Sample records for gamma-secretase inhibitor dapt

  1. PDGFB as a vascular normalization agent in an ovarian cancer model treated with a gamma-secretase inhibitor.

    PubMed

    Pazos, Maria C; Sequeira, Gonzalo; Bocchicchio, Sebastian; May, Maria; Abramovich, Dalhia; Parborell, Fernanda; Tesone, Marta; Irusta, Griselda

    2018-08-01

    Ovarian cancer is the fifth leading cause of cancer-related deaths in women. In the past 20 years, the canonical types of drugs used to treat ovarian cancer have not been replaced and the survival rates have not changed. These facts show the clear need to find new therapeutic strategies for this illness. Thus, the aim of the present study was to investigate the effect of a gamma-secretase inhibitor (DAPT) in combination with the Platelet-derived growth factor B (PDGFB) on an ovarian cancer xenograft model. To achieve this goal, we analyzed the effect of the administration of DAPT alone and the co-administration of DAPT and recombinant PDGFB on parameters associated with tumor growth and angiogenesis in an orthotopic experimental model of ovarian cancer. We observed that the dose of DAPT used was ineffective to reduce ovarian tumor growth, but showed anticancer activity when co-administered with recombinant PDGFB. The administration of PDGFB alone normalized tumor vasculature by increasing periendothelial coverage and vascular functionality. Interestingly, this effect exerted by PDGFB was also observed in the presence of DAPT. Our findings suggest that PDGFB is able to improve tumor vascularity and allows the anticancer action of DAPT in the tumor. We propose that this therapeutic strategy could be a new tool for ovarian cancer treatment and deserves further studies. © 2017 Wiley Periodicals, Inc.

  2. A new series of potent benzodiazepine gamma-secretase inhibitors.

    PubMed

    Churcher, Ian; Ashton, Kate; Butcher, John W; Clarke, Earl E; Harrison, Timothy; Lewis, Huw D; Owens, Andrew P; Teall, Martin R; Williams, Susie; Wrigley, Jonathan D J

    2003-01-20

    A new series of benzodiazepine-containing gamma-secretase inhibitors with potential use in the treatment of Alzheimer's disease is disclosed. Structure-activity relationships of the pendant hydrocinnamate side-chain which led to the preparation of highly potent inhibitors are described.

  3. 4-substituted cyclohexyl sulfones as potent, orally active gamma-secretase inhibitors.

    PubMed

    Churcher, Ian; Beher, Dirk; Best, Jonathan D; Castro, José L; Clarke, Earl E; Gentry, Amy; Harrison, Timothy; Hitzel, Laure; Kay, Euan; Kerrad, Sonia; Lewis, Huw D; Morentin-Gutierrez, Pablo; Mortishire-Smith, Russell; Oakley, Paul J; Reilly, Michael; Shaw, Duncan E; Shearman, Mark S; Teall, Martin R; Williams, Susie; Wrigley, Jonathan D J

    2006-01-15

    The protease gamma-secretase plays a pivotal role in the synthesis of pathogenic amyloid-beta in Alzheimer's disease (AD). Here, we report a further extension to a series of cyclohexyl sulfone-based gamma-secretase inhibitors which has allowed the preparation of highly potent compounds which also demonstrate robust Abeta(40) lowering in vivo (e.g., compound 32, MED 1mg/kg p.o. in APP-YAC mice).

  4. Pharmacological evidences for DFK167-sensitive presenilin-independent gamma-secretase-like activity.

    PubMed

    Sevalle, Jean; Ayral, Erwan; Hernandez, Jean-François; Martinez, Jean; Checler, Frédéric

    2009-07-01

    Amyloid-beta (Abeta) peptides production is thought to be a key event in the neurodegenerative process ultimately leading to Alzheimer's disease (AD) pathology. A bulk of studies concur to propose that the C-terminal moiety of Abeta is released from its precursor beta-amyloid precursor protein by a high molecular weight enzymatic complex referred to as gamma-secretase, that is composed of at least, nicastrin (NCT), Aph-1, Pen-2, and presenilins (PS) 1 or 2. They are thought to harbor the gamma-secretase catalytic activity. However, several lines of evidence suggest that additional gamma-secretase-like activities could potentially contribute to Abeta production. By means of a quenched fluorimetric substrate (JMV2660) mimicking the beta-amyloid precursor protein sequence targeted by gamma-secretase, we first show that as expected, this probe allows monitoring of an activity detectable in several cell systems including the neuronal cell line telencephalon specific murine neurons (TSM1). This activity is reduced by DFK167, N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT), and LY68458, three inhibitors known to functionally interact with PS. Interestingly, JMV2660 but not the unrelated peptide JMV2692, inhibits Abeta production in an in vitrogamma-secretase assay as expected from a putative substrate competitor. This activity is enhanced by PS1 and PS2 mutations known to be responsible for familial forms of AD and reduced by aspartyl mutations inactivating PS or in cells devoid of PS or NCT. However, we clearly establish that residual JMV2660-hydrolysing activity could be recovered in PS- and NCT-deficient fibroblasts and that this activity remained inhibited by DFK167. Overall, our study describes the presence of a proteolytic activity displaying gamma-secretase-like properties but independent of PS and still blocked by DFK167, suggesting that the PS-dependent complex could not be the unique gamma-secretase activity responsible for Abeta

  5. Inhibition of gamma-secretase by the CK1 inhibitor IC261 does not depend on CK1delta.

    PubMed

    Höttecke, Nicole; Liebeck, Miriam; Baumann, Karlheinz; Schubenel, Robert; Winkler, Edith; Steiner, Harald; Schmidt, Boris

    2010-05-01

    CK1 and gamma-secretase are interesting targets for therapeutic intervention in the treatment of cancer and Alzheimer's disease. The CK1 inhibitor IC261 was reported to inhibit gamma-secretase activity. The question is: Does CK1 inhibition directly influence gamma-secretase activity? Therefore we analyzed the SAR of 15 analogues and their impact on gamma-secretase activity. The most active compounds were investigated on CK1delta activity. These findings exclude a direct influence of CK1delta on gamma-secretase, because any change in the substitution pattern of IC261 diminished CK1 inhibition, whereas gamma-secretase inhibition is still exerted by several analogues. 2010 Elsevier Ltd. All rights reserved.

  6. Effects of {gamma}-secretase inhibition on the proliferation and vitamin D{sub 3} induced osteogenesis in adipose derived stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jing, Wei; Xiong, Zhonghua; Cai, Xiaoxiao

    2010-02-12

    As a {gamma}-secretase inhibitor, DAPT has been widely used to evaluate the biological behaviors and Notch signaling pathway in various cells. This study was aimed to examine the effects of DAPT on the growth and vitamin D{sub 3} induced osteogenesis in adipose derived stem cells (ASCs). The cells were treated with or without DAPT and induced to osteoblastic lineage in the presence of vitamin D{sub 3}. Alizarin red staining and real-time PCR results indicated that the addition of DAPT to vitamin D{sub 3} treatments enhanced osteogenesis in ASCs. According to the fold increase and colony-forming unit assay results, the cellsmore » cultured in DAPT exhibited lower proliferation rate than those cultured in control medium. Hey1, expressed in the nucleus of ASCs to act as a transcriptional repressor, was downregulated when Notch signaling was inhibited by DAPT. Whereas the expression of Runx2 increased in the nucleus of osteogenic induced ASCs after DAPT treatment. This study demonstrated that DAPT reduced the proliferation and enhanced the osteogenesis in ASCs via regulation of Notch and Runx2 expression.« less

  7. Modulators and inhibitors of gamma- and beta-secretases.

    PubMed

    Schmidt, Boris; Baumann, Stefanie; Narlawar, Rajeshwar; Braun, Hannes A; Larbig, Gregor

    2006-01-01

    Most gene mutations associated with Alzheimer's disease point to the metabolism of amyloid precursor protein as a potential cause. The beta- and gamma-secretases are two executioners of amyloid precursor protein processing resulting in amyloid-beta. Significant progress has been made in the selective inhibition of both proteases, regardless of structural information for gamma-secretase. Several peptidic and nonpeptidic leads were identified for both targets. Copyright 2006 S. Karger AG, Basel.

  8. Inhibition of gamma-secretase in Notch1 signaling pathway as a novel treatment for ovarian cancer.

    PubMed

    Feng, Zhaoyi; Xu, Wandong; Zhang, Chenguang; Liu, Mengran; Wen, Hongwu

    2017-01-31

    Epithelial ovarian cancer (EOC) is the leading cause of death for gynecological cancer. Most patients are not diagnosed until the cancer is at an advanced stage with poor prognosis. Notch1 signaling pathway plays an oncogenic role in EOC. There have been few studies on enzymatic activity of γ-secretase and the mechanism of how γ-secretase inhibitor works on cancer cell. Here, we show that Jagged1 and NICD were highly expressed in ovarian carcinoma. The expressions of Notch1, Jagged1 and NICD in Notch1 pathway did not correlate with outcome in ovarian cancer. The enzymatic activity of γ-secretase in ovarian cancer cell lines SKOV3, CAOV3 and ES2 is significantly higher than in normal ovarian epithelial cell line T29. DAPT (a γ-secretase inhibitor) reduced the enzymatic activity of γ-secretase, inhibited the proliferation, and increased the apoptosis in ovarian cancer cell lines. Hence, γ-secretase inhibitor may become a highly promising novel therapeutic strategy against ovarian cancer in the field of precision medicine.

  9. Involvement of {gamma}-secretase in postnatal angiogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayashi, Hiroki; Nakagami, Hironori; Takami, Yoichi

    2007-11-23

    {gamma}-Secretase cleaves the transmembrane domains of several integral membrane proteins involved in vasculogenesis. Here, we investigated the role of {gamma}-secretase in the regulation of postnatal angiogenesis using {gamma}-secretase inhibitors (GSI). In endothelial cell (EC), {gamma}-secretase activity was up-regulated under hypoxia or the treatment of vascular endothelial growth factor (VEGF). The treatment of GSI significantly attenuated growth factor-induced EC proliferation and migration as well as c-fos promoter activity in a dose-dependent manner. In vascular smooth muscle cell (VSMC), treatment of GSI significantly attenuated growth factor-induced VEGF and fibroblast growth factor-2 (FGF-2) expression. Indeed, GSI attenuated VEGF-induced tube formation and inhibited FGF-2-inducedmore » angiogenesis on matrigel in mice as quantified by FITC-lectin staining of EC. Overall, we demonstrated that {gamma}-secretase may be key molecule in postnatal angiogenesis which may be downstream molecule of growth factor-induced growth and migration in EC, and regulate the expression of angiogenic growth factors in VSMC.« less

  10. Inhibitors and modulators of beta- and gamma-secretase.

    PubMed

    Schmidt, Boris; Baumann, Stefanie; Braun, Hannes A; Larbig, Gregor

    2006-01-01

    Most gene mutations associated with Alzheimer's disease point to the metabolism of amyloid precursor protein as potential cause. The beta- and gamma-secretases are two executioners of amyloid precursor protein processing resulting in amyloid beta. Significant progress has been made in the selective inhibition of both proteases, regardless of structural information for gamma-secretase. Several peptidic and non-peptidic leads were identified and first drug candidates are in clinical trials. This review focuses on the developments since 2003.

  11. Effects of an inhibitor of the γ-secretase complex on proliferation and apoptotic parameters in a FOXL2-mutated granulosa tumor cell line (KGN).

    PubMed

    Irusta, Griselda; Pazos, Maria Camila; Maidana, Camila Pazos; Abramovich, Dalhia; De Zúñiga, Ignacio; Parborell, Fernanda; Tesone, Marta

    2013-07-01

    Ovarian granulosa cell tumors (GCTs) represent 3%-5% of all ovarian malignancies. Treatments have limited proven efficacy and biologically targeted treatment is lacking. The aim of this study was to investigate the role of Notch signaling in the proliferation, steroidogenesis, apoptosis, and phosphatidylinositol 3-kinase (PI3K)/AKT pathway in a FOXL2-mutated granulosa tumor cell line (KGN) representative of the adult form of GCTs. When Notch signaling is initiated, the receptors expose a cleavage site in the extracellular domain to the metalloproteinase TACE and, following this cleavage, Notch undergoes another cleavage mediated by the presenilin-gamma-secretase complex. To achieve our goal, DAPT, an inhibitor of the gamma-secretase complex, was used to investigate the role of the Notch system in parameters associated with cell growth and death, using a human granulosa cell tumor line (KGN) as an experimental model. We observed that JAGGED1, DLL4, NOTCH1, and NOTCH4 were highly expressed in KGN cells as compared to granulosa-lutein cells obtained from assisted reproductive techniques patients. The proliferation and viability of KGN cells, as well as progesterone and estradiol production, decreased in the presence of 20 μM DAPT. Apoptotic parameters like PARP and caspase 8 cleavages, BAX, and BCLXs increased in KGN cells cultured with DAPT, whereas others such as BCL2, BCLXl, FAS, and FAS ligand did not change. AKT phosphorylation decreased and PTEN protein increased when Notch signaling was inhibited in KGN cells. We conclude that the Notch system acts as a survival pathway in KGN cells, and might be interacting with the PI3K/AKT pathway.

  12. Regulation of gamma-Secretase in Alzheimer's Disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Shuxia; Zhou, Hua; Walian, Peter

    2007-02-07

    The {gamma}-secretase complex is an intramembrane aspartyl protease that cleaves its substrates along their transmembrane regions. Sequential proteolytic processing of amyloid precursor protein by {beta}- and {gamma}-secretase produces amyloid {beta}-peptides, which are the major components of amyloid plaques in the brains of Alzheimer's disease patients. The {gamma}-secretase complex is therefore believed to be critical in the pathogenesis of Alzheimer's disease. Here we review the range of factors found to affect the nature and degree of {gamma}-secretase complex activity; these include {gamma}-secretase complex assembly and activation, the integral regulatory subunit CD147, transient or weak binding partners, the levels of cholesterol andmore » sphingolipids in cell membranes, and inflammatory cytokines. Integrated knowledge of the molecular mechanisms supporting the actions of these factors is expected to lead to a comprehensive understanding of the functional regulation of the {gamma}-secretase complex, and this, in turn, should facilitate the development of novel therapeutic strategies for the treatment of Alzheimer's disease.« less

  13. Gamma-secretase inhibitors reverse glucocorticoid resistance in T-ALL

    PubMed Central

    Real, Pedro J.; Tosello, Valeria; Palomero, Teresa; Castillo, Mireia; Hernando, Eva; de Stanchina, Elisa; Sulis, Maria Luisa; Barnes, Kelly; Sawai, Catherine; Homminga, Irene; Meijerink, Jules; Aifantis, Iannis; Basso, Giuseppe; Cordon-Cardo, Carlos; Ai, Walden; Ferrando, Adolfo

    2009-01-01

    Summary Gamma-secretase inhibitors (GSIs) block the activation of oncogenic NOTCH1 in T-cell acute lymphoblastic leukemia (T-ALL). However, limited antileukemic cytotoxicity and severe gastrointestinal toxicity have restricted the clinical application of these targeted drugs. Here we show that combination therapy with GSIs plus glucocorticoids can improve the antileukemic effects of GSIs and reduce their gut toxicity in vivo. Inhibition of NOTCH1 signaling in glucocorticoid-resistant T-ALL restored glucocorticoid receptor auto-up-regulation and induced apoptotic cell death through induction of BIM expression. GSI treatment resulted in cell cycle arrest and accumulation of goblet cells in the gut mediated by upregulation of Klf4, a negative regulator of cell cycle required for goblet cell differentiation. In contrast, glucocorticoid treatment induced transcriptional upregulation of Ccnd2 and protected mice from developing intestinal goblet cell metaplasia typically induced by inhibition of NOTCH signaling with GSIs. These results support a role for glucocorticoids plus GSIs in the treatment of glucocorticoid-resistant T-ALL. PMID:19098907

  14. A gamma-secretase inhibitor decreases amyloid-beta production in the central nervous system

    PubMed Central

    Bateman, Randall J.; Siemers, Eric R.; Mawuenyega, Kwasi G.; Wen, Guolin; Browning, Karen R.; Sigurdson, Wendy C.; Yarasheski, Kevin E.; Friedrich, Stuart W.; DeMattos, Ronald B.; May, Patrick C.; Paul, Steven M.; Holtzman, David M.

    2009-01-01

    Objective Accumulation of amyloid-β (Aβ) by over-production or under-clearance in the central nervous system is hypothesized to be a necessary event in the pathogenesis of Alzheimer Disease. However, previously there has not been a method to determine drug effects on Aβ production or clearance in the human central nervous system. The objective of this study was to determine the effects of a gamma-secretase inhibitor on the production of Aβ in the human CNS. Methods We utilized a recently developed method of stable-isotope labeling combined with cerebrospinal fluid sampling to directly measure Aβ production during treatment of a gamma-secretase inhibitor, LY450139. We assessed whether this drug could decrease central nervous system Aβ production in healthy men (age 21–50) at single oral doses of 100mg, 140mg, or 280mg (N=5 per group). Results LY450139 significantly decreased the production of central nervous system Aβ in a dose-dependent fashion, with inhibition of Aβ generation of 47%, 52%, and 84% over a 12 hour period with doses of 100 mg, 140, and 280 mg respectively. There was no difference in Aβ clearance. Interpretation Stable isotope labeling of central nervous system proteins can be utilized to assess the effects of drugs on the production and clearance rates of proteins targeted as potential disease modifying treatments for Alzheimer Disease and other central nervous system disorders. Results from this approach can assist in making decisions about drug dosing and frequency in the design of larger and longer clinical trials for diseases such as Alzheimer Disease, and may accelerate effective drug validation. PMID:19360898

  15. Rat brain gamma-secretase activity is highly influenced by detergents.

    PubMed

    Frånberg, Jenny; Welander, Hedvig; Aoki, Mikio; Winblad, Bengt; Tjernberg, Lars O; Frykman, Susanne

    2007-06-26

    Gamma-secretase is important for the development of Alzheimer's disease, since it is a crucial enzyme for the generation of the pathogenic amyloid beta-peptide (Abeta). Most data on gamma-secretase is derived from studies in cell lines overexpressing gamma-secretase components or amyloid precursor protein (APP), and since gamma-secretase is a transmembrane protein complex, detergents have been frequently used to facilitate the studies. However, no extensive comparison of the influence of different detergents at different concentrations on gamma-secretase activity in preparations from brain has been made. Here, we establish the optimal conditions for gamma-secretase activity in rat brain, using an activity assay detecting endogenous production of the APP intracellular domain, which is generated when gamma-secretase cleaves the APP C-terminal fragments. We performed a subcellular fractionation and noted the highest gamma-secretase activity in the 100000g pellet and that the optimal pH was around 7. We found that gamma-secretase was active for at least 16 h at 37 degrees C and that the endogenous substrate levels were sufficient for activity measurements. The highest activity was obtained in 0.4% CHAPSO, which is slightly below the critical micelle concentration (0.5%) for this detergent, but the complex was not solubilized efficiently at this concentration. On the other hand, 1% CHAPSO solubilized a substantial amount of the gamma-secretase components, but the activity was low. The activity was fully restored by diluting the sample to 0.4% CHAPSO. Therefore, using 1% CHAPSO for solubilization and subsequently diluting the sample to 0.4% is an appropriate procedure for obtaining a soluble, highly active gamma-secretase from rat brain.

  16. Inhibition of γ-Secretase Leads to an Increase in Presenilin-1.

    PubMed

    Sogorb-Esteve, Aitana; García-Ayllón, María-Salud; Llansola, Marta; Felipo, Vicente; Blennow, Kaj; Sáez-Valero, Javier

    2018-06-01

    γ-Secretase inhibitors (GSIs) are potential therapeutic agents for Alzheimer's disease (AD); however, trials have proven disappointing. We addressed the possibility that γ-secretase inhibition can provoke a rebound effect, elevating the levels of the catalytic γ-secretase subunit, presenilin-1 (PS1). Acute treatment of SH-SY5Y cells with the GSI LY-374973 (N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester, DAPT) augments PS1, in parallel with increases in other γ-secretase subunits nicastrin, presenilin enhancer 2, and anterior pharynx-defective 1, yet with no increase in messenger RNA expression. Over-expression of the C-terminal fragment (CTF) of APP, C99, also triggered an increase in PS1. Similar increases in PS1 were evident in primary neurons treated repeatedly (4 days) with DAPT or with the GSI BMS-708163 (avagacestat). Likewise, rats examined after 21 days administered with avagacestat (40 mg/kg/day) had more brain PS1. Sustained γ-secretase inhibition did not exert a long-term effect on PS1 activity, evident through the decrease in CTFs of APP and ApoER2. Prolonged avagacestat treatment of rats produced a subtle impairment in anxiety-like behavior. The rebound increase in PS1 in response to GSIs must be taken into consideration for future drug development.

  17. The structure and function of Alzheimer's gamma secretase enzyme complex.

    PubMed

    Krishnaswamy, Sudarsan; Verdile, Giuseppe; Groth, David; Kanyenda, Limbikani; Martins, Ralph N

    2009-01-01

    The production and accumulation of the beta amyloid protein (Abeta) is a key event in the cascade of oxidative and inflammatory processes that characterizes Alzheimer's disease (AD). A multi-subunit enzyme complex, referred to as gamma (gamma) secretase, plays a pivotal role in the generation of Abeta from its parent molecule, the amyloid precursor protein (APP). Four core components (presenilin, nicastrin, aph-1, and pen-2) interact in a high-molecular-weight complex to perform intramembrane proteolysis on a number of membrane-bound proteins, including APP and Notch. Inhibitors and modulators of this enzyme have been assessed for their therapeutic benefit in AD. However, although these agents reduce Abeta levels, the majority have been shown to have severe side effects in pre-clinical animal studies, most likely due to the enzymes role in processing other proteins involved in normal cellular function. Current research is directed at understanding this enzyme and, in particular, at elucidating the roles that each of the core proteins plays in its function. In addition, a number of interacting proteins that are not components of gamma-secretase also appear to play important roles in modulating enzyme activity. This review will discuss the structural and functional complexity of the gamma-secretase enzyme and the effects of inhibiting its activity.

  18. A Novel High-Throughput 1536-well Notch1 γ-Secretase AlphaLISA Assay

    PubMed Central

    Chau, De-ming; Shum, David; Radu, Constantin; Bhinder, Bhavneet; Gin, David; Gilchrist, M. Lane; Djaballah, Hakim; Li, Yue-Ming

    2013-01-01

    The Notch pathway plays a crucial role in cell fate decisions through controlling various cellular processes. Overactive Notch signal contributes to cancer development from leukemias to solid tumors. γ-Secretase is an intramembrane protease responsible for the final proteolytic step of Notch that releases the membrane-tethered Notch fragment for signaling. Therefore, γ-secretase is an attractive drug target in treating Notch-mediated cancers. However, the absence of high-throughput γ-secretase assay using Notch substrate has limited the identification and development of γ-secretase inhibitors that specifically target the Notch signaling pathway. Here, we report on the development of a 1536-well γ-secretase assay using a biotinylated recombinant Notch1 substrate. We effectively assimilated and miniaturized this newly developed Notch1 substrate with the AlphaLISA detection technology and demonstrated its robustness with a calculated Z’ score of 0.66. We further validated this optimized assay by performing a pilot screening against a chemical library consisting of ~5,600 chemicals and identified known γ-secretase inhibitors e.g. DAPT, and Calpeptin; as well as a novel γ-secretase inhibitor referred to as KD-I-085. This assay is the first reported 1536-well AlphaLISA format and represents a novel high-throughput Notch1-γ-secretase assay, which provides an unprecedented opportunity to discover Notch-selective γ-secretase inhibitors that can be potentially used for the treatment of cancer and other human disorders. PMID:23448293

  19. Spatial segregation of gamma-secretase and substrates in distinct membrane domains.

    PubMed

    Vetrivel, Kulandaivelu S; Cheng, Haipeng; Kim, Seong-Hun; Chen, Ying; Barnes, Natalie Y; Parent, Angèle T; Sisodia, Sangram S; Thinakaran, Gopal

    2005-07-08

    Gamma-secretase facilitates the regulated intramembrane proteolysis of select type I membrane proteins that play diverse physiological roles in multiple cell types and tissue. In this study, we used biochemical approaches to examine the distribution of amyloid precursor protein (APP) and several additional gamma-secretase substrates in membrane microdomains. We report that APP C-terminal fragments (CTFs) and gamma-secretase reside in Lubrol WX detergent-insoluble membranes (DIM) of cultured cells and adult mouse brain. APP CTFs that accumulate in cells lacking gamma-secretase activity preferentially associate with DIM. Cholesterol depletion and magnetic immunoisolation studies indicate recruitment of APP CTFs into cholesterol- and sphingolipid-rich lipid rafts, and co-residence of APP CTFs, PS1, and syntaxin 6 in DIM patches derived from the trans-Golgi network. Photoaffinity cross-linking studies provided evidence for the preponderance of active gamma-secretase in lipid rafts of cultured cells and adult brain. Remarkably, unlike the case of APP, CTFs derived from Notch1, Jagged2, deleted in colorectal cancer (DCC), and N-cadherin remain largely detergent-soluble, indicative of their spatial segregation in non-raft domains. In embryonic brain, the majority of PS1 and nicastrin is present in Lubrol WX-soluble membranes, wherein the CTFs derived from APP, Notch1, DCC, and N-cadherin also reside. We suggest that gamma-secretase residence in non-raft membranes facilitates proteolysis of diverse substrates during embryonic development but that the translocation of gamma-secretase to lipid rafts in adults ensures processing of certain substrates, including APP CTFs, while limiting processing of other potential substrates.

  20. γ-Secretase Inhibition of Murine Choroidal Neovascularization Is Associated with Reduction of Superoxide and Proinflammatory Cytokines

    PubMed Central

    Qi, Xiaoping; Cai, Jun; Ruan, Qing; Liu, Li; Boye, Sanford L.; Chen, Zhijuan; Hauswirth, William W.; Ryals, Renee C.; Shaw, Lynn; Caballero, Sergio; Grant, Maria B.

    2012-01-01

    Purpose. This study aimed to determine whether upregulation of γ-secretase could inhibit laser-induced choroidal neovascularization (CNV) and if this was associated with a reduction in both oxidative stress and proinflammatory cytokines. Methods. γ-Secretase, or its catalytic subunit presenilin 1 (PS1), were upregulated by exposure to either pigment epithelial derived factor (PEDF) or an AAV2 vector containing a PS1 gene driven by a vascular endothelial-cadherin promoter. Retinal endothelial cells were infected with AAV2 or exposed to PEDF in the presence or absence of VEGF and in vitro angiogenesis determined. Mouse eyes either received intravitreal injection of PEDF, DAPT (a γ-secretase inhibitor) or PEDF + DAPT at the time of laser injury, or AAV2 infection 3 weeks before receiving laser burns. Lesion volume was determined 14 days post laser injury. Superoxide generation, antioxidant activity and the production of proinflammatory mediators were assessed. Knockdown of γ-secretase was achieved using siRNA. Results. γ-Secretase upregulation and PS1 overexpression suppressed VEGF-induced in vitro angiogenesis and in vivo laser-induced CNV. This was associated with a reduction in the expression of VEGF and angiogenin 1 together with reduced superoxide anion generation and an increase in MnSOD compared with untreated CNV eyes. PS1 overexpression reduced proinflammatory factors and microglial activation in eyes with CNV compared with control. siRNA inhibition of γ-secretase resulted in increased angiogenesis. Conclusions. γ-Secretase, and in particular PS1 alone, are potent regulators of angiogenesis and this is due in part to stabilizing endogenous superoxide generation and reducing proinflammatory cytokine expression during CNV. PMID:22205609

  1. N-Substituted carbazolyloxyacetic acids modulate Alzheimer associated gamma-secretase.

    PubMed

    Narlawar, Rajeshwar; Pérez Revuelta, Blanca I; Baumann, Karlheinz; Schubenel, Robert; Haass, Christian; Steiner, Harald; Schmidt, Boris

    2007-01-01

    N-Sulfonylated and N-alkylated carbazolyloxyacetic acids were investigated for the inhibition and modulation of the Alzheimer's disease associated gamma-secretase. The introduction of a lipophilic substituent, which may vary from arylsulfone to alkyl, turned 2-carbazolyloxyacetic acids into potent gamma-secretase modulators. This resulted in the selective reduction of Abeta(42) and an increase of the less aggregatory Abeta(38) fragment by several compounds (e.g., 7d and 8c). Introduction of an electron donating group at position 6 and 8 of N-substituted carbazolyloxyacetic acids either decreased the activity or inversed modulation. The most active compounds displayed activity on amyloid precursor protein (APP) overexpressing cell lines in the low micromolar range and little or no effect on the gamma-secretase cleavage at the epsilon-site.

  2. γ-Secretase Inhibition Induces Muscle Hypertrophy in a Notch-Independent Mechanism.

    PubMed

    Rosa de Andrade, Ivone; Corrêa, Stephany; Fontenele, Marcio; de Oliveira Teixeira, John Douglas; Abdelhay, Eliana; Costa, Manoel Luis; Mermelstein, Claudia

    2018-02-01

    A wide variety of cellular processes and signaling events are regulated by the proteolytic enzyme γ-secretase. Notch-1 is one of the substrates of γ-secretase and its role in the regulation of muscle differentiation has been well described. Importantly, besides Notch-1, a number of proteins have been identified to undergo proteolysis by γ-secretase. To date, the specific role of γ-secretase during embryonic skeletal muscle differentiation has not been studied. Therefore, we address this question through the analysis of in vitro grown chick myogenic cells during the formation of multinucleated myotubes. The γ-secretase inhibitor DAPT (N-N[-(3,5-Difluorophenacetyl-l-alanyl)]-S-328 phenylglycine-t-butyl-ester) induces muscle hypertrophy. Knockdown of Notch-1 using siRNA specific to chick shows no significant effect in myotube size, suggesting that γ-secretase-dependent effects on muscle hypertrophy in chick myogenic cells are Notch-1-independent. We also investigate the effects of γ-secretase inhibition in the whole proteomic profile of chick myogenic cells. We identified 276 differentially expressed proteins from Label-free proteomic approach. Data overview of interaction network obtained from STRING show that after γ-secretase inhibition cells exhibited imbalance in protein metabolism, cytoskeleton/adhesion, and Sonic Hedgehog signaling. The collection of these results provides new insights into the role of γ-secretase in skeletal muscle hypertrophy. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Transient gamma-secretase inhibition accelerates and enhances fracture repair likely via Notch signaling modulation

    PubMed Central

    Wang, Cuicui; Shen, Jie; Yukata, Kiminori; Inzana, Jason A.; O'Keefe, Regis J.; Awad, Hani A.; Hilton, Matthew J.

    2014-01-01

    Approximately 10% of skeletal fractures result in healing complications and non-union, while most fractures repair with appropriate stabilization and without pharmacologic intervention. It is the latter injuries that cannot be underestimated as the expenses associated with their treatment and subsequent lost productivity are predicted to increase to over $74 billion by 2015. During fracture repair, local mesenchymal stem/progenitor cells (MSCs) differentiate to form new cartilage and bone, reminiscent of events during skeletal development. We previously demonstrated that permanent loss of gamma-secretase activity and Notch signaling accelerates bone and cartilage formation from MSC progenitors during skeletal development, leading to pathologic acquisition of bone and depletion of bone marrow derived MSCs. Here, we investigated whether transient and systemic gamma-secretase and Notch inhibition is capable of accelerating and enhancing fracture repair by promoting controlled MSC differentiation near the fracture site. Our radiographic, microCT, histological, cell and molecular analyses reveal that single and intermittent gamma-secretase inhibitor (GSI) treatments significantly enhance cartilage and bone callus formation via the promotion of MSC differentiation, resulting in only a moderate reduction of local MSCs. Biomechanical testing further demonstrates that GSI treated fractures exhibit superior strength earlier in the healing process, with single dose GSI treated fractures exhibiting bone strength approaching that of un-fractured tibiae. These data further establish that transient inhibition of gamma-secretase activity and Notch signaling temporarily increases osteoclastogenesis and accelerates bone remodeling, which coupled with the effects on MSCs likely explains the accelerated and enhanced fracture repair. Therefore, we propose that the Notch pathway serves as an important therapeutic target during skeletal fracture repair. PMID:25527421

  4. Association of gamma-secretase with lipid rafts in post-Golgi and endosome membranes.

    PubMed

    Vetrivel, Kulandaivelu S; Cheng, Haipeng; Lin, William; Sakurai, Takashi; Li, Tong; Nukina, Nobuyuki; Wong, Philip C; Xu, Huaxi; Thinakaran, Gopal

    2004-10-22

    Alzheimer's disease-associated beta-amyloid peptides (Abeta) are generated by the sequential proteolytic processing of amyloid precursor protein (APP) by beta- and gamma-secretases. There is growing evidence that cholesterol- and sphingolipid-rich membrane microdomains are involved in regulating trafficking and processing of APP. BACE1, the major beta-secretase in neurons is a palmitoylated transmembrane protein that resides in lipid rafts. A subset of APP is subject to amyloidogenic processing by BACE1 in lipid rafts, and this process depends on the integrity of lipid rafts. Here we describe the association of all four components of the gamma-secretase complex, namely presenilin 1 (PS1)-derived fragments, mature nicastrin, APH-1, and PEN-2, with cholesterol-rich detergent insoluble membrane (DIM) domains of non-neuronal cells and neurons that fulfill the criteria of lipid rafts. In PS1(-/-)/PS2(-/-) and NCT(-/-) fibroblasts, gamma-secretase components that still remain fail to become detergent-resistant, suggesting that raft association requires gamma-secretase complex assembly. Biochemical evidence shows that subunits of the gamma-secretase complex and three TGN/endosome-resident SNAREs cofractionate in sucrose density gradients, and show similar solubility or insolubility characteristics in distinct non-ionic and zwitterionic detergents, indicative of their co-residence in membrane microdomains with similar protein-lipid composition. This notion is confirmed using magnetic immunoisolation of PS1- or syntaxin 6-positive membrane patches from a mixture of membranes with similar buoyant densities following Lubrol WX extraction or sonication, and gradient centrifugation. These findings are consistent with the localization of gamma-secretase in lipid raft microdomains of post-Golgi and endosomes, organelles previously implicated in amyloidogenic processing of APP.

  5. p53-dependent control of cell death by nicastrin: lack of requirement for presenilin-dependent gamma-secretase complex.

    PubMed

    Pardossi-Piquard, Raphaëlle; Dunys, Julie; Giaime, Emilie; Guillot-Sestier, Marie-Victoire; St George-Hyslop, Peter; Checler, Frédéric; Alves da Costa, Cristine

    2009-04-01

    Nicastrin (NCT) is a component of the presenilin (PS)-dependent gamma-secretase complexes that liberate amyloid beta-peptides from the beta-Amyloid Precursor Protein. Several lines of evidence indicate that the members of these complexes could also contribute to the control of cell death. Here we show that over-expression of NCT increases the viability of human embryonic kidney (HEK293) cells and decreases staurosporine (STS)- and thapsigargin (TPS)-induced caspase-3 activation in various cell lines from human and neuronal origins by Akt-dependent pathway. NCT lowers p53 expression, transcriptional activity and promoter transactivation and reduces p53 phosphorylation. NCT-associated protection against STS-stimulated cell death was completely abolished by p53 deficiency. Conversely, the depletion of NCT drastically enhances STS-induced caspase-3 activation and p53 pathway and favored p53 nuclear translocation. We examined whether NCT protective function depends on PS-dependent gamma-secretase activity. First, a 29-amino acid deletion known to reduce NCT-dependent amyloid beta-peptide production did not affect NCT-associated protective phenotype. Second, NCT still reduces STS-induced caspase-3 activation in fibroblasts lacking PS1 and PS2. Third, the gamma-secretase inhibitor DFK167 did not affect NCT-mediated reduction of p53 activity. Altogether, our study indicates that NCT controls cell death via phosphoinositide 3-kinase/Akt and p53-dependent pathways and that this function remains independent of the activity and molecular integrity of the gamma-secretase complexes.

  6. CD147 is a regulatory subunit of the gamma-secretase complex inAlzheimer's disease amyloid beta-peptide production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Shuxia; Zhou, Hua; Walian, Peter J.

    2005-04-06

    {gamma}-secretase is a membrane protein complex that cleaves the {beta}-amyloid precursor protein (APP) within the transmembrane region, following prior processing by {beta}-secretase, producing amyloid {beta}-peptides (A{beta}{sub 40} and A{beta}{sub 42}). Errant production of A{beta}-peptides that substantially increases A{beta}{sub 42} production has been associated with the formation of amyloid plaques in Alzheimer's disease patients. Biophysical and genetic studies indicate that presenilin-1 (Psn-1), which contains the proteolytic active site, and three other membrane proteins, nicastrin (Nct), APH-1, and PEN-2 are required to form the core of the active {gamma}-secretase complex. Here, we report the purification of the native {gamma}-secretase complexes from HeLamore » cell membranes and the identification of an additional {gamma}-secretase complex subunit, CD147, a transmembrane glycoprotein with two immunoglobulin-like domains. The presence of this subunit as an integral part of the complex itself was confirmed through co-immunoprecipitation studies of the purified protein from HeLa cells and solubilized complexes from other cell lines such as neural cell HCN-1A and HEK293. Depletion of CD147 by RNA interference was found to increase the production of A{beta} peptides without changing the expression level of the other {gamma}-secretase components or APP substrates while CD147 overexpression had no statistically significant effect on amyloid {beta}-peptide production, other {gamma}-secretase components or APP substrates, indicating that the presence of the CD147 subunit within the {gamma}-secretase complex directly down-modulates the production of A{beta}-peptides. {gamma}-secretase was first recognized through its role in the production of the A{beta} peptides that are pathogenic in Alzheimer's disease (AD) (1). {gamma}-secretase is a membrane protein complex with unusual aspartyl protease activity that cleaves a variety of type I membrane proteins, such

  7. Inhibition of ADAM-17 more effectively down-regulates the Notch pathway than that of γ-secretase in renal carcinoma.

    PubMed

    Guo, Zhen; Jin, Xunbo; Jia, Haiyan

    2013-05-09

    Our study is to research the effect of inhibited ADAM-17 expression through the Notch pathway in renal carcinoma. Immunohistochemistry and western blot were used to examine the expression of ADAM-17 protein in renal cancer tissues. Proliferation and cell invasion of 786-o cells, as well as OS-RC-2 cells, after treatment with two different inhibitors of the Notch pathway, were examined by CCK-8 assay and Transwell assay, respectively. 786-o cell apoptosis was measured using the FCM test. ADAM-17 was highly expressed in RCC tissues. Compared with blocking γ-secretase, a known mechanism of impairing Notch, blockade of ADAM-17 more effectively down-regulated the expressions of Notch1 and HES-1 proteins. Similarly, we found that the ADAM-17 inhibitor, Marimastat, could more efficiently reduce renal cell proliferation and invasive capacity in comparison with the γ-secretase inhibitor DAPT when used at the same dose. Similar results were obtained when apoptosis of 786-o was measured. Compared with γ-secretase, inhibition of ADAM-17 expression more effectively inhibits Notch pathway-mediated renal cancer cell proliferation and invasion. ADAM-17 may be a new target for future treatment of renal carcinoma.

  8. Disposition and metabolism of semagacestat, a {gamma}-secretase inhibitor, in humans.

    PubMed

    Yi, Ping; Hadden, Chad; Kulanthaivel, Palaniappan; Calvert, Nathan; Annes, William; Brown, Thomas; Barbuch, Robert J; Chaudhary, Archana; Ayan-Oshodi, Mosun A; Ring, Barbara J

    2010-04-01

    Semagacestat is a functional gamma-secretase inhibitor that has been shown to reduce the rate of formation of amyloid-beta in vitro and in vivo. This study was conducted to characterize the disposition of semagacestat in humans. After a single 140-mg dose of [(14)C]semagacestat administered as an oral solution to six healthy male subjects, semagacestat was rapidly absorbed (T(max) approximately 0.5 h) and eliminated from the systemic circulation (terminal t(1/2) approximately 2.4 h). The major circulating metabolites of semagacestat, M2 (hydrolysis of the amide bond proximal to the benzazepine ring) and M3 (benzylic hydroxylation of the benzazepine ring), accounted for approximately 27 and 10% of total radioactivity exposure, respectively, as calculated from relative area under the plasma concentration versus time curve from 0 to 24 h derived from the plasma radiochromatograms. The radioactive dose was almost completely recovered after 7 days postdose, with 87% of the dose in urine and 8% in feces. Unchanged [(14)C]semagacestat in urine accounted for approximately 44% of the dose, which indicates that renal excretion played an important role in elimination. Metabolites M2 and M3, with their related secondary metabolites, each accounted for approximately 20% of the dose in excreta. In vitro data indicate the formation of M3 is primarily mediated by CYP3A, with cDNA-expressed CYP3A5 approximately 2 times more efficient than CYP3A4 in forming M3. Thus, the relative content of CYP3A4 and CYP3A5 in humans will likely determine the formation clearance of M3 after exposure to semagacestat.

  9. Modification of a promiscuous inhibitor shifts the inhibition from γ-secretase to FLT-3.

    PubMed

    Amombo, Ghislaine Marlyse Okala; Kramer, Thomas; Lo Monte, Fabio; Göring, Stefan; Fach, Matthias; Smith, Steven; Kolb, Stephanie; Schubenel, Robert; Baumann, Karlheinz; Schmidt, Boris

    2012-12-15

    The inhibition of FLT-3 activity is an interesting target for the treatment of acute myeloid leukemia (AML). The serendipitous identification of FLT-3 inhibitors from a CK1/γ-secretase programme provided compounds with dual inhibitory activity. We analyzed the structure-activity relationship of these inhibitors and derivatized them to arrive at compounds with reduced impact on γ-secretase activity and enhanced FLT-3 inhibition. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Conversion of the LXR-agonist TO-901317--from inverse to normal modulation of gamma-secretase by addition of a carboxylic acid and a lipophilic anchor.

    PubMed

    Narlawar, Rajeshwar; Baumann, Karlheinz; Czech, Christian; Schmidt, Boris

    2007-10-01

    TO-901317, a LXR agonist, is an inverse modulator of Alzheimer's disease associated gamma-secretase. We synthesized TO-901317 analogous compound but replaced the hexafluorocarbinol moiety by an oxyacetic acid functionality and hypothesized that the replacement would change the mode of action from an inverse modulation to normal modulation of gamma-secretase. As anticipated, acid 9 was found to be an effective modulator of gamma-secretase and displayed activity at low micromolar concentration. This significant modification can be applied to several inverse gamma-secretase modulators. Such modulators may preserve the cleavage of other gamma-secretase substrates such as Notch.

  11. Part 1: Notch-sparing γ-secretase inhibitors: The identification of novel naphthyl and benzofuranyl amide analogs.

    PubMed

    Lu, Dai; Wei, Han-Xun; Zhang, Jing; Gu, Yongli; Osenkowski, Pamela; Ye, Wenjuan; Selkoe, Dennis J; Wolfe, Michael S; Augelli-Szafran, Corinne E

    2016-05-01

    γ-Secretase is one of two proteases directly involved in the production of the amyloid β-peptide (Aβ), which is pathogenic in Alzheimer's disease. Inhibition of γ-secretase to suppress the production of Aβ should not block processing of one of its alternative substrates, Notch1 receptors, as interference with Notch1 signaling leads to severe toxic effects. In the course of our studies to identify γ-secretase inhibitors with selectivity for APP over Notch, 1 [3-(benzyl(isopropyl)amino)-1-(naphthalen-2-yl)propan-1-one] was found to inhibit γ-secretase-mediated Aβ production without interfering with γ-secretase-mediated Notch processing in purified enzyme assays. As 1 is chemically unstable, efforts to increase the stability of this compound led to the identification of 2 [naphthalene-2-carboxylic acid benzyl-isopropyl-amide] which showed similar biological activity to compound 1. Synthesis and evaluation of a series of amide analogs resulted in benzofuranyl amide analogs that showed promising Notch-sparing γ-secretase inhibitory effects. This class of compounds may serve as a novel lead series for further study in the development of γ-secretase inhibitors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Short versus prolonged dual antiplatelet therapy (DAPT) duration after coronary stent implantation: A comparison between the DAPT study and 9 other trials evaluating DAPT duration

    PubMed Central

    Toyota, Toshiaki; Shiomi, Hiroki; Morimoto, Takeshi; Natsuaki, Masahiro; Kimura, Takeshi

    2017-01-01

    Aims The Dual Antiplatelet Therapy (DAPT) study demonstrated that DAPT beyond 1-year after drug-eluting stent (DES) implantation, as compared with aspirin therapy alone, significantly reduced the risk of major cardiovascular and cerebrovascular events, which was mainly driven by the large risk reduction for myocardial infarction (MI). We sought to compare the largest DAPT study with other trials evaluating DAPT durations after DES implantation. Methods and results By a systematic literature search, we identified 9 trials comparing prolonged- versus short-DAPT in addition to the DAPT study. The result from the DAPT study (N = 9961) with public–private collaboration was different from the pooled result of the 9 other investigator-driven trials (N = 22174) in terms of the effect of prolonged-DAPT on MI (odds ratio [OR] 0.48 [95%CI 0.38–0.62] versus pooled OR 0.88 [95%CI 0.67–1.15]: P = 0.001 for difference), while the trends for excess risk of prolonged-DAPT relative to short-DAPT for all-cause death (OR 1.31 [95%CI 0.97–1.78] versus pooled OR 1.16 [95%CI 0.92–1.45]: P = 0.53 for difference), and bleeding (OR 1.62 [95%CI 1.21–2.17] versus pooled OR 2.08 [95%CI 1.51–2.84]: P = 0.25 for difference) were consistently seen in both the DAPT and other trials. The annual rate of MI during aspirin mono-therapy in the DAPT study was much higher than that those in the other trials (2.7% versus 0.6–1.6%). Conclusions Given the difference between the DAPT study and other trials, future studies should focus on certain subgroups of patients that are more or less likely to benefit from longer duration DAPT. PMID:28931015

  13. Short versus prolonged dual antiplatelet therapy (DAPT) duration after coronary stent implantation: A comparison between the DAPT study and 9 other trials evaluating DAPT duration.

    PubMed

    Toyota, Toshiaki; Shiomi, Hiroki; Morimoto, Takeshi; Natsuaki, Masahiro; Kimura, Takeshi

    2017-01-01

    The Dual Antiplatelet Therapy (DAPT) study demonstrated that DAPT beyond 1-year after drug-eluting stent (DES) implantation, as compared with aspirin therapy alone, significantly reduced the risk of major cardiovascular and cerebrovascular events, which was mainly driven by the large risk reduction for myocardial infarction (MI). We sought to compare the largest DAPT study with other trials evaluating DAPT durations after DES implantation. By a systematic literature search, we identified 9 trials comparing prolonged- versus short-DAPT in addition to the DAPT study. The result from the DAPT study (N = 9961) with public-private collaboration was different from the pooled result of the 9 other investigator-driven trials (N = 22174) in terms of the effect of prolonged-DAPT on MI (odds ratio [OR] 0.48 [95%CI 0.38-0.62] versus pooled OR 0.88 [95%CI 0.67-1.15]: P = 0.001 for difference), while the trends for excess risk of prolonged-DAPT relative to short-DAPT for all-cause death (OR 1.31 [95%CI 0.97-1.78] versus pooled OR 1.16 [95%CI 0.92-1.45]: P = 0.53 for difference), and bleeding (OR 1.62 [95%CI 1.21-2.17] versus pooled OR 2.08 [95%CI 1.51-2.84]: P = 0.25 for difference) were consistently seen in both the DAPT and other trials. The annual rate of MI during aspirin mono-therapy in the DAPT study was much higher than that those in the other trials (2.7% versus 0.6-1.6%). Given the difference between the DAPT study and other trials, future studies should focus on certain subgroups of patients that are more or less likely to benefit from longer duration DAPT.

  14. γ-secretase composed of PS1/Pen2/Aph1a can cleave Notch and APP in the absence of Nicastrin

    PubMed Central

    Zhao, Guojun; Liu, Zhenyi; Ilagan, Ma. Xenia G.; Kopan, Raphael

    2010-01-01

    γ-secretase is a multiprotein intramembrane-cleaving protease with a growing list of protein substrates including the Notch receptors and the amyloid precursor protein. The four components of γ-secretase complex - presenilin (PS), nicastrin (NCT), Pen2, and Aph1 - are all thought to be essential for activity. The catalytic domain resides within PS proteins; NCT has been suggested to be critical for substrate recognition; the contributions of Pen2 and Aph1 remain unclear. The role of NCT has been challenged recently by the observation that a critical residue (E332) in NCT, thought to be essential for γ-secretase activity, is instead involved in complex maturation. Here we report that NCT is dispensable for γ-secretase activity. NCT-independent γ-secretase activity can be detected in two independent NCT-deficient MEF lines, and blocked by the γ-secretase inhibitors DAPT and L-685,458. This catalytic activity requires prior ectodomain shedding of the substrate, and can cleave ligand-activated endogenous Notch receptors, indicating presence at the plasma membrane. siRNA knockdown experiments demonstrated that NCT-independent γ-secretase activity requires the presence of PS1, Pen2 and Aph1a but can tolerate knockdown of PS2 or Aph1b. We conclude that a PS1/Pen2/Aph1a trimeric complex is an active enzyme, displaying similar biochemical properties to those of γ-secretase and roughly 50% of its activity when normalized to PS1 NTF levels. This PS1/Pen2/Aph1a complex, however, is highly unstable. Thus, NCT acts to stabilize γ-secretase, but is not required for substrate recognition. PMID:20130175

  15. Discovery of isonicotinamide derived beta-secretase inhibitors: in vivo reduction of beta-amyloid.

    PubMed

    Stanton, Matthew G; Stauffer, Shaun R; Gregro, Alison R; Steinbeiser, Melissa; Nantermet, Philippe; Sankaranarayanan, Sethu; Price, Eric A; Wu, Guoxin; Crouthamel, Ming-Chih; Ellis, Joan; Lai, Ming-Tain; Espeseth, Amy S; Shi, Xiao-Ping; Jin, Lixia; Colussi, Dennis; Pietrak, Beth; Huang, Qian; Xu, Min; Simon, Adam J; Graham, Samuel L; Vacca, Joseph P; Selnick, Harold

    2007-07-26

    beta-Secretase inhibition offers an exciting opportunity for therapeutic intervention in the progression of Alzheimer's disease. A series of isonicotinamides derived from traditional aspartyl protease transition state isostere inhibitors has been optimized to yield low nanomolar inhibitors with sufficient penetration across the blood-brain barrier to demonstrate beta-amyloid lowering in a murine model.

  16. Visualizing Active Enzyme Complexes Using a Photoreactive Inhibitor for Proximity Ligation – Application on γ-Secretase

    PubMed Central

    Schedin-Weiss, Sophia; Inoue, Mitsuhiro; Teranishi, Yasuhiro; Yamamoto, Natsuko Goto; Karlström, Helena; Winblad, Bengt; Tjernberg, Lars O.

    2013-01-01

    Here, we present a highly sensitive method to study protein-protein interactions and subcellular location selectively for active multicomponent enzymes. We apply the method on γ-secretase, the enzyme complex that catalyzes the cleavage of the amyloid precursor protein (APP) to generate amyloid β-peptide (Aβ), the major causative agent in Alzheimer disease (AD). The novel assay is based on proximity ligation, which can be used to study protein interactions in situ with very high sensitivity. In traditional proximity ligation assay (PLA), primary antibody recognition is typically accompanied by oligonucleotide-conjugated secondary antibodies as detection probes. Here, we first performed PLA experiments using antibodies against the γ-secretase components presenilin 1 (PS1), containing the catalytic site residues, and nicastrin, suggested to be involved in substrate recognition. To selectively study the interactions of active γ-secretase, we replaced one of the primary antibodies with a photoreactive γ-secretase inhibitor containing a PEG linker and a biotin group (GTB), and used oligonucleotide-conjugated streptavidin as a probe. Interestingly, significantly fewer interactions were detected with the latter, novel, assay, which is a reasonable finding considering that a substantial portion of PS1 is inactive. In addition, the PLA signals were located more peripherally when GTB was used instead of a PS1 antibody, suggesting that γ-secretase matures distal from the perinuclear ER region. This novel technique thus enables highly sensitive protein interaction studies, determines the subcellular location of the interactions, and differentiates between active and inactive γ-secretase in intact cells. We suggest that similar PLA assays using enzyme inhibitors could be useful also for other enzyme interaction studies. PMID:23717518

  17. NSAID-derived gamma-secretase modulators. Part III: Membrane anchoring.

    PubMed

    Baumann, Stefanie; Höttecke, Nicole; Schubenel, Robert; Baumann, Karlheinz; Schmidt, Boris

    2009-12-15

    Selective lowering of Abeta(42) levels with small-molecule substrate targeting gamma-secretase modulators (sGSMs), such as some non-steroidal anti-inflammatory drugs, is a promising therapeutic approach for Alzheimer's disease. Here we present N-substituted carbazole- and O-substituted fenofibrate-derived sGSMs and their activity data. Seven out of 19 screened compounds exhibited promising activity against Abeta(42) secretion at a low micromolar level. We presume that the sGSMs interact with lys624 at the membrane interface and that the lipophilic substituents anchor the compound orientation in the membrane.

  18. Toward structural elucidation of the gamma-secretase complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, H.; Wolfe, M. S.; Selkoe, D. J.

    2009-03-11

    {gamma}-Secretase is an intramembrane protease complex that mediates the Notch signaling pathway and the production of amyloid {beta}-proteins. As such, this enzyme has emerged as an important target for development of novel therapeutics for Alzheimer disease and cancer. Great progress has been made in the identification and characterization of the membrane complex and its biological functions. One major challenge now is to illuminate the structure of this fascinating and important protease at atomic resolution. Here, we review recent progress on biochemical and biophysical probing of the structure of the four-component complex and discuss obstacles and potential pathways toward elucidating itsmore » detailed structure.« less

  19. β-Secretase inhibitor GRL-8234 rescues age-related cognitive decline in APP transgenic mice

    PubMed Central

    Chang, Wan-Pin; Huang, Xiangping; Downs, Deborah; Cirrito, John R.; Koelsch, Gerald; Holtzman, David M.; Ghosh, Arun K.; Tang, Jordan

    2011-01-01

    Alzheimer disease is intimately linked to an excess amount of amyloid-β (Aβ) in the brain. Thus, therapeutic inhibition of Aβ production is an attractive clinical approach to treat this disease. Here we provide the first direct experimental evidence that the treatment of Tg2576 transgenic mice with an inhibitor of β-secretase, GRL-8234, rescues the age-related cognitive decline. We demonstrated that the injected GRL-8234 effectively enters the brain and rapidly decreases soluble Aβ in the brain of Tg2576 mice. The rescue of cognition, which was observed only after long-term inhibitor treatment ranging from 5 to 7.5 mo, was associated with a decrease of brain amyloid-β plaque load. We also found no accumulation of amyloid-β precursor protein after several months of inhibitor treatment. These observations substantiate the idea that Aβ accumulation plays a major role in the cognitive decline of Tg2576 mice and support the concept of Aβ reduction therapy as a treatment of AD.—Chang, W.-P., Huang, X., Downs, D., Cirrito, J. R., Koelsch, G., Holtzman, D. M. Ghosh, A. K., Tang, J. β-Secretase inhibitor GRL-8234 rescues age-related cognitive decline in APP transgenic mice. PMID:21059748

  20. Synthesis of carbon-14 and stable isotope labeled Avagacestat: a novel gamma secretase inhibitor for the treatment of Alzheimer's disease.

    PubMed

    Burrell, Richard C; Easter, John A; Cassidy, Michael P; Gillman, Kevin W; Olson, Richard E; Bonacorsi, Samuel J

    2014-08-01

    Bristol-Myers Squibb and others are developing drugs that target novel mechanisms to combat Alzheimer's disease. γ-Secretase inhibitors are one class of potential therapies that have received considerable attention. (R)-2-(4-Chloro-N-(2-fluoro-4-(1,2,4-oxadiazol-3-yl)benzyl)phenylsulfonamido)-5,5,5-trifluoropentanamide (Avagacestat) is a γ-secretase-inhibiting drug that has been investigated by Bristol-Myers Squibb in preclinical and clinical studies. An important step in the development process was the synthesis of a carbon-14-labeled analog for use in a human absorption, distribution, metabolism, and excretion study and a stable isotope labeled analog for use as a standard in bioanalytical assays to accurately quantify the concentration of the drug in biological samples. Carbon-14 labeled Avagacestat was synthesized in seven steps in a 33% overall yield from carbon-14 labeled potassium cyanide. A total of 5.95 mCi was prepared with a specific activity of 0.81 μCi/mg and a radiochemical purity of 99.9%. (13) C6 -Labeled Avagacestat was synthesized in three steps in a 15% overall yield from 4-chloro[(13) C6 ]aniline. A total of 585 mg was prepared with a ultraviolet purity of 99.9%. Copyright © 2014 John Wiley & Sons, Ltd.

  1. Structure of the Protease Domain of Memapsin 2 (β-Secretase) Complexed with Inhibitor

    NASA Astrophysics Data System (ADS)

    Hong, Lin; Koelsch, Gerald; Lin, Xinli; Wu, Shili; Terzyan, Simon; Ghosh, Arun K.; Zhang, Xuenjun C.; Tang, Jordan

    2000-10-01

    Memapsin 2 (β-secretase) is a membrane-associated aspartic protease involved in the production of β-amyloid peptide in Alzheimer's disease and is a major target for drug design. We determined the crystal structure of the protease domain of human memapsin 2 complexed to an eight-residue inhibitor at 1.9 angstrom resolution. The active site of memapsin 2 is more open and less hydrophobic than that of other human aspartic proteases. The subsite locations from S4 to S2' are well defined. A kink of the inhibitor chain at P2' and the change of chain direction of P3' and P4' may be mimicked to provide inhibitor selectivity.

  2. DAPT mediates atoh1 expression to induce hair cell-like cells.

    PubMed

    Ren, Hongmiao; Guo, Weiwei; Liu, Wei; Gao, Weiqiang; Xie, Dinghua; Yin, Tuanfang; Yang, Shiming; Ren, Jihao

    2016-01-01

    Hearing loss is currently an incurable degenerative disease characterized by a paucity of hair cells (HCs), which cannot be spontaneously replaced in mammals. Recent technological advancements in gene therapy and local drug delivery have shed new light for hearing loss. Atoh1, also known as Math1, Hath1, and Cath1, is a proneural basic helix-loop-helix (bHLH) transcription factor that is essential for HC differentiation. At various stages in development, Atoh1 activity is sufficient to drive HC differentiation in the cochlea. Thus, Atoh1 related gene therapy is the most promising option for HC induction. DAPT, an inhibitor of Notch signaling, enhances the expression of Atoh1 indirectly, which in turn promotes the induction of a HC fate. Here, we show that DAPT cooperates with Atoh1 to synergistically promote HC fate in ependymal cells in vitro and promote hair cell regeneration in the cultured basilar membrane (BM) which mimics the microenvironment in vivo. Taken together, our findings demonstrated that DAPT is sufficient to induce HC-like cells via enhancing of the expression of Atoh1 to inhibit the progression of HC apoptosis and to induce new HC formation.

  3. Specific Inhibition of β-Secretase Processing of the Alzheimer Disease Amyloid Precursor Protein.

    PubMed

    Ben Halima, Saoussen; Mishra, Sabyashachi; Raja, K Muruga Poopathi; Willem, Michael; Baici, Antonio; Simons, Kai; Brüstle, Oliver; Koch, Philipp; Haass, Christian; Caflisch, Amedeo; Rajendran, Lawrence

    2016-03-08

    Development of disease-modifying therapeutics is urgently needed for treating Alzheimer disease (AD). AD is characterized by toxic β-amyloid (Aβ) peptides produced by β- and γ-secretase-mediated cleavage of the amyloid precursor protein (APP). β-secretase inhibitors reduce Aβ levels, but mechanism-based side effects arise because they also inhibit β-cleavage of non-amyloid substrates like Neuregulin. We report that β-secretase has a higher affinity for Neuregulin than it does for APP. Kinetic studies demonstrate that the affinities and catalytic efficiencies of β-secretase are higher toward non-amyloid substrates than toward APP. We show that non-amyloid substrates are processed by β-secretase in an endocytosis-independent manner. Exploiting this compartmentalization of substrates, we specifically target the endosomal β-secretase by an endosomally targeted β-secretase inhibitor, which blocked cleavage of APP but not non-amyloid substrates in many cell systems, including induced pluripotent stem cell (iPSC)-derived neurons. β-secretase inhibitors can be designed to specifically inhibit the Alzheimer process, enhancing their potential as AD therapeutics without undesired side effects. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Inhibition of delta-secretase improves cognitive functions in mouse models of Alzheimer's disease

    PubMed Central

    Zhang, Zhentao; Obianyo, Obiamaka; Dall, Elfriede; Du, Yuhong; Fu, Haian; Liu, Xia; Kang, Seong Su; Song, Mingke; Yu, Shan-Ping; Cabrele, Chiara; Schubert, Mario; Li, Xiaoguang; Wang, Jian-Zhi; Brandstetter, Hans; Ye, Keqiang

    2017-01-01

    δ-secretase, also known as asparagine endopeptidase (AEP) or legumain, is a lysosomal cysteine protease that cleaves both amyloid precursor protein (APP) and tau, mediating the amyloid-β and tau pathology in Alzheimer's disease (AD). Here we report the therapeutic effect of an orally bioactive and brain permeable δ-secretase inhibitor in mouse models of AD. We performed a high-throughput screen and identified a non-toxic and selective δ-secretase inhibitor, termed compound 11, that specifically blocks δ-secretase but not other related cysteine proteases. Co-crystal structure analysis revealed a dual active site-directed and allosteric inhibition mode of this compound class. Chronic treatment of tau P301S and 5XFAD transgenic mice with this inhibitor reduces tau and APP cleavage, ameliorates synapse loss and augments long-term potentiation, resulting in protection of memory. Therefore, these findings demonstrate that this δ-secretase inhibitor may be an effective clinical therapeutic agent towards AD. PMID:28345579

  5. Modulation of Gamma-Secretase for the Treatment of Alzheimer's Disease

    PubMed Central

    McKee, Timothy D.; Loureiro, Robyn M. B.; Dumin, Jo Ann; Xia, Weiming; Pojasek, Kevin; Austin, Wesley F.; Fuller, Nathan O.; Hubbs, Jed L.; Shen, Ruichao; Jonker, Jeff; Ives, Jeff; Bronk, Brian S.

    2012-01-01

    The Amyloid Hypothesis states that the cascade of events associated with Alzheimer's disease (AD)—formation of amyloid plaques, neurofibrillary tangles, synaptic loss, neurodegeneration, and cognitive decline—are triggered by Aβ peptide dysregulation (Kakuda et al., 2006, Sato et al., 2003, Qi-Takahara et al., 2005). Since γ-secretase is critical for Aβ production, many in the biopharmaceutical community focused on γ-secretase as a target for therapeutic approaches for Alzheimer's disease. However, pharmacological approaches to control γ-secretase activity are challenging because the enzyme has multiple, physiologically critical protein substrates. To lower amyloidogenic Aβ peptides without affecting other γ-secretase substrates, the epsilon (ε) cleavage that is essential for the activity of many substrates must be preserved. Small molecule modulators of γ-secretase activity have been discovered that spare the ε cleavage of APP and other substrates while decreasing the production of Aβ 42. Multiple chemical classes of γ-secretase modulators have been identified which differ in the pattern of Aβ peptides produced. Ideally, modulators will allow the ε cleavage of all substrates while shifting APP cleavage from Aβ 42 and other highly amyloidogenic Aβ peptides to shorter and less neurotoxic forms of the peptides without altering the total Aβ pool. Here, we compare chemically distinct modulators for effects on APP processing and in vivo activity. PMID:23320246

  6. γ-Secretase inhibitor enhances antitumour effect of radiation in Notch-expressing lung cancer

    PubMed Central

    Mizugaki, H; Sakakibara-Konishi, J; Ikezawa, Y; Kikuchi, J; Kikuchi, E; Oizumi, S; Dang, T P; Nishimura, M

    2012-01-01

    Background: Notch receptor has an important role in both development and cancer. We previously reported that inhibition of the Notch3 by γ-secretase inhibitor (GSI) induces apoptosis and suppresses tumour proliferation in non-small-cell lung cancer. Although radiation is reported to induce Notch activation, little is known about the relationship between radiation and Notch pathway. Methods: We examined the effect of combining GSI and radiation at different dosing in three Notch expressing lung cancer cell lines. The cytotoxic effect of GSI and radiation was evaluated using MTT assay and clonogenic assay in vitro and xenograft models. Expressions of Notch pathway, mitogen-activated protein kinase (MAPK) pathway and Bcl-2 family proteins were investigated using western blot analysis. Results: We discovered that the antitumour effect of combining GSI and radiation was dependent on treatment schedule. γ-Secretase inhibitor administration after radiation had the greatest growth inhibition of lung cancer in vitro and in vivo. We showed that the combination induced apoptosis of lung cancer cell lines through the regulation of MAPK and Bcl-2 family proteins. Furthermore, activation of Notch after radiation was ameliorated by GSI administration, suggesting that treatment with GSI prevents Notch-induced radiation resistance. Conclusion: Notch has an important role in lung cancer. Treatment with GSI after radiation can significantly enhance radiation-mediated tumour cytotoxicity. PMID:22596234

  7. IL6 blockade potentiates the anti-tumor effects of γ-secretase inhibitors in Notch3-expressing breast cancer.

    PubMed

    Wang, Dong; Xu, Jiahui; Liu, Bingjie; He, Xueyan; Zhou, Lei; Hu, Xin; Qiao, Feng; Zhang, Anli; Xu, Xiaojun; Zhang, Huafeng; Wicha, Max S; Zhang, Lixing; Shao, Zhi-Ming; Liu, Suling

    2018-02-01

    Notch pathways have important roles in carcinogenesis including pathways involving the Notch1 and Notch2 oncogenes. Pan-Notch inhibitors, such as gamma secretase inhibitors (GSIs), have been used in the clinical trials, but the outcomes of these trials have been insufficient and have yielded unclear. In the present study, we demonstrated that GSIs, such as MK-0752 and RO4929097, inhibit breast tumor growth, but increase the breast cancer stem cell (BCSC) population in Notch3-expressing breast cancer cells, in a process that is coupled with IL6 induction and is blocked by the IL6R antagonist Tocilizumab (TCZ). IL6 induction results from inhibition of Notch3-Hey2 signaling through MK-0752. Furthermore, HIF1α upregulates Notch3 expression via direct binding to the Notch3 promoter and subsequently downregulates BCSCs by decreasing the IL6 levels in Notch3-expressing breast cancer cells. Utilizing both breast cancer cell line xenografts and patient-derived xenografts (PDX), we showed that the combination of MK-0752 and Tocilizumab significantly decreases BCSCs and inhibits tumor growth and thus might serve as a novel therapeutic strategy for treating women with Notch3-expressing breast cancers.

  8. Long-term effect of neonatal inhibition of APP gamma-secretase on hippocampal development in the Ts65Dn mouse model of Down syndrome.

    PubMed

    Stagni, Fiorenza; Raspanti, Alessandra; Giacomini, Andrea; Guidi, Sandra; Emili, Marco; Ciani, Elisabetta; Giuliani, Alessandro; Bighinati, Andrea; Calzà, Laura; Magistretti, Jacopo; Bartesaghi, Renata

    2017-07-01

    Neurogenesis impairment is considered a major determinant of the intellectual disability that characterizes Down syndrome (DS), a genetic condition caused by triplication of chromosome 21. Previous evidence obtained in the Ts65Dn mouse model of DS showed that the triplicated gene APP (amyloid precursor protein) is critically involved in neurogenesis alterations. In particular, excessive levels of AICD (amyloid precursor protein intracellular domain) resulting from APP cleavage by gamma-secretase increase the transcription of Ptch1, a Sonic Hedgehog (Shh) receptor that keeps the mitogenic Shh pathway repressed. Previous evidence showed that neonatal treatment with ELND006, an inhibitor of gamma-secretase, reinstates the Shh pathway and fully restores neurogenesis in Ts65Dn pups. In the framework of potential therapies for DS, it is extremely important to establish whether the positive effects of early intervention are retained after treatment cessation. Therefore, the goal of the current study was to establish whether early treatment with ELND006 leaves an enduring trace in the brain of Ts65Dn mice. Ts65Dn and euploid pups were treated with ELND006 in the postnatal period P3-P15 and the outcome of treatment was examined at ~one month after treatment cessation. We found that in treated Ts65Dn mice the pool of proliferating cells in the hippocampal dentate gyrus (DG) and total number of granule neurons were still restored as was the number of pre- and postsynaptic terminals in the stratum lucidum of CA3, the site of termination of the mossy fibers from the DG. Accordingly, patch-clamp recording from field CA3 showed functional normalization of the input to CA3. Unlike in field CA3, the number of pre- and postsynaptic terminals in the DG of treated Ts65Dn mice was no longer fully restored. The finding that many of the positive effects of neonatal treatment were retained after treatment cessation provides proof of principle demonstration of the efficacy of early

  9. Enzymatic characteristics of I213T mutant presenilin-1/gamma-secretase in cell models and knock-in mouse brains: familial Alzheimer disease-linked mutation impairs gamma-site cleavage of amyloid precursor protein C-terminal fragment beta.

    PubMed

    Shimojo, Masafumi; Sahara, Naruhiko; Mizoroki, Tatsuya; Funamoto, Satoru; Morishima-Kawashima, Maho; Kudo, Takashi; Takeda, Masatoshi; Ihara, Yasuo; Ichinose, Hiroshi; Takashima, Akihiko

    2008-06-13

    Presenilin (PS)/gamma-secretase-mediated intramembranous proteolysis of amyloid precursor protein produces amyloid beta (Abeta) peptides in which Abeta species of different lengths are generated through multiple cleavages at the gamma-, zeta-, and epsilon-sites. An increased Abeta42/Abeta40 ratio is a common characteristic of most cases of familial Alzheimer disease (FAD)-linked PS mutations. However, the molecular mechanisms underlying amyloid precursor protein proteolysis leading to increased Abeta42/Abeta40 ratios still remain unclear. Here, we report our findings on the enzymatic analysis of gamma-secretase derived from I213T mutant PS1-expressing PS1/PS2-deficient (PS(-/-)) cells and from the brains of I213T mutant PS1 knock-in mice. Kinetics analyses revealed that the FAD mutation reduced de novo Abeta generation, suggesting that mutation impairs the total catalytic rate of gamma-secretase. Analysis of each Abeta species revealed that the FAD mutation specifically reduced Abeta40 levels more drastically than Abeta42 levels, leading to an increased Abeta42/Abeta40 ratio. By contrast, the FAD mutation increased the generation of longer Abeta species such as Abeta43, Abeta45, and >Abeta46. These results were confirmed by analyses of gamma-secretase derived from I213T knock-in mouse brains, in which the reduction of de novo Abeta generation was mutant allele dose-dependent. Our findings clearly indicate that the mechanism underlying the increased Abeta42/Abeta40 ratio observed in cases of FAD mutations is related to the differential inhibition of gamma-site cleavage reactions, in which the reaction producing Abeta40 is subject to more inhibition than that producing Abeta42. Our results also provide novel insight into how enhancing the generation of longer Abetas may contribute to Alzheimer disease onset.

  10. Gliotoxin is a potent NOTCH2 transactivation inhibitor and efficiently induces apoptosis in chronic lymphocytic leukaemia (CLL) cells.

    PubMed

    Hubmann, Rainer; Hilgarth, Martin; Schnabl, Susanne; Ponath, Elena; Reiter, Marlies; Demirtas, Dita; Sieghart, Wolfgang; Valent, Peter; Zielinski, Christoph; Jäger, Ulrich; Shehata, Medhat

    2013-03-01

    Chronic lymphocytic leukaemia (CLL) cells express constitutively activated NOTCH2 in a protein kinase C (PKC)- dependent manner. The transcriptional activity of NOTCH2 correlates not only with the expression of its target gene FCER2 (CD23) but is also functionally linked with CLL cell viability. In the majority of CLL cases, DNA-bound NOTCH2 complexes are less sensitive to the γ-secretase inhibitor (GSI) DAPT. Therefore, we searched for compounds that interfere with NOTCH2 signalling at the transcription factor level. Using electrophoretic mobility shift assays (EMSA), we identified the Aspergillum-derived secondary metabolite gliotoxin as a potent NOTCH2 transactivation inhibitor. Gliotoxin completely blocked the formation of DNA-bound NOTCH2 complexes in CLL cells independent of their sensitivity to DAPT. The inhibition of NOTCH2 signalling by gliotoxin was associated with down regulation of CD23 (FCER) expression and induction of apoptosis. Short time exposure of CLL cells indicated that the early apoptotic effect of gliotoxin is independent of proteasome regulated nuclear factor κB activity, and is associated with up regulation of NOTCH3 and NR4A1 expression. Gliotoxin could overcome the supportive effect of primary bone marrow stromal cells in an ex vivo CLL microenvironment model. In conclusion, we identified gliotoxin as a potent NOTCH2 inhibitor with a promising therapeutic potential in CLL. © 2012 Blackwell Publishing Ltd.

  11. A single dose of the γ-secretase inhibitor semagacestat alters the cerebrospinal fluid peptidome in humans.

    PubMed

    Hölttä, Mikko; Dean, Robert A; Siemers, Eric; Mawuenyega, Kwasi G; Sigurdson, Wendy; May, Patrick C; Holtzman, David M; Portelius, Erik; Zetterberg, Henrik; Bateman, Randall J; Blennow, Kaj; Gobom, Johan

    2016-03-07

    In Alzheimer's disease, beta-amyloid peptides in the brain aggregate into toxic oligomers and plaques, a process which is associated with neuronal degeneration, memory loss, and cognitive decline. One therapeutic strategy is to decrease the production of potentially toxic beta-amyloid species by the use of inhibitors or modulators of the enzymes that produce beta-amyloid from amyloid precursor protein (APP). The failures of several such drug candidates by lack of effect or undesired side-effects underscore the importance to monitor the drug effects in the brain on a molecular level. Here we evaluate if peptidomic analysis in cerebrospinal fluid (CSF) can be used for this purpose. Fifteen human healthy volunteers, divided into three groups, received a single dose of placebo or either 140 mg or 280 mg of the γ-secretase inhibitor semagacestat (LY450139). Endogenous peptides in CSF, sampled prior to administration of the drug and at six subsequent time points, were analyzed by liquid chromatography coupled to mass spectrometry, using isobaric labeling based on the tandem mass tag approach for relative quantification. Out of 302 reproducibly detected peptides, 11 were affected by the treatment. Among these, one was derived from APP and one from amyloid precursor-like protein 1. Nine peptides were derived from proteins that may not be γ-secretase substrates per se, but that are regulated in a γ-secretase-dependent manner. These results indicate that a CSF peptidomic approach may be a valuable tool both to verify target engagement and to identify other pharmacodynamic effects of the drug. Data are available via ProteomeXchange with identifier PXD003075. NCT00765115 , registered 30/09/2008.

  12. The cysteine protease inhibitor, E64d, reduces brain amyloid-β and improves memory deficits in Alzheimer’s disease animal models by inhibiting cathepsin B, but not BACE1, β-secretase activity

    PubMed Central

    Hook, Gregory; Hook, Vivian; Kindy, Mark

    2015-01-01

    The cysteine protease cathepsin B is a potential drug target for reducing brain amyloid-β peptides (Aβ) and improving memory in Alzheimer’s disease (AD), because reduction of cathepsin B in transgenic mice expressing human wild-type amyloid-β protein precursor (AβPP) results in significantly decreased brain Aβ. Cathepsin B cleaves the wild-type β-secretase site sequence in AβPP to produce Aβ and cathepsin B inhibitors administered to animal models expressing AβPP containing the wild-type β-secretase site sequence reduce brain Aβ in a manner consistent with β-secretase inhibition. But such inhibitors could act either by direct inhibition of cathepsin B β-secretase activity or by off-target inhibition of the other β-secretase, the aspartyl protease BACE1. To evaluate that issue, we orally administered a cysteine protease inhibitor, E64d, to normal guinea pigs or transgenic mice expressing human AβPP, both of which express the human wild-type β-secretase site sequence. In guinea pigs, oral E64d administration caused a dose-dependent reduction of up to 92% in brain, CSF and plasma of Aβ(40) and Aβ(42), a reduction of up to 50% in the C-terminal β-secretase fragment (CTFβ), and a 91% reduction in brain cathepsin B activity but increased brain BACE1 activity by 20%. In transgenic AD mice, oral E64d administration improved memory deficits and reduced brain Aβ(40) and Aβ(42), amyloid plaque, brain CTFβ, and brain cathepsin B activity but increased brain BACE1 activity. We conclude that E64d likely reduces brain Aβ by inhibiting cathepsin B and not BACE1 β-secretase activity and that E64d therefore may have potential for treating AD patients. PMID:21613740

  13. γ-Secretase Heterogeneity in the Aph1 Subunit: Relevance for Alzheimer’s Disease

    PubMed Central

    Serneels, Lutgarde; Van Biervliet, Jérôme; Craessaerts, Katleen; Dejaegere, Tim; Horré, Katrien; Van Houtvin, Tine; Esselmann, Hermann; Paul, Sabine; Schäfer, Martin K.; Berezovska, Oksana; Hyman, Bradley T.; Sprangers, Ben; Sciot, Raf; Moons, Lieve; Jucker, Mathias; Yang, Zhixiang; May, Patrick C.; Karran, Eric; Wiltfang, Jens; D’Hooge, Rudi; De Strooper, Bart

    2009-01-01

    The γ-secretase complex plays a role in Alzheimer’s disease (AD) and cancer progression. The development of clinical useful inhibitors, however, is complicated by the role of the γ-secretase complex in regulated intramembrane proteolysis of Notch and other essential proteins. Different γ-secretase complexes containing different Presenilin or Aph1 protein subunits are present in various tissues. Here we show that these complexes have heterogeneous biochemical and physiological properties. Specific inactivation of the Aph1B γ-secretase in a murine Alzheimer’s disease model led to improvements of Alzheimer’s disease-relevant phenotypic features without any Notch-related side effects. The Aph1B complex contributes to total γ-secretase activity in the human brain, thus specific targeting of Aph1B-containing γ-secretase complexes may be helpful in generating less toxic therapies for Alzheimer’s disease. PMID:19299585

  14. Phase I Study of RO4929097, a Gamma Secretase Inhibitor of Notch Signaling, in Patients With Refractory Metastatic or Locally Advanced Solid Tumors

    PubMed Central

    Tolcher, Anthony W.; Messersmith, Wells A.; Mikulski, Stanislaw M.; Papadopoulos, Kyriakos P.; Kwak, Eunice L.; Gibbon, Darlene G.; Patnaik, Amita; Falchook, Gerald S.; Dasari, Arvind; Shapiro, Geoffrey I.; Boylan, John F.; Xu, Zhi-Xin; Wang, Ka; Koehler, Astrid; Song, James; Middleton, Steven A.; Deutsch, Jonathan; DeMario, Mark; Kurzrock, Razelle; Wheler, Jennifer J.

    2012-01-01

    Purpose To determine the maximum-tolerated dose (MTD) and assess safety, pharmacokinetics, pharmacodynamics, and evidence of antitumor activity of RO4929097, a gamma secretase inhibitor of Notch signaling in patients with advanced solid malignancies. Patients and Methods Patients received escalating doses of RO4929097 orally on two schedules: (A) 3 consecutive days per week for 2 weeks every 3 weeks; (B) 7 consecutive days every 3 weeks. To assess reversible CYP3A4 autoinduction, the expanded part of the study tested three dosing schedules: (B) as above; modified A, 3 consecutive d/wk for 3 weeks; and (C) continuous daily dosing. Positron emission tomography scans with [18F]fluorodeoxyglucose (FDG-PET) were used to assess tumor metabolic effects. Results Patients on schedule A (n = 58), B (n = 47), and C (n = 5; expanded cohort) received 302 cycles of RO4929097. Common grade 1 to 2 toxicities were fatigue, thrombocytopenia, fever, rash, chills, and anorexia. Transient grade 3 hypophosphatemia (dose-limiting toxicity, one patient) and grade 3 pruritus (two patients) were observed at 27 mg and 60 mg, respectively; transient grade 3 asthenia was observed on schedule A at 80 mg (one patient). Tumor responses included one partial response in a patient with colorectal adenocarcinoma with neuroendocrine features, one mixed response (stable disease) in a patient with sarcoma, and one nearly complete FDG-PET response in a patient with melanoma. Effect on CYP3A4 induction was observed. Conclusion RO4929097 was well tolerated at 270 mg on schedule A and at 135 mg on schedule B; the safety of schedule C has not been fully evaluated. Further studies are warranted on the basis of a favorable safety profile and preliminary evidence of clinical antitumor activity. PMID:22529266

  15. Aminomethyl-Derived Beta Secretase (BACE1) Inhibitors: Engaging Gly230 without an Anilide Functionality

    PubMed Central

    2016-01-01

    A growing subset of β-secretase (BACE1) inhibitors for the treatment of Alzheimer’s disease (AD) utilizes an anilide chemotype that engages a key residue (Gly230) in the BACE1 binding site. Although the anilide moiety affords excellent potency, it simultaneously introduces a third hydrogen bond donor that limits brain availability and provides a potential metabolic site leading to the formation of an aniline, a structural motif of prospective safety concern. We report herein an alternative aminomethyl linker that delivers similar potency and improved brain penetration relative to the amide moiety. Optimization of this series identified analogues with an excellent balance of ADME properties and potency; however, potential drug–drug interactions (DDI) were predicted based on CYP 2D6 affinities. Generation and analysis of key BACE1 and CYP 2D6 crystal structures identified strategies to obviate the DDI liability, leading to compound 16, which exhibits robust in vivo efficacy as a BACE1 inhibitor. PMID:27997172

  16. Design and synthesis of highly potent benzodiazepine gamma-secretase inhibitors: preparation of (2S,3R)-3-(3,4-difluorophenyl)-2-(4-fluorophenyl)-4- hydroxy-N-((3S)-1-methyl-2-oxo-5- phenyl-2,3-dihydro-1H-benzo[e][1,4]-diazepin-3-yl)butyramide by use of an asymmetric Ireland-Claisen rearrangement.

    PubMed

    Churcher, Ian; Williams, Susie; Kerrad, Sonia; Harrison, Timothy; Castro, José L; Shearman, Mark S; Lewis, Huw D; Clarke, Earl E; Wrigley, Jonathan D J; Beher, Dirk; Tang, Yui S; Liu, Wensheng

    2003-06-05

    Novel benzodiazepine-containing gamma-secretase inhibitors for potential use in Alzheimer's disease have been designed that incorporate a substituted hydrocinnamide C-3 side chain. A syn combination of alpha-alkyl or aryl and beta-hydroxy or hydroxymethyl substituents was shown to give highly potent compounds. In particular, (2S,3R)-3-(3,4-difluorophenyl)-2-(4-fluorophenyl)-4-hydroxy-N-((3S)-2-oxo-5-phenyl-2,3-dihydro-1H-benzo[e][1,4]diazepin-3-yl)butyramide (34) demonstrated excellent in vitro potency (IC(50) = 0.06 nM). 34 could also be selectively methylated to give [(3)H]-28, which is of use in radioligand binding assays.

  17. Development and Mechanism of γ-Secretase Modulators for Alzheimer Disease

    PubMed Central

    Crump, Christina J.; Johnson, Douglas S.; Li, Yue-Ming

    2013-01-01

    γ-Secretase is an aspartyl intramembranal protease composed of presenilin, Nicastrin, Aph1 and Pen2 with 19 transmembrane domains. γ-Secretase cleaves the amyloid precursor proteins (APP) to release Aβ peptides that likely play a causative role in the pathogenesis of Alzheimer disease (AD). In addition, γ-secretase cleaves Notch and other type I membrane proteins. γ-Secretase inhibitors (GSIs) have been developed and used for clinical studies. However, clinical trials have shown adverse effects of GSIs that are potentially linked with non-discriminatory inhibition of Notch signaling, overall APP processing and other substrate cleavages. Therefore, these findings call for the development of disease modifying agents that target γ-secretase activity to lower Aβ42 production without blocking the overall processing of γ-secretase substrates. γ-Secretase modulators (GSMs) originally derived from non-steroidal anti-inflammatory drugs (NSAIDs) display such characteristics and are the focus of this review. However, first generation GSMs have limited potential due to low potency and undesired neuropharmacokinetic properties. This generation of GSMs has been suggested to interact with the APP substrate, γ-secretase or both. To improve the potency and brain availability, second generation GSMs including NSAID-derived carboxylic acid and non-NSAID-derived heterocyclic chemotypes as well as natural product-derived GSMs have been developed. Animal studies of this generation of GSMs have shown encouraging preclinical profiles. Moreover, using potent GSM photoaffinity probes, multiple studies unambiguously have showed that both carboxylic acid and heterocyclic GSMs specifically target presenilin, the catalytic subunit of γ-secretase. In addition, two types of GSMs have distinct binding sites within the γ-secretase complex and exhibit different Aβ profiles. GSMs induce a conformational change of γ-secretase to achieve modulation. Various models are proposed and

  18. Morphologic and Functional Effects of Gamma Secretase Inhibition on Splenic Marginal Zone B Cells

    PubMed Central

    de Vera Mudry, Maria Cristina; Regenass-Lechner, Franziska; Ozmen, Laurence; Altmann, Bernd; Festag, Matthias; Singer, Thomas; Müller, Lutz; Jacobsen, Helmut; Flohr, Alexander

    2012-01-01

    The γ-secretase complex is a promising target in Alzheimer's disease because of its role in the amyloidogenic processing of β-amyloid precursor protein. This enzyme also catalyzes the cleavage of Notch receptor, resulting in the nuclear translocation of intracellular Notch where it modulates gene transcription. Notch signaling is essential in cell fate decisions during embryogenesis, neuronal differentiation, hematopoiesis, and development of T and B cells, including splenic marginal zone (MZ) B cells. This B cell compartment participates in the early phases of the immune response to blood-borne bacteria and viruses. Chronic treatment with the oral γ-secretase inhibitor RO4929097 resulted in dose-dependent decreased cellularity (atrophy) of the MZ of rats and mice. Significant decreases in relative MZ B-cell numbers of RO4929097-treated animals were confirmed by flow cytometry. Numbers of MZ B cells reverted to normal after a sufficient RO4929097-free recovery period. Functional characterization of the immune response in relation to RO4929097-related MZ B cell decrease was assessed in mice vaccinated with inactivated vesicular stomatitis virus (VSV). Compared with the immunosuppressant cyclosporin A, RO4929097 caused only mild and reversible delayed early neutralizing IgM and IgG responses to VSV. Thus, the functional consequence of MZ B cell decrease on host defense is comparatively mild. PMID:23316412

  19. Overcoming failure to repair demyelination in EAE: gamma-secretase inhibition of Notch signaling.

    PubMed

    Jurynczyk, Maciej; Jurewicz, Anna; Bielecki, Bartosz; Raine, Cedric S; Selmaj, Krzysztof

    2008-02-15

    In multiple sclerosis (MS), myelin destroyed by the immune attack is not effectively repaired by oligodendrocytes (OLs) and MS foci eventually undergo glial scarring. Although oligodendrocyte precursor cells (OPCs) are normally recruited to the lesion areas, they fail to mature and remyelinate the damaged fibers. Activation of the Notch pathway has been shown to inhibit OPC differentiation and to hamper their ability to produce myelin during CNS development. We have recently shown that inhibition of gamma-secretase within the CNS of SJL/J mice with experimental autoimmune encephalomyelitis (EAE) blocks Notch pathway activation in OLs, promotes remyelination, reduces axonal damage and significantly enhances clinical recovery from the disease. Our results suggest that inhibiting the non-myelin permissive environment maintained by Notch pathways within the mature CNS offers a new strategy for treating autoimmune demyelination, including MS.

  20. Ultrasonically promoted nitrolysis of DAPT to HMX in ionic liquid.

    PubMed

    Hua, Qian; Zhiwen, Ye; Chunxu, Lv

    2008-04-01

    The present work aims at developing a new process to synthesize HMX from DAPT using ultrasound in ionic liquid. Reaction has been carried out in ultrasonic bath, effect of various parameters such as presence and absence of ultrasound, volume and type of solvent, temperature, concentration of nitrating agent has been investigated with an aim of obtaining the optimum conditions for the synthesis of HMX. It was observed that ultrasonically promoted nitroylsis of DAPT to HMX has exhibited significant enhancement in yield at ambient condition.

  1. γ-Secretase inhibitor-resistant glioblastoma stem cells require RBPJ to propagate.

    PubMed

    Fan, Xing

    2016-07-01

    Targeting glioblastoma stem cells with γ-secretase inhibitors (GSIs) disrupts the Notch pathway and has shown some benefit in both pre-clinical models and in patients during phase I/II clinical trials. However, it is largely unknown why some glioblastoma (GBM) does not respond to GSI treatment. In this issue of the JCI, Xie et al. determined that GSI-resistant brain tumor-initiating cells (BTICs) from GBM express a higher level of the gene RBPJ, which encodes a mediator of canonical Notch signaling, compared to non-BTICs. Knockdown of RBPJ in BTICs decreased propagation in vitro and in vivo by inducing apoptosis. Interestingly, RBPJ was shown to regulate a different transcription program than Notch in BTICs by binding CDK9, thereby affecting Pol II-regulated transcript elongation. Targeting CDK9 or c-MYC, an upstream regulator of RBPJ, with small molecules also decreased BTIC propagation, and prolonged survival in mice bearing orthotopic GBM xenografts. This study not only provides a mechanism for GSI treatment resistance, but also identifies two potential therapeutic strategies to target GSI-resistant BTICs.

  2. Curcumin derivatives inhibit or modulate beta-amyloid precursor protein metabolism.

    PubMed

    Narlawar, Rajeshwar; Baumann, Karlheinz; Schubenel, Robert; Schmidt, Boris

    2007-01-01

    Curcumin-derived oxazoles and pyrazoles were synthesized in order to minimize the metal chelation properties of curcumin. The reduced rotational freedom and the absence of stereoisomers was anticipated to enhance the inhibition of gamma-secretase. Accordingly, the replacement of the 1,3-dicarbonyl moiety by isosteric heterocycles turned curcumin analogue oxazoles and pyrazoles into potent gamma-secretase inhibitors. Compounds 4a-i were found to be potent inhibitors of gamma-secretase and displayed activity in the low micromolar range. 2007 S. Karger AG, Basel

  3. A novel Aβ isoform pattern in CSF reflects γ-secretase inhibition in Alzheimer disease

    PubMed Central

    2010-01-01

    Introduction LY450139 (semagacestat) inhibits γ-secretase, a key enzyme for generation of amyloid β (Aβ), the peptide deposited in plaques in Alzheimer disease (AD). Previous data have shown that LY450139 lowers plasma Aβ, but has no clear effect on Aβ1-40 or Aβ1-42 levels in cerebrospinal fluid (CSF). By using targeted proteomics techniques, we recently identified several shorter Aβ isoforms, such as Aβ1-16, that in experimental settings increase during γ-secretase inhibitor treatment, and thus may serve as sensitive biochemical indices of the treatment effect. Here, we test the hypothesis that these shorter Aβ isoforms may be biomarkers of γ-secretase inhibitor treatment in clinical trials. Methods In a phase II clinical trial, 35 individuals with mild to moderate AD were randomized to placebo (n = 10) or LY450139 (100 mg (n = 15) or 140 mg (n = 10)) and underwent lumbar puncture at baseline and after 14 weeks of treatment. The CSF Aβ isoform pattern was analyzed with immunoprecipitation combined with MALDI-TOF mass spectrometry. Results The CSF levels of Aβ1-14, Aβ1-15, and Aβ1-16 showed a dose-dependent increase by 57% and 74%, 21% and 35%, and 30% and 67%, respectively in the 100-mg and 140-mg treatment groups. Aβ1-40 and Aβ1-42 were unaffected by treatment. Conclusions CSF Aβ1-14, Aβ1-15, and Aβ1-16 increase during γ-secretase inhibitor treatment in AD, even at doses that do not affect Aβ1-42 or Aβ1-40, probably because of increased substrate availability of the C99 APP stub (APP β-CTF) induced by γ-secretase inhibition. These Aβ isoforms may be novel sensitive biomarkers to monitor the biochemical effect in clinical trials. Trial registration Clinical Trials.gov NCT00244322 PMID:20350302

  4. Novel tetrahydrocarbazole benzyl pyridine hybrids as potent and selective butryl cholinesterase inhibitors with neuroprotective and β-secretase inhibition activities.

    PubMed

    Ghobadian, Roshanak; Mahdavi, Mohammad; Nadri, Hamid; Moradi, Alireza; Edraki, Najmeh; Akbarzadeh, Tahmineh; Sharifzadeh, Mohammad; Bukhari, Syed Nasir Abbas; Amini, Mohsen

    2018-05-23

    Butyrylcholinesterase (BuChE) inhibitors have become interesting target for treatment of Alzheimer's disease (AD). A series of dual binding site BuChE inhibitors were designed and synthesized based on 2,3,4,9-tetrahydro-1H-carbazole attached benzyl pyridine moieties. In-vitro assay revealed that all of the designed compounds were selective and potent BuChE inhibitors. The most potent BuChE inhibitor was compound 6i (IC 50  = 0.088 ± 0.0009 μM) with the mixed-type inhibition. Docking study revealed that 6i is a dual binding site BuChE inhibitor. Also, Pharmacokinetic properties for 6i were accurate to Lipinski's rule. In addition, compound 6i demonstrated neuroprotective and β-secretase (BACE1) inhibition activities. This compound could also inhibit AChE-induced and self-induced Aβ peptide aggregation at concentration of 100 μM and 10 μM respectively. Generally, the results are presented as new potent selective BuChE inhibitors with a therapeutic potential for the treatment of AD. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  5. Transcriptional Profiling of Ectoderm Specification to Keratinocyte Fate in Human Embryonic Stem Cells

    PubMed Central

    Tadeu, Ana Mafalda Baptista; Lin, Samantha; Hou, Lin; Chung, Lisa; Zhong, Mei; Zhao, Hongyu; Horsley, Valerie

    2015-01-01

    In recent years, several studies have shed light into the processes that regulate epidermal specification and homeostasis. We previously showed that a broad-spectrum γ–secretase inhibitor DAPT promoted early keratinocyte specification in human embryonic stem cells triggered to undergo ectoderm specification. Here, we show that DAPT accelerates human embryonic stem cell differentiation and induces expression of the ectoderm protein AP2. Furthermore, we utilize RNA sequencing to identify several candidate regulators of ectoderm specification including those involved in epithelial and epidermal development in human embryonic stem cells. Genes associated with transcriptional regulation and growth factor activity are significantly enriched upon DAPT treatment during specification of human embryonic stem cells to the ectoderm lineage. The human ectoderm cell signature identified in this study contains several genes expressed in ectodermal and epithelial tissues. Importantly, these genes are also associated with skin disorders and ectodermal defects, providing a platform for understanding the biology of human epidermal keratinocyte development under diseased and homeostatic conditions. PMID:25849374

  6. ADAM10 and γ-secretase regulate sensory regeneration in the avian vestibular organs.

    PubMed

    Warchol, Mark E; Stone, Jennifer; Barton, Matthew; Ku, Jeffrey; Veile, Rose; Daudet, Nicolas; Lovett, Michael

    2017-08-01

    The loss of sensory hair cells from the inner ear is a leading cause of hearing and balance disorders. The mammalian ear has a very limited ability to replace lost hair cells, but the inner ears of non-mammalian vertebrates can spontaneously regenerate hair cells after injury. Prior studies have shown that replacement hair cells are derived from epithelial supporting cells and that the differentiation of new hair cells is regulated by the Notch signaling pathway. The present study examined molecular influences on regeneration in the avian utricle, which has a particularly robust regenerative ability. Chicken utricles were placed in organotypic culture and hair cells were lesioned by application of the ototoxic antibiotic streptomycin. Cultures were then allowed to regenerate in vitro for seven days. Some specimens were treated with small molecule inhibitors of γ-secretase or ADAM10, proteases which are essential for transmission of Notch signaling. As expected, treatment with both inhibitors led to increased numbers of replacement hair cells. However, we also found that inhibition of both proteases resulted in increased regenerative proliferation. Subsequent experiments showed that inhibition of γ-secretase or ADAM10 could also trigger proliferation in undamaged utricles. To better understand these phenomena, we used RNA-Seq profiling to characterize changes in gene expression following γ-secretase inhibition. We observed expression patterns that were consistent with Notch pathway inhibition, but we also found that the utricular sensory epithelium contains numerous γ-secretase substrates that might regulate cell cycle entry and possibly supporting cell-to-hair cell conversion. Together, our data suggest multiple roles for γ-secretase and ADAM10 in vestibular hair cell regeneration. Copyright © 2017. Published by Elsevier Inc.

  7. Inhibition of gamma-secretase activity impedes uterine serous carcinoma growth in a human xenograft model.

    PubMed

    Groeneweg, Jolijn W; Hall, Tracilyn R; Zhang, Ling; Kim, Minji; Byron, Virginia F; Tambouret, Rosemary; Sathayanrayanan, Sriram; Foster, Rosemary; Rueda, Bo R; Growdon, Whitfield B

    2014-06-01

    Uterine serous carcinoma (USC) represents an aggressive subtype of endometrial cancer. We sought to understand Notch pathway activity in USC and determine if pathway inhibition has anti-tumor activity. Patient USC tissue blocks were obtained and used to correlate clinical outcomes with Notch1 expression. Three established USC cell lines were treated with gamma-secretase inhibitor (GSI) in vitro. Mice harboring cell line derived or patient derived USC xenografts (PDXs) were treated with vehicle, GSI, paclitaxel and carboplatin (P/C), or combination GSI and P/C. Levels of cleaved Notch1 protein and Hes1 mRNA were determined in GSI treated samples. Statistical analysis was performed using the Wilcoxon rank sum and Kaplan-Meier methods. High nuclear Notch1 protein expression was observed in 58% of USC samples with no correlation with overall survival. GSI induced dose-dependent reductions in cell number and decreased levels of cleaved Notch1 protein and Hes1 mRNA in vitro. Treatment of mice with GSI led to decreased Hes1 mRNA expression in USC xenografts. In addition, GSI impeded tumor growth of cell line xenografts as well as UT1 USC PDXs. When GSI and P/C were combined, synergistic anti-tumor activity was observed in UT1 xenografts. Notch1 is expressed in a large subset of USC. GSI-mediated Notch pathway inhibition led to both reduced cell numbers in vitro and decreased tumor growth of USC some xenograft models. When combined with conventional chemotherapy, GSI augmented anti-tumor activity in one USC PDX line suggesting that targeting of the Notch signaling pathway is a potential therapeutic strategy for future investigation. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. A microfluidics-based mobility shift assay to identify new inhibitors of β-secretase for Alzheimer's disease.

    PubMed

    Liu, Rongfeng; Liu, Yu-Chih; Meng, Junwei; Zhu, Haiyan; Zhang, Xuehong

    2017-11-01

    The β-secretase (BACE1) initiates the generation of toxic amyloid-β peptide (Aβ) from amyloid-β precursor protein (APP), which was widely considered to play a key role in the pathogenesis of Alzheimer's disease (AD). Here, a novel microfluidics-based mobility shift assay (MMSA) was developed, validated, and applied for the screening of BACE1 inhibitors for AD. First, the BACE1 activity assay was established with a new fluorescent peptide substrate (FAM-EVNLDAEF) derived from the Swedish mutant APP, and high-quality ratiometric data were generated in both endpoint and kinetic modes by electrophoretic separation of peptide substrate from the BACE1 cleaved product (FAM-EVNL) before fluorescence quantification. To validate the assay, the inhibition and kinetic parameter values of two known inhibitors (AZD3839 and AZD3293) were evaluated, and the results were in good agreement with those reported by other methods. Finally, the assay was applied to screen for new inhibitors from a 900-compound library in a 384-well format, and one novel hit (IC 50 = 26.5 ± 1.5 μM) was identified. Compared with the common fluorescence-based assays, the primary advantage of the direct MMSA was to discover novel BACE1 inhibitors with lower auto-fluorescence interference, and its superb capability for kinetic study. Graphical abstract Microfluidics-based mobility shift assay for BACE1.

  9. Notch γ-Secretase Inhibitor Dibenzazepine Attenuates Angiotensin II-Induced Abdominal Aortic Aneurysm in ApoE Knockout Mice by Multiple Mechanisms

    PubMed Central

    Zheng, Yue-Hong; Li, Fang-Da; Tian, Cui; Ren, Hua-Liang; Du, Jie; Li, Hui-Hua

    2013-01-01

    Abdominal aortic aneurysm (AAA) is a life-threatening aortic disease in the elderly. Activation of Notch1 pathway plays a critical role in the development of AAA, but the underlying mechanisms remain poorly understood. In the present study, we explored the mechanisms by which Notch1 activation regulates angiotensin II (Ang II)-induced AAA formation and evaluated the therapeutic potential of a new Notch γ-secretase inhibitor, dibenzazepine (DBZ), for the treatment of AAA. Apolipoprotein E knockout (Apo E−/−) mice infused for 4 weeks with Ang II (1000 ng/kg/min, IP) using osmotic mini-pumps were received an intraperitoneal injection of either vehicle or 1 mg/kg/d DBZ. Notch1 signaling was activated in AAA tissue from both Ang II-infused Apo E−/− mice and human undergoing AAA repair in vivo, with increased expression of Notch intracellular domain (NICD) and its target gene Hes1, and this effect was effectively blocked by DBZ. Moreover, infusion of Ang II markedly increased the incidence and severity of AAA in Apo E−/− mice. In contrast, inhibition of Notch activation by DBZ prevented AAA formation in vivo. Furthermore, DBZ markedly prevented Ang II-stimulated accumulation of macrophages and CD4+ T cells, and ERK-mediated angiogenesis, simultaneously reversed Th2 response, in vivo. In conclusion, these findings provide new insight into the multiple mechanisms of Notch signaling involved in AAA formation and suggest that γ-secretase inhibitor DBZ might be a novel therapeutic drug for treating AAAS. PMID:24358274

  10. PEST domain mutations in Notch receptors comprise an oncogenic driver segment in triple-negative breast cancer sensitive to a γ-secretase inhibitor.

    PubMed

    Wang, Kai; Zhang, Qin; Li, Danan; Ching, Keith; Zhang, Cathy; Zheng, Xianxian; Ozeck, Mark; Shi, Stephanie; Li, Xiaorong; Wang, Hui; Rejto, Paul; Christensen, James; Olson, Peter

    2015-03-15

    To identify and characterize novel, activating mutations in Notch receptors in breast cancer and to determine response to the gamma secretase inhibitor (GSI) PF-03084014. We used several computational approaches, including novel algorithms, to analyze next-generation sequencing data and related omic datasets from The Cancer Genome Atlas (TCGA) breast cancer cohort. Patient-derived xenograft (PDX) models were sequenced, and Notch-mutant models were treated with PF-03084014. Gene-expression and functional analyses were performed to study the mechanism of activation through mutation and inhibition by PF-03084014. We identified mutations within and upstream of the PEST domains of NOTCH1, NOTCH2, and NOTCH3 in the TCGA dataset. Mutations occurred via several genetic mechanisms and compromised the function of the PEST domain, a negative regulatory domain commonly mutated in other cancers. Focal amplifications of NOTCH2 and NOTCH3 were also observed, as were heterodimerization or extracellular domain mutations at lower incidence. Mutations and amplifications often activated the Notch pathway as evidenced by increased expression of canonical Notch target genes, and functional mutations were significantly enriched in the triple-negative breast cancer subtype (TNBC). PDX models were also identified that harbored PEST domain mutations, and these models were highly sensitive to PF-03084014. This work suggests that Notch-altered breast cancer constitutes a bona fide oncogenic driver segment with the most common alteration being PEST domain mutations present in multiple Notch receptors. Importantly, functional studies suggest that this newly identified class can be targeted with Notch inhibitors, including GSIs. ©2015 American Association for Cancer Research.

  11. Inhibition of γ-secretase worsens memory deficits in a genetically congruous mouse model of Danish dementia

    PubMed Central

    2012-01-01

    Background A mutation in the BRI2/ITM2b gene causes familial Danish dementia (FDD). BRI2 is an inhibitor of amyloid-β precursor protein (APP) processing, which is genetically linked to Alzheimer’s disease (AD) pathogenesis. The FDD mutation leads to a loss of BRI2 protein and to increased APP processing. APP haplodeficiency and inhibition of APP cleavage by β-secretase rescue synaptic/memory deficits of a genetically congruous mouse model of FDD (FDDKI). β-cleavage of APP yields the β-carboxyl-terminal (β-CTF) and the amino-terminal-soluble APPβ (sAPPβ) fragments. γ-secretase processing of β-CTF generates Aβ, which is considered the main cause of AD. However, inhibiting Aβ production did not rescue the deficits of FDDKI mice, suggesting that sAPPβ/β-CTF, and not Aβ, are the toxic species causing memory loss. Results Here, we have further analyzed the effect of γ-secretase inhibition. We show that treatment with a γ-secretase inhibitor (GSI) results in a worsening of the memory deficits of FDDKI mice. This deleterious effect on memory correlates with increased levels of the β/α-CTFs APP fragments in synaptic fractions isolated from hippocampi of FDDKI mice, which is consistent with inhibition of γ-secretase activity. Conclusion This harmful effect of the GSI is in sharp contrast with a pathogenic role for Aβ, and suggests that the worsening of memory deficits may be due to accumulation of synaptic-toxic β/α-CTFs caused by GSI treatment. However, γ-secretase cleaves more than 40 proteins; thus, the noxious effect of GSI on memory may be dependent on inhibition of cleavage of one or more of these other γ-secretase substrates. These two possibilities do not need to be mutually exclusive. Our results are consistent with the outcome of a clinical trial with the GSI Semagacestat, which caused a worsening of cognition, and advise against targeting γ-secretase in the therapy of AD. Overall, the data also indicate that FDDKI is a valuable mouse

  12. Inhibition of γ-secretase worsens memory deficits in a genetically congruous mouse model of Danish dementia.

    PubMed

    Tamayev, Robert; D'Adamio, Luciano

    2012-04-26

    A mutation in the BRI2/ITM2b gene causes familial Danish dementia (FDD). BRI2 is an inhibitor of amyloid-β precursor protein (APP) processing, which is genetically linked to Alzheimer's disease (AD) pathogenesis. The FDD mutation leads to a loss of BRI2 protein and to increased APP processing. APP haplodeficiency and inhibition of APP cleavage by β-secretase rescue synaptic/memory deficits of a genetically congruous mouse model of FDD (FDDKI). β-cleavage of APP yields the β-carboxyl-terminal (β-CTF) and the amino-terminal-soluble APPβ (sAPPβ) fragments. γ-secretase processing of β-CTF generates Aβ, which is considered the main cause of AD. However, inhibiting Aβ production did not rescue the deficits of FDDKI mice, suggesting that sAPPβ/β-CTF, and not Aβ, are the toxic species causing memory loss. Here, we have further analyzed the effect of γ-secretase inhibition. We show that treatment with a γ-secretase inhibitor (GSI) results in a worsening of the memory deficits of FDDKI mice. This deleterious effect on memory correlates with increased levels of the β/α-CTFs APP fragments in synaptic fractions isolated from hippocampi of FDDKI mice, which is consistent with inhibition of γ-secretase activity. This harmful effect of the GSI is in sharp contrast with a pathogenic role for Aβ, and suggests that the worsening of memory deficits may be due to accumulation of synaptic-toxic β/α-CTFs caused by GSI treatment. However, γ-secretase cleaves more than 40 proteins; thus, the noxious effect of GSI on memory may be dependent on inhibition of cleavage of one or more of these other γ-secretase substrates. These two possibilities do not need to be mutually exclusive. Our results are consistent with the outcome of a clinical trial with the GSI Semagacestat, which caused a worsening of cognition, and advise against targeting γ-secretase in the therapy of AD. Overall, the data also indicate that FDDKI is a valuable mouse model to study AD pathogenesis and

  13. Nicergoline stimulates protein kinase C mediated alpha-secretase processing of the amyloid precursor protein in cultured human neuroblastoma SH-SY5Y cells.

    PubMed

    Cedazo-Minguez, A; Bonecchi, L; Winblad, B; Post, C; Wong, E H; Cowburn, R F; Benatti, L

    1999-10-01

    We investigated the ability of the antidementia agents, nicergoline, aniracetam and hydergine to stimulate PKC mediated alpha-secretase amyloid precursor protein (APP) processing in cultured human neuroblastoma SH-SY5Y cells. Western immunoblotting of cell conditioned media using the Mabs 22C11 and 6E10 revealed the presence of 2 bands with molecular mass of 90 and 120 kDa, corresponding to possible alternatively glycosylated forms of secreted APP (APPs). Short-term (30 min and 2 h) treatment of cells with nicergoline gave an increased intensity of both bands, compared to non-treated cells. Maximal nicergoline effects, of the order of 150-200% over basal APPs release, were seen at concentrations between 1 and 10 microM. Under the same condition, 1 microM PdBu, used as a positive control, gave 500-1000% increases of basal APPs release. In contrast, aniracetam and hydergine, did not show any effect on APPs secretion. 2 h treatment with nicergoline had no effect on cellular full-length APP levels, as determined by immunoblotting of cell extracts with 22C11 and CT15 antibodies. Immunoblotting with PKC isoform specific antibodies of soluble and membrane fractions prepared from 2 h treated cells, showed that nicergoline (50 microM) and PdBu (1 microM) both induced translocation of PKC alpha, gamma and epsilon, but not PKC beta. The involvement of PKC in mediating nicergoline stimulated APPs release was also studied using specific inhibitors. 1 microM calphostin C, a broad range PKC inhibitor, significantly reduced both PdBu (1 microM) and nicergoline (10 microM) induced APPs release. In contrast, Go6976 (1 microM), a selective PKC alpha and beta1 inhibitor, as well as the cAMP-dependent protein kinase inhibitor, H89 (1 microM) were without effect. These results indicate that nicergoline can modulate alpha-secretase APP processing by a PKC dependent mechanism that is likely to involve the gamma and epsilon isoforms of this enzyme.

  14. Alzheimer's Disease: APP, Gamma Secretase, APOE, CLU, CR1, PICALM, ABCA7, BIN1, CD2AP, CD33, EPHA1, and MS4A2, and Their Relationships with Herpes Simplex, C. Pneumoniae, Other Suspect Pathogens, and the Immune System

    PubMed Central

    Carter, Chris

    2011-01-01

    Alzheimer's disease susceptibility genes, APP and gamma-secretase, are involved in the herpes simplex life cycle, and that of other suspect pathogens (C. pneumoniae, H. pylori, C. neoformans, B. burgdorferri, P. gingivalis) or immune defence. Such pathogens promote beta-amyloid deposition and tau phosphorylation and may thus be causative agents, whose effects are conditioned by genes. The antimicrobial effects of beta-amyloid, the localisation of APP/gamma-secretase in immunocompetent dendritic cells, and gamma secretase cleavage of numerous pathogen receptors suggest that this network is concerned with pathogen disposal, effects which may be abrogated by the presence of beta-amyloid autoantibodies in the elderly. These autoantibodies, as well as those to nerve growth factor and tau, also observed in Alzheimer's disease, may well be antibodies to pathogens, due to homology between human autoantigens and pathogen proteins. NGF or tau antibodies promote beta-amyloid deposition, neurofibrillary tangles, or cholinergic neuronal loss, and, with other autoantibodies, such as anti-ATPase, are potential agents of destruction, whose formation is dictated by sequence homology between pathogen and human proteins, and thus by pathogen strain and human genes. Pathogen elimination in the ageing population and removal of culpable autoantibodies might reduce the incidence and offer hope for a cure in this affliction. PMID:22254144

  15. Search for β-Secretase Inhibitors from Natural Spices.

    PubMed

    Matsumura, Shinichi; Murata, Kazuya; Yoshioka, Yuri; Matsuda, Hideaki

    2016-04-01

    The growing number of Alzheimer's disease (AD) patients prompted us to seek effective natural resources for the prevention of AD. We focused on the inhibition of β-secretase, which is known to catalyze the production of senile plaque. Sixteen spices used in Asian countries were selected for the screening. Among the extracts tested, hexane extracts obtained from turmeric, cardamom, long pepper, cinnamon, Sichuan pepper, betel, white turmeric and aromatic ginger showed potent inhibitory activities. Their active principles were identified as sesquiterpenoids, monoterpenoids, fatty acid derivatives and phenylpropanoids using GC-MS analyses. The chemical structures and IC50 values of the compounds are disclosed. The results suggest that long-term consumption'of aromatic compounds from spices could be effective in the prevention of AD.

  16. Triple negative breast cancer initiating cell subsets differ in functional and molecular characteristics and in γ-secretase inhibitor drug responses

    PubMed Central

    Azzam, Diana J; Zhao, Dekuang; Sun, Jun; Minn, Andy J; Ranganathan, Prathibha; Drews-Elger, Katherine; Han, Xiaoqing; Picon-Ruiz, Manuel; Gilbert, Candace A; Wander, Seth A; Capobianco, Anthony J; El-Ashry, Dorraya; Slingerland, Joyce M

    2013-01-01

    Increasing evidence suggests that stem-like cells mediate cancer therapy resistance and metastasis. Breast tumour-initiating stem cells (T-ISC) are known to be enriched in CD44+CD24neg/low cells. Here, we identify two T-ISC subsets within this population in triple negative breast cancer (TNBC) lines and dissociated primary breast cancer cultures: CD44+CD24low+ subpopulation generates CD44+CD24neg progeny with reduced sphere formation and tumourigenicity. CD44+CD24low+ populations contain subsets of ALDH1+ and ESA+ cells, yield more frequent spheres and/or T-ISC in limiting dilution assays, preferentially express metastatic gene signatures and show greater motility, invasion and, in the MDA-MB-231 model, metastatic potential. CD44+CD24low+ but not CD44+CD24neg express activated Notch1 intracellular domain (N1-ICD) and Notch target genes. We show N1-ICD transactivates SOX2 to increase sphere formation, ALDH1+ and CD44+CD24low+cells. Gamma secretase inhibitors (GSI) reduced sphere formation and xenograft growth from CD44+CD24low+ cells, but CD44+CD24neg were resistant. While GSI hold promise for targeting T-ISC, stem cell heterogeneity as observed herein, could limit GSI efficacy. These data suggest a breast T-ISC hierarchy in which distinct pathways drive developmentally related subpopulations with different anti-cancer drug responsiveness. PMID:23982961

  17. In vitro streptozotocin model for modeling Alzheimer-like changes: effect on amyloid precursor protein secretases and glycogen synthase kinase-3.

    PubMed

    Plaschke, Konstanze; Kopitz, Jürgen

    2015-04-01

    There is accumulating evidence for a pathogenetic link between sporadic Alzheimer's disease (AD) and diabetes mellitus (DM). At subdiabetogenic doses, the cerebral administration of the diabetogenic substance streptozotocin (STZ) induces an insulin-resistant brain state (IRBS). The aim of the present pilot study was to investigate the effect of STZ on Alzheimer-like characteristics such as amyloid precursor protein (APP) cleavage secretases, betaA4 fragment, and glycogen synthase kinase (GSK) in vitro. Different STZ concentrations (0-5 mM) and incubation intervals (0-48 h) were tested to find appropriate cell culture conditions for further biochemical analyses in human neuroblastoma cells (SK-N-MC). Lactate dehydrogenase (LDH) was measured spectrophotometrically. Intracellular ATP was determined using bioluminescent luciferase assay. Secretase activity (alpha, beta, and gamma) was measured by employing commercial fluorometric secretase activity assay kits, betaA4 fragment by immunoprecipitation. Glycogen synthase kinase-3alpha/beta (total and phospho-GSK) content was assayed by ELISA technique. In vitro STZ administration (1 mM) induced a significant reduction in intracellular ATP concentration without pronounced cell death after 24 and 48 h as measured by LDH. Under these experimental conditions, a significant increase in beta-secretase and a significant drop in alpha-secretase were obtained, whereas gamma-secretase was not changed significantly. Simultaneously, the betaA4 concentration was increased by about threefold. Furthermore, STZ significantly increased total GSK and markedly decreased phospho-GSK. A direct link between STZ, intracellular ATP deficit, and Alzheimer-related enzymes was shown in this in vitro pilot study. Thus, these results support the hypothesis that sporadic AD is being recognized as an IRBS, which can be modulated by in vitro STZ model. Continuing investigations relating pathogenetic mechanisms and AD-like hallmarks are necessary to

  18. Syntheses of coumarin-tacrine hybrids as dual-site acetylcholinesterase inhibitors and their activity against butylcholinesterase, Aβ aggregation, and β-secretase.

    PubMed

    Sun, Qi; Peng, Da-Yong; Yang, Sheng-Gang; Zhu, Xiao-Lei; Yang, Wen-Chao; Yang, Guang-Fu

    2014-09-01

    Exploring small-molecule acetylcholinesterase (AChE) inhibitors to slow the breakdown of acetylcholine (Ach) represents the mainstream direction for Alzheimer's disease (AD) therapy. As the first acetylcholinesterase inhibitor approved for the clinical treatment of AD, tacrine has been widely used as a pharmacophore to design hybrid compounds in order to combine its potent AChE inhibition with other multi-target profiles. In present study, a series of novel tacrine-coumarin hybrids were designed, synthesized and evaluated as potent dual-site AChE inhibitors. Moreover, compound 1g was identified as the most potent candidate with about 2-fold higher potency (Ki=16.7nM) against human AChE and about 2-fold lower potency (Ki=16.1nM) against BChE than tacrine (Ki=35.7nM for AChE, Ki=8.7nM for BChE), respectively. In addition, some of the tacrine-coumarin hybrids showed simultaneous inhibitory effects against both Aβ aggregation and β-secretase. We therefore conclude that tacrine-coumarin hybrid is an interesting multifunctional lead for the AD drug discovery. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Second generation γ-secretase modulators exhibit different modulation of Notch β and Aβ production.

    PubMed

    Wanngren, Johanna; Ottervald, Jan; Parpal, Santiago; Portelius, Erik; Strömberg, Kia; Borgegård, Tomas; Klintenberg, Rebecka; Juréus, Anders; Blomqvist, Jenny; Blennow, Kaj; Zetterberg, Henrik; Lundkvist, Johan; Rosqvist, Susanne; Karlström, Helena

    2012-09-21

    The γ-secretase complex is an appealing drug target when the therapeutic strategy is to alter amyloid-β peptide (Aβ) aggregation in Alzheimer disease. γ-Secretase is directly involved in Aβ formation and determines the pathogenic potential of Aβ by generating the aggregation-prone Aβ42 peptide. Because γ-secretase mediates cleavage of many substrates involved in cell signaling, such as the Notch receptor, it is crucial to sustain these pathways while altering the Aβ secretion. A way of avoiding interference with the physiological function of γ-secretase is to use γ-secretase modulators (GSMs) instead of inhibitors of the enzyme. GSMs modify the Aβ formation from producing the amyloid-prone Aβ42 variant to shorter and less amyloidogenic Aβ species. The modes of action of GSMs are not fully understood, and even though the pharmacology of GSMs has been thoroughly studied regarding Aβ generation, knowledge is lacking about their effects on other substrates, such as Notch. Here, using immunoprecipitation followed by MALDI-TOF MS analysis, we found that two novel, second generation GSMs modulate both Notch β and Aβ production. Moreover, by correlating S3-specific Val-1744 cleavage of Notch intracellular domain (Notch intracellular domain) to total Notch intracellular domain levels using immunocytochemistry, we also demonstrated that Notch intracellular domain is not modulated by the compounds. Interestingly, two well characterized, nonsteroidal anti-inflammatory drugs (nonsteroidal anti-inflammatory drug), R-flurbiprofen and sulindac sulfide, affect only Aβ and not Notch β formation, indicating that second generation GSMs and nonsteroidal anti-inflammatory drug-based GSMs have different modes of action regarding Notch processing.

  20. Aβ-mediated spine changes in the hippocampus are microtubule-dependent and can be reversed by a subnanomolar concentration of the microtubule-stabilizing agent epothilone D

    PubMed Central

    Penazzi, Lorène; Tackenberg, Christian; Ghori, Adnan; Golovyashkina, Nataliya; Niewidok, Benedikt; Selle, Karolin; Ballatore, Carlo; Smith, Amos B.; Bakota, Lidia; Brandt, Roland

    2016-01-01

    Dendritic spines represent the major postsynaptic input of excitatory synapses. Loss of spines and changes in their morphology correlate with cognitive impairment in Alzheimer’s disease (AD) and are thought to occur early during pathology. Therapeutic intervention at a preclinical stage of AD to modify spine changes might thus be warranted. To follow the development and to potentially interfere with spine changes over time, we established a long term ex vivo model from organotypic cultures of the hippocampus from APP transgenic and control mice. The cultures exhibit spine loss in principal hippocampal neurons, which closely resembles the changes occurring in vivo, and spine morphology progressively changes from mushroom-shaped to stubby. We demonstrate that spine changes are completely reversed within few days after blocking amyloid-β (Aβ) production with the gamma-secretase inhibitor DAPT. We show that the microtubule disrupting drug nocodazole leads to spine loss similar to Aβ expressing cultures and suppresses DAPT-mediated spine recovery in slices from APP transgenic mice. Finally, we report that epothilone D (EpoD) at a subnanomolar concentration, which slightly stabilizes microtubules in model neurons, completely reverses Aβ-induced spine loss and increases thin spine density. Taken together the data indicate that Aβ causes spine changes by microtubule destabilization and that spine recovery requires microtubule polymerization. Moreover, our results suggest that a low, subtoxic concentration of EpoD is sufficient to reduce spine loss during the preclinical stage of AD. PMID:26772969

  1. Inhibition of Notch signaling alters the phenotype of orthotopic tumors formed from glioblastoma multiforme neurosphere cells but does not hamper intracranial tumor growth regardless of endogene Notch pathway signature.

    PubMed

    Kristoffersen, Karina; Nedergaard, Mette Kjølhede; Villingshøj, Mette; Borup, Rehannah; Broholm, Helle; Kjær, Andreas; Poulsen, Hans Skovgaard; Stockhausen, Marie-Thérése

    2014-07-01

    Brain cancer stem-like cells (bCSC) are cancer cells with neural stem cell (NSC)-like properties found in the devastating brain tumor glioblastoma multiforme (GBM). bCSC are proposed a central role in tumor initiation, progression, treatment resistance and relapse and as such present a promising target in GBM research. The Notch signaling pathway is often deregulated in GBM and we have previously characterized GBM-derived bCSC cultures based on their expression of the Notch-1 receptor and found that it could be used as predictive marker for the effect of Notch inhibition. The aim of the present project was therefore to further elucidate the significance of Notch pathway activity for the tumorigenic properties of GBM-derived bCSC. Human-derived GBM xenograft cells previously established as NSC-like neurosphere cultures were used. Notch inhibition was accomplished by exposing the cells to the gamma-secretase inhibitor DAPT prior to gene expression analysis and intracranial injection into immunocompromised mice. By analyzing the expression of several Notch pathway components, we found that the cultures indeed displayed different Notch pathway signatures. However, when DAPT-treated neurosphere cells were injected into the brain of immunocompromised mice, no increase in survival was obtained regardless of Notch pathway signature and Notch inhibition. We did however observe a decrease in the expression of the stem cell marker Nestin, an increase in the proliferative marker Ki-67 and an increased number of abnormal vessels in tumors formed from DAPT-treated, high Notch-1 expressing cultures, when compared with the control. Based on the presented results we propose that Notch inhibition partly induces differentiation of bCSC, and selects for a cell type that more strongly induces angiogenesis if the treatment is not sustained. However, this more differentiated cell type might prove to be more sensitive to conventional therapies.

  2. Increased Foxo3a Nuclear Translocation and Activity is an Early Neuronal Response to βγ-Secretase-Mediated Processing of the Amyloid-β Protein Precursor: Utility of an AβPP-GAL4 Reporter Assay.

    PubMed

    Law, Bernard M; Guest, Amy L; Pullen, Matthew W J; Perkinton, Michael S; Williams, Robert J

    2018-01-01

    Sequential cleavage of the amyloid-β protein precursor (AβPP) by BACE1 (β-secretase) followed by theγ-secretase complex, is strongly implicated in Alzheimer's disease (AD) but the initial cellular responses to these cleavage events are not fully defined. β-secretase-mediated AβPP processing yields an extracellular domain (sAβPPβ) and a C-terminal fragment of AβPP of 99 amino acids (C99). Subsequent cleavage by γ-secretase produces amyloid-β (Aβ) and an AβPP intracellular domain (AICD). A cellular screen based on the generation of AICD from an AβPP-Gal4 fusion protein was adapted by introducing familial AD (FAD) mutations into the AβPP sequence and linking the assay to Gal4-UAS driven luciferase and GFP expression, to identify responses immediately downstream of AβPP processing in neurons with a focus on the transcription factor Foxo3a which has been implicated in neurodegeneration. The K670N/M671L, E682K, E693G, and V717I FAD mutations and the A673T protective mutation, were introduced into the AβPP sequence by site directed mutagenesis. When expressed in mouse cortical neurons, AβPP-Gal4-UAS driven luciferase and GFP expression was substantially reduced by γ-secretase inhibitors, lowered by β-secretase inhibitors, and enhanced by α-secretase inhibitors suggesting that AICD is a product of the βγ-secretase pathway. AβPP-Gal4-UAS driven GFP expression was exploited to identify individual neurons undergoing amyloidogenic AβPP processing, revealing increased nuclear localization of Foxo3a and enhanced Foxo3a-mediated transcription downstream of AICD production. Foxo3a translocation was not driven by AICD directly but correlated with reduced Akt phosphorylation. Collectively this suggests that βγ-secretase-mediated AβPP processing couples to Foxo3a which could be an early neuronal signaling response in AD.

  3. Discovery of novel scaffolds for γ-secretase modulators without an arylimidazole moiety.

    PubMed

    Sekioka, Ryuichi; Honjo, Eriko; Honda, Shugo; Fuji, Hideyoshi; Akashiba, Hiroki; Mitani, Yasuyuki; Yamasaki, Shingo

    2018-01-15

    Gamma-secretase modulators (GSMs) selectively inhibit the production of amyloid-β 42 (Aβ42) and may therefore be useful in the management of Alzheimer's disease. Most heterocyclic GSMs that are not derived from nonsteroidal anti-inflammatory drugs contain an arylimidazole moiety that potentially inhibits cytochrome P450 (CYP) activity. Here, we discovered imidazopyridine derivatives that represent a new class of scaffold for GSMs, which do not have a strongly basic end group such as arylimidazole. High-throughput screening identified 2-methyl-8-[(2-methylbenzyl)oxy]-3-(pyridin-4-yl)imidazo[1,2-a]pyridine (3a), which inhibited the cellular production of Aβ42 (IC 50  = 7.1 µM) without changing total production of Aβ. Structural optimization of this series of compounds identified 5-[8-(benzyloxy)-2-methylimidazo[1,2-a]pyridin-3-yl]-2-ethylisoindolin-1-one (3m) as a potent inhibitor of Aβ42 (IC 50  = 0.39 µM) but not CYP3A4. Further, 3m demonstrated a sustained pharmacokinetic profile in mice and sufficiently penetrated the brain. Copyright © 2017. Published by Elsevier Ltd.

  4. Robust Translation of γ-Secretase Modulator Pharmacology across Preclinical Species and Human Subjects

    PubMed Central

    Toyn, Jeremy H.; Boy, Kenneth M.; Raybon, Joseph; Meredith, Jere E.; Robertson, Alan S.; Guss, Valerie; Hoque, Nina; Sweeney, Francis; Zhuo, Xiaoliang; Clarke, Wendy; Snow, Kimberly; Denton, R. Rex; Zuev, Dmitry; Thompson, Lorin A.; Morrison, John; Grace, James; Berisha, Flora; Furlong, Michael; Wang, Jun-Sheng; Lentz, Kimberly A.; Padmanabha, Ramesh; Cook, Lynda; Wei, Cong; Drexler, Dieter M.; Macor, John E.; Albright, Charlie F.; Gasior, Maciej; Olson, Richard E.; Hong, Quan; Soares, Holly D.; AbuTarif, Malaz

    2016-01-01

    The amyloid-β peptide (Aβ)—in particular, the 42–amino acid form, Aβ1-42—is thought to play a key role in the pathogenesis of Alzheimer’s disease (AD). Thus, several therapeutic modalities aiming to inhibit Aβ synthesis or increase the clearance of Aβ have entered clinical trials, including γ-secretase inhibitors, anti-Aβ antibodies, and amyloid-β precursor protein cleaving enzyme inhibitors. A unique class of small molecules, γ-secretase modulators (GSMs), selectively reduce Aβ1-42 production, and may also decrease Aβ1-40 while simultaneously increasing one or more shorter Aβ peptides, such as Aβ1-38 and Aβ1-37. GSMs are particularly attractive because they do not alter the total amount of Aβ peptides produced by γ-secretase activity; they spare the processing of other γ-secretase substrates, such as Notch; and they do not cause accumulation of the potentially toxic processing intermediate, β-C-terminal fragment. This report describes the translation of pharmacological activity across species for two novel GSMs, (S)-7-(4-fluorophenyl)-N2-(3-methoxy-4-(3-methyl-1H-1,2,4-triazol-1-yl)phenyl)-N4-methyl-6,7-dihydro-5H-cyclopenta[d]pyrimidine-2,4-diamine (BMS-932481) and (S,Z)-17-(4-chloro-2-fluorophenyl)-34-(3-methyl-1H-1,2,4-triazol-1-yl)-16,17-dihydro-15H-4-oxa-2,9-diaza-1(2,4)-cyclopenta[d]pyrimidina-3(1,3)-benzenacyclononaphan-6-ene (BMS-986133). These GSMs are highly potent in vitro, exhibit dose- and time-dependent activity in vivo, and have consistent levels of pharmacological effect across rats, dogs, monkeys, and human subjects. In rats, the two GSMs exhibit similar pharmacokinetics/pharmacodynamics between the brain and cerebrospinal fluid. In all species, GSM treatment decreased Aβ1-42 and Aβ1-40 levels while increasing Aβ1-38 and Aβ1-37 by a corresponding amount. Thus, the GSM mechanism and central activity translate across preclinical species and humans, thereby validating this therapeutic modality for potential utility in AD

  5. Pharmacogenetic Features of Inhibitors to Cathepsin B that Improve Memory Deficit and Reduce Beta-Amyloid Related to Alzheimer’s Disease

    PubMed Central

    Hook, Vivian; Hook, Gregory; Kindy, Mark

    2015-01-01

    Beta-amyloid (Aβ) in brain is a major factor involved in Alzheimer’s disease (AD) that results in severe memory deficit. Our recent studies demonstrate pharmacogenetic differences in the effects of inhibitors of cathepsin B to improve memory and reduce Aβ in different mouse models of AD. The inhibitors improve memory and reduce brain Aβ in mice expressing the wild-type (WT) β-secretase site of human APP, expressed in most AD patients. However, these inhibitors have no effect in mice expressing the rare Swedish (Swe) mutant APP. Knockout of the cathepsin B decreased brain Aβ in mice expressing WT APP, validating cathepsin B as the target. The specificity of cathepsin B to cleave the WT β-secretase site, but not the Swe mutant site, of APP for Aβ production explains the distinct inhibitor responses in the different AD mouse models. In contrast to cathepsin B, the BACE1 β-secretase prefers to cleave the Swe mutant site. Discussion of BACE1 data in the field indicate that they do not preclude cathepsin B as also being a β-secretase. Cathepsin B and BACE1 may participate jointly as β-secretases. Significantly, the majority of AD patients express WT APP and, therefore, inhibitors of cathepsin B represent candidate drugs for AD. PMID:20536395

  6. Proton pump inhibitor co-prescription with dual antiplatelet therapy among patients with acute coronary syndrome in Qatar.

    PubMed

    Awaisu, Ahmed; Hamou, Fatima; Mekideche, Lylia; El Muabby, Nisrine; Mahfouz, Ahmed; Mohammed, Shaban; Saad, Ahmad

    2016-04-01

    There are increasing concerns about clinically significant interactions between proton pump inhibitors (PPIs) and clopidogrel, resulting in adverse cardiovascular outcomes in patients with acute coronary syndromes (ACS). However, published evidence on the prevalence and predictors of PPI use with dual antiplatelet therapy (DAPT) is scarce. This study investigated the prevalence of PPI use among patients with ACS receiving DAPT and possible predictors of co-prescribing the PPIs with the DAPT. Heart Hospital, a specialized tertiary care center in Qatar. A retrospective observational study of a prescription database was conducted. Subjects included 626 patients admitted between January and December 2012 with the diagnosis of ACS who received DAPT and discharged with or without a PPI. Univariate analysis and multivariate binary logistic regression analysis were performed to determine the predictors of PPI-DAPT co-prescription. Prevalence of PPI co-prescribing with DAPT in proportions and percentages and odd ratios for the predictors of PPI-DAPT co-prescribing. A total of 626 patients were analyzed for PPI prevalence, with 200 patients (32 %) being prescribed PPI with DAPT upon discharge. After controlling for confounders, PPI use on admission (aOR 14.5; 95 % CI 7.6-27.6, p < 0.001), nationality (aOR 3.2; 95 % CI 1.1-9.9, p = 0.041), and having a history of diabetes (aOR 0.5; 95 % CI 0.24-0.99, p = 0.046) significantly influenced PPI-DAPT co-prescribing. Users of PPI on admission compared to nonusers were about 15 times more likely to be prescribed PPI with DAPT upon discharge; likewise, having Qatari nationality increased the likelihood of co-prescribing PPI with DAPT upon discharge by three folds. Lastly, patients with a history of diabetes were 50 % less likely to be prescribed PPIs upon discharge compared to those with no history of diabetes. The rate of PPI co-prescribing with DAPT in the population studied was relatively high. The strongest predictor of PPI co

  7. Qualitative changes in human γ-secretase underlie familial Alzheimer’s disease

    PubMed Central

    Szaruga, Maria; Veugelen, Sarah; Benurwar, Manasi; Lismont, Sam; Sepulveda-Falla, Diego; Lleo, Alberto; Ryan, Natalie S.; Lashley, Tammaryn; Fox, Nick C.; Murayama, Shigeo; Gijsen, Harrie

    2015-01-01

    Presenilin (PSEN) pathogenic mutations cause familial Alzheimer’s disease (AD [FAD]) in an autosomal-dominant manner. The extent to which the healthy and diseased alleles influence each other to cause neurodegeneration remains unclear. In this study, we assessed γ-secretase activity in brain samples from 15 nondemented subjects, 22 FAD patients harboring nine different mutations in PSEN1, and 11 sporadic AD (SAD) patients. FAD and control brain samples had similar overall γ-secretase activity levels, and therefore, loss of overall (endopeptidase) γ-secretase function cannot be an essential part of the pathogenic mechanism. In contrast, impaired carboxypeptidase-like activity (γ-secretase dysfunction) is a constant feature in all FAD brains. Significantly, we demonstrate that pharmacological activation of the carboxypeptidase-like γ-secretase activity with γ-secretase modulators alleviates the mutant PSEN pathogenic effects. Most SAD cases display normal endo- and carboxypeptidase-like γ-secretase activities. However and interestingly, a few SAD patient samples display γ-secretase dysfunction, suggesting that γ-secretase may play a role in some SAD cases. In conclusion, our study highlights qualitative shifts in amyloid-β (Aβ) profiles as the common denominator in FAD and supports a model in which the healthy allele contributes with normal Aβ products and the diseased allele generates longer aggregation-prone peptides that act as seeds inducing toxic amyloid conformations. PMID:26481686

  8. Novel β-amyloid aggregation inhibitors possessing a turn mimic.

    PubMed

    Hamada, Yoshio; Miyamoto, Naoko; Kiso, Yoshiaki

    2015-04-01

    Amyloid β peptide, the main component of senile plaques found in the brain of Alzheimer disease (AD) patients, is a molecular target for AD therapeutic intervention. A number of potential AD therapeutics have been reported, including inhibitors of β-secretase, γ-secretase, and Aβ aggregation, and anti-amyloid agents, such as neprilysin, insulin degrading enzyme (IDE), and Aβ antibodies. Recently, we reported potent small-sized β-secretase (BACE1) inhibitors, which could serve as anti-AD drugs. However AD is a progressive disorder, where dementia symptoms gradually worsen over several decades, and therefore may require many years to get cured. One possible way to achieve a greater therapeutic effect is through simultaneous administration of multiple drugs, similar to those used in Highly Active Anti-Retroviral Therapy (HAART) used to treat AIDS. In order to overcome AD, we took a drug discovery approach to evaluate, novel β-amyloid aggregation inhibitors. Previously, we reported that a tong-type compound possessing a turn mimic as the inhibitor of HIV-1 protease dimerization. Oligomerized amyloid β peptides contain a turn structure within the molecule. Here, we designed and synthesized novel β-amyloid aggregation inhibitors with a turn-mimic template, based on the turn conformer of the oligomerized amyloid β peptides. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Dissemination of 2014 dual antiplatelet therapy (DAPT) trial results: a systematic review of scholarly and media attention over 7 months

    PubMed Central

    Haneef, Romana; Ravaud, Philippe

    2017-01-01

    Objective To explore how the results from the 2014 dual antiplatelet therapy (DAPT) trial were disseminated to the scientific community and online media. Design A a systematic review of scholarly and public attention surrounding the DAPT study. Settings Data were collected from the ISI Web of Knowledge, Google Scholar, PubMed Commons, EurekAlert, the DAPT study website (www.daptstudy.org) and the New England Journal of Medicine website (for scholarly attention) and Altmetric Explorer, Snap Bird, YouTube (for public attention) citing DAPT study results appearing from 16 November 2014 to 10 June 2015. Participants No participants were involved in this study. Main outcome measure Proportion of contents highlighting the increased risk of mortality and critical to the author’s interpretation of the results. Results We identified 425 items reported by seven sources; 164 (39%) disseminated the authors’ interpretation via an electronic link or a reference, with no additional text. Among 81 items (19 %), the message favoured prolonged treatment and consequently overstated the article conclusions. Among 119 items (28 %), the text was uncertain about the benefit of prolonged treatment but was reported with no or inappropriate mention of increased risk of mortality. Only 34 items (8 %) were uncertain about the benefit of prolonged treatment and mentioned increased risk of mortality. In all, 27 items (6 %) did not favour prolonged treatment, and only 12 of these (3 %) clearly raised some concerns about the reporting of increased risk of death. Conclusion Dissemination of the DAPT study results to the scientific community and on different media sources rarely criticised the interpretation of the study results. PMID:29101129

  10. Characterization of SPP inhibitors suppressing propagation of HCV and protozoa

    PubMed Central

    Hirano, Junki; Okamoto, Toru; Sugiyama, Yukari; Suzuki, Tatsuya; Kusakabe, Shinji; Tokunaga, Makoto; Fukuhara, Takasuke; Sasai, Miwa; Tougan, Takahiro; Matsunaga, Yasue; Yamashita, Kazuo; Sakai, Yusuke; Yamamoto, Masahiro; Horii, Toshihiro; Standley, Daron M.; Moriishi, Kohji; Moriya, Kyoji; Koike, Kazuhiko; Matsuura, Yoshiharu

    2017-01-01

    Signal peptide peptidase (SPP) is an intramembrane aspartic protease involved in the maturation of the core protein of hepatitis C virus (HCV). The processing of HCV core protein by SPP has been reported to be critical for the propagation and pathogenesis of HCV. Here we examined the inhibitory activity of inhibitors for γ-secretase, another intramembrane cleaving protease, against SPP, and our findings revealed that the dibenzoazepine-type structure in the γ-secretase inhibitors is critical for the inhibition of SPP. The spatial distribution showed that the γ-secretase inhibitor compound YO-01027 with the dibenzoazepine structure exhibits potent inhibiting activity against SPP in vitro and in vivo through the interaction of Val223 in SPP. Treatment with this SPP inhibitor suppressed the maturation of core proteins of all HCV genotypes without the emergence of drug-resistant viruses, in contrast to the treatment with direct-acting antivirals. YO-01027 also efficiently inhibited the propagation of protozoa such as Plasmodium falciparum and Toxoplasma gondii. These data suggest that SPP is an ideal target for the development of therapeutics not only against chronic hepatitis C but also against protozoiasis. PMID:29187532

  11. η-Secretase processing of APP inhibits neuronal activity in the hippocampus.

    PubMed

    Willem, Michael; Tahirovic, Sabina; Busche, Marc Aurel; Ovsepian, Saak V; Chafai, Magda; Kootar, Scherazad; Hornburg, Daniel; Evans, Lewis D B; Moore, Steven; Daria, Anna; Hampel, Heike; Müller, Veronika; Giudici, Camilla; Nuscher, Brigitte; Wenninger-Weinzierl, Andrea; Kremmer, Elisabeth; Heneka, Michael T; Thal, Dietmar R; Giedraitis, Vilmantas; Lannfelt, Lars; Müller, Ulrike; Livesey, Frederick J; Meissner, Felix; Herms, Jochen; Konnerth, Arthur; Marie, Hélène; Haass, Christian

    2015-10-15

    Alzheimer disease (AD) is characterized by the accumulation of amyloid plaques, which are predominantly composed of amyloid-β peptide. Two principal physiological pathways either prevent or promote amyloid-β generation from its precursor, β-amyloid precursor protein (APP), in a competitive manner. Although APP processing has been studied in great detail, unknown proteolytic events seem to hinder stoichiometric analyses of APP metabolism in vivo. Here we describe a new physiological APP processing pathway, which generates proteolytic fragments capable of inhibiting neuronal activity within the hippocampus. We identify higher molecular mass carboxy-terminal fragments (CTFs) of APP, termed CTF-η, in addition to the long-known CTF-α and CTF-β fragments generated by the α- and β-secretases ADAM10 (a disintegrin and metalloproteinase 10) and BACE1 (β-site APP cleaving enzyme 1), respectively. CTF-η generation is mediated in part by membrane-bound matrix metalloproteinases such as MT5-MMP, referred to as η-secretase activity. η-Secretase cleavage occurs primarily at amino acids 504-505 of APP695, releasing a truncated ectodomain. After shedding of this ectodomain, CTF-η is further processed by ADAM10 and BACE1 to release long and short Aη peptides (termed Aη-α and Aη-β). CTFs produced by η-secretase are enriched in dystrophic neurites in an AD mouse model and in human AD brains. Genetic and pharmacological inhibition of BACE1 activity results in robust accumulation of CTF-η and Aη-α. In mice treated with a potent BACE1 inhibitor, hippocampal long-term potentiation was reduced. Notably, when recombinant or synthetic Aη-α was applied on hippocampal slices ex vivo, long-term potentiation was lowered. Furthermore, in vivo single-cell two-photon calcium imaging showed that hippocampal neuronal activity was attenuated by Aη-α. These findings not only demonstrate a major functionally relevant APP processing pathway, but may also indicate potential

  12. β- but not γ-secretase proteolysis of APP causes synaptic and memory deficits in a mouse model of dementia.

    PubMed

    Tamayev, Robert; Matsuda, Shuji; Arancio, Ottavio; D'Adamio, Luciano

    2012-03-01

    A mutation in the BRI2/ITM2b gene causes loss of BRI2 protein leading to familial Danish dementia (FDD). BRI2 deficiency of FDD provokes an increase in amyloid-β precursor protein (APP) processing since BRI2 is an inhibitor of APP proteolysis, and APP mediates the synaptic/memory deficits in FDD. APP processing is linked to Alzheimer disease (AD) pathogenesis, which is consistent with a common mechanism involving toxic APP metabolites in both dementias. We show that inhibition of APP cleavage by β-secretase rescues synaptic/memory deficits in a mouse model of FDD. β-cleavage of APP yields amino-terminal-soluble APPβ (sAPPβ) and β-carboxyl-terminal fragments (β-CTF). Processing of β-CTF by γ-secretase releases amyloid-β (Aβ), which is assumed to cause AD. However, inhibition of γ-secretase did not ameliorate synaptic/memory deficits of FDD mice. These results suggest that sAPPβ and/or β-CTF, rather than Aβ, are the toxic species causing dementia, and indicate that reducing β-cleavage of APP is an appropriate therapeutic approach to treating human dementias. Our data and the failures of anti-Aβ therapies in humans advise against targeting γ-secretase cleavage of APP and/or Aβ. Copyright © 2012 EMBO Molecular Medicine.

  13. β- but not γ-secretase proteolysis of APP causes synaptic and memory deficits in a mouse model of dementia

    PubMed Central

    Tamayev, Robert; Matsuda, Shuji; Arancio, Ottavio; D'Adamio, Luciano

    2012-01-01

    A mutation in the BRI2/ITM2b gene causes loss of BRI2 protein leading to familial Danish dementia (FDD). BRI2 deficiency of FDD provokes an increase in amyloid-β precursor protein (APP) processing since BRI2 is an inhibitor of APP proteolysis, and APP mediates the synaptic/memory deficits in FDD. APP processing is linked to Alzheimer disease (AD) pathogenesis, which is consistent with a common mechanism involving toxic APP metabolites in both dementias. We show that inhibition of APP cleavage by β-secretase rescues synaptic/memory deficits in a mouse model of FDD. β-cleavage of APP yields amino-terminal-soluble APPβ (sAPPβ) and β-carboxyl-terminal fragments (β-CTF). Processing of β-CTF by γ-secretase releases amyloid-β (Aβ), which is assumed to cause AD. However, inhibition of γ-secretase did not ameliorate synaptic/memory deficits of FDD mice. These results suggest that sAPPβ and/or β-CTF, rather than Aβ, are the toxic species causing dementia, and indicate that reducing β-cleavage of APP is an appropriate therapeutic approach to treating human dementias. Our data and the failures of anti-Aβ therapies in humans advise against targeting γ-secretase cleavage of APP and/or Aβ. PMID:22170863

  14. Aspartic proteases involved in Alzheimer's disease.

    PubMed

    Schmidt, Boris

    2003-05-09

    Alzheimer's disease afflicts every tenth human aged over 65. Despite the dramatic progress that has been made in understanding the disease, the exact cause of Alzheimer's disease is still unknown. Most gene mutations associated with Alzheimer's disease point at the same culprits: amyloid precursor protein and ultimately amyloid beta. The enigmatic proteases alpha-,beta-, and gamma-secretase are the three executioners of amyloid precursor protein processing, and disruption of their delicate balance is suspected to result in Alzheimer's disease. Significant progress has been made in the selective control of these proteases, regardless of the availability of structural information. Not even the absence of a robust cell-free assay for gamma-secretase could hamper the identification of nonpeptidic inhibitors of this enzyme for long. Within five years, four distinctly different structural moieties were developed and the first drug candidates are in clinical trials. Unfortunately, selective inhibition of amyloid beta formation remains a crucial issue because fundamental fragments of the gamma-secretase complex are important for other signaling events. This problem makes beta-secretase inhibition and alpha-secretase induction even more appealing.

  15. Dissemination of 2014 dual antiplatelet therapy (DAPT) trial results: a systematic review of scholarly and media attention over 7 months.

    PubMed

    Sharp, Melissa K; Haneef, Romana; Ravaud, Philippe; Boutron, Isabelle

    2017-11-03

    To explore how the results from the 2014 dual antiplatelet therapy (DAPT) trial were disseminated to the scientific community and online media. A a systematic review of scholarly and public attention surrounding the DAPT study. Data were collected from the ISI Web of Knowledge, Google Scholar, PubMed Commons, EurekAlert, the DAPT study website (www.daptstudy.org) and the New England Journal of Medicine website (for scholarly attention) and Altmetric Explorer, Snap Bird, YouTube (for public attention) citing DAPT study results appearing from 16 November 2014 to 10 June 2015. No participants were involved in this study. Proportion of contents highlighting the increased risk of mortality and critical to the author's interpretation of the results. We identified 425 items reported by seven sources; 164 (39%) disseminated the authors' interpretation via an electronic link or a reference, with no additional text. Among 81 items (19 %), the message favoured prolonged treatment and consequently overstated the article conclusions. Among 119 items (28 %), the text was uncertain about the benefit of prolonged treatment but was reported with no or inappropriate mention of increased risk of mortality. Only 34 items (8 %) were uncertain about the benefit of prolonged treatment and mentioned increased risk of mortality. In all, 27 items (6 %) did not favour prolonged treatment, and only 12 of these (3 %) clearly raised some concerns about the reporting of increased risk of death. Dissemination of the DAPT study results to the scientific community and on different media sources rarely criticised the interpretation of the study results. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  16. Safety and tolerability of the γ-secretase inhibitor avagacestat in a phase 2 study of mild to moderate Alzheimer disease.

    PubMed

    Coric, Vladimir; van Dyck, Christopher H; Salloway, Stephen; Andreasen, Niels; Brody, Mark; Richter, Ralph W; Soininen, Hilkka; Thein, Stephen; Shiovitz, Thomas; Pilcher, Gary; Colby, Susan; Rollin, Linda; Dockens, Randy; Pachai, Chahin; Portelius, Erik; Andreasson, Ulf; Blennow, Kaj; Soares, Holly; Albright, Charles; Feldman, Howard H; Berman, Robert M

    2012-11-01

    To assess the safety, tolerability, and pharmacokinetic and pharmacodynamic effects of the -secretase inhibitor avagacestat in patients with mild to moderate Alzheimer disease (AD). Randomized, double-blind, placebo-controlled,24-week phase 2 study. Global, multicenter trial. A total of 209 outpatients with mild to moderate AD were randomized into the double-blind treatment phase. The median age of the patients was 75 years,58.9% were APOE ε4 carriers, and baseline measures of disease severity were similar among groups. Avagacestat, 25, 50, 100, or 125 mg daily,or placebo administered orally daily. Safety and tolerability of avagacestat. Discontinuation rates for the 25-mg and 50-mg doses of avagacestat were comparable with placebo but were higher in the 100-mg and 125-mg dose groups.Trends for worsening cognition, as measured by change from baseline Alzheimer Disease Assessment Scale cognitive subscale score, were observed in the 100-mg and125-mg dose groups. Treatment-emergent serious adverse events were similar across placebo and treatment groups. The most common reason for discontinuation was adverse events, predominantly gastrointestinal anddermatologic. Other adverse events occurring more frequentlyin patients undergoing treatment included reversibleglycosuria (without associated serum glucose changes), nonmelanoma skin cancer, and asymptomaticmagnetic resonance imaging findings. Exploratory cerebrospinal fluid amyloid isoforms and tau biomarker analysis demonstrated dose-dependent but not statistically significant reductions in a small subset of patients. Avagacestat dosed at 25 and 50 mg daily was relatively well tolerated and had low discontinuation rates. The 100-mg and 125-mg dose arms were poorly tolerated with trends for cognitive worsening. Exploratory cerebrospinal fluid biomarker substudies provide preliminary support for -secretase target engagement,but additional studies are warranted to better characterize pharmacodynamic effects at the 25- and

  17. γ-secretase binding sites in aged and Alzheimer's disease human cerebrum: the choroid plexus as a putative origin of CSF Aβ.

    PubMed

    Liu, Fei; Xue, Zhi-Qin; Deng, Si-Hao; Kun, Xiong; Luo, Xue-Gang; Patrylo, Peter R; Rose, Gregory M; Cai, Huaibin; Struble, Robert G; Cai, Yan; Yan, Xiao-Xin

    2013-05-01

    Deposition of β -amyloid (Aβ) peptides, cleavage products of β-amyloid precursor protein (APP) by β-secretase-1 (BACE1) and γ-secretase, is a neuropathological hallmark of Alzheimer's disease (AD). γ-Secretase inhibition is a therapeutical anti-Aβ approach, although changes in the enzyme's activity in AD brain are unclear. Cerebrospinal fluid (CSF) Aβ peptides are thought to derive from brain parenchyma and thus may serve as biomarkers for assessing cerebral amyloidosis and anti-Aβ efficacy. The present study compared active γ-secretase binding sites with Aβ deposition in aged and AD human cerebrum, and explored the possibility of Aβ production and secretion by the choroid plexus (CP). The specific binding density of [(3) H]-L-685,458, a radiolabeled high-affinity γ-secretase inhibitor, in the temporal neocortex and hippocampal formation was similar for AD and control cases with similar ages and post-mortem delays. The CP in post-mortem samples exhibited exceptionally high [(3) H]-L-685,458 binding density, with the estimated maximal binding sites (Bmax) reduced in the AD relative to control groups. Surgically resected human CP exhibited APP, BACE1 and presenilin-1 immunoreactivity, and β-site APP cleavage enzymatic activity. In primary culture, human CP cells also expressed these amyloidogenic proteins and released Aβ40 and Aβ42 into the medium. Overall, our results suggest that γ-secretase activity appears unaltered in the cerebrum in AD and is not correlated with regional amyloid plaque pathology. The CP appears to be a previously unrecognised non-neuronal contributor to CSF Aβ, probably at reduced levels in AD. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  18. Down-regulation of Notch signaling pathway reverses the Th1/Th2 imbalance in tuberculosis patients.

    PubMed

    Li, Qifeng; Zhang, Hui; Yu, Liang; Wu, Chao; Luo, Xinhui; Sun, He; Ding, Jianbing

    2018-01-01

    Th1/Th2 imbalance to Th2 is of significance in the peripheral immune responses in Tuberculosis (TB) development. However, the mechanisms for Th1/Th2 imbalance are still not well determined. Notch signaling pathway is involved in the peripheral T cell activation and effector cell differentiation. However, whether it affects Th1/Th2 imbalance in TB patients is still not known. Here, we used γ-secretase inhibitor (DAPT) to treat the peripheral blood mononuclear cells (PBMCs) from healthy people or individuals with latent or active TB infection in vitro, respectively. Then, the Th1/Th2 ratios were determined by flow cytometry, and cytokines of IFN-γ, IL-4, IL-10 in the culture supernatant were measured by CBA method. The Notch signal pathway associated proteins Hes1, GATA3 and T-bet were quantitated by real-time PCR or immunoblotting. Our results showed that DAPT effectively inhibited the protein level of Hes1. In TB patients, the Th2 ratio increased in the PBMCs, alone with the high expression of GATA3 and IL-4, resulting in the high ratios of Th2/Th1 and GATA3/T-bet in TB patients. However, Th2 cells ratio decreased after blocking the Notch signaling pathway by DAPT and the Th2/Th1 ratio in TB patients were DAPT dose-dependent, accompanied by the decrease of IL-4 and GATA3. But, its influence on Th1 ratio and Th1 related T-bet and IFN-γ levels were not significant. In conclusion, our results suggest that blocking Notch signaling by DAPT could inhibit Th2 responses and restore Th1/Th2 imbalance in TB patients. Copyright © 2017. Published by Elsevier B.V.

  19. Seamless integration of dose-response screening and flow chemistry: efficient generation of structure-activity relationship data of β-secretase (BACE1) inhibitors.

    PubMed

    Werner, Michael; Kuratli, Christoph; Martin, Rainer E; Hochstrasser, Remo; Wechsler, David; Enderle, Thilo; Alanine, Alexander I; Vogel, Horst

    2014-02-03

    Drug discovery is a multifaceted endeavor encompassing as its core element the generation of structure-activity relationship (SAR) data by repeated chemical synthesis and biological testing of tailored molecules. Herein, we report on the development of a flow-based biochemical assay and its seamless integration into a fully automated system comprising flow chemical synthesis, purification and in-line quantification of compound concentration. This novel synthesis-screening platform enables to obtain SAR data on b-secretase (BACE1) inhibitors at an unprecedented cycle time of only 1 h instead of several days. Full integration and automation of industrial processes have always led to productivity gains and cost reductions, and this work demonstrates how applying these concepts to SAR generation may lead to a more efficient drug discovery process. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Application of computational methods for the design of BACE-1 inhibitors: validation of in silico modelling.

    PubMed

    Bajda, Marek; Jończyk, Jakub; Malawska, Barbara; Filipek, Sławomir

    2014-03-24

    β-Secretase (BACE-1) constitutes an important target for search of anti-Alzheimer's drugs. The first inhibitors of this enzyme were peptidic compounds with high molecular weight and low bioavailability. Therefore, the search for new efficient non-peptidic inhibitors has been undertaken by many scientific groups. We started our work from the development of in silico methodology for the design of novel BACE-1 ligands. It was validated on the basis of crystal structures of complexes with inhibitors, redocking, cross-docking and training/test sets of reference ligands. The presented procedure of assessment of the novel compounds as β-secretase inhibitors could be widely used in the design process.

  1. γ-Secretase binding sites in aged and Alzheimer’s disease human cerebrum: The choroid plexus as a putative origin of CSF Aβ

    PubMed Central

    Liu, Fei; Xue, Zhi-Qin; Deng, Si-Hao; Kun, Xiong; Luo, Xue-Gang; Patrylo, Peter R.; Rose, Gregory M.; Cai, Huaibin; Struble, Robert G.; Cai, Yan; Yan, Xiao-Xin

    2013-01-01

    Deposition of β-amyloid (Aβ) peptides, cleavage products of β-amyloid precursor protein (APP) by β-secretase-1 (BACE1) and γ-secretase, is a neuropathological hallmark of Alzheimer’s disease (AD). γ-Secretase inhibition is a therapeutical anti-Aβ approach, although less is clear about the change of the enzyme’s activity in AD brain. Cerebrospinal fluid (CSF) Aβ peptides are considered to derive from brain parenchyma, thus may serve as biomarkers for assessing cerebral amyloidosis and anti-Aβ efficacy. The present study compared active γ-secretase binding sites with Aβ deposition in aged and AD human cerebrum, and explored a possibility of Aβ production and secretion by the choroid plexus (CP). Specific binding density of [3H]-L-685,458, a radiolabeled high affinity γ-secretase inhibitor, in the temporal neocortex and hippocampal formation was similar for AD and control cases with comparable ages and postmortem delays. The CP in postmortem samples exhibited exceptionally high [3H]-L-685,458 binding density, with the estimated maximal binding sites (Bmax) reduced in the AD relative to control groups. Surgically resected human CP exhibited APP, BACE1 and presenilin-1 immunoreactivity, and β-site APP cleavage enzymatic activity. In primary culture, human CP cells also expressed these amyloidogenic proteins but released Aβ40 and Aβ42 into the medium. These results suggest that γ-secretase activity appears not altered in the cerebrum in AD related to aged control, nor correlated with regional amyloid plaque pathology. The choroid plexus appears to represent a novel non-neuronal source in the brain that may contribute Aβ into cerebrospinal fluid, probably at reduced levels in AD. PMID:23432732

  2. Atypical PKC, PKCλ/ι, activates β-secretase and increases Aβ1-40/42 and phospho-tau in mouse brain and isolated neuronal cells, and may link hyperinsulinemia and other aPKC activators to development of pathological and memory abnormalities in Alzheimer's disease.

    PubMed

    Sajan, Mini P; Hansen, Barbara C; Higgs, Margaret G; Kahn, C Ron; Braun, Ursula; Leitges, Michael; Park, Collin R; Diamond, David M; Farese, Robert V

    2018-01-01

    Hyperinsulinemia activates brain Akt and PKC-λ/ι and increases Aβ 1-40/42 and phospho-tau in insulin-resistant animals. Here, we examined underlying mechanisms in mice, neuronal cells, and mouse hippocampal slices. Like Aβ 1-40/42 , β-secretase activity was increased in insulin-resistant mice and monkeys. In insulin-resistant mice, inhibition of hepatic PKC-λ/ι sufficient to correct hepatic abnormalities and hyperinsulinemia simultaneously reversed increases in Akt, atypical protein kinase C (aPKC), β-secretase, and Aβ 1-40/42 , and restored acute Akt activation. However, 2 aPKC inhibitors additionally blocked insulin's ability to activate brain PKC-λ/ι and thereby increase β-secretase and Aβ 1-40/42 . Furthermore, direct blockade of brain aPKC simultaneously corrected an impairment in novel object recognition in high-fat-fed insulin-resistant mice. In neuronal cells and/or mouse hippocampal slices, PKC-ι/λ activation by insulin, metformin, or expression of constitutive PKC-ι provoked increases in β-secretase, Aβ 1-40/42 , and phospho-thr-231-tau that were blocked by various PKC-λ/ι inhibitors, but not by an Akt inhibitor. PKC-λ/ι provokes increases in brain β-secretase, Aβ 1-40/42 , and phospho-thr-231-tau. Excessive signaling via PKC-λ/ι may link hyperinsulinemia and other PKC-λ/ι activators to pathological and functional abnormalities in Alzheimer's disease. Published by Elsevier Inc.

  3. Spatial Segregation of γ-Secretase and Substrates in Distinct Membrane Domains*

    PubMed Central

    Vetrivel, Kulandaivelu S.; Cheng, Haipeng; Kim, Seong-Hun; Chen, Ying; Barnes, Natalie Y.; Parent, Ange‘le T.; Sisodia, Sangram S.; Thinakaran, Gopal

    2005-01-01

    γ-Secretase facilitates the regulated intramembrane proteolysis of select type I membrane proteins that play diverse physiological roles in multiple cell types and tissue. In this study, we used biochemical approaches to examine the distribution of amyloid precursor protein (APP) and several additional γ-secretase substrates in membrane microdomains. We report that APP C-terminal fragments (CTFs) and γ-secretase reside in Lubrol WX detergent-insoluble membranes (DIM) of cultured cells and adult mouse brain. APP CTFs that accumulate in cells lacking γ-secretase activity preferentially associate with DIM. Cholesterol depletion and magnetic im-munoisolation studies indicate recruitment of APP CTFs into cholesterol- and sphingolipid-rich lipid rafts, and co-residence of APP CTFs, PS1, and syntaxin 6 in DIM patches derived from the trans-Golgi network. Photoaffinity cross-linking studies provided evidence for the preponderance of active γ-secretase in lipid rafts of cultured cells and adult brain. Remarkably, unlike the case of APP, CTFs derived from Notch1, Jagged2, deleted in colorectal cancer (DCC), and N-cadherin remain largely detergent-soluble, indicative of their spatial segregation in non-raft domains. In embryonic brain, the majority of PS1 and nicastrin is present in Lubrol WX-soluble membranes, wherein the CTFs derived from APP, Notch1, DCC, and N-cadherin also reside. We suggest that γ-secretase residence in non-raft membranes facilitates proteolysis of diverse substrates during embryonic development but that the translocation of γ-secretase to lipid rafts in adults ensures processing of certain substrates, including APP CTFs, while limiting processing of other potential substrates. PMID:15886206

  4. Pen-2 is dispensable for endoproteolysis of presenilin 1, and nicastrin-Aph subcomplex is important for both γ-secretase assembly and substrate recruitment

    PubMed Central

    Mao, Guozhang; Cui, Mei-Zhen; Li, Tong; Jin, Yipeng; Xu, Xuemin

    2012-01-01

    γ-secretase is a protease complex with at least four components: presenilin, nicastrin (NCT), anterior pharynx-defective 1 (Aph-1), and presenilin enhancer 2 (Pen-2). In this study, using knockout cell lines and small interfering RNA technology, our data demonstrated that the disappeared presenilin 1 C-terminal fragment (PS1C) caused by knockdown of pen-2 or knockout of NCT or Aph-1 was recovered by the addition of proteasome inhibitors, indicating that Pen-2, as well as NCT and Aph-1α , is dispensable for presenilin endoproteolysis. Our data also demonstrate that the formation of the nicastrin-Aph-1 subcomplex plays not only an important role in γ-secretase complex assembly but also in recruiting substrate C-terminal fragment of amyloid precursor protein generated by β-cleavage (CTFβ). Ablating any one component resulted in the instability of other components of the γ-secretase complex, and the presence of all three of the other components is required for full maturation of NCT. PMID:22973949

  5. Aβ1-15/16 as a marker for γ-secretase inhibition in Alzheimer’s disease

    PubMed Central

    Portelius, Erik; Zetterberg, Henrik; Dean, Robert A.; Marcil, Alexandre; Bourgeois, Philippe; Nutu, Magdalena; Andreasson, Ulf; Siemers, Eric; Mawuenyega, Kwasi G.; Sigurdson, Wendy C.; May, Patrick C.; Paul, Steven M.; Holtzman, David M.; Blennow, Kaj; Bateman, Randall J.

    2013-01-01

    Amyloid-β (Aβ) producing enzymes are key targets for disease-modifying Alzheimer’s disease (AD) therapies since Aβ trafficking is at the core of AD pathogenesis. Development of such drugs might benefit from the identification of markers indicating in vivo drug effects in the central nervous system. We have previously shown that Aβ1-15 is produced by concerted β- and α-secretase cleavage of amyloid-β protein precursor (AβPP). Here, we test the hypothesis that this pathway is more engaged upon γ-secretase inhibition in humans and cerebrospinal fluid (CSF) levels of Aβ1-15/16 represent a biomarker for this effect. Twenty healthy men were treated with placebo (n=5) or the γ-secretase inhibitor semagacestat (100 mg [n=5], 140 mg [n=5], or 280 mg [n=5]). CSF samples were collected hourly over 36 hours and 10 time points were analyzed by immunoassay for Aβ1-15/16, Aβx-38, Aβx-40, Aβx-42, sAβPPα and sAβPPβ. The CSF concentration of Aβ1-15/16 showed a dose-dependent response over 36 hours. In the 280 mg treatment group, a transient increase was seen with a maximum of 180% relative to baseline at 9 hours post administration of semagacestat. The concentrations of Aβx-38, Aβx-40 and Aβx-42 decreased the first 9 hours followed by increased concentrations after 36 hours relative to baseline. No significant changes were detected for CSF sAβPPα and sAβPPβ.Our data shows that CSF levels of Aβ1-15/16 increase during treatment with semagacestat supporting its feasibility as a pharmacodynamic biomarker for drug candidates aimed at inhibiting γ-secretase-mediated AβPP-processing. PMID:22531418

  6. High tumor levels of IL6 and IL8 abrogate preclinical efficacy of the γ-secretase inhibitor, RO4929097.

    PubMed

    He, Wei; Luistro, Leopoldo; Carvajal, Daisy; Smith, Melissa; Nevins, Tom; Yin, Xuefeng; Cai, James; Higgins, Brian; Kolinsky, Kenneth; Rizzo, Christine; Packman, Kathryn; Heimbrook, David; Boylan, John F

    2011-06-01

    Interest continues to build around the early application of patient selection markers to prospectively identify patients likely to show clinical benefit from cancer therapies. Hypothesis generation and clinical strategies often begin at the preclinical stage where responder and nonresponder tumor cell lines are first identified and characterized. In the present study, we investigate the drivers of in vivo resistance to the γ-secretase inhibitor RO4929097. Beginning at the tissue culture level, we identified apparent IL6 and IL8 expression differences that characterized tumor cell line response to RO4929097. We validated this molecular signature at the preclinical efficacy level identifying additional xenograft models resistant to the in vivo effects of RO4929097. Our data suggest that for IL6 and IL8 overexpressing tumors, RO4929097 no longer impacts angiogenesis or the infiltration of tumor associated fibroblasts. These preclinical data provide a rationale for preselecting patients possessing low levels of IL6 and IL8 prior to RO4929097 dosing. Extending this hypothesis into the clinic, we monitored patient IL6 and IL8 serum levels prior to dosing with RO4929097 during Phase I. Interestingly, the small group of patients deriving some type of clinical benefit from RO4929097 presented with low baseline levels of IL6 and IL8. Our data support the continued investigation of this patient selection marker for RO4929097 and other types of Notch inhibitors undergoing early clinical evaluation. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  7. Effects of Folic Acid on Secretases Involved in Aβ Deposition in APP/PS1 Mice

    PubMed Central

    Tian, Tian; Bai, Dong; Li, Wen; Huang, Guo-Wei; Liu, Huan

    2016-01-01

    Alzheimer’s disease (AD) is the most common type of dementia. Amyloid-β protein (Aβ) is identified as the core protein of neuritic plaques. Aβ is generated by the sequential cleavage of the amyloid precursor protein (APP) via the APP cleaving enzyme (α-secretase, or β-secretase) and γ-secretase. Previous studies indicated that folate deficiency elevated Aβ deposition in APP/PS1 mice, and this rise was prevented by folic acid. In the present study, we aimed to investigate whether folic acid could influence the generation of Aβ by regulating α-, β-, and γ-secretase. Herein, we demonstrated that folic acid reduced the deposition of Aβ42 in APP/PS1 mice brain by decreasing the mRNA and protein expressions of β-secretase [beta-site APP-cleaving enzyme 1 (BACE1)] and γ-secretase complex catalytic component—presenilin 1 (PS1)—in APP/PS1 mice brain. Meanwhile, folic acid increased the levels of ADAM9 and ADAM10, which are important α-secretases in ADAM (a disintegrin and metalloprotease) family. However, folic acid has no impact on the protein expression of nicastrin (Nct), another component of γ-secretase complex. Moreover, folic acid regulated the expression of miR-126-3p and miR-339-5p, which target ADAM9 and BACE1, respectively. Taken together, the effect of folic acid on Aβ deposition may relate to making APP metabolism through non-amyloidogenic pathway by decreasing β-secretase and increasing α-secretase. MicroRNA (miRNA) may involve in the regulation mechanism of folic acid on secretase expression. PMID:27618097

  8. An atomic structure of human γ-secretase

    NASA Astrophysics Data System (ADS)

    Bai, Xiao-Chen; Yan, Chuangye; Yang, Guanghui; Lu, Peilong; Ma, Dan; Sun, Linfeng; Zhou, Rui; Scheres, Sjors H. W.; Shi, Yigong

    2015-09-01

    Dysfunction of the intramembrane protease γ-secretase is thought to cause Alzheimer's disease, with most mutations derived from Alzheimer's disease mapping to the catalytic subunit presenilin 1 (PS1). Here we report an atomic structure of human γ-secretase at 3.4 Å resolution, determined by single-particle cryo-electron microscopy. Mutations derived from Alzheimer's disease affect residues at two hotspots in PS1, each located at the centre of a distinct four transmembrane segment (TM) bundle. TM2 and, to a lesser extent, TM6 exhibit considerable flexibility, yielding a plastic active site and adaptable surrounding elements. The active site of PS1 is accessible from the convex side of the TM horseshoe, suggesting considerable conformational changes in nicastrin extracellular domain after substrate recruitment. Component protein APH-1 serves as a scaffold, anchoring the lone transmembrane helix from nicastrin and supporting the flexible conformation of PS1. Ordered phospholipids stabilize the complex inside the membrane. Our structure serves as a molecular basis for mechanistic understanding of γ-secretase function.

  9. K-RasG12D–induced T-cell lymphoblastic lymphoma/leukemias harbor Notch1 mutations and are sensitive to γ-secretase inhibitors

    PubMed Central

    Cornejo, Melanie G.; Scholl, Claudia; Liu, Jianing; Leeman, Dena S.; Haydu, J. Erika; Fröhling, Stefan; Lee, Benjamin H.; Gilliland, D. Gary

    2008-01-01

    To study the impact of oncogenic K-Ras on T-cell leukemia/lymphoma development and progression, we made use of a conditional K-RasG12D murine knockin model, in which oncogenic K-Ras is expressed from its endogenous promoter. Transplantation of whole bone marrow cells that express oncogenic K-Ras into wild-type recipient mice resulted in a highly penetrant, aggressive T-cell leukemia/lymphoma. The lymphoblasts were composed of a CD4/CD8 double-positive population that aberrantly expressed CD44. Thymi of primary donor mice showed reduced cellularity, and immunophenotypic analysis demonstrated a block in differentiation at the double-negative 1 stage. With progression of disease, approximately 50% of mice acquired Notch1 mutations within the PEST domain. Of note, primary lymphoblasts were hypersensitive to γ-secretase inhibitor treatment, which is known to impair Notch signaling. This inhibition was Notch-specific as assessed by down-regulation of Notch1 target genes and intracellular cleaved Notch. We also observed that the oncogenic K-Ras-induced T-cell disease was responsive to rapamycin and inhibitors of the RAS/MAPK pathway. These data indicate that patients with T-cell leukemia with K-Ras mutations may benefit from therapies that target the NOTCH pathway alone or in combination with inhibition of the PI3K/AKT/MTOR and RAS/MAPK pathways. PMID:18663146

  10. Sequential combination therapy of ovarian cancer with cisplatin and γ-secretase inhibitor MK-0752.

    PubMed

    Chen, XiuXiu; Gong, LiHua; Ou, RongYing; Zheng, ZhenZhen; Chen, JinYan; Xie, FengFeng; Huang, XiaoXiu; Qiu, JianGe; Zhang, WenJi; Jiang, QiWei; Yang, Yang; Zhu, Hua; Shi, Zhi; Yan, XiaoJian

    2016-03-01

    Ovarian cancer is one of the most lethal of women cancers and lack potent therapeutic options. There have many evidences demonstrate the Notch signaling has deregulation in variety of human malignancies.MK-0752 is a novel potent γ-secretase inhibitor and now assessed in clinical trial for treatment of several types of cancer, our objective was to investigate the anticancer effects and mechanisms of MK-0752 alone or combined with cisplatin in ovarian cancer. Cell lines used: A2780, OVCAR3, SKOV3, HO8910PM, the effects of MK-0752 and cisplatin on cell proliferation were measured by MTT assay. The effect of combination treatment was examined by isobologram analysis. The distribution of cell cycle and cell apoptosis were analyzed using PI and Annexin V-FITC/PI staining by flow cytometric analysis. The mechanism in biochemistry was analyzed by using Western blot. Mouse xenograft model of A2780 was established to observe the anti-ovarian cancer effects in vivo setting, nude mice were randomized into four groups (n=6 per group) and treated every 4 days with control (solvent) group, MK-0752(25mg/kg) group, cisplatin (2mg/kg)group, combination group (both of MK-0752 and cisplatin). MK-0752 alone actively induced cell growth inhibition, G2/M phase cell cycle arrest and apoptosis with down-regulation of Notch1 and its downstream effectors including Hes1, XIAP, c-Myc and MDM2 in a dose- and time-dependent manner. Moreover, sequential combination of cisplatin prior to MK-0752 significantly promoted cell apoptosis and inhibited the subcutaneous xenograft growth of ovarian cancer in nude mice. Our data supports the sequential combination of cisplatin prior to MK-0752 is a highly promising novel experimental therapeutic strategy against ovarian cancer. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. First and second generation γ-secretase modulators (GSMs) modulate amyloid-β (Aβ) peptide production through different mechanisms.

    PubMed

    Borgegard, Tomas; Juréus, Anders; Olsson, Fredrik; Rosqvist, Susanne; Sabirsh, Alan; Rotticci, Didier; Paulsen, Kim; Klintenberg, Rebecka; Yan, Hongmei; Waldman, Magnus; Stromberg, Kia; Nord, Johan; Johansson, Jonas; Regner, Anna; Parpal, Santiago; Malinowsky, David; Radesater, Ann-Cathrin; Li, Tingsheng; Singh, Rajeshwar; Eriksson, Hakan; Lundkvist, Johan

    2012-04-06

    γ-Secretase-mediated cleavage of amyloid precursor protein (APP) results in the production of Alzheimer disease-related amyloid-β (Aβ) peptides. The Aβ42 peptide in particular plays a pivotal role in Alzheimer disease pathogenesis and represents a major drug target. Several γ-secretase modulators (GSMs), such as the nonsteroidal anti-inflammatory drugs (R)-flurbiprofen and sulindac sulfide, have been suggested to modulate the Alzheimer-related Aβ production by targeting the APP. Here, we describe novel GSMs that are selective for Aβ modulation and do not impair processing of Notch, EphB2, or EphA4. The GSMs modulate Aβ both in cell and cell-free systems as well as lower amyloidogenic Aβ42 levels in the mouse brain. Both radioligand binding and cellular cross-competition experiments reveal a competitive relationship between the AstraZeneca (AZ) GSMs and the established second generation GSM, E2012, but a noncompetitive interaction between AZ GSMs and the first generation GSMs (R)-flurbiprofen and sulindac sulfide. The binding of a (3)H-labeled AZ GSM analog does not co-localize with APP but overlaps anatomically with a γ-secretase targeting inhibitor in rodent brains. Combined, these data provide compelling evidence of a growing class of in vivo active GSMs, which are selective for Aβ modulation and have a different mechanism of action compared with the original class of GSMs described.

  12. C/EBPβ regulates delta-secretase expression and mediates pathogenesis in mouse models of Alzheimer's disease.

    PubMed

    Wang, Zhi-Hao; Gong, Ke; Liu, Xia; Zhang, Zhentao; Sun, Xiaoou; Wei, Zheng Zachory; Yu, Shan Ping; Manfredsson, Fredric P; Sandoval, Ivette M; Johnson, Peter F; Jia, Jianping; Wang, Jian-Zhi; Ye, Keqiang

    2018-05-03

    Delta-secretase cleaves both APP and Tau to mediate the formation of amyloid plaques and neurofibrillary tangle in Alzheimer's disease (AD). However, how aging contributes to an increase in delta-secretase expression and AD pathologies remains unclear. Here we show that a CCAAT-enhancer-binding protein (C/EBPβ), an inflammation-regulated transcription factor, acts as a key age-dependent effector elevating both delta-secretase (AEP) and inflammatory cytokines expression in mediating pathogenesis in AD mouse models. We find that C/EBPβ regulates delta-secretase transcription and protein levels in an age-dependent manner. Overexpression of C/EBPβ in young 3xTg mice increases delta-secretase and accelerates the pathological features including cognitive dysfunctions, which is abolished by inactive AEP C189S. Conversely, depletion of C/EBPβ from old 3xTg or 5XFAD mice diminishes delta-secretase and reduces AD pathologies, leading to amelioration of cognitive impairment in these AD mouse models. Thus, our findings support that C/EBPβ plays a pivotal role in AD pathogenesis via increasing delta-secretase expression.

  13. Effect of Different Phospholipids on α-Secretase Activity in the Non-Amyloidogenic Pathway of Alzheimer’s Disease

    PubMed Central

    Grimm, Marcus O. W.; Haupenthal, Viola J.; Rothhaar, Tatjana L.; Zimmer, Valerie C.; Grösgen, Sven; Hundsdörfer, Benjamin; Lehmann, Johannes; Grimm, Heike S.; Hartmann, Tobias

    2013-01-01

    Alzheimer’s disease (AD) is characterized by extracellular accumulation of amyloid-β peptide (Aβ), generated by proteolytic processing of the amyloid precursor protein (APP) by β- and γ-secretase. Aβ generation is inhibited when the initial ectodomain shedding is caused by α-secretase, cleaving APP within the Aβ domain. Therefore, an increase in α-secretase activity is an attractive therapeutic target for AD treatment. APP and the APP-cleaving secretases are all transmembrane proteins, thus local membrane lipid composition is proposed to influence APP processing. Although several studies have focused on γ-secretase, the effect of the membrane lipid microenvironment on α-secretase is poorly understood. In the present study, we systematically investigated the effect of fatty acid (FA) acyl chain length (10:0, 12:0, 14:0, 16:0, 18:0, 20:0, 22:0, 24:0), membrane polar lipid headgroup (phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine), saturation grade and the FA double-bond position on α-secretase activity. We found that α-secretase activity is significantly elevated in the presence of FAs with short chain length and in the presence of polyunsaturated FAs, whereas variations in the phospholipid headgroups, as well as the double-bond position, have little or no effect on α-secretase activity. Overall, our study shows that local lipid membrane composition can influence α-secretase activity and might have beneficial effects for AD. PMID:23485990

  14. Mechanism of Intramembrane Cleavage of Alcadeins by γ-Secretase

    PubMed Central

    Piao, Yi; Kimura, Ayano; Urano, Satomi; Saito, Yuhki; Taru, Hidenori; Yamamoto, Tohru; Hata, Saori; Suzuki, Toshiharu

    2013-01-01

    Background Alcadein proteins (Alcs; Alcα, Alcβand Alcγ) are predominantly expressed in neurons, as is Alzheimer's β-amyloid (Aβ) precursor protein (APP). Both Alcs and APP are cleaved by primary α- or β-secretase to generate membrane-associated C-terminal fragments (CTFs). Alc CTFs are further cleaved by γ-secretase to secrete p3-Alc peptide along with the release of intracellular domain fragment (Alc ICD) from the membrane. In the case of APP, APP CTFβ is initially cleaved at the ε-site to release the intracellular domain fragment (AICD) and consequently the γ-site is determined, by which Aβ generates. The initial ε-site is thought to define the final γ-site position, which determines whether Aβ40/43 or Aβ42 is generated. However, initial intracellular ε-cleavage sites of Alc CTF to generate Alc ICD and the molecular mechanism that final γ-site position is determined remains unclear in Alcs. Methodology Using HEK293 cells expressing Alcs plus presenilin 1 (PS1, a catalytic unit of γ-secretase) and the membrane fractions of these cells, the generation of p3-Alc possessing C-terminal γ-cleavage site and Alc ICD possessing N-terminal ε-cleavage site were analysed with MALDI-TOF/MS. We determined the initial ε-site position of all Alcα, Alcβ and Alcγ, and analyzed the relationship between the initially determined ε-site position and the final γ-cleavage position. Conclusions The initial ε-site position does not always determine the final γ-cleavage position in Alcs, which differed from APP. No additional γ-cleavage sites are generated from artificial/non-physiological positions of ε-cleavage for Alcs, while the artificial ε-cleavage positions can influence in selection of physiological γ-site positions. Because alteration of γ-secretase activity is thought to be a pathogenesis of sporadic Alzheimer's disease, Alcs are useful and sensitive substrate to detect the altered cleavage of substrates by γ-secretase, which may be induced by

  15. Membrane anchoring γ-secretase modulators with terpene-derived moieties.

    PubMed

    Naumann, Eva Christine; Göring, Stefan; Ogorek, Isabella; Weggen, Sascha; Schmidt, Boris

    2013-07-01

    Modulation of γ-secretase activity is a promising therapeutic strategy for the treatment of Alzheimer's disease. Herein we report on the synthesis of carprofen- and tocopherol-derived small-molecule modulators carrying terpene moieties as lipophilic membrane anchors. Additionally, these modulators are equipped with an acidic moiety, which contributes to the desired modulatory effect on the γ-secretase with decreased formation of Aβ42 and increased Aβ38 production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Notch Inhibitor PF-03084014 Inhibits Hepatocellular Carcinoma Growth and Metastasis via Suppression of Cancer Stemness due to Reduced Activation of Notch1-Stat3.

    PubMed

    Wu, Chuan Xing; Xu, Aimin; Zhang, Cathy C; Olson, Peter; Chen, Lin; Lee, Terence K; Cheung, Tan To; Lo, Chung Mau; Wang, Xiao Qi

    2017-08-01

    Aberrant activation of the Notch signaling pathway is implicated in many solid tumors, including hepatocellular carcinoma, indicating a potential use of Notch inhibitors for treatment. In this study, we investigated the antitumor and antimetastasis efficacy of the novel Notch inhibitor (γ-secretase inhibitor) PF-03084014 in hepatocellular carcinoma. Hepatocellular carcinoma spherical cells (stem-like cancer cells), a sphere-derived orthotopic tumor model and one patient-derived xenograft (PDX) model were used in our experiment. We demonstrated that PF-03084014 inhibited the self-renewal and proliferation of cancer stem cells. PF-03084014 reduced the hepatocellular carcinoma sphere-derived orthotopic tumor and blocked the hepatocellular carcinoma tumor liver to lung metastasis. We further tested the PF-03084014 in PDX models and confirmed the inhibition tumor growth effect. In addition, a low dose of PF-03084014 induced hepatocellular carcinoma sphere differentiation, resulting in chemosensitization. Antitumor activity was associated with PF-03084014-induced suppression of Notch1 activity, decreased Stat3 activation and phosphorylation of the Akt signaling pathway, and reduced epithelial-mesenchymal transition. These are the key contributors to the maintenance of cancer stemness and the promotion of cancer metastasis. Moreover, the Notch-Stat3 association was implicated in the clinical hepatocellular carcinoma prognosis. Collectively, PF-03084014 revealed antitumor and antimetastatic effects in hepatocellular carcinoma, providing evidence for the potential use of gamma-secretase inhibitors as a therapeutic option for the treatment of hepatocellular carcinoma. Mol Cancer Ther; 16(8); 1531-43. ©2017 AACR . ©2017 American Association for Cancer Research.

  17. Which is the best antiaggregant or anticoagulant therapy after TAVI? A propensity-matched analysis from the ITER registry. The management of DAPT after TAVI.

    PubMed

    D'Ascenzo, Fabrizio; Benedetto, Umberto; Bianco, Matteo; Conrotto, Federico; Moretti, Claudio; D'Onofrio, Augusto; Agrifoglio, Marco; Colombo, Antonio; Ribichini, Flavio; Tarantini, Giuseppe; D'Amico, Maurizio; Salizzoni, Stefano; Rinaldi, Mauro

    2017-12-08

    The safety and efficacy of single vs. dual antiplatelet therapy (DAPT) in patients undergoing TAVI remain to be addressed. The aim of our study was to evaluate the usefulness of a DAPT compared to a single platelet therapy in patients undergoing TAVI with a balloon-expandable prosthesis. All consecutive patients enrolled in the ITER registry were included. Patients undergoing TAVI discharged with aspirin alone were compared to those taking DAPT before and after selection using propensity score with matching. Subgroup analysis was performed for those on OAT. Prosthetic heart valve dysfunction at follow-up was the primary endpoint, whereas all-cause death, cardiovascular death, bleedings, vascular complications and cerebrovascular accidents were the secondary ones. From 1,364 patients, after propensity score with matching, 605 were selected for each group (aspirin alone vs. DAPT). At 30 days, rates of VARC mortality were lower in patients with aspirin alone (1.5% vs. 4.1%, p=0.003), mainly driven by a reduction of major vascular complications (5.3% vs. 10.7%, p<0.001) and of major bleedings (6.6% vs. 11.5%, p<0.001), without a difference in prosthetic heart valve dysfunction after 45±14 months (2.8% vs. 3.0%, p=0.50). These results were confirmed on multivariable analysis. After TAVI with a balloon-expandable prosthesis, aspirin alone does not increase the risk of prosthetic valve dysfunction, and reduces the risk of periprocedural complications and of 30-day all-cause death.

  18. Biotransformation of two β-secretase inhibitors including ring opening and contraction of a pyrimidine ring.

    PubMed

    Lindgren, Anders; Eklund, Göran; Turek, Dominika; Malmquist, Jonas; Swahn, Britt-Marie; Holenz, Jörg; von Berg, Stefan; Karlström, Sofia; Bueters, Tjerk

    2013-05-01

    Recently, the discovery of the aminoisoindoles as potent and selective inhibitors of β-secretase was reported, including the close structural analogs compound (S)-1-pyridin-4-yl-4-fluoro-1-(3-(pyrimidin-5-yl)phenyl)-1H-isoindol-3-amine [(S)-25] and (S)-1-(2-(difluoromethyl)pyridin-4-yl)-4-fluoro-1-(3-(pyrimidin-5-yl)phenyl)-1H-isoindol-3-amine hemifumarate (AZD3839), the latter being recently progressed to the clinic. The biotransformation of (S)-25 was investigated in vitro and in vivo in rat, rabbit, and human and compared with AZD3839 to further understand the metabolic fate of these compounds. In vitro, CYP3A4 was the major responsible enzyme and metabolized both compounds to a large extent in the commonly shared pyridine and pyrimidine rings. The main proposed metabolic pathways in various in vitro systems were N-oxidation of the pyridine and/or pyrimidine ring and conversion to 4-pyrimidone and pyrimidine-2,4-dione. Both compounds were extensively metabolized, and more than 90% was excreted in feces after intravenous administration of radiolabeled compound to the rat. Here, the main pathways were N-oxidation of the pyridine and/or pyrimidine ring and a ring contraction of the pyrimidine ring into an imidazole ring. Ring-contracted metabolites accounted for 25% of the total metabolism in the rat for (S)-25, whereas the contribution was much smaller for AZD3839. This metabolic pathway was not foreseen on the basis of the obtained in vitro data. In conclusion, we discovered an unusual metabolic pathway of aryl-pyrimidine-containing compounds by a ring-opening reaction followed by elimination of a carbon atom and a ring closure to form an imidazole ring.

  19. Glutamyl-gamma-boronate inhibitors of bacterial Glu-tRNA(Gln) amidotransferase.

    PubMed

    Decicco, C P; Nelson, D J; Luo, Y; Shen, L; Horiuchi, K Y; Amsler, K M; Foster, L A; Spitz, S M; Merrill, J J; Sizemore, C F; Rogers, K C; Copeland, R A; Harpel, M R

    2001-09-17

    Analogues of glutamyl-gamma-boronate (1) were synthesized as mechanism-based inhibitors of bacterial Glu-tRNA(Gln) amidotransferase (Glu-AdT) and were designed to engage a putative catalytic serine nucleophile required for the glutaminase activity of the enzyme. Although 1 provides potent enzyme inhibition, structure-activity studies revealed a narrow range of tolerated chemical changes that maintained activity. Nonetheless, growth inhibition of organisms that require Glu-AdT by the most potent enzyme inhibitors appears to validate mechanism-based inhibitor design of Glu-AdT as an approach to antimicrobial development.

  20. Association of γ-Secretase with Lipid Rafts in Post-Golgi and Endosome Membranes*

    PubMed Central

    Vetrivel, Kulandaivelu S.; Cheng, Haipeng; Lin, William; Sakurai, Takashi; Li, Tong; Nukina, Nobuyuki; Wong, Philip C.; Xu, Huaxi; Thinakaran, Gopal

    2005-01-01

    Alzheimer’s disease-associated β-amyloid peptides (Aβ) are generated by the sequential proteolytic processing of amyloid precursor protein (APP) by β- and γ-secretases. There is growing evidence that cholesterol- and sphingolipid-rich membrane microdomains are involved in regulating trafficking and processing of APP. BACE1, the major γ-secretase in neurons is a palmi-toylated transmembrane protein that resides in lipid rafts. A subset of APP is subject to amyloidogenic processing by BACE1 in lipid rafts, and this process depends on the integrity of lipid rafts. Here we describe the association of all four components of the γ-secretase complex, namely presenilin 1 (PS1)-derived fragments, mature nicastrin, APH-1, and PEN-2, with cholesterol-rich detergent insoluble membrane (DIM) domains of non-neuronal cells and neurons that fulfill the criteria of lipid rafts. In PS1−/−/PS2−/− and NCT−/− fibroblasts, γ-secretase components that still remain fail to become detergent-resistant, suggesting that raft association requires γ-secretase complex assembly. Biochemical evidence shows that subunits of the γ-secretase complex and three TGN/endosome-resident SNAREs cofractionate in sucrose density gradients, and show similar solubility or insolubility characteristics in distinct non-ionic and zwitterionic detergents, indicative of their co-residence in membrane microdomains with similar protein-lipid composition. This notion is confirmed using magnetic immunoisolation of PS1- or syntaxin 6-positive membrane patches from a mixture of membranes with similar buoyant densities following Lubrol WX extraction or sonication, and gradient centrifugation. These findings are consistent with the localization of γ-secretase in lipid raft microdomains of post-Golgi and endosomes, organelles previously implicated in amyloidogenic processing of APP. PMID:15322084

  1. NSAID-derived γ-secretase modulation requires an acidic moiety on the carbazole scaffold.

    PubMed

    Zall, Andrea; Kieser, Daniel; Höttecke, Nicole; Naumann, Eva C; Thomaszewski, Binia; Schneider, Katrin; Steinbacher, Dirk T; Schubenel, Robert; Masur, Stefan; Baumann, Karlheinz; Schmidt, Boris

    2011-08-15

    Modulation of γ-secretase activity holds potential for the treatment of Alzheimer's disease. Most NSAID-derived γ-secretase modulators feature a carboxylic acid, which may impair blood-brain barrier permeation. The structure activity relationship of 33 carbazoles featuring diverse carboxylic acid isosteres or metabolic precursors thereof was established in a cellular amyloid secretion assay. The modulatory activity was observed for acidic moieties and metabolically labile esters only, which supports our hypothesis of an acid-lysine interaction to be relevant for this type of γ-secretase modulators. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Presenilins and γ-Secretase: Structure, Function, and Role in Alzheimer Disease

    PubMed Central

    De Strooper, Bart; Iwatsubo, Takeshi; Wolfe, Michael S.

    2012-01-01

    Presenilins were first discovered as sites of missense mutations responsible for early-onset Alzheimer disease (AD). The encoded multipass membrane proteins were subsequently found to be the catalytic components of γ-secretases, membrane-embedded aspartyl protease complexes responsible for generating the carboxyl terminus of the amyloid β-protein (Aβ) from the amyloid protein precursor (APP). The protease complex also cleaves a variety of other type I integral membrane proteins, most notably the Notch receptor, signaling from which is involved in many cell differentiation events. Although γ-secretase is a top target for developing disease-modifying AD therapeutics, interference with Notch signaling should be avoided. Compounds that alter Aβ production by γ-secretase without affecting Notch proteolysis and signaling have been identified and are currently at various stages in the drug development pipeline. PMID:22315713

  3. γ-Secretase Modulators and APH1 Isoforms Modulate γ-Secretase Cleavage but Not Position of ε-Cleavage of the Amyloid Precursor Protein (APP).

    PubMed

    Lessard, Christian B; Cottrell, Barbara A; Maruyama, Hiroko; Suresh, Suraj; Golde, Todd E; Koo, Edward H

    2015-01-01

    The relative increase in Aβ42 peptides from familial Alzheimer disease (FAD) linked APP and PSEN mutations can be related to changes in both ε-cleavage site utilization and subsequent step-wise cleavage. Cleavage at the ε-site releases the amyloid precursor protein (APP) intracellular domain (AICD), and perturbations in the position of ε-cleavage are closely associated with changes in the profile of amyloid β-protein (Aβ) species that are produced and secreted. The mechanisms by which γ-secretase modulators (GSMs) or FAD mutations affect the various γ-secretase cleavages to alter the generation of Aβ peptides have not been fully elucidated. Recent studies suggested that GSMs do not modulate ε-cleavage of APP, but the data were derived principally from recombinant truncated epitope tagged APP substrate. Here, using full length APP from transfected cells, we investigated whether GSMs modify the ε-cleavage of APP under more native conditions. Our results confirmed the previous findings that ε-cleavage is insensitive to GSMs. In addition, fenofibrate, an inverse GSM (iGSM), did not alter the position or kinetics of ε-cleavage position in vitro. APH1A and APH1B, a subunit of the γ-secretase complex, also modulated Aβ42/Aβ40 ratio without any alterations in ε-cleavage, a result in contrast to what has been observed with PS1 and APP FAD mutations. Consequently, GSMs and APH1 appear to modulate γ-secretase activity and Aβ42 generation by altering processivity but not ε-cleavage site utilization.

  4. β-Arrestin1 regulates γ-secretase complex assembly and modulates amyloid-β pathology

    PubMed Central

    Liu, Xiaosong; Zhao, Xiaohui; Zeng, Xianglu; Bossers, Koen; Swaab, Dick F; Zhao, Jian; Pei, Gang

    2013-01-01

    Alzheimer's disease (AD) is a progressive and complex neurodegenerative disease in which the γ-secretase-mediated amyloid-β (Aβ) pathology plays an important role. We found that a multifunctional protein, β-arrestin1, facilitated the formation of NCT/APH-1 (anterior pharynx-defective phenotype 1) precomplex and mature γ-secretase complex through its functional interaction with APH-1. Deficiency of β-arrestin1 or inhibition of binding of β-arrestin1 with APH-1 by small peptides reduced Aβ production without affecting Notch processing. Genetic ablation of β-arrestin1 diminished Aβ pathology and behavioral deficits in transgenic AD mice. Moreover, in brains of sporadic AD patients and transgenic AD mice, the expression of β-arrestin1 was upregulated and correlated well with neuropathological severity and senile Aβ plaques. Thus, our study identifies a regulatory mechanism underlying both γ-secretase assembly and AD pathogenesis, and indicates that specific reduction of Aβ pathology can be achieved by regulation of the γ-secretase assembly. PMID:23208420

  5. Curcumin Induces Cell Death in Esophageal Cancer Cells through Modulating Notch Signaling

    PubMed Central

    Subramaniam, Dharmalingam; Ponnurangam, Sivapriya; Ramamoorthy, Prabhu; Standing, David; Battafarano, Richard J.; Anant, Shrikant; Sharma, Prateek

    2012-01-01

    Background Curcumin inhibits the growth of esophageal cancer cell lines; however, the mechanism of action is not well understood. It is becoming increasingly clear that aberrant activation of Notch signaling has been associated with the development of esophageal cancer. Here, we have determined that curcumin inhibits esophageal cancer growth via a mechanism mediated through the Notch signaling pathway. Methodology/Principal Findings In this study, we show that curcumin treatment resulted in a dose and time dependent inhibition of proliferation and colony formation in esophageal cancer cell lines. Furthermore, curcumin treatment induced apoptosis through caspase 3 activation, confirmed by an increase in the ratio of Bax to Bcl2. Cell cycle analysis demonstrated that curcumin treatment induced cell death and down regulated cyclin D1 levels. Curcumin treatment also resulted in reduced number and size of esophagospheres. Furthermore, curcumin treatment led to reduced Notch-1 activation, expression of Jagged-1 and its downstream target Hes-1. This reduction in Notch-1 activation was determined to be due to the down-regulation of critical components of the γ-secretase complex proteins such as Presenilin 1 and Nicastrin. The combination of a known γ-secretase inhibitor DAPT and curcumin further decreased proliferation and induced apoptosis in esophageal cancer cells. Finally, curcumin treatment down-regulate the expressions of Notch-1 specific microRNAs miR-21 and miR-34a, and upregulated tumor suppressor let-7a miRNA. Conclusion/Significance Curcumin is a potent inhibitor of esophageal cancer growth that targets the Notch-1 activating γ-secretase complex proteins. These data suggest that Notch signaling inhibition is a novel mechanism of action for curcumin during therapeutic intervention in esophageal cancers. PMID:22363450

  6. Delta-Secretase Phosphorylation by SRPK2 Enhances Its Enzymatic Activity, Provoking Pathogenesis in Alzheimer's Disease.

    PubMed

    Wang, Zhi-Hao; Liu, Pai; Liu, Xia; Manfredsson, Fredric P; Sandoval, Ivette M; Yu, Shan Ping; Wang, Jian-Zhi; Ye, Keqiang

    2017-09-07

    Delta-secretase, a lysosomal asparagine endopeptidase (AEP), simultaneously cleaves both APP and tau, controlling the onset of pathogenesis of Alzheimer's disease (AD). However, how this protease is post-translationally regulated remains unclear. Here we report that serine-arginine protein kinase 2 (SRPK2) phosphorylates delta-secretase and enhances its enzymatic activity. SRPK2 phosphorylates serine 226 on delta-secretase and accelerates its autocatalytic cleavage, leading to its cytoplasmic translocation and escalated enzymatic activities. Delta-secretase is highly phosphorylated in human AD brains, tightly correlated with SRPK2 activity. Overexpression of a phosphorylation mimetic (S226D) in young 3xTg mice strongly promotes APP and tau fragmentation and facilitates amyloid plaque deposits and neurofibrillary tangle (NFT) formation, resulting in cognitive impairment. Conversely, viral injection of the non-phosphorylatable mutant (S226A) into 5XFAD mice decreases APP and tau proteolytic cleavage, attenuates AD pathologies, and reverses cognitive defects. Our findings support that delta-secretase phosphorylation by SRPK2 plays a critical role in aggravating AD pathogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Tissue Regeneration and Biomineralization in Sea Urchins: Role of Notch Signaling and Presence of Stem Cell Markers

    PubMed Central

    Reinardy, Helena C.; Emerson, Chloe E.; Manley, Jason M.; Bodnar, Andrea G.

    2015-01-01

    Echinoderms represent a phylum with exceptional regenerative capabilities that can reconstruct both external appendages and internal organs. Mechanistic understanding of the cellular pathways involved in regeneration in these animals has been hampered by the limited genomic tools and limited ability to manipulate regenerative processes. We present a functional assay to investigate mechanisms of tissue regeneration and biomineralization by measuring the regrowth of amputated tube feet (sensory and motor appendages) and spines in the sea urchin, Lytechinus variegatus. The ability to manipulate regeneration was demonstrated by concentration-dependent inhibition of regrowth of spines and tube feet by treatment with the mitotic inhibitor, vincristine. Treatment with the gamma-secretase inhibitor DAPT resulted in a concentration-dependent inhibition of regrowth, indicating that both tube feet and spine regeneration require functional Notch signaling. Stem cell markers (Piwi and Vasa) were expressed in tube feet and spine tissue, and Vasa-positive cells were localized throughout the epidermis of tube feet by immunohistochemistry, suggesting the existence of multipotent progenitor cells in these highly regenerative appendages. The presence of Vasa protein in other somatic tissues (e.g. esophagus, radial nerve, and a sub-population of coelomocytes) suggests that multipotent cells are present throughout adult sea urchins and may contribute to normal homeostasis in addition to regeneration. Mechanistic insight into the cellular pathways governing the tremendous regenerative capacity of echinoderms may reveal processes that can be modulated for regenerative therapies, shed light on the evolution of regeneration, and enable the ability to predict how these processes will respond to changing environmental conditions. PMID:26267358

  8. β-secretase inhibitors for Alzheimer's disease: identification using pharmacoinformatics.

    PubMed

    Islam, Md Ataul; Pillay, Tahir S

    2018-02-01

    In this study we searched for potential β-site amyloid precursor protein cleaving enzyme1 (BACE1) inhibitors using pharmacoinformatics. A large dataset containing 7155 known BACE1 inhibitors was evaluated for pharmacophore model generation. The final model (R = 0.950, RMSD = 1.094, Q 2  = 0.901, se = 0.332, [Formula: see text] = 0.901, [Formula: see text] = 0.756, sp = 0.468, [Formula: see text] = 0.667) was revealed with the importance of spatial arrangement of hydrogen bond acceptor and donor, hydrophobicity and aromatic ring features. The validated model was then used to search NCI and InterBioscreen databases for promising BACE1 inhibitors. The initial hits from both databases were sorted using a number of criteria and finally three molecules from each database were considered for further validation using molecular docking and molecular dynamics studies. Different protonation states of Asp32 and Asp228 dyad were analysed and best protonated form used for molecular docking study. Observation of the number of binding interactions in the molecular docking study supported the potential of these molecules being promising inhibitors. Values of RMSD, RMSF, Rg in molecular dynamics study and binding energies unquestionably explained that final screened molecules formed stable complexes inside the receptor cavity of BACE1. Hence, it can be concluded that the final screened six compounds may be potential therapeutic agents for Alzheimer's disease.

  9. Novel cell culture technique for primary ductal carcinoma in situ: role of Notch and epidermal growth factor receptor signaling pathways.

    PubMed

    Farnie, Gillian; Clarke, Robert B; Spence, Katherine; Pinnock, Natasha; Brennan, Keith; Anderson, Neil G; Bundred, Nigel J

    2007-04-18

    The epidermal growth factor receptor (EGFR) and Notch signaling pathways have been implicated in self-renewal of normal breast stem cells. We investigated the involvement of these signaling pathways in ductal carcinoma in situ (DCIS) of the breast. Samples of normal breast tissue (n = 15), pure DCIS tissue of varying grades (n = 35), and DCIS tissue surrounding an invasive cancer (n = 7) were used for nonadherent (i.e., mammosphere) culture. Mammosphere cultures were treated at day 0 with gefitinib (an EGFR inhibitor), DAPT (N-[N-(3,5-difluorophenacetyl-L-alanyl)]-S-phenylglycine t-butyl ester) (a gamma-secretase inhibitor), or Notch 4-neutralizing antibody. Mammosphere-forming efficiency (MFE) was calculated by dividing the number of mammospheres of 60 microm or more formed by the number of single cells seeded and is expressed as a percentage. The Notch 1 intracellular domain (NICD) was detected immunohistochemically in paraffin-embedded DCIS tissue from 50 patients with at least 60 months of follow-up. All statistical tests were two-sided. DCIS had a greater MFE than normal breast tissue (1.5% versus 0.5%, difference = 1%, 95% confidence interval [CI] = 0.62% to 1.25%, P<.001). High-grade DCIS had a greater MFE than low-grade DCIS (1.6% versus 1.09%, difference = 0.51%, 95% CI = 0.07% to 0.94%, P = .01). The MFE of high-grade DCIS treated with gefitinib in the absence of exogenous EGF was lower than that of high-grade DCIS treated with mammosphere medium lacking gefitinib and exogenous EGF (0.56% versus 1.36%, difference 0.8%, 95% CI = 0.33% to 1.4%, P = .004). Increased Notch signaling as detected by NICD staining was associated with recurrence at 5 years (P = .012). DCIS MFE was reduced when Notch signaling was inhibited using either DAPT (0.89% versus 0.51%, difference = 0.38%, 95% CI = 0.2% to 0.6%, P<.001) or a Notch 4-neutralizing antibody (0.97% versus 0.2%, difference = 0.77%, 95% CI = 0.52% to 1.0%, P<.001). We describe a novel primary culture technique

  10. Suppressor Mutations for Presenilin 1 Familial Alzheimer Disease Mutants Modulate γ-Secretase Activities.

    PubMed

    Futai, Eugene; Osawa, Satoko; Cai, Tetsuo; Fujisawa, Tomoya; Ishiura, Shoichi; Tomita, Taisuke

    2016-01-01

    γ-Secretase is a multisubunit membrane protein complex containing presenilin (PS1) as a catalytic subunit. Familial Alzheimer disease (FAD) mutations within PS1 were analyzed in yeast cells artificially expressing membrane-bound substrate, amyloid precursor protein, or Notch fused to Gal4 transcriptional activator. The FAD mutations, L166P and G384A (Leu-166 to Pro and Gly-384 to Ala substitution, respectively), were loss-of-function in yeast. We identified five amino acid substitutions that suppress the FAD mutations. The cleavage of amyloid precursor protein or Notch was recovered by the secondary mutations. We also found that secondary mutations alone activated the γ-secretase activity. FAD mutants with suppressor mutations, L432M or S438P within TMD9 together with a missense mutation in the second or sixth loops, regained γ-secretase activity when introduced into presenilin null mouse fibroblasts. Notably, the cells with suppressor mutants produced a decreased amount of Aβ42, which is responsible for Alzheimer disease. These results indicate that the yeast system is useful to screen for mutations and chemicals that modulate γ-secretase activity. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Cell autonomous regulation of hippocampal circuitry via Aph1b-γ-secretase/neuregulin 1 signalling

    PubMed Central

    Fazzari, Pietro; Snellinx, An; Sabanov, Victor; Ahmed, Tariq; Serneels, Lutgarde; Gartner, Annette; Shariati, S Ali M; Balschun, Detlef; De Strooper, Bart

    2014-01-01

    Neuregulin 1 (NRG1) and the γ-secretase subunit APH1B have been previously implicated as genetic risk factors for schizophrenia and schizophrenia relevant deficits have been observed in rodent models with loss of function mutations in either gene. Here we show that the Aph1b-γ-secretase is selectively involved in Nrg1 intracellular signalling. We found that Aph1b-deficient mice display a decrease in excitatory synaptic markers. Electrophysiological recordings show that Aph1b is required for excitatory synaptic transmission and plasticity. Furthermore, gain and loss of function and genetic rescue experiments indicate that Nrg1 intracellular signalling promotes dendritic spine formation downstream of Aph1b-γ-secretase in vitro and in vivo. In conclusion, our study sheds light on the physiological role of Aph1b-γ-secretase in brain and provides a new mechanistic perspective on the relevance of NRG1 processing in schizophrenia. DOI: http://dx.doi.org/10.7554/eLife.02196.001 PMID:24891237

  12. RNAi-mediated knock-down of Dab and Numb attenuate Aβ levels via γ-secretase mediated APP processing

    PubMed Central

    2012-01-01

    Amyloid-β-protein (Aβ), the key component of senile plaques in Alzheimer's disease (AD) brain, is produced from amyloid precursor protein (APP) by cleavage of β-secretase and then γ-secretase. APP adaptor proteins with phosphotyrosine-binding (PTB) domains, including Dab (gene: DAB) and Numb (gene: NUMB), can bind to and interact with the conserved YENPTY-motif in the APP C-terminus. Here we describe, for the first time, the effects of RNAi knock-down of Dab and Numb expression on APP processing and Aβ production. RNAi knock-down of Dab and Numb in H4 human neuroglioma cells stably transfected to express either FL-APP (H4-FL-APP cells) or APP-C99 (H4-APP-C99 cells) increased levels of APP-C-terminal fragments (APP-CTFs) and lowered Aβ levels in both cell lines by inhibiting γ-secretase cleavage of APP. Finally, RNAi knock-down of APP also reduced levels of Numb in H4-APP cells. These findings suggest that pharmacologically blocking interaction of APP with Dab and Numb may provide novel therapeutic strategies of AD. The notion of attenuating γ-secretase cleavage of APP via the APP adaptor proteins, Dab and Numb, is particularly attractive with regard to therapeutic potential, given that side effects of γ-secretase inhibition owing to impaired proteolysis of other γ-secretase substrates, e.g. Notch, might be avoided. PMID:23211096

  13. RNAi-mediated knock-down of Dab and Numb attenuate Aβ levels via γ-secretase mediated APP processing.

    PubMed

    Xie, Zhongcong; Dong, Yuanlin; Maeda, Uta; Xia, Weiming; Tanzi, Rudolph E

    2012-03-22

    Amyloid-β-protein (Aβ), the key component of senile plaques in Alzheimer's disease (AD) brain, is produced from amyloid precursor protein (APP) by cleavage of β-secretase and then γ-secretase. APP adaptor proteins with phosphotyrosine-binding (PTB) domains, including Dab (gene: DAB) and Numb (gene: NUMB), can bind to and interact with the conserved YENPTY-motif in the APP C-terminus. Here we describe, for the first time, the effects of RNAi knock-down of Dab and Numb expression on APP processing and Aβ production. RNAi knock-down of Dab and Numb in H4 human neuroglioma cells stably transfected to express either FL-APP (H4-FL-APP cells) or APP-C99 (H4-APP-C99 cells) increased levels of APP-C-terminal fragments (APP-CTFs) and lowered Aβ levels in both cell lines by inhibiting γ-secretase cleavage of APP. Finally, RNAi knock-down of APP also reduced levels of Numb in H4-APP cells. These findings suggest that pharmacologically blocking interaction of APP with Dab and Numb may provide novel therapeutic strategies of AD. The notion of attenuating γ-secretase cleavage of APP via the APP adaptor proteins, Dab and Numb, is particularly attractive with regard to therapeutic potential, given that side effects of γ-secretase inhibition owing to impaired proteolysis of other γ-secretase substrates, e.g. Notch, might be avoided.

  14. Efficacy and Safety of Proton-Pump Inhibitors in High-Risk Cardiovascular Subsets of the COGENT Trial.

    PubMed

    Vaduganathan, Muthiah; Cannon, Christopher P; Cryer, Byron L; Liu, Yuyin; Hsieh, Wen-Hua; Doros, Gheorghe; Cohen, Marc; Lanas, Angel; Schnitzer, Thomas J; Shook, Thomas L; Lapuerta, Pablo; Goldsmith, Mark A; Laine, Loren; Bhatt, Deepak L

    2016-09-01

    Proton-pump inhibitors (PPIs) have been demonstrated to reduce rates of gastrointestinal events in patients requiring dual antiplatelet therapy (DAPT). Data are limited regarding the efficacy and safety of PPIs in high-risk cardiovascular subsets after acute coronary syndrome or percutaneous coronary intervention. All patients enrolled in COGENT (Clopidogrel and the Optimization of Gastrointestinal Events Trial) were initiated on DAPT (with aspirin and clopidogrel) for various indications within the prior 21 days. These post hoc analyses of the COGENT trial evaluated the efficacy and safety of omeprazole compared with placebo in subsets of patients requiring DAPT for the 2 most frequent indications: 1) patients undergoing percutaneous coronary intervention (for any indication) within 14 days of randomization (n = 2676; 71.2%); and 2) patients presenting with acute coronary syndrome managed with or without percutaneous coronary intervention (n = 1573; 41.8%). Unadjusted Cox proportional hazards models were used to estimate effect sizes through final follow-up. Median follow-up duration was 110 days (interquartile range 55-167). In percutaneous coronary intervention-treated patients, omeprazole significantly reduced rates of composite gastrointestinal events at 180 days (1.2% vs 2.7%; hazard ratio [HR] 0.43; 95% confidence interval [CI], 0.22-0.85; P = .02) without increasing composite cardiovascular events (5.4% vs 6.3%; HR 1.00; 95% CI, 0.67-1.50; P = 1.00). Similarly, omeprazole lowered risk of the primary gastrointestinal endpoint at 180 days in patients presenting with acute coronary syndrome (1.1% vs 2.7%; HR 0.37; 95% CI, 0.13-1.01; P = .05) without a significant excess in cardiovascular events (5.6% vs 4.5%; HR 1.40; 95% CI, 0.77-2.53; P = .27). PPI therapy attenuates gastrointestinal bleeding risk without significant excess in major cardiovascular events in high-risk cardiovascular subsets, regardless of indication for DAPT. Future studies will be

  15. Potential Use of γ-Secretase Modulators in the Treatment of Alzheimer Disease

    PubMed Central

    Wagner, Steven L.; Tanzi, Rudolph E.; Mobley, William C.; Galasko, Douglas

    2013-01-01

    Although significant progress has occurred in the past 20 years regarding our understanding of Alzheimer disease pathogenesis, we have yet to identify disease-modifying therapeutics capable of substantially altering the clinical course of this prevalent neurodegenerative disease. In this short review, we discuss 2 approaches that are currently being tested clinically (γ-secretase inhibition and γ-secretase modulation) and emphasize the significant differences between these 2 therapeutic approaches. We also discuss certain genetic- and biomarker-based translational and clinical trial paradigms that may assist in developing a useful therapeutic agent. PMID:22801784

  16. Aging process alters hippocampal and cortical secretase activities of Wistar rats.

    PubMed

    Bertoldi, Karine; Cechinel, Laura Reck; Schallenberger, Bruna; Meireles, Louisiana; Basso, Carla; Lovatel, Gisele Agustini; Bernardi, Lisiane; Lamers, Marcelo Lazzaron; Siqueira, Ionara Rodrigues

    2017-01-15

    A growing body of evidence has demonstrated amyloid plaques in aged brain; however, little attention has been given to amyloid precursor protein (APP) processing machinery during the healthy aging process. The amyloidogenic and non-amyloidogenic pathways, represented respectively by β- and α-secretases (BACE and TACE), are responsible for APP cleavage. Our working hypothesis is that the normal aging process could imbalance amyloidogenic and non-amyloidogenic pathways specifically BACE and TACE activities. Besides, although it has been showed that exercise can modulate secretase activities in Alzheimer Disease models the relationship between exercise effects and APP processing during healthy aging process is rarely studied. Our aim was to investigate the aging process and the exercise effects on cortical and hippocampal BACE and TACE activities and aversive memory performance. Young adult and aged Wistar rats were subjected to an exercise protocol (20min/day for 2 weeks) and to inhibitory avoidance task. Biochemical parameters were evaluated 1h and 18h after the last exercise session in order to verify transitory and delayed exercise effects. Aged rats exhibited impaired aversive memory and diminished cortical TACE activity. Moreover, an imbalance between TACE and BACE activities in favor of BACE activity was observed in aged brain. Moderate treadmill exercise was unable to alter secretase activities in any brain areas or time points evaluated. Our results suggest that aging-related aversive memory decline is partly linked to decreased cortical TACE activity. Additionally, an imbalance between secretase activities can be related to the higher vulnerability to neurodegenerative diseases induced by aging. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Over-expression of two different forms of the alpha-secretase ADAM10 affects learning and memory in mice.

    PubMed

    Schmitt, Ulrich; Hiemke, Christoph; Fahrenholz, Falk; Schroeder, Anja

    2006-12-15

    Members of the ADAM family (adisintegrin and metalloprotease) are the main candidates for physiologically relevant alpha-secretases. The alpha-secretase cleaves in the non-amyloidogenic pathway the amyloid precursor protein within the region of the Abeta peptides preventing their aggregation in the brain. The increase of alpha-secretase activity in the brain provides a plausible strategy to prevent Abeta formation. Concerning this possibility two transgenic mouse lines (FVB/N) have been created: mice over-expressing the bovine form of the alpha-secretase (ADAM10) and mice over-expressing an inactive form of the alpha-secretase (ADAM10-E348A-HA; ADAM10-dn). For behavioral examination a F1 generation of transgenic mice (C57Bl/6 x FVB/N (tg)) was generated and compared to wild type F1 generation (C57Bl/6 x FVB/N). Behavior was characterized in the following tasks: standard open field, enriched open field, elevated plus-maze, and the Morris water maze hidden platform task. Concerning basal activity, exploration, and anxiety, transgenic mice behaved similar to controls. With respect to learning and memory both transgenic lines showed a significant deficit compared to controls. ADAM10 mice however, showed thigmotaxis with passive floating behavior in the Morris water maze indicating differences in motivation, whereas, ADAM10-dn mice displayed an inconspicuous but limited goal-directed search pattern. Thus variation of the enzymatic activity of alpha-secretase ADAM10 alters learning and memory differentially. Nevertheless, it could be concluded that both, ADAM10 and ADAM10-dn mice are suitable control mice for the assessment of alpha-secretase-related effects in animal models of Alzheimer's disease.

  18. M1 muscarinic agonists can modulate some of the hallmarks in Alzheimer's disease: implications in future therapy.

    PubMed

    Fisher, Abraham; Pittel, Zipora; Haring, Rachel; Bar-Ner, Nira; Kliger-Spatz, Michal; Natan, Niva; Egozi, Inbal; Sonego, Hagar; Marcovitch, Itzhak; Brandeis, Rachel

    2003-01-01

    agonists or cholinesterase inhibitors increased tau hyperphosphorylation. In summary, the M1 agonists tested are effective on cognition and behavior and show unique disease-modifying properties owing to beneficial effects on major hallmarks of AD. This may place such drugs in the first line of modern AD therapies (e.g., beta- or gamma-secretase inhibitors, vaccines against Abeta, statins, and inhibitors of tau hyperphosphorylation).

  19. Inhibition of β-Secretase Activity by Monoterpenes, Sesquiterpenes, and C13 Norisoprenoids.

    PubMed

    Marumoto, Shinsuke; Okuno, Yoshiharu; Miyazawa, Mitsuo

    2017-08-01

    Inhibition of β-secretase (BACE1) is currently regarded as the leading treatment strategy for Alzheimer's disease. In the present study, we aimed to screen the in vitro inhibitory activity of 80 types of aroma compounds (monoterpenes, sesquiterpenes, and C 13 norisoprenoids), including plant-based types, at a 200-μM concentration against a recombinant human BACE1. The results showed that the most potent inhibitor of BACE1 was geranyl acetone followed by (+)-camphor, (-)-fenchone, (+)-fenchone, and (-)-camphor with the half-maximal inhibitory concentration (IC 50 ) values of 51.9 ± 3.9, 95.9 ± 11.0, 106.3 ± 14.9, 117.0 ± 18.6, and 134.1 ± 16.4 μM, respectively. Furthermore, the mechanism of inhibition of BACE1 by geranyl acetone was analyzed using Dixon kinetics plus Cornish-Bowden plots, which revealed mixed-type mode. Therefore aroma compounds may be used as potential lead molecules for designing anti-BACE1 agents.

  20. Conflicting results between randomized trials and observational studies on the impact of proton pump inhibitors on cardiovascular events when coadministered with dual antiplatelet therapy: systematic review.

    PubMed

    Melloni, Chiara; Washam, Jeffrey B; Jones, W Schuyler; Halim, Sharif A; Hasselblad, Victor; Mayer, Stephanie B; Heidenfelder, Brooke L; Dolor, Rowena J

    2015-01-01

    Discordant results have been reported on the effects of concomitant use of proton pump inhibitors (PPIs) and dual antiplatelet therapy (DAPT) for cardiovascular outcomes. We conducted a systematic review comparing the effectiveness and safety of concomitant use of PPIs and DAPT in the postdischarge treatment of unstable angina/non-ST-segment-elevation myocardial infarction patients. We searched for clinical studies in MEDLINE, EMBASE, and the Cochrane Database of Systematic Reviews, from 1995 to 2012. Reviewers screened and extracted data, assessed applicability and quality, and graded the strength of evidence. We performed meta-analyses of direct comparisons when outcomes and follow-up periods were comparable. Thirty-five studies were eligible. Five (4 randomized controlled trials and 1 observational) assessed the effect of omeprazole when added to DAPT; the other 30 (observational) assessed the effect of PPIs as a class when compared with no PPIs. Random-effects meta-analyses of the studies assessing PPIs as a class consistently reported higher event rates in patients receiving PPIs for various clinical outcomes at 1 year (composite ischemic end points, all-cause mortality, nonfatal MI, stroke, revascularization, and stent thrombosis). However, the results from randomized controlled trials evaluating omeprazole compared with placebo showed no difference in ischemic outcomes, despite a reduction in upper gastrointestinal bleeding with omeprazole. Large, well-conducted observational studies of PPIs and randomized controlled trials of omeprazole seem to provide conflicting results for the effect of PPIs on cardiovascular outcomes when coadministered with DAPT. Prospective trials that directly compare pharmacodynamic parameters and clinical events among specific PPI agents in patients with unstable angina/non-ST-segment-elevation myocardial infarction treated with DAPT are warranted. © 2015 American Heart Association, Inc.

  1. Notch1 inhibition alters the CD44hi/CD24lo population and reduces the formation of brain metastases from breast cancer.

    PubMed

    McGowan, Patricia M; Simedrea, Carmen; Ribot, Emeline J; Foster, Paula J; Palmieri, Diane; Steeg, Patricia S; Allan, Alison L; Chambers, Ann F

    2011-07-01

    Brain metastasis from breast cancer is an increasingly important clinical problem. Here we assessed the role of CD44(hi)/CD24(lo) cells and pathways that regulate them, in an experimental model of brain metastasis. Notch signaling (mediated by γ-secretase) has been shown to contribute to maintenance of the cancer stem cell (CSC) phenotype. Cells sorted for a reduced stem-like phenotype had a reduced ability to form brain metastases compared with unsorted or CD44(hi)/CD24(lo) cells (P < 0.05; Kruskal-Wallis). To assess the effect of γ-secretase inhibition, cells were cultured with DAPT and the CD44/CD24 phenotypes quantified. 231-BR cells with a CD44(hi)/CD24(lo) phenotype was reduced by about 15% in cells treated with DAPT compared with DMSO-treated or untreated cells (P = 0.001, ANOVA). In vivo, mice treated with DAPT developed significantly fewer micro- and macrometastases compared with vehicle treated or untreated mice (P = 0.011, Kruskal-Wallis). Notch1 knockdown reduced the expression of CD44(hi)/CD24(lo) phenotype by about 20%. In vitro, Notch1 shRNA resulted in a reduction in cellular growth at 24, 48, and 72 hours time points (P = 0.033, P = 0.002, and P = 0.009, ANOVA) and about 60% reduction in Matrigel invasion was observed (P < 0.001, ANOVA). Cells transfected with shNotch1 formed significantly fewer macrometastases and micrometastases compared with scrambled shRNA or untransfected cells (P < 0.001; Kruskal-Wallis). These data suggest that the CSC phenotype contributes to the development of brain metastases from breast cancer, and this may arise in part from increased Notch activity. ©2011 AACR.

  2. An Anti-Parkinson’s Disease Drug via Targeting Adenosine A2A Receptor Enhances Amyloid-β Generation and γ-Secretase Activity

    PubMed Central

    Li, Xiaohang; Wang, Xin; Zhou, Yue; Yang, Wenjuan; Chen, Ming; Zhao, Jian; Pei, Gang

    2016-01-01

    γ-secretase mediates the intramembranous proteolysis of amyloid precursor protein (APP) and determines the generation of Aβ which is associated with Alzheimer’s disease (AD). Here we identified that an anti-Parkinson’s disease drug, Istradefylline, could enhance Aβ generation in various cell lines and primary neuronal cells of APP/PS1 mouse. Moreover, the increased generation of Aβ42 was detected in the cortex of APP/PS1 mouse after chronic treatment with Istradefylline. Istradefylline promoted the activity of γ-secretase which could lead to increased Aβ production. These effects of Istradefylline were reduced by the knockdown of A2AR but independent of A2AR-mediated G protein- or β-arrestin-dependent signal pathway. We further observed that A2AR colocalized with γ-secretase in endosomes and physically interacted with the catalytic subunit presenilin-1 (PS1). Interestingly, Istradefylline attenuated the interaction in time- and dosage-dependent manners. Moreover the knockdown of A2AR which in theory would release PS1 potentiated both Aβ generation and γ-secretase activity. Thus, our study implies that the association of A2AR could modulate γ-secretase activity. Istradefylline enhance Aβ generation and γ-secretase activity possibly via modulating the interaction between A2AR and γ-secretase, which may bring some undesired effects in the central nervous system (CNS). PMID:27835671

  3. Patterns and associations between DAPT cessation and 2-year clinical outcomes in left main/proximal LAD versus other PCI: Results from the Patterns of Non-Adherence to Dual Antiplatelet Therapy in Stented Patients (PARIS) registry.

    PubMed

    Chandrasekhar, Jaya; Baber, Usman; Sartori, Samantha; Aquino, Melissa; Tomey, Matthew; Kruckoff, Mitchell; Moliterno, David; Henry, Timothy D; Weisz, Giora; Gibson, C Michael; Iakovou, Ioannis; Kini, Annapoorna; Faggioni, Michela; Vogel, Birgit; Farhan, Serdar; Colombo, Antonio; Steg, P Gabriel; Witzenbichler, Bernhard; Chieffo, Alaide; Cohen, David; Stuckey, Thomas; Ariti, Cono; Pocock, Stuart; Dangas, George; Mehran, Roxana

    2017-09-15

    Percutaneous coronary intervention (PCI) of the left main (LM) or proximal left anterior descending artery (pLAD) is considered high-risk as these segments subtend substantial left ventricular myocardial area. We assessed the patterns and associations between dual antiplatelet therapy (DAPT) cessation and 2-year outcomes in LM/pLAD vs. other PCI from the all-comer PARIS registry. Two-year major adverse cardiovascular events (MACE) were a composite of cardiac death, myocardial infarction, definite/probable stent thrombosis or target lesion revascularization. DAPT cessation was predefined as physician-guided permanent discontinuation, temporary interruption, or non-recommended disruption due to non-compliance or bleeding. Of the study population (n=5018), 25.0% (n=1252) underwent LM/pLAD PCI and 75.0% (n=3766) PCI to other segments. Compared to others, LM/pLAD patients presented with fewer comorbidities, less frequent acute coronary syndromes but more multivessel and bifurcation disease treated with greater stent lengths. Two-year adjusted risk of MACE (11.4% vs. 11.6%; HR 1.10, 95% CI 0.90-1.34, p=0.36) was similar between LM/pLAD vs. other patients. DAPT discontinuation was significantly higher (43.3% vs. 39.4%, p=0.01) in LM/pLAD patients with borderline significance for lower disruption (10.0% vs. 14.7%, p=0.059) compared to other patients. DAPT discontinuation was not associated with higher risk of MACE in LM/pLAD (HR 0.65, 95% CI 0.34-1.25) or other PCI groups (HR 0.67, 95% CI 0.47-0.95). LM/pLAD PCI was not an independent predictor of 2-year MACE. Compared to other PCI, patients undergoing LM/pLAD PCI had higher rates of physician recommended DAPT discontinuation, however, discontinuation did not result in greater adverse events. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Molecular dynamics simulation study reveals potential substrate entry path into γ-secretase/presenilin-1.

    PubMed

    Kong, Ren; Chang, Shan; Xia, Weiming; Wong, Stephen T C

    2015-08-01

    Presenilin 1 (PS1) is the catalytic unit of γ-secretase which cleaves more than one hundred substrates. Among them, amyloid precursor protein (APP) and Notch are notable for their pivotal role in the pathogenesis of Alzheimer's disease (AD) and certain types of cancer. The hydrolysis process occurring inside the hydrophobic lipid bilayer remains unclear. With the aim to understand the mechanism of intramembrane proteolysis by γ-secretase, we constructed a homology model of human PS1 and performed molecular dynamics simulation in explicit membrane phospholipids with different components. During the simulation, TM9 was found to exhibit a high level of flexibility that involved in "gate-open" movement of TM2 and TM6, and thus partially exposed the catalytic residues. The highly conserved PALP motif acts as an anchor to mediate the conformation changes of TM6 induced by TM9. Moreover, direct interactions were observed between 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) and the active site of γ-secretase, indicating that the lipid molecules have the potential to modulate γ-secretase by contacting with the catalytic residues, i.e., ASP 257 and ASP 385 of PS1. The intermediate states indicate a potential substrate penetration pathway through the interface of TM2 and TM6, which may be induced by changes of TM9. To our knowledge, this is the first molecular simulation study that reveals dynamic behavior of the human PS1 structure in the lipid bilayer and provides insight into the substrate entry path for subsequent intramembrane hydrolysis, which is critical information required for new strategy development of γ-secretase modulators to alleviate devastating AD. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Notch1 Signaling Regulates the Th17/Treg Immune Imbalance in Patients with Psoriasis Vulgaris.

    PubMed

    Ma, Lei; Xue, HaiBo; Gao, Tianqin; Gao, MeiLan; Zhang, YuJie

    2018-01-01

    To evaluate the regulating effect of Notch1 signaling on Th17/Treg immune imbalance in psoriasis vulgaris (PV). Notch1, Hes-1, ROR γ t, Foxp3, IL-17, and IL-10 mRNA expression, as well as Th17 and Treg cell percentages in peripheral CD4 + T cells, were detected by real-time quantitative RT-PCR and flow cytometry, and serum concentrations of IL-17 and IL-10 were detected by ELISA in 36 PV patients and 32 healthy controls. Additionally, CD4 + T cells from 12 PV patients were treated with γ -secretase inhibitor DAPT, and the above indexes were measured. PV patients presented distinct Th17/Treg immune imbalance and highly expressed Notch1 and Hes-1 mRNA levels, which were positively correlated with psoriasis area and severity index (PASI) and the ratios of Th17/Treg and ROR γ t/Foxp3. DAPT treatment resulted in the obvious downregulation of Th17 cell percentage in cocultured CD4 + T cells, ROR γ t and IL-17 mRNA levels, and IL-17 concentration in cell-free supernatant from cocultured CD4 + T cells of PV patients in a dose-dependent manner, while there was no significant influence on Treg cell percentage, Foxp3, and IL-10 expression, therefore leading to the recovery of Th17/Treg immune imbalance. Notch1 signaling may contribute to the pathogenesis of PV by regulating Th17/Treg immune imbalance.

  6. γ-Secretase inhibitor–resistant glioblastoma stem cells require RBPJ to propagate

    PubMed Central

    Fan, Xing

    2016-01-01

    Targeting glioblastoma stem cells with γ-secretase inhibitors (GSIs) disrupts the Notch pathway and has shown some benefit in both pre-clinical models and in patients during phase I/II clinical trials. However, it is largely unknown why some glioblastoma (GBM) does not respond to GSI treatment. In this issue of the JCI, Xie et al. determined that GSI-resistant brain tumor–initiating cells (BTICs) from GBM express a higher level of the gene RBPJ, which encodes a mediator of canonical Notch signaling, compared to non-BTICs. Knockdown of RBPJ in BTICs decreased propagation in vitro and in vivo by inducing apoptosis. Interestingly, RBPJ was shown to regulate a different transcription program than Notch in BTICs by binding CDK9, thereby affecting Pol II–regulated transcript elongation. Targeting CDK9 or c-MYC, an upstream regulator of RBPJ, with small molecules also decreased BTIC propagation, and prolonged survival in mice bearing orthotopic GBM xenografts. This study not only provides a mechanism for GSI treatment resistance, but also identifies two potential therapeutic strategies to target GSI-resistant BTICs. PMID:27322058

  7. Biophenols: Enzymes (β-secretase, Cholinesterases, histone deacetylase and tyrosinase) inhibitors from olive (Olea europaea L.).

    PubMed

    Omar, Syed Haris; Scott, Christopher J; Hamlin, Adam S; Obied, Hassan K

    2018-07-01

    The focus of this study was on inhibition of enzymes involved in the pathogenesis Alzheimer's disease (AD) including prime amyloid beta (Aβ) producing enzyme (β-secretase: BACE-1) and disease progression enzymes including acetylcholinesterase (AChE), butyrylcholinesterase (BChE), histone deacetylase (HDAC), and tyrosinase along with the catecholamine L-DOPA, by using olive biophenols. Here we report the strongest inhibition of BACE-1 from rutin (IC 50 : 3.8 nM) followed by verbascoside (IC 50 : 6.3 nM) and olive fruit extract (IC 50 : 18 ng), respectively. Olive biophenol, quercetin exhibited strongest enzyme inhibitory activity against tyrosinase (IC 50 : 10.73 μM), BChE (IC 50 : 19.08 μM), AChE (IC 50 : 55.44 μM), and HDAC (IC 50 : 105.1 μM) enzymes. Furthermore, olive biophenol verbascoside (IC 50 : 188.6 μM), and hydroxytyrosol extreme extract (IC 50 : 66.22 μg) were showed the highest levels of inhibition against the HDAC enzyme. Neuroprotective capacity against levodopa-induced toxicity in neuroblastoma (SH-SY5Y) cells of olive biophenols were assessed, where rutin indicated the highest neuroprotection (74%), followed by caffeic acid (73%), and extract hydroxytyrosol extreme (97%), respectively. To the best of our knowledge, this is the first in vitro report on the enzymes inhibitory activity of olive biophenols. Taken together, our in vitro results data suggest that olive biophenols could be a promising natural inhibitor, which may reduce the enzyme-induced toxicity associated with the oxidative stress involved in the progression of AD. Acetylthiocholine iodide (PubChem CID: 74629); S-Butyrylthiocholine chloride (PubChem CID: 3015121); Caffeic acid (PubChem CID: 689043); Dimethyl sulfoxide (DMSO) (PubChem: 679); L-3,4-Dihydroxyphenylalanine (L-DOPA) (PubChem CID: 6047); 5,5'-Dithiobis (2-nitrobenzoic acid) (DTNB) (PubChem CID: 6254); Epigallocatechin gallate (EGCG) (PubChem CID: 65064); Ethylenediamine tetraacetic acid (EDTA) (Pub

  8. Mechanisms that synergistically regulate η-secretase processing of APP and Aη-α protein levels: relevance to pathogenesis and treatment of Alzheimer's disease.

    PubMed

    Ward, Joseph; Wang, Haizhi; Saunders, Aleister J; Tanzi, Rudolph E; Zhang, Can

    2017-02-01

    The pathophysiology of Alzheimer's disease (AD) is characterized by the formation of cerebral β-amyloid plaque from a small peptide amyloid-β (Aβ). Aβ is generated from the canonical amyloid-β precursor protein (APP) proteolysis pathway through β- and γ-secretases. Decreasing Aβ levels through targeting APP processing is a very promising direction in clinical trials for AD. A novel APP processing pathway was recently identified, in which η-secretase processing of APP occurs and results in the generation of the carboxy-terminal fragment-η (CTF-η or η-CTF) (Wang et al., 2015) and Aη-α peptide (Willem et al., 2015). η-Secretase processing of APP may be up-regulated by at least two mechanisms: either through inhibition of lysosomal-cathepsin degradation pathway (Wang et al., 2015) or through inhibition of BACE1 that competes with η-secretase cleavage of APP (Willem et al., 2015). A thorough characterization of η-processing of APP is critical for a better understanding of AD pathogenesis and insights into results of clinical trials of AD. Here we further investigated η-secretase processing of APP using well-characterized cell models of AD. We found that these two mechanisms act synergistically toward increasing η-secretase processing of APP and Aη-α levels. Furthermore, we evaluated the effects of several other known secretase modulators on η-processing of APP. The results of our study should advance the understanding of pathophysiology of AD, as well as enhance the knowledge in developing effective AD treatments or interventions related to η-secretase processing of APP.

  9. Leptin Regulates Amyloid β Production Via the γ-Secretase Complex

    PubMed Central

    Niedowicz, Dana M.; Studzinski, Christa M.; Weidner, Adam M.; Platt, Thomas L.; Kingry, Kristen N.; Beckett, Tina L.; Bruce-Keller, Annadora J.; Keller, Jeffrey N.; Murphy, M. Paul

    2013-01-01

    Alzheimer’s Disease (AD) is the most common age-related neurodegenerative disease, affecting an estimated 5.3 million people in the United States. While many factors likely contribute to AD progression, it is widely accepted that AD is driven by the accumulation of β-amyloid (Aβ), a small, fibrillogenic peptide generated by the sequential proteolysis of the amyloid precursor protein by the β- and γ-secretases. Though the underlying causes of Aβ accumulation in sporadic AD are myriad, it is clear that lifestyle and overall health play a significant role. The adipocyte-derived hormone leptin has varied systemic affects, including neuropeptide release and neuroprotection. A recent study by Lieb et al (2009) showed that individuals with low plasma leptin levels are at greater risk of developing AD, through unknown mechanisms. In this report, we show that plasma leptin is a strong negative predictor of Aβ levels in the mouse brain, supporting a protective role for the hormone in AD onset. We also show that the inhibition of Aβ accumulation is due to the downregulation of transcription of the γ-secretase components. On the other hand, β-secretase expression is either unchanged (BACE1) or increased (BACE2). Finally, we show that only presenilin 1 (PS1) is negatively correlated with plasma leptin at the protein level (p<0.0001). These data are intriguing and may highlight a role for leptin in regulating the onset of amyloid pathology and AD. PMID:23274884

  10. Leptin regulates amyloid β production via the γ-secretase complex.

    PubMed

    Niedowicz, Dana M; Studzinski, Christa M; Weidner, Adam M; Platt, Thomas L; Kingry, Kristen N; Beckett, Tina L; Bruce-Keller, Annadora J; Keller, Jeffrey N; Murphy, M Paul

    2013-03-01

    Alzheimer's disease (AD) is the most common age-related neurodegenerative disease, affecting an estimated 5.3million people in the United States. While many factors likely contribute to AD progression, it is widely accepted that AD is driven by the accumulation of β-amyloid (Aβ), a small, fibrillogenic peptide generated by the sequential proteolysis of the amyloid precursor protein by the β- and γ-secretases. Though the underlying causes of Aβ accumulation in sporadic AD are myriad, it is clear that lifestyle and overall health play a significant role. The adipocyte-derived hormone leptin has varied systemic affects, including neuropeptide release and neuroprotection. A recent study by Lieb et al. (2009) showed that individuals with low plasma leptin levels are at greater risk of developing AD, through unknown mechanisms. In this report, we show that plasma leptin is a strong negative predictor of Aβ levels in the mouse brain, supporting a protective role for the hormone in AD onset. We also show that the inhibition of Aβ accumulation is due to the downregulation of transcription of the γ-secretase components. On the other hand, β-secretase expression is either unchanged (BACE1) or increased (BACE2). Finally, we show that only presenilin 1 (PS1) is negatively correlated with plasma leptin at the protein level (p<0.0001). These data are intriguing and may highlight a role for leptin in regulating the onset of amyloid pathology and AD. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Constitutive α- and β-secretase cleavages of the amyloid precursor protein are partially coupled in neurons, but not in frequently used cell lines.

    PubMed

    Colombo, Alessio; Wang, Huanhuan; Kuhn, Peer-Hendrik; Page, Richard; Kremmer, Elisabeth; Dempsey, Peter J; Crawford, Howard C; Lichtenthaler, Stefan F

    2013-01-01

    Proteolytic cleavage of the amyloid precursor protein (APP) by the two proteases α- and β-secretases controls the generation of the amyloid β peptide (Aβ), a key player in Alzheimer's disease pathogenesis. The α-secretase ADAM10 and the β-secretase BACE1 have opposite effects on Aβ generation and are assumed to compete for APP as a substrate, such that their cleavages are inversely coupled. This concept was mainly demonstrated in studies using activation or overexpression of α- and β-secretases. Here, we report that this inverse coupling is not seen to the same extent upon inhibition of the endogenous proteases. Genetic and pharmacological inhibition of ADAM10 and BACE1 revealed that the endogenous, constitutive α-secretase cleavage of APP is largely uncoupled from β-secretase cleavage and Aβ generation in neuroglioma H4 cells and in neuronally differentiated SH-SY5Y cells. In contrast, inverse coupling was observed in primary cortical neurons. However, this coupling was not bidirectional. Inhibition of BACE1 increased ADAM10 cleavage of APP, but a reduction of ADAM10 activity did not increase the BACE1 cleavage of APP in the neurons. Our analysis shows that the inverse coupling of the endogenous α- and β-secretase cleavages depends on the cellular model and suggests that a reduction of ADAM10 activity is unlikely to increase the AD risk through increased β-secretase cleavage. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. TRPC6 specifically interacts with APP to inhibit its cleavage by γ-secretase and reduce Aβ production

    PubMed Central

    Wang, Junfeng; Lu, Rui; Yang, Jian; Li, Hongyu; He, Zhuohao; Jing, Naihe; Wang, Xiaomin; Wang, Yizheng

    2015-01-01

    Generation of β-amyloid (Aβ) peptide in Alzheimer's disease involves cleavage of amyloid precursor protein (APP) by γ-secretase, a protease known to cleave several substrates, including Notch. Finding specific modulators for γ-secretase could be a potential avenue to treat the disease. Here, we report that transient receptor potential canonical (TRPC) 6 specifically interacts with APP leading to inhibition of its cleavage by γ-secretase and reduction in Aβ production. TRPC6 interacts with APP (C99), but not with Notch, and prevents C99 interaction with presenilin 1 (PS1). A fusion peptide derived from TRPC6 also reduces Aβ levels without effect on Notch cleavage. Crossing APP/PS1 mice with TRPC6 transgenic mice leads to a marked reduction in both plaque load and Aβ levels, and improvement in structural and behavioural impairment. Thus, TRPC6 specifically modulates γ-secretase cleavage of APP and preventing APP (C99) interaction with PS1 via TRPC6 could be a novel strategy to reduce Aβ formation. PMID:26581893

  13. Antiplatelet drug interactions with proton pump inhibitors

    PubMed Central

    Scott, Stuart A; Obeng, Aniwaa Owusu; Hulot, Jean-Sébastien

    2014-01-01

    Introduction Non-aspirin antiplatelet agents (e.g., clopidogrel, prasugrel, ticagrelor) are commonly prescribed for the prevention of recurrent cardiovascular events among patients with acute coronary syndromes (ACS) and/or those undergoing percutaneous coronary intervention (PCI). In addition, combination therapy with proton pump inhibitors (PPIs) is often recommended to attenuate gastrointestinal bleeding risk, particularly during dual antiplatelet therapy (DAPT) with clopidogrel and aspirin. Importantly, a pharmacological interaction between clopidogrel and some PPIs has been proposed based on mutual CYP450-dependent metabolism, but available evidence is inconsistent. Areas covered This article provides an overview of the currently approved antiplatelet agents and PPIs, including their metabolic pathways. Additionally, the CYP450 isoenzyme at the center of the drug interaction, CYP2C19, is described in detail, and the available evidence on both the potential pharmacological interaction and influence on clinical outcomes are summarized and evaluated. Expert opinion Although concomitant DAPT and PPI use reduces clopidogrel active metabolite levels and ex vivo-measured platelet inhibition, the influence of the drug interaction on clinical outcomes has been conflicting and largely reported from non-randomized observational studies. Despite this inconsistency, a clinically important interaction cannot be definitively excluded, particularly among patient subgroups with higher overall cardiovascular risk and potentially among CYP2C19 loss-of-function allele carriers. PMID:24205916

  14. Aptiom (eslicarbazepine acetate) as a dual inhibitor of β-secretase and voltage-gated sodium channel: advancement in Alzheimer's disease-epilepsy linkage via an enzoinformatics study.

    PubMed

    Shaikh, Sibhghatulla; Rizvi, Syed M D; Hameed, Nida; Biswas, Deboshree; Khan, Mahiuddin; Shakil, Shazi; Kamal, Mohammad A

    2014-01-01

    Neurodegenerative disorders are increasingly identified as one of the major causes of epilepsy. The relationship of epileptic activity to Alzheimer's disease (AD) is of clinical importance. Voltage-gated sodium channel (VSC) is one of the best targets in the treatment of epilepsy while β-secretase (BACE) has long been observed as a curative target for AD. To explore a possible link between the treatment of AD and epilepsy, the molecular interactions of recently Food and Drug Administration approved antiepileptic drug Aptiom (Eslicarbazepine acetate) with BACE and VSC were studied. Docking study was performed using 'Autodock4.2'. Hydrophobic and pi-pi interactions play critical role in the correct positioning of Eslicarbazepine acetate within the catalytic site of VSC and BACE enzyme to permit docking. Free energy of binding (ΔG) of 'Eslicarbazepine acetate-VSC' interaction and 'Eslicarbazepine acetate-CAS domain of BACE' interaction was found to be -5.97 and -7.19 kcal/mol, respectively. Hence, Eslicarbazepine acetate might act as a potent dual inhibitor of BACE and VSC. However, scope still remains in the determination of the three-dimensional structure of BACE-Eslicarbazepine acetate and VSC-Eslicarbazepine acetate complexes by X-ray crystallography to validate the described data. Further, Aptiom (Eslicarbazepine acetate) could be expected to form the basis of future dual therapy against epilepsy associated neurological disorders.

  15. Rational Design of Novel 1,3-Oxazine Based β-Secretase (BACE1) Inhibitors: Incorporation of a Double Bond To Reduce P-gp Efflux Leading to Robust Aβ Reduction in the Brain.

    PubMed

    Fuchino, Kouki; Mitsuoka, Yasunori; Masui, Moriyasu; Kurose, Noriyuki; Yoshida, Shuhei; Komano, Kazuo; Yamamoto, Takahiko; Ogawa, Masayoshi; Unemura, Chie; Hosono, Motoko; Ito, Hisanori; Sakaguchi, Gaku; Ando, Shigeru; Ohnishi, Shuichi; Kido, Yasuto; Fukushima, Tamio; Miyajima, Hirofumi; Hiroyama, Shuichi; Koyabu, Kiyotaka; Dhuyvetter, Deborah; Borghys, Herman; Gijsen, Harrie J M; Yamano, Yoshinori; Iso, Yasuyoshi; Kusakabe, Ken-Ichi

    2018-05-23

    Accumulation of Aβ peptides is a hallmark of Alzheimer's disease (AD) and is considered a causal factor in the pathogenesis of AD. β-Secretase (BACE1) is a key enzyme responsible for producing Aβ peptides, and thus agents that inhibit BACE1 should be beneficial for disease-modifying treatment of AD. Here we describe the discovery and optimization of novel oxazine-based BACE1 inhibitors by lowering amidine basicity with the incorporation of a double bond to improve brain penetration. Starting from a 1,3-dihydrooxazine lead 6 identified by a hit-to-lead SAR following HTS, we adopted a p K a lowering strategy to reduce the P-gp efflux and the high hERG potential leading to the discovery of 15 that produced significant Aβ reduction with long duration in pharmacodynamic models and exhibited wide safety margins in cardiovascular safety models. This compound improved the brain-to-plasma ratio relative to 6 by reducing P-gp recognition, which was demonstrated by a P-gp knockout mouse model.

  16. Effect of Potent γ-Secretase Modulator in Human Neurons Derived From Multiple Presenilin 1–Induced Pluripotent Stem Cell Mutant Carriers

    PubMed Central

    Liu, Qing; Waltz, Shannon; Woodruff, Grace; Ouyang, Joe; Israel, Mason A.; Herrera, Cheryl; Sarsoza, Floyd; Tanzi, Rudolph E.; Koo, Edward H.; Ringman, John M.; Goldstein, Lawrence S. B.; Wagner, Steven L.; Yuan, Shauna H.

    2015-01-01

    Importance Although considerable effort has been expended developing drug candidates for Alzheimer disease, none have yet succeeded owing to the lack of efficacy or to safety concerns. One potential shortcoming of current approaches to Alzheimer disease drug discovery and development is that they rely primarily on transformed cell lines and animal models that substantially overexpress wild-type or mutant proteins. It is possible that drug development failures thus far are caused in part by the limits of these approaches, which do not accurately reveal how drug candidates will behave in naive human neuronal cells. Objective To analyze purified neurons derived from human induced pluripotent stem cells from patients carrying 3 different presenilin 1 (PS1) mutations and nondemented control individuals in the absence of any overexpression. We tested the efficacy of γ-secretase inhibitor and γ-secretase modulator (GSM) in neurons derived from both normal control and 3 PS1 mutations (A246E, H163R, and M146L). Design, Setting, and Participants Adult human skin biopsies were obtained from volunteers at the Alzheimer Disease Research Center, University of California, San Diego. Cell cultures were treated with γ-secretase inhibitor or GSM. Comparisons of total β-amyloid (Aβ) and Aβ peptides 38, 40, and 42 in the media were made between vehicle- vs drug-treated cultures. Main Outcomes and Measures Soluble Aβ levels in the media were measured by enzyme-linked immunosorbent assay. Results As predicted, mutant PS1 neurons exhibited an elevated Aβ42:Aβ40 ratio (P <.05) at the basal state as compared with the nondemented control neurons. Treatment with a potent non–nonsteroidal anti-inflammatory druglike GSM revealed a new biomarker signature that differs from all previous cell types and animals tested. This new signature was the same in both the mutant and control neurons and consisted of a reduction in Aβ42, Aβ40, and Aβ38 and in the Aβ42:Aβ40 ratio, with no

  17. Brain pyroglutamate amyloid-β is produced by cathepsin B and is reduced by the cysteine protease inhibitor E64d, representing a potential Alzheimer's disease therapeutic.

    PubMed

    Hook, Gregory; Yu, Jin; Toneff, Thomas; Kindy, Mark; Hook, Vivian

    2014-01-01

    Pyroglutamate amyloid-β peptides (pGlu-Aβ) are particularly pernicious forms of amyloid-β peptides (Aβ) present in Alzheimer's disease (AD) brains. pGlu-Aβ peptides are N-terminally truncated forms of full-length Aβ peptides (flAβ(1-40/42)) in which the N-terminal glutamate is cyclized to pyroglutamate to generate pGlu-Aβ(3-40/42). β-secretase cleavage of amyloid-β precursor protein (AβPP) produces flAβ(1-40/42), but it is not yet known whether the β-secretase BACE1 or the alternative β-secretase cathepsin B (CatB) participate in the production of pGlu-Aβ. Therefore, this study examined the effects of gene knockout of these proteases on brain pGlu-Aβ levels in transgenic AβPPLon mice, which express AβPP isoform 695 and have the wild-type (wt) β-secretase activity found in most AD patients. Knockout or overexpression of the CatB gene reduced or increased, respectively, pGlu-Aβ(3-40/42), flAβ(1-40/42), and pGlu-Aβ plaque load, but knockout of the BACE1 gene had no effect on those parameters in the transgenic mice. Treatment of AβPPLon mice with E64d, a cysteine protease inhibitor of CatB, also reduced brain pGlu-Aβ(3-42), flAβ(1-40/42), and pGlu-Aβ plaque load. Treatment of neuronal-like chromaffin cells with CA074Me, an inhibitor of CatB, resulted in reduced levels of pGlu-Aβ(3-40) released from the activity-dependent, regulated secretory pathway. Moreover, CatB knockout and E64d treatment has been previously shown to improve memory deficits in the AβPPLon mice. These data illustrate the role of CatB in producing pGlu-Aβ and flAβ that participate as key factors in the development of AD. The advantages of CatB inhibitors, especially E64d and its derivatives, as alternatives to BACE1 inhibitors in treating AD patients are discussed.

  18. Monoamine oxidase B is elevated in Alzheimer disease neurons, is associated with γ-secretase and regulates neuronal amyloid β-peptide levels.

    PubMed

    Schedin-Weiss, Sophia; Inoue, Mitsuhiro; Hromadkova, Lenka; Teranishi, Yasuhiro; Yamamoto, Natsuko Goto; Wiehager, Birgitta; Bogdanovic, Nenad; Winblad, Bengt; Sandebring-Matton, Anna; Frykman, Susanne; Tjernberg, Lars O

    2017-08-01

    Increased levels of the pathogenic amyloid β-peptide (Aβ), released from its precursor by the transmembrane protease γ-secretase, are found in Alzheimer disease (AD) brains. Interestingly, monoamine oxidase B (MAO-B) activity is also increased in AD brain, but its role in AD pathogenesis is not known. Recent neuroimaging studies have shown that the increased MAO-B expression in AD brain starts several years before the onset of the disease. Here, we show a potential connection between MAO-B, γ-secretase and Aβ in neurons. MAO-B immunohistochemistry was performed on postmortem human brain. Affinity purification of γ-secretase followed by mass spectrometry was used for unbiased identification of γ-secretase-associated proteins. The association of MAO-B with γ-secretase was studied by coimmunoprecipitation from brain homogenate, and by in-situ proximity ligation assay (PLA) in neurons as well as mouse and human brain sections. The effect of MAO-B on Aβ production and Notch processing in cell cultures was analyzed by siRNA silencing or overexpression experiments followed by ELISA, western blot or FRET analysis. Methodology for measuring relative intraneuronal MAO-B and Aβ42 levels in single cells was developed by combining immunocytochemistry and confocal microscopy with quantitative image analysis. Immunohistochemistry revealed MAO-B staining in neurons in the frontal cortex, hippocampus CA1 and entorhinal cortex in postmortem human brain. Interestingly, the neuronal staining intensity was higher in AD brain than in control brain in these regions. Mass spectrometric data from affinity purified γ-secretase suggested that MAO-B is a γ-secretase-associated protein, which was confirmed by immunoprecipitation and PLA, and a neuronal location of the interaction was shown. Strikingly, intraneuronal Aβ42 levels correlated with MAO-B levels, and siRNA silencing of MAO-B resulted in significantly reduced levels of intraneuronal Aβ42. Furthermore, overexpression of

  19. Acute γ-secretase Inhibition of Nonhuman Primate CNS Shifts Amyloid Precursor Protein (APP) Metabolism from Amyloid-β Production to Alternative APP Fragments without Amyloid-β Rebound

    PubMed Central

    Cook, Jacquelynn J.; Wildsmith, Kristin R.; Gilberto, David B.; Holahan, Marie A.; Kinney, Gene G.; Mathers, Parker D.; Michener, Maria S.; Price, Eric A.; Shearman, Mark S.; Simon, Adam J.; Wang, Jennifer X.; Wu, Guoxin; Yarasheski, Kevin E.; Bateman, Randall J.

    2010-01-01

    The accumulation of amyloid beta (Aβ) in Alzheimer’s disease is caused by an imbalance of production and clearance, which leads to increased soluble Aβ species and extracellular plaque formation in the brain. Multiple Aβ-lowering therapies are currently in development: an important goal is to characterize the molecular mechanisms of action and effects on physiological processing of Aβ, as well as other amyloid precursor protein (APP) metabolites, in models which approximate human Aβ physiology. To this end, we report the translation of the human in vivo stable-isotope-labeling kinetics (SILK) method to a rhesus monkey cisterna magna ported (CMP) nonhuman primate model, and use the model to test the mechanisms of action of a γ-secretase inhibitor (GSI). A major concern of inhibiting the enzymes which produce Aβ (β- and γ-secretase) is that precursors of Aβ may accumulate and cause a rapid increase in Aβ production when enzyme inhibition discontinues. In this study, the GSI MK-0752 was administered to conscious CMP rhesus monkeys in conjunction with in vivo stable isotope labeling, and dose-dependently reduced newly generated CNS Aβ. In contrast to systemic Aβ metabolism, CNS Aβ production was not increased after the GSI was cleared. These results indicate that most of the CNS APP was metabolized to products other than Aβ, including C-terminal truncated forms of Aβ: 1–14, 1–15 and 1–16; this demonstrates an alternative degradation pathway for CNS amyloid precursor protein during γ-secretase inhibition. PMID:20463236

  20. Consensus Document ANMCO/ANCE/ARCA/GICR-IACPR/GISE/SICOA: Long-term Antiplatelet Therapy in Patients with Coronary Artery Disease

    PubMed Central

    Gulizia, Michele Massimo; Colivicchi, Furio; Abrignani, Maurizio Giuseppe; Ambrosetti, Marco; Aspromonte, Nadia; Barile, Gabriella; Caporale, Roberto; Casolo, Giancarlo; Chiuini, Emilia; Di Lenarda, Andrea; Faggiano, Pompilio; Gabrielli, Domenico; Geraci, Giovanna; La Manna, Alessio Gaetano; Maggioni, Aldo Pietro; Marchese, Alfredo; Massari, Ferdinando Maria; Mureddu, Gian Francesco; Musumeci, Giuseppe; Nardi, Federico; Panno, Antonio Vittorio; Pedretti, Roberto Franco Enrico; Piredda, Massimo; Pusineri, Enrico; Riccio, Carmine; Rossini, Roberta; di Uccio, Fortunato Scotto; Urbinati, Stefano; Varbella, Ferdinando; Zito, Giovanni Battista; De Luca, Leonardo; Cappelletti, Alberto Maria; Casu, Gavino; Di Pasquale, Giuseppe; Di Tano, Giuseppe; Domenicucci, Stefano; Francese, Giuseppina Maura; Fresco, Claudio; Gensini, Gian Franco; Rovere, Maria Teresa La; Lucà, Fabiana; Mauro, Ciro; Murrone, Adriano; Rubboli, Andrea; Russo, Maria Giovanna; Santomauro, Maurizio; Tamburino, Corrado; Tarantini, Giuseppe; Vairo, Ugo; Zuin, Guerrino; Abrignani, Maurizio Giuseppe; Ambrosetti, Marco; Amico, Antonio Francesco; Aspromonte, Nadia; Aulitto, Vincenzo; Barile, Gabriella; Calculli, Giacinto; Caldarola, Pasquale; Caporale, Roberto; Cappelletti, Alberto Maria; Carbonaro, Alessandro; Casolo, Giancarlo; Casu, Gavino; Cavallini, Claudio; Chiuini, Emilia; Colivicchi, Furio; De Luca, Leonardo; Di Lenarda, Andrea; Di Pasquale, Giuseppe; Di Tano, Giuseppe; Domenicucci, Stefano; Faggiano, Pompilio; Francese, Giuseppina Maura; Fresco, Claudio; Gabrielli, Domenico; Gensini, Gian Franco; Geraci, Giovanna; Gesualdo, Loreto; Giubilato, Simona; Gulizia, Michele Massimo; La Manna, Alessio Gaetano; La Rovere, Maria Teresa; Lucà, Fabiana; Maggioni, Aldo Pietro; Marchese, Alfredo; Massari, Ferdinando Maria; Mauro, Ciro; Menozzi, Alberto; Mureddu, Gian Francesco; Murrone, Adriano; Musumeci, Giuseppe; Nardi, Federico; Noussan, Patrizia; Panno, Antonio Vittorio; Parodi, Guido; Pedretti, Roberto Franco Enrico; Perna, Gian Piero; Piredda, Massimo; Pusineri, Enrico; Riccio, Carmine; Rossini, Roberta; Rubboli, Andrea; Russo, Maria Giovanna; Saia, F; Santomauro, Maurizio; Scherillo, Marino; Scorcu, Giampaolo; di Uccio, Fortunato Scotto; Tamburino, Corrado; Tarantini, Giuseppe; Urbinati, Stefano; Vairo, Ugo; Varbella, Ferdinando; Zito, Giovanni Battista; Zuin, Guerrino

    2018-01-01

    Abstract Dual antiplatelet therapy (DAPT) with aspirin and a P2Y12 receptor inhibitor is the cornerstone of pharmacologic management of patients with acute coronary syndrome (ACS) and/or those receiving coronary stents. Long-term (>1 year) DAPT may further reduce the risk of stent thrombosis after a percutaneous coronary intervention (PCI) and may decrease the occurrence of non-stent-related ischaemic events in patients with ACS. Nevertheless, compared with aspirin alone, extended use of aspirin plus a P2Y12 receptor inhibitor may increase the risk of bleeding events that have been strongly linked to adverse outcomes including recurrent ischaemia, repeat hospitalisation and death. In the past years, multiple randomised trials have been published comparing the duration of DAPT after PCI and in ACS patients, investigating either a shorter or prolonged DAPT regimen. Although the current European Society of Cardiology guidelines provide a backup to individualised treatment, it appears to be difficult to identify the ideal patient profile which could safely reduce or prolong the DAPT duration in daily clinical practice. The aim of this consensus document is to review contemporary literature on optimal DAPT duration, and to guide clinicians in tailoring antiplatelet strategies in patients undergoing PCI or presenting with ACS. PMID:29867293

  1. An interactive network of elastase, secretases, and PAR-2 protein regulates CXCR1 receptor surface expression on neutrophils.

    PubMed

    Bakele, Martina; Lotz-Havla, Amelie S; Jakowetz, Anja; Carevic, Melanie; Marcos, Veronica; Muntau, Ania C; Gersting, Soeren W; Hartl, Dominik

    2014-07-25

    CXCL8 (IL-8) recruits and activates neutrophils through the G protein-coupled chemokine receptor CXCR1. We showed previously that elastase cleaves CXCR1 and thereby impairs antibacterial host defense. However, the molecular intracellular machinery involved in this process remained undefined. Here we demonstrate by using flow cytometry, confocal microscopy, subcellular fractionation, co-immunoprecipitation, and bioluminescence resonance energy transfer that combined α- and γ-secretase activities are functionally involved in elastase-mediated regulation of CXCR1 surface expression on human neutrophils, whereas matrix metalloproteases are dispensable. We further demonstrate that PAR-2 is stored in mobilizable compartments in neutrophils. Bioluminescence resonance energy transfer and co-immunoprecipitation studies showed that secretases, PAR-2, and CXCR1 colocalize and physically interact in a novel protease/secretase-chemokine receptor network. PAR-2 blocking experiments provided evidence that elastase increased intracellular presenilin-1 expression through PAR-2 signaling. When viewed in combination, these studies establish a novel functional network of elastase, secretases, and PAR-2 that regulate CXCR1 expression on neutrophils. Interfering with this network could lead to novel therapeutic approaches in neutrophilic diseases, such as cystic fibrosis or rheumatoid arthritis.

  2. An Interactive Network of Elastase, Secretases, and PAR-2 Protein Regulates CXCR1 Receptor Surface Expression on Neutrophils*

    PubMed Central

    Bakele, Martina; Lotz-Havla, Amelie S.; Jakowetz, Anja; Carevic, Melanie; Marcos, Veronica; Muntau, Ania C.; Gersting, Soeren W.; Hartl, Dominik

    2014-01-01

    CXCL8 (IL-8) recruits and activates neutrophils through the G protein-coupled chemokine receptor CXCR1. We showed previously that elastase cleaves CXCR1 and thereby impairs antibacterial host defense. However, the molecular intracellular machinery involved in this process remained undefined. Here we demonstrate by using flow cytometry, confocal microscopy, subcellular fractionation, co-immunoprecipitation, and bioluminescence resonance energy transfer that combined α- and γ-secretase activities are functionally involved in elastase-mediated regulation of CXCR1 surface expression on human neutrophils, whereas matrix metalloproteases are dispensable. We further demonstrate that PAR-2 is stored in mobilizable compartments in neutrophils. Bioluminescence resonance energy transfer and co-immunoprecipitation studies showed that secretases, PAR-2, and CXCR1 colocalize and physically interact in a novel protease/secretase-chemokine receptor network. PAR-2 blocking experiments provided evidence that elastase increased intracellular presenilin-1 expression through PAR-2 signaling. When viewed in combination, these studies establish a novel functional network of elastase, secretases, and PAR-2 that regulate CXCR1 expression on neutrophils. Interfering with this network could lead to novel therapeutic approaches in neutrophilic diseases, such as cystic fibrosis or rheumatoid arthritis. PMID:24914212

  3. Advances toward multifunctional cholinesterase and β-amyloid aggregation inhibitors.

    PubMed

    Panek, Dawid; Wichur, Tomasz; Godyń, Justyna; Pasieka, Anna; Malawska, Barbara

    2017-10-01

    The emergence of a multitarget design approach in the development of new potential anti-Alzheimer's disease agents has resulted in the discovery of many multifunctional compounds focusing on various targets. Among them the largest group comprises inhibitors of both cholinesterases, with additional anti-β-amyloid aggregation activity. This review describes recent advances in this research area and presents the most interesting compounds reported over a 2-year span (2015-2016). The majority of hybrids possess heterodimeric structures obtained by linking structurally active fragments interacting with different targets. Multipotent cholinesterase inhibitors with β-amyloid antiaggregating activity may additionally possess antioxidative, neuroprotective or metal-chelating properties or less common features such as anti-β-secretase or τ-antiaggregation activity.

  4. Formation of Pmel17 Amyloid Is Regulated by Juxtamembrane Metalloproteinase Cleavage, and the Resulting C-terminal Fragment Is a Substrate for γ-Secretase*

    PubMed Central

    Kummer, Markus P.; Maruyama, Hiroko; Huelsmann, Claudia; Baches, Sandra; Weggen, Sascha; Koo, Edward H.

    2009-01-01

    The formation of insoluble cross β-sheet amyloid is pathologically associated with disorders such as Alzheimer, Parkinson, and Huntington diseases. One exception is the nonpathological amyloid derived from the protein Pmel17 within melanosomes to generate melanin pigment. Here we show that the formation of insoluble MαC intracellular fragments of Pmel17, which are the direct precursors to Pmel17 amyloid, depends on a novel juxtamembrane cleavage at amino acid position 583 between the furin-like proprotein convertase cleavage site and the transmembrane domain. The resulting Pmel17 C-terminal fragment is then processed by the γ-secretase complex to release a short-lived intracellular domain fragment. Thus, by analogy to the Notch receptor, we designate this cleavage the S2 cleavage site, whereas γ-secretase mediates proteolysis at the intramembrane S3 site. Substitutions or deletions at this S2 cleavage site, the use of the metalloproteinase inhibitor TAPI-2, as well as small interfering RNA-mediated knock-down of the metalloproteinases ADAM10 and 17 reduced the formation of insoluble Pmel17 fragments. These results demonstrate that the release of the Pmel17 ectodomain, which is critical for melanin amyloidogenesis, is initiated by S2 cleavage at a juxtamembrane position. PMID:19047044

  5. Complexity and Selectivity of γ-Secretase Cleavage on Multiple Substrates: Consequences in Alzheimer's Disease and Cancer.

    PubMed

    Medoro, Alessandro; Bartollino, Silvia; Mignogna, Donatella; Passarella, Daniela; Porcile, Carola; Pagano, Aldo; Florio, Tullio; Nizzari, Mario; Guerra, Germano; Di Marco, Roberto; Intrieri, Mariano; Raimo, Gennaro; Russo, Claudio

    2018-01-01

    The processing of the amyloid-β protein precursor (AβPP) by β- and γ-secretases is a pivotal event in the genesis of Alzheimer's disease (AD). Besides familial mutations on the AβPP gene, or upon its overexpression, familial forms of AD are often caused by mutations or deletions in presenilin 1 (PSEN1) and 2 (PSEN2) genes: the catalytic components of the proteolytic enzyme γ-secretase (GS). The "amyloid hypothesis", modified over time, states that the aberrant processing of AβPP by GS induces the formation of specific neurotoxic soluble amyloid-β (Aβ) peptides which, in turn, cause neurodegeneration. This theory, however, has recently evidenced significant limitations and, in particular, the following issues are debated: 1) the concept and significance of presenilin's "gain of function" versus "loss of function"; and 2) the presence of several and various GS substrates, which interact with AβPP and may influence Aβ formation. The latter consideration is suggestive: despite the increasing number of GS substrates so far identified, their reciprocal interaction with AβPP itself, even in the AD field, is significantly unexplored. On the other hand, GS is also an important pharmacological target in the cancer field; inhibitors or GS activity are investigated in clinical trials for treating different tumors. Furthermore, the function of AβPP and PSENs in brain development and in neuronal migration is well known. In this review, we focused on a specific subset of GS substrates that directly interact with AβPP and are involved in its proteolysis and signaling, by evaluating their role in neurodegeneration and in cell motility or proliferation, as a possible connection between AD and cancer.

  6. Notch Signaling Is Involved in Neurogenic Commitment of Human Periodontal Ligament-Derived Mesenchymal Stem Cells

    PubMed Central

    Osathanon, Thanaphum; Manokawinchoke, Jeeranan; Nowwarote, Nunthawan; Aguilar, Panuroot; Palaga, Tanapat

    2013-01-01

    Notch signaling plays critical roles in stem cells by regulating cell fate determination and differentiation. The aim of this study was to evaluate the participation of Notch signaling in neurogenic commitment of human periodontal ligament-derived mesenchymal stem cells (hPDLSCs) and to examine the ability to control differentiation of these cells using modified surfaces containing affinity immobilized Notch ligands. Neurogenic induction of hPDLSCs was performed via neurosphere formation. Cells were aggregated and form spheres as early 1 day in culture. In addition, the induced cells exhibited increased mRNA and protein expression of neuronal markers that is, β3-tubulin and neurofilament. During neuronal differentiation, a significant increase of Hes1 and Hey1 mRNA expression was noted. Using pharmacological inhibition (γ-secretase inhibitor) or genetic manipulation (overexpression of dominant negative mastermind-like transcription co-activators), neurosphere formation was attenuated and a marked decrease in neurogenic mRNA expression was observed. To confirm the role of Notch signaling in neuronal differentiation of hPDLSCs, the Notch ligand, Jagged-1, is bound to the surface using an affinity immobilization technique. The hPDLSC cultured on a Jagged-1-modified surface had increased expression of Notch signaling target genes, Hes-1 and Hey-1, confirming the activity and potency of surface-bound Jagged-1. Further, hPDLSC on surface-bound Jagged-1 under serum-free conditions showed multiple long and thin neurite-like extensions, and an increase in the expression of neurogenic mRNA markers was observed. Pretreatment of the cells with γ-secretase inhibitor, DAPT, before seeding on the Jagged-1-modified surface blocked development of the neurite-like morphology. Together, the results in this study suggest the involvement of Notch signaling in neurogenic commitment of hPDLSCs. PMID:23379739

  7. Alzheimer disease-related presenilin-1 variants exert distinct effects on monoamine oxidase-A activity in vitro.

    PubMed

    Pennington, Paul R; Wei, Zelan; Rui, Lewei; Doig, Jennifer A; Graham, Brett; Kuski, Kelly; Gabriel, Geraldine G; Mousseau, Darrell D

    2011-07-01

    Monoamine oxidase-A (MAO-A) has been associated with both depression and Alzheimer disease (AD). Recently, carriers of AD-related presenilin-1 (PS-1) alleles have been found to be at higher risk for developing clinical depression. We chose to examine whether PS-1 could influence MAO-A function in vitro. Overexpression of selected AD-related PS-1 variants (wildtype, Y115H, ΔEx9 and M146V) in mouse hippocampal HT-22 cells affects MAO-A catalytic activity in a variant-specific manner. The ability of the PS-1 substrate-competitor DAPT to induce MAO-A activity in cells expressing either PS-1 wildtype or PS-1(M146V) suggests the potential for a direct influence of PS-1 on MAO-A function. In support of this, we were able to co-immunoprecipitate MAO-A with FLAG-tagged PS-1 wildtype and M146V proteins. This potential for a direct protein-protein interaction between PS-1 and MAO-A is not specific for HT-22 cells as we were also able to co-immunoprecipitate MAO-A with FLAG-PS-1 variants in N2a mouse neuroblastoma cells and in HEK293 human embryonic kidney cells. Finally, we demonstrate that the two PS-1 variants reported to be associated with an increased incidence of clinical depression [e.g., A431E and L235V] both induce MAO-A activity in HT-22 cells. A direct influence of PS-1 variants on MAO-A function could provide an explanation for the changes in monoaminergic tone observed in several neurodegenerative processes including AD. The ability to induce MAO-A catalytic activity with a PS-1/γ-secretase inhibitor should also be considered when designing secretase inhibitor-based therapeutics.

  8. Docking Studies and Biological Evaluation of a Potential β-Secretase Inhibitor of 3-Hydroxyhericenone F from Hericium erinaceus

    PubMed Central

    Diling, Chen; Tianqiao, Yong; Jian, Yang; Chaoqun, Zheng; Ou, Shuai; Yizhen, Xie

    2017-01-01

    Alzheimer’s disease (AD) is the most common neurodegenerative disorder, affecting approximately more than 5% of the population worldwide over the age 65, annually. The incidence of AD is expected to be higher in the next 10 years. AD patients experience poor prognosis and as a consequence new drugs and therapeutic strategies are required in order to improve the clinical responses and outcomes of AD. The purpose of the present study was to screen a certain number of potential compounds from herbal sources and investigate their corresponding mode of action. In the present study, the learning and memory effects of ethanol:water (8:2) extracts from Hericium erinaceus were evaluated on a dementia rat model. The model was established by intraperitoneal injection of 100 mg/kg/d D-galactose in rats. The results indicated that the extracts can significantly ameliorate the learning and memory abilities. Specific active ingredients were screened in vivo assays and the results were combined with molecular docking studies. Potential receptor–ligand interactions on the BACE1-inhibitor namely, 3-Hydroxyhericenone F (3HF) were investigated. The isolation of a limited amount of 3HF from the fruit body of H. erinaceus by chemical separation was conducted, and the mode of action of this compound was verified in NaN3-induced PC12 cells. The cell-based assays demonstrated that 3HF can significantly down-regulate the expression of BACE1 (p < 0.01), while additional AD intracellular markers namely, p-Tau and Aβ1-42 were further down-regulated (p < 0.05). The data further indicate that 3HF can ameliorate certain mitochondrial dysfunction conditions by the reversal of the decreasing level of mitochondrial respiratory chain complexes, the calcium ion levels ([Ca2+]), the inhibiton in the production of ROS, the increase in the mitochondrial membrane potential and ATP levels, and the regulation of the expression levels of the genes encoding for the p21, COX I, COX II, PARP1, and NF

  9. Docking Studies and Biological Evaluation of a Potential β-Secretase Inhibitor of 3-Hydroxyhericenone F from Hericium erinaceus.

    PubMed

    Diling, Chen; Tianqiao, Yong; Jian, Yang; Chaoqun, Zheng; Ou, Shuai; Yizhen, Xie

    2017-01-01

    Alzheimer's disease (AD) is the most common neurodegenerative disorder, affecting approximately more than 5% of the population worldwide over the age 65, annually. The incidence of AD is expected to be higher in the next 10 years. AD patients experience poor prognosis and as a consequence new drugs and therapeutic strategies are required in order to improve the clinical responses and outcomes of AD. The purpose of the present study was to screen a certain number of potential compounds from herbal sources and investigate their corresponding mode of action. In the present study, the learning and memory effects of ethanol:water (8:2) extracts from Hericium erinaceus were evaluated on a dementia rat model. The model was established by intraperitoneal injection of 100 mg/kg/d D-galactose in rats. The results indicated that the extracts can significantly ameliorate the learning and memory abilities. Specific active ingredients were screened in vivo assays and the results were combined with molecular docking studies. Potential receptor-ligand interactions on the BACE1-inhibitor namely, 3-Hydroxyhericenone F (3HF) were investigated. The isolation of a limited amount of 3HF from the fruit body of H. erinaceus by chemical separation was conducted, and the mode of action of this compound was verified in NaN 3 -induced PC12 cells. The cell-based assays demonstrated that 3HF can significantly down-regulate the expression of BACE1 ( p < 0.01), while additional AD intracellular markers namely, p-Tau and Aβ 1-42 were further down-regulated ( p < 0.05). The data further indicate that 3HF can ameliorate certain mitochondrial dysfunction conditions by the reversal of the decreasing level of mitochondrial respiratory chain complexes, the calcium ion levels ([Ca 2+ ]), the inhibiton in the production of ROS, the increase in the mitochondrial membrane potential and ATP levels, and the regulation of the expression levels of the genes encoding for the p21, COX I, COX II, PARP1, and NF

  10. Discovery and X-ray crystallographic analysis of a spiropiperidine iminohydantoin inhibitor of beta-secretase.

    PubMed

    Barrow, James C; Stauffer, Shaun R; Rittle, Kenneth E; Ngo, Phung L; Yang, ZhiQiang; Selnick, Harold G; Graham, Samuel L; Munshi, Sanjeev; McGaughey, Georgia B; Holloway, M Katharine; Simon, Adam J; Price, Eric A; Sankaranarayanan, Sethu; Colussi, Dennis; Tugusheva, Katherine; Lai, Ming-Tain; Espeseth, Amy S; Xu, Min; Huang, Qian; Wolfe, Abigail; Pietrak, Beth; Zuck, Paul; Levorse, Dorothy A; Hazuda, Daria; Vacca, Joseph P

    2008-10-23

    A high-throughput screen at 100 microM inhibitor concentration for the BACE-1 enzyme revealed a novel spiropiperidine iminohydantoin aspartyl protease inhibitor template. An X-ray cocrystal structure with BACE-1 revealed a novel mode of binding whereby the inhibitor interacts with the catalytic aspartates via bridging water molecules. Using the crystal structure as a guide, potent compounds with good brain penetration were designed.

  11. Depletion of GGA3 stabilizes BACE and enhances β-secretase activity

    PubMed Central

    Tesco, Giuseppina; Koh, Young Ho; Kang, Eugene; Cameron, Andrew; Das, Shinjita; Sena-Esteves, Miguel; Hiltunen, Mikko; Yang, Shao-Hua; Zhong, Zhenyu; Shen, Yong; Simpkins, James; Tanzi, Rudolph E.

    2007-01-01

    Summary Beta-site APP-cleaving enzyme (BACE) is required for production of the Alzheimer's disease (AD)-associated Aβ protein. BACE levels are elevated in AD brain, and increasing evidence reveals BACE as a stress-related protease that is upregulated following cerebral ischemia. However, the molecular mechanism responsible is unknown. We show that increases in BACE and β-secretase activity are due to post-translational stabilization following caspase activation. We also found that during cerebral ischemia, levels of GGA3, an adaptor protein involved in BACE trafficking, are reduced, while BACE levels are increased. RNAi silencing of GGA3 also elevated levels of BACE and Aβ. Finally, in AD brain samples, GGA3 protein levels were significantly decreased and inversely correlated with increased levels of BACE. In summary, we have elucidated a novel GGA3-dependent mechanism regulating BACE levels and β-secretase activity. This mechanism may explain increased cerebral levels of BACE and Aβ following cerebral ischemia and in AD. PMID:17553422

  12. Proposal for novel curcumin derivatives as potent inhibitors against Alzheimer's disease: Ab initio molecular simulations on the specific interactions between amyloid-beta peptide and curcumin

    NASA Astrophysics Data System (ADS)

    Ota, Shintaro; Fujimori, Mitsuki; Ishimura, Hiromi; Shulga, Sergiy; Kurita, Noriyuki

    2017-10-01

    Accumulation of amyloid-β (Aβ) peptides in a brain is closely related with the pathogenesis of Alzheimer's disease. To suppress the production of Aβ peptides, we propose novel curcumin derivatives and investigate their binding properties with the amyloid precursor protein (APP), using protein-ligand docking as well as ab initio molecular simulations. Our proposed derivative (curcumin XIV) is found to have a large binding energy with APP and interacts strongly with the cleavage site Ala19 by secretase. It is thus expected that curcumin XIV can protect APP from the secretase attack and be a potent inhibitor against the production of Aβ peptides.

  13. Pharmacological and Toxicological Properties of the Potent Oral γ-Secretase Modulator BPN-15606.

    PubMed

    Wagner, Steven L; Rynearson, Kevin D; Duddy, Steven K; Zhang, Can; Nguyen, Phuong D; Becker, Ann; Vo, Uyen; Masliah, Deborah; Monte, Louise; Klee, Justin B; Echmalian, Corinne M; Xia, Weiming; Quinti, Luisa; Johnson, Graham; Lin, Jiunn H; Kim, Doo Y; Mobley, William C; Rissman, Robert A; Tanzi, Rudolph E

    2017-07-01

    Alzheimer's disease (AD) is characterized neuropathologically by an abundance of 1) neuritic plaques, which are primarily composed of a fibrillar 42-amino-acid amyloid- β peptide (A β ), as well as 2) neurofibrillary tangles composed of aggregates of hyperphosporylated tau. Elevations in the concentrations of the A β 42 peptide in the brain, as a result of either increased production or decreased clearance, are postulated to initiate and drive the AD pathologic process. We initially introduced a novel class of bridged aromatics referred t γ -secretase modulatoro as γ -secretase modulators that inhibited the production of the A β 42 peptide and to a lesser degree the A β 40 peptide while concomitantly increasing the production of the carboxyl-truncated A β 38 and A β 37 peptides. These modulators potently lower A β 42 levels without inhibiting the γ -secretase-mediated proteolysis of Notch or causing accumulation of carboxyl-terminal fragments of APP. In this study, we report a large number of pharmacological studies and early assessment of toxicology characterizing a highly potent γ -secretase modulator (GSM), ( S )- N -(1-(4-fluorophenyl)ethyl)-6-(6-methoxy-5-(4-methyl-1 H -imidazol-1-yl)pyridin-2-yl)-4-methylpyridazin-3-amine (BPN-15606). BPN-15606 displayed the ability to significantly lower A β 42 levels in the central nervous system of rats and mice at doses as low as 5-10 mg/kg, significantly reduce A β neuritic plaque load in an AD transgenic mouse model, and significantly reduce levels of insoluble A β 42 and pThr181 tau in a three-dimensional human neural cell culture model. Results from repeat-dose toxicity studies in rats and dose escalation/repeat-dose toxicity studies in nonhuman primates have designated this GSM for 28-day Investigational New Drug-enabling good laboratory practice studies and positioned it as a candidate for human clinical trials. Copyright © 2017 by The Author(s).

  14. Inhibitors of signal peptide peptidase (SPP) affect HSV-1 infectivity in vitro and in vivo

    PubMed Central

    Allen, Sariah J.; Mott, Kevin R.; Ghiasi, Homayon

    2014-01-01

    Recently we have shown that the highly conserved herpes simplex virus glycoprotein K (gK) binds to signal peptide peptidase (SPP), also known as minor histocompatibility antigen H13. In this study we have demonstrated for the first time that inhibitors of SPP, such as L685,458, (Z-LL)2 ketone, aspirin, ibuprofen and DAPT, significantly reduced HSV-1 replication in tissue culture. Inhibition of SPP activity via (Z-LL)2 ketone significantly reduced viral transcripts in the nucleus of infected cells. Finally, when administered during primary infection, (Z-LL)2 ketone inhibitor reduced HSV-1 replication in the eyes of ocularly infected mice. Thus, blocking SPP activity may represent a clinically effective and expedient approach to the reduction of viral replication and the resulting pathology. PMID:24768597

  15. The γ-secretase cleavage product of Polycystin-1 regulates TCF and CHOP-mediated transcriptional activation through a p300-dependent mechanism

    PubMed Central

    Merrick, David; Chapin, Hannah; Baggs, Julie E.; Yu, Zhiheng; Somlo, Stefan; Sun, Zhaoxia; Hogenesch, John B.; Caplan, Michael

    2011-01-01

    Summary Mutations in Pkd1, encoding polycystin-1 (PC1), cause Autosomal Dominant Polycystic Kidney Disease (ADPKD). We show that the carboxy-terminal tail (CTT) of PC1 is released by γ-secretase-mediated cleavage and regulates the Wnt and CHOP pathways by binding the transcription factors TCF and CHOP, disrupting their interaction with the common transcriptional co-activator p300. Loss of PC1 causes increased proliferation and apoptosis, while reintroducing PC1-CTT into cultured Pkd1 null cells reestablishes normal growth rate, suppresses apoptosis, and prevents cyst formation. Inhibition of γ-secretase activity impairs the ability of PC1 to suppress growth and apoptosis, and leads to cyst formation in cultured renal epithelial cells. Expression of the PC1-CTT is sufficient to rescue the dorsal body curvature phenotype in zebrafish embryos resulting from either γ-secretase inhibition or suppression of Pkd1 expression. Thus, γ-secretase-dependent release of the PC1-CTT creates a protein fragment whose expression is sufficient to suppress ADPKD-related phenotypes in vitro and in vivo. PMID:22178500

  16. Discovery of (R)-4-cyclopropyl-7,8-difluoro-5-(4-(trifluoromethyl)phenylsulfonyl)-4,5-dihydro-1H-pyrazolo[4,3-c]quinoline (ELND006) and (R)-4-cyclopropyl-8-fluoro-5-(6-(trifluoromethyl)pyridin-3-ylsulfonyl)-4,5-dihydro-2H-pyrazolo[4,3-c]quinoline (ELND007): metabolically stable γ-secretase Inhibitors that selectively inhibit the production of amyloid-β over Notch.

    PubMed

    Probst, Gary; Aubele, Danielle L; Bowers, Simeon; Dressen, Darren; Garofalo, Albert W; Hom, Roy K; Konradi, Andrei W; Marugg, Jennifer L; Mattson, Matthew N; Neitzel, Martin L; Semko, Chris M; Sham, Hing L; Smith, Jenifer; Sun, Minghua; Truong, Anh P; Ye, Xiaocong M; Xu, Ying-Zi; Dappen, Michael S; Jagodzinski, Jacek J; Keim, Pamela S; Peterson, Brian; Latimer, Lee H; Quincy, David; Wu, Jing; Goldbach, Erich; Ness, Daniel K; Quinn, Kevin P; Sauer, John-Michael; Wong, Karina; Zhang, Hongbin; Zmolek, Wes; Brigham, Elizabeth F; Kholodenko, Dora; Hu, Kang; Kwong, Grace T; Lee, Michael; Liao, Anna; Motter, Ruth N; Sacayon, Patricia; Santiago, Pamela; Willits, Christopher; Bard, Frédérique; Bova, Michael P; Hemphill, Susanna S; Nguyen, Lam; Ruslim, Lany; Tanaka, Kevin; Tanaka, Pearl; Wallace, William; Yednock, Ted A; Basi, Guriqbal S

    2013-07-11

    Herein, we describe our strategy to design metabolically stable γ-secretase inhibitors which are selective for inhibition of Aβ generation over Notch. We highlight our synthetic strategy to incorporate diversity and chirality. Compounds 30 (ELND006) and 34 (ELND007) both entered human clinical trials. The in vitro and in vivo characteristics for these two compounds are described. A comparison of inhibition of Aβ generation in vivo between 30, 34, Semagacestat 41, Begacestat 42, and Avagacestat 43 in mice is made. 30 lowered Aβ in the CSF of healthy human volunteers.

  17. Synergistic Drug Combinations with a CDK4/6 Inhibitor in T-cell Acute Lymphoblastic Leukemia.

    PubMed

    Pikman, Yana; Alexe, Gabriela; Roti, Giovanni; Conway, Amy Saur; Furman, Andrew; Lee, Emily S; Place, Andrew E; Kim, Sunkyu; Saran, Chitra; Modiste, Rebecca; Weinstock, David M; Harris, Marian; Kung, Andrew L; Silverman, Lewis B; Stegmaier, Kimberly

    2017-02-15

    Purpose: Although significant progress has been made in the treatment of T-cell acute lymphoblastic leukemia (T-ALL), many patients will require additional therapy for relapsed/refractory disease. Cyclin D3 (CCND3) and CDK6 are highly expressed in T-ALL and have been effectively targeted in mutant NOTCH1-driven mouse models of this disease with a CDK4/6 small-molecule inhibitor. Combination therapy, however, will be needed for the successful treatment of human disease. Experimental Design: We performed preclinical drug testing using a panel of T-ALL cell lines first with LEE011, a CDK4/6 inhibitor, and next with the combination of LEE011 with a panel of drugs relevant to T-ALL treatment. We then tested the combination of LEE011 with dexamethasone or everolimus in three orthotopic mouse models and measured on-target drug activity. Results: We first determined that both NOTCH1 -mutant and wild-type T-ALL are highly sensitive to pharmacologic inhibition of CDK4/6 when wild-type RB is expressed. Next, we determined that CDK4/6 inhibitors are antagonistic when used either concurrently or in sequence with many of the drugs used to treat relapsed T-ALL (methotrexate, mercaptopurine, asparaginase, and doxorubicin) but are synergistic with glucocorticoids, an mTOR inhibitor, and gamma secretase inhibitor. The combinations of LEE011 with the glucocorticoid dexamethasone or the mTOR inhibitor everolimus were tested in vivo and prolonged survival in three orthotopic mouse models of T-ALL. On-target activity was measured in peripheral blood and tissue of treated mice. Conclusions: We conclude that LEE011 is active in T-ALL and that combination therapy with corticosteroids and/or mTOR inhibitors warrants further investigation. Clin Cancer Res; 23(4); 1012-24. ©2016 AACR See related commentary by Carroll et al., p. 873 . ©2016 American Association for Cancer Research.

  18. Current concepts on selected plant secondary metabolites with promising inhibitory effects against enzymes linked to Alzheimer's disease.

    PubMed

    Orhan, I Erdogan

    2012-01-01

    Alzheimer's disease (AD) has become one of the deadliest diseases for human beings with special incidence in elderly population. It is a progressive neurodegenerative disease and the most prevalent cause of dementia. The neuropathology of AD has not been fully elucidated yet, however, cholinergic hypothesis is the most accepted theory nowadays, resulting from the cholinergic deficit emerging in the brains of AD patients. Shortage of the neurotransmitters, acetylcholine and butyrylcholine has been demonstrated, and therefore, inhibition of the enzymes; acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) that break down acetylcholine and butyrylcholine has become a standard approach for AD treatment. However, cholinesterase inhibitors are only effective in symptomatic treatment and have no ability to impede the disease. The pathogenesis of AD is highly complex and another hypothesis is the formation of amyloid plaques containing beta-amyloid peptide, which causes neurolesions in the brains of AD patients. Beta-amyloid peptide is generated after the sequential cleavage of amyloid precursor protein, especially by the beta- and gamma-secretase in the amyloidogenic pathway. The secretases involved in the processing of amyloid precursor protein are of particular interest and, consequently, the inhibition of secretase enzyme family of protease type has become another desired treatment strategy for AD. On the other hand, medicinal plants are attractive sources for drug research and development as they produce chemically-varying molecules with preferred biological activities. The aim of this article is to review the available data on selected inhibitors from plant secondary metabolites with emphasis on cholinesterase, prolyl endopeptidase, and secretase enzyme families as being the current treatments of AD.

  19. Targeting Notch1 signaling pathway positively affects the sensitivity of osteosarcoma to cisplatin by regulating the expression and/or activity of Caspase family

    PubMed Central

    2014-01-01

    Background The introduction of cisplatin has improved the long-term survival rate in osteosarcoma patients. However, some patients are intrinsically resistant to cisplatin. This study reported that the activation of Notch1 is positively correlated with cisplatin sensitivity, evidenced by both clinical and in vitro data. Results In this study, a total 8 osteosarcoma specimens were enrolled and divided into two groups according to their cancer chemotherapeutic drugs sensitivity examination results. The relationship between Notch1 expression and cisplatin sensitivity of osteosarcoma patients was detected by immunohistochemistry and semi-quantitative analysis. Subsequently, two typical osteosarcoma cell lines, Saos-2 and MG63, were selected to study the changes of cisplatin sensitivity by up-regulating (NICD1 plasmid transfeciton) or decreasing (gamma-secretase complex inhibitor DAPT) the activation state of Notch1 signaling pathway. Our results showed a significant correlation between the expression of Notch1 and cisplatin sensitivity in patient specimens. In vitro, Saos-2 with higher expression of Notch1 had significantly better cisplatin sensitivity than MG63 whose Notch1 level was relatively lower. By targeting regulation in vitro, the cisplatin sensitivity of Saos-2 and MG63 had significantly increased after the activation of Notch1 signaling pathway, and vice versa. Further mechanism investigation revealed that activation/inhibition of Notch1 sensitized/desensitized cisplatin-induced apoptosis, which probably depended on the changes in the activity of Caspase family, including Caspase 3, Caspase 8 and Caspase 9 in these cells. Conclusions Our data clearly demonstrated that Notch1 is critical for cisplatin sensitivity in osteosarcoma. It can be used as a molecular marker and regulator for cisplatin sensitivity in osteosarcoma patients. PMID:24894297

  20. Investigational Notch and Hedgehog Inhibitors – Therapies for Cardiovascular disease

    PubMed Central

    Redmond, EM; Guha, S; Walls, D; Cahill, PA

    2011-01-01

    Importance to the field During the past decade a variety of Notch and Hedgehog pathway inhibitors have been developed for the treatment of several cancers. An emerging paradigm suggests that these same gene regulatory networks are often recapitulated in the context of cardiovascular disease and may now offer an attractive target for therapeutic intervention. Areas Covered This article briefly reviews the profile of Notch and Hedgehog inhibitors that have reached the pre-clinic and clinic for cancer treatment and discusses the clinical issues surrounding targeted use of these inhibitors in the treatment of vascular disorders. Expert Opinion Pre-clinical and clinical data using pan-Notch inhibitors (γ-secretase inhibitors) and selective antibodies to preferentially target notch receptors and ligands has proven successful but concerns remain over normal organ homeostasis and significant pathology in multiple organs. In contrast, the Hedgehog based drug pipeline is rich with more than a dozen Smoothened (SMO) inhibitors at various stages of development. Overall, refined strategies will be necessary to harness these pathways safely as a powerful tool to disrupt angiogenesis and vascular proliferative phenomena without causing prohibitive side effects already seen with cancer models and patients. PMID:22007748

  1. Modeling the protonation states of β-secretase binding pocket by molecular dynamics simulations and docking studies.

    PubMed

    Sabbah, Dima A; Zhong, Haizhen A

    2016-07-01

    β-secretase (BACE1) is an aspartyl protease that processes the β-amyloid peptide in the human brain in patients with Alzheimer's disease. There are two catalytic aspartates (ASP32 and ASP228) in the active domain of BACE1. Although it is believed that the net charge of the Asp dyad is -1, the exact protonation state still remains a matter of debate. We carried out molecular dynamic (MD) simulations for the four protonation states of BACE1 proteins. We applied Glide docking studies to 21 BACE1 inhibitors against the MD extracted conformations. The dynamic results infer that the protein/ligand complex remains stable during the entire simulation course for HD32D228 model. The results show that the hydrogen bonds between the inhibitor and the Asp dyad are maintained in the 10,000th ps snapshot of HD32D228 model. Our results also reveal the significant loop residues in maintaining the active binding conformation in the HD32D228 model. Molecular docking results show that the HD32D228 model provided the best enrichment factor score, suggesting that this model was able to recognize the most active compounds. Our observations provide an evidence for the preference of the anionic state (HD32D228) in BACE1 binding site and are in accord with reported computational data. The protonation state study would provide significant information to assign the correct protonation state for structure-based drug design and docking studies targeting the BACE1 proteins as a tactic to develop potential AD inhibitors. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Discovery of 2-methylpyridine-based biaryl amides as γ-secretase modulators for the treatment of Alzheimer's disease.

    PubMed

    Chen, Jian Jeffrey; Qian, Wenyuan; Biswas, Kaustav; Yuan, Chester; Amegadzie, Albert; Liu, Qingyian; Nixey, Thomas; Zhu, Joe; Ncube, Mqhele; Rzasa, Robert M; Chavez, Frank; Chen, Ning; DeMorin, Frenel; Rumfelt, Shannon; Tegley, Christopher M; Allen, Jennifer R; Hitchcock, Stephen; Hungate, Randy; Bartberger, Michael D; Zalameda, Leeanne; Liu, Yichin; McCarter, John D; Zhang, Jianhua; Zhu, Li; Babu-Khan, Safura; Luo, Yi; Bradley, Jodi; Wen, Paul H; Reid, Darren L; Koegler, Frank; Dean, Charles; Hickman, Dean; Correll, Tiffany L; Williamson, Toni; Wood, Stephen

    2013-12-01

    γ-Secretase modulators (GSMs) are potentially disease-modifying treatments for Alzheimer's disease. They selectively lower pathogenic Aβ42 levels by shifting the enzyme cleavage sites without inhibiting γ-secretase activity, possibly avoiding known adverse effects observed with complete inhibition of the enzyme complex. A cell-based HTS effort identified the sulfonamide 1 as a GSM lead. Lead optimization studies identified compound 25 with improved cell potency, PKDM properties, and it lowered Aβ42 levels in the cerebrospinal fluid (CSF) of Sprague-Dawley rats following oral administration. Further optimization of 25 to improve cellular potency is described. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Cleavage of amyloid precursor protein by an archaeal presenilin homologue PSH

    PubMed Central

    Dang, Shangyu; Wu, Shenjie; Wang, Jiawei; Li, Hongbo; Huang, Min; He, Wei; Li, Yue-Ming; Wong, Catherine C. L.; Shi, Yigong

    2015-01-01

    Aberrant cleavage of amyloid precursor protein (APP) by γ-secretase contributes to the development of Alzheimer’s disease. More than 200 disease-derived mutations have been identified in presenilin (the catalytic subunit of γ-secretase), making modulation of γ-secretase activity a potentially attractive therapeutic opportunity. Unfortunately, the technical challenges in dealing with intact γ-secretase have hindered discovery of modulators and demand a convenient substitute approach. Here we report that, similar to γ-secretase, the archaeal presenilin homolog PSH faithfully processes the substrate APP C99 into Aβ42, Aβ40, and Aβ38. The molar ratio of the cleavage products Aβ42 over Aβ40 by PSH is nearly identical to that by γ-secretase. The proteolytic activity of PSH is specifically suppressed by presenilin-specific inhibitors. Known modulators of γ-secretase also modulate PSH similarly in terms of the Aβ42/Aβ40 ratio. Structural analysis reveals association of a known γ-secretase inhibitor with PSH between its two catalytic aspartate residues. These findings identify PSH as a surrogate protease for the screening of agents that may regulate the protease activity and the cleavage preference of γ-secretase. PMID:25733893

  4. Fragment-Linking Approach Using (19)F NMR Spectroscopy To Obtain Highly Potent and Selective Inhibitors of β-Secretase.

    PubMed

    Jordan, John B; Whittington, Douglas A; Bartberger, Michael D; Sickmier, E Allen; Chen, Kui; Cheng, Yuan; Judd, Ted

    2016-04-28

    Fragment-based drug discovery (FBDD) has become a widely used tool in small-molecule drug discovery efforts. One of the most commonly used biophysical methods in detecting weak binding of fragments is nuclear magnetic resonance (NMR) spectroscopy. In particular, FBDD performed with (19)F NMR-based methods has been shown to provide several advantages over (1)H NMR using traditional magnetization-transfer and/or two-dimensional methods. Here, we demonstrate the utility and power of (19)F-based fragment screening by detailing the identification of a second-site fragment through (19)F NMR screening that binds to a specific pocket of the aspartic acid protease, β-secretase (BACE-1). The identification of this second-site fragment allowed the undertaking of a fragment-linking approach, which ultimately yielded a molecule exhibiting a more than 360-fold increase in potency while maintaining reasonable ligand efficiency and gaining much improved selectivity over cathepsin-D (CatD). X-ray crystallographic studies of the molecules demonstrated that the linked fragments exhibited binding modes consistent with those predicted from the targeted screening approach, through-space NMR data, and molecular modeling.

  5. NSAIDs and enantiomers of flurbiprofen target γ-secretase and lower Aβ42 in vivo

    PubMed Central

    Eriksen, Jason L.; Sagi, Sarah A.; Smith, Tawnya E.; Weggen, Sascha; Das, Pritam; McLendon, D.C.; Ozols, Victor V.; Jessing, Kevin W.; Zavitz, Kenton H.; Koo, Edward H.; Golde, Todd E.

    2003-01-01

    Epidemiologic studies demonstrate that long-term use of NSAIDs is associated with a reduced risk for the development of Alzheimer disease (AD). In this study, 20 commonly used NSAIDs, dapsone, and enantiomers of flurbiprofen were analyzed for their ability to lower the level of the 42-amino-acid form of amyloid β protein (Aβ42) in a human H4 cell line. Thirteen of the NSAIDs and the enantiomers of flurbiprofen were then tested in acute dosing studies in amyloid β protein precursor (APP) transgenic mice, and plasma and brain levels of Aβ and the drug were evaluated. These studies show that (a) eight FDA-approved NSAIDs lower Aβ42 in vivo, (b) the ability of an NSAID to lower Aβ42 levels in cell culture is highly predicative of its in vivo activity, (c) in vivo Aβ42 lowering in mice occurs at drug levels achievable in humans, and (d) there is a significant correlation between Aβ42 lowering and levels of ibuprofen. Importantly, flurbiprofen and its enantiomers selectively lower Aβ42 levels in broken cell γ-secretase assays, indicating that these compounds directly target the γ-secretase complex that generates Aβ from APP. Of the compounds tested, meclofenamic acid, racemic flurbiprofen, and the purified R and S enantiomers of flurbiprofen lowered Aβ42 levels to the greatest extent. Because R-flurbiprofen reduces Aβ42 levels by targeting γ-secretase and has reduced side effects related to inhibition of cyclooxygenase (COX), it is an excellent candidate for clinical testing as an Aβ42 lowering agent. PMID:12897211

  6. Antiplatelet therapy in elderly patients with acute coronary syndrome: Between scientific evidence and future perspectives.

    PubMed

    Barillà, Francesco; Torromeo, Concetta; Iorio, Riccardo; Porco, Luigina; Paravati, Vincenzo; Gaudio, Carlo

    2018-06-07

    Dual antiplatelet therapy (DAPT) is an important strategy for reducing cardiovascular events (CV) after an acute coronary syndrome (ACS). Elderly patients undergoing DAPT have a higher risk of bleeding than younger patients for a variety of reasons. Stratification of thrombotic/hemorrhagic risk is mandatory in order to decide on the type and duration of DAPT. The percentage of patients ≥ 75 years represented in clinical trials is not large, so very often elderly people are prescribed treatment protocols only experimented on younger patients with a lower hemorrhagic risk. However, even in patients aged ≥ 75 treated with invasive or conservative therapy, after an ACS, a DAPT with aspirin 80-100 mg/day plus a P2Y12 receptor inhibitor for 12 months is recommended. In elderly patients, DAPT should be considered a dynamic process that can be modified over time based on the patient's clinical conditions, or any other necessities (non-procrastinating surgical interventions, comorbid-like effects that can increase hemorrhagic risk). In patients with moderate-high or very high hemorrhagic risk, DAPT treatment should last less than 12 months. A prolongation of DAPT beyond 12 months in this setting is limited to a very low percentage of patients, after careful assessment of ischemic/hemorrhagic profile.

  7. Altered expression of γ-secretase components in animal model of major depressive disorder induced by reserpine administration.

    PubMed

    Lee, Hye-Ryun; Hwang, In-Sik; Kim, Ji-Eun; Choi, Sun-Il; Lee, Young-Ju; Goo, Jun-Seo; Lee, Eon-Pil; Choi, Hae-Wook; Kim, Hong-Sung; Lee, Jae-Ho; Jung, Young-Jin; Hwang, Dae-Youn

    2012-06-01

    Altered expression of neurotrophic factors as well as neuroinflammation is commonly associated with Major depressive disorder (MDD) and Alzheimer's disease (AD). To investigate whether or not reserpine-induced MDD affects the expression of AD-related proteins, the expression of γ-secretase components and substrate were measured in brains of ICR mice following reserpine treatment for 15 days. In active avoidance test, total response time and peak slightly increased in the 2 mg/kg reserpine (RSP2)-treated group compared to vehicle-treated group (P<0.05). Expression and phosphorylation of MKP-1, which is a key factor in MDD pathology, were both higher in the RSP2-treated group than the vehicle- and 1 mg/kg reserpine (RSP1)-treated groups (P<0.02). Furthermore, full-length expression of amyloid precursor protein (APP) was enhanced in the RSP1 and RSP2-treated groups compared to the vehicle-treated group, whereas expression of γ-secretase components decreased (P<0.03). Among the three components of the γ-secretase complex, nicastrin protein underwent the largest decrease in expression, as detected by Western blotting (P<0.03). Therefore, the data presented here provide additional evidence about the pathological correlation between MDD and AD.

  8. Insights into the phosphoregulation of beta-secretase sorting signal by the VHS domain of GGA1.

    PubMed

    Shiba, Tomoo; Kametaka, Satoshi; Kawasaki, Masato; Shibata, Masahiro; Waguri, Satoshi; Uchiyama, Yasuo; Wakatsuki, Soichi

    2004-06-01

    BACE (beta-site amyloid precursor protein cleaving enzyme, beta-secretase) is a type-I membrane protein which functions as an aspartic protease in the production of beta-amyloid peptide, a causative agent of Alzheimer's disease. Its cytoplasmic tail has a characteristic acidic-cluster dileucine motif recognized by the VHS domain of adaptor proteins, GGAs (Golgi-localizing, gamma-adaptin ear homology domain, ARF-interacting). Here we show that BACE is colocalized with GGAs in the trans-Golgi network and peripheral structures, and phosphorylation of a serine residue in the cytoplasmic tail enhances interaction with the VHS domain of GGA1 by about threefold. The X-ray crystal structure of the complex between the GGA1-VHS domain and the BACE C-terminal peptide illustrates a similar recognition mechanism as mannose 6-phosphate receptors except that a glutamine residue closes in to fill the gap created by the shorter BACE peptide. The serine and lysine of the BACE peptide point their side chains towards the solvent. However, phosphorylation of the serine affects the lysine side chain and the peptide backbone, resulting in one additional hydrogen bond and a stronger electrostatic interaction with the VHS domain, hence the reversible increase in affinity.

  9. NeuronRead, an open source semi-automated tool for morphometric analysis of phase contrast and fluorescence neuronal images.

    PubMed

    Dias, Roberto A; Gonçalves, Bruno P; da Rocha, Joana F; da Cruz E Silva, Odete A B; da Silva, Augusto M F; Vieira, Sandra I

    2017-12-01

    Neurons are specialized cells of the Central Nervous System whose function is intricately related to the neuritic network they develop to transmit information. Morphological evaluation of this network and other neuronal structures is required to establish relationships between neuronal morphology and function, and may allow monitoring physiological and pathophysiologic alterations. Fluorescence-based microphotographs are the most widely used in cellular bioimaging, but phase contrast (PhC) microphotographs are easier to obtain, more affordable, and do not require invasive, complicated and disruptive techniques. Despite the various freeware tools available for fluorescence-based images analysis, few exist that can tackle the more elusive and harder-to-analyze PhC images. To surpass this, an interactive semi-automated image processing workflow was developed to easily extract relevant information (e.g. total neuritic length, average cell body area) from both PhC and fluorescence neuronal images. This workflow, named 'NeuronRead', was developed in the form of an ImageJ macro. Its robustness and adaptability were tested and validated on rat cortical primary neurons under control and differentiation inhibitory conditions. Validation included a comparison to manual determinations and to a golden standard freeware tool for fluorescence image analysis. NeuronRead was subsequently applied to PhC images of neurons at distinct differentiation days and exposed or not to DAPT, a pharmacological inhibitor of the γ-secretase enzyme, which cleaves the well-known Alzheimer's amyloid precursor protein (APP) and the Notch receptor. Data obtained confirms a neuritogenic regulatory role for γ-secretase products and validates NeuronRead as a time- and cost-effective useful monitoring tool. Copyright © 2017. Published by Elsevier Inc.

  10. A Presenilin-1 Mutation Identified in Familial Alzheimer Disease with Cotton Wool Plaques Causes a Nearly Complete Loss of γ-Secretase Activity*

    PubMed Central

    Heilig, Elizabeth A.; Xia, Weiming; Shen, Jie; Kelleher, Raymond J.

    2010-01-01

    Mutations in presenilin-1 and presenilin-2 (PS1 and PS2) are the most common cause of familial Alzheimer disease. PS1 and PS2 are the presumptive catalytic components of the multisubunit γ-secretase complex, which proteolyzes a number of type I transmembrane proteins, including the amyloid precursor protein (APP) and Notch. APP processing by γ-secretase produces β-amyloid peptides (Aβ40 and Aβ42) that accumulate in the Alzheimer disease brain. Here we identify a pathogenic L435F mutation in PS1 in two affected siblings with early-onset familial Alzheimer disease characterized by deposition of cerebral cotton wool plaques. The L435F mutation resides in a conserved C-terminal PAL sequence implicated in active site conformation and catalytic activity. The impact of PS1 mutations in and around the PAL motif on γ-secretase activity was assessed by expression of mutant PS1 in mouse embryo fibroblasts lacking endogenous PS1 and PS2. Surprisingly, the L435F mutation caused a nearly complete loss of γ-secretase activity, including >90% reductions in the generation of Aβ40, Aβ42, and the APP and Notch intracellular domains. Two nonpathogenic PS1 mutations, P433L and L435R, caused essentially complete loss of γ-secretase activity, whereas two previously identified pathogenic PS1 mutations, P436Q and P436S, caused partial loss of function with substantial reductions in production of Aβ40, Aβ42, and the APP and Notch intracellular domains. These results argue against overproduction of Aβ42 as an essential property of presenilin proteins bearing pathogenic mutations. Rather, our findings provide support for the hypothesis that pathogenic mutations cause a general loss of presenilin function. PMID:20460383

  11. The Large Hydrophilic Loop of Presenilin 1 Is Important for Regulating γ-Secretase Complex Assembly and Dictating the Amyloid β Peptide (Aβ) Profile without Affecting Notch Processing*

    PubMed Central

    Wanngren, Johanna; Frånberg, Jenny; Svensson, Annelie I.; Laudon, Hanna; Olsson, Fredrik; Winblad, Bengt; Liu, Frank; Näslund, Jan; Lundkvist, Johan; Karlström, Helena

    2010-01-01

    γ-Secretase is an enzyme complex that mediates both Notch signaling and β-amyloid precursor protein (APP) processing, resulting in the generation of Notch intracellular domain, APP intracellular domain, and the amyloid β peptide (Aβ), the latter playing a central role in Alzheimer disease (AD). By a hitherto undefined mechanism, the activity of γ-secretase gives rise to Aβ peptides of different lengths, where Aβ42 is considered to play a particular role in AD. In this study we have examined the role of the large hydrophilic loop (amino acids 320–374, encoded by exon 10) of presenilin 1 (PS1), the catalytic subunit of γ-secretase, for γ-secretase complex formation and activity on Notch and APP processing. Deletion of exon 10 resulted in impaired PS1 endoproteolysis, γ-secretase complex formation, and had a differential effect on Aβ-peptide production. Although the production of Aβ38, Aβ39, and Aβ40 was severely impaired, the effect on Aβ42 was affected to a lesser extent, implying that the production of the AD-related Aβ42 peptide is separate from the production of the Aβ38, Aβ39, and Aβ40 peptides. Interestingly, formation of the intracellular domains of both APP and Notch was intact, implying a differential cleavage activity between the ϵ/S3 and γ sites. The most C-terminal amino acids of the hydrophilic loop were important for regulating APP processing. In summary, the large hydrophilic loop of PS1 appears to differentially regulate the relative production of different Aβ peptides without affecting Notch processing, two parameters of significance when considering γ-secretase as a target for pharmaceutical intervention in AD. PMID:20106965

  12. Capsicum annuum var. grossum (Bell Pepper) Inhibits β-Secretase Activity and β-Amyloid1-40 Aggregation.

    PubMed

    Ogunruku, Omodesola Oluwafisayo; Oboh, Ganiyu; Passamonti, Sabina; Trammer, Federica; Boligon, Aline Augusti

    2017-02-01

    The deposition of amyloid protein as senile plaques is the major signature of Alzheimer's disease (AD). It is produced by the sequential cleavage of the amyloid precursor protein by secretases. Moreover, peppers are noted for their antiaging and cognitive enhancing properties. Thus, in this study, the effects of polyphenol-rich extracts from bell pepper on amyloid production and aggregation in vitro were investigated. Bell pepper (ripe and unripe) was extracted with methanol-1 N HCl (1:1 v/v). Thereafter, the inhibitory potentials of the extracts on β-secretase and β-amyloid 1-40 aggregation were determined. Phenolic composition of the pepper fruits was further determined by HPLC-DAD (high performance liquid chromatography-diode array detector). There was a dose-dependent inhibition of β-secretase by the pepper fruits with the ripe fruits (2.17 ± 0.17 μg/L) showing a significantly (P < .05) higher inhibitory effect than the unripe (3.44 ± 0.11 μg/L). Furthermore, Thioflavin-T and transmission electron microscopy analyses revealed that phenolic extracts from pepper fruits (1 and 10 μg/L) could counteract the initial aggregation of Aβ 1-40 , as well as prevent further aggregation preformed fibrils. These inhibitory activities could be attributed to the predominant presence of phenolic constituents in the pepper fruits. It is possible to conclude that bell pepper could be a possible dietary intervention into the management of AD.

  13. Monomeric C-reactive protein and Notch-3 co-operatively increase angiogenesis through PI3K signalling pathway.

    PubMed

    Boras, Emhamed; Slevin, Mark; Alexander, M Yvonne; Aljohi, Ali; Gilmore, William; Ashworth, Jason; Krupinski, Jerzy; Potempa, Lawrence A; Al Abdulkareem, Ibrahim; Elobeid, Adila; Matou-Nasri, Sabine

    2014-10-01

    C-reactive protein (CRP) is the most acute-phase reactant serum protein of inflammation and a strong predictor of cardiovascular disease. Its expression is associated with atherosclerotic plaque instability and the formation of immature micro-vessels. We have previously shown that CRP upregulates endothelial-derived Notch-3, a key receptor involved in vascular development, remodelling and maturation. In this study, we investigated the links between the bioactive monomeric CRP (mCRP) and Notch-3 signalling in angiogenesis. We used in vitro (cell counting, wound-healing and tubulogenesis assays) and in vivo (chorioallantoic membrane) angiogenic assays and Western blotting to study the angiogenic signalling pathways induced by mCRP and Notch-3 activator chimera protein (Notch-3/Fc). Our results showed an additive effect on angiogenesis of mCRP stimulatory effect combined with Notch-3/Fc promoting bovine aortic endothelial cell (BAEC) proliferation, migration, tube formation in Matrigel(TM) with up-regulation of phospho-Akt expression. The pharmacological blockade of PI3K/Akt survival pathway by LY294002 fully inhibited in vitro and in vivo angiogenesis induced by mCRP/Notch-3/Fc combination while blocking Notch signalling by gamma-secretase inhibitor (DAPT) partially inhibited mCRP/Notch-3/Fc-induced angiogenesis. Using a BAEC vascular smooth muscle cell co-culture sprouting angiogenesis assay and transmission electron microscopy, we showed that activation of both mCRP and Notch-3 signalling induced the formation of thicker sprouts which were shown later by Western blotting to be associated with an up-regulation of N-cadherin expression and a down-regulation of VE-cadherin expression. Thus, mCRP combined with Notch-3 activator promote angiogenesis through the PI3K/Akt pathway and their therapeutic combination has potential to promote and stabilize vessel formation whilst reducing the risk of haemorrhage from unstable plaques. Copyright © 2014 Elsevier Ltd. All rights

  14. Interactome Analyses of Mature γ-Secretase Complexes Reveal Distinct Molecular Environments of Presenilin (PS) Paralogs and Preferential Binding of Signal Peptide Peptidase to PS2*

    PubMed Central

    Jeon, Amy Hye Won; Böhm, Christopher; Chen, Fusheng; Huo, Hairu; Ruan, Xueying; Ren, Carl He; Ho, Keith; Qamar, Seema; Mathews, Paul M.; Fraser, Paul E.; Mount, Howard T. J.; St George-Hyslop, Peter; Schmitt-Ulms, Gerold

    2013-01-01

    γ-Secretase plays a pivotal role in the production of neurotoxic amyloid β-peptides (Aβ) in Alzheimer disease (AD) and consists of a heterotetrameric core complex that includes the aspartyl intramembrane protease presenilin (PS). The human genome codes for two presenilin paralogs. To understand the causes for distinct phenotypes of PS paralog-deficient mice and elucidate whether PS mutations associated with early-onset AD affect the molecular environment of mature γ-secretase complexes, quantitative interactome comparisons were undertaken. Brains of mice engineered to express wild-type or mutant PS1, or HEK293 cells stably expressing PS paralogs with N-terminal tandem-affinity purification tags served as biological source materials. The analyses revealed novel interactions of the γ-secretase core complex with a molecular machinery that targets and fuses synaptic vesicles to cellular membranes and with the H+-transporting lysosomal ATPase macrocomplex but uncovered no differences in the interactomes of wild-type and mutant PS1. The catenin/cadherin network was almost exclusively found associated with PS1. Another intramembrane protease, signal peptide peptidase, predominantly co-purified with PS2-containing γ-secretase complexes and was observed to influence Aβ production. PMID:23589300

  15. Potential late-onset Alzheimer's disease-associated mutations in the ADAM10 gene attenuate {alpha}-secretase activity.

    PubMed

    Kim, Minji; Suh, Jaehong; Romano, Donna; Truong, Mimy H; Mullin, Kristina; Hooli, Basavaraj; Norton, David; Tesco, Giuseppina; Elliott, Kathy; Wagner, Steven L; Moir, Robert D; Becker, K David; Tanzi, Rudolph E

    2009-10-15

    ADAM10, a member of a disintegrin and metalloprotease family, is an alpha-secretase capable of anti-amyloidogenic proteolysis of the amyloid precursor protein. Here, we present evidence for genetic association of ADAM10 with Alzheimer's disease (AD) as well as two rare potentially disease-associated non-synonymous mutations, Q170H and R181G, in the ADAM10 prodomain. These mutations were found in 11 of 16 affected individuals (average onset age 69.5 years) from seven late-onset AD families. Each mutation was also found in one unaffected subject implying incomplete penetrance. Functionally, both mutations significantly attenuated alpha-secretase activity of ADAM10 (>70% decrease), and elevated Abeta levels (1.5-3.5-fold) in cell-based studies. In summary, we provide the first evidence of ADAM10 as a candidate AD susceptibility gene, and report two potentially pathogenic mutations with incomplete penetrance for late-onset familial AD.

  16. Plumbagin ameliorates memory dysfunction in streptozotocin induced Alzheimer's disease via activation of Nrf2/ARE pathway and inhibition of β-secretase.

    PubMed

    Nakhate, Kartik T; Bharne, Ashish P; Verma, Vinay Sagar; Aru, Deepali N; Kokare, Dadasaheb M

    2018-05-01

    Although plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone) protects against cerebral ischemia and spinal cord injury-induced oxidative stress and inflammation by activating the nuclear factor-erythroid 2-related factor-2 /antioxidant response element (Nrf2/ARE) pathway, its role in the amelioration of neurodegenerative diseases remains unexplored. In the present study, we investigated the effect of plumbagin on Alzheimer's disease (AD)-like condition in mice. The animals were treated intracerebroventricularly with streptozotocin (STZ; 3 mg/kg) twice, on day 1 and 3, to induce AD-like condition, and the symptoms were evaluated after 14 days. While the loss of learning and memory performance was evident in the mice subjected to Morris water maze (MWM), there was a striking increase in the population of astrocytes labelled with glial fibrillary acidic protein (GFAP) in the hippocampus. Daily intraperitoneal (i.p.) treatment with plumbagin (0.5 and 1 mg/kg), starting from 1 h prior to first dose of STZ, significantly prevented the cognitive deficits in MWM. On the other hand, administration of Nrf2/ARE pathway inhibitor, trigonelline (10 and 15 mg/kg, i.p.) enhanced the effects of STZ. Pre-treatment with subeffective dose of trigonelline (5 mg/kg) significantly attenuated the effects of plumbagin in MWM. While plumbagin prevented the STZ induced GFAP expression, this effect of plumbagin was attenuated by trigonelline. Moreover, the in silico docking study revealed potent inhibitory effect of plumbagin on β-secretase enzyme. The results of the present study suggest that plumbagin improves cognitive function in STZ induced mouse model of AD possibly via Nrf2/ARE mediated suppression of astrogliosis and inhibition of β-secretase enzyme. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  17. Potential late-onset Alzheimer's disease-associated mutations in the ADAM10 gene attenuate α-secretase activity

    PubMed Central

    Kim, Minji; Suh, Jaehong; Romano, Donna; Truong, Mimy H.; Mullin, Kristina; Hooli, Basavaraj; Norton, David; Tesco, Giuseppina; Elliott, Kathy; Wagner, Steven L.; Moir, Robert D.; Becker, K. David; Tanzi, Rudolph E.

    2009-01-01

    ADAM10, a member of a disintegrin and metalloprotease family, is an α-secretase capable of anti-amyloidogenic proteolysis of the amyloid precursor protein. Here, we present evidence for genetic association of ADAM10 with Alzheimer's disease (AD) as well as two rare potentially disease-associated non-synonymous mutations, Q170H and R181G, in the ADAM10 prodomain. These mutations were found in 11 of 16 affected individuals (average onset age 69.5 years) from seven late-onset AD families. Each mutation was also found in one unaffected subject implying incomplete penetrance. Functionally, both mutations significantly attenuated α-secretase activity of ADAM10 (>70% decrease), and elevated Aβ levels (1.5–3.5-fold) in cell-based studies. In summary, we provide the first evidence of ADAM10 as a candidate AD susceptibility gene, and report two potentially pathogenic mutations with incomplete penetrance for late-onset familial AD. PMID:19608551

  18. Targeting Notch pathway induces growth inhibition and differentiation of neuroblastoma cells.

    PubMed

    Ferrari-Toninelli, Giulia; Bonini, Sara Anna; Uberti, Daniela; Buizza, Laura; Bettinsoli, Paola; Poliani, Pietro Luigi; Facchetti, Fabio; Memo, Maurizio

    2010-12-01

    High-risk neuroblastoma is a severe pediatric tumor characterized by poor prognosis. Understanding the molecular mechanisms involved in tumor development and progression is strategic for the improvement of pharmacological therapies. Notch was recently proposed as a pharmacological target for the therapy of several cancers and is emerging as a new neuroblastoma-related molecular pathway. However, the precise role played by Notch in this cancer remains to be studied extensively. Here, we show that Notch activation by the Jagged1 ligand enhances the proliferation of neuroblastoma cells, and we propose the possible use of Notch-blocking γ-secretase inhibitors (GSIs) in neuroblastoma therapy. Two different GSIs, Compound E and DAPT, were tested alone or in combination with 13-cis retinoic acid (RA) on neuroblastoma cell lines. SH-SY5Y and IMR-32 cells were chosen as paradigms of lower and higher malignancy, respectively. Used alone, GSIs induced complete cell growth arrest, promoted neuronal differentiation, and significantly reduced cell motility. The combination of GSIs and 13-cis RA resulted in the enhanced growth inhibition, differentiation, and migration of neuroblastoma cells. In summary, our data suggest that a combination of GSIs with 13-cis RA offers a therapeutic advantage over a single agent, indicating a potential novel therapy for neuroblastoma.

  19. [IL-23 promotes invasion of esophageal squamous cell carcinoma cells by activating DLL4/Notch1 signaling pathway].

    PubMed

    Li, Wei; Zhou, Yuepeng; Su, Yuting; Ouyang, Yibo; Xie, Xiaodong; Wu, Yingying; Mao, Chaoming; Chen, Deyu

    2015-06-01

    To investigate the role of interlukin-23 (IL-23) in the invasion of human esophageal squamous cell carcinoma (ESCC) cells and the related mechanism. IL-23 expression in tumor and adjacent tissues from 10 ESCC patients were detected by immunohistochemistry. Real-time fluorescent PCR was used to examine the expressions of Notch1 and Foxn4 mRNAs in different concentration IL-23-treated TE-1 cells. After Notch pathway was blocked with γ-secretase inhibitor DAPT, expressions of Notch intracellular domain (NICD), Delta-like 4 (DLL4), hairy enhancer of split 1 (Hes1), matrix metalloproteinase 9 (MMP-9) in IL-23-treated TE-1 cells were measured by Western blotting. And the migration of IL-23-treated TE-1 cells was studied by TranswellTM migration assay. Compared with adjacent tissues, IL-23 was highly expressed in ESCC tissues. IL-23 treatment up-regulated significantly the expressions of NICD, DLL4, Hes1 and MMP-9 in TE-1 cells. The blockade of Notch1 pathway inhibited the expressions induced by IL-23. Migration assay revealed that IL-23 treatment significantly enhanced the migration of TE-1 cells. IL-23 could promote migration of human ESCC cells by activating DLL4/Notch1 signaling pathway.

  20. Downregulation of microRNA-29 by antisense inhibitors and a PPAR-gamma agonist protects against myocardial ischaemia-reperfusion injury.

    PubMed

    Ye, Yumei; Hu, Zhaoyong; Lin, Yu; Zhang, Congfang; Perez-Polo, Jose R

    2010-08-01

    MicroRNAs (miRNAs) regulate various cardiac processes including cell proliferation and apoptosis. Pioglitazone (PIO), a peroxisome proliferator-activated receptor (PPAR)-gamma agonist, protects against myocardial ischaemia-reperfusion (IR) injury. We assessed the effects of PPAR-gamma activation on myocardial miRNA levels and the role of miRNAs in IR injury. We evaluated the expression changes of miRNAs in the rat heart after PIO administration using miRNA arrays and then confirmed the result by northern blot. miR-29a and c levels decreased remarkably after 7-day treatment with PIO. In H9c2 cells, the effects of PIO and rosiglitazone on miR-29 expression levels were blocked by a selective PPAR-gamma inhibitor GW9662. Downregulation of miR-29 by antisense inhibitor or by PIO protected H9c2 cells from simulated IR injury, indicated as increased cell survival and decreased caspase-3 activity. In contrast, overexpressing miR-29 promoted apoptosis and completely blocked the protective effect of PIO. Antagomirs against miR-29a or -29c significantly reduced myocardial infarct size and apoptosis in hearts subjected to IR injury. Western blot analyses demonstrated that Mcl-2, an anti-apoptotic Bcl-2 family member, was increased by miR-29 inhibition. Downregulation of miR-29 protected hearts against IR injury. The modulation of miRNAs can be achieved by pharmacological intervention. These findings provide a rationale for the development of miRNA-based strategies for the attenuation of IR injury.

  1. Minocycline attenuates the development of diabetic neuropathy by inhibiting spinal cord Notch signaling in rat.

    PubMed

    Yang, Cheng; Gao, Jie; Wu, Banglin; Yan, Nuo; Li, Hui; Ren, Yiqing; Kan, Yufei; Liang, Jiamin; Jiao, Yang; Yu, Yonghao

    2017-10-01

    We studied the effects of minocycline (an inhibitor of microglial activation) on the expression and activity of Notch-1 receptor, and explored the therapeutic efficacy of minocycline combined with Notch inhibitor DAPT in the treatment of diabetic neuropathic pain (DNP). Diabetic rat model was established by intraperitoneal injection (ip) of Streptozotocin (STZ). Expression and activity of Notch-1 and expression of macrophage/microglia marker Iba-1 were detected by WB. Diabetes induction significantly attenuated sciatic nerve conduction velocity, and dramatically augmented the expression and the activity of Notch-1 in the lumbar enlargement of the spinal cord. Minocycline treatment, however, accelerated the decreased conduction velocity of sciatic nerve and suppressed Notch-1expression and activity in diabetic rats. Similar to DAPT treatment, minocycline administration also prolonged thermal withdrawal latency (TWL) and increase mechanical withdrawal threshold (MWT) in diabetic rats in response to heat or mechanical stimulation via inhibition the expression and the activity of Notch-1 in spinal cord. Combination of DAPT and minocycline further inhibited Notch-1 receptor signaling and reduce neuropathic pain exhibited as improved TWL and MWT. Our study revealed a novel mechanism of Notch-1 receptor inhibition in spinal cord induced by minocycline administration, and suggested that the combination of minocycline and DAPT has the potential to treat DNP. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. O-GlcNAc modification of PPAR{gamma} reduces its transcriptional activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Suena; Park, Sang Yoon; Roth, Juergen

    2012-01-27

    Highlights: Black-Right-Pointing-Pointer We found that PPAR{gamma} is modified by O-GlcNAc in 3T3-L1 adipocytes. Black-Right-Pointing-Pointer The Thr54 of PPAR{gamma}1 is the major O-GlcNAc site. Black-Right-Pointing-Pointer Transcriptional activity of PPAR{gamma}1 was decreased on treatment with the OGA inhibitor. -- Abstract: The peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}), a member of the nuclear receptor superfamily, is a key regulator of adipogenesis and is important for the homeostasis of the adipose tissue. The {beta}-O-linked N-acetylglucosamine (O-GlcNAc) modification, a posttranslational modification on various nuclear and cytoplasmic proteins, is involved in the regulation of protein function. Here, we report that PPAR{gamma} is modified by O-GlcNAc in 3T3-L1more » adipocytes. Mass spectrometric analysis and mutant studies revealed that the threonine 54 of the N-terminal AF-1 domain of PPAR{gamma} is the major O-GlcNAc site. Transcriptional activity of wild type PPAR{gamma} was decreased 30% by treatment with the specific O-GlcNAcase (OGA) inhibitor, but the T54A mutant of PPAR{gamma} did not respond to inhibitor treatment. In 3T3-L1 cells, an increase in O-GlcNAc modification by OGA inhibitor reduced PPAR{gamma} transcriptional activity and terminal adipocyte differentiation. Our results suggest that the O-GlcNAc state of PPAR{gamma} influences its transcriptional activity and is involved in adipocyte differentiation.« less

  3. Sphingosine kinase inhibitor suppresses IL-18-induced interferon-gamma production through inhibition of p38 MAPK activation in human NK cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheon, Soyoung; Song, Seok Bean; Jung, Minkyung

    2008-09-12

    Natural killer (NK) cells play an important role in the innate immune response. Interleukin-18 (IL-18) is a well-known interferon-gamma (IFN-{gamma} inducing factor, which stimulates immune response in NK and T cells. Sphingosine kinase (SPHK) catalyzes the formation of sphingosine 1-phosphate (S1P), which acts as a second messenger to function as an anti-apoptotic factor and proliferation stimulator of immune cells. In this study, to elucidate whether SPHK is involved in IL-18-induced IFN-{gamma} production, we measured IL-18-induced IFN-{gamma} production after pre-treatment with SPHK inhibitor (SKI) in NK-92MI cells. We found that IL-18-induced IFN-{gamma} expression was blocked by SKI pre-treatment in both mRNAmore » and protein levels. In addition, the increased IFN-{gamma} production by stimulation with IL-18 is mediated through both SPHK and p38 MAPK. To determine the upstream signals of SKI and p38 MAPK in IL-18-induced IFN-{gamma} production, phosphorylation levels of p38 MAPK was measured after SKI pre-treatment. As a result, inhibition of SPHK by SKI blocked phosphorylation of p38 MAPK, showing that SPHK activation by IL-18 is an upstream signal of p38 MAPK activation. Inhibition of SPHK by SKI also inhibited IL-18-induced IFN-{gamma} production in human primary NK cells. In conclusion, SPHK activation is an essential factor for IL-18-induced IFN-{gamma} production via p38 MAPK.« less

  4. Therapeutic antibody targeting of individual Notch receptors.

    PubMed

    Wu, Yan; Cain-Hom, Carol; Choy, Lisa; Hagenbeek, Thijs J; de Leon, Gladys P; Chen, Yongmei; Finkle, David; Venook, Rayna; Wu, Xiumin; Ridgway, John; Schahin-Reed, Dorreyah; Dow, Graham J; Shelton, Amy; Stawicki, Scott; Watts, Ryan J; Zhang, Jeff; Choy, Robert; Howard, Peter; Kadyk, Lisa; Yan, Minhong; Zha, Jiping; Callahan, Christopher A; Hymowitz, Sarah G; Siebel, Christian W

    2010-04-15

    The four receptors of the Notch family are widely expressed transmembrane proteins that function as key conduits through which mammalian cells communicate to regulate cell fate and growth. Ligand binding triggers a conformational change in the receptor negative regulatory region (NRR) that enables ADAM protease cleavage at a juxtamembrane site that otherwise lies buried within the quiescent NRR. Subsequent intramembrane proteolysis catalysed by the gamma-secretase complex liberates the intracellular domain (ICD) to initiate the downstream Notch transcriptional program. Aberrant signalling through each receptor has been linked to numerous diseases, particularly cancer, making the Notch pathway a compelling target for new drugs. Although gamma-secretase inhibitors (GSIs) have progressed into the clinic, GSIs fail to distinguish individual Notch receptors, inhibit other signalling pathways and cause intestinal toxicity, attributed to dual inhibition of Notch1 and 2 (ref. 11). To elucidate the discrete functions of Notch1 and Notch2 and develop clinically relevant inhibitors that reduce intestinal toxicity, we used phage display technology to generate highly specialized antibodies that specifically antagonize each receptor paralogue and yet cross-react with the human and mouse sequences, enabling the discrimination of Notch1 versus Notch2 function in human patients and rodent models. Our co-crystal structure shows that the inhibitory mechanism relies on stabilizing NRR quiescence. Selective blocking of Notch1 inhibits tumour growth in pre-clinical models through two mechanisms: inhibition of cancer cell growth and deregulation of angiogenesis. Whereas inhibition of Notch1 plus Notch2 causes severe intestinal toxicity, inhibition of either receptor alone reduces or avoids this effect, demonstrating a clear advantage over pan-Notch inhibitors. Our studies emphasize the value of paralogue-specific antagonists in dissecting the contributions of distinct Notch receptors to

  5. Proton-Pump Inhibitors Reduce Gastrointestinal Events Regardless of Aspirin Dose in Patients Requiring Dual Antiplatelet Therapy.

    PubMed

    Vaduganathan, Muthiah; Bhatt, Deepak L; Cryer, Byron L; Liu, Yuyin; Hsieh, Wen-Hua; Doros, Gheorghe; Cohen, Marc; Lanas, Angel; Schnitzer, Thomas J; Shook, Thomas L; Lapuerta, Pablo; Goldsmith, Mark A; Laine, Loren; Cannon, Christopher P

    2016-04-12

    The COGENT (Clopidogrel and the Optimization of Gastrointestinal Events Trial) showed that proton-pump inhibitors (PPIs) safely reduced rates of gastrointestinal (GI) events in patients requiring dual antiplatelet therapy (DAPT). However, utilization of appropriate prophylactic PPI therapy remains suboptimal, especially with low-dose aspirin. The authors investigated the safety and efficacy of PPI therapy in patients receiving DAPT in low- and high-dose aspirin subsets. Randomized patients with available aspirin dosing information in COGENT (N = 3,752) were divided into "low-dose" (≤ 100 mg) and "high-dose" (>100 mg) aspirin groups. The primary GI and cardiovascular endpoints were composite upper GI events and major adverse cardiac events, respectively. All events were adjudicated by independent, blinded gastroenterologists and cardiologists. Median duration of follow-up was 110 days. Low-dose aspirin users (n = 2,480; 66.1%) were more likely to be older, female, and have higher rates of peripheral artery disease, prior stroke, and hypertension, whereas high-dose aspirin users (n = 1,272; 33.9%) had higher rates of hyperlipidemia, smoking, a history of percutaneous coronary intervention, and were more than twice as likely to be enrolled from sites within the United States (80.4% vs. 39.8%). High-dose aspirin was associated with similar 180-day Kaplan-Meier estimates of adjudicated composite GI events (1.7% vs. 2.1%; adjusted hazard ratio: 0.88; 95% confidence interval: 0.46 to 1.66) and major adverse cardiac events (4.8% vs. 5.5%; adjusted hazard ratio: 0.73; 95% confidence interval: 0.48 to 1.11) compared with low-dose aspirin. Randomization to PPI therapy reduced 180-day Kaplan-Meier estimates of the primary GI endpoint in low-dose (1.2% vs. 3.1%) and high-dose aspirin subsets (0.9% vs. 2.6%; p for interaction = 0.80), and did not adversely affect the primary cardiovascular endpoint in either group. Gastroprotection with PPI therapy should be utilized in

  6. Highlights in BACE1 Inhibitors for Alzheimer's Disease Treatment

    NASA Astrophysics Data System (ADS)

    Coimbra, Judite R. M.; Marques, Daniela F. F.; Baptista, Salete J.; Pereira, Cláudia M. F.; Moreira, Paula I.; Dinis, Teresa C. P.; Santos, Armanda E.; Salvador, Jorge A. R.

    2018-05-01

    Alzheimer's Disease (AD) is a severe neurodegenerative disorder and the most common type of dementia in the elderly. The clinical symptoms of AD include a progressive loss of memory and impairment of cognitive functions interfering with daily life activities. The main neuropathological features consist in extracellular Amyloid-β (Aβ) plaque deposition and intracellular Neurofibrillary Tangles (NFTs) of hyperphosphorylated Tau. Understanding the pathophysiological mechanisms that underlie neurodegeneration in AD is essential for rational design of neuroprotective agents able to prevent disease progression. According to the “Amyloid Cascade Hypothesis” the critical molecular event in the pathogenesis of AD is the accumulation of Aβ neurotoxic oligomers. Since the proteolytic processing of Amyloid Precursor Protein (APP) by β-secretase (BACE1) is the rate-limiting step in the production of Aβ, this enzyme is considered a major therapeutic target and BACE1 inhibitors have the potential to be disease-modifying drugs for AD treatment. Therefore, intensive efforts to discover and develop inhibitors that can reach the brain and effectively inhibit BACE1 have been pursued by several groups worldwide. The aim of this review is to highlight the progress in the discovery of potent and selective small BACE1 inhibitors over the past decade.

  7. Polymethoxyflavones: Novel β-Secretase (BACE1) Inhibitors from Citrus Peels.

    PubMed

    Youn, Kumju; Yu, Yoonjin; Lee, Jinhyuk; Jeong, Woo-Sik; Ho, Chi-Tang; Jun, Mira

    2017-09-04

    Beta-site amyloid precursor protein (APP) cleaving enzyme1 (BACE1) catalyzes the rate-limiting step of amyloid-β protein (Aβ) generation, and is considered as a prime target for Alzheimer's disease (AD). In search of a candidate for AD prevention, our efforts exploring the natural BACE1 inhibitor have led to the finding of nobiletin, tangeretin, and sinensetin-representative compounds of polymethoxyflavones (PMFs). Tangeretin exhibited the strongest BACE1 inhibition (IC 50 , 4.9 × 10 -5 M), followed by nobiletin and sinensetin with IC 50 values of 5.9 × 10 -5 M and 6.3 × 10 -5 M, respectively. In addition, all compounds reacted in a non-competitive manner with the substrate. Docking analysis results for complexes with BACE1 indicated that SER10 and THR232 residues of BACE1 hydrogen bonded with two oxygen atoms of tangeretin, while three additional BACE1 residues (ALA157, VAL336 and THR232) interacted with three oxygen atoms of nobiletin. Furthermore, sinensetin formed four hydrogen bonds through nitrogen atoms of TYR71, LYS75, and TRP76, and an oxygen atom of TYR198. Furthermore, the lowest-energy conformations of the most proposed complexes of sinensetin, nobiletin, and tangeretin with BACE1 were -7.2, -7.0, and -6.8 kcal/mol, respectively. Taken together, our results suggest that these polymethoxyflavones (PMFs) might be considered as promising BACE1 inhibitory agents that could lower Aβ production in AD.

  8. Conditional forebrain inactivation of nicastrin causes progressive memory impairment and age-related neurodegeneration.

    PubMed

    Tabuchi, Katsuhiko; Chen, Guiquan; Südhof, Thomas C; Shen, Jie

    2009-06-03

    Loss of presenilin function in adult mouse brains causes memory loss and age-related neurodegeneration. Since presenilin possesses gamma-secretase-dependent and -independent activities, it remains unknown which activity is required for presenilin-dependent memory formation and neuronal survival. To address this question, we generated postnatal forebrain-specific nicastrin conditional knock-out (cKO) mice, in which nicastrin, a subunit of gamma-secretase, is inactivated selectively in mature excitatory neurons of the cerebral cortex. nicastrin cKO mice display progressive impairment in learning and memory and exhibit age-dependent cortical neuronal loss, accompanied by astrocytosis, microgliosis, and hyperphosphorylation of the microtubule-associated protein Tau. The neurodegeneration observed in nicastrin cKO mice likely occurs via apoptosis, as evidenced by increased numbers of apoptotic neurons. These findings demonstrate an essential role of nicastrin in the execution of learning and memory and the maintenance of neuronal survival in the brain and suggest that presenilin functions in memory and neuronal survival via its role as a gamma-secretase subunit.

  9. Identification of myo-inositol hexakisphosphate (IP6) as a β-secretase 1 (BACE1) inhibitory molecule in rice grain extract and digest

    PubMed Central

    Abe, Takako K.; Taniguchi, Masayuki

    2014-01-01

    Alzheimer’s disease (AD) is widely considered to be caused by amyloid-β peptide (Aβ) accumulation in the brain. Aβ is excised from amyloid-β precursor protein through sequential cleavage by β-secretase 1 (BACE1) and γ-secretase. Thus, BACE1 inhibition could prevent Aβ accumulation. Here, we identified myo-inositol hexakisphosphate (IP6) as a BACE1 inhibitory molecule in rice grain extract and digest. The rice digest and IP6 significantly inhibited Aβ production in neuroblastoma cells without cytotoxicity. These results suggested that rice components, including IP6, may be promising starting materials for the development of potent and safe drugs and/or food to prevent AD. PMID:24649396

  10. Effect of gamma irradiation on lipoxygenases, trypsin inhibitor, raffinose family oligosaccharides and nutritional factors of different seed coat colored soybean (Glycine max L.)

    NASA Astrophysics Data System (ADS)

    Kumar Dixit, Amit; Kumar, Vineet; Rani, Anita; Manjaya, J. G.; Bhatnagar, Deepak

    2011-04-01

    Three soybean genotypes Kalitur, Hara soya and NRC37 with black, green and yellow seed coat color, respectively, were gamma irradiated at 0.5, 2.0 and 5.0 kGy and tested for antinutritional and nutritional factors. Gamma irradiation at all doses reduced the level of lipoxygenase isomers, trypsin inhibitor (TI) and ascorbic acid in all the 3 soybean genotypes as compared to the unirradiated control. However, irradiation dose of 5.0 kGy increased the sucrose content of the soybean genotypes. No significant change was observed in oil, protein fatty acids and total tocopherol content of the 3 genotypes at any irradiation dose. It is suggested that inhibition of lipoxygenase, reduction in TI and ascorbic acid may be due to the breakage or oxidation of protein structure by the gamma irradiation. Similarly, gamma irradiation at higher doses may break glycosidic linkages in oligosaccharides to produce more sucrose and decrease the content of flatulence causing oligosaccharides.

  11. Polymethoxyflavones: Novel β-Secretase (BACE1) Inhibitors from Citrus Peels

    PubMed Central

    Youn, Kumju; Yu, Yoonjin; Lee, Jinhyuk; Jeong, Woo-Sik; Ho, Chi-Tang; Jun, Mira

    2017-01-01

    Beta-site amyloid precursor protein (APP) cleaving enzyme1 (BACE1) catalyzes the rate-limiting step of amyloid-β protein (Aβ) generation, and is considered as a prime target for Alzheimer’s disease (AD). In search of a candidate for AD prevention, our efforts exploring the natural BACE1 inhibitor have led to the finding of nobiletin, tangeretin, and sinensetin—representative compounds of polymethoxyflavones (PMFs). Tangeretin exhibited the strongest BACE1 inhibition (IC50, 4.9 × 10−5 M), followed by nobiletin and sinensetin with IC50 values of 5.9 × 10−5 M and 6.3 × 10−5 M, respectively. In addition, all compounds reacted in a non-competitive manner with the substrate. Docking analysis results for complexes with BACE1 indicated that SER10 and THR232 residues of BACE1 hydrogen bonded with two oxygen atoms of tangeretin, while three additional BACE1 residues (ALA157, VAL336 and THR232) interacted with three oxygen atoms of nobiletin. Furthermore, sinensetin formed four hydrogen bonds through nitrogen atoms of TYR71, LYS75, and TRP76, and an oxygen atom of TYR198. Furthermore, the lowest-energy conformations of the most proposed complexes of sinensetin, nobiletin, and tangeretin with BACE1 were −7.2, −7.0, and −6.8 kcal/mol, respectively. Taken together, our results suggest that these polymethoxyflavones (PMFs) might be considered as promising BACE1 inhibitory agents that could lower Aβ production in AD. PMID:28869548

  12. Tannic Acid Is a Natural β-Secretase Inhibitor That Prevents Cognitive Impairment and Mitigates Alzheimer-like Pathology in Transgenic Mice*

    PubMed Central

    Mori, Takashi; Rezai-Zadeh, Kavon; Koyama, Naoki; Arendash, Gary W.; Yamaguchi, Haruyasu; Kakuda, Nobuto; Horikoshi-Sakuraba, Yuko; Tan, Jun; Town, Terrence

    2012-01-01

    Amyloid precursor protein (APP) proteolysis is essential for production of amyloid-β (Aβ) peptides that form β-amyloid plaques in brains of Alzheimer disease (AD) patients. Recent focus has been directed toward a group of naturally occurring anti-amyloidogenic polyphenols known as flavonoids. We orally administered the flavonoid tannic acid (TA) to the transgenic PSAPP mouse model of cerebral amyloidosis (bearing mutant human APP and presenilin-1 transgenes) and evaluated cognitive function and AD-like pathology. Consumption of TA for 6 months prevented transgene-associated behavioral impairment including hyperactivity, decreased object recognition, and defective spatial reference memory, but did not alter nontransgenic mouse behavior. Accordingly, brain parenchymal and cerebral vascular β-amyloid deposits and abundance of various Aβ species including oligomers were mitigated in TA-treated PSAPP mice. These effects occurred with decreased cleavage of the β-carboxyl-terminal APP fragment, lowered soluble APP-β production, reduced β-site APP cleaving enzyme 1 protein stability and activity, and attenuated neuroinflammation. As in vitro validation, we treated well characterized mutant human APP-overexpressing murine neuron-like cells with TA and found significantly reduced Aβ production associated with less amyloidogenic APP proteolysis. Taken together, these results raise the possibility that dietary supplementation with TA may be prophylactic for AD by inhibiting β-secretase activity and neuroinflammation and thereby mitigating AD pathology. PMID:22219198

  13. Profiles of β-Amyloid Peptides and Key Secretases in Brain Autopsy Samples Differ with Sex and APOE ε4 Status: Impact for Risk and Progression of Alzheimer Disease.

    PubMed

    Nyarko, Jennifer N K; Quartey, Maa O; Pennington, Paul R; Heistad, Ryan M; Dea, Doris; Poirier, Judes; Baker, Glen B; Mousseau, Darrell D

    2018-03-01

    The APOE ε4 allele was originally reported to contribute to risk of Alzheimer's disease (AD) in women, yet male and female AD patient-derived data are routinely pooled. Histopathological hallmarks of AD include neurofibrillary tangles centered on hyperphosphorylated Tau and plaques composed of the β-amyloid (Aβ) peptide that is derived by sequential secretase-mediated cleavage of the Amyloid Protein Precursor (APP). We chose to examine profiles of Aβ(1-40), Aβ(1-42), and N-truncated (i.e., p3-related) fragments in the plaque-associated fraction of autopsied cortical and corresponding hippocampal samples from donors with a diagnosis of early-onset (EOAD) and late-onset (LOAD) AD. Levels of Aβ(1-40), Aβ(1-42), and the p3 fragment-enriched pool were increased in EOAD and LOAD samples, and correlated well within -but not between- regions. Counterintuitively, these increases were similar regardless of the AD donor's APOE ε4 status. Focusing on the donor's sex and APOE ε4 status as nominal variables (i.e., omitting diagnosis from the stratification) revealed that increases in Aβ peptides were specific to female carriers of the ε4 allele and correlated with the proportional expression of BACE1/β-secretase and ADAM10/α-secretase in the cortex and with nicastrin (γ-secretase) expression in the hippocampus. These data preliminarily support the possibility that AD follows distinct amyloidogenic processes in males and females, and that the APOE ε4 allele exerts a major influence on the disease process, particularly in women. This knowledge could significantly impact the (re)interpretation of unsuccessful outcomes of clinical interventions targeting either Aβ peptides directly or the secretases implicated in APP processing. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Discovery of Potent and Centrally Active 6-Substituted 5-Fluoro-1,3-dihydro-oxazine β-Secretase (BACE1) Inhibitors via Active Conformation Stabilization.

    PubMed

    Nakahara, Kenji; Fuchino, Kouki; Komano, Kazuo; Asada, Naoya; Tadano, Genta; Hasegawa, Tsuyoshi; Yamamoto, Takahiko; Sako, Yusuke; Ogawa, Masayoshi; Unemura, Chie; Hosono, Motoko; Ito, Hisanori; Sakaguchi, Gaku; Ando, Shigeru; Ohnishi, Shuichi; Kido, Yasuto; Fukushima, Tamio; Dhuyvetter, Deborah; Borghys, Herman; Gijsen, Harrie J M; Yamano, Yoshinori; Iso, Yasuyoshi; Kusakabe, Ken-Ichi

    2018-06-14

    β-Secretase (BACE1) has an essential role in the production of amyloid β peptides that accumulate in patients with Alzheimer's disease (AD). Thus, inhibition of BACE1 is considered to be a disease-modifying approach for the treatment of AD. Our hit-to-lead efforts led to a cellular potent 1,3-dihydro-oxazine 6, which however inhibited hERG and showed high P-gp efflux. The close analogue of 5-fluoro-oxazine 8 reduced P-gp efflux; further introduction of electron withdrawing groups at the 6-position improved potency and also mitigated P-gp efflux and hERG inhibition. Changing to a pyrazine followed by optimization of substituents on both the oxazine and the pyrazine culminated in 24 with robust Aβ reduction in vivo at low doses as well as reduced CYP2D6 inhibition. On the basis of the X-ray analysis and the QM calculation of given dihydro-oxazines, we reasoned that the substituents at the 6-position as well as the 5-fluorine on the oxazine would stabilize a bioactive conformation to increase potency.

  15. Zinc and Copper Differentially Modulate Amyloid Precursor Protein Processing by γ-Secretase and Amyloid-β Peptide Production.

    PubMed

    Gerber, Hermeto; Wu, Fang; Dimitrov, Mitko; Garcia Osuna, Guillermo M; Fraering, Patrick C

    2017-03-03

    Recent evidence suggests involvement of biometal homeostasis in the pathological mechanisms in Alzheimer's disease (AD). For example, increased intracellular copper or zinc has been linked to a reduction in secreted levels of the AD-causing amyloid-β peptide (Aβ). However, little is known about whether these biometals modulate the generation of Aβ. In the present study we demonstrate in both cell-free and cell-based assays that zinc and copper regulate Aβ production by distinct molecular mechanisms affecting the processing by γ-secretase of its Aβ precursor protein substrate APP-C99. We found that Zn 2+ induces APP-C99 dimerization, which prevents its cleavage by γ-secretase and Aβ production, with an IC 50 value of 15 μm Importantly, at this concentration, Zn 2+ also drastically raised the production of the aggregation-prone Aβ43 found in the senile plaques of AD brains and elevated the Aβ43:Aβ40 ratio, a promising biomarker for neurotoxicity and AD. We further demonstrate that the APP-C99 histidine residues His-6, His-13, and His-14 control the Zn 2+ -dependent APP-C99 dimerization and inhibition of Aβ production, whereas the increased Aβ43:Aβ40 ratio is substrate dimerization-independent and involves the known Zn 2+ binding lysine Lys-28 residue that orientates the APP-C99 transmembrane domain within the lipid bilayer. Unlike zinc, copper inhibited Aβ production by directly targeting the subunits presenilin and nicastrin in the γ-secretase complex. Altogether, our data demonstrate that zinc and copper differentially modulate Aβ production. They further suggest that dimerization of APP-C99 or the specific targeting of individual residues regulating the production of the long, toxic Aβ species, may offer two therapeutic strategies for preventing AD. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Extended Duration Dual Antiplatelet Therapy After Percutaneous Coronary Intervention in Patients With Peripheral Arterial Disease: A Meta-Analysis.

    PubMed

    Ling, Hua; Andrews, Ebony; Ombengi, David; Li, Fang

    2018-06-01

    Patients with peripheral arterial disease (PAD) undergoing percutaneous coronary intervention (PCI) are at elevated risk of ischemic and bleeding events. However, the optimal duration of dual antiplatelet therapy (DAPT) after PCI in patients with PAD remains unclear. A systematic literature search was performed through June 2017 using PubMed, EMBASE and Cochrane databases with the following key terms: "dual antiplatelet therapy", "P2Y12 inhibitor", "myocardial infarction", "percutaneous coronary intervention", "stent", "peripheral arterial disease", and "ankle-brachial index". The analysis was restricted to randomized trials published in English in patients with PAD receiving extended DAPT (> 12-month) after PCI. Overall analysis was performed using Review Manager 5.3 with the Mantel-Haenszel method. Two randomized controlled trials involving 895 patients were included in this review. Compared to the placebo group, there was no statistical significance in the occurrence of major adverse cardiovascular and cerebrovascular events (MACCE) in patients receiving extended DAPT (odds ratio (OR) 0.76, 95% confidence interval (CI) 0.37 - 1.57; P = 0.46). The results were associated with substantial heterogeneity (I 2 = 71%, P = 0.07). Extended DAPT was not significantly associated with increased moderate/severe bleeding events (OR 1.63, 95% CI 0.84 - 3.18; P = 0.15; I 2 = 0%, P = 0.59). The extended DAPT was associated with 82% relative risk reduction in the events of definite/probably stent thrombosis. Among patients with PAD, extended DAPT after PCI resulted in a non-significant difference in ischemic and bleeding events compared to placebo, respectively. The routine use of extended DAPT in this cohort should be carefully evaluated.

  17. Creation of Novel Cores for β-Secretase (BACE-1) Inhibitors: A Multiparameter Lead Generation Strategy

    PubMed Central

    2014-01-01

    In order to find optimal core structures as starting points for lead optimization, a multiparameter lead generation workflow was designed with the goal of finding BACE-1 inhibitors as a treatment for Alzheimer’s disease. De novo design of core fragments was connected with three predictive in silico models addressing target affinity, permeability, and hERG activity, in order to guide synthesis. Taking advantage of an additive SAR, the prioritized cores were decorated with a few, well-characterized substituents from known BACE-1 inhibitors in order to allow for core-to-core comparisons. Prediction methods and analyses of how physicochemical properties of the core structures correlate to in vitro data are described. The syntheses and in vitro data of the test compounds are reported in a separate paper by Ginman et al. [J. Med. Chem.2013, 56, 4181–4205]. The affinity predictions are described in detail by Roos et al. [J. Chem. Inf.2014, DOI: 10.1021/ci400374z]. PMID:24900855

  18. Creation of Novel Cores for β-Secretase (BACE-1) Inhibitors: A Multiparameter Lead Generation Strategy.

    PubMed

    Viklund, Jenny; Kolmodin, Karin; Nordvall, Gunnar; Swahn, Britt-Marie; Svensson, Mats; Gravenfors, Ylva; Rahm, Fredrik

    2014-04-10

    In order to find optimal core structures as starting points for lead optimization, a multiparameter lead generation workflow was designed with the goal of finding BACE-1 inhibitors as a treatment for Alzheimer's disease. De novo design of core fragments was connected with three predictive in silico models addressing target affinity, permeability, and hERG activity, in order to guide synthesis. Taking advantage of an additive SAR, the prioritized cores were decorated with a few, well-characterized substituents from known BACE-1 inhibitors in order to allow for core-to-core comparisons. Prediction methods and analyses of how physicochemical properties of the core structures correlate to in vitro data are described. The syntheses and in vitro data of the test compounds are reported in a separate paper by Ginman et al. [J. Med. Chem. 2013, 56, 4181-4205]. The affinity predictions are described in detail by Roos et al. [J. Chem. Inf. 2014, DOI: 10.1021/ci400374z].

  19. Specific interactions between amyloid-β peptide and curcumin derivatives: Ab initio molecular simulations

    NASA Astrophysics Data System (ADS)

    Ishimura, Hiromi; Kadoya, Ryushi; Suzuki, Tomoya; Murakawa, Takeru; Shulga, Sergiy; Kurita, Noriyuki

    2015-07-01

    Alzheimer's disease is caused by accumulation of amyloid-β (Aβ) peptides in a brain. To suppress the production of Aβ peptides, it is effective to inhibit the cleavage of amyloid precursor protein (APP) by secretases. However, because the secretases also play important roles to produce vital proteins for human body, inhibitors for the secretases may have side effects. To propose new agents for protecting the cleavage site of APP from the attacking of the γ-secretase, we have investigated here the specific interactions between a short APP peptide and curcumin derivatives, using protein-ligand docking as well as ab initio molecular simulations.

  20. Inhibition of the archaeal beta-class (Cab) and gamma-class (Cam) carbonic anhydrases.

    PubMed

    Zimmerman, Sabrina A; Ferry, James G; Supuran, Claudiu T

    2007-01-01

    Five independently evolved classes (alpha-, beta-, gamma-, delta-, zeta-) of carbonic anhydrases facilitate the reversible hydration of carbon dioxide to bicarbonate of which the alpha-class is the most extensively studied. Detailed inhibition studies of the alpha-class with the two main classes of inhibitors, sulfonamides and metal-complexing anions, revealed many inhibitors that are used as therapeutic agents to prevent and treat many diseases. Recent inhibitor studies of the archaeal beta-class (Cab) and the gamma-class (Cam) carbonic anhydrases show differences in inhibition response to sulfonamides and metal-complexing anions, when compared to the alpha-class carbonic anhydrases. In addition, inhibition between Cab and Cam differ. These inhibition patterns are consistent with the idea that although, alpha-, beta-, and gamma-class carbonic anhydrases participate in the same two-step isomechanism, diverse active site architecture among these classes predicts variations on the catalytic mechanism. These inhibitor studies of the archaeal beta- and gamma-class carbonic anhydrases give insight to new applications of current day carbonic anhydrase inhibitors, as well as direct research to develop new compounds that may be specific inhibitors of prokaryotic carbonic anhydrases.

  1. Tracing binding modes in hit-to-lead optimization: chameleon-like poses of aspartic protease inhibitors.

    PubMed

    Kuhnert, Maren; Köster, Helene; Bartholomäus, Ruben; Park, Ah Young; Shahim, Amir; Heine, Andreas; Steuber, Holger; Klebe, Gerhard; Diederich, Wibke E

    2015-02-23

    Successful lead optimization in structure-based drug discovery depends on the correct deduction and interpretation of the underlying structure-activity relationships (SAR) to facilitate efficient decision-making on the next candidates to be synthesized. Consequently, the question arises, how frequently a binding mode (re)-validation is required, to ensure not to be misled by invalid assumptions on the binding geometry. We present an example in which minor chemical modifications within one inhibitor series lead to surprisingly different binding modes. X-ray structure determination of eight inhibitors derived from one core scaffold resulted in four different binding modes in the aspartic protease endothiapepsin, a well-established surrogate for e.g. renin and β-secretase. In addition, we suggest an empirical metrics that might serve as an indicator during lead optimization to qualify compounds as candidates for structural revalidation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Mercaptoacetamide-based class II HDAC inhibitor lowers Aβ levels and improves learning and memory in a mouse model of Alzheimer's disease.

    PubMed

    Sung, You Me; Lee, Taehee; Yoon, Hyejin; DiBattista, Amanda Marie; Song, Jung Min; Sohn, Yoojin; Moffat, Emily Isabella; Turner, R Scott; Jung, Mira; Kim, Jungsu; Hoe, Hyang-Sook

    2013-01-01

    Histone deacetylase inhibitors (HDACIs) alter gene expression epigenetically by interfering with the normal functions of HDAC. Given their ability to decrease Aβ levels, HDACIs are a potential treatment for Alzheimer's disease (AD). However, it is unclear how HDACIs alter Aβ levels. We developed two novel HDAC inhibitors with improved pharmacological properties, such as a longer half-life and greater penetration of the blood-brain barrier: mercaptoacetamide-based class II HDACI (coded as W2) and hydroxamide-based class I and IIHDACI (coded as I2) and investigated how they affect Aβ levels and cognition. HDACI W2 decreased Aβ40 and Aβ42 in vitro. HDACI I2 also decreased Aβ40, but not Aβ42. We systematically examined the molecular mechanisms by which HDACIs W2 and I2 can decrease Aβ levels. HDACI W2 decreased gene expression of γ-secretase components and increased the Aβ degradation enzyme Mmp2. Similarly, HDACI I2 decreased expression of β- and γ-secretase components and increased mRNA levels of Aβ degradation enzymes. HDACI W2 also significantly decreased Aβ levels and rescued learning and memory deficits in aged hAPP 3xTg AD mice. Furthermore, we found that the novel HDACI W2 decreased tau phosphorylation at Thr181, an effect previously unknown for HDACIs. Collectively, these data suggest that class II HDACls may serve as a novel therapeutic strategy for AD. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. p75 neurotrophin receptor cleavage by α- and γ-secretases is required for neurotrophin-mediated proliferation of brain tumor-initiating cells.

    PubMed

    Forsyth, Peter A; Krishna, Niveditha; Lawn, Samuel; Valadez, J Gerardo; Qu, Xiaotao; Fenstermacher, David A; Fournier, Michelle; Potthast, Lisa; Chinnaiyan, Prakash; Gibney, Geoffrey T; Zeinieh, Michele; Barker, Philip A; Carter, Bruce D; Cooper, Michael K; Kenchappa, Rajappa S

    2014-03-21

    Malignant gliomas are highly invasive, proliferative, and resistant to treatment. Previously, we have shown that p75 neurotrophin receptor (p75NTR) is a novel mediator of invasion of human glioma cells. However, the role of p75NTR in glioma proliferation is unknown. Here we used brain tumor-initiating cells (BTICs) and show that BTICs express neurotrophin receptors (p75NTR, TrkA, TrkB, and TrkC) and their ligands (NGF, brain-derived neurotrophic factor, and neurotrophin 3) and secrete NGF. Down-regulation of p75NTR significantly decreased proliferation of BTICs. Conversely, exogenouous NGF stimulated BTIC proliferation through α- and γ-secretase-mediated p75NTR cleavage and release of its intracellular domain (ICD). In contrast, overexpression of the p75NTR ICD induced proliferation. Interestingly, inhibition of Trk signaling blocked NGF-stimulated BTIC proliferation and p75NTR cleavage, indicating a role of Trk in p75NTR signaling. Further, blocking p75NTR cleavage attenuated Akt activation in BTICs, suggesting role of Akt in p75NTR-mediated proliferation. We also found that p75NTR, α-secretases, and the four subunits of the γ-secretase enzyme were elevated in glioblastoma multiformes patients. Importantly, the ICD of p75NTR was commonly found in malignant glioma patient specimens, suggesting that the receptor is activated and cleaved in patient tumors. These results suggest that p75NTR proteolysis is required for BTIC proliferation and is a novel potential clinical target.

  4. p75 Neurotrophin Receptor Cleavage by α- and γ-Secretases Is Required for Neurotrophin-mediated Proliferation of Brain Tumor-initiating Cells*

    PubMed Central

    Forsyth, Peter A.; Krishna, Niveditha; Lawn, Samuel; Valadez, J. Gerardo; Qu, Xiaotao; Fenstermacher, David A.; Fournier, Michelle; Potthast, Lisa; Chinnaiyan, Prakash; Gibney, Geoffrey T.; Zeinieh, Michele; Barker, Philip A.; Carter, Bruce D.; Cooper, Michael K.; Kenchappa, Rajappa S.

    2014-01-01

    Malignant gliomas are highly invasive, proliferative, and resistant to treatment. Previously, we have shown that p75 neurotrophin receptor (p75NTR) is a novel mediator of invasion of human glioma cells. However, the role of p75NTR in glioma proliferation is unknown. Here we used brain tumor-initiating cells (BTICs) and show that BTICs express neurotrophin receptors (p75NTR, TrkA, TrkB, and TrkC) and their ligands (NGF, brain-derived neurotrophic factor, and neurotrophin 3) and secrete NGF. Down-regulation of p75NTR significantly decreased proliferation of BTICs. Conversely, exogenouous NGF stimulated BTIC proliferation through α- and γ-secretase-mediated p75NTR cleavage and release of its intracellular domain (ICD). In contrast, overexpression of the p75NTR ICD induced proliferation. Interestingly, inhibition of Trk signaling blocked NGF-stimulated BTIC proliferation and p75NTR cleavage, indicating a role of Trk in p75NTR signaling. Further, blocking p75NTR cleavage attenuated Akt activation in BTICs, suggesting role of Akt in p75NTR-mediated proliferation. We also found that p75NTR, α-secretases, and the four subunits of the γ-secretase enzyme were elevated in glioblastoma multiformes patients. Importantly, the ICD of p75NTR was commonly found in malignant glioma patient specimens, suggesting that the receptor is activated and cleaved in patient tumors. These results suggest that p75NTR proteolysis is required for BTIC proliferation and is a novel potential clinical target. PMID:24519935

  5. Can brain impermeable BACE1 inhibitors serve as anti-CAA medicine?

    PubMed

    Li, Jian-Ming; Huang, Li-Ling; Liu, Fei; Tang, Bei-Sha; Yan, Xiao-Xin

    2017-08-25

    Cerebral amyloid angiopathy (CAA) is characterized by the deposition of ß-amyloid peptides (Aß) in and surrounding the wall of microvasculature in the central nervous system, together with parenchymal amyloid plaques collectively referred to as cerebral amyloidosis, which occurs in the brain commonly among the elderly and more frequently in patients with Alzheimer's disease (AD). CAA is associated with vascular injury and may cause devastating neurological outcomes. No therapeutic approach is available for this lesion to date. ß-Secretase 1 (BACE1) is the enzyme initiating Aß production. Brain permeable BACE1 inhibitors targeting primarily at the parenchymal plaque pathology are currently evaluated in clinical trials. This article presents findings in support of a role of BACE1 elevation in the development of CAA, in addition to plaque pathogenesis. The rationale, feasibility, benefit and strategic issues for developing BACE1 inhibitors against CAA are discussed. Brain impermeable compounds are considered preferable as they might exhibit sufficient anti-CAA efficacy without causing significant neuronal/synaptic side effects. Early pharmacological intervention to the pathogenesis of CAA is expected to provide significant protection for cerebral vascular health and hence brain health. Brain impermeable BACE1 inhibitors should be optimized and tested as potential anti-CAA therapeutics.

  6. The Coumarin Derivative Osthole Stimulates Adult Neural Stem Cells, Promotes Neurogenesis in the Hippocampus, and Ameliorates Cognitive Impairment in APP/PS1 Transgenic Mice.

    PubMed

    Kong, Liang; Hu, Yu; Yao, Yingjia; Jiao, Yanan; Li, Shaoheng; Yang, Jingxian

    2015-01-01

    It is believed that neuronal death caused by abnormal deposition of amyloid-beta peptide is the major cause of the cognitive decline in Alzheimer's disease. Adult neurogenesis plays a key role in the rescue of impaired neurons and amelioration of cognitive impairment. In the present study, we demonstrated that osthole, a natural coumarin derivative, was capable of promoting neuronal stem cell (NSC) survival and inducing NSC proliferation in vitro. In osthole-treated APP/PS1 transgenic mice, a significant improvement in learning and memory function was seen, which was associated with a significant increase in the number of new neurons (Ki67(+)/NF-M(+)) and a decrease in apoptotic cells in the hippocampal region of the brain. These observations suggested that osthole promoted NSC proliferation, supported neurogenesis, and thus efficiently rescued impaired neurons in the hippocampus and ameliorated cognitive impairment. We also found that osthole treatment activated the Notch pathway and upregulated the expression of self-renewal genes Notch 1 and Hes 1 mRNA in NSCs. However, when Notch activity was blocked by the γ-secretase inhibitor DAPT, the augmentation of Notch 1 and Hes 1 protein was ameliorated, and the proliferation-inducing effect of osthole was abolished, suggesting that the effects of osthole are at least in part mediated by activation of the Notch pathway.

  7. Automated Segmentation of Light-Sheet Fluorescent Imaging to Characterize Experimental Doxorubicin-Induced Cardiac Injury and Repair.

    PubMed

    Packard, René R Sevag; Baek, Kyung In; Beebe, Tyler; Jen, Nelson; Ding, Yichen; Shi, Feng; Fei, Peng; Kang, Bong Jin; Chen, Po-Heng; Gau, Jonathan; Chen, Michael; Tang, Jonathan Y; Shih, Yu-Huan; Ding, Yonghe; Li, Debiao; Xu, Xiaolei; Hsiai, Tzung K

    2017-08-17

    This study sought to develop an automated segmentation approach based on histogram analysis of raw axial images acquired by light-sheet fluorescent imaging (LSFI) to establish rapid reconstruction of the 3-D zebrafish cardiac architecture in response to doxorubicin-induced injury and repair. Input images underwent a 4-step automated image segmentation process consisting of stationary noise removal, histogram equalization, adaptive thresholding, and image fusion followed by 3-D reconstruction. We applied this method to 3-month old zebrafish injected intraperitoneally with doxorubicin followed by LSFI at 3, 30, and 60 days post-injection. We observed an initial decrease in myocardial and endocardial cavity volumes at day 3, followed by ventricular remodeling at day 30, and recovery at day 60 (P < 0.05, n = 7-19). Doxorubicin-injected fish developed ventricular diastolic dysfunction and worsening global cardiac function evidenced by elevated E/A ratios and myocardial performance indexes quantified by pulsed-wave Doppler ultrasound at day 30, followed by normalization at day 60 (P < 0.05, n = 9-20). Treatment with the γ-secretase inhibitor, DAPT, to inhibit cleavage and release of Notch Intracellular Domain (NICD) blocked cardiac architectural regeneration and restoration of ventricular function at day 60 (P < 0.05, n = 6-14). Our approach provides a high-throughput model with translational implications for drug discovery and genetic modifiers of chemotherapy-induced cardiomyopathy.

  8. Notch signaling is involved in human articular chondrocytes de-differentiation during osteoarthritis.

    PubMed

    Sassi, Nadia; Gadgadi, Nadia; Laadhar, Lilia; Allouche, Mohamed; Mourali, Slim; Zandieh-Doulabi, Behrouz; Hamdoun, Moncef; Nulend, Jenneke Klein; Makni, Sondès; Sellami, Slaheddine

    2014-02-01

    During osteoarthritis (OA), chondrocytes undergo de-differentiation, resulting in the acquisition of a fibroblast-like morphology, decreased expression of collagen type II (colII) and aggrecan, and increased expression of collagen type I (colI), metalloproteinase 13 (MMP13) and nitric oxide synthase (eNOS). Notch signaling plays a crucial role during embryogenesis. Several studies showed that Notch is expressed in adulthood. The aim of our study was to confirm the involvement of Notch signaling in human OA at in vitro and ex vivo levels. Normal human articular chondrocytes were cultured during four passages either treated or not with a Notch inhibitor: DAPT. Human OA cartilage was cultured with DAPT for five days. Chondrocytes secreted markers and some Notch pathway components were analyzed using Western blotting and qPCR. Passaging chondrocytes induced a decrease in the cartilage markers: colII and aggrecan. DAPT-treated chondrocytes and OA cartilage showed a significant increase in healthy cartilage markers. De-differentiation markers, colI, MMP13 and eNOS, were significantly reduced in DAPT-treated chondrocytes and OA cartilage. Notch1 expression was proportional to colI, MMP13 and eNOS expression and inversely proportional to colII and aggrecan expression in nontreated cultured chondrocytes. Notch ligand: Jagged1 increased in chondrocytes culture. DAPT treatment resulted in reduced Jagged1 expression. Notch target gene HES1 increased during chondrocyte culture and was reduced when treated with DAPT. Targeting Notch signaling during OA might lead to the restitution of the typical chondrocyte phenotype and even to chondrocyte redifferentiation during the pathology.

  9. Concomitant nitrates enhance clopidogrel response during dual anti-platelet therapy.

    PubMed

    Lee, Dong Hyun; Kim, Moo Hyun; Guo, Long Zhe; De Jin, Cai; Cho, Young Rak; Park, Kyungil; Park, Jong Sung; Park, Tae-Ho; Serebruany, Victor

    2016-01-15

    Despite advances in modern anti-platelet strategies, clopidogrel still remains the cornerstone of dual anti-platelet therapy (DAPT) in patients undergoing percutaneous coronary interventions (PCI). There is some inconclusive evidence that response after clopidogrel may be impacted by concomitant medications, potentially affecting clinical outcomes. Sustained released nitrates (SRN) are commonly used together with clopidogrel in post-PCI setting for mild vasodilatation and nitric oxide-induced platelet inhibition. We prospectively enrolled 458 patients (64.5 ± 9.6 years old, and 73.4% males) following PCI undergoing DAPT with clopidogrel and aspirin. Platelet reactivity was assessed by the VerifyNow™ P2Y12 assay at the maintenance outpatient setting. Concomitant SRN (n=266) significantly (p=0.008) enhanced platelet inhibition after DAPT (251.6 ± 80.9PRU) when compared (232.1 ± 73.5PRU) to the SRN-free (n=192) patients. Multivariate logistic regression analysis with the cut-off value of 253 PRU for defining heightened platelet reactivity confirmed independent correlation of more potent platelet inhibition during DAPT and use of SRN (Relative risk=1.675; Odds ratio [1.059-2.648]; p=0.027). In contrast, statins, calcium-channel blockers, beta blockers, angiotensin receptor blockers, ACE-inhibitors, diuretics, and anti-diabetic agents did not significantly impact platelet inhibition following DAPT. The synergic ability of SRN to enhance response during DAPT may have important clinical implications with regard to better cardiovascular protection, but extra bleeding risks, requiring further confirmation in a large randomized study. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Esomeprazole and rabeprazole did not reduce antiplatelet effects of aspirin/clopidogrel dual therapy in patients undergoing percutaneous coronary intervention: a prospective, randomized, case-control study.

    PubMed

    Liu, Li-Peng; Wang, Yan; Si, Rui; Yuan, Ming; Cheng, Kang; Guo, Wen-Yi

    2016-01-01

    Controversy has been prompted based on drug interaction between proton pump inhibitors (PPIs) and aspirin/clopidogrel leading to weakened effects. However, whether such interaction was drug-specific or class effect remains controversial. This study predicted the impact of esomeprazole and rabeprazole on efficacy of dual antiplatelet therapy (DAPT). This study, involving 150 patients, evaluated the efficacy of DAPT upon concomitant use of esomeprazole (40 mg/d) or rabeprazole (20 mg/d). Platelet reactivity was assessed by value of ADP-induced light transmittance aggregometry (LTA) and vasodilator-stimulated phosphoprotein phosphorylation-platelet reactivity index (VASP-PRI) at day 1, day 3 and day 30 end points after initiation of DAPT. No significance were observed by post-hoc analysis of treatment-by-period interaction in LTA value and VASP-PRI value when compared with non-PPI users, which suggests no carryover effect in both PPIs over the 30-day treatment period. Moreover, no statistical differences was in LTA or VASP-PRI value in esomeprazole group while rabeprazole group showed decreased in antiplatelet function of DAPT at the day 3 and day 30 end points. Although antiplatelet effect of DAPT were not affected upon concomitant use of both PPIs over the 30-day treatment period, esomeprazole exerts much more stable impact on antiplatelet effect than rabeprazole among respective end points.

  11. Ramipril and Losartan Exert a Similar Long-Term Effect upon Markers of Heart Failure, Endogenous Fibrinolysis, and Platelet Aggregation in Survivors of ST-Elevation Myocardial Infarction: A Single Centre Randomized Trial.

    PubMed

    Marinšek, Martin; Sinkovič, Andreja

    2016-01-01

    Blocking the renin-angiotensin-aldosterone system in ST-elevation myocardial infarction (STEMI) patients prevents heart failure and recurrent thrombosis. Our aim was to compare the effects of ramipril and losartan upon the markers of heart failure, endogenous fibrinolysis, and platelet aggregation in STEMI patients over the long term. After primary percutaneous coronary intervention (PPCI), 28 STEMI patients were randomly assigned ramipril and 27 losartan, receiving therapy for six months with dual antiplatelet therapy (DAPT). We measured N-terminal proBNP (NT-proBNP), ejection fraction (EF), plasminogen-activator-inhibitor type 1 (PAI-1), and platelet aggregation by closure times (CT) at the baseline and after six months. Baseline NT-proBNP ≥ 200 pmol/mL was observed in 48.1% of the patients, EF < 55% in 49.1%, and PAI-1 ≥ 3.5 U/mL in 32.7%. Six-month treatment with ramipril or losartan resulted in a similar effect upon PAI-1, NT-proBNP, EF, and CT levels in survivors of STEMI, but in comparison to control group, receiving DAPT alone, ramipril or losartan treatment with DAPT significantly increased mean CT (226.7 ± 80.3 sec versus 158.1 ± 80.3 sec, p < 0.05). Ramipril and losartan exert a similar effect upon markers of heart failure and endogenous fibrinolysis, and, with DAPT, a more efficient antiplatelet effect in long term than DAPT alone.

  12. Peptide Inhibitors for Viral Infections and as Anti-inflammatory Agents | NCI Technology Transfer Center | TTC

    Cancer.gov

    IFN-gamma and IL-10 are cytokine signaling molecules that play fundamental roles in inflammation, cancer growth and autoimmune diseases.  Unfortunately, there are no specific inhibitors of IFN-gamma or IL-10 on the market to date. The National Cancer Institute seeks parties interested in licensing or collaborative research to co-develop selective IL-10 and IFN-gamma peptide inhibitors.

  13. Design, synthesis and evaluation of 3-(2-aminoheterocycle)-4-benzyloxyphenylbenzamide derivatives as BACE-1 inhibitors.

    PubMed

    Shangguan, Shihao; Wang, Fei; Liao, Yong; Yu, Haiping; Li, Jia; Huang, Wenhai; Hu, Haihong; Yu, Lushan; Hu, Yongzhou; Sheng, Rong

    2013-03-20

    Three series of 3-(2-aminoheterocycle)-4-benzyloxyphenylbenzamide derivatives, 2-aminooxazoles, 2-aminothiazoles, and 2-amino-6H-1,3,4-thiadizines were designed, synthesized and evaluated as β-secretase (BACE-1) inhibitors. Preliminary structure-activity relationships revealed that the existence of a 2-amino-6H-1,3,4-thiadizine moiety and α-naphthyl group were favorable for BACE-1 inhibition. Among the synthesized compounds, 5e exhibited the most potent BACE-1 inhibitory activity, with an IC50 value of 9.9 μΜ and it exhibited high brain uptake potential in Madin-Darby anine kidney cell lines (MDCK) and a Madin-Darby canine kidney-multidrug resistance 1 (MDCK-MDR1) model.

  14. Gamma-Secretase/Notch Signalling Pathway Inhibitor RO4929097 in Treating Patients With Stage IV Melanoma

    ClinicalTrials.gov

    2016-05-06

    Acral Lentiginous Malignant Melanoma; Lentigo Maligna Malignant Melanoma; Nodular Malignant Melanoma; Recurrent Melanoma; Solar Radiation-related Skin Melanoma; Stage IV Melanoma; Superficial Spreading Malignant Melanoma

  15. Gamma-Secretase Inhibitor RO4929097 and Cediranib Maleate in Treating Patients With Advanced Solid Tumors

    ClinicalTrials.gov

    2014-12-22

    Adult Anaplastic Astrocytoma; Adult Anaplastic Ependymoma; Adult Anaplastic Oligodendroglioma; Adult Brain Stem Glioma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Mixed Glioma; Adult Solid Neoplasm; Male Breast Carcinoma; Recurrent Adult Brain Neoplasm; Recurrent Breast Carcinoma; Recurrent Colon Carcinoma; Recurrent Melanoma; Recurrent Non-Small Cell Lung Carcinoma; Recurrent Ovarian Carcinoma; Recurrent Ovarian Germ Cell Tumor; Recurrent Pancreatic Carcinoma; Recurrent Rectal Carcinoma; Recurrent Renal Cell Carcinoma; Stage III Pancreatic Cancer; Stage III Renal Cell Cancer; Stage IIIA Colon Cancer; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIA Ovarian Cancer; Stage IIIA Ovarian Germ Cell Tumor; Stage IIIA Rectal Cancer; Stage IIIA Skin Melanoma; Stage IIIB Breast Cancer; Stage IIIB Colon Cancer; Stage IIIB Non-Small Cell Lung Cancer; Stage IIIB Ovarian Cancer; Stage IIIB Ovarian Germ Cell Tumor; Stage IIIB Rectal Cancer; Stage IIIB Skin Melanoma; Stage IIIC Breast Cancer; Stage IIIC Colon Cancer; Stage IIIC Ovarian Cancer; Stage IIIC Ovarian Germ Cell Tumor; Stage IIIC Rectal Cancer; Stage IIIC Skin Melanoma; Stage IV Breast Cancer; Stage IV Non-Small Cell Lung Cancer; Stage IV Ovarian Cancer; Stage IV Ovarian Germ Cell Tumor; Stage IV Pancreatic Cancer; Stage IV Renal Cell Cancer; Stage IV Skin Melanoma; Stage IVA Colon Cancer; Stage IVA Rectal Cancer; Stage IVB Colon Cancer; Stage IVB Rectal Cancer

  16. Cisplatin selects for stem-like cells in osteosarcoma by activating Notch signaling

    PubMed Central

    Yang, Jian; Gao, Tian; Simões, Bruno M.; Eyre, Rachel; Guo, Weichun; Clarke, Robert B.

    2016-01-01

    Notch signaling regulates normal stem cells and is also thought to regulate cancer stem cells (CSCs). Recent data indicate that Notch signaling plays a role in the development and progression of osteosarcoma, however the regulation of Notch in chemo-resistant stem-like cells has not yet been fully elucidated. In this study we generated cisplatin-resistant osteosarcoma cells by treating them with sub-lethal dose of cisplatin, sufficient to induce DNA damage responses. Cisplatin-resistant osteosarcoma cells exhibited lower proliferation, enhanced spheroid formation and more mesenchymal characteristics than cisplatin-sensitive cells, were enriched for Stro-1+/CD117+ cells and showed increased expression of stem cell-related genes. A similar effect was observed in vivo, and in addition in vivo tumorigenicity was enhanced during serial transplantation. Using several publicly available datasets, we identified that Notch expression was closely associated with osteosarcoma stem cells and chemotherapy resistance. We confirmed that cisplatin-induced enrichment of osteosarcoma stem cells was mediated through Notch signaling in vitro, and immunohistochemistry showed that cleaved Notch1 (NICD1) positive cells were significantly increased in a relapsed xenograft which had received cisplatin treatment. Furthermore, pretreatment with a γ-secretase inhibitor (GSI) to prevent Notch signalling inhibited cisplatin-enriched osteosarcoma stem cell activity in vitro, including Stro-1+/CD117+ double positive cells and spheroid formation capacity. The Notch inhibitor DAPT also prevented tumor recurrence in resistant xenograft tumors. Overall, our results show that cisplatin induces the enrichment of osteosarcoma stem-like cells through Notch signaling, and targeted inactivation of Notch may be useful for the elimination of CSCs and overcoming drug resistance. PMID:27102300

  17. Expression of HES and HEY genes in infantile hemangiomas.

    PubMed

    Adepoju, Omotinuwe; Wong, Alvin; Kitajewski, Alex; Tong, Karen; Boscolo, Elisa; Bischoff, Joyce; Kitajewski, Jan; Wu, June K

    2011-08-11

    Infantile hemangiomas (IHs) are the most common benign tumor of infancy, yet their pathogenesis is poorly understood. IHs are believed to originate from a progenitor cell, the hemangioma stem cell (HemSC). Recent studies by our group showed that NOTCH proteins and NOTCH ligands are expressed in hemangiomas, indicating Notch signaling may be active in IHs. We sought to investigate downstream activation of Notch signaling in hemangioma cells by evaluating the expression of the basic HLH family proteins, HES/HEY, in IHs. HemSCs and hemangioma endothelial cells (HemECs) are isolated from freshly resected hemangioma specimens. Quantitative RT-PCR was performed to probe for relative gene transcript levels (normalized to beta-actin). Immunofluorescence was performed to evaluate protein expression. Co-localization studies were performed with CD31 (endothelial cells) and NOTCH3 (peri-vascular, non-endothelial cells). HemSCs were treated with the gamma secretase inhibitor (GSI) Compound E, and gene transcript levels were quantified with real-time PCR. HEY1, HEYL, and HES1 are highly expressed in HemSCs, while HEY2 is highly expressed in HemECs. Protein expression evaluation by immunofluorescence confirms that HEY2 is expressed by HemECs (CD31+ cells), while HEY1, HEYL, and HES1 are more widely expressed and mostly expressed by perivascular cells of hemangiomas. Inhibition of Notch signaling by addition of GSI resulted in down-regulation of HES/HEY genes. HES/HEY genes are expressed in IHs in cell type specific patterns; HEY2 is expressed in HemECs and HEY1, HEYL, HES1 are expressed in HemSCs. This pattern suggests that HEY/HES genes act downstream of Notch receptors that function in distinct cell types of IHs. HES/HEY gene transcripts are decreased with the addition of a gamma-secretase inhibitor, Compound E, demonstrating that Notch signaling is active in infantile hemangioma cells.

  18. Soluble γ-secretase modulators selectively inhibit the production of the 42-amino acid amyloid β peptide variant and augment the production of multiple carboxy-truncated amyloid β species.

    PubMed

    Wagner, Steven L; Zhang, Can; Cheng, Soan; Nguyen, Phuong; Zhang, Xulun; Rynearson, Kevin D; Wang, Rong; Li, Yueming; Sisodia, Sangram S; Mobley, William C; Tanzi, Rudolph E

    2014-02-04

    Alzheimer's disease (AD) is characterized pathologically by an abundance of extracellular neuritic plaques composed primarily of the 42-amino acid amyloid β peptide variant (Aβ42). In the majority of familial AD (FAD) cases, e.g., those harboring mutations in presenilin 1 (PS1), there is a relative increase in the levels of Aβ42 compared to the levels of Aβ40. We previously reported the characterization of a series of aminothiazole-bridged aromates termed aryl aminothiazole γ-secretase modulators or AGSMs [Kounnas, M. Z., et al. (2010) Neuron 67, 769-780] and showed their potential for use in the treatment of FAD [Wagner, S. L., et al. (2012) Arch. Neurol. 69, 1255-1258]. Here we describe a series of GSMs with physicochemical properties improved compared to those of AGSMs. Specific heterocycle replacements of the phenyl rings in AGSMs provided potent molecules with improved aqueous solubilities. A number of these soluble γ-secretase modulators (SGSMs) potently lowered Aβ42 levels without inhibiting proteolysis of Notch or causing accumulation of amyloid precursor protein carboxy-terminal fragments, even at concentrations approximately 1000-fold greater than their IC50 values for reducing Aβ42 levels. The effects of one potent SGSM on Aβ peptide production were verified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry, showing enhanced production of a number of carboxy-truncated Aβ species. This SGSM also inhibited Aβ42 peptide production in a highly purified reconstituted γ-secretase in vitro assay system and retained the ability to modulate γ-secretase-mediated proteolysis in a stably transfected cell culture model overexpressing a human PS1 mutation validating the potential for use in FAD.

  19. Antagonistic Effects of BACE1 and APH1B-γ-Secretase Control Axonal Guidance by Regulating Growth Cone Collapse.

    PubMed

    Barão, Soraia; Gärtner, Annette; Leyva-Díaz, Eduardo; Demyanenko, Galina; Munck, Sebastian; Vanhoutvin, Tine; Zhou, Lujia; Schachner, Melitta; López-Bendito, Guillermina; Maness, Patricia F; De Strooper, Bart

    2015-09-01

    ΒACE1 is the major drug target for Alzheimer's disease, but we know surprisingly little about its normal function in the CNS. Here, we show that this protease is critically involved in semaphorin 3A (Sema3A)-mediated axonal guidance processes in thalamic and hippocampal neurons. An active membrane-bound proteolytic CHL1 fragment is generated by BACE1 upon Sema3A binding. This fragment relays the Sema3A signal via ezrin-radixin-moesin (ERM) proteins to the neuronal cytoskeleton. APH1B-γ-secretase-mediated degradation of this fragment stops the Sema3A-induced collapse and sensitizes the growth cone for the next axonal guidance cue. Thus, we reveal a cycle of proteolytic activity underlying growth cone collapse and restoration used by axons to find their correct trajectory in the brain. Our data also suggest that BACE1 and γ-secretase inhibition have physiologically opposite effects in this process, supporting the idea that combination therapy might attenuate some of the side effects associated with these drugs. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Analogues of methotrexate and aminopterin with gamma-methylene and gamma-cyano substitution of the glutamate side chain: synthesis and in vitro biological activity.

    PubMed

    Rosowsky, A; Bader, H; Freisheim, J H

    1991-01-01

    Analogues of methotrexate (MTX) and aminopterin (AMT) modified at the gamma-position of the glutamate side chain were synthesized and evaluated as dihydrofolate reductase (DHFR) inhibitors and tumor cell growth inhibitors. Condesations of 4-amino-4-deoxy-N10-methylpteroic acid (mAPA) with dimethyl DL-4-methyleneglutamate in the presence of diethyl phosphorocyanidate (DEPC) followed by alkaline hydrolysis yielded N-(4-amino-4-deoxy-N10-methylpteroyl)-DL-4-methyleneglutamic acid (gamma-methyleneMTX). Condensation of 4-amino-4-deoxy-N10-formylpteroic acid (fAPA) with dimethyl-DL-4-methyleneglutamate by the mixed carboxylic-carbonic anhydride method yielded N-4-amino-4-deoxypteroyl)-DL-4-methyleneglutamic acid (gamma-methyleneAMT). Also prepared via DEPC coupling was a mixture of the four possible diastereomers of N-(4-amino-4-deoxy-N10-methylpteroyl)-4-cyanoglutamic acid (gamma-cyanoMTX). The requisite intermediate gamma-tert-butyl alpha-methyl 4-cyanoglutamate, as a DL-threo/DL-erythro mixture, was prepared from methyl N alpha-Boc-O-tosyl-L-serinate by reaction with sodium tert-butyl cyanoacetate followed by mild trifluoroacetic treatment to selectively remove the Boc group. The gamma-methylene derivatives of MTX and AMT are attractive because of their potential to act as Michael acceptors within the DHFR active site. gamma-CyanoMTX may be viewed as a congener of the nonpolyglutamated MTX analogue gamma-fluoroMTX. In vitro bioassay data for the gamma-methylene and gamma-cyano compounds support the idea that the active site of DHFR, already known for its ability to tolerate modification of the gamma-carboxyl group of MTX and AMT, can likewise accommodate substitution on the gamma-carbon itself.

  1. Loss of Oncogenic Notch1 with Resistance to a PI3K Inhibitor in T Cell Leukaemia

    PubMed Central

    Dail, Monique; Wong, Jason; Lawrence, Jessica; O’Connor, Daniel; Nakitandwe, Joy; Chen, Shann-Ching; Xu, Jin; Lee, Leslie B; Akagi, Keiko; Li, Qing; Aster, Jon C.; Pear, Warren S.; Downing, James R; Sampath, Deepak; Shannon, Kevin

    2014-01-01

    Mutations that deregulate Notch1 and Ras/PI3 kinase/Akt signalling are prevalent in T lineage acute lymphoblastic leukaemia (T-ALL), and often coexist. The PI3 kinase inhibitor GDC-0941 was active against primary T-ALLs from wild-type and KrasG12D mice and addition of the MEK inhibitor PD0325901 increased efficacy. Mice invariably relapsed after treatment with drug resistant clones, most of which unexpectedly had reduced levels of activated Notch1 protein, down-regulated many Notch1 target genes, and exhibited cross-resistance to γ secretase inhibitors. Multiple resistant primary T-ALLs that emerged in vivo did not contain somatic Notch1 mutations present in the parental leukaemia. Importantly, resistant clones up-regulated PI3K signalling. Consistent with these data, inhibiting Notch1 activated the PI3K pathway, providing a likely mechanism for selection against oncogenic Notch1 signalling. These studies validate PI3K as a therapeutic target in T-ALL and raise the unexpected possibility that dual inhibition of PI3K and Notch1 signalling could facilitate drug resistance in T-ALL. PMID:25043004

  2. Loss of oncogenic Notch1 with resistance to a PI3K inhibitor in T-cell leukaemia.

    PubMed

    Dail, Monique; Wong, Jason; Lawrence, Jessica; O'Connor, Daniel; Nakitandwe, Joy; Chen, Shann-Ching; Xu, Jin; Lee, Leslie B; Akagi, Keiko; Li, Qing; Aster, Jon C; Pear, Warren S; Downing, James R; Sampath, Deepak; Shannon, Kevin

    2014-09-25

    Mutations that deregulate Notch1 and Ras/phosphoinositide 3 kinase (PI3K)/Akt signalling are prevalent in T-cell acute lymphoblastic leukaemia (T-ALL), and often coexist. Here we show that the PI3K inhibitor GDC-0941 is active against primary T-ALLs from wild-type and Kras(G12D) mice, and addition of the MEK inhibitor PD0325901 increases its efficacy. Mice invariably relapsed after treatment with drug-resistant clones, most of which unexpectedly had reduced levels of activated Notch1 protein, downregulated many Notch1 target genes, and exhibited cross-resistance to γ-secretase inhibitors. Multiple resistant primary T-ALLs that emerged in vivo did not contain somatic Notch1 mutations present in the parental leukaemia. Importantly, resistant clones upregulated PI3K signalling. Consistent with these data, inhibiting Notch1 activated the PI3K pathway, providing a likely mechanism for selection against oncogenic Notch1 signalling. These studies validate PI3K as a therapeutic target in T-ALL and raise the unexpected possibility that dual inhibition of PI3K and Notch1 signalling could promote drug resistance in T-ALL.

  3. Longer-term oral antiplatelet use in stable post-myocardial infarction patients: Insights from the long Term rIsk, clinical manaGement and healthcare Resource utilization of stable coronary artery dISease (TIGRIS) observational study.

    PubMed

    Goodman, Shaun G; Nicolau, Jose C; Requena, Gema; Maguire, Andrew; Blankenberg, Stefan; Chen, Ji Yan; Granger, Christopher B; Grieve, Richard; Pocock, Stuart J; Simon, Tabassome; Yasuda, Satoshi; Vega, Ana Maria; Brieger, David

    2017-06-01

    To describe contemporary patient characteristics and treatment patterns, including antithrombotic management, of post-myocardial infarction (MI) stable coronary artery disease (CAD) patients at high atherothrombotic risk from different geographical regions. Patients ≥50years with prior MI 1-3years ago and ≥1 risk factor (age ≥65years, diabetes, 2nd prior MI >1yr ago, multivessel CAD, creatinine clearance 15-<60ml/min) were enrolled by 369 physicians (96% cardiologists) in 25 countries (2013-14) in the prospective TIGRIS study (NCT01866904). 9225 patients were enrolled (median 1.8years) post-MI: 52% with prior ST-elevation MI, median age 67years, 24% women, 67% Caucasian, 55% had ≥2 additional qualifying risk factors, 14% current smokers, 67% overweight/obese, 34% with blood pressure ≥140/90mmHg. 81% underwent percutaneous coronary intervention (PCI; 66% with drug-eluting stents) for the index MI. 75% of patients had been discharged on dual antiplatelet therapy (DAPT; acetylsalicylic acid [ASA]+ADP receptor inhibitor [ADPri]), mainly clopidogrel (75%). 63% had discontinued antiplatelet treatment (60% ADPri) around 1year, most commonly by physician recommendation (90%). At enrolment, 97% were taking an antithrombotic drug, most commonly ASA (88%), with 27% on DAPT (median duration 1.6years); continued DAPT >1year was highest (39%) in Asia-Pacific and lowest (12%) in Europe. Despite guideline recommendations, 1 in 4 post-MI patients did not receive DAPT for ~1year. In contrast to guideline recommendations supporting newer ADPris, clopidogrel was mainly prescribed. Prior to recent RCT data supporting DAPT >1year post-MI/PCI, >1 in 4 patients have continued on DAPT, though with substantial international variability. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  4. Processing of the Synaptic Cell Adhesion Molecule Neurexin-3β by Alzheimer Disease α- and γ-Secretases*

    PubMed Central

    Bot, Nathalie; Schweizer, Claude; Ben Halima, Saoussen; Fraering, Patrick C.

    2011-01-01

    Neurexins (NRXNs) are synaptic cell adhesion molecules having essential roles in the assembly and maturation of synapses into fully functional units. Immunocytochemical and electrophysiological studies have shown that specific binding across the synaptic cleft of the ectodomains of presynaptic NRXNs and postsynaptic neuroligins have the potential to bidirectionally coordinate and trigger synapse formation. Moreover, in vivo studies as well as genome-wide association studies pointed out implication of NRXNs in the pathogenesis of cognitive disorders including autism spectrum disorders and different types of addictions including opioid and alcohol dependences, suggesting an important role in synaptic function. Despite extensive investigations, the mechanisms by which NRXNs modulate the properties of synapses remain largely unknown. We report here that α- and γ-secretases can sequentially process NRXN3β, leading to the formation of two final products, an ∼80-kDa N-terminal extracellular domain of Neurexin-3β (sNRXN3β) and an ∼12-kDa C-terminal intracellular NRXN3β domain (NRXN3β-ICD), both of them being potentially implicated in the regulation of NRXNs and neuroligins functions at the synapses or in yet unidentified signal transduction pathways. We further report that this processing is altered by several PS1 mutations in the catalytic subunit of the γ-secretase that cause early-onset familial Alzheimer disease. PMID:21084300

  5. Activation of peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}) induces cell death through MAPK-dependent mechanism in osteoblastic cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sung Hun; Yoo, Chong Il; Medical Research Institute, College of Medicine, Pusan National University, Pusan, 602-739

    2006-09-01

    The present study was undertaken to determine the role of the mitogen-activated protein kinase (MAPK) subfamilies in cell death induced by PPAR{gamma} agonists in osteoblastic cells. Ciglitazone and troglitazone, PPAR{gamma} agonists, resulted in a concentration- and time-dependent cell death, which was largely attributed to apoptosis. But a PPAR{alpha} agonist ciprofibrate did not affect the cell death. Ciglitazone caused reactive oxygen species (ROS) generation and ciglitazone-induced cell death was prevented by antioxidants, suggesting an important role of ROS generation in the ciglitazone-induced cell death. ROS generation and cell death induced by ciglitazone were inhibited by the PPAR{gamma} antagonist GW9662. Ciglitazone treatmentmore » caused activation of extracellular signal-regulated kinase (ERK) and p38. Activation of ERK was dependent on epidermal growth factor receptor (EGFR) and that of p38 was independent. Ciglitazone-induced cell death was significantly prevented by PD98059, an inhibitor of ERK upstream kinase MEK1/2, and SB203580, a p38 inhibitor. Ciglitazone treatment increased Bax expression and caused a loss of mitochondrial membrane potential, and its effect was prevented by N-acetylcysteine, PD98059, and SB203580. Ciglitazone induced caspase activation, which was prevented by PD98059 and SB203580. The general caspase inhibitor z-DEVD-FMK and the specific inhibitor of caspases-3 DEVD-CHO exerted the protective effect against the ciglitazone-induced cell death. The EGFR inhibitors AG1478 and suramin protected against the ciglitazone-induced cell death. Taken together, these findings suggest that the MAPK signaling pathways play an active role in mediating the ciglitazone-induced cell death of osteoblasts and function upstream of a mitochondria-dependent mechanism. These data may provide a novel insight into potential therapeutic strategies for treatment of osteoporosis.« less

  6. Autophagy contributes to 4-Amino-2-Trifluoromethyl-Phenyl Retinate-induced differentiation in human acute promyelocytic leukemia NB4 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yue; Li, Ge; Wang, Ke

    As a classic differentiation agent, all-trans retinoic acid (ATRA) has been widely used in treatment of acute promyelocytic leukemia (APL). However, clinical application of ATRA has limitations. Our previous studies suggested that 4-Amino-2-Trifluoromethyl-Phenyl Retinate (ATPR), a novel all-trans retinoic acid (ATRA) derivative designed and synthesized by our team, could induce differentiation of APL cells in vivo and in vitro. To explore the underlying mechanism of ATPR, the effect of ATPR on autophagy of APL cells was observed in the present study. The results showed that the differentiation effect of ATPR on APL cells was accompanied with autophagy induction and PML-RARαmore » degradation via activating Notch1 signaling pathway. Moreover, inhibition of autophagy using 3-methyladenine (3-MA) or small interfering RNA (siRNA) that targets essential autophagy gene ATG5 abrogated the ATPR-induced cell differentiation. Furthermore, when pretreated with DAPT, a γ-secretase inhibitor, the Notch1 signaling pathway was blocked in APL cells, followed by the reduction of ATPR-induced autophagy and differentiation. Taken together, these results suggested that autophagy play an important role in ATPR-induced cell differentiation, which may provide a novel approach to cure APL patients. - Highlights: • ATPR induces autophagy in APL cell line NB4 cells. • Autophagy induction is essential for cell differentiation in NB4 cells. • Notch1 signaling is involved in ATPR-induced autophagy and differentiation in NB4 cells.« less

  7. Regulation of the steady state level of Fc gamma RI mRNA by IFN-gamma and dexamethasone in human monocytes, neutrophils, and U-937 cells.

    PubMed

    Pan, L Y; Mendel, D B; Zurlo, J; Guyre, P M

    1990-07-01

    The high affinity IgG FcR Fc gamma RI, CD64, plays important roles in the immune response. Fc gamma RI is predominantly expressed on monocytes and macrophages, and barely detectable on neutrophils. rIFN-gamma markedly increases the expression of Fc gamma RI on neutrophils, monocytes, macrophages and myeloid cell lines such as U-937, HL-60, and THP-1. Glucocorticoids inhibit the augmentation of Fc gamma RI expression by rIFN-gamma on neutrophils and myeloid cell lines, but enhance the augmentation of Fc gamma RI expression by rIFN-gamma on monocytes. In this study, we examined the effect of rIFN-gamma and dexamethasone (Dex) on the steady state level of Fc gamma RI mRNA in U-937 cells, neutrophils, and monocytes by hybridizing total RNA with the Fc gamma RI cDNA probe, p135. We found that the amount of Fc gamma RI mRNA increased within 1 h of treatment with rIFN-gamma in all three cell types. This initial induction of Fc gamma RI mRNA by rIFN-gamma was completely blocked by an inhibitor of RNA synthesis, actinomycin D, suggesting that the rIFN-gamma-mediated induction of Fc gamma RI mRNA is dependent on gene transcription. Dex, used in combination with rIFN-gamma, partially blocked the induction of Fc gamma RI mRNA by rIFN-gamma in U-937 cells and neutrophils, but caused a synergistic increase in Fc gamma RI mRNA levels in monocytes. The inhibitory effect of Dex on the steady state level of Fc gamma RI mRNA in U-937 cells was blocked by an inhibitor of protein synthesis, cycloheximide, suggesting that Dex-induced proteins were involved in the regulation of Fc gamma RI expression. This study indicates that the regulation of Fc gamma RI expression on U-937 cells, neutrophils, and monocytes by rIFN-gamma and Dex occurs, at least in part, at the mRNA level. rIFN-gamma increases the steady state level of Fc gamma RI mRNA through a common pathway among U-937 cells, neutrophils, and monocytes, whereas the effect of Dex on rIFN-gamma-induced Fc gamma RI mRNA is cell

  8. Characterizing the structural ensemble of γ-secretase using a multiscale molecular dynamics approach† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc00980a Click here for additional data file.

    PubMed Central

    Aguayo-Ortiz, Rodrigo; Chávez-García, Cecilia; Straub, John E.

    2017-01-01

    γ-Secretase is an intramembrane-cleaving aspartyl protease that plays an essential role in the processing of a variety of integral membrane proteins. Its role in the ultimate cleavage step in the processing of amyloid precursor protein to form amyloid-β (Aβ) peptide makes it an important therapeutic target in Alzheimer's disease research. Significant recent advances have been made in structural studies of this critical membrane protein complex. However, details of the mechanism of activation of the enzyme complex remain unclear. Using a multiscale computational modeling approach, combining multiple coarse-grained microsecond dynamic trajectories with all-atom models, the structure and two conformational states of the γ-secretase complex were evaluated. The transition between enzymatic state 1 and state 2 is shown to critically depend on the protonation states of the key catalytic residues Asp257 and Asp385 in the active site domain. The active site formation, related to our γ-secretase state 2, is observed to involve a concerted movement of four transmembrane helices from the catalytic subunit, resulting in the required localization of the catalytic residues. Global analysis of the structural ensemble of the enzyme complex was used to identify collective fluctuations important to the mechanism of substrate recognition and demonstrate that the corresponding fluctuations observed were uncorrelated with structural changes associated with enzyme activation. Overall, this computational study provides essential insight into the role of structure and dynamics in the activation and function of γ-secretase. PMID:28970936

  9. Interferon-gamma alone triggers the production of nitric oxide from serum-starved BNL CL.2, murine embryonic liver cells.

    PubMed

    Pae, H O; Yoo, J C; Choi, B M; Paik, S G; Kim, Y H; Jin, H S; Chung, H T

    1999-01-01

    A previous study has demonstrated that both interferon-gamma (IFN-gamma) and lipopolysaccharide (LPS) were needed to induce the production of nitric oxide (NO) in BNL CL.2 cells, murine embryonic liver cells. We here demonstrate that when BNL CL.2 cells were cultured with serum-free medium, they were induced to produce NO by the stimulation of IFN-gamma alone. BNL CL.2 cells were cultured with serum-free or serum-containing medium for 1-3 days and then stimulated to synthesize NO by IFN-gamma. Surprisingly, only serum-starved cells showed significant amount of nitrite accumulation and iNOS protein expression in response to IFN-gamma in dose- and time-dependent manners, but serum-supplied cells did not. When the cells were stimulated with IFN-gamma, tumor necrosis factor-alpha (TNF-alpha), or LPS in combinations, only the combination of IFN-gamma and LPS produced more NO than that produced by IFN-gamma alone. The production of NO by the cells stimulated with IFN-gamma or IFN-gamma plus LPS was blocked by the addition of N(G)-monomethyl-L-arginine (N(G)MMA), a NO synthesis inhibitor. To address the intracellular signal pathway responsible for the production of NO by the cells stimulated with IFN-gamma aloneor IFN-gamma plus LPS, we examined the effects of several protein kinase inhibitors on the production of NO from the cells. The production of NO was significantly inhibited by protein tyrosine kinase (PTK) inhibitors, genistein and herbimycin A, but not by protein kinase A or C inhibitors. These results suggest that the deprivation of serum from BNL CL.2 cell culture medium might prime the cells to induce NO synthesis when the cells are triggered by IFN-gamma and the involvement of PTK signal transduction pathway in the expression of inducible NO synthase gene in murine hepatoma cells.

  10. From BACE1 Inhibitor to Multifunctionality of Tryptoline and Tryptamine Triazole Derivatives for Alzheimer’s Disease

    PubMed Central

    Jiaranaikulwanitch, Jutamas; Govitrapong, Piyarat; Fokin, Valery V.; Vajragupta, Opa

    2013-01-01

    Efforts to discover new drugs for Alzheimer’s disease emphasizing multiple targets was conducted seeking to inhibit amyloid oligomer formation and to prevent radical formation. The tryptoline and tryptamine cores of BACE1 inhibitors previously identified by virtual screening were modified in silico for additional modes of action. These core structures were readily linked to different side chains using 1,2,3-triazole rings as bridges by copper catalyzed azide-alkyne cycloaddition reactions. Three compounds among the sixteen designed compounds exerted multifunctional activities including β-secretase inhibitory action, anti-amyloid aggregation, metal chelating and antioxidant effects at micromolar levels. The neuroprotective effects of the multifunctional compounds 6h, 12c and 12h on Aβ1–42 induced neuronal cell death at 1 μM were significantly greater than those of the potent single target compound, BACE1 inhibitor IV and were comparable to curcumin. The observed synergistic effect resulting from the reduction of the Aβ1–42 neurotoxicity cascade substantiates the validity of our multifunctional strategy in drug discovery for Alzheimer’s disease. PMID:22781443

  11. The gamma-aminobutyric acid uptake inhibitor, tiagabine, is anticonvulsant in two animal models of reflex epilepsy.

    PubMed

    Smith, S E; Parvez, N S; Chapman, A G; Meldrum, B S

    1995-02-06

    The effects of i.p. administration of the gamma-aminobutyric acid (GABA) uptake inhibitors R(-)N-(4,4-di(3-methylthien-2-yl)-but-3-enyl) nipecotic acid hydrochloride (tiagabine; molecular weight 412.0), (1-(2-(((diphenylmethylene)-amino)oxy)ethyl)-1,2,5,6-tetrahydro-3- pyridinecarboxylic acid hydrochloride (NNC-711; molecular weight 386.9), and (+/-)-nipecotic acid (molecular weight 128.2) are compared with those of carbamazepine (molecular weight 236.3) on sound-induced seizures and locomotor performance in genetically epilepsy-prone (GEP) rats. The ED50 value against clonic seizures (in mumol kg-1 at the time of maximal anticonvulsant effect) for tiagabine was 23 (0.5 h), and for NNC-711 was 72 (1 h), and for carbamazepine was 98 (2 h). (+/-)-Nipecotic acid (0.4-15.6 mmol kg-1) was not anticonvulsant. High doses of NNC-711 (207-310 mumol kg-1) and of (+/-)-nipecotic acid (39-78 mmol kg-1) induced ataxia and myoclonic seizures 0.25-1 h. Tiagabine and carbamazepine did not induce myoclonic seizures and had similar therapeutic indices (locomotor deficit ED50/anticonvulsant ED50) ranging from 0.4 to 1.9. In Papio papio, we observed a reduction in photically induced myoclonic seizures with tiagabine (2.4 mumol kg-1 i.v.) accompanied with neurological impairment. Tiagabine has comparable anticonvulsant action to carbamazepine in rats and has anticonvulsant effects in non-human primates supporting the potential use of inhibitors of GABA uptake as therapy for epilepsy.

  12. Transcriptional activation of peroxisome proliferator-activated receptor-{gamma} requires activation of both protein kinase A and Akt during adipocyte differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sang-pil; Ha, Jung Min; Yun, Sung Ji

    2010-08-13

    Research highlights: {yields} Elevated cAMP activates both PKA and Epac. {yields} PKA activates CREB transcriptional factor and Epac activates PI3K/Akt pathway via Rap1. {yields} Akt modulates PPAR-{gamma} transcriptional activity in concert with CREB. -- Abstract: Peroxisome proliferator-activated receptor-{gamma} (PPAR-{gamma}) is required for the conversion of pre-adipocytes. However, the mechanism underlying activation of PPAR-{gamma} is unclear. Here we showed that cAMP-induced activation of protein kinase A (PKA) and Akt is essential for the transcriptional activation of PPAR-{gamma}. Hormonal induction of adipogenesis was blocked by a phosphatidylinositol 3-kinase (PI3K) inhibitor (LY294002), by a protein kinase A (PKA) inhibitor (H89), and by amore » Rap1 inhibitor (GGTI-298). Transcriptional activity of PPAR-{gamma} was markedly enhanced by 3-isobutyl-1-methylxanthine (IBMX), but not insulin and dexamethasone. In addition, IBMX-induced PPAR-{gamma} transcriptional activity was blocked by PI3K/Akt, PKA, or Rap1 inhibitors. 8-(4-Chlorophenylthio)-2'-O-methyl-cAMP (8-pCPT-2'-O-Me-cAMP) which is a specific agonist for exchanger protein directly activated by cAMP (Epac) significantly induced the activation of Akt. Furthermore, knock-down of Akt1 markedly attenuated PPAR-{gamma} transcriptional activity. These results indicate that both PKA and Akt signaling pathways are required for transcriptional activation of PPAR-{gamma}, suggesting post-translational activation of PPAR-{gamma} might be critical step for adipogenic gene expression.« less

  13. Effect of chronic treatment with the GABA transaminase inhibitors gamma-vinyl GABA and ethanolamine O-sulphate on the in vitro GABA release from rat hippocampus.

    PubMed

    Qume, M; Fowler, L J

    1997-10-01

    1. The effects of 2, 8 and 21 day oral treatment with the specific gamma-aminobutyric acid transaminase (GABA-T) inhibitors gamma-vinyl GABA (GVG) and ethanolamine O-sulphate (EOS) on brain GABA levels, GABA-T activity, and basal and stimulated GABA release from rat cross-chopped brain hippocampal slices was investigated. 2. Treatment with GABA-T inhibitors lead to a reduction in brain GABA-T activity by 65-80% compared with control values, with a concomitant increase in brain GABA content of 40-100%. 3. Basal hippocampal GABA release was increased to 250-450% of control levels following inhibition of GABA-T activity. No Ca2+ dependence was observed in either control or treated tissues. 4. GVG and EOS administration led to a significant elevation in the potassium stimulated release of GABA from cross-chopped hippocampal slices compared with that of controls. Although stimulated GABA release from control tissues was decreased in the presence of a low Ca2+ medium, GVG and EOS treatment abolished this Ca2+ dependency. 5. GABA compartmentalization, Na+ and Cl- coupled GABA uptake carriers and glial release may provide explanations for the loss of the Ca2+ dependency of stimulated GABA release observed following GVG and EOS treatment. 6. Administration of GABA-T inhibitors led to increases in both basal and stimulated hippocampal GABA release. However, it is not clear which is the most important factor in the anticonvulsant activity of these drugs, the increased GABA content 'leaking' out of neurones and glia leading to widespread inhibition, or the increase in stimulated GABA release which may occur following depolarization caused by an epileptic discharge.

  14. gamma-Glutamyl amino acids. Transport and conversion to 5-oxoproline in the kidney

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bridges, R.J.; Meister, A.

    1985-06-25

    Transport of gamma-glutamyl amino acids, a step in the proposed glutathione-gamma-glutamyl transpeptidase-mediated amino acid transport pathway, was examined in mouse kidney. The transport of gamma-glutamyl amino acids was demonstrated in vitro in studies on kidney slices. Transport was followed by measuring uptake of /sup 35/S after incubation of the slices in media containing gamma-glutamyl methionine (/sup 35/S)sulfone. The experimental complication associated with extracellular conversion of the gamma-glutamyl amino acid to amino acid and uptake of the latter by slices was overcome by using 5-oxoproline formation (catalyzed by intracellular gamma-glutamyl-cyclotransferase) as an indicator of gamma-glutamyl amino acid transport. This method wasmore » also successfully applied to studies on transport of gamma-glutamyl amino acids in vivo. Transport of gamma-glutamyl amino acids in vitro and in vivo is inhibited by several inhibitors of gamma-glutamyl transpeptidase and also by high extracellular levels of glutathione. This seems to explain urinary excretion of gamma-glutamylcystine by humans with gamma-glutamyl transpeptidase deficiency and by mice treated with inhibitors of this enzyme. Mice depleted of glutathione by treatment with buthionine sulfoximine (which inhibits glutathione synthesis) or by treatment with 2,6-dimethyl-2,5-heptadiene-4-one (which effectively interacts with tissue glutathione) exhibited significantly less transport of gamma-glutamyl amino acids than did untreated controls. The findings suggest that intracellular glutathione functions in transport of gamma-glutamyl amino acids. Evidence was also obtained for transport of gamma-glutamyl gamma-glutamylphenylalanine into kidney slices.« less

  15. Alternative Pathways for Production of Beta-Amyloid Peptides of Alzheimer’s Disease

    PubMed Central

    Hook, Vivian; Schechter, Israel; Demuth, Hans-Ulrich; Hook, Gregory

    2009-01-01

    This highlight article describes three Alzheimer’s disease (AD) presentations made at the 5th General Meeting of the International Proteolysis Society that address enzymatic mechanisms that produce neurotoxic beta-amyloid (Aβ) peptides. One group described the poor kinetic properties of the BACE 1 β-secretase for cleaving the wild-type β-secretase site in the APP found in most AD patients. They demonstrated that cathepsin D displays BACE 1-like specificity, is 280-fold more abundant in human brain than BACE 1, and pepstatin A inhibits cleavage of β-secretase site peptides by brain extracts and cathepsin D, but not by BACE 1. Nevertheless, as BACE 1 and cathepsin D show poor activity towards the wild type β-secretase site, they suggested continuing the search for additional β-secretase candidate(s). The second group reported that cathepsin B is such an alternative β-secretase candidate possessing excellent kinetic efficiency and specificity for cleaving the wild-type β-secretase site. Significantly, they demonstrated that inhibitors of cathepsin B improved memory function with reduced amyloid plaque neuropathology and decreased brain Aβ(40/42) and β-secretase activity in AD animal models expressing APP containing the wild-type β-secretase site. The third group addressed isoaspartate and pyroglutamate (pGlu) posttranslational modifications of Aβ that are present in AD brains, with evidence that cathepsin B, but not BACE 1, efficiently cleaves the wild-type β-secretase site containing isoaspartate. They also found that cyclization of N-terminal Glu by glutaminyl cyclase generates pGluAβ(3-40/42) peptides that are highly amyloidogenic. These presentations suggested that cathepsin B and glutaminyl cyclase are potential new AD therapeutic targets. PMID:18979625

  16. Changes in Neuropsychiatric Inventory Associated with Semagacestat Treatment of Alzheimer's Disease.

    PubMed

    Rosenberg, Paul B; Lanctôt, Krista L; Herrmann, Nathan; Mintzer, Jacobo E; Porsteinsson, Anton P; Sun, Xiaoying; Raman, Rema

    2016-08-10

    In a recent report, 76 weeks' treatment with a gamma-secretase inhibitor (semagacestat) was associated with poorer cognitive outcomes in Alzheimer's disease (AD). We sought to examine the effect of semagacestat treatment on neuropsychiatric symptoms (NPS). 1,537 participants with mild to moderate AD were randomized to 76 weeks' treatment with placebo versus two doses of semagacestat. NPS were assessed with the Neuropsychiatric Inventory (NPI-Total and subdomains). Cognition was assessed with the Alzheimer's Disease Assessment Scale-Cognitive (first 11 items, ADAS11). Mixed-Model Repeated Measures was used to compare the effects of treatment assignment on change in NPI-total and subdomains over time. Survival analysis was used to assess the treatment effect on time to first worsening of NPS (NPI-Total ≥10 or NPI subdomain ≥4) for subjects with no or minor NPS at baseline. Participants on high dose semagecestat (140 mg) had greater increase in NPI-Total and greater risk of incident first worsening in NPI-Total and in subdomains of aberrant motor behavior, appetite, depression/dysphoria, and sleep. ADAS11 increased more in participants whose NPI-Total increased. In participants with mild to moderate AD, high dose semagacestat treatment was associated with greater severity and faster worsening of NPS in a pattern resembling an agitated depression. Increased NPS was associated with cognitive decline regardless of treatment assignment. These findings suggest that greater NPS may be the result of gamma-secretase treatment and emphasize the importance of monitoring NPS as potential adverse events in trials of novel treatments for AD.

  17. Prostaglandin F(2alpha) stimulates tyrosine phosphorylation of phospholipase C-gamma1.

    PubMed

    Husain, Shahid; Jafri, Farahdiba

    2002-10-11

    In this study, we investigated the ability of prostaglandin F(2alpha) (PGF(2alpha)) to induce tyrosine phosphorylation of phospholipase C-gamma1 (PLC-gamma1) in cat iris sphincter smooth muscle (CISM) cells. PGF(2alpha)(1 microM) stimulated PLC-gamma1 tyrosine phosphorylation in a time- and dose-dependent manner with a maximum increase of 3-fold at 0.5min. The protein tyrosine kinase inhibitors, genistein, and tyrphostin A-25, blocked the stimulatory effects of PGF(2alpha), suggesting involvement of protein tyrosine kinase activity in the physiological actions of the PGF(2alpha). Furthermore, PGF(2alpha)-induced p42/p44 MAP kinase activation was also completely blocked by protein tyrosine kinase inhibitors. In summary, these findings show that PGF(2alpha) stimulates tyrosine phosphorylation of PLC-gamma1 in CISM cells and indicate that PGF(2alpha)-stimulated tyrosine phosphorylation is responsible for an early signal transduction event.

  18. Reduced Aβ secretion by human neurons under conditions of strongly increased BACE activity.

    PubMed

    Scholz, Diana; Chernyshova, Yana; Ückert, Anna-Katharina; Leist, Marcel

    2018-05-27

    The initial step in the amyloidogenic cascade of amyloid precursor protein (APP) processing is catalyzed by beta-site APP-cleaving enzyme (BACE), and this protease has increased activities in affected areas of Alzheimer's disease brains. We hypothesized that altered APP processing, due to augmented BACE activity, would affect the actions of direct and indirect BACE inhibitors. We therefore compared postmitotic human neurons (LUHMES) with their BACE-overexpressing counterparts (BLUHMES). Although β-cleavage of APP was strongly increased in BLUHMES, they produced less full-length and truncated amyloid beta (Aβ) than LUHMES. Moreover, low concentrations of BACE inhibitors decreased cellular BACE activity as expected, but increased Aβ 1-40 levels. Several other approaches to modulate BACE activity led to a similar, apparently paradoxical, behavior. For instance, reduction of intracellular acidification by bepridil increased Aβ production in parallel with decreased BACE activity. In contrast to BLUHMES, the respective control cells (LUHMES or BLUHMES with catalytically inactive BACE) showed conventional pharmacological responses. Other non-canonical neurochemical responses (so-called 'rebound effects') are well-documented for the Aβ pathway, especially for γ-secretase: a partial block of its activity leads to an increased Aβ secretion by some cell types. We therefore compared LUHMES and BLUHMES regarding rebound effects of γ-secretase inhibitors and found an Aβ rise in LUHMES but not in BLUHMES. Thus, different cellular factors are responsible for the γ-secretase- vs. BACE-related Aβ rebound. We conclude that increased BACE activity, possibly accompanied by an altered cellular localization pattern, can dramatically influence Aβ generation in human neurons and affect pharmacological responses to secretase inhibitors. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  19. Discrimination of Active and Weakly Active Human BACE1 Inhibitors Using Self-Organizing Map and Support Vector Machine.

    PubMed

    Li, Hang; Wang, Maolin; Gong, Ya-Nan; Yan, Aixia

    2016-01-01

    β-secretase (BACE1) is an aspartyl protease, which is considered as a novel vital target in Alzheimer`s disease therapy. We collected a data set of 294 BACE1 inhibitors, and built six classification models to discriminate active and weakly active inhibitors using Kohonen's Self-Organizing Map (SOM) method and Support Vector Machine (SVM) method. Each molecular descriptor was calculated using the program ADRIANA.Code. We adopted two different methods: random method and Self-Organizing Map method, for training/test set split. The descriptors were selected by F-score and stepwise linear regression analysis. The best SVM model Model2C has a good prediction performance on test set with prediction accuracy, sensitivity (SE), specificity (SP) and Matthews correlation coefficient (MCC) of 89.02%, 90%, 88%, 0.78, respectively. Model 1A is the best SOM model, whose accuracy and MCC of the test set were 94.57% and 0.98, respectively. The lone pair electronegativity and polarizability related descriptors importantly contributed to bioactivity of BACE1 inhibitor. The Extended-Connectivity Finger-Prints_4 (ECFP_4) analysis found some vitally key substructural features, which could be helpful for further drug design research. The SOM and SVM models built in this study can be obtained from the authors by email or other contacts.

  20. Substance P activates ADAM9 mRNA expression and induces α-secretase-mediated amyloid precursor protein cleavage.

    PubMed

    Marolda, R; Ciotti, M T; Matrone, C; Possenti, R; Calissano, P; Cavallaro, S; Severini, C

    2012-04-01

    Altered levels of Substance P (SP), a neuropeptide endowed with neuroprotective and anti-apoptotic properties, were found in brain areas and spinal fluid of Alzheimer's disease (AD) patients. One of the hallmarks of AD is the abnormal extracellular deposition of neurotoxic beta amyloid (Aβ) peptides, derived from the proteolytic processing of amyloid precursor protein (APP). In the present study, we confirmed, the neurotrophic action of SP in cultured rat cerebellar granule cells (CGCs) and investigated its effects on APP metabolism. Incubation with low (5 mM) potassium induced apoptotic cell death of CGCs and amyloidogenic processing of APP, whereas treatment with SP (200 nM) reverted these effects via NK1 receptors. The non-amyloidogenic effect of SP consisted of reduction of Aβ(1-42), increase of sAPPα and enhanced α-secretase activity, without a significant change in steady-state levels of cellular APP. The intracellular mechanisms whereby SP alters APP metabolism were further investigated by measuring mRNA and/or steady-state protein levels of key enzymes involved with α-, β- and γ-secretase activity. Among them, Adam9, both at the mRNA and protein level, was the only enzyme to be significantly down-regulated following the induction of apoptosis (K5) and up-regulated after SP treatment. In addition to its neuroprotective properties, this study shows that SP is able to stimulate non-amyloidogenic APP processing, thereby reducing the possibility of generation of toxic Aβ peptides in brain. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Presenilin-1 affects trafficking and processing of βAPP and is targeted in a complex with nicastrin to the plasma membrane

    PubMed Central

    Kaether, Christoph; Lammich, Sven; Edbauer, Dieter; Ertl, Michaela; Rietdorf, Jens; Capell, Anja; Steiner, Harald; Haass, Christian

    2002-01-01

    Amyloid β-peptide (Aβ) is generated by the consecutive cleavages of β- and γ-secretase. The intramembraneous γ-secretase cleavage critically depends on the activity of presenilins (PS1 and PS2). Although there is evidence that PSs are aspartyl proteases with γ-secretase activity, it remains controversial whether their subcellular localization overlaps with the cellular sites of Aβ production. We now demonstrate that biologically active GFP-tagged PS1 as well as endogenous PS1 are targeted to the plasma membrane (PM) of living cells. On the way to the PM, PS1 binds to nicastrin (Nct), an essential component of the γ-secretase complex. This complex is targeted through the secretory pathway where PS1-bound Nct becomes endoglycosidase H resistant. Moreover, surface-biotinylated Nct can be coimmunoprecipitated with PS1 antibodies, demonstrating that this complex is located to cellular sites with γ-secretase activity. Inactivating PS1 or PS2 function by mutagenesis of one of the critical aspartate residues or by γ-secretase inhibitors results in delayed reinternalization of the β-amyloid precursor protein and its accumulation at the cell surface. Our data suggest that PS is targeted as a biologically active complex with Nct through the secretory pathway to the cell surface and suggest a dual function of PS in γ-secretase processing and in trafficking. PMID:12147673

  2. APP intracellular domain derived from amyloidogenic β- and γ-secretase cleavage regulates neprilysin expression

    PubMed Central

    Grimm, Marcus O. W.; Mett, Janine; Stahlmann, Christoph P.; Grösgen, Sven; Haupenthal, Viola J.; Blümel, Tamara; Hundsdörfer, Benjamin; Zimmer, Valerie C.; Mylonas, Nadine T.; Tanila, Heikki; Müller, Ulrike; Grimm, Heike S.; Hartmann, Tobias

    2015-01-01

    Alzheimer's disease (AD) is characterized by an accumulation of Amyloid-β (Aβ), released by sequential proteolytic processing of the amyloid precursor protein (APP) by β - and γ-secretase. Aβ peptides can aggregate, leading to toxic Aβ oligomers and amyloid plaque formation. Aβ accumulation is not only dependent on de novo synthesis but also on Aβ degradation. Neprilysin (NEP) is one of the major enzymes involved in Aβ degradation. Here we investigate the molecular mechanism of NEP regulation, which is up to now controversially discussed to be affected by APP processing itself. We found that NEP expression is highly dependent on the APP intracellular domain (AICD), released by APP processing. Mouse embryonic fibroblasts devoid of APP processing, either by the lack of the catalytically active subunit of the γ-secretase complex [presenilin (PS) 1/2] or by the lack of APP and the APP-like protein 2 (APLP2), showed a decreased NEP expression, activity and protein level. Similar results were obtained by utilizing cells lacking a functional AICD domain (APPΔCT15) or expressing mutations in the genes encoding for PS1. AICD supplementation or retransfection with an AICD encoding plasmid could rescue the down-regulation of NEP further strengthening the link between AICD and transcriptional NEP regulation, in which Fe65 acts as an important adaptor protein. Especially AICD generated by the amyloidogenic pathway seems to be more involved in the regulation of NEP expression. In line, analysis of NEP gene expression in vivo in six transgenic AD mouse models (APP and APLP2 single knock-outs, APP/APLP2 double knock-out, APP-swedish, APP-swedish/PS1Δexon9, and APPΔCT15) confirmed the results obtained in cell culture. In summary, in the present study we clearly demonstrate an AICD-dependent regulation of the Aβ-degrading enzyme NEP in vitro and in vivo and elucidate the underlying mechanisms that might be beneficial to develop new therapeutic strategies for the

  3. Structural Basis for Regulated Proteolysis by the α-Secretase ADAM10.

    PubMed

    Seegar, Tom C M; Killingsworth, Lauren B; Saha, Nayanendu; Meyer, Peter A; Patra, Dhabaleswar; Zimmerman, Brandon; Janes, Peter W; Rubinstein, Eric; Nikolov, Dimitar B; Skiniotis, Georgios; Kruse, Andrew C; Blacklow, Stephen C

    2017-12-14

    Cleavage of membrane-anchored proteins by ADAM (a disintegrin and metalloproteinase) endopeptidases plays a key role in a wide variety of biological signal transduction and protein turnover processes. Among ADAM family members, ADAM10 stands out as particularly important because it is both responsible for regulated proteolysis of Notch receptors and catalyzes the non-amyloidogenic α-secretase cleavage of the Alzheimer's precursor protein (APP). We present here the X-ray crystal structure of the ADAM10 ectodomain, which, together with biochemical and cellular studies, reveals how access to the enzyme active site is regulated. The enzyme adopts an unanticipated architecture in which the C-terminal cysteine-rich domain partially occludes the enzyme active site, preventing unfettered substrate access. Binding of a modulatory antibody to the cysteine-rich domain liberates the catalytic domain from autoinhibition, enhancing enzymatic activity toward a peptide substrate. Together, these studies reveal a mechanism for regulation of ADAM activity and offer a roadmap for its modulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Histaminergic regulation of interferon-gamma (IFN-gamma) production by human natural killer (NK) cells.

    PubMed

    Asea, A; Hansson, M; Czerkinsky, C; Houze, T; Hermodsson, S; Strannegård, O; Hellstrand, K

    1996-08-01

    Monocytes, recovered from human peripheral blood by counter-current centrifugal elutriation, effectively inhibit the production of IFN-gamma by CD3-/56+ NK cells in response to IL-2. This study aimed at defining the nature of the inhibitory signal, particularly the importance of monocyte-derived reactive metabolites of oxygen. It was found that monocytes recovered from patients with chronic granulomatous disease (CGD), a condition characterized by deficient NADPH-oxidase activity of phagocytes, did not inhibit IFN-gamma production by NK cells. Further, catalase, a scavenger of hydrogen peroxide, completely reversed the inhibitory signal whereas scavengers of the superoxide anion, hypohalous acids, the hydroxyl radical, or nitric oxide synthesis inhibitors such as L-NMMA were ineffective. Inhibition of IFN-gamma production was operating on a pretranslational level, as indicated by the inability of enriched NK cells to accumulate IFN-gamma mRNA in the presence of elutriated monocytes. Hydrogen peroxide, at micromolar concentrations, reconstituted the inhibition of IFN-gamma production when added to enriched NK cells. Histamine, a biogenic amine which inhibits the generation of reactive oxygen metabolites in monocytes, abrogated the inhibition of IFN-gamma production in NK cells; by this mechanism, histamine strongly synergized with IL-2 to induce IFN-gamma in mixtures of NK cells and monocytes. The synergizing effect of histamine was specifically mediated by H2-type histamine receptors. We conclude that: (i) the induction of IFN-gamma mRNA in NK cells is effectively down-regulated by products of the oxidative metabolism of monocytes; and (ii) histamine effectively enhances IFN-gamma production by preventing monocyte-induced oxidative damage to NK cells.

  5. Utilizing Structures of CYP2D6 and BACE1 Complexes To Reduce Risk of Drug–Drug Interactions with a Novel Series of Centrally Efficacious BACE1 Inhibitors

    PubMed Central

    2016-01-01

    In recent years, the first generation of β-secretase (BACE1) inhibitors advanced into clinical development for the treatment of Alzheimer’s disease (AD). However, the alignment of drug-like properties and selectivity remains a major challenge. Herein, we describe the discovery of a novel class of potent, low clearance, CNS penetrant BACE1 inhibitors represented by thioamidine 5. Further profiling suggested that a high fraction of the metabolism (>95%) was due to CYP2D6, increasing the potential risk for victim-based drug–drug interactions (DDI) and variable exposure in the clinic due to the polymorphic nature of this enzyme. To guide future design, we solved crystal structures of CYP2D6 complexes with substrate 5 and its corresponding metabolic product pyrazole 6, which provided insight into the binding mode and movements between substrate/inhibitor complexes. Guided by the BACE1 and CYP2D6 crystal structures, we designed and synthesized analogues with reduced risk for DDI, central efficacy, and improved hERG therapeutic margins. PMID:25781223

  6. Utilizing Structures of CYP2D6 and BACE1 Complexes To Reduce Risk of Drug–Drug Interactions with a Novel Series of Centrally Efficacious BACE1 Inhibitors

    DOE PAGES

    Brodney, Michael A.; Beck, Elizabeth M.; Butler, Christopher R.; ...

    2015-03-17

    In recent years, the first generation of β-secretase (BACE1) inhibitors advanced into clinical development for the treatment of Alzheimer’s disease (AD). However, the alignment of drug-like properties and selectivity remains a major challenge. Here in this paper, we describe the discovery of a novel class of potent, low clearance, CNS penetrant BACE1 inhibitors represented by thioamidine 5. Further profiling suggested that a high fraction of the metabolism (>95%) was due to CYP2D6, increasing the potential risk for victim-based drug–drug interactions (DDI) and variable exposure in the clinic due to the polymorphic nature of this enzyme. To guide future design, wemore » solved crystal structures of CYP2D6 complexes with substrate 5 and its corresponding metabolic product pyrazole 6, which provided insight into the binding mode and movements between substrate/inhibitor complexes. Guided by the BACE1 and CYP2D6 crystal structures, we designed and synthesized analogues with reduced risk for DDI, central efficacy, and improved hERG therapeutic margins.« less

  7. Utilizing Structures of CYP2D6 and BACE1 Complexes To Reduce Risk of Drug–Drug Interactions with a Novel Series of Centrally Efficacious BACE1 Inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodney, Michael A.; Beck, Elizabeth M.; Butler, Christopher R.

    In recent years, the first generation of β-secretase (BACE1) inhibitors advanced into clinical development for the treatment of Alzheimer’s disease (AD). However, the alignment of drug-like properties and selectivity remains a major challenge. Here in this paper, we describe the discovery of a novel class of potent, low clearance, CNS penetrant BACE1 inhibitors represented by thioamidine 5. Further profiling suggested that a high fraction of the metabolism (>95%) was due to CYP2D6, increasing the potential risk for victim-based drug–drug interactions (DDI) and variable exposure in the clinic due to the polymorphic nature of this enzyme. To guide future design, wemore » solved crystal structures of CYP2D6 complexes with substrate 5 and its corresponding metabolic product pyrazole 6, which provided insight into the binding mode and movements between substrate/inhibitor complexes. Guided by the BACE1 and CYP2D6 crystal structures, we designed and synthesized analogues with reduced risk for DDI, central efficacy, and improved hERG therapeutic margins.« less

  8. Sequential and γ-secretase-dependent processing of the betacellulin precursor generates a palmitoylated intracellular-domain fragment that inhibits cell growth

    PubMed Central

    Stoeck, Alexander; Shang, Li; Dempsey, Peter J.

    2010-01-01

    Betacellulin (BTC) belongs to the family of epidermal growth factor (EGF)-like growth factors that are expressed as transmembrane precursors and undergo proteolytic ectodomain shedding to release soluble mature ligands. BTC is a dual-specificity ligand for ErbB1 and ErbB4 receptors, and can activate unique signal-transduction pathways that are beneficial for the function, survival and regeneration of pancreatic β-cells. We have previously shown that BTC precursor (proBTC) is cleaved by ADAM10 to generate soluble ligand and a stable, transmembrane remnant (BTC-CTF). In this study, we analyzed the fate of the BTC-CTF in greater detail. We demonstrated that proBTC is cleaved by ADAM10 to produce BTC-CTF, which then undergoes intramembrane processing by presenilin-1- and/or presenilin-2-dependent γ-secretase to generate an intracellular-domain fragment (BTC-ICD). We found that the proBTC cytoplasmic domain is palmitoylated and that palmitoylation is not required for ADAM10-dependent cleavage but is necessary for the stability and γ-secretase-dependent processing of BTC-CTF to generate BTC-ICD. Additionally, palmitoylation is required for nuclear-membrane localization of BTC-ICD, as demonstrated by the redistribution of non-palmitoylated BTC-ICD mutant to the nucleoplasm. Importantly, a novel receptor-independent role for BTC-ICD signaling is suggested by the ability of BTC-ICD to inhibit cell growth in vitro. PMID:20530572

  9. [Notch1 signaling participates in the release of inflammatory mediators in mouse RAW264.7 cells via activating NF-κB pathway].

    PubMed

    Zhao, Hongwei; Xu, Che Nan; Huang, Chao; Jiang, Jinzhi; Li, Liangchang

    2017-10-01

    Objective To study the effect of Notch1 signaling on the release of inflammatory mediators in lipopolysaccharide (LPS)-induced macrophages and the related mechanism. Methods The expressions of Notch1 and hairy and enhancer of split 1 (Hes1) mRNAs were investigated by reverse transcription PCR (RT-PCR) in mouse RAW264.7 cells after stimulated with 100 ng/mL LPS for 8 hours. Prior to stimulation with LPS, mouse RAW264.7 cells were treated with DAPT (10 μmol/L), an inhibitor of Notch1 signaling, for 1 hour. The concentrations of tumor necrosis factor (TNF-α), interleukin 1β (IL-1β), IL-6, nitric oxide (NO) and prostaglandin E 2 (PGE 2 ) in cell culture media were measured by ELISA. The mRNA levels of nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were examined by RT-PCR. The protein levels of iNOS, COX-2, nuclear factor kappa Bp65 (NF-κBp65) and phosphorylated nuclear factor κB inhibitor α (p-IκBα) were detected by Western blotting. Results The expressions of Notch1 and Hes1 mRNAs significantly increased in mouse RAW264.7 cells after stimulated with LPS. The levels of TNF-α, IL-1β, IL-6, NO and PGE 2 were significantly up-regulated in cell culture media after stimulated with LPS, but the levels of those inflammatory mediators were reduced by DAPT. The mRNA and protein levels of iNOS and COX-2 were significant raised in mouse RAW264.7 cells after stimulated with LPS, while they were inhibited by DAPT. Both IκBα-phosphorylation and NF-κBp65 translocation into nuclear in LPS-induced RAW264.7 cells were also inhibited by DAPT. Conclusion Notch1 signaling activates NF-κB to participate in LPS-induced inflammatory mediator release in macrophages.

  10. Dual-Mode Imaging-Guided Synergistic Chemo- and Magnetohyperthermia Therapy in a Versatile Nanoplatform To Eliminate Cancer Stem Cells.

    PubMed

    Tang, Jinglong; Zhou, Huige; Liu, Jiaming; Liu, Jing; Li, Wanqi; Wang, Yuqing; Hu, Fan; Huo, Qing; Li, Jiayang; Liu, Ying; Chen, Chunying

    2017-07-19

    Cancer stem cells (CSCs) have been identified as a new target for therapy in diverse cancers. Traditional therapies usually kill the bulk of cancer cells, but are often unable to effectively eliminate CSCs, which may lead to drug resistance and cancer relapse. Herein, we propose a novel strategy: fabricating multifunctional magnetic Fe 3 O 4 @PPr@HA hybrid nanoparticles and loading it with the Notch signaling pathway inhibitor N-[N-(3,5-difluorophenacetyl-l-alanyl)]-S-phenylglycinet-butylester (DAPT) to eliminate CSCs. Hyaluronic acid ligands greatly enhance the accumulation of the hybrid nanoparticles in the tumor site and in the CSCs. Both hyaluronase in the tumor microenvironment and the magnetic hyperthermia effect of the inner magnetic core can accelerate the release of DAPT. This controlled release of DAPT in the tumor site further enhances the ability of the combination of chemo- and magnetohyperthermia therapy to eliminate cancer stem cells. With the help of polypyrrole-mediated photoacoustic and Fe 3 O 4 -mediated magnetic resonance imaging, the drug release can be precisely monitored in vivo. This versatile nanoplatform enables effective elimination of the cancer stem cells and monitoring of the drugs.

  11. Gamma-Secretase/Notch Signalling Pathway Inhibitor RO4929097 and Temsirolimus in Treating Patients With Advanced Solid Tumors

    ClinicalTrials.gov

    2014-05-29

    Endometrial Papillary Serous Carcinoma; Recurrent Endometrial Carcinoma; Recurrent Renal Cell Cancer; Stage III Endometrial Carcinoma; Stage III Renal Cell Cancer; Stage IV Endometrial Carcinoma; Stage IV Renal Cell Cancer; Unspecified Adult Solid Tumor, Protocol Specific

  12. Multi-compartmental modeling of SORLA’s influence on amyloidogenic processing in Alzheimer’s disease

    PubMed Central

    2012-01-01

    Background Proteolytic breakdown of the amyloid precursor protein (APP) by secretases is a complex cellular process that results in formation of neurotoxic Aβ peptides, causative of neurodegeneration in Alzheimer’s disease (AD). Processing involves monomeric and dimeric forms of APP that traffic through distinct cellular compartments where the various secretases reside. Amyloidogenic processing is also influenced by modifiers such as sorting receptor-related protein (SORLA), an inhibitor of APP breakdown and major AD risk factor. Results In this study, we developed a multi-compartment model to simulate the complexity of APP processing in neurons and to accurately describe the effects of SORLA on these processes. Based on dose–response data, our study concludes that SORLA specifically impairs processing of APP dimers, the preferred secretase substrate. In addition, SORLA alters the dynamic behavior of β-secretase, the enzyme responsible for the initial step in the amyloidogenic processing cascade. Conclusions Our multi-compartment model represents a major conceptual advance over single-compartment models previously used to simulate APP processing; and it identified APP dimers and β-secretase as the two distinct targets of the inhibitory action of SORLA in Alzheimer’s disease. PMID:22727043

  13. Three, six, or twelve months of dual antiplatelet therapy after DES implantation in patients with or without acute coronary syndromes: an individual patient data pairwise and network meta-analysis of six randomized trials and 11 473 patients.

    PubMed

    Palmerini, Tullio; Della Riva, Diego; Benedetto, Umberto; Bacchi Reggiani, Letizia; Feres, Fausto; Abizaid, Alexandre; Gilard, Martine; Morice, Marie-Claude; Valgimigli, Marco; Hong, Myeong-Ki; Kim, Byeong-Keuk; Jang, Yangsoo; Kim, Hyo-Soo; Park, Kyung Woo; Colombo, Antonio; Chieffo, Alaide; Sangiorgi, Diego; Biondi-Zoccai, Giuseppe; Généreux, Philippe; Angelini, Gianni D; Pufulete, Maria; White, Jonathon; Bhatt, Deepak L; Stone, Gregg W

    2017-04-07

    We sought to determine whether the optimal dual antiplatelet therapy (DAPT) duration after drug-eluting stent (DES) placement varies according to clinical presentation. We performed an individual patient data pairwise and network meta-analysis comparing short-term (≤6-months) versus long-term (1-year) DAPT as well as 3-month vs. 6-month vs 1-year DAPT. The primary study outcome was the 1-year composite risk of myocardial infarction (MI) or definite/probable stent thrombosis (ST). Six trials were included in which DAPT after DES consisted of aspirin and clopidogrel. Among 11 473 randomized patients 6714 (58.5%) had stable CAD and 4758 (41.5%) presented with acute coronary syndrome (ACS), the majority of whom (67.0%) had unstable angina. In ACS patients, ≤6-month DAPT was associated with non-significantly higher 1-year rates of MI or ST compared with 1-year DAPT (Hazard Ratio (HR) 1.48, 95% Confidence interval (CI) 0.98-2.22; P = 0.059), whereas in stable patients rates of MI and ST were similar between the two DAPT strategies (HR 0.93, 95%CI 0.65-1.35; P = 0.71; Pinteraction = 0.09). By network meta-analysis, 3-month DAPT, but not 6-month DAPT, was associated with higher rates of MI or ST in ACS, whereas no significant differences were apparent in stable patients. Short DAPT was associated with lower rates of major bleeding compared with 1-year DAPT, irrespective of clinical presentation. All-cause mortality was not significantly different with short vs. long DAPT in both patients with stable CAD and ACS. Optimal DAPT duration after DES differs according to clinical presentation. In the present meta-analysis, despite the fact that most enrolled ACS patients were relatively low risk, 3-month DAPT was associated with increased ischaemic risk, whereas 3-month DAPT appeared safe in stable CAD. Prolonged DAPT increases bleeding regardless of clinical presentation. Further study is required to identify the optimal duration of DAPT after DES in individual

  14. Dietary (−)-epicatechin as a potent inhibitor of βγ-secretase amyloid precursor protein processing☆

    PubMed Central

    Cox, Carla J.; Choudhry, Fahd; Peacey, Eleanor; Perkinton, Michael S.; Richardson, Jill C.; Howlett, David R.; Lichtenthaler, Stefan F.; Francis, Paul T.; Williams, Robert J.

    2015-01-01

    Flavonoids, a group of dietary polyphenols have been shown to possess cognitive health benefits. Epidemiologic evidence suggests that they could play a role in risk reduction in dementia. Amyloid precursor protein processing and the subsequent generation of amyloid beta (Aβ) are central to the pathogenesis of Alzheimer's disease, as soluble, oligomeric Aβ is thought to be the toxic species driving disease progression. We undertook an in vitro screen to identify flavonoids with bioactivity at βγ-mediated amyloid precursor protein processing, which lead to identification of a number of flavonoids bioactive at 100 nM. Because of known bioavailability, we investigated the catechin family further and identified epigallocatechin and (−)-epicatechin as potent (nanomolar) inhibitors of amyloidogenic processing. Supporting this finding, we have shown reduced Aβ pathology and Aβ levels following short term, a 21-day oral delivery of (−)-epicatechin in 7-month-old TASTPM mice. Further, in vitro mechanistic studies suggest this is likely because of indirect BACE1 inhibition. Taken together, our results suggest that orally delivered (−)-epicatechin may be a potential prophylactic for Alzheimer's disease. PMID:25316600

  15. Cost-effectiveness analysis of 30-month vs 12-month dual antiplatelet therapy with clopidogrel and aspirin after drug-eluting stents in patients with acute coronary syndrome.

    PubMed

    Jiang, Minghuan; You, Joyce H S

    2017-10-01

    Continuation of dual antiplatelet therapy (DAPT) beyond 1 year reduces late stent thrombosis and ischemic events after drug-eluting stents (DES) but increases risk of bleeding. We hypothesized that extending DAPT from 12 months to 30 months in patients with acute coronary syndrome (ACS) after DES is cost-effective. A lifelong decision-analytic model was designed to simulate 2 antiplatelet strategies in event-free ACS patients who had completed 12-month DAPT after DES: aspirin monotherapy (75-162 mg daily) and continuation of DAPT (clopidogrel 75 mg daily plus aspirin 75-162 mg daily) for 18 months. Clinical event rates, direct medical costs, and quality-adjusted life-years (QALYs) gained were the primary outcomes from the US healthcare provider perspective. Base-case results showed DAPT continuation gained higher QALYs (8.1769 vs 8.1582 QALYs) at lower cost (USD42 982 vs USD44 063). One-way sensitivity analysis found that base-case QALYs were sensitive to odds ratio (OR) of cardiovascular death with DAPT continuation and base-case cost was sensitive to OR of nonfatal stroke with DAPT continuation. DAPT continuation remained cost-effective when the ORs of nonfatal stroke and cardiovascular death were below 1.241 and 1.188, respectively. In probabilistic sensitivity analysis, DAPT continuation was the preferred strategy in 74.75% of 10 000 Monte Carlo simulations at willingness-to-pay threshold of 50 000 USD/QALYs. Continuation of DAPT appears to be cost-effective in ACS patients who were event-free for 12-month DAPT after DES. The cost-effectiveness of DAPT for 30 months was highly subject to the OR of nonfatal stroke and OR of death with DAPT continuation. © 2017 Wiley Periodicals, Inc.

  16. Midterm and one-year outcome of amphilimus polymer free drug eluting stent in patients needing short dual antiplatelet therapy. Insight from the ASTUTE registry (AmphilimuS iTalian mUlticenTer rEgistry).

    PubMed

    Godino, Cosmo; Chiarito, Mauro; Donahue, Michael; Testa, Luca; Colantonio, Riccardo; Cappelletti, Alberto; Monello, Alberto; Magni, Valeria; Milazzo, Diego; Parisi, Rosario; Nicolino, Annamaria; Moshiri, Shahram; Fattori, Rossella; Aprigliano, Gianfranco; Palloshi, Altin; Caramanno, Giuseppe; Montorfano, Matteo; Bedogni, Francesco; Briguori, Carlo; Margonato, Alberto; Colombo, Antonio

    2017-03-15

    To assess clinical outcomes of patients needing short dual antiplatelet therapy (S-DAPT) after PCI with Cre8 polymer-free amphilimus eluting-stent (AES). The Cre8-AES with pure i-Carbofilm coating was supposed to induce faster stent endothelialization and reduce device thrombogenicity. We performed a sub-analysis of unrestricted consecutive patients treated with Cre8-AES between August 2011 and January 2015. Two groups were formed: 1) patients discharged with S-DAPT (≤3-month), because of high bleeding risk or attending urgent non-cardiac surgery; and 2) patients discharged with Recommended DAPT duration (R-DAPT; ≥6-month). The primary ischemic- and bleeding-safety endpoints were Target Vessel Failure (TVF, composite endpoint of cardiac-death, target vessel-myocardial infarction and target vessel-revascularization), and major-bleeding (BARC ≥type-3a) at 6-month and 1-year. 106 patients (8.7%) were discharged with ≤3-month DAPT (83±19days; S-DAPT group) and 1102 patients (90.6%) with ≥6-month DAPT (342±62days; R-DAPT group). Between S-DAPT and R-DAPT groups no significant differences were observed in TVF at 1-year (5.7% vs 5.1%); 1-year BARC major bleeding rate was higher in S-DAPT group (3.4% vs 0.2%, p=0.007) with all bleeding events occurred within 3months. The landmark analysis (started at 90days, ended at 1year) showed no differences in BARC major bleedings between groups (0% vs. 0.3%). The results of this multicenter registry show that the use of Cre8 AES in patients needing short DAPT (≤3-month) was safe regarding ischemic events and could favor a reduction of bleeding events related to the recommended DAPT. A large randomized trial is necessary to support these preliminary findings. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Blocking the NOTCH pathway can inhibit the growth of CD133-positive A549 cells and sensitize to chemotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Juntao; Mao, Zhangfan; Huang, Jie

    2014-02-21

    Highlights: • Notch signaling pathway members are expressed lower levels in CD133+ cells. • CD133+ cells are not as sensitive as CD133− cells to chemotherapy. • GSI could inhibit the growth of both CD133+ and CD133− cells. • Blockade of Notch signaling pathway enhanced the effect of chemotherapy with CDDP. • DAPT/CDDP co-therapy caused G2/M arrest and elimination in CD133+ cells. - Abstract: Cancer stem cells (CSCs) are believed to play an important role in tumor growth and recurrence. These cells exhibit self-renewal and proliferation properties. CSCs also exhibit significant drug resistance compared with normal tumor cells. Finding new treatmentsmore » that target CSCs could significantly enhance the effect of chemotherapy and improve patient survival. Notch signaling is known to regulate the development of the lungs by controlling the cell-fate determination of normal stem cells. In this study, we isolated CSCs from the human lung adenocarcinoma cell line A549. CD133 was used as a stem cell marker for fluorescence-activated cell sorting (FACS). We compared the expression of Notch signaling in both CD133+ and CD133− cells and blocked Notch signaling using the γ-secretase inhibitor DAPT (GSI-IX). The effect of combining GSI and cisplatin (CDDP) was also examined in these two types of cells. We observed that both CD133+ and CD133− cells proliferated at similar rates, but the cells exhibited distinctive differences in cell cycle progression. Few CD133+ cells were observed in the G{sub 2}/M phase, and there were half as many cells in S phase compared with the CD133− cells. Furthermore, CD133+ cells exhibited significant resistance to chemotherapy when treated with CDDP. The expression of Notch signaling pathway members, such as Notch1, Notch2 and Hes1, was lower in CD133+ cells. GSI slightly inhibited the proliferation of both cell types and exhibited little effect on the cell cycle. The inhibitory effects of DPP on these two types of cells

  18. Percutaneous coronary intervention and antiplatelet therapy in patients with atrial fibrillation receiving apixaban or warfarin: Insights from the ARISTOTLE trial.

    PubMed

    Kopin, David; Jones, W Schuyler; Sherwood, Matthew W; Wojdyla, Daniel M; Wallentin, Lars; Lewis, Basil S; Verheugt, Freek W A; Vinereanu, Dragos; Bahit, M Cecilia; Halvorsen, Sigrun; Huber, Kurt; Parkhomenko, Alexander; Granger, Christopher B; Lopes, Renato D; Alexander, John H

    2018-03-01

    We assessed antiplatelet therapy use and outcomes in patients undergoing percutaneous coronary intervention (PCI) during the ARISTOTLE trial. Patients were categorized based on the occurrence of PCI during follow-up (median 1.8 years); PCI details and outcomes post-PCI are reported. Of the 18,201 trial participants, 316 (1.7%) underwent PCI (152 in apixaban group, 164 in warfarin group). At the time of PCI, 84% (267) were on study drug (either apixaban or warfarin). Of these, 19% did not stop study drug during PCI, 49% stopped and restarted <5 days post-PCI, and 30% stopped and restarted >5 days post-PCI. At 30 days post-PCI, 35% of patients received dual -antiplatelet therapy (DAPT), 23% received aspirin only, and 13% received a P2Y 12 inhibitor only; 29% received no antiplatelet therapy. Triple therapy (DAPT + oral anticoagulant [OAC]) was used in 21% of patients, 23% received OAC only, 15% received OAC plus aspirin, and 9% received OAC plus a P2Y 12 inhibitor; 32% received antiplatelet agents without OAC. Post-PCI, patients assigned to apixaban versus warfarin had numerically similar rates of major bleeding (5.93 vs 6.73 events/100 patient-years; P = .95) and stroke (2.74 vs 1.84 events/100 patient-years; P = .62). PCI occurred infrequently during follow-up. Most patients on study drug at the time of PCI remained on study drug in the peri-PCI period; 19% continued the study drug without interruption. Antiplatelet therapy use post-PCI was variable, although most patients received DAPT. Additional data are needed to guide the use of antithrombotics in patients undergoing PCI. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Use of the Dual-Antiplatelet Therapy Score to Guide Treatment Duration After Percutaneous Coronary Intervention.

    PubMed

    Piccolo, Raffaele; Gargiulo, Giuseppe; Franzone, Anna; Santucci, Andrea; Ariotti, Sara; Baldo, Andrea; Tumscitz, Carlo; Moschovitis, Aris; Windecker, Stephan; Valgimigli, Marco

    2017-07-04

    The dual-antiplatelet therapy (DAPT) score was developed to identify patients more likely to derive harm (score <2) or benefit (score ≥2) from prolonged DAPT after percutaneous coronary intervention (PCI). To evaluate the safety and efficacy of DAPT duration according to DAPT score. Retrospective assessment of DAPT score-guided treatment duration in a randomized clinical trial. (ClinicalTrials.gov: NCT00611286). PCI patients. 1970 patients undergoing PCI. DAPT (aspirin and clopidogrel) for 24 versus 6 months. Primary efficacy outcomes were death, myocardial infarction, or cerebrovascular accident. The primary safety outcome was type 3 or 5 bleeding according to the Bleeding Academic Research Consortium definition. Outcomes were assessed between 6 and 24 months. 884 patients (44.9%) had a DAPT score of at least 2, and 1086 (55.1%) had a score less than 2. The reduction in the primary efficacy outcome with 24- versus 6-month DAPT was greater in patients with high scores (risk difference [RD] for score ≥2, -2.05 percentage points [95% CI, -5.04 to 0.95 percentage points]; RD for score <2, 2.91 percentage points [CI, -0.43 to 6.25 percentage points]; P = 0.030). However, the difference by score for the primary efficacy outcome varied by stent type; prolonged DAPT with high scores was effective only in patients receiving paclitaxel-eluting stents (RD, -7.55 percentage points [CI, -12.85 to -2.25 percentage points]). The increase in the primary safety outcome with 24- versus 6-month DAPT was greater in patients with low scores (RD for score ≥2, 0.20 percentage point [CI, -1.20 to 1.60 percentage points]; RD for score <2, 2.58 percentage points [CI, 0.71 to 4.46 percentage points]; P = 0.046). Retrospective calculation of the DAPT score. Prolonged DAPT resulted in harm in patients with low DAPT scores undergoing PCI but reduced risk for ischemic events in patients with high scores receiving paclitaxel-eluting stents. Whether prolonged DAPT benefits patients with

  20. Kinetics and molecular docking studies of loganin, morroniside and 7-O-galloyl-D-sedoheptulose derived from Corni fructus as cholinesterase and β-secretase 1 inhibitors.

    PubMed

    Bhakta, Himanshu Kumar; Park, Chan Hum; Yokozawa, Takako; Min, Byung-Sun; Jung, Hyun Ah; Choi, Jae Sue

    2016-06-01

    We evaluated the major active components isolated from Corni Fructus: loganin, morroniside, and 7-O-galloyl-D-sedoheptulose as inhibitors of acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and β-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1) for use in Alzheimer's disease treatment. These compounds exhibited predominant cholinesterase (ChEs) inhibitory effects with IC50 values of 0.33, 3.95, and 10.50 ± 1.16 µM, respectively, for AChE, and 33.02, 37.78, and 87.94 ± 4.66 µM, respectively, for BChE. Kinetics studies revealed that loganin and 7-O-galloyl-D-sedoheptulose inhibited AChE with characteristics typical of mixed inhibitors, while morroniside was found to be a noncompetitive inhibitor against AChE and also exerted mixed BChE inhibitory activities. For BACE1, loganin showed noncompetitive type inhibitory effects, while morroniside and 7-O-galloyl-D-sedoheptulose were found to be mixed inhibitors. Furthermore, these compounds exhibited dose-dependent inhibitory activity with ONOO(-)-mediated protein tyrosine nitration. Molecular docking simulation of these compounds demonstrated negative binding energies for ChEs, and BACE1, indicating high affinity and tighter binding capacity for the active site of the enzyme. Loganin was the most potent inhibitor against both ChEs and BACE1. The data suggest that these compounds together can act as a triple inhibitor of AChE, BChE, and BACE1, providing a preventive and therapeutic strategy for Alzheimer's disease treatment.

  1. Complete amino acid sequence of bovine colostrum low-Mr cysteine proteinase inhibitor.

    PubMed

    Hirado, M; Tsunasawa, S; Sakiyama, F; Niinobe, M; Fujii, S

    1985-07-01

    The complete amino acid sequence of bovine colostrum cysteine proteinase inhibitor was determined by sequencing native inhibitor and peptides obtained by cyanogen bromide degradation, Achromobacter lysylendopeptidase digestion and partial acid hydrolysis of reduced and S-carboxymethylated protein. Achromobacter peptidase digestion was successfully used to isolate two disulfide-containing peptides. The inhibitor consists of 112 amino acids with an Mr of 12787. Two disulfide bonds were established between Cys 66 and Cys 77 and between Cys 90 and Cys 110. A high degree of homology in the sequence was found between the colostrum inhibitor and human gamma-trace, human salivary acidic protein and chicken egg-white cystatin.

  2. Predicting the risk of bleeding during dual antiplatelet therapy after acute coronary syndromes.

    PubMed

    Alfredsson, Joakim; Neely, Benjamin; Neely, Megan L; Bhatt, Deepak L; Goodman, Shaun G; Tricoci, Pierluigi; Mahaffey, Kenneth W; Cornel, Jan H; White, Harvey D; Fox, Keith Aa; Prabhakaran, Dorairaj; Winters, Kenneth J; Armstrong, Paul W; Ohman, E Magnus; Roe, Matthew T

    2017-08-01

    Dual antiplatelet therapy (DAPT) with aspirin + a P2Y12 inhibitor is recommended for at least 12 months for patients with acute coronary syndrome (ACS), with shorter durations considered for patients with increased bleeding risk. However, there are no decision support tools available to predict an individual patient's bleeding risk during DAPT treatment in the post-ACS setting. To develop a longitudinal bleeding risk prediction model, we analy sed 9240 patients with unstable angina/non-ST segment elevation myocardial infarction (NSTEMI) from the Targeted Platelet Inhibition to Clarify the Optimal Strategy to Medically Manage Acute Coronary Syndromes (TRILOGY ACS) trial, who were managed without revasculari sation and treated with DAPT for a median of 14.8 months. We identified 10 significant baseline predictors of non-coronary artery bypass grafting (CABG)-related Global Use of Strategies to Open Occluded Arteries (GUSTO) severe/life-threatening/moderate bleeding: age, sex, weight, NSTEMI (vs unstable angina), angiography performed before randomi sation, prior peptic ulcer disease, creatinine, systolic blood pressure, haemoglobin and treatment with beta-blocker. The five significant baseline predictors of Thrombolysis In Myocardial Infarction (TIMI) major or minor bleeding included age, sex, angiography performed before randomi sation, creatinine and haemoglobin. The models showed good predictive accuracy with Therneau's C- indices: 0.78 (SE = 0.024) for the GUSTO model and 0.67 (SE = 0.023) for the TIMI model. Internal validation with bootstrapping gave similar C -indices of 0.77 and 0.65, respectively. External validation demonstrated an attenuated C -index for the GUSTO model (0.69) but not the TIMI model (0.68). Longitudinal bleeding risks during treatment with DAPT in patients with ACS can be reliably predicted using selected baseline characteristics. The TRILOGY ACS bleeding models can inform risk -benefit considerations regarding the duration of DAPT

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frampton, Gabriel; Coufal, Monique; Li, Huang

    The endocannabinoids anandamide (AEA) and 2-arachidonylglycerol (2-AG) have opposing effects on cholangiocarcinoma growth. Implicated in cancer, Notch signaling requires the {gamma}-secretase complex for activation. The aims of this study were to determine if the opposing effects of endocannabinoids depend on the differential activation of the Notch receptors and to demonstrate that the differential activation of these receptors are due to presenilin 1 containing- and presenilin 2 containing-{gamma}-secretase complexes. Mz-ChA-1 cells were treated with AEA or 2-AG. Notch receptor expression, activation, and nuclear translocation were determined. Specific roles for Notch 1 and 2 on cannabinoid-induced effects were determined by transient transfectionmore » of Notch 1 or 2 shRNA vectors before stimulation with AEA or 2-AG. Expression of presenilin 1 and 2 was determined after AEA or 2-AG treatment, and the involvement of presenilin 1 and 2 in the cannabinoid-induced effects was demonstrated in cell lines with low presenilin 1 or 2 expression. Antiproliferative effects of AEA required increased Notch 1 mRNA, activation, and nuclear translocation, whereas the growth-promoting effects induced by 2-AG required increased Notch 2 mRNA expression, activation, and nuclear translocation. AEA increased presenilin 1 expression and recruitment into the {gamma}-secretase complex, whereas 2-AG increased expression and recruitment of presenilin 2. The development of novel therapeutic strategies aimed at modulating the endocannabinoid system or mimicking the mode of action of AEA on Notch signaling pathways would prove beneficial for cholangiocarcinoma management.« less

  4. 1,4-Oxazine β-Secretase 1 (BACE1) Inhibitors: From Hit Generation to Orally Bioavailable Brain Penetrant Leads.

    PubMed

    Rombouts, Frederik J R; Tresadern, Gary; Delgado, Oscar; Martínez-Lamenca, Carolina; Van Gool, Michiel; García-Molina, Aránzazu; Alonso de Diego, Sergio A; Oehlrich, Daniel; Prokopcova, Hana; Alonso, José Manuel; Austin, Nigel; Borghys, Herman; Van Brandt, Sven; Surkyn, Michel; De Cleyn, Michel; Vos, Ann; Alexander, Richard; Macdonald, Gregor; Moechars, Dieder; Gijsen, Harrie; Trabanco, Andrés A

    2015-10-22

    1,4-Oxazines are presented, which show good in vitro inhibition in enzymatic and cellular BACE1 assays. We describe lead optimization focused on reducing the amidine pKa while optimizing interactions in the BACE1 active site. Our strategy permitted modulation of properties such as permeation and especially P-glycoprotein efflux. This led to compounds which were orally bioavailable, centrally active, and which demonstrated robust lowering of brain and CSF Aβ levels, respectively, in mouse and dog models. The amyloid lowering potential of these molecules makes them valuable leads in the search for new BACE1 inhibitors for the treatment of Alzheimer's disease.

  5. Differential suppression of glial nitric oxide synthase induction by structurally related tyrosine kinase inhibitors.

    PubMed

    Galea, E; Reddi, J; Feinstein, D L

    1995-11-24

    Incubation of C6 astrocytoma cells with bacterial endotoxin (lipopolysaccharide; LPS) plus interferon-gamma (IFN-gamma), or with a combination of cytokines (TNF-alpha, IL1-beta, and IFN-gamma) leads to high levels of inducible nitric oxide synthase (iNOS) expression. Previous results demonstrated a requirement for tyrosine kinase (TK) activities for iNOS induction. In the present study, a set of structurally related TK inhibitors, the tyrphostins (TYRs), were used to characterize possible differences between LPS and cytokine iNOS induction. All TYRs tested suppressed both types of induction. However, dose-response curves revealed significant differences in the IC50 values obtained for some TYRs (T25 and T56), and significant differences in the IC50 potency rank order when comparing inhibition of LPS versus cytokine-dependent iNOS induction. These results are consistent with differential TK utilization by the LPS versus cytokine pathways of iNOS induction, and establish a basis for developing further selective inhibitors of iNOS expression.

  6. Acyl guanidine inhibitors of β-secretase (BACE-1): optimization of a micromolar hit to a nanomolar lead via iterative solid- and solution-phase library synthesis.

    PubMed

    Gerritz, Samuel W; Zhai, Weixu; Shi, Shuhao; Zhu, Shirong; Toyn, Jeremy H; Meredith, Jere E; Iben, Lawrence G; Burton, Catherine R; Albright, Charles F; Good, Andrew C; Tebben, Andrew J; Muckelbauer, Jodi K; Camac, Daniel M; Metzler, William; Cook, Lynda S; Padmanabha, Ramesh; Lentz, Kimberley A; Sofia, Michael J; Poss, Michael A; Macor, John E; Thompson, Lorin A

    2012-11-08

    This report describes the discovery and optimization of a BACE-1 inhibitor series containing an unusual acyl guanidine chemotype that was originally synthesized as part of a 6041-membered solid-phase library. The synthesis of multiple follow-up solid- and solution-phase libraries facilitated the optimization of the original micromolar hit into a single-digit nanomolar BACE-1 inhibitor in both radioligand binding and cell-based functional assay formats. The X-ray structure of representative inhibitors bound to BACE-1 revealed a number of key ligand:protein interactions, including a hydrogen bond between the side chain amide of flap residue Gln73 and the acyl guanidine carbonyl group, and a cation-π interaction between Arg235 and the isothiazole 4-methoxyphenyl substituent. Following subcutaneous administration in rats, an acyl guanidine inhibitor with single-digit nanomolar activity in cells afforded good plasma exposures and a dose-dependent reduction in plasma Aβ levels, but poor brain exposure was observed (likely due to Pgp-mediated efflux), and significant reductions in brain Aβ levels were not obtained.

  7. Notch Signaling Contributes to Liver Inflammation by Regulation of Interleukin-22-Producing Cells in Hepatitis B Virus Infection

    PubMed Central

    Wei, Xin; Wang, Jiu-Ping; Hao, Chun-Qiu; Yang, Xiao-Fei; Wang, Lin-Xu; Huang, Chang-Xing; Bai, Xue-Fan; Lian, Jian-Qi; Zhang, Ye

    2016-01-01

    The mechanism of hepatitis B virus (HBV) induced liver inflammation is not fully elucidated. Notch signaling augmented interleukin (IL)-22 secretion in CD4+ T cells, and Notch-IL-22 axis fine-tuned inflammatory response. We previously demonstrated a proinflammatory role of IL-22 in HBV infection. Thus, in this study, we analyzed the role of Notch in development of IL-22-producing cells in HBV infection by inhibition of Notch signaling using γ-secretase inhibitor DAPT in both hydrodynamic induced HBV-infected mouse model and in peripheral blood cells isolated from patients with HBV infection. mRNA expressions of Notch1 and Notch2 were significantly increased in livers and CD4+ T cells upon HBV infection. Inhibition of Notch signaling in vivo leaded to the reduction in NKp46+ innate lymphoid cells 22 (ILC22) and lymphoid tissue inducer 4 (LTi4) cells in the liver. This process was accompanied by downregulating the expressions of IL-22 and related proinflammatory cytokines and chemokines in the liver, as well as blocking the recruitment of antigen-non-specific inflammatory cells into the liver and subsequent liver injury, but did not affect HBV antigens production and IL-22 secretion in the serum. Furthermore, IL-22 production in HBV non-specific cultured CD4+ T cells, but not HBV-specific CD4+ T cells, was reduced in response to in vitro inhibition of Notch signaling. In conclusion, Notch siganling appears to be an important mediator of the liver inflammation by modulating hepatic ILC22. The potential proinflammatory effect of Notch-mediated ILC22 may be significant for the development of new therapeutic approaches for treatment of hepatitis B. PMID:27800305

  8. Vismodegib and Gamma-Secretase/Notch Signalling Pathway Inhibitor RO4929097 in Treating Patients With Advanced or Metastatic Sarcoma

    ClinicalTrials.gov

    2016-06-09

    Adult Alveolar Soft Part Sarcoma; Adult Angiosarcoma; Adult Desmoplastic Small Round Cell Tumor; Adult Epithelioid Hemangioendothelioma; Adult Epithelioid Sarcoma; Adult Extraskeletal Myxoid Chondrosarcoma; Adult Extraskeletal Osteosarcoma; Adult Fibrosarcoma; Adult Leiomyosarcoma; Adult Liposarcoma; Adult Malignant Mesenchymoma; Adult Malignant Peripheral Nerve Sheath Tumor; Adult Rhabdomyosarcoma; Adult Synovial Sarcoma; Adult Unclassified Pleomorphic Sarcoma; Chondrosarcoma; Clear Cell Sarcoma of the Kidney; Conjunctival Kaposi Sarcoma; Dermatofibrosarcoma Protuberans; Gastrointestinal Stromal Tumor; Metastatic Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Metastatic Osteosarcoma; Ovarian Sarcoma; Recurrent Adult Soft Tissue Sarcoma; Recurrent Adult Unclassified Pleomorphic Sarcoma of Bone; Recurrent Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Recurrent Kaposi Sarcoma; Recurrent Osteosarcoma; Recurrent Uterine Corpus Sarcoma; Small Intestine Leiomyosarcoma; Stage III Adult Soft Tissue Sarcoma; Stage III Uterine Sarcoma; Stage IV Adult Soft Tissue Sarcoma; Stage IV Uterine Sarcoma; Unclassified Pleomorphic Sarcoma of Bone

  9. Intracellular trafficking of the β-secretase and processing of amyloid precursor protein.

    PubMed

    Zhi, Pei; Chia, Pei Zhi Cheryl; Chia, Cheryl; Gleeson, Paul A

    2011-09-01

    The main component of the amyloid plaques found in the brains of those with Alzheimer's disease (AD) is a polymerized form of the β-amyloid peptide (Aβ) and is considered to play a central role in the pathogenesis of this neurodegenerative disorder. Aβ is derived from the proteolytic processing of the amyloid precursor protein (APP). Beta site APP-cleaving enzyme, BACE1 (also known as β-secretase) is a membrane-bound aspartyl protease responsible for the initial step in the generation of Aβ peptide and is thus a prime target for therapeutic intervention. Substantive evidence now indicates that the processing of APP by BACE1 is regulated by the intracellular sorting of the enzyme and, moreover, perturbations in these intracellular trafficking pathways have been linked to late-onset AD. In this review, we highlight the recent advances in the understanding of the regulation of the intracellular sorting of BACE1 and APP and illustrate why the trafficking of these cargos represent a key issue for understanding the membrane-mediated events associated with the generation of the neurotoxic Aβ products in AD. Copyright © 2011 International Union of Biochemistry and Molecular Biology, Inc.

  10. Differential IFN-gamma stimulation of HLA-A gene expression through CRM-1-dependent nuclear RNA export.

    PubMed

    Browne, Sarah K; Roesser, James R; Zhu, Sheng Zu; Ginder, Gordon D

    2006-12-15

    IFNs regulate most MHC class I genes by stimulating transcription initiation. As shown previously, IFN-gamma controls HLA-A expression primarily at the posttranscriptional level. We have defined two 8-base sequences in a 39-nucleotide region in the 3'-transcribed region of the HLA-A gene that are required for the posttranscriptional response to IFN-gamma. Stimulation of HLA-A expression by IFN-gamma requires nuclear export of HLA-A mRNA by chromosome maintenance region 1 (CRM-1). Treatment of cells with leptomycin B, a specific inhibitor of CRM-1, completely inhibited IFN-gamma induction of HLA-A. Expression of a truncated, dominant-negative form of the nucleoporin NUP214/CAN, DeltaCAN, that specifically interacts with CRM-1, also prevented IFN-gamma stimulation of HLA-A, providing confirmation of the role of CRM-1. Increased expression of HLA-A induced by IFN-gamma also requires protein methylation, as shown by the fact that treatment of SK-N-MC cells or HeLa cells with the PRMT1 inhibitor 5'-methyl-5'-thioadenosine abolished the cellular response to IFN-gamma. In contrast with HLA-A, IFN-gamma-induced expression of the HLA class Ib gene, HLA-E, was not affected by either 5'-methyl-5'-thioadenosine or leptomycin B. These results provide proof of principle that it is possible to differentially modulate the IFN-gamma-induced expression of the HLA-E and HLA-A genes, whose products often mediate opposing effects on cellular immunity to tumor cells, pathogens, and autoantigens.

  11. Effects of dabigatran on the cellular and protein phase of coagulation in patients with coronary artery disease on dual antiplatelet therapy with aspirin and clopidogrel. Results from a prospective, randomised, double-blind, placebo-controlled study.

    PubMed

    Franchi, Francesco; Rollini, Fabiana; Cho, Jung Rae; King, Rhodri; Phoenix, Fladia; Bhatti, Mona; DeGroat, Christopher; Tello-Montoliu, Antonio; Zenni, Martin M; Guzman, Luis A; Bass, Theodore A; Ajjan, Ramzi A; Angiolillo, Dominick J

    2016-03-01

    There is growing interest in understanding the effects of adding an oral anticoagulant in patients on dual antiplatelet therapy (DAPT). Vitamin K antagonists (VKAs) and clopidogrel represent the most broadly utilised oral anticoagulant and P2Y12 receptor inhibitor, respectively. However, VKAs can interfere with clopidogrel metabolism via the cytochrome P450 (CYP) system which in turn may result in an increase in platelet reactivity. Dabigatran is a direct acting (anti-II) oral anticoagulant which does not interfere with CYP and has favourable safety and efficacy profiles compared with VKAs. The pharmacodynamic (PD) effects on platelet reactivity and clot kinetic of adjunctive dabigatran therapy in patients on DAPT are poorly explored. In this prospective, randomised, double-blind, placebo-controlled PD study, patients (n=30) on maintenance DAPT with aspirin and clopidogrel were randomised to either dabigatran 150 mg bid or placebo for seven days. PD testing was performed before and after treatment using four different assays exploring multiple pathways of platelet aggregation and fibrin clot kinetics: light transmittance aggregometry (LTA), multiple electrode aggregometry (MEA), kaolin-activated thromboelastography (TEG) and turbidimetric assays. There were no differences in multiple measures of platelet reactivity investigating purinergic and non-purinergic signaling pathways assessed by LTA, MEA and TEG platelet mapping. Dabigatran significantly increased parameters related to thrombin activity and thrombus generation, and delayed fibrin clot formation, without affecting clot structure or fibrinolysis. In conclusion, in patients on DAPT with aspirin and clopidogrel, adjunctive dabigatran therapy is not associated with modulation of profiles of platelet reactivity as determined by several assays assessing multiple platelet signalling pathways. However, dabigatran significantly interferes with parameters related to thrombin activity and delays fibrin clot formation.

  12. External Ventricular Drain and Hemorrhage in Aneurysmal Subarachnoid Hemorrhage Patients on Dual Antiplatelet Therapy: A Retrospective Cohort Study.

    PubMed

    Hudson, Joseph S; Prout, Benjamin S; Nagahama, Yasunori; Nakagawa, Daichi; Guerrero, Waldo R; Zanaty, Mario; Chalouhi, Nohra; Jabbour, Pascal; Dandapat, Sudeepta; Allan, Lauren; Ortega-Gutierrez, Santiago; Samaniego, Edgar A; Hasan, David

    2018-04-11

    Stenting and flow diversion for aneurysmal sub arachnoid hemorrhage (aSAH) require the use of dual antiplatelet therapy (DAPT). To investigate whether DAPT is associated with hemorrhagic complication following placement of external ventricular drains (EVD) in patients with aSAH. Rates of radiographically identified hemorrhage associated with EVD placement were compared between patients who received DAPT for stenting or flow diversion, and patients who underwent microsurgical clipping or coiling and did not receive DAPT by way of a backward stepwise multivariate analysis. Four hundred forty-three patients were admitted for aSAH management. Two hundred ninety-eight patients required placement of an EVD. One hundred twenty patients (40%) were treated with stent-assisted coiling or flow diversion and required DAPT, while 178 patients (60%) were treated with coiling without stents or microsurgical clipping and did not receive DAPT. Forty-two (14%) cases of new hemorrhage along the EVD catheter were identified radiographically. Thirty-two of these hemorrhages occurred in patients on DAPT, while 10 occurred in patients without DAPT. After multivariate analysis, DAPT was significantly associated with radiographic hemorrhage [odds ratio: 4.92, 95% confidence interval: 2.45-9.91, P = .0001]. We did not observe an increased proportion of symptomatic hemorrhage in patients receiving DAPT (10 of 32 [31%]) vs those without (5 of 10 [50%]; P = .4508). Patients with aSAH who receive stent-assisted coiling or flow diversion are at higher risk for radiographic hemorrhage associated with EVD placement. The timing between EVD placement and DAPT initiation does not appear to be of clinical significance. Stenting and flow diversion remain viable options for aSAH patients.

  13. Pharmacological and biochemical analysis of FPL 67156, a novel, selective inhibitor of ecto-ATPase.

    PubMed Central

    Crack, B E; Pollard, C E; Beukers, M W; Roberts, S M; Hunt, S F; Ingall, A H; McKechnie, K C; IJzerman, A P; Leff, P

    1995-01-01

    1. FPL 67156 (6-N,N-diethyl-beta, gamma-dibromomethylene-D-ATP), is a newly synthesized analogue of ATP. 2. In a rabbit isolated tracheal epithelium preparation, measuring P2U-purinoceptor-dependent chloride secretion, FPL 67156 was discovered to potentiate the responses to UTP but not those to ATP-gamma-S. UTP agonist-concentration effect (E/[A]) curves were shifted to the left by 5-fold in the presence of 100 microM FPL 67156. The differential effect of FPL 67156 on UTP and ATP-gamma-S was hypothesized to be due to the greater susceptibility of UTP to enzymatic dephosphorylation and the ability of FPL 67156 to inhibit this process. 3. FPL 67156 was tested as an ecto-ATPase inhibitor in a human blood cell assay, measuring [gamma 32P]-ATP dephosphorylation. The compound inhibited [gamma 32P]-ATP degradation with a pIC50 of 4.6. 4. FPL 67156 was then tested for its effects on ATP and alpha, beta-methylene-ATP responses at P2X-purinoceptors in the rabbit isolated ear artery. In the concentration range 30 microM-1 mM, the compound potentiated the contractile effects of ATP but not those of alpha, beta-methylene-ATP. At 1 mM, FPL 67156 produced a 34-fold leftward shift of ATP E/[A] curves. 5. The effects of FPL 67156 on ATP E/[A] curves in the rabbit ear artery were analyzed using a theoretical model (Furchgott, 1972) describing the action of an enzyme inhibitor on the effects of a metabolically unstable agonist. This analysis provided an estimate of the pKi for FPL 67156 as an ecto-ATPase inhibitor of 5.2.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7533620

  14. Interferon-alpha and interferon-gamma sensitize human tenon fibroblasts to mitomycin-C.

    PubMed

    Wang, Xiao Yang; Crowston, Jonathan G; Zoellner, Hans; Healey, Paul R

    2007-08-01

    To investigate the effect of interferon (IFN)-alpha and IFN-gamma pretreatment on mitomycin C (MMC)-induced cell death in human Tenon fibroblasts (HTFs) and the mechanisms by which IFN-alpha and IFN-gamma modulate the susceptibility of HTFs to MMC. HTFs were pretreated with IFN-alpha and IFN-gamma for 48 hours before 5-minute application of 0.4 mg/mL MMC. Cell death after 48 hours was determined by Annexin V/propidium iodide (PI) staining and lactate dehydrogenase (LDH) release assay. Fas, Fas-ligand, and Bcl-2 expression were determined by flow cytometry. Fas associated death domain (FADD), Bax, cytochrome c, and caspase expression were determined by Western blot analysis and immunofluorescence staining. MMC treatment increased cell death and upregulated Fas and FADD expression, but had no effect on Fas-Ligand, Bax, Bcl-2, or cytochrome c. Neither IFN-alpha nor IFN-gamma alone induced HTF death, but each increased cell death 2 days after MMC treatment in a dose-dependent fashion. Combination IFN-alpha and IFN-gamma had a synergistic effect. IFN-alpha and IFN-gamma pretreatment increased Fas expression. Fas upregulation was associated with increased sensitivity to MMC. IFN pretreatment increased procaspase-8, procaspase-9, and procaspase-3 expression, and caspase-3 activation. Caspase-8, caspase-3, and broad caspase inhibitors, but not caspase-9 inhibitor, inhibited MMC-induced cell death in nonpretreated and IFN-pretreated cells. IFN-alpha and IFN-gamma enhance the susceptibility of HTFs to MMC-induced cell death through a Fas-mediated and a caspase-3-dependent pathway. Pretreatment with IFN primed HTFs to MMC, providing a potential means for initially slowing the healing response with IFN and subsequently terminating fibroblast activity through MMC-induced cell death.

  15. Loss of function of ATXN1 increases amyloid beta-protein levels by potentiating beta-secretase processing of beta-amyloid precursor protein.

    PubMed

    Zhang, Can; Browne, Andrew; Child, Daniel; Divito, Jason R; Stevenson, Jesse A; Tanzi, Rudolph E

    2010-03-19

    Alzheimer disease (AD) is a devastating neurodegenerative disease with complex and strong genetic inheritance. Four genes have been established to either cause familial early onset AD (APP, PSEN1, and PSEN2) or to increase susceptibility for late onset AD (APOE). To date approximately 80% of the late onset AD genetic variance remains elusive. Recently our genome-wide association screen identified four novel late onset AD candidate genes. Ataxin 1 (ATXN1) is one of these four AD candidate genes and has been indicated to be the disease gene for spinocerebellar ataxia type 1, which is also a neurodegenerative disease. Mounting evidence suggests that the excessive accumulation of Abeta, the proteolytic product of beta-amyloid precursor protein (APP), is the primary AD pathological event. In this study, we ask whether ATXN1 may lead to AD pathogenesis by affecting Abeta and APP processing utilizing RNA interference in a human neuronal cell model and mouse primary cortical neurons. We show that knock-down of ATXN1 significantly increases the levels of both Abeta40 and Abeta42. This effect could be rescued with concurrent overexpression of ATXN1. Moreover, overexpression of ATXN1 decreased Abeta levels. Regarding the underlying molecular mechanism, we show that the effect of ATXN1 expression on Abeta levels is modulated via beta-secretase cleavage of APP. Taken together, ATXN1 functions as a genetic risk modifier that contributes to AD pathogenesis through a loss-of-function mechanism by regulating beta-secretase cleavage of APP and Abeta levels.

  16. Loss of Function of ATXN1 Increases Amyloid β-Protein Levels by Potentiating β-Secretase Processing of β-Amyloid Precursor Protein*

    PubMed Central

    Zhang, Can; Browne, Andrew; Child, Daniel; DiVito, Jason R.; Stevenson, Jesse A.; Tanzi, Rudolph E.

    2010-01-01

    Alzheimer disease (AD) is a devastating neurodegenerative disease with complex and strong genetic inheritance. Four genes have been established to either cause familial early onset AD (APP, PSEN1, and PSEN2) or to increase susceptibility for late onset AD (APOE). To date ∼80% of the late onset AD genetic variance remains elusive. Recently our genome-wide association screen identified four novel late onset AD candidate genes. Ataxin 1 (ATXN1) is one of these four AD candidate genes and has been indicated to be the disease gene for spinocerebellar ataxia type 1, which is also a neurodegenerative disease. Mounting evidence suggests that the excessive accumulation of Aβ, the proteolytic product of β-amyloid precursor protein (APP), is the primary AD pathological event. In this study, we ask whether ATXN1 may lead to AD pathogenesis by affecting Aβ and APP processing utilizing RNA interference in a human neuronal cell model and mouse primary cortical neurons. We show that knock-down of ATXN1 significantly increases the levels of both Aβ40 and Aβ42. This effect could be rescued with concurrent overexpression of ATXN1. Moreover, overexpression of ATXN1 decreased Aβ levels. Regarding the underlying molecular mechanism, we show that the effect of ATXN1 expression on Aβ levels is modulated via β-secretase cleavage of APP. Taken together, ATXN1 functions as a genetic risk modifier that contributes to AD pathogenesis through a loss-of-function mechanism by regulating β-secretase cleavage of APP and Aβ levels. PMID:20097758

  17. Molecular Mechanism of Selectivity among G Protein-Coupled Receptor Kinase 2 Inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thal, David M.; Yeow, Raymond Y.; Schoenau, Christian

    2012-07-11

    G protein-coupled receptors (GPCRs) are key regulators of cell physiology and control processes ranging from glucose homeostasis to contractility of the heart. A major mechanism for the desensitization of activated GPCRs is their phosphorylation by GPCR kinases (GRKs). Overexpression of GRK2 is strongly linked to heart failure, and GRK2 has long been considered a pharmaceutical target for the treatment of cardiovascular disease. Several lead compounds developed by Takeda Pharmaceuticals show high selectivity for GRK2 and therapeutic potential for the treatment of heart failure. To understand how these drugs achieve their selectivity, we determined crystal structures of the bovine GRK2-G{beta}{gamma} complexmore » in the presence of two of these inhibitors. Comparison with the apoGRK2-G{beta}{gamma} structure demonstrates that the compounds bind in the kinase active site in a manner similar to that of the AGC kinase inhibitor balanol. Both balanol and the Takeda compounds induce a slight closure of the kinase domain, the degree of which correlates with the potencies of the inhibitors. Based on our crystal structures and homology modeling, we identified five amino acids surrounding the inhibitor binding site that we hypothesized could contribute to inhibitor selectivity. However, our results indicate that these residues are not major determinants of selectivity among GRK subfamilies. Rather, selectivity is achieved by the stabilization of a unique inactive conformation of the GRK2 kinase domain.« less

  18. Effect of gamma irradiation on antinutritional factors in broad bean

    NASA Astrophysics Data System (ADS)

    Al-Kaisey, Mahdi T.; Alwan, Abdul-Kader H.; Mohammad, Manal H.; Saeed, Amjed H.

    2003-06-01

    The effect of gamma irradiation on the level of antinutritional factors (trypsin inhibitor (TI), phytic acid and oligosaccharides) of broad bean was investigated. The seeds were subjected to gamma irradiation at 0, 2.5, 5, 7.5 and 10 kGy, respectively using cobalt-60 gamma radiation with a dose rate 2.37 kGy/h. TI activity was reduced by 4.5%, 6.7%, 8.5% and 9.2% at 2.5, 5, 7.5 and 10 kGy, respectively. Meanwhile, irradiation at 10.2, 12.3, 15.4 and 18.2 kGy reduced the phytic acid content. The flatulence causing oligosaccharides were decreased as the radiation dose increased. The chemical composition (protein, oil, ash and total carbohydrates) of the tested seeds was determined. Gamma radiation seems to be a good procedure to improve the quality of broad bean from the nutritional point of view.

  19. Interferon Gamma potentiates the injury caused by MPP(+) on SH-SY5Y cells, which is attenuated by the nitric oxide synthases inhibition.

    PubMed

    Titze-de-Almeida, Simoneide S; Lustosa, Cátia Faria; Horst, Camila Hillesheim; Bel, Elaine Del; Titze-de-Almeida, Ricardo

    2014-12-01

    This study examined whether the cytokine interferon (IFN) gamma plays a role in the injury of SH-SY5Y cells caused by MPP(+) (1-methyl-4-phenylpyridinium). First of all, IFN-gamma sensitized cells to the neurotoxin MPP(+), as determined by MTT (3-(4,5-dimethylthiazol-2-y1)-2,5-diphenyltetrazolium bromide) assay. MPP(+)-injured cells showed higher reactive oxygen species (ROS) levels, which was reinforced by IFN-gamma. The injury triggered a marked expression of the neuronal NOS (nNOS) enzyme. L-NAME [N(ω)-nitro-L-arginine methyl ester, a non-specific NOS inhibitor] reestablished the cell viability after IFN-gamma challenging, and recovered cells from MPP(+) injury (95.0 vs. 84.7 %; P < 0.05). Seven-NI (7-nitroindazole, a nNOS inhibitor) protected cells against the injury by MPP(+) co-administered with IFN-gamma. Both inhibitors restrained the apoptosis of SH-SY5Y cells caused by MPP(+)/IFN-gamma. Regarding oxidative stress, L-NAME and 7-NI attenuated the increase in ROS levels caused by MPP(+) (45.3 or 48.4 vs. 87.9 %, P < 0.05). Indeed, L-NAME was more effective than 7-NI for reducing oxidative stress caused by MPP(+) under IFN-gamma exposition. The nNOS gene silencing by small-interfering RNAs recovered cells challenged by IFN-gamma (24 h), or MPP(+) (8 h). In conclusion, IFN-gamma sensitizes cells to MPP(+)-induced injury, also causing an increase in ROS levels. Pretreating cells with L-NAME or 7-NI reverts both the oxidative stress and apoptosis triggered by the neurotoxin MPP(+). Taking together, our data reinforce that IFN-gamma and NOS enzymes play a role in oxidative stress and dopaminergic cell death triggered by MPP(+).

  20. Vascular endothelial cells express isoforms of protein kinase A inhibitor.

    PubMed

    Lum, Hazel; Hao, Zengping; Gayle, Dave; Kumar, Priyadarsini; Patterson, Carolyn E; Uhler, Michael D

    2002-01-01

    The expression and function of the endogenous inhibitor of cAMP-dependent protein kinase (PKI) in endothelial cells are unknown. In this study, overexpression of rabbit muscle PKI gene into endothelial cells inhibited the cAMP-mediated increase and exacerbated thrombin-induced decrease in endothelial barrier function. We investigated PKI expression in human pulmonary artery (HPAECs), foreskin microvessel (HMECs), and brain microvessel endothelial cells (HBMECs). RT-PCR using specific primers for human PKI alpha, human PKI gamma, and mouse PKI beta sequences detected PKI alpha and PKI gamma mRNA in all three cell types. Sequencing and BLAST analysis indicated that forward and reverse DNA strands for PKI alpha and PKI gamma were of >96% identity with database sequences. RNase protection assays showed protection of the 542 nucleotides in HBMEC and HPAEC PKI alpha mRNA and 240 nucleotides in HBMEC, HPAEC, and HMEC PKI gamma mRNA. Western blot analysis indicated that PKI gamma protein was detected in all three cell types, whereas PKI alpha was found in HBMECs. In summary, endothelial cells from three different vascular beds express PKI alpha and PKI gamma, which may be physiologically important in endothelial barrier function.

  1. Presenilin 1 mutations influence processing and trafficking of the ApoE receptor apoER2.

    PubMed

    Wang, Wei; Moerman-Herzog, Andrea M; Slaton, Arthur; Barger, Steven W

    2017-01-01

    Presenilin (PS)-1 is an intramembrane protease serving as the catalytic component of γ-secretase. Mutations in the PS1 gene are the most common cause of familial Alzheimer's disease (FAD). The low-density lipoprotein (LDL)-receptor family member apoER2 is a γ-secretase substrate that has been associated with AD in several ways, including acting as a receptor for apolipoprotein E (ApoE). ApoER2 is processed by γ-secretase into a C-terminal fragment (γ-CTF) that appears to regulate gene expression. FAD PS1 mutations were tested for effects on apoER2. PS1 mutation R278I showed impaired γ-secretase activity for apoER2 in the basal state or after exposure to Reelin. PS1 M146V mutation permitted accumulation of apoER2 CTFs after Reelin treatment, whereas no difference was seen between wild-type (WT) and M146V in the basal state. PS1 L282V mutation, combined with the γ-secretase inhibitor N-(N-[3,5-Difluorophenacetyl]-L-alanyl)-S-phenylglycine t-butyl ester, greatly reduced the cell-surface levels of apoER2 without affecting total apoER2 levels, suggesting a defect in receptor trafficking. These findings indicate that impaired processing or localization of apoER2 may contribute to the pathogenic effects of FAD mutations in PS1. Published by Elsevier Inc.

  2. EGFR blockade enriches for lung cancer stem-like cells through Notch3-dependent signaling

    PubMed Central

    Arasada, Rajeswara Rao; Amann, Joseph M.; Rahman, Mohammad A; Huppert, Stacey S.; Carbone, David P.

    2014-01-01

    Mutations in the epidermal growth factor receptor (EGFR) are the most common actionable genetic abnormalities yet discovered in lung cancer. However, targeting these mutations with kinase inhibitors is not curative in advanced disease and has yet to demonstrate an impact on potentially curable, early-stage disease, with some data suggesting adverse outcomes. Here, we report that treatment of EGFR-mutated lung cancer cell lines with erlotinib, while showing robust cell death, enriches the ALDH+ stem-like cells through EGFR-dependent activation of Notch3. Additionally, we demonstrate that erlotinib treatment increases the clonogenicity of lung cancer cells in a sphere-forming assay, suggesting increased stem-like cell potential. We demonstrate that inhibition of EGFR kinase activity leads to activation of Notch transcriptional targets in a gamma secretase inhibitor sensitive manner and causes Notch activation. leading to an increase in ALDH high+ cells. We also find a kinase-dependent physical association between the Notch3 and EGFR receptors and tyrosine phosphorylation of Notch3. This could explain the worsened survival observed in some studies of erlotinib treatment at early-stage disease, and suggests that specific dual targeting might overcome this adverse effect. PMID:25125655

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosicek, Marko, E-mail: marko.kosicek@irb.hr; Malnar, Martina, E-mail: martina.malnar@irb.hr; Goate, Alison, E-mail: goate@icarus.wustl.edu

    It has been suggested that cholesterol may modulate amyloid-{beta} (A{beta}) formation, a causative factor of Alzheimer's disease (AD), by regulating distribution of the three key proteins in the pathogenesis of AD ({beta}-amyloid precursor protein (APP), {beta}-secretase (BACE1) and/or presenilin 1 (PS1)) within lipid rafts. In this work we tested whether cholesterol accumulation upon NPC1 dysfunction, which causes Niemann Pick type C disease (NPC), causes increased partitioning of APP into lipid rafts leading to increased CTF/A{beta} formation in these cholesterol-rich membrane microdomains. To test this we used CHO NPC1{sup -/-} cells (NPC cells) and parental CHOwt cells. By sucrose density gradientmore » centrifugation we observed a shift in fl-APP/CTF compartmentalization into lipid raft fractions upon cholesterol accumulation in NPC vs. wt cells. Furthermore, {gamma}-secretase inhibitor treatment significantly increased fl-APP/CTF distribution in raft fractions in NPC vs. wt cells, suggesting that upon cholesterol accumulation in NPC1-null cells increased formation of APP-CTF and its increased processing towards A{beta} occurs in lipid rafts. Our results support that cholesterol overload, such as in NPC disease, leads to increased partitioning of APP/CTF into lipid rafts resulting in increased amyloidogenic processing of APP in these cholesterol-rich membranes. This work adds to the mechanism of the cholesterol-effect on APP processing and the pathogenesis of Alzheimer's disease and supports the role of lipid rafts in these processes.« less

  4. Expression analysis of human β-secretase in transgenic tomato fruits.

    PubMed

    Kim, H-S; Youm, J-W; Moon, K-B; Ha, J-H; Kim, Y-H; Joung, H; Jeon, J-H

    2012-03-01

    An emerging strategy in biomanufacturing involves using transgenic plants to express recombinant pharmaceutical and industrial proteins in large quantities. β-Site APP cleaving enzyme 1 (β-secretase 1, BACE1) is an enzyme involved in the abnormal production of Aβ42, the major component of senile plaques in Alzheimer's disease (AD). Thus, BACE1 represents a key target protein in the development of new potential drugs to treat Alzheimer's disease. We aimed to develop a tomato-derived recombinant BACE1 (rBACE1) protein to serve as a vaccine antigen that would promote an immune response. We utilized a plant expression cassette, pE8BACE, to optimize BACE1 expression in tomato fruits. Polyemerase chain reaction and Southern blot analyses verified integration of the BACE1 gene into the plant genome. Northern and Western blot analyses demonstrated successful mRNA and protein expression of rBACE1, respectively; the Sensizyme assay kit estimated the expression level of rBACE1 protein at 136 ± 7 ng mg⁻¹ total soluble protein. The tomato-derived rBACE1 retains its activity for a long storage period at cool or room temperature, and is highly resistant to degradation in conditions such as low acidity. Tomato-derived rBACE1 was severely degraded by heat or boiling. The proteolytic activity of tomato-derived rBACE1, confirmed by fluorescence resonance transfer assay, was similar to that of a commercial sample of Escherichia coli-derived BACE1. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Dual Antiplatelet Therapy for 6 Versus 18 Months After Biodegradable Polymer Drug-Eluting Stent Implantation.

    PubMed

    Nakamura, Masato; Iijima, Raisuke; Ako, Junya; Shinke, Toshiro; Okada, Hisayuki; Ito, Yoshiaki; Ando, Kenji; Anzai, Hitoshi; Tanaka, Hiroyuki; Ueda, Yasunori; Takiuchi, Shin; Nishida, Yasunori; Ohira, Hiroshi; Kawaguchi, Katsuhiro; Kadotani, Makoto; Niinuma, Hiroyuki; Omiya, Kazuto; Morita, Takashi; Zen, Kan; Yasaka, Yoshinori; Inoue, Kenji; Ishiwata, Sugao; Ochiai, Masahiko; Hamasaki, Toshimitsu; Yokoi, Hiroyoshi

    2017-06-26

    The NIPPON (Nobori Dual Antiplatelet Therapy as Appropriate Duration) study was a multicenter randomized investigation of the noninferiority of short-term versus long-term dual antiplatelet therapy (DAPT) in patients with implantation of the Nobori drug-eluting stent (DES) (Terumo, Tokyo, Japan), which has a biodegradable abluminal coating. The optimum duration of DAPT for patients with a biodegradable polymer-coated DES is unclear. The subjects were 3,773 patients with stable or acute coronary syndromes undergoing Nobori stent implantation. They were randomized 1:1 to receive DAPT for 6 or 18 months. The primary endpoint was net adverse clinical and cerebrovascular events (NACCE) (all-cause mortality, myocardial infarction, stroke, and major bleeding) from 6 to 18 months after stenting. Intention-to-treat analysis was performed in 3,307 patients who were followed for at least 6 months. NACCE occurred in 34 patients (2.1%) receiving short-term DAPT and 24 patients (1.5%) receiving long-term DAPT (difference 0.6%, 95% confidence interval [CI]: 1.5 to 0.3). Because the lower limit of the 95% CI was inside the specified margin of -2%, noninferiority of short-term DAPT was confirmed. Mortality was 1.0% with short-term DAPT versus 0.4% with long-term DAPT, whereas myocardial infarction was 0.2% versus 0.1%, and major bleeding was 0.7% versus 0.7%, respectively. The estimated probability of NACCE was lower in the long-term DAPT group (hazard ratio: 1.44, 95% CI: 0.86 to 2.43). Six months of DAPT was not inferior to 18 months of DAPT following implantation of a DES with a biodegradable abluminal coating. However, this result needs to be interpreted with caution given the open-label design and wide noninferiority margin of the present study. (Nobori Dual Antiplatelet Therapy as Appropriate Duration [NIPPON]; NCT01514227). Copyright © 2017. Published by Elsevier Inc.

  6. Z{gamma}{gamma}{gamma} {yields} 0 Processes in SANC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bardin, D. Yu., E-mail: bardin@nu.jinr.ru; Kalinovskaya, L. V., E-mail: kalinov@nu.jinr.ru; Uglov, E. D., E-mail: corner@nu.jinr.ru

    2013-11-15

    We describe the analytic and numerical evaluation of the {gamma}{gamma} {yields} {gamma}Z process cross section and the Z {yields} {gamma}{gamma}{gamma} decay rate within the SANC system multi-channel approach at the one-loop accuracy level with all masses taken into account. The corresponding package for numeric calculations is presented. For checking of the results' correctness we make a comparison with the other independent calculations.

  7. Sneaky Gamma-Rays: Using Gravitational Lensing to Avoid Gamma-Gamma-Absorption

    NASA Astrophysics Data System (ADS)

    Boettcher, Markus; Barnacka, Anna

    2014-08-01

    It has recently been suggested that gravitational lensing studies of gamma-ray blazars might be a promising avenue to probe the location of the gamma-ray emitting region in blazars. Motivated by these prospects, we have investigated potential gamma-gamma absorption signatures of intervening lenses in the very-high-energy gamma-ray emission from lensedblazars. We considered intervening galaxies and individual stars within these galaxies. We find that the collective radiation field of galaxies acting as sources of macrolensing are not expected to lead to significant gamma-gamma absorption. Individual stars within intervening galaxies could, in principle, cause a significant opacity to gamma-gamma absorption for VHE gamma-rays if the impact parameter (the distance of closest approach of the gamma-ray to the center of the star) is small enough. However, we find that the curvature of the photon path due to gravitational lensing will cause gamma-ray photons to maintain a sufficiently large distance from such stars to avoid significant gamma-gamma absorption. This re-inforces the prospect of gravitational-lensing studies of gamma-ray blazars without interference due to gamma-gamma absorption due to the lensing objects.

  8. Longer- Versus Shorter-Duration Dual-Antiplatelet Therapy After Drug-Eluting Stent Placement: A Systematic Review and Meta-analysis.

    PubMed

    Spencer, Frederick A; Prasad, Manya; Vandvik, Per O; Chetan, Devin; Zhou, Qi; Guyatt, Gordon

    2015-07-21

    The appropriate duration of dual-antiplatelet therapy (DAPT) after drug-eluting stent (DES) placement remains controversial. To summarize data on clinical outcomes with longer- versus shorter-duration DAPT after DES placement in adults with coronary artery disease. Ovid MEDLINE and EMBASE, 1996 to 27 March 2015, and manual screening of references. Randomized, controlled trials comparing longer- versus shorter-duration DAPT after DES placement. Two reviewers screened potentially eligible articles; extracted data on populations, interventions, and outcomes; assessed risk of bias; and used the Grading of Recommendations Assessment, Development and Evaluation guidelines to rate overall confidence in effect estimates. Among 1010 articles identified, 9 trials including 29,531 patients were eligible; data were complete for 28,808 patients. Moderate-quality evidence showed that longer-duration DAPT decreased risk for myocardial infarction (risk ratio [RR], 0.73 [95% CI, 0.58 to 0.92]) and increased mortality (RR, 1.19 [CI, 1.04 to 1.36]). High-quality evidence showed that DAPT increased risk for major bleeding (RR, 1.63 [CI, 1.34 to 1.99]). Confidence in estimates were decreased owing to imprecision for most outcomes (particularly myocardial infarction), risk of bias from limited blinding in 7 of 9 studies, indirectness due to variability in use of first- and second-generation stents, and off-protocol use of DAPT in some studies. Extended DAPT is associated with approximately 8 fewer myocardial infarctions per 1000 treated patients per year but 6 more major bleeding events than shorter-duration DAPT. Because absolute effects are very small and closely balanced, decisions regarding the duration of DAPT therapy must take into account patients' values and preference. None.

  9. Synergistic anticancer effects of combined gamma-tocotrienol and celecoxib treatment are associated with suppression in Akt and NFkappaB signaling.

    PubMed

    Shirode, Amit B; Sylvester, Paul W

    2010-05-01

    The selective cyclooxygenase (COX)-2 inhibitor, celecoxib, and the vitamin E isoform, gamma-tocotrienol, both display potent anticancer activity. However, high dose clinical use of selective COX-2 inhibitors has been limited by gastrointestinal and cardiovascular toxicity, whereas limited absorption and transport of gamma-tocotrienol by the body has made it difficult to obtain and sustain therapeutic levels in the blood and target tissues. Studies were conducted to characterize the synergistic anticancer antiproliferative effects of combined low dose celecoxib and gamma-tocotrienol treatment on mammary tumor cells in culture. The highly malignant mouse +SA mammary epithelial cells were maintained in culture on serum-free defined control or treatment media. Treatment effects on COX-1, COX-2, Akt, NFkappaB and prostaglandin E(2) (PGE(2)) synthesis were assessed following a 3- or 4-day culture period. Treatment with 3-4 microM gamma-tocotrienol or 7.5-10 microM celecoxib alone significantly inhibited +SA cell growth in a dose-responsive manner. However, combined treatment with subeffective doses of gamma-tocotrienol (0.25 microM) and celecoxib (2.5 microM) resulted in a synergistic antiproliferative effect, as determined by isobologram analysis, and this growth inhibitory effect was associated with a reduction in PGE(2) synthesis, and decrease in COX-2, phospho-Akt (active), and phospho-NFkappaB (active) levels. These results demonstrate that the synergistic anticancer effects of combined celecoxib and gamma-tocotrienol therapy are mediated by COX-2 dependent and independent mechanisms. These findings also suggest that combination therapy with these agents may provide enhanced therapeutic response in breast cancer patients, while avoiding the toxicity associated with high-dose COX-2 inhibitor monotherapy. 2009 Elsevier Masson SAS. All rights reserved.

  10. mTOR-Notch3 signaling mediates pulmonary hypertension in hypoxia-exposed neonatal rats independent of changes in autophagy.

    PubMed

    Ivanovska, Julijana; Shah, Sparsh; Wong, Mathew J; Kantores, Crystal; Jain, Amish; Post, Martin; Yeganeh, Behzad; Jankov, Robert P

    2017-11-01

    Mammalian target of rapamycin (mTOR) is a pivotal regulator of cell proliferation, survival, and autophagy. Autophagy is increased in adult experimental chronic pulmonary hypertension (PHT), but its contributory role to pulmonary vascular disease remains uncertain and has yet to be explored in the neonatal animal. Notch is a major pro-proliferative pathway activated by mTOR. A direct relationship between autophagy and Notch signaling has not been previously explored. Our aim was to examine changes in mTOR-, Notch-, and autophagy-related pathways and the therapeutic effects of autophagy modulators in experimental chronic neonatal PHT secondary to chronic hypoxia. Rat pups were exposed to normoxia or hypoxia (13% O 2 ) from postnatal days 1-21, while receiving treatment with temsirolimus (mTOR inhibitor), DAPT (Notch inhibitor), or chloroquine (inhibitor of autophagic flux). Exposure to hypoxia up-regulated autophagy and Notch3 signaling markers in lung, pulmonary artery (PA), and PA-derived smooth muscle cells (SMCs). Temsirolimus prevented chronic PHT and attenuated PA and SMC signaling secondary to hypoxia. These effects were replicated by DAPT. mTOR or Notch inhibition also down-regulated smooth muscle content of platelet-derived growth factor β-receptor, a known contributor to vascular remodeling. In contrast, chloroquine had no modifying effects on markers of chronic PHT. Knockdown of Beclin-1 in SMCs had no effect on hypoxia-stimulated Notch3 signaling. mTOR-Notch3 signaling plays a critical role in experimental chronic neonatal PHT. Inhibition of autophagy did not suppress Notch signaling and had no effect on markers of chronic PHT. © 2017 Wiley Periodicals, Inc.

  11. Activation of the Notch-1 signaling pathway may be involved in intracerebral hemorrhage-induced reactive astrogliosis in rats.

    PubMed

    Zhong, Jian-Hua; Zhou, Hua-Jun; Tang, Tao; Cui, Han-Jin; Yang, A-Li; Zhang, Qi-Mei; Zhou, Jing-Hua; Zhang, Qiang; Gong, Xun; Zhang, Zhao-Hui; Mei, Zhi-Gang

    2017-10-27

    OBJECTIVE Reactive astrogliosis, a key feature that is characterized by glial proliferation, has been observed in rat brains after intracerebral hemorrhage (ICH). However, the mechanisms that control reactive astrogliosis formation remain unknown. Notch-1 signaling plays a critical role in modulating reactive astrogliosis. The purpose of this paper was to establish whether Notch-1 signaling is involved in reactive astrogliosis after ICH. METHODS ICH was induced in adult male Sprague-Dawley rats via stereotactic injection of autologous blood into the right globus pallidus. N-[ N-(3,5-difluorophenacetyl)-l-alanyl]- S-phenylglycine t-butyl ester (DAPT) was injected into the lateral ventricle to block Notch-1 signaling. The rats' brains were perfused to identify proliferating cell nuclear antigen (PCNA)-positive/GFAP-positive nuclei. The expression of GFAP, Notch-1, and the activated form of Notch-1 (Notch intracellular domain [NICD]) and its ligand Jagged-1 was assessed using immunohistochemical and Western blot analyses, respectively. RESULTS Notch-1 signaling was upregulated and activated after ICH as confirmed by an increase in the expression of Notch-1 and NICD and its ligand Jagged-1. Remarkably, blockade of Notch-1 signaling with the specific inhibitor DAPT suppressed astrocytic proliferation and GFAP levels caused by ICH. In addition, DAPT improved neurological outcome after ICH. CONCLUSIONS Notch-1 signaling is a critical regulator of ICH-induced reactive astrogliosis, and its blockage may be a potential therapeutic strategy for hemorrhagic injury.

  12. The adaptor SASH1 acts through NOTCH1 and its inhibitor DLK1 in a 3D model of lumenogenesis involving CEACAM1.

    PubMed

    Stubblefield, Kandis; Chean, Jennifer; Nguyen, Tung; Chen, Charng-Jui; Shively, John E

    2017-10-15

    CEACAM1 transfection into breast cancer cells restores lumen formation in a 3D culture model. Among the top up-regulated genes that were associated with restoration of lumen formation, the adaptor protein SASH1 was identified. Furthermore, SASH1 was shown to be critical for lumen formation by RNAi inhibition. Upon analyzing the gene array from CEACAM1/MCF7 cells treated with SASH1 RNAi, DLK1, an inhibitor of NOTCH1 signaling, was found to be down-regulated to the same extent as SASH1. Subsequent treatment of CEACAM1/MCF7 cells with RNAi to DLK1 also inhibited lumen formation, supporting its association with SASH1. In agreement with the role of DLK1 as a NOTCH1 inhibitor, NOTCH1, as well as its regulated genes HES1 and HEY1, were down-regulated in CEACAM1/MCF7 cells by the action of DLK1 RNAi, and up-regulated by SASH1 RNAi. When CEACAM1/MCF7 cells were treated with a γ-secretase inhibitor known to inhibit NOTCH signaling, lumen formation was inhibited. We conclude that restoration of lumen formation by CEACAM1 regulates the NOTCH1 signaling pathway via the adaptor protein SASH1 and the NOTCH1 inhibitor DLK1. These data suggest that the putative involvement of NOTCH1 as a tumor-promoting gene in breast cancer may depend on its lack of regulation in cancer, whereas its involvement in normal lumen formation requires activation of its expression, and subsequently, inhibition of its signaling. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Valproic acid exhibits different cell growth arrest effect in three HPV-positive/negative cervical cancer cells and possibly via inducing Notch1 cleavage and E6 downregulation.

    PubMed

    Feng, Shuyu; Yang, Yue; Lv, Jingyi; Sun, Lichun; Liu, Mingqiu

    2016-07-01

    We investigated the effect of valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, and the mechanism of VPA-induced growth inhibition on three cervical cancer cell lines with different molecular and genetic background. We found that VPA induced proliferation suppression, cell apoptosis and cell cycle arrest in all tested cell lines, with an increase of Notch1 active form ICN1 as a tumor suppressor and its target gene HES1. Noteworthy, blocking of Notch signaling with DAPT resulted in growth inhibition in ICN1-overexpressing CaSki and HT-3 cells. Thus, endogenous Notch signaling may be necessary for survival of ICN1-overexpressing cervical cancer cell lines. Furthermore, G1 phase arrest was induced in HeLa and CaSki cells by VPA while G2 phase arrest was induced in HT-3 cells, suggesting different mechanism in this cycle arrest. We also found VPA suppressed oncogene E6 in a Notch-independent manner, and induced significant apoptosis in E6-overexpressing HPV positive CaSki cells. Cell morphological change was also observed in HeLa and HT-3 cell lines after VPA treatment with an upregulation of EMT transcription factor Snail1. Notch signaling inhibitor DAPT partly reversed VPA-induced Snail1 upregulation in HeLa cells. This discovery supports that VPA may induce EMT at least partly via Notch activation.

  14. The Z {yields} cc-bar {yields} {gamma}{gamma}*, Z {yields} bb-bar {yields} {gamma}{gamma}* triangle diagrams and the Z {yields} {gamma}{psi}, Z {yields} {gamma}Y decays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achasov, N. N., E-mail: achasov@math.nsc.ru

    2011-03-15

    The approach to the Z {yields} {gamma}{psi} and Z {yields} {gamma}Y decay study is presented in detail, based on the sum rules for the Z {yields} cc-bar {yields} {gamma}{gamma}* and Z {yields} bb-bar {yields} {gamma}{gamma}* amplitudes and their derivatives. The branching ratios of the Z {yields} {gamma}{psi} and Z {yields} {gamma}Y decays are calculated for different hypotheses on saturation of the sum rules. The lower bounds of {Sigma}{sub {psi}} BR(Z {yields} {gamma}{psi}) = 1.95 Multiplication-Sign 10{sup -7} and {Sigma}{sub {upsilon}} BR(Z {yields} {gamma}Y) = 7.23 Multiplication-Sign 10{sup -7} are found. Deviations from the lower bounds are discussed, including the possibilitymore » of BR(Z {yields} {gamma}J/{psi}(1S)) {approx} BR(Z {yields} {gamma}Y(1S)) {approx} 10{sup -6}, that could be probably measured in LHC. The angular distributions in the Z {yields} {gamma}{psi} and Z {yields} {gamma}Y decays are also calculated.« less

  15. Alpha-Secretase ADAM10 Regulation: Insights into Alzheimer’s Disease Treatment

    PubMed Central

    Peron, Rafaela; Vatanabe, Izabela Pereira; Manzine, Patricia Regina; Camins, Antoni

    2018-01-01

    ADAM (a disintegrin and metalloproteinase) is a family of widely expressed, transmembrane and secreted proteins of approximately 750 amino acids in length with functions in cell adhesion and proteolytic processing of the ectodomains of diverse cell-surface receptors and signaling molecules. ADAM10 is the main α-secretase that cleaves APP (amyloid precursor protein) in the non-amyloidogenic pathway inhibiting the formation of β-amyloid peptide, whose accumulation and aggregation leads to neuronal degeneration in Alzheimer’s disease (AD). ADAM10 is a membrane-anchored metalloprotease that sheds, besides APP, the ectodomain of a large variety of cell-surface proteins including cytokines, adhesion molecules and notch. APP cleavage by ADAM10 results in the production of an APP-derived fragment, sAPPα, which is neuroprotective. As increased ADAM10 activity protects the brain from β-amyloid deposition in AD, this strategy has been proved to be effective in treating neurodegenerative diseases, including AD. Here, we describe the physiological mechanisms regulating ADAM10 expression at different levels, aiming to propose strategies for AD treatment. We report in this review on the physiological regulation of ADAM10 at the transcriptional level, by epigenetic factors, miRNAs and/or translational and post-translational levels. In addition, we describe the conditions that can change ADAM10 expression in vitro and in vivo, and discuss how this knowledge may help in AD treatment. Regulation of ADAM10 is achieved by multiple mechanisms that include transcriptional, translational and post-translational strategies, which we will summarize in this review. PMID:29382156

  16. Antitumour effects of PLC-gamma1-(SH2)2-TAT fusion proteins on EGFR/c-erbB-2-positive breast cancer cells.

    PubMed

    Katterle, Y; Brandt, B H; Dowdy, S F; Niggemann, B; Zänker, K S; Dittmar, T

    2004-01-12

    Due to its pivotal role in the growth factor-mediated tumour cell migration, the adaptor protein phospholipase C-gamma1 (PLC-gamma1) is an appropriate target to block ultimately the spreading of EGFR/c-erbB-2-positive tumour cells, thereby minimising metastasis formation. Here, we present an approach to block PLC-gamma1 activity by using protein-based PLC-gamma1 inhibitors consisting of PLC-gamma1 SH2 domains, which were fused to the TAT-transduction domain to ensure a high protein transduction efficiency. Two proteins were generated containing one PLC-gamma1-SH2-domain (PS1-TAT) or two PLC-gamma1-SH2 domains (PS2-TAT). PS2-TAT treatment of the EGFR/c-erbB-2-positive cell line MDA-HER2 resulted in a reduction of the EGF-mediated PLC-gamma1 tyrosine phosphorylation of about 30%, concomitant with a complete abrogation of the EGF-driven calcium influx. In addition to this, long-term PS2-TAT treatment both reduces the EGF-mediated migration of about 75% combined with a markedly decreased time locomotion of single MDA-HER2 cells as well as decreases the proliferation of MDA-HER2 cells by about 50%. Due to its antitumoral capacity on EGFR/c-erbB-2-positive breast cancer cells, we conclude from our results that the protein-based PLC-gamma1 inhibitor PS2-TAT may be a means for novel adjuvant antitumour strategies to minimise metastasis formation because of the blockade of cell migration and proliferation.

  17. Clinical Relevance of Anticoagulation and Dual Antiplatelet Therapy to the Outcomes of Patients With Atrial Fibrillation and Recent Percutaneous Coronary Intervention With Stent.

    PubMed

    De Vecchis, Renato; Cantatrione, Claudio; Mazzei, Damiana

    2016-02-01

    Chronic atrial fibrillation (AF), coexisting with a history of recent coronary angioplasty with stent (PCI-S), represents an encoded indication for oral anticoagulation (OAC) with warfarin plus dual antiplatelet therapy (DAPT). Using a retrospective cohort study, we determined the respective impacts on cardiovascular outcomes of three different pharmacologic regimens, i.e., triple therapy (TT) with warfarin + clopidogrel and aspirin, dual therapy (DT) with warfarin + clopidogrel or aspirin, and DAPT with clopidogrel + aspirin. Outcomes of interest were all-cause mortality, ischemic cardiac events, ischemic cerebral events, and bleeding events. The inclusion criterion was the coexistence of an indication for OAC (e.g., chronic AF) with an indication for DAPT due to recent PCI-S. Among the 98 patients enrolled, 48 (49%), 31 (31.6%), and 19 (19.4%) patients were prescribed TT, DT, and DAPT, respectively. Throughout a mean follow-up of 378 ± 15.7 days, there were no significant differences between the three regimens for all abovementioned outcomes. In particular, the total frequency of major bleeding was similar in the three groups: five cases (10.4%) in TT, one case (3.22%) in DT and no case in DAPT groups (Chi-square test, P = 0.1987). TT, DT and DAPT displayed similar efficacy and safety. Although the superiority of OAC vs. DAPT for stroke prevention in AF patients has been demonstrated by previous randomized trials, a smaller frequency of high thromboembolic risks' features in DAPT group of the present study may have prevented the observation of a higher incidence of ischemic stroke in this group.

  18. Recombinant interferon-gamma secreted by Chinese hamster ovary-320 cells cultivated in suspension in protein-free media is protected against extracellular proteolysis by the expression of natural protease inhibitors and by the addition of plant protein hydrolysates to the culture medium.

    PubMed

    Mols, J; Peeters-Joris, C; Wattiez, R; Agathos, S N; Schneider, Y-J

    2005-01-01

    Biosafety requirements increasingly restrict the cultivation of mammalian cells producing therapeutic glycoproteins to conditions that are devoid of any compound of animal origin. On cultivation in serum-free media, the proteases inhibitors, usually found in serum, cannot protect secreted recombinant proteins against unwanted endogenous proteolysis. Chinese hamster ovary (CHO) cells, secreting recombinant human interferon-gamma (CHO-320 cell line) and cultivated in suspension in an original protein-free medium, expressed at least two members of the matrix metalloproteinases (MMP), either at the cell surface (proMMP-14 and MMP-14) or secreted (proMMP-9). In addition, tissue- and urinary-type plasminogen activators were also secreted in such culture conditions. At the cell surface, dipeptidyl peptidase IV and tripeptidyl peptidase II (TPPII) activities were also detected, and their activities decreased during time course of batch cultures. The proteolytic activities of these proteins were counterbalanced by (1) their expression as zymogens (proMMP-9, proMMP-14), (2) the expression of their natural inhibitors, tissue inhibitors of metalloproteinases-1 and -2 and plasminogen activator inhibitor-1 (PAI-1), or (3) the addition of plant protein hydrolysates to the culture medium, acting as a nonspecific source of TPPII inhibitors. This study points out that, even in protein-free media, recombinant proteins secreted by CHO cells are actively protected against physiological and unwanted extracellular proteolysis either by endogenous or by exogenous inhibitors.

  19. Novel benzofuran-3-one indole inhibitors of PI3 kinase-alpha and the mammalian target of rapamycin: hit to lead studies.

    PubMed

    Bursavich, Matthew G; Brooijmans, Natasja; Feldberg, Lawrence; Hollander, Irwin; Kim, Stephen; Lombardi, Sabrina; Park, Kaapjoo; Mallon, Robert; Gilbert, Adam M

    2010-04-15

    A series of benzofuran-3-one indole phosphatidylinositol-3-kinases (PI3K) inhibitors identified via HTS has been prepared. The optimized inhibitors possess single digit nanomolar activity against p110alpha (PI3K-alpha), good pharmaceutical properties, selectivity versus p110gamma (PI3K-gamma), and tunable selectivity versus the mammalian target of rapamycin (mTOR). Modeling of compounds 9 and 32 in homology models of PI3K-alpha and mTOR supports the proposed rationale for selectivity. Compounds show activity in multiple cellular proliferation assays with signaling through the PI3K pathway confirmed via phospho-Akt inhibition in PC-3 cells. Copyright 2010 Elsevier Ltd. All rights reserved.

  20. Optimal duration of dual anti-platelet therapy after percutaneous coronary intervention: 2016 consensus position of the Italian Society of Cardiology.

    PubMed

    Barillà, Francesco; Pelliccia, Francesco; Borzi, Mauro; Camici, Paolo; Cas, Livio Dei; Di Biase, Matteo; Indolfi, Ciro; Mercuro, Giuseppe; Montemurro, Vincenzo; Padeletti, Luigi; Filardi, Pasquale Perrone; Vizza, Carmine D; Romeo, Francesco

    2017-01-01

    Definition of the optimal duration of dual anti-platelet therapy (DAPT) is an important clinical issue, given the large number of patients having percutaneous coronary intervention (PCI), the costs and risks of pharmacologic therapy, the consequences of stent thrombosis, and the potential benefits of DAPT in preventing ischaemic outcomes beyond stent thrombosis. Nowadays, the rationale for a prolonged duration of DAPT should be not only the prevention of stent thrombosis, but also the prevention of ischaemic events unrelated to the coronary stenosis treated with index PCI. A higher predisposition to athero-thrombosis may persist for years after an acute myocardial infarction, and even stable patients with a history of prior myocardial infarction are at high risk for major adverse cardiovascular events. Recently, results of pre-specified post-hoc analyses of randomized clinical trials, including the PEGASUS-TIMI 54 trial, have shed light on strategies of DAPT in various clinical situations, and should impact the next rounds of international guidelines, and also routine practice. Accordingly, the 2015 to 2016 the Board of the Italian Society of Cardiology addressed newer recommendations on duration of DAPT based on most recent scientific information. The document states that physicians should decide duration of DAPT on an individual basis, taking into account ischaemic and bleeding risks of any given patient. Indeed, current controversy surrounding optimal duration of DAPT clearly reflects the fact that, nowadays, a one size fits all strategy cannot be reliably applied to patients treated with PCI. Indeed, patients usually have factors for both increased ischaemic and bleeding risks that must be carefully evaluated to assess the benefit/risk ratio of prolonged DAPT. Personalized management of DAPT must be seen as a dynamic prescription with regular re-evaluations of the risk/benefit to the patient according to changes in his/her clinical profile. Also, in order to

  1. Intracellular fragment of NLRR3 (NLRR3-ICD) stimulates ATRA-dependent neuroblastoma differentiation.

    PubMed

    Akter, Jesmin; Takatori, Atsushi; Islam, Md Sazzadul; Nakazawa, Atsuko; Ozaki, Toshinori; Nagase, Hiroki; Nakagawara, Akira

    2014-10-10

    We have previously identified neuronal leucine-rich repeat protein-3 (NLRR3) gene which is preferentially expressed in favorable human neuroblastomas as compared with unfavorable ones. In this study, we have found for the first time that NLRR3 is proteolytically processed by secretases and its intracellular domain (NLRR3-ICD) is then released to translocate into cell nucleus during ATRA-mediated neuroblastoma differentiation. According to our present observations, NLRR3-ICD was induced to accumulate in cell nucleus of neuroblastoma SH-SY5Y cells following ATRA treatment. Since the proteolytic cleavage of NLRR3 was blocked by α- or γ-secretase inhibitor, it is likely that NLRR3-ICD is produced through the secretase-mediated processing of NLRR3. Intriguingly, forced expression of NLRR3-ICD in neuroblastoma SK-N-BE cells significantly suppressed their proliferation as examined by a live-cell imaging system and colony formation assay. Similar results were also obtained in neuroblastoma TGW cells. Furthermore, overexpression of NLRR3-ICD stimulated ATRA-dependent neurite elongation in SK-N-BE cells. Together, our present results strongly suggest that NLRR3-ICD produced by the secretase-mediated proteolytic processing of NLRR3 plays a crucial role in ATRA-mediated neuronal differentiation, and provide a clue to develop a novel therapeutic strategy against aggressive neuroblastomas. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Effects of clopidogrel with or without aspirin on the generation of extracellular vesicles in the microcirculation and in venous blood: A randomized placebo controlled trial.

    PubMed

    Traby, L; Kaider, A; Kollars, M; Eichinger, S; Wolzt, M; Kyrle, P A

    2018-05-17

    Dual-antiplatelet therapy (DAPT) is a standard strategy in acute coronary heart disease; however, it confers a considerable bleeding risk. Single-antiplatelet therapy (SAPT) inhibits haemostatic system activation ex vivo to a similar extent as DAPT. Extracellular vesicles (EV) are procoagulant and contribute to haemostatic system activation. We aimed to investigate the effect of DAPT compared with SAPT on EV. In a randomized, double-blind, placebo-controlled trial, 44 healthy volunteers received DAPT (clopidogrel + aspirin) or SAPT (clopidogrel + placebo) for 7 days. Blood was obtained from a standardized microvascular injury and through venipuncture at baseline (BL) and at 2 h, 24 h, and 8 days after treatment initiation. The number, origin, and surface expression of EV were assessed using flow cytometry. Data are given as median (quartiles). Non-parametric tests were used to evaluate the short-term (BL vs 2 h) and long-term differences (2 h to 8 days), as well as the differences between treatment groups. There was no difference either in the short-term effects on the number (×10 3  mL -1 ) of EV in microvascular blood between DAPT [BL: 1433 (653; 3184) vs 2 h: 862 (545; 2026), p = 0.39] and SAPT [(BL: 614 (552; 1402) vs 2 h: 1079 (781; 1538), p = 0.75)] or in the long-term effects. DAPT and SAPT did not exhibit differential short-term effects on the number and proportion (36% and 27% vs 55% and 36%) of platelet-derived EV. DAPT and SAPT resulted in a significant short-term increase in phosphatidylserine expression in microvascular blood. The effects of DAPT and SAPT on EV in venous blood were similar to those in microvascular blood. DAPT and SAPT have comparable effects on the amount, origin, and surface characteristics of EV. Copyright © 2018. Published by Elsevier Ltd.

  3. Outcomes of ≤6-month versus 12-month dual antiplatelet therapy after drug-eluting stent implantation

    PubMed Central

    Villablanca, Pedro A.; Massera, Daniele; Mathew, Verghese; Bangalore, Sripal; Christia, Panagiota; Perez, Irving; Wan, Ningxin; Schulz-Schüpke, Stefanie; Briceno, David F.; Bortnick, Anna E.; Garcia, Mario J.; Lucariello, Richard; Menegus, Mark; Pyo, Robert; Wiley, Jose; Ramakrishna, Harish

    2016-01-01

    Abstract Background: The benefit of ≤6-month compared with 12-month dual antiplatelet therapy (DAPT) after percutaneous coronary intervention (PCI) with drug-eluting stent (DES) placement remains controversial. We performed a meta-analysis and meta-regression of ≤6-month versus 12-month DAPT in patients undergoing PCI with DES placement. Methods: We conducted electronic database searches of randomized controlled trials (RCTs) comparing DAPT durations after DES placement. For studies with longer follow-up, outcomes at 12 months were identified. Odds ratios and 95% confidence intervals were computed with the Mantel–Haenszel method. Fixed-effect models were used; if heterogeneity (I2) > 40 was identified, effects were obtained with random models. Results: Nine RCTs were included with total n = 19,224 patients. No significant differences were observed between ≤6-month compared with 12-month DAPT in all-cause mortality (OR 0.87; 95% confidence interval (CI): 0.69–1.11), cardiovascular (CV) mortality (OR 0.89; 95% CI: 0.66–1.21), non-CV mortality (OR 0.85; 95% 0.58–1.24), myocardial infarction (OR 1.10; 95% CI: 0.89–1.37), stroke (OR 0.97; 95% CI: 0.67–1.42), stent thrombosis (ST) (OR 1.37; 95% CI: 0.89–2.10), and target vessel revascularization (OR 0.95; 95% CI: 0.77–1.18). No significant difference in major bleeding (OR 0.72; 95% CI: 0.49–1.05) was observed, though the all-bleeding event rate was significantly lower in the ≤6-month DAPT group (OR 0.76; 95% CI: 0.59–0.96). In the meta-regression analysis, a significant association between bleeding events and non-CV mortality with 12-month DAPT was found, as well as between ST and mortality in addition to MI with ≤6-month DAPT. Conclusion: DAPT for ≤6 months is associated with similar mortality and ischemic outcomes but less bleeding events compared with 12-month DAPT after PCI with DES. PMID:28033306

  4. Comparison of the 9-month intra-stent conditions and 2-year clinical outcomes after Resolute zotarolimus-eluting stent implantation between 3-month and standard dual antiplatelet therapy.

    PubMed

    Fujimoto, Wataru; Sawada, Takahiro; Toba, Takayoshi; Takahashi, Yu; Miyata, Taishi; Oishi, Shogo; Osue, Tsuyoshi; Onishi, Tetsuari; Takaya, Tomofumi; Shimane, Akira; Taniguchi, Yasuyo; Kawai, Hiroya; Yasaka, Yoshinori

    2018-07-01

    The use of short-duration dual antiplatelet therapy (DAPT) remains controversial. To investigate efficacy and safety of short-duration DAPT, we performed a detailed comparison of intra-stent conditions by optical coherence tomography (OCT) after second-generation drug-eluting stent implantation with short-term and standard DAPT. Eighty-two consecutive patients with stable angina pectoris who received Resolute zotarolimus-eluting stents (R-ZESs; Medtronic Cardiovascular, Santa Rosa, CA, USA) were enrolled. Patients were assigned to 3-month (3M group: 41 patients) and standard (standard group: 41 patients) DAPT. In the 3M group, clopidogrel was discontinued 3 months after stent implantation. In the standard group, DAPT was maintained until follow-up OCT. At 9 months, neointimal proliferation was significantly larger in the 3M group, but there were no significant between-group differences in the proportion of uncovered and malapposed strut. The prevalence of abnormal intra-stent tissue (AIT) at 9 months was equivalent between groups. A multiple regression analysis revealed malapposition at 9 months as the strongest independent predictor of AIT at 9 months, and the prevalence of AIT was not associated with DAPT duration. Over 2 years, cardiac events were equal between groups; however, major bleeding was higher tendency in the standard group than in the 3M group. This OCT study indicated that reducing DAPT's duration may provide acceptable arterial healing in patients with implanted R-ZESs. Copyright © 2018 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  5. Safety of 6-month duration of dual antiplatelet therapy after percutaneous coronary intervention in patients with acute coronary syndromes: Rationale and design of the Smart Angioplasty Research Team-safety of 6-month duration of Dual Antiplatelet Therapy after percutaneous coronary intervention in patients with acute coronary syndromes (SMART-DATE) prospective multicenter randomized trial.

    PubMed

    Lee, Joo Myung; Cho, Deok-Kyu; Hahn, Joo-Yong; Song, Young Bin; Park, Taek Kyu; Oh, Ju-Hyeon; Lee, Jin Bae; Doh, Joon-Hyung; Kim, Sang-Hyun; Yang, Jeong Hoon; Choi, Jin-Ho; Choi, Seung-Hyuck; Lee, Sang Hoon; Gwon, Hyeon-Cheol

    2016-12-01

    Dual antiplatelet therapy (DAPT) is a fundamental treatment that optimizes clinical outcomes after percutaneous coronary intervention, especially in patients with acute coronary syndrome (ACS). Although current international guidelines recommend DAPT for at least 12 months after implantation of a drug-eluting stent in patients with ACS, these recommendations are not based on randomized controlled trials dedicated to ACS population. The SMART-DATE trial is a prospective, multicenter, randomized, and open-label study to demonstrate the noninferiority of 6-month DAPT compared with 12 months or longer DAPT in patients with ACS undergoing percutaneous coronary intervention. A total of 2,700 patients will undergo prospective, random assignment to either of the DAPT duration groups. To minimize the bias from different stent devices, the type of stents will be randomly assigned (everolimus-eluting stents, zotarolimus-eluting stents, or biolimus A9-eluting stents). The primary end point is a composite of all-cause death, myocardial infarction, and cerebrovascular events at 18 months after the index procedure. The major secondary end points are definite/probable stent thrombosis defined by the Academic Research Consortium and bleeding defined by Bleeding Academic Research Consortium type 2-5. The SMART-DATE randomized trial is the first study exploring the safety of 6-month DAPT compared with conventional 12-month or longer DAPT dedicated to patients with ACS after second-generation drug-eluting stent implantation. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Dual or Single Antiplatelet Therapy After Transcatheter Aortic Valve Implantation? A Systematic Review and Meta-Analysis.

    PubMed

    Vavuranakis, Manolis; Siasos, Gerasimos; Zografos, Theodoros; Oikonomou, Evangelos; Vrachatis, Dimitris; Kalogeras, Konstantinos; Papaioannou, Theodoros; Kolokathis, Michail-Aggelos; Moldovan, Carmen; Tousoulis, Dimitrios

    2016-01-01

    Transcatheter aortic valve implantation (TAVI) has undeniably earned a prestigious post in the quiver of interventional cardiologists against symptomatic severe aortic stenosis. Cerebrovascular events are listed within the most frequent complications. We performed a systematic search of EMBASE, MEDLINE, and the Cochrane library from inception to March 2016 for the following search terms (transcatheter AND antiplatelet) OR (transcatheter AND antithrombotic) to retrieve studies of dual antiplatelet treatment (DAPT) and single antiplatelet treatment (SAPT) in patients after TAVI to study thrombotic, hemorrhagic and cardiovascular events at 30 days post procedure. From a total of 208 records 4 studies met inclusion criteria. In the included studies, 286 patients were enrolled in the DAPT group and 354 patients in the SAPT group. There was no difference in all-cause mortality, cardiovascular mortality, stroke, and myocardial infraction 30 days post TAVI between DAPT and SAPT. However, patients in the DAPT group had a significantly increased incidence of lethal and major bleeding at 30 days of follow-up and the incidence of the combined end-point of stroke, spontaneous MI, all-cause mortality and major bleeding was significantly higher in the DAPT group in comparison to the SAPT group. DAPT compared to SAPT in patients after TAVI increases incidence of hemorrhagic events with no benefits in terms of thrombotic events and cardiovascular mortality. However, these data must be interpreted cautiously and the choice of DAPT over SAPT must be based on an individual patient characteristic according to medical practice criteria.

  7. Modifying effect of dual antiplatelet therapy on incidence of stent thrombosis according to implanted drug-eluting stent type.

    PubMed

    Camenzind, Edoardo; Boersma, Eric; Wijns, William; Mauri, Laura; Rademaker-Havinga, Tessa; Ordoubadi, Farzin Fath; Suttorp, Maarten J; Al Kurdi, Mohammad; Steg, Ph Gabriel

    2014-08-01

    To investigate the putative modifying effect of dual antiplatelet therapy (DAPT) use on the incidence of stent thrombosis at 3 years in patients randomized to Endeavor zotarolimus-eluting stent (E-ZES) or Cypher sirolimus-eluting stent (C-SES). Of 8709 patients in PROTECT, 4357 were randomized to E-ZES and 4352 to C-SES. Aspirin was to be given indefinitely, and clopidogrel/ticlopidine for ≥ 3 months or up to 12 months after implantation. Main outcome measures were definite or probable stent thrombosis at 3 years. Multivariable Cox regression analysis was applied, with stent type, DAPT, and their interaction as the main outcome determinants. Dual antiplatelet therapy adherence remained the same in the E-ZES and C-SES groups (79.6% at 1 year, 32.8% at 2 years, and 21.6% at 3 years). We observed a statistically significant (P = 0.0052) heterogeneity in treatment effect of stent type in relation to DAPT. In the absence of DAPT, stent thrombosis was lower with E-ZES vs. C-SES (adjusted hazard ratio 0.38, 95% confidence interval 0.19, 0.75; P = 0.0056). In the presence of DAPT, no difference was found (1.18; 0.79, 1.77; P = 0.43). A strong interaction was observed between drug-eluting stent type and DAPT use, most likely prompted by the vascular healing response induced by the implanted DES system. These results suggest that the incidence of stent thrombosis in DES trials should not be evaluated independently of DAPT use, and the optimal duration of DAPT will likely depend upon stent type (Clinicaltrials.gov number NCT00476957). Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  8. Prognostic Factors in Patients With Stemi Undergoing Primary PCI in the Clopidogrel Era: Role of Dual Antiplatelet Therapy at Admission and the Smoking Paradox on Long-Term Outcome.

    PubMed

    Ciccarelli, Giovanni; Barbato, Emanuele; Golino, Marco; Cimmino, Giovanni; Bartunek, Jozef; Di Serafino, Luigi; Di Girolamo, Domenico; De Bruyne, Bernard; Wijns, William; Golino, Paolo

    2017-02-01

    Several clinical and laboratory variables have an impact on the prognosis of STEMI patients undergoing PPCI; however, little is known about the role of ongoing DAPT at the time of the event and the smoking status as prognostic factors affecting the outcome of these patients. Seven-hundred and thirteen consecutive STEMI patients undergoing PPCI, admitted to the S. Anna and S. Sebastiano Hospital (Caserta, Italy) and to the OLV Clinic (Aalst, Belgium), between March 2009 and December 2011, were retrospectively enrolled. Rescue PCI was the only exclusion criterion. Primary end-point was the combination of death for all causes, re-infarction, stroke, and target lesion revascularization (TLR). Patients already on DAPT at admission (26.4%) showed a significant increase in the event rate at univariate analysis (HR 2.34, CI 1.62-3.75, P < 0.05), while current smokers (56.5%) had a lower event rate, as compared to non-smokers (HR 0.67, CI 0.46-0.96, P < 0.05). In smoking patients already on DAPT at admission, a lower event rate was observed than in non-smoking patients on DAPT. Although, patients already on DAPT had a higher-risk profile (renal impairment, ongoing statin treatment, ST resolution <50%, and Killip class >1 were more frequently present than in patients not on DAPT), Cox regression analysis confirmed that both DAPT (HR 1.74, 95%CI 1.20-2.53, P < 0.01) and smoking status (HR 0.69, 95%CI 0.48-1.00, P < 0.05) retained their statistical significance, as they and were significantly associated with a worse and a better outcome, respectively, underlying their role as independent prognostic factors. Not being a current smoker and ongoing DAPT at admission, in patients with STEMI undergoing PPCI, represent independent negative prognostic value. © 2016, Wiley Periodicals, Inc.

  9. Spirocyclic β-site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitors: from hit to lowering of cerebrospinal fluid (CSF) amyloid β in a higher species.

    PubMed

    Hunt, Kevin W; Cook, Adam W; Watts, Ryan J; Clark, Christopher T; Vigers, Guy; Smith, Darin; Metcalf, Andrew T; Gunawardana, Indrani W; Burkard, Michael; Cox, April A; Geck Do, Mary K; Dutcher, Darrin; Thomas, Allen A; Rana, Sumeet; Kallan, Nicholas C; DeLisle, Robert K; Rizzi, James P; Regal, Kelly; Sammond, Douglas; Groneberg, Robert; Siu, Michael; Purkey, Hans; Lyssikatos, Joseph P; Marlow, Allison; Liu, Xingrong; Tang, Tony P

    2013-04-25

    A hallmark of Alzheimer's disease is the brain deposition of amyloid beta (Aβ), a peptide of 36-43 amino acids that is likely a primary driver of neurodegeneration. Aβ is produced by the sequential cleavage of APP by BACE1 and γ-secretase; therefore, inhibition of BACE1 represents an attractive therapeutic target to slow or prevent Alzheimer's disease. Herein we describe BACE1 inhibitors with limited molecular flexibility and molecular weight that decrease CSF Aβ in vivo, despite efflux. Starting with spirocycle 1a, we explore structure-activity relationships of core changes, P3 moieties, and Asp binding functional groups in order to optimize BACE1 affinity, cathepsin D selectivity, and blood-brain barrier (BBB) penetration. Using wild type guinea pig and rat, we demonstrate a PK/PD relationship between free drug concentrations in the brain and CSF Aβ lowering. Optimization of brain exposure led to the discovery of (R)-50 which reduced CSF Aβ in rodents and in monkey.

  10. Anticonvulsant properties of alpha, gamma, and alpha, gamma-substituted gamma-butyrolactones.

    PubMed

    Klunk, W E; Covey, D F; Ferrendelli, J A

    1982-09-01

    Derivatives of gamma-butyrolactone (GBL) substituted on the alpha- and/or gamma-positions were synthesized and tested for their effects on behavior in mice, on the electroencephalographs and blood pressure of paralyzed-ventilated guinea pigs, and on electrical activity of incubated hippocampal slices. Several compounds, including alpha-ethyl-alpha-methyl GBL (alpha-EMGBL), alpha, alpha-dimethyl GBL, alpha, gamma-diethyl-alpha, gamma-dimethyl GBL, and gamma-ethyl-gamma-methyl GBL, prevented seizures induced by pentylenetetrazol, beta-ethyl-beta-methyl-gamma-butyrolactone (beta-EMGBL), picrotoxin, or all three compounds in mice and guinea pigs but had no effect on seizures induced by maximal electroshock or bicuculline. Neither gamma-hydroxybutyrate (GHB) nor alpha-isopropylidine GBL had any anticonvulsant activity. The anticonvulsant alpha-substituted compounds had a potent hypotensive effect and antagonized the hypertensive effect of beta-EMGBL, alpha-EMGBL was tested in incubated hippocampal slices and was found to depress basal activity and antagonize excitation induced by beta-EMGBL. These results demonstrate that alpha-alkyl-substituted GBL and, to a lesser extent, gamma-substituted derivatives are anticonvulsant agents and that their effects are strikingly different from those of GHB or beta-alkyl-substituted GBLs, which are epileptogenic. Possibly beta- and alpha-substituted GBLs act at the same site as agonists and antagonists, respectively.

  11. Intracellular fragment of NLRR3 (NLRR3-ICD) stimulates ATRA-dependent neuroblastoma differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akter, Jesmin; Takatori, Atsushi, E-mail: atakatori@chiba-cc.jp; Islam, Md. Sazzadul

    2014-10-10

    Highlights: • NLRR3 is a membrane protein highly expressed in favorable neuroblastoma. • NLRR3-ICD was produced through proteolytic processing by secretases. • NLRR3-ICD was induced to be translocated into cell nucleus following ATRA exposure. • NLRR3-ICD plays a pivotal role in ATRA-mediated neuroblastoma differentiation. - Abstract: We have previously identified neuronal leucine-rich repeat protein-3 (NLRR3) gene which is preferentially expressed in favorable human neuroblastomas as compared with unfavorable ones. In this study, we have found for the first time that NLRR3 is proteolytically processed by secretases and its intracellular domain (NLRR3-ICD) is then released to translocate into cell nucleus duringmore » ATRA-mediated neuroblastoma differentiation. According to our present observations, NLRR3-ICD was induced to accumulate in cell nucleus of neuroblastoma SH-SY5Y cells following ATRA treatment. Since the proteolytic cleavage of NLRR3 was blocked by α- or γ-secretase inhibitor, it is likely that NLRR3-ICD is produced through the secretase-mediated processing of NLRR3. Intriguingly, forced expression of NLRR3-ICD in neuroblastoma SK-N-BE cells significantly suppressed their proliferation as examined by a live-cell imaging system and colony formation assay. Similar results were also obtained in neuroblastoma TGW cells. Furthermore, overexpression of NLRR3-ICD stimulated ATRA-dependent neurite elongation in SK-N-BE cells. Together, our present results strongly suggest that NLRR3-ICD produced by the secretase-mediated proteolytic processing of NLRR3 plays a crucial role in ATRA-mediated neuronal differentiation, and provide a clue to develop a novel therapeutic strategy against aggressive neuroblastomas.« less

  12. β-Secretase BACE1 regulates hippocampal and reconstituted M-currents in a β-subunit-like fashion.

    PubMed

    Hessler, Sabine; Zheng, Fang; Hartmann, Stephanie; Rittger, Andrea; Lehnert, Sandra; Völkel, Meike; Nissen, Matthias; Edelmann, Elke; Saftig, Paul; Schwake, Michael; Huth, Tobias; Alzheimer, Christian

    2015-02-25

    The β-secretase BACE1 is widely known for its pivotal role in the amyloidogenic pathway leading to Alzheimer's disease, but how its action on transmembrane proteins other than the amyloid precursor protein affects the nervous system is only beginning to be understood. We report here that BACE1 regulates neuronal excitability through an unorthodox, nonenzymatic interaction with members of the KCNQ (Kv7) family that give rise to the M-current, a noninactivating potassium current with slow kinetics. In hippocampal neurons from BACE1(-/-) mice, loss of M-current enhanced neuronal excitability. We relate the diminished M-current to the previously reported epileptic phenotype of BACE1-deficient mice. In HEK293T cells, BACE1 amplified reconstituted M-currents, altered their voltage dependence, accelerated activation, and slowed deactivation. Biochemical evidence strongly suggested that BACE1 physically associates with channel proteins in a β-subunit-like fashion. Our results establish BACE1 as a physiologically essential constituent of regular M-current function and elucidate a striking new feature of how BACE1 impacts on neuronal activity in the intact and diseased brain. Copyright © 2015 the authors 0270-6474/15/353298-14$15.00/0.

  13. Dual antiplatelet therapy for perioperative myocardial infarction following CABG surgery.

    PubMed

    Wang, Alice; Wu, Angie; Wojdyla, Daniel; Lopes, Renato D; Newby, L Kristin; Newman, Mark F; Smith, Peter K; Alexander, John H

    2018-05-01

    Perioperative myocardial infarction (MI) after coronary artery bypass graft surgery (CABG) has been associated with adverse outcome. Whether perioperative MI should be treated with dual antiplatelet therapy (DAPT) is unknown. We compared the effect of DAPT versus aspirin alone on short-term outcomes among patients with perioperative MI following CABG. We used data from 3 clinical trials that enrolled patients undergoing isolated CABG: PREVENT IV (2002-2003), MEND-CABG II (2004-2005), and RED-CABG (2009-2010) (n = 9117). Perioperative MI was defined as CK-MB >5 times the upper limit of normal within 24 h of surgery (n = 2052). DAPT was defined as DAPT given after surgery and prior to discharge. A Cox regression model was used to assess the association between DAPT and 30-day nonfatal MI, stroke, or mortality after adjustment for baseline covariates. DAPT (n = 527) and aspirin alone (n = 1525) cohorts were similar in baseline comorbidities. Off pump bypass was used in 5.2% (n = 106) of patients. There was no difference in the 30-day composite of death, MI or stroke between patients receiving DAPT versus aspirin alone, nor in any of the individual components. There were fewer all-cause re-hospitalizations at 30 days following surgery among patients in the DAPT group (adjusted HR 0.71, CI 0.52-0.97, P = .033). One-quarter of CABG patients who had perioperative MI were treated with DAPT. DAPT was not associated with a difference in MI, stroke, or mortality at 30 days, but was associated with fewer re-hospitalizations. Further studies are needed to determine the optimal antiplatelet regimen following perioperative MI. What is already known about this subject? Perioperative myocardial infarction portends poor outcome but optimal management is currently unclear. While dual antiplatelet therapy is standard of care for acute coronary syndrome, its role in perioperative myocardial infarction is unknown. What does this study add? Dual antiplatelet therapy use during

  14. The influence of DNA inhibitor synthesis on the induction and repair of double-strand DNA breaks in human lymphocytes under action of radiation with a different linear energy transfer

    NASA Astrophysics Data System (ADS)

    Boreyko, A. V.; Chausov, V. N.; Krasavin, E. A.; Ravnachka, I.; Stukova, S. I.

    2011-07-01

    The influence that inhibitors of repair and replicative DNA synthesis, 1-β-D-arabinofuranosyl-cytosine and hydroxyurea, have on the formation and repair kinetics of double-strand breaks (DSBs) in peripheral human blood lymphocytes under the influence of radiation with a different linear energy transfer (LET) (gamma quanta and accelerated heavy ions) is studied. It is demonstrated that lithium and boron ions with LETs of 20 and 40 keV/μm, respectively, possess higher biological effectiveness with respect to the DNA DSB induction criterion. The value of the relative biological effectiveness of accelerated lithium and boron ions is 1.5 ± 0.1 and 1.6 ± 0.1, respectively. It is found that, upon cell irradiation by gamma quanta in the absence of inhibitors, efficient DNA DSB repair is observed during incubation. Under the conditions of cell incubation and in the presence of inhibitors, some growth in the number of DNA DSBs, rather than a reduction, is observed after 5-h incubation. In the case of the action of accelerated boron ions (as well as gamma quanta), under normal conditions, the efficient repair of induced DNA lesions takes place. Unlike the action of gamma quanta, in the case of cell incubation in the presence of radiomodifiers, the number of induced DNA DSBs falls. These results may testify to the fact that the repair of double-strand DNS breaks takes place under the action of ionizing radiation with a different LET on mammalian cells in the presence of DNA synthesis inhibitors Ara-C and HU. It is concluded that, for cells subject to gamma irradiation, no DNA DSB repair is observed due to the large contribution of single-strand incision DNA breaks formed in the postradiation period in the course of excision nucleotide repair.

  15. Furan-2-ylmethylene thiazolidinediones as novel, potent, and selective inhibitors of phosphoinositide 3-kinase gamma.

    PubMed

    Pomel, Vincent; Klicic, Jasna; Covini, David; Church, Dennis D; Shaw, Jeffrey P; Roulin, Karen; Burgat-Charvillon, Fabienne; Valognes, Delphine; Camps, Montserrat; Chabert, Christian; Gillieron, Corinne; Françon, Bernard; Perrin, Dominique; Leroy, Didier; Gretener, Denise; Nichols, Anthony; Vitte, Pierre Alain; Carboni, Susanna; Rommel, Christian; Schwarz, Matthias K; Rückle, Thomas

    2006-06-29

    Class I phosphoinositide 3-kinases (PI3Ks), in particular PI3Kgamma, have become attractive drug targets for inflammatory and autoimmune diseases. Here, we disclose a novel series of furan-2-ylmethylene thiazolidinediones as selective, ATP-competitive PI3Kgamma inhibitors. Structure-based design and X-ray crystallography of complexes formed by inhibitors bound to PI3Kgamma identified key pharmacophore features for potency and selectivity. An acidic NH group on the thiazolidinedione moiety and a hydroxy group on the furan-2-yl-phenyl part of the molecule play crucial roles in binding to PI3K and contribute to class IB PI3K selectivity. Compound 26 (AS-252424), a potent and selective small-molecule PI3Kgamma inhibitor emerging from these efforts, was further profiled in three different cellular PI3K assays and shown to be selective for class IB PI3K-mediated cellular effects. Oral administration of 26 in a mouse model of acute peritonitis led to a significant reduction of leukocyte recruitment.

  16. Intrasteric control of AMPK via the gamma1 subunit AMP allosteric regulatory site.

    PubMed

    Adams, Julian; Chen, Zhi-Ping; Van Denderen, Bryce J W; Morton, Craig J; Parker, Michael W; Witters, Lee A; Stapleton, David; Kemp, Bruce E

    2004-01-01

    AMP-activated protein kinase (AMPK) is a alphabetagamma heterotrimer that is activated in response to both hormones and intracellular metabolic stress signals. AMPK is regulated by phosphorylation on the alpha subunit and by AMP allosteric control previously thought to be mediated by both alpha and gamma subunits. Here we present evidence that adjacent gamma subunit pairs of CBS repeat sequences (after Cystathionine Beta Synthase) form an AMP binding site related to, but distinct from the classical AMP binding site in phosphorylase, that can also bind ATP. The AMP binding site of the gamma(1) CBS1/CBS2 pair, modeled on the structures of the CBS sequences present in the inosine monophosphate dehydrogenase crystal structure, contains three arginine residues 70, 152, and 171 and His151. The yeast gamma homolog, snf4 contains a His151Gly substitution, and when this is introduced into gamma(1), AMP allosteric control is substantially lost and explains why the yeast snf1p/snf4p complex is insensitive to AMP. Arg70 in gamma(1) corresponds to the site of mutation in human gamma(2) and pig gamma(3) genes previously identified to cause an unusual cardiac phenotype and glycogen storage disease, respectively. Mutation of any of AMP binding site Arg residues to Gln substantially abolishes AMP allosteric control in expressed AMPK holoenzyme. The Arg/Gln mutations also suppress the previously described inhibitory properties of ATP and render the enzyme constitutively active. We propose that ATP acts as an intrasteric inhibitor by bridging the alpha and gamma subunits and that AMP functions to derepress AMPK activity.

  17. Quantitative modelling of amyloidogenic processing and its influence by SORLA in Alzheimer's disease.

    PubMed

    Schmidt, Vanessa; Baum, Katharina; Lao, Angelyn; Rateitschak, Katja; Schmitz, Yvonne; Teichmann, Anke; Wiesner, Burkhard; Petersen, Claus Munck; Nykjaer, Anders; Wolf, Jana; Wolkenhauer, Olaf; Willnow, Thomas E

    2012-01-04

    The extent of proteolytic processing of the amyloid precursor protein (APP) into neurotoxic amyloid-β (Aβ) peptides is central to the pathology of Alzheimer's disease (AD). Accordingly, modifiers that increase Aβ production rates are risk factors in the sporadic form of AD. In a novel systems biology approach, we combined quantitative biochemical studies with mathematical modelling to establish a kinetic model of amyloidogenic processing, and to evaluate the influence by SORLA/SORL1, an inhibitor of APP processing and important genetic risk factor. Contrary to previous hypotheses, our studies demonstrate that secretases represent allosteric enzymes that require cooperativity by APP oligomerization for efficient processing. Cooperativity enables swift adaptive changes in secretase activity with even small alterations in APP concentration. We also show that SORLA prevents APP oligomerization both in cultured cells and in the brain in vivo, eliminating the preferred form of the substrate and causing secretases to switch to a less efficient non-allosteric mode of action. These data represent the first mathematical description of the contribution of genetic risk factors to AD substantiating the relevance of subtle changes in SORLA levels for amyloidogenic processing as proposed for patients carrying SORL1 risk alleles.

  18. Quantitative modelling of amyloidogenic processing and its influence by SORLA in Alzheimer's disease

    PubMed Central

    Schmidt, Vanessa; Baum, Katharina; Lao, Angelyn; Rateitschak, Katja; Schmitz, Yvonne; Teichmann, Anke; Wiesner, Burkhard; Petersen, Claus Munck; Nykjaer, Anders; Wolf, Jana; Wolkenhauer, Olaf; Willnow, Thomas E

    2012-01-01

    The extent of proteolytic processing of the amyloid precursor protein (APP) into neurotoxic amyloid-β (Aβ) peptides is central to the pathology of Alzheimer's disease (AD). Accordingly, modifiers that increase Aβ production rates are risk factors in the sporadic form of AD. In a novel systems biology approach, we combined quantitative biochemical studies with mathematical modelling to establish a kinetic model of amyloidogenic processing, and to evaluate the influence by SORLA/SORL1, an inhibitor of APP processing and important genetic risk factor. Contrary to previous hypotheses, our studies demonstrate that secretases represent allosteric enzymes that require cooperativity by APP oligomerization for efficient processing. Cooperativity enables swift adaptive changes in secretase activity with even small alterations in APP concentration. We also show that SORLA prevents APP oligomerization both in cultured cells and in the brain in vivo, eliminating the preferred form of the substrate and causing secretases to switch to a less efficient non-allosteric mode of action. These data represent the first mathematical description of the contribution of genetic risk factors to AD substantiating the relevance of subtle changes in SORLA levels for amyloidogenic processing as proposed for patients carrying SORL1 risk alleles. PMID:21989385

  19. Control of Aβ release from human neurons by differentiation status and RET signaling.

    PubMed

    Scholz, Diana; Chernyshova, Yana; Leist, Marcel

    2013-01-01

    Few studies have compared the processing of endogenous human amyloid precursor protein (APP) in younger and older neurons. Here, we characterized LUHMES cells as a human model to study Alzheimer's disease-related processes during neuronal maturation and aging. Differentiated LUHMES expressed and spontaneously processed APP via the secretase pathways, and they secreted amyloid β (Aβ) peptide. This was inhibited by cholesterol depletion or secretase inhibition, but not by block of tau phosphorylation. In vitro aged cells increased Aβ secretion without upregulation of APP or secretases. We identified the medium constituent glial cell line-derived neurotrophic factor (GDNF) as responsible for this effect. GDNF-triggered Aβ release was associated with rapid upregulation of the GDNF coreceptor "rearranged during transfection" (RET). Other direct (neurturin) or indirect (nerve growth factor) RET activators also increased Aβ, whereas different neurotrophins were ineffective. Downstream of RET, we found activation of protein kinase B (AKT) to be involved. Accordingly, inhibitors of the AKT regulator phosphatidylinositol-3-kinase completely blocked GDNF-triggered AKT phosphorylation and Aβ increase. This suggests that RET signaling affects Aβ release from aging neurons. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. The Metalloprotease Meprin β Generates Amino Terminal-truncated Amyloid β Peptide Species*

    PubMed Central

    Bien, Jessica; Jefferson, Tamara; Čaušević, Mirsada; Jumpertz, Thorsten; Munter, Lisa; Multhaup, Gerd; Weggen, Sascha; Becker-Pauly, Christoph; Pietrzik, Claus U.

    2012-01-01

    The amyloid β (Aβ) peptide, which is abundantly found in the brains of patients suffering from Alzheimer disease, is central in the pathogenesis of this disease. Therefore, to understand the processing of the amyloid precursor protein (APP) is of critical importance. Recently, we demonstrated that the metalloprotease meprin β cleaves APP and liberates soluble N-terminal APP (N-APP) fragments. In this work, we present evidence that meprin β can also process APP in a manner reminiscent of β-secretase. We identified cleavage sites of meprin β in the amyloid β sequence of the wild type and Swedish mutant of APP at positions p1 and p2, thereby generating Aβ variants starting at the first or second amino acid residue. We observed even higher kinetic values for meprin β than BACE1 for both the wild type and the Swedish mutant APP form. This enzymatic activity of meprin β on APP and Aβ generation was also observed in the absence of BACE1/2 activity using a β-secretase inhibitor and BACE knock-out cells, indicating that meprin β acts independently of β-secretase. PMID:22879596

  1. Effects of acetylate hyperforin on the processing of amyloid precursor protein

    PubMed Central

    Chen, Xiang; Feng, Wenshang; Chen, Qing; Yang, Xiangling; Yang, Depo; Wang, Dongmei; Zhong, Ling

    2009-01-01

    Hyperforin (HF) is a phloroglucinol compound obtained from St. John's Wort (Hypericum perforatum). Recent studies have shown that Hyperforin can be used to improve psychopathologic symptoms of Alzheimer's disease but the mechanism is not clear. This may be partly due to the difficult in studying Hyperforin, since this chemical is unstable and is sensitive to light, oxygen, and heat. In this study, we explored the effects of acetylate hyperforin (ace-HF), a stable derivative of hyperforin, on the processing of amyloid precursor protein (APP). HEK293 cells transfected with pcDNA3.1APP695sw and SH-SY5Y cells were treated with ace-HF, followed by measuring the levels of APP and sAPPα. Twelve hours of treatment led to an increase in extracellular sAPPα, but APP mRNA and protein levels were unchanged. Further studies with α-secretase and a pan PKC inhibitor, Calphostin C, indicated that ace-HF's effect on extracellular sAPPα was closely related to PKC activities and α-secretase activities. Our findings suggest that ace-HF can modulate α-secretase-mediated APP processing via a PKC signaling pathway. PMID:21383880

  2. Effects of acetylate hyperforin on the processing of amyloid precursor protein.

    PubMed

    Chen, Xiang; Feng, Wenshang; Chen, Qing; Yang, Xiangling; Yang, Depo; Wang, Dongmei; Zhong, Ling

    2009-02-20

    Hyperforin (HF) is a phloroglucinol compound obtained from St. John's Wort (Hypericum perforatum). Recent studies have shown that Hyperforin can be used to improve psychopathologic symptoms of Alzheimer's disease but the mechanism is not clear. This may be partly due to the difficult in studying Hyperforin, since this chemical is unstable and is sensitive to light, oxygen, and heat. In this study, we explored the effects of acetylate hyperforin (ace-HF), a stable derivative of hyperforin, on the processing of amyloid precursor protein (APP). HEK293 cells transfected with pcDNA3.1APP695sw and SH-SY5Y cells were treated with ace-HF, followed by measuring the levels of APP and sAPPα. Twelve hours of treatment led to an increase in extracellular sAPPα, but APP mRNA and protein levels were unchanged. Further studies with α-secretase and a pan PKC inhibitor, Calphostin C, indicated that ace-HF's effect on extracellular sAPPα was closely related to PKC activities and α-secretase activities. Our findings suggest that ace-HF can modulate α-secretase-mediated APP processing via a PKC signaling pathway.

  3. Crystal Structures of MEK1 Binary and Ternary Complexes with Nucleotides and Inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischmann, Thierry O.; Smith, Catherine K.; Mayhood, Todd W.

    MEK1 is a member of the MAPK signal transduction pathway that responds to growth factors and cytokines. We have determined that the kinase domain spans residues 35-382 by proteolytic cleavage. The complete kinase domain has been crystallized and its X-ray crystal structure as a complex with magnesium and ATP-{gamma}S determined at 2.1 {angstrom}. Unlike crystals of a truncated kinase domain previously published, the crystals of the intact domain can be grown either as a binary complex with a nucleotide or as a ternary complex with a nucleotide and one of a multitude of allosteric inhibitors. Further, the crystals allow formore » the determination of costructures with ATP competitive inhibitors. We describe the structures of nonphosphorylated MEK1 (npMEK1) binary complexes with ADP and K252a, an ATP-competitive inhibitor (see Table 1), at 1.9 and 2.7 {angstrom} resolution, respectively. Ternary complexes have also been solved between npMEK1, a nucleotide, and an allosteric non-ATP competitive inhibitor: ATP-{gamma}S with compound 1 and ADP with either U0126 or the MEK1 clinical candidate PD325089 at 1.8, 2.0, and 2.5 {angstrom}, respectively. Compound 1 is structurally similar to PD325901. These structures illustrate fundamental differences among various mechanisms of inhibition at the molecular level. Residues 44-51 have previously been shown to play a negative regulatory role in MEK1 activity. The crystal structure of the integral kinase domain provides a structural rationale for the role of these residues. They form helix A and repress enzymatic activity by stabilizing an inactive conformation in which helix C is displaced from its active state position. Finally, the structure provides for the first time a molecular rationale that explains how mutations in MEK may lead to the cardio-facio-cutaneous syndrome.« less

  4. Methionine biosynthesis in higher plants. I. Purification and characterization of cystathionine gamma-synthase from spinach chloroplasts.

    PubMed

    Ravanel, S; Droux, M; Douce, R

    1995-01-10

    Cystathionine gamma-synthase, the first enzyme specific for the methionine biosynthetic pathway, was purified to apparent homogeneity from spinach leaf chloroplasts. A nonradioactive assay based on O-phthaldialdehyde derivatization of L-cystathionine and fluorescence detection was developed to determine the cystathionine gamma-synthase activity. A unique cystathionine gamma-synthase activity was located in the stromal fraction of chloroplasts while cystathionine beta-lyase, the second enzyme of the transsulfuration pathway, was associated with both the chloroplastic and cytosolic compartments (see companion manuscript). The purified enzyme exhibited a specific activity of 13 U mg-1. As estimated by gel filtration and polyacrylamide gel electrophoresis (PAGE) under nondenaturing conditions followed by activity staining, the native enzyme had an apparent M(r) of 215,000. On the basis of sodium dodecyl sulfate-PAGE, purified cystathionine gamma-synthase migrated as two molecular species of M(r) 53,000 and 50,000 that are identical in their N-termini. The absorption spectrum obtained at pH 7.5 exhibited a peak at 425 nm due to pyridoxal 5'-phosphate (PLP). The purified enzyme catalyzed the formation of L-cystathionine or L-homocysteine depending on the sulfur-containing substrate, L-cysteine or sulfide. Maximal cystathionine gamma-synthase activity was found at pH 7.4. The apparent Km values for O-phospho-L-homoserine (the unique homoserine ester synthesized in the chloroplast), L-cysteine, and sulfide were 1.4, 0.18, and 0.6 mM, respectively. Inactivation of cystathionine gamma-synthase by DL-propargylglycine (PAG) showed pseudo-first-order kinetics and data were consistent with the existence of an intermediate reversible enzyme-inhibitor complex (Kappi = 140 microM) preceding the formation of a final enzyme-inhibitor complex (kd = 24 x 10(-3) s-1). The irreversibility of the inhibition and the partial restoration of the activity by pyridoxal-phosphate suggest that

  5. Safety of six-month dual antiplatelet therapy after second-generation drug-eluting stent implantation: OPTIMA-C Randomised Clinical Trial and OCT Substudy.

    PubMed

    Lee, Byoung-Kwon; Kim, Jung-Sun; Lee, Oh-Huyn; Min, Pil-Ki; Yoon, Young-Won; Hong, Bum-Kee; Shin, Dong-Ho; Kang, Tae-Soo; Kim, Byung Ok; Cho, Duk-Kyu; Jeon, Dong Woon; Woo, Sung-Ill; Choi, Seonghoon; Kim, Yong Hoon; Kang, Woong-Chol; Kim, Seunghwan; Kim, Byeong-Keuk; Hong, Myeong-Ki; Jang, Yangsoo; Kwon, Hyuck Moon

    2018-03-20

    There are few randomised studies concerning the optimal duration of dual antiplatelet therapy (DAPT) for patients who receive a second-generation drug-eluting stent (DES). This trial aimed to investigate the safety of six-month compared with 12-month DAPT maintenance after second-generation DES implantation. A prospective, randomised, multicentre trial was performed at 10 medical centres. The 1,368 patients included in the study received a biolimus-eluting stent (BES) or a zotarolimus-eluting stent (ZES). The primary outcome measured was the composite of major adverse cardiac events (MACE), including cardiac death, myocardial infarction (MI), or ischaemia-driven target lesion revascularisation at the 12-month follow-up. The secondary outcome was the percentage of uncovered struts at six months in 60 patients (30 ZES, 30 BES) using optical coherence tomography (OCT) assessment. Each patient was randomly assigned to six-month (n=684) or 12-month DAPT (n=684). Major adverse cardiac events at 12 months occurred in eight patients (1.2%) in the six-month DAPT group and in four patients (0.6%) in the 12-month DAPT group (risk difference 0.6%; 95% confidence interval [CI]: -0.4-1.6%; p=0.24). The upper 95% CI limit was lower than the pre-specified limit of 4% non-inferiority (p for non-inferiority <0.05). The percentage of uncovered struts was 3.16±4.30% at six months in 60 stents of 60 patients. After second-generation DES implantation, six-month DAPT was not inferior to 12-month DAPT in terms of MACE occurrence over the 12-month follow-up period. OCT examination revealed favourable stent strut coverage at six months after stent implantation.

  6. Gamma-secretase/Notch Signalling Pathway Inhibitor RO4929097 in Treating Patients With Advanced, Metastatic, or Recurrent Triple Negative Invasive Breast Cancer

    ClinicalTrials.gov

    2017-02-28

    Estrogen Receptor-negative Breast Cancer; HER2-negative Breast Cancer; Male Breast Cancer; Progesterone Receptor-negative Breast Cancer; Recurrent Breast Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Stage IV Breast Cancer; Triple-negative Breast Cancer

  7. Inhibitors of the proteasome suppress homologous DNA recombination in mammalian cells.

    PubMed

    Murakawa, Yasuhiro; Sonoda, Eiichiro; Barber, Louise J; Zeng, Weihua; Yokomori, Kyoko; Kimura, Hiroshi; Niimi, Atsuko; Lehmann, Alan; Zhao, Guang Yu; Hochegger, Helfrid; Boulton, Simon J; Takeda, Shunichi

    2007-09-15

    Proteasome inhibitors are novel antitumor agents against multiple myeloma and other malignancies. Despite the increasing clinical application, the molecular basis of their antitumor effect has been poorly understood due to the involvement of the ubiquitin-proteasome pathway in multiple cellular metabolisms. Here, we show that treatment of cells with proteasome inhibitors has no significant effect on nonhomologous end joining but suppresses homologous recombination (HR), which plays a key role in DNA double-strand break (DSB) repair. In this study, we treat human cells with proteasome inhibitors and show that the inhibition of the proteasome reduces the efficiency of HR-dependent repair of an artificial HR substrate. We further show that inhibition of the proteasome interferes with the activation of Rad51, a key factor for HR, although it does not affect the activation of ATM, gammaH2AX, or Mre11. These data show that the proteasome-mediated destruction is required for the promotion of HR at an early step. We suggest that the defect in HR-mediated DNA repair caused by proteasome inhibitors contributes to antitumor effect, as HR plays an essential role in cellular proliferation. Moreover, because HR plays key roles in the repair of DSBs caused by chemotherapeutic agents such as cisplatin and by radiotherapy, proteasome inhibitors may enhance the efficacy of these treatments through the suppression of HR-mediated DNA repair pathways.

  8. Tyrosine phosphorylation and association of Syk with Fc gamma RII in monocytic THP-1 cells.

    PubMed Central

    Ghazizadeh, S; Bolen, J B; Fleit, H B

    1995-01-01

    Although the cytoplasmic portion of the low-affinity receptor for immunoglobulin G, Fc gamma RII, does not contain a kinase domain, rapid tyrosine phosphorylation of intracellular substrates occurs in response to aggregation of the receptor. The use of specific tyrosine kinase inhibitors has suggested that these phosphorylations are required for subsequent cellular responses. We previously demonstrated the coprecipitation of a tyrosine kinase activity with Fc gamma RII, suggesting that non-receptor tyrosine kinases might associate with the cytoplasmic domain of Fc gamma RII. Anti-receptor immune complex kinase assays revealed the coprecipitation of several phosphoproteins, most notably p56/53lyn, an Src-family protein tyrosine kinase (PTK), and a 72 kDa phosphoprotein. Here we identify the 72 kDa Fc gamma RII-associated protein as p72syk (Syk), a member of a newly described family of non-receptor PTKs. A rapid and transient tyrosine phosphorylation of Syk was observed following Fc gamma RII activation. Syk was also tyrosyl-phosphorylated following aggregation of the high-affinity Fc gamma receptor, Fc gamma RI. The Fc gamma RI activation did not result in association of Syk with Fc gamma RII, implying that distinct pools of Syk are activated upon aggregation of each receptor in a localized manner. These results demonstrate a physical association between Syk and Fc gamma RII and suggest that the molecules involved in Fc gamma RII signalling are very similar to the ones utilized by multichain immune recognition receptors such as the B-cell antigen receptor and the high-affinity IgE receptor. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:7530449

  9. SNX27 Deletion Causes Hydrocephalus by Impairing Ependymal Cell Differentiation and Ciliogenesis

    PubMed Central

    Zhou, Ying; Wang, Jian; Tseng, I-Chu; Huang, Timothy; Zhao, Yingjun; Zheng, Qiuyang; Gao, Yue; Luo, Hong; Zhang, Xian; Bu, Guojun; Hong, Wanjin

    2016-01-01

    Hydrocephalus is a brain disorder derived from CSF accumulation due to defects in CSF clearance. Although dysfunctional apical cilia in the ependymal cell layer are causal to the onset of hydrocephalus, mechanisms underlying proper ependymal cell differentiation are largely unclear. SNX27 is a trafficking component required for normal brain function and was shown previously to suppress γ-secretase-dependent amyloid precursor protein and Notch cleavage. However, it was unclear how SNX27-dependent γ-secretase inhibition could contribute to brain development and pathophysiology. Here, we describe and characterize an Snx27-deleted mouse model for the ependymal layer defects of deciliation and hydrocephalus. SNX27 deficiency results in reductions in ependymal cells and cilia density, as well as severe postnatal hydrocephalus. Inhibition of Notch intracellular domain signaling with γ-secretase inhibitors reversed ependymal cells/cilia loss and dilation of lateral ventricles in Snx27-deficient mice, giving strong indication that Snx27 deletion triggers defects in ependymal layer formation and ciliogenesis through Notch hyperactivation. Together, these results suggest that SNX27 is essential for ependymal cell differentiation and ciliogenesis, and its deletion can promote hydrocephalus pathogenesis. SIGNIFICANCE STATEMENT Down's syndrome (DS) in humans and mouse models has been shown previously to confer a high risk for the development of pathological hydrocephalus. Because we have previously described SNX27 as a component that is consistently downregulated in DS, we present here a robust Snx27-deleted mouse model that produces hydrocephalus and associated ciliary defects with complete penetrance. In addition, we find that γ-secretase/Notch modulation may be a candidate drug target in SNX27-associated hydrocephalus such as that observed in DS. Based on these findings, we anticipate that future study will determine whether modulation of a SNX27/Notch/γ-secretase

  10. A role for gamma-glutamyl transpeptidase and the amino acid transport system xc- in cystine transport by a human pancreatic duct cell line.

    PubMed Central

    Sweiry, J H; Sastre, J; Viña, J; Elsässer, H P; Mann, G E

    1995-01-01

    1. The roles of the gamma-glutamyl cycle and the anionic amino acid transport system xc- in mediating L-cystine uptake were investigated in cultured human pancreatic duct PaTu 8902 cells. This cell line exhibits morphological features of normal pancreatic duct cells and expresses gamma-glutamyl transpeptidase (gamma-GT, EC 2.3.2.2), an enzyme involved in the metabolism and regulation of intracellular glutathione (GSH). 2. Uptake of L-cystine (10 microM) was linear for up to 10 min, temperature dependent, Na+ independent, saturable (Michaelis-Menten constant (Km), 86 +/- 25 microM; maximal velocity (Vmax), 109 +/- 33 nmol (mg protein)-1 h-1) and reduced by 80-90% by a 50-fold excess concentration of L-glutamate and L-homocysteic acid, but not L-aspartate. These transport properties resemble those described for system xc-, which exchanges cystine for intracellular glutamate. 3. Acivicin, a known inhibitor of gamma-GT, decreased gamma-GT activity from 2.58 +/- 0.96 to 0.97 +/- 0.11 mU (mg protein)-1 and decreased the initial rates of L-cystine and L-glutamine uptake by 41-55%. Anthglutin (1-gamma-L-glutamyl-2-(2-carboxyphenylhyl)hydrazine), a structurally different inhibitor of gamma-GT, also caused a concentration-dependent (0.01-1 mM) decrease in gamma-GT activity and L-cystine uptake. 4. Neither acivicin nor anthglutin inhibited the uptake of L-glutamate, a poor substrate for gamma-GT. 5. In the presence of a 500-fold excess concentration of glutamate, which should abolish entry of cystine via system xc-, the remaining fraction of cystine transport was inhibited by 50% by acivicin, suggesting that transport is, in part, dependent on the activity of gamma-GT. 6. Cystine transport was also 60-80% inhibited by a series of gamma-glutamyl amino acids (5 mM) including gamma-glutamyl-glutamate, gamma-glutamyl-glutamine and gamma-glutamyl-glycine. alpha-Dipeptides inhibited cystine transport by only 6-22%. 7. These findings demonstrate that in human pancreatic duct Pa

  11. Detection of gamma-irradiation effect on DNA and protein using magnetic sensor and cyclic voltammetry.

    PubMed

    Park, Duck-Gun; Song, Hoon; Kishore, M B; Vértesy, G; Lee, Duk-Hyun

    2013-11-01

    In this study, a magnetic sensor utilizing Planar Hall Resistance (PHR) and cyclic Voltammetry (CV) for detecting the radiation effect was fabricated. Specifically, we applied in parallel a PHR sensor and CV device to monitor the irradiation effect on DNA and protein respectively. Through parallel measurements, we demonstrated that the PHR sensor and CV are sensitive enough to measure irradiation effect. The PHR voltage decreased by magnetic nanobead labeled DNA was slightly recovered after gamma ray irradiation. The behavior of cdk inhibitor protein p21 having a sandwich structure of Au/protein G/Ab/Ag/Ab was checked by monitoring the cyclic Voltammetry signal in analyzing the gamma ray irradiation effect.

  12. gamma-Hexachlorocyclohexane (gamma-HCH)

    Integrated Risk Information System (IRIS)

    gamma - Hexachlorocyclohexane ( gamma - HCH ) ; CASRN 58 - 89 - 9 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Asse

  13. Impact of dual antiplatelet therapy after coronary artery bypass surgery on 1-year outcomes in the Arterial Revascularization Trial.

    PubMed

    Benedetto, Umberto; Altman, Douglas G; Gerry, Stephen; Gray, Alastair; Lees, Belinda; Flather, Marcus; Taggart, David P

    2017-09-01

    There is still little evidence to boldport routine dual antiplatelet therapy (DAPT) with P2Y12 antagonists following coronary artery bypass grafting (CABG). The Arterial Revascularization Trial (ART) was designed to compare 10-year survival after bilateral versus single internal thoracic artery grafting. We aimed to get insights into the effect of DAPT (with clopidogrel) following CABG on 1-year outcomes by performing a post hoc ART analysis. Among patients enrolled in the ART (n = 3102), 609 (21%) and 2308 (79%) were discharged on DAPT or aspirin alone, respectively. The primary end-point was the incidence of major adverse cerebrovascular and cardiac events (MACCE) at 1 year including cardiac death, myocardial infarction, cerebrovascular accident and reintervention; safety end-point was bleeding requiring hospitalization. Propensity score (PS) matching was used to create comparable groups. Among 609 PS-matched pairs, MACCE occurred in 34 (5.6%) and 34 (5.6%) in the DAPT and aspirin alone groups, respectively, with no significant difference between the 2 groups [hazard ratio (HR) 0.97, 95% confidence interval (CI) 0.59-1.59; P = 0.90]. Only 188 (31%) subjects completed 1 year of DAPT, and in this subgroup, MACCE rate was 5.8% (HR 1.11, 95% CI 0.53-2.30; P = 0.78). In the overall sample, bleeding rate was higher in DAPT group (2.3% vs 1.1%; P = 0.02), although this difference was no longer significant after matching (2.3% vs 1.8%; P = 0.54). Based on these findings, when compared with aspirin alone, DAPT with clopidogrel prescribed at discharge was not associated with a significant reduction of adverse cardiac and cerebrovascular events at 1 year following CABG. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  14. Unidentified Gamma-Ray Sources: Hunting Gamma-Ray Blazars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massaro, F.; D'Abrusco, R.; Tosti, G.

    2012-04-02

    One of the main scientific objectives of the ongoing Fermi mission is unveiling the nature of the unidentified {gamma}-ray sources (UGSs). Despite the large improvements of Fermi in the localization of {gamma}-ray sources with respect to the past {gamma}-ray missions, about one third of the Fermi-detected objects are still not associated to low energy counterparts. Recently, using the Wide-field Infrared Survey Explorer (WISE) survey, we discovered that blazars, the rarest class of Active Galactic Nuclei and the largest population of {gamma}-ray sources, can be recognized and separated from other extragalactic sources on the basis of their infrared (IR) colors. Basedmore » on this result, we designed an association method for the {gamma}-ray sources to recognize if there is a blazar candidate within the positional uncertainty region of a generic {gamma}-ray source. With this new IR diagnostic tool, we searched for {gamma}-ray blazar candidates associated to the UGS sample of the second Fermi {gamma}-ray catalog (2FGL). We found that our method associates at least one {gamma}-ray blazar candidate as a counterpart each of 156 out of 313 UGSs analyzed. These new low-energy candidates have the same IR properties as the blazars associated to {gamma}-ray sources in the 2FGL catalog.« less

  15. UNIDENTIFIED {gamma}-RAY SOURCES: HUNTING {gamma}-RAY BLAZARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massaro, F.; Ajello, M.; D'Abrusco, R.

    2012-06-10

    One of the main scientific objectives of the ongoing Fermi mission is unveiling the nature of unidentified {gamma}-ray sources (UGSs). Despite the major improvements of Fermi in the localization of {gamma}-ray sources with respect to the past {gamma}-ray missions, about one-third of the Fermi-detected objects are still not associated with low-energy counterparts. Recently, using the Wide-field Infrared Survey Explorer survey, we discovered that blazars, the rarest class of active galactic nuclei and the largest population of {gamma}-ray sources, can be recognized and separated from other extragalactic sources on the basis of their infrared (IR) colors. Based on this result, wemore » designed an association method for the {gamma}-ray sources to recognize if there is a blazar candidate within the positional uncertainty region of a generic {gamma}-ray source. With this new IR diagnostic tool, we searched for {gamma}-ray blazar candidates associated with the UGS sample of the second Fermi {gamma}-ray LAT catalog (2FGL). We found that our method associates at least one {gamma}-ray blazar candidate as a counterpart to each of 156 out of 313 UGSs analyzed. These new low-energy candidates have the same IR properties as the blazars associated with {gamma}-ray sources in the 2FGL catalog.« less

  16. IL-4 inhibits the synthesis of IFN-gamma and induces the synthesis of IgE in human mixed lymphocyte cultures.

    PubMed

    Vercelli, D; Jabara, H H; Lauener, R P; Geha, R S

    1990-01-15

    The T cell-derived lymphokine IL-4 is essential for the induction of IgE synthesis by human lymphocytes. The IgE-inducing effect of IL-4 is antagonized by IFN-gamma. The secretion of IFN-gamma is vigorously triggered in MLC. Thus, IL-4-stimulated MLC represent a suitable model to characterize the functional antagonism between IL-4 and IFN-gamma. In this report, we show that rIL-4 consistently induced IgE synthesis when added to human primary MLC. IL-4-dependent IgE production required cognate T/B cell recognition, because it was inhibited by antibodies to CD3 and MHC class II (HlA-DR) Ag. A neutralizing anti-IFN-gamma mAb dramatically enhanced IL-4-dependent IgE synthesis by MLC, indicating that endogenous IFN-gamma is a major inhibitor of IgE production. More importantly, addition of rIL-4 markedly inhibited the release of IFN-gamma in supernatants of MLC and Con A-activated PBMC. The decrease in IFN-gamma protein was accompanied by a decreased expression of IFN-gamma mRNA transcripts. The downregulation of IFN-gamma by IL-4 is likely to play an important role in the IL-4-dependent induction of IgE synthesis.

  17. Neuroprotective effect of ipriflavone against scopolamine-induced memory impairment in rats.

    PubMed

    Hafez, Hani S; Ghareeb, Doaa A; Saleh, Samar R; Abady, Mariam M; El Demellawy, Maha A; Hussien, Hend; Abdel-Monem, Nihad

    2017-10-01

    Alzheimer's disease is an age-related neurodegenerative disorder characterized clinically by a progressive loss of memory and cognitive functions resulting in severe dementia. Ipriflavone (IPRI) is a non-hormonal, semi-synthetic isoflavone, clinically used in some countries for the treatment and prevention of postmenopausal osteoporosis. Moreover, ipriflavone is a non-peptidomimetic small molecule AChE inhibitor with an improved bioavailability after systemic administration, due to its efficient blood-brain barrier permeability in comparison with peptidomimetic inhibitors. The present study aimed to evaluate the possible enhancing effects of IPRI on memory impairments caused by scopolamine administration. Male rats were administered IPRI (50 mg/kg, oral) 2 h before scopolamine injection (2 mg/kg, intraperitoneally injected) daily for 4 weeks. Effects of IPRI on acetylcholinesterase activity, amyloid-β precursor processing, and neuroplasticity in the rats' hippocampus were investigated. Daily administration of IPRI reverted memory impairment caused by scopolamine as measured by the reduction of the escape latency. IPRI significantly alleviated the oxidative stress and restored the mRNA expression of both cAMP-response element-binding protein and brain-derived neurotrophic factor in the hippocampus. Furthermore, it significantly increased the expression of ADAM10 and ADAM17 (two putative α-secretase enzymes) and phosphorylated extracellular signal-regulated kinase 1/2 (pERK1/2) that associated with decreased expression of β-secretase (BACE) in the hippocampus. Finally, both the amyloid-β (Aβ) and Tau pathologies were reduced. IPRI showed promising neuroprotective effects against scopolamine-induced memory dysfunction in rats. These findings contributed to the stimulation of α-secretase enzymes, the activation of MAPK/ERK1/2, and the alleviation of oxidative stress.

  18. Population PKPD modeling of BACE1 inhibitor-induced reduction in Aβ levels in vivo and correlation to in vitro potency in primary cortical neurons from mouse and guinea pig.

    PubMed

    Janson, Juliette; Eketjäll, Susanna; Tunblad, Karin; Jeppsson, Fredrik; Von Berg, Stefan; Niva, Camilla; Radesäter, Ann-Cathrin; Fälting, Johanna; Visser, Sandra A G

    2014-03-01

    The aims were to quantify the in vivo time-course between the oral dose, the plasma and brain exposure and the inhibitory effect on Amyloid β (Aβ) in brain and cerebrospinal fluid, and to establish the correlation between in vitro and in vivo potency of novel β-secretase (BACE1) inhibitors. BACE1-mediated inhibition of Aβ was quantified in in vivo dose- and/or time-response studies and in vitro in SH-SY5Y cells, N2A cells, and primary cortical neurons (PCN). An indirect response model with inhibition on Aβ production rate was used to estimate unbound in vivo IC 50 in a population pharmacokinetic-pharmacodynamic modeling approach. Estimated in vivo inhibitory potencies varied between 1 and 1,000 nM. The turnover half-life of Aβ40 in brain was predicted to be 0.5 h in mouse and 1 h in guinea pig. An excellent correlation between PCN and in vivo potency was observed. Moreover, a strong correlation in potency was found between human SH-SY5Y cells and mouse PCN, being 4.5-fold larger in SH-SY5Y cells. The strong in vivo-in vitro correlation increased the confidence in using human cell lines for screening and optimization of BACE1 inhibitors. This can optimize the design and reduce the number of preclinical in vivo effect studies.

  19. Expression analysis of beta-secretase 1 (BACE1) and its naturally occurring antisense (BACE1-AS) in blood of epileptic patients.

    PubMed

    Mazdeh, Mehrdokht; Komaki, Alireza; Omrani, Mir Davood; Gharzi, Vajihe; Sayad, Arezou; Taheri, Mohammad; Ghafouri-Fard, Soudeh

    2018-06-02

    Beta-secretase 1 (BACE1) gene encodes a transmembrane protease from the peptidase A1 family of aspartic proteases whose role in the pathogenesis of Alzheimer's disease has been assessed. The enzymatic activity of BACE1 on several proteins implicated in epileptogenesis implies its role in the pathogenesis of epilepsy. In the present study, we assessed expression of BACE1 and its naturally occurring antisense (BACE1-AS) in peripheral blood of 40 epileptic patients and 40 age- and sex-matched healthy subjects. We did not detect either any difference in the expression of these genes between cases and controls or significant correlation between their expressions and participants' age. However, we demonstrated a significant correlation between expression levels of BACE1 and BACE1-AS which supports the previously suggested feed-forward mechanism of regulation between these two transcripts. Future studies in larger sample sizes are needed to elaborate the function of BACE1 in epilepsy.

  20. Growth kinetics of gamma-prime precipitates in a directionally solidified eutectic, gamma/gamma-prime-delta

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.

    1976-01-01

    A directionally solidified eutectic alloy (DSEA), of those viewed as potential candidates for the next generation of aircraft gas turbine blade materials, is studied for the gamma-prime growth kinetics, in the system Ni-Nb-Cr-Al, specifically: Ni-20 w/o Nb-6 w/o Cr-2.5 w/o Al gamma/gamma-prime-delta DSEA. Heat treatment, polishing and etching, and preparation for electron micrography are described, and the size distribution of gamma-prime phase following various anneals is plotted, along with gamma-prime growth kinetics in this specific DSEA, and the cube of gamma-prime particle size vs anneal time. Activation energies and coarsening kinetics are studied.

  1. The neutron-gamma Feynman variance to mean approach: Gamma detection and total neutron-gamma detection (theory and practice)

    NASA Astrophysics Data System (ADS)

    Chernikova, Dina; Axell, Kåre; Avdic, Senada; Pázsit, Imre; Nordlund, Anders; Allard, Stefan

    2015-05-01

    Two versions of the neutron-gamma variance to mean (Feynman-alpha method or Feynman-Y function) formula for either gamma detection only or total neutron-gamma detection, respectively, are derived and compared in this paper. The new formulas have particular importance for detectors of either gamma photons or detectors sensitive to both neutron and gamma radiation. If applied to a plastic or liquid scintillation detector, the total neutron-gamma detection Feynman-Y expression corresponds to a situation where no discrimination is made between neutrons and gamma particles. The gamma variance to mean formulas are useful when a detector of only gamma radiation is used or when working with a combined neutron-gamma detector at high count rates. The theoretical derivation is based on the Chapman-Kolmogorov equation with the inclusion of general reactions and corresponding intensities for neutrons and gammas, but with the inclusion of prompt reactions only. A one energy group approximation is considered. The comparison of the two different theories is made by using reaction intensities obtained in MCNPX simulations with a simplified geometry for two scintillation detectors and a 252Cf-source. In addition, the variance to mean ratios, neutron, gamma and total neutron-gamma are evaluated experimentally for a weak 252Cf neutron-gamma source, a 137Cs random gamma source and a 22Na correlated gamma source. Due to the focus being on the possibility of using neutron-gamma variance to mean theories for both reactor and safeguards applications, we limited the present study to the general analytical expressions for Feynman-alpha formulas.

  2. Identification of Novel BACE1 Inhibitors by Combination of Pharmacophore Modeling, Structure-Based Design and In Vitro Assay.

    PubMed

    Ju, Yuan; Li, Zicheng; Deng, Yong; Tong, Aiping; Zhou, Liangxue; Luo, Youfu

    2016-01-01

    The protease β-secretase plays a critical role in the synthesis of pathogenic amyloid-β in Alzheimer's disease. In this study, pharmacophore constructed from receptor-ligand complex was used to screen Chemdiv and Zinc database and the resulting hits were subjected to docking experiments using LiandFit and CDOCKER programs. Molecules with high consensus scores and good interaction patterns in docking programs were retained. Drug-likeness assay including Lipinski's rule of five and ADMET properties filters were further used to identify BACE1 inhibitor. Finally, 13 compounds with novel scaffolds were selected and, considering of the nature of relative high LogP value of many marketed AD drugs, three of them with top 3 predicted LogP value were evaluated for their IC50 values in vitro by BACE1 enzymatic activity study. We believe that compound 13 with an IC50 value of 136 µM can be a lead compound with great potential in BACE1 inhibition and increasing activity by subsequently structure modification or optimization. At the same time, we found that the interaction between the residues Asp228, Asp32 of BACE1 and ligands is significant through analyzing the binding mode of 13 candidate compounds.

  3. Pharmacological modulation of GSAP reduces amyloid-β levels and tau phosphorylation in a mouse model of Alzheimer's disease with plaques and tangles.

    PubMed

    Chu, Jin; Lauretti, Elisabetta; Craige, Caryne P; Praticò, Domenico

    2014-01-01

    Accumulation of neurotoxic amyloid-β (Aβ) is a major hallmark of Alzheimer's disease (AD) pathology and an important player in its clinical manifestations. Formation of Aβ is controlled by the availability of an enzyme called γ-secretase. Despite its blockers being attractive therapeutic tools for lowering Aβ, this approach has failed because of their serious toxic side-effects. The discovery of the γ-secretase activating protein (GSAP), a co-factor for this protease which facilitates Aβ production without affecting other pathways responsible for the toxicity, is giving us the opportunity to develop a safer anti-Aβ therapy. In this study we have characterized the effect of Imatinib, an inhibitor of GSAP, in the 3×Tg mice, a mouse model of AD with plaques and tangles. Compared with controls, mice receiving the drug had a significant reduction in brain Aβ levels and deposition, but no changes in the steady state levels of AβPP, BACE-1, ADAM-10, or the four components of the γ-secretase complex. By contrast, Imatinib-treated animals had a significant increase in CTF-β and a significant reduction in GSAP expression levels. Additionally, we observed that tau phosphorylation was reduced at specific epitopes together with its insoluble fraction. In vitro studies confirmed that Imatinib prevents Aβ formation by modulating γ-secretase activity and GSAP levels. Our findings represent the first in vivo demonstration of the biological role that GSAP plays in the development of the AD-like neuropathologies. They establish this protein as a viable target for a safer anti-Aβ therapeutic approach in AD.

  4. Efficacy and Safety of Dual Antiplatelet Therapy After Complex PCI.

    PubMed

    Giustino, Gennaro; Chieffo, Alaide; Palmerini, Tullio; Valgimigli, Marco; Feres, Fausto; Abizaid, Alexandre; Costa, Ricardo A; Hong, Myeong-Ki; Kim, Byeong-Keuk; Jang, Yangsoo; Kim, Hyo-Soo; Park, Kyung Woo; Gilard, Martine; Morice, Marie-Claude; Sawaya, Fadi; Sardella, Gennaro; Genereux, Philippe; Redfors, Bjorn; Leon, Martin B; Bhatt, Deepak L; Stone, Gregg W; Colombo, Antonio

    2016-10-25

    Optimal upfront dual antiplatelet therapy (DAPT) duration after complex percutaneous coronary intervention (PCI) with drug-eluting stents (DES) remains unclear. This study investigated the efficacy and safety of long-term (≥12 months) versus short-term (3 or 6 months) DAPT with aspirin and clopidogrel according to PCI complexity. The authors pooled patient-level data from 6 randomized controlled trials investigating DAPT durations after PCI. Complex PCI was defined as having at least 1 of the following features: 3 vessels treated, ≥3 stents implanted, ≥3 lesions treated, bifurcation with 2 stents implanted, total stent length >60 mm, or chronic total occlusion. The primary efficacy endpoint was major adverse cardiac events (MACE), defined as the composite of cardiac death, myocardial infarction, or stent thrombosis. The primary safety endpoint was major bleeding. Intention-to-treat was the primary analytic approach. Of 9,577 patients included in the pooled dataset for whom procedural variables were available, 1,680 (17.5%) underwent complex PCI. Overall, 85% of patients received new-generation DES. At a median follow-up time of 392 days (interquartile range: 366 to 710 days), patients who underwent complex PCI had a higher risk of MACE (adjusted hazard ratio [HR]: 1.98; 95% confidence interval [CI]: 1.50 to 2.60; p < 0.0001). Compared with short-term DAPT, long-term DAPT yielded significant reductions in MACE in the complex PCI group (adjusted HR: 0.56; 95% CI: 0.35 to 0.89) versus the noncomplex PCI group (adjusted HR: 1.01; 95% CI: 0.75 to 1.35; p interaction  = 0.01). The magnitude of the benefit with long-term DAPT was progressively greater per increase in procedural complexity. Long-term DAPT was associated with increased risk for major bleeding, which was similar between groups (p interaction  = 0.96). Results were consistent by per-treatment landmark analysis. Alongside other established clinical risk factors, procedural complexity is an

  5. Aspirin Versus Aspirin Plus Clopidogrel as Antithrombotic Treatment Following Transcatheter Aortic Valve Replacement With a Balloon-Expandable Valve: The ARTE (Aspirin Versus Aspirin + Clopidogrel Following Transcatheter Aortic Valve Implantation) Randomized Clinical Trial.

    PubMed

    Rodés-Cabau, Josep; Masson, Jean-Bernard; Welsh, Robert C; Garcia Del Blanco, Bruno; Pelletier, Marc; Webb, John G; Al-Qoofi, Faisal; Généreux, Philippe; Maluenda, Gabriel; Thoenes, Martin; Paradis, Jean-Michel; Chamandi, Chekrallah; Serra, Vicenç; Dumont, Eric; Côté, Mélanie

    2017-07-10

    The aim of this study was to compare aspirin plus clopidogrel with aspirin alone as antithrombotic treatment following transcatheter aortic valve replacement (TAVR) for the prevention of ischemic events, bleeding events, and death. Few data exist on the optimal antithrombotic therapy following TAVR. This was a randomized controlled trial comparing aspirin (80 to 100 mg/day) plus clopidogrel (75 mg/day) (dual antiplatelet therapy [DAPT]) versus aspirin alone (single-antiplatelet therapy [SAPT]) in patients undergoing TAVR with a balloon-expandable valve. The primary endpoint was the occurrence of death, myocardial infarction (MI), stroke or transient ischemic attack, or major or life-threatening bleeding (according to Valve Academic Research Consortium 2 definitions) within the 3 months following the procedure. The trial was prematurely stopped after the inclusion of 74% of the planned study population. A total of 222 patients were included, 111 allocated to DAPT and 111 to SAPT. The composite of death, MI, stroke or transient ischemic attack, or major or life-threatening bleeding tended to occur more frequently in the DAPT group (15.3% vs. 7.2%, p = 0.065). There were no differences between groups in the occurrence of death (DAPT, 6.3%; SAPT, 3.6%; p = 0.37), MI (DAPT, 3.6%; SAT, 0.9%; p = 0.18), or stroke or transient ischemic attack (DAPT, 2.7%; SAPT, 0.9%; p = 0.31) at 3 months. DAPT was associated with a higher rate of major or life-threatening bleeding events (10.8% vs. 3.6% in the SAPT group, p = 0.038). There were no differences between groups in valve hemodynamic status post-TAVR. This small trial showed that SAPT (vs. DAPT) tended to reduce the occurrence of major adverse events following TAVR. SAPT reduced the risk for major or life-threatening events while not increasing the risk for MI or stroke. Larger studies are needed to confirm these results. (Aspirin Versus Aspirin + Clopidogrel Following Transcatheter Aortic Valve Implantation: The ARTE

  6. NMR spectroscopic properties (1H at 500 MHz) of deuterated* ribonucleotide-dimers ApU*, GpC*, partially deuterated 2'-deoxyribonucleotide-dimers d(TpA*), d(ApT*), d(GpC*) and their comparison with natural counterparts (1H-NMR window).

    PubMed

    Földesi, A; Nilson, F P; Glemarec, C; Gioeli, C; Chattopadhyaya, J

    1993-02-01

    Pure 1'#,2',3',4'#,5',5''-2H6-ribonucleoside derivatives 10-14, 1'#,2',2'',3',4'#,5',5''-2H7-2'-deoxynucleoside blocks 15-18 and their natural-abundance counterparts were used to assemble partially deuterated ribonucleotide-dimers (* indicates deuteration at 1'#,2',3',4'#,5',5''(2H6)): ApU* 21, GpC* 22 and partially deuterated 2'-deoxyribonucleotide-dimers d(TpA*) 23, d(ApT*) 25, d(GpC*) 26 (* indicates deuteration at 1'#,2',2'',3',4'#,5',5''(2H7)) according to the procedure described by Földesi et al. (Tetrahedron, in press). These five partially deuterated oligonucleotides were subsequently compared with their corresponding natural-abundance counterparts by 500 MHz 1H-NMR spectroscopy to evaluate the actual NMR simplifications achieved in the non-deuterated part (1H-NMR window) as a result of specific deuterium incorporation. Detailed one-dimensional 1H-NMR (500 MHz), two-dimensional correlation spectra (DQF-COSY and TOCSY) and deuterium isotope effect on the chemical shifts of oligonucleotides have been presented.

  7. Constitutive Smad signaling and Smad-dependent collagen gene expression in mouse embryonic fibroblasts lacking peroxisome proliferator-activated receptor-{gamma}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Asish K; Wei, Jun; Wu, Minghua

    2008-09-19

    Transforming growth factor-{beta} (TGF-{beta}), a potent inducer of collagen synthesis, is implicated in pathological fibrosis. Peroxisome proliferator-activated receptor-{gamma} (PPAR-{gamma}) is a nuclear hormone receptor that regulates adipogenesis and numerous other biological processes. Here, we demonstrate that collagen gene expression was markedly elevated in mouse embryonic fibroblasts (MEFs) lacking PPAR-{gamma} compared to heterozygous control MEFs. Treatment with the PPAR-{gamma} ligand 15d-PGJ{sub 2} failed to down-regulate collagen gene expression in PPAR-{gamma} null MEFs, whereas reconstitution of these cells with ectopic PPAR-{gamma} resulted in their normalization. Compared to control MEFs, PPAR-{gamma} null MEFs displayed elevated levels of the Type I TGF-{beta} receptor (T{beta}RI),more » and secreted more TGF-{beta}1 into the media. Furthermore, PPAR-{gamma} null MEFs showed constitutive phosphorylation of cellular Smad2 and Smad3, even in the absence of exogenous TGF-{beta}, which was abrogated by the ALK5 inhibitor SB431542. Constitutive Smad2/3 phosphorylation in PPAR-{gamma} null MEFs was associated with Smad3 binding to its cognate DNA recognition sequences, and interaction with coactivator p300 previously implicated in TGF-{beta} responses. Taken together, these results indicate that loss of PPAR-{gamma} in MEFs is associated with upregulation of collagen synthesis, and activation of intracellular Smad signal transduction, due, at least in part, to autocrine TGF-{beta} stimulation.« less

  8. Very high-energy gamma rays from gamma-ray bursts.

    PubMed

    Chadwick, Paula M

    2007-05-15

    Very high-energy (VHE) gamma-ray astronomy has undergone a transformation in the last few years, with telescopes of unprecedented sensitivity having greatly expanded the source catalogue. Such progress makes the detection of a gamma-ray burst at the highest energies much more likely than previously. This paper describes the facilities currently operating and their chances for detecting gamma-ray bursts, and reviews predictions for VHE gamma-ray emission from gamma-ray bursts. Results to date are summarized.

  9. Molecular cloning and structural modelling of gamma-phospholipase A2 inhibitors from Bothrops atrox and Micrurus lemniscatus snakes.

    PubMed

    Picelli, Carina G; Borges, Rafael J; Fernandes, Carlos A H; Matioli, Fabio M; Fernandes, Carla F C; Sobrinho, Juliana C; Holanda, Rudson J; Ozaki, Luiz S; Kayano, Anderson M; Calderon, Leonardo A; Fontes, Marcos R M; Stábeli, Rodrigo G; Soares, Andreimar M

    2017-10-01

    Phospholipases A 2 inhibitors (PLIs) produced by venomous and non-venomous snakes play essential role in this resistance. These endogenous inhibitors may be classified by their fold in PLIα, PLIβ and PLIγ. Phospholipases A 2 (PLA 2 s) develop myonecrosis in snake envenomation, a consequence that is not efficiently neutralized by antivenom treatment. This work aimed to identify and characterize two PLIs from Amazonian snake species, Bothrops atrox and Micrurus lemniscatus. Liver tissues RNA of specimens from each species were isolated and amplified by RT-PCR using PCR primers based on known PLIγ gene sequences, followed by cloning and sequencing of amplified fragments. Sequence similarity studies showed elevated identity with inhibitor PLIγ gene sequences from other snake species. Molecular models of translated inhibitors' gene sequences resemble canonical three finger fold from PLIγ and support the hypothesis that the decapeptide (residues 107-116) may be responsible for PLA 2 inhibition. Structural studies and action mechanism of these PLIs may provide necessary information to evaluate their potential as antivenom or as complement of the current ophidian accident treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. PPAR gamma partial agonist, KR-62776, inhibits adipocyte differentiation via activation of ERK.

    PubMed

    Kim, J; Han, D C; Kim, J M; Lee, S Y; Kim, S J; Woo, J R; Lee, J W; Jung, S-K; Yoon, K S; Cheon, H G; Kim, S S; Hong, S H; Kwon, B-M

    2009-05-01

    Indenone KR-62776 acts as an agonist of PPAR gamma without inducing obesity in animal models and cells. X-ray crystallography reveals that the indenone occupies the binding pocket in a different manner than rosiglitazone. 2-Dimensional gel-electrophoresis showed that the expression of 42 proteins was altered more than 2.0-fold between KR-62776- or rosiglitazone-treated adipocyte cells and control cells. Rosiglitazone down-regulated the expression of ERK1/2 and suppressed the phosphorylation of ERK1/2 in these cells. However, the expression of ERK1/2 was up-regulated in KR-62776-treated cells. Phosphorylated ERK1/2, activated by indenone, affects the localization of PPAR gamma, suggesting a mechanism for indenone-inhibition of adipogenesis in 3T3-L1 preadipocyte cells. The preadipocyte cells are treated with ERK1/2 inhibitor PD98059, a large amount of the cells are converted to adipocyte cells. These results support the conclusion that the localization of PPAR gamma is one of the key factors explaining the biological responses of the ligands.

  11. Impact of amyloid-beta changes on cognitive outcomes in Alzheimer's disease: analysis of clinical trials using a quantitative systems pharmacology model.

    PubMed

    Geerts, Hugo; Spiros, Athan; Roberts, Patrick

    2018-02-02

    Despite a tremendous amount of information on the role of amyloid in Alzheimer's disease (AD), almost all clinical trials testing this hypothesis have failed to generate clinically relevant cognitive effects. We present an advanced mechanism-based and biophysically realistic quantitative systems pharmacology computer model of an Alzheimer-type neuronal cortical network that has been calibrated with Alzheimer Disease Assessment Scale, cognitive subscale (ADAS-Cog) readouts from historical clinical trials and simulated the differential impact of amyloid-beta (Aβ40 and Aβ42) oligomers on glutamate and nicotinic neurotransmission. Preclinical data suggest a beneficial effect of shorter Aβ forms within a limited dose range. Such a beneficial effect of Aβ40 on glutamate neurotransmission in human patients is absolutely necessary to reproduce clinical data on the ADAS-Cog in minimal cognitive impairment (MCI) patients with and without amyloid load, the effect of APOE genotype effect on the slope of the cognitive trajectory over time in placebo AD patients and higher sensitivity to cholinergic manipulation with scopolamine associated with higher Aβ in MCI subjects. We further derive a relationship between units of Aβ load in our model and the standard uptake value ratio from amyloid imaging. When introducing the documented clinical pharmacodynamic effects on Aβ levels for various amyloid-related clinical interventions in patients with low Aβ baseline, the platform predicts an overall significant worsening for passive vaccination with solanezumab, beta-secretase inhibitor verubecestat and gamma-secretase inhibitor semagacestat. In contrast, all three interventions improved cognition in subjects with moderate to high baseline Aβ levels, with verubecestat anticipated to have the greatest effect (around ADAS-Cog value 1.5 points), solanezumab the lowest (0.8 ADAS-Cog value points) and semagacestat in between. This could explain the success of many amyloid

  12. The α-Secretase-derived N-terminal Product of Cellular Prion, N1, Displays Neuroprotective Function in Vitro and in Vivo*

    PubMed Central

    Guillot-Sestier, Marie-Victoire; Sunyach, Claire; Druon, Charlotte; Scarzello, Sabine; Checler, Frédéric

    2009-01-01

    Cellular prion protein (PrPc) undergoes a disintegrin-mediated physiological cleavage, generating a soluble amino-terminal fragment (N1), the function of which remained unknown. Recombinant N1 inhibits staurosporine-induced caspase-3 activation by modulating p53 transcription and activity, whereas the PrPc-derived pathological fragment (N2) remains biologically inert. Furthermore, N1 protects retinal ganglion cells from hypoxia-induced apoptosis, reduces the number of terminal deoxynucleotidyltransferase-mediated biotinylated UTP nick end labeling-positive and p53-immunoreactive neurons in a pressure-induced ischemia model of the rat retina and triggers a partial recovery of b-waves but not a-waves of rat electroretinograms. Our work is the first demonstration that the α-secretase-derived PrPc fragment N1, but not N2, displays in vivo and in vitro neuroprotective function by modulating p53 pathway. It further demonstrates that distinct N-terminal cleavage products of PrPc harbor different biological activities underlying the various phenotypes linking PrPc to cell survival. PMID:19850936

  13. Should a prolonged duration of dual anti-platelet therapy be recommended to patients with diabetes mellitus following percutaneous coronary intervention? A systematic review and meta-analysis of 15 studies.

    PubMed

    Bundhun, Pravesh Kumar; Yanamala, Chandra Mouli; Huang, Feng

    2016-08-30

    This study aimed to compare the adverse clinical outcomes associated with a short and a prolonged duration of Dual Anti-Platelet Therapy (DAPT) in patients with Diabetes Mellitus (DM) after undergoing Percutaneous Coronary Intervention (PCI). Medline/PubMed, EMBASE and the Cochrane library were searched for studies comparing the short and prolonged DAPT use in patients with DM. Adverse outcomes were considered as the clinical endpoints in this analysis. Odds Ratios (OR) with 95 % Confidence Intervals (CI) were used to express the pooled effect on discontinuous variables and the pooled analyses were performed with RevMan 5.3. Fifteen studies with a total number of 25,742 patients with DM were included in this current analysis which showed no significant differences in primary endpoints, net clinical outcomes, myocardial infarction and stroke with OR: 1.03, 95 % CI: 0.65-1.64; P = 0.90, OR: 0.96, 95 % CI: 0.69-1.34; P = 0.81, OR: 0.85, 95 % CI: 0.70-1.04; P = 0.12 and OR: 0.94, 95 % CI: 0.65-1.36; P = 0.75 respectively. Revascularization was also similar between these 2 groups of patients with DM. However, even if mortality favored prolonged DAPT use, with OR: 0.87, 95 % CI: 0.76-1.00; P = 0.05, the result only approached significance. Also, stent thrombosis insignificantly favored a prolonged DAPT duration with OR: 0.56, 95 % CI: 0.27-1.17; P = 0.12. Thrombolysis In Myocardial Infarction (TIMI) defined major and minor bleeding were not significantly different in these diabetic patients with OR: 0.91, 95 % CI: 0.60-1.37; P = 0.65 and OR: 1.08, 95 % CI: 0.62-1.91; P = 0.78 respectively. However, bleeding defined by the Bleeding Academic Research Consortium (BARC) classification was significantly higher with a prolonged DAPT use in these diabetic patients with OR: 1.92, 95 % CI: 1.58-2.34; P < 0.00001. Following PCI, a prolonged DAPT use was associated with similar adverse clinical outcomes but with a significantly

  14. Radiosensitivity and Induction of Apoptosis by High LET Carbon Ion Beam and Low LET Gamma Radiation: A Comparative Study

    PubMed Central

    Ghorai, Atanu; Bhattacharyya, Nitai P.; Sarma, Asitikantha; Ghosh, Utpal

    2014-01-01

    Cancer treatment with high LET heavy ion beam, especially, carbon ion beam (12C), is becoming very popular over conventional radiotherapy like low LET gamma or X-ray. Combination of Poly(ADP-ribose) polymerase (PARP) inhibitor with xenotoxic drugs or conventional radiation (gamma or X-ray) is the newer approach for cancer therapy. The aim of our study was to compare the radiosensitivity and induction of apoptosis by high LET 12C and low LET gamma radiation in HeLa and PARP-1 knocked down cells. We did comet assay to detect DNA breaks, clonogenic survival assay, and cell cycle analysis to measure recovery after DNA damage. We measured apoptotic parameters like nuclear fragmentation and caspase-3 activation. DNA damage, cell killing, and induction of apoptosis were significantly higher for 12C than gamma radiation in HeLa. Cell killing and apoptosis were further elevated upon knocking down of PARP-1. Both 12C and gamma induced G2/M arrest although the 12C had greater effect. Unlike the gamma, 12C irradiation affects DNA replication as detected by S-phase delay in cell cycle analysis. So, we conclude that high LET 12C has greater potential over low LET gamma radiation in killing cells and radiosensitization upon PARP-1 inhibition was several folds greater for 12C than gamma. PMID:25018892

  15. Gamma-Secretase Inhibitor RO4929097 in Treating Young Patients With Relapsed or Refractory Solid Tumors, CNS Tumors, Lymphoma, or T-Cell Leukemia

    ClinicalTrials.gov

    2014-11-04

    Childhood Atypical Teratoid/Rhabdoid Tumor; Childhood Central Nervous System Choriocarcinoma; Childhood Central Nervous System Germinoma; Childhood Central Nervous System Mixed Germ Cell Tumor; Childhood Central Nervous System Teratoma; Childhood Central Nervous System Yolk Sac Tumor; Childhood Choroid Plexus Tumor; Childhood Craniopharyngioma; Childhood Ependymoblastoma; Childhood Grade I Meningioma; Childhood Grade II Meningioma; Childhood Grade III Meningioma; Childhood Infratentorial Ependymoma; Childhood Medulloepithelioma; Childhood Mixed Glioma; Childhood Oligodendroglioma; Childhood Supratentorial Ependymoma; Gonadotroph Adenoma; Pituitary Basophilic Adenoma; Pituitary Chromophobe Adenoma; Pituitary Eosinophilic Adenoma; Prolactin Secreting Adenoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Central Nervous System Embryonal Tumor; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood Pineoblastoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Childhood Spinal Cord Neoplasm; Recurrent Childhood Subependymal Giant Cell Astrocytoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma; Recurrent Childhood Visual Pathway Glioma; Recurrent Pituitary Tumor; Recurrent/Refractory Childhood Hodgkin Lymphoma; T-cell Childhood Acute Lymphoblastic Leukemia; T-cell Large Granular Lymphocyte Leukemia; TSH Secreting Adenoma; Unspecified Childhood Solid Tumor, Protocol Specific

  16. Erkitinib, a novel EGFR tyrosine kinase inhibitor screened using a ProteoChip system from a phytochemical library

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Eung-Yoon; Choi, Young-Jin; Innopharmascreen, Inc., Asan 336-795

    2009-11-20

    Receptor tyrosine kinases (PTKs) play key roles in the pathogenesis of numerous human diseases, including cancer. Therefore PTK inhibitors are currently under intensive investigation as potential drug candidates. Herein, we report on a ProteoChip-based screening of an epidermal growth factor receptor (EGFR) tyrosine kinase (TK) inhibitor, Erkitinibs, from phytochemical libraries. PLC-{gamma}-1 was used as a substrate immobilized on a ProteoChip and incubated with an EGFR kinase to phosphorylate tyrosine residues of the substrate, followed by a fluorescence detection of the substrate recognized by a phospho-specific monoclonal antibody. Erkitinibs inhibited HeLa cell proliferation in a dose-dependent manner. In conclusion, these datamore » suggest that Erkitinibs can be a specific inhibitor of an EGFR kinase and can be further developed as a potent anti-tumor agent.« less

  17. Akt interaction with PLC(gamma) regulates the G(2)/M transition triggered by FGF receptors from MDA-MB-231 breast cancer cells.

    PubMed

    Browaeys-Poly, Edith; Perdereau, Dominique; Lescuyer, Arlette; Burnol, Anne-Françoise; Cailliau, Katia

    2009-12-01

    Estrogen-independent breast cancer cell growth is under the control of fibroblast growth factors receptors (FGFRs), but the role of phospholipase C gamma (PLC(gamma)) and Akt, the downstream effectors activated by FGFRs, in cell proliferation is still unresolved. FGFRs from highly invasive MDA-MB-231 cells were expressed in Xenopus oocyte, a powerful model system to assess the G(2)/M checkpoint regulation. Under FGF1 stimulation, an analysis of the progression in the M-phase of the cell cycle and of the Akt signaling cascades were performed using the phosphatidylinositol-3-kinase inhibitor, LY294002, and a mimetic peptide of the SH3 domain of PLC(gamma). Activated Akt binds and phosphorylates PLC(gamma) before Akt targets the tumor suppressor Chfr. Disruption of the Akt-PLC(gamma) interaction directs Akt binding to Chfr and accelerates the alleviation of the G(2)/M checkpoint. The PLC(gamma)-Akt interaction, triggered by FGF receptors from estrogen-independent breast cancer cells MDA-MB-231, regulates progression in the M-phase of the cell cycle.

  18. Effects of protein kinase inhibitors on in vitro protein phosphorylation and cellular differentiation of Streptomyces griseus.

    PubMed

    Hong, S K; Matsumoto, A; Horinouchi, S; Beppu, T

    1993-01-01

    In vitro phosphorylation reactions using extracts of Streptomyces griseus cells and gamma-[32P]ATP revealed the presence of multiple phosphorylated proteins. Most of the phosphorylations were distinctly inhibited by staurosporine and K-252a which are known to be eukaryotic protein kinase inhibitors. The in vitro experiments also showed that phosphorylation was greatly enhanced by manganese and inhibition of phosphorylation by staurosporine and K-252a was partially circumvented by 10 mM manganese. A calcium-activated protein kinase(s) was little affected by these inhibitors. Herbimycin and radicicol, known to be tyrosine kinase inhibitors, completely inhibited the phosphorylation of one protein. Consistent with their in vitro effects the protein kinase inhibitors inhibited aerial mycelium formation and pigment production by S. griseus. All these data suggest that S. griseus possesses several protein kinases of eukaryotic type which are essential for morphogenesis and secondary metabolism. In vitro phosphorylation of some proteins in a staurosporine-producing Streptomyces sp. was also inhibited by staurosporine, K-252a and herbimycin, which suggests the presence of a mechanism for self-protection in this microorganism.

  19. Naringin Stimulates Osteogenic Differentiation of Rat Bone Marrow Stromal Cells via Activation of the Notch Signaling Pathway

    PubMed Central

    Yu, Guo-yong; Zheng, Gui-zhou; Chang, Bo; Hu, Qin-xiao; Lin, Fei-xiang; Liu, De-zhong; Wu, Chu-cheng; Du, Shi-xin

    2016-01-01

    Naringin is a major flavonoid found in grapefruit and is an active compound extracted from the Chinese herbal medicine Rhizoma Drynariae. Naringin is a potent stimulator of osteogenic differentiation and has potential application in preventing bone loss. However, the signaling pathway underlying its osteogenic effect remains unclear. We hypothesized that the osteogenic activity of naringin involves the Notch signaling pathway. Rat bone marrow stromal cells (BMSCs) were cultured in osteogenic medium containing-naringin, with or without DAPT (an inhibitor of Notch signaling), the effects on ALP activity, calcium deposits, osteogenic genes (ALP, BSP, and cbfa1), adipogenic maker gene PPARγ2 levels, and Notch expression were examined. We found that naringin dose-dependently increased ALP activity and Alizarin red S staining, and treatment at the optimal concentration (50 μg/mL) increased mRNA levels of osteogenic genes and Notch1 expression, while decreasing PPARγ2 mRNA levels. Furthermore, treatment with DAPT partly reversed effects of naringin on BMSCs, as judged by decreases in naringin-induced ALP activity, calcium deposits, and osteogenic genes expression, as well as upregulation of PPARγ2 mRNA levels. These results suggest that the osteogenic effect of naringin partly involves the Notch signaling pathway. PMID:27069482

  20. Lithium chloride increases the production of amyloid-beta peptide independently from its inhibition of glycogen synthase kinase 3.

    PubMed

    Feyt, Christine; Kienlen-Campard, Pascal; Leroy, Karelle; N'Kuli, Francisca; Courtoy, Pierre J; Brion, Jean-Pierre; Octave, Jean-Noël

    2005-09-30

    Glycogen synthase kinase 3 (GSK3) is able to phosphorylate tau at many sites that are found to be phosphorylated in paired helical filaments in Alzheimer disease. Lithium chloride (LiCl) efficiently inhibits GSK3 and was recently reported to also decrease the production of amyloid-beta peptide (Abeta) from its precursor, the amyloid precursor protein. Therefore, lithium has been proposed as a combined therapeutic agent, inhibiting both the hyperphosphorylation of tau and the production of Abeta. Here, we demonstrate that the inhibition of GSK3 by LiCl induced the nuclear translocation of beta-catenin in Chinese hamster ovary cells and rat cultured neurons, in which a decrease in tau phosphorylation was observed. In both cellular models, a nontoxic concentration of LiCl increased the production of Abeta by increasing the beta-cleavage of amyloid precursor protein, generating more substrate for an unmodified gamma-secretase activity. SB415286, another GSK3 inhibitor, induced the nuclear translocation of beta-catenin and slightly decreased Abeta production. It is concluded that the LiCl-mediated increase in Abeta production is not related to GSK3 inhibition.

  1. QT effect of semagacestat at therapeutic and supratherapeutic doses.

    PubMed

    Zhang, Wei; Ayan-Oshodi, Mosun; Willis, Brian A; Annes, William; Hall, Stephen D; Chiesa, Joseph; Seger, Mary

    2012-04-01

    This thorough QT/ QT interval corrected for heart rate (QTc) study was designed to assess the potential of semagacestat, a functional gamma-secretase inhibitor, to delay cardiac repolarization. In this Phase I, single-dose, randomized, 4-period crossover study, semagacestat was compared with placebo in 54 healthy male and female subjects between the ages of 19 and 63 years, inclusive. Each study period included single oral-dose administrations of semagacestat 140 mg, semagacestat 280 mg, moxifloxacin 400 mg, or placebo. Study subjects and the investigator were blinded to the identity of semagacestat and placebo; however, moxifloxacin was administered as open-label. Moxifloxacin was compared with placebo for assay sensitivity analysis. Pharmacokinetic parameters were also assessed. For each QTc, the upper bound of the 2-sided 90% confidence interval (CI) for the least squares mean difference between semagacestat (at both the 140- and 280-mg dose levels) and placebo was < 10 msec at all time points, and thus, within the limits set for clinical relevance in regulatory guidelines. The results of this study indicate that single doses of 140 and 280 mg semagacestat did not prolong QTc to a clinically significant degree.

  2. Effect of Notch and PARP Pathways' Inhibition in Leukemic Cells.

    PubMed

    Horvat, Luka; Antica, Mariastefania; Matulić, Maja

    2018-06-14

    Differentiation of blood cells is one of the most complex processes in the body. It is regulated by the action of transcription factors in time and space which creates a specific signaling network. In the hematopoietic signaling system, Notch is one of the main regulators of lymphocyte development. The aim of this study was to get insight into the regulation of Notch signalization and the influence of poly(ADP-ribose)polymerase (PARP) activity on this process in three leukemia cell lines obtained from B and T cells. PARP1 is an enzyme involved in posttranslational protein modification and chromatin structure changes. B and T leukemia cells were treated with Notch and PARP inhibitors, alone or in combination, for a prolonged period. The cells did not show cell proliferation arrest or apoptosis. Analysis of gene and protein expression set involved in Notch and PARP pathways revealed increase in JAGGED1 expression after PARP1 inhibition in B cell lines and changes in Ikaros family members in both B and T cell lines after &gamma;-secretase inhibition. These data indicate that Notch and PARP inhibition, although not inducing differentiation in leukemia cells, induce changes in signaling circuits and chromatin modelling factors.

  3. The Challenge of Targeting Notch in Hematologic Malignancies

    PubMed Central

    Hernandez Tejada, Fiorela N.; Galvez Silva, Jorge R.; Zweidler-McKay, Patrick A.

    2014-01-01

    Notch signaling can play oncogenic and tumor suppressor roles depending on cell type. Hematologic malignancies encompass a wide range of transformed cells, and consequently the roles of Notch are diverse in these diseases. For example Notch is a potent T-cell oncogene, with >50% of T-cell acute lymphoblastic leukemia (T-ALL) cases carry activating mutations in the Notch1 receptor. Targeting Notch signaling in T-ALL with gamma-secretase inhibitors, which prevent Notch receptor activation, has shown pre-clinical activity, and is under evaluation clinically. In contrast, Notch signaling inhibits acute myeloblastic leukemia growth and survival, and although targeting Notch signaling in AML with Notch activators appears to have pre-clinical activity, no Notch agonists are clinically available at this time. As such, despite accumulating evidence about the biology of Notch signaling in different hematologic cancers, which provide compelling clinical promise, we are only beginning to target this pathway clinically, either on or off. In this review, we will summarize the evidence for oncogenic and tumor suppressor roles of Notch in a wide range of leukemias and lymphomas, and describe therapeutic opportunities for now and the future. PMID:24959528

  4. Gamma-sky.net: Portal to the gamma-ray sky

    NASA Astrophysics Data System (ADS)

    Voruganti, Arjun; Deil, Christoph; Donath, Axel; King, Johannes

    2017-01-01

    http://gamma-sky.net is a novel interactive website designed for exploring the gamma-ray sky. The Map View portion of the site is powered by the Aladin Lite sky atlas, providing a scalable survey image tesselated onto a three-dimensional sphere. The map allows for interactive pan and zoom navigation as well as search queries by sky position or object name. The default image overlay shows the gamma-ray sky observed by the Fermi-LAT gamma-ray space telescope. Other survey images (e.g. Planck microwave images in low/high frequency bands, ROSAT X-ray image) are available for comparison with the gamma-ray data. Sources from major gamma-ray source catalogs of interest (Fermi-LAT 2FHL, 3FGL and a TeV source catalog) are overlaid over the sky map as markers. Clicking on a given source shows basic information in a popup, and detailed pages for every source are available via the Catalog View component of the website, including information such as source classification, spectrum and light-curve plots, and literature references. We intend for gamma-sky.net to be applicable for both professional astronomers as well as the general public. The website started in early June 2016 and is being developed as an open-source, open data project on GitHub (https://github.com/gammapy/gamma-sky). We plan to extend it to display more gamma-ray and multi-wavelength data. Feedback and contributions are very welcome!

  5. SNX27 Deletion Causes Hydrocephalus by Impairing Ependymal Cell Differentiation and Ciliogenesis.

    PubMed

    Wang, Xin; Zhou, Ying; Wang, Jian; Tseng, I-Chu; Huang, Timothy; Zhao, Yingjun; Zheng, Qiuyang; Gao, Yue; Luo, Hong; Zhang, Xian; Bu, Guojun; Hong, Wanjin; Xu, Huaxi

    2016-12-14

    Hydrocephalus is a brain disorder derived from CSF accumulation due to defects in CSF clearance. Although dysfunctional apical cilia in the ependymal cell layer are causal to the onset of hydrocephalus, mechanisms underlying proper ependymal cell differentiation are largely unclear. SNX27 is a trafficking component required for normal brain function and was shown previously to suppress γ-secretase-dependent amyloid precursor protein and Notch cleavage. However, it was unclear how SNX27-dependent γ-secretase inhibition could contribute to brain development and pathophysiology. Here, we describe and characterize an Snx27-deleted mouse model for the ependymal layer defects of deciliation and hydrocephalus. SNX27 deficiency results in reductions in ependymal cells and cilia density, as well as severe postnatal hydrocephalus. Inhibition of Notch intracellular domain signaling with γ-secretase inhibitors reversed ependymal cells/cilia loss and dilation of lateral ventricles in Snx27-deficient mice, giving strong indication that Snx27 deletion triggers defects in ependymal layer formation and ciliogenesis through Notch hyperactivation. Together, these results suggest that SNX27 is essential for ependymal cell differentiation and ciliogenesis, and its deletion can promote hydrocephalus pathogenesis. Down's syndrome (DS) in humans and mouse models has been shown previously to confer a high risk for the development of pathological hydrocephalus. Because we have previously described SNX27 as a component that is consistently downregulated in DS, we present here a robust Snx27-deleted mouse model that produces hydrocephalus and associated ciliary defects with complete penetrance. In addition, we find that γ-secretase/Notch modulation may be a candidate drug target in SNX27-associated hydrocephalus such as that observed in DS. Based on these findings, we anticipate that future study will determine whether modulation of a SNX27/Notch/γ-secretase pathway can also be of

  6. Interferon-gamma induces apoptosis and augments the expression of Fas and Fas ligand by microglia in vitro.

    PubMed

    Badie, B; Schartner, J; Vorpahl, J; Preston, K

    2000-04-01

    Activation of microglia by interferon-gamma (IFN-gamma) has been implicated in a number of central nervous system (CNS) inflammatory disease processes. Because IFN-gamma has also been shown to play a role in programmed cell death, we investigated its cytotoxicity and its effect on the Fas apoptotic pathway in microglia. Flow cytometry was used to quantify the IFN-gamma-mediated apoptotic response and Fas and Fas ligand (FasL) expression in two well-characterized murine microglia cell lines (BV-2 and N9). Nuclear fragmentation, suggestive of apoptosis, was noted within 24 h of incubation of microglia with IFN-gamma (10 U/ml). After a 72-h incubation, almost every BV-2 and N9 microglia, but not GL261 glioma cells, underwent cell death and detached from the culture plates. This cytotoxicity occurred even at low IFN-gamma concentrations (1 U/ml) and was inhibited by BAF, a pan-caspase inhibitor. Incubation of BV-2 and N9 microglia, but not GL261 glioma cells, with IFN-gamma also potentiated the expression of Fas and FasL in a similar dose-response and time-course manner, as seen for the apoptotic response. Whereas Fas expression increased by 100% in both microglia cells, FasL upregulation was more pronounced and increased by as much as 200% in the N9 cells. These findings suggest that in addition to its role as a microglia activator, IFN-gamma may also induce apoptosis of microglia, possibly through simultaneous upregulation of Fas and FasL. Interferon-gamma modulation of the Fas pathway and apoptosis in microglia may be important in the pathogenesis of inflammatory CNS disease processes. Copyright 2000 Academic Press.

  7. Epoxyethylglycyl peptides as inhibitors of oligosaccharyltransferase: double-labelling of the active site.

    PubMed

    Bause, E; Wesemann, M; Bartoschek, A; Breuer, W

    1997-02-15

    Pig liver oligosaccharyltransferase (OST) is inactivated irreversibly by a hexapeptide in which threonine has been substituted by epoxyethylglycine in the Asn-Xaa-Thr glycosylation triplet. Incubation of the enzyme in the presence of Dol-PP-linked [14C]oligosaccharides and the N-3,5-dinitrobenzoylated epoxy derivative leads to the double-labelling of two subunits (48 and 66 kDa) of the oligomeric OST complex, both of which are involved in the catalytic activity. Labelling of both subunits was blocked competitively by the acceptor peptide N-benzoyl-Asu-Gly-Thr-NHCH3 and by the OST inhibitor N-benzoyl-alpha,gamma-diaminobutyric acid-Gly-Thr-NHCH3, but not by an analogue derived from the epoxy-inhibitor by replacing asparagine with glutamine. Our data clearly show that double-labelling is an active-site-directed modification, involving inhibitor glycosylation at asparagine and covalent attachment of the glycosylated inhibitor, via the epoxy group, to the enzyme. Double-labelling of OST can occur as the result of either a consecutive or a syn-catalytic reaction sequence. The latter mechanism, during the course of which OST catalyses its own 'suicide' inactivation, is more likely, as suggested by indirect experimental evidence. The syn-catalytic mechanism corresponds with our current view of the functional role of the acceptor site Thr/Ser acting as a hydrogen-bond acceptor, not a donor, during transglycosylation.

  8. Low-dose gamma-ray irradiation induces translocation of Nrf2 into nuclear in mouse macrophage RAW264.7 cells.

    PubMed

    Tsukimoto, Mitsutoshi; Tamaishi, Nana; Homma, Takujiro; Kojima, Shuji

    2010-01-01

    The transcription factor nuclear erythroid-derived 2-related factor 2 (Nrf2) regulates expression of genes encoding antioxidant proteins involved in cellular redox homeostasis, while gamma-ray irradiation is known to induce reactive oxygen species in vivo. Although activation of Nrf2 by various stresses has been studied, it has not yet been determined whether ionizing irradiation induces activation of Nrf2. Therefore, we investigated activation of Nrf2 in response to gamma-irradiation in mouse macrophage RAW264.7 cells. Irradiation of cells with gamma-rays induced an increase of Nrf2 expression. Even 0.1 Gy of gamma-irradiation induced a translocation of Nrf2 from cytoplasm to the nucleus, indicating the activation of Nrf2 by low-dose irradiation. Expression of heme oxygenase-1, which is regulated by Nrf2, was also increased at 24 h after irradiation with more than 0.1 Gy of gamma-rays. Furthermore, the activation of Nrf2 was suppressed by U0126, which is an inhibitor of the extracellular signal regulated protein kinase 1/2 (ERK1/2) pathway, suggesting involvement of ERK1/2-dependent pathway in the irradiation-induced activation of Nrf2. Our results indicate that low-dose gamma-irradiation induces activation of Nrf2 through ERK1/2-dependent pathways.

  9. Presenilins regulate neurotrypsin gene expression and neurotrypsin-dependent agrin cleavage via cyclic AMP response element-binding protein (CREB) modulation.

    PubMed

    Almenar-Queralt, Angels; Kim, Sonia N; Benner, Christopher; Herrera, Cheryl M; Kang, David E; Garcia-Bassets, Ivan; Goldstein, Lawrence S B

    2013-12-06

    Presenilins, the catalytic components of the γ-secretase complex, are upstream regulators of multiple cellular pathways via regulation of gene transcription. However, the underlying mechanisms and the genes regulated by these pathways are poorly characterized. In this study, we identify Tequila and its mammalian ortholog Prss12 as genes negatively regulated by presenilins in Drosophila larval brains and mouse embryonic fibroblasts, respectively. Prss12 encodes the serine protease neurotrypsin, which cleaves the heparan sulfate proteoglycan agrin. Altered neurotrypsin activity causes serious synaptic and cognitive defects; despite this, the molecular processes regulating neurotrypsin expression and activity are poorly understood. Using γ-secretase drug inhibitors and presenilin mutants in mouse embryonic fibroblasts, we found that a mature γ-secretase complex was required to repress neurotrypsin expression and agrin cleavage. We also determined that PSEN1 endoproteolysis or processing of well known γ-secretase substrates was not essential for this process. At the transcriptional level, PSEN1/2 removal induced cyclic AMP response element-binding protein (CREB)/CREB-binding protein binding, accumulation of activating histone marks at the neurotrypsin promoter, and neurotrypsin transcriptional and functional up-regulation that was dependent on GSK3 activity. Upon PSEN1/2 reintroduction, this active epigenetic state was replaced by a methyl CpG-binding protein 2 (MeCP2)-containing repressive state and reduced neurotrypsin expression. Genome-wide analysis revealed hundreds of other mouse promoters in which CREB binding is similarly modulated by the presence/absence of presenilins. Our study thus identifies Tequila and neurotrypsin as new genes repressed by presenilins and reveals a novel mechanism used by presenilins to modulate CREB signaling based on controlling CREB recruitment.

  10. Presenilins Regulate Neurotrypsin Gene Expression and Neurotrypsin-dependent Agrin Cleavage via Cyclic AMP Response Element-binding Protein (CREB) Modulation*

    PubMed Central

    Almenar-Queralt, Angels; Kim, Sonia N.; Benner, Christopher; Herrera, Cheryl M.; Kang, David E.; Garcia-Bassets, Ivan; Goldstein, Lawrence S. B.

    2013-01-01

    Presenilins, the catalytic components of the γ-secretase complex, are upstream regulators of multiple cellular pathways via regulation of gene transcription. However, the underlying mechanisms and the genes regulated by these pathways are poorly characterized. In this study, we identify Tequila and its mammalian ortholog Prss12 as genes negatively regulated by presenilins in Drosophila larval brains and mouse embryonic fibroblasts, respectively. Prss12 encodes the serine protease neurotrypsin, which cleaves the heparan sulfate proteoglycan agrin. Altered neurotrypsin activity causes serious synaptic and cognitive defects; despite this, the molecular processes regulating neurotrypsin expression and activity are poorly understood. Using γ-secretase drug inhibitors and presenilin mutants in mouse embryonic fibroblasts, we found that a mature γ-secretase complex was required to repress neurotrypsin expression and agrin cleavage. We also determined that PSEN1 endoproteolysis or processing of well known γ-secretase substrates was not essential for this process. At the transcriptional level, PSEN1/2 removal induced cyclic AMP response element-binding protein (CREB)/CREB-binding protein binding, accumulation of activating histone marks at the neurotrypsin promoter, and neurotrypsin transcriptional and functional up-regulation that was dependent on GSK3 activity. Upon PSEN1/2 reintroduction, this active epigenetic state was replaced by a methyl CpG-binding protein 2 (MeCP2)-containing repressive state and reduced neurotrypsin expression. Genome-wide analysis revealed hundreds of other mouse promoters in which CREB binding is similarly modulated by the presence/absence of presenilins. Our study thus identifies Tequila and neurotrypsin as new genes repressed by presenilins and reveals a novel mechanism used by presenilins to modulate CREB signaling based on controlling CREB recruitment. PMID:24145027

  11. Hepatotoxicity of nucleoside reverse transcriptase inhibitors.

    PubMed

    Montessori, Valentina; Harris, Marianne; Montaner, Julio S G

    2003-05-01

    Hepatotoxicity is an adverse effect of all available classes of antiretrovirals, including nucleoside reverse transcriptase inhibitors (NRTI). A syndrome of hepatic steatosis and lactic acidosis has been recognized as a rare, potentially fatal complication since the advent of NRTI monotherapy in the early 1990s. Today, NRTI remain the backbone of antiretroviral combination regimens, and, with the success of current treatment strategies, exposure to two or more of these agents may occur over a number of years. Hepatic steatosis and lactic acidosis are accordingly being observed more frequently, along with a more recently recognized syndrome of chronic hyperlactatemia. These as well as other adverse effects of NRTI are mediated by inhibition of human DNA polymerase gamma, resulting in mitochondrial dysfunction in the liver and other tissues. Early recognition and intervention are essential to avert serious outcomes.

  12. Wild-type presenilin 1 protects against Alzheimer disease mutation-induced amyloid pathology.

    PubMed

    Wang, Runsheng; Wang, Baiping; He, Wanxia; Zheng, Hui

    2006-06-02

    Mutations in presenilin 1 (PS1) lead to dominant inheritance of early onset familial Alzheimer disease (FAD). These mutations are known to alter the gamma-secretase cleavage of the amyloid precursor protein, resulting in increased ratio of Abeta42/Abeta40 and accelerated amyloid plaque pathology in transgenic mouse models. To investigate the factors that drive the Abeta42/Abeta40 ratio and amyloid pathogenesis and to investigate the possible interactions between wild-type and FAD mutant PS1, which are co-expressed in transgenic animals, we expressed the PS1 M146V knock-in allele either on wild-type PS1 (PS1M146V/+) or PS1 null (PS1M146V/-) background and crossed these alleles with the Tg2576 APP transgenic mice. Introduction of the PS1 M146V mutation on Tg2576 background resulted in earlier onset of plaque pathology. Surprisingly, removing the wild-type PS1 in the presence of the PS1 M146V mutation (PS1M146V/-) greatly exacerbated the amyloid burden; and this was attributed to a reduction of gamma-secretase activity rather than an increase in Abeta42. Our findings establish a protective role of the wild-type PS1 against the FAD mutation-induced amyloid pathology through a partial loss-of-function mechanism.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jiying; Ohno-Matsui, Kyoko, E-mail: k.ohno.oph@tmd.ac.jp; Morita, Ikuo

    Highlights: Black-Right-Pointing-Pointer Cholesterol-treated RPE produces more A{beta} than non-treated RPE. Black-Right-Pointing-Pointer Neprilysin expression and activity decreased in cholesterol-treated RPE. Black-Right-Pointing-Pointer {alpha}-Secretase expression and activity decreased in cholesterol-treated RPE. Black-Right-Pointing-Pointer Cholesterol-enriched diet induced subRPE deposits in aged mice. Black-Right-Pointing-Pointer A{beta} were present in cholesterol-enriched-diet-induced subRPE deposits in aged mice. -- Abstract: Subretinally-deposited amyloid {beta} (A{beta}) is a main contributor of developing age-related macular degeneration (AMD). However, the mechanism causing A{beta} deposition in AMD eyes is unknown. Hypercholesterolemia is a significant risk for developing AMD. Thus, we investigated the effects of cholesterol on A{beta} production in retinal pigment epithelial (RPE) cells inmore » vitro and in the mouse retina in vivo. RPE cells isolated from senescent (12-month-old) C57BL/6 mice were treated with 10 {mu}g/ml cholesterol for 48 h. A{beta} amounts in culture supernatants were measured by ELISA. Activity and expression of enzymes and proteins that regulate A{beta} production were examined by activity assay and real time PCR. The retina of mice fed cholesterol-enriched diet was examined by transmission electron microscopy. Cholesterol significantly increased A{beta} production in cultured RPE cells. Activities of A{beta} degradation enzyme; neprilysin (NEP) and anti-amyloidogenic secretase; {alpha}-secretase were significantly decreased in cell lysates of cholesterol-treated RPE cells compared to non-treated cells, but there was no change in the activities of {beta}- or {gamma}-secretase. mRNA levels of NEP and {alpha}-secretase (ADAM10 and ADAM17) were significantly lower in cholesterol-treated RPE cells than non-treated cells. Senescent (12-month-old) mice fed cholesterol-enriched chow developed subRPE deposits containing A

  14. Resonance production in. gamma gamma. collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renard, F.M.

    1983-04-01

    The processes ..gamma gamma.. ..-->.. hadrons can be depicted as follows. One photon creates a q anti q pair which starts to evolve; the other photon can either (A) make its own q anti q pair and the (q anti q q anti q) system continue to evolve or (B) interact with the quarks of the first pair and lead to a modified (q anti q) system in interaction with C = +1 quantum numbers. A review of the recent theoretical activity concerning resonance production and related problems is given under the following headings: hadronic C = +1 spectroscopy (qmore » anti q, qq anti q anti q, q anti q g, gg, ggg bound states and mixing effects); exclusive ..gamma gamma.. processes (generalities, unitarized Born method, VDM and QCD); total cross section (soft and hard contributions); q/sup 2/ dependence of soft processes (soft/hard separation, 1/sup +- +/ resonances); and polarization effects. (WHK)« less

  15. Interferon-gamma exerts its negative regulatory effect primarily on the earliest stages of murine erythroid progenitor cell development.

    PubMed

    Wang, C Q; Udupa, K B; Lipschitz, D A

    1995-01-01

    Interferon-gamma (INF-gamma) has been shown to suppress erythropoiesis and perhaps to contribute to the anemia of chronic disease. In this study we demonstrated that the concentration of INF gamma required to suppress murine burst forming unit-erythroid (BFU-E) growth was significantly less than that required to suppress colony forming unit-erythroid (CFU-E) growth. INF gamma acted at the most primitive step in erythroid progenitor cell differentiation and proliferation, as inhibition was maximal when added at the time of BFU-E culture initiation. Inhibition was progressively less if INF gamma addition was delayed after culture initiation. The effects of INF gamma on BFU-E did not require the presence of interleukin-1 alpha (IL-1 alpha), tumor necrosis factor-alpha (TNF alpha), or granulocyte macrophage colony stimulating factor (GM-CSF), as its effects were not neutralized by monoclonal antibodies against IL-1 alpha, TNF alpha, or GM-CSF. This applied whether INF gamma was added to culture with individual antibodies or with a combination of all three antibodies. INF gamma was not required for IL-1 alpha- or TNF alpha-induced suppression of BFU-E, as their effects were not neutralized by a monoclonal anti-INF gamma antibody. In contrast, GM-CSF-induced suppression of BFU-E was negated by the simultaneous addition of anti-INF gamma. We have previously shown that the addition of TNF alpha does not suppress BFU-E growth in cultures from marrow depleted of macrophages. Suppression did occur, however, if a small concentration of INF gamma that does not inhibit and increasing concentration of TNF alpha were added to culture, suggesting a synergistic effect between INF-gamma and TNF alpha. These observations suggest that INF gamma is a potent direct inhibitor of erythroid colony growth in vitro. It exerts its negative regulatory effect primarily on the earliest stages of erythroid progenitor cell differentiation and proliferation, as much higher doses are required to

  16. Children's Human Figure Drawings: Clinical and Cultural Considerations.

    ERIC Educational Resources Information Center

    Thakur, P. S.

    This paper considers the psychological aspects of children's drawings. The utility of the Draw a Person Test (DAPT) for different types of pscyhological research is discussed, and the non-intellectual and cultural factors of the DAPT are described. Suggestions on the administration, scoring, and interpretation of drawings are given. The next two…

  17. Gamma-Secretase and Notch Signaling: Novel Therapeutic Targets In Breast Cancer

    DTIC Science & Technology

    2005-05-01

    Giovarelli,M. et al. 2000. Constitutive activation of NF-kappaB and T-cell leukemia/lymphoma in Notch3 transgenic mice. EMBOJ. 19:3337-3348. 16 14...8217-AATTCAACGGCACAGTCAAAG 9. Maekawa, Y. et al. Deltal- Notch3 interactions bias the functional differentiation of o CCGAGAATG-3’, and reverse, 5

  18. Reduced duration of dual antiplatelet therapy using an improved drug-eluting stent for percutaneous coronary intervention of the left main artery in a real-world, all-comer population: Rationale and study design of the prospective randomized multicenter IDEAL-LM trial.

    PubMed

    Lemmert, Miguel E; Oldroyd, Keith; Barragan, Paul; Lesiak, Maciej; Byrne, Robert A; Merkulov, Evgeny; Daemen, Joost; Onuma, Yoshinobu; Witberg, Karen; van Geuns, Robert-Jan

    2017-05-01

    Continuous improvements in stent technology make percutaneous coronary intervention (PCI) a potential alternative to surgery in selected patients with unprotected left main coronary artery (uLMCA) disease. The optimal duration of dual antiplatelet therapy (DAPT) in these patients remains undetermined, and in addition, new stent designs using a bioabsorbable polymer might allow shorter duration of DAPT. IDEAL-LM is a prospective, randomized, multicenter study that will enroll 818 patients undergoing uLMCA PCI. Patients will be randomized in a 1:1 fashion to intravascular ultrasound-guided PCI with the novel everolimus-eluting platinum-chromium Synergy stent with a biodegradable polymer (Boston Scientific, Natick, MA) followed by 4 months of DAPT or the everolimus-eluting cobalt-chromium Xience stent (Abbott Vascular, Santa Clara, CA) followed by 12 months of DAPT. The total follow-up period will be 5 years. A subset of 100 patients will undergo optical coherence tomography at 3 months. The primary end point will be major adverse cardiovascular events (composite of all-cause mortality, myocardial infarction, and ischemia-driven target vessel revascularization) at 2 years. Secondary end points will consist of the individual components of the primary end point, procedural success, a device-oriented composite end point, stent thrombosis as per Academic Research Consortium criteria, and bleeding as per Bleeding Academic Research Consortium criteria. IDEAL-LM is designed to assess the safety and efficacy of the novel Synergy stent followed by 4 months of DAPT vs the Xience stent followed by 12 months of DAPT in patients undergoing uLMCA PCI. The study will provide novel insights regarding optimal treatment strategy for patients undergoing PCI of uLMCA disease (www.clinicaltrials.gov, NCT 02303717). Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  19. [Dual Antiplatelet Therapy in the Perioperative Period - To Continue or Discontinue Treatment?

    PubMed

    Koscielny, Jürgen; von Heymann, Christian; Zeymer, Uwe; Cremer, Jochen; Spannagl, Michael; Labenz, Joachim; Giannitsis, Evangelos; Goss, Franz

    2017-08-01

    Background  For secondary prevention of acute coronary syndrome, guidelines recommend dual antiplatelet therapy (DAPT) with acetylsalicylic acid and a P2Y12 receptor antagonist such as clopidogrel, prasugrel or ticagrelor for a period of 12 months. Often, uncertainty exists with respect to surgical or diagnostic procedures in these high-risk patients: can the DAPT be continued without interruption? If not, what is the recommended withdrawal strategy? What should be considered for the perioperative management? Methods  An interdisciplinary group of experienced experts in the fields of cardiology, cardiac surgery, gastroenterology, anaesthesiology, intensive care and haemostaseology developed recommendations relevant to daily clinical practice based on the current scientific evidence. Results  These recommendations include instructions for evaluating the patient- and procedure-specific risks of bleeding and ischaemia, general recommendations regarding the DAPT withdrawal strategy, and specific guidance for frequent surgical or diagnostic procedures. Discussion  This article aims to facilitate the management of patients with DAPT for all medical disciplines involved, thereby ensuring optimal care of patients during the perioperative period. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Pulmonary deposition and disappearance of aerosolised secretory leucocyte protease inhibitor.

    PubMed Central

    Stolk, J.; Camps, J.; Feitsma, H. I.; Hermans, J.; Dijkman, J. H.; Pauwels, E. K.

    1995-01-01

    BACKGROUND--The neutrophil elastase inhibitor, secretory leucocyte protease inhibitor (SLPI), is a potential therapeutic tool in inflammatory lung diseases such as cystic fibrosis and pulmonary emphysema. The distribution and disappearance in the lung of aerosolised recombinant SLPI (rSLPI) was investigated in healthy humans and in patients with cystic fibrosis or alpha 1-antitrypsin-associated emphysema. METHODS--To distinguish aerosolised rSLPI from endogenous SLPI the recombinant inhibitor was radiolabelled with 99m-technetium (99mTc) pertechnetate. Distribution and disappearance of aerosolised 99mTc-rSLPI in the lungs were studied by gamma radiation imaging. RESULTS--The deposition of 99mTc-rSLPI in normal volunteers was homogeneous in all lung lobes, while in patients with cystic fibrosis or emphysema only well ventilated areas showed deposition of the aerosol. The disappearance rate of 99mTc-rSLPI was biexponential. The half life of the rapid phase was 0.2-2.8 hours, while that of the slow phase was more than 24 hours. CONCLUSIONS--Future aerosol therapy with rSLPI will be most beneficial for well ventilated lung tissue that needs protection against neutrophil derived elastase. It may be more difficult to neutralise the burden of elastase in poorly ventilated, highly inflamed areas as are seen in cystic fibrosis. Images PMID:7638807

  1. An accessible pharmacodynamic transcriptional biomarker for notch target engagement.

    PubMed

    Tanis, K Q; Podtelezhnikov, A A; Blackman, S C; Hing, J; Railkar, R A; Lunceford, J; Klappenbach, J A; Wei, B; Harman, A; Camargo, L M; Shah, S; Finney, E M; Hardwick, J S; Loboda, A; Watters, J; Bergstrom, D A; Demuth, T; Herman, G A; Strack, P R; Iannone, R

    2016-04-01

    γ-Secretase mediates amyloid production in Alzheimer's disease (AD) and oncogenic activity of Notch. γ-Secretase inhibitors (GSIs) are thus of interest for AD and oncology. A peripheral biomarker of Notch activity would aid determination of the therapeutic window and dosing regimen for GSIs, given toxicities associated with chronic Notch inhibition. This study examined the effects of GSI MK-0752 on blood and hair follicle transcriptomes in healthy volunteers. The effects of a structurally diverse GSI on rhesus blood and hair follicles were also compared. Significant dose-related effects of MK-0752 on transcription were observed in hair follicles, but not blood. The GSI biomarker identified in follicles exhibited 100% accuracy in a clinical test cohort, and was regulated in rhesus by a structurally diverse GSI. This study identified a translatable, accessible pharmacodynamic biomarker of GSI target engagement and provides proof of concept of hair follicle RNA as a translatable biomarker source. © 2016 American Society for Clinical Pharmacology and Therapeutics.

  2. PDE 5 inhibitor improves insulin sensitivity by enhancing mitochondrial function in adipocytes.

    PubMed

    Yu, Hea Min; Chung, Hyo Kyun; Kim, Koon Soon; Lee, Jae Min; Hong, Jun Hwa; Park, Kang Seo

    2017-11-04

    Adipocytes are involved in many metabolic disorders. It was recently reported that phosphodiesterase type 5 (PDE5) is expressed in human adipose tissue. In addition, PDE5 inhibitors have been shown to improve insulin sensitivity in humans. However, the mechanism underlying the role of PDE5 inhibitors as an insulin sensitizer remains largely unknown. The present study was undertaken to investigate the role of the PDE5 inhibitor udenafil in insulin signaling in adipocytes and whether this is mediated through the regulation of mitochondrial function. To study the mechanism underlying the insulin sensitizing action of PDE5 inhibitors, we evaluated quantitative changes in protein or mRNA levels of mitochondrial oxidative phosphorylation (OxPhos) complex, oxygen consumption rate (OCR), and fatty acid oxidation with varying udenafil concentrations in 3T3-L1 cells. Our cell study suggested that udenafil enhanced the insulin signaling pathway in 3T3-L1 cells. Following udenafil treatment, basal mitochondrial OCR, maximal OxPhos capacity, and OxPhos gene expression significantly increased. Finally, we examined whether udenafil can affect the fatty acid oxidation process. Treatment of 3T3-L1 cells with udenafil (10 and 20 μM) significantly increased fatty acid oxidation rate in a dose-dependent manner. In addition, the expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) significantly increased. We demonstrated that the PDE5 inhibitor udenafil enhances insulin sensitivity by improving mitochondrial function in 3T3-L1 cells. This might be the mechanism underlying the PDE5 inhibitor-enhanced insulin signaling in adipocytes. This also suggests that udenafil may provide benefit in the treatment of type 2 diabetes and other related cardiovascular diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Formononetin protects neurons against hypoxia-induced cytotoxicity through upregulation of ADAM10 and sAβPPα.

    PubMed

    Sun, Miao; Zhou, Ting; Zhou, Liang; Chen, Qiang; Yu, Yan; Yang, Huan; Zhong, Kaiyin; Zhang, Ximeng; Xu, Feng; Cai, Shaoqing; Yu, Albert; Zhang, Hui; Xiao, Ruizhong; Xiao, Dongsheng; Chui, Dehua

    2012-01-01

    Formononetin, an active constituent of the Chinese herb Astragali Radix, has been reported to have beneficial effects for Alzheimer's disease (AD). Yet the mechanism of this effect remains to be elucidated. The present study shows that formononetin increases soluble-AβPPα (sAβPPα) secretion and thus protects human-AβPP Swedish mutation cell (N2a-AβPP cell) from hypoxia-induced apoptosis. Using hypoxic N2a-AβPP cell as an in vitro model of AD-like pathology, we confirmed that regular treatment with formononetin could have neuroprotective effects, followed respectively by reduced caspase 3 activity and increased cell viability. Strikingly, our data revealed that the caspase 3-blocking effect of formononetin was largely mediated by stimulation of α-secretase cleavage of AβPP, and increasing the secretion of its soluble form, sAβPPα. Moreover, the protective effect of formononetin was totally inhibited by TAPI-2, an α-secretase complex inhibitor, suggesting the role of the sAβPPα pathway in the neuroprotective response to formononetin. We also found that the stimulative effect of formononetin on α-secretase activity was mainly conducted by upregulating ADAM10 expression at the transcriptional level. Altogether, our study provides novel insights into how formononetin mediates stimulation of the ADAM10-sAβPPα pathway and exerts a neuronal protective effect.

  4. Structure of 6-diazo-5-oxo-norleucine-bound human gamma-glutamyl transpeptidase 1, a novel mechanism of inactivation.

    PubMed

    Terzyan, Simon S; Cook, Paul F; Heroux, Annie; Hanigan, Marie H

    2017-06-01

    Intense efforts are underway to identify inhibitors of the enzyme gamma-glutamyl transpeptidase 1 (GGT1) which cleaves extracellular gamma-glutamyl compounds and contributes to the pathology of asthma, reperfusion injury and cancer. The glutamate analog, 6-diazo-5-oxo-norleucine (DON), inhibits GGT1. DON also inhibits many essential glutamine metabolizing enzymes rendering it too toxic for use in the clinic as a GGT1 inhibitor. We investigated the molecular mechanism of human GGT1 (hGGT1) inhibition by DON to determine possible strategies for increasing its specificity for hGGT1. DON is an irreversible inhibitor of hGGT1. The second order rate constant of inactivation was 0.052 mM -1 min -1 and the K i was 2.7 ± 0.7 mM. The crystal structure of DON-inactivated hGGT1 contained a molecule of DON without the diazo-nitrogen atoms in the active site. The overall structure of the hGGT1-DON complex resembled the structure of the apo-enzyme; however, shifts were detected in the loop forming the oxyanion hole and elements of the main chain that form the entrance to the active site. The structure of hGGT1-DON complex revealed two covalent bonds between the enzyme and inhibitor which were part of a six membered ring. The ring included the OG atom of Thr381, the reactive nucleophile of hGGT1 and the α-amine of Thr381. The structure of DON-bound hGGT1 has led to the discovery of a new mechanism of inactivation by DON that differs from its inactivation of other glutamine metabolizing enzymes, and insight into the activation of the catalytic nucleophile that initiates the hGGT1 reaction. © 2017 The Protein Society.

  5. A preferential p110alpha/gamma PI3K inhibitor attenuates experimental inflammation by suppressing the production of proinflammatory mediators in a NF-kappaB-dependent manner.

    PubMed

    Dagia, Nilesh M; Agarwal, Gautam; Kamath, Divya V; Chetrapal-Kunwar, Anshu; Gupte, Ravindra D; Jadhav, Mahesh G; Dadarkar, Shruta S; Trivedi, Jacqueline; Kulkarni-Almeida, Asha A; Kharas, Firuza; Fonseca, Lyle C; Kumar, Sanjay; Bhonde, Mandar R

    2010-04-01

    A promising therapeutic approach to diminish pathological inflammation is to inhibit the increased production and/or biological activity of proinflammatory cytokines (e.g., TNF-alpha, IL-6). The production of proinflammatory cytokines is controlled at the gene level by the activity of transcription factors, such as NF-kappaB. Phosphatidylinositol 3-kinase (PI3K), a lipid kinase, is known to induce the activation of NF-kappaB. Given this, we hypothesized that inhibitors of PI3K activation would demonstrate anti-inflammatory potential. Accordingly, we studied the effects of a preferential p110alpha/gamma PI3K inhibitor (compound 8C; PIK-75) in inflammation-based assays. Mechanism-based assays utilizing human cells revealed that PIK-75-mediated inhibition of PI3K activation is associated with dramatic suppression of downstream signaling events, including AKT phosphorylation, IKK activation, and NF-kappaB transcription. Cell-based assays revealed that PIK-75 potently and dose dependently inhibits in vitro and in vivo production of TNF-alpha and IL-6, diminishes the induced expression of human endothelial cell adhesion molecules (E-selectin, ICAM-1, and VCAM-1), and blocks human monocyte-endothelial cell adhesion. Most importantly, PIK-75, when administered orally in a therapeutic regimen, significantly suppresses the macroscopic and histological abnormalities associated with dextran sulfate sodium-induced murine colitis. The efficacy of PIK-75 in attenuating experimental inflammation is mediated, at least in part, due to the downregulation of pertinent inflammatory mediators in the colon. Collectively, these results provide first evidence that PIK-75 possesses anti-inflammatory potential. Given that PIK-75 is known to exhibit anti-cancer activity, the findings from this study thus reinforce the cross-therapeutic functionality of potential drugs.

  6. Comparing the clinical outcomes in patients with atrial fibrillation receiving dual antiplatelet therapy and patients receiving an addition of an anticoagulant after coronary stent implantation: A systematic review and meta-analysis of observational studies.

    PubMed

    Chaudhary, Nabin; Bundhun, Pravesh Kumar; Yan, He

    2016-12-01

    Data regarding the clinical outcomes in patients with atrial fibrillation (AF) receiving dual antiplatelet therapy (DAPT) and an anticoagulant in addition to DAPT (DAPT + vitamin K antagonist [VKA]) after coronary stent implantation are still controversial. Therefore, in order to solve this issue, we aim to compare the adverse clinical outcomes in AF patients receiving DAPT and DAPT + VKA after percutaneous coronary intervention and stenting (PCI-S). Observational studies comparing the adverse clinical outcomes such as major bleeding, major adverse cardiovascular events, stroke, myocardial infarction, all-cause mortality, and stent thrombosis (ST) in AF patients receiving DAPT + VKA therapy, and DAPT after PCI-S have been searched from Medline, EMBASE, and PubMed databases. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to express the pooled effect on discontinuous variables, and the pooled analyses were performed with RevMan 5.3. Eighteen studies consisting of a total of 20,456 patients with AF (7203 patients received DAPT + VKA and 13,253 patients received DAPT after PCI-S) were included in this meta-analysis. At a mean follow-up period of 15 months, the risk of major bleeding was significantly higher in DAPT + VKA group, with OR 0.62 (95% CI 0.50-0.77, P < 0.0001). There was no significant differences in myocardial infarction and major adverse cardiovascular event between DAPT + VKA and DAPT, with OR 1.27 (95% CI 0.92-1.77, P = 0.15) and OR 1.17 (95% CI 0.99-1.39, P = 0.07), respectively. However, the ST, stroke, and all-cause mortality were significantly lower in the DAPT + VKA group, with OR 1.98 (95% CI 1.03-3.81, P = 0.04), 1.59 (95% CI 1.08-2.34, P = 0.02), and 1.41 (95% CI 1.03-1.94, P = 0.03), respectively. At a mean follow-up period of 15 months, DAPT + VKA was associated with significantly lower risk of stroke, ST, and all-cause mortality in AF patients after PCI-S compared with

  7. Method of incident low-energy gamma-ray direction reconstruction in the GAMMA-400 gamma-ray space telescope

    NASA Astrophysics Data System (ADS)

    Kheymits, M. D.; Leonov, A. A.; Zverev, V. G.; Galper, A. M.; Arkhangelskaya, I. V.; Arkhangelskiy, A. I.; Suchkov, S. I.; Topchiev, N. P.; Yurkin, Yu T.; Bakaldin, A. V.; Dalkarov, O. D.

    2016-02-01

    The GAMMA-400 gamma-ray space-based telescope has as its main goals to measure cosmic γ-ray fluxes and the electron-positron cosmic-ray component produced, theoretically, in dark-matter-particles decay or annihilation processes, to search for discrete γ-ray sources and study them in detail, to examine the energy spectra of diffuse γ-rays — both galactic and extragalactic — and to study gamma-ray bursts (GRBs) and γ-rays from the active Sun. Scientific goals of GAMMA-400 telescope require fine angular resolution. The telescope is of a pair-production type. In the converter-tracker, the incident gamma-ray photon converts into electron-positron pair in the tungsten layer and then the tracks are detected by silicon- strip position-sensitive detectors. Multiple scattering processes become a significant obstacle in the incident-gamma direction reconstruction for energies below several gigaelectronvolts. The method of utilising this process to improve the resolution is proposed in the presented work.

  8. Platelet reactivity in human immunodeficiency virus infected patients on dual antiplatelet therapy for an acute coronary syndrome: the EVERE2ST-HIV study.

    PubMed

    Hauguel-Moreau, Marie; Boccara, Franck; Boyd, Anders; Salem, Joe-Elie; Brugier, Delphine; Curjol, Angélique; Hulot, Jean-Sébastien; Kerneis, Mathieu; Galier, Sophie; Cohen, Ariel; Montalescot, Gilles; Collet, Jean-Philippe; Silvain, Johanne

    2017-06-01

    To explore platelet reactivity on dual antiplatelet therapy (DAPT) of acute coronary syndrome (ACS) patients infected with HIV. Acute coronary syndrome patients infected with HIV (n = 80) were matched to ACS patients without HIV (n = 160) on age, sex, diabetes, and DAPT (aspirin 100%, clopidogrel 68%, prasugrel 31%, ticagrelor 1%). Platelet reactivity was evaluated after ACS (>30 days) by measuring residual platelet aggregation (RPA) to aspirin and to P2Y12 inhibitors with light transmission aggregometry (LTA), VerifyNow aspirin assay (ARU), and P2Y12 assay (PRU) and with the VASP platelet reactivity index (VASP-PRI). Proportion of patients with high residual platelet reactivity (HPR) was evaluated. HIV-infected ACS patients had higher levels of platelet reactivity in response to P2Y12 inhibitors (RPA: 23.8 ± 2.7% vs. 15.3 ± 1.3%; P = 0.001; PRU: 132 ± 10 vs. 107.4 ± 6.6; P = 0.04; and VASP-PRI: 45.2 ± 2.6% vs. 32.0 ± 2.0%; P < 0.001) and to aspirin (RPA: 3.6 ± 1.5% vs. 0.4 ± 0.1%; P = 0.004 and ARU: 442 ± 11 vs. 407 ± 5; P = 0.002) compared with non-HIV. HIV-infection was independently associated with increased platelet reactivity regardless of the test used (RPA: P = 0.005; PRU: P < 0.001 and VASP-PRI: P < 0.001) and a higher proportion of HPR (OR = 7.6; P < 0.001; OR = 2.06; P = 0.06; OR = 2.91; P = 0.004, respectively) in response to P2Y12 inhibitors. Similar results were found with aspirin. Protease inhibitors use was associated with increased platelet reactivity and higher rate of HPR. Acute coronary syndrome patients infected with HIV have increased levels of platelet reactivity and higher prevalence of HPR to P2Y12 inhibitors and aspirin than non-HIV patients. These results could provide potential explanations for the observed increase risk of recurrent ischemic events in the HIV-infected population. Published on behalf of the European Society of Cardiology. All

  9. Design and Performance of the GAMMA-400 Gamma-Ray Telescope for Dark Matter Searches

    NASA Technical Reports Server (NTRS)

    Galper, A.M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A.I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu. V.; hide

    2012-01-01

    The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons + positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is approx. 0.01 deg (E(sub gamma) > 100 GeV), the energy resolution approx. 1% (E(sub gamma) > 10 GeV), and the proton rejection factor approx 10(exp 6). GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.

  10. Human recombinant beta-secretase immobilized enzyme reactor for fast hits' selection and characterization from a virtual screening library.

    PubMed

    De Simone, Angela; Mancini, Francesca; Cosconati, Sandro; Marinelli, Luciana; La Pietra, Valeria; Novellino, Ettore; Andrisano, Vincenza

    2013-01-25

    In the present work, a human recombinant BACE1 immobilized enzyme reactor (hrBACE1-IMER) has been applied for the sensitive fast screening of 38 compounds selected through a virtual screening approach. HrBACE1-IMER was inserted into a liquid chromatograph coupled with a fluorescent detector. A fluorogenic peptide substrate (M-2420), containing the β-secretase site of the Swedish mutation of APP, was injected and cleaved in the on-line HPLC-hrBACE1-IMER system, giving rise to the fluorescent product. The compounds of the library were tested for their ability to inhibit BACE1 in the immobilized format and to reduce the area related to the chromatographic peak of the fluorescent enzymatic product. The results were validated in solution by using two different FRET methods. Due to the efficient virtual screening methodology, more than fifty percent of the selected compounds showed a measurable inhibitory activity. One of the most active compound (a bis-indanone derivative) was characterized in terms of IC(50) and K(i) determination on the hrBACE1-IMER. Thus, the hrBACE1-IMER has been confirmed as a valid tool for the throughput screening of different chemical entities with potency lower than 30μM for the fast hits' selection and for mode of action determination. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Endogenous PKI gamma limits the duration of the anti-apoptotic effects of PTH and beta-adrenergic agonists in osteoblasts.

    PubMed

    Chen, Xin; Song, In-Hwan; Dennis, James E; Greenfield, Edward M

    2007-05-01

    PKI gamma knockdown substantially extended the anti-apoptotic effects of PTH and beta-adrenergic agonists, whereas PKI gamma overexpression decreased these effects. Therefore, inhibition of PKI gamma activity may provide a useful co-therapy in combination with intermittent PTH or beta-adrenergic agonists for bone loss in conditions such as osteoporosis. PTH has both catabolic and anabolic effects on bone, which are primarily caused by cAMP/protein kinase A (PKA) signaling and regulation of gene expression. We previously showed that protein kinase inhibitor-gamma (PKI gamma) is required for efficient termination of cAMP/PKA signaling and gene expression after stimulation with PTH or beta-adrenergic agonists. Inhibition of osteoblast apoptosis is thought to be an important, but transient, mechanism partly responsible for the anabolic effects of intermittent PTH. Therefore, we hypothesized that endogenous PKI gamma also terminates the anti-apoptotic effect of PTH. PKI gamma knockdown by antisense transfection or siRNA was used to examine the ability of endogenous PKI gamma to modulate the anti-apoptotic effects of PTH and beta-adrenergic agonists in ROS 17/2.8 cells. Knockdown of PKI gamma substantially extended the anti-apoptotic effects of PTH, whether apoptosis was induced by etoposide or dexamethasone. In contrast, overexpression of PKI gamma decreased the anti-apoptotic effect of PTH pretreatment. This study is also the first demonstration that beta-adrenergic agonists mimic the anti-apoptotic effects of PTH in osteoblasts. Moreover, PKI gamma knockdown also substantially extended this anti-apoptotic effect of beta-adrenergic agonists. Taken together, these results show that endogenous PKI gamma limits the duration of the anti-apoptotic effects of cAMP/PKA signaling in osteoblasts. Because significant individual variability exists in the anabolic responses to PTH therapy in current clinical treatment of osteoporosis, inhibition of PKI gamma activity may provide a

  12. Cosmic Gamma-Rays

    Science.gov Websites

    [Argonne Logo] [DOE Logo] Cosmic Gamma-Rays Home Publications Talks People Students Argonne > ; HEP > Cosmic Gamma-Rays Projects VERITAS Past Projects TrICE What's New CTA Cosmic Gamma-Rays The

  13. Design and Performance of the GAMMA-400 Gamma-Ray Telescope for Dark Matter Searches

    NASA Technical Reports Server (NTRS)

    Galper, A. M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu V.; hide

    2012-01-01

    The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons (+) positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is approximately 0.01deg (E(sub gamma) greater than 100 GeV), the energy resolution approximately 1% (E(sub gamma) greater than 10 GeV), and the proton rejection factor approximately 10(exp 6). GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.

  14. Activation of peroxisome proliferator-activated receptor-gamma reverses squamous metaplasia and induces transitional differentiation in normal human urothelial cells.

    PubMed

    Varley, Claire Lucy; Stahlschmidt, Jens; Smith, Barbara; Stower, Michael; Southgate, Jennifer

    2004-05-01

    We observed that in urothelium, both cornifying and noncornifying forms of squamous metaplasia are accompanied by changes in the localization of the nuclear hormone receptors, peroxisome proliferator activated receptor gamma (PPAR-gamma) and retinoid X receptor (RXR-alpha). To obtain objective evidence for a role for PPAR-gamma-mediated signaling in urothelial differentiation, we examined expression of the cytokeratin isotypes CK13, CK20, and CK14 as indicators of transitional, terminal transitional, and squamous differentiation, respectively, in cultures of normal human urothelial cells. In control culture conditions, normal human urothelial cells showed evidence of squamous differentiation (CK14+, CK13-, CK20-). Treatment with the high-affinity PPAR-gamma agonist, troglitazone (TZ), resulted in gain of CK13 and loss of CK14 protein expression. The effect of TZ was significantly augmented when the autocrine-stimulated epidermal growth factor receptor pathway was inhibited and this resulted in induction of CK20 expression. The RXR-specific inhibitors PA452, HX531, and HX603 inhibited the TZ-induced CK13 expression, supporting a role for RXR in the induction of CK13 expression. Thus, signaling through PPAR-gamma can mediate transitional differentiation of urothelial cells and this is modulated by growth regulatory programs.

  15. Structure of Human G Protein-Coupled Receptor Kinase 2 in Complex with the Kinase Inhibitor Balanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tesmer, John J.G.; Tesmer, Valerie M.; Lodowski, David T.

    2010-07-19

    G protein-coupled receptor kinase 2 (GRK2) is a pharmaceutical target for the treatment of cardiovascular diseases such as congestive heart failure, myocardial infarction, and hypertension. To better understand how nanomolar inhibition and selectivity for GRK2 might be achieved, we have determined crystal structures of human GRK2 in complex with G{beta}{gamma} in the presence and absence of the AGC kinase inhibitor balanol. The selectivity of balanol among human GRKs is assessed.

  16. Optical gamma thermometer

    DOEpatents

    Koster, Glen Peter; Xia, Hua; Lee, Boon Kwee

    2013-08-06

    An optical gamma thermometer includes a metal mass having a temperature proportional to a gamma flux within a core of a nuclear reactor, and an optical fiber cable for measuring the temperature of the heated metal mass. The temperature of the heated mass may be measured by using one or more fiber grating structures and/or by using scattering techniques, such as Raman, Brillouin, and the like. The optical gamma thermometer may be used in conjunction with a conventional reactor heat balance to calibrate the local power range monitors over their useful in-service life. The optical gamma thermometer occupies much less space within the in-core instrument tube and costs much less than the conventional gamma thermometer.

  17. Implications of Gamma-Ray Transparency Constraints in Blazars: Minimum Distances and Gamma-Ray Collimation

    NASA Technical Reports Server (NTRS)

    Becker, Peter A.; Kafatos, Menas

    1995-01-01

    We develop a general expression for the gamma - gamma absorption coefficient, alpha(sub gamma(gamma)) for gamma-rays propagating in an arbitrary direction at an arbitrary point in space above an X-ray-emitting accretion disk. The X-ray intensity is assumed to vary as a power law in energy and radius between the outer disk radius, R(sub 0), and the inner radius, R(sub ms) which is the radius of marginal stability for a Schwarzschild black hole. We use our result for alpha(sub gamma(gamma)) to calculate the gamma - gamma optical depth, tau(sub gamma(gamma)) for gamma - rays created at height z and propagating at angle Phi relative to the disk axis, and we show that for Phi = 0 and z greater than or approx equal to R(sub 0), tau(sub gamma(gamma)) proportional to Epsilon(sup alpha)z(sup -2(alpha) - 3), where alpha is the X-ray spectral index and Epsilon is the gamma - ray energy. As an application, we use our formalism to compute the minimum distance between the central black hole and the site of production of the gamma-rays detected by EGRET during the 1991 June flare of 3C 279. In order to obtain an upper limit, we assume that all of the X-rays observed contemporaneously by Ginga were emitted by the disk. Our results suggest that the observed gamma - rays may have originated within less than or approx equal to 45 GM/sq c from a black hole of mass greater than or approx equal to 10(exp 9) solar mass, perhaps in active plasma located above the central funnel of the accretion disk. This raises the possibility of establishing a direct connection between the production of the observed gamma - rays and the accretion of material onto the black hole. We also consider the variation of the optical depth as a function of the angle of propagation Phi. Our results indicate that the "focusing" of the gamma - rays along the disk axis due to pair production is strong enough to explain the observed degree of alignment in blazar sources. If the gamma - rays are produced isotropically

  18. Design and performance of the GAMMA-400 gamma-ray telescope for dark matter searches

    NASA Astrophysics Data System (ADS)

    Galper, A. M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu. V.; Kaplin, V. A.; Kachanov, V. A.; Kheymits, M. D.; Leonov, A. A.; Longo, F.; Mazets, E. P.; Maestro, P.; Marrocchesi, P.; Mereminskiy, I. A.; Mikhailov, V. V.; Moiseev, A. A.; Mocchiutti, E.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu.; Papini, P.; Picozza, P.; Rodin, V. G.; Runtso, M. F.; Sparvoli, R.; Spillantini, P.; Suchkov, S. I.; Tavani, M.; Topchiev, N. P.; Vacchi, A.; Vannuccini, E.; Yurkin, Yu. T.; Zampa, N.; Zverev, V. G.; Zirakashvili, V. N.

    2013-02-01

    The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons + positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is ~0.01° (Eγ > 100 GeV), the energy resolution ~1% (Eγ > 10 GeV), and the proton rejection factor ~106. GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.

  19. Familial Alzheimer's disease mutations in presenilin 1 do not alter levels of the secreted amyloid-beta protein precursor generated by beta-secretase cleavage.

    PubMed

    Zhang, Can; Browne, Andrew; Kim, Doo Yeon; Tanzi, Rudolph E

    2010-02-01

    Alzheimer's disease (AD) is an insidious and progressive disease with a genetically complex and heterogenous etiology. More than 200 fully penetrant mutations in the amyloid beta-protein precursor (APP), presenilin 1 (or PSEN1), and presenilin 2 (PSEN2) have been linked to early-onset familial AD (FAD). 177 PSEN1 FAD mutations have been identified so far and account for more than approximately 80% of all FAD mutations. All PSEN1 FAD mutations can increase the Abeta42:Abeta40 ratio with seemingly different and incompletely understood mechanisms. A recent study has shown that the 286 amino acid N-terminal fragment of APP (N-APP), a proteolytic product of beta-secretase-derived secreted form of APP (sAPPbeta), could bind the death receptor, DR6, and lead to neurodegeneration. Here we asked whether PSEN1 FAD mutations lead to neurodegeneration by modulating sAPPbeta levels. All four different PSEN1 FAD mutations tested (in three mammalian cell lines) did not alter sAPPbeta levels. Therefore PS1 mutations do not appear to contribute to AD pathogenesis via altered production of sAPPbeta.

  20. Utility of an interferon-gamma release assay for latent tuberculosis diagnosis in a case of bullous pemphigoid.

    PubMed

    Goodfellow, Alfred; Keeling, Douglas N; Hayes, Robert C; Webster, Duncan

    2009-01-01

    With increasing use of immunosuppressive therapy, including tumor necrosis factor alpha inhibitors, there is concern about infectious complications, including reactivation of latent Mycobacterium tuberculosis infection. Routine testing prior to administration of systemic immunosuppression includes the tuberculin skin test, which lacks sensitivity and specificity and may be difficult to interpret in the presence of extensive cutaneous disease. Treatment of individuals with latent tuberculosis infection is recommended when immunosuppressive medications are to be employed. We report a case in which a diagnosis of latent tuberculosis infection in a patient with extensive bullous pemphigoid was clarified by the use of an interferon-gamma release assay after equivocal tuberculin skin test results. Interferon-gamma release assays are useful adjuncts to the tuberculin skin test in the diagnosis of latent tuberculosis infection in the setting of extensive cutaneous disease.

  1. Inhibitors of BTK and ITK: state of the new drugs for cancer, autoimmunity and inflammatory diseases.

    PubMed

    Vargas, L; Hamasy, A; Nore, B F; Smith, C I E

    2013-08-01

    BTK and ITK are cytoplasmic tyrosine kinases of crucial importance for B and T cell development, with loss-of-function mutations causing X-linked agammaglobulinemia and susceptibility to severe, frequently lethal, Epstein-Barr virus infection, respectively. Over the last few years, considerable efforts have been made in order to develop small-molecule inhibitors for these kinases to treat lymphocyte malignancies, autoimmunity or allergy/hypersensitivity. The rationale is that even if complete lack of BTK or ITK during development causes severe immunodeficiency, inactivation after birth may result in a less severe phenotype. Moreover, therapy can be transient or only partially block the activity of BTK or ITK. Furthermore, a drug-induced B cell deficiency is treatable by gamma globulin substitution therapy. The newly developed BTK inhibitor PCI-32765, recently renamed Ibrutinib, has already entered several clinical trials for various forms of non-Hodgkin lymphoma as well as for multiple myeloma. Experimental animal studies have demonstrated highly promising treatment effects also in autoimmunity. ITK inhibitors are still under the early developmental phase, but it can be expected that such drugs will also become very useful. In this study, we present BTK and ITK with their signalling pathways and review the development of the corresponding inhibitors. © 2013 John Wiley & Sons Ltd.

  2. Discovering Anti-platelet Drug Combinations with an Integrated Model of Activator-Inhibitor Relationships, Activator-Activator Synergies and Inhibitor-Inhibitor Synergies

    PubMed Central

    Lombardi, Federica; Golla, Kalyan; Fitzpatrick, Darren J.; Casey, Fergal P.; Moran, Niamh; Shields, Denis C.

    2015-01-01

    Identifying effective therapeutic drug combinations that modulate complex signaling pathways in platelets is central to the advancement of effective anti-thrombotic therapies. However, there is no systems model of the platelet that predicts responses to different inhibitor combinations. We developed an approach which goes beyond current inhibitor-inhibitor combination screening to efficiently consider other signaling aspects that may give insights into the behaviour of the platelet as a system. We investigated combinations of platelet inhibitors and activators. We evaluated three distinct strands of information, namely: activator-inhibitor combination screens (testing a panel of inhibitors against a panel of activators); inhibitor-inhibitor synergy screens; and activator-activator synergy screens. We demonstrated how these analyses may be efficiently performed, both experimentally and computationally, to identify particular combinations of most interest. Robust tests of activator-activator synergy and of inhibitor-inhibitor synergy required combinations to show significant excesses over the double doses of each component. Modeling identified multiple effects of an inhibitor of the P2Y12 ADP receptor, and complementarity between inhibitor-inhibitor synergy effects and activator-inhibitor combination effects. This approach accelerates the mapping of combination effects of compounds to develop combinations that may be therapeutically beneficial. We integrated the three information sources into a unified model that predicted the benefits of a triple drug combination targeting ADP, thromboxane and thrombin signaling. PMID:25875950

  3. Increase in neutrophil Fc gamma receptor I expression following interferon gamma treatment in rheumatoid arthritis.

    PubMed Central

    Goulding, N J; Knight, S M; Godolphin, J L; Guyre, P M

    1992-01-01

    The therapeutic potential of interferon gamma (IFN gamma) in a number of disease states is still being explored, but progress is hampered by the lack of a suitable measure of in vivo biological activity. To assess the in vivo biological effects of recombinant human IFN gamma (rhIFN gamma), 14 patients were studied in a randomised, prospective, double blind, placebo controlled trial of this cytokine for the treatment of rheumatoid arthritis. The levels of Fc gamma receptors on peripheral blood neutrophils were measured at baseline and after 21 days of once daily, subcutaneous injections of rhIFN gamma or placebo. An induction of neutrophil Fc gamma receptor type I (Fc gamma RI) was seen in the group of patients receiving recombinant human rhIFN gamma but not in those receiving placebo. No change in the expression of Fc gamma RII or Fc gamma RIII was detected. The amount of induction of Fc gamma RI detected on the neutrophils of patients receiving rhIFN gamma did not correlate with clinical measures of response at either 21 days or at the end of the study (24 weeks). No significant clinical responses were observed in the rhIFN gamma group at these times. These data confirm that the reported in vitro effect of IFN gamma on human neutrophil Fc receptor expression can be reproduced in vivo. PMID:1534001

  4. Increase in neutrophil Fc gamma receptor I expression following interferon gamma treatment in rheumatoid arthritis.

    PubMed

    Goulding, N J; Knight, S M; Godolphin, J L; Guyre, P M

    1992-04-01

    The therapeutic potential of interferon gamma (IFN gamma) in a number of disease states is still being explored, but progress is hampered by the lack of a suitable measure of in vivo biological activity. To assess the in vivo biological effects of recombinant human IFN gamma (rhIFN gamma), 14 patients were studied in a randomised, prospective, double blind, placebo controlled trial of this cytokine for the treatment of rheumatoid arthritis. The levels of Fc gamma receptors on peripheral blood neutrophils were measured at baseline and after 21 days of once daily, subcutaneous injections of rhIFN gamma or placebo. An induction of neutrophil Fc gamma receptor type I (Fc gamma RI) was seen in the group of patients receiving recombinant human rhIFN gamma but not in those receiving placebo. No change in the expression of Fc gamma RII or Fc gamma RIII was detected. The amount of induction of Fc gamma RI detected on the neutrophils of patients receiving rhIFN gamma did not correlate with clinical measures of response at either 21 days or at the end of the study (24 weeks). No significant clinical responses were observed in the rhIFN gamma group at these times. These data confirm that the reported in vitro effect of IFN gamma on human neutrophil Fc receptor expression can be reproduced in vivo.

  5. A rapid, PPAR-gamma-dependent effect of pioglitazone on the phosphorylation of MYPT.

    PubMed

    Atkins, Kevin B; Irey, Brittany; Xiang, Nan; Brosius, Frank C

    2009-05-01

    Peroxisome proliferator-activated receptor (PPAR)-gamma ligands, thiazolidinediones, have been demonstrated to regulate vascular reactivity. We examined the effect of pioglitazone (PIO; 20 muM) in rat primary cultured aortic smooth muscle cells on constitutive phosphorylation of the regulatory subunit of myosin phosphatase (MYPT). PIO decreased the phosphorylation of Thr(697) on MYPT within 15 min, and the inhibition was maintained up to 6 h. The PPAR-gamma antagonist GW-9662 (5 microM) abrogated the inhibition of Thr(697) phosphorylation mediated by PIO. Because longer-term PIO treatment inhibits RhoA/Rho kinase (ROCK) signaling and Thr(697) phosphorylation, we tested the effect of the ROCK inhibitor Y-27632 (10 muM) on the inhibition of Thr(697) phosphorylation by PIO. Y-27632 alone inhibited Thr(697) phosphorylation, and there was an additive effect with PIO. In addition, up to 1 h of PIO treatment did not affect RhoA localization or decrease ROCK-dependent phosphorylation of Thr(855). These results suggest that the effect of PIO is independent of inhibition of RhoA/ROCK. PIO increased the phosphorylation of Ser(696) in the same time course as its effect on Thr(697). Ser(696) has been shown to be phosphorylated by PKA and PKG. PKA inhibitor H-89 (10 microM) and PKG inhibitor KT-5823 (0.5 microM) abrogated the effect of PIO on both Thr(697) and Ser(696) phosphorylation. The constitutive turnover of phosphorylation of Thr(697) is rapid, suggesting that the decreased phosphorylation of Thr(697) by PIO is due to enhanced phosphorylation of Ser(696). This is supported by the finding that PIO blocks ANG II-stimulated phosphorylation of Thr(697) but not ANG II-stimulated RhoA translocation. Therefore, the effect of shorter-term PIO apparently is to increase myosin light chain phosphatase activity, thereby desensitizing the vascular smooth muscle to agonist signaling.

  6. Gamma Knife

    MedlinePlus

    ... equipment? How is safety ensured? What is this equipment used for? The Gamma Knife® and its associated ... in size. top of page How does the equipment work? The Gamma Knife® utilizes a technique called ...

  7. Gamma-400 Science Objectives Built on the Current HE Gamma-Ray and CR Results

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander; Mitchell, John; Thompson, David

    2012-01-01

    The main scientific interest of the Russian Gamma-400 team: Observe gamma-rays above approximately 50 GeV with excellent energy and angular resolution with the goals of: (1) Studying the fine spectral structure of the isotropic high-energy gamma-radiation, (2) Attempting to identify the many still-unidentified Fermi-LAT gamma-ray sources. Gamma-400 will likely be the only space-based gamma-ray observatory operating at the end of the decade. In our proposed Gamma-400-LE version, it will substantially improve upon the capabilities of Fermi LAT and AGILE in both LE and HE energy range. Measuring gamma-rays from approx 20 MeV to approx 1 TeV for at least 7 years, Gamma-400-LE will address the topics of dark matter, cosmic ray origin and propagation, neutron stars, flaring pulsars, black holes, AGNs, GRBs, and actively participate in multiwavelength campaigns.

  8. Genomic sequences of murine gamma B- and gamma C-crystallin-encoding genes: promoter analysis and complete evolutionary pattern of mouse, rat and human gamma-crystallins.

    PubMed

    Graw, J; Liebstein, A; Pietrowski, D; Schmitt-John, T; Werner, T

    1993-12-22

    The murine genes, gamma B-cry and gamma C-cry, encoding the gamma B- and gamma C-crystallins, were isolated from a genomic DNA library. The complete nucleotide (nt) sequences of both genes were determined from 661 and 711 bp, respectively, upstream from the first exon to the corresponding polyadenylation sites, comprising more than 2650 and 2890 bp, respectively. The new sequences were compared to the partial cDNA sequences available for the murine gamma B-cry and gamma C-cry, as well as to the corresponding genomic sequences from rat and man, at both the nt and predicted amino acid (aa) sequence levels. In the gamma B-cry promoter region, a canonical CCAAT-box, a TATA-box, putative NF-I and C/EBP sites were detected. An R-repeat is inserted 366 bp upstream from the transcription start point. In contrast, the gamma C-cry promoter does not contain a CCAAT-box, but some other putative binding sites for transcription factors (AP-2, UBP-1, LBP-1) were located by computer analysis. The promoter regions of all six gamma-cry from mouse, rat and human, except human psi gamma F-cry, were analyzed for common sequence elements. A complex sequence element of about 70-80 bp was found in the proximal promoter, which contains a gamma-cry-specific and almost invariant sequence (crygpel) of 14 nt, and ends with the also invariant TATA-box. Within the complex sequence element, a minimum of three further features specific for the gamma A-, gamma B- and gamma D/E/F-cry genes can be defined, at least two of which were recently shown to be functional. In addition to these four sequence elements, a subtype-specific structure of inverted repeats with different-sized spacers can be deduced from the multiple sequence alignment. A phylogenetic analysis based on the promoter region, as well as the complete exon 3 of all gamma-cry from mouse, rat and man, suggests separation of only five gamma-cry subtypes (gamma A-, gamma B-, gamma C-, gamma D- and gamma E/F-cry) prior to species separation.

  9. Predicting diffusion paths and interface motion in gamma/gamma + beta, Ni-Cr-Al diffusion couples

    NASA Technical Reports Server (NTRS)

    Nesbitt, J. A.; Heckel, R. W.

    1987-01-01

    A simplified model has been developed to predict Beta recession and diffusion paths in ternary gamma/gamma + beta diffusion couples (gamma:fcc, beta: NiAl structure). The model was tested by predicting beta recession and diffusion paths for four gamma/gamma + beta, Ni-Cr-Al couples annealed for 100 hours at 1200 C. The model predicted beta recession within 20 percent of that measured for each of the couples. The model also predicted shifts in the concentration of the gamma phase at the gamma/gamma + beta interface within 2 at. pct Al and 6 at. pct Cr of that measured in each of the couples. A qualitative explanation based on simple kinetic and mass balance arguments has been given which demonstrates the necessity for diffusion in the two-phase region of certain gamma/gamma + beta, Ni-Cr-Al couples.

  10. Impact of preoperative dual antiplatelet therapy on bleeding complications in patients with acute coronary syndromes who undergo urgent coronary artery bypass grafting.

    PubMed

    Nagashima, Zenko; Tsukahara, Kengo; Uchida, Keiji; Hibi, Kiyoshi; Karube, Norihisa; Ebina, Toshiaki; Imoto, Kiyotaka; Kimura, Kazuo; Umemura, Satoshi

    2017-01-01

    A 5- to 7-day washout period before coronary artery bypass grafting (CABG) is recommended for patients who have recently received a thienopyridine derivative; however, data supporting this guideline recommendation are lacking in Japanese patients. Urgent isolated CABG was performed in 130 consecutive patients with acute coronary syndromes (ACS) (101 men; mean age, 69 years). Urgent CABG was defined as operation performed within 5 days after coronary angiography. All patients continued to receive aspirin 100mg/day. The subjects were retrospectively divided into 2 groups: 30 patients with preoperative thienopyridine (clopidogrel in 15 patients, ticlopidine in 15) exposure within 5 days [dual antiplatelet therapy (DAPT) group] and 100 patients without exposure [single antiplatelet therapy (SAPT) group]. Although the DAPT group had a higher proportion of patients who received perioperative platelet transfusions than the SAPT group (50% vs. 18%, p<0.001), intraoperative bleeding (median, 1100ml; interquartile range, 620-1440 vs. 920ml; 500-1100) and total drain output within 48h after surgery (577±262 vs. 543±277ml) were similar. CABG-related major bleeding, which was defined as type 4 or 5 bleeding according to the Bleeding Academic Research Consortium definitions, occurred in a significantly higher proportion of patients in the DAPT group than in the SAPT group (20% vs. 3%, p=0.005). This difference in major bleeding was driven mainly by the higher rate of transfusion of ≥5U red blood cells within a 48-h period in the DAPT group (13% vs. 1%, p=0.01). There was no significant difference in the 30-day composite endpoint including death, myocardial (re)infarction, ischemic stroke, and refractory angina between the DAPT group and SAPT group (17% vs. 19%). Preoperative DAPT increases the risk of CABG-related major bleeding in Japanese patients with ACS undergoing urgent CABG. Copyright © 2016 Japanese College of Cardiology. Published by Elsevier Ltd. All rights

  11. Use of Dual Antiplatelet Therapy and Patient Outcomes in Those Undergoing Percutaneous Coronary Intervention: The ROCKET AF Trial.

    PubMed

    Sherwood, Matthew W; Cyr, Derek D; Jones, W Schuyler; Becker, Richard C; Berkowitz, Scott D; Washam, Jeffrey B; Breithardt, Günter; Fox, Keith A A; Halperin, Jonathan L; Hankey, Graeme J; Singer, Daniel E; Piccini, Jonathan P; Nessel, Christopher C; Mahaffey, Kenneth W; Patel, Manesh R

    2016-08-22

    The authors assessed the use of dual antiplatelet therapy (DAPT) and outcomes in patients undergoing percutaneous coronary intervention (PCI) during the ROCKET AF (Rivaroxaban Once Daily Oral Direct Factor Xa Inhibition Compared with Vitamin K Antagonism for Prevention of Stroke and Embolism Trial in Atrial Fibrillation). The frequency, patterns, and outcomes when adding DAPT to non-vitamin K antagonist oral anticoagulants in the setting of PCI in patients with AF are largely unknown. The study population included all patients in the treatment group of the ROCKET AF trial divided by the receipt of PCI during follow-up. Clinical characteristics, PCI frequency, and rates of DAPT were reported. Clinical outcomes were adjudicated independently as part of the trial. Among 14,171 patients, 153 (1.1%) underwent PCI during a median 806 days of follow-up. Patients treated with rivaroxaban were significantly less likely to undergo PCI compared with warfarin-treated patients (61 vs. 92; p = 0.01). Study drug was continued during PCI in 81% of patients. Long-term DAPT (≥30 days) was used in 37% and single antiplatelet therapy in 34%. A small number switched from DAPT to monotherapy within 30 days of PCI (n = 19 [12.3%]) and 15% of patients received no antiplatelet therapy after PCI. Rates of stroke/systemic embolism and major bleeding events were high in post-PCI patients (4.5/100 patient-years and 10.2/100 patient-years) in both treatment groups. In patients with AF at moderate to high risk for stroke, PCI occurred in <1% per year. DAPT was used in a variable manner, with the majority of patients remaining on study drug after PCI. Rates of both thrombotic and bleeding events were high after PCI, highlighting the need for studies to determine the optimal antithrombotic therapy. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  12. Comparison of gamma-gamma Phase Coarsening Responses of Three Powder Metal Disk Superalloys

    NASA Technical Reports Server (NTRS)

    Gabb, T. P.; Gayda, J.; Johnson, D. F.; MacKay, R. A.; Rogers, R. B.; Sudbrack, C. K.; Garg, A.; Locci, I. E.; Semiatin, S. L.; Kang, E.

    2016-01-01

    The phase microstructures of several powder metal (PM) disk superalloys were quantitatively evaluated. Contents, chemistries, and lattice parameters of gamma and gamma strengthening phase were determined for conventionally heat treated Alloy 10, LSHR, and ME3 superalloys, after electrolytic phase extractions. Several of long term heat treatments were then performed, to allow quantification of the precipitation, content, and size distribution of gamma at a long time interval to approximate equilibrium conditions. Additional coarsening heat treatments were performed at multiple temperatures and shorter time intervals, to allow quantification of the precipitation, contents and size distributions of gamma at conditions diverging from equilibrium. Modest differences in gamma and gamma lattice parameters and their mismatch were observed among the alloys, which varied with heat treatment. Yet, gamma coarsening rates were very similar for all three alloys in the heat treatment conditions examined. Alloy 10 had higher gamma dissolution and formation temperatures than LSHR and ME3, but a lower lattice mismatch, which was slightly positive for all three alloys at room temperature. The gamma precipitates of Alloy 10 appeared to remain coherent at higher temperatures than for LSHR and ME3. Higher coarsening rates were observed for gamma precipitates residing along grain boundaries than for those within grains in all three alloys, during slow-moderate quenching from supersolvus solution heat treatments, and during aging at temperatures of 843 C and higher.

  13. The gamma-ray observatory

    NASA Technical Reports Server (NTRS)

    1991-01-01

    An overview is given of the Gamma Ray Observatory (GRO) mission. Detection of gamma rays and gamma ray sources, operations using the Space Shuttle, and instruments aboard the GRO, including the Burst and Transient Source Experiment (BATSE), the Oriented Scintillation Spectrometer Experiment (OSSE), the Imaging Compton Telescope (COMPTEL), and the Energetic Gamma Ray Experiment Telescope (EGRET) are among the topics surveyed.

  14. High-frequency gamma oscillations coexist with low-frequency gamma oscillations in the rat visual cortex in vitro.

    PubMed

    Oke, Olaleke O; Magony, Andor; Anver, Himashi; Ward, Peter D; Jiruska, Premysl; Jefferys, John G R; Vreugdenhil, Martin

    2010-04-01

    Synchronization of neuronal activity in the visual cortex at low (30-70 Hz) and high gamma band frequencies (> 70 Hz) has been associated with distinct visual processes, but mechanisms underlying high-frequency gamma oscillations remain unknown. In rat visual cortex slices, kainate and carbachol induce high-frequency gamma oscillations (fast-gamma; peak frequency approximately 80 Hz at 37 degrees C) that can coexist with low-frequency gamma oscillations (slow-gamma; peak frequency approximately 50 Hz at 37 degrees C) in the same column. Current-source density analysis showed that fast-gamma was associated with rhythmic current sink-source sequences in layer III and slow-gamma with rhythmic current sink-source sequences in layer V. Fast-gamma and slow-gamma were not phase-locked. Slow-gamma power fluctuations were unrelated to fast-gamma power fluctuations, but were modulated by the phase of theta (3-8 Hz) oscillations generated in the deep layers. Fast-gamma was spatially less coherent than slow-gamma. Fast-gamma and slow-gamma were dependent on gamma-aminobutyric acid (GABA)(A) receptors, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and gap-junctions, their frequencies were reduced by thiopental and were weakly dependent on cycle amplitude. Fast-gamma and slow-gamma power were differentially modulated by thiopental and adenosine A(1) receptor blockade, and their frequencies were differentially modulated by N-methyl-D-aspartate (NMDA) receptors, GluK1 subunit-containing receptors and persistent sodium currents. Our data indicate that fast-gamma and slow-gamma both depend on and are paced by recurrent inhibition, but have distinct pharmacological modulation profiles. The independent co-existence of fast-gamma and slow-gamma allows parallel processing of distinct aspects of vision and visual perception. The visual cortex slice provides a novel in vitro model to study cortical high-frequency gamma oscillations.

  15. A method to describe inelastic gamma field distribution in neutron gamma density logging.

    PubMed

    Zhang, Feng; Zhang, Quanying; Liu, Juntao; Wang, Xinguang; Wu, He; Jia, Wenbao; Ti, Yongzhou; Qiu, Fei; Zhang, Xiaoyang

    2017-11-01

    Pulsed neutron gamma density logging (NGD) is of great significance for radioprotection and density measurement in LWD, however, the current methods have difficulty in quantitative calculation and single factor analysis for the inelastic gamma field distribution. In order to clarify the NGD mechanism, a new method is developed to describe the inelastic gamma field distribution. Based on the fast-neutron scattering and gamma attenuation, the inelastic gamma field distribution is characterized by the inelastic scattering cross section, fast-neutron scattering free path, formation density and other parameters. And the contribution of formation parameters on the field distribution is quantitatively analyzed. The results shows the contribution of density attenuation is opposite to that of inelastic scattering cross section and fast-neutron scattering free path. And as the detector-spacing increases, the density attenuation gradually plays a dominant role in the gamma field distribution, which means large detector-spacing is more favorable for the density measurement. Besides, the relationship of density sensitivity and detector spacing was studied according to this gamma field distribution, therefore, the spacing of near and far gamma ray detector is determined. The research provides theoretical guidance for the tool parameter design and density determination of pulsed neutron gamma density logging technique. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching.

    PubMed

    Suchting, Steven; Freitas, Catarina; le Noble, Ferdinand; Benedito, Rui; Bréant, Christiane; Duarte, Antonio; Eichmann, Anne

    2007-02-27

    Delta-like 4 (Dll4) is a transmembrane ligand for Notch receptors that is expressed in arterial blood vessels and sprouting endothelial cells. Here we show that Dll4 regulates vessel branching during development by inhibiting endothelial tip cell formation. Heterozygous deletion of dll4 or pharmacological inhibition of Notch signaling using gamma-secretase inhibitor revealed a striking vascular phenotype, with greatly increased numbers of filopodia-extending endothelial tip cells and increased expression of tip cell marker genes compared with controls. Filopodia extension in dll4(+/-) retinal vessels required the vascular growth factor VEGF and was inhibited when VEGF signaling was blocked. Although VEGF expression was not significantly altered in dll4(+/-) retinas, dll4(+/-) vessels showed increased expression of VEGF receptor 2 and decreased expression of VEGF receptor 1 compared with wild-type, suggesting they could be more responsive to VEGF stimulation. In addition, expression of dll4 in wild-type tip cells was itself decreased when VEGF signaling was blocked, indicating that dll4 may act downstream of VEGF as a "brake" on VEGF-mediated angiogenic sprouting. Taken together, these data reveal Dll4 as a negative regulator of vascular sprouting and vessel branching that is required for normal vascular network formation during development.

  17. ACE inhibition with captopril retards the development of signs of neurodegeneration in an animal model of Alzheimer's disease.

    PubMed

    AbdAlla, Said; Langer, Andreas; Fu, Xuebin; Quitterer, Ursula

    2013-08-16

    Increased generation of reactive oxygen species (ROS) is a significant pathological feature in the brains of patients with Alzheimer's disease (AD). Experimental evidence indicates that inhibition of brain ROS could be beneficial in slowing the neurodegenerative process triggered by amyloid-beta (Abeta) aggregates. The angiotensin II AT1 receptor is a significant source of brain ROS, and AD patients have an increased brain angiotensin-converting enzyme (ACE) level, which could account for an excessive angiotensin-dependent AT1-induced ROS generation. Therefore, we analyzed the impact of ACE inhibition on signs of neurodegeneration of aged Tg2576 mice as a transgenic animal model of AD. Whole genome microarray gene expression profiling and biochemical analyses demonstrated that the centrally active ACE inhibitor captopril normalized the excessive hippocampal ACE activity of AD mice. Concomitantly, the development of signs of neurodegeneration was retarded by six months of captopril treatment. The neuroprotective profile triggered by captopril was accompanied by reduced amyloidogenic processing of the amyloid precursor protein (APP), and decreased hippocampal ROS, which is known to enhance Abeta generation by increased activation of beta- and gamma-secretases. Taken together, our data present strong evidence that ACE inhibition with a widely used cardiovascular drug could interfere with Abeta-dependent neurodegeneration.

  18. ACE Inhibition with Captopril Retards the Development of Signs of Neurodegeneration in an Animal Model of Alzheimer’s Disease

    PubMed Central

    AbdAlla, Said; Langer, Andreas; Fu, Xuebin; Quitterer, Ursula

    2013-01-01

    Increased generation of reactive oxygen species (ROS) is a significant pathological feature in the brains of patients with Alzheimer’s disease (AD). Experimental evidence indicates that inhibition of brain ROS could be beneficial in slowing the neurodegenerative process triggered by amyloid-beta (Abeta) aggregates. The angiotensin II AT1 receptor is a significant source of brain ROS, and AD patients have an increased brain angiotensin-converting enzyme (ACE) level, which could account for an excessive angiotensin-dependent AT1-induced ROS generation. Therefore, we analyzed the impact of ACE inhibition on signs of neurodegeneration of aged Tg2576 mice as a transgenic animal model of AD. Whole genome microarray gene expression profiling and biochemical analyses demonstrated that the centrally active ACE inhibitor captopril normalized the excessive hippocampal ACE activity of AD mice. Concomitantly, the development of signs of neurodegeneration was retarded by six months of captopril treatment. The neuroprotective profile triggered by captopril was accompanied by reduced amyloidogenic processing of the amyloid precursor protein (APP), and decreased hippocampal ROS, which is known to enhance Abeta generation by increased activation of beta- and gamma-secretases. Taken together, our data present strong evidence that ACE inhibition with a widely used cardiovascular drug could interfere with Abeta-dependent neurodegeneration. PMID:23959119

  19. Oxidized LDL binding to LOX-1 upregulates VEGF expression in cultured bovine chondrocytes through activation of PPAR-{gamma}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanata, Sohya; Akagi, Masao; Nishimura, Shunji

    It has been reported that vascular endothelial growth factor (VEGF) and its receptors play an important role in the destruction of articular cartilage in osteoarthritis through increased production of matrix metalloproteinases. We investigated whether the oxidized low-density lipoprotein (ox-LDL) binding to lectin-like ox-LDL receptor-1 (LOX-1) upregulates VEGF expression in cultured bovine articular chondrocytes (BACs). Ox-LDL markedly increased VEGF mRNA expression and protein release in time- and dose-dependent manners, which was significantly suppressed by anti-LOX-1 antibody pretreatment. Activation of peroxisome proliferator-activated receptor (PPAR)-{gamma} was evident in BACs with ox-LDL addition and was attenuated by anti-LOX-1 antibody. The specific PPAR-{gamma} inhibitor GW9662more » suppressed ox-LDL-induced VEGF expression. These results suggest that the ox-LDL/LOX-1 system upregulates VEGF expression in articular cartilage, at least in part, through activation of PPAR-{gamma} and supports the hypothesis that ox-LDL is involved in cartilage degradation via LOX-1.« less

  20. Critical role of FcR gamma-chain, LAT, PLCgamma2 and thrombin in arteriolar thrombus formation upon mild, laser-induced endothelial injury in vivo.

    PubMed

    Kalia, Neena; Auger, Jocelyn M; Atkinson, Ben; Watson, Steve P

    2008-05-01

    The role of collagen receptor complex GPVI-FcR gamma-chain, PLCgamma2 and LAT in laser-induced thrombosis is unclear. Controversy surrounds whether collagen is exposed in this model or whether thrombosis is dependent on thrombin. This study hypothesized that collagen exposure plays a critical role in thrombus formation in this model, which was tested by investigating contributions of FcR gamma-chain, LAT, PLCgamma2 and thrombin. Thrombi were monitored using intravital microscopy in anesthetized wild-type and FcR gamma-chain, LAT and PLCgamma2 knockout mice. Hirudin (thrombin inhibitor) was administered to wild-type and FcR gamma-chain knockout mice. Significantly reduced thrombus formation was observed in FcR gamma-chain and PLCgamma2 knockouts with a greater decrease observed in LAT knockouts. Dramatic reduction was observed in wild-types treated with hirudin, with abolished thrombus formation only observed in FcR gamma-chain knockouts treated with hirudin. GPVI-FcR gamma-chain, LAT and PLCgamma2 are essential for thrombus generation and stability in this laser-induced model of injury. More importantly, a greater role for LAT was identified, which may reflect a role for it downstream of a second matrix protein receptor. However, inhibition of platelet activation by matrix proteins and thrombin generation are both required to maximally prevent thrombus formation.

  1. The gamma cycle.

    PubMed

    Fries, Pascal; Nikolić, Danko; Singer, Wolf

    2007-07-01

    Activated neuronal groups typically engage in rhythmic synchronization in the gamma-frequency range (30-100 Hz). Experimental and modeling studies demonstrate that each gamma cycle is framed by synchronized spiking of inhibitory interneurons. Here, we review evidence suggesting that the resulting rhythmic network inhibition interacts with excitatory input to pyramidal cells such that the more excited cells fire earlier in the gamma cycle. Thus, the amplitude of excitatory drive is recoded into phase values of discharges relative to the gamma cycle. This recoding enables transmission and read out of amplitude information within a single gamma cycle without requiring rate integration. Furthermore, variation of phase relations can be exploited to facilitate or inhibit exchange of information between oscillating cell assemblies. The gamma cycle could thus serve as a fundamental computational mechanism for the implementation of a temporal coding scheme that enables fast processing and flexible routing of activity, supporting fast selection and binding of distributed responses. This review is part of the INMED/TINS special issue Physiogenic and pathogenic oscillations: the beauty and the beast, based on presentations at the annual INMED/TINS symposium (http://inmednet.com).

  2. A Platinum-Enriched gamma+gamma' Two-Phase Bond Coat on Ni-Base Superalloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ying; Pint, Bruce A; Haynes, James A

    2005-01-01

    Pt-enriched {gamma} + {gamma}{prime} two-phase coating was applied to directionally-solidified Ni-based superalloy Ren{acute e} 142 substrates with three different Hf levels (0.02, 0.76, and 1.37 wt.%). The coating was prepared by electroplating a thin layer of Pt on the superalloy followed by a diffusion treatment. The as-deposited coating exhibited a {gamma} + {gamma}{prime} two-phase microstructure with a major composition of Ni-16Al-18Pt-7Cr-9Co (in at.%) along with some incorporation of refractory elements from the substrates. Cyclic oxidation testing at 1100 C in air indicated improved oxidation resistance of the Ren{acute e} 142 alloys with the Pt-enriched {gamma} + {gamma}{prime} coatings. In addition,more » the oxidation resistance of both uncoated and coated alloys was proportional to the Hf content in the substrate. Compared with the single-phase {beta}-(Ni,Pt)Al coating, slightly higher mass gains and localized spallation were observed on the {gamma} + {gamma}{prime} two-phase coating, which might be due to the segregation of refractory elements and high sulfur levels in these superalloy substrates.« less

  3. Gamma ray transients

    NASA Technical Reports Server (NTRS)

    Cline, Thomas L.

    1987-01-01

    The discovery of cosmic gamma ray bursts was made with systems designed at Los Alamos Laboratory for the detection of nuclear explosions beyond the atmosphere. HELIOS-2 was the first gamma ray burst instrument launched; its initial results in 1976, seemed to deepen the mystery around gamma ray transients. Interplanetary spacecraft data were reviewed in terms of explaining the behavior and source of the transients.

  4. Expression of peroxisome proliferator-activated receptor gamma (PPAR-gamma) in canine nasal carcinomas.

    PubMed

    Paciello, O; Borzacchiello, G; Varricchio, E; Papparella, S

    2007-10-01

    Peroxisome proliferator-activated receptor gamma (PPAR-gamma) is a ligand-activated transcriptional factor belonging to the steroid receptor superfamily. PPAR-gamma is expressed in multiple normal and neoplastic tissues, such as the breast, colon, lung, ovary and placenta. In addition to adipogenic and anti-inflammatory effects, PPAR-gamma activation has been shown to be anti-proliferative by its differentiation-promoting effect, suggesting that activation of PPAR-gamma may be useful in slowing or arresting the proliferation of de-differentiated tumour cells. In this study, we investigated the expression of PPAR-gamma in normal and neoplastic canine nasal epithelium. Twenty-five samples composed of five normal nasal epithelia and 20 canine nasal carcinomas, were immunohistochemically stained for PPAR-gamma. The specificity of the antibody was verified by Western Blot analysis. Confocal laser scanning microscopical investigation was also performed. In normal epithelium, the staining pattern was cytoplasmic and polarized at the cellular free edge. In carcinomas, the neoplastic cells showed mainly strong cytoplasmatic PPAR-gamma expression; moreover, perinuclear immunoreactivity was also detected and few neoplastic cells exhibited a nuclear positivity. Our results demonstrate different patterns of PPAR-gamma expression in normal canine nasal epithelium when compared with canine nasal carcinoma. The importance of this transcription factor in the pathophysiology of several different tumours has stimulated much research in this field and has opened new opportunities for the treatment of the tumours.

  5. Interferon-gamma interferes with transforming growth factor-beta signaling through direct interaction of YB-1 with Smad3.

    PubMed

    Higashi, Kiyoshi; Inagaki, Yutaka; Fujimori, Ko; Nakao, Atsuhito; Kaneko, Hideo; Nakatsuka, Iwao

    2003-10-31

    Transforming growth factor-beta (TGF-beta) and interferon-gamma (IFN-gamma) exert antagonistic effects on collagen synthesis in human dermal fibroblasts. We have recently shown that Y box-binding protein YB-1 mediates the inhibitory effects of IFN-gamma on alpha2(I) procollagen gene (COL1A2) transcription through the IFN-gamma response element located between -161 and -150. Here we report that YB-1 counter-represses TGF-beta-stimulated COL1A2 transcription by interfering with Smad3 bound to the upstream sequence around -265 and subsequently by interrupting the Smad3-p300 interaction. Western blot and immunofluorescence analyses using inhibitors for Janus kinases or casein kinase II suggested that the casein kinase II-dependent signaling pathway mediates IFN-gamma-induced nuclear translocation of YB-1. Down-regulation of endogenous YB-1 expression by double-stranded YB-1-specific RNA abrogated the transcriptional repression of COL1A2 by IFN-gamma in the absence and presence of TGF-beta. In transient transfection assays, overexpression of YB-1 in human dermal fibroblasts exhibited antagonistic actions against TGF-beta and Smad3. Physical interaction between Smad3 and YB-1 was demonstrated by immunoprecipitation-Western blot analyses, and electrophoretic mobility shift assays using the recombinant Smad3 and YB-1 proteins indicated that YB-1 forms a complex with Smad3 bound to the Smad-binding element. Glutathione S-transferase pull-down assays showed that YB-1 binds to the MH1 domain of Smad3, whereas the central and carboxyl-terminal regions of YB-1 were required for its interaction with Smad3. YB-1 also interferes with the Smad3-p300 interaction by its preferential binding to p300. Altogether, the results provide a novel insight into the mechanism by which IFN-gamma/YB-1 counteracts TGF-beta/Smad3. They also indicate that IFN-gamma/YB-1 inhibits COL1A2 transcription by dual actions: via the IFN-gamma response element and through a cross-talk with the TGF

  6. Cloning, sequencing and expression of white rhinoceros (Ceratotherium simum) interferon-gamma (IFN-gamma) and the production of rhinoceros IFN-gamma specific antibodies.

    PubMed

    Morar, D; Tijhaar, E; Negrea, A; Hendriks, J; van Haarlem, D; Godfroid, J; Michel, A L; Rutten, V P M G

    2007-01-15

    Bovine tuberculosis (BTB) is endemic in African buffalo (Syncerus caffer) in the Kruger National Park (KNP). In addition to buffalo, Mycobacterium bovis has been found in at least 14 other mammalian species in South Africa, including kudu (Tragelaphus strepsiceros), Chacma baboon (Papio ursinus) and lion (Panthera leo). This has raised concern about the spillover into other potentially susceptible species like rhinoceros, thus jeopardising breeding and relocation projects aiming at the conservation of biodiversity. Hence, procedures to screen for and diagnose BTB in black rhinoceros (Diceros bicornis) and white rhinoceros (Ceratotherium simum) need to be in place. The Interferon-gamma (IFN-gamma) assay is used as a routine diagnostic tool to determine infection of cattle and recently African buffalo, with M. bovis and other mycobacteria. The aim of the present work was to develop reagents to set up a rhinoceros IFN-gamma (RhIFN-gamma) assay. The white rhinoceros IFN-gamma gene was cloned, sequenced and expressed as a mature protein. Amino acid (aa) sequence analysis revealed that RhIFN-gamma shares a homology of 90% with equine IFN-gamma. Monoclonal antibodies, as well as polyclonal chicken antibodies (Yolk Immunoglobulin-IgY) with specificity for recombinant RhIFN-gamma were produced. Using the monoclonals as capture antibodies and the polyclonal IgY for detection, it was shown that recombinant as well as native white rhinoceros IFN-gamma was recognised. This preliminary IFN-gamma enzyme-linked immunosorbent assay (ELISA), has the potential to be developed into a diagnostic assay for M. bovis infection in rhinoceros.

  7. Interferon-alpha and interferon-gamma modulate Fas-mediated apoptosis in mitomycin-C-resistant human Tenon's fibroblasts.

    PubMed

    Wang, Xiao Yang; Crowston, Jonathan G; White, Andrew J R; Zoellner, Hans; Healey, Paul R

    2014-08-01

    The aim of the study was to investigate, using a native mitomycin-C-resistant human Tenon's fibroblast cell line, the possibility that interferon-alpha and gamma could be used with Fas agonists as an alternative anti-fibrotic strategy to mitomycin-C in trabeculectomy. A clinically resistant and in vitro verified mitomycin-C-resistant human Tenon's fibroblast cell line was pretreated with interferon-alpha and interferon-gamma for 48 h before stimulation with an agonistic Fas antibody (CH11) for 2 days to induce cell death. Cell death assays were undertaken. Changes in apoptosis-related proteins were determined by flow cytometry and Western blot. Pretreatment with interferon-alpha or interferon-gamma for 48 h increased Fas, Fas-associated protein with death domain and caspase-8 expression. Protein expression was further increased by combined exposure to interferon-alpha and gamma. Pretreatment with cytokines had no effect on Fas-L and Bcl-2. Interferon-alpha alone did not change the rate of induced cell death. A combination of interferon-alpha and gamma synergistically increased the sensitivity of mitomycin-C-resistant human Tenon's fibroblast cell line to induced cell death. An antagonistic anti-Fas antibody (ZB4) completely blocked induced cell death. Broad caspase inhibitors specific for caspases-8 and -3 reduced induced deaths in interferon pretreated mitomycin-C-resistant human Tenon's fibroblast cell line in a dose-dependent manner. Interferon-alpha and interferon-gamma render mitomycin-C-resistant human Tenon's fibroblast cell line sensitive to Fas-mediated apoptosis. The mechanism involves increased death-inducing signalling complex formation by upregulation of Fas, Fas-associated protein with death domain and caspase-8 expression. © 2013 Royal Australian and New Zealand College of Ophthalmologists.

  8. Measurements of the $$\\mathrm{ pp \\to W \\gamma\\gamma }$$ and $$\\mathrm{ pp \\to Z \\gamma\\gamma }$$ cross sections and limits on anomalous quartic gauge couplings at $$\\sqrt{s} =$$ 8 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.

    Here, measurements are presented ofmore » $$ \\mathrm{ W \\gamma\\gamma } $$ and $$ \\mathrm{ Z \\gamma\\gamma } $$ production in proton-proton collisions. Fiducial cross sections are reported based on a data sample corresponding to an integrated luminosity of 19.4 fb$$^{-1}$$ collected with the CMS detector at a center-of-mass energy of 8 TeV. Signal is identified through the $$\\mathrm{ W } \\to \\ell\

  9. Measurements of the $$\\mathrm{ pp \\to W \\gamma\\gamma }$$ and $$\\mathrm{ pp \\to Z \\gamma\\gamma }$$ cross sections and limits on anomalous quartic gauge couplings at $$\\sqrt{s} =$$ 8 TeV

    DOE PAGES

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.; ...

    2017-10-11

    Here, measurements are presented ofmore » $$ \\mathrm{ W \\gamma\\gamma } $$ and $$ \\mathrm{ Z \\gamma\\gamma } $$ production in proton-proton collisions. Fiducial cross sections are reported based on a data sample corresponding to an integrated luminosity of 19.4 fb$$^{-1}$$ collected with the CMS detector at a center-of-mass energy of 8 TeV. Signal is identified through the $$\\mathrm{ W } \\to \\ell\

  10. IFN-gamma synergizes with LPS to induce nitric oxide biosynthesis through glycogen synthase kinase-3-inhibited IL-10.

    PubMed

    Lin, Chiou-Feng; Tsai, Cheng-Chieh; Huang, Wei-Ching; Wang, Chi-Yun; Tseng, Hsiang-Chi; Wang, Yi; Kai, Jui-In; Wang, Szu-Wen; Cheng, Yi-Lin

    2008-10-15

    Interferon-gamma (IFN-gamma) plays a crucial role in innate immunity and inflammation. It causes the synergistic effect on endotoxin lipopolysaccharide (LPS)-stimulated inducible nitric oxide synthase (iNOS)/NO biosynthesis; however, the mechanism remains unclear. In the present study, we investigated the effects of glycogen synthase kinase-3 (GSK-3)-mediated inhibition of anti-inflammatory interleukin-10 (IL-10). We found, in LPS-stimulated macrophages, that IFN-gamma increased iNOS expression and NO production in a time-dependent manner. In addition, ELISA analysis showed the upregulation of tumor necrosis factor-alpha and regulated on activation, normal T expressed and secreted, and the downregulation of IL-10. RT-PCR further showed changes in the IL-10 mRNA level as well. Treating cells with recombinant IL-10 showed a decrease in IFN-gamma/LPS-induced iNOS/NO biosynthesis, whereas anti-IL-10 neutralizing antibodies enhanced this effect, suggesting that IL-10 acts in an anti-inflammatory role. GSK-3-inhibitor treatment blocked IFN-gamma/LPS-induced iNOS/NO biosynthesis but upregulated IL-10 production. Inhibiting GSK-3 using short-interference RNA showed similar results. Additionally, treating cells with anti-IL-10 neutralizing antibodies blocked these effects. We further showed that inhibiting GSK-3 increased phosphorylation of transcription factor cyclic AMP response element binding protein. Inhibiting protein tyrosine kinase Pyk2, an upstream regulator of GSK-3beta, caused inhibition on IFN-gamma/LPS-induced GSK-3beta phosphorylation at tyrosine 216 and iNOS/NO biosynthesis. Taken together, these findings reveal the involvement of GSK-3-inhibited IL-10 on the induction of iNOS/NO biosynthesis by IFN-gamma synergized with LPS. (c) 2008 Wiley-Liss, Inc.

  11. Dual antiplatelet therapy versus oral anticoagulation plus dual antiplatelet therapy in patients with atrial fibrillation and low-to-moderate thromboembolic risk undergoing coronary stenting: design of the MUSICA-2 randomized trial.

    PubMed

    Sambola, Antonia; Montoro, J Bruno; Del Blanco, Bruno García; Llavero, Nadia; Barrabés, José A; Alfonso, Fernando; Bueno, Héctor; Cequier, Angel; Serra, Antonio; Zueco, Javier; Sabaté, Manel; Rodríguez-Leor, Oriol; García-Dorado, David

    2013-10-01

    Oral anticoagulation (OAC) is the recommended therapy for patients with atrial fibrillation (AF) because it reduces the risk of stroke and other thromboembolic events. Dual antiplatelet therapy (DAPT) is required after percutaneous coronary intervention and stenting (PCI-S). In patients with AF requiring PCI-S, the association of DAPT and OAC carries an increased risk of bleeding, whereas OAC therapy or DAPT alone may not protect against the risk of developing new ischemic or thromboembolic events. The MUSICA-2 study will test the hypothesis that DAPT compared with triple therapy (TT) in patients with nonvalvular AF at low-to-moderate risk of stroke (CHADS2 score ≤2) after PCI-S reduces the risk of bleeding and is not inferior to TT for preventing thromboembolic complications. The MUSICA-2 is a multicenter, open-label randomized trial that will compare TT with DAPT in patients with AF and CHADS2 score ≤2 undergoing PCI-S. The primary end point is the incidence of stroke or any systemic embolism or major adverse cardiac events: death, myocardial infarction, stent thrombosis, or target vessel revascularization at 1 year of PCI-S. The secondary end point is the combination of any cardiovascular event with major or minor bleeding at 1 year of PCI-S. The calculated sample size is 304 patients. The MUSICA-2 will attempt to determine the most effective and safe treatment in patients with nonvalvular AF and CHADS2 score ≤2 after PCI-S. Restricting TT for AF patients at high risk for stroke may reduce the incidence of bleeding without increasing the risk of thromboembolic complications. © 2013.

  12. Triple antithrombotic therapy versus dual antiplatelet therapy in patients with atrial fibrillation undergoing drug-eluting stent implantation.

    PubMed

    Kang, Dong Oh; Yu, Cheol Woong; Kim, Hee Dong; Cho, Jae Young; Joo, Hyung Joon; Choi, Rak Kyong; Park, Jin Sik; Lee, Hyun Jong; Kim, Je Sang; Park, Jae Hyung; Hong, Soon Jun; Lim, Do-Sun

    2015-08-01

    The optimal antithrombotic regimen in patients with atrial fibrillation (AF) undergoing drug-eluting stent (DES) implantation for complex coronary artery disease is unclear. We compared the net clinical outcomes of triple antithrombotic therapy (TAT; aspirin, thienopyridine, and warfarin) and dual antiplatelet therapy (DAPT; aspirin and thienopyridine) in AF patients who had undergone DES implantation. A total of 367 patients were enrolled and analyzed retrospectively; 131 patients (35.7%) received TAT and 236 patients (64.3%) received DAPT. DAPT and warfarin were maintained for a minimum of 12 and 24 months, respectively. The primary endpoint was the 2-year net clinical outcomes, a composite of major bleeding and major adverse cardiac and cerebral events (MACCE). Propensity score-matching analysis was carried out in 99 patient pairs. The 2-year net clinical outcomes of the TAT group were worse than those of the DAPT group (34.3 vs. 21.1%, P=0.006), which was mainly due to the higher incidence of major bleeding (16.7 vs. 4.6%, P<0.001), without any significant increase in MACCE (22.1 vs. 17.7%, P=0.313). In the multivariate analysis, TAT was an independent predictor of worse net clinical outcomes (odds ratio 1.63, 95% confidence interval 1.06-2.50) and major bleeding (odds ratio 3.54, 95% confidence interval 1.65-7.58). After propensity score matching, the TAT group still had worse net clinical outcomes and a higher incidence of major bleeding compared with the DAPT group. In AF patients undergoing DES implantation, prolonged administration of TAT may be harmful due to the substantial increase in the risk for major bleeding without any reduction in MACCE.

  13. Basics of Gamma Ray Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stinnett, Jacob; Venkataraman, Ram

    The objective of this training is to explain the origin of x-rays and gamma rays, gamma ray interactions with matter, detectors and electronics used in gamma ray-spectrometry, and features of a gamma-ray spectrum for nuclear material that is safeguarded.

  14. Dynamic gamma knife radiosurgery

    NASA Astrophysics Data System (ADS)

    Luan, Shuang; Swanson, Nathan; Chen, Zhe; Ma, Lijun

    2009-03-01

    Gamma knife has been the treatment of choice for various brain tumors and functional disorders. Current gamma knife radiosurgery is planned in a 'ball-packing' approach and delivered in a 'step-and-shoot' manner, i.e. it aims to 'pack' the different sized spherical high-dose volumes (called 'shots') into a tumor volume. We have developed a dynamic scheme for gamma knife radiosurgery based on the concept of 'dose-painting' to take advantage of the new robotic patient positioning system on the latest Gamma Knife C™ and Perfexion™ units. In our scheme, the spherical high dose volume created by the gamma knife unit will be viewed as a 3D spherical 'paintbrush', and treatment planning reduces to finding the best route of this 'paintbrush' to 'paint' a 3D tumor volume. Under our dose-painting concept, gamma knife radiosurgery becomes dynamic, where the patient moves continuously under the robotic positioning system. We have implemented a fully automatic dynamic gamma knife radiosurgery treatment planning system, where the inverse planning problem is solved as a traveling salesman problem combined with constrained least-square optimizations. We have also carried out experimental studies of dynamic gamma knife radiosurgery and showed the following. (1) Dynamic gamma knife radiosurgery is ideally suited for fully automatic inverse planning, where high quality radiosurgery plans can be obtained in minutes of computation. (2) Dynamic radiosurgery plans are more conformal than step-and-shoot plans and can maintain a steep dose gradient (around 13% per mm) between the target tumor volume and the surrounding critical structures. (3) It is possible to prescribe multiple isodose lines with dynamic gamma knife radiosurgery, so that the treatment can cover the periphery of the target volume while escalating the dose for high tumor burden regions. (4) With dynamic gamma knife radiosurgery, one can obtain a family of plans representing a tradeoff between the delivery time and the

  15. cAMP and forskolin decrease. gamma. -aminobutyric acid-gated chloride flux in rat brain synaptoneurosomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heuschneider, G.; Schwartz, R.D.

    1989-04-01

    The effects of the cyclic nucleotide cAMP on {gamma}-aminobutyric acid-gated chloride channel function were investigated. The membrane-permeant cAMP analog N{sup 6}, O{sup 2{prime}}-dibutyryladenosine 3{prime},5{prime}-cyclic monophosphate inhibited muscimol-induced {sup 36}Cl{sup {minus}} uptake into rat cerebral cortical synaptoneurosomes in a concentration-dependent manner. The inhibition was due to a decrease in the maximal effect of muscimol, with no change in potency. Similar effects were observed with 8-(4-chlorophenylthio)adenosine 3{prime},5{prime}-cyclic monophosphate, 8-bromoadenosine 3{prime},5{prime}-cyclic monophosphate, and the phosphodiesterase inhibitor isobutylmethylxanthine. The effect of endogenous cAMP accumulation on the {gamma}-aminobutyric acid-gated Cl{sup {minus}} channel was studied with forskolin, an activator of adenylate cyclase. Under identical conditions, inmore » the intact synaptoneurosomes, forskolin inhibited muscimol-induced {sup 36}Cl{sup {minus}} uptake and generated cAMP with similar potencies. Surprisingly, 1,9-dideoxyforskolin, which does not activate adenylate cyclase, also inhibited the muscimol response, suggesting that forskolin and its lipophilic derivatives may interact with the Cl{sup {minus}} channel directly. The data suggest that {gamma}-aminobutyric acid (GABA{sub A}) receptor function in brain can be regulated by cAMP-dependent phosphorylation.« less

  16. Phosphoinositide 3-kinase gamma regulates airway smooth muscle contraction by modulating calcium oscillations.

    PubMed

    Jiang, Haihong; Abel, Peter W; Toews, Myron L; Deng, Caishu; Casale, Thomas B; Xie, Yan; Tu, Yaping

    2010-09-01

    Phosphoinositide 3-kinase gamma (PI3Kgamma) has been implicated in the pathogenesis of asthma, but its mechanism has been considered indirect, through release of inflammatory cell mediators. Because airway smooth muscle (ASM) contractile hyper-responsiveness plays a critical role in asthma, the aim of the present study was to determine whether PI3Kgamma can directly regulate contractility of ASM. Immunohistochemistry staining indicated expression of PI3Kgamma protein in ASM cells of mouse trachea and lung, which was confirmed by Western blot analysis in isolated mouse tracheal ASM cells. PI3Kgamma inhibitor II inhibited acetylcholine (ACh)-stimulated airway contraction of cultured precision-cut mouse lung slices in a dose-dependent manner with 75% inhibition at 10 muM. In contrast, inhibitors of PI3Kalpha, PI3Kbeta, or PI3Kdelta, at concentrations 40-fold higher than their reported IC(50) values for their primary targets, had no effect. It is noteworthy that airways in lung slices pretreated with PI3Kgamma inhibitor II still exhibited an ACh-induced initial contraction, but the sustained contraction was significantly reduced. Furthermore, the PI3Kgamma-selective inhibitor had a small inhibitory effect on the ACh-stimulated initial Ca(2+) transient in ASM cells of mouse lung slices or isolated mouse ASM cells but significantly attenuated the sustained Ca(2+) oscillations that are critical for sustained airway contraction. This report is the first to show that PI3Kgamma directly controls contractility of airways through regulation of Ca(2+) oscillations in ASM cells. Thus, in addition to effects on airway inflammation, PI3Kgamma inhibitors may also exert direct effects on the airway contraction that contribute to pathologic airway hyper-responsiveness.

  17. Galactic plane gamma-radiation

    NASA Technical Reports Server (NTRS)

    Hartman, R. C.; Kniffen, D. A.; Thompson, D. J.; Fichtel, C. E.; Ogelman, H. B.; Tumer, T.; Ozel, M. E.

    1979-01-01

    Analysis of the SAS 2 data together with the COS B results shows that the distribution of galactic gamma-radiation has several similarities to that of other large-scale tracers of galactic structure. The radiation is primarily confined to a thin disc which exhibits offsets from b = 0 degrees similar to warping at radio frequencies. The principal distinction of the gamma-radiation is a stronger contrast in intensity between the region from 310 to 45 degrees in longitude and the regions away from the center that can be attributed to a variation in cosmic-ray density as a function of position in Galaxy. The diffuse galactic gamma-ray energy spectrum shows no significant variation in direction, and the spectrum seen along the plane is the same as that for the galactic component of the gamma-radiation at high altitudes. The uniformity of the galactic gamma-ray spectrum, the smooth decrease in intensity as a function of altitude, and the absence of any galactic gamma-ray sources at high altitudes indicate a diffuse origin for bulk of the galactic gamma-radiation rather than a collection of localized sources.

  18. Gamma-ray burster recurrence timescales

    NASA Technical Reports Server (NTRS)

    Schaefer, B. E.; Cline, T. L.

    1984-01-01

    Three optical transients have been found which are associated with gamma-ray bursters (GRBs). The deduced recurrence timescale for these optical transients (tau sub opt) will depend on the minimum brightness for which a flash would be detected. A detailed analysis using all available data of tau sub opt as a function of E(gamma)/E(opt) is given. For flashes similar to those found in the Harvard archives, the best estimate of tau sub opt is 0.74 years, with a 99% confidence interval from 0.23 years to 4.7 years. It is currently unclear whether the optical transients from GRBs also give rise to gamma-ray events. One way to test this association is to measure the recurrence timescale of gamma-ray events tau sub gamma. A total of 210 gamma-ray error boxes were examined and it was found that the number of observed overlaps is not significantly different from the number expected from chance coincidence. This observation can be used to place limits on tau sub gamma for an assumed luminosity function. It was found that tau sub gamma is approx. 10 yr if bursts are monoenergetic. However, if GRBs have a power law luminosity function with a wide dynamic range, then the limit is tau sub gamma 0.5 yr. Hence, the gamma-ray data do not require tau sub gamma and tau sub opt to be different.

  19. Gamma watermarking

    DOEpatents

    Ishikawa, Muriel Y.; Wood, Lowell L.; Lougheed, Ronald W.; Moody, Kenton J.; Wang, Tzu-Fang

    2004-05-25

    A covert, gamma-ray "signature" is used as a "watermark" for property identification. This new watermarking technology is based on a unique steganographic or "hidden writing" digital signature, implemented in tiny quantities of gamma-ray-emitting radioisotopic material combinations, generally covertly emplaced on or within an object. This digital signature may be readily recovered at distant future times, by placing a sensitive, high energy-resolution gamma-ray detecting instrument reasonably precisely over the location of the watermark, which location may be known only to the object's owner; however, the signature is concealed from all ordinary detection means because its exceedingly low level of activity is obscured by the natural radiation background (including the gamma radiation naturally emanating from the object itself, from cosmic radiation and material surroundings, from human bodies, etc.). The "watermark" is used in object-tagging for establishing object identity, history or ownership. It thus may serve as an aid to law enforcement officials in identifying stolen property and prosecuting theft thereof. Highly effective, potentially very low cost identification-on demand of items of most all types is thus made possible.

  20. The Gamma-ray Sky with Fermi

    NASA Technical Reports Server (NTRS)

    Thompson, David

    2012-01-01

    Gamma rays reveal extreme, nonthermal conditions in the Universe. The Fermi Gamma-ray Space Telescope has been exploring the gamma-ray sky for more than four years, enabling a search for powerful transients like gamma-ray bursts, novae, solar flares, and flaring active galactic nuclei, as well as long-term studies including pulsars, binary systems, supernova remnants, and searches for predicted sources of gamma rays such as dark matter annihilation. Some results include a stringent limit on Lorentz invariance derived from a gamma-ray burst, unexpected gamma-ray variability from the Crab Nebula, a huge gamma-ray structure associated with the center of our galaxy, surprising behavior from some gamma-ray binary systems, and a possible constraint on some WIMP models for dark matter.

  1. Pharmacological BACE1 and BACE2 inhibition induces hair depigmentation by inhibiting PMEL17 processing in mice

    PubMed Central

    Shimshek, Derya R.; Jacobson, Laura H.; Kolly, Carine; Zamurovic, Natasa; Balavenkatraman, Kamal Kumar; Morawiec, Laurent; Kreutzer, Robert; Schelle, Juliane; Jucker, Mathias; Bertschi, Barbara; Theil, Diethilde; Heier, Annabelle; Bigot, Karine; Beltz, Karen; Machauer, Rainer; Brzak, Irena; Perrot, Ludovic; Neumann, Ulf

    2016-01-01

    Melanocytes of the hair follicle produce melanin and are essential in determining the differences in hair color. Pigment cell-specific MELanocyte Protein (PMEL17) plays a crucial role in melanogenesis. One of the critical steps is the amyloid-like functional oligomerization of PMEL17. Beta Site APP Cleaving Enzyme-2 (BACE2) and γ-secretase have been shown to be key players in generating the proteolytic fragments of PMEL17. The β-secretase (BACE1) is responsible for the generation of amyloid-β (Aβ) fragments in the brain and is therefore proposed as a therapeutic target for Alzheimer’s disease (AD). Currently BACE1 inhibitors, most of which lack selectivity over BACE2, have demonstrated efficacious reduction of amyloid-β peptides in animals and the CSF of humans. BACE2 knock-out mice have a deficiency in PMEL17 proteolytic processing leading to impaired melanin storage and hair depigmentation. Here, we confirm BACE2-mediated inhibition of PMEL17 proteolytic processing in vitro in mouse and human melanocytes. Furthermore, we show that wildtype as well as bace2+/− and bace2−/− mice treated with a potent dual BACE1/BACE2 inhibitor NB-360 display dose-dependent appearance of irreversibly depigmented hair. Retinal pigmented epithelium showed no morphological changes. Our data demonstrates that BACE2 as well as additional BACE1 inhibition affects melanosome maturation and induces hair depigmentation in mice. PMID:26912421

  2. Gamma Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    2000-01-01

    The project has progressed successfully during this period of performance. The highlights of the Gamma Ray Astronomy teams efforts are: (1) Support daily BATSE data operations, including receipt, archival and dissemination of data, quick-look science analysis, rapid gamma-ray burst and transient monitoring and response efforts, instrument state-of-health monitoring, and instrument commanding and configuration; (2) On-going scientific analysis, including production and maintenance of gamma-ray burst, pulsed source and occultation source catalogs, gamma-ray burst spectroscopy, studies of the properties of pulsars and black holes, and long-term monitoring of hard x-ray sources; (3) Maintenance and continuous improvement of BATSE instrument response and calibration data bases; (4) Investigation of the use of solid state detectors for eventual application and instrument to perform all sky monitoring of X-Ray and Gamma sources with high sensitivity; and (5) Support of BATSE outreach activities, including seminars, colloquia and World Wide Web pages. The highlights of this efforts can be summarized in the publications and presentation list.

  3. Gamma ray detector shield

    DOEpatents

    Ohlinger, R.D.; Humphrey, H.W.

    1985-08-26

    A gamma ray detector shield comprised of a rigid, lead, cylindrical-shaped vessel having upper and lower portions with an pneumatically driven, sliding top assembly. Disposed inside the lead shield is a gamma ray scintillation crystal detector. Access to the gamma detector is through the sliding top assembly.

  4. Notch1 Mediates Preconditioning Protection Induced by GPER in Normotensive and Hypertensive Female Rat Hearts.

    PubMed

    Rocca, Carmine; Femminò, Saveria; Aquila, Giorgio; Granieri, Maria C; De Francesco, Ernestina M; Pasqua, Teresa; Rigiracciolo, Damiano C; Fortini, Francesca; Cerra, Maria C; Maggiolini, Marcello; Pagliaro, Pasquale; Rizzo, Paola; Angelone, Tommaso; Penna, Claudia

    2018-01-01

    G protein-coupled estrogen receptor (GPER) is an estrogen receptor expressed in the cardiovascular system. G1, a selective GPER ligand, exerts cardiovascular effects through activation of the PI3K-Akt pathway and Notch signaling in normotensive animals. Here, we investigated whether the G1/GPER interaction is involved in the limitation of infarct size, and improvement of post-ischemic contractile function in female spontaneous hypertensive rat (SHR) hearts. In this model, we also studied Notch signaling and key components of survival pathway, namely PI3K-Akt, nitric oxide synthase (NOS) and mitochondrial K + -ATP (MitoKATP) channels. Rat hearts isolated from female SHR underwent 30 min of global, normothermic ischemia and 120 min of reperfusion. G1 (10 nM) alone or specific inhibitors of GPER, PI3K/NOS and MitoKATP channels co-infused with G1, just before I/R, were studied. The involvement of Notch1 was studied by Western blotting. Infarct size and left ventricular pressure were measured. To confirm endothelial-independent G1-induced protection by Notch signaling, H9c2 cells were studied with specific inhibitor, N -[ N -(3,5 difluorophenacetyl)-L-alanyl]- S -phenylglycine t -butyl ester (DAPT, 5 μM), of this signaling. Using DAPT, we confirmed the involvement of G1/Notch signaling in limiting infarct size in heart of normotensive animals. In the hypertensive model, G1-induced reduction in infarct size and improvement of cardiac function were prevented by the inhibition of GPER, PI3K/NOS, and MitoKATP channels. The involvement of Notch was confirmed by western blot in the hypertensive model and by the specific inhibitor in the normotensive model and cardiac cell line. Our results suggest that GPERs play a pivotal role in mediating preconditioning cardioprotection in normotensive and hypertensive conditions. The G1-induced protection involves Notch1 and is able to activate the survival pathway in the presence of comorbidity. Several pathological conditions

  5. Impact of Polypharmacy on Adherence to Evidence-Based Medication in Patients who Underwent Percutaneous Coronary Intervention.

    PubMed

    Mohammed, Shaban; Arabi, Abdulrahaman; El-Menyar, Ayman; Abdulkarim, Sabir; AlJundi, Amer; Alqahtani, Awad; Arafa, Salah; Al Suwaidi, Jassim

    2016-01-01

    The primary objective of this study was to evaluate the impact of polypharmacy on primary and secondary adherence to evidence-based medication (EBM) and to measure factors associated with non-adherence among patients who underwent percutaneous coronary intervention (PCI). We conducted a retrospective analysis for patients who underwent PCI at a tertiary cardiac care hospital in Qatar. Patients who had polypharmacy (defined as ≥6 medications) were compared with those who had no polypharmacy at hospital discharge in terms of primary and secondary adherence to dual antiplatelet therapy (DAPT), beta-blockers (BB), angiotensin converting enzyme inhibitors (ACEIs) and statins. A total of 557 patients (mean age: 53±10 years; 85%; males) who underwent PCI were included. The majority of patients (84.6%) received ≥6 medications (polypharmacy group) while only 15.4% patients received ≥5 medications (nonpolypharmacy group). The two groups were comparable in term of gender, nationality, socioeconomic status and medical insurance. The non-polypharmacy patients had significantly higher adherence to first refill of DAPT compared with patients in the polypharmacy group (100 vs. 76.9%; p=0.001). Similarly, the non-polypharmacy patients were significantly more adherent to secondary preventive medications (BB, ACEI and statins) than the polypharmacy group. In patients who underwent PCI, polypharmacy at discharge could play a negative role in the adherence to the first refill of EBM. Further studies should investigate other parameters that contribute to long term non-adherence.

  6. Junctional E-cadherin/p120-catenin Is Correlated with the Absence of Supporting Cells to Hair Cells Conversion in Postnatal Mice Cochleae.

    PubMed

    Luo, Wen-Wei; Wang, Xin-Wei; Ma, Rui; Chi, Fang-Lu; Chen, Ping; Cong, Ning; Gu, Yu-Yan; Ren, Dong-Dong; Yang, Juan-Mei

    2018-01-01

    Notch inhibition is known to generate supernumerary hair cells (HCs) at the expense of supporting cells (SCs) in the mammalian inner ear. However, inhibition of Notch activity becomes progressively less effective at inducing SC-to-HC conversion in the postnatal cochlea and balance organs as the animal ages. It has been suggested that the SC-to-HC conversion capacity is inversely correlated with E-cadherin accumulation in postnatal mammalian utricles. However, whether E-cadherin localization is linked to the SC-to-HC conversion capacity in the mammalian inner ear is poorly understood. In the present study, we treated cochleae from postnatal day 0 (P0) with the Notch signaling inhibitor DAPT and observed apparent SC-to-HC conversion along with E-cadherin/p120ctn disruption in the sensory region. In addition, the SC-to-HC conversion capacity and E-cadherin/p120ctn disorganization were robust in the apex but decreased toward the base. We further demonstrated that the ability to regenerate HCs and the disruption of E-cadherin/p120ctn concomitantly decreased with age and ceased at P7, even after extended DAPT treatments. This timing is consistent with E-cadherin/p120ctn accumulation in the postnatal cochleae. These results suggest that the decreasing capacity of SCs to transdifferentiate into HCs correlates with E-cadherin/p120ctn localization in the postnatal cochleae, which might account for the absence of SC-to-HC conversion in the mammalian cochlea.

  7. Inhibition of Notch3 prevents monocrotaline-induced pulmonary arterial hypertension.

    PubMed

    Zhang, Yonghong; Xie, Xinming; Zhu, Yanting; Liu, Lu; Feng, Wei; Pan, Yilin; Zhai, Cui; Ke, Rui; Li, Shaojun; Song, Yang; Fan, Yuncun; Fan, Fenling; Wang, Xiaochuang; Li, Fengjuan; Li, Manxiang

    2015-01-01

    It has been shown that activation of Notch3 signaling is involved in the development of pulmonary arterial hypertension (PAH) by stimulating pulmonary arteries remodeling, while the molecular mechanisms underlying this are still largely unknown. The aims of this study are to address these issues. Monocrotaline dramatically increased right ventricle systolic pressure to 39.0 ± 2.6 mmHg and right ventricle hypertrophy index to 53.4 ± 5.3% (P < 0.05 versus control) in rats, these were accompanied with significantly increased proliferation and reduced apoptosis of pulmonary vascular cells as well as pulmonary arteries remodeling. Treatment of PAH model with specific Notch inhibitor DAPT significantly reduced right ventricle systolic pressure to 26.6 ± 1.3 mmHg and right ventricle hypertrophy index to 33.5 ± 2.6% (P < 0.05 versus PAH), suppressed proliferation and enhanced apoptosis of pulmonary vascular cells as well as inhibited pulmonary arteries remodeling. Our results further indicated that level of Notch3 protein and NICD3 were increased in MCT-induced model of PAH, this was accompanied with elevation of Skp2 and Hes1 protein level and reduction of P27Kip1. Administration of rats with DAPT-prevented MCT induced these changes. Our results suggest that Notch3 signaling activation stimulated pulmonary vascular cells proliferation by Skp2-and Hes1-mediated P27Kip1 reduction, and Notch3 might be a new target to treat PAH.

  8. Knock-in strategy at 3'-end of Crx gene by CRISPR/Cas9 system shows the gene expression profiles during human photoreceptor differentiation.

    PubMed

    Homma, Kohei; Usui, Sumiko; Kaneda, Makoto

    2017-03-01

    Fluorescent reporter gene knock-in induced pluripotent stem cell (iPSC) lines have been used to evaluate the efficiency of differentiation into specific cell lineages. Here, we report a knock-in strategy for the generation of human iPSC reporter lines in which a 2A peptide sequence and a red fluorescent protein (E2-Crimson) gene were inserted at the termination codon of the cone-rod homeobox (Crx) gene, a photoreceptor-specific transcriptional factor gene. The knock-in iPSC lines were differentiated into fluorescence-expressing cells in 3D retinal differentiation culture, and the fluorescent cells also expressed Crx specifically in the nucleus. We found that the fluorescence intensity was positively correlated with the expression levels of Crx mRNA and that fluorescent cells expressed rod photoreceptor-specific genes in the later stage of differentiation. Finally, we treated the fluorescent cells with DAPT, a Notch inhibitor, and found that DAPT-enhanced retinal differentiation was associated with up-regulation of Crx, Otx2 and NeuroD1, and down-regulation of Hes5 and Ngn2. These suggest that this knock-in strategy at the 3'-end of the target gene, combined with the 2A peptide linked to fluorescent proteins, offers a useful tool for labeling specific cell lineages or monitoring expression of any marker genes without affecting the function of the target gene. © 2017 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  9. Nifedipine inhibits advanced glycation end products (AGEs) and their receptor (RAGE) interaction-mediated proximal tubular cell injury via peroxisome proliferator-activated receptor-gamma activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsui, Takanori; Yamagishi, Sho-ichi, E-mail: shoichi@med.kurume-u.ac.jp; Takeuchi, Masayoshi

    2010-07-23

    Research highlights: {yields} Nifedipine inhibited the AGE-induced up-regulation of RAGE mRNA levels in tubular cells, which was prevented by GW9662, an inhibitor of peroxisome proliferator-activated receptor-{gamma}. {yields} GW9662 treatment alone increased RAGE mRNA levels in tubular cells. {yields} Nifedipine inhibited the AGE-induced reactive oxygen species generation, NF-{kappa}B activation and increases in intercellular adhesion molecule-1 and transforming growth factor-{beta} gene expression in tubular cells, all of which were blocked by GW9662. -- Abstract: There is a growing body of evidence that advanced glycation end products (AGEs) and their receptor (RAGE) interaction evokes oxidative stress generation and subsequently elicits inflammatory and fibrogenicmore » reactions, thereby contributing to the development and progression of diabetic nephropathy. We have previously found that nifedipine, a calcium-channel blocker (CCB), inhibits the AGE-induced mesangial cell damage in vitro. However, effects of nifedipine on proximal tubular cell injury remain unknown. We examined here whether and how nifedipine blocked the AGE-induced tubular cell damage. Nifedipine, but not amlodipine, a control CCB, inhibited the AGE-induced up-regulation of RAGE mRNA levels in tubular cells, which was prevented by the simultaneous treatment of GW9662, an inhibitor of peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}). GW9662 treatment alone was found to increase RAGE mRNA levels in tubular cells. Further, nifedipine inhibited the AGE-induced reactive oxygen species generation, NF-{kappa}B activation and increases in intercellular adhesion molecule-1 and transforming growth factor-beta gene expression in tubular cells, all of which were blocked by GW9662. Our present study provides a unique beneficial aspect of nifedipine on diabetic nephropathy; it could work as an anti-oxidative and anti-inflammatory agent against AGEs in tubular cells by suppressing RAGE

  10. Pitting corrosion inhibition of aluminum 2024 by Bacillus biofilms secreting polyaspartate or gamma-polyglutamate.

    PubMed

    Ornek, D; Jayaraman, A; Syrett, B C; Hsu, C-H; Mansfeld, F B; Wood, T K

    2002-04-01

    Pitting corrosion of aluminum 2024 in Luria Bertani medium was reduced by the secretion of anionic peptides by engineered and natural Bacillus biofilms and was studied in continuous reactors using electrochemical impedance spectroscopy. Compared to sterile controls, pitting was reduced dramatically by the presence of the biofilms. The secretion of a 20 amino acid polyaspartate peptide by an engineered Bacillus subtilis WB600/pBE92-Asp biofilm slightly reduced the corrosion rate of the passive aluminum alloy at pH 6.5; however, the secretion of gamma-polyglutamate by a Bacillus licheniformis biofilm reduced the corrosion rate by 90% (compared to the B. subtilis WB600/pBE92 biofilm which did not secrete polyaspartate or gamma-polyglutamate). The corrosion potential ( E(corr)) of aluminum 2024 was increased by about 0.15-0.44 V due to the formation of B. subtilis and B. licheniformis biofilms as compared to sterile controls. The increase of E(corr) and the observed prevention of pitting indicate that the pitting potential ( E(pit)) had increased. This result and the further decrease of corrosion rates for the passive aluminum alloy suggest that the rate of the anodic metal dissolution reaction was reduced by an inhibitor produced by the biofilms. Purified gamma-polyglutamate also decreased the corrosion rates of aluminum 2024.

  11. Wetting characteristics and blood clotting on surfaces of copoly(gamma-Benzyl-L-glutamate, gamma-hydroxyethyl-L-glutamine).

    PubMed

    Yano, E; Komai, T; Kawasaki, T; Kaifu, K; Atsuta, T; Kubo, Y; Fujiwara, Y

    1985-09-01

    The film surface of poly(gamma-benzyl-L-glutamate) (PBLG) was modified with 2-aminoethanol to enhance its hydrophilicity. Controlling the reaction conditions of PBLG and 2-aminoethanol, various types of copoly(gamma-benzyl-L-glutamate, gamma-hydroxyethyl-L-glutamine) film surfaces were obtained. Surface free energy (gamma sv), the dispersive component of gamma sv (gamma dsv), the nondispersive component of gamma sv (gamma psv), and the interfacial free energy of polymer surface with water (gamma sw), which were obtained by using the contact angle measurement and calculation method proposed by Andrade et al., were changed remarkably by the aminolysis. The gamma sv value increased after 2 h of aminolysis from 48.2 (PBLG) to 65.3 dyn/cm and gradually increased to around 70 dyn/cm after 12 h reaction. (gamma dsv) and (gamma psv) changed from 31.0 and 17.2 dyn/cm (PBLG) to 26.5 and 44.3 dyn/cm, respectively. These parameters of the material surfaces, modified over 12 h reaction, were found to be similar to those of the surfaces of canine aorta, vein, and human fibrin membrane. Blood clotting times on these polymer surfaces were comparatively longer than on siliconized glass surfaces.

  12. Inhibition of spinal protein kinase C-epsilon or -gamma isozymes does not affect halothane minimum alveolar anesthetic concentration in rats.

    PubMed

    Shumilla, Jennifer A; Sweitzer, Sarah M; Eger, Edmond I; Laster, Michael J; Kendig, Joan J

    2004-07-01

    Anesthetic effects on receptor or ion channel phosphorylation by enzymes such as protein kinase C (PKC) have been postulated to underlie some aspects of anesthesia. In vitro studies show that anesthetic effects on several receptors are mediated by PKC. To test the importance of PKC for the immobility produced by inhaled anesthetics, we measured the effect of intrathecal injections of PKC-epsilon and -gamma inhibitors on halothane minimum alveolar anesthetic concentration (MAC) in 7-day-old and 21-day-old Sprague-Dawley rats. The inhibitors were made as solutions of 100 pmol/5 microL and were given in a volume of 5 microL (7-day-old [P7] rats) or 10 microL (21-day-old [P21] rats). Controls were saline injections or injections of the peptide carrier at the same concentration and volumes; there were six animals in each group. In P7 rats, MAC values (in percentage of an atmosphere) were 1.63 +/- 0.0727 (mean +/- SEM) in saline controls, 1.55 +/- 0.141 in carrier controls, 1.54 +/- 0.0800 in rats given PKC-epsilon, and 1.69 +/- 0.0554 in rats given PKC-gamma. In P21 animals, the values were 1.20 +/- 0.0490, 1.31 +/- 0.0124, 1.27 +/- 0.0367, and 1.15 +/- 0.0483, respectively. Injection of the inhibitors did not change MAC in either age group. These results do not support an anesthetic effect on phosphorylation as a mechanism underlying the capacity of inhaled anesthetics to prevent movement in response to noxious stimulation, and they indirectly support a direct action on receptors or ion channels.

  13. Newer treatments of psoriasis regarding IL-23 inhibitors, phosphodiesterase 4 inhibitors, and Janus kinase inhibitors.

    PubMed

    Wcisło-Dziadecka, Dominika; Zbiciak-Nylec, Martyna; Brzezińska-Wcisło, Ligia; Bebenek, Katarzyna; Kaźmierczak, Agata

    2017-11-01

    The rapid progress of genetic engineering furthermore opens up new prospects in the therapy of this difficult-to-treat disease. IL-23 inhibitors, phosphodiesterase 4 (PDE4) inhibitors, and Janus kinase (JAK) inhibitors are currently encouraging further research. Two drugs which are IL-23 inhibitors are now in phase III of clinical trials. The aim of the action of both drugs is selective IL-23 inhibition by targeting the p19 subunit. Guselkumab is a fully human monoclonal antibody. Tildrakizumab is a humanized monoclonal antibody, which also belongs to IgG class and is targeted to subunit p19 of interleukin 23 (IL-23). Phosphodiesterase inhibitors exert an anti-inflammatory action and their most common group is the PDE4 family. PDE4 inhibits cAMP, which reduces the inflammatory response of the pathway of Th helper lymphocytes, Th17, and type 1 interferon which modulates the production of anti-inflammatory cytokines such as IL-10 interleukins. The Janus kinase (JAK) signaling pathway plays an important role in the immunopathogenesis of psoriasis. Tofacitinib suppresses the expression of IL-23, IL-17A, IL-17F, and IL-22 receptors during the stimulation of lymphocytes. Ruxolitinib is a selective inhibitor of JAK1 and JAK2 kinases and the JAK-STAT signaling pathway. This article is a review of the aforementioned drugs as described in the latest available literature. © 2017 Wiley Periodicals, Inc.

  14. Identification and characterization of novel peroxisome proliferator-activated receptor-gamma (PPAR-gamma) transcriptional variants in pig and human.

    PubMed

    Omi, T; Brenig, B; Spilar Kramer, S; Iwamoto, S; Stranzinger, G; Neuenschwander, S

    2005-04-01

    The peroxisome proliferator-activated receptor-gamma (PPAR-gamma) is a member of the steroid/thyroid/retinoid receptor superfamily, and is primarily expressed in fat tissue. To date, two major PPAR-gamma isoforms have been identified in pig, PPAR-gamma1 and PPAR-gamma2. Porcine PPAR-gamma1a consists of two leader exons, designated A1 and A2, followed by six exons containing the open reading frame. Here, we report the isolation and characterization of three novel PPAR-gamma1 transcripts. PPAR-gamma1b is derived from exon A1, with exon A2 spliced out. PPAR-gamma1c and PPAR-gamma1d are derived from the new exon, A', containing exon A2 (gamma1c) or without exon A2 (gamma1d). Based on PCR analysis of PAC clones that included sequences from the 5'-untranslated region of the PPAR-gamma gene, the new A' exon is located between the known exons A1 and A2. We also isolated the human homologue to exon A', as well as the two new PPAR-gamma1c and -gamma1d splice variants, from human adipose tissue. Studies of the expression of porcine PPAR-gamma by real time reverse transcription-polymerase chain reaction analysis show that transcripts derived from exon A1 were not expressed at significantly different levels in visceral fat (lamina subserosa) or subcutaneous fat (back fat, inner and outer layer). In contrast, exon A'-derived transcripts were expressed at progressively higher levels in the inner and outer layers of subcutaneous fat than in visceral fat. The same expression pattern was also observed for PPAR-gamma2. We hypothesize that there are three promoters, which differentially regulate PPAR-gamma1 and PPAR-gamma2 gene expression, depending on the specific localization of the fat tissue.

  15. Terrestrial Gamma-Ray Flashes (TGFs)

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    2010-01-01

    This slide presentation reviews the observation of Terrestrial Gamma Ray Flashes (TGFs) by Gamma-Ray Telescopes. These were: (1) BATSE /Compton Observatory, (2) Solar Spectroscopic Imager, (3) AGILE Gamma-ray Telescope, and (4) Gamma-ray Burst Monitor (GBM) on the Fermi Gamma-ray Space Telescope. It contains charts which display the counts over time, a map or the TGFs observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). and a map showing the latitude and longitude of 85 of the TGFs observed by the Fermi GBM.

  16. Podoscyphic acid, a new inhibitor of avian myeloblastosis virus and Moloney murine leukemia virus reverse transcriptase from a Podoscypha species.

    PubMed

    Erkel, G; Anke, T; Velten, R; Steglich, W

    1991-01-01

    A novel enzyme inhibitor of RNA-directed DNA-polymerases of avian myeloblastosis and murine leukemia virus was isolated from fermentations of an tasmanian Podoscypha species. Its structure was elucidated by spectroscopic methods and oxidative degradation as (E)-4,5-dioxo-2-hexadecenoic acid (1). The enzyme inhibitor, which was named podoscyphic acid, did not inhibit DNA and RNA synthesis in permeabilized L 1210 cells nor did it affect RNA synthesis in isolated nuclei of L 1210 cells. 1 inhibits protein synthesis in whole L 1210 cells and rabbit reticulocyte lysate and shows very weak antimicrobial and cytotoxic properties. The testing of ethyl (E)-4,5-dioxo-2-hexadecenoate (2) and (E)-4-oxo-2-tetradecenoic acid (11) revealed the importance of the free gamma-oxoacrylic acid unit for the biological activities of 1.

  17. Synthesis and biological evaluation of a gamma-cyclodextrin-based formulation of the anticancer agent 5,6,11,12,17,18,23,24-octahydrocyclododeca[1,2-b:4,5-b':7,8-b'':10,11-b''']tetraindole (CTet).

    PubMed

    Lucarini, Simone; De Santi, Mauro; Antonietti, Francesca; Brandi, Giorgio; Diamantini, Giuseppe; Fraternale, Alessandra; Paoletti, Maria Filomena; Tontini, Andrea; Magnani, Mauro; Duranti, Andrea

    2010-06-04

    5,6,11,12,17,18,23,24-Octahydrocyclododeca[1,2-b:4,5-b':7,8-b'':10,11- b''']tetrai ndole (CTet), an indole-3-carbinol (I3C) metabolite endowed with anticancer properties, is poorly soluble in the solvents most frequently used in biological tests. This study indicates that the use of gamma-cyclodextrin (gamma-CD) avoids this problem. Formulated with gamma-CD CTet is a potent inhibitor of DNA synthesis in both estrogen receptor positive (MCF-7) and estrogen receptor negative (MDA-MB-231) human breast cell lines (IC50 = 1.20 +/- 0.04 microM and 1.0 +/- 0.1 microM, respectively).

  18. Gamma ray camera

    DOEpatents

    Perez-Mendez, Victor

    1997-01-01

    A gamma ray camera for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array.

  19. Differential Prognostic Impact on Mortality of Myocardial Infarction Compared With Bleeding Severity in Contemporary Acute Coronary Syndrome Patients.

    PubMed

    Caneiro-Queija, Berenice; Abu-Assi, Emad; Raposeiras-Roubín, Sergio; Manzano-Fernández, Sergio; Flores Blanco, Pedro; López-Cuenca, Ángel; Cobas-Paz, Rafael; Gómez-Molina, Miriam; Rodríguez-Rodríguez, José Manuel; Calvo-Iglesias, Francisco; Valdés-Chávarri, Mariano; Íñiguez-Romo, Andrés

    2018-04-12

    The impact on mortality of myocardial infarction (MI) compared with the specific degree of bleeding severity occurring after discharge in acute coronary syndrome is poorly characterized. Defining this relationship may help to achieve a favorable therapeutic risk-benefit balance. Using Cox-based shared frailty models, we assessed the relationship between mortality and postdischarge MI and bleeding severity-graded according to Bleeding Academic Research Consortium (BARC)-in 4229 acute coronary syndrome patients undergoing in-hospital coronary arteriography between January 2012 and December 2015. Both MI (HR, 5.8; 95%CI, 3.7-9.8) and bleeding (HR, 5.1; 95%CI, 3.6-7.7) were associated with mortality. Myocardial infarction had a stronger impact on mortality than BARC type 2 and 3a bleedings: (RRr, 3.8 and 1.9; P < .05), respectively, but was equivalent to BARC type 3b (RRr, 0.9; P = .88). Mortality risk after MI was significantly lower than after BARC type 3c bleeding (RRr, 0.25; P < .001). Mortality was higher after an MI in patients on dual antiplatelet therapy (DAPT) at the time of the event (HR, 2.9; 95%CI, 1.8-4.5) than in those off-DAPT (HR, 1.5; 95%CI, 0.7-3.4). In contrast, mortality was lower after a bleeding event in patients on-DAPT (HR, 1.6; 95%CI, 1.1-2.6) than in those off-DAPT (HR, 3.2; 95%CI, 1.7-5.8). The differential effect on mortality of a postdischarge MI vs bleeding largely depends on bleeding severity. The DAPT status at the time of MI or bleeding is a modifier of subsequent mortality risk. Copyright © 2018 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  20. Efficacy and safety of low-dose clopidogrel after 12-month dual antiplatelet therapy for patients having drug-eluting stent implantation.

    PubMed

    Zhuang, Xiao-Dong; Long, Ming; Li, Cui-Ling; Hu, Cheng-Heng; Du, Zhi-Ming; Liao, Xin-Xue

    2014-05-01

    To prevent stent thrombosis (ST) after implantation of drug-eluting stents (DESs) in patients with coronary heart disease, 12-month dual antiplatelet therapy (DAPT) is recommended. However, the optimal long-term antiplatelet regimen is not clear for the patients who have completed the 12-month DAPT. We reviewed the data of 755 consecutive patients who had undergone percutaneous coronary intervention (PCI) three years ago and completed 12-month DAPT. They were divided into three groups according to the antiplatelet medication they had used for two years after 12-month DAPT [low-dose clopidogrel (Talcom(®), 25mg/d), clopidogrel (Plavix(®), 75mg/d) and aspirin (100 mg/d)]. The efficacy (a composite incidence of cardiac death, myocardial infarction and target vessel revascularization) and safety (incidences of bleeding, gastrointestinal trouble and drug discontinuation) were compared among the three groups. The rates of multi-vessel lesions, prior MI, hemoglobin A1C (HbA1c) and low-density lipoprotein cholesterol were significantly higher in the clopidogrel (75 mg/day) group than in the other two groups (P>0.05 for both comparisons). There was no significant difference in the overall composite incidence of cardiac death, myocardial infarction and target vessel revascularization in the three groups at three years after PCI. The rates of bleeding (especially minor bleeding), gastrointestinal trouble, drug discontinuation and any blood transfusion were markedly lower in the low-dose clopidogrel (25 mg/d) group than in the other two treatment groups (P<0.05). The 25-mg maintenance dose of clopidogrel after 12-month DAPT may be more preferable to Chinese patients who have undergone DES implantation, because of its lower cost but no less efficacy and safety.

  1. Impact of dual antiplatelet therapy on outcomes among aspirin-resistant patients following coronary artery bypass grafting.

    PubMed

    Gasparovic, Hrvoje; Petricevic, Mate; Kopjar, Tomislav; Djuric, Zeljko; Svetina, Lucija; Biocina, Bojan

    2014-05-15

    Coronary artery bypass grafting is pivotal in the contemporary management of complex coronary artery disease. Interpatient variability to antiplatelet agents, however, harbors the potential to compromise the revascularization benefit by increasing the incidence of adverse events. This study was designed to define the impact of dual antiplatelet therapy (dAPT) on clinical outcomes among aspirin-resistant patients who underwent coronary artery surgery. We randomly assigned 219 aspirin-resistant patients according to multiple electrode aggregometry to receive clopidogrel (75 mg) plus aspirin (300 mg) or aspirin-monotherapy (300 mg). The primary end point was a composite outcome of all-cause death, nonfatal myocardial infarction, stroke, or cardiovascular hospitalization assessed at 6 months postoperatively. The primary end point occurred in 6% of patients assigned to dAPT and 10% of patients randomized to aspirin-monotherapy (relative risk 0.61, 95% confidence interval 0.25 to 1.51, p = 0.33). No significant treatment effect was noted in the occurrence of the safety end point. The total incidence of bleeding events was 25% and 19% in the dAPT and aspirin-monotherapy groups, respectively (relative risk 1.34, 95% confidence interval 0.80 to 2.23, p = 0.33). In the subgroup analysis, dAPT led to lower rates of adverse events in patients with a body mass index >30 kg/m(2) (0% vs 18%, p <0.01) and those <65 years (0% vs 10%, p = 0.02). In conclusion, the addition of clopidogrel in patients found to be aspirin resistant after coronary artery bypass grafting did not reduce the incidence of adverse events, nor did it increase the number of recorded bleeding events. dAPT did, however, lower the incidence of the primary end point in obese patients and those <65 years. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Chronic allograft nephropathy: expression and localization of PAI-1 and PPAR-gamma.

    PubMed

    Revelo, Monica P; Federspiel, Charles; Helderman, Harold; Fogo, Agnes B

    2005-12-01

    Chronic allograft nephropathy (CAN) is a major cause of loss of renal allografts. Mechanisms postulated to be involved include sequelae of rejection, warm ischaemia time, drug toxicity, ongoing hypertension and dyslipidaemia. Plasminogen activator inhibitor-1 (PAI-1) is implicated not only in thrombosis, but also in fibrosis, by inhibiting matrix degradation, and is expressed in renal parenchymal cells as well as in macrophages. Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) is a member of the steroid receptor superfamily, and plays a major beneficial role in lipid regulation, insulin sensitivity and macrophage function, factors that may play a role in CAN. We therefore studied the expression of these molecules in CAN. All renal biopsy/nephrectomy files from Vanderbilt and Nashville VAMC from a 6 year period were reviewed to identify all renal transplant biopsies or nephrectomies more than 6 months after transplant with CAN. CAN was defined as fibrosis in the graft, vascular, interstitial or glomerular. All cases were scored for severity of fibrosis in vasculature (0-3 scale), glomeruli (% affected with either segmental and/or global sclerosis) and interstitial fibrosis (% of sample affected). PAI-1 and PPAR-gamma immunostaining was assessed on a 0-3 scale in glomeruli, vessels and tubules. Eighty-two patients with a total of 106 samples met entry criteria. The population consisted of 59 Caucasians and 23 African-Americans; 49 males, 33 females with average age 37.9+/-1.7 years. Average time after transplant at time of biopsy was 60.5+/-4.9 months (range 7-229). Glomerulosclerosis extent in CAN was on average 26.5+/-2.4% compared with 3.6+/-1.2% in normal control kidneys from native kidney cancer nephrectomies and 0% in transplanted kidney biopsies from patients obtained > or =6 months after transplantation without CAN. Native control kidneys showed mild interstitial fibrosis (8.0+/-1.2%), whereas transplant controls showed very minimal fibrosis (2

  3. Formation of gamma'-Ni3Al via the Peritectoid Reaction: gamma plus beta (+Al2O3) equals gamma'(+Al2O3)

    NASA Technical Reports Server (NTRS)

    Copland, Evan

    2008-01-01

    The activities of Al and Ni were measured using multi-cell Knudsen effusion-cell mass spectrometry (multi-cell KEMS), over the composition range 8 - 32 at.%Al and temperature range T = 1400 - 1750 K in the Ni-Al-O system. These measurements establish that equilibrium solidification of gamma'-Ni3Al-containing alloys occurs by the eutectic reaction, L (+ Al2O3) = gamma + beta (+ Al2O3), at 1640 plus or minus 1 K and a liquid composition of 24.8 plus or minus 0.2 at.%Al (at an unknown oxygen content). The {gamma + beta + Al2O3} phase field is stable over the temperature range 1633 - 1640 K, and gamma'-Ni3Al forms via the peritectiod, gamma + beta (+ Al2O3) = gamma'(+ Al2O3), at 1633 plus or minus 1 K. This behavior is inconsistent with the current Ni-Al phase diagram and a new diagram is proposed. This new Ni-Al phase diagram explains a number of unusual steady state solidification structures reported previously and provides a much simpler reaction scheme in the vicinity of the gamma'-Ni3Al phase field.

  4. Gamma-ray astrophysics

    NASA Technical Reports Server (NTRS)

    Stecker, F. W. (Editor); Trombka, J. I. (Editor)

    1973-01-01

    Conference papers on gamma ray astrophysics are summarized. Data cover the energy region from about 0.3 MeV to a few hundred GeV and theoretical models of production mechanisms that give rise to both galactic and extragalactic gamma rays.

  5. The Gamma-ray Universe through Fermi

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2012-01-01

    Gamma rays, the most powerful form of light, reveal extreme conditions in the Universe. The Fermi Gamma-ray Space Telescope and its smaller cousin AGILE have been exploring the gamma-ray sky for several years, enabling a search for powerful transients like gamma-ray bursts, novae, solar flares, and flaring active galactic nuclei, as well as long-term studies including pulsars, binary systems, supernova remnants, and searches for predicted sources of gamma rays such as dark matter annihilation. Some results include a stringent limit on Lorentz invariance derived from a gamma-ray burst, unexpected gamma-ray variability from the Crab Nebula, a huge ga.nuna-ray structure associated with the center of our galaxy, surprising behavior from some gamma-ray binary systems, and a possible constraint on some WIMP models for dark matter.

  6. Topics in gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Lingenfelter, R. E.

    1986-01-01

    Observations of gamma rays from solar flares, gamma ray bursts, the Galactic center, galactic nucleosynthesis, SS433, and Cygnus X-3, and their effects on astrophysical problems are discussed. It is observed that gamma ray spectra from solar flares are applicable to the study of particle acceleration and confinement and the determination of chemical abundances in the solar atmosphere. The gamma ray lines from the compact galactic object SS433 are utilized to examine the acceleration of jets, and analysis of the gamma ray lines of Cygnus X-3 reveal that particles can be accelerated in compact sources to ultrahigh energies.

  7. A study of interdiffusion in beta + gamma/gamma + gamma prime Ni-Cr-Al. M.S. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Carol, L. A.

    1985-01-01

    Ternary diffusion in the NiCrAl system at 1200 C was studied with beta + gamma/gamma + gamma prime infinite diffusion couples. Interdiffusion resulted in the formation of complex, multiphase diffusion zones. Concentration/distance profiles for Cr and Al in the phases present in the diffusion zone were measured after 200 hr. The Ni-rich portion of the NiCrAl phase diagram (1200 C) was also determined. From these data, bulk Cr and Al profiles were calculated and translated to diffusion paths on the ternary isotherm. Growth layer kinetics of the layers present in the diffusion zone were also measured.

  8. Neutron monitoring systems including gamma thermometers and methods of calibrating nuclear instruments using gamma thermometers

    DOEpatents

    Moen, Stephan Craig; Meyers, Craig Glenn; Petzen, John Alexander; Foard, Adam Muhling

    2012-08-07

    A method of calibrating a nuclear instrument using a gamma thermometer may include: measuring, in the instrument, local neutron flux; generating, from the instrument, a first signal proportional to the neutron flux; measuring, in the gamma thermometer, local gamma flux; generating, from the gamma thermometer, a second signal proportional to the gamma flux; compensating the second signal; and calibrating a gain of the instrument based on the compensated second signal. Compensating the second signal may include: calculating selected yield fractions for specific groups of delayed gamma sources; calculating time constants for the specific groups; calculating a third signal that corresponds to delayed local gamma flux based on the selected yield fractions and time constants; and calculating the compensated second signal by subtracting the third signal from the second signal. The specific groups may have decay time constants greater than 5.times.10.sup.-1 seconds and less than 5.times.10.sup.5 seconds.

  9. Notch signalling in cardiovasculogenesis: insight into their role in early cardiovascular development.

    PubMed

    Saravanakumar, Marimuthu; Devaraj, Halagowder

    2013-05-01

    The role of Notch signalling in congenital cardiovascular disease is evident by the identification of human mutations in several Notch signalling components, which also indicates the importance of activated Notch pathway in cardiovascular biology. Therefore, the aim of the present study is to investigate the expression pattern of the components of Notch signalling molecules and their role in mice embryonic heart and vascular development. Group A: normal control pregnant mice, group B: pregnant mice were injected with DMSO, group C: DAPT were subcutaneously injected to pregnant mice. The morphological and molecular changes of trabeculation-defective phenotype were analysed using histological, scanning electron microscope, immunoblot, immunolocalization and reverse transcriptase-PCR. E15.5 DAPT-treated mice revealed that there was a major reduction in the formation of septal walls between the ventricular chambers compared with normal control pregnant mice. VEGF expression was found in the DAPT treated and wild-type embryonic artery, whereas notch target genes GATA4, Hey1 expression were not found in the DAPT treated mice embryo. The role of Notch in ventricular development is supported by the trabeculation-defective phenotype seen in standard and endocardial-specific inhibition of Notch targets. The present study reveals the significant role of Notch signalling during the formation of ventricular septum and proper development of endothelial cell lineage and its precursor in mice cardiogenesis.

  10. Dual antiplatelet therapy versus aspirin alone in patients undergoing transcatheter aortic valve implantation.

    PubMed

    Ussia, Gian Paolo; Scarabelli, Marilena; Mulè, Massimiliano; Barbanti, Marco; Sarkar, Kunal; Cammalleri, Valeria; Immè, Sebastiano; Aruta, Patrizia; Pistritto, Anna Maria; Gulino, Simona; Deste, Wanda; Capodanno, Davide; Tamburino, Corrado

    2011-12-15

    Dual antiplatelet therapy (DAPT) with clopidogrel and aspirin is a widely accepted strategy in patients undergoing transcatheter aortic valve implantation (TAVI), but this approach is not evidence based. The goal of the present study was to determine whether DAPT in patients undergoing TAVI is associated with improved outcomes compared to aspirin alone. From May 2009 to August 2010, consecutive patients were randomized to receive a 300-mg loading dose of clopidogrel on the day before TAVI followed by a 3-month maintenance daily dose of 75 mg plus aspirin 100 mg lifelong (DAPT group) or aspirin 100 mg alone (ASA group). The primary end point was the composite of major adverse cardiac and cerebrovascular events, defined as death from any cause, myocardial infarction, major stroke, urgent or emergency conversion to surgery, or life-threatening bleeding. The cumulative incidence of major adverse cardiac and cerebrovascular events at 30 days and 6 months was 14% and 16%, respectively. No significant differences between the DAPT and ASA groups were noted at both 30 days (13% vs 15%, p = 0.71) and 6 months (18% vs 15%; p = 0.85). In conclusion, the strategy of adding clopidogrel to aspirin for 3 months after TAVI was not found to be superior to aspirin alone. These results must be confirmed in a larger randomized trial. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Gamma-ray astronomy

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Lingenfelter, R. E.

    1982-01-01

    Cosmic gamma rays, the physical processes responsible for their production and the astrophysical sites from which they were seen are reported. The bulk of the observed gamma ray emission is in the photon energy range from about 0.1 MeV to 1 GeV, where observations are carried out above the atmosphere. There are also, however, gamma ray observations at higher energies obtained by detecting the Cerenkov light produced by the high energy photons in the atmosphere. Gamma ray emission was observed from sources as close as the Sun and the Moon and as distant as the quasar 3C273, as well as from various other galactic and extragalactic sites. The radiation processes also range from the well understood, e.g. energetic particle interactions with matter, to the still incompletely researched, such as radiation transfer in optically thick electron positron plasmas in intense neutron star magnetic fields.

  12. Simulated and measured neutron/gamma light output distribution for poly-energetic neutron/gamma sources

    NASA Astrophysics Data System (ADS)

    Hosseini, S. A.; Zangian, M.; Aghabozorgi, S.

    2018-03-01

    In the present paper, the light output distribution due to poly-energetic neutron/gamma (neutron or gamma) source was calculated using the developed MCNPX-ESUT-PE (MCNPX-Energy engineering of Sharif University of Technology-Poly Energetic version) computational code. The simulation of light output distribution includes the modeling of the particle transport, the calculation of scintillation photons induced by charged particles, simulation of the scintillation photon transport and considering the light resolution obtained from the experiment. The developed computational code is able to simulate the light output distribution due to any neutron/gamma source. In the experimental step of the present study, the neutron-gamma discrimination based on the light output distribution was performed using the zero crossing method. As a case study, 241Am-9Be source was considered and the simulated and measured neutron/gamma light output distributions were compared. There is an acceptable agreement between the discriminated neutron/gamma light output distributions obtained from the simulation and experiment.

  13. Measuring the charged pion polarizability in the gamma gamma -> pi+pi- reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence, David W.; Miskimen, Rory A.; Mushkarenkov, Alexander Nikolaevich

    2013-08-01

    Development has begun of a new experiment to measure the charged pion polarizabilitymore » $$\\alpha_{\\pi}-\\beta_{\\pi}$$. The charged pion polarizability ranks among the most important tests of low-energy QCD presently unresolved by experiment. Analogous to precision measurements of $$\\pi^{\\circ}\\rightarrow\\gamma\\gamma$$ that test the intrinsic odd-parity (anomalous) sector of QCD, the pion polarizability tests the intrinsic even-parity sector of QCD. The measurement will be performed using the $$\\gamma\\gamma\\rightarrow\\pi^{+{}}\\pi^{-{}}$$ cross section accessed via the Primakoff mechanism on nuclear targets using the GlueX detector in Hall D at Jefferson Lab. The linearly polarized photon source in Hall-D will be utilized to separate the Primakoff cross-section from coherent $$\\rho^{\\circ}$$ production.« less

  14. Future prospects for gamma-ray

    NASA Technical Reports Server (NTRS)

    Fichtel, C.

    1980-01-01

    Astrophysical phenomena discussed are: the very energetic and nuclear processes associated with compact objects; astrophysical nucleo-synthesis; solar particle acceleration; the chemical composition of the planets and other bodies of the solar system; the structure of our galaxy; the origin and dynamic pressure effects of the cosmic rays; the high energy particles and energetic processes in other galaxies, especially active ones; and the degree of matter antimater symmetry of the universe. The gamma ray results of GAMMA-I, the gamma ray observatory, the gamma ray burst network, solar polar, and very high energy gamma ray telescopes on the ground provide justification for more sophisticated telescopes.

  15. Gamma ray camera

    DOEpatents

    Perez-Mendez, V.

    1997-01-21

    A gamma ray camera is disclosed for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array. 6 figs.

  16. Gamma ray astrophysics to the year 2000. Report of the NASA Gamma Ray Program Working Group

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Important developments in gamma-ray astrophysics up to energies of 100 GeV during the last decade are reviewed. Also, the report seeks to define the major current scientific goals of the field and proposes a vigorous program to pursue them, extending to the year 2000. The goals of gamma-ray astronomy include the study of gamma rays which provide the most direct means of studying many important problems in high energy astrophysics including explosive nucleosynthesis, accelerated particle interactions and sources, and high-energy processes around compact objects. The current research program in gamma-ray astronomy in the U.S. including the space program, balloon program and foreign programs in gamma-ray astronomy is described. The high priority recommendations for future study include an Explorer-class high resolution gamma-ray spectroscopy mission and a Get Away Special cannister (GAS-can) or Scout class multiwavelength experiment for the study of gamma-ray bursts. Continuing programs include an extended Gamma Ray Observatory mission, continuation of the vigorous program of balloon observations of the nearby Supernova 1987A, augmentation of the balloon program to provide for new instruments and rapid scientific results, and continuation of support for theoretical research. Long term recommendations include new space missions using advanced detectors to better study gamma-ray sources, the development of these detectors, continued study for the assembly of large detectors in space, collaboration with the gamma-ray astronomy missions initiated by other countries, and consideration of the Space Station attached payloads for gamma-ray experiments.

  17. The effect of alloying on gamma and gamma prime in nickel-base superalloys

    NASA Technical Reports Server (NTRS)

    Dreshfield, R. L.; Wallace, J. F.

    1972-01-01

    An investigation was conducted to determine the compositional limits of gamma and gamma prime phases in nickel-base superalloys. Fifty-one nickel-base alloys were melted under vacuum and heat treated for 4 hours at 1190 C followed by 1008 hours at 850 C. The alloys had the following composition ranges: A1 4.0 to 13 atomic percent, Cr 6.5 to 20.5 percent, Ti 0.25 to 4.75 percent, Mo 0.0 to 6.0 percent, and W 0.0 to 4.0 percent. The residues from the ammonium sulfate electrolytic extraction for the two-phase alloys were analyzed chemically and by X-ray diffraction. The results of the investigation were used to assemble a mathematical model of the gamma-gamma prime region of the Ni-Al-Cr-Ti-Mo-W system. A computer program was written to analyze the model of the phase diagram. Some of these results are also presented graphically. The resulting model is capable of satisfactorily predicting the compositions of conjugate gamma-gamma prime phases in the alloys investigated and twelve of fifteen commercial superalloys studied.

  18. Genotoxicity of topoisomerase II inhibitors: an anti-infective perspective.

    PubMed

    Smart, Daniel J

    2008-12-30

    At present, an inevitable consequence of a chemical's inhibitory activity on key regulators of DNA topology in bacteria, the type II topoisomerases, is a less pronounced effect on their eukaryotic counterparts. In the context of anti-infectives drug development, this may pose a risk to patient safety as inhibition of eukaryotic type II topoisomerases (TOPO II) can result in the generation of DNA double-strand breaks (DSBs), which have the potential to manifest as mutations, chromosome breakage or cell death. The biological effects of several TOPO II inhibitors in mammalian cells are described herein; their modulation of DSB damage response parameters is examined and evidence for the existence of a threshold concept for genotoxicity and its relevance in safety assessment is discussed. The potential utility of gammaH2AX, a promising and highly sensitive molecular marker for DSBs, in a novel genotoxicity 'pre-screen' to conventional assays is also highlighted.

  19. Status of the GAMMA-400 Project

    NASA Technical Reports Server (NTRS)

    Galper, A. M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Gusakov, Yu. V.; Farber, M. O.; hide

    2013-01-01

    The preliminary design of the new space gamma-ray telescope GAMMA-400 for the energy range 100 MeV-3 TeV is presented. The angular resolution of the instrument, 1-2 deg at E(gamma) approximately 100 MeV and approximately 0.01 at E(gamma) greater than 100 GeV, its energy resolution is approximately 1% at E(gamma) greater than 100 GeV, and the proton rejection factor is approximately 10(exp 6) are optimized to address a broad range of science topics, such as search for signatures of dark matter, studies of Galactic and extragalactic gamma-ray sources, Galactic and extragalactic diffuse emission, gamma-ray bursts, as well as high-precision measurements of spectra of cosmic-ray electrons, positrons, and nuclei.

  20. Formononetin attenuates Aβ25-35-induced cytotoxicity in HT22 cells via PI3K/Akt signaling and non-amyloidogenic cleavage of APP.

    PubMed

    Chen, Lizhi; Ou, Shanshan; Zhou, Lingqi; Tang, Hai; Xu, Jie; Guo, Kaihua

    2017-02-03

    Amyloid beta (Aβ) is the main component of the amyloid plaques that accumulate in the brains of Alzheimer patients. Here, we reported the protective role of Formononetin (Form) against Aβ 25-35 -induced neurotoxicity in HT22 cells. We found that Form significantly increased the viability of HT22 cells but decreased the cell apoptosis when challenging with Aβ 25-35. The inhibitory effects of Form were associated with PI3K/Akt signaling pathway as PI3K inhibitor (LY294002) or ERα specific inhibitor (MPP) blocked the effects. Form also accelerated the non-amyloidogenic process of amyloid precursor protein (APP) by enhancing α-secretase activity and sAPPα release. Altogether, our findings may provide a novel therapeutic target to treat AD sufferers. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.