciTech Connect

    Brueckner, J.; Waenke, H.; Reedy, R.C.

    1986-01-01

    Cosmic rays interact with the surface of a planetary body and produce a cascade of secondary particles, such as neutrons. Neutron-induced scattering and capture reactions play an important role in the production of discrete gamma-ray lines that can be measured by a gamma-ray spectrometer on board of an orbiting spacecraft. These data can be used to determine the concentration of many elements in the surface of a planetary body, which provides clues to its bulk composition and in turn to its origin and evolution. To investigate the gamma rays made by neutron interactions, thin targets were irradiated with neutrons having energies from 14 MeV to 0.025 eV. By means of foil activation technique the ratio of epithermal to thermal neutrons was determined to be similar to that in the Moon. Gamma rays emitted by the targets and the surrounding material were detected by a high-resolution germanium detector in the energy range of 0.1 to 8 MeV. Most of the gamma-ray lines that are expected to be used for planetary gamma-ray spectroscopy were found in the recorded spectra and the principal lines in these spectra are presented. 58 refs., 7 figs., 9 tabs.

  11. Chromosomal mutations and chromosome loss measured in a new human-hamster hybrid cell line, ALC: studies with colcemid, ultraviolet irradiation, and 137Cs gamma-rays.

    PubMed

    Kraemer, S M; Waldren, C A

    1997-10-06

    Small mutations, megabase deletions, and aneuploidy are involved in carcinogenesis and genetic defects, so it is important to be able to quantify these mutations and understand mechanisms of their creation. We have previously quantified a spectrum of mutations, including megabase deletions, in human chromosome 11, the sole human chromosome in a hamster-human hybrid cell line AL. S1- mutants have lost expression of a human cell surface antigen, S1, which is encoded by the M1C1 gene at 11p13 so that mutants can be detected via a complement-mediated cytotoxicity assay in which S1+ cells are killed and S1- cells survive. But loss of genes located on the tip of the short arm of 11 (11p15.5) is lethal to the AL hybrid, so that mutants that have lost the entire chromosome 11 die and escape detection. To circumvent this, we fused AL with Chinese hamster ovary (CHO) cells to produce a new hybrid, ALC, in which the requirement for maintaining 11p15.5 is relieved, allowing us to detect mutations events involving loss of 11p15.5. We evaluated the usefulness of this hybrid by conducting mutagenesis studies with colcemid, 137Cs gamma-radiation and UV 254 nm light. Colcemid induced 1000 more S1- mutants per unit dose in ALC than in AL; the increase for UV 254 nm light was only two-fold; and the increase for 137Cs gamma-rays was 12-fold. The increase in S1- mutant fraction in ALC cells treated with colcemid and 137Cs gamma-rays were largely due to chromosome loss and 11p deletions often containing a breakpoint within the centromeric region.

  12. Chromosomal mutations and chromosome loss measured in a new human-hamster hybrid cell line, ALC: studies with colcemid, ultraviolet irradiation, and 137Cs gamma-rays

    NASA Technical Reports Server (NTRS)

    Kraemer, S. M.; Waldren, C. A.; Chatterjee, A. (Principal Investigator)

    1997-01-01

    Small mutations, megabase deletions, and aneuploidy are involved in carcinogenesis and genetic defects, so it is important to be able to quantify these mutations and understand mechanisms of their creation. We have previously quantified a spectrum of mutations, including megabase deletions, in human chromosome 11, the sole human chromosome in a hamster-human hybrid cell line AL. S1- mutants have lost expression of a human cell surface antigen, S1, which is encoded by the M1C1 gene at 11p13 so that mutants can be detected via a complement-mediated cytotoxicity assay in which S1+ cells are killed and S1- cells survive. But loss of genes located on the tip of the short arm of 11 (11p15.5) is lethal to the AL hybrid, so that mutants that have lost the entire chromosome 11 die and escape detection. To circumvent this, we fused AL with Chinese hamster ovary (CHO) cells to produce a new hybrid, ALC, in which the requirement for maintaining 11p15.5 is relieved, allowing us to detect mutations events involving loss of 11p15.5. We evaluated the usefulness of this hybrid by conducting mutagenesis studies with colcemid, 137Cs gamma-radiation and UV 254 nm light. Colcemid induced 1000 more S1- mutants per unit dose in ALC than in AL; the increase for UV 254 nm light was only two-fold; and the increase for 137Cs gamma-rays was 12-fold. The increase in S1- mutant fraction in ALC cells treated with colcemid and 137Cs gamma-rays were largely due to chromosome loss and 11p deletions often containing a breakpoint within the centromeric region.

  13. Chromosomal mutations and chromosome loss measured in a new human-hamster hybrid cell line, ALC: studies with colcemid, ultraviolet irradiation, and 137Cs gamma-rays

    NASA Technical Reports Server (NTRS)

    Kraemer, S. M.; Waldren, C. A.; Chatterjee, A. (Principal Investigator)

    1997-01-01

    Small mutations, megabase deletions, and aneuploidy are involved in carcinogenesis and genetic defects, so it is important to be able to quantify these mutations and understand mechanisms of their creation. We have previously quantified a spectrum of mutations, including megabase deletions, in human chromosome 11, the sole human chromosome in a hamster-human hybrid cell line AL. S1- mutants have lost expression of a human cell surface antigen, S1, which is encoded by the M1C1 gene at 11p13 so that mutants can be detected via a complement-mediated cytotoxicity assay in which S1+ cells are killed and S1- cells survive. But loss of genes located on the tip of the short arm of 11 (11p15.5) is lethal to the AL hybrid, so that mutants that have lost the entire chromosome 11 die and escape detection. To circumvent this, we fused AL with Chinese hamster ovary (CHO) cells to produce a new hybrid, ALC, in which the requirement for maintaining 11p15.5 is relieved, allowing us to detect mutations events involving loss of 11p15.5. We evaluated the usefulness of this hybrid by conducting mutagenesis studies with colcemid, 137Cs gamma-radiation and UV 254 nm light. Colcemid induced 1000 more S1- mutants per unit dose in ALC than in AL; the increase for UV 254 nm light was only two-fold; and the increase for 137Cs gamma-rays was 12-fold. The increase in S1- mutant fraction in ALC cells treated with colcemid and 137Cs gamma-rays were largely due to chromosome loss and 11p deletions often containing a breakpoint within the centromeric region.

  14. Neutron-induced 2.2 MeV background in gamma ray telescopes

    NASA Technical Reports Server (NTRS)

    Zanrosso, E. M.; Long, J. L.; Zych, A. D.; White, R. S.

    1985-01-01

    Neutron-induced gamma ray production is an important source of background in Compton scatter gamma ray telescopes where organic scintillator material is used. Most important is deuteron formation when atmospheric albedo and locally produced neutrons are thermalized and subsequently absorbed in the hydrogenous material. The resulting 2.2 MeV gamma ray line radiation essentially represents a continuous isotropic source within the scintillator itself. Interestingly, using a scintillator material with a high hydrogen-to-carbon ratio to minimize the scintillator material with a high hydrogen-to-carbon ratio to minimize the neutron-induced 4.4 MeV carbon line favors the np reaction. The full problem of neutron-induced background in Compton scatter telescopes has been previously discussed. Results are presented of observations with the University of California balloon-borne Compton scatter telescope where the 2.2 MeV induced line emission is prominently seen.

  15. Method and System for Gamma-Ray Localization Induced Spacecraft Navigation Using Celestial Gamma-Ray Sources

    NASA Technical Reports Server (NTRS)

    Sheikh, Suneel I. (Inventor); Hisamoto, Chuck (Inventor); Arzoumanian, Zaven (Inventor)

    2015-01-01

    A method and system for spacecraft navigation using distant celestial gamma-ray bursts which offer detectable, bright, high-energy events that provide well-defined characteristics conducive to accurate time-alignment among spatially separated spacecraft. Utilizing assemblages of photons from distant gamma-ray bursts, relative range between two spacecraft can be accurately computed along the direction to each burst's source based upon the difference in arrival time of the burst emission at each spacecraft's location. Correlation methods used to time-align the high-energy burst profiles are provided. The spacecraft navigation may be carried out autonomously or in a central control mode of operation.

  16. Dose response of gamma rays and iron nuclei for induction of chromosomal aberrations in normal and repair-deficient cell lines.

    PubMed

    George, Kerry A; Hada, Megumi; Jackson, Lori J; Elliott, Todd; Kawata, Tetsuya; Pluth, Janice M; Cucinotta, Francis A

    2009-06-01

    We studied the effects of DNA double-strand break (DSB) repair deficiencies on chromosomal aberration frequency using low doses (<1 Gy) of gamma rays and high-energy iron ions (LET = 151 keV/microm). Chromosomal aberrations were measured using the fluorescence whole-chromosome painting technique. The cell lines included fibroblasts deficient in ATM (product of the gene that is mutated in ataxia telangiectasia patients) or NBS (product of the gene mutated in the Nijmegen breakage syndrome) and gliomablastoma cells proficient in or lacking DNA-dependent protein kinase (DNA-PK) activity. The yields of both simple and complex chromosomal aberrations were increased in DSB repair-defective cells compared to normal cells; the increase was more than twofold higher for gamma rays compared to iron nuclei. For gamma-ray-induced aberrations, the ATM- and NBS-defective lines were found to have significantly larger quadratic components compared to normal fibroblasts for both simple and complex aberrations, while the linear dose-response term was significantly higher only for the NBS cells. For simple and complex aberrations induced by iron nuclei, regression models preferred purely linear and quadratic dose responses, respectively, for each cell line studied. RBEs were reduced relative to normal cells for all of the DSB repair-defective lines, with the DNA-PK-deficient cells found to have RBEs near unity. The large increase in the quadratic dose-response terms in the DSB repair-deficient cell lines points to the importance of the functions of ATM and NBS in chromatin modifications to facilitate correct DSB repair and to minimize aberration formation. The differences found between AT and NBS cells at lower doses suggest important questions about the applicability of observations of radiation sensitivity at high doses to low-dose exposures.

  17. The sensitivity of the alkaline comet assay in detecting DNA lesions induced by X rays, gamma rays and alpha particles.

    PubMed

    Rössler, U; Hornhardt, S; Seidl, C; Müller-Laue, E; Walsh, L; Panzer, W; Schmid, E; Senekowitsch-Schmidtke, R; Gomolka, M

    2006-01-01

    Experiments were designed and performed in order to investigate whether or not the different cellular energy deposition patterns of photon radiation with different energies (29 kV, 220 kV X rays; Co-60, Cs-137-gamma-rays) and alpha-radiation from an Am-241 source differ in DNA damage induction capacity in human cells. For this purpose, the alkaline comet assay (single cell gel electrophoresis) was applied to measure the amount of DNA damage in relation to the dose received. The comet assay data for the parameters '% DNA in the tail' and 'tail moment' for human peripheral lymphocytes did not indicate any difference in the initial radiation damage produced by 29 kV X rays relative to the reference radiations, 220 kV X rays and the gamma rays, whether for the total mean dose range of 0-3 Gy nor in the low-dose range. In contrast, when the 'tail length' data were analysed saturation of the fitted dose response curve appeared for X rays at about 1.5 Gy but was not apparent for gamma rays up to 3 Gy. Preliminary data for alpha exposures of HSC45-M2 cells showed a significant increase in DNA damage only at high doses (>2 Gy Am-241), but the damage at 2 Gy exceeded the damage induced at 2 Gy by Cs-137-gamma-rays by a factor of 2.5. In contrast, other experiments involving different cell systems and DNA damage indicators such as chromosomal aberrations have detected a significant increase in DNA damage at much lower doses, that is at 0.02 Gy for Am-241 and depicte a higher biological effectiveness. These results indicate that differences in biological effects arise through downstream processing of complex DNA damage.

  18. Change in Ion Beam Induced Current from Si Metal-Oxide-Semiconductor Capacitors after Gamma-Ray Irradiation

    SciTech Connect

    Ohshima, T.; Onoda, S.; Hirao, T.; Takahashi, Y.; Vizkelethy, G.; Doyle, B. L.

    2009-03-10

    To investigate the effects of gamma-ray irradiation on transient current induced in MOS capacitors by heavy ion incidence, Si MOS capacitors were irradiated with gamma-rays up to 60.9 kGy(SiO2). The change in Transient Ion Beam Induced Current (TIBIC) signals due to gamma-ray irradiation was investigated using 15 MeV-oxygen ion microbeams. After gamma-ray irradiation, the peak current of the TIBIC signal vs. bias voltage curve shifted toward negative voltages. This shift can be interpreted in terms of the charge trapped in the oxide. In this dose range, no significant effects of the interface traps induced by gamma-ray irradiation on the TIBIC signals were observed.

  19. Comparison of chromosome aberration frequencies in pre- and post-flight astronaut lymphocytes irradiated in vitro with gamma rays

    NASA Technical Reports Server (NTRS)

    Wu, H.; George, K.; Willingham, V.; Cucinotta, F. A.

    2001-01-01

    If radiosensitivity is altered in a microgravity environment, it will affect the accuracy of assessing astronauts' risk from exposure to space radiation. To investigate the effects of space flight on radiosensitivity, we exposed a crewmember's blood to gamma rays at doses ranging from 0 to 3 Gy and analyzed chromosome aberrations in mitotic lymphocytes. The blood samples were collected 10 days prior to an 8-day Shuttle mission, the day the flight returned, and 14 days after the flight. After exposure, lymphocytes were stimulated to grow in media containing phytohaemagglutinin (PHA) and mitotic cells were harvested for chromosome analysis using a fluorescence in situ hybridization (FISH) with whole chromosome specific probes. The dose response of total exchanges showed no changes in the radiosensitivity after the mission.

  20. Comparison of chromosome aberration frequencies in pre- and post-flight astronaut lymphocytes irradiated in vitro with gamma rays

    NASA Technical Reports Server (NTRS)

    Wu, H.; George, K.; Willingham, V.; Cucinotta, F. A.

    2001-01-01

    If radiosensitivity is altered in a microgravity environment, it will affect the accuracy of assessing astronauts' risk from exposure to space radiation. To investigate the effects of space flight on radiosensitivity, we exposed a crewmember's blood to gamma rays at doses ranging from 0 to 3 Gy and analyzed chromosome aberrations in mitotic lymphocytes. The blood samples were collected 10 days prior to an 8-day Shuttle mission, the day the flight returned, and 14 days after the flight. After exposure, lymphocytes were stimulated to grow in media containing phytohaemagglutinin (PHA) and mitotic cells were harvested for chromosome analysis using a fluorescence in situ hybridization (FISH) with whole chromosome specific probes. The dose response of total exchanges showed no changes in the radiosensitivity after the mission.

  1. Lignocellulolytic mutants of Pleurotus ostreatus induced by gamma-ray radiation and their genetic similarities

    NASA Astrophysics Data System (ADS)

    Lee, Y.-K.; Chang, H.-H.; Kim, J.-S.; Kim, J. K.; Lee, K.-S.

    2000-02-01

    To induce the lignocellulolytic mutants of Pleurotus ostreatus, the mycelia were irradiated by gamma-ray radiation to doses of 1-2 kGy. Five strains were isolated by the criteria of clamp connection, fruiting body formation, growth rate and activities of extracellular enzymes. All isolated strains were able to form the fruiting bodies and grew similarly to the control. The extracellular enzymes activities in liquid media of isolated strains were up to 10 times higher than the control. Genetic similarities of the isolated strains ranged from 64.4% to 93.3% of the control. From these results, it seems that the genetic diversity of P. ostreatus could be changed and useful strains be induced by gamma-ray radiation to recycle or reuse biowastes.

  2. Proton-induced X-ray and gamma ray emission analysis of biological samples

    NASA Astrophysics Data System (ADS)

    Hall, Gene S.; Navon, Eliahu

    1986-04-01

    A 4.1 MeV external proton beam was employed to simultaneously induce X-ray emission (PIXE) and gamma ray emission (PIGE) in biological samples that included human colostrum, spermatozoa, teeth, tree-rings, and follicular fluids. The analytical method was developed to simultaneously determine the elements lithium (Z = 3) through uranium (Z = 92) in the samples. PIXE-PIGE experimental design is described as well as applications in environmental and medical fields.

  3. Induced Radioactivity in Recovered Skylab Materials. [gamma ray spectra

    NASA Technical Reports Server (NTRS)

    Fishman, G. J.; Meegan, C. A.

    1980-01-01

    Four radioactive isotopes found in aluminum and stainless steel samples from Skylab debris were recovered in Australia. The low-level activity was induced by high-energy protons and neutrons in the space environment. Measurements of the specific activities are given.

  4. Energy determination of gamma-ray induced air showers observed by an extensive air shower array

    NASA Astrophysics Data System (ADS)

    Kawata, K.; Sako, T. K.; Ohnishi, M.; Takita, M.; Nakamura, Y.; Munakata, K.

    2017-10-01

    We propose a new energy estimator to determine the energies of gamma-ray induced air showers based on the lateral distribution of extensive air showers in the energy range between 10 TeV and 1000 TeV. We carry out a detailed Monte Carlo simulation assuming the Tibet air shower array located at an altitude of 4,300 m above sea level. We define S50, which denotes the particle density at 50 m from the air shower axis, as a new energy estimator. Using S50, the energy resolution is estimated to be approximately 16 % at 100 TeV in the range of the zenith angle 𝜃 < 20∘. We find S50 giving a better energy resolution than 27 % for the air shower size ( N e) and 30 % for the sum of detected particles (\\sum ρ ), which have been used so far, at 100 TeV. We also compare the reconstructed age distributions of gamma-ray induced air showers and hadronic cosmic-ray induced air showers. The age parameter may help to discriminate between primary gamma rays and hadronic cosmic rays.

  5. Energy determination of gamma-ray induced air showers observed by an extensive air shower array

    NASA Astrophysics Data System (ADS)

    Kawata, K.; Sako, T. K.; Ohnishi, M.; Takita, M.; Nakamura, Y.; Munakata, K.

    2017-03-01

    We propose a new energy estimator to determine the energies of gamma-ray induced air showers based on the lateral distribution of extensive air showers in the energy range between 10 TeV and 1000 TeV. We carry out a detailed Monte Carlo simulation assuming the Tibet air shower array located at an altitude of 4,300 m above sea level. We define S50, which denotes the particle density at 50 m from the air shower axis, as a new energy estimator. Using S50, the energy resolution is estimated to be approximately 16 % at 100 TeV in the range of the zenith angle 𝜃 < 20∘. We find S50 giving a better energy resolution than 27 % for the air shower size (N e) and 30 % for the sum of detected particles ( \\sum ρ ), which have been used so far, at 100 TeV. We also compare the reconstructed age distributions of gamma-ray induced air showers and hadronic cosmic-ray induced air showers. The age parameter may help to discriminate between primary gamma rays and hadronic cosmic rays.

  6. Investigation of Annual Modulation Signal from Radon Induced Gamma Rays

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Mei, Dongming

    2015-10-01

    The phenomenon of annual modulation is believed to be one of the signatures induced by Weakly Interacting Massive Particles(WIMPs) through elastic scattering off nucleus in the target for direct dark matter searches. Both DAMA and CoGeNT experiments have claimed the discovery of dark matter in terms of annual modulation while many other experiments have ruled out the entire claimed region. However, the sources that caused the annual modulation in DAMA and CoGeNT are still unknown which need to be investigated. Annual modulations of Radon at underground sites are reported by many experiments. As a potential source, we investigate (alpha, gamma) reactions, induced by radon decay chain, occurring on the surface of those common shielding materials and explain how this background annual modulation may mimic dark matter signature. This work is supported by NSF in part by the NSF PHY-0758120, DOE Grant DE-FG02-10ER46709, and the State of South Dakota.

  7. Changes in optical transmission caused by gamma ray induced coloring in photoluminescence dosimeter.

    PubMed

    Yasuda, Hiroshi; Takami, Michiko; Ishidoya, Tatsuyo

    2006-06-01

    Transmission of visible light and ultraviolet radiation was examined for a phosphate-glass photoluminescence dosimeter irradiated with Co source gamma rays in the dose range of 1-60 Gy (H2O). The transmission for the wavelengths (lambda) less than 600 nm decreased with increasing irradiation dose beginning at 6 Gy. An approximate 20% reduction of transmission was observed for a 60 Gy exposure at the wavelength of ultraviolet radiation used for excitation (lambda = 337 nm). However, no change of transmission was seen in longer wavelength region (lambda > 600 nm), which includes the range of photoluminescence (lambda = 610-710 nm). Relative efficiencies of measured photoluminescence agreed well with estimations that were calculated from the transmission reduction of ultraviolet radiation. This fact indicates that reduction of photoluminescence efficiency induced by high-dose gamma rays is attributable mostly to attenuation of the ultraviolet radiation from an excitation source, rather than saturation of trapping or recombination centers.

  8. Gamma-ray irradiation induced bulk photochromism in WO3-P2O5 glass

    NASA Astrophysics Data System (ADS)

    Shen, Wei; Baccaro, Stefania; Cemmi, Alessia; Xu, Xiaoqing; Chen, Guorong

    2015-11-01

    In the present work, photochromism of WO3-P2O5 glass under gamma-ray irradiation was reported. As-prepared glass samples with different WO3 content are all optically transparent in the visible wavelength range thanks to the addition of a small amount of oxidizing couple Sb2O3-NaNO3. The photochromic properties are identified by transmission spectra of the glasses before and after irradiation. The results show that the irradiation induced darkening results from the reduction of W6+ to W5+ or W4+. The existence of WO6 clusters in glasses of high WO3 content is proved by XPS, which is the main reason for the obvious photochromic effects. The WO3-P2O5 glass is a promising candidate in gamma-ray sensitive detector.

  9. The {alpha}-induced thick-target {gamma}-ray yield from light elements

    SciTech Connect

    Heaton, R.K. |

    1994-10-01

    The {alpha}-induced thick-target {gamma}-ray yield from light elements has been measured in the energy range 5.6 MeV {le} E{sub {alpha}} {le} 10 MeV. The {gamma}-ray yield for > 2.1 MeV from thick targets of beryllium, boron nitride, sodium fluoride, magnesium, aluminum and silicon were measured using the {alpha}-particle beam from the Lawrence Berkeley Laboratories 88 in. cyclotron. The elemental yields from this experiment were used to construct the {alpha}-induced direct production {gamma}-ray spectrum from materials in the SNO detector, a large volume ultra-low background neutrino detector located in the Creighton mine near Sudbury, Canada. This background source was an order of magnitude lower than predicted by previous calculations. These measurements are in good agreement with theoretical calculations of this spectrum based on a statistical nuclear model of the reaction, with the gross high energy spectrum structure being reproduced to within a factor of two. Detailed comparison of experimental and theoretical excitation population distribution of several residual nuclei indicate the same level of agreement within experimental uncertainties.

  10. mBAND Analysis of Early and Late Damages in the Chromosome of Human Lymphocytes after Exposures to Gamma Rays and Fe Ions

    NASA Technical Reports Server (NTRS)

    Sunagawa, Mayumi; Zhang, Ye; Yeshitla, Samrawit; Kadhim, Munira; Wilson, Bobby; Wu, Honglu

    2013-01-01

    Stable type chromosome aberrations that survive multiple generations of cell division include translocation and inversions. An efficient method to detect an inversion is multi-color banding fluorescent in situ hybridization (mBAND) which allows identification of both inter- and intrachromosome aberrations simultaneously. Post irradiation, chromosome aberrations may also arise after multiple cell divisions as a result of genomic instability. To investigate the stable or late-arising chromosome aberrations induced after radiation exposure, we exposed human lymphocytes to gamma rays and Fe ions ex vivo, and cultured the cells for multiple generations. Chromosome aberrations were analyzed in cells collected at first mitosis and at several time intervals during the culture period post irradiation. With gamma irradiation, about half of the damages observed at first mitosis remained after 7 day- and 14 day- culture, suggesting the transmissibility of damages to the surviving progeny. At the doses that produced similar frequencies of gamma-induced chromosome aberrations as observed at first mitosis, a significantly lower yield of aberrations remained at the same population doublings after Fe ion exposure. At these equitoxic doses, more complex type aberrations were observed for Fe ions, indicating that Fe ion-induced initial chromosome damages are more severe and may lead to cell death. Detailed analysis of breaks participating in total chromosome exchanges within the first cell cycle post irradiation revealed a common hotspot located in the 3p21 region, which is a known fragile site corresponding to the band 6 in the mBand analysis. The breakpoint distribution in chromosomes collected at 7 days, but not at 14 days, post irradiation appeared similar to the distribution in cells collected within the first cell cycle post irradiation. The breakpoint distribution for human lymphocytes after radiation exposure was different from the previously published distribution for human

  11. Photon-induced positron annihilation lifetime spectroscopy using ultrashort laser-Compton-scattered gamma-ray pulses.

    PubMed

    Taira, Y; Toyokawa, H; Kuroda, R; Yamamoto, N; Adachi, M; Tanaka, S; Katoh, M

    2013-05-01

    High-energy ultrashort gamma-ray pulses can be generated via laser Compton scattering with 90° collisions at the UVSOR-II electron storage ring. As an applied study of ultrashort gamma-ray pulses, a new photon-induced positron annihilation lifetime spectroscopy approach has been developed. Ultrashort gamma-ray pulses with a maximum energy of 6.6 MeV and pulse width of 2.2 ps created positrons throughout bulk lead via pair production. Annihilation gamma rays were detected by a BaF2 scintillator mounted on a photomultiplier tube. A positron lifetime spectrum was obtained by measuring the time difference between the RF frequency of the electron storage ring and the detection time of the annihilation gamma rays. We calculated the response of the BaF2 scintillator and the time jitter caused by the variation in the total path length of the ultrashort gamma-ray pulses, annihilation gamma rays, and scintillation light using a Monte Carlo simulation code. The positron lifetime for bulk lead was successfully measured.

  12. Photon-induced positron annihilation lifetime spectroscopy using ultrashort laser-Compton-scattered gamma-ray pulses

    SciTech Connect

    Taira, Y.; Toyokawa, H.; Kuroda, R.; Yamamoto, N.; Adachi, M.; Tanaka, S.; Katoh, M.

    2013-05-15

    High-energy ultrashort gamma-ray pulses can be generated via laser Compton scattering with 90 Degree-Sign collisions at the UVSOR-II electron storage ring. As an applied study of ultrashort gamma-ray pulses, a new photon-induced positron annihilation lifetime spectroscopy approach has been developed. Ultrashort gamma-ray pulses with a maximum energy of 6.6 MeV and pulse width of 2.2 ps created positrons throughout bulk lead via pair production. Annihilation gamma rays were detected by a BaF{sub 2} scintillator mounted on a photomultiplier tube. A positron lifetime spectrum was obtained by measuring the time difference between the RF frequency of the electron storage ring and the detection time of the annihilation gamma rays. We calculated the response of the BaF{sub 2} scintillator and the time jitter caused by the variation in the total path length of the ultrashort gamma-ray pulses, annihilation gamma rays, and scintillation light using a Monte Carlo simulation code. The positron lifetime for bulk lead was successfully measured.

  13. MFISH Measurements of Chromosomal Aberrations Individuals Exposed in Utero to Gamma-ray Doses from 5 to 20 cGy

    SciTech Connect

    Brenner, David J.

    2009-11-17

    Our plan was to identify and obtain blood from 36 individuals from the Mayak-in-utero exposed cohort who were exposed in utero only to gamma ray does doses fro 5 to 20 cGy. Our goal is to do mFISH and in a new development, single-arm mFISH on these samples to measure stable chromosome aberrations in these now adult individuals. The results were compared with matched control individuals (same age, same gender) available from the large control population which we are studying in the context of our plutonium worker study. The long term goal was to assess the results both in terms of the sensitivity of the developing embryo/fetus to low doses of ionizing radiation, and in terms of different potential mechanisms (expanded clonal origin vs. induced instability) for an increased risk.

  14. Numerical simulations of planetary gamma-ray spectra induced by galactic cosmic rays

    SciTech Connect

    Masarik, J.; Reedy, R.C.

    1994-07-01

    The fluxes of cosmic-ray-produced gamma rays escaping from Mars were calculated using the LAHET Code System and basic nuclear data for {gamma}-ray production. Both surface water content and atmospheric thickness strongly affect the fluxes of {gamma}-ray lines escaping from Mars.

  15. Measurements of activation induced by environmental neutrons using ultra low-level gamma-ray spectrometry.

    PubMed

    Martínez Canet, M J; Hult, M; Köhler, M; Johnston, P N

    2000-03-01

    The flux of environmental neutrons is being studied by activation of metal discs of selected elements. Near the earth's surface the total neutron flux is in the order of 10(-2) cm(-2)s(-1), which gives induced activities of a few mBq in the discs. Initial results from this technique, involving activation at ground level for several materials (W, Au, Ta, In, Re, Sm, Dy and Mn) and ultra low-level gamma-ray spectrometry in an underground laboratory located at 500 m.w.e., are presented. Diffusion of environmental neutrons in water is also measured by activation of gold at different depths.

  16. Chromosomal rearrangements in interspecific hybrids between Nicotiana gossei Domin and N. tabacum L., obtained by crossing with pollen exposed to helium ion beams or gamma-rays

    NASA Astrophysics Data System (ADS)

    Kitamura, S.; Inoue, M.; Ohmido, N.; Fukui, K.; Tanaka, A.

    2003-05-01

    It is very difficult to obtain interspecific hybrids between Nicotiana tabacum L. (2 n=48) and N. gossei Domin (2 n=36), because of strong cross incompatibility. We had already obtained interspecific hybrids between these two species, crossing N. gossei flower with N. tabacum pollen exposed to He ions or gamma-rays. Here, we analyze chromosome constitution of these hybrids by genomic in situ hybridization. In root tip cells of the two hybrids obtained with He ion exposure, most mitotic cells contained 18 chromosomes of N. gossei and 24 chromosomes of N. tabacum. However, in some cells, translocations and insertions between parental genomes were observed. On the other hand, in a hybrid obtained by gamma-ray irradiation, intergenomic rearrangements were not observed, although mitotic cells showed 19 hybridization signals with N. gossei DNA in 41 chromosomes. Such chromosomal changes in structure or constitution may be related to overcoming cross incompatibility between these two species.

  17. Lymphocytes from wasted mice express enhanced spontaneous and {gamma}-ray-induced apoptosis

    SciTech Connect

    Woloschak, G.E. |; Chang-Liu, Chin-Mei; Chung, Jen; Libertin, C.R.

    1993-09-01

    Mice bearing the autosomal recessive mutation wasted (wst/wst) display a disease pattern including faulty repair of DNA damage in lymphocytes after radiation exposure, neurologic abnormalities, and immunodeficiency. Many of the features of this mouse model have suggested a premature or increased spontaneous frequency of apoptosis in thymocytes; past work has shown an inability to establish cultured T cell lines, an abnormally high death rate of stimulated T cells in culture, and an increased sensitivity of T cells to the killing effects of ionizing radiations in wst/wst mice relative to controls. The experiments reported here were designed to examine splenic and thymic lymphocytes from wasted and control mice for signs of early apoptosis. Our results revealed enhanced expression of Rp-8 mRNA (associated with apoptosis) in thymic lymphocytes and reduced expression in splenic lymphocytes of wst/wst mice relative to controls; expression of Rp-2 and Td-30 mRNA (induced during apoptosis) were not detectable in spleen or thymus. Higher spontaneous DNA fragmentation was observed in wasted mice than in controls; however, {gamma}-ray-induced DNA fragmentation peaked at a lower dose and occurred to a greater extent in wasted mice relative to controls. These results provide evidence for high spontaneous and {gamma}-ray-induced apoptosis in T cells of wasted mice as a mechanism underlying the observed lymphocyte and DNA repair abnormalities.

  18. Gamma-ray mutagenesis studies in a new human-hamster hybrid, A(L)CD59(+/-), which has two human chromosomes 11 but is hemizygous for the CD59 gene

    NASA Technical Reports Server (NTRS)

    Kraemer, S. M.; Vannais, D. B.; Kronenberg, A.; Ueno, A.; Waldren, C. A.; Chatterjee, A. (Principal Investigator)

    2001-01-01

    Kraemer, S. M., Vannais, D. B., Kronenberg, A., Ueno, A. and Waldren, C. A. Gamma-Ray Mutagenesis Studies in a New Human-Hamster Hybrid, A(L)CD59(+/-), which has Two Human Chromosomes 11 but is Hemizygous for the CD59 Gene. Radiat. Res. 156, 10-19 (2001).We have developed a human-CHO hybrid cell line, named A(L)CD59(+/-), which has two copies of human chromosome 11 but is hemizygous for the CD59 gene and the CD59 cell surface antigen that it encodes. Our previous studies used the A(L) and A(L)C hybrids that respectively contain one or two sets of CHO chromosomes plus a single copy of human chromosome 11. The CD59 gene at 11p13.5 and the CD59 antigen encoded by it are the principal markers used in our mutagenesis studies. The hybrid A(L)CD59(+/-) contains two copies of human chromosome 11, only one of which carries the CD59 gene. The incidence of CD59 (-) mutants (formerly called S1(-)) induced by (137)Cs gamma rays is about fivefold greater in A(L)CD59(+/-) cells than in A(L) cells. Evidence is presented that this increase in mutant yield is due to the increased induction of certain classes of large chromosomal mutations that are lethal to A(L) cells but are tolerated in the A(L)CD59(+/-) hybrid. In addition, significantly more of the CD59 (-) mutants induced by (137)Cs gamma rays in A(L)CD59(+/-) cells display chromosomal instability than in A(L) cells. On the other hand, the yield of gamma-ray-induced CD59 (-) mutants in A(L)CD59(+/-) cells is half that of the A(L)C hybrid, which also tolerates very large mutations but has only one copy of human chromosome 11. We interpret the difference in mutability as evidence that repair processes involving the homologous chromosomes 11 play a role in determining mutant yields. The A(L)CD59(+/-) hybrid provides a useful new tool for quantifying mutagenesis and shedding light on mechanisms of genetic instability and mutagenesis.

  19. Gamma-ray mutagenesis studies in a new human-hamster hybrid, A(L)CD59(+/-), which has two human chromosomes 11 but is hemizygous for the CD59 gene

    NASA Technical Reports Server (NTRS)

    Kraemer, S. M.; Vannais, D. B.; Kronenberg, A.; Ueno, A.; Waldren, C. A.; Chatterjee, A. (Principal Investigator)

    2001-01-01

    Kraemer, S. M., Vannais, D. B., Kronenberg, A., Ueno, A. and Waldren, C. A. Gamma-Ray Mutagenesis Studies in a New Human-Hamster Hybrid, A(L)CD59(+/-), which has Two Human Chromosomes 11 but is Hemizygous for the CD59 Gene. Radiat. Res. 156, 10-19 (2001).We have developed a human-CHO hybrid cell line, named A(L)CD59(+/-), which has two copies of human chromosome 11 but is hemizygous for the CD59 gene and the CD59 cell surface antigen that it encodes. Our previous studies used the A(L) and A(L)C hybrids that respectively contain one or two sets of CHO chromosomes plus a single copy of human chromosome 11. The CD59 gene at 11p13.5 and the CD59 antigen encoded by it are the principal markers used in our mutagenesis studies. The hybrid A(L)CD59(+/-) contains two copies of human chromosome 11, only one of which carries the CD59 gene. The incidence of CD59 (-) mutants (formerly called S1(-)) induced by (137)Cs gamma rays is about fivefold greater in A(L)CD59(+/-) cells than in A(L) cells. Evidence is presented that this increase in mutant yield is due to the increased induction of certain classes of large chromosomal mutations that are lethal to A(L) cells but are tolerated in the A(L)CD59(+/-) hybrid. In addition, significantly more of the CD59 (-) mutants induced by (137)Cs gamma rays in A(L)CD59(+/-) cells display chromosomal instability than in A(L) cells. On the other hand, the yield of gamma-ray-induced CD59 (-) mutants in A(L)CD59(+/-) cells is half that of the A(L)C hybrid, which also tolerates very large mutations but has only one copy of human chromosome 11. We interpret the difference in mutability as evidence that repair processes involving the homologous chromosomes 11 play a role in determining mutant yields. The A(L)CD59(+/-) hybrid provides a useful new tool for quantifying mutagenesis and shedding light on mechanisms of genetic instability and mutagenesis.

  20. Radiation-induced degradation of cyclohexanebutyric acid in aqueous solutions by gamma ray irradiation

    NASA Astrophysics Data System (ADS)

    Jia, Wenbao; He, Yanquan; Ling, Yongsheng; Hei, Daqian; Shan, Qing; Zhang, Yan; Li, Jiatong

    2015-04-01

    The radiation-induced degradation of cyclohexanebutyric acid under gamma ray irradiation was investigated. Degradation experiments were performed with 100 mL sealed Pyrex glass vessels loaded with 80 mL of cyclohexanebutyric acid solutions at various initial concentrations of 10, 20, and 40 mg L-1. The absorbed doses were controlled at 0, 0.65, 1.95, 3.25, 6.5, 9.75, and 13 kGy. The results showed that gamma ray irradiation could effectively degrade cyclohexanebutyric acid in aqueous solutions. The removal rate of cyclohexanebutyric acid increased significantly with the increase of absorbed dose and the decrease of its initial concentration. At the same time, the removal of chemical oxygen demand (COD) was as effective as that of cyclohexanebutyric acid. The kinetic studies showed that the degradation of cyclohexanebutyric acid followed pseudo first-order reaction. Above all, the proposed mechanism obtained when NaNO2, NaNO3 and tert-butanol were added showed that the •OH radical played a major role in the gamma degradation process of cyclohexanebutyric acid, while •H and eaq- played a minor role in the gamma degradation process. The degradation products were identified by Fourier transform infrared spectroscopy (FTIR) and gas chromatography/mass spectrometry (GC/MS) during cyclohexanebutyric acid degradation.

  1. Boron analysis for neutron capture therapy using particle-induced gamma-ray emission.

    PubMed

    Nakai, Kei; Yamamoto, Yohei; Okamoto, Emiko; Yamamoto, Tetsuya; Yoshida, Fumiyo; Matsumura, Akira; Yamada, Naoto; Kitamura, Akane; Koka, Masashi; Satoh, Takahiro

    2015-12-01

    The neutron source of BNCT is currently changing from reactor to accelerator, but peripheral facilities such as a dose-planning system and blood boron analysis have still not been established. To evaluate the potential application of particle-induced gamma-ray emission (PIGE) for boron measurement in clinical boron neutron capture therapy, boronophenylalanine dissolved within a cell culture medium was measured using PIGE. PIGE detected 18 μgB/mL f-BPA in the culture medium, and all measurements of any given sample were taken within 20 min. Two hours of f-BPA exposure was required to create a boron distribution image. However, even though boron remained in the cells, the boron on the cell membrane could not be distinguished from the boron in the cytoplasm. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Defects induced by protons and {gamma}-rays in semi-insulating GaAs detectors

    SciTech Connect

    Castaldini, A.; Cavallini, A.; Del Papa, C. |; Fuochi, G.; Alietti, M.; Canali, C.; Nava, F. |; Paccagnella, A.; Lanzieri, C.

    1995-09-01

    Semi-insulating gallium arsenide has been irradiated by protons and by gamma-rays with different doses. The irradiation-induced deep level defects have been investigated by current transient spectroscopy to find their energy, capture cross sections and generation rate. Two electron traps at E{sub c}{minus}0.14V(E13) and E{sub c}{minus}0.70eV(E4) and a hole trap at E{sub v}+0.41eV(H2) in addition to the levels existing before the irradiation have been detected in the irradiated samples. These findings have been related to the performance of gallium arsenide charge particle detectors.

  3. Probing stochastic inter-galactic magnetic fields using blazar-induced gamma ray halo morphology

    NASA Astrophysics Data System (ADS)

    Duplessis, Francis; Vachaspati, Tanmay

    2017-05-01

    Inter-galactic magnetic fields can imprint their structure on the morphology of blazar-induced gamma ray halos. We show that the halo morphology arises through the interplay of the source's jet and a two-dimensional surface dictated by the magnetic field. Through extensive numerical simulations, we generate mock halos created by stochastic magnetic fields with and without helicity, and study the dependence of the halo features on the properties of the magnetic field. We propose a sharper version of the Q-statistics and demonstrate its sensitivity to the magnetic field strength, the coherence scale, and the handedness of the helicity. We also identify and explain a new feature of the Q-statistics that can further enhance its power.

  4. Development of a Reference Database for Particle-Induced Gamma-ray Emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Dimitriou, P.; Becker, H.-W.; Bogdanović-Radović, I.; Chiari, M.; Goncharov, A.; Jesus, A. P.; Kakuee, O.; Kiss, A. Z.; Lagoyannis, A.; Räisänen, J.; Strivay, D.; Zucchiatti, A.

    2016-03-01

    Particle-Induced Gamma-ray Emission (PIGE) is a powerful analytical technique that exploits the interactions of rapid charged particles with nuclei located near a sample surface to determine the composition and structure of the surface regions of solids by measurement of characteristic prompt γ rays. The potential for depth profiling of this technique has long been recognized, however, the implementation has been limited owing to insufficient knowledge of the physical data and lack of suitable user-friendly computer codes for the applications. Although a considerable body of published data exists in the nuclear physics literature for nuclear reaction cross sections with γ rays in the exit channel, there is no up-to-date, comprehensive compilation specifically dedicated to IBA applications. A number of PIGE cross-section data had already been uploaded to the Ion Beam Analysis Nuclear Data Library (IBANDL)

  5. Effect of gamma-ray irradiation on the device process-induced defects in 4H-SiC epilayers

    NASA Astrophysics Data System (ADS)

    Miyazaki, T.; Makino, T.; Takeyama, A.; Onoda, S.; Ohshima, T.; Tanaka, Y.; Kandori, M.; Yoshie, T.; Hijikata, Y.

    2016-11-01

    We investigated the gamma-ray irradiation effect on 4H-SiC device process-induced defects by photoluminescence (PL) imaging and deep level transient spectroscopy (DLTS). We found that basal plane dislocations (BPDs) that were present before the irradiation were eliminated by gamma-ray irradiation of 1 MGy. The reduction mechanism of BPD was discussed in terms of BPD-threading edge dislocation (TED) transformation and shrinkage of stacking faults. In addition, the entire PL image was gradually darkened with increasing absorbed dose, which is presumably due to the point defects generated by gamma-ray irradiation. We obtained DLTS peaks that could be assigned to complex defects, termed RD series, and found that the peaks increased with absorbed dose.

  6. Evaluation of the cosmic-ray induced background in coded aperture high energy gamma-ray telescopes

    NASA Technical Reports Server (NTRS)

    Owens, Alan; Barbier, Loius M.; Frye, Glenn M.; Jenkins, Thomas L.

    1991-01-01

    While the application of coded-aperture techniques to high-energy gamma-ray astronomy offers potential arc-second angular resolution, concerns were raised about the level of secondary radiation produced in a thick high-z mask. A series of Monte-Carlo calculations are conducted to evaluate and quantify the cosmic-ray induced neutral particle background produced in a coded-aperture mask. It is shown that this component may be neglected, being at least a factor of 50 lower in intensity than the cosmic diffuse gamma-rays.

  7. Ion-induced gamma-ray detection of fast ions escaping from fusion plasmas

    SciTech Connect

    Nishiura, M. Mushiake, T.; Doi, K.; Wada, M.; Taniike, A.; Matsuki, T.; Shimazoe, K.; Yoshino, M.; Nagasaka, T.; Tanaka, T.; Kisaki, M.; Fujimoto, Y.; Fujioka, K.; Yamaoka, H.; Matsumoto, Y.

    2014-11-15

    A 12 × 12 pixel detector has been developed and used in a laboratory experiment for lost fast-ion diagnostics. With gamma rays in the MeV range originating from nuclear reactions {sup 9}Be(α, nγ){sup 12}C, {sup 9}Be(d, nγ){sup 12}C, and {sup 12}C(d, pγ){sup 13}C, a high purity germanium (HPGe) detector measured a fine-energy-resolved spectrum of gamma rays. The HPGe detector enables the survey of background-gamma rays and Doppler-shifted photo peak shapes. In the experiments, the pixel detector produces a gamma-ray image reconstructed from the energy spectrum obtained from total photon counts of irradiation passing through the detector's lead collimator. From gamma-ray image, diagnostics are able to produce an analysis of the fast ion loss onto the first wall in principle.

  8. Gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Paciesas, William S.

    1992-01-01

    Miscellaneous tasks related to mission operations and data analysis for the Burst and Transient Source Experiment on the Gamma Ray Observatory, to collection, analysis, and interpretation of data from the Marshall Space Flight Center Very Low Frequency transient monitoring program, and to compilation and analysis of induced radioactivity data were performed. The results are summarized and relevant references are included.

  9. Comparison of the biological effectiveness of 45 MeV C-ions and {gamma}-rays in inducing early and late effects in normal human primary fibroblasts

    SciTech Connect

    Fratini, E.; Balduzzi, M.; Antonelli, F.; Sorrentino, E.; Esposito, G.; Cuttone, G.; Romano, F.; Dini, V.; Simone, G.; Campa, A.; Tabocchini, M. A.; Belli, M.

    2013-07-18

    Investigation of the mechanisms underlying the biological effects induced by densely ionizing radiation has relevant implications in both radiation protection and therapy. In particular, the possible advantages of hadrontherapy with respect to conventional radiotherapy in terms of high conformal tumor treatment and sparing of healthy tissues are well known. Further improvements are limited by lack of radiobiological knowledge, particularly about the specific cellular response to the damage induced by particles of potential interest for tumor treatment. This study compares early and late effects induced in AG01522 normal human primary fibroblasts by {gamma}-rays and C-ions having E {approx} 45 MeV/u at the cell entrance, corresponding to LET (in water) {approx} 49 keV/{mu}m. Different end points have been investigated, namely: cell killing and lethal mutation, evaluated as early and delayed reproductive cell death, respectively; chromosome damage, as measured by micronuclei induction (MN); DNA damage, in terms of DSB induction and repair, as measured by the H2AX phosphorylation/dephosphorylation kinetics. Linear dose-response relationships were found for cell killing and induction of lethal mutations, with RBEs of about 1.3 and 1.6 respectively, indicating that the presence of genomic instability is greater in the progeny of C-ions irradiated cells. H2AX phosphorylation/dephosphorylation kinetics have shown a maximum foci number at 30 min after irradiation, higher for {gamma}-rays than for C-ions. However, in the first 12 h the fraction of residual {gamma}-H2AX foci was higher for C-ions irradiated cells, indicating a lower removal rate, possibly related to multiple/more complex damage along the particle track, with respect to the sparse lesions produced by {gamma}-rays. MN induction, observed after 72 h from irradiation, was also greater for C-ions. Overall, these data indicate a more severe DNA damage induced by 45 MeV/u C-ions with respect to {gamma}-rays, likely

  10. Charged Particle Induced Radiation damage of Germanium Detectors in Space: Two Mars Observer Gamma-Ray Detectors

    NASA Technical Reports Server (NTRS)

    Bruekner, J.; Koenen, M.; Evans, L. G.; Starr, R.; Bailey, S. H.; Boynton W. V.

    1997-01-01

    The Mars Observer Gamma-Ray Spectrometer (MO GRS) was designed to measure gamma-rays emitted by the Martian surface. This gamma-ray emission is induced by energetic cosmic-ray particles penetrating the Martian surface and producing many secondary particles and gamma rays. The MO GRS consisted of an high-purity germanium (HPGe) detector with a passive cooler. Since radiation damage due to permanent bombardment of energetic cosmic ray particles (with energies up to several GeV) was expected for the MO GRS HPGe crystal, studies on radiation damage effects of HPGe crystals were carried on earth. One of the HPGe crystals (paradoxically called FLIGHT) was similar to the MO GRS crystal. Both detectors, MO GRS and FLIGHT, contained closed-end coaxial n-type HPGe crystals and had the same geometrical dimensions (5.6 x 5.6 cm). Many other parameters, such as HV and operation temperature, differed in space and on earth, which made it somewhat difficult to directly compare the performance of both detector systems. But among other detectors, detector FLIGHT provided many useful data to better understand radiation damage effects.

  11. Charged Particle Induced Radiation damage of Germanium Detectors in Space: Two Mars Observer Gamma-Ray Detectors

    NASA Technical Reports Server (NTRS)

    Bruekner, J.; Koenen, M.; Evans, L. G.; Starr, R.; Bailey, S. H.; Boynton W. V.

    1997-01-01

    The Mars Observer Gamma-Ray Spectrometer (MO GRS) was designed to measure gamma-rays emitted by the Martian surface. This gamma-ray emission is induced by energetic cosmic-ray particles penetrating the Martian surface and producing many secondary particles and gamma rays. The MO GRS consisted of an high-purity germanium (HPGe) detector with a passive cooler. Since radiation damage due to permanent bombardment of energetic cosmic ray particles (with energies up to several GeV) was expected for the MO GRS HPGe crystal, studies on radiation damage effects of HPGe crystals were carried on earth. One of the HPGe crystals (paradoxically called FLIGHT) was similar to the MO GRS crystal. Both detectors, MO GRS and FLIGHT, contained closed-end coaxial n-type HPGe crystals and had the same geometrical dimensions (5.6 x 5.6 cm). Many other parameters, such as HV and operation temperature, differed in space and on earth, which made it somewhat difficult to directly compare the performance of both detector systems. But among other detectors, detector FLIGHT provided many useful data to better understand radiation damage effects.

  12. [Internal and external sources of the radiation induce the blocking of the proliferation of the human endothelial cells in culture. G2-block is induced by beta-particle 3H-thymidine and gamma-rays 137Cs].

    PubMed

    Gil'iano, N Ia; Konevega, L V; Stepanov, S I; Semenova, E G; Noskin, L A

    2007-01-01

    We found that low doses (0.12-0.46Gy) of (methyl-) 3H-thymidine incorporated into human endothelial cells induce the accumulation cells in G2-phase of the cell cycle. Temperate doses of (1-6 Gy) gamma-rays 137Cs were less effective in the G2-block estimated by flow cytometry analysis of DNA content. Furthermore, the induced the high level of the chromosome aberrations (bridges and fragments in anaphases). 1Gy of gamma-ray 137Cs and 0.005 Gy of beta-rays induced the same per cent of the aberrant anaphases. Apparently, that the damages of the cellular hereditary structures are responsible for the blocking of the cellular proliferation in G2-phase. We suggest, that the disposition 3H-thymidine into radiosensitive target (DNA) defines the high cytotoxic of the beta-rays.

  13. Microscopic observations of X-ray and gamma-ray induced decomposition of ammonium perchlorate crystals

    NASA Technical Reports Server (NTRS)

    Herley, P. J.; Levy, P. W.

    1972-01-01

    The X-ray and gamma-ray induced decomposition of ammonium perchlorate was studied by optical, transmission, and scanning electron microscopy. This material is a commonly used oxidizer in solid propellents which could be employed in deep-space probes, and where they will be subjected to a variety of radiations for as long as ten years. In some respects the radiation-induced damage closely resembles the effects produced by thermal decomposition, but in other respects the results differ markedly. Similar radiation and thermal effects include the following: (1) irregular or ill-defined circular etch pits are formed in both cases; (2) approximately the same size pits are produced; (3) the pit density is similar; (4) the c face is considerably more reactive than the m face; and (5) most importantly, many of the etch pits are aligned in crystallographic directions which are the same for thermal or radiolytic decomposition. Thus, dislocations play an important role in the radiolytic decomposition process.

  14. DETECTABILITY OF PLANCK-SCALE-INDUCED BLURRING WITH GAMMA-RAY BURSTS

    SciTech Connect

    Steinbring, Eric

    2015-03-20

    Microscopic fluctuations inherent to the fuzziness of spacetime at the Planck scale might accumulate in wavefronts propagating a cosmological distance and lead to noticeable blurring in an image of a pointlike source. Distant quasars viewed in the optical and ultraviolet with Hubble Space Telescope (HST) may show this weakly, and if real suggests a stronger effect should be seen for gamma-ray bursts (GRBs) in X-rays and γ-rays. Those telescopes, however, operate far from their diffraction limits. A description of how Planck-scale-induced blurring could be sensed at high energy, including with cosmic rays, while still agreeing with the HST results is discussed. It predicts dilated apparent source size and inflated uncertainties in positional centroids, effectively a threshold angular accuracy restricting knowledge of source location on the sky. These outcomes are found to be consistent with an analysis of the 10 highest-redshift GRB detections reported for the Fermi satellite. Confusion with photon cascade and scattering phenomena is also possible; prospects for a definitive multiwavelength measurement are considered.

  15. Clonally Expanding Thymocytes Having Lineage Capability in Gamma-Ray-Induced Mouse Atrophic Thymus

    SciTech Connect

    Yamamoto, Takashi; Morita, Shin-ichi; Go, Rieka; Obata, Miki; Katsuragi, Yoshinori; Fujita, Yukari; Maeda, Yoshitaka; Yokoyama, Minesuke; Aoyagi, Yutaka; Ichikawa, Hitoshi; Mishima, Yukio; Kominami, Ryo

    2010-05-01

    Purpose: To characterize, in the setting of gamma-ray-induced atrophic thymus, probable prelymphoma cells showing clonal growth and changes in signaling, including DNA damage checkpoint. Methods and Materials: A total of 111 and 45 mouse atrophic thymuses at 40 and 80 days, respectively, after gamma-irradiation were analyzed with polymerase chain reaction for D-J rearrangements at the TCRbeta locus, flow cytometry for cell cycle, and Western blotting for the activation of DNA damage checkpoints. Results: Limited D-J rearrangement patterns distinct from normal thymus were detected at high frequencies (43 of 111 for 40-day thymus and 21 of 45 for 80-day thymus). Those clonally expanded thymocytes mostly consisted of CD4{sup +}CD8{sup +} double-positive cells, indicating the retention of lineage capability. They exhibited pausing at a late G1 phase of cell cycle progression but did not show the activation of DNA damage checkpoints such as gammaH2AX, Chk1/2, or p53. Of interest is that 17 of the 52 thymuses showing normal D-J rearrangement patterns at 40 days after irradiation showed allelic loss at the Bcl11b tumor suppressor locus, also indicating clonal expansion. Conclusion: The thymocytes of clonal growth detected resemble human chronic myeloid leukemia in possessing self-renewal and lineage capability, and therefore they can be a candidate of the lymphoma-initiating cells.

  16. Gamma-ray-induced damage and recovery behavior in an erbium-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Bussjager, Rebecca J.; Hayduk, Michael J.; Johns, Steven T.; Taylor, Linda R.; Taylor, Edward W.

    2002-01-01

    Erbium-doped fiber lasers (EDFLs) may soon find applications in space as high bit rate optical communication systems and photonic analog-to-digital converters (ADCs). The rapid advancement in digital signal processing systems has led to an increased interest in the direct digitization of high- frequency analog signals. The potential high bandwidth, reduced weight, and reduced power requirements makes photonics an attractive technology for wide-band signal conversion as well as for use in space-based platforms. It is anticipated that photonic ADCs will be able to operate at sampling rates and resolutions far greater than current electronic ADCs. The high repetition rates and narrow pulse widths produced by EDFLs allow for high-speed impulse sampling of analog signals thus making it a vital component of a photonic ADC. In this paper we report on the in situ gamma-ray irradiation of an actively mode-locked EDFL operating at 1530 nm. The onset, growth and extent of ionization induced damage under time-resolved operational conditions is presented. The laser consisted of approximately 3 meters of erbium-doped fiber pumped by a laser diode operating at 980 nm. The picosecond pulses produced by the laser were initiated and controlled by a Mach-Zehnder lithium niobate electro-optic modulator. The active mode-locking element allowed for the precise timing control of the laser repetition rate which is critical in high-speed optical networking systems as well as in photonic ADCs.

  17. Thick target yields of proton induced gamma-ray emission from Al, Si and P

    NASA Astrophysics Data System (ADS)

    Jokar, A.; Kakuee, O.; Lamehi-Rachti, M.; Fathollahi, V.

    2017-03-01

    Thick target excitation yield curves of gamma-rays from the reactions 27Al(p,p‧γ)27Al (Eγ = 844 and 1014 keV), 27Al(p,αγ)27Al (Eγ = 1369 keV), 28Si(p,p‧γ)28Si (Eγ = 1779 keV), 29Si(p,p‧γ)29Si (Eγ = 1273 keV) and 31P(p,p‧γ)31P (Eγ = 1266 keV) were measured by bombarding pure-element targets with protons at energies below 3 MeV. Gamma-rays were detected with a High Purity Ge detector placed at an angle of 90° with respect to the beam direction. The obtained thick target gamma-ray yields were compared with the previously published data. The overall systematic uncertainty of the thick target yield values was estimated to be better than ±9%.

  18. EMISSION PATTERNS AND LIGHT CURVES OF GAMMA RAYS IN THE PULSAR MAGNETOSPHERE WITH A CURRENT-INDUCED MAGNETIC FIELD

    SciTech Connect

    Li, X.; Zhang, L.

    2011-12-20

    We study the emission patterns and light curves of gamma rays in the pulsar magnetosphere with a current-induced magnetic field perturbation. Based on the solution of a static dipole with the magnetic field induced by some currents (perturbation field), we derive the solutions of a static as well as a retarded dipole with the perturbation field in the Cartesian coordinates. The static (retarded) magnetic field can be expressed as the sum of the pure static (retarded) dipolar magnetic field and the static (retarded) perturbation field. We use the solution of the retarded magnetic field to investigate the influence of the perturbation field on the emission patterns and light curves, and apply the perturbed solutions to calculate the gamma-ray light curves for the case of the Vela pulsar. We find that the perturbation field induced by the currents will change the emission patterns and then the light curves of gamma rays, especially for a larger perturbation field. Our results indicate that the perturbation field created by the outward-flowing (inward-flowing) electrons (positrons) can decrease the rotation effect on the magnetosphere and makes emission pattern appear to be smoother relative to that of the pure retarded dipole, but the perturbation field created by the outward-flowing (inward-flowing) positrons (electrons) can make the emission pattern less smooth.

  19. On the induced gravitational collapse scenario of gamma-ray bursts associated with supernovae

    SciTech Connect

    Becerra, L.; Bianco, C. L.; Fryer, C. L.; Rueda, J. A.; Ruffini, R.

    2016-12-10

    Following the induced gravitational collapse (IGC) paradigm of gamma-ray bursts (GRBs) associated with type Ib/c supernovae, we present numerical simulations of the explosion of a carbon–oxygen (CO) core in a binary system with a neutron-star (NS) companion. The supernova ejecta trigger a hypercritical accretion process onto the NS thanks to a copious neutrino emission and the trapping of photons within the accretion flow. We show that temperatures of 1–10 MeV develop near the NS surface, hence electron–positron annihilation into neutrinos becomes the main cooling channel leading to accretion rates of 10–9–${10}^{-1}\\,{M}_{\\odot }$ s–1 and neutrino luminosities of 1043–1052 erg s–1 (the shorter the orbital period the higher the accretion rate). We estimate the maximum orbital period, ${P}_{\\max },$ as a function of the NS initial mass, up to which the NS companion can reach by hypercritical accretion the critical mass for gravitational collapse leading to black hole formation. We then estimate the effects of the accreting and orbiting NS companion onto a novel geometry of the supernova ejecta density profile. We present the results of a $1.4\\times {10}^{7}$ particle simulation which show that the NS induces accentuated asymmetries in the ejecta density around the orbital plane. We elaborate on the observables associated with the above features of the IGC process. We apply this framework to specific GRBs: we find that X-ray flashes (XRFs) and binary-driven hypernovae are produced in binaries with $P\\gt {P}_{\\max }$ and $P\\lt {P}_{\\max },$ respectively. As a result, we analyze in detail the case of XRF 060218.

  20. On the Induced Gravitational Collapse Scenario of Gamma-ray Bursts Associated with Supernovae

    NASA Astrophysics Data System (ADS)

    Becerra, L.; Bianco, C. L.; Fryer, C. L.; Rueda, J. A.; Ruffini, R.

    2016-12-01

    Following the induced gravitational collapse (IGC) paradigm of gamma-ray bursts (GRBs) associated with type Ib/c supernovae, we present numerical simulations of the explosion of a carbon-oxygen (CO) core in a binary system with a neutron-star (NS) companion. The supernova ejecta trigger a hypercritical accretion process onto the NS thanks to a copious neutrino emission and the trapping of photons within the accretion flow. We show that temperatures of 1-10 MeV develop near the NS surface, hence electron-positron annihilation into neutrinos becomes the main cooling channel leading to accretion rates of 10-9-{10}-1 {M}⊙ s-1 and neutrino luminosities of 1043-1052 erg s-1 (the shorter the orbital period the higher the accretion rate). We estimate the maximum orbital period, {P}\\max , as a function of the NS initial mass, up to which the NS companion can reach by hypercritical accretion the critical mass for gravitational collapse leading to black hole formation. We then estimate the effects of the accreting and orbiting NS companion onto a novel geometry of the supernova ejecta density profile. We present the results of a 1.4× {10}7 particle simulation which show that the NS induces accentuated asymmetries in the ejecta density around the orbital plane. We elaborate on the observables associated with the above features of the IGC process. We apply this framework to specific GRBs: we find that X-ray flashes (XRFs) and binary-driven hypernovae are produced in binaries with P\\gt {P}\\max and P\\lt {P}\\max , respectively. We analyze in detail the case of XRF 060218.

  1. On the induced gravitational collapse scenario of gamma-ray bursts associated with supernovae

    DOE PAGES

    Becerra, L.; Bianco, C. L.; Fryer, C. L.; ...

    2016-12-10

    Following the induced gravitational collapse (IGC) paradigm of gamma-ray bursts (GRBs) associated with type Ib/c supernovae, we present numerical simulations of the explosion of a carbon–oxygen (CO) core in a binary system with a neutron-star (NS) companion. The supernova ejecta trigger a hypercritical accretion process onto the NS thanks to a copious neutrino emission and the trapping of photons within the accretion flow. We show that temperatures of 1–10 MeV develop near the NS surface, hence electron–positron annihilation into neutrinos becomes the main cooling channel leading to accretion rates of 10–9–more » $${10}^{-1}\\,{M}_{\\odot }$$ s–1 and neutrino luminosities of 1043–1052 erg s–1 (the shorter the orbital period the higher the accretion rate). We estimate the maximum orbital period, $${P}_{\\max },$$ as a function of the NS initial mass, up to which the NS companion can reach by hypercritical accretion the critical mass for gravitational collapse leading to black hole formation. We then estimate the effects of the accreting and orbiting NS companion onto a novel geometry of the supernova ejecta density profile. We present the results of a $$1.4\\times {10}^{7}$$ particle simulation which show that the NS induces accentuated asymmetries in the ejecta density around the orbital plane. We elaborate on the observables associated with the above features of the IGC process. We apply this framework to specific GRBs: we find that X-ray flashes (XRFs) and binary-driven hypernovae are produced in binaries with $$P\\gt {P}_{\\max }$$ and $$P\\lt {P}_{\\max },$$ respectively. As a result, we analyze in detail the case of XRF 060218.« less

  2. Quantitative analysis of isolated and clustered DNA damage induced by gamma-rays, carbon ion beams, and iron ion beams.

    PubMed

    Terato, Hiroaki; Tanaka, Ruri; Nakaarai, Yusuke; Nohara, Tomonori; Doi, Yusuke; Iwai, Shigenori; Hirayama, Ryoichi; Furusawa, Yoshiya; Ide, Hiroshi

    2008-03-01

    Ionizing radiation induces multiple damaged sites (clustered damage) together with isolated lesions in DNA. Clustered damage consists of closely spaced lesions within a few helical turns of DNA and is considered to be crucial for understanding the biological consequences of ionizing radiation. In the present study, two types of DNA, supercoiled plasmid DNA and linear lambda DNA, were irradiated with gamma-rays, carbon ion beams, and iron ion beams, and the spectra and yield of isolated DNA damage and bistranded clustered DNA damage were fully analyzed. Despite using different methods for damage analysis, the experiments with plasmid and lambda DNA gave largely consistent results. The spectra of both isolated and clustered damage were essentially independent of the quality of the ionizing radiation used for irradiation. The yields of clustered damage as well as of isolated damage decreased with the different radiation beams in the order gamma> C > Fe, thus exhibiting an inverse correlation with LET [gamma (0.2 keV/microm) < C (13 keV/microm) < Fe (200 keV/microm)]. Consistent with in vitro data, the yield of chromosomal DNA DSBs decreased with increasing LET in Chinese hamster cells irradiated with carbon ion beams with different LETs, suggesting that the decrease in the yield of clustered damage with increasing LET is not peculiar to in vitro irradiation of DNA, but is common for both in vitro and in vivo irradiation. These results suggest that the adverse biological effect of the ionizing radiation is not simply accounted for by the yield of clustered DNA damage, and that the complexity of the clustered damage needs to be considered to understand the biological consequences of ionizing radiation.

  3. Gamma ray generator

    SciTech Connect

    Firestone, Richard B; Reijonen, Jani

    2014-05-27

    An embodiment of a gamma ray generator includes a neutron generator and a moderator. The moderator is coupled to the neutron generator. The moderator includes a neutron capture material. In operation, the neutron generator produces neutrons and the neutron capture material captures at least some of the neutrons to produces gamma rays. An application of the gamma ray generator is as a source of gamma rays for calibration of gamma ray detectors.

  4. Possible effects on avionics induced by Terrestrial Gamma-Ray Flashes

    NASA Astrophysics Data System (ADS)

    Tavani, Marco; Argan, Andrea; Paccagnella, Alessandro; Pesoli, Alessandro; Palma, Francesco; Gerardin, Simone; Bagatin, Marta; Trois, Alessio; Picozza, Piergiorgio; Benvenuti, Piero; Flamini, Enrico; Marisaldi, Martino; Pittori, Carlotta; Giommi, Paolo

    2013-04-01

    We address the issue of the possible susceptibility of typical aircraft electronics exposed to particle, gamma-ray and neutron irradiation coming from Terrestrial Gamma-ray Flashes (TGF). We consider possible scenarios regarding the intensity, the duration, and geometry of TGFs influencing a nearby aircraft, and study their effects on electronic equipment. We calculate, for different assumptions, the total dose and the dose-rate, and estimate single-event effects. We find that in addition to the electromagnetic component (electrons/positrons, gamma-rays) also secondary neutrons produced by gamma-ray photoproduction in the aircraft structure substantially contribute to single-event effects in critical semiconductors components. Depending on the physical characteristics and geometry, TGFs may deliver a large flux of neutrons within a few milliseconds on an aircraft. This flux is calculated to be orders of magnitude larger than the natural cosmic-ray background, and may constitute a serious hazard to aircraft electronic equipment. We present a series of numerical simulations supporting our conclusions. Our results suggest the necessity of dedicated measurement campaigns addressing the radiative and particle environment of aircraft near or within thunderstorms.

  5. Possible effects on avionics induced by terrestrial gamma-ray flashes

    NASA Astrophysics Data System (ADS)

    Tavani, M.; Argan, A.; Paccagnella, A.; Pesoli, A.; Palma, F.; Gerardin, S.; Bagatin, M.; Trois, A.; Picozza, P.; Benvenuti, P.; Flamini, E.; Marisaldi, M.; Pittori, C.; Giommi, P.

    2013-04-01

    Terrestrial gamma-ray flashes (TGFs) are impulsive (intrinsically sub-millisecond) events associated with lightning in powerful thunderstorms. TGFs turn out to be very powerful natural accelerators known to accelerate particles and generate radiation up to hundreds of MeV energies. The number ratio of TGFs over normal lightning has been measured in tropical regions to be near 10-4. We address in this Article the issue of the possible susceptibility of typical aircraft electronics exposed to TGF particle, gamma ray and neutron irradiation. We consider possible scenarios regarding the intensity, the duration, and geometry of TGFs influencing nearby aircraft, and study their effects on electronic equipment. We calculate, for different assumptions, the total dose and the dose-rate, and estimate single-event-effects. We find that in addition to the electromagnetic component (electrons/positrons, gamma rays) also secondary neutrons produced by gamma-ray photo production in the aircraft structure substantially contribute to single-event effects in critical semiconductors components. Depending on the physical characteristics and geometry, TGFs may deliver a large flux of neutrons within a few milliseconds in an aircraft. This flux is calculated to be orders of magnitude larger than the natural cosmic-ray background, and may constitute a serious hazard to aircraft electronic equipment. We present a series of numerical simulations supporting our conclusions. Our results suggest the necessity of dedicated measurement campaigns addressing the radiative and particle environment of aircraft near or within thunderstorms.

  6. Prediction of cellular radiosensitivity from DNA damage induced by gamma-rays and carbon ion irradiation in canine tumor cells.

    PubMed

    Wada, Seiichi; Van Khoa, Tran; Kobayashi, Yasuhiko; Funayama, Tomoo; Ogihara, Kikumi; Ueno, Shunji; Ito, Nobuhiko

    2005-11-01

    Diseases of companion animals are shifting from infectious diseases to neoplasms (cancer), and since radiation therapy is one of the effective choices available for cancer treatment, the application of radiotherapy in veterinary medicine is likely to increase. However tumor tissues have different radiosensitivities, and therefore it is important to determine the intrinsic radiosensitivity of tumors in individual patients in advance of radiotherapy. We have studied the relationship between the surviving cell fraction measured by a clonogenic assay and DNA double strand breaks detected by a comet assay under neutral conditions in three canine tumor cell lines, after gamma-ray and carbon ion irradiation. In all the cell lines, cell death assessed by the clonogenic assay was much higher following irradiation with carbon ions than with gamma-rays. The initial and residual (4 hr) DNA damage due to gamma-ray and carbon ion irradiation were higher in a radiosensitive cell line than in a radioresistant cell line. The surviving cell fraction at 2 Gy (SF2) showed a tendency for correlation with both the initial and residual DNA damage. In particular, the residual damage per Gy was significantly correlated with SF2, regardless of the type of radiation. This indicates that cellular radiosensitivity can be predicted by detection of radiation-induced residual DNA damage.

  7. Gamma-ray production cross sections in multiple channels for neutron induced reaction on 48Ti for En=1 to 200 MeV

    SciTech Connect

    Dashdorj, D; Mitchell, G E; Garrett, P E; Agvaanluvsan, U; Becker, J A; Bernstein, L A; Chadwick, M B; Devlin, M; Fotiades, N; Kawano, T; Nelson, R O; Younes, W

    2006-07-06

    Prompt {gamma}-ray production cross sections were measured on a {sup 48}Ti sample for incident neutron energies from 1 MeV to 200 MeV. Partial {gamma}-ray cross sections for transitions in {sup 45-48}Ti, {sup 45-48}Sc, and {sup 43-45}Ca were determined. The observation of about 130 transitions from 11 different isotopes in the present work provides a demanding test of reaction model calculations, and is the first study in this mass region to extract partial {gamma}-ray cross sections for many different reaction channels over a wide range of incident neutron energies. The neutrons were produced by the Los Alamos National Laboratory spallation neutron source located at the LANSCE/WNR facility. The prompt-reaction {gamma} rays were detected with the large-scale Compton-suppressed GErmanium Array for Neutron Induced Excitations (GEANIE). Event neutron energies were determined by the time-of-flight technique. The {gamma}-ray excitation functions were converted to partial {gamma}-ray cross sections and then compared with model calculations using the enhanced GNASH reaction code. Compound nuclear, pre-equilibrium emission and direct reaction mechanisms are included. Overall the model calculations of the partial {gamma}-ray cross sections are in good agreement with measured values.

  8. Evidence for an Inducible Repair-Recombination System in the Female Germ Line of Drosophila Melanogaster. I. Induction by Inhibitors of Nucleotide Synthesis and by Gamma Rays

    PubMed Central

    Bregliano, J. C.; Laurencon, A.; Degroote, F.

    1995-01-01

    In the I-R system of hybrid dysgenesis in Drosophila melanogaster, the transposition frequency of I factor, a LINE element-like retrotransposon, is regulated by the reactivity level of the R mother. This reactivity is a cellular state maternally inherited but chromosomally determined, which has been shown to undergo heritable, cumulative and reversible changes with aging and some environmental conditions. We propose the hypothesis that this reactivity level is one manifestation of an inducible repair-recombination system whose biological role might be analogous to the SOS response in bacteria. In this paper, we show that inhibitors of DNA synthesis and gamma rays enhance the reactivity level in a very similar way. This enhancement is heritable, cumulative and reversible. PMID:8647393

  9. Limits on thunderstorm-induced radioactive chlorine from gamma ray observations

    NASA Astrophysics Data System (ADS)

    Lundberg, J. L.; Millan, R. M.; Eack, K.

    2011-11-01

    We present analysis of thunderstorm data collected with a liquid nitrogen-cooled germanium spectrometer with energies between 13 keV-2.6 MeV that was deployed at Langmuir Lab on South Baldy Peak in New Mexico for June through August 2005. The motivation was to search for gamma ray emissions from radioactive chlorine-39 and chlorine-38, as suggested by Greenfield et al. (2003). Based on the observations, we place an upper limit on the rate of chlorine production through such a process (6.8 × 10-17 chlorine atoms per argon atom). This rate is sufficiently low to suggest that the anomalous gamma ray count increases observed by Greenfield et al. (2003) were not caused by radioactive chlorine.

  10. High energy irradiations simulating cosmic-ray-induced planetary gamma ray production. I - Fe target

    NASA Technical Reports Server (NTRS)

    Metzger, A. E.; Parker, R. H.; Yellin, J.

    1986-01-01

    Two thick Fe targets were bombarded by a series of 6 GeV proton irradiations for the purpose of simulating the cosmic ray bombardment of planetary objects in space. Gamma ray energy spectra were obtained with a germanium solid state detector during the bombardment, and 46 of the gamma ray lines were ascribed to the Fe targets. A comparison between observed and predicted values showed good agreement for Fe lines from neutron inelastic scattering and spallation reactions, and less satisfactory agreement for neutron capture reactions, the latter attributed to the difference in composition between the Fe target and the mean lunar abundance used in the modeling. Through an analysis of the irradiation results together with continuum data obtained in lunar orbit, it was found that 100 hours of measurement with a current instrument should generate a spectrum containing approximately 20 lines due to Fe alone, with a 2-sigma sensitivity for detection of about 0.2 percent.

  11. Search for Cosmic-Ray-Induced Gamma-Ray Emission in Galaxy Clusters

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Albert, A.; Allafort, A.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Bloom, E. D.; Bonamente, E.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Cavazzuti, E.; Chaves, R. C. G.; Kuss, M.; Pesce-Rollins, M.; Sgro, C.; Spandre, G.; Tinivella, M.

    2014-01-01

    Current theories predict relativistic hadronic particle populations in clusters of galaxies in addition to the already observed relativistic leptons. In these scenarios hadronic interactions give rise to neutral pions which decay into gamma rays that are potentially observable with the Large Area Telescope (LAT) on board the Fermi space telescope. We present a joint likelihood analysis searching for spatially extended gamma-ray emission at the locations of 50 galaxy clusters in four years of Fermi-LAT data under the assumption of the universal cosmic-ray (CR) model proposed by Pinzke & Pfrommer. We find an excess at a significance of 2.7 delta, which upon closer inspection, however, is correlated to individual excess emission toward three galaxy clusters: A400, A1367, and A3112. We discuss these cases in detail and conservatively attribute the emission to unmodeled background systems (for example, radio galaxies within the clusters).Through the combined analysis of 50 clusters, we exclude hadronic injection efficiencies in simple hadronic models above 21% and establish limits on the CR to thermal pressure ratio within the virial radius, R(sub 200), to be below 1.25%-1.4% depending on the morphological classification. In addition, we derive new limits on the gamma-ray flux from individual clusters in our sample.

  12. Cosmic-ray induced gamma-ray emission from the starburst galaxy NGC 253

    SciTech Connect

    Wang, Xilu; Fields, Brian D.

    2014-05-09

    Cosmic rays in galaxies interact with the interstellar medium and give us a direct view of nuclear and particle interactions in the cosmos. For example, cosmic-ray proton interactions with interstellar hydrogen produce gamma rays via PcrPism→π{sup 0}→γγ. For a 'normal' star-forming galaxy like the Milky Way, most cosmic rays escape the Galaxy before such collisions, but in starburst galaxies with dense gas and huge star formation rate, most cosmic rays do suffer these interactions [1,2]. We construct a 'thick-target' model for starburst galaxies, in which cosmic rays are accelerated by supernovae, and escape is neglected. This model gives an upper limit to the gamma-ray emission. Only two free parameters are involved in the model: cosmic-ray proton acceleration energy rate from supernova and the proton injection spectral index. The pionic gamma-radiation is calculated from 10 MeV to 10 TeV for the starburst galaxy NGC 253, and compared to Fermi and HESS data. Our model fits NGC 253 well, suggesting that cosmic rays in this starburst are in the thick target limit, and that this galaxy is a gamma-ray calorimeter.

  13. Rapid, non-destructive carbon analysis of forest soils using neutron-induced gamma-ray spectroscopy

    SciTech Connect

    Wielopolski, L.; Mitra, S.; Yanai, R. D.; Levine, C. R.; Vadeboncoeur, M. A.

    2010-08-01

    Forest soils are pivotal to understanding global carbon (C) cycling and evaluating policies for mitigating global change. However, they are very difficult to monitor because of the heterogeneity of soil characteristics, the difficulty of representative sampling, and the slow time scale of response to environmental change. Here we demonstrate that use of gamma-ray spectroscopy facilitates in situ non-destructive analysis of C and other elements in forest soils. In this approach the element-specific gamma-rays are induced by fast and thermal neutrons interacting with the nuclei of the elements present in the soil. Background gamma-rays emanating from naturally occurring radionuclides in the forest are recorded as well. We applied this approach in a mature northern hardwood forest on glacial till soils at the Bartlett Experimental Forest in New Hampshire, USA. The inelastic neutron scattering (INS) system yielded strong signals in gamma-ray counts/h, from C and other elements present in the soil matrix that included silicon, oxygen, hydrogen, iron, aluminum, manganese and potassium. The INS sensitivity for carbon was 20.656 counts h{sup -1} kg{sup -1} C m{sup -2} based on current net C gamma-ray counts and the data for the O horizon and mineral soil to a depth of 30 cm obtained from a nearby quantitative soil pit (7.35 kg C m{sup -2}). We estimate the minimum detectable change to be {approx}0.34 kg C m{sup -2}, which is {approx}5% of the current soil C content, and the minimum detectable limit to be {approx}0.23 kg C m{sup -1}. Eight % reproducibility from 11 measurements was limited, in part, by the large variability in the system counting geometry due to the uneven forest microtopography. The INS approach has the potential to revolutionize belowground monitoring of C and other elements, because the possibility of detecting a 5% change in forest soils has not been possible with destructive sampling methods.

  14. Transmissible and nontransmissible mutations induced by irradiating Arabidopsis thaliana pollen with gamma-rays and carbon ions.

    PubMed

    Naito, Ken; Kusaba, Makoto; Shikazono, Naoya; Takano, Toshiya; Tanaka, Atsushi; Tanisaka, Takatoshi; Nishimura, Minoru

    2005-02-01

    An early genetic study showed that most radiation-induced mutations are not transmitted to progeny. In recent molecular studies in plants, mainly M2 plants or their progeny, which contain only transmissible mutations, have been analyzed, but the early results imply that these studies are insufficient as comprehensive descriptions of radiation-induced mutations. To study radiation-induced mutations caused by low-LET gamma-rays and high-LET carbon ions at the molecular level, we used the pollen-irradiation method and the plant Arabidopsis thaliana to study various mutations, including nontransmissible mutations. This analysis revealed that most mutants induced with irradiation with gamma-rays (150-600 Gy) or carbon ions (40-150 Gy) carried extremely large deletions of up to >6 Mbp, the majority of which were not transmitted to progeny. Mutations containing 1- or 4-bp deletions, which were transmitted normally, were also found. Comparison of the deleted regions in the mutants showing various manners of transmission suggests that the nontransmissibility of the large deletions may be due to the deletion of a particular region that contains a gene or genes required for gamete development or viability.

  15. In vivo elemental analysis by counting neutron-induced gamma rays for medical and biological applications

    NASA Astrophysics Data System (ADS)

    Kehayias, Joseph J.; Ma, Ruimei; Zhuang, Hong; Moore, Robert; Dowling, Lisa

    1995-03-01

    Non-invasive in vivo elemental analysis is a technique used to assess human body composition which is indicative of nutritional status and health condition. The in vivo measurement of the body's major elements is used for a variety of medical studies requiring the determination of the body's compartments (protein, fat, water, bone). Whole body gamma-ray counters, consisting of Nal(Tl) crystal detectors in a shielded room, are used for measuring in vivo the body's Ca, Cl, Na and P by delayed neutron activation analysis. Thermal neutrons from a moderated 238Pu-Be source are used for the measurement of total body nitrogen (and thus protein) and chlorine at low radiation exposure (0.80 mSv). The resulting high energy prompt gamma-rays from nitrogen (10.83 MeV) and chlorine (6.11 MeV) are detected simultaneously with the irradiation. Body fat (the main energy store) and fat distribution (which relates to risk for cardiovascular disease) are measured by detecting C and O in vivo through fast neutron inelastic scattering. A small sealed D-T neutron generator is used for the pulsed (4 - 8 KHz) production of fast neutrons. Carbon and oxygen are detected by counting the 4.44 and 6.13 MeV gamma-rays resulting from the inelastic scattering of the fast neutrons from the 12C and 16O nuclei, respectively. One use of this method is the systematic study of the mechanisms driving the age-associated depletion of the metabolizing, oxygen-consuming cellular compartment of the body. The understanding of this catabolism may suggest ways to maintain lean tissue and thus to preserve quality of life for the very old.

  16. Relative biological effectiveness of 144 keV neutrons in producing dicentric chromosomes in human lymphocytes compared with 60Co gamma rays under head-to-head conditions.

    PubMed

    Schmid, E; Regulla, D; Guldbakke, S; Schlegel, D; Roos, M

    2002-04-01

    The RBE for neutrons was assessed in a head-to-head experiment in which cultures of lymphocytes from the same male donor were irradiated simultaneously with 144 keV neutrons and with 60Co gamma rays as the reference radiation and evaluated using matched time, culture conditions, and the end point of chromosomal aberrations to avoid potential confounding factors that would influence the outcome of the experiment. In addition, the irradiation time was held constant at 2 h for the high-dose groups for both radiation types, which resulted in rather low dose rates. For the induction of dicentric chromosomes, the exposure to the 144 keV neutrons was found to be almost equally as effective (yield coefficient alpha(dic) = 0.786 +/- 0.066 dicentrics per cell per gray) as that found previously for irradiation with monoenergetic neutrons at 565 keV (alpha(dic) = 0.813 +/- 0.052 dicentrics per cell per gray) under comparable exposure and culture conditions (Radiat. Res. 154, 307-312, 2000). However, the values of the maximum low-dose RBE (RBE(m)) relative to 60Co gamma rays that were determined in the present and previous studies show an insignificant but conspicuous difference: 57.0 +/- 18.8 and 76.0 +/- 29.5, respectively. This difference is mainly due to the difference in the alpha(dic) value of the 60Co gamma rays, the reference radiation, which was 0.0138 +/- 0.0044 Gy(-1) in the present study and 0.0107 +/- 0.0041 Gy(-1) in the previous study. In the present experiment, irradiations with 144 keV neutrons and 60Co gamma rays were both performed at 21 degrees C, while in the earlier experiment irradiations with 565 keV neutrons were performed at 21 degrees C and the corresponding reference irradiation with gamma rays was performed at 37 degrees C. However, the temperature difference between 21 degrees C and 37 degrees C has a minor influence on the yield of chromosomal alterations and hence RBE values. The large cubic PMMA phantom that was used for the gamma irradiations

  17. Investigations on neutron-induced prompt gamma ray analysis of bulk samples.

    PubMed

    Dokhale, P A; Csikai, J; Oláh, L

    2001-06-01

    A systematic investigation was carried out for the improvement of the prompt gamma interrogation method used for contraband detection by the pulsed fast/thermal neutron analysis (PFTNA) technique. Optimizations of source detector shielding and geometry, role of the type and dimension of the gamma detector, attenuation of neutrons and gamma rays in bulky samples were also studied. Results obtained for both the shielding materials and elemental content of cocaine simulants have been compared with the values calculated by the MCNP-4A code.

  18. Gamma-ray waveguides

    SciTech Connect

    Tournear, D. M.; Hoffbauer, M. A.; Akhadov, E. A.; Chen, A. T.; Pendleton, S. J.; Williamson, T. L.; Cha, K. C.; Epstein, R. I.

    2008-04-14

    We have developed an approach for gamma-ray optics using layered structures acting as planar waveguides. Experiments demonstrating channeling of 122 keV gamma rays in two prototype waveguides validate the feasibility of this technology. Gamma-ray waveguides allow one to control the direction of radiation up to a few MeV. The waveguides are conceptually similar to polycapillary optics, but can function at higher gamma-ray energies. Optics comprised of these waveguides will be able to collect radiation from small solid angles or concentrate radiation into small area detectors. Gamma-ray waveguides may find applications in medical imaging and treatment, astrophysics, and homeland security.

  19. Evidence that low concentrations of chlorophyllin (CHLN) increase the genetic damage induced by gamma rays in somatic cells of Drosophila.

    PubMed

    Cruces, M P; Pimentel, E; Zimmering, S

    2009-01-01

    It was first demonstrated in Salmonella that higher and lower concentrations of chlorophyllin (CHLN) may have effects in opposite directions, higher doses inhibiting and lower doses promoting the mutagenic activity of certain tobacco-related nitrosamines. Previous work of our group demonstrated that CHLN may have both a promoter and an inhibitory effect on mutagenesis in Drosophila. The present paper reviews the evidence obtained in our laboratory using gamma rays as the mutagenic agent, that higher and lower pretreatment concentrations of CHLN are associated with inhibitory and promoting effects, respectively, as in Salmonella. Employing the wing spot test, 48h larvae were pretreated with various concentrations of CHLN from 0 to 69 mM and then treated with 10 Gy gamma rays. With the highest concentration of CHLN, an approximate 54% reduction in mutagenesis was observed. At 35 mM a remnant of this inhibitory effect was found in that a significant decrease was limited to the twin spot category. Evidence of promotion was first seen at 4.3mM CHLN, an effect which persisted for the remaining five lower concentrations, the most pronounced evidence of promotion being found at the four lowest concentrations, 0.03-1.1 mM CHLN. It should be noted that no evidence of genotoxicity was found for CHLN alone, an observation consistent with the several reports in the literature. The results are taken as strong evidence that pretreatment with low concentrations of CHLN promotes DNA damage induced by gamma rays in somatic cells of Drosophila.

  20. Radiation-induced reduction of diuron by gamma-ray irradiation.

    PubMed

    Zhang, Jibiao; Zheng, Zheng; Zhao, Tan; Zhao, Yongfu; Wang, Lianhong; Zhong, Yun; Xu, Yue

    2008-03-01

    Diuron degradation efficiencies and the proposed mechanism by gamma-ray irradiation were investigated. Several factors that might affect the degradation values were further examined. The UV absorbances at 200-400 nm and diuron concentration decreased with the increase of radiation dose. When diuron initial concentration was 18.5 mg L(-1) and 1.0 kGy was selected as the radiation dose, diuron removal value and loss of total organic carbon were 100 and 34.1%, respectively. However, the concentration of Cl- ion increased with the increase of radiation dose. The process could be depicted by first order reaction kinetics and the reaction was mainly caused by the reaction of diuron with .OH and eaq-. The degradation efficiency decreased with the increase of initial concentration at the same radiation dose. H2O2, HCO3-, NO3-, NO2-, CH3OH and humic acid as additives reduced the degradation efficiency. Furthermore, the increase of NO3-, NO2-, CH3OH and humic acid would result in the decrease of the degradation values. The pH value could affect the removal efficiency and the degradation process was enhanced in acid condition. The pH value became lower with increasing radiation dose after gamma-ray irradiation.

  1. The effect of gamma-ray-induced radicals on activities and membrane structure of Sendai virus in aqueous solutions.

    PubMed

    Megumi, T; Fujita, S; Iwai, Y; Ito, T

    1993-05-01

    The effects of gamma-ray-induced radicals on the activities of viruses and membrane proteins were studied with Sendai virus in aqueous suspensions with or without additives including OH scavengers. The activities measured were hemagglutination and hemolysis located in the viral membrane. The changes in the protein components of viruses were analyzed at the same time by polyacrylamide gel electrophoresis (PAGE). 2-Mercaptoethanol (70 mM) and p-aminobenzoic acid (1 mM), both known as OH scavengers, fully protected the viral activities from gamma-ray-induced inactivation. Deaeration of virus suspensions by bubbling argon through the suspension did not affect the inactivation curve of the activities of the virus. Conspicuous changes in the membrane-associated glycoprotein bands found by PAGE analysis generally coincided with the findings in the activities of the virus. These findings suggest that OH radicals are the major damaging species acting on the glycoproteins in the membrane, and result in the inactivation of viral functions. In spite of strong OH scavenging ability, t-butanol resulted in the enhancement of inactivation and a decrease in the intensity of glycoprotein bands in the PAGE pattern. This finding, which is seemingly contradictory to the above conclusion, is discussed in terms of the action of alcohol radicals generated after OH scavenging. In particular, the possibility is pointed out that the membrane structure is affected by the reaction with the alcohol radicals, causing a crucial alteration of embedded proteins.

  2. Gamma-ray irradiated polymer optical waveguides

    SciTech Connect

    Lai, C.-C.; Wei, T.-Y.; Chang, C.-Y.; Wang, W.-S.; Wei, Y.-Y.

    2008-01-14

    Optical waveguides fabricated by gamma-ray irradiation on polymer through a gold mask are presented. The gamma-ray induced index change is found almost linearly dependent on the dose of the irradiation. And the measured propagation losses are low enough for practical application. Due to the high penetrability of gamma ray, uniform refractive index change in depth can be easily achieved. Moreover, due to large-area printing, the uniformity of waveguide made by gamma-ray irradiation is much better than that by e-beam direct writing.

  3. Chemical warfare agent and high explosive identification by spectroscopy of neutron-induced gamma rays

    SciTech Connect

    Caffrey, A.J.; Cole, J.D.; Gehrke, R.J.; Greenwood, R.C. )

    1992-10-01

    This paper reports on a non-destructive assay method to identify chemical warfare (CW) agents and high explosive (HE) munitions which was tested with actual chemical agents and explosives at the Tooele Army Depot, Tooele, Utah, from 22 April 1991 through 3 May 1991. The assay method exploits the gamma radiation produced by neutron interactions inside a container or munition to identify the elemental composition of its contents. The characteristic gamma-ray signatures of the chemical elements chlorine, phosphorus, and sulfur were observed form the CW agent containers and munitions, in sufficient detail to enable us to reliably discern agents GB (sarin), HD (mustard gas), and VX from one another, and from HE-filled munitions. By detecting of the presence of nitrogen, the key indictor of explosive compounds, and the absence of elements Cl, P, and S, HE shells were also clearly identified.

  4. Gamma ray transients

    NASA Technical Reports Server (NTRS)

    Cline, Thomas L.

    1987-01-01

    The discovery of cosmic gamma ray bursts was made with systems designed at Los Alamos Laboratory for the detection of nuclear explosions beyond the atmosphere. HELIOS-2 was the first gamma ray burst instrument launched; its initial results in 1976, seemed to deepen the mystery around gamma ray transients. Interplanetary spacecraft data were reviewed in terms of explaining the behavior and source of the transients.

  5. Sex-dependent Differences in Intestinal Tumorigenesis Induced in Apc1638N/+ Mice by Exposure to {gamma} Rays

    SciTech Connect

    Trani, Daniela; Moon, Bo-Hyun; Kallakury, Bhaskar; Hartmann, Dan P.; Datta, Kamal; Fornace, Albert J.

    2013-01-01

    Purpose: The purpose of the present study was to assess the effect of 1 and 5 Gy radiation doses and to investigate the interplay of gender and radiation with regard to intestinal tumorigenesis in an adenomatous polyposis coli (APC) mutant mouse model. Methods and Materials: Apc1638N/+ female and male mice were exposed whole body to either 1 Gy or 5 Gy of {gamma} rays and euthanized when most of the treated mice became moribund. Small and large intestines were processed to determine tumor burden, distribution, and grade. Expression of proliferation marker Ki-67 and estrogen receptor (ER)-{alpha} were also assessed by immunohistochemistry. Results: We observed that, with both 1 Gy and 5 Gy of {gamma} rays, females displayed reduced susceptibility to radiation-induced intestinal tumorigenesis compared with males. As for radiation effect on small intestinal tumor progression, although no substantial differences were found in the relative frequency and degree of dysplasia of adenomas in irradiated animals compared with controls, invasive carcinomas were found in 1-Gy- and 5-Gy-irradiated animals. Radiation exposure was also shown to induce an increase in protein levels of proliferation marker Ki-67 and sex-hormone receptor ER-{alpha} in both non tumor mucosa and intestinal tumors from irradiated male mice. Conclusions: We observed important sex-dependent differences in susceptibility to radiation-induced intestinal tumorigenesis in Apc1638N/+ mutants. Furthermore, our data provide evidence that exposure to radiation doses as low as 1 Gy can induce a significant increase in intestinal tumor multiplicity as well as enhance tumor progression in vivo.

  6. Thermal and gamma-ray induced relaxation in As-S glasses: modelling and experiment

    NASA Astrophysics Data System (ADS)

    Lucas, Pierre; King, Ellyn A.; Erdmann, Robert G.; Riley, Brian J.; Sundaram, S. K.; McCloy, John S.

    2011-10-01

    Enthalpy relaxation was measured in a series of As-S glasses irradiated with gamma rays and these samples are compared with a set of identical control samples kept in the dark. It is shown that gamma irradiation lifts the kinetic barrier for relaxation at room temperature and speeds up the enthalpy release. The measured values of thermal relaxation in the dark agree closely with modelling results obtained by fitting differential scanning calorimetry curves with the Tool-Narayanaswamy-Moynihan (TNM) equations. The measured values of activation energy for enthalpy relaxation are also in close agreement with that predicted by the TNM model, therefore lending credence to the fitting results. These measurements permit extraction of the effect of gamma irradiation on the glass structure for a series of As-S glasses with increasing structural coordination, and gamma irradiation is shown to reduce the structural relaxation time. It is also shown that lower coordination glasses exhibit greater radiation sensitivity but also greater thermal relaxation due to their lower Tg. On the other end, over-coordinated glasses show lower relaxation and almost no radiation sensitivity. This behaviour is similar to the glass response under sub-bandgap light irradiation.

  7. Body composition to climate change studies - the many facets of neutron induced prompt gamma-ray analysis

    SciTech Connect

    Mitra,S.

    2008-11-17

    In-vivo body composition analysis of humans and animals and in-situ analysis of soil using fast neutron inelastic scattering and thermal neutron capture induced prompt-gamma rays have been described. By measuring carbon (C), nitrogen (N) and oxygen (O), protein, fat and water are determined. C determination in soil has become important for understanding below ground carbon sequestration process in the light of climate change studies. Various neutron sources ranging from radio isotopic to compact 14 MeV neutron generators employing the associated particle neutron time-of-flight technique or micro-second pulsing were implemented. Gamma spectroscopy using recently developed digital multi-channel analyzers has also been described.

  8. Fluorine concentrations in bone biopsy samples determined by proton-induced gamma-ray emission and cyclic neutron activation.

    PubMed

    Spyrou, N M; Altaf, W J; Gill, B S; Jeynes, C; Nicolaou, G; Pietra, R; Sabbioni, E; Surian, M

    1990-01-01

    Fluorine concentrations in bone biopsy samples taken from the iliac crest of subjects, divided into four groups depending on the length of dialysis treatment, and aluminium levels in blood and bone pathology, in terms of osteoporosis, were determined by two instrumental methods. Proton-induced gamma-ray emission (PIGE), making use of the resonance reaction of 19F(p, alpha gamma)16O at 872 keV, and cyclic neutron activation analysis (CNAA), using the 19F(n, gamma)20F reaction in a reactor irradiation facility, were employed. Rutherford backscattering (RBS) was used to calculate the volume, and, hence, mass of the sample excited in PIGE by determining the major element composition of the samples in order to express results in terms of concentration. From this preliminary investigation, a relationship is suggested between fluorine concentrations in bone and aluminium levels in the system.

  9. Determination of total fluorine in five coal reference materials by proton-induced gamma-ray emission spectrometry.

    PubMed

    Roelandts, I; Robaye, G; Delbrouck-Habaru, J M; Weber, G

    1996-03-01

    The direct non-destructive proton-induced gamma-ray emission (PIGE) technique with a germanium detector was applied to the determination of total fluorine concentration in five coal reference materials (BCR 40, NIST 1632b, NIST 1635, SARM 20 and USGS CLB-1). Duplicate analyses were made from five randomly selected bottles of each coal. Individual data are presented and some problems (calibration, proton stopping power, effects of sample heating by the proton beam, background estimation) which were encountered during this study are discussed. Sensitivity and reproducibility of the determinations, and homogeneity of the coal samples with respect to fluorine contents by analysis of variance were investigated. The present data are also compared with the few published values for these reference samples, including other PIGE data. The use of synthetic standards and spiked samples in the present study suggested that the PIGE method was more accurate than other techniques.

  10. Gamma-Ray Pulsars

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    2011-01-01

    The Fermi Gamma-Ray Space Telescope has revolutionized the study of pulsar physics with the detection of over 80 gamma-ray pulsars. Several new populations have been discovered, including 24 radio quiet pulsars found through gamma-ray pulsations alone and about 20 millisecond gamma-ray pulsars. The gamma-ray pulsations from millisecond pulsars were discovered by both folding at periods of known radio millisecond pulsars or by detecting them as gamma-ray sources that are followed up by radio pulsar searches. The second method has resulted in a phenomenally successful synergy, with -35 new radio MSPs (to date) having been discovered at Fermi unidentified source locations and the gamma-ray pulsations having then been detected in a number of these using the radio timing solutions. The higher sensitivity and larger energy range of the Fermi Large Area Telescope has produced detailed energy-dependent light curves and phase-resolved spectroscopy on brighter pulsars, that have ruled out polar cap models as the major source of the emission in favor of outer magnetosphere accelerators. The large number of gamma-ray pulsars now allows for the first time meaningful population and sub-population studies that are revealing surprising properties of these fascinating sources.

  11. Gamma-ray Bursts

    NASA Astrophysics Data System (ADS)

    Kouveliotou, Chryssa; Wijers, Ralph A. M. J.; Woosley, Stan

    2012-11-01

    Prologue C. Kouveliotou, R. A . M. J. Wijers and S. E. Woosley; 1. The discovery of the gamma-ray burst phenomenon R. W. Klebesadel; 2. Instrumental principles E. E. Fenimore; 3. The BATSE era G. J. Fishman and C. A. Meegan; 4. The cosmological era L. Piro and K. Hurley; 5. The Swift era N. Gehrels and D. N. Burrows; 6. Discoveries enabled by multi-wavelength afterglow observations of gamma-ray bursts J. Greiner; 7. Prompt emission from gamma-ray bursts T. Piran, R. Sari and R. Mochkovitch; 8. Basic gamma-ray burst afterglows P. Mészáros and R. A. M. J. Wijers; 9. The GRB-supernova connection J. Hjorth and J. S. Bloom; 10. Models for gamma-ray burst progenitors and central engines S. E. Woosley; 11. Jets and gamma-ray burst unification schemes J. Granot and E. Ramirez-Ruiz; 12. High-energy cosmic rays and neutrinos E. Waxman; 13. Long gamma-ray burst host galaxies and their environments J. P. U. Fynbo, D. Malesani and P. Jakobsson; 14. Gamma-ray burst cosmology V. Bromm and A. Loeb; 15. Epilogue R. D. Blandford; Index.

  12. Gamma-ray astrophysics

    NASA Technical Reports Server (NTRS)

    Stecker, F. W. (Editor); Trombka, J. I. (Editor)

    1973-01-01

    Conference papers on gamma ray astrophysics are summarized. Data cover the energy region from about 0.3 MeV to a few hundred GeV and theoretical models of production mechanisms that give rise to both galactic and extragalactic gamma rays.

  13. Gamma ray detector shield

    DOEpatents

    Ohlinger, R.D.; Humphrey, H.W.

    1985-08-26

    A gamma ray detector shield comprised of a rigid, lead, cylindrical-shaped vessel having upper and lower portions with an pneumatically driven, sliding top assembly. Disposed inside the lead shield is a gamma ray scintillation crystal detector. Access to the gamma detector is through the sliding top assembly.

  14. Gamma ray-induced synthesis of hyaluronic acid/chondroitin sulfate-based hydrogels for biomedical applications

    NASA Astrophysics Data System (ADS)

    Zhao, Linlin; Gwon, Hui-Jeong; Lim, Youn-Mook; Nho, Young-Chang; Kim, So Yeon

    2015-01-01

    Hyaluronic acid (HA)/chondroitin sulfate (CS)/poly(acrylic acid) (PAAc) hydrogel systems were synthesized by gamma-ray irradiation without the use of additional initiators or crosslinking agents to achieve a biocompatible hydrogel system for skin tissue engineering. HA and CS derivatives with polymerizable residues were synthesized. Then, the hydrogels composed of glycosaminoglycans, HA, CS, and a synthetic ionic polymer, PAAc, were prepared using gamma-ray irradiation through simultaneous free radical copolymerization and crosslinking. The physicochemical properties of the HA/CS/PAAc hydrogels having various compositions were investigated to evaluate their feasibility as artificial skin substitutes. The gel fractions of the HA/CS/PAAc hydrogels increased in absorbed doses up to 15 kGy, and they exhibited 91-93% gel fractions under 15 kGy radiation. All of the HA/CS/PAAc hydrogels exhibited relatively high water contents of over 90% and reached an equilibrium swelling state within 24 h. The enzymatic degradation kinetics of the HA/CS/PAAc hydrogels depended on both the concentration of the hyaluronidase solution and the ratio of HA/CS/PAAc. The in vitro drug release profiles of the HA/CS/PAAc hydrogels were significantly influenced by the interaction between the ionic groups in the hydrogels and the ionic drug molecules as well as the swelling of the hydrogels. From the cytotoxicity results of human keratinocyte (HaCaT) cells cultured with extracts of the HA/CS/PAAc hydrogels, all of the HA/CS/PAAc hydrogel samples tested showed relatively high cell viabilities of more than 82%, and did not induce any significant adverse effects on cell viability.

  15. Freshly induced short-lived gamma-ray activity as a measure of fission rates in lightly re-irradiated spent fuel

    NASA Astrophysics Data System (ADS)

    Kröhnert, H.; Perret, G.; Murphy, M. F.; Chawla, R.

    2010-12-01

    A new measurement technique has been developed to determine fission rates in burnt fuel, following re-irradiation in a zero-power research reactor. The development has been made in the frame of the LIFE@PROTEUS program at the Paul Scherrer Institute, which aims at characterizing the interfaces between fresh and highly burnt fuel assemblies in modern LWRs. To discriminate against the high intrinsic gamma-ray activity of the burnt fuel, the proposed measurement technique uses high-energy gamma-rays, above 2000 keV, emitted by short-lived fission products freshly produced in the fuel. To demonstrate the feasibility of this technique, a fresh UO 2 sample and a 36 GWd/t burnt UO 2 sample were irradiated in the PROTEUS reactor and their gamma-ray activities were recorded directly after irradiation. For both fresh and the burnt fuel samples, relative fission rates were derived for different core positions, based on the short-lived 142La (2542 keV), 89Rb (2570 keV), 138Cs (2640 keV) and 95Y (3576 keV) gamma-ray lines. Uncertainties on the inter-position fission rate ratios were mainly due to the uncertainties on the net-area of the gamma-ray peaks and were about 1-3% for the fresh sample, and 3-6% for the burnt one. Thus, for the first time, it has been shown that the short-lived gamma-ray activity, induced in burnt fuel by irradiation in a zero-power reactor, can be used as a quantitative measure of the fission rate. For both fresh and burnt fuel, the measured results agreed, within the uncertainties, with Monte Carlo (MCNPX) predictions.

  16. Measurement of {sup 235}U content and flow of UF{sub 6} using delayed neutrons or gamma rays following induced fission

    SciTech Connect

    Stromswold, D.C.; Peurrung, A.J.; Reeder, P.L.; Perkins, R.W.

    1996-06-01

    Feasibility experiments conducted at Pacific Northwest National Laboratory demonstrate that either delayed neutrons or energetic gamma rays from short-lived fission products can be used to monitor the blending of UF{sub 6} gas streams. A {sup 252}Cf neutron source was used to induce {sup 235}U fission in a sample, and delayed neutrons and gamma rays were measured after the sample moved {open_quotes}down-stream.{close_quotes} The experiments used a UO{sub 2} powder that was transported down the pipe to simulate the flowing UF{sub 6} gas. Computer modeling and analytic calculation extended the test results to a flowing UF{sub 6} gas system. Neutron or gamma-ray measurements made at two downstream positions can be used to indicate both the {sup 235}U content and UF{sub 6} flow rate. Both the neutron and gamma-ray techniques have the benefits of simplicity and long-term reliability, combined with adequate sensitivity for low-intrusion monitoring of the blending process. Alternatively, measuring the neutron emission rate from (a, n) reactions in the UF{sub 6} provides an approximate measure of the {sup 235}U content without using a neutron source to induce fission.

  17. [The estimation of appropriateness of chromosomal aberration assay as a biological dosimetry based on cytogenetic investigation of lung cancer patients given non-uniform fractional exposures to high doses of therapeutic 60Co gamma-rays].

    PubMed

    Khvostunov, I K; Kursova, L V; Shepel', N N; Ragulin, Iu A; Sevan'kaev, A V; Gulidov, I A; Glazyrin, D A; Ivanova, I N

    2012-01-01

    The objective of this study was to investigate in vivo the dose response of radiation induced chromosomal aberrations in human blood lymphocytes of lung cancer patients given non-uniform fractional exposures to high doses of therapeutic 60Co gamma-rays delivered synchronously with polychemotherapy. The chromosome aberration analysis was carried out in peripheral blood lymphocytes of 13 lung cancer patients who manifested II to IV developmental clinical stage. During the course of radiotherapy they received the accumulated tumor dose ranged 47.5 to 70 Gy. The yield ofdicentrics, centric rings and fragments was measured in the blood samples taken before treatment, after the first day and after the complete course of radiotherapy. Based on cytogenetic measurements of 3 patients, the average tumor dose after the first day was estimated to be 2.1 to 3.0 Gy given that the corresponding physical dose was (1.0 Gy + 1.5 Gy). The quotient of the individual dose estimated by the frequency of aberrations to the physical dose after the complete course of radiotherapy was calculated for all 13 patients. The mean quotient was shown to be equal to 93 +/- 9% ranged 50 to 154%.

  18. Gamma-ray astronomy

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Lingenfelter, R. E.

    1982-01-01

    Cosmic gamma rays, the physical processes responsible for their production and the astrophysical sites from which they were seen are reported. The bulk of the observed gamma ray emission is in the photon energy range from about 0.1 MeV to 1 GeV, where observations are carried out above the atmosphere. There are also, however, gamma ray observations at higher energies obtained by detecting the Cerenkov light produced by the high energy photons in the atmosphere. Gamma ray emission was observed from sources as close as the Sun and the Moon and as distant as the quasar 3C273, as well as from various other galactic and extragalactic sites. The radiation processes also range from the well understood, e.g. energetic particle interactions with matter, to the still incompletely researched, such as radiation transfer in optically thick electron positron plasmas in intense neutron star magnetic fields.

  19. Gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Paciesas, William S.

    1991-01-01

    Miscellaneous tasks related to the development of the Bursts and Transient Source Experiment on the Gamma Ray Observatory and to analysis of archival data from balloon flight experiments were performed. The results are summarized and relevant references are included.

  20. Gamma-Ray Telescopes

    NASA Astrophysics Data System (ADS)

    Weekes, T.; Murdin, P.

    2000-11-01

    Gamma-rays are the highest-energy photons in the ELECTROMAGNETIC SPECTRUM and their detection presents unique challenges. On one hand it is easy to detect γ-rays. The interaction cross-sections are large and above a few MeV the pair production interaction, the dominant γ-ray interaction with matter, is easily recognized. Gamma-ray detectors were far advanced when the concept of `γ-ray astronomy' ...

  1. Radiation leukemogenesis in mice: loss of PU.1 on chromosome 2 in CBA and C57BL/6 mice after irradiation with 1 GeV/nucleon 56Fe ions, X rays or gamma rays. Part I. Experimental observations.

    PubMed

    Peng, Yuanlin; Brown, Natalie; Finnon, Rosemary; Warner, Christy L; Liu, Xianan; Genik, Paula C; Callan, Matthew A; Ray, F Andrew; Borak, Thomas B; Badie, Christophe; Bouffler, Simon D; Ullrich, Robert L; Bedford, Joel S; Weil, Michael M

    2009-04-01

    Since deletion of the PU.1 gene on chromosome 2 is a crucial acute myeloid leukemia (AML) initiating step in the mouse model, we quantified PU.1 deleted cells in the bone marrow of gamma-, X- and 56Fe-ion-irradiated mice at various times postirradiation. Although 56Fe ions were initially some two to three times more effective than X or gamma rays in inducing PU.1 deletions, by 1 month postirradiation, the proportions of cells with PU.1 deletions were similar for the HZE particles and the sparsely ionizing radiations. These results indicate that while 56Fe ions are more effective in inducing PU.1 deletions, they are also more effective in causing collateral damage that removes hit cells from the bone marrow. After X, gamma or 56Fe-ion irradiation, AML-resistant C57BL/6 mice have fewer cells with PU.1 deletions than CBA mice, and those cells do not persist in the bone marrow of the C57B6/6 mice. Our findings suggest that quantification of PU.1 deleted bone marrow cells 1 month postirradiation can be used as surrogate for the incidence of radiation-induced AML measured in large-scale mouse studies. If so, PU.1 loss could be used to systematically assess the potential leukemogenic effects of other ions and energies in the space radiation environment.

  2. Gamma ray optics

    SciTech Connect

    Jentschel, M.; Guenther, M. M.; Habs, D.; Thirolf, P. G.

    2012-07-09

    Via refractive or diffractive scattering one can shape {gamma} ray beams in terms of beam divergence, spot size and monochromaticity. These concepts might be particular important in combination with future highly brilliant gamma ray sources and might push the sensibility of planned experiments by several orders of magnitude. We will demonstrate the experimental feasibility of gamma ray monochromatization on a ppm level and the creation of a gamma ray beam with nanoradian divergence. The results are obtained using the inpile target position of the High Flux Reactor of the ILL Grenoble and the crystal spectrometer GAMS. Since the refractive index is believed to vanish to zero with 1/E{sup 2}, the concept of refractive optics has never been considered for gamma rays. The combination of refractive optics with monochromator crystals is proposed to be a promising design. Using the crystal spectrometer GAMS, we have measured for the first time the refractive index at energies in the energy range of 180 - 2000 keV. The results indicate a deviation from simple 1/E{sup 2} extrapolation of X-ray results towards higher energies. A first interpretation of these new results will be presented. We will discuss the consequences of these results on the construction of refractive optics such as lenses or refracting prisms for gamma rays and their combination with single crystal monochromators.

  3. Effect of vitamin-antioxidant micronutrients on the frequency of spontaneous and in vitro gamma-ray-induced micronuclei in lymphocytes of donors: the age factor.

    PubMed

    Gaziev, A I; Sologub, G R; Fomenko, L A; Zaichkina, S I; Kosyakova, N I; Bradbury, R J

    1996-03-01

    The effect of prolonged consumption of a vitamin-antioxidant mixture (VAM) on the frequency of spontaneous and in vitro gamma-radiation-induced micronuclei (MN) in peripheral blood lymphocytes in donors of various ages was investigated. Three groups of donors were recruited: (i) 56-83 years old (35 subjects), (ii) 23-30 years old (13 subjects), and (iii) 63-82 years old (12 subjects). Blood was sampled every 4 months for one year in all donors of the three groups. After the first sampling of blood, the donors of groups (i) and (ii) took VAM containing the vitamins A, C, E, as well as beta-carotene, folic acid, and rutin daily for 4 months. After the second blood sampling, the intake of VAM was terminated. The third blood sample was taken 4 months after termination of VAM intake. A part of the blood was exposed to gamma-radiation and the frequency of spontaneous and induced MN in lymphocytes was assayed. The analyses showed that the frequency of spontaneous and in vitro gamma-ray-induced MN in aged donors was significantly higher than that in young donors. No seasonal variations in MN frequency were observed in human lymphocytes during one year. Aged donors showed a statistically significant decrease in spontaneous MN in lymphocytes after a 4 month period of consumption of VAM. The intake of VAM by both aged and young donors promoted a decrease in MN induced lymphocytes in vitro by gamma-radiation. The results of our observations enable the suggestion that consumption of VAM favours a decrease in the chromosome damage produced by endogenous and exogenous factors in human lymphocytes.

  4. The gamma-ray observatory

    NASA Technical Reports Server (NTRS)

    1991-01-01

    An overview is given of the Gamma Ray Observatory (GRO) mission. Detection of gamma rays and gamma ray sources, operations using the Space Shuttle, and instruments aboard the GRO, including the Burst and Transient Source Experiment (BATSE), the Oriented Scintillation Spectrometer Experiment (OSSE), the Imaging Compton Telescope (COMPTEL), and the Energetic Gamma Ray Experiment Telescope (EGRET) are among the topics surveyed.

  5. Gamma rays induce DNA damage and oxidative stress associated with impaired growth and reproduction in the copepod Tigriopus japonicus.

    PubMed

    Han, Jeonghoon; Won, Eun-Ji; Lee, Bo-Young; Hwang, Un-Ki; Kim, Il-Chan; Yim, Joung Han; Leung, Kenneth Mei Yee; Lee, Yong Sung; Lee, Jae-Seong

    2014-07-01

    Nuclear radioisotope accidents are potentially ecologically devastating due to their impact on marine organisms. To examine the effects of exposure of a marine organism to radioisotopes, we irradiated the intertidal copepod Tigriopus japonicus with several doses of gamma radiation and analyzed the effects on mortality, fecundity, and molting by assessing antioxidant enzyme activities and gene expression patterns. No mortality was observed at 96h, even in response to exposure to a high dose (800Gy) of radiation, but mortality rate was significantly increased 120h (5 days) after exposure to 600 or 800Gy gamma ray radiation. We observed a dose-dependent reduction in fecundity of ovigerous females; even the group irradiated with 50Gy showed a significant reduction in fecundity, suggesting that gamma rays are likely to have a population level effect. In addition, we observed growth retardation, particularly at the nauplius stage, in individuals after gamma irradiation. In fact, nauplii irradiated with more than 200Gy, though able to molt to copepodite stage 1, did not develop into adults. Upon gamma radiation, T. japonicus showed a dose-dependent increase in reactive oxygen species (ROS) levels, the activities of several antioxidant enzymes, and expression of double-stranded DNA break damage genes (e.g. DNA-PK, Ku70, Ku80). At a low level (sub-lethal dose) of gamma irradiation, we found dose-dependent upregulation of p53, implying cellular damage in T. japonicus in response to sub-lethal doses of gamma irradiation, suggesting that T. japonicus is not susceptible to sub-lethal doses of gamma irradiation. Additionally, antioxidant genes, phase II enzyme (e.g. GSTs), and cellular chaperone genes (e.g. Hsps) that are involved in cellular defense mechanisms also showed the same expression patterns for sublethal doses of gamma irradiation (50-200Gy). These findings indicate that sublethal doses of gamma radiation can induce oxidative stress-mediated DNA damage and increase

  6. Double strand breaks induced by low doses of {gamma} rays or heavy ions: Quantitation in nonradioactive human DNA

    SciTech Connect

    Sutherland, B.M.; Bennett, P.V.; Sutherland, J.C.

    1996-07-15

    We have developed a method of quantitating low frequencies (0-30 sites/10{sup 9} base pairs) of double strand breaks in {approximately}1 {mu}g of nonradioactive human DNA. Unirradiated or irradiated DNA is digested with the restriction endonuclease NotI, producing cleavage fragments that include a major group centered at {approximately}1.2-1.3 Mbp. The DNA molecules are separated as a function of size by transverse alternating field electrophoresis. The frequency of double strand breaks is computed directly from the decrease in number average molecular length induced in the 1.2 to 1.3-Mbp cleavage fragment group by {sup 137}Cs {gamma} or Fe{sup 26+} (1.1 GeV/nucleon) irradiation vs the corresponding unirradiated DNA samples. The double strand break frequency can be quantitated easily in the dose range of 0-10 cGy of {gamma} rays. The frequency of breaks per unit dose calculated for {gamma} irradiation of DNA in human cells ({approximately}4.6 double strand breaks/10{sup 9} bp/Gy) who used methods requiring higher doses. 55 refs., 4 figs.

  7. Formation and conversion of defect centers in low water peak single mode optical fiber induced by gamma rays irradiation

    SciTech Connect

    Wen, J. X.; Luo, W. Y.; Xiao, Z. Y.; Wang, T. Y.; Chen, Z. Y.; Zeng, X. L.

    2010-02-15

    The formation and conversion processes of defect centers in low water peak single mode optical (LWPSM) fiber irradiated with gamma rays were investigated at room temperature using electron spin resonance. Germanium electron center (GEC) and self-trapped hole center (STH) occur when the fibers are irradiated with 1 and 5 kGy cumulative doses, respectively. With the increase in irradiation doses, the GEC defect centers disappear, and new defect centers such as E{sup '} centers (Si and Ge) and nonbridge oxygen hole centers (NBOHCs) generate. The generation of GEC and STH is attributed to the electron transfer, which is completely balanced. This is the main reason that radiation-induced attenuation (RIA) of the LWPSM fiber is only 10 dB/km at communication window. The new defect centers come from the conversion of GEC and STH to E{sup '} centers and NBOHC, and the conversion processes cause bond cleavage, which is the root cause that the RIA of the LWPSM fiber significantly increases up to 180 dB/km at working window. Furthermore, the concentration of new defect centers is saturated easily even by increasing cumulative doses.

  8. Effects of contrast medium on radiation-induced chromosome aberrations

    SciTech Connect

    Matsubara, S.; Suzuki, S.; Suzuki, H.; Kuwabara, Y.; Okano, T.

    1982-07-01

    The effects of contrast material (meglumine iothalamate) on radiation-induced chromosome aberrations were investigated in studies on the lymphocytes of patients who had undergone diagnostic radiography and in in vitro experiments with diagnostic x rays and /sup 60/Co gamma rays. Chromosome and chromatid aberrations were found to increase significantly with increasing concentrations of contrast material that were added at irradiation. However, the aberrations were not associated with elevation of the ratio of dicentric and ring chromosomes to the number of cells with unstable chromosome aberrations at the first mitosis. Lymphocytes irradiated in the absence of contrast material did not show an increase in chromosome-type aberrations when the agent was given in increasing concentrations during subsequent incubation, but there were greater numbers of chromatid gaps and breaks. When lymphocytes were exposed to 400 R (103.2 mC/kg) of /sup 60/Co gamma rays, the presence of contrast agent did not increase the yield of dicentric and ring chromosomes, but induced a marked delay in cell proliferation, especially in lymphocytes with more heavily damaged chromosomes. In additional examination, the contrast agent itself induced sister chromatid exchanges in lymphocytes.

  9. The Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Kniffen, Donald A.

    1991-01-01

    The Gamma Ray Observatory (GRO), scheduled for launch by the Space Shuttle in April 1991, weighs 35,000 lbs and will offer 10 to 20 times better sensitivity than any previous gamma ray mission. The four instruments aboard GRO are described. The Burst and Transient Source Experiment (BATSE) will continuously monitor the entire sky for transient gamma-ray events using eight identical, wide-field detectors capable of measuring brightness variations lasting only milliseconds at energies from about 50,000 to 600,000 eV. The Oriented Scintillation Spectrometer Experiment (OSSE) will make comprehensive observations of discrete sources at energies from 100,000 to 10 million eV, where many radioactive elements have emission lines. The observatory's Imaging Compton Telescope will conduct a deep survey of the entire sky at gamma-ray energies between 1 and 30 MeV. The Energetic Gamma Ray Experiment Telescope will cover a broad high-energy spectral range, from about 20 million to 30 billion eV and conduct a sensitive all-sky survey with a wide field of view and good angular resolution.

  10. Gamma ray camera

    DOEpatents

    Perez-Mendez, V.

    1997-01-21

    A gamma ray camera is disclosed for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array. 6 figs.

  11. Gamma ray camera

    DOEpatents

    Perez-Mendez, Victor

    1997-01-01

    A gamma ray camera for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array.

  12. Nuclear gamma rays from 720-MeV alpha-induced reactions on Al-27 and Si-28

    NASA Technical Reports Server (NTRS)

    Lieb, B. J.; Plendl, H. S.; Funsten, H. O.; Stronach, C. E.; Lind, V. G.

    1980-01-01

    Prompt gamma rays from the interaction of 720-MeV alpha particles with Al-27 and Si-28 were detected and analyzed to identify residual nuclei and to determine cross sections for production of specific levels. No gamma-ray transitions were detected from nuclei heavier than the target. From Doppler broadening, the momentum of the residual nuclei was estimated. The results are compared with previous results for 140- and 1600-MeV alphas on Al-27 and approximately 200-MeV positive or negative pions on Al-27 and Si-28 and fitted to a spallation-yield formula.

  13. Sucrose delays membrane deterioration of chrysanthemum flowers induced by gamma-rays

    NASA Astrophysics Data System (ADS)

    Kikuchi, O. K.; Todoriki, S.; Hayashi, T.

    1998-06-01

    Fluidity of the flower membranes of cut chrysanthemums ( Dendranthema grandiflorum Kitamura) decreased soon after gamma-irradiation at 750Gy and continued to decrease during storage following irradiation. Holding chrysanthemum cut inflorescence in 2% sucrose suppressed the decrease. The results suggest that sugars reduce radiation-induced physiological deterioration of chrysanthemum flower membranes.

  14. Estrogens decrease {gamma}-ray-induced senescence and maintain cell cycle progression in breast cancer cells independently of p53

    SciTech Connect

    Toillon, Robert-Alain . E-mail: robert.toillon@univ-lille1.fr; Magne, Nicolas; Laios, Ioanna; Castadot, Pierre; Kinnaert, Eric; Van Houtte, Paul; Desmedt, Christine B.Sc.; Leclercq, Guy; Lacroix, Marc

    2007-03-15

    Purpose: Sequential administration of radiotherapy and endocrine therapy is considered to be a standard adjuvant treatment of breast cancer. Recent clinical reports suggest that radiotherapy could be more efficient in association with endocrine therapy. The aim of this study was to evaluate the estrogen effects on irradiated breast cancer cells (IR-cells). Methods and Materials: Using functional genomic analysis, we examined the effects of 17-{beta}-estradiol (E{sub 2}, a natural estrogen) on MCF-7 breast cancer cells. Results: Our results showed that E{sub 2} sustained the growth of IR-cells. Specifically, estrogens prevented cell cycle blockade induced by {gamma}-rays, and no modification of apoptotic rate was detected. In IR-cells we observed the induction of genes involved in premature senescence and cell cycle progression and investigated the effects of E{sub 2} on the p53/p21{sup waf1/cip1}/Rb pathways. We found that E{sub 2} did not affect p53 activation but it decreased cyclin E binding to p21{sup waf1/cip1} and sustained downstream Rb hyperphosphorylation by functional inactivation of p21{sup waf1/cip1}. We suggest that Rb inactivation could decrease senescence and allow cell cycle progression in IR-cells. Conclusion: These results may help to elucidate the molecular mechanism underlying the maintenance of breast cancer cell growth by E{sub 2} after irradiation-induced damage. They also offer clinicians a rational basis for the sequential administration of ionizing radiation and endocrine therapies.

  15. Survival and initial chromatid breakage in normal and tumour cells exposed in vitro to gamma rays and carbon ions at the HIRFL.

    PubMed

    Jianshe, Y; Wenjian, L; Xiaodong, J; Xigang, J; Chuanling, G; Wei, W; Qingxiang, G

    2006-06-01

    Human hepatoma and normal liver cells were irradiated with (12)C(6+) ion beams (linear energy transfer (LET) = 96 keV microm(-1)) and gamma-rays at the Heavy Ion Research Facility in Lanzhou (HIRFL). The numbers and types of chromatid breaks were detected using the premature chromosome condensation technique. Irradiation with (12)C(6+) ions produced a majority of isochromatid break types, while chromatid breaks were dominant for irradiation with gamma-rays. Experimental results showed that the initial level of chromatid breaks is clearly related to the absorbed dose from (12)C(6+) ions and gamma-rays. The (12)C(6+) ions are relatively more effective at inducing initial chromatid breaks when compared with the gamma-rays. A relative biological effectiveness (RBE) of about 2.5 resulted for the induction of initial chromatid breaks by (12)C(6+) ions relative to gamma-rays in both cell lines.

  16. Gamma Ray Bursts

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Meszaros, Peter

    2012-01-01

    Gamma-ray bursts (GRBs) are bright flashes of gamma-rays coming from the cosmos. They occur roughly once per day ,last typically lOs of seconds and are the most luminous events in the universe. More than three decades after their discovery, and after pioneering advances from space and ground experiments, they still remain mysterious. The launch of the Swift and Fermi satellites in 2004 and 2008 brought in a trove of qualitatively new data. In this review we survey the interplay between these recent observations and the theoretical models of the prompt GRB emission and the subsequent afterglows.

  17. Gamma-ray Polarimetry

    SciTech Connect

    Tajima, Hiroyasu

    2003-02-05

    An astrophysics application of a low noise Double-sided Silicon Strip Detector (DSSD) is described. A Semiconductor Multiple-Compton Telescope (SMCT) is being developed to explore the gamma-ray universe in the 0.1-20 MeV energy band. Excellent energy resolution and polarization sensitivity are key features of the SMCT. We have developed prototype modules for a low-noise DSSD system, which reached an energy resolution of 1.3 keV (FWHM) for 122 keV at 0 C. Results of a gamma-ray imaging test are also presented.

  18. Measurement of high-energy prompt gamma-rays from neutron induced fission of U-235

    NASA Astrophysics Data System (ADS)

    Makii, Hiroyuki; Nishio, Katsuhisa; Hirose, Kentaro; Orlandi, Riccardo; Léguillon, Romain; Ogawa, Tatsuhiko; Soldner, Torsten; Hambsch, Franz-Josef; Astier, Alain; Pollitt, Andrew; Petrache, Costel; Tsekhanovich, Igor; Mathieu, Ludovic; Aïche, Mourad; Frost, Robert; Czajkowski, Serge; Guo, Song; Köster, Ulli

    2017-09-01

    We have developed a new setup to measure prompt γ-rays from the 235U(nth,f) reaction. The setup consists of two multi-wire proportional counters (MWPCs) to detect the fission fragments, two LaBr3(Ce) scintillators to measure the γ-rays. The highly efficient setup was installed at the PF1B beam line of the Institut Laue Langevin (ILL). We have successfully measured the γ-ray spectrum up to about 20 MeV for the fist time in neutron-induced fission.

  19. [Induced radioactivity in irradiated foods by X ray or gamma ray].

    PubMed

    Miyahara, Makoto

    2007-01-01

    In the course of the archival studies on safety of irradiated foods by the US Army, experimental records conducted by Glass & Smith, and Kruger & Wilson were investigated, based on our experimental experience. Food irradiation by Co-60 or 4 approximately 24MeV X ray can induce small amount of radioactivity in the foods. The principal mechanisms of the nuclear reactions are (gamma, n). The resulting nuclear products found in irradiated target solutions were Ba-135m, Pb-204m, Hg-199m, Ag-107m,Ag-109m, Cd-111m,Cd-113m, Sn-117m, Sn-119m, Sr-87m, Nb-93m, In113m, In-115m, Te-123m, Te-125m, Lu-178m Hf-160m by the (gamma, n) reaction. The total radio-activities in beef, bacon, shrimp, chicken, and green beans were counted at 60 days after irradiation by Cs-137, Co-60, and fuel element. The activities more than background were found in irradiated bacon and beef by Co-60. and activities were found in most foods when foods were irradiated by high energy X ray and the fuel element. The results were understood as the neutron activation by (gamma, n) or (n, gamma) reaction. Therefore, high energy X ray and spent fuel element were not used for food irradiation. As the results of this study Co-60 has been used with small amount of induced radioactivity in food.

  20. A measurement of the time profile of scintillation induced by low energy gamma-rays in liquid xenon with the XMASS-I detector

    NASA Astrophysics Data System (ADS)

    Takiya, H.; Abe, K.; Hiraide, K.; Ichimura, K.; Kishimoto, Y.; Kobayashi, K.; Kobayashi, M.; Moriyama, S.; Nakahata, M.; Norita, T.; Ogawa, H.; Sekiya, H.; Takachio, O.; Takeda, A.; Tasaka, S.; Yamashita, M.; Yang, B. S.; Kim, N. Y.; Kim, Y. D.; Itow, Y.; Kegasa, R.; Kobayashi, K.; Masuda, K.; Fushimi, K.; Martens, K.; Suzuki, Y.; Fujita, R.; Hosokawa, K.; Miuchi, K.; Oka, N.; Onishi, Y.; Takeuchi, Y.; Kim, Y. H.; Lee, J. S.; Lee, K. B.; Lee, M. K.; Fukuda, Y.; Nishijima, K.; Nakamura, S.

    2016-10-01

    We report the measurement of the emission time profile of scintillation from gamma-ray induced events in the XMASS-I 832 kg liquid xenon scintillation detector. Decay time constant was derived from a comparison of scintillation photon timing distributions between the observed data and simulated samples in order to take into account optical processes such as absorption and scattering in liquid xenon. Calibration data of radioactive sources, 55Fe, 241Am, and 57Co were used to obtain the decay time constant. Assuming two decay components, τ1 and τ2, the decay time constant τ2 increased from 27.9 ns to 37.0 ns as the gamma-ray energy increased from 5.9 keV to 122 keV. The accuracy of the measurement was better than 1.5 ns at all energy levels. A fast decay component with τ1 ∼ 2 ns was necessary to reproduce data. Energy dependencies of τ2 and the fraction of the fast decay component were studied as a function of the kinetic energy of electrons induced by gamma-rays. The obtained data almost reproduced previously reported results and extended them to the lower energy region relevant to direct dark matter searches.

  1. In vivo gamma-rays induced initial DNA damage and the effect of famotidine in mouse leukocytes as assayed by the alkaline comet assay.

    PubMed

    Mozdarani, Hossein; Nasirian, Borzo; Haeri, S Abolghasem

    2007-03-01

    Ionizing radiation induces a variety of lesions in DNA, each of which can be used as a bio-indicator for biological dosimetry or the study of the radioprotective effects of substances. To assess gamma ray-induced DNA damage in vivo in mouse leukocytes at various doses and the effect of famotidine, blood was collected from Balb/c male mice after irradiation with 4 Gy gamma-rays at different time intervals post-irradiation. To assess the response, mice were irradiated with doses of gamma-rays at 1 to 4 Grays. Famotidine was injected intra-peritoneally (i.p) at a dose of 5 mg/kg at various time intervals before irradiation. Four slides were prepared from each sample and alkaline comet assay was performed using standard protocols. Results obtained show that radiation significantly increases DNA damage in leukocytes in a dose dependent manner (p < 0.01) when using appropriate sampling time after irradiation, because increasing sampling time after irradiation resulted in a time dependent disappearance of DNA damage. Treatment with only 5 mg/kg famotidine before 4 Gy irradiation led to almost 50% reduction in DNA damage when compared with those animals which received radiation alone. The radioprotective capability of famotidine might be attributed to radical scavenging properties and an anti-oxidation mechanism.

  2. Characterization of non-CG genomic hypomethylation associated with gamma-ray-induced suppression of CMT3 transcription in Arabidopsis thaliana.

    PubMed

    Kim, Ji Eun; Lee, Min Hee; Cho, Eun Ju; Kim, Ji Hong; Chung, Byung Yeoup; Kim, Jin-Hong

    2013-12-01

    Ionizing radiation causes various epigenetic changes, as well as a variety of DNA lesions such as strand breaks, cross-links, oxidative damages, etc., in genomes. However, radiation-induced epigenetic changes have rarely been substantiated in plant genomes. The current study investigates whether DNA methylation of Arabidopsis thaliana genome is altered by gamma rays. We found that genomic DNA methylation decreased in wild-type plants with increasing doses of gamma rays (5, 50 and 200 Gy). Irradiation with 200 Gy significantly increased the expression of transcriptionally inactive centromeric 180-bp (CEN) and transcriptionally silent information (TSI) repeats. This increase suggested that there was a substantial release of transcriptional gene silencing by gamma rays, probably by induction of DNA hypomethylation. High expression of the DNA demethylase ROS1 and low expression of the DNA methyltransferase CMT3 supported this hypothesis. Moreover, Southern blot analysis following digestion of genomic DNA with methylation-sensitive enzymes revealed that the DNA hypomethylation occured preferentially at CHG or CHH sites rather than CG sites, depending on the radiation dose. Unlike CEN and TSI repeats, the number of Ta3, AtSN1 and FWA repeats decreased in transcription but increased in non-CG methylation. In addition, the cmt3-11 mutant showed neither DNA hypomethylation nor transcriptional activation of silenced repeats upon gamma irradiation. Furthermore, profiles of genome-wide transcriptomes in response to gamma rays differed between the wild-type and cmt3-11 mutant. These results suggest that gamma irradiation induced DNA hypomethylation preferentially at non-CG sites of transcriptionally inactive repeats in a locus-specific manner, which depends on CMT3 activity.

  3. Gamma-Ray Transitions Induced in Nuclear Spin Isomers by X-Rays

    NASA Astrophysics Data System (ADS)

    Collins, C. B.; Rusu, A. C.; Zoita, N. C.; Iosif, M. C.; Camase, D. T.; Davanloo, F.; Ur, C. A.; Popescu, I. I.; Pouvesle, J. M.; Dussart, R.; Kirischuk, V. I.; Strilchuk, N. V.; Agee, F. J.

    2001-07-01

    Because of the high density of energy storage and the large cross section for its release, nuclear spin isomers have attracted considerable recent interest. The triggering of induced gamma emission from them has encouraged efforts to develop intense sources of short-wavelength radiation. One of the more interesting examples is the 16+ 4-qp isomer of 178Hf which stores 2.445 MeV for a half-life of 31 years meaning that as a material, such isomeric 178Hf would store 1.3 GJ/g. Recently, a sample containing 6.3×1014 nuclei of the isomer of 178Hf was irradiated with X-ray pulses derived from a device operated at 15 mA to produce bremsstrahlung radiation with end point energies set to values between 60 and 90 keV. Emission of gamma radiation from the sample was increased by 1 2% above the quiescent value of spontaneous emission. Such an accelerated decay of the 178Hf isomer is consistent with an integrated cross section of 2.2×10-22 cm2 keV if the resonant absorption of the X-rays takes place below 20 keV as indicated by the use of selective absorbing filters in the irradiating beam. The work reported here describes the current experimental focus and results recently obtained with the use of coincident detection of emitted gamma photons by several detectors.

  4. Time-Dependence of VHE Gamma-Ray induced Pair Cascades in Radio Galaxies

    NASA Astrophysics Data System (ADS)

    Roustazadeh, Parisa; Boettcher, Markus; Thrush, Samantha

    2016-04-01

    Recently, several intermediate frequency peaked BL Lac objects (IBL), low frequency peaked BL Lac objects (LBL) and flat spectrum radio quasars (FSRQ) were detected as very high energy ( VHE, E > 100 ˜ GeV) γ-ray sources. These discoveries suggest that γγ absorption and pair cascades might occur in those objects, leading to excess γ-ray emission which may be observable also in off-axis viewing directions (i.e., like in radio galaxies) when deflected by moderately strong magnetic fields. Here, we investigate the time dependence of the Compton γ-ray emission from such VHE γ-ray induced pair cascades. We show that the cascade emission is variable on time scales much shorter than the light-crossing time across the characteristic extent of the external radiation field, depending on the viewing angle and γ-ray energy. Thus, we find that the cascade Compton interpretation for the Fermi γ-ray emission from radio galaxies is still consistent with the day-scale variability detected in the Fermi γ-ray emission of radio galaxies, such as NGC 1275, which we use as a specific example.

  5. Morphology of blazar-induced gamma ray halos due to a helical intergalactic magnetic field

    SciTech Connect

    Long, Andrew J.; Vachaspati, Tanmay E-mail: tvachasp@asu.edu

    2015-09-01

    We study the characteristic size and shape of idealized blazar-induced cascade halos in the 1–100,GeV energy range assuming various non-helical and helical configurations for the intergalactic magnetic field (IGMF). While the magnetic field creates an extended halo, the helicity provides the halo with a twist. Under simplifying assumptions, we assess the parameter regimes for which it is possible to measure the size and shape of the halo from a single source and then to deduce properties of the IGMF. We find that blazar halo measurements with an experiment similar to Fermi-LAT are best suited to probe a helical magnetic field with strength and coherence length today in the ranges 10{sup −17} ∼< B{sub 0} / Gauss ∼< 10{sup −13} and 10 Mpc ∼< λ ∼< 10 Gpc where H ∼ B{sub 0}{sup 2} / λ is the magnetic helicity density. Stronger magnetic fields or smaller coherence scales can still potentially be investigated, but the connection between the halo morphology and the magnetic field properties is more involved. Weaker magnetic fields or longer coherence scales require high photon statistics or superior angular resolution.

  6. Celestial gamma ray study

    NASA Technical Reports Server (NTRS)

    Michelson, Peter F.

    1995-01-01

    This report documents the research activities performed by Stanford University investigators as part of the data reduction effort and overall support of the Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Observatory. This report is arranged chronologically, with each subsection detailing activities during roughly a one year period of time, beginning in June 1991.

  7. Gamma Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    2000-01-01

    The project has progressed successfully during this period of performance. The highlights of the Gamma Ray Astronomy teams efforts are: (1) Support daily BATSE data operations, including receipt, archival and dissemination of data, quick-look science analysis, rapid gamma-ray burst and transient monitoring and response efforts, instrument state-of-health monitoring, and instrument commanding and configuration; (2) On-going scientific analysis, including production and maintenance of gamma-ray burst, pulsed source and occultation source catalogs, gamma-ray burst spectroscopy, studies of the properties of pulsars and black holes, and long-term monitoring of hard x-ray sources; (3) Maintenance and continuous improvement of BATSE instrument response and calibration data bases; (4) Investigation of the use of solid state detectors for eventual application and instrument to perform all sky monitoring of X-Ray and Gamma sources with high sensitivity; and (5) Support of BATSE outreach activities, including seminars, colloquia and World Wide Web pages. The highlights of this efforts can be summarized in the publications and presentation list.

  8. Scission gamma rays

    SciTech Connect

    Danilyan, G. V.; Klenke, J.; Krakhotin, V. A.; Kuznetsov, V. L.; Novitsky, V. V.; Pavlov, V. S.; Shatalov, P. B.

    2009-11-15

    Gamma rays probably emitted by the fissioning nucleus {sup 236}U* at the instant of the break of the neck or within the time of about 10{sup -21} s after or before this were discovered in the experiment devoted to searches for the effect of rotation of the fissioning nucleus in the process {sup 235}U(n,{gamma}f) and performed in a polarized beam of cold neutrons from the MEPHISTO Guideline at the FRM II Munich reactor. Detailed investigations revealed that the angular distribution of these gamma rays is compatible with the assumption of the dipole character of the radiation and that their energy spectrum differs substantially from the spectrum of prompt fission gamma rays. In the measured interval 250-600 keV, this spectrum can be described by an exponential function at the exponent value of {alpha} = -5 x 10{sup -3} keV{sup -1}. The mechanism of radiation of such gamma rays is not known at the present time. Theoretical models based on the phenomenon of the electric giant dipole resonance in a strongly deformed fissioning nucleus or in a fission fragment predict harder radiation whose spectrum differs substantially from the spectrum measured in the present study.

  9. Gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Paciesas, William S.

    1991-01-01

    Miscellaneous tasks related to the development of the Burst and Transient Source Experiment on the Gamma Ray Observatory and to collection, analysis, and interpretation of data from the MSFC Very Low Frequency transient monitoring program were performed. The results are summarized and relevant references are included.

  10. Simultaneous determination of Si, Al and Na concentrations by particle induced gamma-ray emission and applications to reference materials and ceramic archaeological artifacts

    NASA Astrophysics Data System (ADS)

    Dasari, K. B.; Chhillar, S.; Acharya, R.; Ray, D. K.; Behera, A.; Lakshmana Das, N.; Pujari, P. K.

    2014-11-01

    A particle induced gamma ray emission (PIGE) method using 4 MeV proton beam was standardized for simultaneous determination of Si, Al and Na concentrations and has been applied for non-destructive analysis of several reference materials and archaeological clay pottery samples. Current normalized count rates of gamma-rays for the three elements listed above were obtained by an in situ method using Li as internal standard. The paper presents application of the in situ current normalized PIGE method for grouping study of 39 clay potteries, obtained from Rajasthan and Andhra Pradesh states of India. Grouping of artifacts was carried out using the ratios of SiO2 to Al2O3 concentrations, due to their non volatile nature. Powder samples and elemental standards in pellet forms (cellulose matrix) were irradiated using the 4 MeV proton beam (∼10 nA) from the 3 MV tandem accelerator at IOP Bhubaneswar, and assay of prompt gamma rays was carried out using a 60% relative efficiency HPGe detector coupled to MCA. The concentration ratio values of SiO2/Al2O3 indicated that pottery samples fell into two major groups, which are in good agreement with their collection areas. Reference materials from IAEA and NIST were analyzed for quantification of Si, Al and Na concentrations as a part of validation as well as application of PIGE method.

  11. Inelastic cross sections from gamma-ray measurements

    SciTech Connect

    Nelson, Ronald Owen

    2010-12-06

    Measurements of gamma rays following neutron induced reactions have been studied with the Germanium Array for Neutron-induced Excitations (GEANIE) at the Los Alamos Neutron Science Center (LANSCE) for many years. Gamma-ray excitation functions and coincidence studies provide insight into nuclear reaction mechanisms as well as expanding our knowledge of energy levels and gamma-rays. Samples studied with Ge detectors at LANSCE range from Be to Pu. Fe, Cr and Ti have been considered for use as reference cross sections. An overview of the measurements and efforts to create a reliable neutron-induced gamma-ray reference cross section will be presented.

  12. The Universe in Gamma Rays

    NASA Astrophysics Data System (ADS)

    Schönfelder, Volker

    After describing cosmic gamma-ray production and absorption, the instrumentation used in gamma-ray astronomy is explained. The main part of the book deals with astronomical results, including the somewhat surprising result that the gamma-ray sky is continuously changing.

  13. Mitotic gene conversion events induced in G1-synchronized yeast cells by gamma rays are similar to spontaneous conversion events

    PubMed Central

    Lee, Phoebe S.; Petes, Thomas D.

    2010-01-01

    In a previous study, we mapped spontaneous mitotic reciprocal crossovers (RCOs) in a 120-kb interval of chromosome V of Saccharomyces cerevisiae. About three-quarters of the crossovers were associated with gene conversion tracts. About 40% of these conversion tracts had the pattern expected as a consequence of repair of a double-stranded DNA break (DSB) of an unreplicated chromosome. We test this hypothesis by examining the crossovers and gene conversion events induced by gamma irradiation in G1- and G2-arrested diploid yeast cells. The gene conversion patterns of G1-irradiated cells (but not G2-irradiated cells) mimic conversion events associated with spontaneous RCOs, confirming our previous conclusion that many spontaneous crossovers are initiated by a DSB on an unreplicated chromosome. PMID:20231456

  14. Tannins from barks of Pinus caribaea protect Escherichia coli cells against DNA damage induced by gamma-rays.

    PubMed

    Fuentes, J L; Vernhe, M; Cuetara, E B; Sánchez-Lamar, A; Santana, J L; Llagostera, M

    2006-02-01

    This work was aimed to evaluate genotoxicity and antigenotoxicity activity against gamma-rays of a tannin fraction obtained from barks of Pinus caribaea, as well as to elucidate the antigenotoxic mechanisms involved in radioprotection by using different approaches as pre-, co- and post-irradiation cell treatments with plant extract. The tannin fraction was not genotoxic to Escherichia coli cells in experiments using different exposure times. This extract was antigenotoxic against gamma-rays when the cells were pre- or co-treated with this extracts, but not during post-irradiation treatments, suggesting a possibly antigenotoxic action through free radical scavenging mechanisms. The results are discussed in relation to the chemopreventive and therapeutic potential of the studied plant species.

  15. Measurement of Cerenkov Radiation Induced by the Gamma-Rays of Co-60 Therapy Units Using Wavelength Shifting Fiber

    PubMed Central

    Jang, Kyoung Won; Shin, Sang Hun; Kim, Seon Geun; Kim, Jae Seok; Yoo, Wook Jae; Ji, Young Hoon; Lee, Bongsoo

    2014-01-01

    In this study, a wavelength shifting fiber that shifts ultra-violet and blue light to green light was employed as a sensor probe of a fiber-optic Cerenkov radiation sensor. In order to characterize Cerenkov radiation generated in the developed wavelength shifting fiber and a plastic optical fiber, spectra and intensities of Cerenkov radiation were measured with a spectrometer. The spectral peaks of light outputs from the wavelength shifting fiber and the plastic optical fiber were measured at wavelengths of 500 and 510 nm, respectively, and the intensity of transmitted light output of the wavelength shifting fiber was 22.2 times higher than that of the plastic optical fiber. Also, electron fluxes and total energy depositions of gamma-ray beams generated from a Co-60 therapy unit were calculated according to water depths using the Monte Carlo N-particle transport code. The relationship between the fluxes of electrons over the Cerenkov threshold energy and the energy depositions of gamma-ray beams from the Co-60 unit is a near-identity function. Finally, percentage depth doses for the gamma-ray beams were obtained using the fiber-optic Cerenkov radiation sensor, and the results were compared with those obtained by an ionization chamber. The average dose difference between the results of the fiber-optic Cerenkov radiation sensor and those of the ionization chamber was about 2.09%. PMID:24755521

  16. Measurement of Cerenkov radiation induced by the gamma-rays of Co-60 therapy units using wavelength shifting fiber.

    PubMed

    Jang, Kyoung Won; Shin, Sang Hun; Kim, Seon Geun; Kim, Jae Seok; Yoo, Wook Jae; Ji, Young Hoon; Lee, Bongsoo

    2014-04-21

    In this study, a wavelength shifting fiber that shifts ultra-violet and blue light to green light was employed as a sensor probe of a fiber-optic Cerenkov radiation sensor. In order to characterize Cerenkov radiation generated in the developed wavelength shifting fiber and a plastic optical fiber, spectra and intensities of Cerenkov radiation were measured with a spectrometer. The spectral peaks of light outputs from the wavelength shifting fiber and the plastic optical fiber were measured at wavelengths of 500 and 510 nm, respectively, and the intensity of transmitted light output of the wavelength shifting fiber was 22.2 times higher than that of the plastic optical fiber. Also, electron fluxes and total energy depositions of gamma-ray beams generated from a Co-60 therapy unit were calculated according to water depths using the Monte Carlo N-particle transport code. The relationship between the fluxes of electrons over the Cerenkov threshold energy and the energy depositions of gamma-ray beams from the Co-60 unit is a near-identity function. Finally, percentage depth doses for the gamma-ray beams were obtained using the fiber-optic Cerenkov radiation sensor, and the results were compared with those obtained by an ionization chamber. The average dose difference between the results of the fiber-optic Cerenkov radiation sensor and those of the ionization chamber was about 2.09%.

  17. MODELING PHOTODISINTEGRATION-INDUCED TeV PHOTON EMISSION FROM LOW-LUMINOSITY GAMMA-RAY BURSTS

    SciTech Connect

    Liu Xuewen; Wu Xuefeng; Lu Tan E-mail: xfwu@pmo.ac.cn

    2012-05-15

    Ultra-high-energy cosmic-ray heavy nuclei have recently been considered as originating from nearby low-luminosity gamma-ray bursts that are associated with Type Ibc supernovae. Unlike the power-law decay in long duration gamma-ray bursts, the light curve of these bursts exhibits complex UV/optical behavior: shock breakout dominated thermal radiation peaks at about 1 day, and, after that, nearly constant emission sustained by radioactive materials for tens of days. We show that the highly boosted heavy nuclei at PeV energy interacting with the UV/optical photon field will produce considerable TeV photons via the photodisintegration/photo-de-excitation process. It was later predicted that a thermal-like {gamma}-ray spectrum peaks at about a few TeV, which may serve as evidence of nucleus acceleration. The future observations by the space telescope Fermi and by the ground atmospheric Cherenkov telescopes such as H.E.S.S., VERITAS, and MAGIC will shed light on this prediction.

  18. Gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Paciesas, William S.

    1994-01-01

    The Burst and Transient Source Experiment (BATSE) is one of four instruments on the Compton observatory which was launched by the space shuttle Atlantis on April 5, 1991. As of mid-March, 1994, BATSE detected more than 925 cosmic gamma-ray bursts and more than 725 solar flares. Pulsed gamma rays have been detected from at least 16 sources and emission from at least 28 sources (including most of the pulsed sources) has been detected by the earth occultation technique. UAH participation in BATSE is extensive but can be divided into two main areas, operations and data analysis. The daily BATSE operations tasks represent a substantial level of effort and involve a large team composed of MSFC personnel as well as contractors such as UAH. The scientific data reduction and analysis of BATSE data is also a substantial level of effort in which UAH personnel have made significant contributions.

  19. Topics in gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Lingenfelter, R. E.

    1986-01-01

    Observations of gamma rays from solar flares, gamma ray bursts, the Galactic center, galactic nucleosynthesis, SS433, and Cygnus X-3, and their effects on astrophysical problems are discussed. It is observed that gamma ray spectra from solar flares are applicable to the study of particle acceleration and confinement and the determination of chemical abundances in the solar atmosphere. The gamma ray lines from the compact galactic object SS433 are utilized to examine the acceleration of jets, and analysis of the gamma ray lines of Cygnus X-3 reveal that particles can be accelerated in compact sources to ultrahigh energies.

  20. Topics in gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Lingenfelter, R. E.

    1986-01-01

    Observations of gamma rays from solar flares, gamma ray bursts, the Galactic center, galactic nucleosynthesis, SS433, and Cygnus X-3, and their effects on astrophysical problems are discussed. It is observed that gamma ray spectra from solar flares are applicable to the study of particle acceleration and confinement and the determination of chemical abundances in the solar atmosphere. The gamma ray lines from the compact galactic object SS433 are utilized to examine the acceleration of jets, and analysis of the gamma ray lines of Cygnus X-3 reveal that particles can be accelerated in compact sources to ultrahigh energies.

  1. Gamma ray collimator

    NASA Technical Reports Server (NTRS)

    Casanova, Edgar J. (Inventor)

    1991-01-01

    A gamma ray collimator including a housing having first and second sections is disclosed. The first section encloses a first section of depleted uranium which is disposed for receiving and supporting a radiation emitting component such as cobalt 60. The second section encloses a depleted uranium member which is provided with a conical cut out focusing portion disposed in communication with the radiation emitting element for focusing the emitted radiation to the target.

  2. Gamma ray collimator

    NASA Technical Reports Server (NTRS)

    Casanova, Edgar J. (Inventor)

    1993-01-01

    A gamma ray collimator including a housing having first and second sections. The first section encloses a first section of depleted uranium which is disposed for receiving and supporting a radiation emitting component such as cobalt 60. The second section encloses a depleted uranium member which is provided with a conical cut-out focusing portion disposed in communication with the radiation emitting element for focusing the emitted radiation to the target.

  3. UNIDENTIFIED {gamma}-RAY SOURCES: HUNTING {gamma}-RAY BLAZARS

    SciTech Connect

    Massaro, F.; Ajello, M.; D'Abrusco, R.; Paggi, A.; Tosti, G.; Gasparrini, D.

    2012-06-10

    One of the main scientific objectives of the ongoing Fermi mission is unveiling the nature of unidentified {gamma}-ray sources (UGSs). Despite the major improvements of Fermi in the localization of {gamma}-ray sources with respect to the past {gamma}-ray missions, about one-third of the Fermi-detected objects are still not associated with low-energy counterparts. Recently, using the Wide-field Infrared Survey Explorer survey, we discovered that blazars, the rarest class of active galactic nuclei and the largest population of {gamma}-ray sources, can be recognized and separated from other extragalactic sources on the basis of their infrared (IR) colors. Based on this result, we designed an association method for the {gamma}-ray sources to recognize if there is a blazar candidate within the positional uncertainty region of a generic {gamma}-ray source. With this new IR diagnostic tool, we searched for {gamma}-ray blazar candidates associated with the UGS sample of the second Fermi {gamma}-ray LAT catalog (2FGL). We found that our method associates at least one {gamma}-ray blazar candidate as a counterpart to each of 156 out of 313 UGSs analyzed. These new low-energy candidates have the same IR properties as the blazars associated with {gamma}-ray sources in the 2FGL catalog.

  4. Unidentified Gamma-Ray Sources: Hunting Gamma-Ray Blazars

    SciTech Connect

    Massaro, F.; D'Abrusco, R.; Tosti, G.; Ajello, M.; Gasparrini, A.Paggi.D.

    2012-04-02

    One of the main scientific objectives of the ongoing Fermi mission is unveiling the nature of the unidentified {gamma}-ray sources (UGSs). Despite the large improvements of Fermi in the localization of {gamma}-ray sources with respect to the past {gamma}-ray missions, about one third of the Fermi-detected objects are still not associated to low energy counterparts. Recently, using the Wide-field Infrared Survey Explorer (WISE) survey, we discovered that blazars, the rarest class of Active Galactic Nuclei and the largest population of {gamma}-ray sources, can be recognized and separated from other extragalactic sources on the basis of their infrared (IR) colors. Based on this result, we designed an association method for the {gamma}-ray sources to recognize if there is a blazar candidate within the positional uncertainty region of a generic {gamma}-ray source. With this new IR diagnostic tool, we searched for {gamma}-ray blazar candidates associated to the UGS sample of the second Fermi {gamma}-ray catalog (2FGL). We found that our method associates at least one {gamma}-ray blazar candidate as a counterpart each of 156 out of 313 UGSs analyzed. These new low-energy candidates have the same IR properties as the blazars associated to {gamma}-ray sources in the 2FGL catalog.

  5. Gamma-ray Output Spectra from 239 Pu Fission

    DOE PAGES

    Ullmann, John

    2015-05-25

    The gamma-ray multiplicities, individual gamma-ray energy spectra, and total gamma energy spectra following neutron-induced fission of 239Pu were measured using the DANCE detector at Los Alamos. Corrections for detector response were made using a forward-modeling technique based on propagating sets of gamma rays generated from a paramaterized model through a GEANT model of the DANCE array and adjusting the parameters for best fit to the measured spectra. The results for the gamma-ray spectrum and multiplicity are in general agreement with previous results, but the measured total gamma-ray energy is about 10% higher. We found that a dependence of the gamma-raymore » spectrum on the gamma-ray multplicity was also observed. Finally, global model calculations of the multiplicity and gamma energy distributions are in good agreement with the data, but predict a slightly softer total-energy distribution.« less

  6. DNA DSB induced in human cells by charged particles and gamma rays: experimental results and theoretical approaches.

    PubMed

    Campa, A; Ballarini, F; Belli, M; Cherubini, R; Dini, V; Esposito, G; Friedland, W; Gerardi, S; Molinelli, S; Ottolenghi, A; Paretzke, H; Simone, G; Tabocchini, M A

    2005-11-01

    To quantify the role played by radiation track structure and background fragments in modulating DNA fragmentation in human cells exposed to gamma-rays and light ions. Human fibroblasts were exposed in vitro to different doses (in the range from 40 - 200 Gy) of (60)Co gamma-rays and 0.84 MeV protons (Linear Energy Transfer, LET, in tissue 28.5 keV/microm). The resulting DNA fragments were scored under two electrophoretic conditions, in order to optimize separation in the size ranges 0.023 - 1.0 Mbp and 1.0 - 5.7 Mbp. In parallel, DNA fragmentation was simulated both with a phenomenological approach based on the "generalized broken-stick" model, and with a mechanistic approach based on the PARTRAC (acronym of PARticle TRACk) Monte Carlo code (1.32 MeV photons were used for the simulation of (60)Co gamma-rays). For both gamma-rays and protons, the experimental dose response in the range 0.023 - 5.7 Mbp could be approximated as a straight line, the slope of which provided a yield of (5.3 +/- 0.4) x 10(-9) Gy(-1) bp(-1) for gamma-rays and (7.1 +/- 0.6) x 10(-9) Gy(-1) bp(-1) for protons, leading to a Relative Biological Effectiveness (RBE) of 1.3 +/- 0.2. From both theoretical analyses it appeared that, while gamma-ray data were consistent with double-strand breaks (DSB) random induction, protons at low doses showed significant deviation from randomness, implying enhanced production of small fragments in the low molecular weight part of the experimental range. The theoretical analysis of fragment production was then extended to ranges where data were not available, i.e. to fragments larger than 5.7 Mbp and smaller than 23 kbp. The main outcome was that small fragments (<23 kbp) are produced almost exclusively via non-random processes, since their number is considerably higher than that produced by a random insertion of DSB. Furthermore, for protons the number of these small fragments is a significant fraction (about 20%) of the total number of fragments; these fragments

  7. The involvement of hypoxia-inducible factor-1alpha in the susceptibility to gamma-rays and chemotherapeutic drugs of oral squamous cell carcinoma cells.

    PubMed

    Sasabe, Eri; Zhou, Xuan; Li, Dechao; Oku, Naohisa; Yamamoto, Tetsuya; Osaki, Tokio

    2007-01-15

    The transcription factor hypoxia-inducible factor-1alpha (HIF-1alpha) is the key regulator that controls the hypoxic response of mammalian cells. The overexpression of HIF-1alpha has been demonstrated in many human tumors. However, the role of HIF-1alpha in the therapeutic efficacy of chemotherapy and radiotherapy in cancer cells is poorly understood. In this study, we investigated the influence of HIF-1alpha expression on the susceptibility of oral squamous cell carcinoma (OSCC) cells to chemotherapeutic drugs (cis-diamminedichloroplatinum and 5-fluorouracil) and gamma-rays. Treatment with chemotherapeutic drugs and gamma-rays enhanced the expression and nuclear translocation of HIF-1alpha, and the susceptibility of OSCC cells to the drugs and gamma-rays was negatively correlated with the expression level of HIF-1alpha protein. The overexpression of HIF-1alpha induced OSCC cells to become more resistant to the anticancer agents, and down-regulation of HIF-1alpha expression by small interfering RNA enhanced the susceptibility of OSCC cells to them. In the HIF-1alpha-knockdown OSCC cells, the expression of P-glycoprotein, heme oxygenase-1, manganese-superoxide dismutase and ceruloplasmin were downregulated and the intracellular levels of chemotherapeutic drugs and reactive oxygen species were sustained at higher levels after the treatment with the anticancer agents. These results suggest that enhanced HIF-1alpha expression is related to the resistance of tumor cells to chemo- and radio-therapy and that HIF-1alpha is an effective therapeutic target for cancer treatment.

  8. Gamma-Ray Localization of Terrestrial Gamma-Ray Flashes

    SciTech Connect

    Marisaldi, M.; Labanti, C.; Fuschino, F.; Bulgarelli, A.; Trifoglio, M.; Di Cocco, G.; Gianotti, F.; Argan, A.; De Paris, G.; Trois, A.; Del Monte, E.; Costa, E.; Di Persio, G.; Donnarumma, I.; Evangelista, Y.; Feroci, M.; Lazzarotto, F.; Pacciani, L.; Rubini, A.; Sabatini, S.

    2010-09-17

    Terrestrial gamma-ray flashes (TGFs) are very short bursts of high-energy photons and electrons originating in Earth's atmosphere. We present here a localization study of TGFs carried out at gamma-ray energies above 20 MeV based on an innovative event selection method. We use the AGILE satellite Silicon Tracker data that for the first time have been correlated with TGFs detected by the AGILE Mini-Calorimeter. We detect 8 TGFs with gamma-ray photons of energies above 20 MeV localized by the AGILE gamma-ray imager with an accuracy of {approx}5-10 deg. at 50 MeV. Remarkably, all TGF-associated gamma rays are compatible with a terrestrial production site closer to the subsatellite point than 400 km. Considering that our gamma rays reach the AGILE satellite at 540 km altitude with limited scattering or attenuation, our measurements provide the first precise direct localization of TGFs from space.

  9. Determination of Fluorine in Fourteen Microanalytical Geologic Reference Materials using SIMS, EPMA, and Proton Induced Gamma Ray Emission (PIGE) Analysis

    NASA Astrophysics Data System (ADS)

    Guggino, S. N.; Hervig, R. L.

    2010-12-01

    -DING) = 101 ± 1; ML3B-G (MPI-DING) = 49 ± 17. These values are lower than published values for BCR-2 and BHVO-2 (unmelted powders) and the “information values” for the MPI-DING glass standards. Proton Induced Gamma ray Emission (PIGE) was tested for the high silica samples. PIGE analyses (1.7 MeV Tandem Accelerator; reaction type: 19F(p, αγ)16O; primary current = 20-30 nA; incident beam voltage = 1.5 MeV) were calibrated with a crystal of fluor-topaz (F = 20.3 wt%) and gave F values of: NIST 610 = 266 ± 14 ppm; NIST 620 = 54 ± 5 ppm; and UTR-2 = 1432 ± 32 ppm. SIMS calibration defined by the PIGE analyses shows an excellent linear trend with low background similar to the basaltic calibration. The F concentrations of intermediate MPI-DING glasses were determined based on SIMS calibration generated from the PIGE analysis above. The F concentrations and 2σ errors (ppm) are: T1G = 219.9 ± 6.8; StHs/680-G = 278.0 ± 2.0 ppm. This study revealed a large matrix effect between the high-silica and basaltic glasses, thus requiring the use of appropriate standards and separate SIMS calibrations when analyzing samples of different compositions.

  10. Lunar based gamma ray astronomy

    NASA Astrophysics Data System (ADS)

    Haymes, R. C.

    Gamma ray astronomy represents the study of the universe on the basis of the electromagnetic radiation with the highest energy. Gamma ray astronomy provides a crucial tool for the understanding of astronomical phenomena, taking into account nucleosynthesis in supernovae, black holes, active galaxies, quasars, the sources of cosmic rays, neutron stars, and matter-antimatter annihilation. Difficulties concerning the conduction of studies by gamma ray astronomy are related to the necessity to perform such studies far from earth because the atmosphere is a source of gamma rays. Studies involving the use of gamma ray instruments in earth orbit have been conducted, and more gamma ray astronomy observations are planned for the future. Imperfections of studies conducted in low earth orbit could be overcome by estalishing an observatory on the moon which represents a satellite orbiting at 60 earth radii. Details concerning such an observatory are discussed.

  11. Fuzzy correlations of gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Hartmann, Dieter H.; Linder, Eric V.; Blumenthal, George R.

    1991-01-01

    The origin of gamma-ray bursts is not known, both in the sense of the nature of the source emitting the radiation and literally, the position of the burst on the sky. Lacking unambiguously identified counterparts in any wavelength band studied to date, statistical approaches are required to determine the burster distance scale. Angular correlation analysis is one of the most powerful tools in this regard. However, poor detector resolution gives large localization errors, effectively beam smearing the positions. The resulting fuzzy angular correlation function is investigated and the generic isotropization that smearing induces on any intrinsic clustering is discussed. In particular, the extent to which gamma-ray burst observations by the BATSE detector aboard the Gamma-Ray Observatory might recover an intrinsic source correlation is investigated.

  12. Radiation-induced oxidation of ultra-high molecular weight polyethylene (UHMWPE) powder by gamma rays and electron beams: A clear dependence of dose rate

    NASA Astrophysics Data System (ADS)

    Wang, Honglong; Xu, Lu; Hu, Jiangtao; Wang, Mouhua; Wu, Guozhong

    2015-10-01

    Oxidation is an important effect of irradiation on polyethylene in air. In this work, oxidation of ultra-high molecular weight polyethylene (UHMWPE) powder (ca. 110 μm in diameter) induced by gamma rays (γ ray) and electron beams (EB) in air resulted in some large differences in properties, such as oxidative scission due to dose rate differences. However, other properties, such as surface wettability and thermal stability were not that greatly affected. The dose-rates used were 0.0019 kGy/s from a cobalt-60 gamma source and 92 kGy/s from an electron beam. The chemical structure, oxidation level, surface wettability and thermal stability of irradiated UHMWPE were analyzed by FT-IR, XPS, TGA and the static contact angle. Hydrophilic carboxyl and carbonyl groups were present on the surface of irradiated UHMWPE after irradiation in air, resulting in a decrease in the contact angle. After irradiation at 300 kGy, the gel content of the γ ray-irradiated UHMWPE samples decreased to almost zero, while that of EB irradiated UHMWPE decreased to 57%. For UHMWPE powder irradiated by gamma rays at lower doses, radiation-induced oxidation was complete and consistent with a simple theoretic estimation. Surface wettability was primarily affected by surface oxidation, and the oxidation level of UHMWPE could be easily predicted.

  13. Noninvolvement of the X chromosome in radiation-induced chromosome translocations in the human lymphoblastoid cell line TK6

    SciTech Connect

    Jordan, R.; Schwartz, J.L. )

    1994-03-01

    Fluorescence in situ hybridization procedures were used to examine the influence of chromosome locus on the frequency and type of chromosome aberrations induced by [sup 60]Co [gamma] rays in the human lymphoblastoid cell line TK6. Aberrations involving the X chromosome were compared to those involving the similarly sized autosome chromosome 7. When corrected for DNA content, acentric fragments were induced with equal frequency in the X and 7 chromosomes. Dose-dependent increases in chromosomal interchanges involving chromosome 7 were noted, and the frequencies of balanced translocations and dicentrics produced were approximately equal. Chromosome interchanges involving the X chromosome were rare and showed no apparent dose dependence. Thus, while chromosomes 7 and X are equally sensitive to the induction of chromosome breaks, the X chromosome is much less likely to interact with autosomes than chromosome 7. The noninvolvement of the X chromosome in translocations with autosomes may reflect a more peripheral and separate location for the X chromosome in the mammalian nucleus. 20 refs., 2 figs., 1 tab.

  14. Effects of indirect actions and oxygen on relative biological effectiveness: estimate of DSB induction and conversion induced by gamma rays and helium ions

    PubMed Central

    Tsai, Ju-Ying; Chen, Fang-Hsin; Hsieh, Tsung-Yu; Hsiao, Ya-Yun

    2015-01-01

    Clustered DNA damage other than double-strand breaks (DSBs) can be detrimental to cells and can lead to mutagenesis or cell death. In addition to DSBs induced by ionizing radiation, misrepair of non-DSB clustered damage contributes extra DSBs converted from DNA misrepair via pathways for base excision repair and nucleotide excision repair. This study aimed to quantify the relative biological effectiveness (RBE) when DSB induction and conversion from non-DSB clustered damage misrepair were used as biological endpoints. The results showed that both linear energy transfer (LET) and indirect action had a strong impact on the yields for DSB induction and conversion. RBE values for DSB induction and maximum DSB conversion of helium ions (LET = 120 keV/μm) to 60Co gamma rays were 3.0 and 3.2, respectively. These RBE values increased to 5.8 and 5.6 in the absence of interference of indirect action initiated by addition of 2-M dimethylsulfoxide. DSB conversion was ∼1–4% of the total non-DSB damage due to gamma rays, which was lower than the 10% estimate by experimental measurement. Five to twenty percent of total non-DSB damage due to helium ions was converted into DSBs. Hence, it may be possible to increase the yields of DSBs in cancerous cells through DNA repair pathways, ultimately enhancing cell killing. PMID:25902742

  15. Development of particle induced gamma-ray emission methods for nondestructive determination of isotopic composition of boron and its total concentration in natural and enriched samples.

    PubMed

    Chhillar, Sumit; Acharya, Raghunath; Sodaye, Suparna; Pujari, Pradeep K

    2014-11-18

    We report simple particle induced gamma-ray emission (PIGE) methods using a 4 MeV proton beam for simultaneous and nondestructive determination of the isotopic composition of boron ((10)B/(11)B atom ratio) and total boron concentrations in various solid samples with natural isotopic composition and enriched with (10)B. It involves measurement of prompt gamma-rays at 429, 718, and 2125 keV from (10)B(p,αγ)(7)Be, (10)B(p, p'γ)(10)B, and (11)B(p, p'γ)(11)B reactions, respectively. The isotopic composition of boron in natural and enriched samples was determined by comparing peak area ratios corresponding to (10)B and (11)B of samples to natural boric acid standard. An in situ current normalized PIGE method, using F or Al, was standardized for total B concentration determination. The methods were validated by analyzing stoichiometric boron compounds and applied to samples such as boron carbide, boric acid, carborane, and borosilicate glass. Isotopic compositions of boron in the range of 0.247-2.0 corresponding to (10)B in the range of 19.8-67.0 atom % and total B concentrations in the range of 5-78 wt % were determined. It has been demonstrated that PIGE offers a simple and alternate method for total boron as well as isotopic composition determination in boron based solid samples, including neutron absorbers that are important in nuclear technology.

  16. Molecular characterisation of murine acute myeloid leukaemia induced by 56Fe ion and 137Cs gamma ray irradiation

    PubMed Central

    Bacher, Jeffery W.

    2013-01-01

    Exposure to sparsely ionising gamma- or X-ray irradiation is known to increase the risk of leukaemia in humans. However, heavy ion radiotherapy and extended space exploration will expose humans to densely ionising high linear energy transfer (LET) radiation for which there is currently no understanding of leukaemia risk. Murine models have implicated chromosomal deletion that includes the hematopoietic transcription factor gene, PU.1 (Sfpi1), and point mutation of the second PU.1 allele as the primary cause of low-LET radiation-induced murine acute myeloid leukaemia (rAML). Using array comparative genomic hybridisation, fluorescence in situ hybridisation and high resolution melt analysis, we have confirmed that biallelic PU.1 mutations are common in low-LET rAML, occurring in 88% of samples. Biallelic PU.1 mutations were also detected in the majority of high-LET rAML samples. Microsatellite instability was identified in 42% of all rAML samples, and 89% of samples carried increased microsatellite mutant frequencies at the single-cell level, indicative of ongoing instability. Instability was also observed cytogenetically as a 2-fold increase in chromatid-type aberrations. These data highlight the similarities in molecular characteristics of high-LET and low-LET rAML and confirm the presence of ongoing chromosomal and microsatellite instability in murine rAML. PMID:22987027

  17. Gamma Ray Bursts - Observations

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Cannizzo, J. K.

    2010-01-01

    We are in an exciting period of discovery for gamma-ray bursts. The Swift observatory is detecting 100 bursts per year, providing arcsecond localizations and sensitive observations of the prompt and afterglow emission. The Fermi observatory is observing 250 bursts per year with its medium-energy GRB instrument and about 10 bursts per year with its high-energy LAT instrument. In addition, rapid-response telescopes on the ground are providing new capabilities to study optical emission during the prompt phase and spectral signatures of the host galaxies. The combined data set is enabling great advances in our understanding of GRBs including afterglow physics, short burst origin, and high energy emission.

  18. Gamma-ray line astrophysics

    NASA Technical Reports Server (NTRS)

    Lingenfelter, R. E.; Ramaty, R.

    1986-01-01

    Recent observations of gamma-ray line emission from solar flares, gamma-ray bursts, the galactic center, the interstellar medium and the jets of SS433 are reviewed. The implications of these observations on high energy processes in these sources are discussed.

  19. The Compton Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Chipman, E.; Kniffen, D.

    1994-01-01

    The Arthur Holly Compton Gamma Ray Observatory Compton) is the second in NASA's series of great Observatories. Launched on 1991 April 5, Compton represents a dramatic increase in capability over previous gamma-ray missions. The spacecraft and scientific instruments are all in good health, and many significant discoveries have already been made. We describe the capabilities of the four scientific instruments, and the observing program of the first 2 years of the mission. Examples of early discoveries by Compton are enumerated, including the discovery that gamma-ray bursts are isotropic but spatially inhomogeneous in their distribution; the discovery of a new class of high-energy extragalacatic gamma-ray sources, the gamma-ray AGNs; the discovery of emission from SN 1987A in the nuclear line of Co-57; and the mapping of emission from Al-26 in the interstellar medium (ISM) near the Galactic center. Future observations will include deep surveys of selected regions of the sky, long-tem studies of individual objects, correlative studies of objects at gamma-ray and other energies, a Galactic plane survey at intermediate gamma-ray energies, and improved statistics on gamma-ray bursts to search for small anisotropies. After completion of the all-sky survey, a Guest Investigator program is in progress with guest observers' time share increasing from 30% upward for the late mission phases.

  20. The Compton Gamma Ray Observatory

    NASA Astrophysics Data System (ADS)

    Gehrels, N.; Chipman, E.; Kniffen, D.

    1994-06-01

    The Arthur Holly Compton Gamma Ray Observatory Compton) is the second in NASA's series of great Observatories. Launched on 1991 April 5, Compton represents a dramatic increase in capability over previous gamma-ray missions. The spacecraft and scientific instruments are all in good health, and many significant discoveries have already been made. We describe the capabilities of the four scientific instruments, and the observing program of the first 2 years of the mission. Examples of early discoveries by Compton are enumerated, including the discovery that gamma-ray bursts are isotropic but spatially inhomogeneous in their distribution; the discovery of a new class of high-energy extragalacatic gamma-ray sources, the gamma-ray AGNs; the discovery of emission from SN 1987A in the nuclear line of Co-57; and the mapping of emission from Al-26 in the interstellar medium (ISM) near the Galactic center. Future observations will include deep surveys of selected regions of the sky, long-tem studies of individual objects, correlative studies of objects at gamma-ray and other energies, a Galactic plane survey at intermediate gamma-ray energies, and improved statistics on gamma-ray bursts to search for small anisotropies. After completion of the all-sky survey, a Guest Investigator program is in progress with guest observers' time share increasing from 30% upward for the late mission phases.

  1. Gamma-ray burst observations

    NASA Technical Reports Server (NTRS)

    Atteia, J.-L.

    1993-01-01

    The most important observational characteristics of gamma-ray bursts are reviewed, with emphasis on X-ray and gamma-ray data. The observations are used to derive some basic properties of the sources. The sources are found to be isotropically distributed; the burster population is limited in space, and the edge of the distribution is visible.

  2. Gamma Ray Pulsars: Multiwavelength Observations

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2004-01-01

    High-energy gamma rays are a valuable tool for studying particle acceleration and radiation in the magnetospheres of energetic pulsars. The seven or more pulsars seen by instruments on the Compton Gamma Ray Observatory (CGRO) show that: the light curves usually have double-peak structures (suggesting a broad cone of emission); gamma rays are frequently the dominant component of the radiated power; and all the spectra show evidence of a high-energy turnover. For all the known gamma-ray pulsars, multiwavelength observations and theoretical models based on such observations offer the prospect of gaining a broad understanding of these rotating neutron stars. The Gamma-ray Large Area Space Telescope (GLAST), now in planning for a launch in 2006, will provide a major advance in sensitivity, energy range, and sky coverage.

  3. Evidence for an Inducible Repair-Recombination System in the Female Germ Line of Drosophila Melanogaster. II. Differential Sensitivity to Gamma Rays

    PubMed Central

    Laurencon, A.; Bregliano, J. C.

    1995-01-01

    In a previous paper, we reported that the reactivity level, which regulates the frequency of transposition of I factor, a LINE element-like retrotransposon, is enhanced by the same agents that induce the SOS response in Escherichia coli. In this report, we describe experimental evidence that, for identical genotypes, the reactivity levels correlate with the sensitivity of oogenesis to gamma rays, measured by the number of eggs laid and by frequency of dominant lethals. This strongly supports the hypothesis that the reactivity level is one manifestation of an inducible DNA repair system taking place in the female germ line of Drosophila melanogaster. The implications of this finding for the understanding of the regulation of I factor are discussed and some other possible biological roles of this system are outlined. PMID:8647394

  4. The depth-dependence of the biological effectiveness of 60Co gamma rays in a large absorber determined by dicentric chromosomes in human lymphocytes.

    PubMed

    Schmid, Ernst; Roos, Hartmut; Kramer, Hans-Michael

    2008-01-01

    Radiobiological evidence is shown concerning a significant depth-dependence of the maximum relative biological effectiveness at limiting low doses (RBE(M)) of (60)Co gamma rays in a cubic polymethylmethacrylate (PMMA) phantom of 30 cm edge length. Using the dose-response curve for the dicentric data in human lymphocytes obtained in the present experiment at a depth of 20 cm, together with the comprehensive and consistent data set determined earlier at smaller depths of the PMMA phantom, there is an increase in the RBE(M) value by a factor of 2.18 +/- 1.25 at a depth of 20 cm relative to 1 cm in the phantom. All the dicentric data are based on identical exposure durations and irradiation temperatures as well as identical culture and evaluation conditions, with blood from the same donor.

  5. Cosmic rays, gamma rays and synchrotron radiation from the Galaxy

    DOE PAGES

    Orlando, Elena

    2012-07-30

    Galactic cosmic rays (CR), interstellar gamma-ray emission and synchrotron radiation are related topics. CR electrons propagate in the Galaxy and interact with the interstellar medium, producing inverse-Compton emission measured in gamma rays and synchrotron emission measured in radio. I present an overview of the latest results with Fermi/LAT on the gamma-ray diffuse emission induced by CR nuclei and electrons. Then I focus on the recent complementary studies of the synchrotron emission in the light of the latest gamma-ray results. Relevant observables include spectral indices and their variations, using surveys over a wide range of radio frequencies. As a result, thismore » paper emphasizes the importance of using the parallel study of gamma rays and synchrotron radiation in order to constrain the low-energy interstellar CR electron spectrum, models of propagation of CRs, and magnetic fields.« less

  6. Cosmic rays, gamma rays and synchrotron radiation from the Galaxy

    SciTech Connect

    Orlando, Elena

    2012-07-30

    Galactic cosmic rays (CR), interstellar gamma-ray emission and synchrotron radiation are related topics. CR electrons propagate in the Galaxy and interact with the interstellar medium, producing inverse-Compton emission measured in gamma rays and synchrotron emission measured in radio. I present an overview of the latest results with Fermi/LAT on the gamma-ray diffuse emission induced by CR nuclei and electrons. Then I focus on the recent complementary studies of the synchrotron emission in the light of the latest gamma-ray results. Relevant observables include spectral indices and their variations, using surveys over a wide range of radio frequencies. As a result, this paper emphasizes the importance of using the parallel study of gamma rays and synchrotron radiation in order to constrain the low-energy interstellar CR electron spectrum, models of propagation of CRs, and magnetic fields.

  7. [The dose-response of unstable chromosome exchanges in lymphocytes of cancer patients undergone whole-body fractionated gamma-rays exposure at the total dose 1.15 Gy].

    PubMed

    Semenov, A V; Vorobtsova, I E; Zharinov, G M

    2010-01-01

    The dose-response of unstable chromosome exchanges (UCE) in lymphocytes of 4 cancer patients undergone whole-body fractionated gamma-rays exposure (at the daily dose of 0.115 Gy up to the total dose 1.15 Gy) was compared with corresponding dose-response for lymphocytes of the same patients, irradiated in vitro at the same dose range. In vivo irradiation yielded lower frequency of UCE on the dose unit than in vitro irradiation. It was shown that the in vivo dose-response curve gives more adequate dose estimation than in vitro one. This curve could be used for reconstruction of absorbed dose in the cases of analogous character of in-controlled irradiation of people.

  8. Chromatin structure and ionizing-radiation-induced chromosome aberrations

    SciTech Connect

    Muehlmann-Diaz, M.C.

    1993-01-01

    The possible influence of chromatic structure or activity on chromosomal radiosensitivity was studied. A cell line was isolated which contained some 10[sup 5] copies of an amplified plasmid in a single large mosquito artificial chromosome (MAC). This chromosome was hypersensitive to DNase I. Its radiosensitivity was some three fold greater than normal mosquito chromosomes in the same cell. In cultured human cells irradiated during G[sub 0], the initial breakage frequency in chromosome 4, 19 and the euchromatic and heterochromatic portions of the Y chromosome were measured over a wide range of doses by inducing Premature Chromosome Condensation (PCC) immediately after irradiation with Cs-137 gamma rays. No evidence was seen that Y heterochromatin or large fragments of it remained unbroken. The only significant deviation from the expected initial breakage frequency per Gy per unit length of chromosome was that observed for the euchromatic portion of the Y chromosome, with breakage nearly twice that expected. The development of aberrations involving X and Y chromosomes at the first mitosis after irradation was also studied. Normal female cells sustained about twice the frequency of aberrations involving X chromosomes for a dose of 7.3 Gy than the corresponding male cells. Fibroblasts from individuals with supernumerary X chromosomes did not show any further increase in X aberrations for this dos. The frequency of aberrations involving the heterochromatic portion of the long arm of the Y chromosome was about what would be expected for a similar length of autosome, but the euchromatic portion of the Y was about 3 times more radiosensitive per unit length. 5-Azacytidine treatment of cultured human female fibroblasts or fibroblasts from a 49,XXXXY individual, reduced the methylation of cytosine residues in DNA, and resulted in an increased chromosomal radiosensitivity in general, but it did not increase the frequency of aberrations involving the X chromosomes.

  9. High energy gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Fichtel, Carl E.

    1987-01-01

    High energy gamma ray astronomy has evolved with the space age. Nonexistent twenty-five years ago, there is now a general sketch of the gamma ray sky which should develop into a detailed picture with the results expected to be forthcoming over the next decade. The galactic plane is the dominant feature of the gamma ray sky, the longitude and latitude distribution being generally correlated with galactic structural features including the spiral arms. Two molecular clouds were already seen. Two of the three strongest gamma ray sources are pulsars. The highly variable X-ray source Cygnus X-3 was seen at one time, but not another in the 100 MeV region, and it was also observed at very high energies. Beyond the Milky Way Galaxy, there is seen a diffuse radiation, whose origin remains uncertain, as well as at least one quasar, 3C 273. Looking to the future, the satellite opportunities for high energy gamma ray astronomy in the near term are the GAMMA-I planned to be launched in late 1987 and the Gamma Ray Observatory, scheduled for launch in 1990. The Gamma Ray Observatory will carry a total of four instruments covering the entire energy range from 30,000 eV to 3 x 10 to the 10th eV with over an order of magnitude increase in sensitivity relative to previous satellite instruments.

  10. Elemental mapping of planetary surfaces using gamma-ray spectroscopy

    SciTech Connect

    Reedy, R.C.

    1990-01-01

    The gamma rays escaping from a planet can be used to map the concentrations of various elements in its surface. In a planet, the high-energy particles in the galactic cosmic rays induce a cascade of particles that includes many neutrons. The {gamma} rays are made by the nuclear excitations induced by these cosmic-ray particles and their secondaries (especially capture or inelastic-scattering reactions induced by neutrons) and decay of the naturally-occurring radioelements. After a short history of planetary {gamma}-ray spectroscopy and its applications, the {gamma}-ray spectrometer planned for the Mars Observer mission is presented. The results of laboratory experiments that simulate the cosmic-ray bombardments of planetary surfaces or measure cross sections for the production of {gamma} rays and the status of the theoretical calculations for the processes that make and transport neutrons and {gamma} rays will be reviewed. The emphasis here is on studies of Mars and on new ideas, concepts, and problems that have arisen over the last decade, such as Doppler broadening and peaks from neutron scattering with germanium nuclei in a high-resolution {gamma}-ray spectrometer. 31 refs., 1 fig., 1 tab.

  11. Cell cycle perturbations and genotoxic effects in human primary fibroblasts induced by low-energy protons and X/gamma-rays.

    PubMed

    Antoccia, Antonio; Sgura, Antonella; Berardinelli, Francesco; Cavinato, Maria; Cherubini, Roberto; Gerardi, Silvia; Tanzarella, Caterina

    2009-09-01

    The effect of graded doses of high-linear energy transfer (LET) low-energy protons to induce cycle perturbations and genotoxic damage was investigated in normal human fibroblasts. Furthermore, such effects were compared with those produced by low-LET radiations. HFFF2, human primary fibroblasts were exposed to either protons (LET = 28.5 keV/microm) or X/gamma-rays, and endpoints related to cell cycle kinetics and DNA damage analysed. Following both type of irradiations, unsynchronized cells suffered an inhibition to entry into S-phase for doses of 1-4 Gy and remained arrested in the G(1)-phase for several days. The levels of induction of regulator proteins, such as TP53 and CDKN1A showed a clear LET-dependence. DSB induction and repair as measured by scoring for gamma-H2AX foci indicated that protons, with respect to X-rays, yielded a lower number of DSBs per Gy, which showed a slower kinetics of disappearance. Such result was in agreement with the extent of MN induction in binucleated cells after X-irradiation. No significant differences between the two types of radiations were observed with the clonogenic assay, resulting anyway the slope of gamma-ray curve higher than that the proton one. In conclusion, in normal human primary fibroblasts cell cycle arrest at the G(1)/S transition can be triggered shortly after irradiation and maintained for several hours post-irradiation of both protons and X-rays. DNA damage produced by protons appears less amenable to be repaired and could be transformed in cytogenetic damage in the form of MN.

  12. Effects of indirect actions and oxygen on relative biological effectiveness: estimate of DSB induction and conversion induced by gamma rays and helium ions.

    PubMed

    Tsai, Ju-Ying; Chen, Fang-Hsin; Hsieh, Tsung-Yu; Hsiao, Ya-Yun

    2015-07-01

    Clustered DNA damage other than double-strand breaks (DSBs) can be detrimental to cells and can lead to mutagenesis or cell death. In addition to DSBs induced by ionizing radiation, misrepair of non-DSB clustered damage contributes extra DSBs converted from DNA misrepair via pathways for base excision repair and nucleotide excision repair. This study aimed to quantify the relative biological effectiveness (RBE) when DSB induction and conversion from non-DSB clustered damage misrepair were used as biological endpoints. The results showed that both linear energy transfer (LET) and indirect action had a strong impact on the yields for DSB induction and conversion. RBE values for DSB induction and maximum DSB conversion of helium ions (LET = 120 keV/μm) to (60)Co gamma rays were 3.0 and 3.2, respectively. These RBE values increased to 5.8 and 5.6 in the absence of interference of indirect action initiated by addition of 2-M dimethylsulfoxide. DSB conversion was ∼1-4% of the total non-DSB damage due to gamma rays, which was lower than the 10% estimate by experimental measurement. Five to twenty percent of total non-DSB damage due to helium ions was converted into DSBs. Hence, it may be possible to increase the yields of DSBs in cancerous cells through DNA repair pathways, ultimately enhancing cell killing. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  13. Jet Shockwaves Produce Gamma Rays

    NASA Image and Video Library

    Theorists believe that GRB jets produce gamma rays by two processes involving shock waves. Shells of material within the jet move at different speeds and collide, generating internal shock waves th...

  14. Gamma rays at airplane altitudes

    SciTech Connect

    Iwai, J.; Koss, T.; Lord, J.; Strausz, S.; Wilkes, J.; Woosley, J. )

    1990-03-20

    An examination of the gamma ray flux above 1 TeV in the atmosphere is needed to better understand the anomalous showers from point sources. Suggestions are made for future experiments on board airplanes.

  15. Gamma-ray-selected AGN

    NASA Astrophysics Data System (ADS)

    Giommi, Paolo

    2016-08-01

    The gamma-ray band is the most energetic part of the electromagnetic spectrum. As such it is also where selection effects are most severe, as it can only be reached by the most extreme non-thermal AGN. Blazars, with their emission dominated by non-thermal blue-shifted radiation arising in a relativistic jet pointed in the direction of the observer, naturally satisfy this though requirement. For this reason, albeit these sources are intrisically very rare (orders of magnitude less abundant than radio quiet AGN of the same optical magnitude) they almost completely dominate the extragalactic gamma-ray and very high energy sky. I will discuss the emission of different types of blazars and the selection effects that are at play in the gamma-ray band based on recent results from the current generation of gamma-ray astronomy satellites, ground-based Cherenkov telescopes, and Monte Carlo simulations.

  16. Directional detector of gamma rays

    DOEpatents

    Cox, Samson A.; Levert, Francis E.

    1979-01-01

    A directional detector of gamma rays comprises a strip of an electrical cuctor of high atomic number backed with a strip of a second electrical conductor of low atomic number. These elements are enclosed within an electrical conductor that establishes an electrical ground, maintains a vacuum enclosure and screens out low-energy gamma rays. The detector exhibits a directional sensitivity marked by an increased output in the favored direction by a factor of ten over the output in the unfavored direction.

  17. Positronium Annihilation Gamma Ray Laser

    DTIC Science & Technology

    2009-07-01

    estimate of the ignition threshold for DT fuel heated by a burst from an annihilation gamma ray laser; and (IV) A new concept for more rapid laser...distribution; (III) A theoretical estimate of the ignition threshold for DT fuel heated by a burst from an annihilation gamma ray laser; and (IV) A new ...II. Development of Laser systems 26 III. Preliminary estimate of DT ignition 31 IV. New method for cooling positronium 34 CONCLUSIONS

  18. About cosmic gamma ray lines

    NASA Astrophysics Data System (ADS)

    Diehl, Roland

    2017-06-01

    Gamma ray lines from cosmic sources convey the action of nuclear reactions in cosmic sites and their impacts on astrophysical objects. Gamma rays at characteristic energies result from nuclear transitions following radioactive decays or high-energy collisions with excitation of nuclei. The gamma-ray line from the annihilation of positrons at 511 keV falls into the same energy window, although of different origin. We present here the concepts of cosmic gamma ray spectrometry and the corresponding instruments and missions, followed by a discussion of recent results and the challenges and open issues for the future. Among the lessons learned are the diffuse radioactive afterglow of massive-star nucleosynthesis in 26Al and 60Fe gamma rays, which is now being exploited towards the cycle of matter driven by massive stars and their supernovae; large interstellar cavities and superbubbles have been recognised to be of key importance here. Also, constraints on the complex processes making stars explode as either thermonuclear or core-collapse supernovae are being illuminated by gamma-ray lines, in this case from shortlived radioactivities from 56Ni and 44Ti decays. In particular, the three-dimensionality and asphericities that have recently been recognised as important are enlightened in different ways through such gamma-ray line spectroscopy. Finally, the distribution of positron annihilation gamma ray emission with its puzzling bulge-dominated intensity disctribution is measured through spatially-resolved spectra, which indicate that annihilation conditions may differ in different parts of our Galaxy. But it is now understood that a variety of sources may feed positrons into the interstellar medium, and their characteristics largely get lost during slowing down and propagation of positrons before annihilation; a recent microquasar flare was caught as an opportunity to see positrons annihilate at a source.

  19. Stimulatory heterotrimeric G protein augments gamma ray-induced apoptosis by up-regulation of Bak expression via CREB and AP-1 in H1299 human lung cancer cells.

    PubMed

    Choi, Yoon Jung; Kim, So Young; Oh, Jung Min; Juhnn, Yong Sung

    2009-08-31

    Stimulatory heterotrimeric GTP-binding proteins (Gs protein) stimulate cAMP generation in response to various signals, and modulate various cellular phenomena such as proliferation and apoptosis. This study aimed to investigate the effect of Gs proteins on gamma ray-induced apoptosis of lung cancer cells and its molecular mechanism, as an attempt to develop a new strategy to improve the therapeutic efficacy of gamma radiation. Expression of constitutively active mutant of the alpha subunit of Gs (GalphasQL) augmented gamma ray-induced apoptosis via mitochondrial dependent pathway when assessed by clonogenic assay, FACS analysis of PI stained cells, and western blot analysis of the cytoplasmic translocation of cytochrome C and the cleavage of caspase-3 and ploy(ADP-ribose) polymerase (PARP) in H1299 human lung cancer cells. GalphasQL up-regulated the Bak expression at the levels of protein and mRNA. Treatment with inhibitors of PKA (H89), SP600125 (JNK inhibitor), and a CRE-decoy blocked GalphasQL-stimulated Bak reporter luciferase activity. Expression of GalphasQL increased basal and gamma ray-induced luciferase activity of cAMP response element binding protein (CREB) and AP-1, and the binding of CREB and AP-1 to Bak promoter. Furthermore, prostaglandin E2, a Galphas activating signal, was found to augment gamma ray-induced apoptosis, which was abolished by treatment with a prostanoid receptor antagonist. These results indicate that Galphas augments gamma ray-induced apoptosis by up-regulation of Bak expression via CREB and AP-1 in H1299 lung cancer cells, suggesting that the efficacy of radiotherapy of lung cancer may be improved by modulating Gs signaling pathway.

  20. Induced mutagenesis in Jatropha curcas L. using gamma rays and detection of DNA polymorphism through RAPD marker.

    PubMed

    Dhakshanamoorthy, Dharman; Selvaraj, Radhakrishnan; Chidambaram, A L A

    2011-01-01

    The aim of this study is to examine the effect of different doses (control, 5, 10, 15, 20 and 25 Kr) of gamma irradiation on seed germination, flowering, fruit and seed traits of Jatropha curcas and to identify DNA polymorphism among the mutants through a Randomly Amplified Polymorphic DNA (RAPD) marker analysis. The improved agronomic traits such as flowering, fruits and seeds were recorded in 5 Kr dose and seed germination percentage in 10 Kr dose treated plants, while corresponding parameters were reduced significantly (P>0.05) in 25 Kr dose gamma rays treated plants when compared to that of control. All the twenty-three random primers used except six primers, namely OPAW16, OPAK07, OPAK15, OPS01, OPAK20 and OPAL09 were showed polymorphic bands. The primers: OPAW16, OPAK07, OPAK15, OPS01, OPAK20 and OPAL09 produced only one band each across the six mutants, while the primers: OPU13, OPAB 15, OPF01 and OPAB11 were produced with maximum number of bands (8). The number of amplicons varied from 1 to 8 with an average of 3.9 bands, of which 2.3 were polymorphic. The percentage of polymorphism per primer ranged from 0 to 100 with an average of 55.16%. The Jaccard's coefficients of dissimilarity varied from 0.324 to 0.397, indicative of the level of genetic variation among the mutants studied. The maximum dissimilarity value (0.397) was observed in 5 Kr mutant while the minimum value (0.250) was observed in 20 Kr mutant when compared to that of control. In a dendrogram constructed based on genetic similarity coefficients, the mutants were grouped into three main clusters; (a) control, 10, 15 and 20 Kr dose mutants clustered together, (b) 25 Kr dose grouped alone, (c) 5 Kr dose also grouped alone. The mutants showing the differences in morphological traits showed DNA polymorphism in PCR profile amplified by RAPD marker. It is concluded that DNA polymorphism detected by RAPD analysis offered a useful molecular marker for the identification of mutants in gamma radiation

  1. Effects of contrast medium on radiation-induced chromosome aberrations. [X-ray; /sup 60/Co

    SciTech Connect

    Matsubara, S.; Suzuki, S.; Suzuki, H.; Kuwabara, Y.; Okano, T.

    1982-07-01

    The effects of contrast material (meglumine iothalamate) on radiation-induced chromosome aberrations were investigated in studies on the lymphocytes of patients who had undergone diagnostic radiography and in vitro experiments with diagnostic x rays and /sup 60/Co ..gamma.. rays. Chromosome and chromatic aberrations were found to increase significantly with increasing concentrations of contrast material that were added at irradiation. However, the aberrations were not associated with elevation of the ratio of dicentric and ring chromosomes to the number of cells with unstable chromosome aberrations at the first mitosis. Lymphocytes irradiated in the absence of contrast material did not show an increase in chromosome-type aberrations when the agent was given in increasing concentrations during subsequent incubation, but there were greater numbers of chromatid gaps and breaks. When lymphocytes were exposed to 400 R (103.2 mC/kg) of /sup 60/Co ..gamma.. rays, the presence of contrast agent did not increase the yield of dicentric and ring chromosomes, but induced a marked delay in cell proliferation, especially in lymphocytes with more heavily damaged chromosomes. In additional examination, the contrast agent itself induced sister chromatid exchanges in lymphocytes.

  2. The Compton Gamma Ray Observatory

    NASA Astrophysics Data System (ADS)

    Gehrels, N.; Chipman, E.; Kniffen, D. A.

    1993-01-01

    The Arthur Holly Compton Gamma Ray Observatory (Compton) was launched by the Space Shuttle Atlantis on 5 April 1991. The spacecraft and instruments are in good health and returning exciting results. The mission provides nearly six orders of magnitude in spectral coverage, from 30 keV to 30 GeV, with sensitivity over the entire range an order of magnitude better than that of previous observations. The 16,000 kilogram observatory contains four instruments on a stabilized platform. The mission began normal operations on 16 May 1991 and is now over half-way through a full-sky survey. The mission duration is expected to be from six to ten years. A Science Support Center has been established at Goddard Space Flight Center for the purpose of supporting a vigorous Guest Investigator Program. New scientific results to date include: (1) the establishment of the isotropy, combined with spatial inhomogeneity, of the distribution of gamma-ray bursts in the sky; (2) the discovery of intense high energy (100 MeV) gamma-ray emission from 3C 279 and other quasars and BL Lac objects, making these the most distant and luminous gamma-ray sources ever detected; (3) one of the first images of a gamma-ray burst; (4) the observation of intense nuclear and position-annihilation gamma-ray lines and neutrons from several large solar flares; and (5) the detection of a third gamma-ray pulsar, plus several other transient and pulsing hard X-ray sources.

  3. News from Cosmic Gamma-ray Line Observations

    NASA Astrophysics Data System (ADS)

    Diehl, Roland

    The measurement of gamma rays at MeV energies from cosmic radioactivities is one of the key tools for nuclear astrophysics, in its study of nuclear reactions and how they shape objects such as massive stars and supernova explosions. Additionally, the unique gamma-ray signature from the annihilation of positrons falls into this same astronomical window, and positrons are often produced from radioactive beta decays. Nuclear gamma-ray telescopes face instrumental challenges from penetrating gamma rays and cosmic-ray induced backgrounds. But the astrophysical benefits of such efforts are underlined by the discoveries of nuclear gamma rays from the brightest of the expected sources. In recent years, both thermonuclear and core-collapse supernova radioactivity gamma rays have been measured in spectral detail, and complement conventional supernova observations with measurements of origins in deep supernova interiors, from the decay of 56Ni, 56Co, and 44Ti . The diffuse afterglow in gamma rays of radioactivity from massive-star nucleosynthesis is analysed on the large (galactic) scale, with findings important for recycling of matter between successive stellar generations: From 26Al gamma-ray line spectroscopy, interstellar cavities and superbubbles have been recognised in their importance for ejecta transport and recycling. Diffuse galactic emissions from radioactivity and positron-annihilation γ rays should be connected to nucleosynthesis sources: Recently new light has been shed on this connection, among others though different measurements of radioactive 60Fe, and through spectroscopy of positron annihilation gamma rays from a flaring microquasar and from different parts of our Galaxy.

  4. Enhanced wear resistance of orthopaedic bearing due to the cross-linking of poly(MPC) graft chains induced by gamma-ray irradiation.

    PubMed

    Kyomoto, Masayuki; Moro, Toru; Miyaji, Fumiaki; Konno, Tomohiro; Hashimoto, Masami; Kawaguchi, Hiroshi; Takatori, Yoshio; Nakamura, Kozo; Ishihara, Kazuhiko

    2008-02-01

    We assumed that the extra energy supplied by gamma-ray irradiation produced cross-links in 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer grafted cross-linked polyethylene (CLPE-g-MPC) and investigated its effects on the tribological properties of CLPE-g-MPC. In this study, we found that the gamma-ray irradiation produced cross-links in three kinds of regions of CLPE-g-MPC: poly(MPC) layer, CLPE-MPC interface, and CLPE substrate. The dynamic coefficient of friction of CLPE-g-MPC slightly increased with increasing irradiation doses. After the simulator test, both the nonsterilized and gamma-ray sterilized CLPE-g-MPC cups exhibited lower wear than the untreated CLPE ones. In particular, the gamma-ray sterilized CLPE-g-MPC cups showed extremely low and stable wear. As for the nonsterilized CLPE-g-MPC cups, the weight change varied with each cup. When the CLPE surface is modified by poly(MPC) grafting, the MPC graft polymer leads to a significant reduction in the sliding friction between the surfaces that are grafted because water thin films formed can behave as extremely efficient lubricants. Such a cross-link of poly(MPC) slightly increases the friction of CLPE by gamma-ray irradiation but provides a stable wear resistant layer on the friction surface. The cross-links formed by gamma-ray irradiation would give further longevity to the CLPE-g-MPC cups.

  5. The Gamma-Ray Observatory

    SciTech Connect

    Kniffen, D.A. )

    1989-01-01

    The scientific goals and the design of the NASA Gamma-Ray Observatory (GRO), planned for launch in mid-1990, are described together with the experiments to be performed on the GRO mission and the instruments to be flown on the Observatory. GRO contains a complement of four instruments to span the spectrum from 0.03 to 20,000 MeV in energy, three of which are optimized to make gamma-ray observations using either the photoelectric effect, the Compton scatter, or the pair production processes; the fourth instrument is optimized for high-sensitivity observations of transient events and time-variable sources. The instruments are the Oriented Scintillation Spectrometer Experiment, the Compton Telescope, the Energetic Gamma-Ray Experiment Telescope, and the Burst and Transient Source Experiment.

  6. The Gamma-ray Sky with Fermi

    NASA Technical Reports Server (NTRS)

    Thompson, David

    2012-01-01

    Gamma rays reveal extreme, nonthermal conditions in the Universe. The Fermi Gamma-ray Space Telescope has been exploring the gamma-ray sky for more than four years, enabling a search for powerful transients like gamma-ray bursts, novae, solar flares, and flaring active galactic nuclei, as well as long-term studies including pulsars, binary systems, supernova remnants, and searches for predicted sources of gamma rays such as dark matter annihilation. Some results include a stringent limit on Lorentz invariance derived from a gamma-ray burst, unexpected gamma-ray variability from the Crab Nebula, a huge gamma-ray structure associated with the center of our galaxy, surprising behavior from some gamma-ray binary systems, and a possible constraint on some WIMP models for dark matter.

  7. Gamma-ray Output Spectra from 239 Pu Fission

    SciTech Connect

    Ullmann, John

    2015-05-25

    The gamma-ray multiplicities, individual gamma-ray energy spectra, and total gamma energy spectra following neutron-induced fission of 239Pu were measured using the DANCE detector at Los Alamos. Corrections for detector response were made using a forward-modeling technique based on propagating sets of gamma rays generated from a paramaterized model through a GEANT model of the DANCE array and adjusting the parameters for best fit to the measured spectra. The results for the gamma-ray spectrum and multiplicity are in general agreement with previous results, but the measured total gamma-ray energy is about 10% higher. We found that a dependence of the gamma-ray spectrum on the gamma-ray multplicity was also observed. Finally, global model calculations of the multiplicity and gamma energy distributions are in good agreement with the data, but predict a slightly softer total-energy distribution.

  8. The new prompt gamma-ray catalogue for PGAA

    PubMed

    Molnar; Revay; Belgya; Firestone

    2000-10-01

    A new catalogue of subthermal neutron-induced prompt gamma rays has been created for 79 elements, from hydrogen to uranium (including fission), on the basis of recent measurements at the Budapest guided-neutron PGAA facility. New energy values have been measured using 35Cl neutron-capture gamma rays, while the gamma-ray production cross-sections have been determined with respect to the 1H thermal capture cross-section. The elemental data have been compared with thermal neutron-capture data for individual nuclides from the Evaluated Nuclear Structure Data File, ENSDF, hence isotope identifications could be made. The catalogue contains elemental spectra and a table with nearly 7000 gamma rays with relative intensity over 1% of the strongest line. The average accuracy is about 0.08 keV for energies and about 5% for cross-sections in the whole energy range, from about 40 keV to 11 MeV.

  9. Towed seabed gamma ray spectrometer

    SciTech Connect

    Jones, D.G. )

    1994-08-01

    For more than 50 years, the measurement of radioactivity has been used for onshore geological surveys and in laboratories. The British Geological Survey (BGS) has extended the use of this type of equipment to the marine environment with the development of seabed gamma ray spectrometer systems. The present seabed gamma ray spectrometer, known as the Eel, has been successfully used for sediment and solid rock mapping, mineral exploration, and radioactive pollution studies. The range of applications for the system continues to expand. This paper examines the technological aspects of the Eel and some of the applications for which it has been used.

  10. Gamma-ray Imaging Methods

    SciTech Connect

    Vetter, K; Mihailescu, L; Nelson, K; Valentine, J; Wright, D

    2006-10-05

    In this document we discuss specific implementations for gamma-ray imaging instruments including the principle of operation and describe systems which have been built and demonstrated as well as systems currently under development. There are several fundamentally different technologies each with specific operational requirements and performance trade offs. We provide an overview of the different gamma-ray imaging techniques and briefly discuss challenges and limitations associated with each modality (in the appendix we give detailed descriptions of specific implementations for many of these technologies). In Section 3 we summarize the performance and operational aspects in tabular form as an aid for comparing technologies and mapping technologies to potential applications.

  11. Study of asymmetries of Cd(Zn)Te devices investigated using photo-induced current transient spectroscopy, Rutherford backscattering, surface photo-voltage spectroscopy, and gamma ray spectroscopies

    SciTech Connect

    Crocco, J.; Bensalah, H.; Zheng, Q.; Dieguez, E.; Corregidor, V.; Avles, E.; Castaldini, A.; Fraboni, B.; Cavalcoli, D.; Cavallini, A.; Vela, O.

    2012-10-01

    Despite these recent advancements in preparing the surface of Cd(Zn)Te devices for detector applications, large asymmetries in the electronic properties of planar Cd(Zn)Te detectors are common. Furthermore, for the development of patterned electrode geometries, selection of each electrode surface is crucial for minimizing dark current in the device. This investigation presented here has been carried out with three objectives. Each objective is oriented towards establishing reliable methods for the selection of the anode and cathode surfaces independent of the crystallographic orientation. The objectives of this study are (i) investigate how the asymmetry in I-V characteristics of Cd(Zn)Te devices may be associated with the TeO2 interfacial layer using Rutherford backscattering to study the structure at the Au-Cd(Zn)Te interface, (ii) develop an understanding of how the concentration of the active traps in Cd(Zn)Te varies with the external bias, and (iii) propose non-destructive methods for selection of the anode and cathode which are independent of crystallographic orientation. The spectroscopic methods employed in this investigation include Rutherford backscattering spectroscopy, photo-induced current transient spectroscopy, and surface photo-voltage spectroscopy, as well as gamma ray spectroscopy to demonstrate the influence on detector properties.

  12. Fail-Safe Therapy by Gamma-Ray Irradiation Against Tumor Formation by Human-Induced Pluripotent Stem Cell-Derived Neural Progenitors.

    PubMed

    Katsukawa, Mitsuko; Nakajima, Yusuke; Fukumoto, Akiko; Doi, Daisuke; Takahashi, Jun

    2016-06-01

    Cell replacement therapy holds great promise for Parkinson's disease (PD), but residual undifferentiated cells and immature neural progenitors in the therapy may cause tumor formation. Although cell sorting could effectively exclude these proliferative cells, from the viewpoint of clinical application, there exists no adequate coping strategy in the case of their contamination. In this study, we analyzed a component of proliferative cells in the grafts of human-induced pluripotent stem cell-derived neural progenitors and investigated the effect of radiation therapy on tumor formation. In our differentiating protocol, analyses of neural progenitors (day 19) revealed that the proliferating cells expressed early neural markers (SOX1, PAX6) or a dopaminergic neuron progenitor marker (FOXA2). When grafted into the rat striatum, these immature neurons gradually became postmitotic in the brain, and the rosette structures disappeared at 14 weeks. However, at 4-8 weeks, the SOX1(+)PAX6(+) cells formed rosette structures in the grafts, suggesting their tumorigenic potential. Therefore, to develop a fail-safe therapy against tumor formation, we investigated the effect of radiation therapy. At 4 weeks posttransplantation, when KI67(+) cells comprised the highest ratio, radiation therapy with (137)Cs Gammacell Exactor for tumor-bearing immunodeficient rats showed a significant decrease in graft volume and percentage of SOX1(+)KI67(+) cells in the graft, thus demonstrating the preventive effect of gamma-ray irradiation against tumorigenicity. These results give us critical criteria for the safety of future cell replacement therapy for PD.

  13. DOSE AND GAMMA-RAY SPECTRA FROM NEUTRON-INDUCED RADIOACTIVITY IN MEDICAL LINEAR ACCELERATORS FOLLOWING HIGH-ENERGY TOTAL BODY IRRADIATION.

    PubMed

    Keehan, S; Taylor, M L; Smith, R L; Dunn, L; Kron, T; Franich, R D

    2016-12-01

    Production of radioisotopes in medical linear accelerators (linacs) is of concern when the beam energy exceeds the threshold for the photonuclear interaction. Staff and patients may receive a radiation dose as a result of the induced radioactivity in the linac. Gamma-ray spectroscopy was used to identify the isotopes produced following the delivery of 18 MV photon beams from a Varian 21EX and an Elekta Synergy. The prominent radioisotopes produced include (187)W, (63)Zn, (56)Mn, (24)Na and (28)Al in both linac models. The dose rate was measured at the beam exit window (12.6 µSv in the first 10 min) following 18 MV total body irradiation (TBI) beams. For a throughput of 24 TBI patients per year, staff members are estimated to receive an annual dose of up to 750 μSv at the patient location. This can be further reduced to 65 μSv by closing the jaws before re-entering the treatment bunker. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Measurement of gamma-ray production cross sections in Li and F induced by protons from 810 to 3700 keV

    NASA Astrophysics Data System (ADS)

    Bachiller Perea, D.; Corvisiero, P.; Jiménez Rey, D.; Joco, V.; Maira Vidal, A.; Muñoz Martin, A.; Zucchiatti, A.

    2017-09-01

    Differential cross sections for the reaction channels 7Li(p,nγ1-0)7Be (Eγ = 429 keV), 7Li(p,pγ1-0) (Eγ = 478 keV), 19F(p,pγ1-0)19F (Eγ = 110 keV), 19F(p,pγ2-0)19F (Eγ = 197 keV) have been measured in the proton energy range 810-3700 keV, with an energy step of 10 keV. The reactions channels 19F(p,pγ3-1)19F (Eγ = 1236 keV), 19F(p,pγ4-1)19F (Eγ = 1349 keV), 19F(p,pγ5-2)19F (Eγ = 1357 keV) have also been investigated in the proton energy range 1915-3225 keV. The experimental set-up, the uncertainty budget, the comparison with other data and the progress assured by new data in the analytical use of standard-less Particle Induced Gamma-ray Emission (PIGE) are discussed.

  15. First Quantitative Imaging of Organic Fluorine within Angiogenic Tissues by Particle Induced Gamma-Ray Emission (PIGE) Analysis: First PIGE Organic Fluorine Imaging

    PubMed Central

    Lavielle, Sébastien; Gionnet, Karine; Ortega, Richard; Devès, Guillaume; Kilarski, Victor; Wehbe, Katia; Bikfalvi, Andreas; Déléris, Gérard

    2011-01-01

    PET (Positron Emission Tomography) allows imaging of the in vivo distribution of biochemical compounds labeled with a radioactive tracer, mainly 18F-FDG (2-deoxy-2-[18F] fluoro-D-glucose). 18F only allows a relatively poor spatial resolution (2-3 mm) which does not allow imaging of small tumors or specific small size tissues, e.g. vasculature. Unfortunately, angiogenesis is a key process in various physiologic and pathologic processes and is, for instance, involved in modern anticancer approaches. Thus ability to visualize angiogenesis could allow early diagnosis and help to monitor the response of cancer to specific chemotherapies. Therefore, indirect analytical techniques are required to assess the localization of fluorinated compounds at a micrometric scale. Multimodality imaging approaches could provide accurate information on the metabolic activity of the target tissue. In this article, PIGE method (Particle Induced Gamma-ray Emission) was used to determine fluorinated tracers by the nuclear reaction of 19F(p,p′γ)19F in tissues. The feasibility of this approach was assessed on polyfluorinated model glucose compounds and novel peptide-based tracer designed for angiogenesis imaging. Our results describe the first mapping of the biodistribution of fluorinated compounds in both vascularized normal tissue and tumor tissue. PMID:24310427

  16. First Quantitative Imaging of Organic Fluorine within Angiogenic Tissues by Particle Induced Gamma-Ray Emission (PIGE) Analysis: First PIGE Organic Fluorine Imaging.

    PubMed

    Lavielle, Sébastien; Gionnet, Karine; Ortega, Richard; Devès, Guillaume; Kilarski, Victor; Wehbe, Katia; Bikfalvi, Andreas; Déléris, Gérard

    2011-03-09

    PET (Positron Emission Tomography) allows imaging of the in vivo distribution of biochemical compounds labeled with a radioactive tracer, mainly 18F-FDG (2-deoxy-2-[18F] fluoro-D-glucose). 18F only allows a relatively poor spatial resolution (2-3 mm) which does not allow imaging of small tumors or specific small size tissues, e.g. vasculature. Unfortunately, angiogenesis is a key process in various physiologic and pathologic processes and is, for instance, involved in modern anticancer approaches. Thus ability to visualize angiogenesis could allow early diagnosis and help to monitor the response of cancer to specific chemotherapies. Therefore, indirect analytical techniques are required to assess the localization of fluorinated compounds at a micrometric scale. Multimodality imaging approaches could provide accurate information on the metabolic activity of the target tissue. In this article, PIGE method (Particle Induced Gamma-ray Emission) was used to determine fluorinated tracers by the nuclear reaction of 19F(p,p'γ)19F in tissues. The feasibility of this approach was assessed on polyfluorinated model glucose compounds and novel peptide-based tracer designed for angiogenesis imaging. Our results describe the first mapping of the biodistribution of fluorinated compounds in both vascularized normal tissue and tumor tissue.

  17. Choice of model and uncertainties of the gamma-ray and neutron dosimetry in relation to the chromosome aberrations data in Hiroshima and Nagasaki.

    PubMed

    Rühm, W; Walsh, L; Chomentowski, M

    2003-07-01

    Chromosome data pertaining to blood samples from 1,703 survivors of the Hiroshima and Nagasaki A-bombs, were utilized and different models for chromosome aberration dose response investigated. Models applied included those linear or linear-quadratic in equivalent dose. Models in which neutron and gamma doses were treated separately (LQ-L model) were also used, which included either the use of a low-dose limiting value for the relative biological effectiveness (RBE) of neutrons of R(0)=70+/-10 or an RBE value of R(1)=15+/-5 at 1 Gy. The use of R(1) incorporates the assumption that it is much better known than R(0), with much less associated uncertainty. In addition, error-reducing transformations were included which were found to result in a 50% reduction of the standard error associated with one of the model fit parameters which is associated with the proportion of cells with at least one aberration, at 1 Gy gamma dose. Several justifiable modifications to the DS86 doses according to recent nuclear retrospective dosimetry measurements were also investigated. Gamma-dose modifications were based on published thermoluminescence measurements of quartz samples from Hiroshima and on a tentative reduction for Nagasaki factory worker candidates by a factor of 0.6. Neutron doses in Hiroshima were modified to become consistent with recent fast neutron activation data based on copper samples. The applied dose modifications result in an increase in non-linearity of the dose-response curve for Hiroshima, and a corresponding decrease in that for Nagasaki, an effect found to be most pronounced for the LQ-L models investigated. As a result the difference in the dose-response curves observed for both cities based on DS86 doses, is somewhat reduced but cannot be entirely explained by the dose modifications applied. The extent to which the neutrons contribute to chromosome aberration induction in Hiroshima depends significantly on the model used. The LQ-L model including an R(1

  18. Gamma-ray camera flyby

    SciTech Connect

    2010-01-01

    Animation based on an actual classroom demonstration of the prototype CCI-2 gamma-ray camera's ability to image a hidden radioactive source, a cesium-137 line source, in three dimensions. For more information see http://newscenter.lbl.gov/feature-stories/2010/06/02/applied-nuclear-physics/.

  19. Quasars, blazars, and gamma rays.

    PubMed

    Dermer, C D; Schlickeiser, R

    1992-09-18

    Before the launch of the Compton Gamma Ray Observatory (CGRO), the only source of >100-megaelectron volt (MeV) gamma radiation known outside our galaxy was the quasar 3C 273. After less than a year of observing, 13 other extragalactic sources have been discovered with the Energetic Gamma Ray Experiment Telescope (EGRET) on CGRO, and it is expected that many more will be found before the full sky survey is complete. All 14 sources show evidence of blazar properties at other wavelengths; these properties include high optical polarization, extreme optical variability, flat-spectrum radio emission associated with a compact core, and apparent superluminal motion. Such properties are thought to be produced by those few, rare extragalactic radio galaxies and quasars that are favorably aligned to permit us to look almost directly down a relativistically outflowing jet of matter expelled from a supermassive black hole. Although the origin of the gamma rays from radio jets is a subject of much controversy, the gamma-ray window probed by CGRO is providing a wealth of knowledge about the central engines of active galactic nuclei and the most energetic processes occurring in nature.

  20. Gamma-ray Line Astronomy

    NASA Astrophysics Data System (ADS)

    Diehl, R.

    2005-07-01

    Gamma-ray lines from radioactive isotopes, ejected into interstellar space by cosmic nucleosynthesis events, are observed with new space telescopes. The Compton Observatory had provided a sky survey for the isotopes 56Co, 22Na, 44Ti, and 26Al, detecting supernova radioactivity and the diffuse glow of long-lived radioactivity from massive stars in the Galaxy. High-resolution spectroscopy is now being exploited with Ge detectors: Since 2002, with ESA's INTEGRAL satellite and the RHESSI solar imager two space-based Ge-gamma-ray telescopes are in operation, measuring Doppler broadenings and line shape details of cosmic gamma-ray lines. First year's results include a detection and line shape measurement of annihilation emission, and 26Al emission from the inner Galaxy and from the Cygnus region. 60Fe gamma-ray intensity is surprisingly low; it may have been detected by RHESSI at 10% of the 26Al brightness, yet is not seen by INTEGRAL. 44Ti emission from Cas A and SN1987A is being studied; no other candidate young supernova remnants have been found through 44Ti. 22Na from novae still is not seen.

  1. Upgrade of the JET Gamma-Ray Cameras

    SciTech Connect

    Soare, S.; Curuia, M.; Anghel, M.; Constantin, M.; David, E.; Zoita, V.; Craciunescu, T.; Falie, D.; Pantea, A.; Tiseanu, I.; Kiptily, V.; Prior, P.; Edlington, T.; Griph, S.; Krivchenkov, Y.; Loughlin, M.; Popovichev, S.; Riccardo, V.; Syme, B.; Thompson, V.

    2008-03-12

    JET GRC. The modelling was dedicated to the estimation of neutron and (plasma-emitted) gamma-ray attenuation, neutron-induced gamma-ray background and the neutron in-scattering impact on the neutron detectors due to the attenuator in the parking location. A numerical study of the gamma-ray detector (CsI(Tl)) was done by means of the IST Monte Carlo code. It provided preliminary results on the detector efficiency and response function.

  2. Beta-particle spectroscopy with active gamma-ray discrimination

    SciTech Connect

    Higginbotham, J.F.

    1987-01-01

    A spectrometer was developed which was capable of measuring a beta-particle energy distribution while simultaneously (actively) rejecting the system's response to gamma rays. A two detector configuration was used, where the first detector was a thin, pancake type, gas-flow counter, positioned in front of the entrance window to a BC-400 plastic scintillator. The gas-flow counter was designed to be insensitive to gamma rays so that it could act as a sensor which would gate the spectrometer to accept only those pulses induced by beta-particle interactions in the scintillator. The gamma-ray rejection capability of the spectrometer was a linear function of gamma-ray energy. Various spectrometer design and response considerations were investigated to determine their effect on either the spectrometer's discrimination capabilities or on its ability to accurately measure the incident beta-particle energy distribution. The spectrometer was used to measure the energy distribution of the photoelectric and Compton recoil electrons which are produced by gamma ray interaction in thin metal foils. In addition, the energy distributions of each component of a radiation field consisting of beta particles and gamma rays were measured for several radiation sources.

  3. M-BAND Study of Radiation-Induced Chromosome Aberrations in Human Epithelial Cells: Radiation Quality and Dose Rate Effects

    NASA Technical Reports Server (NTRS)

    Hada, Megumi; Cucinotta, Francis; Wu, Honglu

    2009-01-01

    The advantage of the multicolor banding in situ hybridization (mBAND) technique is its ability to identify both inter- (translocation to unpainted chromosomes) and intra- (inversions and deletions within a single painted chromosome) chromosome aberrations simultaneously. To study the detailed rearrangement of low- and high-LET radiation induced chromosome aberrations in human epithelial cells (CH184B5F5/M10) in vitro, we performed a series of experiments with Cs-137 gamma rays of both low and high dose rates, neutrons of low dose rate and 600 MeV/u Fe ions of high dose rate, with chromosome 3 painted with multi-binding colors. We also compared the chromosome aberrations in both 2- and 3-dimensional cell cultures. Results of these experiments revealed the highest chromosome aberration frequencies after low dose rate neutron exposures. However, detailed analysis of the radiation induced inversions revealed that all three radiation types induced a low incidence of simple inversions. Most of the inversions in gamma-ray irradiated samples were accompanied by other types of intra-chromosomal aberrations but few inversions were accompanied by inter-chromosomal aberrations. In contrast, neutrons and Fe ions induced a significant fraction of inversions that involved complex rearrangements of both inter- and intrachromosomal exchanges. The location of the breaks involved in chromosome exchanges was analyzed along the painted chromosome. The breakpoint distribution was found to be randomly localized on chromosome 3 after neutron or Fe ion exposure, whereas non-random distribution with clustering breakpoints was observed after -ray exposure. Our comparison of chromosome aberration yields between 2- and 3-dimensional cell cultures indicated a significant difference for gamma exposures, but not for Fe ion exposures. These experimental results indicated that the track structure of the radiation and the cellular/chromosome structure can both affect radiation-induced chromosome

  4. M-BAND Study of Radiation-Induced Chromosome Aberrations in Human Epithelial Cells: Radiation Quality and Dose Rate Effects

    NASA Technical Reports Server (NTRS)

    Hada, Megumi; Cucinotta, Francis; Wu, Honglu

    2009-01-01

    The advantage of the multicolor banding in situ hybridization (mBAND) technique is its ability to identify both inter- (translocation to unpainted chromosomes) and intra- (inversions and deletions within a single painted chromosome) chromosome aberrations simultaneously. To study the detailed rearrangement of low- and high-LET radiation induced chromosome aberrations in human epithelial cells (CH184B5F5/M10) in vitro, we performed a series of experiments with Cs-137 gamma rays of both low and high dose rates, neutrons of low dose rate and 600 MeV/u Fe ions of high dose rate, with chromosome 3 painted with multi-binding colors. We also compared the chromosome aberrations in both 2- and 3-dimensional cell cultures. Results of these experiments revealed the highest chromosome aberration frequencies after low dose rate neutron exposures. However, detailed analysis of the radiation induced inversions revealed that all three radiation types induced a low incidence of simple inversions. Most of the inversions in gamma-ray irradiated samples were accompanied by other types of intra-chromosomal aberrations but few inversions were accompanied by inter-chromosomal aberrations. In contrast, neutrons and Fe ions induced a significant fraction of inversions that involved complex rearrangements of both inter- and intrachromosomal exchanges. The location of the breaks involved in chromosome exchanges was analyzed along the painted chromosome. The breakpoint distribution was found to be randomly localized on chromosome 3 after neutron or Fe ion exposure, whereas non-random distribution with clustering breakpoints was observed after -ray exposure. Our comparison of chromosome aberration yields between 2- and 3-dimensional cell cultures indicated a significant difference for gamma exposures, but not for Fe ion exposures. These experimental results indicated that the track structure of the radiation and the cellular/chromosome structure can both affect radiation-induced chromosome

  5. Swift's 500th Gamma Ray Burst

    NASA Image and Video Library

    On April 13, 2010, NASA's Swift Gamma-ray Burst Explorer satellite discovered its 500th burst. Swift's main job is to quickly localize each gamma-ray burst (GRB), report its position so that others...

  6. The Gamma-ray Universe through Fermi

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2012-01-01

    Gamma rays, the most powerful form of light, reveal extreme conditions in the Universe. The Fermi Gamma-ray Space Telescope and its smaller cousin AGILE have been exploring the gamma-ray sky for several years, enabling a search for powerful transients like gamma-ray bursts, novae, solar flares, and flaring active galactic nuclei, as well as long-term studies including pulsars, binary systems, supernova remnants, and searches for predicted sources of gamma rays such as dark matter annihilation. Some results include a stringent limit on Lorentz invariance derived from a gamma-ray burst, unexpected gamma-ray variability from the Crab Nebula, a huge ga.nuna-ray structure associated with the center of our galaxy, surprising behavior from some gamma-ray binary systems, and a possible constraint on some WIMP models for dark matter.

  7. Differential effects of p53 on bystander phenotypes induced by gamma ray and high LET heavy ion radiation

    NASA Astrophysics Data System (ADS)

    He, Mingyuan; Dong, Chen; Konishi, Teruaki; Tu, Wenzhi; Liu, Weili; Shiomi, Naoko; Kobayashi, Alisa; Uchihori, Yukio; Furusawa, Yoshiya; Hei, Tom K.; Dang, Bingrong; Shao, Chunlin

    2014-04-01

    High LET particle irradiation has several potential advantages over γ-rays such as p53-independent response. The purpose of this work is to disclose the effect of p53 on the bystander effect induced by different LET irradiations and underlying mechanism. Lymphocyte cells of TK6 (wild type p53) and HMy2.CIR (mutated p53) were exposed to either low or high LET irradiation, then their mitochondrial dysfunction and ROS generation were detected. The micronuclei (MN) induction in HL-7702 hepatocytes co-cultured with irradiated lymphocytes was also measured. It was found that the mitochondrial dysfunction, p66Shc activation, and intracellular ROS were enhanced in TK6 but not in HMy2.CIR cells after γ-ray irradiation, but all of them were increased in both cell lines after carbon and iron irradiation. Consistently, the bystander effect of MN formation in HL-7702 cells was only triggered by γ-irradiated TK6 cells but not by γ-irradiated HMy2.CIR cells. But this bystander effect was induced by both lymphocyte cell lines after heavy ion irradiation. PFT-μ, an inhibitor of p53, only partly inhibited ROS generation and bystander effect induced by 30 keV/μm carbon-irradiated TK6 cells but failed to suppress the bystander effect induced by the TK6 cells irradiated with either 70 keV/μm carbon or 180 keV/μm iron. The mitochondrial inhibitors of rotenone and oligomycin eliminated heavy ion induced ROS generation in TK6 and HMy2.CIR cells and hence diminished the bystander effect on HL-7702 cells. These results clearly demonstrate that the bystander effect is p53-dependent for low LET irradiation, but it is p53-independent for high LET irradiation which may be because of p53-independent ROS generation due to mitochondrial dysfunction.

  8. Differential effects of p53 on bystander phenotypes induced by gamma ray and high LET heavy ion radiation.

    PubMed

    He, Mingyuan; Dong, Chen; Konishi, Teruaki; Tu, Wenzhi; Liu, Weili; Shiomi, Naoko; Kobayashi, Alisa; Uchihori, Yukio; Furusawa, Yoshiya; Hei, Tom K; Dang, Bingrong; Shao, Chunlin

    2014-04-01

    High LET particle irradiation has several potential advantages over γ-rays such as p53-independent response. The purpose of this work is to disclose the effect of p53 on the bystander effect induced by different LET irradiations and underlying mechanism. Lymphocyte cells of TK6 (wild type p53) and HMy2.CIR (mutated p53) were exposed to either low or high LET irradiation, then their mitochondrial dysfunction and ROS generation were detected. The micronuclei (MN) induction in HL-7702 hepatocytes co-cultured with irradiated lymphocytes was also measured. It was found that the mitochondrial dysfunction, p66(Shc) activation, and intracellular ROS were enhanced in TK6 but not in HMy2.CIR cells after γ-ray irradiation, but all of them were increased in both cell lines after carbon and iron irradiation. Consistently, the bystander effect of MN formation in HL-7702 cells was only triggered by γ-irradiated TK6 cells but not by γ-irradiated HMy2.CIR cells. But this bystander effect was induced by both lymphocyte cell lines after heavy ion irradiation. PFT-μ, an inhibitor of p53, only partly inhibited ROS generation and bystander effect induced by 30 keV/μm carbon-irradiated TK6 cells but failed to suppress the bystander effect induced by the TK6 cells irradiated with either 70 keV/μm carbon or 180 keV/μm iron. The mitochondrial inhibitors of rotenone and oligomycin eliminated heavy ion induced ROS generation in TK6 and HMy2.CIR cells and hence diminished the bystander effect on HL-7702 cells. These results clearly demonstrate that the bystander effect is p53-dependent for low LET irradiation, but it is p53-independent for high LET irradiation which may be because of p53-independent ROS generation due to mitochondrial dysfunction.

  9. Portable compton gamma-ray detection system

    DOEpatents

    Rowland, Mark S.; Oldaker, Mark E.

    2008-03-04

    A Compton scattered gamma-ray detector system. The system comprises a gamma-ray spectrometer and an annular array of individual scintillators. The scintillators are positioned so that they are arrayed around the gamma-ray spectrometer. The annular array of individual scintillators includes a first scintillator. A radiation shield is positioned around the first scintillator. A multi-channel analyzer is operatively connected to the gamma-ray spectrometer and the annular array of individual scintillators.

  10. Prospects for future very high-energy gamma-ray sky survey: Impact of secondary gamma rays

    SciTech Connect

    Inoue, Yoshiyuki; Kalashev, Oleg E.; Kusenko, Alexander

    2014-02-01

    Very high-energy gamma-ray measurements of distant blazars can be well explained by secondary gamma rays emitted by cascades induced by ultra-high-energy cosmic rays. The secondary gamma rays will enable one to detect a large number of blazars with future ground based gamma-ray telescopes such as Cherenkov Telescope Array (CTA). We show that the secondary emission process will allow CTA to detect 100, 130, 150, 87, and 8 blazars above 30 GeV, 100 GeV, 300 GeV, 1 TeV, and 10 TeV, respectively, up to z~8 assuming the intergalactic magnetic field (IGMF) strength B=10-17 G and an unbiased all sky survey with 0.5 h exposure at each field of view, where total observing time is ~540 h. These numbers will be 79, 96, 110, 63, and 6 up to z~5 in the case of B=10-15 G. This large statistics of sources will be a clear evidence of the secondary gamma-ray scenarios and a new key to studying the IGMF statistically. We also find that a wider and shallower survey is favored to detect more and higher redshift sources even if we take into account secondary gamma rays.

  11. Diagnosing ICF gamma-ray physics

    SciTech Connect

    Herrmann, Hans W; Kim, Y H; Mc Evoy, A; Young, C S; Mack, J M; Hoffman, N; Wilson, D C; Langenbrunner, J R; Evans, S; Sedillo, T; Batha, S H; Dauffy, L; Stoeffl, W; Malone, R; Kaufman, M I; Cox, B C; Tunnel, T W; Miller, E K; Rubery, M

    2010-01-01

    Gamma rays produced in an ICF environment open up a host of physics opportunities we are just beginning to explore. A branch of the DT fusion reaction, with a branching ratio on the order of 2e-5 {gamma}/n, produces 16.7 MeV {gamma}-rays. These {gamma}-rays provide a direct measure of fusion reaction rate (unlike x-rays) without being compromised by Doppler spreading (unlike neutrons). Reaction-rate history measurements, such as nuclear bang time and burn width, are fundamental quantities that will be used to optimize ignition on the National Ignition Facility (NIF). Gas Cherenkov Detectors (GCD) that convert fusion {gamma}-rays to UV/visible Cherenkov photons for collection by fast optical recording systems established their usefulness in illuminating ICF physics in several experimental campaigns at OMEGA. Demonstrated absolute timing calibrations allow bang time measurements with accuracy better than 30 ps. System impulse response better than 95 ps fwhm have been made possible by the combination of low temporal dispersion GCDs, ultra-fast microchannel-plate photomultiplier tubes (PMT), and high-bandwidth Mach Zehnder fiber optic data links and digitizers, resulting in burn width measurement accuracy better than 10ps. Inherent variable energy-thresholding capability allows use of GCDs as {gamma}-ray spectrometers to explore other interesting nuclear processes. Recent measurements of the 4.44 MeV {sup 12}C(n,n{prime}) {gamma}-rays produced as 14.1 MeV DT fusion neutrons pass through plastic capsules is paving the way for a new CH ablator areal density measurement. Insertion of various neutron target materials near target chamber center (TCC) producing secondary, neutron-induced {gamma}y-rays are being used to study other nuclear interactions and as in-situ sources to calibrate detector response and DT branching ratio. NIF Gamma Reaction History (GRH) diagnostics, based on the GCD concept, are now being developed based on optimization of sensitivity, bandwidth

  12. Gamma-ray exposure from neutron-induced radionuclides in soil in Hiroshima and Nagasaki based on DS02 calculations.

    PubMed

    Imanaka, Tetsuji; Endo, Satoru; Tanaka, Kenichi; Shizuma, Kiyoshi

    2008-07-01

    As a result of joint efforts by Japanese, US and German scientists, the Dosimetry System 2002 (DS02) was developed as a new dosimetry system, to evaluate individual radiation dose to atomic bomb survivors in Hiroshima and Nagasaki. Although the atomic bomb radiation consisted of initial radiation and residual radiation, only initial radiation was reevaluated in DS02 because, for most survivors in the life span study group, the residual dose was negligible compared to the initial dose. It was reported, however, that there were individuals who entered the city at the early stage after the explosion and experienced hemorrhage, diarrhea, etc., which were symptoms of acute radiation syndrome. In this study, external exposure due to radionuclides induced in soil by atomic bomb neutrons was reevaluated based on DS02 calculations, as a function of both the distance from the hypocenters and the elapsed time after the explosions. As a result, exposure rates of 6 and 4 Gy h(-1) were estimated at the hypocenter at 1 min after the explosion in Hiroshima and Nagasaki, respectively. These exposure rates decreased rapidly by a factor of 1,000 1 day later, and by a factor of 1 million 1 week later. Maximum cumulative exposure from the time of explosion was 1.2 and 0.6 Gy at the hypocenters in Hiroshima and Nagasaki, respectively. Induced radiation decreased also with distance from the hypocenters, by a factor of about 10 at 500 m and a factor of three to four hundreds at 1,000 m. Consequently, a significant exposure due to induced radiation is considered feasible to those who entered the area closer to a distance of 1,000 m from the hypocenters, within one week after the bombing.

  13. Gamma ray spectroscopy in astrophysics. [conferences

    NASA Technical Reports Server (NTRS)

    Cline, T. L. (Editor); Ramaty, R. (Editor)

    1978-01-01

    Experimental and theoretical aspects of gamma ray spectroscopy in high energy astrophysics are discussed. Line spectra from solar, stellar, planetary, and cosmic gamma rays are examined as well as HEAO investigations, the prospects of a gamma ray observatory, and follow-on X-ray experiments in space.

  14. Nuclear gamma rays from energetic particle interactions

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Kozlovsky, B.; Lingenfelter, R. E.

    1978-01-01

    Gamma ray line emission from nuclear deexcitation following energetic particle reactions is evaluated. The compiled nuclear data and the calculated gamma ray spectra and intensities can be used for the study of astrophysical sites which contain large fluxes of energetic protons and nuclei. A detailed evaluation of gamma ray line production in the interstellar medium is made.

  15. Gamma rays induce a p53-independent mitochondrial biogenesis that is counter-regulated by HIF1α

    PubMed Central

    Bartoletti-Stella, A; Mariani, E; Kurelac, I; Maresca, A; Caratozzolo, M F; Iommarini, L; Carelli, V; Eusebi, L H; Guido, A; Cenacchi, G; Fuccio, L; Rugolo, M; Tullo, A; Porcelli, A M; Gasparre, G

    2013-01-01

    Mitochondrial biogenesis is an orchestrated process that presides to the regulation of the organelles homeostasis within a cell. We show that γ-rays, at doses commonly used in the radiation therapy for cancer treatment, induce an increase in mitochondrial mass and function, in response to a genotoxic stress that pushes cells into senescence, in the presence of a functional p53. Although the main effector of the response to γ-rays is the p53-p21 axis, we demonstrated that mitochondrial biogenesis is only indirectly regulated by p53, whose activation triggers a murine double minute 2 (MDM2)-mediated hypoxia-inducible factor 1α (HIF1α) degradation, leading to the release of peroxisome-proliferator activated receptor gamma co-activator 1β inhibition by HIF1α, thus promoting mitochondrial biogenesis. Mimicking hypoxia by HIF1α stabilization, in fact, blunts the mitochondrial response to γ-rays as well as the induction of p21-mediated cell senescence, indicating prevalence of the hypoxic over the genotoxic response. Finally, we also show in vivo that post-radiotherapy mitochondrial DNA copy number increase well correlates with lack of HIF1α increase in the tissue, concluding this may be a useful molecular tool to infer the trigger of a hypoxic response during radiotherapy, which may lead to failure of activation of cell senescence. PMID:23764844

  16. Gamma rays induce a p53-independent mitochondrial biogenesis that is counter-regulated by HIF1α.

    PubMed

    Bartoletti-Stella, A; Mariani, E; Kurelac, I; Maresca, A; Caratozzolo, M F; Iommarini, L; Carelli, V; Eusebi, L H; Guido, A; Cenacchi, G; Fuccio, L; Rugolo, M; Tullo, A; Porcelli, A M; Gasparre, G

    2013-06-13

    Mitochondrial biogenesis is an orchestrated process that presides to the regulation of the organelles homeostasis within a cell. We show that γ-rays, at doses commonly used in the radiation therapy for cancer treatment, induce an increase in mitochondrial mass and function, in response to a genotoxic stress that pushes cells into senescence, in the presence of a functional p53. Although the main effector of the response to γ-rays is the p53-p21 axis, we demonstrated that mitochondrial biogenesis is only indirectly regulated by p53, whose activation triggers a murine double minute 2 (MDM2)-mediated hypoxia-inducible factor 1α (HIF1α) degradation, leading to the release of peroxisome-proliferator activated receptor gamma co-activator 1β inhibition by HIF1α, thus promoting mitochondrial biogenesis. Mimicking hypoxia by HIF1α stabilization, in fact, blunts the mitochondrial response to γ-rays as well as the induction of p21-mediated cell senescence, indicating prevalence of the hypoxic over the genotoxic response. Finally, we also show in vivo that post-radiotherapy mitochondrial DNA copy number increase well correlates with lack of HIF1α increase in the tissue, concluding this may be a useful molecular tool to infer the trigger of a hypoxic response during radiotherapy, which may lead to failure of activation of cell senescence.

  17. [Contribution of 210Bi beta-ray induced bremsstrahlung to the emission of Pb-KX-rays observed in the lead shielded gamma-ray background spectrum (author's transl)].

    PubMed

    Shima, K; Mihara, T; Umetani, K; Mikumo, T

    1980-08-01

    Observation of gamma-ray background has been done by using a Ge(Li) semiconductor detector when it was placed inside the lead shielding material. With the aid of a very simple model calculation, the concentration of 210Pb radioisotope embedded in the lead material has been estimated to be 0.1-0.4 (Bq/Pb-g) (3-12 (pCi/Pb-g). The origin of Pb-KX-ray emission, the highest peak in the background spectrum, has been investigated by comparing the 210Pb-47 keV gamma-ray and Pb-KX-ray peak counts. As the results, about 50 +/- 30% of Pb-KX-ray production is estimated to be due to the Pb-K shell photoionization which is induced by the bremsstrahlung of 210Bi beta-ray.

  18. Accelerated Emission of Gamma Rays from the 31-yr Isomer of 178Hf Induced by X-Ray Irradiation

    NASA Astrophysics Data System (ADS)

    Collins, C. B.; Davanloo, F.; Iosif, M. C.; Dussart, R.; Hicks, J. M.; Karamian, S. A.; Ur, C. A.; Popescu, I. I.; Kirischuk, V. I.; Carroll, J. J.; Roberts, H. E.; McDaniel, P.; Crist, C. E.

    1999-01-01

    A sample of 6.3×1014 nuclei of the 4-quasiparticle isomer of 178Hf having a half-life of 31 yr and excitation energy of 2.446 MeV was irradiated with x-ray pulses from a device typically used in dental medicine. It was operated at 15 mA to produce bremsstrahlung radiation with an end point energy set to be 70 or 90 keV. Spectra of the isomeric target were taken with a high purity Ge detector. Intensities of selected transitions in the normal decay cascade of the 178Hf isomer were found to increase by about 4%. Such an accelerated decay is consistent with an integrated cross section of 1×10-21 cm 2 keV for the resonant absorption of x rays to induce gamma decay.

  19. The cAMP signaling system inhibits the repair of {gamma}-ray-induced DNA damage by promoting Epac1-mediated proteasomal degradation of XRCC1 protein in human lung cancer cells

    SciTech Connect

    Cho, Eun-Ah; Juhnn, Yong-Sung

    2012-06-01

    Highlights: Black-Right-Pointing-Pointer cAMP signaling system inhibits repair of {gamma}-ray-induced DNA damage. Black-Right-Pointing-Pointer cAMP signaling system inhibits DNA damage repair by decreasing XRCC1 expression. Black-Right-Pointing-Pointer cAMP signaling system decreases XRCC1 expression by promoting its proteasomal degradation. Black-Right-Pointing-Pointer The promotion of XRCC1 degradation by cAMP signaling system is mediated by Epac1. -- Abstract: Cyclic AMP is involved in the regulation of metabolism, gene expression, cellular growth and proliferation. Recently, the cAMP signaling system was found to modulate DNA-damaging agent-induced apoptosis by regulating the expression of Bcl-2 family proteins and inhibitors of apoptosis. Thus, we hypothesized that the cAMP signaling may modulate DNA repair activity, and we investigated the effects of the cAMP signaling system on {gamma}-ray-induced DNA damage repair in lung cancer cells. Transient expression of a constitutively active mutant of stimulatory G protein (G{alpha}sQL) or treatment with forskolin, an adenylyl cyclase activator, augmented radiation-induced DNA damage and inhibited repair of the damage in H1299 lung cancer cells. Expression of G{alpha}sQL or treatment with forskolin or isoproterenol inhibited the radiation-induced expression of the XRCC1 protein, and exogenous expression of XRCC1 abolished the DNA repair-inhibiting effect of forskolin. Forskolin treatment promoted the ubiquitin and proteasome-dependent degradation of the XRCC1 protein, resulting in a significant decrease in the half-life of the protein after {gamma}-ray irradiation. The effect of forskolin on XRCC1 expression was not inhibited by PKA inhibitor, but 8-pCPT-2 Prime -O-Me-cAMP, an Epac-selective cAMP analog, increased ubiquitination of XRCC1 protein and decreased XRCC1 expression. Knockdown of Epac1 abolished the effect of 8-pCPT-2 Prime -O-Me-cAMP and restored XRCC1 protein level following {gamma}-ray irradiation. From

  20. Pre-equilibrium {gamma}-ray emission induced in the {sup 40}Ca+{sup 48}Ca system at 10 MeV/nucleon and isospin equilibration processes

    SciTech Connect

    Papa, Massimo; Cardella, Giuseppe; Pirrone, Sara; Tian Wendong; Giuliani, Gianluca; Amorini, Francesca; Figuera, Pier Paolo; Lanzalone, Gaetano; Rizzo, Francesca; Pietro, Alessia Di; Santonocito, Domenico

    2005-12-15

    In the present paper we have studied {gamma}-ray emission in coincidence with charged particles measured in binary processes for the collisions {sup 40}Ca+{sup 48}Ca, {sup 46}Ti at 10 MeV/nucleon. The comparison between {gamma}-ray yields, obtained under identical conditions on the charged particles detected in coincidence, shows an extra yield of around 15 MeV for the {sup 40}Ca+{sup 48}Ca collision. The analysis of the {gamma}-charged fragment coincidence events, along with the study performed with the dynamical model CoMD-II, explains this effect as the result of a giant dipole resonance emission from the intermediate system, characterized by a high degree of coherence. The performed study aims to establish a link among pre-equilibrium {gamma}-ray emission, initial charge/mass ratio memory effects in the intermediate system for the {sup 40}Ca+{sup 48}Ca system at short time, and the achievement of a substantial charge/mass ratio or isospin equilibration of the primary fragments formed at longer time. Moreover, the presence of a remarkable extra yield in a restricted range of the {gamma}-ray spectra suggests that this equilibration process evolves through a quasiresonant mechanism.

  1. Apoptosis (cell death) induced in mouse bowel by 1,2-dimethylhydrazine, methylazoxymethanol acetate, and gamma-rays

    SciTech Connect

    Ijiri, K. )

    1989-11-15

    Apoptosis is a pattern of cell death involving nuclear pyknosis, cytoplasmic condensation, and karyorrhexis. The frequency of apoptosis after treatment with two colon carcinogens and radiation was studied in the crypts of five different portions of mouse bowel. When 1,2-dimethylhydrazine (DMH) was injected s.c., the earliest rise in apoptotic incidence after a high dose (200 mg/kg) was noted at 3 h in small intestine and at 6 h in large bowel. After i.p. administration of methylazoxymethanol (MAM) acetate, apoptotic cells were seen in large bowel after 3 h. When the plateau values attained after high doses of DMH were compared, many apoptotic cells were found in the lower part of the large bowel, whereas few such cells were observed in the small intestine and the upper part of the large bowel. This finding was reversed in the case of radiation-induced apoptosis. In the descending colon, a definite circadian rhythm in the apoptotic incidence was observed 6 h after injection of DMH or MAM acetate. Apoptosis showed a high incidence when these drugs were given between 2400 h and 0900 h, but a low incidence after administration between 1200 h and 2100 h. In the small intestine a rhythm was also noted for MAM acetate, but not significantly for DMH.

  2. Cosmic gamma-ray lines

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Lingenfelter, R. E.

    1986-01-01

    Recent observations of gamma-ray line emissions from gamma-ray bursts, the ISM, the Galactic center, and solar flares are reviewed, and the implications of these observations for high-energy processes in these sources are discussed. Line observations suggest that magnetized neutron stars are probably the best candidate objects for burst sources. Observations of the 1.809-MeV line from Al-26 decay provide evidence for ongoing nucleosynthesis in the Galaxy and information on the spatial distribution of nucleosynthetic sites. The compact 0.511-MeV line source is probably a black hole at or close to the Galactic center. Solar-flare studies have provided new information on the confinement and escape of charged particles at the sun and on multiple acceleration phases in solar flares.

  3. Interpretation of cytogenetic damage induced in the germ line of male mice exposed for over 1 year to /sup 239/Pu alpha particles, fission neutrons, or /sup 60/Co gamma rays

    SciTech Connect

    Grahn, D.; Lee, C.H.; Farrington, B.F.

    1983-09-01

    The relative biological effectiveness (RBE) of /sup 239/Pu ..cap alpha.. particles, fission neutrons (0.85 MeV), and /sup 60/Co ..gamma.. rays has been evaluated for the induction of reciprocal chromosome translocations in spermatogonia and of chromosome/chromatid fragments and chromatid rearrangements in the primary spermatocyte of adult male B6CF/sub 1/ mice. Age concurrency was maintained for both internal and external radiations which were delivered at about 1 rad/week for /sup 239/Pu (single intravenous dose of 10 ..mu..Ci/kg), 0.67, 1.67, and 2.67 rad/week for neutrons, and 6.95, 17.4, and 32 rad/week for ..gamma.. rays for at least 60 weeks. In terms of frequency of translocations, the response to the alpha emitter was nonlinear (concave downward) with little dose-response predictability; to cumulative neutron exposures the response was linear, without evidence of a dose-rate effect; and to ..gamma.. radiation the responses were linear, and a significant dose-rate effect was seen. RBE estimates are variable. The overall response to the ..cap alpha.. emitter is interpreted to be a complex function of (a) microdosimetric heterogeneity, (b) a nearly invariant deposition pattern in the gonad, (c) the high sensitivity of differentiating spermatogonia to cell killing, and (d) the capacity of stem cells in relatively radiation-free areas to progressively assume the major spermatogenic role.

  4. Terrestrial Gamma-Ray Flashes (TGFs)

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    2010-01-01

    This slide presentation reviews the observation of Terrestrial Gamma Ray Flashes (TGFs) by Gamma-Ray Telescopes. These were: (1) BATSE /Compton Observatory, (2) Solar Spectroscopic Imager, (3) AGILE Gamma-ray Telescope, and (4) Gamma-ray Burst Monitor (GBM) on the Fermi Gamma-ray Space Telescope. It contains charts which display the counts over time, a map or the TGFs observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). and a map showing the latitude and longitude of 85 of the TGFs observed by the Fermi GBM.

  5. Compton Gamma Ray Observatory Guest Investigator Program

    NASA Technical Reports Server (NTRS)

    Lingenfelter, Richard E.

    1997-01-01

    This paper presents a final report for the Compton Gamma Ray Observatory Guest Investigator Program from 06/01/91-07/31/97. The topics include: 1) Solar Flare Neutron Spectra and Accelerated Ions; 2) Gamma Ray Lines From The Orion Complex; 3) Implications of Nuclear Line Emission From The Orion Complex; 4) Possible Sites of Nuclear Line Emission From Massive OB Associations; 5) Gamma-Ray Burst Repitition and BATSE Position Uncertainties; 6) Effects of Compton Scattering on BATSE Gamma-Ray Burst Spectra; and 7) Selection Biases on the Spectral and Temporal Distribution of Gamma Ray Bursts.

  6. Lunar Elemental Abundances from Gamma-Ray and Neutron Measurements

    NASA Astrophysics Data System (ADS)

    Reedy, R. C.; Vaniman, D. T.

    1999-01-01

    % , with Ti and Fe emitting more fast neutrons than light elements like O and Si. Most elements moderate neutrons to thermal energies at similar rates. The main exception is when neutrons scatter from H, in which case neutrons can be rapidly thermalized. The cross sections for the absorption of thermal neutrons can vary widely among elements, with major elements like Ti and Fe having high-capture cross sections. Some trace elements, such as Sm and Gd, have such large neutron-absorption cross sections that, despite their low abundances, can absorb significant amounts of thermal neutrons in the Moon. Because the processes affecting neutrons are complicated, good modeling is needed to properly extract elemental information from measured neutron fluxes. The LAHET Code System (LCS) can be use to calculate neutron fluxes from GCR interactions in the Moon. Lunar Gamma-Ray Spectroscopy: The main sources of planetary gamma-rays are the decay of the naturally occurring radioactive isotopes of K, Th, and U and the interactions of GCRs with atomic nuclei in the planet's surface. Most "cosmogenic" gamma-rays are produced by fast and thermal neutrons made in the planet's surface by GCRs, and their production rates can vary with time. Over 300 gamma-ray lines have been identified that can be emitted from planetary surfaces by a variety of production mechanisms. There exist nuclear databases that can be used to identify and quantify other gamma-ray lines. Use will be made of gamma-rays from major elements, particularly those from Si and O, that have not been routinely used in the past. The fluxes of gamma-rays from a given element can vary depending on many factors besides the concentration of that element. For example, the fluxes of neutron-capture gamma-rays in the planetary region of interest depend on (1) the total cross section for elements to absorb thermalized neutrons and (2) the H content of the top meter of the surface. The fluxes of the fast neutrons that induce inelastic

  7. On the origin of gamma ray bursts

    NASA Astrophysics Data System (ADS)

    Vahia, M. N.; Rao, A. R.

    1988-03-01

    It is argued that observations of gamma ray bursts show that the neutron star model is not tenable. A similarity between gamma ray burst characteristics and solar hard X-ray flares is established. The temporal and spectral features observed in the gamma ray bursts are also seen in the solar hard X-ray flares. The only distinction is in the energy contents of the two. Gamma ray bursts may originate from sources which have Sun-like activity. Large scale Sun-like activity is observed in flare stars, RS CVn binaries, and cataclysmic variables, grouped together as magnetically active stellar systems. These systems have enough energy to produce gamma ray bursts. Positional identification between the gamma ray burst error boxes and the magnetically active stellar systems produces an association of 46 objects with 36 error boxes with a probability of chance coincidence of 10 to the minus 10th power. A gamma ray burst that has a spatial and temporal correlation to a soft X-ray flare associated with a magnetically active stellar system and another time coincidence where the gamma ray burst location is not known to be found. Gamma ray bursts should be considered the stellar equivalent of the solar hard X-ray burst. gamma ray burst location is not known are found. Gamma ray bursts should be considered as stellar equivalents of solar hard X-ray bursts.

  8. 900-MHz microwave radiation enhances gamma-ray adverse effects on SHG44 cells.

    PubMed

    Cao, Yi; Zhang, Wei; Lu, Min-Xia; Xu, Qian; Meng, Qian-Qian; Nie, Ji-Hua; Tong, Jian

    2009-01-01

    Mobile phones are widely used globally. However, the biological effects due to exposure to electromagnetic fields (EMF) produced by mobile phones are largely unknown. Environmental and occupational exposure of humans to gamma-rays is a biologically relevant phenomenon. Consequently studies were undertaken to examine the interactions between gamma-rays and EMF on human health. In this study, exposure to 900-MHz EMF expanded gamma-ray damage to SHG44 cells. Preexposure EMF enhanced the decrease in cell proliferation induced by gamma-ray irradiation and the rate of apoptosis. The combination of EMF and gamma-ray exposure resulted in a synergistic effect by triggering stress response, which increased reactive oxygen species, but the expression of hsp70 at both mRNA and protein levels remained unaltered. Data indicate that the adverse effects of gamma-rays on cellular functions are strengthened by EMF.

  9. Neutron-capture gamma-ray data for obtaining elemental abundances from planetary spectra.

    SciTech Connect

    Reedy, Robert; Frankle, S. C.

    2001-01-01

    Determination of elemental abundances is a top scientific priority of most planetary missions. Gamma-ray spectroscopy is an excellent method to determine elemental abundances using gamma rays made by nuclear reactions induced by cosmic-ray particles and by the decay of radioactive nuclides [Re73,Re78]. Many important planetary gamma rays are made by neutron-capture reactions. However, much of the data for the energies and intensities of neutron-capture gamma rays in the existing literature [e.g. Lo81] are poor [RF99,RF00]. With gamma-ray spectrometers having recently returned data from Lunar Prospector and NEAR and soon to be launch to Mars, there is a need for good data for neutron-capture gamma rays.

  10. Fission prompt gamma-ray multiplicity distribution measurements and simulations at DANCE

    SciTech Connect

    Chyzh, A; Wu, C Y; Ullmann, J; Jandel, M; Bredeweg, T; Couture, A; Norman, E

    2010-08-24

    The nearly energy independence of the DANCE efficiency and multiplicity response to {gamma} rays makes it possible to measure the prompt {gamma}-ray multiplicity distribution in fission. We demonstrate this unique capability of DANCE through the comparison of {gamma}-ray energy and multiplicity distribution between the measurement and numerical simulation for three radioactive sources {sup 22}Na, {sup 60}Co, and {sup 88}Y. The prospect for measuring the {gamma}-ray multiplicity distribution for both spontaneous and neutron-induced fission is discussed.

  11. Gamma-ray astronomy: Nuclear transition region

    NASA Technical Reports Server (NTRS)

    Chupp, E. L.

    1976-01-01

    This monograph reviews the major theoretical and experimental efforts made during the past 12 years in gamma-ray astronomy over the energy range from 10 keV to about 100 MeV, where nuclear-transition lines are expected. Early attempts to detect celestial gamma rays are recounted, mechanisms of gamma-ray line and continuum production are examined, and formulas giving the various possible differential gamma-ray spectral shapes are provided. Predicted fluxes are discussed for solar gamma rays as well as for gamma emission from supernova remnants, supernovae, neutron stars, flare stars, the galactic core and disk, black holes, and diffuse sources. Gamma-ray interactions with matter are analyzed, particularly the photoelectric effect, Compton scattering from free electrons, and pair production in nuclear fields. Significant results are summarized for observations of gamma rays from the sun as well as from point and extended sources within and beyond the Galaxy, including diffuse fluxes and transient gamma-ray bursts. Factors pertaining to the design of gamma-ray astronomy experiments are considered, especially detector background limitations, gamma-ray production within instruments, and present-day detection methods.

  12. Gamma-ray astronomy: Nuclear transition region

    NASA Technical Reports Server (NTRS)

    Chupp, E. L.

    1976-01-01

    This monograph reviews the major theoretical and experimental efforts made during the past 12 years in gamma-ray astronomy over the energy range from 10 keV to about 100 MeV, where nuclear-transition lines are expected. Early attempts to detect celestial gamma rays are recounted, mechanisms of gamma-ray line and continuum production are examined, and formulas giving the various possible differential gamma-ray spectral shapes are provided. Predicted fluxes are discussed for solar gamma rays as well as for gamma emission from supernova remnants, supernovae, neutron stars, flare stars, the galactic core and disk, black holes, and diffuse sources. Gamma-ray interactions with matter are analyzed, particularly the photoelectric effect, Compton scattering from free electrons, and pair production in nuclear fields. Significant results are summarized for observations of gamma rays from the sun as well as from point and extended sources within and beyond the Galaxy, including diffuse fluxes and transient gamma-ray bursts. Factors pertaining to the design of gamma-ray astronomy experiments are considered, especially detector background limitations, gamma-ray production within instruments, and present-day detection methods.

  13. Measurement of deuteron induced gamma-ray emission differential cross sections on natCl from 1.0 to 2.0 MeV

    NASA Astrophysics Data System (ADS)

    Jokar, A.; Kakuee, O.; Lamehi-Rachti, M.

    2016-06-01

    In this research work, measured differential cross sections for gamma-ray emission from the nuclear reactions 35Cl(d,pγ1-0)36Cl (Eγ = 788 keV), 35Cl(d,pγ2-0)36Cl (Eγ = 1165 keV), 37Cl(d,pγ1-0)38Cl (Eγ = 671 keV) and 37Cl(d,pγ2-0)38Cl (Eγ = 755 keV) are presented. For these measurements a thin natural BaCl2 target evaporated onto a 50 μm-thick Mo foil was used. The gamma-rays and backscattered deuterons were detected simultaneously. An HPGe detector placed at an angle of 90° with respect to the beam direction was employed to collect gamma-rays while an ion implanted Si detector placed at a scattering angle of 165° was used to detect backscattered deuterons. The validity of the obtained differential cross sections was verified through a thick target benchmarking experiment. The overall systematic uncertainty of cross section values was estimated to be ±10%.

  14. Gamma ray observatory productivity showcase

    NASA Technical Reports Server (NTRS)

    Davis, R. L.; Molgaard, D. A.

    1985-01-01

    The Gamma Ray Observatory (GRO) Program has been proclaimed to be the showcase productivity program for NASA and TRW. Among the multiple disciplines of a large-scale program, there is opportunity and need for improved efficiency, effectiveness, and reduction in the cost of doing business. The efforts and tools that will or have been implemented to achieve this end are described. Since the GRO Program is mainly an engineering program with the build of one satellite, the primary emphasis is placed on improving the efficiency and quality of management and engineering.

  15. The Fermi Gamma-Ray Space Telescope

    NASA Technical Reports Server (NTRS)

    Thompson, Dave; McEnery, Julie

    2011-01-01

    This slide presentation reviews the Gamma Ray Astronomy as enhanced by the Fermi Gamma Ray Space Telescope and Radio Astronomy as a synergistic relationship. Gamma rays often represent a significant part of the energy budget of a source; therefore, gamma-ray studies can be critical to understanding physical processes in such sources. Radio observations offer timing and spatial resolutions vastly superior to anything possible with gamma-ray telescopes; therefore radio is often the key to understanding source structure. Gamma-ray and radio observations can complement each other, making a great team. It reviews the Fermi Guest Investigator (GI) program, and calls for more cooperative work that involves Fermi and the Very Long Baseline Array (VLBA), a system of ten radio telescopes.

  16. GAMCIT: A gamma ray burst detector

    NASA Technical Reports Server (NTRS)

    Surka, Derek M.; Grunsfeld, John M.; Warneke, Brett A.

    1992-01-01

    The origin of celestial gamma ray bursts remains one of the great mysteries of modern astrophysics. The GAMCIT Get-Away-Special payload is designed to provide new and unique data in the search for the sources of gamma ray bursts. GAMCIT consists of three gamma ray detectors, an optical CCD camera, and an intelligent electronics system. This paper describes the major components of the system, including the electronics and structural designs.

  17. Gamma-Ray Astronomy Technology Needs

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Cannizzo, J. K.

    2012-01-01

    In recent decades gamma-ray observations have become a valuable tool for studying the universe. Progress made in diverse 8re1lS such as gamma-ray bursts (GRBs), nucleosynthesis, and active galactic nuclei (AGNs) has complimented and enriched our astrophysical understanding in many ways. We present an overview of current and future planned space y-ray missions and discussion technology needs for- the next generation of space gamma-ray instruments.

  18. Understanding Doppler Broadening of Gamma Rays

    SciTech Connect

    Rawool-Sullivan, Mohini; Sullivan, John P.

    2014-07-03

    Doppler-broadened gamma ray peaks are observed routinely in the collection and analysis of gamma-ray spectra. If not recognized and understood, the appearance of Doppler broadening can complicate the interpretation of a spectrum and the correct identification of the gamma ray-emitting material. We have conducted a study using a simulation code to demonstrate how Doppler broadening arises and provide a real-world example in which Doppler broadening is found. This report describes that study and its results.

  19. On Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Ruffini, R.; Bernardini, M. G.; Bianco, C. L.; Caito, L.; Chardonnet, P.; Cherubini, C.; Dainotti, M. G.; Fraschetti, F.; Geralico, A.; Guida, R.; Patricelli, B.; Rotondo, M.; Rueda Hernandez, J. A.; Vereshchagin, G.; Xue, S.-S.

    2008-09-01

    We show by example how the uncoding of Gamma-Ray Bursts (GRBs) offers unprecedented possibilities to foster new knowledge in fundamental physics and in astrophysics. After recalling some of the classic work on vacuum polarization in uniform electric fields by Klein, Sauter, Heisenberg, Euler and Schwinger, we summarize some of the efforts to observe these effects in heavy ions and high energy ion collisions. We then turn to the theory of vacuum polarization around a Kerr-Newman black hole, leading to the extraction of the blackholic energy, to the concept of dyadosphere and dyadotorus, and to the creation of an electron-positron-photon plasma. We then present a new theoretical approach encompassing the physics of neutron stars and heavy nuclei. It is shown that configurations of nuclear matter in bulk with global charge neutrality can exist on macroscopic scales and with electric fields close to the critical value near their surfaces. These configurations may represent an initial condition for the process of gravitational collapse, leading to the creation of an electron-positron-photon plasma: the basic self-accelerating system explaining both the energetics and the high energy Lorentz factor observed in GRBs. We then turn to recall the two basic interpretational paradigms of our GRB model: 1) the Relative Space-Time Transformation (RSTT) paradigm and 2) the Interpretation of the Burst Structure (IBS) paradigm. These paradigms lead to a "canonical" GRB light curve formed from two different components: a Proper-GRB (P-GRB) and an extended afterglow comprising a raising part, a peak, and a decaying tail. When the P-GRB is energetically predominant we have a "genuine" short GRB, while when the afterglow is energetically predominant we have a so-called long GRB or a "fake" short GRB. We compare and contrast the description of the relativistic expansion of the electron-positron plasma within our approach and within the other ones in the current literature. We then turn

  20. Gamma ray bursts inner engines

    NASA Astrophysics Data System (ADS)

    Staff, Jan Erling

    Long gamma ray bursts (GRBs) are brief durations of intense, highly variable gamma radiation coming from point like sources in the Universe. GRBs have been seen in connection with Type 1c supernovae. Their isotropical equivalent energy released in gamma rays is in some cases above 10 54 erg, but the engine creating this energy is unknown. In this thesis several models for the engine are explored. It is shown that cannonballs can in principle form from hyperaccreting disks, however the cannonball model requires almost all supernovae to create cannonballs, and our finding then implies that a hyperaccreting disk is a natural consequence in most supernovae, a notion which remains to be confirmed. General relativistic magnetohydrodynamic simulations of the collapsar model have been performed. Within our setup we found that the duration of the collapsar is too short to explain GRBs, and the energy output is not sufficient. Also the supernova connection could not be explained. I find that the more likely candidate for the GRB engine is an accreting quark star. A quark star has a maximum mass, if the mass increases above this the star will collapse to a black hole. This allows for a two stage engine that might be able to explain features observed in GRBs.

  1. Gamma-ray burst populations

    NASA Astrophysics Data System (ADS)

    Virgili, Francisco Javier

    Over the last fifty years the field of gamma-ray bursts has shown incredible growth, but the amassing of data has also left observers and theorists alike wondering about some of the basic questions surrounding these phenomena. Additionally, these events show remarkable individuality and extrema, ranging in redshift throughout the observable universe and over ten orders of magnitude in energy. This work focuses on analyzing groups of bursts that are different from the general trend and trying to understand whether these bursts are from different intrinsic populations and if so, what can be said about their progenitors. This is achieved through numerical Monte Carlo simulations and statistical inference in conjunction with current GRB observations. Chapter 1 gives a general introduction of gamma-ray burst theory and observations in a semi-historical context. Chapter 2 provides an introduction to the theory and practical issues surrounding the numerical simulations and statistics. Chapters 3--5 are each dedicated to a specific problem relating to a different type of GRB population: high-luminosity v. low-luminosity bursts, constraints from high-redshift bursts, and Type I v. Type II bursts. Chapter 6 follows with concluding remarks.

  2. Dark gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Brdar, Vedran; Kopp, Joachim; Liu, Jia

    2017-03-01

    Many theories of dark matter (DM) predict that DM particles can be captured by stars via scattering on ordinary matter. They subsequently condense into a DM core close to the center of the star and eventually annihilate. In this work, we trace DM capture and annihilation rates throughout the life of a massive star and show that this evolution culminates in an intense annihilation burst coincident with the death of the star in a core collapse supernova. The reason is that, along with the stellar interior, also its DM core heats up and contracts, so that the DM density increases rapidly during the final stages of stellar evolution. We argue that, counterintuitively, the annihilation burst is more intense if DM annihilation is a p -wave process than for s -wave annihilation because in the former case, more DM particles survive until the supernova. If among the DM annihilation products are particles like dark photons that can escape the exploding star and decay to standard model particles later, the annihilation burst results in a flash of gamma rays accompanying the supernova. For a galactic supernova, this "dark gamma-ray burst" may be observable in the Čerenkov Telescope Array.

  3. Study of electronic transport in gamma ray exposed nanowires

    SciTech Connect

    Gehlawat, Devender Chauhan, R.P.

    2014-01-01

    Graphical abstract: A sharp decline in the I–V characteristics of Cu (and Cd) nanowires was experimentally observed after the gamma ray exposure of nanowires. Irradiation induced transformations in the granular properties and the resonance state of electron–phonon coupling beyond a particular value of external field may be accountable for observed shape of I–V characteristics in gamma ray exposed nanowires. - Highlights: • Cu and Cd nanowires were synthesized by technique of electrodeposition in templates. • The nanowires were exposed to different doses of gamma ray photons. • A sharp decline in the current in I–V characteristics (IVC) was observed. • Structural deviation in terms of granular orientations was also analysed. • The electron–phonon coupling may be responsible for observed sharp decline in IVC. - Abstract: One dimensional nanostructures provide the most restricted and narrow channel for the transport of charge carriers and therefore 1D structures preserve their significance from the viewpoint of electronic devices. The net radiation effect on nanomaterials is expected to be more (due to their increased reactivity and lesser bulk volume) than their bulk counterparts. Radiation often modifies the structure and simultaneously the other physical properties of materials. In this manner, the irradiation phenomenon could be counted as a strong criterion to induce changes in the structural and electrical properties of nanowires. We have studied the effect of gamma rays on the electronic flow through Cu and Cd nanowires by plotting their I–V characteristics (IVC). The IVC of gamma ray exposed nanowires was found to be a combination of the linear and nonlinear regions and a decreasing pattern in the electrical conductivity (calculated from the linear portion of IVC) was observed as we increased the dose of gamma rays.

  4. Hard gamma ray emission from blazars

    NASA Technical Reports Server (NTRS)

    Marscher, Alan P.; Bloom, Steven D.

    1992-01-01

    The gamma-ray emission expected from compact extragalactic sources of nonthermal radiation is examined. The highly variable objects in this class should produce copious amounts of self-Compton gamma-rays in the compact relativistic jet. This is shown to be a likely interpretation of the hard gamma-ray emission recently detected from the quasar 3C 279 during a period of strong nonthermal flaring at lower frequencies. Ways of discriminating between the self-Compton model and other possible gamma-ray emission mechanisms are discussed.

  5. Low-level gamma-ray spectrometry

    SciTech Connect

    Brodzinski, R.L.

    1990-10-01

    Low-level gamma-ray spectrometry generally equates to high-sensitivity gamma-ray spectrometry that can be attained by background reduction, selective signal identification, or some combination of both. Various methods for selectively identifying gamma-ray events and for reducing the background in gamma-ray spectrometers are given. The relative magnitude of each effect on overall sensitivity and the relative cost'' for implementing them are given so that a cost/benefit comparison can be made and a sufficiently sensitive spectrometer system can be designed for any application without going to excessive or unnecessary expense. 10 refs., 8 figs.

  6. The Mystery of Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    2004-01-01

    Gamma-ray bursts remain one of the greatest mysteries in astrophysics. Observations of gamma-ray bursts made by the BATSE experiment on the Compton Gamma-Ray Observatory will be described. Most workers in the field now believe that they originate from cosmological distances. This view has been reinforced by observations this year of several optical afterglow counterparts to gamma-ray bursts. A summary of these recent discoveries will be presented, along with their implications for models of the burst emission mechanism and the energy source of the bursts.

  7. Future prospects for gamma-ray

    NASA Technical Reports Server (NTRS)

    Fichtel, C.

    1980-01-01

    Astrophysical phenomena discussed are: the very energetic and nuclear processes associated with compact objects; astrophysical nucleo-synthesis; solar particle acceleration; the chemical composition of the planets and other bodies of the solar system; the structure of our galaxy; the origin and dynamic pressure effects of the cosmic rays; the high energy particles and energetic processes in other galaxies, especially active ones; and the degree of matter antimater symmetry of the universe. The gamma ray results of GAMMA-I, the gamma ray observatory, the gamma ray burst network, solar polar, and very high energy gamma ray telescopes on the ground provide justification for more sophisticated telescopes.

  8. Multiplex polymerase chain reaction-based deletion analysis of spontaneous, gamma ray- and alpha-induced hprt mutants of CHO-K1 cells.

    PubMed

    Schwartz, J L; Rotmensch, J; Sun, J; An, J; Xu, Z; Yu, Y; Hsie, A W

    1994-11-01

    Independent Chinese hamster ovary (CHO)-K1 cell mutants at the hypoxanthine-guanine phosphoribosyltransferase (hprt) locus were isolated from untreated, 60Co gamma ray- and 212Bi alpha-exposed cells and the genetic changes underlying the mutation determined by multiplex polymerase chain reaction (PCR)-based exon deletion analysis. In the 71 spontaneous mutants analyzed, 77.5% of the clones showed no change in exon number or size, 15.5% showed a loss of a single exon, 4.2% showed a loss of 2-8 exons, and 2.8% showed loss of all nine hprt exons (total gene deletion). Exposure to 6 Gy of gamma rays, which reduced survival levels to 10%, produced a significantly different deletion spectrum that was shifted toward deletions with 45% of the 20 mutants analyzed showing a loss of a single exon and 30% showing a loss of all nine exons. Exposure to 2 Gy alpha radiation from 212Bi, a 220Rn daughter, a dose which also reduced survival levels to about 10%, resulted in a deletion spectrum similar to the gamma-ray spectrum in that more than 75% of the 49 mutants analyzed were deletions. The alpha spectrum, however, was significantly different from both the spontaneous and gamma spectra with 55.1% of the alpha mutants showing a loss of all nine exons, 10.2% showing loss of a single exon, and 14.3% showing loss of 2-8 exons. Thus, alpha-radiation appears to produce larger intragenic deletions than gamma radiation. The results suggest that intragenic deletion size should be considered when low- and high linear energy transfer (LET) mutation spectra are compared.

  9. Polymerase chain reaction-deletion analysis of spontaneous, gamma ray-, and alpha-induced hprt mutants of CHO-K1 cells.

    SciTech Connect

    Schwartz, J. L.; Rotmensch, J.; Sun, J.; An, J.; Xu, Z.; Yu, Y.; Hsie, A. W.; Center for Mechanistic Biology and Biotechnology; Univ. of Chicago; Univ. of Texas Medical Branch

    1994-01-01

    Independent Chinese hamster ovary (CHO)-K1 cell mutants at the hypoxanthine-guanine phosphoribosyltransferase (hprt) locus were isolated from untreated, {sup 60}Co {gamma} ray-and {sup 212}Bi {alpha}-exposed cells and the genetic changes underlying the mutation determined by multiplex polymerase chain reaction (PCR)-based exon deletion analysis. In the 71 spontaneous mutants analyzed, 77.5% of the clones showed no change in exon number or size, 15.5% showed a loss of a single exon, 4.2% showed a loss of 2-8 exons, and 2.8% showed loss of all nine hprt exons (total gene deletion). Exposure to 6 Gy of {gamma} rays, which reduced survival levels to 10%, produced a significantly different deletion spectrum that was shifted toward deletions with 45% of the 20 mutants analyzed showing a loss of a single exon and 30% showing a loss of all nine exons. Exposure to 2 Gy {alpha} radiation from 212Bi, a 220Rn daughter, a dose which also reduced survival levels to about 10%, resulted in a deletion spectrum similar to the {gamma}-ray spectrum in that more than 75% of the 49 mutants analyzed were deletions. The {alpha} spectrum, however, was significantly different from both the spontaneous and {gamma} spectra with 55.1% of the {alpha} mutants showing a loss of all nine exons, 10.2% showing loss of a single exon, and 14.3% showing loss of 2-8 exons. Thus, {alpha}-radiation appears to produce larger intragenic deletions than {gamma} radiation. The results suggest that intragenic deletion size should be considered when low- and high linear energy transfer (LET) mutation spectra are compared.

  10. Interpretation of cytogenetic damage induced in the germ line of male mice exposed for over 1 year to /sup 239/Pu alpha particles, fission neutrons, or /sup 60/Co gamma rays

    SciTech Connect

    Grahn, D.; Lee, C.H.; Farrington, B.F.

    1983-09-01

    The relative biological effectiveness (RBE) of /sup 239/Pu alpha particles, fission neutrons (0.85 MeV), and /sup 60/Co gamma rays has been evaluated for the induction of reciprocal chromosome translocations in spermatogonia and of chromosome/chromatid fragments and chromatid rearrangements in the primary spermatocyte of adult male B6CF1 mice. Age concurrency was maintained for both internal and external radiations which were delivered at about 1 rad/week for /sup 239/Pu (single intravenous dose of 10 microCi/kg), 0.67, 1.67, and 2.67 rad/week for neutrons, and 6.95, 17.4, and 32 rad/week for gamma rays for at least 60 weeks. In terms of frequency of translocations, the response to the alpha emitter was nonlinear (concave downward) with little dose-response predictability; to cumulative neutron exposures the response was linear, without evidence of a dose-rate effect; and to gamma radiation the responses were linear, and a significant dose-rate effect was seen. RBE estimates are variable. For translocations, the n/gamma ratio is between 10 and 24, depending upon weekly dose level, and the ratio is 1 or less for the alpha particle relative to the neutron. For fragments, the n/gamma ratio is 18 to 22, depending upon age factors, and alpha/n is 1.5. For chromatid rearrangements, n/gamma is 7 and alpha/n is essentially indeterminate, but much below one. The overall response to the alpha emitter is interpreted to be a complex function of (a) microdosimetric heterogeneity, (b) a nearly invariant deposition pattern in the gonad, (c) the high sensitivity of differentiating spermatogonia to cell killing, and (d) the capacity of stem cells in relatively radiation-free areas to progressively assume the major spermatogenic role.

  11. Radiation leukemogenesis in mice: loss of PU.1 on chromosome 2 in CBA and C57BL/6 mice after irradiation with 1 GeV/nucleon 56Fe ions, X rays or gamma Rays. Part II. Theoretical considerations based on microdosimetry and the initial induction of chromosome aberrations.

    PubMed

    Peng, Yuanlin; Borak, Thomas B; Bouffler, Simon D; Ullrich, Robert L; Weil, Michael M; Bedford, Joel S

    2009-04-01

    Chromosome aberrations in mitotic bone marrow cells of CBA/Ca and C57BL/6 mice were measured 1 day after exposure to 1 Gy of 1 GeV/nucleon 56Fe ions or 3 Gy of gamma rays. The proportion that have lost a region of chromosome 2 containing the PU.1 gene could be explained by a model based on these measurements. The distribution of aberrations among cells was close to the expected Poisson for the gamma-irradiated cells, but for the HZE 56Fe ions the distribution was highly dispersed. The observations were consistent with the results of an analysis similar to that of Edwards and co-workers in 1980 after ex vivo irradiation of human blood with alpha particles. The analysis used to fit the current data was based on a compound Poisson process, also used previously by others, but in addition included the random nature of parameters involved such as cell nuclear diameter, particle traversal lengths through cell nuclei, production of aberrations, and cell cycle arrest per traversal. From the measured numbers of acentric fragments produced, the relative size of chromosome 2 and the region associated with PU.1 deletions, an independent prediction of PU.1 loss agreed well with measurements described in the accompanying paper.

  12. Relative Biological Effectiveness (RBE) of (131)I Radiation Relative to (60)Co Gamma Rays.

    PubMed

    Neshasteh-Riz, Ali; Mahmoud Pashazadeh, Ali; Mahdavi, Seyed Rabie

    2013-01-01

    To assess relative biological effectiveness (RBE) of (131)I radiation relative to (60)Co gamma rays in glioblastoma spheroid cells. : In this experimental study, glioblastoma spheroid cells were exposed to (131)I radiation and (60)Co gamma rays. Radiation induced DNA damage was evaluated by alkaline comet assay. Samples of spheroid cells were treated by radiation from (131)I for four different periods of time to find the dose-response equation. Spheroid cells were also exposed by 200 cGy of (60)Co gamma rays as reference radiation to induce DNA damage as endpoint. Resulted RBE of (131)I radiation relative to (60)Co gamma rays in 100 µm giloblastoma spheroid cells was equal to 1.16. The finding of this study suggests that (131)I photons and electrons can be more effective than (60)Co gamma rays to produce DNA damage in glioblastoma spheroid cells.

  13. Gamma Rays from Classical Novae

    NASA Technical Reports Server (NTRS)

    1997-01-01

    NASA at the University of Chicago, provided support for a program of theoretical research into the nature of the thermonuclear outbursts of the classical novae and their implications for gamma ray astronomy. In particular, problems which have been addressed include the role of convection in the earliest stages of nova runaway, the influence of opacity on the characteristics of novae, and the nucleosynthesis expected to accompany nova outbursts on massive Oxygen-Neon-Magnesium (ONeMg) white dwarfs. In the following report, I will identify several critical projects on which considerable progress has been achieved and provide brief summaries of the results obtained:(1) two dimensional simulation of nova runaway; (2) nucleosynthesis of nova modeling; and (3) a quasi-analytic study of nucleosynthesis in ONeMg novae.

  14. Feasibility study of 235U and 239Pu characterization in radioactive waste drums using neutron-induced fission delayed gamma rays

    NASA Astrophysics Data System (ADS)

    Nicol, T.; Pérot, B.; Carasco, C.; Brackx, E.; Mariani, A.; Passard, C.; Mauerhofer, E.; Collot, J.

    2016-10-01

    This paper reports a feasibility study of 235U and 239Pu characterization in 225 L bituminized waste drums or 200 L concrete waste drums, by detecting delayed fission gamma rays between the pulses of a deuterium-tritium neutron generator. The delayed gamma yields were first measured with bare samples of 235U and 239Pu in REGAIN, a facility dedicated to the assay of 118 L waste drums by Prompt Gamma Neutron Activation Analysis (PGNAA) at CEA Cadarache, France. Detectability in the waste drums is then assessed using the MCNPX model of MEDINA (Multi Element Detection based on Instrumental Neutron Activation), another PGNAA cell dedicated to 200 L drums at FZJ, Germany. For the bituminized waste drum, performances are severely hampered by the high gamma background due to 137Cs, which requires the use of collimator and shield to avoid electronics saturation, these elements being very penalizing for the detection of the weak delayed gamma signal. However, for lower activity concrete drums, detection limits range from 10 to 290 g of 235U or 239Pu, depending on the delayed gamma rays of interest. These detection limits have been determined by using MCNPX to calculate the delayed gamma useful signal, and by measuring the experimental gamma background in MEDINA with a 200 L concrete drum mock-up. The performances could be significantly improved by using a higher interrogating neutron emission and an optimized experimental setup, which would allow characterizing nuclear materials in a wide range of low and medium activity waste packages.

  15. Gamma-Ray Interactions for Reachback Analysts

    SciTech Connect

    Karpius, Peter Joseph; Myers, Steven Charles

    2016-08-02

    This presentation is a part of the DHS LSS spectroscopy training course and presents an overview of the following concepts: identification and measurement of gamma rays; use of gamma counts and energies in research. Understanding the basic physics of how gamma rays interact with matter can clarify how certain features in a spectrum were produced.

  16. Gamma ray astronomy from satellites and balloons

    NASA Technical Reports Server (NTRS)

    Schoenfelder, V.

    1986-01-01

    A survey is given of gamma ray astronomy topics presented at the Cosmic Ray Conference. The major conclusions at the Cosmic Ray Conference in the field of gamma ray astronomy are given. (1) MeV-emission of gamma-ray bursts is a common feature. Variations in duration and energy spectra from burst to burst may explain the discrepancy between the measured log N - log S dependence and the observed isotropy of bursts. (2) The gamma-ray line at 1.809 MeV from Al(26) is the first detected line from a radioactive nucleosynthesis product. In order to understand its origin it will be necessary to measure its longitude distribution in the Milky Way. (3) The indications of a gamma-ray excess found from the direction of Loop I is consistent with the picture that the bulk of cosmic rays below 100 GeV is produced in galactic supernova remnants. (4) The interpretation of the large scale distribution of gamma rays in the Milky Way is controversial. At present an extragalactic origin of the cosmic ray nuclei in the GeV-range cannot be excluded from the gamma ray data. (5) The detection of MeV-emission from Cen A is a promising step towards the interesting field of extragalactic gamma ray astronomy.

  17. Scanning Gamma Ray Densitometer System for Detonations.

    DTIC Science & Technology

    in loaded detonators and delays. The 317 KEV gamma rays from an Ir192 source were collimated into a beam of 0.002 by 0.100 inch. A scanning system...minus 3%. With Ir192 , density measurements on NOL-130 were reproduced to plus or minus 5%, and on RDX to plus or minus 16%. Based on gamma ray

  18. The History of Gamma-Ray Astronomy

    NASA Astrophysics Data System (ADS)

    Schönfelder, V.

    An overview of the history of gamma-ray astronomy is given starting with predictions in the 1950's and first detections in the 1960's. Tremendous efforts have been made since then, with exciting discoveries, which finally culminated in the ``Golden Age'' of gamma-ray astronomy which we are presently experiencing.

  19. The history of gamma-ray astronomy

    NASA Astrophysics Data System (ADS)

    Schönfelder, V.

    2002-07-01

    An overview of the history of gamma-ray astronomy is given starting with predictions in the 1950s and first detections in the 1960s. Tremendous efforts have been made since then, with exciting discoveries, which finally culminated in the ``Golden Age'' of gamma-ray astronomy which we are presently experiencing.

  20. Gamma-ray spectral analysis algorithm library

    SciTech Connect

    Egger, A. E.

    2013-05-06

    The routines of the Gauss Algorithms library are used to implement special purpose products that need to analyze gamma-ray spectra from Ge semiconductor detectors as a part of their function. These routines provide the ability to calibrate energy, calibrate peakwidth, search for peaks, search for regions, and fit the spectral data in a given region to locate gamma rays.

  1. ASTRONOMY: Neighborhood Gamma Ray Burst Boosts Theory.

    PubMed

    Schilling, G

    2000-07-07

    Titanic explosions that emit powerful flashes of energetic gamma rays are one of astronomy's hottest mysteries. Now an analysis of the nearest gamma ray burst yet detected has added weight to the popular theory that they are expelled during the death throes of supermassive stars.

  2. Very high-energy gamma rays from gamma-ray bursts.

    PubMed

    Chadwick, Paula M

    2007-05-15

    Very high-energy (VHE) gamma-ray astronomy has undergone a transformation in the last few years, with telescopes of unprecedented sensitivity having greatly expanded the source catalogue. Such progress makes the detection of a gamma-ray burst at the highest energies much more likely than previously. This paper describes the facilities currently operating and their chances for detecting gamma-ray bursts, and reviews predictions for VHE gamma-ray emission from gamma-ray bursts. Results to date are summarized.

  3. Origin of the gamma ray bursts

    NASA Astrophysics Data System (ADS)

    Vahia, M. N.; Rao, A. R.

    1988-12-01

    The authors establish a similarity between the gamma ray burst characteristics and solar hard X-ray flares. They show that all the temporal and spectral features observed in gamma ray bursts are also seen in solar hard X-ray flares. The only distinction is in the energy contents of the two. The authors suggest that the gamma-ray bursts originate from sources which have Sun like activity. Large scale Sun like activity has been observed in flare stars, RS CVn binaries and cataclysmic variables which are grouped together as the magnetically active stellar systems. The energetics of such systems is discussed and it is shown that these systems have enough energy to produce gamma-ray bursts. The authors then attempt positional identification between gamma-ray burst error boxes and the magnetically active stellar systems and find an association of 34 objects.

  4. Unveiling the secrets of gamma ray bursts

    NASA Astrophysics Data System (ADS)

    Gomboc, Andreja

    2012-07-01

    Gamma Ray Bursts are unpredictable and brief flashes of gamma rays that occur about once a day in random locations in the sky. Since gamma rays do not penetrate the Earth's atmosphere, they are detected by satellites, which automatically trigger ground-based telescopes for follow-up observations at longer wavelengths. In this introduction to Gamma Ray Bursts we review how building a multi-wavelength picture of these events has revealed that they are the most energetic explosions since the Big Bang and are connected with stellar deaths in other galaxies. However, in spite of exceptional observational and theoretical progress in the last 15 years, recent observations raise many questions which challenge our understanding of these elusive phenomena. Gamma Ray Bursts therefore remain one of the hottest topics in modern astrophysics.

  5. Atmospheric gamma-ray and neutron flashes

    SciTech Connect

    Babich, L. P. Kudryavtsev, A. Yu. Kudryavtseva, M. L. Kutsyk, I. M.

    2008-01-15

    Gamma-ray pulses are calculated from 2D numerical simulations of an upward atmospheric discharge in a self-consistent electric field using the multigroup approach to the kinetics of relativistic runaway electrons (REs). Computed {gamma}-ray numbers and spectra are consistent with those of terrestrial {gamma}-ray flashes (TGFs) observed aboard spacecrafts. The RE flux is concentrated mainly within the domain of the Blue Jet fluorescence. This confirms that exactly the domain adjacent to a thundercloud is the source of the observed {gamma}-ray flashes. The yield of photonuclear neutrons is calculated. One {gamma}-ray pulse generates {approx}10{sup 14}-10{sup 15} neutrons. The possibility of the direct deposition of REs to the detector readings and the origin of the lightning-advanced TGFs are discussed.

  6. Future Missions for Gamma-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Meegan, Charles; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Gamma-ray astronomy has made great advances in recent years, due largely to the recently completed 9-year mission of the Compton Gamma Ray Observatory. In this talk I will give an overview of what advances we may expect in the near future, with particular emphasis on earth-orbiting missions scheduled for flight within the next 5 years. Two missions, the High Energy Transient Explorer and Swift, will provide important new information on the sources of gamma-ray bursts. The Gamma-Ray Large Area Space Telescope will investigate high energy emission from a wide variety of sources, including active galaxies and gamma-ray pulsars. The contributions of ground-based and multiwavelength observations will also be addressed.

  7. Instrumentation for gamma-ray astronomy

    NASA Technical Reports Server (NTRS)

    Bertsch, David L.; Fichtel, Carl E.; Trombka, Jacob I.

    1988-01-01

    The current status of gamma-ray-telescope technology for ground, airborne, and space observations is surveyed and illustrated with drawings, diagrams, and graphs and tables of typical data. For the low- and medium-energy ranges, consideration is given to detectors and detector cooling systems, background-rejection methods, radiation damage, large-area detectors, gamma-ray imaging, data analysis, and the Compton-interaction region. Also discussed are the gamma-ray interaction process at high energies; multilevel automated spark-chamber gamma-ray telescopes; the Soviet Gamma-1 telescope; the EGRET instrument for the NASA Gamma-Ray Observatory; and Cerenkov, air-shower, and particle-detector instruments for the TeV and PeV ranges. Significant improvements in resolution and sensitivity are predicted for the near future.

  8. Modeling gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Maxham, Amanda

    Discovered serendipitously in the late 1960s, gamma-ray bursts (GRBs) are huge explosions of energy that happen at cosmological distances. They provide a grand physical playground to those who study them, from relativistic effects such as beaming, jets, shocks and blastwaves to radiation mechanisms such as synchrotron radiation to galatic and stellar populations and history. Through the Swift and Fermi space telescopes dedicated to observing GRBs over a wide range of energies (from keV to GeV), combined with accurate pinpointing that allows ground based follow-up observations in the optical, infrared and radio, a rich tapestry of GRB observations has emerged. The general picture is of a mysterious central engine (CE) probably composed of a black hole or neutron star that ejects relativistic shells of matter into intense magnetic fields. These shells collide and combine, releasing energy in "internal shocks" accounting for the prompt emission and flaring we see and the "external shock" or plowing of the first blastwave into the ambient surrounding medium has well-explained the afterglow radiation. We have developed a shell model code to address the question of how X-ray flares are produced within the framework of the internal shock model. The shell model creates randomized GRB explosions from a central engine with multiple shells and follows those shells as they collide, merge and spread, producing prompt emission and X-ray flares. We have also included a blastwave model, which can constrain X-ray flares and explain the origin of high energy (GeV) emission seen by the Fermi telescope. Evidence suggests that gamma-ray prompt emission and X-ray flares share a common origin and that at least some flares can only be explained by long-lasting central engine activity. We pay special attention to the time history of central engine activity, internal shocks, and observed flares. We calculate the gamma-ray (Swift/BAT band) and X-ray (Swift/XRT band) lightcurves for arbitrary

  9. Distribution of iron&titanium on the lunar surface from lunar prospector gamma ray spectra

    SciTech Connect

    Prettyman, T. H.; Feldman, W. C.; Lawrence, David J. ,; Elphic, R. C.; Gasnault, O. M.; Maurice, S.; Moore, K. R.; Binder, A. B.

    2001-01-01

    Gamma ray pulse height spectra acquired by the Lunar Prospector (LP) Gamma-Ray Spectrometer (GRS) contain information on the abundance of major elements in the lunar surface, including O, Si, Ti, Al, Fe, Mg, Ca, K, and Th. With the exception of Th and K, prompt gamma rays produced by cosmic ray interactions with surface materials are used to determine elemental abundance. Most of these gamma rays are produced by inelastic scattering of fast neutrons and by neutron capture. The production of neutron-induced gamma rays reaches a maximum deep below the surface (e.g. {approx}140 g/cm{sup 2} for inelastic scattering and {approx}50 g/cm{sup 2} for capture). Consequently, gamma rays sense the bulk composition of lunar materials, in contrast to optical methods [e.g. Clementine Spectral Reflectance (CSR)], which only sample the top few microns. Because most of the gamma rays are produced deep beneath the surface, few escape unscattered and the continuum of scattered gamma rays dominates the spectrum. In addition, due to the resolution of the spectrometer, there are few well-isolated peaks and peak fitting algorithms must be used to deconvolve the spectrum in order to determine the contribution of individual elements.

  10. Simulation fidelity issues when using gamma-ray simulators for TREE testing

    NASA Astrophysics Data System (ADS)

    Hartman, E. F.; Browning, J. S.; Drumm, C. R.

    1990-12-01

    Factors that influence the fidelity of gamma-ray TREE testing are investigated. Specifically, package-induced dose enhancement in 256K CMOS static-random-access-memories (SRAMs) and dose enhancement from finite-range electrons produced (by gamma-ray interactions) in materials external to the SRAM packages are studied. Two gamma-ray simulators with significantly different spectra are used in the studies. The spectral differences produced less change in SRAM upset levels than did surrounding materials of equal mass density but differing atomic number. The implication for gamma-ray simulation testing is that individual devices within electronic systems may respond quite differently in gamma-ray TREE testing because of the structural materials within the system than when tests are performed on these individual devices without the system present.

  11. [Mutagenic effects of gamma-rays on Coix lacryma-jobi var. ma-yuen].

    PubMed

    Shen, Xiao-xia; Wang, Zhi-an; Yu, Xu-ping

    2007-06-01

    To study the mutagenic effect of gamma-rays on Coix lacryma-jobi var. ma-yuen. Physiological and mutagenic effects of gamma-rays on C. lacryma-jobi var. ma-yuen dormant seeds were studied. The germination percentage, seeding survival, seeding height and root length of M1 plants and the frequency of chlorophyll mutation in M2 generation were selected as criteria. The gamma-rays showed obvious inhibitory action to the seedling growth, and a strong ability in inducing the chlorophyll mutation. The gamma-rays is one kind of C. lacryma-jobi var. ma-yuen effective mutagen. The appropriate dose of gamma-rays is 450 Gy for C. lacryma-jobi var. ma-yuen dormant seeds.

  12. Software tool for xenon gamma-ray spectrometer control

    NASA Astrophysics Data System (ADS)

    Chernysheva, I. V.; Novikov, A. S.; Shustov, A. E.; Dmitrenko, V. V.; Pyae Nyein, Sone; Petrenko, D.; Ulin, S. E.; Uteshev, Z. M.; Vlasik, K. F.

    2016-02-01

    Software tool "Acquisition and processing of gamma-ray spectra" for xenon gamma-ray spectrometers control was developed. It supports the multi-windows interface. Software tool has the possibilities for acquisition of gamma-ray spectra from xenon gamma-ray detector via USB or RS-485 interfaces, directly or via TCP-IP protocol, energy calibration of gamma-ray spectra, saving gamma-ray spectra on a disk.

  13. Gamma-Ray Burst Physics with GLAST

    SciTech Connect

    Omodei, N.; /INFN, Pisa

    2006-10-06

    The Gamma-ray Large Area Space Telescope (GLAST) is an international space mission that will study the cosmos in the energy range 10 keV-300 GeV, the upper end of which is one of the last poorly observed region of the celestial electromagnetic spectrum. The ancestor of the GLAST/LAT was the Energetic Gamma Ray Experiment Telescope (EGRET) detector, which flew onboard the Compton Gamma Ray Observatory (CGRO). The amount of information and the step forward that the high energy astrophysics made thanks to its 9 years of observations are impressive. Nevertheless, EGRET uncovered the tip of the iceberg, raising many questions, and it is in the light of EGRET's results that the great potential of the next generation gamma-ray telescope can be appreciated. GLAST will have an imaging gamma-ray telescope, the Large Area Telescope (LAT) vastly more capable than instruments own previously, as well as a secondary instrument, the GLAST Bursts Monitor, or GBM, to augment the study of gamma-ray bursts. Gamma-Ray Bursts (GRBs) science is one of the most exciting challenges for the GLAST mission, exploring the high energy emission of one of the most intense phenomena in the sky, shading light on various problems: from the acceleration of particles to the emission processes, to more exotic physics like Quantum Gravity effect. In this paper we report the work done so far in the simulation development as well as the study of the LAT sensitivity to GRB.

  14. Python in gamma-ray astronomy

    NASA Astrophysics Data System (ADS)

    Deil, Christoph Deil

    2016-03-01

    Gamma-ray astronomy is a relatively new window on the cosmos. The first source detected from the ground was the Crab nebula, seen by the Whipple telescope in Arizona in 1989. Today, about 150 sources have been detected at TeV energies using gamma-ray telescopes from the ground such as H.E.S.S. in Namibia or VERITAS in Arizona, and about 3000 sources at GeV energies using the Fermi Gamma-ray Space Telescope. Soon construction will start for the Cherenkov Telescope Array (CTA), which will be the first ground-based gamma-ray telescope array operated as an open observatory, with a site in the southern and a second site in the northern hemisphere. In this presentation I will give a very brief introduction to gamma-ray astronomy and data analysis, as well as a short overview of the software used for the various missions. The main focus will be on recent attempts to build open-source gamma-ray software on the scientific Python stack and Astropy: ctapipe as a CTA Python pipeline prototype, Fermipy and the Fermi Science Tools for Fermi-LAT analysis, Gammapy as a community-developed gamma-ray Python package and naima as a non-thermal spectral modeling and fitting package.

  15. Gamma-Ray Emission from Microquasars

    NASA Astrophysics Data System (ADS)

    Kaufman Bernado, M. M.

    2005-04-01

    Microquasars, X-ray binary systems that generate relativistic jets, were discovered in our Galaxy in the last decade of the XXth century. Their name indicates that they are manifestations of the same physics as quasars but on a completely different scale. Parallel to this discovery, the EGRET instrument on board of the Compton Gamma Ray Observatory detected 271 point like gamma-ray sources 170 of which were not clearly identified with known objects. This marked the beginning of gamma-ray source population studies in the Galaxy. We present in this thesis models for gamma-ray production in microquasars with the aim to propose them as possible parent populations for different groups of EGRET unidentified sources. These models are developed for a variety of scenarios taking into account several possible combinations, i.e. black holes or neutron stars as the compact object, low mass or high mass stellar companions, as well as leptonic or hadronic gamma-ray production processes. We also show that the presented models for gamma-rays emitting microquasars can be used to explain observations from well known sources that are detected in energy ranges other than EGRET's. Finally, we include an alternative gamma-ray producing situation that does not involve microquasars but a specific unidentified EGRET source possibly linked to a magnetized accreting pulsar.

  16. Observations of Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Fishman, G. J.

    1995-01-01

    Some basic observed properties of gamma-ray bursts are reviewed. Although some properties were known 25 years ago, new and more detailed observations have been made by the Compton Observatory in the past three years. The new observation with the greatest impact has been the observed isotropic distribution of bursts along with a deficiency of weak bursts which would be expected from a homogeneous burst distribution. This is not compatible with any known Galactic population of objects. Gamma-ray bursts show an enormous variety of burst morphologies and a wide spread in burst durations. The spectra of gamma-ray bursts are characterized by rapid variations and peak power which is almost entirely in the gamma-ray energy range. Delayed gamma-ray burst photons extending to GeV energies have been detected for the first time. A time dilation effect has also been reported to be observed in gamma-ray, bursts. The observation of a gamma-ray burst counterpart in another wavelength region has yet to be made.

  17. Gamma-ray Astronomy and GLAST

    NASA Technical Reports Server (NTRS)

    McEnery, Julie

    2007-01-01

    The high energy gamma-ray (30 MeV to 100 GeV) sky has been relatively poorly studied. Most of our current knowledge comes from observations made by the Energetic Gamma Ray Experiment Telescope (EGRET) detector on the Compton Gamma Ray Observatory (CGRO), which revealed that the GeV gamma-ray sky is rich and vibrant. Studies of astrophysical objects at GeV energies are interesting for several reasons: The high energy gamma-rays are often produced by a different physical process than the better studied X-ray and optical emission, thus providing a unique information for understanding these sources. Production of such high-energy photons requires that charged particles are accelerated to equally high energies, or much greater. Thus gamma-ray astronomy is the study of extreme environments, with natural and fundamental connections to cosmic-ray and neutrino astrophysics. The launch of GLAST in 2008 will herald a watershed in our understanding of the high energy gamma-ray sky, providing dramatic improvements in sensitivity, angular resolution and energy range. GLAST will open a new avenue to study our Universe as well as to answer scientific questions EGRET observations have raised. In this talk, I will describe the GLAST instruments and capabilities and highlight some of the science we expect to address.

  18. Gamma-ray Astronomy and GLAST

    NASA Technical Reports Server (NTRS)

    McEnery, Julie

    2007-01-01

    The high energy gamma-ray (30 MeV to 100 GeV) sky has been relatively poorly studied. Most of our current knowledge comes from observations made by the Energetic Gamma Ray Experiment Telescope (EGRET) detector on the Compton Gamma Ray Observatory (CGRO), which revealed that the GeV gamma-ray sky is rich and vibrant. Studies of astrophysical objects at GeV energies are interesting for several reasons: The high energy gamma-rays are often produced by a different physical process than the better studied X-ray and optical emission, thus providing a unique information for understanding these sources. Production of such high-energy photons requires that charged particles are accelerated to equally high energies, or much greater. Thus gamma-ray astronomy is the study of extreme environments, with natural and fundamental connections to cosmic-ray and neutrino astrophysics. The launch of GLAST in 2008 will herald a watershed in our understanding of the high energy gamma-ray sky, providing dramatic improvements in sensitivity, angular resolution and energy range. GLAST will open a new avenue to study our Universe as well as to answer scientific questions EGRET observations have raised. In this talk, I will describe the GLAST instruments and capabilities and highlight some of the science we expect to address.

  19. Gamma-ray burst cosmology

    NASA Astrophysics Data System (ADS)

    Wang, F. Y.; Dai, Z. G.; Liang, E. W.

    2015-08-01

    Gamma-ray bursts (GRBs) are the most luminous electromagnetic explosions in the Universe, which emit up to 8.8 × 1054 erg isotropic equivalent energy in the hard X-ray band. The high luminosity makes them detectable out to the largest distances yet explored in the Universe. GRBs, as bright beacons in the deep Universe, would be the ideal tool to probe the properties of high-redshift universe: including the cosmic expansion and dark energy, star formation rate, the reionization epoch and the metal enrichment history of the Universe. In this article, we review the luminosity correlations of GRBs, and implications for constraining the cosmological parameters and dark energy. Observations show that the progenitors of long GRBs are massive stars. So it is expected that long GRBs are tracers of star formation rate. We also review the high-redshift star formation rate derived from GRBs, and implications for the cosmic reionization history. The afterglows of GRBs generally have broken power-law spectra, so it is possible to extract intergalactic medium (IGM) absorption features. We also present the capability of high-redshift GRBs to probe the pre-galactic metal enrichment and the first stars.

  20. Gamma-Ray Burst Progenitors

    NASA Astrophysics Data System (ADS)

    Levan, Andrew; Crowther, Paul; de Grijs, Richard; Langer, Norbert; Xu, Dong; Yoon, Sung-Chul

    2016-12-01

    We review our current understanding of the progenitors of both long and short duration gamma-ray bursts (GRBs). Constraints can be derived from multiple directions, and we use three distinct strands; (i) direct observations of GRBs and their host galaxies, (ii) parameters derived from modelling, both via population synthesis and direct numerical simulation and (iii) our understanding of plausible analog progenitor systems observed in the local Universe. From these joint constraints, we describe the likely routes that can drive massive stars to the creation of long GRBs, and our best estimates of the scenarios that can create compact object binaries which will ultimately form short GRBs, as well as the associated rates of both long and short GRBs. We further discuss how different the progenitors may be in the case of black hole engine or millisecond-magnetar models for the production of GRBs, and how central engines may provide a unifying theme between many classes of extremely luminous transient, from luminous and super-luminous supernovae to long and short GRBs.

  1. NEAR Gamma Ray Spectrometer Characterization and Repair

    NASA Technical Reports Server (NTRS)

    Groves, Joel Lee; Vajda, Stefan

    1998-01-01

    This report covers the work completed in the third year of the contract. The principle activities during this period were (1) the characterization of the NEAR 2 Gamma Ray Spectrometer using a neutron generator to generate complex gamma ray spectra and a large Ge Detecter to identify all the major peaks in the spectra; (2) the evaluation and repair of the Engineering Model Unit of the Gamma Ray Spectrometer for the NEAR mission; (3) the investigation of polycapillary x-ray optics for x-ray detection; and (4) technology transfer from NASA to forensic science.

  2. Cosmic gamma-ray lines - Theory

    NASA Technical Reports Server (NTRS)

    Lingenfelter, R. E.; Ramaty, R.

    1980-01-01

    The various processes that lead to gamma-ray line emission and the possible astrophysical sources of such emission are reviewed. The processes of nuclear excitation, radiative capture, positron annihilation, and cyclotron radiation, which may produce gamma-ray line emission from such diverse sources as the interstellar medium, novas, supernovas, pulsars, accreting compact objects, the galactic nucleus and the nuclei of active galaxies are considered. The significance of the relative intensities, widths, and frequency shifts of the lines are also discussed. Particular emphasis is placed on understanding those gamma-ray lines that have already been observed from astrophysical sources.

  3. Detecting axionlike particles with gamma ray telescopes.

    PubMed

    Hooper, Dan; Serpico, Pasquale D

    2007-12-07

    We propose that axionlike particles (ALPs) with a two-photon vertex, consistent with all astrophysical and laboratory bounds, may lead to a detectable signature in the spectra of high-energy gamma-ray sources. This occurs as a result of gamma rays being converted into ALPs in the magnetic fields of efficient astrophysical accelerators according to the "Hillas criterion", such as jets of active galactic nuclei or hot spots of radio galaxies. The discovery of such an effect is possible by GLAST in the 1-100 GeV range and by ground-based gamma-ray telescopes in the TeV range.

  4. Fermi Gamma-Ray Space Telescope

    NASA Technical Reports Server (NTRS)

    McEnery, Julie E.; Michelson, Peter F.; Paclesas, William S.; Ritz, Steven

    2012-01-01

    The Fermi Gamma-ray Space Telescope, launched in June 2008, is an observatory designed to survey the high-energy gamma-ray sky. The primary instrument, the Large Area Telescope (LAT), provides observations from 20 MeV to greater than 300 GeV. A second instrument, the Gamma-ray Burst Monitor (GBM), provides observations of transients from less than 10 keV to 40 MeV. We describe the design and performance of the instruments and their subsystems, the spacecraft and the ground system.

  5. Interpretations and implications of gamma ray lines from solar flares, the galactic center in gamma ray transients

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Lingenfelter, R. E.

    1980-01-01

    Observations and theories of astrophysical gamma ray line emission are reviewed and prospects for future observations by the spectroscopy experiments on the planned Gamma Ray Observatory are discussed.

  6. Effects of rotation of fissioning nuclei in the angular distributions of prompt neutrons and gamma rays originating from the polarized-neutron-induced fission of 233U and 235U nuclei

    NASA Astrophysics Data System (ADS)

    Danilyan, G. V.; Klenke, J.; Kopach, Yu. N.; Krakhotin, V. A.; Novitsky, V. V.; Pavlov, V. S.; Shatalov, P. B.

    2014-06-01

    The results of an experiment devoted to searches for effects of rotation of fissioning nuclei in the angular distributions of prompt neutrons and gamma rays originating from the polarized-neutron-induced fission of 233U nuclei are presented. The effects discovered in these angular distributions are opposite in sign to their counterparts in the polarized-neutron-induced fission of 235U nuclei. This is at odds with data on the relative signs of respective effects in the angular distribution of alpha particles from the ternary fission of the same nuclei and may be indicative of problems in the model currently used to describe the effect in question. The report on which this article is based was presented at the seminar held at the Institute of Theoretical and Experimental Physics and dedicated to the 90th anniversary of the birth of Yu.G. Abov, corresponding member of Russian Academy of Sciences, Editor in Chief of the journal Physics of Atomic Nuclei.

  7. High-energy gamma rays from the intense 1993 January 31 gamma-ray burst

    NASA Technical Reports Server (NTRS)

    Sommer, M.; Bertsch, D. L.; Dingus, B. L.; Fichtel, C. E.; Fishman, G. J.; Harding, A. K.; Hartman, R. C.; Hunter, S. D.; Hurley, K.; Kanbach, G.

    1994-01-01

    The intense gamma-ray burst of 1993 January 31 was detected by the Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Observatory. Sixteen gamma rays above 30 MeV were imaged in the telescope when only 0.04 gamma rays were expected by chance. Two of these gamma rays have energies of approximately 1 GeV, and the five bin spectrum of the 16 events is fitted by a power law of photon spectral index -2.0 +/- 0.4. The high-energy emission extends for at least 25 s. The most probable direction for this burst is determined from the directions of the 16 gamma rays observed by Egret and also by requiring the position to lie on annulus derived by the Interplanetary Network.

  8. Gamma-Ray Pulsar Studies With GLAST

    SciTech Connect

    Thompson, D.J.; /NASA, Goddard

    2011-11-23

    Some pulsars have their maximum observable energy output in the gamma-ray band, offering the possibility of using these high-energy photons as probes of the particle acceleration and interaction processes in pulsar magnetospheres. After an extended hiatus between satellite missions, the recently-launched AGILE mission and the upcoming Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) will allow gamma-ray tests of the theoretical models developed based on past discoveries. With its greatly improved sensitivity, better angular resolution, and larger energy reach than older instruments, GLAST LAT should detect dozens to hundreds of new gamma-ray pulsars and measure luminosities, light curves, and phase-resolved spectra with unprecedented resolution. It will also have the potential to find radio-quiet pulsars like Geminga, using blind search techniques. Cooperation with radio and X-ray pulsar astronomers is an important aspect of the LAT team's planning for pulsar studies.

  9. Gamma rays from giant molecular clouds

    NASA Technical Reports Server (NTRS)

    Hunter, Stanley D.; Kanbach, Gottfried

    1990-01-01

    Giant Molecular Clouds (GMCs) are massive, bounded, cool, dense regions containing mostly H2, but also H I, CO, and other molecules. These clouds occupy less than 1 percent of the galactic volume, but are a substantial part of the interstellar mass. They are irradiated by the high energy cosmic rays which are possibly modulated by the matter and magnetic fields within the clouds. The product of cosmic-ray flux and matter density is traced by the emission of high energy gamma-rays. A spherical cloud model is considered and the gamma ray flux from several GMCs within 1 kpc of the sun which should be detectable by the EGRET (Energetic Gamma-Ray Experimental Telescope) instrument on GRO (Gamma Ray Observatory).

  10. Gamma-ray spectroscopy - Requirements and prospects

    NASA Technical Reports Server (NTRS)

    Matteson, James L.

    1991-01-01

    The only previous space instrument which had sufficient spectral resolution and directionality for the resolution of astrophysical sources was the Gamma-Ray Spectrometer carried by HEAO-3. A broad variety of astrophysical investigations entail gamma-ray spectroscopy of E/Delta-E resolving power of the order of 500 at 1 MeV; it is presently argued that a sensitivity to narrow gamma-ray lines of a few millionths ph/sq cm, from about 10 keV to about 10 MeV, should typify the gamma-ray spectrometers of prospective missions. This performance is achievable with technology currently under development, and could be applied to the NASA's planned Nuclear Astrophysics Explorer.

  11. Gamma-ray observatory INTEGRAL reloaded

    NASA Astrophysics Data System (ADS)

    van den Heuvel, Edward P. J.

    2017-04-01

    The scientific aims of the European Space Agency's International Gamma-Ray Astrophysics Laboratory are considerably extended because of its unique capability to identify electromagnetic counterparts to sources of gravitational waves and ultra-high-energy neutrinos.

  12. Overview Animation of Gamma-ray Burst

    NASA Image and Video Library

    Gamma-ray bursts are the most luminous explosions in the cosmos. Astronomers think most occur when the core of a massive star runs out of nuclear fuel, collapses under its own weight, and forms a b...

  13. Zapping Mars Rocks with Gamma Rays

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.

    1999-12-01

    Because we do not know what deadly microorganisms might be lurking inside samples returned from Mars, the samples will either have to be sterilized before release or kept in isolation until biological studies declare them safe. One way to execute microorganisms is with radiation, such as gamma rays. Although quite effective in snuffing out bacteria and viruses, gamma rays might also affect the mineralogical, chemical, and isotopic compositions of the zapped rocks and soils. Carl Allen (Lockheed Martin Space Operations, Houston) and a team of 18 other analysts tested the effect of gamma rays on rock and mineral samples like those we expect on Mars. Except for some darkening of some minerals, high doses of gamma rays had no significant effect on the rocks, making gamma radiation a feasible option for sterilizing samples returned from Mars.

  14. The EGRET high energy gamma ray telescope

    NASA Technical Reports Server (NTRS)

    Hartman, R. C.; Bertsch, D. L.; Fichtel, C. E.; Hunter, S. D.; Kanbach, G.; Kniffen, D. A.; Kwok, P. W.; Lin, Y. C.; Mattox, J. R.; Mayer-Hasselwander, H. A.

    1992-01-01

    The Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory (GRO) is sensitive in the energy range from about 20 MeV to about 30,000 MeV. Electron-positron pair production by incident gamma photons is utilized as the detection mechanism. The pair production occurs in tantalum foils interleaved with the layers of a digital spark chamber system; the spark chamber records the tracks of the electron and positron, allowing the reconstruction of the arrival direction of the gamma ray. If there is no signal from the charged particle anticoincidence detector which surrounds the upper part of the detector, the spark chamber array is triggered by two hodoscopes of plastic scintillators. A time of flight requirement is included to reject events moving backward through the telescope. The energy of the gamma ray is primarily determined by absorption of the energies of the electron and positron in a 20 cm deep NaI(Tl) scintillator.

  15. Gamma-Ray "Raindrops" from Flaring Blazar

    NASA Image and Video Library

    2017-09-28

    This visualization shows gamma rays detected during 3C 279's big flare by the LAT instrument on NASA's Fermi satellite. Gamma rays are represented as expanding circles reminiscent of raindrops on water. The flare is an abrupt shower of "rain" that trails off toward the end of the movie. Both the maximum size of the circle and its color represent the energy of the gamma ray, with white lowest and magenta highest. In a second version of the visualization, a background map shows how the LAT detects 3C 279 and other sources by accumulating high-energy photons over time (brighter squares reflect higher numbers of gamma rays). The movie starts on June 14 and ends June 17. The area shown is a region of the sky five degrees on a side and centered on the position of 3C 279. Read more: go.nasa.gov/1TqximF Credits: NASA/DOE/Fermi LAT Collaboration

  16. POPULATION SYNTHESIS AND GAMMA RAY BURST PROGENITORS

    SciTech Connect

    C. L. FREYER

    2000-12-11

    Population synthesis studies of binaries are always limited by a myriad of uncertainties from the poorly understood effects of binary mass transfer and common envelope evolution to the many uncertainties that still remain in stellar evolution. But the importance of these uncertainties depends both upon the objects being studied and the questions asked about these objects. Here I review the most critical uncertainties in the population synthesis of gamma-ray burst progenitors. With a better understanding of these uncertainties, binary population synthesis can become a powerful tool in understanding, and constraining, gamma-ray burst models. In turn, as gamma-ray bursts become more important as cosmological probes, binary population synthesis of gamma-ray burst progenitors becomes an important tool in cosmology.

  17. The gamma-ray telescope Gamma-1

    NASA Technical Reports Server (NTRS)

    Akimov, V. V.; Nesterov, V. E.; Kalinkin, L. F.; Balibanov, V. M.; Prilutsky, O. F.; Rodin, V. G.; Leikov, N. G.; Bielaoussov, A. S.; Dobrian, L. B.; Poluektov, V. P.

    1985-01-01

    French and Soviet specialists have designed and built the gamma-ray telescope GAMMA-1 to detect cosmic gamma rays above 50 MeV. The sensitive area of the detector is 1400 sq cm, energy resolution is 30% at 300 MeV, and angular resolution 1.2 deg at 300 MeV (and less than 20' arc when a coded aperture mask is used). Results on calibration of the qualification model and Monte-Carlo calculations are presented.

  18. Dark Matter Indirect Detection with Gamma Rays

    DOE PAGES

    Patrick Harding, J.

    2017-07-27

    Searches for weakly interacting massive particle (WIMP) dark matter with gamma-ray instruments are a way to get a unique observational handle on the particle nature of dark matter. I will discuss the details of how to perform these searches, both for annihilating and decaying WIMPs. I will discuss the calculation of the gamma-ray flux from possible sources of dark matter annihilation or decay and show examples of limits which have been calculated using these techniques.

  19. Research in cosmic and gamma ray astrophysics

    NASA Technical Reports Server (NTRS)

    Stone, E. C.; Davis, L., Jr.; Mewaldt, R. A.; Prince, T. A.

    1989-01-01

    Research activities in cosmic rays, gamma rays, and astrophysical plasmas are covered. The activities are divided into sections and described, followed by a bibliography. The astrophysical aspects of cosmic rays, gamma rays, and of the radiation and electromagnetic field environment of the Earth and other planets are investigated. These investigations are performed by means of energetic particle and photon detector systems flown on spacecraft and balloons.

  20. Gamma-ray constraints on supernova nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Leising, Mark D.

    1994-01-01

    Gamma-ray spectroscopy holds great promise for probing nucleosynthesis in individual supernova explosions via short-lived radioactivity, and for measuring current global Galactic supernova nucleosynthesis with longer-lived radioactivity. It was somewhat surprising that the former case was realized first for a Type II supernova, when both Co-56 and Co-57 were detected in SN 1987A. These provide unprecedented constraints on models of Type II explosions and nucleosynthesis. Live Al-26 in the Galaxy might come from Type II supernovae, and if it is eventually shown to be so, can constrain massive star evolution, supernova nucleosynthesis, and the Galactic Type II supernova rate. Type Ia supernovae, thought to be thermonuclear explosions, have not yet been detected in gamma-rays. This is somewhat surprising given current models and recent Co-56 detection attempts. Ultimately, gamma-ray measurements can confirm their thermonuclear nature, probe the nuclear burning conditions, and help evaluate their contributions to Galactic nucleosynthesis. Type Ib/c supernovae are poorly understood. Whether they are core collapse or thermonuclear events might be ultimately settled by gamma-ray observations. Depending on details of the nuclear processing, any of these supernova types might contribute to a detectable diffuse glow of Fe-60 gamma-ray lines. Previous attempts at detection have come very close to expected emission levels. Remnants of any type of age less that a few centuries might be detectable as individual spots of Ti-44 gamma-ray line emission. It is in fact quite surprising that previous surveys have not discovered such spots, and the constraints on the combination of nucleosynthesis yields and supernova rates are very interesting. All of these interesting limits and possibilities mean that the next mission, International Gamma-Ray Astrophysics Laboratory (INTEGRAL), if it has sufficient sensitivity, is very likely to lead to the realization of much of the great potential

  1. The Mystery of Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    1998-01-01

    Gamma-ray bursts remain on of the greatest mysteries in astrophysics in spite of recent observational advances and intense theoretical work. Although some of the basic properties of bursts were known 25 years ago, new and more detailed observations have been made by the BATSE (Burst and Transient Source Experiment) experiment on the Compton Gamma Ray Observatory in the past five years. Recent observations of bursts and some proposed models will be discussed.

  2. Fermi Sees the Gamma Ray Sky

    NASA Image and Video Library

    2017-09-28

    This view of the gamma-ray sky constructed from one year of Fermi LAT observations is the best view of the extreme universe to date. The map shows the rate at which the LAT detects gamma rays with energies above 300 million electron volts -- about 120 million times the energy of visible light -- from different sky directions. Brighter colors equal higher rates. Credit: NASA/DOE/Fermi LAT Collaboration Full story: www.nasa.gov/mission_pages/GLAST/news/first_year.html

  3. Supernovae and gamma-ray bursts connection

    SciTech Connect

    Valle, Massimo Della

    2015-12-17

    I’ll review the status of the Supernova/Gamma-Ray Burst connection. Several pieces of evidence suggest that long duration Gamma-ray Bursts are associated with bright SNe-Ic. However recent works suggest that GRBs might be produced in tight binary systems composed of a massive carbon-oxygen cores and a neutron star companion. Current estimates of the SN and GRB rates yield a ratio GRB/SNe-Ibc in the range ∼ 0.4% − 3%.

  4. Gamma-ray spectrometer experiment, Apollo 17: NaI(T1) detector crystal activation

    NASA Technical Reports Server (NTRS)

    Trombka, J. I.; Schmadebeck, R. L.; Bielefeld, M.; Okelley, G. D.; Eldridge, J. S.; Northcutt, K. J.; Metzger, A. E.; Schonfeld, E.; Peterson, L. E.; Arnold, J. R.

    1973-01-01

    An attempt was made to obtain experimental data on proton induced activity and its effect on gamma ray spectral measurements. A NaI(T1) crystal flown in Apollo 17 command module was used for the experiment.

  5. Gamma-ray Albedo of the Moon

    SciTech Connect

    Moskalenko, Igor V.; Porter, Troy A.

    2007-06-14

    We use the GEANT4 Monte Carlo framework to calculate the gamma-ray albedo of the Moon due to interactions of cosmic ray (CR) nuclei with moon rock. Our calculation of the albedo spectrum agrees with the EGRET data. We show that the spectrum of gamma-rays from the Moon is very steep with an effective cutoff around 3 GeV (600 MeV for the inner part of the Moon disc). Since it is the only (almost) black spot in the gamma-ray sky, it provides a unique opportunity for calibration of gamma-ray telescopes, such as the forthcoming Gamma Ray Large Area Space Telescope (GLAST). The albedo flux depends on the incident CR spectrum which changes over the solar cycle. Therefore, it is possible to monitor the CR spectrum using the albedo gamma-ray flux. Simultaneous measurements of CR proton and helium spectra by the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA), and observations of the albedo -rays by the GLAST Large Area Telescope (LAT), can be used to test the model predictions and will enable the GLAST LAT to monitor the CR spectrum near the Earth beyond the lifetime of PAMELA.

  6. Genetic dissimilarity of putative gamma-ray-induced 'Preciosa-AAAB-Pome type' banana (Musa sp) mutants based on multivariate statistical analysis.

    PubMed

    Pestana, R K N; Amorim, E P; Ferreira, C F; Amorim, V B O; Oliveira, L S; Ledo, C A S; Silva, S O

    2011-10-25

    Bananas are among the most important fruit crops worldwide, being cultivated in more than 120 countries, mainly by small-scale producers. However, short-stature high-yielding bananas presenting good agronomic characteristics are hard to find. Consequently, wind continues to damage a great number of plantations each year, leading to lodging of plants and bunch loss. Development of new cultivars through conventional genetic breeding methods is hindered by female sterility and the low number of seeds. Mutation induction seems to have great potential for the development of new cultivars. We evaluated genetic dissimilarity among putative 'Preciosa' banana mutants generated by gamma-ray irradiation, using morphoagronomic characteristics and ISSR markers. The genetic distances between the putative 'Preciosa' mutants varied from 0.21 to 0.66, with a cophenetic correlation coefficient of 0.8064. We found good variability after irradiation of 'Preciosa' bananas; this procedure could be useful for banana breeding programs aimed at developing short-stature varieties with good agronomic characteristics.

  7. First search for neutrinos in correlation with gamma-ray bursts with the ANTARES neutrino telescope

    SciTech Connect

    2013-03-01

    A search for neutrino-induced muons in correlation with a selection of 40 gamma-ray bursts that occurred in 2007 has been performed with the ANTARES neutrino telescope. During that period, the detector consisted of 5 detection lines. The ANTARES neutrino telescope is sensitive to TeV–PeV neutrinos that are predicted from gamma-ray bursts. No events were found in correlation with the prompt photon emission of the gamma-ray bursts and upper limits have been placed on the flux and fluence of neutrinos for different models.

  8. Extreme energy gamma rays and neutrinos and their observation in JEM-EUSO Mission

    SciTech Connect

    Shinozaki, K.

    2010-06-01

    The origin of the extreme energy cosmic rays (EECRs) is a mystery in the contemporary astrophysics. The JEM-EUSO Mission that mainly aims establishing astronomy using such EECRs with very high statistics will also have realistic capability of detecting gamma rays and neutrinos with approx10{sup 20} eV energies. Aboard the International Space Station, the JEM-EUSO mission also provides a unique platform to detect and study the air showers from extreme energy gamma rays and neutrinos. In the present paper, we discuss a part of results from our study on properties of gamma ray and neutrino induced air showers and the advantage for space-based observation.

  9. Supernovae and Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Livio, Mario; Panagia, Nino; Sahu, Kailash

    2001-07-01

    Participants; Preface; Gamma-ray burst-supernova relation B. Paczynski; Observations of gamma-ray bursts G. Fishman; Fireballs T. Piran; Gamma-ray mechanisms M. Rees; Prompt optical emission from gamma-ray bursts R. Kehoe, C. Akerlof, R. Balsano, S. Barthelmy, J. Bloch, P. Butterworth, D. Casperson, T. Cline, S. Fletcher, F. Frontera, G. Gisler, J. Heise, J. Hills, K. Hurley, B. Lee, S. Marshall, T. McKay, A. Pawl, L. Piro, B. Priedhorsky, J. Szymanski and J. Wren; X-ray afterglows of gamma-ray bursts L. Piro; The first year of optical-IR observations of SN1998bw I. Danziger, T. Augusteijn, J. Brewer, E. Cappellaro, V. Doublier, T. Galama, J. Gonzalez, O. Hainaut, B. Leibundgut, C. Lidman, P. Mazzali, K. Nomoto, F. Patat, J. Spyromilio, M. Turatto, J. Van Paradijs, P. Vreeswijk and J. Walsh; X-ray emission of Supernova 1998bw in the error box of GRB980425 E. Pian; Direct analysis of spectra of type Ic supernovae D. Branch; The interaction of supernovae and gamma-ray bursts with their surroundings R. Chevalier; Magnetars, soft gamma-ray repeaters and gamma-ray bursts A. Harding; Super-luminous supernova remnants Y. -H. Chu, C. -H. Chen and S. -P. Lai; The properties of hypernovae: SNe Ic 1998bw, 1997ef, and SN IIn 1997cy K. Nomoto, P. Mazzali, T. Nakamura, K. Iwanmoto, K. Maeda, T. Suzuki, M. Turatto, I. Danziger and F. Patat; Collapsars, Gamma-Ray Bursts, and Supernovae S. Woosley, A. MacFadyen and A. Heger; Pre-supernova evolution of massive stars N. Panagia and G. Bono; Radio supernovae and GRB 980425 K. Weiler, N. Panagia, R. Sramek, S. Van Dyk, M. Montes and C. Lacey; Models for Ia supernovae and evolutionary effects P. Hoflich and I. Dominguez; Deflagration to detonation A. Khokhlov; Universality in SN Iae and the Phillips relation D. Arnett; Abundances from supernovae F. -K. Thielemann, F. Brachwitz, C. Freiburghaus, S. Rosswog, K. Iwamoto, T. Nakamura, K. Nomoto, H. Umeda, K. Langanke, G. Martinez-Pinedo, D. Dean, W. Hix and M. Strayer; Sne, GRBs, and the

  10. Gamma ray astrophysics to the year 2000. Report of the NASA Gamma Ray Program Working Group

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Important developments in gamma-ray astrophysics up to energies of 100 GeV during the last decade are reviewed. Also, the report seeks to define the major current scientific goals of the field and proposes a vigorous program to pursue them, extending to the year 2000. The goals of gamma-ray astronomy include the study of gamma rays which provide the most direct means of studying many important problems in high energy astrophysics including explosive nucleosynthesis, accelerated particle interactions and sources, and high-energy processes around compact objects. The current research program in gamma-ray astronomy in the U.S. including the space program, balloon program and foreign programs in gamma-ray astronomy is described. The high priority recommendations for future study include an Explorer-class high resolution gamma-ray spectroscopy mission and a Get Away Special cannister (GAS-can) or Scout class multiwavelength experiment for the study of gamma-ray bursts. Continuing programs include an extended Gamma Ray Observatory mission, continuation of the vigorous program of balloon observations of the nearby Supernova 1987A, augmentation of the balloon program to provide for new instruments and rapid scientific results, and continuation of support for theoretical research. Long term recommendations include new space missions using advanced detectors to better study gamma-ray sources, the development of these detectors, continued study for the assembly of large detectors in space, collaboration with the gamma-ray astronomy missions initiated by other countries, and consideration of the Space Station attached payloads for gamma-ray experiments.

  11. New insights from cosmic gamma rays

    NASA Astrophysics Data System (ADS)

    Roland, Diehl

    2016-04-01

    The measurement of gamma rays from cosmic sources at ~MeV energies is one of the key tools for nuclear astrophysics, in its study of nuclear reactions and their impacts on objects and phenomena throughout the universe. Gamma rays trace nuclear processes most directly, as they originate from nuclear transitions following radioactive decays or high-energy collisions with excitation of nuclei. Additionally, the unique gamma-ray signature from the annihilation of positrons falls into this astronomical window and is discussed here: Cosmic positrons are often produced from β-decays, thus also of nuclear physics origins. The nuclear reactions leading to radioactive isotopes occur inside stars and stellar explosions, which therefore constitute the main objects of such studies. In recent years, both thermonuclear and core-collapse supernova radioactivities have been measured though 56Ni, 56Co, and 44Ti lines, and a beginning has thus been made to complement conventional supernova observations with such measurements of the prime energy sources of supernova light created in their deep interiors. The diffuse radioactive afterglow of massive-star nucleosynthesis in gamma rays is now being exploited towards astrophysical studies on how massive stars feed back their energy and ejecta into interstellar gas, as part of the cosmic cycle of matter through generations of stars enriching the interstellar gas and stars with metals. Large interstellar cavities and superbubbles have been recognised to be the dominating structures where new massive-star ejecta are injected, from 26Al gamma-ray spectroscopy. Also, constraints on the complex interiors of stars derive from the ratio of 60Fe/26Al gamma rays. Finally, the puzzling bulge-dominated intensity distribution of positron annihilation gamma rays is measured in greater detail, but still not understood; a recent microquasar flare provided evidence that such objects may be prime sources for positrons in interstellar space, rather than

  12. Mercuric iodine room temperature gamma-ray detectors

    NASA Technical Reports Server (NTRS)

    Patt, Bradley E.; Markakis, Jeffrey M.; Gerrish, Vernon M.; Haymes, Robert C.; Trombka, Jacob I.

    1990-01-01

    high resolution mercuric iodide room temperature gamma-ray detectors have excellent potential as an essential component of space instruments to be used for high energy astrophysics. Mercuric iodide detectors are being developed both as photodetectors used in combination with scintillation crystals to detect gamma-rays, and as direct gamma-ray detectors. These detectors are highly radiation damage resistant. The list of applications includes gamma-ray burst detection, gamma-ray line astronomy, solar flare studies, and elemental analysis.

  13. Mercuric iodine room temperature gamma-ray detectors

    NASA Technical Reports Server (NTRS)

    Patt, Bradley E.; Markakis, Jeffrey M.; Gerrish, Vernon M.; Haymes, Robert C.; Trombka, Jacob I.

    1990-01-01

    high resolution mercuric iodide room temperature gamma-ray detectors have excellent potential as an essential component of space instruments to be used for high energy astrophysics. Mercuric iodide detectors are being developed both as photodetectors used in combination with scintillation crystals to detect gamma-rays, and as direct gamma-ray detectors. These detectors are highly radiation damage resistant. The list of applications includes gamma-ray burst detection, gamma-ray line astronomy, solar flare studies, and elemental analysis.

  14. Analysis of Heavy Ion-Induced Chromosome Aberrations in Human Fibroblast Cells Using In Situ Hybridization

    NASA Technical Reports Server (NTRS)

    Wu, Honglu; Durante, Marco; Furusawa, Yoshiya; George, Kerry; Kawata, Tetsuya; Cucinotta, Francis A.

    2003-01-01

    Confluent human fibroblast cells (AG1522) were irradiated with gamma rays, 490 MeV/nucleon Si, or with Fe ions at either 200 or 500 MeV/nucleon. The cells were allowed to repair at 37 0 C for 24 hours after exposure, and a chemically induced premature chromosome condensation (PCC) technique was used to condense chromosomes in the G2 phase of the cell cycle. Unrejoined chromosomal breaks and complex exchanges were analyzed in the irradiated samples. In order to verify that chromosomal breaks were truly unrejoined, chromosome aberrations were analyzed using a combination of whole chromosome specific probes and probes specific for the telomere region of the chromosome. Results showed that the frequency of unrejoined chromosome breaks was higher after high-LET radiation, and consequently, the ratio of incomplete to complete exchanges increased steadily with LET up to 440 keV/micron, the highest LET value in the present study. For samples exposed to 200 MeV/nucleon Fe ions, chromosome aberrations were analyzed using the multicolor FISH (mFISH) technique that allows identification of both complex and truly incomplete exchanges. Results of the mFISH study showed that 0.7 and 3 Gy dose of the Fe ions produced similar ratios of complex to simple exchanges and incomplete to complete exchanges, values for which were higher than those obtained after a 6 Gy gamma exposure. After 0.7 Gy of Fe ions, most complex aberrations were found to involve three or four chromosomes, indicating the maximum number of chromosome domains traversed by a single Fe ion track. 2

  15. The GAMMA-400 gamma-ray telescope for precision gamma-ray emission investigations

    NASA Astrophysics Data System (ADS)

    Topchiev, N. P.; Galper, A. M.; Bonvicini, V.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Bakaldin, A. V.; Bergstrom, L.; Berti, E.; Bigongiari, G.; Bobkov, S. G.; Boezio, M.; Bogomolov, E. A.; Bonechi, L.; Bongi, M.; Bottai, S.; Castellini, G.; Cattaneo, P. W.; Cumani, P.; Dalkarov, O. D.; Dedenko, G. L.; De Donato, C.; Dogiel, V. A.; Finetti, N.; Gascon, D.; Gorbunov, M. S.; Gusakov, Yu V.; Hnatyk, B. I.; Kadilin, V. V.; Kaplin, V. A.; Kaplun, A. A.; Kheymits, M. D.; Korepanov, V. E.; Larsson, J.; Leonov, A. A.; Loginov, V. A.; Longo, F.; Maestro, P.; Marrocchesi, P. S.; Martinez, M.; Men'shenin, A. L.; Mikhailov, V. V.; Mocchiutti, E.; Moiseev, A. A.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu; Papini, P.; Paredes, J. M.; Pearce, M.; Picozza, P.; Rappoldi, A.; Ricciarini, S.; Runtso, M. F.; Ryde, F.; Serdin, O. V.; Sparvoli, R.; Spillantini, P.; Stozhkov, Yu I.; Suchkov, S. I.; Taraskin, A. A.; Tavani, M.; Tiberio, A.; Tyurin, E. M.; Ulanov, M. V.; Vacchi, A.; Vannuccini, E.; Vasilyev, G. I.; Ward, J. E.; Yurkin, Yu T.; Zampa, N.; Zirakashvili, V. N.; Zverev, V. G.

    2016-02-01

    The GAMMA-400 gamma-ray telescope with excellent angular and energy resolutions is designed to search for signatures of dark matter in the fluxes of gamma-ray emission and electrons + positrons. Precision investigations of gamma-ray emission from Galactic Center, Crab, Vela, Cygnus, Geminga, and other regions will be performed, as well as diffuse gamma-ray emission, along with measurements of high-energy electron + positron and nuclei fluxes. Furthermore, it will study gamma-ray bursts and gamma-ray emission from the Sun during periods of solar activity. The GAMMA-400 energy range is expected to be from ∼20 MeV up to TeV energies for gamma rays, up to 10 TeV for electrons + positrons, and up to 1015 eV for cosmic-ray nuclei. For 100-GeV gamma rays, the GAMMA-400 angular resolution is ∼0.01° and energy resolution is ∼1% the proton rejection factor is ∼5x105. GAMMA-400 will be installed onboard the Russian space observatory.

  16. Supernovae, hypernovae and gamma ray bursts

    NASA Astrophysics Data System (ADS)

    Dar, Arnon

    2001-05-01

    Recent observations suggest that gamma ray bursts (GRBs) and their afterglows are produced by highly relativistic jets emitted in core collapse supernova explosions (SNe). The result of the event, probably, is not just a compact object plus a spherical ejecta: within a day, a fraction of the parent star falls back to produce a thick accretion disk around the compact object. Instabilities in the disk induce a sudden collapse with ejection of jets of highly relativistic ``cannonballs'' of plasma in opposite directions, similar to those ejected by microquasars. The jet of cannonballs exit the supernova shell/ejecta reheated by their collision with it, emitting highly forward-collimated radiation which is Doppler shifted to γ-ray energy. Each cannonball corresponds to an individual pulse in a GRB. They decelerate by sweeping up the ionized interstellar matter in front of them, part of which is accelerated to cosmic-ray energies and emits synchrotron radiation: the afterglow. The Cannonball Model cannot predict the timing sequence of these pulses, but it fares very well in describing the total energy, energy spectrum, and time-dependence of the individual γ-ray pulses and afterglows. It also predicts that GRB pulses are accompanied by detectable short pulses of TeV neutrinos and sub TeV γ-rays, that are much more energetic and begin and peak a little earlier. .

  17. Stellar Photon Archaeology with Gamma-Rays

    NASA Technical Reports Server (NTRS)

    Stecker, Floyd W.

    2009-01-01

    Ongoing deep surveys of galaxy luminosity distribution functions, spectral energy distributions and backwards evolution models of star formation rates can be used to calculate the past history of intergalactic photon densities and, from them, the present and past optical depth of the Universe to gamma-rays from pair production interactions with these photons. The energy-redshift dependence of the optical depth of the Universe to gamma-rays has become known as the Fazio-Stecker relation (Fazio & Stecker 1970). Stecker, Malkan & Scully have calculated the densities of intergalactic background light (IBL) photons of energies from 0.03 eV to the Lyman limit at 13.6 eV and for 0$ < z < $6, using deep survey galaxy observations from Spitzer, Hubble and GALEX and have consequently predicted spectral absorption features for extragalactic gamma-ray sources. This procedure can also be reversed. Determining the cutoff energies of gamma-ray sources with known redshifts using the recently launched Fermi gamma-ray space telescope may enable a more precise determination of the IBL photon densities in the past, i.e., the "archaeo-IBL.", and therefore allow a better measure of the past history of the total star formation rate, including that from galaxies too faint to be observed.

  18. Gamma-ray limits on neutrino lines

    SciTech Connect

    Queiroz, Farinaldo S.; Yaguna, Carlos E.; Weniger, Christoph

    2016-05-23

    Monochromatic neutrinos from dark matter annihilations (χχ→νν-bar) are always produced in association with a gamma-ray spectrum generated by electroweak bremsstrahlung. Consequently, these neutrino lines can be searched for not only with neutrino detectors but also indirectly with gamma-ray telescopes. Here, we derive limits on the dark matter annihilation cross section into neutrinos based on recent Fermi-LAT and HESS data. We find that, for dark matter masses above 200 GeV, gamma-ray data actually set the most stringent constraints on neutrino lines from dark matter annihilation and, therefore, an upper bound on the dark matter total annihilation cross section. In addition, we point out that gamma-ray telescopes, unlike neutrino detectors, have the potential to distinguish the flavor of the final state neutrino. Our results indicate that we have already entered into a new era where gamma-ray telescopes are more sensitive than neutrino detectors to neutrino lines from dark matter annihilation.

  19. Short gamma-ray bursts: A review

    NASA Astrophysics Data System (ADS)

    D'Avanzo, P.

    2015-09-01

    Gamma-Ray Bursts (GRBs) are rapid, bright flashes of radiation peaking in the gamma-ray band occurring at an average rate of one event per day at cosmological distances. They are characterized by a collimated relativistic outflow pushing through the interstellar medium shining in gamma-rays powered by a central engine. This prompt phase is followed by a fading afterglow emission at longer wavelength, powered in part by the expanding outflow, and in part by continuous energy injection by the central engine. The observed evidences of supernovae associated to long GRBs (those with a duration of the gamma-ray emission > 2 s) brought to a general consensus on indicating the core collapse of massive stars as the progenitor of these events. Following the most accredited model, short GRBs (the events with a duration of the gamma-ray emission ≤ 2 s) originate from the coalescence of compact binary systems (two neutron stars or neutron star-black hole systems). This paper presents a review of the observational properties of short GRBs and shows how the study of these properties can be used as a tool to unveil their elusive progenitors and provide information on the nature of the central engine powering the observed emission. The increasing evidence for compact object binary progenitors makes short GRBs one of the most promising sources of gravitational waves for the forthcoming Advanced LIGO/Virgo experiments.

  20. Stellar Photon Archaeology with Gamma-Rays

    NASA Technical Reports Server (NTRS)

    Stecker, Floyd W.

    2009-01-01

    Ongoing deep surveys of galaxy luminosity distribution functions, spectral energy distributions and backwards evolution models of star formation rates can be used to calculate the past history of intergalactic photon densities and, from them, the present and past optical depth of the Universe to gamma-rays from pair production interactions with these photons. The energy-redshift dependence of the optical depth of the Universe to gamma-rays has become known as the Fazio-Stecker relation (Fazio & Stecker 1970). Stecker, Malkan & Scully have calculated the densities of intergalactic background light (IBL) photons of energies from 0.03 eV to the Lyman limit at 13.6 eV and for 0$ < z < $6, using deep survey galaxy observations from Spitzer, Hubble and GALEX and have consequently predicted spectral absorption features for extragalactic gamma-ray sources. This procedure can also be reversed. Determining the cutoff energies of gamma-ray sources with known redshifts using the recently launched Fermi gamma-ray space telescope may enable a more precise determination of the IBL photon densities in the past, i.e., the "archaeo-IBL.", and therefore allow a better measure of the past history of the total star formation rate, including that from galaxies too faint to be observed.

  1. LUMINOSITY EVOLUTION OF GAMMA-RAY PULSARS

    SciTech Connect

    Hirotani, Kouichi

    2013-04-01

    We investigate the electrodynamic structure of a pulsar outer-magnetospheric particle accelerator and the resulting gamma-ray emission. By considering the condition for the accelerator to be self-sustained, we derive how the trans-magnetic-field thickness of the accelerator evolves with the pulsar age. It is found that the thickness is small but increases steadily if the neutron-star envelope is contaminated by sufficient light elements. For such a light element envelope, the gamma-ray luminosity of the accelerator is kept approximately constant as a function of age in the initial 10,000 yr, forming the lower bound of the observed distribution of the gamma-ray luminosity of rotation-powered pulsars. If the envelope consists of only heavy elements, on the other hand, the thickness is greater, but it increases less rapidly than a light element envelope. For such a heavy element envelope, the gamma-ray luminosity decreases relatively rapidly, forming the upper bound of the observed distribution. The gamma-ray luminosity of a general pulsar resides between these two extreme cases, reflecting the envelope composition and the magnetic inclination angle with respect to the rotation axis. The cutoff energy of the primary curvature emission is regulated below several GeV even for young pulsars because the gap thickness, and hence the acceleration electric field, is suppressed by the polarization of the produced pairs.

  2. Distinguishing fissions of 232Th, 237Np and 238U with beta-delayed gamma rays

    NASA Astrophysics Data System (ADS)

    Iyengar, A.; Norman, E. B.; Howard, C.; Angell, C.; Kaplan, A.; Ressler, J. J.; Chodash, P.; Swanberg, E.; Czeszumska, A.; Wang, B.; Yee, R.; Shugart, H. A.

    2013-06-01

    Measurements of beta-delayed gamma-ray spectra following 14-MeV neutron-induced fissions of 232Th, 238U, and 237Np were conducted at Lawrence Berkeley National Laboratory's 88-Inch Cyclotron. Spectra were collected for times ranging from 1 min to 14 h after irradiation. Intensity ratios of gamma-ray lines were extracted from the data that allow identification of the fissioning isotope.

  3. Fission Product Gamma-Ray Line Pairs Sensitive to Fissile Material and Neutron Energy

    SciTech Connect

    Marrs, R E; Norman, E B; Burke, J T; Macri, R A; Shugart, H A; Browne, E; Smith, A R

    2007-11-15

    The beta-delayed gamma-ray spectra from the fission of {sup 235}U, {sup 238}U, and {sup 239}Pu by thermal and near-14-MeV neutrons have been measured for delay times ranging from 1 minute to 14 hours. Spectra at all delay times contain sets of prominent gamma-ray lines with intensity ratios that identify the fissile material and distinguish between fission induced by low-energy or high-energy neutrons.

  4. Evaluation of the Doppler-Broadening of Gamma-Ray Spectra from Neutron Inelastic Scattering on Light Nuclei

    SciTech Connect

    Womble, Phillip C.; Barzilov, Alexander; Novikov, Ivan; Howard, Joseph; Musser, Jason

    2009-03-10

    Neutron-induced gamma-ray reactions are extensively used in the nondestructive analysis of materials and other areas where the information about the chemical composition of a substance is crucial. The common technique to find the intensity of the gamma ray is to fit gamma-ray line shape with an analytical function, for example, a Gaussian. However, the Gaussian fitting may fail if the gamma-ray peak is Doppler-broadened since this leads to the miscalculation of the area of the peak and, therefore, to misidentification of the material. Due to momentum considerations, Doppler-broadening occurs primarily with gamma rays from neutron-induced inelastic scattering reactions with light nuclei. The recoiling nucleus of interest must have excited states whose lifetimes are much smaller than the time of flight in the material. We have examined various light nuclei bombarded by 14 MeV neutrons to predict when the peak shape of a neutron-induced gamma ray emitted from these nuclei will be Doppler-broadened. We have found that nearly all the gamma rays from neutron-induced gamma-ray reactions on light elements (A<20) are Doppler-broadened with only a few exceptions. This means that utilization of resolution curves derived from isotopic sources or thermal neutron capture reactions have little value in the analysis.

  5. VLF Remote -Sensing of the Lower Ionosphere with AWESOME Receivers: Solar Flares, Lightning-induced Electron Precipitation, Sudden Ionospheric Disturbances, Sprites, Gravity Waves and Gamma-ray Flares

    NASA Astrophysics Data System (ADS)

    Inan, U. S.; Cohen, M.; Scherrer, P.; Scherrer, D.

    2006-11-01

    Stanford University Very Low Frequency (VLF) radio receivers have been used extensively for remote sensing of the ionosphere and the magnetosphere. Among the phenomena that can be uniquely measured via VLF receivers are radio atmospherics, whistlers, electron precipitation, solar flares, sudden ionospheric disturbances, gravity waves, sprites, and cosmic gamma-ray flares. With the use of simple square air-core magnetic loop antennas of a couple of meters in size, the sensitivity of these instruments allows the measurement of magnetic fields as low as several tens of femtoTesla per root Hz, in the frequency range of ~300 Hz to 50 kHz. This sensitivity well exceeds that required to detect any event above the ambient atmospheric noise floor, determined by the totality of lightning activity on this planet. In recent years, as cost of production, timing accuracy (due to low cost GPS cards), and data handling flexibility of the systems has improved, it has become possible to distribute many of these instruments in the form of arrays, to perform interferometric and holographic imaging of the lower ionosphere. These goals can be achieved using the newest version of the Stanford VLF receiver, known as AWESOME: Atmospheric Weather Educational System for Observation and Modeling of Electromagnetics. In the context of the IHY/UNBSS program for 2007, the AWESOME receivers can be used extensively as part of the United Nations initiative to place scientific instruments in developing countries. Drawing on the Stanford experiences from setting up arrays of VLF receivers, including an interferometer in Alaska, the Holographic Array for Ionospheric and Lightning research (HAIL) consisting of instruments at 13 different high schools in mid-western United States, a broader set of ELF/VLF receivers in Alaska, and various receivers abroad, including in France, Japan, Greece, Turkey, and India, a global network of ELF/VLF receivers offer possibilities for a wide range of scientific topics

  6. Gamma ray pulsars. [electron-photon cascades

    NASA Technical Reports Server (NTRS)

    Oegelman, H.; Ayasli, S.; Hacinliyan, A.

    1977-01-01

    Data from the SAS-2 high-energy gamma-ray experiment reveal the existence of four pulsars emitting photons above 35 MeV. An attempt is made to explain the gamma-ray emission from these pulsars in terms of an electron-photon cascade that develops in the magnetosphere of the pulsar. Although there is very little material above the surface of the pulsar, the very intense magnetic fields (10 to the 12th power gauss) correspond to many radiation lengths which cause electrons to emit photons by magnetic bremsstrahlung and which cause these photons to pair-produce. The cascade develops until the mean photon energy drops below the pair-production threshold which is in the gamma-ray range; at this stage, the photons break out from the source.

  7. Gamma-Ray Imaging for Explosives Detection

    NASA Technical Reports Server (NTRS)

    deNolfo, G. A.; Hunter, S. D.; Barbier, L. M.; Link, J. T.; Son, S.; Floyd, S. R.; Guardala, N.; Skopec, M.; Stark, B.

    2008-01-01

    We describe a gamma-ray imaging camera (GIC) for active interrogation of explosives being developed by NASA/GSFC and NSWCICarderock. The GIC is based on the Three-dimensional Track Imager (3-DTI) technology developed at GSFC for gamma-ray astrophysics. The 3-DTI, a large volume time-projection chamber, provides accurate, approx.0.4 mm resolution, 3-D tracking of charged particles. The incident direction of gamma rays, E, > 6 MeV, are reconstructed from the momenta and energies of the electron-positron pair resulting from interactions in the 3-DTI volume. The optimization of the 3-DTI technology for this specific application and the performance of the GIC from laboratory tests is presented.

  8. Gamma ray lines from buried supernovae

    NASA Technical Reports Server (NTRS)

    Morfill, G. E.; Meyer, P.

    1982-01-01

    An investigation is conducted concerning the possibility that supernovae (SN), located in dense interstellar clouds, might become the sources of gamma ray lines. The SN progenitor, in such a case, has to be an O or B star so that its evolutionary lifetime is short, and an explosion inside the cloud is still possible. It is shown that, in principle, a measurement of the abundances in the ejecta is possible. Attention is given to the characteristics of a model, the expected luminosity of gamma-ray lines, and the study of specific numerical examples for testing the feasibility of the considered mechanism. On the basis of the obtained results, it is concluded that gamma-ray line production by collisional excitation in confined supernovae remnants may be quite important.

  9. Tycho's Star Shines in Gamma Rays

    NASA Image and Video Library

    2017-09-27

    NASA image relase December 13, 2011 Gamma-rays detected by Fermi's LAT show that the remnant of Tycho's supernova shines in the highest-energy form of light. This portrait of the shattered star includes gamma rays (magenta), X-rays (yellow, green, and blue), infrared (red) and optical data. Credit: Gamma ray, NASA/DOE/Fermi LAT Collaboration; X-ray, NASA/CXC/SAO; Infrared, NASA/JPL-Caltech; Optical, MPIA, Calar Alto, O. Krause et al. and DSS To read more go to: www.nasa.gov/mission_pages/GLAST/news/tycho-star.html NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  10. Gamma Rays at Very High Energies

    NASA Astrophysics Data System (ADS)

    Aharonian, Felix

    This chapter presents the elaborated lecture notes on Gamma Rays at Very High Energies given by Felix Aharonian at the 40th Saas-Fee Advanced Course on "Astrophysics at Very High Energies". Any coherent description and interpretation of phenomena related to gammarays requires deep knowledge of many disciplines of physics like nuclear and particle physics, quantum and classical electrodynamics, special and general relativity, plasma physics, magnetohydrodynamics, etc. After giving an introduction to gamma-ray astronomy the author discusses the astrophysical potential of ground-based detectors, radiation mechanisms, supernova remnants and origin of the galactic cosmic rays, TeV emission of young supernova remnants, gamma-emission from the Galactic center, pulsars, pulsar winds, pulsar wind nebulae, and gamma-ray loud binaries.

  11. Microsecond flares in gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Schaefer, Bradley E.; Cohen, Justin; Teegarden, Bonnard J.; Cline, Thomas L.; Fishman, Gerald J.; Meegan, Charles A.; Wilson, Robert B.; Paciesas, William S.; Pendleton, Geoffrey N.; Matteson, James L.

    1993-01-01

    It has been suggested that gamma-ray burst light curves may consist of many superposed flares with a duration shorter than 30/microsec. If true, the implications for the interpretation of burst data are enormous. With the launch of the Compton Gamma-Ray Observatory, four predictions of Mitrofanov's (1989) suggestion can be tested. Our results which contradict this suggestion are (1) the photon arrival times are not correlated between independent detectors, (2) the spectral hardness and intensity does not depend on the detector area, (3) the bursts seen by detectors which measure photon positions do not see microsecond flares, and (4) burst positions deduced from detectors with different projected areas are close to the positions deduced from time-of-flight differences between separated spacecraft. We conclude, therefore, that gamma-ray bursts are not composed of microsecond flares.

  12. Technology Needs for Gamma Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2011-01-01

    Gamma ray astronomy is currently in an exciting period of multiple missions and a wealth of data. Results from INTEGRAL, Fermi, AGILE, Suzaku and Swift are making large contributions to our knowledge of high energy processes in the universe. The advances are due to new detector and imaging technologies. The steps to date have been from scintillators to solid state detectors for sensors and from light buckets to coded aperture masks and pair telescopes for imagers. A key direction for the future is toward focusing telescopes pushing into the hard X-ray regime and Compton telescopes and pair telescopes with fine spatial resolution for medium and high energy gamma rays. These technologies will provide finer imaging of gamma-ray sources. Importantly, they will also enable large steps forward in sensitivity by reducing background.

  13. Gamma rays and neutrons from solar flares

    NASA Astrophysics Data System (ADS)

    Murphy, R. J.

    Recent observations with the Gamma-Ray Spectrometer (GRS) on the Solar Maximum Mission (SMM), along with observations from a number of ground-based and spacecraft detectors, contain a wealth of information on particle acceleration in solar flares. The analysis and interpretation of this data is crucial to the understanding of the flare process. A general analysis of gamma-ray and neutron production in solar flared and a comparison of theoretical calculations with data are presented. An overview of the flare phenomenon is given, recent gamma-ray and particle observations are discussed, the theory of each production process is reviewed and detailed calculations are presented, and a comparison of these calculations with data is made.

  14. Gamma-Ray Bursts Search with HAWC

    NASA Astrophysics Data System (ADS)

    de Leon, Cederik; Salazar Ibarguen, Humberto; Villaseã+/-Or Cendejas, Luis Manuel; HAWC Collaboration

    2017-01-01

    The High Altitude Water Cherenkov (HAWC) Gamma-ray observatory is a wide field-of-view observatory sensitive to gamma rays in the 100 GeV - 100 TeV energy range, located in Mexico at an altitude of 4100 m. In the present work we present results on the search for excesses in the rates of signals from the individual photomultiplier tubes (PMTs) using the Time to Digital Converters (TDC) of HAWC. This search is based on the implementation of the Moving Average Ratio Analysis (MARA) focused on the characterization of the different physical phenomena that may give rise to such excesses: noise in the PMTs, atmospheric conditions related with thunderstorms and excesses of astrophysical origin such as variable sources of high energy gamma rays and in particular GRBs. In particular we present an analysis over the HAWC historical data for the search of such excesses and elaborate on the possible physical interpretation of the found excesses.

  15. Photoneutron spectroscopy using monoenergetic gamma rays for bulk explosives detection

    NASA Astrophysics Data System (ADS)

    McFee, J. E.; Faust, A. A.; Pastor, K. A.

    2013-03-01

    To date, the most successful nuclear methods to confirm the presence of bulk explosives have been radiative thermal neutron capture (thermal neutron activation) and prompt radiative emission following inelastic fast neutron scattering (fast neutron analysis). This paper proposes an alternative: photoneutron spectroscopy using monoenergetic gamma rays. If monoenergetic gamma rays whose energies exceed the threshold for neutron production are incident on a given isotope, the emitted neutrons have a spectrum consisting of one or more discrete energies and the spectrum can be used as a fingerprint to identify the isotope. A prototype compact gamma-ray generator is proposed as a suitable source and a commercially available 3He ionization chamber is proposed as a suitable spectrometer. Advantages of the method with respect to the previously mentioned ones may include simpler spectra and low inherent natural neutron background. Its drawbacks include a present lack of suitable commercially available photon sources, induced neutron backgrounds and low detection rates. This paper describes the method, including kinematics, sources, detectors and geometries. Simulations using a modified Geant4 Monte Carlo modelling code are described and results are presented to support feasibility. Further experiments are recommended.

  16. Kaluza-Klein Dark Matter, Electrons and Gamma Ray Telescopes

    SciTech Connect

    Baltz, E.

    2004-12-01

    Kaluza-Klein dark matter particles can annihilate efficiently into electron-positron pairs, providing a discrete feature (a sharp edge) in the cosmic e{sup +} e{sup -} spectrum at an energy equal to the particle's mass (typically several hundred GeV to one TeV). Although this feature is probably beyond the reach of satellite or balloon-based cosmic ray experiments (those that distinguish the charge and mass of the primary particle), gamma ray telescopes may provide an alternative detection method. Designed to observe very high-energy gamma-rays, ACTs also observe the diffuse flux of electron-induced electromagnetic showers. The GLAST satellite, designed for gamma ray astronomy, will also observe any high energy showers (several hundred GeV and above) in its calorimeter. We show that high-significance detections of an electron-positron feature from Kaluza-Klein dark matter annihilations are possible with GLAST, and also with ACTs such as HESS, VERITAS or MAGIC.

  17. Probing the Intergalactic Magnetic Field with the Anisotropy of the Extragalactic Gamma-Ray Background

    NASA Technical Reports Server (NTRS)

    Venters, T. M.; Pavlidou, V.

    2012-01-01

    The intergalactic magnetic field (IGMF) may leave an imprint on the anisotropy properties of the extragalactic gamma-ray background, through its effect on electromagnetic cascades triggered by interactions between very high energy photons and the extragalactic background light. A strong IGMF will deflect secondary particles produced in these cascades and will thus tend to isotropize lower energy cascade photons, thus inducing a modulation in the anisotropy energy spectrum of the gamma-ray background. Here we present a simple, proof-of-concept calculation of the magnitude of this effect and demonstrate that the two extreme cases (zero IGMF and IGMF strong enough to completely isotropize cascade photons) would be separable by ten years of Fermi observations and reasonable model parameters for the gamma-ray background. The anisotropy energy spectrum of the Fermi gamma-ray background could thus be used as a probe of the IGMF strength.

  18. Digital discrimination of neutrons and gamma-rays in organic scintillation detectors using moment analysis.

    PubMed

    Xie, Xufei; Zhang, Xing; Yuan, Xi; Chen, Jinxiang; Li, Xiangqing; Zhang, Guohui; Fan, Tieshuan; Yuan, Guoliang; Yang, Jinwei; Yang, Qingwei

    2012-09-01

    Digital discrimination of neutron and gamma-ray events in an organic scintillator has been investigated by moment analysis. Signals induced by an americium-beryllium (Am/Be) isotropic neutron source in a stilbene crystal detector have been sampled with a flash analogue-to-digital converter (ADC) of 1 GSamples/s sampling rate and 10-bit vertical resolution. Neutrons and gamma-rays have been successfully discriminated with a threshold corresponding to gamma-ray energy about 217 keV. Moment analysis has also been verified against the results assessed by a time-of-flight (TOF) measurement. It is shown that the classification of neutrons and gamma-rays afforded by moment analysis is consistent with that achieved by digital TOF measurement. This method has been applied to analyze the data acquired from the stilbene crystal detector in mixed radiation field of the HL-2A tokamak deuterium plasma discharges and the results are described.

  19. Digital discrimination of neutrons and gamma-rays in organic scintillation detectors using moment analysis

    SciTech Connect

    Xie Xufei; Zhang Xing; Yuan Xi; Chen Jinxiang; Li Xiangqing; Zhang Guohui; Fan Tieshuan; Yuan Guoliang; Yang Jinwei; Yang Qingwei

    2012-09-15

    Digital discrimination of neutron and gamma-ray events in an organic scintillator has been investigated by moment analysis. Signals induced by an americium-beryllium (Am/Be) isotropic neutron source in a stilbene crystal detector have been sampled with a flash analogue-to-digital converter (ADC) of 1 GSamples/s sampling rate and 10-bit vertical resolution. Neutrons and gamma-rays have been successfully discriminated with a threshold corresponding to gamma-ray energy about 217 keV. Moment analysis has also been verified against the results assessed by a time-of-flight (TOF) measurement. It is shown that the classification of neutrons and gamma-rays afforded by moment analysis is consistent with that achieved by digital TOF measurement. This method has been applied to analyze the data acquired from the stilbene crystal detector in mixed radiation field of the HL-2A tokamak deuterium plasma discharges and the results are described.

  20. An Overview of the XGAM Code and Related Software for Gamma-ray Analysis

    SciTech Connect

    Younes, W.

    2014-11-13

    The XGAM spectrum-fitting code and associated software were developed specifically to analyze the complex gamma-ray spectra that can result from neutron-induced reactions. The XGAM code is designed to fit a spectrum over the entire available gamma-ray energy range as a single entity, in contrast to the more traditional piecewise approaches. This global-fit philosophy enforces background continuity as well as consistency between local and global behavior throughout the spectrum, and in a natural way. This report presents XGAM and the suite of programs built around it with an emphasis on how they fit into an overall analysis methodology for complex gamma-ray data. An application to the analysis of time-dependent delayed gamma-ray yields from 235U fission is shown in order to showcase the codes and how they interact.

  1. Gamma-ray Emission from the Surface of Martian Satellites as a Function of Elemental Composition

    NASA Astrophysics Data System (ADS)

    Yoshida, Kouhei; Naito, Masayuki; Hasebe, Nobuyuki; Kusano, Hiroki; Nagaoka, Hiroshi; Ishii, Junya; Aoki, Daisuke

    Mars has two satellites, Phobos and Deimos. The Martian satellites have never been explored from the aspect of elemental composition. Their origins are still mysterious. Gamma-ray spectroscopy from the orbit of spacecraft is a powerful method to investigate elemental distribution and abundance of planets with no or thin atmosphere. In this work, gamma-ray emission from the Martian satellites was calculated as a function of elemental composition. Both chondritic and Martian compositions, which represent captured origin and giant impact origin, respectively, were assumed as elemental composition of Martian satellites. The gamma-ray fluxes induced by galactic cosmic rays at their surface were calculated for both of them. It was found that the elemental compositions of Martian satellites are clearly distinguished between chondritic or Martian by the gamma-ray emission rate ratios of Si/Fe and Ca/Fe and enable us to give strong constraint to the idea for the origin of the Martian satellites.

  2. Digital discrimination of neutrons and gamma-rays in organic scintillation detectors using moment analysis

    NASA Astrophysics Data System (ADS)

    Xie, Xufei; Zhang, Xing; Yuan, Xi; Chen, Jinxiang; Li, Xiangqing; Zhang, Guohui; Fan, Tieshuan; Yuan, Guoliang; Yang, Jinwei; Yang, Qingwei

    2012-09-01

    Digital discrimination of neutron and gamma-ray events in an organic scintillator has been investigated by moment analysis. Signals induced by an americium-beryllium (Am/Be) isotropic neutron source in a stilbene crystal detector have been sampled with a flash analogue-to-digital converter (ADC) of 1 GSamples/s sampling rate and 10-bit vertical resolution. Neutrons and gamma-rays have been successfully discriminated with a threshold corresponding to gamma-ray energy about 217 keV. Moment analysis has also been verified against the results assessed by a time-of-flight (TOF) measurement. It is shown that the classification of neutrons and gamma-rays afforded by moment analysis is consistent with that achieved by digital TOF measurement. This method has been applied to analyze the data acquired from the stilbene crystal detector in mixed radiation field of the HL-2A tokamak deuterium plasma discharges and the results are described.

  3. Gamma ray line observations with OSSE

    NASA Technical Reports Server (NTRS)

    Kurfess, J. D.; Grove, J. E.; Johnson, W. N.; Murphy, R. J.; Share, G. H.; Purcell, W. R.; Leising, M. D.; Harris, M. J.

    1997-01-01

    Observations from the oriented scintillation spectrometer experiment of the gamma ray lines originating from a variety of Galactic center sources are reviewed. Extensive observations were acquired of the Galactic center region, including the 0.511 MeV positron annihilation line and associated positronium continuum and Al-26 emission. The results reviewed include: Co-57 from SN 1987A; limits on Co-56 from SN 1991T; gamma ray lines from solar flares; searches for Ti-44 emission from Cas A, and searches for C-12 and O-16 lines from the Orion region.

  4. Gamma ray line observations with OSSE

    NASA Technical Reports Server (NTRS)

    Kurfess, J. D.; Grove, J. E.; Johnson, W. N.; Murphy, R. J.; Share, G. H.; Purcell, W. R.; Leising, M. D.; Harris, M. J.

    1997-01-01

    Observations from the oriented scintillation spectrometer experiment of the gamma ray lines originating from a variety of Galactic center sources are reviewed. Extensive observations were acquired of the Galactic center region, including the 0.511 MeV positron annihilation line and associated positronium continuum and Al-26 emission. The results reviewed include: Co-57 from SN 1987A; limits on Co-56 from SN 1991T; gamma ray lines from solar flares; searches for Ti-44 emission from Cas A, and searches for C-12 and O-16 lines from the Orion region.

  5. VHE Gamma-ray Supernova Remnants

    SciTech Connect

    Funk, Stefan; /KIPAC, Menlo Park

    2007-01-22

    Increasing observational evidence gathered especially in X-rays and {gamma}-rays during the course of the last few years support the notion that Supernova remnants (SNRs) are Galactic particle accelerators up to energies close to the ''knee'' in the energy spectrum of Cosmic rays. This review summarizes the current status of {gamma}-ray observations of SNRs. Shell-type as well as plerionic type SNRs are addressed and prospect for observations of these two source classes with the upcoming GLAST satellite in the energy regime above 100 MeV are given.

  6. Radioactivities and gamma-rays from supernovae

    NASA Technical Reports Server (NTRS)

    Woosley, S. E.

    1991-01-01

    An account is given of the implications of several calculations relevant to the estimation of gamma-ray signals from various explosive astronomical phenomena. After discussing efforts to constrain the amounts of Ni-57 and Ti-44 produced in SN 1987A, attention is given to the production of Al-27 in massive stars and SNs. A 'delayed detonation' model of type Ia SNs is proposed, and the gamma-ray signal which may be expected when a bare white dwarf collapses directly into a neutron star is discussed.

  7. Gamma ray spectrometer for Lunar Scout 2

    NASA Technical Reports Server (NTRS)

    Moss, C. E.; Burt, W. W.; Edwards, B. C.; Martin, R. A.; Nakano, George H.; Reedy, R. C.

    1993-01-01

    We review the current status of the Los Alamos program to develop a high-resolution gamma-ray spectrometer for the Lunar Scout-II mission, which is the second of two Space Exploration Initiative robotic precursor missions to study the Moon. This instrument will measure gamma rays in the energy range of approximately 0.1 - 10 MeV to determine the composition of the lunar surface. The instrument is a high-purity germanium crystal surrounded by an CsI anticoincidence shield and cooled by a split Stirling cycle cryocooler. It will provide the abundance of many elements over the entire lunar surface.

  8. Nuclear Forensics using Gamma-ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Norman, E. B.

    2016-09-01

    Much of George Dracoulis's research career was devoted to utilising gamma-ray spectroscopy in fundamental studies in nuclear physics. This same technology is useful in a wide range of applications in the area of nuclear forensics. Over the last several years, our research group has made use of both high- and low-resolution gamma-ray spectrometers to: identify the first sample of plutonium large enough to be weighed; determine the yield of the Trinity nuclear explosion; measure fission fragment yields as a function of target nucleus and neutron energy; and observe fallout in the U. S. from the Fukushima nuclear reactor accident.

  9. The gamma-ray laser project

    NASA Astrophysics Data System (ADS)

    Collins, Carl B.

    1987-07-01

    Recent approaches to the problem of the gamma-ray laser have focused on upconversion techniques in which metastable nuclei are pumped with long wavelength radiation. At the nuclear level the storage of energy can approach tera-Joules (10 to the 12th power J) per liter for thousands of years. However, any plan to use such a resource for a gamma-ray laser poses problems of a broad interdisciplinary nature requiring the fusion of concepts taken from relatively unrelated fields of physics.

  10. Gamma ray spectroscopy monitoring method and apparatus

    DOEpatents

    Stagg, William R; Policke, Timothy A

    2017-05-16

    The present invention relates generally to the field of gamma ray spectroscopy monitoring and a system for accomplishing same to monitor one or more aspects of various isotope production processes. In one embodiment, the present invention relates to a monitoring system, and method of utilizing same, for monitoring one or more aspects of an isotope production process where the monitoring system comprises: (A) at least one sample cell; (B) at least one measuring port; (C) at least one adjustable collimator device; (D) at least one shutter; and (E) at least one high resolution gamma ray spectrometer.

  11. Gamma ray astronomy and black hole astrophysics

    NASA Technical Reports Server (NTRS)

    Liang, Edison P.

    1990-01-01

    The study of soft gamma emissions from black-hole candidates is identified as an important element in understanding black-hole phenomena ranging from stellar-mass black holes to AGNs. The spectra of Cyg X-1 and observations of the Galactic Center are emphasized, since thermal origins and MeV gamma-ray bumps are evident and suggest a thermal-pair cloud picture. MeV gamma-ray observations are suggested for studying black hole astrophysics such as the theorized escaping pair wind, the anticorrelation between the MeV gamma bump and the soft continuum, and the relationship between source compactness and temperature.

  12. Found: A Galaxy's Missing Gamma Rays

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-04-01

    Recent reanalysis of data from the Fermi Gamma-ray Space Telescope has resulted in the first detection of high-energy gamma rays emitted from a nearby galaxy. This discovery reveals more about how supernovae interact with their environments.Colliding Supernova RemnantAfter a stellar explosion, the supernovas ejecta expand, eventually encountering the ambient interstellar medium. According to models, this generates a strong shock, and a fraction of the kinetic energy of the ejecta is transferred into cosmic rays high-energy radiation composed primarily of protons and atomic nuclei. Much is still unknown about this process, however. One open question is: what fraction of the supernovas explosion power goes into accelerating these cosmic rays?In theory, one way to answer this is by looking for gamma rays. In a starburst galaxy, the collision of the supernova-accelerated cosmic rays with the dense interstellar medium is predicted to produce high-energy gamma rays. That radiation should then escape the galaxy and be visible to us.Pass 8 to the RescueObservational tests of this model, however, have beenstumped by Arp 220. This nearby ultraluminous infrared galaxy is the product of a galaxy merger ~700 million years ago that fueled a frenzy of starbirth. Due to its dusty interior and extreme levels of star formation, Arp 220 has long been predicted to emit the gamma rays produced by supernova-accelerated cosmic rays. But though weve looked, gamma-ray emission has never been detected from this galaxy until now.In a recent study, a team of scientists led by Fang-Kun Peng (Nanjing University) reprocessed 7.5 years of Fermi observations using the new Pass 8 analysis software. The resulting increase in resolution revealed the first detection of GeV emission from Arp 220!Acceleration EfficiencyGamma-ray luminosity vs. total infrared luminosity for LAT-detected star-forming galaxies and Seyferts. Arp 220s luminosities are consistent with the scaling relation. [Peng et al. 2016

  13. Gamma-ray and neutron spectroscopy of planetary surfaces and atmospheres

    SciTech Connect

    Reedy, R.C.

    1987-01-01

    The neutrons and gamma rays escaping from a planet can be used to map the concentrations of various elements in its surface. In a planet, the high-energy particles in the galactic cosmic rays induce a cascade of particles that includes many neutrons. The ..gamma.. rays are made by the decay of the naturally-occurring radioelements and by nuclear excitations induced by cosmic-ray particles and their secondaries (especially neutron capture or inelastic scattering reactions). After a short history of planetary ..gamma..-ray and neutron spectroscopy, the ..gamma..-ray spectrometer and active neutron detection system planned for the Mars Observer Mission are presented. The results of laboratory experiments that simulate the cosmic-ray bombardments of planetary surfaces and the status of the theoretical calculations for the processes that make and transport neutrons and ..gamma.. rays will be reviewed. Studies of Mars, including its atmosphere, are emphasized, as are new ideas, concepts, and problems that have arisen over the last decade, such as Doppler broadening and peaks from neutron scattering with germanium nuclei in a ..gamma..-ray spectrometer. 23 refs., 1 fig.

  14. M-Band Analysis of Chromosome Aberrations in Human Epithelial Cells Induced By Low- and High-Let Radiations

    NASA Technical Reports Server (NTRS)

    Hada, M.; Gersey, B.; Saganti, P. B.; Wilkins, R.; Gonda, S. R.; Cucinotta, F. A.; Wu, H.

    2007-01-01

    Energetic primary and secondary particles pose a health risk to astronauts in extended ISS and future Lunar and Mars missions. High-LET radiation is much more effective than low-LET radiation in the induction of various biological effects, including cell inactivation, genetic mutations, cataracts and cancer. Most of these biological endpoints are closely correlated to chromosomal damage, which can be utilized as a biomarker for radiation insult. In this study, human epithelial cells were exposed in vitro to gamma rays, 1 GeV/nucleon Fe ions and secondary neutrons whose spectrum is similar to that measured inside the Space Station. Chromosomes were condensed using a premature chromosome condensation technique and chromosome aberrations were analyzed with the multi-color banding (mBAND) technique. With this technique, individually painted chromosomal bands on one chromosome allowed the identification of both interchromosomal (translocation to unpainted chromosomes) and intrachromosomal aberrations (inversions and deletions within a single painted chromosome). Results of the study confirmed the observation of higher incidence of inversions for high-LET irradiation. However, detailed analysis of the inversion type revealed that all of the three radiation types in the study induced a low incidence of simple inversions. Half of the inversions observed in the low-LET irradiated samples were accompanied by other types of intrachromosome aberrations, but few inversions were accompanied by interchromosome aberrations. In contrast, Fe ions induced a significant fraction of inversions that involved complex rearrangements of both the inter- and intrachromosome exchanges.

  15. M-Band Analysis of Chromosome Aberrations in Human Epithelial Cells Induced By Low- and High-Let Radiations

    NASA Technical Reports Server (NTRS)

    Hada, M.; Gersey, B.; Saganti, P. B.; Wilkins, R.; Gonda, S. R.; Cucinotta, F. A.; Wu, H.

    2007-01-01

    Energetic primary and secondary particles pose a health risk to astronauts in extended ISS and future Lunar and Mars missions. High-LET radiation is much more effective than low-LET radiation in the induction of various biological effects, including cell inactivation, genetic mutations, cataracts and cancer. Most of these biological endpoints are closely correlated to chromosomal damage, which can be utilized as a biomarker for radiation insult. In this study, human epithelial cells were exposed in vitro to gamma rays, 1 GeV/nucleon Fe ions and secondary neutrons whose spectrum is similar to that measured inside the Space Station. Chromosomes were condensed using a premature chromosome condensation technique and chromosome aberrations were analyzed with the multi-color banding (mBAND) technique. With this technique, individually painted chromosomal bands on one chromosome allowed the identification of both interchromosomal (translocation to unpainted chromosomes) and intrachromosomal aberrations (inversions and deletions within a single painted chromosome). Results of the study confirmed the observation of higher incidence of inversions for high-LET irradiation. However, detailed analysis of the inversion type revealed that all of the three radiation types in the study induced a low incidence of simple inversions. Half of the inversions observed in the low-LET irradiated samples were accompanied by other types of intrachromosome aberrations, but few inversions were accompanied by interchromosome aberrations. In contrast, Fe ions induced a significant fraction of inversions that involved complex rearrangements of both the inter- and intrachromosome exchanges.

  16. High-LET radiation-induced aberrations in prematurely condensed G2 chromosomes of human fibroblasts

    NASA Technical Reports Server (NTRS)

    Kawata, T.; Gotoh, E.; Durante, M.; Wu, H.; George, K.; Furusawa, Y.; Cucinotta, F. A.; Dicello, J. F. (Principal Investigator)

    2000-01-01

    PURPOSE: To determine the number of initial chromatid breaks induced by low- or high-LET irradiations, and to compare the kinetics of chromatid break rejoining for radiations of different quality. MATERIAL AND METHODS: Exponentially growing human fibroblast cells AG1522 were irradiated with gamma-rays, energetic carbon (290MeV/u), silicon (490MeV/u) and iron (200 and 600 MeV/u). Chromosomes were prematurely condensed using calyculin A. Chromatid breaks and exchanges in G2 cells were scored. PCC were collected after several post-irradiation incubation times, ranging from 5 to 600 min. RESULTS: The kinetics of chromatid break rejoining following low- or high-LET irradiation consisted of two exponential components representing a rapid and a slow time constant. Chromatid breaks decreased rapidly during the first 10min after exposure, then continued to decrease at a slower rate. The rejoining kinetics were similar for exposure to each type of radiation. Chromatid exchanges were also formed quickly. Compared to low-LET radiation, isochromatid breaks were produced more frequently and the proportion of unrejoined breaks was higher for high-LET radiation. CONCLUSIONS: Compared with gamma-rays, isochromatid breaks were observed more frequently in high-LET irradiated samples, suggesting that an increase in isochromatid breaks is a signature of high-LET radiation exposure.

  17. High-LET radiation-induced aberrations in prematurely condensed G2 chromosomes of human fibroblasts

    NASA Technical Reports Server (NTRS)

    Kawata, T.; Gotoh, E.; Durante, M.; Wu, H.; George, K.; Furusawa, Y.; Cucinotta, F. A.; Dicello, J. F. (Principal Investigator)

    2000-01-01

    PURPOSE: To determine the number of initial chromatid breaks induced by low- or high-LET irradiations, and to compare the kinetics of chromatid break rejoining for radiations of different quality. MATERIAL AND METHODS: Exponentially growing human fibroblast cells AG1522 were irradiated with gamma-rays, energetic carbon (290MeV/u), silicon (490MeV/u) and iron (200 and 600 MeV/u). Chromosomes were prematurely condensed using calyculin A. Chromatid breaks and exchanges in G2 cells were scored. PCC were collected after several post-irradiation incubation times, ranging from 5 to 600 min. RESULTS: The kinetics of chromatid break rejoining following low- or high-LET irradiation consisted of two exponential components representing a rapid and a slow time constant. Chromatid breaks decreased rapidly during the first 10min after exposure, then continued to decrease at a slower rate. The rejoining kinetics were similar for exposure to each type of radiation. Chromatid exchanges were also formed quickly. Compared to low-LET radiation, isochromatid breaks were produced more frequently and the proportion of unrejoined breaks was higher for high-LET radiation. CONCLUSIONS: Compared with gamma-rays, isochromatid breaks were observed more frequently in high-LET irradiated samples, suggesting that an increase in isochromatid breaks is a signature of high-LET radiation exposure.

  18. Relativistic feedback models of terrestrial gamma-ray flashes and gamma-ray glows

    NASA Astrophysics Data System (ADS)

    Dwyer, J. R.

    2015-12-01

    Relativistic feedback discharges, also known as dark lightning, are capable of explaining many of the observed properties of terrestrial gamma-ray flashes (TGFs) and gamma-ray glows, both created within thunderstorms. During relativistic feedback discharges, the generation of energetic electrons is self-sustained via the production of backward propagating positrons and back-scattered x-rays, resulting in very larges fluxes of energetic radiation. In addition, ionization produces large electric currents that generate LF/VLF radio emissions and eventually discharge the electric field, terminating the gamma-ray production. In this presentation, new relativistic feedback model results will be presented and compared to recent observations.

  19. A simple gamma ray direction finder.

    PubMed

    Fujimoto, K

    2006-07-01

    One of the simplest gamma spectrometry systems that could provide the directional information of incident gamma rays has been developed. The system consists of a 3'' x 3'' phi NaI (Tl) scintillator, a specially shaped lead shield, and software. The measurement was carried out four times by rotating the shield position along the axis of the detector to obtain four energy spectra at one location. Four count rates at a special region of interest in the spectra were fed into the software for determining incident directions of gamma rays. Experiments using (137)Cs and (54)Mn at the same time demonstrated that the direction of gamma rays from several dominant sources from any direction could be identified with good precision by the total measurement time of 10 to 20 min. The system could be used to identify the locations of missing radioactive sources or the cause of elevation in ambient radiation dose rates. The disadvantages of the present system are follows: (1) It requires four time measurements at one location; (2) It can provide one pseudo incident angle when several contamination sources exist around the detector system and emit the same energy gamma rays; and (3) It can scan only one plane geometry that is usually chosen as the horizontal plane.

  20. Gamma-ray Astrophysics with AGILE

    SciTech Connect

    Longo, Francesco |; Tavani, M.; Barbiellini, G.; Argan, A.; Basset, M.; Boffelli, F.; Bulgarelli, A.; Caraveo, P.; Cattaneo, P.; Chen, A.; Costa, E.; Del Monte, E.; Di Cocco, G.; Di Persio, G.; Donnarumma, I.; Feroci, M.; Fiorini, M.; Foggetta, L.; Froysland, T.; Frutti, M.

    2007-07-12

    AGILE will explore the gamma-ray Universe with a very innovative instrument combining for the first time a gamma-ray imager and a hard X-ray imager. AGILE will be operational in spring 2007 and it will provide crucial data for the study of Active Galactic Nuclei, Gamma-Ray Bursts, unidentified gamma-ray sources. Galactic compact objects, supernova remnants, TeV sources, and fundamental physics by microsecond timing. The AGILE instrument is designed to simultaneously detect and image photons in the 30 MeV - 50 GeV and 15 - 45 keV energy bands with excellent imaging and timing capabilities, and a large field of view covering {approx} 1/5 of the entire sky at energies above 30 MeV. A CsI calorimeter is capable of GRB triggering in the energy band 0.3-50 MeV AGILE is now (March 2007) undergoing launcher integration and testing. The PLSV launch is planned in spring 2007. AGILE is then foreseen to be fully operational during the summer of 2007.

  1. Gamma-Ray Telescope and Uncertainty Principle

    ERIC Educational Resources Information Center

    Shivalingaswamy, T.; Kagali, B. A.

    2012-01-01

    Heisenberg's Uncertainty Principle is one of the important basic principles of quantum mechanics. In most of the books on quantum mechanics, this uncertainty principle is generally illustrated with the help of a gamma ray microscope, wherein neither the image formation criterion nor the lens properties are taken into account. Thus a better…

  2. New shield for gamma-ray spectrometry

    NASA Technical Reports Server (NTRS)

    Brar, S. S.; Gustafson, P. F.; Nelson, D. M.

    1969-01-01

    Gamma-ray shield that can be evacuated, refilled with a clean gas, and pressurized for exclusion of airborne radioactive contaminants effectively lowers background noise. Under working conditions, repeated evacuation and filling procedures have not adversely affected the sensitivity and resolution of the crystal detector.

  3. HAWC observatory catches first gamma rays

    NASA Astrophysics Data System (ADS)

    Frías Villegas, Gabriela

    2013-06-01

    The world's largest and most modern gamma-ray observatory has carried out its first successful observations. Located inside the Pico de Orizaba national park in the Mexican state of Puebla, the High-Altitude Water Cherenkov Observatory (HAWC) is a collaboration between 26 Mexican and US institutions.

  4. Cascade model of gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Sturrock, P. A.; Harding, A. K.; Daugherty, J. K.

    1989-01-01

    If, in a neutron star magnetosphere, an electron is accelerated to an energy of 10 to the 11th or 12th power eV by an electric field parallel to the magnetic field, motion of the electron along the curved field line leads to a cascade of gamma rays and electron-positron pairs. This process is believed to occur in radio pulsars and gamma ray burst sources. Results are presented from numerical simulations of the radiation and photon annihilation pair production processes, using a computer code previously developed for the study of radio pulsars. A range of values of initial energy of a primary electron was considered along with initial injection position, and magnetic dipole moment of the neutron star. The resulting spectra was found to exhibit complex forms that are typically power law over a substantial range of photon energy, and typically include a dip in the spectrum near the electron gyro-frequency at the injection point. The results of a number of models are compared with data for the 5 Mar., 1979 gamma ray burst. A good fit was found to the gamma ray part of the spectrum, including the equivalent width of the annihilation line.

  5. INTEGRAL: International Gamma Ray Astrophysics Laboratory

    NASA Astrophysics Data System (ADS)

    Winkler, Christoph

    1992-07-01

    INTEGRAL is dedicated to the fine spectroscopy and imaging of celestial gamma ray sources in the energy range 15 keV to 10 MeV. The instruments on INTEGRAL will achieve a gamma ray line sensitivity of 3 times 10 to the minus 6th power ph/sq cm/s, a continuum sensitivity of 3 times 10 to the minus 8th power ph/sq cm/s/keV at 1 MeV (approximately 10 mCrab at 1 MeV) and imaging with an angular resolution of better than 20 minutes. This represents an order of magnitude improvement over the Gamma Ray Observatory (GRO) in line sensitivity, energy resolution and angular resolution. Comparison with the low energy gamma ray telescope Sigma also shows a major advance: the continuum sensitivity improvement is considerably more than one order of magnitude between 100 keV and 1 MeV; and the narrow line sensitivity is increased by nearly two orders of magnitude. INTEGRAL consists of two main instruments: a germanium spectrometer and a caesium iodide coded aperture mask imager. These instruments are supplemented by two monitors: an X-ray monitor and an optical transient camera.

  6. Study of gamma-ray strength functions

    SciTech Connect

    Gardner, D.G.; Gardner, M.A.; Dietrich, F.S.

    1980-08-07

    The use of gamma-ray strength function systematics to calculate neutron capture cross sections and capture gamma-ray spectra is discussed. The ratio of the average capture width, GAMMA/sub ..gamma../-bar, to the average level spacing, D/sub obs/, both at the neutron separation energy, can be derived from such systematics with much less uncertainty than from separate systematics for values of GAMMA/sub ..gamma../-bar and D/sub obs/. In particular, the E1 gamma-ray strength function is defined in terms of the giant dipole resonance (GDR). The GDR line shape is modeled with the usual Lorentzian function and also with a new energy-dependent, Breit-Wigner (EDBW) function. This latter form is further parameterized in terms of two overlapping resonances, even for nuclei where photonuclear measurements do not resolve two peaks. In the mass ranges studied, such modeling is successful for all nuclei away from the N = 50 closed neutron shell. Near the N = 50 shell, a one-peak EDBW appears to be more appropriate. Examples of calculated neutron capture excitation functions and capture gamma-ray spectra using the EDBW form are given for target nuclei in the mass-90 region and also in the Ta-Au mass region. 20 figures.

  7. Gamma ray observations of the solar system

    SciTech Connect

    Not Available

    1981-01-01

    Two general categories are discussed concerning the evolution of the solar system: the dualistic view, the planetesimal approach and the monistic view, the nebular hypothesis. The major points of each view are given and the models that are developed from these views are described. Possible applications of gamma ray astronomical observations to the question of the dynamic evolution of the solar system are discussed.

  8. Gamma-ray Emission from Globular Clusters

    NASA Astrophysics Data System (ADS)

    Tam, Pak-Hin T.; Hui, Chung Y.; Kong, Albert K. H.

    2016-03-01

    Over the last few years, the data obtained using the Large Area Telescope (LAT) aboard the Fermi Gamma-ray Space Telescope has provided new insights on high-energy processes in globular clusters, particularly those involving compact objects such as MilliSecond Pulsars (MSPs). Gamma-ray emission in the 100 MeV to 10 GeV range has been detected from more than a dozen globular clusters in our galaxy, including 47 Tucanae and Terzan 5. Based on a sample of known gammaray globular clusters, the empirical relations between gamma-ray luminosity and properties of globular clusters such as their stellar encounter rate, metallicity, and possible optical and infrared photon energy densities, have been derived. The measured gamma-ray spectra are generally described by a power law with a cut-off at a few gigaelectronvolts. Together with the detection of pulsed γ-rays from two MSPs in two different globular clusters, such spectral signature lends support to the hypothesis that γ-rays from globular clusters represent collective curvature emission from magnetospheres of MSPs in the clusters. Alternative models, involving Inverse-Compton (IC) emission of relativistic electrons that are accelerated close to MSPs or pulsar wind nebula shocks, have also been suggested. Observations at >100 GeV by using Fermi/LAT and atmospheric Cherenkov telescopes such as H.E.S.S.-II, MAGIC-II, VERITAS, and CTA will help to settle some questions unanswered by current data.

  9. Gamma ray observations of the solar system

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Two general categories are discussed concerning the evolution of the solar system: the dualistic view, the planetesimal approach; and the monistic view, the nebular hypothesis. The major points of each view are given and the models that are developed from these views are described. Possible applications of gamma ray astronomical observations to the question of the dynamic evolution of the solar system are discussed.

  10. Diffuse Galactic Soft Gamma-Ray Emission

    NASA Astrophysics Data System (ADS)

    Boggs, S. E.; Lin, R. P.; Slassi-Sennou, S.; Coburn, W.; Pelling, R. M.

    2000-11-01

    The Galactic diffuse soft gamma-ray (30-800 keV) emission has been measured from the Galactic center by the High Resolution Gamma-Ray and Hard X-Ray Spectrometer balloon-borne germanium instrument to determine the spectral characteristics and origin of the emission. The resulting Galactic diffuse continuum is found to agree well with a single power law (plus positronium) over the entire energy range, consistent with RXTE and COMPTEL/Compton Gamma Ray Observatory observations at lower and higher energies, respectively. We find no evidence of spectral steepening below 200 keV, as has been reported in previous observations. The spatial distribution along the Galactic ridge is found to be nearly flat, with upper limits set on the longitudinal gradient and with no evidence of an edge in the observed region. The soft gamma-ray diffuse spectrum is well modeled by inverse Compton scattering of interstellar radiation off of cosmic-ray electrons, minimizing the need to invoke inefficient nonthermal bremsstrahlung emission. The resulting power requirement is well within that provided by Galactic supernovae. We speculate that the measured spectrum provides the first direct constraints on the cosmic-ray electron spectrum below 300 MeV.

  11. Gamma-ray Pulsars: Models and Predictions

    NASA Technical Reports Server (NTRS)

    Harding Alice K.; White, Nicholas E. (Technical Monitor)

    2000-01-01

    Pulsed emission from gamma-ray pulsars originates inside the magnetosphere, from radiation by charged particles accelerated near the magnetic poles or in the outer gaps. In polar cap models, the high energy spectrum is cut off by magnetic pair production above an energy that is, dependent on the local magnetic field strength. While most young pulsars with surface fields in the range B = 10(exp 12) - 10(exp 13) G are expected to have high energy cutoffs around several GeV, the gamma-ray spectra of old pulsars having lower surface fields may extend to 50 GeV. Although the gamma-ray emission of older pulsars is weaker, detecting pulsed emission at high energies from nearby sources would be an important confirmation of polar cap models. Outer gap models predict more gradual high-energy turnovers of the primary curvature emission around 10 GeV, but also predict an inverse Compton component extending to TeV energies. Detection of pulsed TeV emission, which would not survive attenuation at the polar caps, is thus an important test of outer gap models. Next-generation gamma-ray telescopes sensitive to GeV-TeV emission will provide critical tests of pulsar acceleration and emission mechanisms.

  12. Physics issues of gamma ray burst emissions

    NASA Technical Reports Server (NTRS)

    Liang, Edison

    1987-01-01

    The critical physics issues in the interpretation of gamma-ray-burst spectra are reviewed. An attempt is made to define the emission-region parameter space satisfying the maximum number of observational and theoretical constraints. Also discussed are the physical mechanisms responsible for the bursts that are most consistent with the above parameter space.

  13. Measurement of radionuclide activities induced in target components of an IBA CYCLONE 18/9 by gamma-ray spectrometry with HPGe and LaBr3: Ce detectors.

    PubMed

    Tomarchio, Elio

    2014-08-01

    Cyclotrons are used worldwide to produce radiopharmaceuticals by proton irradiation of a suitable target. The intense secondary neutron beam generated by proton interactions with the target induce high radionuclide activities in the target assembly parts that may result in an exposure to high dose levels of the operators during maintenance. The main goal of this work is to evaluate gamma-emitting radionuclide activities induced in Havar foils and titanium windows of a target assembly and carousel stripper forks of an IBA CYCLONE 18/9 cyclotron. The knowledge of radionuclide inventory for each component is required by many companies to assess risk for operators before waste handling and disposal. Gamma-ray spectrometric analyses were carried out with High Purity Germanium (HPGe) and Lanthanum bromide (LaBr3:Ce) scintillation detectors. HPGe is the most used detector for its high energy resolution although it is more suitable for use in a laboratory. The use of LaBr3:Ce can be considered a viable option, particularly in realizing a portable spectrometric system to perform "on-site" measurements and a fast dose rate evaluation before the disposal of activated parts. Due to a high activity of target assembly components replaced after a typical irradiation cycle (about 5000 μAh integrated beam current), gamma-ray spectrometric measurements were performed at a large distance from the detector, even more than 100 cm, or by using a purposely realized Lead-walled collimator. The identification of some key-radionuclides allows to evaluate through simple formulations the dose rate behavior for each component as function of decay time from the last irradiation. The knowledge of the dose rate behavior is a significant piece of information to health physicists for waste handling with safety at work. For an Havar™ foil, the dose rate will be reduced to about 1/1,000 of the starting value after a decay period of approximately 4 y (about 1,500 d), with a relatively safety at

  14. Energy-angle correlation of neutrons and gamma-rays emitted from an HEU source

    NASA Astrophysics Data System (ADS)

    Miloshevsky, G.; Hassanein, A.

    2014-06-01

    Special Nuclear Materials (SNM) yield very unique fission signatures, namely correlated neutrons and gamma-rays. A major challenge is not only to detect, but also to rapidly identify and recognize SNM with certainty. Accounting for particle multiplicity and correlations is one of standard ways to detect SNM. However, many parameter data such as joint distributions of energy, angle, lifetime, and multiplicity of neutrons and gamma-rays can lead to better recognition of SNM signatures in the background radiation noise. These joint distributions are not well understood. The Monte Carlo simulations of the transport of neutrons and gamma-rays produced from spontaneous and interrogation-induced fission of SNM are carried out using the developed MONSOL computer code. The energy spectra of neutrons and gamma-rays from a bare Highly Enriched Uranium (HEU) source are investigated. The energy spectrum of gamma-rays shows spectral lines by which HEU isotopes can be identified, while those of neutrons do not show any characteristic lines. The joint probability density function (JPDF) of the energy-angle association of neutrons and gamma-rays is constructed. Marginal probability density functions (MPDFs) of energy and angle are derived from JPDF. A probabilistic model is developed for the analysis of JPDF and MPDFs. This probabilistic model is used to evaluate mean values, standard deviations, covariance and correlation between the energy and angle of neutrons and gamma-rays emitted from the HEU source. For both neutrons and gamma-rays, it is found that the energy-angle variables are only weakly correlated.

  15. Measuring planetary neutron albedo fluxes by remote gamma-ray sensing

    NASA Astrophysics Data System (ADS)

    Haines, E. L.; Metzger, A. E.

    In order to measure the planetary neutron albedo fluxes, a neutron-absorbing shield which emits gamma rays of characteristic energy and serves as a neutron detector, is added to a gamma-ray spectrometer (GRS). The gamma rays representing the neutron flux are observed against interference consisting of cosmic gamma rays, planetary continuum and line emission, and gamma rays arising from the interaction of cosmic rays with the GRS and the spacecraft. The uncertainty and minimum detection limits in neutron albedo fluxes are calculated for two missions, a lunar orbiter and a comet nucleus rendezvous. A GRS on a lunar orbiter at 100 km altitude detects a thermal neutron albedo flux as low as 0.002/sq cm/s and an expected flux of about 0.6/sq cm/s is measured with an uncertainty of 0.001/sq cm/s, for a 100 h observation period. For the comet nucleus, again in a 100 h observing period, a thermal neutron albedo flux is detected at a level of 0.006/sq cm/s and an expected flux of about 0.4/sq cm/s is measured with an uncertainty of 0.004/sq cm/s. The expanded geological capabilities made possible by this technique include improvements in H sensitivity, spatial resolution, and measurement depth; and an improved model of induced gamma-ray emission.

  16. Gamma ray bursts of black hole universe

    NASA Astrophysics Data System (ADS)

    Zhang, T. X.

    2015-07-01

    Slightly modifying the standard big bang theory, Zhang recently developed a new cosmological model called black hole universe, which has only a single postulate but is consistent with Mach's principle, governed by Einstein's general theory of relativity, and able to explain existing observations of the universe. In the previous studies, we have explained the origin, structure, evolution, expansion, cosmic microwave background radiation, quasar, and acceleration of black hole universe, which grew from a star-like black hole with several solar masses through a supermassive black hole with billions of solar masses to the present state with hundred billion-trillions of solar masses by accreting ambient matter and merging with other black holes. This study investigates gamma ray bursts of black hole universe and provides an alternative explanation for the energy and spectrum measurements of gamma ray bursts according to the black hole universe model. The results indicate that gamma ray bursts can be understood as emissions of dynamic star-like black holes. A black hole, when it accretes its star or merges with another black hole, becomes dynamic. A dynamic black hole has a broken event horizon and thus cannot hold the inside hot (or high-frequency) blackbody radiation, which flows or leaks out and produces a GRB. A star when it collapses into its core black hole produces a long GRB and releases the gravitational potential energy of the star as gamma rays. A black hole that merges with another black hole produces a short GRB and releases a part of their blackbody radiation as gamma rays. The amount of energy obtained from the emissions of dynamic star-like black holes are consistent with the measurements of energy from GRBs. The GRB energy spectra derived from this new emission mechanism are also consistent with the measurements.

  17. DNA double-strand break misrejoining after exposure of primary human fibroblasts to CK characteristic X rays, 29 kVp X rays and 60Co gamma rays.

    PubMed

    Kühne, Martin; Urban, Gerhard; Frankenberg, Dieter; Löbrich, Markus

    2005-11-01

    The efficiency of ionizing photon radiation for inducing mutations, chromosome aberrations, neoplastic cell transformation, and cell killing depends on the photon energy. We investigated the induction and rejoining of DNA double-strand breaks (DSBs) as possible contributors for the varying efficiencies of different photon energies. A specialized pulsed-field gel electrophoresis assay based on Southern hybridization of single Mbp genomic restriction fragments was employed to assess DSB induction and rejoining by quantifying the restriction fragment band. Unrejoined and misrejoined DSBs were determined in dose fractionation protocols using doses per fraction of 2.2 and 4.4 Gy for CK characteristic X rays, 4 and 8 Gy for 29 kVp X rays, and 5, 10 and 20 Gy for 60Co gamma rays. DSB induction by CK characteristic X rays was about twofold higher than for 60Co gamma rays, whereas 29 kVp X rays showed only marginally elevated levels of induced DSBs compared with 60Co gamma rays (a factor of 1.15). Compared with these modest variations in DSB induction, the variations in the levels of unrejoined and misrejoined DSBs were more significant. Our results suggest that differences in the fidelity of DSB rejoining together with the different efficiencies for induction of DSBs can explain the varying biological effectiveness of different photon energies.

  18. Dose-dependent and gender-related radiation-induced transcription alterations of Gadd45a and Ier5 inhuman lymphocytes exposed to gamma ray emitted by (60)Co.

    PubMed

    Tavakoli, Hassan; Manoochehri, Mahdi; Modarres Mosalla, Sayed Mahdi; Ghafori, Mostafa; Karimi, Ali Akbar

    2013-04-01

    Growth arrest DNA damage-inducible 45a gene (Gadd45a) and immediate early response gene 5 (Ier5) have been emphasised as ideal radiation biomarkers in several reports. However, some aspects of radiation-induced transcriptional alterations of these genes are unknown. In this study, gender-dependency and dose-dependency as two factors that may affect radiation-induced transcription of Gadd45a and Ier5 genes were investigated. Human lymphocyte cells from six healthy voluntary blood donors (three women and three men) were irradiated in vitro with doses of 0.5-4.0 Gy from a (60)Co source and RNA isolated 4 h later using the High Pure RNA Isolation Kit. Dose and gender dependency of radiation-induced transcriptional alterations of Gadd45a and Ier5 genes were studied by quantitative real-time polymerase chain reaction. The results showed that as a whole, Gadd45a and Ier5 gave responses to gamma rays, while the responses were independent of radiation doses. Therefore, regardless of radiation dose, Gadd45a and Ier5 can be considered potential radiation biomarkers. Besides, although radiation-induced transcriptional alterations of Gadd45a in female and male lymphocyte samples were insignificant at 0.5 Gy, at other doses, their quantities in female samples were at a significantly higher level than in male samples. Radiation-induced transcription of Ier5 of females samples had a reduction in comparison with male samples at 1 and 2 Gy, but at doses of 0.5 and 4 Gy, females were significantly more susceptible to radiation-induced transcriptional alteration of Ier5.

  19. Background Estimation of Gamma Ray Monitor onbaord SVOM

    NASA Astrophysics Data System (ADS)

    Wu, Bobing; Dong, Yongwei; Xie, Fei

    2016-07-01

    The Space multi-band Variable Object Monitor (SVOM) mission is a wide band observatory designed for making observations of Gamma Ray Bursts (GRB) from the visible band to gamma ray band, which is expected to be launched around year of 2021. GRM (Gamma Ray Monitor)is a GRB trigger detector onboard SVOM who detects a large portion of the sky in the hard X-ray and soft gamma-ray band with a PS/NaI(Tl) phoswich detector. The energy range is 15-5000 keV. GRM has 3 GRD(Gamma Ray Detector) units.The elevation angle of each GRD relative to the symmetry axis is set to 30° and the interval in azimuth angle of 3 GRDs is 120°. In order to evaluate the GRM,We make use of the mass modeling technique to estimatethe total background. It consists of three steps.First, we built a finegeometric model of GRM and a coarse model of the other payloads. Then based on the investigation about the space environment concerning SVOM low-earth orbit, in our simulation we considered cosmic rays, cosmicX-ray background (CXB), South Atlantic Anomaly (SAA) trapped particles, the albedo gamma, and neutrons from interactionof cosmic rays with the Earth's atmosphere. Finally,the Shielding Physics List supplied by Geant4 collaborations was adopted. According to our simulation, we find that CXB dominates the total background because of GRM's large field of view (for each GRD, the FOV is +/-60 degree with respect to its symmetry axis). When the Earth locates behind the SVOM, the total background of each GRD is approximately 1081 count/s on average over 15-5000 keV energy band after 100 days in orbit, and approximately 800 count/s comes from the CXB. As SVOM adopts the anti-sun pointing strategy, the Earth will in the FOV of GRM in some situation definitely. When the GRD facing the Earth, the total background reduces to approximately 659count/s because of the Earth shielding, and CXB induced background reduces to 290 count/s. So we got a function about the total background level with respect to the

  20. Gamma ray lines from the Galactic Center and gamma ray transients

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Leiter, D.; Lingenfelter, R. E.

    1981-01-01

    The observations and interpretations of cosmic (nonsolar) gamma ray lines are discussed. The most prominent of these lines is the e(+)e(-) annihilation line which was observed from the Galactic Center and from several gamma ray transients. At the Galactic Center the e(+)e(-) pairs are probably produced by an accreting massive black hole (solar mass of approximately one million) and annihilate within the central light year to produce a line at almost exactly 0.511 MeV. In gamma ray transients the annihilation line is redshifted by factors consistent with neutron star surface redshifts. Other observed transient gamma ray lines appear to be due to cyclotron absorption in the strong magnetic fields of neutron stars, and nuclear deexcitations and neutron capture, which could also occur on or around these objects.

  1. Studying the High Energy Gamma Ray Sky with Gamma Ray Large Area Space Telescope (GLAST)

    NASA Technical Reports Server (NTRS)

    Kamae, T.; Ohsugi, T.; Thompson, D. J.; Watanabe, K.

    1998-01-01

    Building on the success of the Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory, the Gamma Ray Large Area Space Telescope (GLAST) will make a major step in the study of such subjects as blazars, gamma Ray bursts, the search for dark matter, supernova remnants, pulsars, diffuse radiation, and unidentified high energy sources. The instrument will be built on new and mature detector technologies such as silicon strip detectors, low-power low-noise LSI, and a multilevel data acquisition system. GLAST is in the research and development phase, and one full tower (of 25 total) is now being built in collaborating institutes. The prototype tower will be tested thoroughly at Stanford Linear Accelerator Center (SLAC) in the fall of 1999.

  2. Investigation of gamma rays from the galactic center

    NASA Technical Reports Server (NTRS)

    Helmken, H. F.

    1973-01-01

    Data from Argentine balloon flights made to investigate gamma ray emission from the galactic center are summarized. Data are also summarized from a Palestine, Texas balloon flight to measure gamma rays from NP 0532 and Crab Nebulae.

  3. Gamma ray spectroscopy in astrophysics: Solar gamma ray astronomy on solar maximum mission. [experimental design

    NASA Technical Reports Server (NTRS)

    Forrest, D. J.

    1978-01-01

    The SMM gamma ray experiment and the important scientific capabilities of the instrument are discussed. The flare size detectable as a function of spectrum integration time was studied. A preliminary estimate indicates that a solar gamma ray line at 4.4 MeV one-fifth the intensity of that believed to have been emitted on 4 August 1972 can be detected in approximately 1000 sec with a confidence level of 99%.

  4. Identification of differentially transcribed genes in human lymphoblastoid cells irradiated with 0.5 Gy of gamma-ray and the involvement of low dose radiation inducible CHD6 gene in cell proliferation and radiosensitivity.

    PubMed

    Wang, H P; Long, X H; Sun, Z Z; Rigaud, O; Xu, Q Z; Huang, Y C; Sui, J L; Bai, B; Zhou, P K

    2006-03-01

    To identify candidate genes specifically involved in response to low-dose irradiation in human lymphoblastoid cells; to better clarify the role of the human chromodomain helicase DNA binding protein 6 gene (CHD6), one of these genes, in cell proliferation and radiosensitivity. DNA microarray technology was used to analyse global transcriptional profile in human lymphoblastoid AHH-1 cells at 4 h after exposure to 0.5 Gy of gamma-ray. Gene expression changes were confirmed by semi-quantitative reverse transcription--polymerase chain reaction (RT-PCR) and Northern blot. RNA interfering technology was employed to knock-down the CHD6 gene in A549 cells. Colony-forming ability was used to analyse radiosensitivity. The microarray assay revealed a set of 0.5 Gy-responsive genes, including 30 up-regulated genes and 45 down-regulated genes. The up-regulated genes include a number of genes involved in: signal transduction pathways, e.g., STAT3, CAMKK2, SIRT1, CREM, MAPK3K7IP2 and GPR56; transcription or DNA-binding, e.g., CHD6, CRSP3, SNURF, SH2 domain binding protein 1 and MIZF. Some of the down-regulated genes are involved in: cytoskeleton and cell movement (WASF2, LCP1, MSN, NIPSNAP1, KIF2C); DNA replication and repair (MCM2, MCM3, MCM7 and XRCC-4). Radiation-increased expression of CHD6 was also found in A549 cells and HeLa cells. The sustained CHD6 induction was restricted to relatively low doses (0.2 Gy or 0.5 Gy), no change occurring after 4 Gy irradiation. Silencing of CHD6 mediated by siRNA increased the growth rate of A549 cells by 40 approximately 60%. Most importantly, silencing CHD6 led to an increased radioresistance of A459 cells to radiation doses up to 2 Gy, but barely affected the sensitivity of cells at 4 and 8 Gy. This study has identified a set of genes responsive to 0.5 Gy of gamma-rays. CDH6 gene can be specifically up-regulated by low dose irradiation, and its inducible expression could be involved in a low dose hypersensitive response.

  5. Monte Carlo calibration of the SMM gamma ray spectrometer for high energy gamma rays and neutrons

    NASA Technical Reports Server (NTRS)

    Cooper, J. F.; Reppin, C.; Forrest, D. J.; Chupp, E. L.; Share, G. H.; Kinzer, R. L.

    1985-01-01

    The Gamma Ray Spectrometer (GRS) on the Solar Maximum Mission spacecraft was primarily designed and calibrated for nuclear gamma ray line measurements, but also has a high energy mode which allows the detection of gamma rays at energies above 10 MeV and solar neutrons above 20 MeV. The GRS response has been extrapolated until now for high energy gamma rays from an early design study employing Monte Carlo calculations. The response to 50 to 600 MeV solar neutrons was estimated from a simple model which did not consider secondary charged particles escaping into the veto shields. In view of numerous detections by the GRS of solar flares emitting high energy gamma rays, including at least two emitting directly detectable neutrons, the calibration of the high energy mode in the flight model has been recalculated by the use of more sophisticated Monte Carlo computer codes. New results presented show that the GRS response to gamma rays above 20 MeV and to neutrons above 100 MeV is significantly lower than the earlier estimates.

  6. Gamma ray constraints on the Galactic supernova rate

    NASA Technical Reports Server (NTRS)

    Hartmann, D.; The, L.-S.; Clayton, Donald D.; Leising, M.; Mathews, G.; Woosley, S. E.

    1991-01-01

    We perform Monte Carlo simulations of the expected gamma ray signatures of Galactic supernovae of all types to estimate the significance of the lack of a gamma ray signal due to supernovae occurring during the last millenium. Using recent estimates of the nuclear yields, we determine mean Galactic supernova rates consistent with the historic supernova record and the gamma ray limits. Another objective of these calculations of Galactic supernova histories is their application to surveys of diffuse Galactic gamma ray line emission.

  7. Applications of Monte Carlo simulations of gamma-ray spectra

    SciTech Connect

    Clark, D.D.

    1995-12-31

    A short, convenient computer program based on the Monte Carlo method that was developed to generate simulated gamma-ray spectra has been found to have useful applications in research and teaching. In research, we use it to predict spectra in neutron activation analysis (NAA), particularly in prompt gamma-ray NAA (PGNAA). In teaching, it is used to illustrate the dependence of detector response functions on the nature of gamma-ray interactions, the incident gamma-ray energy, and detector geometry.

  8. Simultaneous optical/gamma-ray observations of GRBs

    NASA Technical Reports Server (NTRS)

    Greiner, J.; Wenzel, W.; Hudec, R.; Moskalenko, E. I.; Metlov, V.; Chernych, N. S.; Getman, V. S.; Ziener, Rainer; Birkle, K.; Bade, N.

    1994-01-01

    Details on the project to search for serendipitous time correlated optical photographic observations of Gamma Ray Bursters (GRB's) are presented. The ongoing photographic observations at nine observatories are used to look for plates which were exposed simultaneously with a gamma ray burst detected by the gamma ray instrument team (BATSE) and contain the burst position. The results for the first two years of the gamma ray instrument team operation are presented.

  9. Gamma-ray astronomy--A status report

    NASA Technical Reports Server (NTRS)

    Holt, Stephen S.

    1994-01-01

    Gamma-rays provide us with powerful insight into the highest energy processes occurring in the cosmos. This review highlights some of the progress in our understanding of gamma-ray astronomy that has been enabled by new data from GRANAT and the Compton Gamma-Ray Observaatory, and suggests requirements for future progress. In particular, the unique role of the International Gamma-Ray Astrophysics Laboratory (INTEGRAL) mission and concurrent multiwavelength observations is highlighted.

  10. Chromosome aberrations in human fibroblasts induced by monoenergetic neutrons. I. Relative biological effectiveness.

    PubMed

    Pandita, T K; Geard, C R

    1996-06-01

    The relative biological effectiveness (RBE) of neutrons for many biological end points varies with neutron energy. To test the hypothesis that the RBE of neutrons varies with respect to their energy for chromosome aberrations in a cell system that does not face interphase death, we studied the yield of chromosome aberrations induced by monoenergetic neutrons in normal human fibroblasts at the first mitosis postirradiation. Monoenergetic neutrons at 0.22, 0.34, 0.43, 1, 5.9 and 13.6 MeV were generated at the Accelerator Facility of the Center for Radiological Research, Columbia University, and were used to irradiate plateau-phase fibroblasts at low absorbed doses from 0.3 to 1.2 Gy at a low dose rate. The reference low-LET, low-dose-rate radiation was 137Cs-gamma rays (0.66 MeV). A linear dose response (Y = alphaD) for chromosome aberrations was obtained for all monoenergetic neutrons and for the gamma rays. The yield of chromosome aberrations per unit dose was high at low neutron energies (0.22, 0.34 and 0.43 MeV) with a gradual decline with the increase in neutron energy. Maximum RBE (RBEm) values varied for the different types of chromosome aberrations. The highest RBE (24.3) for 0.22 and 0.43 MeV neutrons was observed for intrachromosomal deletions, a category of chromosomal change common in solid tumors. Even for the 13.6 MeV neutrons the RBEm (11.1) exceeded 10. These results show that the RBE of neutrons varies with neutron energy and that RBEs are dissimilar between different types of asymmetric chromosome aberrations and suggest that the radiation weighting factors applicable to low-energy neutrons need firmer delineation. This latter may best be attained with neutrons of well-defined energies. This would enable integrations of appropriate quality factors with measured radiation fields, such as those in high-altitude Earth atmosphere. The introduction of commercial flights at high altitude could result in many more individuals being exposed to neutrons than

  11. Very High-Energy Gamma-Ray Sources.

    ERIC Educational Resources Information Center

    Weekes, Trevor C.

    1986-01-01

    Discusses topics related to high-energy, gamma-ray astronomy (including cosmic radiation, gamma-ray detectors, high-energy gamma-ray sources, and others). Also considers motivation for the development of this field, the principal results to date, and future prospects. (JN)

  12. Gamma-Ray Telescopes: 400 Years of Astronomical Telescopes

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Cannizzo, John K.

    2010-01-01

    The last half-century has seen dramatic developments in gamma-ray telescopes, from their initial conception and development through to their blossoming into full maturity as a potent research tool in astronomy. Gamma-ray telescopes are leading research in diverse areas such as gamma-ray bursts, blazars, Galactic transients, and the Galactic distribution of Al-26.

  13. Radon concentration monitoring using xenon gamma-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Novikov, A.; Ulin, S.; Dmitrenko, V.; Chernysheva, I.; Grachev, V.; Vlasik, K.; Uteshev, Z.; Shustov, A.; Petrenko, D.; Bychkova, O.

    2017-01-01

    A method for 222Rn concentration monitoring by means of intensity measurement of its daughter nuclei (214Pb and 214Bi) gamma-ray emission using xenon gamma-ray spectrometer is presented. Testing and calibration results for a gamma-spectrometric complex based on xenon gamma-ray detector are described.

  14. Very High-Energy Gamma-Ray Sources.

    ERIC Educational Resources Information Center

    Weekes, Trevor C.

    1986-01-01

    Discusses topics related to high-energy, gamma-ray astronomy (including cosmic radiation, gamma-ray detectors, high-energy gamma-ray sources, and others). Also considers motivation for the development of this field, the principal results to date, and future prospects. (JN)

  15. DNA and chromosome breaks induced by {sup 123}I-estrogen in CHO cells

    SciTech Connect

    Schwartz, J.L. |; Mustafi, R.; Hughes, A.; DeSombre, E.R.

    1997-07-01

    The effects of the Auger electron-emitting isotope I-123, covalently bound to estrogen, on DNA single- and double-strand breakage and on chromosome breakage was determined in estrogen positive Chinese hamster ovary (CHO-ER) cells. Exposure to the {sup 123}I-estrogen induced both single- and double-strand breaks with a ratio of single- to double-strand breaks of 2.2. The corresponding ratio with {sup 60}Co gamma rays was 15.6. The dose-response was biphasic suggesting that either receptor sites are saturated at high does, or that there is a nonrandom distribution of breaks induced by the {sup 123}I-estrogen. The {sup 123}I-estrogen treatment induced chromosome aberrations with an efficiency of about 1 aberration for each 1,000 disintegrations per cell. This corresponds to the mean lethal dose of {sup 123}I-estrogen for these cells suggesting that the lethal event induced by the Auger electron emitter bound to estrogen is a chromosome aberration. Most of the chromosome-type aberrations were dicentrics and rings, suggesting that {sup 123}I-estrogen-induced chromosome breaks are rejoined. The F-ratio, the ratio of dicentrics to centric rings, was 5.8 {plus_minus} 1.7, which is similar to that seen with high LET radiations. Their results suggest that I-123 bound to estrogen is an efficient clastogenic agent, that the cytotoxic damage produced by I-123 bound to estrogen is very like high LET-induced damage, and the I-123 in the estrogen-receptor-DNA complex is probably in close proximity to the sugar-phosphate backbone of the DNA.

  16. DNA and chromosome breaks induced by iodine-123-labeled estrogen in Chinese hamster ovary cells

    SciTech Connect

    Schwartz, J.L. |; Mustafi, R.; Hughes, A.; DeSombre, E.R.

    1996-08-01

    The effects of the Auger electron-emitting isotope {sup 123}I, covalently bound to estrogen, on DNA single- and double-strand breakage and on chromosome breakage was determined in estrogen receptor-positive Chinese hamster ovary (CHO-ER) cells. Exposure to the {sup 123}I-labeled estrogen induced both single- and double-strand breaks with a ratio of single- to double-strand breaks of 2.8. The corresponding ratio with {sup 60}Co {gamma} rays was 15.6. The dose response was biphasic, suggesting either that receptor sites are saturated at high doses, or that there is a nonrandom distribution of breaks induced by the {sup 123}I-labeled estrogen. The {sup 123}I-labeled estrogen treatment induced chromosome aberrations with an efficiency of about 1 aberration for each 1000 disintegrations per cell. This corresponds to the mean lethal dose of {sup 123}I-labeled estrogen for these cells, suggesting that the lethal event induced by the Auger electron emitter bound to estrogen is a chromosome aberration. Most of the chromosome-type aberrations were dicentrics and rings, suggesting that {sup 123}I-labeled estrogen-induced chromosome breaks are rejoined. The F ratio, the ratio of dicentrics to centric rings, was 5.8 {+-} 1.7, which is similar to that seen with high-LET radiations. Our results suggest that {sup 123}I bound to estrogen is an efficient clastogenic agent, the cytotoxic damage produced by {sup 123}I bound to estrogen is very like damage induced by high-LET radiation, and the {sup 123}I in the estrogen receptor-DNA complex is probably in proximity to the sugar-phosphate backbone of the DNA. 40 refs., 7 figs.

  17. Gamma-Ray Bursts: A Mystery Story

    NASA Technical Reports Server (NTRS)

    Parsons, Ann

    2007-01-01

    With the success of the Swift Gamma-Ray Burst Explorer currently in orbit, this is quite an exciting time in the history of Gamma Ray Bursts (GRBs). The study of GRBs is a modern astronomical mystery story that began over 30 years ago with the serendipitous discovery of these astronomical events by military satellites in the late 1960's. Until the launch of BATSE on the Compton Gamma-ray Observatory, astronomers had no clue whether GRBs originated at the edge of our solar system, in our own Milky Way Galaxy or incredibly far away near the edge of the observable Universe. Data from BATSE proved that GRBs are distributed isotropically on the sky and thus could not be the related to objects in the disk of our Galaxy. Given the intensity of the gamma-ray emission, an extragalactic origin would require an astounding amount of energy. Without sufficient data to decide the issue, a great debate continued about whether GRBs were located in the halo of our own galaxy or were at extragalactic - even cosmological distances. This debate continued until 1997 when the BeppoSAX mission discovered a fading X-ray afterglow signal in the same location as a GRB. This discovery enabled other telescopes, to observe afterglow emission at optical and radio wavelengths and prove that GRBs were at cosmological distances by measuring large redshifts in the optical spectra. Like BeppoSAX Swift, slews to new GRB locations to measure afterglow emission. In addition to improved GRB sensitivity, a significant advantage of Swift over BeppoSAX and other missions is its ability to slew very quickly, allowing x-ray and optical follow-up measurements to be made as early as a minute after the gamma-ray burst trigger rather than the previous 6-8 hour delay. Swift afterglow measurements along with follow-up ground-based observations, and theoretical work have allowed astronomers to identify two plausible scenarios for the creation of a GRB: either through core collapse of super massive stars or

  18. Gamma-Ray Bursts: A Mystery Story

    NASA Technical Reports Server (NTRS)

    Parsons, Ann

    2007-01-01

    With the success of the Swift Gamma-Ray Burst Explorer currently in orbit, this is quite an exciting time in the history of Gamma Ray Bursts (GRBs). The study of GRBs is a modern astronomical mystery story that began over 30 years ago with the serendipitous discovery of these astronomical events by military satellites in the late 1960's. Until the launch of BATSE on the Compton Gamma-ray Observatory, astronomers had no clue whether GRBs originated at the edge of our solar system, in our own Milky Way Galaxy or incredibly far away near the edge of the observable Universe. Data from BATSE proved that GRBs are distributed isotropically on the sky and thus could not be the related to objects in the disk of our Galaxy. Given the intensity of the gamma-ray emission, an extragalactic origin would require an astounding amount of energy. Without sufficient data to decide the issue, a great debate continued about whether GRBs were located in the halo of our own galaxy or were at extragalactic - even cosmological distances. This debate continued until 1997 when the BeppoSAX mission discovered a fading X-ray afterglow signal in the same location as a GRB. This discovery enabled other telescopes, to observe afterglow emission at optical and radio wavelengths and prove that GRBs were at cosmological distances by measuring large redshifts in the optical spectra. Like BeppoSAX Swift, slews to new GRB locations to measure afterglow emission. In addition to improved GRB sensitivity, a significant advantage of Swift over BeppoSAX and other missions is its ability to slew very quickly, allowing x-ray and optical follow-up measurements to be made as early as a minute after the gamma-ray burst trigger rather than the previous 6-8 hour delay. Swift afterglow measurements along with follow-up ground-based observations, and theoretical work have allowed astronomers to identify two plausible scenarios for the creation of a GRB: either through core collapse of super massive stars or

  19. Astrophysical constraints from gamma-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Diehl, Roland; Prantzos, Nikos; von Ballmoos, Peter

    2006-10-01

    Gamma-ray lines from cosmic sources provide unique isotopic information, since they originate from energy level transitions in the atomic nucleus. Gamma-ray telescopes explored this astronomical window in the past three decades, detecting radioactive isotopes that have been ejected in interstellar space by cosmic nucleosynthesis events and nuclei that have been excited through collisions with energetic particles. Astronomical gamma-ray telescopes feature standard detectors of nuclear physics, but have to be surrounded by effective shields against local instrumental background, and need special detector and/or mask arrangements to collect imaging information. Due to exceptionally-low signal/noise ratios, progress in the field has been slow compared with other wavelengths. Despite the difficulties, this young field of astronomy is well established now, in particular due to advances made by the Compton Gamma-Ray Observatory in the 90ies. The most important achievements so far concern: short-lived radioactivities that have been detected in a couple of supernovae (56Co and 57Co in SN1987A, 44Ti in Cas A), the diffuse glow of long-lived 26Al that has been mapped along the entire plane of the Galaxy, several excited nuclei that have been detected in solar flares, and, last but not least, positron annihilation that has been observed in the inner Galaxy since the 70ies. High-resolution spectroscopy is now being performed: since 2002, ESAs INTEGRAL and NASAs RHESSI, two space-based gamma-ray telescopes with Ge detectors, are in operation. Recent results include: imaging and line shape measurements of e e annihilation emission from the Galactic bulge, which can hardly be accounted for by conventional sources of positrons; 26Al emission and line width measurement from the inner Galaxy and from the Cygnus region, which can constrain the properties of the interstellar medium; and a diffuse 60Fe gamma-ray line emission which appears rather weak, in view of current theoretical

  20. Chromosome therapy. Correction of large chromosomal aberrations by inducing ring chromosomes in induced pluripotent stem cells (iPSCs).

    PubMed

    Kim, Taehyun; Bershteyn, Marina; Wynshaw-Boris, Anthony

    2014-01-01

    The fusion of the short (p) and long (q) arms of a chromosome is referred to as a "ring chromosome." Ring chromosome disorders occur in approximately 1 in 50,000-100,000 patients. Ring chromosomes can result in birth defects, mental disabilities, and growth retardation if additional genes are deleted during the formation of the ring. Due to the severity of these large-scale aberrations affecting multiple contiguous genes, no possible therapeutic strategies for ring chromosome disorders have so far been proposed. Our recent study (Bershteyn et al.) using patient-derived fibroblast lines containing ring chromosomes, found that cellular reprogramming of these fibroblasts into induced pluripotent stem cells (iPSCs) resulted in the cell-autonomous correction of the ring chromosomal aberration via compensatory uniparental disomy (UPD). These observations have important implications for studying the mechanism of chromosomal number control and may lead to the development of effective therapies for other, more common, chromosomal aberrations.

  1. Gametocidal chromosomes enhancing chromosome aberration in common wheat induced by 5-azacytidine.

    PubMed

    Su, W-Y; Cong, W-W; Shu, Y-J; Wang, D; Xu, G-H; Guo, C-H

    2013-07-08

    The gametocidal (Gc) chromosome from Aegilops spp induces chromosome mutation, which is introduced into common wheat as a tool of chromosome manipulation for genetic improvement. The Gc chromosome functions similar to a restriction-modification system in bacteria, in which DNA methylation is an important regulator. We treated root tips of wheat carrying Gc chromosomes with the hypomethylation agent 5-azacytidine; chromosome breakage and micronuclei were observed in these root tips. The frequency of aberrations differed in wheat containing different Gc chromosomes, suggesting different functions inducing chromosome breakage. Gc chromosome 3C caused the greatest degree of chromosome aberration, while Gc chromosome 3C(SAT) and 2C caused only slight chromosome aberration. Gc chromosome 3C induced different degrees of chromosome aberration in wheat varieties Triticum aestivum var. Chinese Spring and Norin 26, demonstrating an inhibition function in common wheat.

  2. Investigations in cosmic and gamma ray astronomy and nuclear instruments

    NASA Astrophysics Data System (ADS)

    Gregory, J. C.

    1982-06-01

    The Nuclear Radiation Monitor (NRM) is flying on the Spacelab 2 vehicle as part of a set of instrumentation designed to measure the ambient physical environment on Spacelab in orbit. The NRM measures the natural and induced gamma ray activity. The instrument is constituted of a 25 sq in (NaI (T1)) crystal viewed with a single phototube and surrounded by a plastic anticoincidence shield. It is mounted on a pedestal and placed, with its electronics, on the Spacelab pallet. The detector head was designed and a development model fabricated and tested. Extensive software studies for on board and GSE microprocessors for use with the NRM were also made.

  3. Investigations in cosmic and gamma ray astronomy and nuclear instruments

    NASA Technical Reports Server (NTRS)

    Gregory, J. C.

    1982-01-01

    The Nuclear Radiation Monitor (NRM) is flying on the Spacelab 2 vehicle as part of a set of instrumentation designed to measure the ambient physical environment on Spacelab in orbit. The NRM measures the natural and induced gamma ray activity. The instrument is constituted of a 25 sq in (NaI (T1)) crystal viewed with a single phototube and surrounded by a plastic anticoincidence shield. It is mounted on a pedestal and placed, with its electronics, on the Spacelab pallet. The detector head was designed and a development model fabricated and tested. Extensive software studies for on board and GSE microprocessors for use with the NRM were also made.

  4. Neutron-driven gamma-ray laser

    DOEpatents

    Bowman, Charles D.

    1990-01-01

    A lasing cylinder emits laser radiation at a gamma-ray wavelength of 0.87 .ANG. when subjected to an intense neutron flux of about 400 eV neutrons. A 250 .ANG. thick layer of Be is provided between two layers of 100 .ANG. thick layer of .sup.57 Co and these layers are supported on a foil substrate. The coated foil is coiled to form the lasing cylinder. Under the neutron flux .sup.57 Co becomes .sup.58 Co by neutron absorption. The .sup.58 Co then decays to .sup.57 Fe by 1.6 MeV proton emission. .sup.57 Fe then transitions by mesne decay to a population inversion for lasing action at 14.4 keV. Recoil from the proton emission separates the .sup.57 Fe from the .sup.57 Co and into the Be, where Mossbauer emission occurs at a gamma-ray wavelength.

  5. The diffuse galactic gamma ray emission

    NASA Technical Reports Server (NTRS)

    Bertsch, David L.

    1990-01-01

    The EGRET (Energetic Gamma-Ray Experiment Telescope) detector will provide a much more detailed view of the diffuse galactic gamma ray intensity in terms of higher resolution, greater statistical significance, and broader energy range than earlier missions. These observations will furnish insight into a number of very important questions related to the dynamics and structure of the Galaxy. A diffuse emission model is being developed that incorporates the latest information on matter distribution and source functions. In addition, it is tailored to the EGRET instrument response functions. The analysis code of the model maintains flexibility to accommodate the quality of the data that is anticipated. The discussion here focuses on the issues of the distributions of matter, cosmic rays, and radiation fields, and on the important source functions that enter into the model calculation of diffuse emission.

  6. The gamma ray north-south effect

    NASA Technical Reports Server (NTRS)

    White, R. S.; O'Neill, T. J.; Tumer, O. T.; Zych, A. D.

    1988-01-01

    Theoretical calculations are presented that explain the balloon observations by O'Neill et al. (1987) of a strong north-south anisotropy of atmospheric gamma rays over the Southern Hemisphere, and to predict the north-south ratios. It is shown that the gamma rays that originate at the longest distances from the telescopes give the largest north-south ratios. Comparisons are made of the experimental north-south ratios measured on balloons launched from Alice Springs, Australia, and from Palestine, Texas, U.S., and predictions are made for ratios at other geomagnetic latitudes and longitudes. It is pointed out that observers who measure backgrounds for celestial sources may be misled unless they correct for the north-south effect.

  7. Research in cosmic and gamma ray astrophysics

    NASA Technical Reports Server (NTRS)

    Stone, Edward C.; Mewaldt, Richard A.; Prince, Thomas A.

    1992-01-01

    Discussed here is research in cosmic ray and gamma ray astrophysics at the Space Radiation Laboratory (SRL) of the California Institute of Technology. The primary activities discussed involve the development of new instrumentation and techniques for future space flight. In many cases these instrumentation developments were tested in balloon flight instruments designed to conduct new investigations in cosmic ray and gamma ray astrophysics. The results of these investigations are briefly summarized. Specific topics include a quantitative investigation of the solar modulation of cosmic ray protons and helium nuclei, a study of cosmic ray positron and electron spectra in interplanetary and interstellar space, the solar modulation of cosmic rays, an investigation of techniques for the measurement and interpretation of cosmic ray isotopic abundances, and a balloon measurement of the isotopic composition of galactic cosmic ray boron, carbon, and nitrogen.

  8. SuperAGILE and Gamma Ray Bursts

    SciTech Connect

    Pacciani, Luigi; Costa, Enrico; Del Monte, Ettore; Donnarumma, Immacolata; Evangelista, Yuri; Feroci, Marco; Frutti, Massimo; Lazzarotto, Francesco; Lapshov, Igor; Rubini, Alda; Soffitta, Paolo; Tavani, Marco; Barbiellini, Guido; Mastropietro, Marcello; Morelli, Ennio; Rapisarda, Massimo

    2006-05-19

    The solid-state hard X-ray imager of AGILE gamma-ray mission -- SuperAGILE -- has a six arcmin on-axis angular resolution in the 15-45 keV range, a field of view in excess of 1 steradian. The instrument is very light: 5 kg only. It is equipped with an on-board self triggering logic, image deconvolution, and it is able to transmit the coordinates of a GRB to the ground in real-time through the ORBCOMM constellation of satellites. Photon by photon Scientific Data are sent to the Malindi ground station at every contact. In this paper we review the performance of the SuperAGILE experiment (scheduled for a launch in the middle of 2006), after its first onground calibrations, and show the perspectives for Gamma Ray Bursts.

  9. SUB-LUMINOUS {gamma}-RAY PULSARS

    SciTech Connect

    Romani, R. W.; Kerr, M.; Craig, H. A.; Johnston, S.; Cognard, I.; Smith, D. A.

    2011-09-01

    Most pulsars observed by the Fermi Large Area Telescope have {gamma}-ray luminosities scaling with spin-down power E-dot as L{sub {gamma}}{approx}(E-dot x 10{sup 33} erg s{sup -1}){sup 1/2}. However, there exist one detection and several upper limits an order of magnitude or more fainter than this trend. We describe these 'sub-luminous' {gamma}-ray pulsars and discuss the case for this being an orientation effect. Of the 12 known young radio pulsars with E-dot >10{sup 34} erg s{sup -1} and d {<=} 2 kpc several are substantially sub-luminous. The limited available geometrical constraints favor aligned geometries for these pulsars, although no one case for alignment is compelling. In this scenario GeV emission detected from such sub-luminous pulsars can be due to a lower altitude, lower-power accelerator gap.

  10. Solar flare gamma-ray line shapes

    NASA Technical Reports Server (NTRS)

    Werntz, C.; Kim, Y. E.; Lang, Frederick L.

    1990-01-01

    A computer code has been developed which is used to calculate ab initio the laboratory shapes and energy shifts of gamma-ray lines from (C-12)(p, gamma/4.438/)p-prime(C-12) and (O-16)(p, gamma/6.129/)p-prime(O-16) reactions and to calculate the expected shapes of these lines from solar flares. The sensitivity of observable solar flare gamma-ray line shapes to the directionality of the incident particles is investigated for several projectile angular distributions. Shapes of the carbon and oxygen lines are calculated assuming realistic proton energy spectra for particles in circular orbits at the mirror points of magnetic loops, for particle beams directed downward into the photosphere, and for isotropic particle distributions. Line shapes for flare sites near the center of the sun and on the limb are shown for both thin-target and thick-target interaction models.

  11. The GAMCIT gamma ray burst detector

    NASA Technical Reports Server (NTRS)

    Mccall, Benjamin J.; Grunsfeld, John M.; Sobajic, Srdjan D.; Chang, Chinley Leonard; Krum, David M.; Ratner, Albert; Trittschuh, Jennifer E.

    1993-01-01

    The GAMCIT payload is a Get-Away-Special payload designed to search for high-energy gamma-ray bursts and any associated optical transients. This paper presents details on the design of the GAMCIT payload, in the areas of battery selection, power processing, electronics design, gamma-ray detection systems, and the optical imaging of the transients. The paper discusses the progress of the construction, testing, and specific design details of the payload. In addition, this paper discusses the unique challenges involved in bringing this payload to completion, as the project has been designed, constructed, and managed entirely by undergraduate students. Our experience will certainly be valuable to other student groups interested in taking on a challenging project such as a Get-Away-Special payload.

  12. Prompt Radio Emission from Gamma Ray Bursts

    NASA Astrophysics Data System (ADS)

    Gotthardt, Noelle

    2010-02-01

    Gamma-ray bursts have been observed, but these enigmatic objects are yet unexplained. These short duration events are undoubtedly due to high-energy events. Fading optical emission and even radio emission has been observed from such events, but prompt radio emission from these events would be very useful in pinning down the physics of the bursts, the nature of the progenitor object,and possibly the medium in which it occurs. If these phenomena occur at large redshifts, there is the possibility that the observations could probe the Epoch of Reionization, or the intergalactic medium. A number of models have been proposed to explain the gamma-ray bursts, ranging from compact object mergers, to maser-like coherent emission. These models are not well constrained by current observations. Prompt radio emission may be detected by a transient radio array. I will discuss a planned search for such signals by the Eight-meter-wavelength Transient Array (ETA). )

  13. Fissile interrogation using gamma rays from oxygen

    DOEpatents

    Smith, Donald; Micklich, Bradley J.; Fessler, Andreas

    2004-04-20

    The subject apparatus provides a means to identify the presence of fissionable material or other nuclear material contained within an item to be tested. The system employs a portable accelerator to accelerate and direct protons to a fluorine-compound target. The interaction of the protons with the fluorine-compound target produces gamma rays which are directed at the item to be tested. If the item to be tested contains either a fissionable material or other nuclear material the interaction of the gamma rays with the material contained within the test item with result in the production of neutrons. A system of neutron detectors is positioned to intercept any neutrons generated by the test item. The results from the neutron detectors are analyzed to determine the presence of a fissionable material or other nuclear material.

  14. Stirling Colgate and Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Lamb, Donald

    2014-10-01

    Even before the discovery of gamma-ray bursts (GRBs), Stirling Colgate proposed that bursts of x rays and gamma rays might be produced by a relativistic shock created in the supernova explosion of a massive star. We trace the scientific story of GRBs from their detection to the present, highlighting along the way Stirling's interest in them and his efforts to understand them. We summarize our current understanding that short, soft, repeating bursts are produced by magnetic neutron stars; short, hard bursts are produced by the mergers of neutron star-neutron star binaries; and long, hard bursts are produced by the core collapse of massive stars that have lost their hydrogen and helium envelopes. We then discuss some important open questions about GRBs and how they might be answered. We conclude by describing the recent serendipitous discovery of an x-ray burst of exactly the kind he proposed, and the insights into core collapse supernovae and GRBs that it provided.

  15. Nuclear isomer suitable for gamma ray laser

    NASA Technical Reports Server (NTRS)

    Jha, S.

    1979-01-01

    The operation of gamma ray lasers (gasers) are studied. It is assumed that the nuclear isomers mentioned in previously published papers have inherent limitations. It is further assumed that the judicious use of Bormann effect or the application of the total external reflection of low energy gamma radiation at grazing angle of incidence may permit the use of a gaser crystal sufficiently long to achieve observable stimulated emission. It is suggested that a long lived 0(+) isomer decaying by low energy gamma ray emission to a short lived 2(+) excited nuclear state would be an attractive gaser candidate. It is also suggested that the nuclear isomer be incorporated in a matrix of refractory material having an electrostatic field gradient whose principal axis lies along the length of the medium. This results in the preferential transmission of electric quadrupole radiation along the length of the medium.

  16. Nucleosynthesis and astrophysical gamma ray spectroscopy

    NASA Technical Reports Server (NTRS)

    Jacobson, Allan S.

    1987-01-01

    The HEAO-3 gamma ray spectrometer has provided evidence in the quest for the understanding of complex element formation in the universe with the discovery of Al-26 in the interstellar medium. It has demonstrated that the synthesis of intermediate mass nuclei is currently going on in the galaxy. This discovery was confirmed by the Solar Maximum Mission. The flux is peaked near the galactic center and indicates about 3 solar masses of Al-26 in the interstellar medium, with an implied ratio of Al-26/Al-27 = .00001. Several possible distributions were studied but the data gathered thus far do not allow discrimination between them. It is felt that only the spaceflight of a high resolution gamma ray spectrometer with adequate sensitivity will ultimately resolve the issue of the source of this material.

  17. Real time gamma-ray signature identifier

    DOEpatents

    Rowland, Mark [Alamo, CA; Gosnell, Tom B [Moraga, CA; Ham, Cheryl [Livermore, CA; Perkins, Dwight [Livermore, CA; Wong, James [Dublin, CA

    2012-05-15

    A real time gamma-ray signature/source identification method and system using principal components analysis (PCA) for transforming and substantially reducing one or more comprehensive spectral libraries of nuclear materials types and configurations into a corresponding concise representation/signature(s) representing and indexing each individual predetermined spectrum in principal component (PC) space, wherein an unknown gamma-ray signature may be compared against the representative signature to find a match or at least characterize the unknown signature from among all the entries in the library with a single regression or simple projection into the PC space, so as to substantially reduce processing time and computing resources and enable real-time characterization and/or identification.

  18. The future of gamma-ray astronomy

    NASA Astrophysics Data System (ADS)

    Knödlseder, Jürgen

    2016-06-01

    The field of gamma-ray astronomy has experienced impressive progress over the last decade. Thanks to the advent of a new generation of imaging air Cherenkov telescopes (H.E.S.S., MAGIC, VERITAS) and thanks to the launch of the Fermi-LAT satellite, several thousand gamma-ray sources are known today, revealing an unexpected ubiquity of particle acceleration processes in the Universe. Major scientific challenges are still ahead, such as the identification of the nature of Dark Matter, the discovery and understanding of the sources of cosmic rays, or the comprehension of the particle acceleration processes that are at work in the various objects. This paper presents some of the instruments and mission concepts that will address these challenges over the next decades.

  19. Plasma Instabilities in Gamma-Ray Bursts

    SciTech Connect

    Tautz, Robert C.

    2008-12-24

    Magnetic fields are important in a variety of astrophysical scenarios, ranging from possible creation mechanisms of cosmological magnetic fields through relativistic jets such as that from Active Galactic Nuclei and gamma-ray bursts to local phenomena in the solar system. Here, the outstanding importance of plasma instabilities to astrophysics is illustrated by applying the so-called neutral point method to gamma-ray bursts (GRBs), which are assumed to have a homogeneous background magnetic field. It is shown how magnetic turbulence, which is a prerequisite for the creation of dissipation and, subsequently, radiation, is created by the highly relativistic particles in the GRB jet. Using the fact that different particle compositions lead to different instability conditions, conclusions can be drawn about the particle composition of the jet, showing that it is more likely of baryonic nature.

  20. Current Topics in Gamma-Ray Astrophysics

    PubMed Central

    Mathews, Grant J.; Maronetti, P.; Salmonson, Jay; Wilson, J. R.

    2000-01-01

    This paper reports on recent progress toward unraveling the origin of gamma-ray bursts. It is concluded that neutron-star binaries are one of the few remaining candidates. A model is proposed based upon general relativistic hydrodynamic studies which indicate a new physical process by which to power a gamma-ray burst. Relativistically driven compression, heating, and collapse of the individual neutron stars can occur many seconds before inspiral and merger. This compression may produce a neutrino burst of ∼1053 ergs lasting several seconds. The associated thermal neutrino emission produces an e+–e − pair plasma by vv¯ annihilation. We show first results of a simulated burst which produces ∼1051 erg in γ rays of the correct spectral and temporal properties. PMID:27551592

  1. The Compton Gamma Ray Observatory: mission status.

    NASA Astrophysics Data System (ADS)

    Gehrels, N.; Chipman, E.; Kniffen, D. A.

    The Arthur Holly Compton Gamma Ray Observatory (Compton) is the second in NASA's series of Great Observatories. Compton has now been operating for over two and a half years, and has given a dramatic increase in capability over previous gamma-ray missions. The spacecraft and scientific instruments are all in good health, and many significant discoveries have already been made and continue to be made. The authors describe the capabilities of the four scientific instruments and the observing programs for the first three years of the mission. During Phases 2 and 3 of the mission a Guest Investigator program has been in progress with the Guest Observers' time share increasing from 30% to over 50% for the later mission phases.

  2. Stirling Colgate and Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Lamb, Donald

    2014-10-01

    Even before the discovery of gamma-ray bursts (GRBs), Stirling Colgate proposed that bursts of x rays and gamma rays might be produced by a relativistic shock created in the supernova explosion of a massive star. We trace the scientific story of GRBs from their detection to the present, highlighting along the way Stirling's interest in them and his efforts to understand them. We summarize our current understanding that short, soft, repeating bursts are produced by magnetic neutron stars; short, hard bursts are produced by the mergers of neutron star-neutron star binaries; and long, hard bursts are produced by the core collapse of massive stars that have lost their hydrogen and helium envelopes. We then discuss some important open questions about GRBs and how they might be answered. We conclude by describing the recent serendipitous discovery of an x-ray burst of exactly the kind he proposed, and the insights into core collapse supernovae and GRBs that it provided.

  3. Neutrino flux from observable Gamma Ray Bursts

    NASA Astrophysics Data System (ADS)

    Spada, M.; Guetta, D.; Waxman, E.

    2000-12-01

    We derive the flux and spectrum of neutrinos from Gamma Ray Bursts (GRBs), and the corresponding detection rate in a cubic-km neutrino detector, within the frame work of the Internal Shock Model. In this model, GRBs are produced by internal shocks in a highly relativistic wind, and high energy neutrinos result from photo-meson interactions of wind protons with gamma-ray photons. We show that the predicted neutrino flux is only weakly dependent on unknown wind parameters, due to the fact that observed GRB characteristics require these parameters to be strongly correlated. Thus, the predicted neutrino luminosity does not vary strongly from burst to burst. Several tens of events per year, correlated with GRBs, are expected to be detected in a cubic-km detector.

  4. The Gamma-Ray Burst Next Door

    NASA Technical Reports Server (NTRS)

    Wanjek, Christopher

    2003-01-01

    I hesitate to spawn a thousand bad sci-fi flicks, but here it goes: Scientists now say that some gamma-ray bursts, the most powerful explosions in the universe, originate in nearby galaxy clusters. If one were to occur nearby, it could wipe out life on Earth. Fortunately, the chances of mass extinction are slimmer than the Chicago Cubs meeting the Boston Red Sox in the World Series (. . . and the Red Sox winning). But a new analysis of over 1400 archived gamma-ray bursts reveals that about 100 bursts originated within 325 million light-years of Earth, and not billions of light-years away as previously thought. If so, there's no reason why a burst couldn't go off in our galaxy.

  5. The Gamma-Ray Burst Next Door

    NASA Technical Reports Server (NTRS)

    Wanjek, Christopher

    2003-01-01

    I hesitate to spawn a thousand bad sci-fi flicks, but here it goes: Scientists now say that some gamma-ray bursts, the most powerful explosions in the universe, originate in nearby galaxy clusters. If one were to occur nearby, it could wipe out life on Earth. Fortunately, the chances of mass extinction are slimmer than the Chicago Cubs meeting the Boston Red Sox in the World Series (. . . and the Red Sox winning). But a new analysis of over 1400 archived gamma-ray bursts reveals that about 100 bursts originated within 325 million light-years of Earth, and not billions of light-years away as previously thought. If so, there's no reason why a burst couldn't go off in our galaxy.

  6. Gamma Ray Bursts: a 1983 Overview

    NASA Technical Reports Server (NTRS)

    Cline, T. L.

    1983-01-01

    Gamma ray burst observations are reviewed with mention of new gamma-ray and optical transient measurements and with discussions of the controversial, contradictory and unresolved issues that have recently emerged: burst spectra appear to fluctuate in time as rapidly as they are measured, implying that any one spectrum may be incorrect; energy spectra can be obligingly fitted to practically any desired shape, implying, in effect, that no objective spectral resolution exists at all; burst fluxes and temporal quantities, including the total event energy, are characterized very differently with differing instruments, implying that even elementary knowledge of their properties is instrumentally subjective; finally, the log N-log S determinations are deficient in the weak bursts, while there is no detection of a source direction anisotropy, implying that Ptolemy was right or that burst source distance estimates are basically guesswork. These issues may remain unsolved until vastly improved instruments are flown.

  7. Gamma ray bursts: a 1983 overview

    SciTech Connect

    Cline, T.L.

    1983-10-01

    Gamma ray burst observations are reviewed with mention of new gamma-ray and optical transient measurements and with discussions of the controversial, contradictory and unresolved issues that have recently emerged: burst spectra appear to fluctuate in time as rapidly as they are measured, implying that any one spectrum may be incorrect. Energy spectra can be obligingly fitted to practically any desired shape, implying, in effect, that no objective spectral resolution exists at all. Burst fluxes and temporal quantities, including the total event energy, are characterized very differently with differing instruments, implying that even elementary knowledge of their properties is instrumentally subjective. Finally, the log N-log S determinations are deficient in the weak bursts, while there is no detection of a source direction anisotropy, implying that Ptolemy was right or that burst source distance estimates are basically guesswork. These issues may remain unsolved until vastly improved instruments are flown.

  8. Ginga Gamma-Ray Burst Line Occurrence

    NASA Technical Reports Server (NTRS)

    Band, David

    1998-01-01

    The purpose of this project is the statistical evaluation of the occurrence of spectral lines in the gamma-ray burst spectra detected by the Ginga burst detector, and the comparison of the Ginga results to the BATSE observations. Two significant line features were detected in the Ginga bursts, but thus far none have been detected in the bursts BATSE detected. These line features may indicate the presence of strong magnetic fields in bursts, and therefore are important physical diagnostics of the conditions in the plasma which radiates the observed gamma-rays. The issue is whether there is a discrepancy between the Ginga and BATSE results; the potential discrepancy must be evaluated statistically. Even if BATSE line detections are announced, the statistical methodology we have developed can be used to estimate the rate at which different types of spectral features occur.

  9. Gamma-ray imaging with germanium detectors

    NASA Astrophysics Data System (ADS)

    Mahoney, W. A.; Callas, J. L.; Ling, J. C.; Radocinski, R. G.; Skelton, R. T.; Varnell, L. S.; Wheaton, W. A.

    1993-01-01

    Externally segmented germanium detectors promise a breakthrough in gamma-ray imaging capabilities while retaining the superb energy resolution of germanium spectrometers. By combining existing position-sensitive detectors with an appropriate code aperture, two-dimensional imaging with 0.2-deg angular resolution becomes practical for a typical balloon experiment. Much finer resolutions are possible with larger separations between detectors and the coded aperture as would be applicable for space-based or lunar-based observatories. Two coaxial germanium detectors divided into five external segments have been fabricated and have undergone extensive performance evaluation and imaging testing in our laboratory. These tests together with detailed Monte Carlo modeling calculations have demonstrated the great promise of this sensor technology for future gamma-ray missions.

  10. GeV-gamma-ray emission regions

    NASA Image and Video Library

    2017-09-27

    NASA's Fermi Closes on Source of Cosmic Rays New images from NASA's Fermi Gamma-ray Space Telescope show where supernova remnants emit radiation a billion times more energetic than visible light. The images bring astronomers a step closer to understanding the source of some of the universe's most energetic particles -- cosmic rays. Fermi mapped GeV-gamma-ray emission regions (magenta) in the W44 supernova remnant. The features clearly align with filaments detectable in other wavelengths. This composite merges X-rays (blue) from the Germany-led ROSAT mission, infrared (red) from NASA's Spitzer Space Telescope, and radio (orange) from the Very Large Array near Socorro, N.M. Credit: NASA/DOE/Fermi LAT Collaboration, ROSAT, JPL-Caltech, and NRAO/AUI For more information: www.nasa.gov/mission_pages/GLAST/news/cosmic-rays-source....

  11. Gamma-ray imaging with germanium detectors

    NASA Technical Reports Server (NTRS)

    Mahoney, W. A.; Callas, J. L.; Ling, J. C.; Radocinski, R. G.; Skelton, R. T.; Varnell, L. S.; Wheaton, W. A.

    1993-01-01

    Externally segmented germanium detectors promise a breakthrough in gamma-ray imaging capabilities while retaining the superb energy resolution of germanium spectrometers. By combining existing position-sensitive detectors with an appropriate code aperture, two-dimensional imaging with 0.2-deg angular resolution becomes practical for a typical balloon experiment. Much finer resolutions are possible with larger separations between detectors and the coded aperture as would be applicable for space-based or lunar-based observatories. Two coaxial germanium detectors divided into five external segments have been fabricated and have undergone extensive performance evaluation and imaging testing in our laboratory. These tests together with detailed Monte Carlo modeling calculations have demonstrated the great promise of this sensor technology for future gamma-ray missions.

  12. Solar flare gamma-ray line shapes

    NASA Technical Reports Server (NTRS)

    Werntz, C.; Kim, Y. E.; Lang, Frederick L.

    1990-01-01

    A computer code has been developed which is used to calculate ab initio the laboratory shapes and energy shifts of gamma-ray lines from (C-12)(p, gamma/4.438/)p-prime(C-12) and (O-16)(p, gamma/6.129/)p-prime(O-16) reactions and to calculate the expected shapes of these lines from solar flares. The sensitivity of observable solar flare gamma-ray line shapes to the directionality of the incident particles is investigated for several projectile angular distributions. Shapes of the carbon and oxygen lines are calculated assuming realistic proton energy spectra for particles in circular orbits at the mirror points of magnetic loops, for particle beams directed downward into the photosphere, and for isotropic particle distributions. Line shapes for flare sites near the center of the sun and on the limb are shown for both thin-target and thick-target interaction models.

  13. Gamma Rays from Martian Dust Storms

    NASA Astrophysics Data System (ADS)

    Arabshahi, Shahab; Majid, Walid; Dwyer, Joseph; Rassoul, Hamid

    2017-04-01

    Martian dust storms are suggested to be able to generate electric fields close to the breakdown values for Mars' atmosphere, i.e. 25 kV/m [Farrel et al. 2006]. Such electric fields could initiate large electrostatic discharges on Mars [Ruf et al. 2009]. Additionally, similar to terrestrial thunderstorms, they might also be able to produce bright bursts of X-rays and gamma rays. On Earth, thunderstorm electric fields could produce avalanche of energetic electrons from single seed electron, through Møller scattering with air atoms and molecules. The process is called Relativistic Runaway Electron Avalanche (RREA), and can then generate large flux of X-rays and gamma rays through bremsstrahlung scattering. In this presentation, we have used detailed Monte Carlo simulations to study the possibility of producing large flux of energetic photon from a RREA-like mechanism inside Martian dust storms.

  14. Occurrence in vivo of sister chromatid exchanges at the same locus in successive cell divisions caused by nonrepairable lesions induced by gamma rays.

    PubMed

    Morales-Ramírez, P; Vallarino-Kelly, T; Rodríguez-Reyes, R

    1988-01-01

    The capacity of lesions induced by gamma radiation to produce sister chromatid exchanges (SCE) in successive divisions in mouse bone marrow cells in vivo was evaluated using a protocol for the three-way differentiation of sister chromatids. Evidence was obtained that exposure to gamma radiation induces DNA lesions that result in the formation of SCE at the same locus in two successive cell divisions. The relevance of this observation with respect to DNA repair and mutagenesis is discussed.

  15. Prospects for Nuclear-gamma-ray Astronomy

    NASA Technical Reports Server (NTRS)

    Clayton, D. D.

    1973-01-01

    An analysis was made of prospects for gamma rays coming from two sources outside the solar system: (1) radioactive decay of fresh nuclear products to explosive nucleosynthesis, and (2) scattering of low energy cosmic rays. The former should be detectable and will provide a factual base for many suppositions about the site and history of nucleosynthesis. The latter may be detectable and, if so, will probably provide factual information about high-flux regions of cosmic radiation.

  16. Prospects for Nuclear-gamma-ray Astronomy

    NASA Technical Reports Server (NTRS)

    Clayton, D. D.

    1973-01-01

    An analysis was made of prospects for gamma rays coming from two sources outside the solar system: (1) radioactive decay of fresh nuclear products to explosive nucleosynthesis, and (2) scattering of low energy cosmic rays. The former should be detectable and will provide a factual base for many suppositions about the site and history of nucleosynthesis. The latter may be detectable and, if so, will probably provide factual information about high-flux regions of cosmic radiation.

  17. Gamma rays produce superior seedless citrus

    SciTech Connect

    Pyrah, D.

    1984-10-01

    Using gamma radiation, seedless forms of some varieties of oranges and grapefruit are being produced. Since it has long been known that radiation causes mutations in plants and animals, experiments were conducted to determine if seediness could be altered by exposing seeds or budwood to higher than natural doses of gamma radiation. Orange and grapefruit seeds and cuttings exposed to gamma rays in the early 1970's have produced trees that bear fruit superior to that now on the market.

  18. The Cannonball Model of Gamma Ray Bursts

    NASA Astrophysics Data System (ADS)

    Dar, A.

    2004-06-01

    The cannonball model (CB) of gamma ray bursts (GRBs) is incredibly more successful than the standard blast-wave models (SM) of GRBs, which suffer from profound inadequacies and limited predictive power. Te CB model is falsifiable in its hypothesis and results. Its predictions are summarized in simple analytical expressions, derived, in fair approximations, from first principles. It provides a good description on a universal basis of the properties of long-duration GRBs and of their afterglows (AGs).

  19. Gamma rays from active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Kazanas, Demosthenes

    1990-01-01

    The general properties of Active Galactic Nuclei (AGN) and quasars are reviewed with emphasis on their continuum spectral emission. Two general classes of models for the continuum are outlined and critically reviewed in view of the impending GRO (Gamma Ray Observatory) launch and observations. The importance of GRO in distinguishing between these models and in general in furthering the understanding of AGN is discussed. The very broad terms the status of the current understanding of AGN are discussed.

  20. Gamma-Ray Bursts - A Cosmic Riddle

    NASA Astrophysics Data System (ADS)

    Woosley, S. E.

    1994-12-01

    A deep and abiding mystery is one of the greatest treasures nature has to offer to scientists and the public alike. Gamma-ray bursts have been observed for over 20 years. More than 2000 papers have been published about them and numerous theoretical models proposed, yet no one knows for sure what they are, where they come from, or even if they are a single class of phenomena. Isotropy and confinement (i.e., a deficiency of faint sources compared to that expected for an unbounded homogeneous sample), as exhibited in the BATSE observations from the Compton Gamma-Ray Observatory, have lead us to consider seriously only two sites - an extended Galactic halo populated by neutron stars, or else cosmologically distant sources. Models of both varieties will be reviewed. At the present time, both classes of models are given about equal credence, though ALL current models make troublesome assumptions requiring clarification. Halo models have received several boosts lately, including the realization that the mean velocity of pulsars is greater than previously thought, the certain localization of two out of three (and possibly all) soft gamma-ray repeaters to supernova remnants in our Galaxy and in the LMC, and calculations to show that under certain, albeit highly restrictive assumptions, the BATSE statistics can be satisfied by high velocity neutron stars ejected from the Galaxy. Several current halo oriented theories would like to relate the soft repeaters to the more common ``classical" bursts and claim that the former are an earlier evolutionary stage of the latter. If, on the other hand, the soft repeaters are a separate class, as the cosmologists would require, perhaps there are other classes as well. Amid all this theoretical speculation, the solution to the gamma-ray burst riddle will most likely come from further observation. Some prospects for future observations, especially with the High Energy Transient Experiment, will be briefly discussed.

  1. Prompt Gamma Ray Analysis of Soil Samples

    SciTech Connect

    Naqvi, A.A.; Khiari, F.Z.; Haseeb, S.M.A.; Hussein, Tanvir; Khateeb-ur-Rehman; Isab, A.H.

    2015-07-01

    Neutron moderation effects were measured in bulk soil samples through prompt gamma ray measurements from water and benzene contaminated soil samples using 14 MeV neutron inelastic scattering. The prompt gamma rays were measured using a cylindrical 76 mm x 76 mm (diameter x height) LaBr{sub 3}:Ce detector. Since neutron moderation effects strongly depend upon hydrogen concentration of the sample, for comparison purposes, moderation effects were studied from samples containing different hydrogen concentrations. The soil samples with different hydrogen concentration were prepared by mixing soil with water as well as benzene in different weight proportions. Then, the effects of increasing water and benzene concentrations on the yields of hydrogen, carbon and silicon prompt gamma rays were measured. Moderation effects are more pronounced in soil samples mixed with water as compared to those from soil samples mixed with benzene. This is due to the fact that benzene contaminated soil samples have about 30% less hydrogen concentration by weight than the water contaminated soil samples. Results of the study will be presented. (authors)

  2. Afterglow Radiation from Gamma Ray Bursts

    SciTech Connect

    Desmond, Hugh; /Leuven U. /SLAC

    2006-08-28

    Gamma-ray bursts (GRB) are huge fluxes of gamma rays that appear randomly in the sky about once a day. It is now commonly accepted that GRBs are caused by a stellar object shooting off a powerful plasma jet along its rotation axis. After the initial outburst of gamma rays, a lower intensity radiation remains, called the afterglow. Using the data from a hydrodynamical numerical simulation that models the dynamics of the jet, we calculated the expected light curve of the afterglow radiation that would be observed on earth. We calculated the light curve and spectrum and compared them to the light curves and spectra predicted by two analytical models of the expansion of the jet (which are based on the Blandford and McKee solution of a relativistic isotropic expansion; see Sari's model [1] and Granot's model [2]). We found that the light curve did not decay as fast as predicted by Sari; the predictions by Granot were largely corroborated. Some results, however, did not match Granot's predictions, and more research is needed to explain these discrepancies.

  3. Solar Two Gamma-Ray Observatory

    NASA Astrophysics Data System (ADS)

    Tümer, T.; Bhattacharya, D.; Mohideen, U.; Rieben, R.; Souchkov, V.; Tom, H.; Zweerink, J.

    1999-06-01

    The field of high energy gamma-ray astronomy grew tremendously in the last decade due to the launch of the EGRET detector on the Compton Gamma-Ray Observatory in 1991 and the proliferation of ground-based air Čherenkov telescopes (ACTs) such as the Whipple 10 meter reflector. Interestingly, the ground-based telescopes only see 4-5 of the over 170 objects detected by EGRET. A simple extrapolation of the EGRET objects' energy spectra up to the energies which the ACTs are sensitive suggests that many of them should have been detected. The key to resolving this lack of detections is to observe these sources in the previously unobserved 20-250 GeV energy range. The Solar Two Observatory collaboration is developing a secondary optics system on the central tower of the world's largest solar energy pilot plant, Solar Two, to observe gamma-ray sources in this energy range. The progress in building the secondary optics system to be used to image ˜64 heliostats at Solar Two located in Barstow, California, is presented. We hope to design and build this detector over the next 2 years.

  4. Gamma rays as an indicator of nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Hartmann, Dieter H.

    2007-04-01

    In 1957 the collaboration of E. M. Burbidge, G. R. Burbidge, W. A. Fowler, and F. Hoyle, and the work by A. G. W. Cameron, laid the foundations for understanding the origin of the elements in terms of a few basic processes and astrophysical environments. Half a century after this pioneering work, there is considerable observational evidence for the basic notions of element synthesis during the big-bang, followed by hydrostatic and explosive stellar nucleosynthesis ever since the first population of stars re-illuminated the Universe, and through particle interactions in the turbulent interstellar medium. In 1969 D. D. Clayton, S. A. Colgate, and G. J. Fishman proposed to search for gamma-ray lines from the decay of 56-Ni, freshly synthesized in supernovae. Evidence for these lines was obtained for SN 1987A, and three decades after this pivotal supernova we have ample gamma-ray line evidence for ongoing nucleosynthesis in the Milky Way from surveys for individual sources and unresolved, integrated diffuse emission from an ensemble of such sources. We review the observational evidence for gamma ray lines from various species, and discuss the astrophysical implications of detections and a few puzzles suggested by lack of detections. We reflect on historic developments, assess the accomplishments, and present an outlook on the future of this branch of nuclear astrophysics.

  5. Gamma-Rays from Nucleosynthesis Ejecta

    NASA Astrophysics Data System (ADS)

    Diehl, R.

    2016-01-01

    Gamma-ray lines from radioactive decay of unstable isotopes produced in massive- star and supernova nucleosynthesis have been measured with INTEGRAL over the past ten years, complementing the earlier COMPTEL survey. 26Al has become a tool to study specific source regions, such as massive-star groups and associations in nearby regions which can be discriminated from the galactic-plane background, and the inner Galaxy where Doppler shifted lines add to the astronomical information. Recent findings are that superbubbles show a remarkable asymmetry, on average, in the spiral arms of our galaxy. 60Fe is co-produced by the sources of 26Al, and the isotopic ratio from their nucleosynthesis encodes stellar-structure information. Annihilation gamma-rays from positrons in interstellar space show a puzzling bright and extended source region central to our Galaxy, but also may be partly related to nucleosynthesis. 56Ni and 44Ti isotope gamma-rays have been used to constrain supernova explosion mechanisms. Here we summarize latest results using the accumulated multi-year database of observations, and discuss their astrophysical interpretations. We also add a comparison of isotopic ratios between the ISM of the current Galaxy and the solar vicinity at solar-system formation time.

  6. RADIO FLARES FROM GAMMA-RAY BURSTS

    SciTech Connect

    Kopač, D.; Mundell, C. G.; Kobayashi, S.; Virgili, F. J.; Harrison, R.; Japelj, J.; Gomboc, A.; Guidorzi, C.; Melandri, A.

    2015-06-20

    We present predictions of centimeter and millimeter radio emission from reverse shocks (RSs) in the early afterglows of gamma-ray bursts (GRBs) with the goal of determining their detectability with current and future radio facilities. Using a range of GRB properties, such as peak optical brightness and time, isotropic equivalent gamma-ray energy, and redshift, we simulate radio light curves in a framework generalized for any circumburst medium structure and including a parameterization of the shell thickness regime that is more realistic than the simple assumption of thick- or thin-shell approximations. Building on earlier work by Mundell et al. and Melandri et al. in which the typical frequency of the RS was suggested to lie at radio rather than optical wavelengths at early times, we show that the brightest and most distinct RS radio signatures are detectable up to 0.1–1 day after the burst, emphasizing the need for rapid radio follow-up. Detection is easier for bursts with later optical peaks, high isotropic energies, lower circumburst medium densities, and at observing frequencies that are less prone to synchrotron self-absorption effects—typically above a few GHz. Given recent detections of polarized prompt gamma-ray and optical RS emission, we suggest that detection of polarized radio/millimeter emission will unambiguously confirm the presence of low-frequency RSs at early time.

  7. Neutrino bursts from gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Paczynski, Bohdan; Xu, Guohong

    1994-01-01

    If gamma-ray bursts originate at cosmological distances, as strongly indicated by the results from Burst and Transient Source Experiment (BATSE) on the Compton Gamma-Ray Observatory (CGRO), then ultrarelativistic ejecta are the likely consequence of the highly super-Eddington luminosity of the sources. If the energy injection rate varies with time, then the Lorentz factor of the wind also varies, and the shells of ejected matter collide with each other. The collisions between baryons produce pions which decay into high-energy photons, electrons, electron positron pairs, and neutrino pairs. The bulk Lorentz factor of approximately 300 is required if our model is to be compatible with the observed millisecond variability. The strongest gamma-ray bursts are observed to deliver approximately 10(exp -4) ergs/sq cm in 100-200 keV photons. In our scenario more energy may be delivered in a neutrino burst. Typical neutrinos may be approximately 30 GeV if the protons have a Maxwellian energy distribution, and up to approximately TeV if the protons have a power-law distribution. Such neutrino bursts are close to the detection limit of the DUMAND II experiment.

  8. Distribution of Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Diaz Rodriguez, Mariangelly; Smith, M.; Tešic, G.

    2014-01-01

    Gamma-Ray Bursts (GRBs) are known to be bright, irregular flashes of gamma rays that typically last just a few seconds, believed to be caused by stellar collapse or the merger of a pair of compact objects. Through previous work, it has been found that GRBs are distributed roughly uniformly over the entire sky, rather than being confined to the relatively narrow band of the Milky Way. Using the Python programming language, we generated a model of GRBs over cosmological distances, based on current empirical GRB distributions. The grbsim python module uses the acceptance-rejection Monte Carlo method to simulate the luminosity and redshift of a large population of GRBs, including cosmological effects such as dark energy and dark matter terms that modify the large-scale structure of space-time. The results of running grbsim are demonstrated to match the distribution of GRBs observed by the Burst Alert Telescope on NASA’s Swift satellite. The grbsim module will subsequently be used to simulate gamma ray and neutrino events for the Astrophysical Multimessenger Observatory Network.

  9. THE FERMI GAMMA-RAY BURST MONITOR

    SciTech Connect

    Meegan, Charles; Lichti, Giselher; Bissaldi, Elisabetta; Diehl, Roland; Greiner, Jochen; Von Kienlin, Andreas; Steinle, Helmut; Bhat, P. N.; Briggs, Michael S.; Connaughton, Valerie; Paciesas, W. S.; Preece, Robert; Wilson, Robert B.; Fishman, Gerald; Kouveliotou, Chryssa; Van der Horst, Alexander J.; McBreen, Sheila

    2009-09-01

    The Gamma-Ray Burst Monitor (GBM) will significantly augment the science return from the Fermi Observatory in the study of gamma-ray bursts (GRBs). The primary objective of GBM is to extend the energy range over which bursts are observed downward from the energy range of the Large Area Telescope (LAT) on Fermi into the hard X-ray range where extensive previous data sets exist. A secondary objective is to compute burst locations onboard to allow re-orienting the spacecraft so that the LAT can observe delayed emission from bright bursts. GBM uses an array of 12 sodium iodide scintillators and two bismuth germanate scintillators to detect gamma rays from {approx}8 keV to {approx}40 MeV over the full unocculted sky. The onboard trigger threshold is {approx}0.7 photons cm{sup -2} s{sup -1} (50-300 keV, 1 s peak). GBM generates onboard triggers for {approx}250 GRBs per year.

  10. Radiation-induced chromosome aberrations in ataxia telangiectasia cells: high frequency of deletions and misrejoining detected by fluorescence in situ hybridization

    NASA Technical Reports Server (NTRS)

    Kawata, Tetsuya; Ito, Hisao; George, Kerry; Wu, Honglu; Uno, Takashi; Isobe, Kouichi; Cucinotta, Francis A.

    2003-01-01

    The mechanisms underlying the hyper-radiosensitivity of AT cells were investigated by analyzing chromosome aberrations in the G(2) and M phases of the cell cycle using a combination of chemically induced premature chromosome condensation (PCC) and fluorescence in situ hybridization (FISH) with chromosome painting probes. Confluent cultures of normal fibroblast cells (AG1522) and fibroblast cells derived from an individual with AT (GM02052) were exposed to gamma rays and allowed to repair at 37 degrees C for 24 h. At doses that resulted in 10% survival, GM02052 cells were approximately five times more sensitive to gamma rays than AG1522 cells. For a given dose, GM02052 cells contained a much higher frequency of deletions and misrejoining than AG1522 cells. For both cell types, a good correlation was found between the percentage of aberrant cells and cell survival. The average number of color junctions, which represent the frequency of chromosome misrejoining, was also found to correlate well with survival. However, in a similar surviving population of GM02052 and AG1522 cells, induced by 1 Gy and 6 Gy, respectively, AG1522 cells contained four times more color junctions and half as many deletions as GM02052 cells. These results indicate that both repair deficiency and misrepair may be involved in the hyper-radiosensitivity of AT cells.

  11. Radiation-induced chromosome aberrations in ataxia telangiectasia cells: high frequency of deletions and misrejoining detected by fluorescence in situ hybridization

    NASA Technical Reports Server (NTRS)

    Kawata, Tetsuya; Ito, Hisao; George, Kerry; Wu, Honglu; Uno, Takashi; Isobe, Kouichi; Cucinotta, Francis A.

    2003-01-01

    The mechanisms underlying the hyper-radiosensitivity of AT cells were investigated by analyzing chromosome aberrations in the G(2) and M phases of the cell cycle using a combination of chemically induced premature chromosome condensation (PCC) and fluorescence in situ hybridization (FISH) with chromosome painting probes. Confluent cultures of normal fibroblast cells (AG1522) and fibroblast cells derived from an individual with AT (GM02052) were exposed to gamma rays and allowed to repair at 37 degrees C for 24 h. At doses that resulted in 10% survival, GM02052 cells were approximately five times more sensitive to gamma rays than AG1522 cells. For a given dose, GM02052 cells contained a much higher frequency of deletions and misrejoining than AG1522 cells. For both cell types, a good correlation was found between the percentage of aberrant cells and cell survival. The average number of color junctions, which represent the frequency of chromosome misrejoining, was also found to correlate well with survival. However, in a similar surviving population of GM02052 and AG1522 cells, induced by 1 Gy and 6 Gy, respectively, AG1522 cells contained four times more color junctions and half as many deletions as GM02052 cells. These results indicate that both repair deficiency and misrepair may be involved in the hyper-radiosensitivity of AT cells.

  12. Future Prospects for Space-Based Gamma Ray Astronomy

    NASA Astrophysics Data System (ADS)

    McConnell, Mark

    2015-04-01

    The gamma-ray sky offers a unique view into broad range of astrophysical phenomena, from nearby solar flares, to galactic pulsars, to gamma-ray bursts at the furthest reaches of the Universe. The Fermi mission has dramatically demonstrated the broad range of topics that can be addressed by gamma-ray observations. The full range of gamma-ray energies is quite broad, covering the electromagnetic spectrum at energies above about 100 keV. The energy range below several hundred GeV is the domain of space-based gamma-ray observatories, a range that is not completely covered by the Fermi LAT instrument. The gamma ray community has recently embarked on an effort to define the next steps for space-based gamma ray astronomy. These discussions are being facilitated through the Gamma-ray Science Interest Group (GammaSIG), which exists to provide community input to NASA in regards to current and future needs of the gamma-ray astrophysics community. The GammaSIG, as a part of the Physics of the Cosmos Program Analysis Group, provides a forum open to all members of the gamma-ray community. The GammaSIG is currently working to bring the community together with a common vision that will be expressed in the form of a community roadmap. This talk will summarize some of the latest results from active gamma ray observatories, including both Fermi and INTEGRAL, and will summarize the status of the community roadmap effort.

  13. Chromosomal intrachanges induced by swift iron ions

    NASA Astrophysics Data System (ADS)

    Horstmann, M.; Durante, M.; Johannes, C.; Obe, G.

    We measured the induction of aberrations in human chromosome 5 by iron ions using the novel technique of multicolor banding in situ hybridization (mBAND). Human lymphocytes isolated from whole blood were exposed in vitro to 500 MeV/n (LET=200 keV/μ m, doses 1 or 4 Gy) 56Fe nuclei at the HIMAC accelerator in Chiba (Japan). Chromosomes were prematurely condensed by calyculin A after 48 h in culture, and slides were painted by mBAND (MetaSystems). We found a frequency of 0.11 and 0.57 residual breakpoints per chromosome 5 after 1 Gy and 4 Gy Fe-ions, respectively. The distribution per unit length were similar in the p- and q-arm of chromosome 5, and >50% of the observed fragments measured <30% of the whole chromosome length. Only small fragments (<40% of the chromosome size) were involved in intra-chromosomal exchanges (interstitial deletions or inversions), whereas fragments up to 75% of the whole chromosome 5 were found in inter-chromosomal exchanges. We measured more inter-changes than intra-changes, and more intra-arm than inter-arm exchanges at both doses. No significant differences in the ratios of these aberrations were detected with respect to X-rays. On the other hand, Fe-ions induced a significantly higher fraction of complex-type exchanges when compared to sparsely ionizing radiation. Work supported by DLR, BMBF, INTAS and NIRS-HIMAC.

  14. Implications of Gamma-Ray Transparency Constraints in Blazars: Minimum Distances and Gamma-Ray Collimation

    NASA Technical Reports Server (NTRS)

    Becker, Peter A.; Kafatos, Menas

    1995-01-01

    We develop a general expression for the gamma - gamma absorption coefficient, alpha(sub gamma(gamma)) for gamma-rays propagating in an arbitrary direction at an arbitrary point in space above an X-ray-emitting accretion disk. The X-ray intensity is assumed to vary as a power law in energy and radius between the outer disk radius, R(sub 0), and the inner radius, R(sub ms) which is the radius of marginal stability for a Schwarzschild black hole. We use our result for alpha(sub gamma(gamma)) to calculate the gamma - gamma optical depth, tau(sub gamma(gamma)) for gamma - rays created at height z and propagating at angle Phi relative to the disk axis, and we show that for Phi = 0 and z greater than or approx equal to R(sub 0), tau(sub gamma(gamma)) proportional to Epsilon(sup alpha)z(sup -2(alpha) - 3), where alpha is the X-ray spectral index and Epsilon is the gamma - ray energy. As an application, we use our formalism to compute the minimum distance between the central black hole and the site of production of the gamma-rays detected by EGRET during the 1991 June flare of 3C 279. In order to obtain an upper limit, we assume that all of the X-rays observed contemporaneously by Ginga were emitted by the disk. Our results suggest that the observed gamma - rays may have originated within less than or approx equal to 45 GM/sq c from a black hole of mass greater than or approx equal to 10(exp 9) solar mass, perhaps in active plasma located above the central funnel of the accretion disk. This raises the possibility of establishing a direct connection between the production of the observed gamma - rays and the accretion of material onto the black hole. We also consider the variation of the optical depth as a function of the angle of propagation Phi. Our results indicate that the "focusing" of the gamma - rays along the disk axis due to pair production is strong enough to explain the observed degree of alignment in blazar sources. If the gamma - rays are produced isotropically

  15. Chromosomal intrachanges induced by swift iron ions

    NASA Astrophysics Data System (ADS)

    Horstmann, M.; Durante, M.; Johannes, C.; Obe, G.

    We measured the induction of structural aberrations in human chromosome 5 induced by iron ions using the novel technique of multicolor banding in situ hybridization (mBAND). Human lymphocytes isolated from whole blood were exposed in vitro to 500 MeV/n (LET = 200 keV/μm, doses 1 or 4 Gy) Fe nuclei at the HIMAC accelerator in Chiba (Japan). Chromosomes were prematurely condensed by calyculin A after 48 h in culture and slides were painted by mBAND. We found a frequency of 0.11 and 0.57 residual breakpoints per chromosome 5 after 1 and 4 Gy Fe-ions, respectively. Inter-chromosomal exchanges were the prevalent aberration type measured at both doses, followed by terminal deletions, and by intra-chromosomal exchanges. Among intra-chromosomal exchanges, intra-arm events were more frequent than inter-arm, but a significant number of intra-changes was associated to inter-changes involving the same chromosome after 4 Gy of iron ions. These events show that the complexity of chromosomal exchanges induced by heavy ions can be higher than expected by previous FISH studies.

  16. Simulation of prompt gamma-ray emission during proton radiotherapy.

    PubMed

    Verburg, Joost M; Shih, Helen A; Seco, Joao

    2012-09-07

    The measurement of prompt gamma rays emitted from proton-induced nuclear reactions has been proposed as a method to verify in vivo the range of a clinical proton radiotherapy beam. A good understanding of the prompt gamma-ray emission during proton therapy is key to develop a clinically feasible technique, as it can facilitate accurate simulations and uncertainty analysis of gamma detector designs. Also, the gamma production cross-sections may be incorporated as prior knowledge in the reconstruction of the proton range from the measurements. In this work, we performed simulations of proton-induced nuclear reactions with the main elements of human tissue, carbon-12, oxygen-16 and nitrogen-14, using the nuclear reaction models of the GEANT4 and MCNP6 Monte Carlo codes and the dedicated nuclear reaction codes TALYS and EMPIRE. For each code, we made an effort to optimize the input parameters and model selection. The results of the models were compared to available experimental data of discrete gamma line cross-sections. Overall, the dedicated nuclear reaction codes reproduced the experimental data more consistently, while the Monte Carlo codes showed larger discrepancies for a number of gamma lines. The model differences lead to a variation of the total gamma production near the end of the proton range by a factor of about 2. These results indicate a need for additional theoretical and experimental study of proton-induced gamma emission in human tissue.

  17. The solar gamma ray and neutron capabilities of COMPTEL on the Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Ryan, James M.; Lockwood, John A.

    1989-01-01

    The imaging Compton telescope COMPTEL on the Gamma Ray Observatory (GRO) has unusual spectroscopic capabilities for measuring solar gamma-ray and neutron emission. The launch of the GRO is scheduled for June 1990 near the peak of the sunspot cycle. With a 30 to 40 percent probability for the Sun being in the COMPTEL field-of-view during the sunlit part of an orbit, a large number of flares will be observed above the 800 keV gamma-ray threshold of the telescope. The telescope energy range extends to 30 MeV with high time resolution burst spectra available from 0.1 to 10 MeV. Strong Compton tail suppression of instrumental gamma-ray interactions will facilitate improved spectral analysis of solar flare emissions. In addition, the high signal to noise ratio for neutron detection and measurement will provide new neutron spectroscopic capabilities. Specifically, a flare similar to that of 3 June 1982 will provide spectroscopic data on greater than 1500 individual neutrons, enough to construct an unambiguous spectrum in the energy range of 20 to 200 MeV. Details of the instrument and its response to solar gamma-rays and neutrons will be presented.

  18. Fermi Gamma-ray Space Telescope Observations of Gamma-ray Pulsars

    NASA Astrophysics Data System (ADS)

    Saz Parkinson, P. M.

    2009-04-01

    The Large Area Telescope on the recently launched Fermi Gamma-ray Space Telescope (formerly GLAST), with its large field of view and effective area, combined with its excellent timing capabilities, is poised to revolutionize the field of gamma-ray astrophysics. The large improvement in sensitivity over EGRET is expected to result in the discovery of many new gamma-ray pulsars, which in turn should lead to fundamental advances in our understanding of pulsar physics and the role of neutron stars in the Galaxy. Almost immediately after launch, Fermi clearly detected all previously known gamma-ray pulsars and is producing high precision results on these. An extensive radio and X-ray timing campaign of known (primarily radio) pulsars is being carried out in order to facilitate the discovery of new gamma-ray pulsars. In addition, a highly efficient time-differencing technique is being used to conduct blind searches for radio-quiet pulsars, which has already resulted in new discoveries. I present some recent results from searches for pulsars carried out on Fermi data, both blind searches, and using contemporaneous timing of known radio pulsars.

  19. Semiconductor gamma-ray detectors for nuclear medicine

    NASA Astrophysics Data System (ADS)

    Eskin, Joshua Daniel

    Semiconductor-based gamma-ray-imaging detectors are under development for use in high-resolution nuclear medicine imaging applications. These detectors, based on cadmium zinc telluride, hold great promise for delivering improved spatial resolution and detection efficiency over current methods. This dissertation presents work done on three fronts, all directed toward enhancing the practicality of these imaging devices. Electronic readout systems were built to produce gamma-ray images from the raw signals generated by the imagers. Mathematical models were developed to describe the detection process in detail. Finally, a method was developed for recovering the energy spectrum of the original source by using maximum-likelihood estimation techniques. Two electronics systems were built to read out signals from the imaging detectors. The first system takes signals from a 48 x 48-pixel array at 500 k samples per second. Pulse-height histograms are formed for each pixel in the detector, all in real time. A second system was built to read out four 64 x 64 arrays at 4 million pixels per second. This system is based on digital signal processors and flexible software, making it easily adaptable to new imaging tasks. A mathematical model of the detection process was developed as a tool for evaluating possible detector designs. One part of the model describes how the mobile charge carriers, which are released when a gamma ray is absorbed in a photoelectric interaction, induce signals in a readout circuit. Induced signals follow a 'near- field effect,' wherein only carriers moving close to a pixel electrode produce significant signal. Detector pixels having lateral dimensions that are small compared to the detector thickness will develop a signal primarily due to a single carrier type. This effect is confirmed experimentally in time-resolved measurements and with pulse-height spectra. The second part of the model is a simulation of scattering processes that take place when a gamma

  20. Active Neutron and Gamma-Ray Instrumentation for In Situ Planetary Science Applications

    NASA Technical Reports Server (NTRS)

    Parsons, A.; Bodnarik, J.; Evans, L.; Floyd, A.; Lim, L.; McClanahan, T.; Namkung, M.; Nowicki, S.; Schweitzer, J.; Starr, R.; Trombka, J.

    2011-01-01

    We describe the development of an instrument capable of detailed in situ bulk geochemical analysis of the surface of planets, moons, asteroids, and comets. This instrument technology uses a pulsed neutron generator to excite the solid materials of a planet and measures the resulting neutron and gamma-ray emission with its detector system. These time-resolved neutron and gamma-ray data provide detailed information about the bulk elemental composition, chemical context, and density distribution of the soil within 50 cm of the surface. While active neutron scattering and neutron-induced gamma-ray techniques have been used extensively for terrestrial nuclear well logging applications, our goal is to apply these techniques to surface instruments for use on any solid solar system body. As described, experiments at NASA Goddard Space Flight Center use a prototype neutron-induced gamma-ray instrument and the resulting data presented show the promise of this technique for becoming a versatile, robust, workhorse technology for planetary science, and exploration of any of the solid bodies in the solar system. The detection of neutrons at the surface also provides useful information about the material. This paper focuses on the data provided by the gamma-ray detector.

  1. Gamma-ray production cross sections from neutron interactions with iron.

    SciTech Connect

    Nelson, R. O.; Laymon, C. M.; Wender, S. A.; Drake, D. M.; Drosg, Manfred; Bobias, S. G.; McGrath, C. A.

    2002-01-01

    The initial purpose of this experiment was to provide a consistent data base of neutron-induced gamma-ray production cross sections over a large energy range for use in estimating elemental composition of the martian surface by observing gamma rays produced by cosmic ray interactions on the planet's surface [Bo02]. However, these data should be useful for other projects such as oil-well logging, accelerator transmutation of nuclear waste, shielding calculations, gamma-ray heating for nuclear reactors and verification of nuclear model calculations and databases. The goal of the measurements was to collect data on the strongest gamma rays from many samples of interest. Because of the available beam time this meant that many of the measurcments were rather short. Despite the short running time the large samples used and the good beam intensity resulted in very satisfactory results. The samples, chosen mainly as common constituents of rock and soil and measured in the same few week period, include: B&, BN, C, Al, Mg, Si, S, Cay Ti, Cr, Mn, and Fe. Be was also used as a neutron scatterer that only produces one gamma ray (478 keV from 7Li) with appreciable intensity. Thus Be can serve as a measure of neutron-induced backgrounds. In this first paper we present results for Fe.

  2. Active Neutron and Gamma-Ray Instrumentation for In Situ Planetary Science Applications

    NASA Technical Reports Server (NTRS)

    Parsons, A.; Bodnarik, J.; Evans, L.; Floyd, A.; Lim, L.; McClanahan, T.; Namkung, M.; Nowicki, S.; Schweitzer, J.; Starr, R.; hide

    2011-01-01

    We describe the development of an instrument capable of detailed in situ bulk geochemical analysis of the surface of planets, moons, asteroids, and comets. This instrument technology uses a pulsed neutron generator to excite the solid materials of a planet and measures the resulting neutron and gamma-ray emission with its detector system. These time-resolved neutron and gamma-ray data provide detailed information about the bulk elemental composition, chemical context, and density distribution of the soil within 50 cm of the surface. While active neutron scattering and neutron-induced gamma-ray techniques have been used extensively for terrestrial nuclear well logging applications, our goal is to apply these techniques to surface instruments for use on any solid solar system body. As described, experiments at NASA Goddard Space Flight Center use a prototype neutron-induced gamma-ray instrument and the resulting data presented show the promise of this technique for becoming a versatile, robust, workhorse technology for planetary science, and exploration of any of the solid bodies in the solar system. The detection of neutrons at the surface also provides useful information about the material. This paper focuses on the data provided by the gamma-ray detector.

  3. Interpretations and implications of gamma-ray lines from solar flares, the galactic centre and gamma-ray transients

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Lingenfelter, R. E.

    1981-01-01

    Gamma-ray line emission from the Sun results from the nuclear interactions of energetic protons and nuclei with the solar atmosphere. These interactions produce gamma-ray lines from neutron capture, positron annihilation, and nuclear deexcitation. Observation of such gamma-rays can provide unique information on high energy processes at the Sun. Details of solar gamma-ray spectroscopy are discussed along with the galactic center 0.511 MeV line. The richness of astronomy at 0.511 MeV is indicated by the great variety of astrophysical positron production mechanisms and by the many astrophysical sites where such mechanisms could operate. Attention is also given to lines from gamma-ray transients, and the prospects for gamma-ray line detections, taking into account gamma-ray lines from processes of nucleosynthesis and lines from low-energy cosmic ray interactions.

  4. Alterations in transcriptome and proteome on metallothioneins following oxidative stress induced by sublethal doses of cadmium and gamma rays in Plantago ovata.

    PubMed

    Ghoshal, Nirmalya; Talapatra, Shonima; Moulick, Amitava; Chakraborty, Anindita; Raychaudhuri, Sarmistha Sen

    2013-07-01

    To study the oxidative stress-induced changes by sublethal doses of cadmium chloride (CdCl2) and gamma irradiation, two redox-inducing agents, on metallothionein (MT) gene and protein expression in Plantago ovata Forsk (P. ovata). Chlorophyll content was estimated to study the stress response in P. ovata seedlings following exposure to gamma irradiation and CdCl2. Lipid peroxidation and proline content, two oxidative stress markers, were also studied. The level of metallothionein gene and protein expression was further investigated using polymerase chain reaction (PCR), reverse transcription-PCR (RT-PCR), immunocytochemistry and flow cytometry. Three MT genes of P. ovata namely PoMT 1, PoMT 2 and PoMT 3 were isolated, sequenced and characterized and their expressions were found to be altered in the case of both oxidative stresses in a dose-dependent and tissue-specific manner. The results were in agreement with the observations from immunocytochemistry and FACS analysis. The results suggest that both gamma irradiation and CdCl2 alter redox balance in P. ovata. The metallothionein gene may play an important role in metal tolerance and stress balance. It is conjectured that the stress-mediated imbalance is maintained by altered MT gene and protein expression.

  5. CdZnTe gamma ray spectrometer for orbital gamma ray spectroscopy.

    SciTech Connect

    Prettyman, T. H.; Feldman, W. C.; Fuller, K. R.; Storms, S. A.; Soldner, S. A.; Lawrence, David J. ,; Browne, M. C.; Moss, C. E.

    2001-01-01

    We present the design and analysis of a new gamma ray spectrometer for planetary science that uses an array of CdZnTe detectors to achieve the detection efficiency needed for orbital measurements. The use of CdZnTe will provide significantly improved pulse height resolution relative to scintillation-based detectors, with commensurate improvement in the accuracy of elemental abundances determined by gamma ray and neutron spectroscopy. The spectrometer can be flown either on the instrument deck of the spacecraft or on a boom. For deck-mounted systems, a BGO anticoincidence shield is included in the design to suppress the response of the CdZnTe detector to gamma rays that originate in the spacecraft. The BGO shield also serves as a backup spectrometer, providing heritage from earlier planetary science missions and reducing the risk associated with the implementation of new technology.

  6. Accelerated Emission of Gamma Rays from the 31-yr Isomer of {sup 178 }Hf Induced by X-Ray Irradiation

    SciTech Connect

    Collins, C.B.; Davanloo, F.; Iosif, M.C.; Dussart, R.; Hicks, J.M.; Karamian, S.A.; Ur, C.A.; Popescu, I.I.; Kirischuk, V.I.; Carroll, J.J.; Roberts, H.E.; McDaniel, P.; Crist, C.E.

    1999-01-01

    A sample of 6.3{times}10{sup 14} nuclei of the 4-quasiparticle isomer of {sup 178}Hf having a half-life of 31thinspthinspyr and excitation energy of 2.446thinspthinspMeV was irradiated with x-ray pulses from a device typically used in dental medicine. It was operated at 15thinspthinspmA to produce bremsstrahlung radiation with an end point energy set to be 70 or 90thinspthinspkeV. Spectra of the isomeric target were taken with a high purity Ge detector. Intensities of selected transitions in the normal decay cascade of the {sup 178}Hf isomer were found to increase by about 4{percent} . Such an accelerated decay is consistent with an integrated cross section of 1{times}10{sup {minus}21}thinspcm{sup 2}thinspkeV for the resonant absorption of x rays to induce gamma decay. {copyright} {ital 1999} {ital The American Physical Society }

  7. Near-infrared and gamma-ray monitoring of TANAMI gamma-ray bright sources

    SciTech Connect

    Nesci, R.; Tosti, G.; Pursimo, T.; Ojha, R.; Kadler, M.

    2013-06-18

    Context. We present that spectral energy distribution and its variability are basic tools for understanding the physical processes operating in active galactic nuclei (AGN). Aims. In this paper we report the results of a one-year near-infrared (NIR) and optical monitoring of a sample of 22 AGN known to be gamma-ray emitters, aimed at discovering correlations between optical and gamma-ray emission. Methods. We observed our objects with the Rapid Eye Mount (REM) telescope in J,H,K, and R bands nearly twice every month during their visibility window and derived light curves and spectral indexes. We also analyzed the gamma-ray data from the Fermi gamma-ray Space Telescope, making weekly averages. Results. Six sources were never detected during our monitoring, proving to be fainter than their historical Two micron all sky survey (2MASS) level. All of the sixteen detected sources showed marked flux density variability, while the spectral indexes remained unchanged within our sensitivity limits. Steeper sources showed, on average, a larger variability. From the NIR light curves we also computed a variability speed index for each detected source. Only one source (PKS 0208-512) underwent an NIR flare during our monitoring. Half of the sources showed a regular flux density trend on a one-year time scale, but do not show any other peculiar characteristic. The broadband spectral index αro appears to be a good proxy of the NIR spectral index only for BL Lac objects. No clear correlation between NIR and gamma-ray data is evident in our data, save for PKS 0537-441, PKS 0521-360, PKS 2155-304, and PKS 1424-418. In conclusion, the gamma-ray/NIR flux ratio showed a large spread, QSO being generally gamma-louder than BL Lac, with a marked correlation with the estimated peak frequency (νpeak) of the synchrotron emission.

  8. Near-infrared and gamma-ray monitoring of TANAMI gamma-ray bright sources

    DOE PAGES

    Nesci, R.; Tosti, G.; Pursimo, T.; ...

    2013-06-18

    Context. We present that spectral energy distribution and its variability are basic tools for understanding the physical processes operating in active galactic nuclei (AGN). Aims. In this paper we report the results of a one-year near-infrared (NIR) and optical monitoring of a sample of 22 AGN known to be gamma-ray emitters, aimed at discovering correlations between optical and gamma-ray emission. Methods. We observed our objects with the Rapid Eye Mount (REM) telescope in J,H,K, and R bands nearly twice every month during their visibility window and derived light curves and spectral indexes. We also analyzed the gamma-ray data from themore » Fermi gamma-ray Space Telescope, making weekly averages. Results. Six sources were never detected during our monitoring, proving to be fainter than their historical Two micron all sky survey (2MASS) level. All of the sixteen detected sources showed marked flux density variability, while the spectral indexes remained unchanged within our sensitivity limits. Steeper sources showed, on average, a larger variability. From the NIR light curves we also computed a variability speed index for each detected source. Only one source (PKS 0208-512) underwent an NIR flare during our monitoring. Half of the sources showed a regular flux density trend on a one-year time scale, but do not show any other peculiar characteristic. The broadband spectral index αro appears to be a good proxy of the NIR spectral index only for BL Lac objects. No clear correlation between NIR and gamma-ray data is evident in our data, save for PKS 0537-441, PKS 0521-360, PKS 2155-304, and PKS 1424-418. In conclusion, the gamma-ray/NIR flux ratio showed a large spread, QSO being generally gamma-louder than BL Lac, with a marked correlation with the estimated peak frequency (νpeak) of the synchrotron emission.« less

  9. Gadolinium-doped water cerenkov-based neutron and high energy gamma-ray detector and radiation portal monitoring system

    DOEpatents

    Dazeley, Steven A; Svoboda, Robert C; Bernstein, Adam; Bowden, Nathaniel

    2013-02-12

    A water Cerenkov-based neutron and high energy gamma ray detector and radiation portal monitoring system using water doped with a Gadolinium (Gd)-based compound as the Cerenkov radiator. An optically opaque enclosure is provided surrounding a detection chamber filled with the Cerenkov radiator, and photomultipliers are optically connected to the detect Cerenkov radiation generated by the Cerenkov radiator from incident high energy gamma rays or gamma rays induced by neutron capture on the Gd of incident neutrons from a fission source. The PMT signals are then used to determine time correlations indicative of neutron multiplicity events characteristic of a fission source.

  10. Gamma ray irradiated silicon nanowires: An effective model to investigate defects at the interface of Si/SiOx

    SciTech Connect

    Yin, Kui; Zhao, Yi; Liu, Liangbin; Lee, Shuit-Tong; Shao, Mingwang E-mail: xuegi@nju.edu.cn; Wang, Xiaoliang E-mail: xuegi@nju.edu.cn Xue, Gi E-mail: xuegi@nju.edu.cn

    2014-01-20

    The effect of gamma ray irradiation on silicon nanowires was investigated. Here, an additional defect emerged in the gamma-ray-irradiated silicon nanowires and was confirmed with electron spin resonance spectra. {sup 29}Si nuclear magnetic resonance spectroscopy showed that irradiation doses had influence on the Q{sup 4} unit structure. This phenomenon indicated that the unique core/shell structure of silicon nanowires might contribute to induce metastable defects under gamma ray irradiation, which served as a satisfactory model to investigate defects at the interface of Si/SiOx.

  11. Future Prospects for Space-Based Gamma Ray Astronomy

    NASA Astrophysics Data System (ADS)

    McConnell, Mark

    2016-03-01

    The gamma-ray sky offers a unique view into broad range of high energy astrophysical phenomena, from nearby solar flares, to galactic pulsars, to gamma-ray bursts at the furthest reaches of the Universe. In recent years, results from the Fermi mission have further demonstrated the broad range of topics that can be addressed by gamma-ray observations. The full range of gamma-ray energies is quite broad, from about 100 keV up to about 100 TeV. The energy range below several hundred GeV is the domain of space-based gamma-ray observatories, a range that is not completely covered by the Fermi LAT instrument. The gamma ray community has embarked on an effort to define the next steps for space-based gamma ray astronomy. These discussions are being facilitated through the Gamma-ray Science Interest Group (GammaSIG), which exists to provide community input to NASA in regards to current and future needs of the gamma-ray astrophysics community. Through a series of workshops and symposia, the GammaSIG is working to bring the community together with one common vision, a vision that will be expressed in the form of a community roadmap. This talk will summarize some of the latest results from active gamma ray observatories and will summarize the status of the community roadmap effort.

  12. Gamma ray burst outflows and afterglows

    NASA Astrophysics Data System (ADS)

    Morsony, Brian J.

    2008-08-01

    We carry out a theoretical investigation of jet propagation in Gamma Ray Bursts and examine the jitter radiation mechanism as a means of producing prompt and afterglow emission. We study the long-term evolution of relativistic jets in collapsars and examine the effects of viewing angle on the subsequent gamma ray bursts. Our simulations allow us to single out three phases in the jet evolution: a precursor phase in which relativistic material turbulently shed from the head of the jet first emerges from the star; a shocked jet phase where a fully shocked jet of material is emerging; and an unshocked jet phase where the jet consists of a free-streaming, unshocked core surrounded by a thin boundary layer of shocked jet material. We also carry out a series of simulations with central engines that vary on long time periods comparable to the breakout time of the jet, on short time periods (0.1s) much less than the breakout time, and finally that decay as a power law at late times. We conclude that rapid variability seen in prompt GRB emission, as well as shallow decays and flares seen in the X-ray afterglow, can be caused by central engine variability. Finally, we present a detailed computation of the jitter radiation spectrum, including self-absorption, for electrons inside Weibel-like shock- generated magnetic fields. We apply our results to the case of the prompt and afterglow emission of gamma-ray bursts. We conclude that jitter and synchrotron afterglows can be distinguished from each other with good quality observations. However, it is unlikely that the difference can explain the peculiar behavior of several recent observations, such as flat X-ray slopes and uncorrelated optical and X-ray behavior.

  13. Common Gamma-ray Glows above Thunderclouds

    NASA Astrophysics Data System (ADS)

    Kelley, Nicole; Smith, David; Dwyer, Joseph; Hazelton, Bryna; Grefenstette, Brian; Lowell, Alex; Splitt, Michael; Lazarus, Steven; Rassoul, Hamid

    2013-04-01

    Gamma-ray glows are continuous, long duration gamma- and x-ray emission seen coming from thunderclouds. The Airborne for Energetic Lightning Emissions (ADELE) observed 12 gamma-ray glows during its summer 2009 flight campaign over the areas of Colorado and Florida in the United States. For these glows we shall present their spectra, relationship to lightning activity and how their duration and size changes as a function of distance. Gamma-ray glows follow the relativistic runaway electron avalanche (RREA) spectrum and have been previously measured from the ground and inside the cloud. ADELE measured most glows as it flew above the screening layer of the cloud. During the brightest glow on August 21, 2009, we can show that we are flying directly into a downward facing relativistic runaway avalanche, indicative of flying between the upper positive and negative screening layer of the cloud. In order to explain the brightness of this glow, RREA with an electric field approaching the limit for relativistic feedback must be occurring. Using all 12 glows, we show that lightning activity diminishes during the onset of the glow. Using this along with the fact that glows occur as the field approaches the level necessary for feedback, we attempt to distinguish between two possibilities: that glows are evidence that RREA with feedback, rather than lightning, is sometimes the primary channel for discharging the cloud, or else that the overall discharging is still controlled by lightning, with glows simply appearing during times when a subsidence of lightning allows the field to rise above the threshold for RREA.

  14. Gamma Ray Bursts: an Enigma Being Unraveled

    SciTech Connect

    De Rujula, Alvaro

    2003-05-14

    The best astrophysical accelerators are quasars and the 'progenitors' of GRBs which, after decades of observations and scores of theories, we still do not understand. But, I shall argue, we now know quite well where GRBs come from, and we understand how their 'beams' behave, as they make short pulses of gamma rays and long-duration X-ray, optical and radio 'afterglows'. I shall argue that our understanding of these phenomena, based on the 'Cannonball Model', is unusually simple, precise and successful. The 'sociology' of GRBs is interesting per se and, in this sense, the avatars of the Cannonball Model in confronting the generally accepted 'fireball models' are also quite revealing.

  15. Gamma ray emission and solar flares

    NASA Technical Reports Server (NTRS)

    Lin, R. P.; Ramaty, R.

    1978-01-01

    Solar gamma ray line and continuum emission provide information about particle acceleration and its temporal behavior; the energy spectrum, composition and directivity of the accelerated particles; and the composition, density and temperatures of the ambient medium. These data, coupled with the comprehensive photon and particle observations available for the sun, give a detailed picture of the particle acceleration and flare energy release processes. Additional information on elemental and isotopic abundances, surface nuclear reactions and coronal heating mechanisms can be obtained. Implications of present observations and the potential return from future observational are discussed.

  16. Multiwavelength Studies of gamma-ray Binaries

    NASA Astrophysics Data System (ADS)

    Aragona, Christina

    2011-01-01

    High mass X-ray binaries (HMXBs) consist of an O or B star orbited by either a neutron star or a black hole. Of the 114 known Galactic HMXBs, a handful of these objects, dubbed gamma-ray binaries, have been observed to produce MeV-TeV emission. The very high energy emission can be produced either by accretion from the stellar wind onto a black hole or a collision between the stellar wind and a relativistic pulsar wind. Both these scenarios make gamma-ray binaries valuable nearby systems for studying the physics of shocks and jets. Currently, the nature of the compact object and the high energy production mechanism is unknown or unconfirmed in over half of these systems. My goal for this dissertation is to constrain the parameters describing two of these systems: LS 5039 and HD 259440. LS 5039 exhibits gamma-ray emission modulated with its orbital period. The system consists of an ON6.5V((f)) star and an unidentified compact companion. Using optical spectra from the CTIO 1.5m telescope, we found LS 5039 to have an orbital period of 3.90608 d and an eccentricity of 0.337. Spectra of the Halpha line observed with SOAR indicate a mass loss rate of ˜ 1.9x10 -8 M yr-1. Observations taken with ATCA at 13 cm, 6 cm, and 3 cm indicate radio fluxes between 10--40 mJy. The measurements show variability with time, indicating a source other than thermal emission from the stellar wind. HD 259440 is a B0pe star that was proposed as the optical counterpart to the gamma-ray source HESS J0632+057. Using optical spectra from the KPNO CF, KPNO 2.1m, and OHP telescopes, we find a best fit stellar effective temperature of 27500--30000 K, a log surface gravity of 3.75--4.0, a mass of 13.2--19.0 Msolar, and a radius of 6.0--9.6 Rsolar. By fitting the spectral energy distribution, we find a distance between 1.1--1.7 kpc. We do not detect any significant radial velocity shifts in our data, ruling out orbital periods shorter than one month. If HD 259440 is a binary, it is likely a long

  17. Gamma ray bursts from extragalactic sources

    NASA Technical Reports Server (NTRS)

    Hoyle, Fred; Burbidge, Geoffrey

    1992-01-01

    The properties of gamma ray bursts of classical type are found to be explicable in terms of high speed collisions between stars. A model is proposed in which the frequency of such collisions can be calculated. The model is then applied to the nuclei of galaxies in general on the basis that galaxies, or at least some fraction of them, originate in the expulsion of stars from creation centers. Evidence that low level activity of this kind is also taking place at the center of our own Galaxy is discussed. The implications for galactic evolution are discussed and a negative view of black holes is taken.

  18. Very high energy gamma ray astrophysics

    NASA Astrophysics Data System (ADS)

    Lamb, R. C.

    1983-03-01

    Sources of very high energy gamma rays (E(BETA) (11) eV) and improvement of the instrumentation of detectors in this energy regime were investigated. Approximately 4 x 10(5) Cerepkov air shower events from the region of Cygnus X-3 and the Crab nebula were collected with the JPL instrumentation during the fall of 1982. Significant improvement on the 1981 sensitivity to source variations and the development of a Cerenkov air shower camera are reported. A suitable mirror and mount for use as a detector auxiliary to the primary 10 inch Mt. Hopkins detector is located.

  19. THE ORTHOGONAL GAMMA-RAY BURST MODEL

    SciTech Connect

    Contopoulos, Ioannis; Pugliese, Daniela; Nathanail, Antonios

    2014-01-01

    We explore the analogy between a rotating magnetized black hole and an axisymmetric pulsar and derive the black hole's electromagnetic spindown after its formation in the core collapse of a supermassive star. The spindown shows two characteristic phases: an early Blandford-Znajek phase that lasts a few hundred seconds and a late pulsar-like afterglow phase that lasts much longer. During the first phase, the spindown luminosity decreases almost exponentially, whereas during the afterglow phase it decreases as t {sup –a} with 1 ≲ a ≲ 1.5. We associate our findings with long duration gamma-ray bursts and compare them with observations.

  20. Gamma-ray burster counterparts - Radio

    NASA Technical Reports Server (NTRS)

    Schaefer, Bradley E.; Cline, Thomas L.; Desai, U. D.; Teegarden, B. J.; Atteia, J.-L.; Barat, C.; Estulin, I. V.; Evans, W. D.; Fenimore, E. E.; Hurley, K.

    1989-01-01

    Many observers and theorists have suggested that gamma-ray bursters (GRBs) are related to highly magnetized rotating, neutron stars, in which case an analogy with pulsars implies that GRBs would be prodigious emitters of polarized radio emission during quiescence. The paper reports on a survey conducted with the Very Large Array radio telescope of 10 small GRB error regions for quiescent radio emission at wavelengths of 2, 6, and 20 cm. The sensitivity of the survey varied from 0.1 to 0.8 mJy. The observations did indeed reveal four radio sources inside the GRB error regions.