Sample records for gammagamma-correlations issledovaniya sverkhtonkikh

  1. Hybrid optical CDMA-FSO communications network under spatially correlated gamma-gamma scintillation.

    PubMed

    Jurado-Navas, Antonio; Raddo, Thiago R; Garrido-Balsells, José María; Borges, Ben-Hur V; Olmos, Juan José Vegas; Monroy, Idelfonso Tafur

    2016-07-25

    In this paper, we propose a new hybrid network solution based on asynchronous optical code-division multiple-access (OCDMA) and free-space optical (FSO) technologies for last-mile access networks, where fiber deployment is impractical. The architecture of the proposed hybrid OCDMA-FSO network is thoroughly described. The users access the network in a fully asynchronous manner by means of assigned fast frequency hopping (FFH)-based codes. In the FSO receiver, an equal gain-combining technique is employed along with intensity modulation and direct detection. New analytical formalisms for evaluating the average bit error rate (ABER) performance are also proposed. These formalisms, based on the spatially correlated gamma-gamma statistical model, are derived considering three distinct scenarios, namely, uncorrelated, totally correlated, and partially correlated channels. Numerical results show that users can successfully achieve error-free ABER levels for the three scenarios considered as long as forward error correction (FEC) algorithms are employed. Therefore, OCDMA-FSO networks can be a prospective alternative to deliver high-speed communication services to access networks with deficient fiber infrastructure.

  2. Performance evaluation of receive-diversity free-space optical communications over correlated Gamma-Gamma fading channels.

    PubMed

    Yang, Guowei; Khalighi, Mohammad-Ali; Ghassemlooy, Zabih; Bourennane, Salah

    2013-08-20

    The efficacy of spatial diversity in practical free-space optical communication systems is impaired by the fading correlation among the underlying subchannels. We consider in this paper the generation of correlated Gamma-Gamma random variables in view of evaluating the system outage probability and bit-error-rate under the condition of correlated fading. Considering the case of receive-diversity systems with intensity modulation and direct detection, we propose a set of criteria for setting the correlation coefficients on the small- and large-scale fading components based on scintillation theory. We verify these criteria using wave-optics simulations and further show through Monte Carlo simulations that we can effectively neglect the correlation corresponding to the small-scale turbulence in most practical systems, irrespective of the specific turbulence conditions. This has not been clarified before, to the best of our knowledge. We then present some numerical results to illustrate the effect of fading correlation on the system performance. Our conclusions can be generalized to the cases of multiple-beam and multiple-beam multiple-aperture systems.

  3. SER Analysis of MPPM-Coded MIMO-FSO System over Uncorrelated and Correlated Gamma-Gamma Atmospheric Turbulence Channels

    NASA Astrophysics Data System (ADS)

    Khallaf, Haitham S.; Garrido-Balsells, José M.; Shalaby, Hossam M. H.; Sampei, Seiichi

    2015-12-01

    The performance of multiple-input multiple-output free space optical (MIMO-FSO) communication systems, that adopt multipulse pulse position modulation (MPPM) techniques, is analyzed. Both exact and approximate symbol-error rates (SERs) are derived for both cases of uncorrelated and correlated channels. The effects of background noise, receiver shot-noise, and atmospheric turbulence are taken into consideration in our analysis. The random fluctuations of the received optical irradiance, produced by the atmospheric turbulence, is modeled by the widely used gamma-gamma statistical distribution. Uncorrelated MIMO channels are modeled by the α-μ distribution. A closed-form expression for the probability density function of the optical received irradiance is derived for the case of correlated MIMO channels. Using our analytical expressions, the degradation of the system performance with the increment of the correlation coefficients between MIMO channels is corroborated.

  4. Search for X(3872) in gammagamma fusion and radiative production at CLEO.

    PubMed

    Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A; Zweber, P; Ernst, J; Mahmood, A H; Severini, H; Asner, D M; Dytman, S A; Love, W; Mehrabyan, S; Mueller, J A; Savinov, V; Li, Z; Lopez, A; Mendez, H; Ramirez, J; Huang, G S; Miller, D H; Pavlunin, V; Sanghi, B; Shibata, E I; Shipsey, I P J; Adams, G S; Chasse, M; Cravey, M; Cummings, J P; Danko, I; Napolitano, J; Cronin-Hennessy, D; Park, C S; Park, W; Thayer, J B; Thorndike, E H; Coan, T E; Gao, Y S; Liu, F; Artuso, M; Boulahouache, C; Blusk, S; Butt, J; Dambasuren, E; Dorjkhaidav, O; Menaa, N; Mountain, R; Muramatsu, H; Nandakumar, R; Redjimi, R; Sia, R; Skwarnicki, T; Stone, S; Wang, J C; Zhang, K; Csorna, S E; Bonvicini, G; Cinabro, D; Dubrovin, M; Bornheim, A; Pappas, S P; Weinstein, A J; Rosner, J L; Briere, R A; Chen, G P; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Adam, N E; Alexander, J P; Berkelman, K; Cassel, D G; Crede, V; Duboscq, J E; Ecklund, K M; Ehrlich, R; Fields, L; Galik, R S; Gibbons, L; Gittelman, B; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Hsu, L; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Meyer, T O; Onyisi, P U E; Patterson, J R; Peterson, D; Pivarski, J; Riley, D; Ryd, A; Sadoff, A J; Schwarthoff, H; Shepherd, M R; Stroiney, S; Sun, W M; Thayer, J G; Urner, D; Wilksen, T; Weinberger, M; Athar, S B; Avery, P; Breva-Newell, L; Patel, R; Potlia, V; Stoeck, H; Yelton, J; Rubin, P; Cawlfield, C; Eisenstein, B I; Gollin, G D; Karliner, I; Kim, D; Lowrey, N; Naik, P; Sedlack, C; Selen, M; Thaler, J J; Williams, J; Wiss, J; Edwards, K W; Besson, D; Pedlar, T K; Gao, K Y; Gong, D T; Kubota, Y; Lang, B W; Li, S Z; Poling, R; Scott, A W; Smith, A; Stepaniak, C J

    2005-01-28

    We report on a search for the recently reported X(3872) state using 15.1 fb(-1) of e(+)e(-) data taken in the sqrt[s] = 9.46-11.30 GeV region. Separate searches for the production of the X(3872) in untagged gammagamma fusion and e(+)e(-) annihilation following initial state radiation are made by taking advantage of the unique angular correlation between the leptons from the decay J/psi --> l(+)l(-) in X(3872) decay to pi(+)pi(-)J/psi. No signals are observed in either case, and 90% confidence upper limits are established as (2J+1)Gamma(gammagamma)(X(3872))B(X --> pi(+)pi(-)J/psi) < 12.9 eV and Gamma(ee)(X(3872))B(X- -> pi(+)pi(-)J/psi) < 8.3 eV.

  5. Search for exclusive gammagamma production in Hadron-Hadron collisions.

    PubMed

    Aaltonen, T; Abulencia, A; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carrillo, S; Carlsmith, D; Caron, B; Carosi, R; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Cilijak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Daronco, S; Datta, M; D'Auria, S; Davies, T; Dagenhart, D; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; De Lorenzo, G; Dell'orso, M; Delli Paoli, F; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Dörr, C; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garberson, F; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraan, A C; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis, A; Margaroli, F; Marginean, R; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyamoto, A; Moed, S; Moggi, N; Mohr, B; Moon, C S; Moore, R; Morello, M; Fernandez, P Movilla; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pinfold, J; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shalhout, S Z; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; Denis, R St; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuno, S; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vazquez, F; Velev, G; Vellidis, C; Veramendi, G; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Vollrath, I; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, J; Wagner, W; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zhou, J; Zucchelli, S

    2007-12-14

    We have searched for exclusive gammagamma production in proton-antiproton collisions at sqrt[s]=1.96 TeV, using 532 pb(-1) of integrated luminosity taken by the run II Collider Detector at Fermilab. The event signature requires two electromagnetic showers, each with transverse energy E(T)>5 GeV and pseudorapidity |eta|<1.0, with no other particles detected in the event. Three candidate events are observed. We discuss the consistency of the three events with gammagamma, pi(0)pi(0), or eta eta production. The probability that other processes fluctuate to >or=3 events is 1.7x10(-4). An upper limit on the cross section of pp-->p + gammagamma + p production is set at 410 fb with 95% confidence level.

  6. Predicting diffusion paths and interface motion in gamma/gamma + beta, Ni-Cr-Al diffusion couples

    NASA Technical Reports Server (NTRS)

    Nesbitt, J. A.; Heckel, R. W.

    1987-01-01

    A simplified model has been developed to predict Beta recession and diffusion paths in ternary gamma/gamma + beta diffusion couples (gamma:fcc, beta: NiAl structure). The model was tested by predicting beta recession and diffusion paths for four gamma/gamma + beta, Ni-Cr-Al couples annealed for 100 hours at 1200 C. The model predicted beta recession within 20 percent of that measured for each of the couples. The model also predicted shifts in the concentration of the gamma phase at the gamma/gamma + beta interface within 2 at. pct Al and 6 at. pct Cr of that measured in each of the couples. A qualitative explanation based on simple kinetic and mass balance arguments has been given which demonstrates the necessity for diffusion in the two-phase region of certain gamma/gamma + beta, Ni-Cr-Al couples.

  7. Measurements of the $$\\mathrm{ pp \\to W \\gamma\\gamma }$$ and $$\\mathrm{ pp \\to Z \\gamma\\gamma }$$ cross sections and limits on anomalous quartic gauge couplings at $$\\sqrt{s} =$$ 8 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.

    Here, measurements are presented ofmore » $$ \\mathrm{ W \\gamma\\gamma } $$ and $$ \\mathrm{ Z \\gamma\\gamma } $$ production in proton-proton collisions. Fiducial cross sections are reported based on a data sample corresponding to an integrated luminosity of 19.4 fb$$^{-1}$$ collected with the CMS detector at a center-of-mass energy of 8 TeV. Signal is identified through the $$\\mathrm{ W } \\to \\ell\

  8. Measurements of the $$\\mathrm{ pp \\to W \\gamma\\gamma }$$ and $$\\mathrm{ pp \\to Z \\gamma\\gamma }$$ cross sections and limits on anomalous quartic gauge couplings at $$\\sqrt{s} =$$ 8 TeV

    DOE PAGES

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.; ...

    2017-10-11

    Here, measurements are presented ofmore » $$ \\mathrm{ W \\gamma\\gamma } $$ and $$ \\mathrm{ Z \\gamma\\gamma } $$ production in proton-proton collisions. Fiducial cross sections are reported based on a data sample corresponding to an integrated luminosity of 19.4 fb$$^{-1}$$ collected with the CMS detector at a center-of-mass energy of 8 TeV. Signal is identified through the $$\\mathrm{ W } \\to \\ell\

  9. Observation of eta'c production in gammagamma fusion at CLEO.

    PubMed

    Asner, D M; Dytman, S A; Mehrabyan, S; Mueller, J A; Nam, S; Savinov, V; Huang, G S; Miller, D H; Pavlunin, V; Sanghi, B; Shibata, E I; Shipsey, I P J; Adams, G S; Chasse, M; Cummings, J P; Danko, I; Napolitano, J; Cronin-Hennessy, D; Park, C S; Park, W; Thayer, J B; Thorndike, E H; Coan, T E; Gao, Y S; Liu, F; Stroynowski, R; Artuso, M; Boulahouache, C; Blusk, S; Butt, J; Dambasuren, E; Dorjkhaidav, O; Haynes, J; Menaa, N; Mountain, R; Muramatsu, H; Nandakumar, R; Redjimi, R; Sia, R; Skwarnicki, T; Stone, S; Wang, J C; Zhang, Kevin; Mahmood, A H; Csorna, S E; Bonvicini, G; Cinabro, D; Dubrovin, M; Bornheim, A; Lipeles, E; Pappas, S P; Shapiro, A; Weinstein, A J; Mahapatra, R; Nelson, H N; Briere, R A; Chen, G P; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Adam, N E; Alexander, J P; Berkelman, K; Boisvert, V; Cassel, D G; Duboscq, J E; Ecklund, K M; Ehrlich, R; Galik, R S; Gibbons, L; Gittelman, B; Gray, S W; Hartill, D L; Heltsley, B K; Hsu, L; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Magerkurth, A; Mahlke-Krüger, H; Meyer, T O; Patterson, J R; Pedlar, T K; Peterson, D; Pivarski, J; Riley, D; Sadoff, A J; Schwarthoff, H; Shepherd, M R; Sun, W M; Thayer, J G; Urner, D; Wilksen, T; Weinberger, M; Athar, S B; Avery, P; Breva-Newell, L; Potlia, V; Stoeck, H; Yelton, J; Eisenstein, B I; Gollin, G D; Karliner, I; Lowrey, N; Naik, P; Sedlack, C; Selen, M; Thaler, J J; Williams, J; Edwards, K W; Besson, D; Gao, K Y; Gong, D T; Kubota, Y; Li, S Z; Poling, R; Scott, A W; Smith, A; Stepaniak, C J; Urheim, J; Metreveli, Z; Seth, K K; Tomaradze, A; Zweber, P; Arms, K; Eckhart, E; Gan, K K; Gwon, C; Severini, H; Skubic, P

    2004-04-09

    We report on the observation of the eta(')(c)(2(1)S0), the radial excitation of the eta(c)(1(1)S0) ground state of charmonium, in the two-photon fusion reaction gammagamma-->eta(')(c)-->K(0)(S)K+/-pi(-/+) in 13.6 fb(-1) of CLEO II/II.V data and 13.1 fb(-1) of CLEO III data. We obtain M(eta(')(c))=3642.9+/-3.1(stat)+/-1.5(syst) MeV and M(eta(c))=2981.8+/-1.3(stat)+/-1.5(syst) MeV. The corresponding values of hyperfine splittings between 1S0 and 3S1 states are DeltaM(hf)(1S)=115.1+/-2.0 MeV and DeltaM(hf)(2S)=43.1+/-3.4 MeV. Assuming that the eta(c) and eta(')(c) have equal branching fractions to K(S)Kpi, we obtain Gamma(gammagamma)(eta(')(c))=1.3+/-0.6 keV.

  10. The Z {yields} cc-bar {yields} {gamma}{gamma}*, Z {yields} bb-bar {yields} {gamma}{gamma}* triangle diagrams and the Z {yields} {gamma}{psi}, Z {yields} {gamma}Y decays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achasov, N. N., E-mail: achasov@math.nsc.ru

    2011-03-15

    The approach to the Z {yields} {gamma}{psi} and Z {yields} {gamma}Y decay study is presented in detail, based on the sum rules for the Z {yields} cc-bar {yields} {gamma}{gamma}* and Z {yields} bb-bar {yields} {gamma}{gamma}* amplitudes and their derivatives. The branching ratios of the Z {yields} {gamma}{psi} and Z {yields} {gamma}Y decays are calculated for different hypotheses on saturation of the sum rules. The lower bounds of {Sigma}{sub {psi}} BR(Z {yields} {gamma}{psi}) = 1.95 Multiplication-Sign 10{sup -7} and {Sigma}{sub {upsilon}} BR(Z {yields} {gamma}Y) = 7.23 Multiplication-Sign 10{sup -7} are found. Deviations from the lower bounds are discussed, including the possibilitymore » of BR(Z {yields} {gamma}J/{psi}(1S)) {approx} BR(Z {yields} {gamma}Y(1S)) {approx} 10{sup -6}, that could be probably measured in LHC. The angular distributions in the Z {yields} {gamma}{psi} and Z {yields} {gamma}Y decays are also calculated.« less

  11. Digital gamma-gamma coincidence HPGe system for environmental analysis.

    PubMed

    Marković, Nikola; Roos, Per; Nielsen, Sven Poul

    2017-08-01

    The performance of a new gamma-gamma coincidence spectrometer system for environmental samples analysis at the Center for Nuclear Technologies of the Technical University of Denmark (DTU) is reported. Nutech Coincidence Low Energy Germanium Sandwich (NUCLeGeS) system consists of two HPGe detectors in a surface laboratory with a digital acquisition system used to collect the data in time-stamped list mode with 10ns time resolution. The spectrometer is used in both anticoincidence and coincidence modes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Quantification of 235U and 238U activity concentrations for undeclared nuclear materials by a digital gamma-gamma coincidence spectroscopy.

    PubMed

    Zhang, Weihua; Yi, Jing; Mekarski, Pawel; Ungar, Kurt; Hauck, Barry; Kramer, Gary H

    2011-06-01

    The purpose of this study is to investigate the possibility of verifying depleted uranium (DU), natural uranium (NU), low enriched uranium (LEU) and high enriched uranium (HEU) by a developed digital gamma-gamma coincidence spectroscopy. The spectroscopy consists of two NaI(Tl) scintillators and XIA LLC Digital Gamma Finder (DGF)/Pixie-4 software and card package. The results demonstrate that the spectroscopy provides an effective method of (235)U and (238)U quantification based on the count rate of their gamma-gamma coincidence counting signatures. The main advantages of this approach over the conventional gamma spectrometry include the facts of low background continuum near coincident signatures of (235)U and (238)U, less interference from other radionuclides by the gamma-gamma coincidence counting, and region-of-interest (ROI) imagine analysis for uranium enrichment determination. Compared to conventional gamma spectrometry, the method offers additional advantage of requiring minimal calibrations for (235)U and (238)U quantification at different sample geometries. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  13. Measurement of the branching ratio of a rare decay {eta}{yields}{pi}{sup 0}{gamma}{gamma} with WASA-at-COSY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lalwani, Kavita

    2011-10-24

    In this paper we present the preliminary results on the measurement of the branching ratio of a rare decay {eta}{yields}{pi}{sup 0}{gamma}{gamma} with the WASA Detector at COSY. We have used a sample of 10{sup 7}{eta} mesons produced at the COSY ring using the pd{yields}{sup 3}He{eta} reaction close to threshold. We detail the intricate extraction of the signal, which has about 360{+-}70(stat){eta}{yields}{pi}{sup 0}{gamma}{gamma} events, from the overwhelming background channels for example {eta}{yields}3{pi}{sup 0}, pd{yields}{sup 3}He 3{pi}{sup 0} and pd{yields}{sup 3}He 2{pi}{sup 0}.

  14. A gamma-gamma coincidence/anticoincidence spectrometer for low-level cosmogenic (22)Na/(7)Be activity ratio measurement.

    PubMed

    Zhang, Weihua; Ungar, Kurt; Stukel, Matthew; Mekarski, Pawel

    2014-04-01

    In this study, a digital gamma-gamma coincidence/anticoincidence spectrometer was developed and examined for low-level cosmogenic (22)Na and (7)Be in air-filter sample monitoring. The spectrometer consists of two bismuth germanate scintillators (BGO) and an XIA LLC Digital Gamma Finder (DGF)/Pixie-4 software and card package. The spectrometer design allows a more selective measurement of (22)Na with a significant background reduction by gamma-gamma coincidence events processing. Hence, the system provides a more sensitive way to quantify trace amounts of (22)Na than normal high resolution gamma spectrometry providing a critical limit of 3 mBq within a 20 h count. The use of a list-mode data acquisition technique enabled simultaneous determination of (22)Na and (7)Be activity concentrations using a single measurement by coincidence and anticoincidence mode respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Gamma-gamma coincidence performance of LaBr 3:Ce scintillation detectors vs HPGe detectors in high count-rate scenarios

    DOE PAGES

    Drescher, A.; Yoho, M.; Landsberger, S.; ...

    2017-01-15

    In this study, a radiation detection system consisting of two cerium doped lanthanum bromide (LaBr 3:Ce) scintillation detectors in a gamma-gamma coincidence configuration has been used to demonstrate the advantages that coincident detection provides relative to a single detector, and the advantages that LaBr 3:Ce detectors provide relative to high purity germanium (HPGe) detectors. Signal to noise ratios of select photopeak pairs for these detectors have been compared to high-purity germanium (HPGe) detectors in both single and coincident detector configurations in order to quantify the performance of each detector configuration. The efficiency and energy resolution of LaBr 3:Ce detectors havemore » been determined and compared to HPGe detectors. Coincident gamma-ray pairs from the radionuclides 152Eu and 133Ba have been identified in a sample that is dominated by 137Cs. Gamma-gamma coincidence successfully reduced the Compton continuum from the large 137Cs peak, revealed several coincident gamma energies characteristic of these nuclides, and improved the signal-to-noise ratio relative to single detector measurements. LaBr 3:Ce detectors performed at count rates multiple times higher than can be achieved with HPGe detectors. The standard background spectrum consisting of peaks associated with transitions within the LaBr 3:Ce crystal has also been significantly reduced. Finally, it is shown that LaBr 3:Ce detectors have the unique capability to perform gamma-gamma coincidence measurements in very high count rate scenarios, which can potentially benefit nuclear safeguards in situ measurements of spent nuclear fuel.« less

  16. Gamma-gamma coincidence performance of LaBr 3:Ce scintillation detectors vs HPGe detectors in high count-rate scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drescher, A.; Yoho, M.; Landsberger, S.

    In this study, a radiation detection system consisting of two cerium doped lanthanum bromide (LaBr 3:Ce) scintillation detectors in a gamma-gamma coincidence configuration has been used to demonstrate the advantages that coincident detection provides relative to a single detector, and the advantages that LaBr 3:Ce detectors provide relative to high purity germanium (HPGe) detectors. Signal to noise ratios of select photopeak pairs for these detectors have been compared to high-purity germanium (HPGe) detectors in both single and coincident detector configurations in order to quantify the performance of each detector configuration. The efficiency and energy resolution of LaBr 3:Ce detectors havemore » been determined and compared to HPGe detectors. Coincident gamma-ray pairs from the radionuclides 152Eu and 133Ba have been identified in a sample that is dominated by 137Cs. Gamma-gamma coincidence successfully reduced the Compton continuum from the large 137Cs peak, revealed several coincident gamma energies characteristic of these nuclides, and improved the signal-to-noise ratio relative to single detector measurements. LaBr 3:Ce detectors performed at count rates multiple times higher than can be achieved with HPGe detectors. The standard background spectrum consisting of peaks associated with transitions within the LaBr 3:Ce crystal has also been significantly reduced. Finally, it is shown that LaBr 3:Ce detectors have the unique capability to perform gamma-gamma coincidence measurements in very high count rate scenarios, which can potentially benefit nuclear safeguards in situ measurements of spent nuclear fuel.« less

  17. Updated level scheme of 172Yb from 171Yb(nth, γ) reaction studied via gamma-gamma coincidence spectrometer

    NASA Astrophysics Data System (ADS)

    Nguyen, Ngoc Anh; Nguyen, Xuan Hai; Pham, Dinh Khang; Nguyen, Quang Hung; Ho, Huu Thang

    2017-08-01

    This paper provides the updated information on the level scheme of 172Yb nucleus studied via 171Yb(nth, γ) reaction using the gamma-gamma coincidence spectrometer at Dalat Nuclear Research Institute (Viet Nam). The latter is used because of its advantages in achieving the low Compton background as well as in identifying the correlated gamma transitions. We have detected in total the energies and intensities of 128 two-step gamma cascades corresponding to 79 primary transitions. By comparing the measured data with those extracted from the ENSDF library, 61 primary gamma transitions and corresponding energy levels together with 20 secondary gamma transitions are found to be the same as the ENSDF data. Beside that, 18 additional primary gamma transitions and corresponding energy levels plus 108 secondary ones are not found to currently exist in this library and they are therefore considered as the new data.

  18. Resistance of a gamma/gamma prime - delta directionally solidified eutectic alloy to recrystallization

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Scheuermann, C. M.; Andrews, C. W.

    1975-01-01

    The lamellar directionally solidified nickel-base eutectic alloy gamma/gamma prime-delta has potential as an advanced turbine blade material. The microstructural stability of this alloy was investigated. Specimens were plastically deformed by uniform compression or Brinell indentation, then annealed between 705 and 1120 C. Microstructural changes observed after annealing included gamma prime coarsening, pinch-off and spheroidization of delta lamellae, and the appearance of an unidentified blocky phase in surface layers. All but the first of these was localized in severely deformed regions, suggesting that microstructural instability is not a serious problem in the use of this alloy.

  19. The Effects of Composition and gamma'/gamma Lattice Parameter Mismatch on the Critical Resolved Shear Stresses for Octahedral and Cube Slip in NiAlCrX Alloys

    NASA Technical Reports Server (NTRS)

    Miner, R. V.

    1997-01-01

    Prototypical single-crystal NiAlCrX superalloys were studied to examine the effects of the common major alloying elements, Co, Mo, Nb, Ta, Ti, and W, on yielding behavior. The alloys contained about 10 at. pct Cr, 60 vol pct of the gamma' phase, and about 3 at. pct of X in the gamma'. The critical resolved shear stresses (CRSSs) for octahedral and primary cube slip were measured at 760 C, which is about the peak strength temperature. The CRSS(sub oct) and CRSS(sub cube) are discussed in relation to those of Ni, (Al, X) gamma' alloys taken from the literature and the gamma'/gamma lattice mismatch. The CRSS(sub oct) of the gamma + gamma' alloys reflected a similar compositional dependence to that of both the CRSS(sub cube) of the gamma' phase and the gamma'/gamma lattice parameter mismatch. The CRSS(sub cube) of the gamma + gamma' alloys also reflected the compositional dependence of the gamma'/gamma mismatch, but bore no similarity to that of CRSS(sub cube) for gamma' alloys since it is controlled by the gamma matrix. The ratio of CRSS(sub cube)/CRSS(sub oct) was decreased by all alloying elements except Co, which increased the ratio. The decrease in CRSS(sub cube)/CRSS(sub oct) was related to the degree in which elements partition to the gamma' rather than the gamma phase.

  20. Resistance of a directionally solidified gamma/gamma prime-delta eutectic alloy to recrystallization. [Ni-base alloy

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Scheuermann, C. M.; Andrews, C. W.

    1976-01-01

    A lamellar nickel-base directionally-solidified eutectic gamma/gamma prime-delta alloy has potential as an advanced gas turbine blade material. The microstructural stability of this alloy was investigated. Specimens were plastically deformed by uniform compression or Brinell indentation, then annealed between 750 and 1120 C. Microstructural changes observed after annealing included gamma prime coarsening, pinch-off and spheroidization of delta lamellae, and appearance of an unidentified blocky phase in surface layers. All but the first of these was localized in severely deformed regions, suggesting that microstructural instability may not be a serious problem in the use of this alloy.

  1. Transverse tensile and stress rupture properties of gamma/gamma prime-delta directionally solidified eutectic

    NASA Technical Reports Server (NTRS)

    Gray, H. H.

    1976-01-01

    Tensile and stress rupture properties were determined primarily at 760 C for specimens oriented at various angles (0 deg, 10 deg, 45 deg, and 90 deg) from the solidification direction of bars and/or slabs of the Ni-20Cb-6Cr-2.5A (gamma/gamma prime-delta) eutectic. Threaded-head specimens yielded longer rupture lives with significantly less scatter than did tapered-head specimens. Miniature specimens are suitable for determining traverse tensile and rupture properties of 1.2 centimeter diameter bar stock. The 300 hour rupture stress at 760 C for specimens oriented at 10 deg from the solidification direction was reduced from 740 to 460 MPa, and to 230 MPa for material oriented at either 45 deg or 90 deg.

  2. A study of interdiffusion in beta + gamma/gamma + gamma prime Ni-Cr-Al. M.S. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Carol, L. A.

    1985-01-01

    Ternary diffusion in the NiCrAl system at 1200 C was studied with beta + gamma/gamma + gamma prime infinite diffusion couples. Interdiffusion resulted in the formation of complex, multiphase diffusion zones. Concentration/distance profiles for Cr and Al in the phases present in the diffusion zone were measured after 200 hr. The Ni-rich portion of the NiCrAl phase diagram (1200 C) was also determined. From these data, bulk Cr and Al profiles were calculated and translated to diffusion paths on the ternary isotherm. Growth layer kinetics of the layers present in the diffusion zone were also measured.

  3. The effect of porosity and gamma-gamma' eutectic content on the low cycle fatigue behavior of hydrogen-charged PWA-1480

    NASA Technical Reports Server (NTRS)

    Gayda, John; Dreshfield, Robert L.; Gabb, Timothy P.

    1991-01-01

    Single crystal superalloys such as PWA 1480 are considered for turbopump blades in the main engines of the space shuttle. As fatigue resistance in a hydrogen environment is a key issue in this application, a study of the effect of porosity and gamma-gamma' eutectic content on the fatigue life of a hydrogen-charged PWA 1480 was performed. Porosity and eutectic were linked to fatigue initiation, and therefore reduction of either of both may be one means to improve fatigue life of PWA 1480 when hydrogen is present.

  4. Performance analysis of OOK-based FSO systems in Gamma-Gamma turbulence with imprecise channel models

    NASA Astrophysics Data System (ADS)

    Feng, Jianfeng; Zhao, Xiaohui

    2017-11-01

    For an FSO communication system with imprecise channel model, we investigate its system performance based on outage probability, average BEP and ergodic capacity. The exact FSO links are modeled as Gamma-Gamma fading channel in consideration of both atmospheric turbulence and pointing errors, and the imprecise channel model is treated as the superposition of exact channel gain and a Gaussian random variable. After we derive the PDF, CDF and nth moment of the imprecise channel gain, and based on these statistics the expressions for the outage probability, the average BEP and the ergodic capacity in terms of the Meijer's G functions are obtained. Both numerical and analytical results are presented. The simulation results show that the communication performance deteriorates in the imprecise channel model, and approaches to the exact performance curves as the channel model becomes accurate.

  5. Spatial correlation and irradiance statistics in a multiple-beam terrestrial free-space optical communication link.

    PubMed

    Anguita, Jaime A; Neifeld, Mark A; Vasic, Bane V

    2007-09-10

    By means of numerical simulations we analyze the statistical properties of the power fluctuations induced by the incoherent superposition of multiple transmitted laser beams in a terrestrial free-space optical communication link. The measured signals arising from different transmitted optical beams are found to be statistically correlated. This channel correlation increases with receiver aperture and propagation distance. We find a simple scaling rule for the spatial correlation coefficient in terms of the propagation distance and we are able to predict the scintillation reduction in previously reported experiments with good accuracy. We propose an approximation to the probability density function of the received power of a spatially correlated multiple-beam system in terms of the parameters of the single-channel gamma-gamma function. A bit-error-rate evaluation is also presented to demonstrate the improvement of a multibeam system over its single-beam counterpart.

  6. Effect of thermal cycling in a Mach 0.3 burner rig on properties and structure of directionally solidified gamma/gamma prime - delta eutectic

    NASA Technical Reports Server (NTRS)

    Gray, H. R.; Sanders, W. A.

    1975-01-01

    Tensile and stress rupture properties at 1040 C of a thermally cycled gamma/gamma prime - delta eutectic were essentially equivalent to the as-grown properties. Tensile strength and rupture life at 760 C appeared to decrease slightly by thermal cycling. Thermal cycling resulted in gamma prime coarsening and Widmanstatten delta precipitation in the gamma phase. An unidentified precipitate, presumably gamma prime, was observed within the delta phase. The eutectic alloy exhibited a high rate of oxidation-erosion weight loss during thermal cycling in the Mach 0.3 burner rig.

  7. Performance of multi-hop parallel free-space optical communication over gamma-gamma fading channel with pointing errors.

    PubMed

    Gao, Zhengguang; Liu, Hongzhan; Ma, Xiaoping; Lu, Wei

    2016-11-10

    Multi-hop parallel relaying is considered in a free-space optical (FSO) communication system deploying binary phase-shift keying (BPSK) modulation under the combined effects of a gamma-gamma (GG) distribution and misalignment fading. Based on the best path selection criterion, the cumulative distribution function (CDF) of this cooperative random variable is derived. Then the performance of this optical mesh network is analyzed in detail. A Monte Carlo simulation is also conducted to demonstrate the effectiveness of the results for the average bit error rate (ABER) and outage probability. The numerical result proves that it needs a smaller average transmitted optical power to achieve the same ABER and outage probability when using the multi-hop parallel network in FSO links. Furthermore, the system use of more number of hops and cooperative paths can improve the quality of the communication.

  8. Channel correlation and BER performance analysis of coherent optical communication systems with receive diversity over moderate-to-strong non-Kolmogorov turbulence.

    PubMed

    Fu, Yulong; Ma, Jing; Tan, Liying; Yu, Siyuan; Lu, Gaoyuan

    2018-04-10

    In this paper, new expressions of the channel-correlation coefficient and its components (the large- and small-scale channel-correlation coefficients) for a plane wave are derived for a horizontal link in moderate-to-strong non-Kolmogorov turbulence using a generalized effective atmospheric spectrum which includes finite-turbulence inner and outer scales and high-wave-number "bump". The closed-form expression of the average bit error rate (BER) of the coherent free-space optical communication system is derived using the derived channel-correlation coefficients and an α-μ distribution to approximate the sum of the square root of arbitrarily correlated Gamma-Gamma random variables. Analytical results are provided to investigate the channel correlation and evaluate the average BER performance. The validity of the proposed approximation is illustrated by Monte Carlo simulations. This work will help with further investigation of the fading correlation in spatial diversity systems.

  9. Effect of swaging on the 1000 C compressive slow plastic flow characteristics of the directionally solidified eutectic alloy gamma/gamma prime-alpha

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.; Wirth, G.

    1983-01-01

    Swaging between 750 and 1050 C has been investigated as a means to introduce work into the directionally solidified eutectic alloy gamma/gamma prime-alpha (Ni-32.3 wt percent Mo-6.3 wt percent Al) and increase the elevated temperature creep strength. The 1000 C slow plastic compressive flow stress-strain rate properties in air of as-grown, annealed, and worked nominally 10 and 25 percent materials have been determined. Swaging did not improve the slow plastic behavior. In fact large reductions tended to degrade the strength and produced a change in the deformation mechanism from uniform flow to one involving intense slip band formation. Comparison of 1000 C tensile and compressive strength-strain rate data reveals that deformation is independent of the stress state.

  10. Feasibility study of tungsten as a diffusion barrier between nickel-chromium-aluminum and Gamma/Gamma prime - Delta eutectic alloys

    NASA Technical Reports Server (NTRS)

    Young, S. G.; Zellars, G. R.

    1978-01-01

    Coating systems proposed for potential use on eutectic alloy components in high-temperature gas turbine engines were studied with emphasis on deterioration of such systems by diffusion. A 1-mil thick W sheet was placed between eutectic alloys and a NiCrAl layer. Layered test specimens were aged at 1100 C for as long as long as 500 hours. Without the W barrier, the delta phase of the eutectic deteriorated by diffusion of Nb into the NiCrAl. Insertion of the W barrier stopped the diffusion of Nb from delta. Chromium diffusion from the NiCrAl into the gamma/gamma prime phase of the eutectic was greatly reduced by the barrier. However, the barrier thickness decreased with time; and W diffused into both the NiCrAl and the eutectic. When the delta platelets were alined parallel to the NiCrAl layer, rather than perpendicular, diffusion into the eutectic was reduced.

  11. Research on the system performance evaluation of minimum-shift keying in uplink ground-to-satellite with gamma-gamma distribution

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Zhang, Ao; Ma, Jing

    2017-07-01

    Minimum-shift keying (MSK) has the advantages of constant envelope, continuous phase, and high spectral efficiency, and it is applied in radio communication and optical fiber communication. MSK modulation of coherent detection is proposed in the ground-to-satellite laser communication system; in addition, considering the inherent noise of uplink, such as intensity scintillation and beam wander, the communication performance of the MSK modulation system with coherent detection is studied in the uplink ground-to-satellite laser. Based on the gamma-gamma channel model, the closed form of bit error rate (BER) of MSK modulation with coherent detection is derived. In weak, medium, and strong turbulence, the BER performance of the MSK modulation system is simulated and analyzed. To meet the requirements of the ground-to-satellite coherent MSK system to optimize the parameters and configuration of the transmitter and receiver, the influence of the beam divergence angle, the zenith angle, the transmitter beam radius, and the receiver diameter are studied.

  12. Observation of exclusive charmonium production and gammagamma --> micro;{+}micro;{-} in pp[over] collisions at sqrt[s] = 1.96 TeV.

    PubMed

    Aaltonen, T; Adelman, J; Akimoto, T; Albrow, M G; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzurri, P; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Beringer, J; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burke, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Calancha, C; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Chwalek, T; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cordelli, M; Cortiana, G; Cox, C A; Cox, D J; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lorenzo, G; Dell'orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; Derwent, P F; di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Elagin, A; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Genser, K; Gerberich, H; Gerdes, D; Gessler, A; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hays, C; Heck, M; Heijboer, A; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Hussein, M; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, H W; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhr, T; Kulkarni, N P; Kurata, M; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, E; Lee, H S; Lee, S W; Leone, S; Lewis, J D; Lin, C-S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lucchesi, D; Luci, C; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mathis, M; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Merkel, P; Mesropian, C; Miao, T; Miladinovic, N; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moggi, N; Moon, C S; Moore, R; Morello, M J; Morlock, J; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Nett, J; Neu, C; Neubauer, M S; Neubauer, S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Osterberg, K; Pagan Griso, S; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Peiffer, T; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pinera, L; Pinfold, J; Pitts, K; Plager, C; Pondrom, L; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Renton, P; Renz, M; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sforza, F; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shiraishi, S; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Stuart, D; Suh, J S; Sukhanov, A; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Ttito-Guzmán, P; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Tourneur, S; Trovato, M; Tsai, S-Y; Tu, Y; Turini, N; Ukegawa, F; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wagner-Kuhr, J; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Weinelt, J; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Würthwein, F; Xie, S; Yagil, A; Yamamoto, K; Yamaoka, J; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zhang, L; Zhang, X; Zheng, Y; Zucchelli, S

    2009-06-19

    In CDF we have observed the reactions p + p[over] --> p + X + p[over], with X being a centrally produced J/psi, psi(2S), or chi_{c0}, and gammagamma-->micro;{+}micro;{-} in pp[over] collisions at sqrt[s] = 1.96 TeV. The event signature requires two oppositely charged central muons, and either no other particles or one additional photon detected. Exclusive vector meson production is as expected for elastic photoproduction, gamma + p --> J/psi(psi(2S)) + p, observed here for the first time in hadron-hadron collisions. We also observe exclusive chi_{c0} --> J/psi + gamma. The cross sections dsigma/dy|_{y = 0} for J/psi, psi(2S), and chi_{c0} are 3.92 +/- 0.25(stat) +/- 0.52(syst) nb, 0.53 +/- 0.09(stat) +/- 0.10(syst) nb, and 76 +/- 10(stat) +/- 10(syst) nb, respectively, and the continuum is consistent with QED. We put an upper limit on the cross section for Odderon exchange in exclusive J/psi production.

  13. Average capacity of the ground to train communication link of a curved track in the turbulence of gamma-gamma distribution

    NASA Astrophysics Data System (ADS)

    Yang, Yanqiu; Yu, Lin; Zhang, Yixin

    2017-04-01

    A model of the average capacity of optical wireless communication link with pointing errors for the ground-to-train of the curved track is established based on the non-Kolmogorov. By adopting the gamma-gamma distribution model, we derive the average capacity expression for this channel. The numerical analysis reveals that heavier fog reduces the average capacity of link. The strength of atmospheric turbulence, the variance of pointing errors, and the covered track length need to be reduced for the larger average capacity of link. The normalized beamwidth and the average signal-to-noise ratio (SNR) of the turbulence-free link need to be increased. We can increase the transmit aperture to expand the beamwidth and enhance the signal intensity, thereby decreasing the impact of the beam wander accordingly. As the system adopting the automatic tracking of beam at the receiver positioned on the roof of the train, for eliminating the pointing errors caused by beam wander and train vibration, the equivalent average capacity of the channel will achieve a maximum value. The impact of the non-Kolmogorov spectral index's variation on the average capacity of link can be ignored.

  14. Further Results on the Production of Neutral Mesons by Photons

    DOE R&D Accomplishments Database

    Panofsky, W. K. H.; Steinberger, J.; Steller, J.

    1951-10-01

    Further measurements have been made on the photoproduction of neutral mesons using the gamma-gamma coincidence technique. New data have been obtained on the gamma-gamma correlation curves in beryllium. The angular distribution of the photo mesons in Be has been determined and found to be strongly peaked forward. The dependence on the atomic number A of production has been found to obey an A{sup 2/3} law. Some data obtained for production in hydrogen show that the pi-zero and pi-plus production cross sections are comparable and that the pi-zero excitation curve starts more slowly from threshold than does the pi-plus photo excitation curve.

  15. Conversion-electron spectroscopy and gamma-gamma angular correlation measurements in 116Sn

    NASA Astrophysics Data System (ADS)

    Cross, D. S.; Pore, J. L.; Andreoiu, C.; Ball, G. C.; Bender, P. C.; Chester, A. S.; Churchman, R.; Demand, G. A.; Diaz Varela, A.; Dunlop, R.; Garnsworthy, A. B.; Garrett, P. E.; Hackman, G.; Hadinia, B.; Jigmeddorj, B.; Laffoley, A. T.; Liblong, A.; Kanungo, R.; Miller, D. T.; Noakes, B.; Petrache, C. M.; Starosta, K.; Svensson, C. E.; Voss, P.; Wang, Z.-M.; Wilson, J. M.; Wood, J. L.; Yates, S. W.

    2017-11-01

    The 116Sn nucleus was studied via the β- decay of 116In utilizing the 8π spectrometer and its auxiliary detectors at TRIUMF-ISAC. The resulting K-shell conversion coefficients, K/L ratios, and multipole mixing ratios are presented. The 23+ → 21+ 931 keV and 22+ → 21+ 819 keV transition mixing ratios were re-measured and found to be δ = +1.8_{-0.5}^{+0.7} and -1.83(8), respectively. Newly measured mixing ratios for transitions among the low-lying I^{π} = 4+ states in 116Sn, when combined with γ-ray intensity data, suggest that the 2529 keV 42+ state possesses a neutron broken-pair admixture in addition to its dominant proton 2p-2h component.

  16. Magnetic moments of excited states in nuclei far from stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, A.; Berant, Z.; Gill, R.L.

    1985-01-01

    Magnetic moments of excited states in nuclei far from stability have been measured by gamma-gamma angular correlation at the output of the fission product separators TRISTAN and JOSEF. The results obtained until now will be reviewed. They provide important nuclear structure information about nuclei around closed shells, and transitional nuclei in the A = 100 and 150 regions. 22 refs., 3 figs., 3 tabs.

  17. Sneaky Gamma-Rays: Using Gravitational Lensing to Avoid Gamma-Gamma-Absorption

    NASA Astrophysics Data System (ADS)

    Boettcher, Markus; Barnacka, Anna

    2014-08-01

    It has recently been suggested that gravitational lensing studies of gamma-ray blazars might be a promising avenue to probe the location of the gamma-ray emitting region in blazars. Motivated by these prospects, we have investigated potential gamma-gamma absorption signatures of intervening lenses in the very-high-energy gamma-ray emission from lensedblazars. We considered intervening galaxies and individual stars within these galaxies. We find that the collective radiation field of galaxies acting as sources of macrolensing are not expected to lead to significant gamma-gamma absorption. Individual stars within intervening galaxies could, in principle, cause a significant opacity to gamma-gamma absorption for VHE gamma-rays if the impact parameter (the distance of closest approach of the gamma-ray to the center of the star) is small enough. However, we find that the curvature of the photon path due to gravitational lensing will cause gamma-ray photons to maintain a sufficiently large distance from such stars to avoid significant gamma-gamma absorption. This re-inforces the prospect of gravitational-lensing studies of gamma-ray blazars without interference due to gamma-gamma absorption due to the lensing objects.

  18. Recent results from TRISTAN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enomoto, Ryoji

    1997-01-01

    TRISTAN results on {gamma}{gamma} physics from 1994 to 1995 are reviewed in this report. We have systematically investigated jet production, the {gamma}-structure function, and charm pair production in {gamma}{gamma} processes. The results are discussed, and future prospects are presented.

  19. Thermal fatigue and oxidation data of superalloys including directionally solidified eutectics

    NASA Technical Reports Server (NTRS)

    Hill, V. L.; Humphreys, V. E.

    1977-01-01

    Thermal fatigue and oxidation data were obtained on 61 specimens, representing 15 discrete alloy compositions or fabricating techniques and three coating systems. Conventionally fabricated alloys included V57, MM 200, Rene 77, Rene 125, MM 246, MM 509, IN-738, IN-792 + Hf, and MM 200 + Hf. The directionally solidified alloys were MM 200, MM 200 single crystal, MM 200 bicrystal, cellular gamma/gamma' - delta) and lamellar gamma/gamma' - delta. The coatings systems included NiCrAlY on IN-738, In-792 + Hf, MM 200 DS, MM 200 DS single crystal, and cellular gamma/gamma' - delta and NiCrAlY/Pt on lamellar gamma/gamma' - delta. Crack initiation survival rates were recorded for all alloys, with and without coatings. All uncoated alloys, except MM 509, exhibited significant oxidation weight loss in 75,000 to 15,000 cycles. MM 509 specimens had weight losses only slightly higher than coated specimens through 7,500 cycles. All coated specimens had low weight loss.

  20. Quaternary and quinary modifications of eutectic superalloys strengthened by delta Ni3Cb lamellae and gamma prime Ni3Al precipitates

    NASA Technical Reports Server (NTRS)

    Lemkey, F. D.; Mccarthy, G. P.

    1975-01-01

    By means of a compositional and heat treatment optimization program based on the quaternary gamma/gamma prime-delta, a tantalum modified gamma/gamma prime-delta alloy with improved shear and creep strength combined with better cyclic oxidation resistance was identified. Quinary additions, quaternary adjustments, and heat treatment were investigated. The tantalum modified gamma/gamma prime-delta alloy possessed a slightly higher liquidus temperature and exhibited rupture strength exceeding NASA VIA by approximately three and one-half Larson-Miller parameters (C = 20) above 1000 C. Although improvements in longitudinal mechanical properties were achieved, the shear and transverse strength property goals of the program were not met and present a continuing challenge to the alloy metallurgist.

  1. USSR Report, Political and Sociological Affairs, No. 1437.

    DTIC Science & Technology

    1983-08-02

    to Christian Jaak Peterson, the first Estonian lyric poet, now stands in old Vyshgorod, under the ancient lindens and oaks. Estonian poetry began...world. I. R. Grigulevich has also devoted many articles, surveys, and essays to the activity of the Catho- lic Church. These works examine such...issledovaniya za rubezhom. Kritiches- kiye ocherki" /Ethnological Studies Abroad: Critical Essays /, Moscow, 1973; "Kontseptsii zarubezhnoy etnografii

  2. Performance of two-layer thermal barrier systems on directionally solidified Ni-Al-Mo and comparative effects of alloy thermal expansion on system life

    NASA Technical Reports Server (NTRS)

    Stecura, S.

    1980-01-01

    A promising two-layer thermal barrier coating system (TBS), Ni-16.4Cr-5.1A1-0.15Y/ZrO2-6.1Y2O3 (all in weight percent), was identified for directionally solidified Ni-Al-Mo (gamma/gamma' alpha). In cyclic furnace tests at 1095 C this system on gamma/gamma' alpha was better than Ni-16. 4Cr-5.1Al-0.15Y/ZrO2-7.8Y2O3 by about 50 percent. In natural gas - oxygen torch rig tests at 1250 C the ZrO2-6.1Y2O3 coating was better than the ZrO2-7.8Y2O3 coating by 95 percent, on MAR-M509 substrates and by 60 percent on gamma/gamma' alpha substrates. Decreasing the coefficient of thermal expansion of the substrate material from 17-18x10 to the -6 power/C (MAR-M200 + Hf and MAR-M509) to 11x10 to the -6 power/C (gamma/gamma' alpha) also resulted in improved TBS life. For example, in natural gas - oxygen torch rig tests at 1250 C, the life of Ni-16.4Cr-5.1Al-0.15Y/ZrO26.1Y2O3 was about 30 percent better on gamma/gamma' alpha than on MAR-M509 substrates. Thus compositional changes in the bond and thermal barrier coatings were shown to have a greater effect on TBS life than does the coefficient of thermal expansion.

  3. Multiple transmitter performance with appropriate amplitude modulation for free-space optical communication.

    PubMed

    Tellez, Jason A; Schmidt, Jason D

    2011-08-20

    The propagation of a free-space optical communications signal through atmospheric turbulence experiences random fluctuations in intensity, including signal fades, which negatively impact the performance of the communications link. The gamma-gamma probability density function is commonly used to model the scintillation of a single beam. One proposed method to reduce the occurrence of scintillation-induced fades at the receiver plane involves the use of multiple beams propagating through independent paths, resulting in a sum of independent gamma-gamma random variables. Recently an analytical model for the probability distribution of irradiance from the sum of multiple independent beams was developed. Because truly independent beams are practically impossible to create, we present here a more general but approximate model for the distribution of beams traveling through partially correlated paths. This model compares favorably with wave-optics simulations and highlights the reduced scintillation as the number of transmitted beams is increased. Additionally, a pulse-position modulation scheme is used to reduce the impact of signal fades when they occur. Analytical and simulated results showed significantly improved performance when compared to fixed threshold on/off keying. © 2011 Optical Society of America

  4. Physiological Research on the Centrifuge in Flight Medical Examinations and Selection System

    DTIC Science & Technology

    1988-11-09

    and veins) when the pressure is-sn them. in vascular tension regulation under ac it:r C , L .. L Ifl .,:echanisms and the renin angiotensin syste...AND SELECTION SYSTEM by P.M. Suvorov DTIC x~ f ELE T E0 Approved for public release; Distribution unlimited. !P F D- ID(RS)T-0892-88 HUMAN TRANSLATION...SELECTION SYSTEM By: P.M. Suvorov English pages: 39 Source: Fiziologicheskiye Issledovaniya na Tsentrifuge v Praktike Vrachebno-Letnoy Ekspertizy i Sisteme

  5. Octupole Correlations in THORIUM-225

    NASA Astrophysics Data System (ADS)

    Hughes, John Rhys

    Available from UMI in association with The British Library. The nuclear structure of ^{225 }Th has been studied using the reaction ^{226}Ra(alpha,5n) ^{225}Th at a beam energy of 50 MeV. In-beam gamma-gamma , e^{-}-n, e ^{-}-e^{-} and e^{-}- gamma coincidences have been measured, using the TESSA3 array at the Daresbury NSF and the Double Orange spectrometer at the University of Bonn Cyclotron. gamma-ray and electron energies and intensities, gamma-ray angular distribution ratios and electron subshell ratios and conversion coefficients have been used to establish a decay scheme up to spin (39/2) hbar and excitation energy E _{z} ~ 2.5 MeV. The decay scheme is found to be characterised by two Delta J = 1 rotational bands, and these are classified in terms of the simplex quantum number, s, which is expected to be conserved for an octupole nucleus. No band crossings are observed up to a rotational frequency of hbaromega ~ 0.21 and 0.18 MeV in the s = -i and +i bands, respectively. Parity doublets have been observed, with enhanced E1 transitions linking states of opposite parity. gamma -branching ratios have been measured and an average value of | Q_1/Q_2| = (0.51 +/- 0.06) times 10^{-3} fm^{-1} has been deduced. The results are compared with various calculations incorporating odd multiple degrees of freedom in the description of the nuclear shape.

  6. Evaluation of directionally solidified eutectic superalloys for turbine blade applications

    NASA Technical Reports Server (NTRS)

    Henry, M. E.; Jackson, M. R.; Walter, J. L.

    1978-01-01

    Alloys from the following systems were selected for property evaluation: (1) gamma/gamma-Mo (Ni-base, rods of Mo); (2) gamma-beta (Ni-base, lamellae or rods of (Ni, Fe/Co Al); and (3) gamma-gamma (Ni-base rods of Ni3Al gamma). The three alloys were subjected to longitudinal and transverse tensile and rupture tests from 750 C to 1100 C, longitudinal shear strength was measured at several temperatures, resistance to thermal cycling to 1150 C was determined, cyclic oxidation resistance was evaluated at 750 C and 1100 C, and each system was directionally solidified in an alumina shell mold turbine shape to evaluate mold/metal reactivity. The gamma/gamma Mo system has good rupture resistance, transverse properties and processability, and is a high potential system for turbine blades. The gamma-beta system has good physical properties and oxidation resistance, and is a potential system for turbine vanes. The gamma-gamma system has good high temperature rupture resistance and requires further exploratory research.

  7. Standard model light-by-light scattering in SANC: Analytic and numeric evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bardin, D. Yu., E-mail: bardin@nu.jinr.ru; Kalinovskaya, L. V., E-mail: kalinov@nu.jinr.ru; Uglov, E. D., E-mail: corner@nu.jinr.r

    2010-11-15

    The implementation of the Standard Model process {gamma}{gamma} {yields} {gamma}{gamma} through a fermion and boson loop into the framework of SANC system and additional precomputation modules used for calculation of massive box diagrams are described. The computation of this process takes into account nonzero mass of loop particles. The covariant and helicity amplitudes for this process, some particular cases of D{sub 0} and C{sub 0} Passarino-Veltman functions, and also numerical results of corresponding SANC module evaluation are presented. Whenever possible, the results are compared with those existing in the literature.

  8. Probability density of aperture-averaged irradiance fluctuations for long range free space optical communication links.

    PubMed

    Lyke, Stephen D; Voelz, David G; Roggemann, Michael C

    2009-11-20

    The probability density function (PDF) of aperture-averaged irradiance fluctuations is calculated from wave-optics simulations of a laser after propagating through atmospheric turbulence to investigate the evolution of the distribution as the aperture diameter is increased. The simulation data distribution is compared to theoretical gamma-gamma and lognormal PDF models under a variety of scintillation regimes from weak to strong. Results show that under weak scintillation conditions both the gamma-gamma and lognormal PDF models provide a good fit to the simulation data for all aperture sizes studied. Our results indicate that in moderate scintillation the gamma-gamma PDF provides a better fit to the simulation data than the lognormal PDF for all aperture sizes studied. In the strong scintillation regime, the simulation data distribution is gamma gamma for aperture sizes much smaller than the coherence radius rho0 and lognormal for aperture sizes on the order of rho0 and larger. Examples of how these results affect the bit-error rate of an on-off keyed free space optical communication link are presented.

  9. Photon and neutral pion production in Au+Au collisions at {radical}s{sub NN} = 130 GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, J.; Adler, C.; Aggarwal, M.M.

    2004-01-08

    We report the first inclusive photon measurements about mid-rapidity (|y| < 0.5) from {sup 197}Au + {sup 197}Au collisions at {radical}s{sub NN} = 130 GeV at RHIC. Photon pair conversions were reconstructed from electron and positron tracks measured with the Time Projection Chamber (TPC) of the STAR experiment. With this method, an energy resolution of {Delta}E/E {approx} 2% at 0.5 GeV has been achieved. Reconstructed photons have also been used to measure the transverse momentum (p{sub t}) spectra of {pi}{sup 0} mesons about mid-rapidity (|y| < 1) via the {pi}{sup 0} {yields} {gamma}{gamma} decay channel. The fractional contribution of themore » {pi}{sup 0} {yields} {gamma}{gamma} decay to the inclusive photon spectrum decreases by 20% {+-} 5% between p{sub t} = 1.65 GeV/c and p{sub t} = 2.4 GeV/c in the most central events, indicating that relative to {pi}{sup 0} {yields} {gamma}{gamma} decay the contribution of other photon sources is substantially increasing.« less

  10. Studies of Point Defects and Defect Interactions in Metals Using Perturbed Gamma Gamma Angular Correlations

    NASA Astrophysics Data System (ADS)

    Shropshire, Steven Leslie

    Point defects in plastically deformed Au, Pt, and Ni were studied with atomic-scale sensitivity using the perturbed gamma-gamma angular correlations (PAC) technique by monitoring formation and transformation of complexes of vacancy defects with very dilute ^{111}In/ ^{111}Cd solute probes. Three topics were investigated: (1) Production of vacancy defects during plastic deformation of Au was investigated to differentiate models of defect production. Concentrations of mono-, di-, and tri-vacancy species were measured in Au, and the ratio of mono- to di-vacancies was found to be independent of the amount of deformation. Results indicate that point defects are produced in correlated lattice locations, such as in "strings", as a consequence of dislocation interactions and not at random locations. (2) Hydrogen interactions with vacancy-solute complexes were studied in Pt. From thermal detrapping experiments, binding of hydrogen in complexes with mono-, di- and tri-vacancies was determined using a model for hydrogen diffusing in a medium with traps, with enthalpies all measured in the narrow range 0.23-0.28 eV, proving that the binding is insensitive to the precise structure of small vacancy clusters. Nuclear relaxation of the probe in a trivacancy complex in Pt was studied as a function of temperature, from which an activation energy of 0.34 eV was measured. This value is inconsistent with relaxation caused by diffusion or trapping of hydrogen, but explainable by dynamical hopping of the PAC probe atom in a cage of vacancies. (3) By observing transformations between vacancy-solute complexes induced by annihilation reactions, it was demonstrated that interstitials are produced during plastic deformation. The evolution of concentrations of the different vacancy complexes under an interstitial flux was measured and analyzed using a kinetic-rate model, from which interstitial capture cross-sections for the different vacancy complexes and the relative quantities of

  11. The effect of hydrogen and microstructure on the deformation and fracture behavior of a single crystal nickel-base superalloy. Final Report Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Walston, William S.

    1990-01-01

    A study was conducted on the effects of internal hydrogen and microstructure on the deformation and fracture of a single crystal nickel-base superalloy. In particular, room temperature plane strain fracture toughness and tensile tests were performed on hydrogen-free and hydrogen charged samples of PWA 1480. The role of microstructure was incorporated by varying the levels of porosity and eutectic gamma/gamma prime through hot isostatic pressing and heat treatment. The room temperature behavior of PWA 1480 was unusual because precipitate shearing was not the primary deformation mechanism at all strains. At strains over 1 percent, dislocations were trapped in the gamma matrix and an attempt was made to relate this behavior to compositional differences between PWA 1480 and other superalloys. Another unique feature of the tensile behavior was cleavage of the eutectic gamma/gamma prime, which is believed to initiate the failure process. Fracture occurred on (111) planes and is likely a result of shear localization along these planes. Elimination of the eutectic gamma/gamma prime greatly improved the tensile ductility, but pososity had no effect on tensile properties. Large quantities of hydrogen (1.74 at. percent) were gas-phase charged into the material, but surprisingly this was not a function of the amount of porosity or eutectic gamma/gamma prime present. Desorption experiments suggest that the vast majority of hydrogen is at reversible lattice trapping sites. This large, uniform concentration of hydrogen dramatically reduced the tensile strain to failure, but only slightly affected the reduction in area. Available hydrogen embrittlement models were examined in light of these results and it was found that the hydrogen enhanced localized plasticity model can explain much of the tensile behavior. K(IC) fracture toughness tests were conducted, but it was necessary to also perform J(IC) tests to provide valid data.

  12. Istoriko-Astronomicheskie Issledovaniya %t Studies in the History of Astronomy

    NASA Astrophysics Data System (ADS)

    Idlis, G. M.

    This collection contains papers covering a wide scope of problems in the history of astronomy, both domestic and worldwide. It includes the following basic subdivisions: Astronomy, cosmology and cosmogony of the 20th century; researches and findings; ancient and medieval astronomy; history of observatories and others. Among the most interesting problems considered in the present issue: the origin of the Earth and the geospheres: a bit of history and the current state of the problem; the Near-Earth Astronomy as an independent astronomical discipline; the problem of visual registration of observations in optical astronomy in the 17th - 18th centuries; evidence of lunar and solar calendars in Russian chronicles; the history of the first observatory of the Moscow University; the history of Pulkovo observatory for the last 50 years; the life and activity of the outstanding Russian astronomer A. A. Belopolsky (for his 150th anniversary); a reconstruction of Philolaus' solar system model; and many others. The book is addressed to professional scientists, astronomy amateurs, pedagogues, and everybody interested in the history of science.

  13. Istoriko-Astronomicheskie Issledovaniya %t Studies in the History of Astronomy

    NASA Astrophysics Data System (ADS)

    Idlis, G. M.

    This collection of papers contains essays on a wide scope of problems in the history of astronomy, both domestic and worldwide. It includes the following basic subdivisions: Astronomy, cosmology and cosmogony of the 20th century; researches and findings; cosmology; philosophical problems; astronomy and society; publications and memoirs. Among the most interesting problems considered in the present issue: the life and achievements of the famous French astronomer C. Flammarion; theories of spiral structures of galaxies of the 1960s; a history of alternative trends in planetary cosmogony; Kant's philosophy and the anthropic principle; the development of star mapping in 16th century Europe; database preparation from the results of Russian space programs; the troublesome fates of Russian astronomers in memoirs and researches; and many others. The book is addressed to professional scientists, astronomy amateurs, teachers, and everybody interested in the history of science.

  14. Creep shear behavior of the oxide dispersion strengthened superalloy MA 6000E

    NASA Technical Reports Server (NTRS)

    Glasgow, T. K.

    1981-01-01

    The shear rupture life of the oxide dispersion strengthened (ODS) superalloy MA 6000E was determined at 650 and 760 C was 250 MPa. Comparisons were made at 760 C with the conventional cast superalloy B-1900+Hf, the ODS alloy MA 754, and the directionally solidified eutectic alloy gamma/gamma prime-delta was 170 MPa, and for B-1900+Hf was 360 MPa. The ODS alloy MA 6000E and gamma/gamma prime-delta failed with very little indication of ductile accommodation. Both MA 754 and B-1900+Hf showed some ductile tearing. Fracture surfaces of the ODS alloy MA 754 showed discontinuities similar size, shape, and roughness to its grain structure, but the fracture surfaces of MA 6000E were much smoother than its grain boundaries.

  15. Coatings for directional eutectics. [for corrosion and oxidation resistance

    NASA Technical Reports Server (NTRS)

    Felten, E. J.; Strangman, T. E.; Ulion, N. E.

    1974-01-01

    Eleven coating systems based on MCrAlY overlay and diffusion aluminide prototypes were evaluated to determine their capability for protecting the gamma/gamma prime-delta directionally solidified eutectic alloy (Ni-20Cb-6Cr-2.5Al) in gas turbine engine applications. Furnace oxidation and hot corrosion, Mach 0.37 burner-rig, tensile ductility, stress-rupture and thermomechanical fatigue tests were used to evaluate the coated gamma/gamma prime-delta alloy. The diffusion aluminide coatings provided adequate oxidation resistance at 1144 K (1600 F) but offered very limited protection in 114 K (1600 F) hot corrosion and 1366 K (2000 F) oxidation tests. A platinum modified NiCrAlY overlay coating exhibited excellent performance in oxidation testing and had no adverse effects upon the eutectic alloy.

  16. From micro-correlations to macro-correlations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eliazar, Iddo, E-mail: iddo.eliazar@intel.com

    2016-11-15

    Random vectors with a symmetric correlation structure share a common value of pair-wise correlation between their different components. The symmetric correlation structure appears in a multitude of settings, e.g. mixture models. In a mixture model the components of the random vector are drawn independently from a general probability distribution that is determined by an underlying parameter, and the parameter itself is randomized. In this paper we study the overall correlation of high-dimensional random vectors with a symmetric correlation structure. Considering such a random vector, and terming its pair-wise correlation “micro-correlation”, we use an asymptotic analysis to derive the random vector’smore » “macro-correlation” : a score that takes values in the unit interval, and that quantifies the random vector’s overall correlation. The method of obtaining macro-correlations from micro-correlations is then applied to a diverse collection of frameworks that demonstrate the method’s wide applicability.« less

  17. Effects of Rhenium Addition on the Temporal Evolution of the Nanostructure and Chemistry of a Model Ni-Cr-Al Superalloy. 1; Experimental Observations

    NASA Technical Reports Server (NTRS)

    Yoon, Kevin E.; Noebe, Ronald D.; Seidman, David N.

    2006-01-01

    The temporal evolution of the nanostructure and chemistry of a model Ni-8.5 at.% Cr-10 at. % Al alloy, with the addition of 2 at.% Re, aged at 1073 K from 0.25 to 264 h, was studied. Transmission electron microscopy and atom-probe tomography were used to measure the number density and mean radius of the gamma prime (L1(sub 2) structure)-precipitates and the chemistry of the gamma prime-precipitates and the gamma (face-centered cubic)-matrix, including the partitioning behavior of all alloying elements between the gamma- and gamma prime-phases and the segregation behavior at gamma/gamma prime interfaces. The precipitates remained spheroidal for an aging time of up to 264 h and, unlike commercial nickel-based superalloys containing Re, there was not confined (nonmonotonic) Re segregation at the gamma/gamma prime interfaces.

  18. Quadratic correlation filters for optical correlators

    NASA Astrophysics Data System (ADS)

    Mahalanobis, Abhijit; Muise, Robert R.; Vijaya Kumar, Bhagavatula V. K.

    2003-08-01

    Linear correlation filters have been implemented in optical correlators and successfully used for a variety of applications. The output of an optical correlator is usually sensed using a square law device (such as a CCD array) which forces the output to be the squared magnitude of the desired correlation. It is however not a traditional practice to factor the effect of the square-law detector in the design of the linear correlation filters. In fact, the input-output relationship of an optical correlator is more accurately modeled as a quadratic operation than a linear operation. Quadratic correlation filters (QCFs) operate directly on the image data without the need for feature extraction or segmentation. In this sense, the QCFs retain the main advantages of conventional linear correlation filters while offering significant improvements in other respects. Not only is more processing required to detect peaks in the outputs of multiple linear filters, but choosing a winner among them is an error prone task. In contrast, all channels in a QCF work together to optimize the same performance metric and produce a combined output that leads to considerable simplification of the post-processing. In this paper, we propose a novel approach to the design of quadratic correlation based on the Fukunaga Koontz transform. Although quadratic filters are known to be optimum when the data is Gaussian, it is expected that they will perform as well as or better than linear filters in general. Preliminary performance results are provided that show that quadratic correlation filters perform better than their linear counterparts.

  19. Evaluation of permeable fractures in rock aquifers

    NASA Astrophysics Data System (ADS)

    Bok Lee, Hang

    2015-04-01

    In this study, the practical usefulness and fundamental applicability of a self-potential (SP) method for identifying the permeable fractures were evaluated by a comparison of SP methods with other geophysical logging methods and hydraulic tests. At a 10 m-shallow borehole in the study site, the candidates of permeable fractures crossing the borehole were first determined by conventional geophysical methods such as an acoustic borehole televiwer, temperature, electrical conductivity and gamma-gamma loggings, which was compared to the analysis by the SP method. Constant pressure injection and recovery tests were conducted for verification of the hydraulic properties of the fractures identified by various logging methods. The acoustic borehole televiwer and gamma-gamma loggings detected the open space or weathering zone within the borehole, but they cannot prove the possibility of a groundwater flow through the detected fractures. The temperature and electrical conductivity loggings had limitations to detect the fractured zones where groundwater in the borehole flows out to the surrounding rock aquifers. Comparison of results from different methods showed that there is a best correlation between the distribution of hydraulic conductivity and the variation of the SP signals, and the SP logging can estimate accurately the hydraulic activity as well as the location of permeable fractures. Based on the results, the SP method is recommended for determining the hydraulically-active fractures rather than other conventional geophysical loggings. This self-potential method can be effectively applied in the initial stage of a site investigation which selects the optimal location and evaluates the hydrogeological property of fractures in target sites for the underground structure including the geothermal reservoir and radioactive waste disposal.

  20. Effects of Microstructural Parameters on Creep of Nickel-Base Superalloy Single Crystals

    NASA Technical Reports Server (NTRS)

    MacKay, Rebecca A.; Gabb, Timothy P.; Nathal, Michael V.

    2013-01-01

    Microstructure-sensitive creep models have been developed for Ni-base superalloy single crystals. Creep rupture testing was conducted on fourteen single crystal alloys at two applied stress levels at each of two temperatures, 982 and 1093 C. The variation in creep lives among the different alloys could be explained with regression models containing relatively few microstructural parameters. At 982 C, gamma-gamma prime lattice mismatch, gamma prime volume fraction, and initial gamma prime size were statistically significant in explaining the creep rupture lives. At 1093 C, only lattice mismatch and gamma prime volume fraction were significant. These models could explain from 84 to 94 percent of the variation in creep lives, depending on test condition. Longer creep lives were associated with alloys having more negative lattice mismatch, lower gamma prime volume fractions, and finer gamma prime sizes. The gamma-gamma prime lattice mismatch exhibited the strongest influence of all the microstructural parameters at both temperatures. Although a majority of the alloys in this study were stable with respect to topologically close packed (TCP) phases, it appeared that up to approximately 2 vol% TCP phase did not affect the 1093 C creep lives under applied stresses that produced lives of approximately 200 to 300 h. In contrast, TCP phase contents of approximately 2 vol% were detrimental at lower applied stresses where creep lives were longer. A regression model was also developed for the as-heat treated initial gamma prime size; this model showed that gamma prime solvus temperature, gamma-gamma prime lattice mismatch, and bulk Re content were all statistically significant.

  1. Refinement of Promising Coating Compositions for Directionally Cast Eutectics

    NASA Technical Reports Server (NTRS)

    Strangman, T. E.; Felten, E. J.; Benden, R. S.

    1976-01-01

    The successful application of high creep strength, directionally solidified gamma/gamma prime-delta (Ni-19.7Cb-6Cr-2.5Al) eutectic superalloy turbine blades requires the development of suitable coatings for airfoil, root and internal blade surfaces. In order to improve coatings for the gamma/gamma prime-delta alloy, the current investigation had the goals of (1) refining promising coating compositions for directionally solidified eutectics, (2) evaluating the effects of coating/ substrate interactions on the mechanical properties of the alloy, and (3) evaluating diffusion aluminide coatings for internal surfaces. Burner rig cyclic oxidation, furnace cyclic hot corrosion, ductility, and thermal fatigue tests indicated that NiCrAlY+Pt(63 to 127 micron Ni-18Cr-12Al-0.3Y + 6 micron Pt) and NiCrAlY(63 to 127 micron Ni-18Cr-12Al-0.3Y) coatings are capable of protecting high temperature gas path surfaces of eutectic alloy airfoils. Burner rig (Mach 0.37) testing indicated that the useful coating life of the 127 micron thick coatings exceeded 1000 hours at 1366 K (2000 deg F). Isothermal fatigue and furnance hot corrosion tests indicated that 63 micron NiCrAlY, NiCrAlY + Pt and platinum modified diffusion aluminide (Pt + Al) coating systems are capable of protecting the relatively cooler surfaces of the blade root. Finally, a gas phase coating process was evaluated for diffusion aluminizing internal surfaces and cooling holes of air-cooled gamma/gamma prime-delta turbine blades.

  2. Results from {gamma}{gamma} collisions in OPAL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patt, Jochen

    The production of charged hadrons and jets is measured in collisions of quasi-real photons. The data were taken with the OPAL detector at LEP at e{sup +}e{sup -} centre-of-mass energies {radical}(s{sub ee})=161 and 172 GeV. The measured cross-sections are compared to perturbative next-to-leading order QCD calculations. The separation of the direct and the resolved component of the photon is demonstrated.

  3. High temperature cyclic oxidation data. Part 1: Turbine alloys

    NASA Technical Reports Server (NTRS)

    Barrett, Charles A.; Garlick, Ralph G.; Lowell, Carl E.

    1989-01-01

    Specific-weight-change-versus-time data and x ray diffraction results are presented derived from high temperature cyclic tests on high temperature, high strength nickel-base gamma/gamma prime and cobalt-base turbine alloys. Each page of data summarizes a complete test on a given alloy sample.

  4. Allowing for Correlations between Correlations in Random-Effects Meta-Analysis of Correlation Matrices

    ERIC Educational Resources Information Center

    Prevost, A. Toby; Mason, Dan; Griffin, Simon; Kinmonth, Ann-Louise; Sutton, Stephen; Spiegelhalter, David

    2007-01-01

    Practical meta-analysis of correlation matrices generally ignores covariances (and hence correlations) between correlation estimates. The authors consider various methods for allowing for covariances, including generalized least squares, maximum marginal likelihood, and Bayesian approaches, illustrated using a 6-dimensional response in a series of…

  5. Cluster-cluster correlations and constraints on the correlation hierarchy

    NASA Technical Reports Server (NTRS)

    Hamilton, A. J. S.; Gott, J. R., III

    1988-01-01

    The hypothesis that galaxies cluster around clusters at least as strongly as they cluster around galaxies imposes constraints on the hierarchy of correlation amplitudes in hierachical clustering models. The distributions which saturate these constraints are the Rayleigh-Levy random walk fractals proposed by Mandelbrot; for these fractal distributions cluster-cluster correlations are all identically equal to galaxy-galaxy correlations. If correlation amplitudes exceed the constraints, as is observed, then cluster-cluster correlations must exceed galaxy-galaxy correlations, as is observed.

  6. Two-particle correlation function and dihadron correlation approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vechernin, V. V., E-mail: v.vechernin@spbu.ru; Ivanov, K. O.; Neverov, D. I.

    It is shown that, in the case of asymmetric nuclear interactions, the application of the traditional dihadron correlation approach to determining a two-particle correlation function C may lead to a form distorted in relation to the canonical pair correlation function {sub C}{sup 2}. This result was obtained both by means of exact analytic calculations of correlation functions within a simple string model for proton–nucleus and deuteron–nucleus collisions and by means of Monte Carlo simulations based on employing the HIJING event generator. It is also shown that the method based on studying multiplicity correlations in two narrow observation windows separated inmore » rapidity makes it possible to determine correctly the canonical pair correlation function C{sub 2} for all cases, including the case where the rapidity distribution of product particles is not uniform.« less

  7. Correlation energy, correlated electron density, and exchange-correlation potential in some spherically confined atoms.

    PubMed

    Vyboishchikov, Sergei F

    2016-12-05

    We report correlation energies, electron densities, and exchange-correlation potentials obtained from configuration interaction and density functional calculations on spherically confined He, Be, Be 2+ , and Ne atoms. The variation of the correlation energy with the confinement radius R c is relatively small for the He, Be 2+ , and Ne systems. Curiously, the Lee-Yang-Parr (LYP) functional works well for weak confinements but fails completely for small R c . However, in the neutral beryllium atom the CI correlation energy increases markedly with decreasing R c . This effect is less pronounced at the density-functional theory level. The LYP functional performs very well for the unconfined Be atom, but fails badly for small R c . The standard exchange-correlation potentials exhibit significant deviation from the "exact" potential obtained by inversion of Kohn-Sham equation. The LYP correlation potential behaves erratically at strong confinements. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Analog Correlator Based on One Bit Digital Correlator

    NASA Technical Reports Server (NTRS)

    Prokop, Norman (Inventor); Krasowski, Michael (Inventor)

    2017-01-01

    A two input time domain correlator may perform analog correlation. In order to achieve high throughput rates with reduced or minimal computational overhead, the input data streams may be hard limited through adaptive thresholding to yield two binary bit streams. Correlation may be achieved through the use of a Hamming distance calculation, where the distance between the two bit streams approximates the time delay that separates them. The resulting Hamming distance approximates the correlation time delay with high accuracy.

  9. Protecting Quantum Correlation from Correlated Amplitude Damping Channel

    NASA Astrophysics Data System (ADS)

    Huang, Zhiming; Zhang, Cai

    2017-08-01

    In this work, we investigate the dynamics of quantum correlation measured by measurement-induced nonlocality (MIN) and local quantum uncertainty (LQU) in correlated amplitude damping (CAD) channel. We find that the memory parameter brings different influences on MIN and LQU. In addition, we propose a scheme to protect quantum correlation by executing prior weak measurement (WM) and post-measurement reversal (MR). However, better protection of quantum correlation by the scheme implies a lower success probability (SP).

  10. Implications of Gamma-Ray Transparency Constraints in Blazars: Minimum Distances and Gamma-Ray Collimation

    NASA Technical Reports Server (NTRS)

    Becker, Peter A.; Kafatos, Menas

    1995-01-01

    We develop a general expression for the gamma - gamma absorption coefficient, alpha(sub gamma(gamma)) for gamma-rays propagating in an arbitrary direction at an arbitrary point in space above an X-ray-emitting accretion disk. The X-ray intensity is assumed to vary as a power law in energy and radius between the outer disk radius, R(sub 0), and the inner radius, R(sub ms) which is the radius of marginal stability for a Schwarzschild black hole. We use our result for alpha(sub gamma(gamma)) to calculate the gamma - gamma optical depth, tau(sub gamma(gamma)) for gamma - rays created at height z and propagating at angle Phi relative to the disk axis, and we show that for Phi = 0 and z greater than or approx equal to R(sub 0), tau(sub gamma(gamma)) proportional to Epsilon(sup alpha)z(sup -2(alpha) - 3), where alpha is the X-ray spectral index and Epsilon is the gamma - ray energy. As an application, we use our formalism to compute the minimum distance between the central black hole and the site of production of the gamma-rays detected by EGRET during the 1991 June flare of 3C 279. In order to obtain an upper limit, we assume that all of the X-rays observed contemporaneously by Ginga were emitted by the disk. Our results suggest that the observed gamma - rays may have originated within less than or approx equal to 45 GM/sq c from a black hole of mass greater than or approx equal to 10(exp 9) solar mass, perhaps in active plasma located above the central funnel of the accretion disk. This raises the possibility of establishing a direct connection between the production of the observed gamma - rays and the accretion of material onto the black hole. We also consider the variation of the optical depth as a function of the angle of propagation Phi. Our results indicate that the "focusing" of the gamma - rays along the disk axis due to pair production is strong enough to explain the observed degree of alignment in blazar sources. If the gamma - rays are produced isotropically

  11. Design of exchange-correlation functionals through the correlation factor approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavlíková Přecechtělová, Jana, E-mail: j.precechtelova@gmail.com, E-mail: Matthias.Ernzerhof@UMontreal.ca; Institut für Chemie, Theoretische Chemie / Quantenchemie, Sekr. C7, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin; Bahmann, Hilke

    The correlation factor model is developed in which the spherically averaged exchange-correlation hole of Kohn-Sham theory is factorized into an exchange hole model and a correlation factor. The exchange hole model reproduces the exact exchange energy per particle. The correlation factor is constructed in such a manner that the exchange-correlation energy correctly reduces to exact exchange in the high density and rapidly varying limits. Four different correlation factor models are presented which satisfy varying sets of physical constraints. Three models are free from empirical adjustments to experimental data, while one correlation factor model draws on one empirical parameter. The correlationmore » factor models are derived in detail and the resulting exchange-correlation holes are analyzed. Furthermore, the exchange-correlation energies obtained from the correlation factor models are employed to calculate total energies, atomization energies, and barrier heights. It is shown that accurate, non-empirical functionals can be constructed building on exact exchange. Avenues for further improvements are outlined as well.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernards, C.; Heinze, S.; Jolie, J.

    We present the results of a {gamma}{gamma} angular correlation experiment investigating the nucleus {sup 196}Hg and compare these with a theoretical description of {sup 196}Hg within the U{sub {nu}}(6/12) x U{sub {pi}}(6/4) extended supersymmetry. To populate excited {sup 196}Hg states, we used the Cologne FN Tandem accelerator inducing the reaction {sup 194}Pt({alpha},2n){sup 196}Hg and analyzed the {gamma} decays of levels up to an excitation energy of 2.4 MeV with the HORUS cube spectrometer. The new results on this mercury isotope allow a comparison between the experimental data and the supersymmetrical predictions and show good agreement. This way we can addmore » {sup 196}Hg as a fifth supermultiplet member to the so-called magical quartet consisting of {sup 194,195}Pt and {sup 195,196}Au.« less

  13. A test of the hypothesis that correlational selection generates genetic correlations.

    PubMed

    Roff, Derek A; Fairbairn, Daphne J

    2012-09-01

    Theory predicts that correlational selection on two traits will cause the major axis of the bivariate G matrix to orient itself in the same direction as the correlational selection gradient. Two testable predictions follow from this: for a given pair of traits, (1) the sign of correlational selection gradient should be the same as that of the genetic correlation, and (2) the correlational selection gradient should be positively correlated with the value of the genetic correlation. We test this hypothesis with a meta-analysis utilizing empirical estimates of correlational selection gradients and measures of the correlation between the two focal traits. Our results are consistent with both predictions and hence support the underlying hypothesis that correlational selection generates a genetic correlation between the two traits and hence orients the bivariate G matrix. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  14. Optical Correlation

    NASA Technical Reports Server (NTRS)

    Cotariu, Steven S.

    1991-01-01

    Pattern recognition may supplement or replace certain navigational aids on spacecraft in docking or landing activities. The need to correctly identify terrain features remains critical in preparation of autonomous planetary landing. One technique that may solve this problem is optical correlation. Correlation has been successfully demonstrated under ideal conditions; however, noise significantly affects the ability of the correlator to accurately identify input signals. Optical correlation in the presence of noise must be successfully demonstrated before this technology can be incorporated into system design. An optical correlator is designed and constructed using a modified 2f configuration. Liquid crystal televisions (LCTV) are used as the spatial light modulators (SLM) for both the input and filter devices. The filter LCTV is characterized and an operating curve is developed. Determination of this operating curve is critical for reduction of input noise. Correlation of live input with a programmable filter is demonstrated.

  15. Optical correlation

    NASA Astrophysics Data System (ADS)

    Cotariu, Steven S.

    1991-12-01

    Pattern recognition may supplement or replace certain navigational aids on spacecraft in docking or landing activities. The need to correctly identify terrain features remains critical in preparation of autonomous planetary landing. One technique that may solve this problem is optical correlation. Correlation has been successfully demonstrated under ideal conditions; however, noise significantly affects the ability of the correlator to accurately identify input signals. Optical correlation in the presence of noise must be successfully demonstrated before this technology can be incorporated into system design. An optical correlator is designed and constructed using a modified 2f configuration. Liquid crystal televisions (LCTV) are used as the spatial light modulators (SLM) for both the input and filter devices. The filter LCTV is characterized and an operating curve is developed. Determination of this operating curve is critical for reduction of input noise. Correlation of live input with a programmable filter is demonstrated.

  16. Long-term correlations and cross-correlations in IBovespa and constituent companies

    NASA Astrophysics Data System (ADS)

    de Lima, Neílson F.; Fernandes, Leonardo H. S.; Jale, Jader S.; de Mattos Neto, Paulo S. G.; Stošić, Tatijana; Stošić, Borko; Ferreira, Tiago A. E.

    2018-02-01

    We study auto-correlations and cross-correlations of IBovespa index and its constituent companies. We use Detrended Fluctuation Analysis (DFA) to quantify auto-correlations and Detrended Cross-Correlation Analysis (DCCA) to quantify cross-correlations in absolute returns of daily closing prices of IBovespa and the individual companies. We find persistent long-term correlations and cross-correlations which are weaker than those found for USA market. Our results indicate that market indices of developing markets exhibit weaker coupling with its constituents than for mature developed markets.

  17. The Effect of Error Correlation on Interfactor Correlation in Psychometric Measurement

    ERIC Educational Resources Information Center

    Westfall, Peter H.; Henning, Kevin S. S.; Howell, Roy D.

    2012-01-01

    This article shows how interfactor correlation is affected by error correlations. Theoretical and practical justifications for error correlations are given, and a new equivalence class of models is presented to explain the relationship between interfactor correlation and error correlations. The class allows simple, parsimonious modeling of error…

  18. High-Temperature Cyclic Oxidation Data, Volume 1

    NASA Technical Reports Server (NTRS)

    Barrett, C. A.; Garlick, R. G.; Lowell, C. E.

    1984-01-01

    This first in a series of cyclic oxidation handbooks contains specific-weight-change-versus-time data and X-ray diffraction results derived from high-temperature cyclic tests on high-temperature, high-strength nickel-base gamma/gamma' and cobalt-base turbine alloys. Each page of data summarizes a complete test on a given alloy sample.

  19. High-resolution correlation

    NASA Astrophysics Data System (ADS)

    Nelson, D. J.

    2007-09-01

    In the basic correlation process a sequence of time-lag-indexed correlation coefficients are computed as the inner or dot product of segments of two signals. The time-lag(s) for which the magnitude of the correlation coefficient sequence is maximized is the estimated relative time delay of the two signals. For discrete sampled signals, the delay estimated in this manner is quantized with the same relative accuracy as the clock used in sampling the signals. In addition, the correlation coefficients are real if the input signals are real. There have been many methods proposed to estimate signal delay to more accuracy than the sample interval of the digitizer clock, with some success. These methods include interpolation of the correlation coefficients, estimation of the signal delay from the group delay function, and beam forming techniques, such as the MUSIC algorithm. For spectral estimation, techniques based on phase differentiation have been popular, but these techniques have apparently not been applied to the correlation problem . We propose a phase based delay estimation method (PBDEM) based on the phase of the correlation function that provides a significant improvement of the accuracy of time delay estimation. In the process, the standard correlation function is first calculated. A time lag error function is then calculated from the correlation phase and is used to interpolate the correlation function. The signal delay is shown to be accurately estimated as the zero crossing of the correlation phase near the index of the peak correlation magnitude. This process is nearly as fast as the conventional correlation function on which it is based. For real valued signals, a simple modification is provided, which results in the same correlation accuracy as is obtained for complex valued signals.

  20. Self-calibrated correlation imaging with k-space variant correlation functions.

    PubMed

    Li, Yu; Edalati, Masoud; Du, Xingfu; Wang, Hui; Cao, Jie J

    2018-03-01

    Correlation imaging is a previously developed high-speed MRI framework that converts parallel imaging reconstruction into the estimate of correlation functions. The presented work aims to demonstrate this framework can provide a speed gain over parallel imaging by estimating k-space variant correlation functions. Because of Fourier encoding with gradients, outer k-space data contain higher spatial-frequency image components arising primarily from tissue boundaries. As a result of tissue-boundary sparsity in the human anatomy, neighboring k-space data correlation varies from the central to the outer k-space. By estimating k-space variant correlation functions with an iterative self-calibration method, correlation imaging can benefit from neighboring k-space data correlation associated with both coil sensitivity encoding and tissue-boundary sparsity, thereby providing a speed gain over parallel imaging that relies only on coil sensitivity encoding. This new approach is investigated in brain imaging and free-breathing neonatal cardiac imaging. Correlation imaging performs better than existing parallel imaging techniques in simulated brain imaging acceleration experiments. The higher speed enables real-time data acquisition for neonatal cardiac imaging in which physiological motion is fast and non-periodic. With k-space variant correlation functions, correlation imaging gives a higher speed than parallel imaging and offers the potential to image physiological motion in real-time. Magn Reson Med 79:1483-1494, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  1. PROSPECTS FOR PENTAQUARK SEARCHES IN E+D- ANNIHILATIONS AND VV COLLISIONS.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ARMSTRONG,S.; MELLADO,B.; WU,S.L.

    2004-06-28

    Recent strong experimental evidence of a narrow exotic S = +1 baryon resonance, {Theta}{sup +}, suggests the existence of other exotic baryons. We discuss the prospects of confirming earlier experimental evidence of {Theta}{sup +} and the observation of additional hypothetical exotic baryons in e{sup +}e{sup -} annihilations and {gamma}{gamma} collisions at LEP and B Factories.

  2. Complementarity and Correlations

    NASA Astrophysics Data System (ADS)

    Maccone, Lorenzo; Bruß, Dagmar; Macchiavello, Chiara

    2015-04-01

    We provide an interpretation of entanglement based on classical correlations between measurement outcomes of complementary properties: States that have correlations beyond a certain threshold are entangled. The reverse is not true, however. We also show that, surprisingly, all separable nonclassical states exhibit smaller correlations for complementary observables than some strictly classical states. We use mutual information as a measure of classical correlations, but we conjecture that the first result holds also for other measures (e.g., the Pearson correlation coefficient or the sum of conditional probabilities).

  3. IAA Correlator Center

    NASA Technical Reports Server (NTRS)

    Surkis, Igor; Ken, Voitsekh; Melnikov, Alexey; Mishin, Vladimir; Sokolova, Nadezda; Shantyr, Violet; Zimovsky, Vladimir

    2013-01-01

    The activities of the six-station IAA RAS correlator include regular processing of national geodetic VLBI programs Ru-E, Ru-U, and Ru-F. The Ru-U sessions have been transferred in e-VLBI mode and correlated in the IAA Correlator Center automatically since 2011. The DiFX software correlator is used at the IAA in some astrophysical experiments.

  4. Understanding volatility correlation behavior with a magnitude cross-correlation function

    NASA Astrophysics Data System (ADS)

    Jun, Woo Cheol; Oh, Gabjin; Kim, Seunghwan

    2006-06-01

    We propose an approach for analyzing the basic relation between correlation properties of the original signal and its magnitude fluctuations by decomposing the original signal into its positive and negative fluctuation components. We use this relation to understand the following phenomenon found in many naturally occurring time series: the magnitude of the signal exhibits long-range correlation, whereas the original signal is short-range correlated. The applications of our approach to heart rate variability signals and high-frequency foreign exchange rates reveal that the difference between the correlation properties of the original signal and its magnitude fluctuations is induced by the time organization structure of the correlation function between the magnitude fluctuations of positive and negative components. We show that this correlation function can be described well by a stretched-exponential function and is related to the nonlinearity and the multifractal structure of the signals.

  5. Understanding volatility correlation behavior with a magnitude cross-correlation function.

    PubMed

    Jun, Woo Cheol; Oh, Gabjin; Kim, Seunghwan

    2006-06-01

    We propose an approach for analyzing the basic relation between correlation properties of the original signal and its magnitude fluctuations by decomposing the original signal into its positive and negative fluctuation components. We use this relation to understand the following phenomenon found in many naturally occurring time series: the magnitude of the signal exhibits long-range correlation, whereas the original signal is short-range correlated. The applications of our approach to heart rate variability signals and high-frequency foreign exchange rates reveal that the difference between the correlation properties of the original signal and its magnitude fluctuations is induced by the time organization structure of the correlation function between the magnitude fluctuations of positive and negative components. We show that this correlation function can be described well by a stretched-exponential function and is related to the nonlinearity and the multifractal structure of the signals.

  6. Pair correlation functions for identifying spatial correlation in discrete domains

    NASA Astrophysics Data System (ADS)

    Gavagnin, Enrico; Owen, Jennifer P.; Yates, Christian A.

    2018-06-01

    Identifying and quantifying spatial correlation are important aspects of studying the collective behavior of multiagent systems. Pair correlation functions (PCFs) are powerful statistical tools that can provide qualitative and quantitative information about correlation between pairs of agents. Despite the numerous PCFs defined for off-lattice domains, only a few recent studies have considered a PCF for discrete domains. Our work extends the study of spatial correlation in discrete domains by defining a new set of PCFs using two natural and intuitive definitions of distance for a square lattice: the taxicab and uniform metric. We show how these PCFs improve upon previous attempts and compare between the quantitative data acquired. We also extend our definitions of the PCF to other types of regular tessellation that have not been studied before, including hexagonal, triangular, and cuboidal. Finally, we provide a comprehensive PCF for any tessellation and metric, allowing investigation of spatial correlation in irregular lattices for which recognizing correlation is less intuitive.

  7. Evolution of worldwide stock markets, correlation structure, and correlation-based graphs

    NASA Astrophysics Data System (ADS)

    Song, Dong-Ming; Tumminello, Michele; Zhou, Wei-Xing; Mantegna, Rosario N.

    2011-08-01

    We investigate the daily correlation present among market indices of stock exchanges located all over the world in the time period January 1996 to July 2009. We discover that the correlation among market indices presents both a fast and a slow dynamics. The slow dynamics reflects the development and consolidation of globalization. The fast dynamics is associated with critical events that originate in a specific country or region of the world and rapidly affect the global system. We provide evidence that the short term time scale of correlation among market indices is less than 3 trading months (about 60 trading days). The average values of the nondiagonal elements of the correlation matrix, correlation-based graphs, and the spectral properties of the largest eigenvalues and eigenvectors of the correlation matrix are carrying information about the fast and slow dynamics of the correlation of market indices. We introduce a measure of mutual information based on link co-occurrence in networks in order to detect the fast dynamics of successive changes of correlation-based graphs in a quantitative way.

  8. Why Are Experts Correlated? Decomposing Correlations between Judges

    ERIC Educational Resources Information Center

    Broomell, Stephen B.; Budescu, David V.

    2009-01-01

    We derive an analytic model of the inter-judge correlation as a function of five underlying parameters. Inter-cue correlation and the number of cues capture our assumptions about the environment, while differentiations between cues, the weights attached to the cues, and (un)reliability describe assumptions about the judges. We study the relative…

  9. Fast Face-Recognition Optical Parallel Correlator Using High Accuracy Correlation Filter

    NASA Astrophysics Data System (ADS)

    Watanabe, Eriko; Kodate, Kashiko

    2005-11-01

    We designed and fabricated a fully automatic fast face recognition optical parallel correlator [E. Watanabe and K. Kodate: Appl. Opt. 44 (2005) 5666] based on the VanderLugt principle. The implementation of an as-yet unattained ultra high-speed system was aided by reconfiguring the system to make it suitable for easier parallel processing, as well as by composing a higher accuracy correlation filter and high-speed ferroelectric liquid crystal-spatial light modulator (FLC-SLM). In running trial experiments using this system (dubbed FARCO), we succeeded in acquiring remarkably low error rates of 1.3% for false match rate (FMR) and 2.6% for false non-match rate (FNMR). Given the results of our experiments, the aim of this paper is to examine methods of designing correlation filters and arranging database image arrays for even faster parallel correlation, underlining the issues of calculation technique, quantization bit rate, pixel size and shift from optical axis. The correlation filter has proved its excellent performance and higher precision than classical correlation and joint transform correlator (JTC). Moreover, arrangement of multi-object reference images leads to 10-channel correlation signals, as sharply marked as those of a single channel. This experiment result demonstrates great potential for achieving the process speed of 10000 face/s.

  10. Unidimensional factor models imply weaker partial correlations than zero-order correlations.

    PubMed

    van Bork, Riet; Grasman, Raoul P P P; Waldorp, Lourens J

    2018-06-01

    In this paper we present a new implication of the unidimensional factor model. We prove that the partial correlation between two observed variables that load on one factor given any subset of other observed variables that load on this factor lies between zero and the zero-order correlation between these two observed variables. We implement this result in an empirical bootstrap test that rejects the unidimensional factor model when partial correlations are identified that are either stronger than the zero-order correlation or have a different sign than the zero-order correlation. We demonstrate the use of the test in an empirical data example with data consisting of fourteen items that measure extraversion.

  11. Correlative Tomography

    PubMed Central

    Burnett, T. L.; McDonald, S. A.; Gholinia, A.; Geurts, R.; Janus, M.; Slater, T.; Haigh, S. J.; Ornek, C.; Almuaili, F.; Engelberg, D. L.; Thompson, G. E.; Withers, P. J.

    2014-01-01

    Increasingly researchers are looking to bring together perspectives across multiple scales, or to combine insights from different techniques, for the same region of interest. To this end, correlative microscopy has already yielded substantial new insights in two dimensions (2D). Here we develop correlative tomography where the correlative task is somewhat more challenging because the volume of interest is typically hidden beneath the sample surface. We have threaded together x-ray computed tomography, serial section FIB-SEM tomography, electron backscatter diffraction and finally TEM elemental analysis all for the same 3D region. This has allowed observation of the competition between pitting corrosion and intergranular corrosion at multiple scales revealing the structural hierarchy, crystallography and chemistry of veiled corrosion pits in stainless steel. With automated correlative workflows and co-visualization of the multi-scale or multi-modal datasets the technique promises to provide insights across biological, geological and materials science that are impossible using either individual or multiple uncorrelated techniques. PMID:24736640

  12. Probability density function of the intensity of a laser beam propagating in the maritime environment.

    PubMed

    Korotkova, Olga; Avramov-Zamurovic, Svetlana; Malek-Madani, Reza; Nelson, Charles

    2011-10-10

    A number of field experiments measuring the fluctuating intensity of a laser beam propagating along horizontal paths in the maritime environment is performed over sub-kilometer distances at the United States Naval Academy. Both above the ground and over the water links are explored. Two different detection schemes, one photographing the beam on a white board, and the other capturing the beam directly using a ccd sensor, gave consistent results. The probability density function (pdf) of the fluctuating intensity is reconstructed with the help of two theoretical models: the Gamma-Gamma and the Gamma-Laguerre, and compared with the intensity's histograms. It is found that the on-ground experimental results are in good agreement with theoretical predictions. The results obtained above the water paths lead to appreciable discrepancies, especially in the case of the Gamma-Gamma model. These discrepancies are attributed to the presence of the various scatterers along the path of the beam, such as water droplets, aerosols and other airborne particles. Our paper's main contribution is providing a methodology for computing the pdf function of the laser beam intensity in the maritime environment using field measurements.

  13. The effect of alloying on gamma and gamma prime in nickel-base superalloys

    NASA Technical Reports Server (NTRS)

    Dreshfield, R. L.; Wallace, J. F.

    1972-01-01

    An investigation was conducted to determine the compositional limits of gamma and gamma prime phases in nickel-base superalloys. Fifty-one nickel-base alloys were melted under vacuum and heat treated for 4 hours at 1190 C followed by 1008 hours at 850 C. The alloys had the following composition ranges: A1 4.0 to 13 atomic percent, Cr 6.5 to 20.5 percent, Ti 0.25 to 4.75 percent, Mo 0.0 to 6.0 percent, and W 0.0 to 4.0 percent. The residues from the ammonium sulfate electrolytic extraction for the two-phase alloys were analyzed chemically and by X-ray diffraction. The results of the investigation were used to assemble a mathematical model of the gamma-gamma prime region of the Ni-Al-Cr-Ti-Mo-W system. A computer program was written to analyze the model of the phase diagram. Some of these results are also presented graphically. The resulting model is capable of satisfactorily predicting the compositions of conjugate gamma-gamma prime phases in the alloys investigated and twelve of fifteen commercial superalloys studied.

  14. Elimination of a genetic correlation between the sexes via artificial correlational selection.

    PubMed

    Delph, Lynda F; Steven, Janet C; Anderson, Ingrid A; Herlihy, Christopher R; Brodie, Edmund D

    2011-10-01

    Genetic correlations between the sexes can constrain the evolution of sexual dimorphism and be difficult to alter, because traits common to both sexes share the same genetic underpinnings. We tested whether artificial correlational selection favoring specific combinations of male and female traits within families could change the strength of a very high between-sex genetic correlation for flower size in the dioecious plant Silene latifolia. This novel selection dramatically reduced the correlation in two of three selection lines in fewer than five generations. Subsequent selection only on females in a line characterized by a lower between-sex genetic correlation led to a significantly lower correlated response in males, confirming the potential evolutionary impact of the reduced correlation. Although between-sex genetic correlations can potentially constrain the evolution of sexual dimorphism, our findings reveal that these constraints come not from a simple conflict between an inflexible genetic architecture and a pattern of selection working in opposition to it, but rather a complex relationship between a changeable correlation and a form of selection that promotes it. In other words, the form of selection on males and females that leads to sexual dimorphism may also promote the genetic phenomenon that limits sexual dimorphism. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  15. Fuzzy correlation analysis with realization

    NASA Astrophysics Data System (ADS)

    Tang, Yue Y.; Fan, Xinrui; Zheng, Ying N.

    1998-10-01

    The fundamental concept of fuzzy correlation is briefly discussed. Based on the correlation coefficient of classic correlation, polarity correlation and fuzzy correlation, the relationship between the correlations are analyzed. A fuzzy correlation analysis has the merits of both rapidity and accuracy as some amplitude information of random signals has been utilized. It has broad prospects for application. The form of fuzzy correlative analyzer with NLX 112 fuzzy data correlator and single-chip microcomputer is introduced.

  16. A scalable correlator for multichannel diffuse correlation spectroscopy.

    PubMed

    Stapels, Christopher J; Kolodziejski, Noah J; McAdams, Daniel; Podolsky, Matthew J; Fernandez, Daniel E; Farkas, Dana; Christian, James F

    2016-02-01

    Diffuse correlation spectroscopy (DCS) is a technique which enables powerful and robust non-invasive optical studies of tissue micro-circulation and vascular blood flow. The technique amounts to autocorrelation analysis of coherent photons after their migration through moving scatterers and subsequent collection by single-mode optical fibers. A primary cost driver of DCS instruments are the commercial hardware-based correlators, limiting the proliferation of multi-channel instruments for validation of perfusion analysis as a clinical diagnostic metric. We present the development of a low-cost scalable correlator enabled by microchip-based time-tagging, and a software-based multi-tau data analysis method. We will discuss the capabilities of the instrument as well as the implementation and validation of 2- and 8-channel systems built for live animal and pre-clinical settings.

  17. Seven-quasiparticle bands in {sup 139}Ce

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chanda, Somen; Bhattacharjee, Tumpa; Bhattacharyya, Sarmishtha

    2009-05-15

    The high spin states in the {sup 139}Ce nucleus have been studied by in-beam {gamma}-spectroscopic techniques using the reaction {sup 130}Te({sup 12}C,3n){sup 139}Ce at E{sub beam}=65 MeV. A gamma detector array, consisting of five Compton-suppressed Clover detectors was used for coincidence measurements. 15 new levels have been proposed and 28 new {gamma} transitions have been assigned to {sup 139}Ce on the basis of {gamma}{gamma} coincidence data. The level scheme of {sup 139}Ce has been extended above the known 70 ns (19/2){sup -} isomer up to {approx}6.1 MeV in excitation energy and (35/2)({Dirac_h}/2{pi}) in spin. The spin-parity assignments for most ofmore » the newly proposed levels have been made using the deduced Directional Correlation from Oriented states of nuclei (DCO ratio) and the Polarization Directional Correlation from Oriented states (PDCO ratio) for the de-exciting transitions. The observed level structure has been compared with a large basis shell model calculation and also with the predictions from cranked Nilsson-Strutinsky (CNS) calculations. A general consistency has been observed between these two different theoretical approaches.« less

  18. 25 ns software correlator for photon and fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Magatti, Davide; Ferri, Fabio

    2003-02-01

    A 25 ns time resolution, multi-tau software correlator developed in LABVIEW based on the use of a standard photon counting unit, a fast timer/counter board (6602-PCI National Instrument) and a personal computer (PC) (1.5 GHz Pentium 4) is presented and quantitatively discussed. The correlator works by processing the stream of incoming data in parallel according to two different algorithms: For large lag times (τ⩾100 μs), a classical time-mode (TM) scheme, based on the measure of the number of pulses per time interval, is used; differently, for τ⩽100 μs a photon-mode (PM) scheme is adopted and the time sequence of the arrival times of the photon pulses is measured. By combining the two methods, we developed a system capable of working out correlation functions on line, in full real time for the TM correlator and partially in batch processing for the PM correlator. For the latter one, the duty cycle depends on the count rate of the incoming pulses, being ˜100% for count rates ⩽3×104 Hz, ˜15% at 105 Hz, and ˜1% at 106 Hz. For limitations imposed by the fairly small first-in, first-out (FIFO) buffer available on the counter board, the maximum count rate permissible for a proper functioning of the PM correlator is limited to ˜105 Hz. However, this limit can be removed by using a board with a deeper FIFO. Similarly, the 25 ns time resolution is only limited by maximum clock frequency available on the 6602-PCI and can be easily improved by using a faster clock. When tested on dilute solutions of calibrated latex spheres, the overall performances of the correlator appear to be comparable with those of commercial hardware correlators, but with several nontrivial advantages related to its flexibility, low cost, and easy adaptability to future developments of PC and data acquisition technology.

  19. CCD correlation techniques

    NASA Technical Reports Server (NTRS)

    Hewes, C. R.; Bosshart, P. W.; Eversole, W. L.; Dewit, M.; Buss, D. D.

    1976-01-01

    Two CCD techniques were discussed for performing an N-point sampled data correlation between an input signal and an electronically programmable reference function. The design and experimental performance of an implementation of the direct time correlator utilizing two analog CCDs and MOS multipliers on a single IC were evaluated. The performance of a CCD implementation of the chirp z transform was described, and the design of a new CCD integrated circuit for performing correlation by multiplication in the frequency domain was presented. This chip provides a discrete Fourier transform (DFT) or inverse DFT, multipliers, and complete support circuitry for the CCD CZT. The two correlation techniques are compared.

  20. Achromatical Optical Correlator

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin; Liu, Hua-Kuang

    1989-01-01

    Signal-to-noise ratio exceeds that of monochromatic correlator. Achromatical optical correlator uses multiple-pinhole diffraction of dispersed white light to form superposed multiple correlations of input and reference images in output plane. Set of matched spatial filters made by multiple-exposure holographic process, each exposure using suitably-scaled input image and suitable angle of reference beam. Recording-aperture mask translated to appropriate horizontal position for each exposure. Noncoherent illumination suitable for applications involving recognition of color and determination of scale. When fully developed achromatical correlators will be useful for recognition of patterns; for example, in industrial inspection and search for selected features in aerial photographs.

  1. Washington Correlator

    NASA Technical Reports Server (NTRS)

    Hall, David M.; Boboltz, David

    2013-01-01

    This report summarizes the activities of the Washington Correlator for 2012. The Washington Correlator provides up to 80 hours of attended processing per week plus up to 40 hours of unattended operation, primarily supporting Earth Orientation and astrometric observations. In 2012, the major programs supported include the IVS-R4, IVS-INT, APSG, and CRF observing sessions.

  2. Optical Correlation Seeker.

    DTIC Science & Technology

    1980-05-05

    not include noncoherent imaging optics 15 .-1 - Figure 13 shows a correlator design contained within a transparent solid. This monolithic...HARTMAN UNCLASSIFIED DRSMI/RR-SO-A-TR SBIE-AD-E950 083 N MMI LEYEL~ TECHNICAL REPORT RR-80-4 1l OPTICAL CORRELATION SEEKER Charles R. Christensen Richard L...Report RR-80-4 ! 4. TITLE (end Subtitle) S. TYPE OF REPORT & PERIOD COVERED OPTICAL CORRELATION SEEKER 6. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(.) 8

  3. Brain correlates of stuttering and syllable production. A PET performance-correlation analysis.

    PubMed

    Fox, P T; Ingham, R J; Ingham, J C; Zamarripa, F; Xiong, J H; Lancaster, J L

    2000-10-01

    To distinguish the neural systems of normal speech from those of stuttering, PET images of brain blood flow were probed (correlated voxel-wise) with per-trial speech-behaviour scores obtained during PET imaging. Two cohorts were studied: 10 right-handed men who stuttered and 10 right-handed, age- and sex-matched non-stuttering controls. Ninety PET blood flow images were obtained in each cohort (nine per subject as three trials of each of three conditions) from which r-value statistical parametric images (SPI¿r¿) were computed. Brain correlates of stutter rate and syllable rate showed striking differences in both laterality and sign (i.e. positive or negative correlations). Stutter-rate correlates, both positive and negative, were strongly lateralized to the right cerebral and left cerebellar hemispheres. Syllable correlates in both cohorts were bilateral, with a bias towards the left cerebral and right cerebellar hemispheres, in keeping with the left-cerebral dominance for language and motor skills typical of right-handed subjects. For both stutters and syllables, the brain regions that were correlated positively were those of speech production: the mouth representation in the primary motor cortex; the supplementary motor area; the inferior lateral premotor cortex (Broca's area); the anterior insula; and the cerebellum. The principal difference between syllable-rate and stutter-rate positive correlates was hemispheric laterality. A notable exception to this rule was that cerebellar positive correlates for syllable rate were far more extensive in the stuttering cohort than in the control cohort, which suggests a specific role for the cerebellum in enabling fluent utterances in persons who stutter. Stutters were negatively correlated with right-cerebral regions (superior and middle temporal gyrus) associated with auditory perception and processing, regions which were positively correlated with syllables in both the stuttering and control cohorts. These findings

  4. In Vivo Fluorescence Correlation and Cross-Correlation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Mütze, Jörg; Ohrt, Thomas; Petrášek, Zdeněk; Schwille, Petra

    In this manuscript, we describe the application of Fluorescence Correlation Spectroscopy (FCS), Fluorescence Cross-Correlation Spectroscopy (FCCS), and scanning FCS (sFCS) to two in vivo systems. In the first part, we describe the application of two-photon standard and scanning FCS in Caenorhabditis elegans embryos. The differentiation of a single fertilized egg into a complex organism in C. elegans is regulated by a number of protein-dependent processes. The oocyte divides asymmetrically into two daughter cells of different developmental fate. Two of the involved proteins, PAR-2 and NMY-2, are studied. The second investigated system is the mechanism of RNA interference in human cells. An EGFP based cell line that allows to study the dynamics and localization of the RNA-induced silencing complex (RISC) with FCS in vivo is created, which has so far been inaccessible with other experimental methods. Furthermore, Fluorescence Cross-Correlation Spectroscopy is employed to highlight the asymmetric incorporation of labeled siRNAs into RISC.

  5. Density fluctuation correlation measurements in ASDEX Upgrade using poloidal and radial correlation reflectometry

    NASA Astrophysics Data System (ADS)

    Prisiazhniuk, D.; Conway, G. D.; Krämer-Flecken, A.; Stroth, U.; the ASDEX Upgrade Team

    2018-07-01

    The poloidal correlation reflectometry diagnostic operated in ordinary mode with additional radial correlation channel is applied in this paper to investigate the correlation of the turbulent density fluctuations. The perpendicular and radial correlation lengths, l ⊥ and l r , the perpendicular velocity v⊥ and the dissipation (mutation) time τ d are measured simultaneously from the outer core to edge in the L-mode plasmas of ASDEX Upgrade. It is shown that in the outer core region (0.6 < ρ pol < 0.9) the measured correlation lengths scale with the drift wave length, l ⊥ ≈ 5ρ s and l r ≈ 10ρ s , while the dissipation time is inversely correlated with the velocity τ d ≈ 40/v ⊥(τ d is in μs and v ⊥ in km s–1). In the pedestal region (0.925 < ρ pol < 0.98), where the E × B shear flows are present, a loss of measured correlation is observed which can be explained by a combination of small propagation velocity and an additional reduction of τ d . In the E r well region (ρ pol ≈ 0.99), the measured perpendicular correlation length increases {l}\\perp ≈ 13{ρ }s and the radial correlation length decreases l r ≈ 4ρ s compared to the outer core values. The correlation measurements are interpreted in the frame of the linear regime of reflectometry (applied only to ρ pol < 0.9). Using the Born approximation we show that the finite wavenumber sensitivity of the reflectometer increases the measured l ⊥and l r , but does not affect the measured τ d . By the including diagnostic correction the real correlation lengths l ⊥ ≈ l r ≈ 3ρ s are estimated.

  6. Geographically correlated orbit error

    NASA Technical Reports Server (NTRS)

    Rosborough, G. W.

    1989-01-01

    The dominant error source in estimating the orbital position of a satellite from ground based tracking data is the modeling of the Earth's gravity field. The resulting orbit error due to gravity field model errors are predominantly long wavelength in nature. This results in an orbit error signature that is strongly correlated over distances on the size of ocean basins. Anderle and Hoskin (1977) have shown that the orbit error along a given ground track also is correlated to some degree with the orbit error along adjacent ground tracks. This cross track correlation is verified here and is found to be significant out to nearly 1000 kilometers in the case of TOPEX/POSEIDON when using the GEM-T1 gravity model. Finally, it was determined that even the orbit error at points where ascending and descending ground traces cross is somewhat correlated. The implication of these various correlations is that the orbit error due to gravity error is geographically correlated. Such correlations have direct implications when using altimetry to recover oceanographic signals.

  7. Z{gamma}{gamma}{gamma} {yields} 0 Processes in SANC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bardin, D. Yu., E-mail: bardin@nu.jinr.ru; Kalinovskaya, L. V., E-mail: kalinov@nu.jinr.ru; Uglov, E. D., E-mail: corner@nu.jinr.ru

    2013-11-15

    We describe the analytic and numerical evaluation of the {gamma}{gamma} {yields} {gamma}Z process cross section and the Z {yields} {gamma}{gamma}{gamma} decay rate within the SANC system multi-channel approach at the one-loop accuracy level with all masses taken into account. The corresponding package for numeric calculations is presented. For checking of the results' correctness we make a comparison with the other independent calculations.

  8. Large-Scale Test of Dynamic Correlation Processors: Implications for Correlation-Based Seismic Pipelines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dodge, D. A.; Harris, D. B.

    Correlation detectors are of considerable interest to the seismic monitoring communities because they offer reduced detection thresholds and combine detection, location and identification functions into a single operation. They appear to be ideal for applications requiring screening of frequent repeating events. However, questions remain about how broadly empirical correlation methods are applicable. We describe the effectiveness of banks of correlation detectors in a system that combines traditional power detectors with correlation detectors in terms of efficiency, which we define to be the fraction of events detected by the correlators. This paper elaborates and extends the concept of a dynamic correlationmore » detection framework – a system which autonomously creates correlation detectors from event waveforms detected by power detectors; and reports observed performance on a network of arrays in terms of efficiency. We performed a large scale test of dynamic correlation processors on an 11 terabyte global dataset using 25 arrays in the single frequency band 1-3 Hz. The system found over 3.2 million unique signals and produced 459,747 screened detections. A very satisfying result is that, on average, efficiency grows with time and, after nearly 16 years of operation, exceeds 47% for events observed over all distance ranges and approaches 70% for near regional and 90% for local events. This observation suggests that future pipeline architectures should make extensive use of correlation detectors, principally for decluttering observations of local and near-regional events. Our results also suggest that future operations based on correlation detection will require commodity large-scale computing infrastructure, since the numbers of correlators in an autonomous system can grow into the hundreds of thousands.« less

  9. Large-Scale Test of Dynamic Correlation Processors: Implications for Correlation-Based Seismic Pipelines

    DOE PAGES

    Dodge, D. A.; Harris, D. B.

    2016-03-15

    Correlation detectors are of considerable interest to the seismic monitoring communities because they offer reduced detection thresholds and combine detection, location and identification functions into a single operation. They appear to be ideal for applications requiring screening of frequent repeating events. However, questions remain about how broadly empirical correlation methods are applicable. We describe the effectiveness of banks of correlation detectors in a system that combines traditional power detectors with correlation detectors in terms of efficiency, which we define to be the fraction of events detected by the correlators. This paper elaborates and extends the concept of a dynamic correlationmore » detection framework – a system which autonomously creates correlation detectors from event waveforms detected by power detectors; and reports observed performance on a network of arrays in terms of efficiency. We performed a large scale test of dynamic correlation processors on an 11 terabyte global dataset using 25 arrays in the single frequency band 1-3 Hz. The system found over 3.2 million unique signals and produced 459,747 screened detections. A very satisfying result is that, on average, efficiency grows with time and, after nearly 16 years of operation, exceeds 47% for events observed over all distance ranges and approaches 70% for near regional and 90% for local events. This observation suggests that future pipeline architectures should make extensive use of correlation detectors, principally for decluttering observations of local and near-regional events. Our results also suggest that future operations based on correlation detection will require commodity large-scale computing infrastructure, since the numbers of correlators in an autonomous system can grow into the hundreds of thousands.« less

  10. On the use of two-time correlation functions for X-ray photon correlation spectroscopy data analysis.

    PubMed

    Bikondoa, Oier

    2017-04-01

    Multi-time correlation functions are especially well suited to study non-equilibrium processes. In particular, two-time correlation functions are widely used in X-ray photon correlation experiments on systems out of equilibrium. One-time correlations are often extracted from two-time correlation functions at different sample ages. However, this way of analysing two-time correlation functions is not unique. Here, two methods to analyse two-time correlation functions are scrutinized, and three illustrative examples are used to discuss the implications for the evaluation of the correlation times and functional shape of the correlations.

  11. The ALMA correlator

    NASA Astrophysics Data System (ADS)

    Escoffier, R. P.; Comoretto, G.; Webber, J. C.; Baudry, A.; Broadwell, C. M.; Greenberg, J. H.; Treacy, R. R.; Cais, P.; Quertier, B.; Camino, P.; Bos, A.; Gunst, A. W.

    2007-02-01

    Aims: The Atacama Large Millimeter Array (ALMA) is an international astronomy facility to be used for detecting and imaging all types of astronomical sources at millimeter and submillimeter wavelengths at a 5000-m elevation site in the Atacama Desert of Chile. Our main aims are: describe the correlator sub-system which is that part of the ALMA system that combines the signal from up to 64 remote individual radio antennas and forms them into a single instrument; emphasize the high spectral resolution and the configuration flexibility available with the ALMA correlator. Methods: The main digital signal processing features and a block diagram of the correlator being constructed for the ALMA radio astronomy observatory are presented. Tables of observing modes and spectral resolutions offered by the correlator system are given together with some examples of multi-resolution spectral modes. Results: The correlator is delivered by quadrants and the first quadrant is being tested while most of the other printed circuit cards required by the system have been produced. In its final version the ALMA correlator will process the outputs of up to 64 antennas using an instantaneous bandwidth of 8 GHz in each of two polarizations per antenna. In the frequency division mode, unrivalled spectral flexibility together with very high resolution (3.8 kHz) and up to 8192 spectral points are achieved. In the time division mode high time resolution is available with minimum data dump rates of 16 ms for all cross-products.

  12. Correlational Neural Networks.

    PubMed

    Chandar, Sarath; Khapra, Mitesh M; Larochelle, Hugo; Ravindran, Balaraman

    2016-02-01

    Common representation learning (CRL), wherein different descriptions (or views) of the data are embedded in a common subspace, has been receiving a lot of attention recently. Two popular paradigms here are canonical correlation analysis (CCA)-based approaches and autoencoder (AE)-based approaches. CCA-based approaches learn a joint representation by maximizing correlation of the views when projected to the common subspace. AE-based methods learn a common representation by minimizing the error of reconstructing the two views. Each of these approaches has its own advantages and disadvantages. For example, while CCA-based approaches outperform AE-based approaches for the task of transfer learning, they are not as scalable as the latter. In this work, we propose an AE-based approach, correlational neural network (CorrNet), that explicitly maximizes correlation among the views when projected to the common subspace. Through a series of experiments, we demonstrate that the proposed CorrNet is better than AE and CCA with respect to its ability to learn correlated common representations. We employ CorrNet for several cross-language tasks and show that the representations learned using it perform better than the ones learned using other state-of-the-art approaches.

  13. Compact Optical Correlators

    NASA Astrophysics Data System (ADS)

    Gregory, Don A.; Kirsch, James C.

    1989-02-01

    In the past 15 years, a dozen or so designs have been proposed for compact optical correlators. Of these, maybe one-third of them have actually been built and only a few of those tested. This paper will give an overview of some of the systems that have been built as well as mention some promising early and current designs that have not been built. The term compact, as used in the title of this paper, will be applied very loosely; to mean smaller than a laboratory size optical table. To date, only one correlator has been built and tested that actually can be called miniature. This softball size correlator was built by the Perkin-Elmer Corporation for the U. S. Army Missile Command at Redstone Arsenal, Alabama. More will be said about this correlator in following sections.

  14. Pion polarizabilities from a γ γ → π π analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Ling -Yun; Pennington, Michael R.

    Here, we present results for pion polarizabilities predicted using dispersion relations from our earlier Amplitude Analysis of world data on two photon production of meson pairs. The helicity-zero polarizabilities are rather stable and insensitive to uncertainties in cross-channel exchanges. The need is first to confirm the recent result onmore » $$(\\alpha_1-\\beta_1)$$ for the charged pion by COMPASS at CERN to an accuracy of 10% by measuring the $$\\gamma\\gamma\\to\\pi^+\\pi^-$$ cross-section to an uncertainty of ~1\\%. Then the same polarizability, but for the $$\\pi^0$$, is fixed to be $$(\\alpha_1-\\beta_1)_{\\pi^0}=(0.9\\pm0.2)\\times 10^{-4}$$ fm$$^{3}$$. By analyzing the correlation between uncertainties in the meson polarizability and those in $$\\gamma\\gamma$$ cross-sections, we suggest experiments need to measure these cross-sections between $$\\sqrt{s}\\simeq 350$$ and 600~MeV. The $$\\pi^0\\pi^0$$ cross-section then makes the $$(\\alpha_2-\\beta_2)_{\\pi^0}$$ the easiest helicity-two polarizability to determine.« less

  15. Pion polarizabilities from a γ γ → π π analysis

    DOE PAGES

    Dai, Ling -Yun; Pennington, Michael R.

    2016-12-30

    Here, we present results for pion polarizabilities predicted using dispersion relations from our earlier Amplitude Analysis of world data on two photon production of meson pairs. The helicity-zero polarizabilities are rather stable and insensitive to uncertainties in cross-channel exchanges. The need is first to confirm the recent result onmore » $$(\\alpha_1-\\beta_1)$$ for the charged pion by COMPASS at CERN to an accuracy of 10% by measuring the $$\\gamma\\gamma\\to\\pi^+\\pi^-$$ cross-section to an uncertainty of ~1\\%. Then the same polarizability, but for the $$\\pi^0$$, is fixed to be $$(\\alpha_1-\\beta_1)_{\\pi^0}=(0.9\\pm0.2)\\times 10^{-4}$$ fm$$^{3}$$. By analyzing the correlation between uncertainties in the meson polarizability and those in $$\\gamma\\gamma$$ cross-sections, we suggest experiments need to measure these cross-sections between $$\\sqrt{s}\\simeq 350$$ and 600~MeV. The $$\\pi^0\\pi^0$$ cross-section then makes the $$(\\alpha_2-\\beta_2)_{\\pi^0}$$ the easiest helicity-two polarizability to determine.« less

  16. Hardware simulator for optical correlation spectroscopy with Gaussian statistics and arbitrary correlation functions.

    PubMed

    Molteni, Matteo; Weigel, Udo M; Remiro, Francisco; Durduran, Turgut; Ferri, Fabio

    2014-11-17

    We present a new hardware simulator (HS) for characterization, testing and benchmarking of digital correlators used in various optical correlation spectroscopy experiments where the photon statistics is Gaussian and the corresponding time correlation function can have any arbitrary shape. Starting from the HS developed in [Rev. Sci. Instrum. 74, 4273 (2003)], and using the same I/O board (PCI-6534 National Instrument) mounted on a modern PC (Intel Core i7-CPU, 3.07GHz, 12GB RAM), we have realized an instrument capable of delivering continuous streams of TTL pulses over two channels, with a time resolution of Δt = 50ns, up to a maximum count rate of 〈I〉 ∼ 5MHz. Pulse streams, typically detected in dynamic light scattering and diffuse correlation spectroscopy experiments were generated and measured with a commercial hardware correlator obtaining measured correlation functions that match accurately the expected ones.

  17. VLBI Correlators in Kashima

    NASA Technical Reports Server (NTRS)

    Sekido, Mamoru; Takefuji, Kazuhiro

    2013-01-01

    Kashima Space Technology Center (KSTC) is making use of two kinds of software correlators, the multi-channel K5/VSSP software correlator and the fast wide-band correlator 'GICO3,' for geodetic and R&D VLBI experiments. Overview of the activity and future plans are described in this paper.

  18. Commercial counterboard for 10 ns software correlator for photon and fluorescence correlation spectroscopy.

    PubMed

    Molteni, Matteo; Ferri, Fabio

    2016-11-01

    A 10 ns time resolution, multi-tau software correlator, capable of computing simultaneous autocorrelation (A-A, B-B) and cross (A-B) correlation functions at count rates up to ∼10 MHz, with no data loss, has been developed in LabVIEW and C++ by using the National Instrument timer/counterboard (NI PCIe-6612) and a fast Personal Computer (PC) (Intel Core i7-4790 Processor 3.60 GHz ). The correlator works by using two algorithms: for large lag times (τ ≳ 1 μs), a classical time-mode scheme, based on the measure of the number of pulses per time interval, is used; differently, for τ ≲ 1 μs a photon-mode (PM) scheme is adopted and the correlation function is retrieved from the sequence of the photon arrival times. Single auto- and cross-correlation functions can be processed online in full real time up to count rates of ∼1.8 MHz and ∼1.2 MHz, respectively. Two autocorrelation (A-A, B-B) and a cross correlation (A-B) functions can be simultaneously processed in full real time only up to count rates of ∼750 kHz. At higher count rates, the online processing takes place in a delayed modality, but with no data loss. When tested with simulated correlation data and latex spheres solutions, the overall performances of the correlator appear to be comparable with those of commercial hardware correlators, but with several nontrivial advantages related to its flexibility, low cost, and easy adaptability to future developments of PC and data acquisition technology.

  19. Commercial counterboard for 10 ns software correlator for photon and fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Molteni, Matteo; Ferri, Fabio

    2016-11-01

    A 10 ns time resolution, multi-tau software correlator, capable of computing simultaneous autocorrelation (A-A, B-B) and cross (A-B) correlation functions at count rates up to ˜10 MHz, with no data loss, has been developed in LabVIEW and C++ by using the National Instrument timer/counterboard (NI PCIe-6612) and a fast Personal Computer (PC) (Intel Core i7-4790 Processor 3.60 GHz ). The correlator works by using two algorithms: for large lag times (τ ≳ 1 μs), a classical time-mode scheme, based on the measure of the number of pulses per time interval, is used; differently, for τ ≲ 1 μs a photon-mode (PM) scheme is adopted and the correlation function is retrieved from the sequence of the photon arrival times. Single auto- and cross-correlation functions can be processed online in full real time up to count rates of ˜1.8 MHz and ˜1.2 MHz, respectively. Two autocorrelation (A-A, B-B) and a cross correlation (A-B) functions can be simultaneously processed in full real time only up to count rates of ˜750 kHz. At higher count rates, the online processing takes place in a delayed modality, but with no data loss. When tested with simulated correlation data and latex spheres solutions, the overall performances of the correlator appear to be comparable with those of commercial hardware correlators, but with several nontrivial advantages related to its flexibility, low cost, and easy adaptability to future developments of PC and data acquisition technology.

  20. Vectorized data acquisition and fast triple-correlation integrals for Fluorescence Triple Correlation Spectroscopy

    PubMed Central

    Ridgeway, William K; Millar, David P; Williamson, James R

    2013-01-01

    Fluorescence Correlation Spectroscopy (FCS) is widely used to quantitate reaction rates and concentrations of molecules in vitro and in vivo. We recently reported Fluorescence Triple Correlation Spectroscopy (F3CS), which correlates three signals together instead of two. F3CS can analyze the stoichiometries of complex mixtures and detect irreversible processes by identifying time-reversal asymmetries. Here we report the computational developments that were required for the realization of F3CS and present the results as the Triple Correlation Toolbox suite of programs. Triple Correlation Toolbox is a complete data analysis pipeline capable of acquiring, correlating and fitting large data sets. Each segment of the pipeline handles error estimates for accurate error-weighted global fitting. Data acquisition was accelerated with a combination of off-the-shelf counter-timer chips and vectorized operations on 128-bit registers. This allows desktop computers with inexpensive data acquisition cards to acquire hours of multiple-channel data with sub-microsecond time resolution. Off-line correlation integrals were implemented as a two delay time multiple-tau scheme that scales efficiently with multiple processors and provides an unprecedented view of linked dynamics. Global fitting routines are provided to fit FCS and F3CS data to models containing up to ten species. Triple Correlation Toolbox is a complete package that enables F3CS to be performed on existing microscopes. PMID:23525193

  1. Correlation between quantitative traits and correlation between corresponding LOD scores: detection of pleiotropic effects.

    PubMed

    Ulgen, Ayse; Han, Zhihua; Li, Wentian

    2003-12-31

    We address the question of whether statistical correlations among quantitative traits lead to correlation of linkage results of these traits. Five measured quantitative traits (total cholesterol, fasting glucose, HDL cholesterol, blood pressure, and triglycerides), and one derived quantitative trait (total cholesterol divided by the HDL cholesterol) are used for phenotype correlation studies. Four of them are used for linkage analysis. We show that although correlation among phenotypes partially reflects the correlation among linkage analysis results, the LOD-score correlations are on average low. The most significant peaks found by using different traits do not often overlap. Studying covariances at specific locations in LOD scores may provide clues for further bivariate linkage analyses.

  2. Reverse Correlation in Neurophysiology

    ERIC Educational Resources Information Center

    Ringach, Dario; Shapley, Robert

    2004-01-01

    This article presents a review of reverse correlation in neurophysiology. We discuss the basis of reverse correlation in linear transducers and in spiking neurons. The application of reverse correlation to measure the receptive fields of visual neurons using white noise and m-sequences, and classical findings about spatial and color processing in…

  3. Strongly correlated materials.

    PubMed

    Morosan, Emilia; Natelson, Douglas; Nevidomskyy, Andriy H; Si, Qimiao

    2012-09-18

    Strongly correlated materials are profoundly affected by the repulsive electron-electron interaction. This stands in contrast to many commonly used materials such as silicon and aluminum, whose properties are comparatively unaffected by the Coulomb repulsion. Correlated materials often have remarkable properties and transitions between distinct, competing phases with dramatically different electronic and magnetic orders. These rich phenomena are fascinating from the basic science perspective and offer possibilities for technological applications. This article looks at these materials through the lens of research performed at Rice University. Topics examined include: Quantum phase transitions and quantum criticality in "heavy fermion" materials and the iron pnictide high temperature superconductors; computational ab initio methods to examine strongly correlated materials and their interface with analytical theory techniques; layered dichalcogenides as example correlated materials with rich phases (charge density waves, superconductivity, hard ferromagnetism) that may be tuned by composition, pressure, and magnetic field; and nanostructure methods applied to the correlated oxides VO₂ and Fe₃O₄, where metal-insulator transitions can be manipulated by doping at the nanoscale or driving the system out of equilibrium. We conclude with a discussion of the exciting prospects for this class of materials. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Review of correlation techniques

    NASA Technical Reports Server (NTRS)

    Bowhill, S. A.

    1983-01-01

    Correlation analysis in MST radar to determine the scattered power, Doppler frequency and correlation time for a noisy signal is examined. It is assumed that coherent detection was employed, with two accurately balanced quadrature receiving channels and that coherent integration is performed with a window length significantly less than the correlation time of the signal.

  5. Bootstrapped Deattenuated Correlation: Nonnormal Distributions

    ERIC Educational Resources Information Center

    Padilla, Miguel A.; Veprinsky, Anna

    2014-01-01

    Correlation attenuation due to measurement error and a corresponding correction, the deattenuated correlation, have been known for over a century. Nevertheless, the deattenuated correlation remains underutilized. A few studies in recent years have investigated factors affecting the deattenuated correlation, and a couple of them provide alternative…

  6. Reveal quantum correlation in complementary bases

    PubMed Central

    Wu, Shengjun; Ma, Zhihao; Chen, Zhihua; Yu, Sixia

    2014-01-01

    An essential feature of genuine quantum correlation is the simultaneous existence of correlation in complementary bases. We reveal this feature of quantum correlation by defining measures based on invariance under a basis change. For a bipartite quantum state, the classical correlation is the maximal correlation present in a certain optimum basis, while the quantum correlation is characterized as a series of residual correlations in the mutually unbiased bases. Compared with other approaches to quantify quantum correlation, our approach gives information-theoretical measures that directly reflect the essential feature of quantum correlation. PMID:24503595

  7. What Is Strong Correlation?

    ERIC Educational Resources Information Center

    Kozak, Marcin

    2009-01-01

    Interpretation of correlation is often based on rules of thumb in which some boundary values are given to help decide whether correlation is non-important, weak, strong or very strong. This article shows that such rules of thumb may do more harm than good, and instead of supporting interpretation of correlation--which is their aim--they teach a…

  8. Differential correlation for sequencing data.

    PubMed

    Siska, Charlotte; Kechris, Katerina

    2017-01-19

    Several methods have been developed to identify differential correlation (DC) between pairs of molecular features from -omics studies. Most DC methods have only been tested with microarrays and other platforms producing continuous and Gaussian-like data. Sequencing data is in the form of counts, often modeled with a negative binomial distribution making it difficult to apply standard correlation metrics. We have developed an R package for identifying DC called Discordant which uses mixture models for correlations between features and the Expectation Maximization (EM) algorithm for fitting parameters of the mixture model. Several correlation metrics for sequencing data are provided and tested using simulations. Other extensions in the Discordant package include additional modeling for different types of differential correlation, and faster implementation, using a subsampling routine to reduce run-time and address the assumption of independence between molecular feature pairs. With simulations and breast cancer miRNA-Seq and RNA-Seq data, we find that Spearman's correlation has the best performance among the tested correlation methods for identifying differential correlation. Application of Spearman's correlation in the Discordant method demonstrated the most power in ROC curves and sensitivity/specificity plots, and improved ability to identify experimentally validated breast cancer miRNA. We also considered including additional types of differential correlation, which showed a slight reduction in power due to the additional parameters that need to be estimated, but more versatility in applications. Finally, subsampling within the EM algorithm considerably decreased run-time with negligible effect on performance. A new method and R package called Discordant is presented for identifying differential correlation with sequencing data. Based on comparisons with different correlation metrics, this study suggests Spearman's correlation is appropriate for sequencing data

  9. Correlation Plenoptic Imaging.

    PubMed

    D'Angelo, Milena; Pepe, Francesco V; Garuccio, Augusto; Scarcelli, Giuliano

    2016-06-03

    Plenoptic imaging is a promising optical modality that simultaneously captures the location and the propagation direction of light in order to enable three-dimensional imaging in a single shot. However, in standard plenoptic imaging systems, the maximum spatial and angular resolutions are fundamentally linked; thereby, the maximum achievable depth of field is inversely proportional to the spatial resolution. We propose to take advantage of the second-order correlation properties of light to overcome this fundamental limitation. In this Letter, we demonstrate that the correlation in both momentum and position of chaotic light leads to the enhanced refocusing power of correlation plenoptic imaging with respect to standard plenoptic imaging.

  10. Correlation Plenoptic Imaging

    NASA Astrophysics Data System (ADS)

    D'Angelo, Milena; Pepe, Francesco V.; Garuccio, Augusto; Scarcelli, Giuliano

    2016-06-01

    Plenoptic imaging is a promising optical modality that simultaneously captures the location and the propagation direction of light in order to enable three-dimensional imaging in a single shot. However, in standard plenoptic imaging systems, the maximum spatial and angular resolutions are fundamentally linked; thereby, the maximum achievable depth of field is inversely proportional to the spatial resolution. We propose to take advantage of the second-order correlation properties of light to overcome this fundamental limitation. In this Letter, we demonstrate that the correlation in both momentum and position of chaotic light leads to the enhanced refocusing power of correlation plenoptic imaging with respect to standard plenoptic imaging.

  11. Entropic Nonsignaling Correlations.

    PubMed

    Chaves, Rafael; Budroni, Costantino

    2016-06-17

    We introduce the concept of entropic nonsignaling correlations, i.e., entropies arising from probabilistic theories that are compatible with the fact that we cannot transmit information instantaneously. We characterize and show the relevance of these entropic correlations in a variety of different scenarios, ranging from typical Bell experiments to more refined descriptions such as bilocality and information causality. In particular, we apply the framework to derive the first entropic inequality testing genuine tripartite nonlocality in quantum systems of arbitrary dimension and also prove the first known monogamy relation for entropic Bell inequalities. Further, within the context of complex Bell networks, we show that entropic nonlocal correlations can be activated.

  12. Entropic Nonsignaling Correlations

    NASA Astrophysics Data System (ADS)

    Chaves, Rafael; Budroni, Costantino

    2016-06-01

    We introduce the concept of entropic nonsignaling correlations, i.e., entropies arising from probabilistic theories that are compatible with the fact that we cannot transmit information instantaneously. We characterize and show the relevance of these entropic correlations in a variety of different scenarios, ranging from typical Bell experiments to more refined descriptions such as bilocality and information causality. In particular, we apply the framework to derive the first entropic inequality testing genuine tripartite nonlocality in quantum systems of arbitrary dimension and also prove the first known monogamy relation for entropic Bell inequalities. Further, within the context of complex Bell networks, we show that entropic nonlocal correlations can be activated.

  13. Separating Spike Count Correlation from Firing Rate Correlation

    PubMed Central

    Vinci, Giuseppe; Ventura, Valérie; Smith, Matthew A.; Kass, Robert E.

    2016-01-01

    Populations of cortical neurons exhibit shared fluctuations in spiking activity over time. When measured for a pair of neurons over multiple repetitions of an identical stimulus, this phenomenon emerges as correlated trial-to-trial response variability via spike count correlation (SCC). However, spike counts can be viewed as noisy versions of firing rates, which can vary from trial to trial. From this perspective, the SCC for a pair of neurons becomes a noisy version of the corresponding firing-rate correlation (FRC). Furthermore, the magnitude of the SCC is generally smaller than that of the FRC, and is likely to be less sensitive to experimental manipulation. We provide statistical methods for disambiguating time-averaged drive from within-trial noise, thereby separating FRC from SCC. We study these methods to document their reliability, and we apply them to neurons recorded in vivo from area V4, in an alert animal. We show how the various effects we describe are reflected in the data: within-trial effects are largely negligible, while attenuation due to trial-to-trial variation dominates, and frequently produces comparisons in SCC that, because of noise, do not accurately reflect those based on the underlying FRC. PMID:26942746

  14. Use of accelerated helium-3 ions for determining oxygen and carbon impurities in some pure materials

    NASA Technical Reports Server (NTRS)

    Aleksandrova, G. I.; Borisov, G. I.; Demidov, A. M.; Zakharov, Y. A.; Sukhov, G. V.; Shmanenkova, G. I.; Shchelkova, V. P.

    1978-01-01

    Methods are developed for the determination of O impurity in Be and Si carbide and concurrent determination of C and O impurities in Si and W by irradiation with accelerated He-3 ions and subsequent activity measurements of C-11 and F-18 formed from C and O with the aid of a gamma-gamma coincidence spectrometer. Techniques for determining O in Ge and Ga arsenide with radiochemical separation of F-18 are also described.

  15. Istoriko-Astronomicheskie Issledovaniya. Vypusk XXXI %t Studies in the History of Astronomy. Issue 31

    NASA Astrophysics Data System (ADS)

    Idlis, G. M.

    This collection contains papers covering a wide scope of problems in the history of astronomy, both domestic and international astronomy. Its basic headlines are: astronomy and cosmology of the 20th century; researches and findings; history of observatories and astronomical organisations; amateur astronomy in Russia. Among the most interesting problems investigated in this issue: the history of the observed structure and stability of planetary rings explanation, the history of prediction of giant vortexes in galaxies; the newest history of planetary cartography; the Old Russian calendars; the Russian observations of the 1874 Venus transit; the history of the Pulkovo Observatory for the last 50 years; the autobiography of the distinguished Russian astronomer academician V. G. Fesenkov; Byelorussian folk astronomy; and many others.

  16. Studies in the History of Astronomy. Issue 32 %t Istoriko-Astronomicheskie Issledovaniya. Vypusk XXXII

    NASA Astrophysics Data System (ADS)

    Idlis, G. M.

    This collection contains papers covering a wide scope of problems in the history of astronomy. Its basic headlines are: Cosmology and cosmogony of the 20th century; History of observations and astronomical organizations; Scientists and their works; Astronomy and society; Publications and memoirs; Astronomy and astrology; Memory of scientists

  17. Exponential smoothing weighted correlations

    NASA Astrophysics Data System (ADS)

    Pozzi, F.; Di Matteo, T.; Aste, T.

    2012-06-01

    In many practical applications, correlation matrices might be affected by the "curse of dimensionality" and by an excessive sensitiveness to outliers and remote observations. These shortcomings can cause problems of statistical robustness especially accentuated when a system of dynamic correlations over a running window is concerned. These drawbacks can be partially mitigated by assigning a structure of weights to observational events. In this paper, we discuss Pearson's ρ and Kendall's τ correlation matrices, weighted with an exponential smoothing, computed on moving windows using a data-set of daily returns for 300 NYSE highly capitalized companies in the period between 2001 and 2003. Criteria for jointly determining optimal weights together with the optimal length of the running window are proposed. We find that the exponential smoothing can provide more robust and reliable dynamic measures and we discuss that a careful choice of the parameters can reduce the autocorrelation of dynamic correlations whilst keeping significance and robustness of the measure. Weighted correlations are found to be smoother and recovering faster from market turbulence than their unweighted counterparts, helping also to discriminate more effectively genuine from spurious correlations.

  18. Long sequence correlation coprocessor

    NASA Astrophysics Data System (ADS)

    Gage, Douglas W.

    1994-09-01

    A long sequence correlation coprocessor (LSCC) accelerates the bitwise correlation of arbitrarily long digital sequences by calculating in parallel the correlation score for 16, for example, adjacent bit alignments between two binary sequences. The LSCC integrated circuit is incorporated into a computer system with memory storage buffers and a separate general purpose computer processor which serves as its controller. Each of the LSCC's set of sequential counters simultaneously tallies a separate correlation coefficient. During each LSCC clock cycle, computer enable logic associated with each counter compares one bit of a first sequence with one bit of a second sequence to increment the counter if the bits are the same. A shift register assures that the same bit of the first sequence is simultaneously compared to different bits of the second sequence to simultaneously calculate the correlation coefficient by the different counters to represent different alignments of the two sequences.

  19. Clustering Coefficients for Correlation Networks.

    PubMed

    Masuda, Naoki; Sakaki, Michiko; Ezaki, Takahiro; Watanabe, Takamitsu

    2018-01-01

    Graph theory is a useful tool for deciphering structural and functional networks of the brain on various spatial and temporal scales. The clustering coefficient quantifies the abundance of connected triangles in a network and is a major descriptive statistics of networks. For example, it finds an application in the assessment of small-worldness of brain networks, which is affected by attentional and cognitive conditions, age, psychiatric disorders and so forth. However, it remains unclear how the clustering coefficient should be measured in a correlation-based network, which is among major representations of brain networks. In the present article, we propose clustering coefficients tailored to correlation matrices. The key idea is to use three-way partial correlation or partial mutual information to measure the strength of the association between the two neighboring nodes of a focal node relative to the amount of pseudo-correlation expected from indirect paths between the nodes. Our method avoids the difficulties of previous applications of clustering coefficient (and other) measures in defining correlational networks, i.e., thresholding on the correlation value, discarding of negative correlation values, the pseudo-correlation problem and full partial correlation matrices whose estimation is computationally difficult. For proof of concept, we apply the proposed clustering coefficient measures to functional magnetic resonance imaging data obtained from healthy participants of various ages and compare them with conventional clustering coefficients. We show that the clustering coefficients decline with the age. The proposed clustering coefficients are more strongly correlated with age than the conventional ones are. We also show that the local variants of the proposed clustering coefficients (i.e., abundance of triangles around a focal node) are useful in characterizing individual nodes. In contrast, the conventional local clustering coefficients were strongly

  20. Clustering Coefficients for Correlation Networks

    PubMed Central

    Masuda, Naoki; Sakaki, Michiko; Ezaki, Takahiro; Watanabe, Takamitsu

    2018-01-01

    Graph theory is a useful tool for deciphering structural and functional networks of the brain on various spatial and temporal scales. The clustering coefficient quantifies the abundance of connected triangles in a network and is a major descriptive statistics of networks. For example, it finds an application in the assessment of small-worldness of brain networks, which is affected by attentional and cognitive conditions, age, psychiatric disorders and so forth. However, it remains unclear how the clustering coefficient should be measured in a correlation-based network, which is among major representations of brain networks. In the present article, we propose clustering coefficients tailored to correlation matrices. The key idea is to use three-way partial correlation or partial mutual information to measure the strength of the association between the two neighboring nodes of a focal node relative to the amount of pseudo-correlation expected from indirect paths between the nodes. Our method avoids the difficulties of previous applications of clustering coefficient (and other) measures in defining correlational networks, i.e., thresholding on the correlation value, discarding of negative correlation values, the pseudo-correlation problem and full partial correlation matrices whose estimation is computationally difficult. For proof of concept, we apply the proposed clustering coefficient measures to functional magnetic resonance imaging data obtained from healthy participants of various ages and compare them with conventional clustering coefficients. We show that the clustering coefficients decline with the age. The proposed clustering coefficients are more strongly correlated with age than the conventional ones are. We also show that the local variants of the proposed clustering coefficients (i.e., abundance of triangles around a focal node) are useful in characterizing individual nodes. In contrast, the conventional local clustering coefficients were strongly

  1. Python Waveform Cross-Correlation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Templeton, Dennise

    PyWCC is a tool to compute seismic waveform cross-correlation coefficients on single-component or multiple-component seismic data across a network of seismic sensors. PyWCC compares waveform data templates with continuous seismic data, associates the resulting detections, identifies the template with the highest cross-correlation coefficient, and outputs a catalog of detections above a user-defined absolute cross-correlation threshold value.

  2. Image scale measurement with correlation filters in a volume holographic optical correlator

    NASA Astrophysics Data System (ADS)

    Zheng, Tianxiang; Cao, Liangcai; He, Qingsheng; Jin, Guofan

    2013-08-01

    A search engine containing various target images or different part of a large scene area is of great use for many applications, including object detection, biometric recognition, and image registration. The input image captured in realtime is compared with all the template images in the search engine. A volume holographic correlator is one type of these search engines. It performs thousands of comparisons among the images at a super high speed, with the correlation task accomplishing mainly in optics. However, the inputted target image always contains scale variation to the filtering template images. At the time, the correlation values cannot properly reflect the similarity of the images. It is essential to estimate and eliminate the scale variation of the inputted target image. There are three domains for performing the scale measurement, as spatial, spectral and time domains. Most methods dealing with the scale factor are based on the spatial or the spectral domains. In this paper, a method with the time domain is proposed to measure the scale factor of the input image. It is called a time-sequential scaled method. The method utilizes the relationship between the scale variation and the correlation value of two images. It sends a few artificially scaled input images to compare with the template images. The correlation value increases and decreases with the increasing of the scale factor at the intervals of 0.8~1 and 1~1.2, respectively. The original scale of the input image can be measured by estimating the largest correlation value through correlating the artificially scaled input image with the template images. The measurement range for the scale can be 0.8~4.8. Scale factor beyond 1.2 is measured by scaling the input image at the factor of 1/2, 1/3 and 1/4, correlating the artificially scaled input image with the template images, and estimating the new corresponding scale factor inside 0.8~1.2.

  3. Construction of exchange-correlation functionals through interpolation between the non-interacting and the strong-correlation limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yongxi; Ernzerhof, Matthias, E-mail: Matthias.Ernzerhof@UMontreal.ca; Bahmann, Hilke

    Drawing on the adiabatic connection of density functional theory, exchange-correlation functionals of Kohn-Sham density functional theory are constructed which interpolate between the extreme limits of the electron-electron interaction strength. The first limit is the non-interacting one, where there is only exchange. The second limit is the strong correlated one, characterized as the minimum of the electron-electron repulsion energy. The exchange-correlation energy in the strong-correlation limit is approximated through a model for the exchange-correlation hole that is referred to as nonlocal-radius model [L. O. Wagner and P. Gori-Giorgi, Phys. Rev. A 90, 052512 (2014)]. Using the non-interacting and strong-correlated extremes, variousmore » interpolation schemes are presented that yield new approximations to the adiabatic connection and thus to the exchange-correlation energy. Some of them rely on empiricism while others do not. Several of the proposed approximations yield the exact exchange-correlation energy for one-electron systems where local and semi-local approximations often fail badly. Other proposed approximations generalize existing global hybrids by using a fraction of the exchange-correlation energy in the strong-correlation limit to replace an equal fraction of the semi-local approximation to the exchange-correlation energy in the strong-correlation limit. The performance of the proposed approximations is evaluated for molecular atomization energies, total atomic energies, and ionization potentials.« less

  4. DENSITY-MAGNETIC FIELD CORRELATION IN MAGNETOHYDRODYNAMIC TURBULENCE DRIVEN BY DIFFERENT DRIVING SCHEMES WITH DIFFERENT CORRELATION TIMES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Heesun; Cho, Jungyeon; Kim, Jongsoo, E-mail: hsyoon@cnu.ac.kr, E-mail: jcho@cnu.ac.kr, E-mail: jskim@kasi.re.kr

    Turbulent motions naturally produce density and magnetic-field fluctuations. Correlation between the two fluctuations is important for interpretation of observations, such as observations of the rotation measure (RM). In this paper, we study the effect of driving schemes on the density-magnetic-field correlation. In particular, we numerically investigate how the correlation time of driving affects the correlation between density and magnetic field. We perform compressible magnetohydrodynamic turbulence simulations at different sonic Mach numbers ( M {sub s} ), using two different driving schemes—a finite-correlated driving and a delta-correlated driving. In the former, the forcing vectors change continuously with a correlation time comparablemore » to the large-eddy turnover time. In the latter, the direction (and amplitude) of driving changes in a very short timescale. The finite-correlated driving results in strong anti-correlation between two fields when the sonic and the Alfvénic Mach numbers are similar to unity (i.e., when M {sub s} ∼ 1 and M {sub A} ∼ 1, respectively). However, the anti-correlation becomes weaker and approaches zero for higher values of M {sub s} or M {sub A}. The delta-correlated driving produces virtually no correlation between two fields when M {sub s} ∼ 1 and M {sub A} ∼ 1, and produces more and more positive correlations as M {sub s} or M {sub A} increases. We conjecture that two competing effects, tendency for achieving balance between the gas and the magnetic pressure and simultaneous compression of fluid and magnetic field, determine the correlation behavior. We also investigate how different driving schemes affect the Probability Density Function of three-dimensional density, dispersion measure, and RM.« less

  5. Nonclassicality of Temporal Correlations.

    PubMed

    Brierley, Stephen; Kosowski, Adrian; Markiewicz, Marcin; Paterek, Tomasz; Przysiężna, Anna

    2015-09-18

    The results of spacelike separated measurements are independent of distant measurement settings, a property one might call two-way no-signaling. In contrast, timelike separated measurements are only one-way no-signaling since the past is independent of the future but not vice versa. For this reason some temporal correlations that are formally identical to nonclassical spatial correlations can still be modeled classically. We propose a new formulation of Bell's theorem for temporal correlations; namely, we define nonclassical temporal correlations as the ones which cannot be simulated by propagating in time the classical information content of a quantum system given by the Holevo bound. We first show that temporal correlations between results of any projective quantum measurements on a qubit can be simulated classically. Then we present a sequence of general measurements on a single m-level quantum system that cannot be explained by propagating in time an m-level classical system and using classical computers with unlimited memory.

  6. Software Correlator for Radioastron Mission

    NASA Astrophysics Data System (ADS)

    Likhachev, Sergey F.; Kostenko, Vladimir I.; Girin, Igor A.; Andrianov, Andrey S.; Rudnitskiy, Alexey G.; Zharov, Vladimir E.

    In this paper, we discuss the characteristics and operation of Astro Space Center (ASC) software FX correlator that is an important component of space-ground interferometer for Radioastron project. This project performs joint observations of compact radio sources using 10m space radio telescope (SRT) together with ground radio telescopes at 92, 18, 6 and 1.3 cm wavelengths. In this paper, we describe the main features of space-ground VLBI data processing of Radioastron project using ASC correlator. Quality of implemented fringe search procedure provides positive results without significant losses in correlated amplitude. ASC Correlator has a computational power close to real time operation. The correlator has a number of processing modes: “Continuum”, “Spectral Line”, “Pulsars”, “Giant Pulses”,“Coherent”. Special attention is paid to peculiarities of Radioastron space-ground VLBI data processing. The algorithms of time delay and delay rate calculation are also discussed, which is a matter of principle for data correlation of space-ground interferometers. During five years of Radioastron SRT successful operation, ASC correlator showed high potential of satisfying steady growing needs of current and future ground and space VLBI science. Results of ASC software correlator operation are demonstrated.

  7. Increasing Specificity of Correlate Research: Exploring Correlates of Children’s Lunchtime and After-School Physical Activity

    PubMed Central

    Stanley, Rebecca M.; Ridley, Kate; Olds, Timothy S.; Dollman, James

    2014-01-01

    Background The lunchtime and after-school contexts are critical windows in a school day for children to be physically active. While numerous studies have investigated correlates of children’s habitual physical activity, few have explored correlates of physical activity occurring at lunchtime and after-school from a social-ecological perspective. Exploring correlates that influence physical activity occurring in specific contexts can potentially improve the prediction and understanding of physical activity. Using a context-specific approach, this study investigated correlates of children’s lunchtime and after-school physical activity. Methods Cross-sectional data were collected from 423 South Australian children aged 10.0–13.9 years (200 boys; 223 girls) attending 10 different schools. Lunchtime and after-school physical activity was assessed using accelerometers. Correlates were assessed using purposely developed context-specific questionnaires. Correlated Component Regression analysis was conducted to derive correlates of context-specific physical activity and determine the variance explained by prediction equations. Results The model of boys’ lunchtime physical activity contained 6 correlates and explained 25% of the variance. For girls, the model explained 17% variance from 9 correlates. Enjoyment of walking during lunchtime was the strongest correlate for both boys and girls. Boys’ and girls’ after-school physical activity models explained 20% variance from 14 correlates and 7% variance from the single item correlate, “I do an organised sport or activity after-school because it gets you fit”, respectively. Conclusions Increasing specificity of correlate research has enabled the identification of unique features of, and a more in-depth interpretation of, lunchtime and after-school physical activity behaviour and is a potential strategy for advancing the physical activity correlate research field. The findings of this study could be used to inform

  8. Revealing hidden antiferromagnetic correlations in doped Hubbard chains via string correlators

    NASA Astrophysics Data System (ADS)

    Hilker, Timon A.; Salomon, Guillaume; Grusdt, Fabian; Omran, Ahmed; Boll, Martin; Demler, Eugene; Bloch, Immanuel; Gross, Christian

    2017-08-01

    Topological phases, like the Haldane phase in spin-1 chains, defy characterization through local order parameters. Instead, nonlocal string order parameters can be employed to reveal their hidden order. Similar diluted magnetic correlations appear in doped one-dimensional lattice systems owing to the phenomenon of spin-charge separation. Here we report on the direct observation of such hidden magnetic correlations via quantum gas microscopy of hole-doped ultracold Fermi-Hubbard chains. The measurement of nonlocal spin-density correlation functions reveals a hidden finite-range antiferromagnetic order, a direct consequence of spin-charge separation. Our technique, which measures nonlocal order directly, can be readily extended to higher dimensions to study the complex interplay between magnetic order and density fluctuations.

  9. Vectorized data acquisition and fast triple-correlation integrals for Fluorescence Triple Correlation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ridgeway, William K.; Millar, David P.; Williamson, James R.

    2013-04-01

    Fluorescence Correlation Spectroscopy (FCS) is widely used to quantify reaction rates and concentrations of molecules in vitro and in vivo. We recently reported Fluorescence Triple Correlation Spectroscopy (F3CS), which correlates three signals together instead of two. F3CS can analyze the stoichiometries of complex mixtures and detect irreversible processes by identifying time-reversal asymmetries. Here we report the computational developments that were required for the realization of F3CS and present the results as the Triple Correlation Toolbox suite of programs. Triple Correlation Toolbox is a complete data analysis pipeline capable of acquiring, correlating and fitting large data sets. Each segment of the pipeline handles error estimates for accurate error-weighted global fitting. Data acquisition was accelerated with a combination of off-the-shelf counter-timer chips and vectorized operations on 128-bit registers. This allows desktop computers with inexpensive data acquisition cards to acquire hours of multiple-channel data with sub-microsecond time resolution. Off-line correlation integrals were implemented as a two delay time multiple-tau scheme that scales efficiently with multiple processors and provides an unprecedented view of linked dynamics. Global fitting routines are provided to fit FCS and F3CS data to models containing up to ten species. Triple Correlation Toolbox is a complete package that enables F3CS to be performed on existing microscopes. Catalogue identifier: AEOP_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOP_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 50189 No. of bytes in distributed program, including test data, etc.: 6135283 Distribution format: tar.gz Programming language: C/Assembly. Computer: Any with GCC and

  10. The impact of global signal regression on resting state correlations: Are anti-correlated networks introduced?

    PubMed Central

    Murphy, Kevin; Birn, Rasmus M.; Handwerker, Daniel A.; Jones, Tyler B.; Bandettini, Peter A.

    2009-01-01

    Low-frequency fluctuations in fMRI signal have been used to map several consistent resting state networks in the brain. Using the posterior cingulate cortex as a seed region, functional connectivity analyses have found not only positive correlations in the default mode network but negative correlations in another resting state network related to attentional processes. The interpretation is that the human brain is intrinsically organized into dynamic, anti-correlated functional networks. Global variations of the BOLD signal are often considered nuisance effects and are commonly removed using a general linear model (GLM) technique. This global signal regression method has been shown to introduce negative activation measures in standard fMRI analyses. The topic of this paper is whether such a correction technique could be the cause of anti-correlated resting state networks in functional connectivity analyses. Here we show that, after global signal regression, correlation values to a seed voxel must sum to a negative value. Simulations also show that small phase differences between regions can lead to spurious negative correlation values. A combination breath holding and visual task demonstrates that the relative phase of global and local signals can affect connectivity measures and that, experimentally, global signal regression leads to bell-shaped correlation value distributions, centred on zero. Finally, analyses of negatively correlated networks in resting state data show that global signal regression is most likely the cause of anti-correlations. These results call into question the interpretation of negatively correlated regions in the brain when using global signal regression as an initial processing step. PMID:18976716

  11. The impact of global signal regression on resting state correlations: are anti-correlated networks introduced?

    PubMed

    Murphy, Kevin; Birn, Rasmus M; Handwerker, Daniel A; Jones, Tyler B; Bandettini, Peter A

    2009-02-01

    Low-frequency fluctuations in fMRI signal have been used to map several consistent resting state networks in the brain. Using the posterior cingulate cortex as a seed region, functional connectivity analyses have found not only positive correlations in the default mode network but negative correlations in another resting state network related to attentional processes. The interpretation is that the human brain is intrinsically organized into dynamic, anti-correlated functional networks. Global variations of the BOLD signal are often considered nuisance effects and are commonly removed using a general linear model (GLM) technique. This global signal regression method has been shown to introduce negative activation measures in standard fMRI analyses. The topic of this paper is whether such a correction technique could be the cause of anti-correlated resting state networks in functional connectivity analyses. Here we show that, after global signal regression, correlation values to a seed voxel must sum to a negative value. Simulations also show that small phase differences between regions can lead to spurious negative correlation values. A combination breath holding and visual task demonstrates that the relative phase of global and local signals can affect connectivity measures and that, experimentally, global signal regression leads to bell-shaped correlation value distributions, centred on zero. Finally, analyses of negatively correlated networks in resting state data show that global signal regression is most likely the cause of anti-correlations. These results call into question the interpretation of negatively correlated regions in the brain when using global signal regression as an initial processing step.

  12. Quantifying meta-correlations in financial markets

    NASA Astrophysics Data System (ADS)

    Kenett, Dror Y.; Preis, Tobias; Gur-Gershgoren, Gitit; Ben-Jacob, Eshel

    2012-08-01

    Financial markets are modular multi-level systems, in which the relationships between the individual components are not constant in time. Sudden changes in these relationships significantly affect the stability of the entire system, and vice versa. Our analysis is based on historical daily closing prices of the 30 components of the Dow Jones Industrial Average (DJIA) from March 15th, 1939 until December 31st, 2010. We quantify the correlation among these components by determining Pearson correlation coefficients, to investigate whether mean correlation of the entire portfolio can be used as a precursor for changes in the index return. To this end, we quantify the meta-correlation - the correlation of mean correlation and index return. We find that changes in index returns are significantly correlated with changes in mean correlation. Furthermore, we study the relationship between the index return and correlation volatility - the standard deviation of correlations for a given time interval. This parameter provides further evidence of the effect of the index on market correlations and their fluctuations. Our empirical findings provide new information and quantification of the index leverage effect, and have implications to risk management, portfolio optimization, and to the increased stability of financial markets.

  13. Tsukuba VLBI Correlator

    NASA Technical Reports Server (NTRS)

    Kurihara, Shinobu; Nozawa, Kentaro

    2013-01-01

    The K5/VSSP software correlator (Figure 1), located in Tsukuba, Japan, is operated by the Geospatial Information Authority of Japan (GSI). It is fully dedicated to processing the geodetic VLBI sessions of the International VLBI Service for Geodesy and Astrometry. All of the weekend IVS Intensives (INT2) and the Japanese domestic VLBI observations organized by GSI were processed at the Tsukuba VLBI Correlator.

  14. Random matrix theory analysis of cross-correlations in the US stock market: Evidence from Pearson’s correlation coefficient and detrended cross-correlation coefficient

    NASA Astrophysics Data System (ADS)

    Wang, Gang-Jin; Xie, Chi; Chen, Shou; Yang, Jiao-Jiao; Yang, Ming-Yan

    2013-09-01

    In this study, we first build two empirical cross-correlation matrices in the US stock market by two different methods, namely the Pearson’s correlation coefficient and the detrended cross-correlation coefficient (DCCA coefficient). Then, combining the two matrices with the method of random matrix theory (RMT), we mainly investigate the statistical properties of cross-correlations in the US stock market. We choose the daily closing prices of 462 constituent stocks of S&P 500 index as the research objects and select the sample data from January 3, 2005 to August 31, 2012. In the empirical analysis, we examine the statistical properties of cross-correlation coefficients, the distribution of eigenvalues, the distribution of eigenvector components, and the inverse participation ratio. From the two methods, we find some new results of the cross-correlations in the US stock market in our study, which are different from the conclusions reached by previous studies. The empirical cross-correlation matrices constructed by the DCCA coefficient show several interesting properties at different time scales in the US stock market, which are useful to the risk management and optimal portfolio selection, especially to the diversity of the asset portfolio. It will be an interesting and meaningful work to find the theoretical eigenvalue distribution of a completely random matrix R for the DCCA coefficient because it does not obey the Marčenko-Pastur distribution.

  15. Correlated Topic Vector for Scene Classification.

    PubMed

    Wei, Pengxu; Qin, Fei; Wan, Fang; Zhu, Yi; Jiao, Jianbin; Ye, Qixiang

    2017-07-01

    Scene images usually involve semantic correlations, particularly when considering large-scale image data sets. This paper proposes a novel generative image representation, correlated topic vector, to model such semantic correlations. Oriented from the correlated topic model, correlated topic vector intends to naturally utilize the correlations among topics, which are seldom considered in the conventional feature encoding, e.g., Fisher vector, but do exist in scene images. It is expected that the involvement of correlations can increase the discriminative capability of the learned generative model and consequently improve the recognition accuracy. Incorporated with the Fisher kernel method, correlated topic vector inherits the advantages of Fisher vector. The contributions to the topics of visual words have been further employed by incorporating the Fisher kernel framework to indicate the differences among scenes. Combined with the deep convolutional neural network (CNN) features and Gibbs sampling solution, correlated topic vector shows great potential when processing large-scale and complex scene image data sets. Experiments on two scene image data sets demonstrate that correlated topic vector improves significantly the deep CNN features, and outperforms existing Fisher kernel-based features.

  16. Finite-T correlations and free exchange-correlation energy of quasi-one-dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Garg, Vinayak; Sharma, Akariti; Moudgil, R. K.

    2018-02-01

    We have studied the effect of temperature on static density-density correlations and plasmon excitation spectrum of quasi-one-dimensional electron gas (Q1DEG) using the random phase approximation (RPA). Numerical results for static structure factor, pair-correlation function, static density susceptibility, free exchange-correlation energy and plasmon dispersion are presented over a wide range of temperature and electron density. As an interesting result, we find that the short-range correlations exhibit a non-monotonic dependence on temperature T, initially growing stronger (i.e. the pair-correlation function at small inter-electron spacing assuming relatively smaller values) with increasing T and then weakening above a critical T. The cross-over temperature is found to increase with increasing coupling among electrons. Also, the q = 2kF peak in the static density susceptibility χ(q,ω = 0,T) at T = 0 K smears out with rising T. The free exchange-correlation energy and plasmon dispersion show a significant variation with T, and the trend is qualitatively the same as in higher dimensions.

  17. Correlation, Cost Risk, and Geometry

    NASA Technical Reports Server (NTRS)

    Dean, Edwin B.

    1992-01-01

    The geometric viewpoint identifies the choice of a correlation matrix for the simulation of cost risk with the pairwise choice of data vectors corresponding to the parameters used to obtain cost risk. The correlation coefficient is the cosine of the angle between the data vectors after translation to an origin at the mean and normalization for magnitude. Thus correlation is equivalent to expressing the data in terms of a non orthogonal basis. To understand the many resulting phenomena requires the use of the tensor concept of raising the index to transform the measured and observed covariant components into contravariant components before vector addition can be applied. The geometric viewpoint also demonstrates that correlation and covariance are geometric properties, as opposed to purely statistical properties, of the variates. Thus, variates from different distributions may be correlated, as desired, after selection from independent distributions. By determining the principal components of the correlation matrix, variates with the desired mean, magnitude, and correlation can be generated through linear transforms which include the eigenvalues and the eigenvectors of the correlation matrix. The conversion of the data to a non orthogonal basis uses a compound linear transformation which distorts or stretches the data space. Hence, the correlated data does not have the same properties as the uncorrelated data used to generate it. This phenomena is responsible for seemingly strange observations such as the fact that the marginal distributions of the correlated data can be quite different from the distributions used to generate the data. The joint effect of statistical distributions and correlation remains a fertile area for further research. In terms of application to cost estimating, the geometric approach demonstrates that the estimator must have data and must understand that data in order to properly choose the correlation matrix appropriate for a given estimate

  18. Correlation Coefficients: Appropriate Use and Interpretation.

    PubMed

    Schober, Patrick; Boer, Christa; Schwarte, Lothar A

    2018-05-01

    Correlation in the broadest sense is a measure of an association between variables. In correlated data, the change in the magnitude of 1 variable is associated with a change in the magnitude of another variable, either in the same (positive correlation) or in the opposite (negative correlation) direction. Most often, the term correlation is used in the context of a linear relationship between 2 continuous variables and expressed as Pearson product-moment correlation. The Pearson correlation coefficient is typically used for jointly normally distributed data (data that follow a bivariate normal distribution). For nonnormally distributed continuous data, for ordinal data, or for data with relevant outliers, a Spearman rank correlation can be used as a measure of a monotonic association. Both correlation coefficients are scaled such that they range from -1 to +1, where 0 indicates that there is no linear or monotonic association, and the relationship gets stronger and ultimately approaches a straight line (Pearson correlation) or a constantly increasing or decreasing curve (Spearman correlation) as the coefficient approaches an absolute value of 1. Hypothesis tests and confidence intervals can be used to address the statistical significance of the results and to estimate the strength of the relationship in the population from which the data were sampled. The aim of this tutorial is to guide researchers and clinicians in the appropriate use and interpretation of correlation coefficients.

  19. SAW correlator spread spectrum receiver

    DOEpatents

    Brocato, Robert W

    2014-04-01

    A surface acoustic wave (SAW) correlator spread-spectrum (SS) receiver is disclosed which utilizes a first demodulation stage with a chip length n and a second demodulation stage with a chip length m to decode a transmitted SS signal having a code length l=n.times.m which can be very long (e.g. up to 2000 chips or more). The first demodulation stage utilizes a pair of SAW correlators which demodulate the SS signal to generate an appropriate code sequence at an intermediate frequency which can then be fed into the second demodulation stage which can be formed from another SAW correlator, or by a digital correlator. A compound SAW correlator comprising two input transducers and a single output transducer is also disclosed which can be used to form the SAW correlator SS receiver, or for use in processing long code length signals.

  20. Comparison of correlated correlations.

    PubMed

    Cohen, A

    1989-12-01

    We consider a problem where kappa highly correlated variables are available, each being a candidate for predicting a dependent variable. Only one of the kappa variables can be chosen as a predictor and the question is whether there are significant differences in the quality of the predictors. We review several tests derived previously and propose a method based on the bootstrap. The motivating medical problem was to predict 24 hour proteinuria by protein-creatinine ratio measured at either 08:00, 12:00 or 16:00. The tests which we discuss are illustrated by this example and compared using a small Monte Carlo study.

  1. Photofraction of a 5 cm x 2 cm BGO scintillator. [bismuth germanate crystal for use in cosmic gamma ray detector

    NASA Technical Reports Server (NTRS)

    Dunphy, P. P.; Forrest, D. J.

    1985-01-01

    The photofraction of a 5.1 cm x 2.0 cm bismuth germanate (BGO) scintillator was measured over a gamma-ray energy range of 0.2 to 6.1 MeV. Several methods, used to minimize the effect of room scattering on the measurement, are discussed. These include a gamma-gamma coincidence technique, a beta-gamma coincidence technique, and the use of sources calibrated with a standard 7.6 cm x 7.6 cm sodium iodide scintillator.

  2. Multiple jet study data correlations. [data correlation for jet mixing flow of air jets

    NASA Technical Reports Server (NTRS)

    Walker, R. E.; Eberhardt, R. G.

    1975-01-01

    Correlations are presented which allow determination of penetration and mixing of multiple cold air jets injected normal to a ducted subsonic heated primary air stream. Correlations were obtained over jet-to-primary stream momentum flux ratios of 6 to 60 for locations from 1 to 30 jet diameters downstream of the injection plane. The range of geometric and operating variables makes the correlations relevant to gas turbine combustors. Correlations were obtained for the mixing efficiency between jets and primary stream using an energy exchange parameter. Also jet centerplane velocity and temperature trajectories were correlated and centerplane dimensionless temperature distributions defined. An assumption of a Gaussian vertical temperature distribution at all stations is shown to result in a reasonable temperature field model. Data are presented which allow comparison of predicted and measured values over the range of conditions specified above.

  3. Haystack Observatory VLBI Correlator

    NASA Technical Reports Server (NTRS)

    Titus, Mike; Cappallo, Roger; Corey, Brian; Dudevoir, Kevin; Niell, Arthur; Whitney, Alan

    2013-01-01

    This report summarizes the activities of the Haystack Correlator during 2012. Highlights include finding a solution to the DiFX InfiniBand timeout problem and other DiFX software development, conducting a DBE comparison test following the First International VLBI Technology Workshop, conducting a Mark IV and DiFX correlator comparison, more broadband delay experiments, more u- VLBI Galactic Center observations, and conversion of RDV session processing to the Mark IV/HOPS path. Non-real-time e-VLBI transfers and engineering support of other correlators continued.

  4. Negative Correlations in Visual Cortical Networks

    PubMed Central

    Chelaru, Mircea I.; Dragoi, Valentin

    2016-01-01

    The amount of information encoded by cortical circuits depends critically on the capacity of nearby neurons to exhibit trial-to-trial (noise) correlations in their responses. Depending on their sign and relationship to signal correlations, noise correlations can either increase or decrease the population code accuracy relative to uncorrelated neuronal firing. Whereas positive noise correlations have been extensively studied using experimental and theoretical tools, the functional role of negative correlations in cortical circuits has remained elusive. We addressed this issue by performing multiple-electrode recording in the superficial layers of the primary visual cortex (V1) of alert monkey. Despite the fact that positive noise correlations decayed exponentially with the difference in the orientation preference between cells, negative correlations were uniformly distributed across the population. Using a statistical model for Fisher Information estimation, we found that a mild increase in negative correlations causes a sharp increase in network accuracy even when mean correlations were held constant. To examine the variables controlling the strength of negative correlations, we implemented a recurrent spiking network model of V1. We found that increasing local inhibition and reducing excitation causes a decrease in the firing rates of neurons while increasing the negative noise correlations, which in turn increase the population signal-to-noise ratio and network accuracy. Altogether, these results contribute to our understanding of the neuronal mechanism involved in the generation of negative correlations and their beneficial impact on cortical circuit function. PMID:25217468

  5. Performance highlights of the ALMA correlators

    NASA Astrophysics Data System (ADS)

    Baudry, Alain; Lacasse, Richard; Escoffier, Ray; Webber, John; Greenberg, Joseph; Platt, Laurence; Treacy, Robert; Saez, Alejandro F.; Cais, Philippe; Comoretto, Giovanni; Quertier, Benjamin; Okumura, Sachiko K.; Kamazaki, Takeshi; Chikada, Yoshihiro; Watanabe, Manabu; Okuda, Takeshi; Kurono, Yasutake; Iguchi, Satoru

    2012-09-01

    Two large correlators have been constructed to combine the signals captured by the ALMA antennas deployed on the Atacama Desert in Chile at an elevation of 5050 meters. The Baseline correlator was fabricated by a NRAO/European team to process up to 64 antennas for 16 GHz bandwidth in two polarizations and another correlator, the Atacama Compact Array (ACA) correlator, was fabricated by a Japanese team to process up to 16 antennas. Both correlators meet the same specifications except for the number of processed antennas. The main architectural differences between these two large machines will be underlined. Selected features of the Baseline and ACA correlators as well as the main technical challenges met by the designers will be briefly discussed. The Baseline correlator is the largest correlator ever built for radio astronomy. Its digital hybrid architecture provides a wide variety of observing modes including the ability to divide each input baseband into 32 frequency-mobile sub-bands for high spectral resolution and to be operated as a conventional 'lag' correlator for high time resolution. The various observing modes offered by the ALMA correlators to the science community for 'Early Science' are presented, as well as future observing modes. Coherently phasing the array to provide VLBI maps of extremely compact sources is another feature of the ALMA correlators. Finally, the status and availability of these large machines will be presented.

  6. Hadronic Correlations and Fluctuations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koch, Volker

    2008-10-09

    We will provide a review of some of the physics which can be addressed by studying fluctuations and correlations in heavy ion collisions. We will discuss Lattice QCD results on fluctuations and correlations and will put them into context with observables which have been measured in heavy-ion collisions. Special attention will be given to the QCD critical point and the first order co-existence region, and we will discuss how the measurement of fluctuations and correlations can help in an experimental search for non-trivial structures in the QCD phase diagram.

  7. The 512-channel correlator controller

    NASA Technical Reports Server (NTRS)

    Brokl, S. S.

    1976-01-01

    A high-speed correlator for radio and radar observations was developed and a controller was designed so that the correlator could run automatically without computer intervention. The correlator controller assumes the role of bus master and keeps track of data and properly interrupts the computer at the end of the observation.

  8. Correlational Analysis of Ordinal Data: From Pearson's "r" to Bayesian Polychoric Correlation

    ERIC Educational Resources Information Center

    Choi, Jaehwa; Peters, Michelle; Mueller, Ralph O.

    2010-01-01

    Correlational analyses are one of the most popular quantitative methods, yet also one of the mostly frequently misused methods in social and behavioral research, especially when analyzing ordinal data from Likert or other rating scales. Although several correlational analysis options have been developed for ordinal data, there seems to be a lack…

  9. Einstein-Podolsky-Rosen correlations and Bell correlations in the simplest scenario

    NASA Astrophysics Data System (ADS)

    Quan, Quan; Zhu, Huangjun; Fan, Heng; Yang, Wen-Li

    2017-06-01

    Einstein-Podolsky-Rosen (EPR) steering is an intermediate type of quantum nonlocality which sits between entanglement and Bell nonlocality. A set of correlations is Bell nonlocal if it does not admit a local hidden variable (LHV) model, while it is EPR nonlocal if it does not admit a local hidden variable-local hidden state (LHV-LHS) model. It is interesting to know what states can generate EPR-nonlocal correlations in the simplest nontrivial scenario, that is, two projective measurements for each party sharing a two-qubit state. Here we show that a two-qubit state can generate EPR-nonlocal full correlations (excluding marginal statistics) in this scenario if and only if it can generate Bell-nonlocal correlations. If full statistics (including marginal statistics) is taken into account, surprisingly, the same scenario can manifest the simplest one-way steering and the strongest hierarchy between steering and Bell nonlocality. To illustrate these intriguing phenomena in simple setups, several concrete examples are discussed in detail, which facilitates experimental demonstration. In the course of study, we introduce the concept of restricted LHS models and thereby derive a necessary and sufficient semidefinite-programming criterion to determine the steerability of any bipartite state under given measurements. Analytical criteria are further derived in several scenarios of strong theoretical and experimental interest.

  10. Correlation tests of the engine performance parameter by using the detrended cross-correlation coefficient

    NASA Astrophysics Data System (ADS)

    Dong, Keqiang; Gao, You; Jing, Liming

    2015-02-01

    The presence of cross-correlation in complex systems has long been noted and studied in a broad range of physical applications. We here focus on an aero-engine system as an example of a complex system. By applying the detrended cross-correlation (DCCA) coefficient method to aero-engine time series, we investigate the effects of the data length and the time scale on the detrended cross-correlation coefficients ρ DCCA ( T, s). We then show, for a twin-engine aircraft, that the engine fuel flow time series derived from the left engine and the right engine exhibit much stronger cross-correlations than the engine exhaust-gas temperature series derived from the left engine and the right engine do.

  11. Observation of Psi(3770)-->gammachi(c1)-->gammagammaJ/Psi.

    PubMed

    Coan, T E; Gao, Y S; Liu, F; Artuso, M; Boulahouache, C; Blusk, S; Butt, J; Dorjkhaidav, O; Li, J; Menaa, N; Mountain, R; Nandakumar, R; Randrianarivony, K; Redjimi, R; Sia, R; Skwarnicki, T; Stone, S; Wang, J C; Zhang, K; Csorna, S E; Bonvicini, G; Cinabro, D; Dubrovin, M; Lincoln, A; Briere, R A; Chen, G P; Chen, J; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Rosner, J L; Adam, N E; Alexander, J P; Berkelman, K; Cassel, D G; Crede, V; Duboscq, J E; Ecklund, K M; Ehrlich, R; Fields, L; Galik, R S; Gibbons, L; Gittelman, B; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Meyer, T O; Onyisi, P U E; Patterson, J R; Peterson, D; Phillips, E A; Pivarski, J; Riley, D; Ryd, A; Sadoff, A J; Schwarthoff, H; Shi, X; Shepherd, M R; Stroiney, S; Sun, W M; Urner, D; Wilksen, T; Weaver, K M; Weinberger, M; Athar, S B; Avery, P; Breva-Newell, L; Patel, R; Potlia, V; Stoeck, H; Yelton, J; Rubin, P; Cawlfield, C; Eisenstein, B I; Gollin, G D; Karliner, I; Kim, D; Lowrey, N; Naik, P; Sedlack, C; Selen, M; White, E J; Williams, J; Wiss, J; Asner, D M; Edwards, K W; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Gong, D T; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Li, S Z; Poling, R; Scott, A W; Smith, A; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A; Zweber, P; Ernst, J; Severini, H; Dytman, S A; Love, W; Mehrabyan, S; Mueller, J A; Savinov, V; Li, Z; Lopez, A; Mendez, H; Ramirez, J; Huang, G S; Miller, D H; Pavlunin, V; Sanghi, B; Shipsey, I P J; Adams, G S; Anderson, M; Cummings, J P; Danko, I; Napolitano, J; He, Q; Muramatsu, H; Park, C S; Thorndike, E H

    2006-05-12

    From e(+)e(-) collision data acquired with the CLEO detector at the Cornell Electron Storage Ring, we observe the non-DD(_) decay Psi(3770))-->gammachi(c1) with a statistical significance of 6.6 standard deviations, using the two-photon cascades to J/Psi and J/Psi-->l(+)l(-). We determine sigma(e(=)e(-)-->Psi(3770))xBeta(Psi(3770)-->gammachi(c1))=(18.0 +/- 3.3 +/- 2.5) pb and branching fraction Beta(Psi(3770)-->gammachi(c1)=(2.8 +/- 0.5+/-0.4) x 10(-3). We set 90% C.L. upper limits for the transition to chi(c2) (chi(c0)): sigma x Beta<5.7 pb (<282 pb) and Beta<0.9 x 10(-3) (<44 x 10(-3)). We also determine Gamma(Psi(3770)gammachi(c1))/Gamma(Psi(3770)-->pi(+)pi(-)J/Psi)=1.5 +/- 0.3 +/- 0.3 (>1.0 at 90% C.L.), which bears upon the interpretation of X(3872).

  12. Correlates of depression in bipolar disorder

    PubMed Central

    Moore, Paul J.; Little, Max A.; McSharry, Patrick E.; Goodwin, Guy M.; Geddes, John R.

    2014-01-01

    We analyse time series from 100 patients with bipolar disorder for correlates of depression symptoms. As the sampling interval is non-uniform, we quantify the extent of missing and irregular data using new measures of compliance and continuity. We find that uniformity of response is negatively correlated with the standard deviation of sleep ratings (ρ = –0.26, p = 0.01). To investigate the correlation structure of the time series themselves, we apply the Edelson–Krolik method for correlation estimation. We examine the correlation between depression symptoms for a subset of patients and find that self-reported measures of sleep and appetite/weight show a lower average correlation than other symptoms. Using surrogate time series as a reference dataset, we find no evidence that depression is correlated between patients, though we note a possible loss of information from sparse sampling. PMID:24352942

  13. Experimental characterization of pairwise correlations from triple quantum correlated beams generated by cascaded four-wave mixing processes

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Cao, Leiming; Lou, Yanbo; Du, Jinjian; Jing, Jietai

    2018-01-01

    We theoretically and experimentally characterize the performance of the pairwise correlations from triple quantum correlated beams based on the cascaded four-wave mixing (FWM) processes. The pairwise correlations between any two of the beams are theoretically calculated and experimentally measured. The experimental and theoretical results are in good agreement. We find that two of the three pairwise correlations can be in the quantum regime. The other pairwise correlation is always in the classical regime. In addition, we also measure the triple-beam correlation which is always in the quantum regime. Such unbalanced and controllable pairwise correlation structures may be taken as advantages in practical quantum communications, for example, hierarchical quantum secret sharing. Our results also open the way for the classification and application of quantum states generated from the cascaded FWM processes.

  14. Fungible Correlation Matrices: A Method for Generating Nonsingular, Singular, and Improper Correlation Matrices for Monte Carlo Research.

    PubMed

    Waller, Niels G

    2016-01-01

    For a fixed set of standardized regression coefficients and a fixed coefficient of determination (R-squared), an infinite number of predictor correlation matrices will satisfy the implied quadratic form. I call such matrices fungible correlation matrices. In this article, I describe an algorithm for generating positive definite (PD), positive semidefinite (PSD), or indefinite (ID) fungible correlation matrices that have a random or fixed smallest eigenvalue. The underlying equations of this algorithm are reviewed from both algebraic and geometric perspectives. Two simulation studies illustrate that fungible correlation matrices can be profitably used in Monte Carlo research. The first study uses PD fungible correlation matrices to compare penalized regression algorithms. The second study uses ID fungible correlation matrices to compare matrix-smoothing algorithms. R code for generating fungible correlation matrices is presented in the supplemental materials.

  15. Feature-extracted joint transform correlation.

    PubMed

    Alam, M S

    1995-12-10

    A new technique for real-time optical character recognition that uses a joint transform correlator is proposed. This technique employs feature-extracted patterns for the reference image to detect a wide range of characters in one step. The proposed technique significantly enhances the processing speed when compared with the presently available joint transform correlator architectures and shows feasibility for multichannel joint transform correlation.

  16. PREFACE: Strongly correlated electron systems Strongly correlated electron systems

    NASA Astrophysics Data System (ADS)

    Saxena, Siddharth S.; Littlewood, P. B.

    2012-07-01

    This special section is dedicated to the Strongly Correlated Electron Systems Conference (SCES) 2011, which was held from 29 August-3 September 2011, in Cambridge, UK. SCES'2011 is dedicated to 100 years of superconductivity and covers a range of topics in the area of strongly correlated systems. The correlated electronic and magnetic materials featured include f-electron based heavy fermion intermetallics and d-electron based transition metal compounds. The selected papers derived from invited presentations seek to deepen our understanding of the rich physical phenomena that arise from correlation effects. The focus is on quantum phase transitions, non-Fermi liquid phenomena, quantum magnetism, unconventional superconductivity and metal-insulator transitions. Both experimental and theoretical work is presented. Based on fundamental advances in the understanding of electronic materials, much of 20th century materials physics was driven by miniaturisation and integration in the electronics industry to the current generation of nanometre scale devices. The achievements of this industry have brought unprecedented advances to society and well-being, and no doubt there is much further to go—note that this progress is founded on investments and studies in the fundamentals of condensed matter physics from more than 50 years ago. Nevertheless, the defining challenges for the 21st century will lie in the discovery in science, and deployment through engineering, of technologies that can deliver the scale needed to have an impact on the sustainability agenda. Thus the big developments in nanotechnology may lie not in the pursuit of yet smaller transistors, but in the design of new structures that can revolutionise the performance of solar cells, batteries, fuel cells, light-weight structural materials, refrigeration, water purification, etc. The science presented in the papers of this special section also highlights the underlying interest in energy-dense materials, which

  17. Low Offset AC Correlator.

    DTIC Science & Technology

    This patent describes a low offset AC correlator avoids DC offset and low frequency noise by frequency operating the correlation signal so that low...noise, low level AC amplification can be substituted for DC amplification. Subsequently, the high level AC signal is demodulated to a DC level. (Author)

  18. Graphical correlation of gaging-station records

    USGS Publications Warehouse

    Searcy, James K.

    1960-01-01

    A gaging-station record is a sample of the rate of flow of a stream at a given site. This sample can be used to estimate the magnitude and distribution of future flows if the record is long enough to be representative of the long-term flow of the stream. The reliability of a short-term record for estimating future flow characteristics can be improved through correlation with a long-term record. Correlation can be either numerical or graphical, but graphical correlation of gaging-station records has several advantages. The graphical correlation method is described in a step-by-step procedure with an illustrative problem of simple correlation, illustrative problems of three examples of multiple correlation--removing seasonal effect--and two examples of correlation of one record with two other records. Except in the problem on removal of seasonal effect, the same group of stations is used in the illustrative problems. The purpose of the problems is to illustrate the method--not to show the improvement that can result from multiple correlation as compared with simple correlation. Hydrologic factors determine whether a usable relation exists between gaging-station records. Statistics is only a tool for evaluating and using an existing relation, and the investigator must be guided by a knowledge of hydrology.

  19. Short-Range Nucleon-Nucleon Correlations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douglas Higinbotham

    2011-10-01

    Valence-shell nucleon knock-out experiments, such as 12C(e,e'p)11B, measure less strength then is predicted by independent particle shell model calculations. The theoretical solution to this problem is to include the correlations between the nucleons in the nucleus in the calculations. Motivated by these results, many electron scattering experiments have tried to directly observe these correlations in order to gain new insight into the short-range part of the nucleon-nucleon potential. Unfortunately, many competing mechanisms can cause the same observable final-state as an initial-state correlation, making truly isolating the signal extremely challenging. This paper reviews the recent experimental evidence for short-range correlations, asmore » well as explores the possibility that such correlations are responsible for the EMC effect in the 0.3 < xB < 0.7 deep inelastic scattering ratios.« less

  20. Explorations in Statistics: Correlation

    ERIC Educational Resources Information Center

    Curran-Everett, Douglas

    2010-01-01

    Learning about statistics is a lot like learning about science: the learning is more meaningful if you can actively explore. This sixth installment of "Explorations in Statistics" explores correlation, a familiar technique that estimates the magnitude of a straight-line relationship between two variables. Correlation is meaningful only when the…

  1. Clustering stocks using partial correlation coefficients

    NASA Astrophysics Data System (ADS)

    Jung, Sean S.; Chang, Woojin

    2016-11-01

    A partial correlation analysis is performed on the Korean stock market (KOSPI). The difference between Pearson correlation and the partial correlation is analyzed and it is found that when conditioned on the market return, Pearson correlation coefficients are generally greater than those of the partial correlation, which implies that the market return tends to drive up the correlation between stock returns. A clustering analysis is then performed to study the market structure given by the partial correlation analysis and the members of the clusters are compared with the Global Industry Classification Standard (GICS). The initial hypothesis is that the firms in the same GICS sector are clustered together since they are in a similar business and environment. However, the result is inconsistent with the hypothesis and most clusters are a mix of multiple sectors suggesting that the traditional approach of using sectors to determine the proximity between stocks may not be sufficient enough to diversify a portfolio.

  2. An asymptotic theory for cross-correlation between auto-correlated sequences and its application on neuroimaging data.

    PubMed

    Zhou, Yunyi; Tao, Chenyang; Lu, Wenlian; Feng, Jianfeng

    2018-04-20

    Functional connectivity is among the most important tools to study brain. The correlation coefficient, between time series of different brain areas, is the most popular method to quantify functional connectivity. Correlation coefficient in practical use assumes the data to be temporally independent. However, the time series data of brain can manifest significant temporal auto-correlation. A widely applicable method is proposed for correcting temporal auto-correlation. We considered two types of time series models: (1) auto-regressive-moving-average model, (2) nonlinear dynamical system model with noisy fluctuations, and derived their respective asymptotic distributions of correlation coefficient. These two types of models are most commonly used in neuroscience studies. We show the respective asymptotic distributions share a unified expression. We have verified the validity of our method, and shown our method exhibited sufficient statistical power for detecting true correlation on numerical experiments. Employing our method on real dataset yields more robust functional network and higher classification accuracy than conventional methods. Our method robustly controls the type I error while maintaining sufficient statistical power for detecting true correlation in numerical experiments, where existing methods measuring association (linear and nonlinear) fail. In this work, we proposed a widely applicable approach for correcting the effect of temporal auto-correlation on functional connectivity. Empirical results favor the use of our method in functional network analysis. Copyright © 2018. Published by Elsevier B.V.

  3. Using Dispersed Modes During Model Correlation

    NASA Technical Reports Server (NTRS)

    Stewart, Eric C.; Hathcock, Megan L.

    2017-01-01

    The model correlation process for the modal characteristics of a launch vehicle is well established. After a test, parameters within the nominal model are adjusted to reflect structural dynamics revealed during testing. However, a full model correlation process for a complex structure can take months of man-hours and many computational resources. If the analyst only has weeks, or even days, of time in which to correlate the nominal model to the experimental results, then the traditional correlation process is not suitable. This paper describes using model dispersions to assist the model correlation process and decrease the overall cost of the process. The process creates thousands of model dispersions from the nominal model prior to the test and then compares each of them to the test data. Using mode shape and frequency error metrics, one dispersion is selected as the best match to the test data. This dispersion is further improved by using a commercial model correlation software. In the three examples shown in this paper, this dispersion based model correlation process performs well when compared to models correlated using traditional techniques and saves time in the post-test analysis.

  4. Image correlation microscopy for uniform illumination.

    PubMed

    Gaborski, T R; Sealander, M N; Ehrenberg, M; Waugh, R E; McGrath, J L

    2010-01-01

    Image cross-correlation microscopy is a technique that quantifies the motion of fluorescent features in an image by measuring the temporal autocorrelation function decay in a time-lapse image sequence. Image cross-correlation microscopy has traditionally employed laser-scanning microscopes because the technique emerged as an extension of laser-based fluorescence correlation spectroscopy. In this work, we show that image correlation can also be used to measure fluorescence dynamics in uniform illumination or wide-field imaging systems and we call our new approach uniform illumination image correlation microscopy. Wide-field microscopy is not only a simpler, less expensive imaging modality, but it offers the capability of greater temporal resolution over laser-scanning systems. In traditional laser-scanning image cross-correlation microscopy, lateral mobility is calculated from the temporal de-correlation of an image, where the characteristic length is the illuminating laser beam width. In wide-field microscopy, the diffusion length is defined by the feature size using the spatial autocorrelation function. Correlation function decay in time occurs as an object diffuses from its original position. We show that theoretical and simulated comparisons between Gaussian and uniform features indicate the temporal autocorrelation function depends strongly on particle size and not particle shape. In this report, we establish the relationships between the spatial autocorrelation function feature size, temporal autocorrelation function characteristic time and the diffusion coefficient for uniform illumination image correlation microscopy using analytical, Monte Carlo and experimental validation with particle tracking algorithms. Additionally, we demonstrate uniform illumination image correlation microscopy analysis of adhesion molecule domain aggregation and diffusion on the surface of human neutrophils.

  5. Does asymmetric correlation affect portfolio optimization?

    NASA Astrophysics Data System (ADS)

    Fryd, Lukas

    2017-07-01

    The classical portfolio optimization problem does not assume asymmetric behavior of relationship among asset returns. The existence of asymmetric response in correlation on the bad news could be important information in portfolio optimization. The paper applies Dynamic conditional correlation model (DCC) and his asymmetric version (ADCC) to propose asymmetric behavior of conditional correlation. We analyse asymmetric correlation among S&P index, bonds index and spot gold price before mortgage crisis in 2008. We evaluate forecast ability of the models during and after mortgage crisis and demonstrate the impact of asymmetric correlation on the reduction of portfolio variance.

  6. Correlation mapping microscopy

    NASA Astrophysics Data System (ADS)

    McGrath, James; Alexandrov, Sergey; Owens, Peter; Subhash, Hrebesh M.; Leahy, Martin J.

    2015-03-01

    Changes in the microcirculation are associated with conditions such as Raynauds disease. Current modalities used to assess the microcirculation such as nailfold capillaroscopy are limited due to their depth ambiguity. A correlation mapping technique was recently developed to extend the capabilities of Optical Coherence Tomography to generate depth resolved images of the microcirculation. Here we present the extension of this technique to microscopy modalities, including confocal microscopy. It is shown that this correlation mapping microscopy technique can extend the capabilities of conventional microscopy to enable mapping of vascular networks in vivo with high spatial resolution.

  7. Nonglobal correlations in collider physics

    DOE PAGES

    Moult, Ian; Larkoski, Andrew J.

    2016-01-13

    Despite their importance for precision QCD calculations, correlations between in- and out-of-jet regions of phase space have never directly been observed. These so-called non-global effects are present generically whenever a collider physics measurement is not explicitly dependent on radiation throughout the entire phase space. In this paper, we introduce a novel procedure based on mutual information, which allows us to isolate these non-global correlations between measurements made in different regions of phase space. We study this procedure both analytically and in Monte Carlo simulations in the context of observables measured on hadronic final states produced in e+e- collisions, though itmore » is more widely applicable.The procedure exploits the sensitivity of soft radiation at large angles to non-global correlations, and we calculate these correlations through next-to-leading logarithmic accuracy. The bulk of these non-global correlations are found to be described in Monte Carlo simulation. They increase by the inclusion of non-perturbative effects, which we show can be incorporated in our calculation through the use of a model shape function. As a result, this procedure illuminates the source of non-global correlations and has connections more broadly to fundamental quantities in quantum field theory.« less

  8. Optical correlation techniques in fluid dynamics

    NASA Astrophysics Data System (ADS)

    Schätzel, K.; Schulz-Dubois, E. O.; Vehrenkamp, R.

    1981-04-01

    Three flow measurement techniques make use of fast digital correlators. The most widely spread is photon correlation velocimetry using crossed laser beams, and detecting Doppler shifted light scattered by small particles in the flow. Depending on the processing of the photon correlation output, this technique yields mean velocity, turbulence level, and even the detailed probability distribution of one velocity component. An improved data processing scheme is demonstrated on laminar vortex flow in a curved channel. In the second method, rate correlation based upon threshold crossings of a high pass filtered laser Doppler signal can be used to obtain velocity correlation functions. The most powerful set-up developed in our laboratory uses a phase locked loop type tracker and a multibit correlator to analyze time-dependent Taylor vortex flow. With two optical systems and trackers, cross-correlation functions reveal phase relations between different vortices. The last method makes use of refractive index fluctuations (eg in two phase flows) instead of scattering particles. Interferometry with bidirectional counting, and digital correlation and probability analysis, constitutes a new quantitative technique related to classical Schlieren methods. Measurements on a mixing flow of heated and cold air contribute new ideas to the theory of turbulent random phase screens.

  9. Importance and use of correlational research.

    PubMed

    Curtis, Elizabeth A; Comiskey, Catherine; Dempsey, Orla

    2016-07-01

    The importance of correlational research has been reported in the literature yet few research texts discuss design in any detail. To discuss important issues and considerations in correlational research, and suggest ways to avert potential problems during the preparation and application of the design. This article targets the gap identified in the literature regarding correlational research design. Specifically, it discusses the importance and purpose of correlational research, its application, analysis and interpretation with contextualisations to nursing and health research. Findings from correlational research can be used to determine prevalence and relationships among variables, and to forecast events from current data and knowledge. In spite of its many uses, prudence is required when using the methodology and analysing data. To assist researchers in reducing mistakes, important issues are singled out for discussion and several options put forward for analysing data. Correlational research is widely used and this paper should be particularly useful for novice nurse researchers. Furthermore, findings generated from correlational research can be used, for example, to inform decision-making, and to improve or initiate health-related activities or change.

  10. Hypothesis testing for differentially correlated features.

    PubMed

    Sheng, Elisa; Witten, Daniela; Zhou, Xiao-Hua

    2016-10-01

    In a multivariate setting, we consider the task of identifying features whose correlations with the other features differ across conditions. Such correlation shifts may occur independently of mean shifts, or differences in the means of the individual features across conditions. Previous approaches for detecting correlation shifts consider features simultaneously, by computing a correlation-based test statistic for each feature. However, since correlations involve two features, such approaches do not lend themselves to identifying which feature is the culprit. In this article, we instead consider a serial testing approach, by comparing columns of the sample correlation matrix across two conditions, and removing one feature at a time. Our method provides a novel perspective and favorable empirical results compared with competing approaches. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Recirculating cross-correlation detector

    DOEpatents

    Andrews, W.H. Jr.; Roberts, M.J.

    1985-01-18

    A digital cross-correlation detector is provided in which two time-varying signals are correlated by repetitively comparing data samples stored in digital form to detect correlation between the two signals. The signals are sampled at a selected rate converted to digital form, and stored in separate locations in separate memories. When the memories are filled, the data samples from each memory are first fed word-by-word through a multiplier and summing circuit and each result is compared to the last in a peak memory circuit and if larger than the last is retained in the peak memory. Then the address line to leading signal memory is offset by one byte to affect one sample period delay of a known amount in that memory and the data in the two memories are then multiplied word-by-word once again and summed. If a new result is larger than a former sum, it is saved in the peak memory together with the time delay. The recirculating process continues with the address of the one memory being offset one additional byte each cycle until the address is shifted through the length of the memory. The correlation between the two signals is indicated by the peak signal stored in the peak memory together with the delay time at which the peak occurred. The circuit is faster and considerably less expensive than comparable accuracy correlation detectors.

  12. A new methodology of spatial cross-correlation analysis.

    PubMed

    Chen, Yanguang

    2015-01-01

    Spatial correlation modeling comprises both spatial autocorrelation and spatial cross-correlation processes. The spatial autocorrelation theory has been well-developed. It is necessary to advance the method of spatial cross-correlation analysis to supplement the autocorrelation analysis. This paper presents a set of models and analytical procedures for spatial cross-correlation analysis. By analogy with Moran's index newly expressed in a spatial quadratic form, a theoretical framework is derived for geographical cross-correlation modeling. First, two sets of spatial cross-correlation coefficients are defined, including a global spatial cross-correlation coefficient and local spatial cross-correlation coefficients. Second, a pair of scatterplots of spatial cross-correlation is proposed, and the plots can be used to visually reveal the causality behind spatial systems. Based on the global cross-correlation coefficient, Pearson's correlation coefficient can be decomposed into two parts: direct correlation (partial correlation) and indirect correlation (spatial cross-correlation). As an example, the methodology is applied to the relationships between China's urbanization and economic development to illustrate how to model spatial cross-correlation phenomena. This study is an introduction to developing the theory of spatial cross-correlation, and future geographical spatial analysis might benefit from these models and indexes.

  13. Reliable computation from contextual correlations

    NASA Astrophysics Data System (ADS)

    Oestereich, André L.; Galvão, Ernesto F.

    2017-12-01

    An operational approach to the study of computation based on correlations considers black boxes with one-bit inputs and outputs, controlled by a limited classical computer capable only of performing sums modulo-two. In this setting, it was shown that noncontextual correlations do not provide any extra computational power, while contextual correlations were found to be necessary for the deterministic evaluation of nonlinear Boolean functions. Here we investigate the requirements for reliable computation in this setting; that is, the evaluation of any Boolean function with success probability bounded away from 1 /2 . We show that bipartite CHSH quantum correlations suffice for reliable computation. We also prove that an arbitrarily small violation of a multipartite Greenberger-Horne-Zeilinger noncontextuality inequality also suffices for reliable computation.

  14. Quantifying colocalization by correlation: the Pearson correlation coefficient is superior to the Mander's overlap coefficient.

    PubMed

    Adler, Jeremy; Parmryd, Ingela

    2010-08-01

    The Pearson correlation coefficient (PCC) and the Mander's overlap coefficient (MOC) are used to quantify the degree of colocalization between fluorophores. The MOC was introduced to overcome perceived problems with the PCC. The two coefficients are mathematically similar, differing in the use of either the absolute intensities (MOC) or of the deviation from the mean (PCC). A range of correlated datasets, which extend to the limits of the PCC, only evoked a limited response from the MOC. The PCC is unaffected by changes to the offset while the MOC increases when the offset is positive. Both coefficients are independent of gain. The MOC is a confusing hybrid measurement, that combines correlation with a heavily weighted form of co-occurrence, favors high intensity combinations, downplays combinations in which either or both intensities are low and ignores blank pixels. The PCC only measures correlation. A surprising finding was that the addition of a second uncorrelated population can substantially increase the measured correlation, demonstrating the importance of excluding background pixels. Overall, since the MOC is unresponsive to substantial changes in the data and is hard to interpret, it is neither an alternative to nor a useful substitute for the PCC. The MOC is not suitable for making measurements of colocalization either by correlation or co-occurrence.

  15. MIrExpress: A Database for Gene Coexpression Correlation in Immune Cells Based on Mutual Information and Pearson Correlation

    PubMed Central

    Wang, Luman; Mo, Qiaochu; Wang, Jianxin

    2015-01-01

    Most current gene coexpression databases support the analysis for linear correlation of gene pairs, but not nonlinear correlation of them, which hinders precisely evaluating the gene-gene coexpression strengths. Here, we report a new database, MIrExpress, which takes advantage of the information theory, as well as the Pearson linear correlation method, to measure the linear correlation, nonlinear correlation, and their hybrid of cell-specific gene coexpressions in immune cells. For a given gene pair or probe set pair input by web users, both mutual information (MI) and Pearson correlation coefficient (r) are calculated, and several corresponding values are reported to reflect their coexpression correlation nature, including MI and r values, their respective rank orderings, their rank comparison, and their hybrid correlation value. Furthermore, for a given gene, the top 10 most relevant genes to it are displayed with the MI, r, or their hybrid perspective, respectively. Currently, the database totally includes 16 human cell groups, involving 20,283 human genes. The expression data and the calculated correlation results from the database are interactively accessible on the web page and can be implemented for other related applications and researches. PMID:26881263

  16. MIrExpress: A Database for Gene Coexpression Correlation in Immune Cells Based on Mutual Information and Pearson Correlation.

    PubMed

    Wang, Luman; Mo, Qiaochu; Wang, Jianxin

    2015-01-01

    Most current gene coexpression databases support the analysis for linear correlation of gene pairs, but not nonlinear correlation of them, which hinders precisely evaluating the gene-gene coexpression strengths. Here, we report a new database, MIrExpress, which takes advantage of the information theory, as well as the Pearson linear correlation method, to measure the linear correlation, nonlinear correlation, and their hybrid of cell-specific gene coexpressions in immune cells. For a given gene pair or probe set pair input by web users, both mutual information (MI) and Pearson correlation coefficient (r) are calculated, and several corresponding values are reported to reflect their coexpression correlation nature, including MI and r values, their respective rank orderings, their rank comparison, and their hybrid correlation value. Furthermore, for a given gene, the top 10 most relevant genes to it are displayed with the MI, r, or their hybrid perspective, respectively. Currently, the database totally includes 16 human cell groups, involving 20,283 human genes. The expression data and the calculated correlation results from the database are interactively accessible on the web page and can be implemented for other related applications and researches.

  17. Pair-correlations in swimmer suspensions

    NASA Astrophysics Data System (ADS)

    Nambiar, Sankalp; Subramanian, Ganesh

    2017-11-01

    Suspensions of rear-actuated swimming microorganisms, such as E.coli, exhibit several interesting phenomena including spontaneous pattern formation above a critical concentration, novel rheological properties, shear-induced concentration banding etc. Explanations based on mean-field theory are only qualitative, since interactions between swimmers are important for typical experimental concentrations. We analytically characterize the hydrodynamic pair-interactions in a quiescent suspension of slender straight swimmers. The pair-correlation, calculated at leading order by integrating the swimmer velocity disturbances along straight trajectories, decays as 1/r2 for r >> L (L being the swimmer size). This allows us to characterize both polar and nematic correlations in an interacting swimmer suspension. In the absence of correlations, the velocity covariance asymptotes from a constant for r << L to a far-field decay of O(1/r2) for r >> L, the latter being characteristic of a suspension of non-interacting point force-dipoles. On including correlations, the slow decay of the pair-orientation correlation leads to an additional contribution to the velocity covariance that diverges logarithmically with system size.

  18. Correlation of ash-flow tuffs.

    USGS Publications Warehouse

    Hildreth, W.; Mahood, G.

    1985-01-01

    Discrimination and correlation of ash-flow sheets is important in structurally complex, long-lived volcanic fields where such sheets provide the best keys to the regional stratigraphic framework. Three-dimensional complexities resulting from pulsatory eruptions, sectorial emplacement, mechanical sorting during outflow, thermal and compositional zoning of magmas, the physical zoning of cooling units, and structural and erosional disruption can make such correlation and discrimination difficult. When lithologic, magnetic, petrographic, chemical, and isotopic criteria for correlating ash-flow sheets are critically evaluated, many problems and pitfalls can be identified. Distinctive phenocrysts, pumice clasts, and lithic fragments are among the more reliable criteria, as are high-precision K-Ar ages and thermal remanent magnetization (TRM) directions in unaltered welded tuff. Chemical correlation methods should rely principally upon welded or nonwelded pumice blocks, not upon the ash-flow matrix, which is subject to fractionation, mixing, and contamination during emplacement. Compositional zoning of most large sheets requires that many samples be analyzed before phenocryst, glass or whole-rock chemical trends can be used confidently as correlation criteria.-Authors

  19. A New Methodology of Spatial Cross-Correlation Analysis

    PubMed Central

    Chen, Yanguang

    2015-01-01

    Spatial correlation modeling comprises both spatial autocorrelation and spatial cross-correlation processes. The spatial autocorrelation theory has been well-developed. It is necessary to advance the method of spatial cross-correlation analysis to supplement the autocorrelation analysis. This paper presents a set of models and analytical procedures for spatial cross-correlation analysis. By analogy with Moran’s index newly expressed in a spatial quadratic form, a theoretical framework is derived for geographical cross-correlation modeling. First, two sets of spatial cross-correlation coefficients are defined, including a global spatial cross-correlation coefficient and local spatial cross-correlation coefficients. Second, a pair of scatterplots of spatial cross-correlation is proposed, and the plots can be used to visually reveal the causality behind spatial systems. Based on the global cross-correlation coefficient, Pearson’s correlation coefficient can be decomposed into two parts: direct correlation (partial correlation) and indirect correlation (spatial cross-correlation). As an example, the methodology is applied to the relationships between China’s urbanization and economic development to illustrate how to model spatial cross-correlation phenomena. This study is an introduction to developing the theory of spatial cross-correlation, and future geographical spatial analysis might benefit from these models and indexes. PMID:25993120

  20. Neuroanatomical Correlates of Intelligence

    PubMed Central

    Luders, Eileen; Narr, Katherine L.; Thompson, Paul M.; Toga, Arthur W.

    2009-01-01

    With the advancement of image acquisition and analysis methods in recent decades, unique opportunities have emerged to study the neuroanatomical correlates of intelligence. Traditional approaches examining global measures have been complemented by insights from more regional analyses based on pre-defined areas. Newer state-of-the-art approaches have further enhanced our ability to localize the presence of correlations between cerebral characteristics and intelligence with high anatomic precision. These in vivo assessments have confirmed mainly positive correlations, suggesting that optimally increased brain regions are associated with better cognitive performance. Findings further suggest that the models proposed to explain the anatomical substrates of intelligence should address contributions from not only (pre)frontal regions, but also widely distributed networks throughout the whole brain. PMID:20160919

  1. Neuronal long-range temporal correlations and avalanche dynamics are correlated with behavioral scaling laws

    PubMed Central

    Palva, J. Matias; Zhigalov, Alexander; Hirvonen, Jonni; Korhonen, Onerva; Linkenkaer-Hansen, Klaus; Palva, Satu

    2013-01-01

    Scale-free fluctuations are ubiquitous in behavioral performance and neuronal activity. In time scales from seconds to hundreds of seconds, psychophysical dynamics and the amplitude fluctuations of neuronal oscillations are governed by power-law-form long-range temporal correlations (LRTCs). In millisecond time scales, neuronal activity comprises cascade-like neuronal avalanches that exhibit power-law size and lifetime distributions. However, it remains unknown whether these neuronal scaling laws are correlated with those characterizing behavioral performance or whether neuronal LRTCs and avalanches are related. Here, we show that the neuronal scaling laws are strongly correlated both with each other and with behavioral scaling laws. We used source reconstructed magneto- and electroencephalographic recordings to characterize the dynamics of ongoing cortical activity. We found robust power-law scaling in neuronal LRTCs and avalanches in resting-state data and during the performance of audiovisual threshold stimulus detection tasks. The LRTC scaling exponents of the behavioral performance fluctuations were correlated with those of concurrent neuronal avalanches and LRTCs in anatomically identified brain systems. The behavioral exponents also were correlated with neuronal scaling laws derived from a resting-state condition and with a similar anatomical topography. Finally, despite the difference in time scales, the scaling exponents of neuronal LRTCs and avalanches were strongly correlated during both rest and task performance. Thus, long and short time-scale neuronal dynamics are related and functionally significant at the behavioral level. These data suggest that the temporal structures of human cognitive fluctuations and behavioral variability stem from the scaling laws of individual and intrinsic brain dynamics. PMID:23401536

  2. Image correlation and sampling study

    NASA Technical Reports Server (NTRS)

    Popp, D. J.; Mccormack, D. S.; Sedwick, J. L.

    1972-01-01

    The development of analytical approaches for solving image correlation and image sampling of multispectral data is discussed. Relevant multispectral image statistics which are applicable to image correlation and sampling are identified. The general image statistics include intensity mean, variance, amplitude histogram, power spectral density function, and autocorrelation function. The translation problem associated with digital image registration and the analytical means for comparing commonly used correlation techniques are considered. General expressions for determining the reconstruction error for specific image sampling strategies are developed.

  3. Why Waveform Correlation Sometimes Fails

    NASA Astrophysics Data System (ADS)

    Carmichael, J.

    2015-12-01

    Waveform correlation detectors used in explosion monitoring scan noisy geophysical data to test two competing hypotheses: either (1) an amplitude-scaled version of a template waveform is present, or, (2) no signal is present at all. In reality, geophysical wavefields that are monitored for explosion signatures include waveforms produced by non-target sources that are partially correlated with the waveform template. Such signals can falsely trigger correlation detectors, particularly at low thresholds required to monitor for smaller target explosions. This challenge is particularly formidable when monitoring known test sites for seismic disturbances, since uncatalogued natural seismicity is (generally) more prevalent at lower magnitudes, and could be mistaken for small explosions. To address these challenges, we identify real examples in which correlation detectors targeting explosions falsely trigger on both site-proximal earthquakes (Figure 1, below) and microseismic "noise". Motivated by these examples, we quantify performance loss when applying these detectors, and re-evaluate the correlation-detector's hypothesis test. We thereby derive new detectors from more general hypotheses that admit unknown background seismicity, and apply these to real data. From our treatment, we derive "rules of thumb'' for proper template and threshold selection in heavily cluttered signal environments. Last, we answer the question "what is the probability of falsely detecting an earthquake collocated at a test site?", using correlation detectors that include explosion-triggered templates. Figure Top: An eight-channel data stream (black) recorded from an earthquake near a mine. Red markers indicate a detection. Middle: The correlation statistic computed by scanning the template against the data stream at top. The red line indicates the threshold for event declaration, determined by a false-alarm on noise probability constraint, as computed from the signal-absent distribution using

  4. Detrended Partial-Cross-Correlation Analysis: A New Method for Analyzing Correlations in Complex System

    PubMed Central

    Yuan, Naiming; Fu, Zuntao; Zhang, Huan; Piao, Lin; Xoplaki, Elena; Luterbacher, Juerg

    2015-01-01

    In this paper, a new method, detrended partial-cross-correlation analysis (DPCCA), is proposed. Based on detrended cross-correlation analysis (DCCA), this method is improved by including partial-correlation technique, which can be applied to quantify the relations of two non-stationary signals (with influences of other signals removed) on different time scales. We illustrate the advantages of this method by performing two numerical tests. Test I shows the advantages of DPCCA in handling non-stationary signals, while Test II reveals the “intrinsic” relations between two considered time series with potential influences of other unconsidered signals removed. To further show the utility of DPCCA in natural complex systems, we provide new evidence on the winter-time Pacific Decadal Oscillation (PDO) and the winter-time Nino3 Sea Surface Temperature Anomaly (Nino3-SSTA) affecting the Summer Rainfall over the middle-lower reaches of the Yangtze River (SRYR). By applying DPCCA, better significant correlations between SRYR and Nino3-SSTA on time scales of 6 ~ 8 years are found over the period 1951 ~ 2012, while significant correlations between SRYR and PDO on time scales of 35 years arise. With these physically explainable results, we have confidence that DPCCA is an useful method in addressing complex systems. PMID:25634341

  5. Tracking Image Correlation: Combining Single-Particle Tracking and Image Correlation

    PubMed Central

    Dupont, A.; Stirnnagel, K.; Lindemann, D.; Lamb, D.C.

    2013-01-01

    The interactions and coordination of biomolecules are crucial for most cellular functions. The observation of protein interactions in live cells may provide a better understanding of the underlying mechanisms. After fluorescent labeling of the interacting partners and live-cell microscopy, the colocalization is generally analyzed by quantitative global methods. Recent studies have addressed questions regarding the individual colocalization of moving biomolecules, usually by using single-particle tracking (SPT) and comparing the fluorescent intensities in both color channels. Here, we introduce a new method that combines SPT and correlation methods to obtain a dynamical 3D colocalization analysis along single trajectories of dual-colored particles. After 3D tracking, the colocalization is computed at each particle’s position via the local 3D image cross correlation of the two detection channels. For every particle analyzed, the output consists of the 3D trajectory, the time-resolved 3D colocalization information, and the fluorescence intensity in both channels. In addition, the cross-correlation analysis shows the 3D relative movement of the two fluorescent labels with an accuracy of 30 nm. We apply this method to the tracking of viral fusion events in live cells and demonstrate its capacity to obtain the time-resolved colocalization status of single particles in dense and noisy environments. PMID:23746509

  6. Functional Multiple-Set Canonical Correlation Analysis

    ERIC Educational Resources Information Center

    Hwang, Heungsun; Jung, Kwanghee; Takane, Yoshio; Woodward, Todd S.

    2012-01-01

    We propose functional multiple-set canonical correlation analysis for exploring associations among multiple sets of functions. The proposed method includes functional canonical correlation analysis as a special case when only two sets of functions are considered. As in classical multiple-set canonical correlation analysis, computationally, the…

  7. Statistical correlations of crime with arrests

    NASA Astrophysics Data System (ADS)

    Kuelling, Albert C.

    1997-01-01

    Regression analysis shows that the overall crime rate correlates with the overall arrest rate. Violent crime only weakly correlates with the violent arrest rate, but strongly correlates with the property arrest rate. Contrary to common impressions, increasing arrest rates do not significantly increase loading on incarceration facilities.

  8. Detecting PM2.5's Correlations between Neighboring Cities Using a Time-Lagged Cross-Correlation Coefficient.

    PubMed

    Wang, Fang; Wang, Lin; Chen, Yuming

    2017-08-31

    In order to investigate the time-dependent cross-correlations of fine particulate (PM2.5) series among neighboring cities in Northern China, in this paper, we propose a new cross-correlation coefficient, the time-lagged q-L dependent height crosscorrelation coefficient (denoted by p q (τ, L)), which incorporates the time-lag factor and the fluctuation amplitude information into the analogous height cross-correlation analysis coefficient. Numerical tests are performed to illustrate that the newly proposed coefficient ρ q (τ, L) can be used to detect cross-correlations between two series with time lags and to identify different range of fluctuations at which two series possess cross-correlations. Applying the new coefficient to analyze the time-dependent cross-correlations of PM2.5 series between Beijing and the three neighboring cities of Tianjin, Zhangjiakou, and Baoding, we find that time lags between the PM2.5 series with larger fluctuations are longer than those between PM2.5 series withsmaller fluctuations. Our analysis also shows that cross-correlations between the PM2.5 series of two neighboring cities are significant and the time lags between two PM2.5 series of neighboring cities are significantly non-zero. These findings providenew scientific support on the view that air pollution in neighboring cities can affect one another not simultaneously but with a time lag.

  9. Evidence for the color-octet mechanism from CERN LEP2 gamma gamma --> J/psi + X Data.

    PubMed

    Klasen, Michael; Kniehl, Bernd A; Mihaila, Luminiţa N; Steinhauser, Matthias

    2002-07-15

    We present theoretical predictions for the transverse-momentum distribution of J/psi mesons promptly produced in gammagamma collisions within the factorization formalism of nonrelativistic quantum chromodynamics, including the contributions from both direct and resolved photons, and we perform a conservative error analysis. The fraction of J/psi mesons from decays of bottom-flavored hadrons is estimated to be negligibly small. New data taken by the DELPHI Collaboration at LEP2 nicely confirm these predictions, while they disfavor those obtained within the traditional color-singlet model.

  10. Local Descriptors of Dynamic and Nondynamic Correlation.

    PubMed

    Ramos-Cordoba, Eloy; Matito, Eduard

    2017-06-13

    Quantitatively accurate electronic structure calculations rely on the proper description of electron correlation. A judicious choice of the approximate quantum chemistry method depends upon the importance of dynamic and nondynamic correlation, which is usually assesed by scalar measures. Existing measures of electron correlation do not consider separately the regions of the Cartesian space where dynamic or nondynamic correlation are most important. We introduce real-space descriptors of dynamic and nondynamic electron correlation that admit orbital decomposition. Integration of the local descriptors yields global numbers that can be used to quantify dynamic and nondynamic correlation. Illustrative examples over different chemical systems with varying electron correlation regimes are used to demonstrate the capabilities of the local descriptors. Since the expressions only require orbitals and occupation numbers, they can be readily applied in the context of local correlation methods, hybrid methods, density matrix functional theory, and fractional-occupancy density functional theory.

  11. Graph-theoretic approach to quantum correlations.

    PubMed

    Cabello, Adán; Severini, Simone; Winter, Andreas

    2014-01-31

    Correlations in Bell and noncontextuality inequalities can be expressed as a positive linear combination of probabilities of events. Exclusive events can be represented as adjacent vertices of a graph, so correlations can be associated to a subgraph. We show that the maximum value of the correlations for classical, quantum, and more general theories is the independence number, the Lovász number, and the fractional packing number of this subgraph, respectively. We also show that, for any graph, there is always a correlation experiment such that the set of quantum probabilities is exactly the Grötschel-Lovász-Schrijver theta body. This identifies these combinatorial notions as fundamental physical objects and provides a method for singling out experiments with quantum correlations on demand.

  12. Image correlation method for DNA sequence alignment.

    PubMed

    Curilem Saldías, Millaray; Villarroel Sassarini, Felipe; Muñoz Poblete, Carlos; Vargas Vásquez, Asticio; Maureira Butler, Iván

    2012-01-01

    The complexity of searches and the volume of genomic data make sequence alignment one of bioinformatics most active research areas. New alignment approaches have incorporated digital signal processing techniques. Among these, correlation methods are highly sensitive. This paper proposes a novel sequence alignment method based on 2-dimensional images, where each nucleic acid base is represented as a fixed gray intensity pixel. Query and known database sequences are coded to their pixel representation and sequence alignment is handled as object recognition in a scene problem. Query and database become object and scene, respectively. An image correlation process is carried out in order to search for the best match between them. Given that this procedure can be implemented in an optical correlator, the correlation could eventually be accomplished at light speed. This paper shows an initial research stage where results were "digitally" obtained by simulating an optical correlation of DNA sequences represented as images. A total of 303 queries (variable lengths from 50 to 4500 base pairs) and 100 scenes represented by 100 x 100 images each (in total, one million base pair database) were considered for the image correlation analysis. The results showed that correlations reached very high sensitivity (99.01%), specificity (98.99%) and outperformed BLAST when mutation numbers increased. However, digital correlation processes were hundred times slower than BLAST. We are currently starting an initiative to evaluate the correlation speed process of a real experimental optical correlator. By doing this, we expect to fully exploit optical correlation light properties. As the optical correlator works jointly with the computer, digital algorithms should also be optimized. The results presented in this paper are encouraging and support the study of image correlation methods on sequence alignment.

  13. Spin correlations in quantum wires

    NASA Astrophysics Data System (ADS)

    Sun, Chen; Pokrovsky, Valery L.

    2015-04-01

    We consider theoretically spin correlations in a one-dimensional quantum wire with Rashba-Dresselhaus spin-orbit interaction (RDI). The correlations of noninteracting electrons display electron spin resonance at a frequency proportional to the RDI coupling. Interacting electrons, upon varying the direction of the external magnetic field, transit from the state of Luttinger liquid (LL) to the spin-density wave (SDW) state. We show that the two-time total-spin correlations of these states are significantly different. In the LL, the projection of total spin to the direction of the RDI-induced field is conserved and the corresponding correlator is equal to zero. The correlators of two components perpendicular to the RDI field display a sharp electron-spin resonance driven by the RDI-induced intrinsic field. In contrast, in the SDW state, the longitudinal projection of spin dominates, whereas the transverse components are suppressed. This prediction indicates a simple way for an experimental diagnostic of the SDW in a quantum wire. We point out that the Luttinger model does not respect the spin conservation since it assumes the infinite Fermi sea. We propose a proper cutoff to correct this failure.

  14. [Study of correlation dimension on EEG].

    PubMed

    Yang, Hao; Fang, Liang; He, Wei

    2004-02-01

    The study of non-linear EEG is of great significance in clinical practice and research work. This paper has gone into the feasibility of calculating the correlation dimension and has developed some subjects with the characters of correlation dimension and the difference under four conditions: (1) passive eyes closed(PEC); (2) mental arithmetic with eyes closed(MAEC); (3) passive eyes open(PEO); (4) mental reasoning with eyes open (MRED). The results show it is feasible and meaningful to calculate correlation dimension and the correlation dimension can reflect the regular patterns of mental activity.

  15. Compositional correlations in the chicken genome.

    PubMed

    Musto, H; Romero, H; Zavala, A; Bernardi, G

    1999-09-01

    This paper analyses the compositional correlations that hold in the chicken genome. Significant linear correlations were found among the regions studied-coding sequences (and their first, second, and third codon positions), flanking regions (5' and 3'), and introns-as is the case in the human genome. We found that these compositional correlations are not limited to global GC levels but even extend to individual bases. Furthermore, an analysis of 1037 coding sequences has confirmed a correlation among GC(3), GC(2), and GC(1). The implications of these results are discussed.

  16. Strongly Correlated Topological Insulators

    DTIC Science & Technology

    2016-02-03

    Strongly Correlated Topological Insulators In the past year, the grant was used for work in the field of topological phases, with emphasis on finding...surface of topological insulators . In the past 3 years, we have started a new direction, that of fractional topological insulators . These are materials...Strongly Correlated Topological Insulators Report Title In the past year, the grant was used for work in the field of topological phases, with emphasis

  17. Spatial correlated games

    PubMed Central

    2017-01-01

    This article studies correlated two-person games constructed from games with independent players as proposed in Iqbal et al. (2016 R. Soc. open sci. 3, 150477. (doi:10.1098/rsos.150477)). The games are played in a collective manner, both in a two-dimensional lattice where the players interact with their neighbours, and with players interacting at random. Four game types are scrutinized in iterated games where the players are allowed to change their strategies, adopting that of their best paid mate neighbour. Particular attention is paid in the study to the effect of a variable degree of correlation on Nash equilibrium strategy pairs. PMID:29291120

  18. An ultrasonic pseudorandom signal-correlation system

    NASA Astrophysics Data System (ADS)

    Elias, C. M.

    1980-01-01

    A working ultrasonic pseudorandom signal-correlation system is described which, unlike ultrasonic random signal-correlation systems, does not require an acoustic delay line. Elimination of the delay line allows faster data acquisition and better range resolution. The system uses two identical shift-register type generators to produce pseudonoise bursts which are subsequences of a 65 535-bit complementary m-sequence. One generator produces the transmitted bursts while the other generates identical reference bursts which start at a variable correlation delay time after the transmitted bursts. The reference bursts are cross-correlated with the received echoes to obtain the approximate impulse response of the transducer/specimen system under test. Range sidelobes are reduced by transmitting and correlating many bursts at a given correlation delay before incrementing the delay. Signal-to-sidelobe ratios of greater than 47 dB have been obtained using this method. Limitations of the system due to sampling constraints and the pseudonoise power spectrum are discussed, and the system design and implementation are outlined. Results of experimental characterization of the system show that the pseudorandom signal-correlation system has approximately the same range resolution as a conventional pulse-echo system but can yield a significant increase in signal-to-noise ratio (SNR).

  19. CORRELATOR 5.2 - A program for interactive lithostratigraphic correlation of wireline logs

    USGS Publications Warehouse

    Olea, R.A.

    2004-01-01

    The limited radius of investigation of petrophysical measurements made in boreholes and the relatively large distances between wells result in an incomplete sensing of the subsurface through well logging. CORRELATOR is a program for estimating geological properties between logged boreholes. An initial and fundamental step is the lithostratigraphic correlation of logs in different wells. The method employed by the program closely emulates the process of visual inspection used by experienced subsurface geologists in manual correlation. Mathematically, the determination of lithostratigraphical equivalence is based on the simultaneous assessment of similarity in shale content, similarity in the patterns of vertical variation in a petrophysical property that is measured with high vertical resolution, and spatial consistency of stratigraphic relationships as determined by an expert system. Multiple additional options for processing log readings allow maximization in the extraction of information from pairs of logs per well and great flexibility in the final display of results in the form of cross sections and dip diagrams. ?? 2004 Elsevier Ltd. All rights reserved.

  20. Estimation of the simple correlation coefficient.

    PubMed

    Shieh, Gwowen

    2010-11-01

    This article investigates some unfamiliar properties of the Pearson product-moment correlation coefficient for the estimation of simple correlation coefficient. Although Pearson's r is biased, except for limited situations, and the minimum variance unbiased estimator has been proposed in the literature, researchers routinely employ the sample correlation coefficient in their practical applications, because of its simplicity and popularity. In order to support such practice, this study examines the mean squared errors of r and several prominent formulas. The results reveal specific situations in which the sample correlation coefficient performs better than the unbiased and nearly unbiased estimators, facilitating recommendation of r as an effect size index for the strength of linear association between two variables. In addition, related issues of estimating the squared simple correlation coefficient are also considered.

  1. The Bonn Astro/Geo Correlator

    NASA Technical Reports Server (NTRS)

    Bernhart, Simone; Alef, Walter; Bertarini, Alessandra; La Porta, Laura; Muskens, Arno; Rottmann, Helge; Roy, Alan

    2013-01-01

    The Bonn Distributed FX (DiFX) correlator is a software correlator operated jointly by the Max- Planck-Institut fur Radioastronomie (MPIfR), the Institut fur Geodasie und Geoinformation der Universitat Bonn (IGG), and the Bundesamt fur Kartographie und Geodasie (BKG) in Frankfurt.

  2. Operational quantification of continuous-variable correlations.

    PubMed

    Rodó, Carles; Adesso, Gerardo; Sanpera, Anna

    2008-03-21

    We quantify correlations (quantum and/or classical) between two continuous-variable modes as the maximal number of correlated bits extracted via local quadrature measurements. On Gaussian states, such "bit quadrature correlations" majorize entanglement, reducing to an entanglement monotone for pure states. For non-Gaussian states, such as photonic Bell states, photon-subtracted states, and mixtures of Gaussian states, the bit correlations are shown to be a monotonic function of the negativity. This quantification yields a feasible, operational way to measure non-Gaussian entanglement in current experiments by means of direct homodyne detection, without a complete state tomography.

  3. Cultural correlates of youth suicide.

    PubMed

    Eckersley, Richard; Dear, Keith

    2002-12-01

    Youth suicide has risen in most developed nations over the past 50 years, especially among males, but the increase remains to be explained. Statistical analyses were used to examine associations between youth suicide rates in 11-21 mainly Western, developed nations and 32 socio-economic and cultural variables. The central hypothesis was that suicide rates would be correlated with various cultural measures of social attachment and integration, especially individualism. Socio-economic variables were included in the analysis to demonstrate the relative strength of the cultural associations. The study found a strong positive correlation between male youth suicide rates and subjective measures of health, optimism, and several indices of individualism, including personal freedom and control. Correlations between female youth suicide and individualism were smaller, attaining significance in only one instance. Male youth suicide and individualism were negatively correlated with older people's sense of parental duty. Correlations between suicide and other possibly relevant cultural variables--tolerance of suicide, belief in God and national pride--were not significant. The analysis of socio-economic variables yielded only one significant, but doubtful, correlation. The findings can be interpreted as supporting two very different hypotheses: that youth suicide represents "an island of misery in an ocean of happiness" or "the tip of an iceberg of suffering". In favouring the latter interpretation, and consistent with Durkheim's theories on suicide, it is argued that increased youth suicide reflects a failure of Western societies to provide appropriate sites or sources of social identity and attachment, and, conversely, a tendency to promote unrealistic or inappropriate expectations of individual freedom and autonomy.

  4. A partitioned correlation function interaction approach for describing electron correlation in atoms

    NASA Astrophysics Data System (ADS)

    Verdebout, S.; Rynkun, P.; Jönsson, P.; Gaigalas, G.; Froese Fischer, C.; Godefroid, M.

    2013-04-01

    The traditional multiconfiguration Hartree-Fock (MCHF) and configuration interaction (CI) methods are based on a single orthonormal orbital basis. For atoms with many closed core shells, or complicated shell structures, a large orbital basis is needed to saturate the different electron correlation effects such as valence, core-valence and correlation within the core shells. The large orbital basis leads to massive configuration state function (CSF) expansions that are difficult to handle, even on large computer systems. We show that it is possible to relax the orthonormality restriction on the orbital basis and break down the originally very large calculations into a series of smaller calculations that can be run in parallel. Each calculation determines a partitioned correlation function (PCF) that accounts for a specific correlation effect. The PCFs are built on optimally localized orbital sets and are added to a zero-order multireference (MR) function to form a total wave function. The expansion coefficients of the PCFs are determined from a low dimensional generalized eigenvalue problem. The interaction and overlap matrices are computed using a biorthonormal transformation technique (Verdebout et al 2010 J. Phys. B: At. Mol. Phys. 43 074017). The new method, called partitioned correlation function interaction (PCFI), converges rapidly with respect to the orbital basis and gives total energies that are lower than the ones from ordinary MCHF and CI calculations. The PCFI method is also very flexible when it comes to targeting different electron correlation effects. Focusing our attention on neutral lithium, we show that by dedicating a PCF to the single excitations from the core, spin- and orbital-polarization effects can be captured very efficiently, leading to highly improved convergence patterns for hyperfine parameters compared with MCHF calculations based on a single orthogonal radial orbital basis. By collecting separately optimized PCFs to correct the MR

  5. Connections between Minkowski and cosmological correlation functions

    NASA Astrophysics Data System (ADS)

    Kit Chu, Shek; Lee, Mang Hei Gordon; Lu, Shiyun; Tong, Xi; Wang, Yi; Zhou, Siyi

    2018-06-01

    We show how cosmological correlation functions of massless fields can be rewritten in terms of Minkowski correlation functions, by extracting symmetry-breaking operators from the cosmological correlators. This technique simplifies some cosmological calculations. Also, known properties of Minkowski correlation functions can be translated to non-trivial properties of cosmological correlations. To illustrate this idea, inflation to Minkowski and matter bounce to Minkowski relations are presented for the interactions of general single field inflation. And a Minkowski recursion relation is translated to a novel relation for inflation.

  6. Correlation plenoptic imaging

    NASA Astrophysics Data System (ADS)

    Pepe, Francesco V.; Di Lena, Francesco; Garuccio, Augusto; D'Angelo, Milena

    2017-06-01

    Plenoptic Imaging (PI) is a novel optical technique for achieving tridimensional imaging in a single shot. In conventional PI, a microlens array is inserted in the native image plane and the sensor array is moved behind the microlenses. On the one hand, the microlenses act as imaging pixels to reproduce the image of the scene; on the other hand, each microlens reproduces on the sensor array an image of the camera lens, thus providing the angular information associated with each imaging pixel. The recorded propagation direction is exploited, in post- processing, to computationally retrace the geometrical light path, thus enabling the refocusing of different planes within the scene, the extension of the depth of field of the acquired image, as well as the 3D reconstruction of the scene. However, a trade-off between spatial and angular resolution is built in the standard plenoptic imaging process. We demonstrate that the second-order spatio-temporal correlation properties of light can be exploited to overcome this fundamental limitation. Using two correlated beams, from either a chaotic or an entangled photon source, we can perform imaging in one arm and simultaneously obtain the angular information in the other arm. In fact, we show that the second order correlation function possesses plenoptic imaging properties (i.e., it encodes both spatial and angular information), and is thus characterized by a key re-focusing and 3D imaging capability. From a fundamental standpoint, the plenoptic application is the first situation where the counterintuitive properties of correlated systems are effectively used to beat intrinsic limits of standard imaging systems. From a practical standpoint, our protocol can dramatically enhance the potentials of PI, paving the way towards its promising applications.

  7. Morphological changes of gamma prime precipitates in nickel-base superalloy single crystals. Ph.D. Thesis - Case Western Reserve Univ., May 1984

    NASA Technical Reports Server (NTRS)

    Mackay, R. A.

    1984-01-01

    Changes in the morphology of the gamma prime precipitate were examined during tensile creep at temperatures between 927 and 1038 C in 001-oriented single crystals of a Ni-Al-Mo-Ta superalloy. In this alloy, which has a large negative misfit of -0.80%, the gamma prime particles link together during creep to form platelets, or rafts, which are aligned with their broad faces perpendicular to the applied tensile axis. The dimensions of the gamma and gamma prime phases were measured as directional coarsening developed in an attempt to trace the changing morphology under various stress levels. In addition, the effects of initial microstructure, as well as slight compositional variations, were related to raft development and creep properties. The results showed that directional coarsening of gamma prime began during primary creep, and under certain conditions, continued to develop after the onset of steady-state creep. The length of the rafts increased linearly with time up to a plateau region. The thickness of the rafts, however, remained equal to the initial gamma prime size at least up through the onset of tertiary creep; this is a clear indication of the stability of the finely-spaced gamma-gamma prime lamellar structure. It was found that the single crystals with the finest gamma prime size exhibited the longest creep lives, because the resultant rafted structure had a larger number of gamma-gamma prime interfaces per unit volume of material.

  8. Influence in Canonical Correlation Analysis.

    ERIC Educational Resources Information Center

    Romanazzi, Mario

    1992-01-01

    The perturbation theory of the generalized eigenproblem is used to derive influence functions of each squared canonical correlation coefficient and the corresponding canonical vector pair. Three sample versions of these functions are described, and some properties are noted. Two obvious applications, multiple correlation and correspondence…

  9. Correlation and simple linear regression.

    PubMed

    Zou, Kelly H; Tuncali, Kemal; Silverman, Stuart G

    2003-06-01

    In this tutorial article, the concepts of correlation and regression are reviewed and demonstrated. The authors review and compare two correlation coefficients, the Pearson correlation coefficient and the Spearman rho, for measuring linear and nonlinear relationships between two continuous variables. In the case of measuring the linear relationship between a predictor and an outcome variable, simple linear regression analysis is conducted. These statistical concepts are illustrated by using a data set from published literature to assess a computed tomography-guided interventional technique. These statistical methods are important for exploring the relationships between variables and can be applied to many radiologic studies.

  10. Effects of coarse-graining on the scaling behavior of long-range correlated and anti-correlated signals.

    PubMed

    Xu, Yinlin; Ma, Qianli D Y; Schmitt, Daniel T; Bernaola-Galván, Pedro; Ivanov, Plamen Ch

    2011-11-01

    We investigate how various coarse-graining (signal quantization) methods affect the scaling properties of long-range power-law correlated and anti-correlated signals, quantified by the detrended fluctuation analysis. Specifically, for coarse-graining in the magnitude of a signal, we consider (i) the Floor, (ii) the Symmetry and (iii) the Centro-Symmetry coarse-graining methods. We find that for anti-correlated signals coarse-graining in the magnitude leads to a crossover to random behavior at large scales, and that with increasing the width of the coarse-graining partition interval Δ, this crossover moves to intermediate and small scales. In contrast, the scaling of positively correlated signals is less affected by the coarse-graining, with no observable changes when Δ < 1, while for Δ > 1 a crossover appears at small scales and moves to intermediate and large scales with increasing Δ. For very rough coarse-graining (Δ > 3) based on the Floor and Symmetry methods, the position of the crossover stabilizes, in contrast to the Centro-Symmetry method where the crossover continuously moves across scales and leads to a random behavior at all scales; thus indicating a much stronger effect of the Centro-Symmetry compared to the Floor and the Symmetry method. For coarse-graining in time, where data points are averaged in non-overlapping time windows, we find that the scaling for both anti-correlated and positively correlated signals is practically preserved. The results of our simulations are useful for the correct interpretation of the correlation and scaling properties of symbolic sequences.

  11. Effects of coarse-graining on the scaling behavior of long-range correlated and anti-correlated signals

    PubMed Central

    Xu, Yinlin; Ma, Qianli D.Y.; Schmitt, Daniel T.; Bernaola-Galván, Pedro; Ivanov, Plamen Ch.

    2014-01-01

    We investigate how various coarse-graining (signal quantization) methods affect the scaling properties of long-range power-law correlated and anti-correlated signals, quantified by the detrended fluctuation analysis. Specifically, for coarse-graining in the magnitude of a signal, we consider (i) the Floor, (ii) the Symmetry and (iii) the Centro-Symmetry coarse-graining methods. We find that for anti-correlated signals coarse-graining in the magnitude leads to a crossover to random behavior at large scales, and that with increasing the width of the coarse-graining partition interval Δ, this crossover moves to intermediate and small scales. In contrast, the scaling of positively correlated signals is less affected by the coarse-graining, with no observable changes when Δ < 1, while for Δ > 1 a crossover appears at small scales and moves to intermediate and large scales with increasing Δ. For very rough coarse-graining (Δ > 3) based on the Floor and Symmetry methods, the position of the crossover stabilizes, in contrast to the Centro-Symmetry method where the crossover continuously moves across scales and leads to a random behavior at all scales; thus indicating a much stronger effect of the Centro-Symmetry compared to the Floor and the Symmetry method. For coarse-graining in time, where data points are averaged in non-overlapping time windows, we find that the scaling for both anti-correlated and positively correlated signals is practically preserved. The results of our simulations are useful for the correct interpretation of the correlation and scaling properties of symbolic sequences. PMID:25392599

  12. Measuring and modeling correlations in multiplex networks.

    PubMed

    Nicosia, Vincenzo; Latora, Vito

    2015-09-01

    The interactions among the elementary components of many complex systems can be qualitatively different. Such systems are therefore naturally described in terms of multiplex or multilayer networks, i.e., networks where each layer stands for a different type of interaction between the same set of nodes. There is today a growing interest in understanding when and why a description in terms of a multiplex network is necessary and more informative than a single-layer projection. Here we contribute to this debate by presenting a comprehensive study of correlations in multiplex networks. Correlations in node properties, especially degree-degree correlations, have been thoroughly studied in single-layer networks. Here we extend this idea to investigate and characterize correlations between the different layers of a multiplex network. Such correlations are intrinsically multiplex, and we first study them empirically by constructing and analyzing several multiplex networks from the real world. In particular, we introduce various measures to characterize correlations in the activity of the nodes and in their degree at the different layers and between activities and degrees. We show that real-world networks exhibit indeed nontrivial multiplex correlations. For instance, we find cases where two layers of the same multiplex network are positively correlated in terms of node degrees, while other two layers are negatively correlated. We then focus on constructing synthetic multiplex networks, proposing a series of models to reproduce the correlations observed empirically and/or to assess their relevance.

  13. Canonical Correlation: Terms and Descriptions.

    ERIC Educational Resources Information Center

    Pugh, Richard C.; Hu, Yuehluen

    The use of terms to describe and interpret results from canonical correlation analysis has been inconsistent across research studies. This study assembled the terminology related to the use and interpretation of canonical correlation analysis from research articles, textbooks, and computer manuals. Research articles using canonical correlation…

  14. Cots Correlator Platform

    NASA Astrophysics Data System (ADS)

    Schaaf, Kjeld; Overeem, Ruud

    2004-06-01

    Moore’s law is best exploited by using consumer market hardware. In particular, the gaming industry pushes the limit of processor performance thus reducing the cost per raw flop even faster than Moore’s law predicts. Next to the cost benefits of Common-Of-The-Shelf (COTS) processing resources, there is a rapidly growing experience pool in cluster based processing. The typical Beowulf cluster of PC’s supercomputers are well known. Multiple examples exists of specialised cluster computers based on more advanced server nodes or even gaming stations. All these cluster machines build upon the same knowledge about cluster software management, scheduling, middleware libraries and mathematical libraries. In this study, we have integrated COTS processing resources and cluster nodes into a very high performance processing platform suitable for streaming data applications, in particular to implement a correlator. The required processing power for the correlator in modern radio telescopes is in the range of the larger supercomputers, which motivates the usage of supercomputer technology. Raw processing power is provided by graphical processors and is combined with an Infiniband host bus adapter with integrated data stream handling logic. With this processing platform a scalable correlator can be built with continuously growing processing power at consumer market prices.

  15. Optical Correlation Techniques In Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Schatzel, K.; Schulz-DuBois, E. O.; Vehrenkamp, R.

    1981-05-01

    Three flow measurement techniques make use of fast digital correlators. (1) Most widely spread is photon correlation velocimetry using crossed laser beams and detecting Doppler shifted light scattered by small particles in the flow. Depending on the processing of the photon correlogram, this technique yields mean velocity, turbulence level, or even the detailed probability distribution of one velocity component. An improved data processing scheme is demonstrated on laminar vortex flow in a curved channel. (2) Rate correlation based upon threshold crossings of a high pass filtered laser Doppler signal can he used to obtain velocity correlation functions. The most powerful setup developed in our laboratory uses a phase locked loop type tracker and a multibit correlator to analyse time-dependent Taylor vortex flow. With two optical systems and trackers, crosscorrelation functions reveal phase relations between different vortices. (3) Making use of refractive index fluctuations (e. g. in two phase flows) instead of scattering particles, interferometry with bidirectional fringe counting and digital correlation and probability analysis constitute a new quantitative technique related to classical Schlieren methods. Measurements on a mixing flow of heated and cold air contribute new ideas to the theory of turbulent random phase screens.

  16. Correlated activity supports efficient cortical processing

    PubMed Central

    Hung, Chou P.; Cui, Ding; Chen, Yueh-peng; Lin, Chia-pei; Levine, Matthew R.

    2015-01-01

    Visual recognition is a computational challenge that is thought to occur via efficient coding. An important concept is sparseness, a measure of coding efficiency. The prevailing view is that sparseness supports efficiency by minimizing redundancy and correlations in spiking populations. Yet, we recently reported that “choristers”, neurons that behave more similarly (have correlated stimulus preferences and spontaneous coincident spiking), carry more generalizable object information than uncorrelated neurons (“soloists”) in macaque inferior temporal (IT) cortex. The rarity of choristers (as low as 6% of IT neurons) indicates that they were likely missed in previous studies. Here, we report that correlation strength is distinct from sparseness (choristers are not simply broadly tuned neurons), that choristers are located in non-granular output layers, and that correlated activity predicts human visual search efficiency. These counterintuitive results suggest that a redundant correlational structure supports efficient processing and behavior. PMID:25610392

  17. Projection correlation between two random vectors.

    PubMed

    Zhu, Liping; Xu, Kai; Li, Runze; Zhong, Wei

    2017-12-01

    We propose the use of projection correlation to characterize dependence between two random vectors. Projection correlation has several appealing properties. It equals zero if and only if the two random vectors are independent, it is not sensitive to the dimensions of the two random vectors, it is invariant with respect to the group of orthogonal transformations, and its estimation is free of tuning parameters and does not require moment conditions on the random vectors. We show that the sample estimate of the projection correction is [Formula: see text]-consistent if the two random vectors are independent and root-[Formula: see text]-consistent otherwise. Monte Carlo simulation studies indicate that the projection correlation has higher power than the distance correlation and the ranks of distances in tests of independence, especially when the dimensions are relatively large or the moment conditions required by the distance correlation are violated.

  18. Using Neural Networks to Describe Tracer Correlations

    NASA Technical Reports Server (NTRS)

    Lary, D. J.; Mueller, M. D.; Mussa, H. Y.

    2003-01-01

    Neural networks are ideally suited to describe the spatial and temporal dependence of tracer-tracer correlations. The neural network performs well even in regions where the correlations are less compact and normally a family of correlation curves would be required. For example, the CH4-N2O correlation can be well described using a neural network trained with the latitude, pressure, time of year, and CH4 volume mixing ratio (v.m.r.). In this study a neural network using Quickprop learning and one hidden layer with eight nodes was able to reproduce the CH4-N2O correlation with a correlation co- efficient of 0.9995. Such an accurate representation of tracer-tracer correlations allows more use to be made of long-term datasets to constrain chemical models. Such as the dataset from the Halogen Occultation Experiment (HALOE) which has continuously observed CH4, (but not N2O) from 1991 till the present. The neural network Fortran code used is available for download.

  19. Parallel auto-correlative statistics with VTK.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pebay, Philippe Pierre; Bennett, Janine Camille

    2013-08-01

    This report summarizes existing statistical engines in VTK and presents both the serial and parallel auto-correlative statistics engines. It is a sequel to [PT08, BPRT09b, PT09, BPT09, PT10] which studied the parallel descriptive, correlative, multi-correlative, principal component analysis, contingency, k-means, and order statistics engines. The ease of use of the new parallel auto-correlative statistics engine is illustrated by the means of C++ code snippets and algorithm verification is provided. This report justifies the design of the statistics engines with parallel scalability in mind, and provides scalability and speed-up analysis results for the autocorrelative statistics engine.

  20. DSN Beowulf Cluster-Based VLBI Correlator

    NASA Technical Reports Server (NTRS)

    Rogstad, Stephen P.; Jongeling, Andre P.; Finley, Susan G.; White, Leslie A.; Lanyi, Gabor E.; Clark, John E.; Goodhart, Charles E.

    2009-01-01

    The NASA Deep Space Network (DSN) requires a broadband VLBI (very long baseline interferometry) correlator to process data routinely taken as part of the VLBI source Catalogue Maintenance and Enhancement task (CAT M&E) and the Time and Earth Motion Precision Observations task (TEMPO). The data provided by these measurements are a crucial ingredient in the formation of precision deep-space navigation models. In addition, a VLBI correlator is needed to provide support for other VLBI related activities for both internal and external customers. The JPL VLBI Correlator (JVC) was designed, developed, and delivered to the DSN as a successor to the legacy Block II Correlator. The JVC is a full-capability VLBI correlator that uses software processes running on multiple computers to cross-correlate two-antenna broadband noise data. Components of this new system (see Figure 1) consist of Linux PCs integrated into a Beowulf Cluster, an existing Mark5 data storage system, a RAID array, an existing software correlator package (SoftC) originally developed for Delta DOR Navigation processing, and various custom- developed software processes and scripts. Parallel processing on the JVC is achieved by assigning slave nodes of the Beowulf cluster to process separate scans in parallel until all scans have been processed. Due to the single stream sequential playback of the Mark5 data, some ramp-up time is required before all nodes can have access to required scan data. Core functions of each processing step are accomplished using optimized C programs. The coordination and execution of these programs across the cluster is accomplished using Pearl scripts, PostgreSQL commands, and a handful of miscellaneous system utilities. Mark5 data modules are loaded on Mark5 Data systems playback units, one per station. Data processing is started when the operator scans the Mark5 systems and runs a script that reads various configuration files and then creates an experiment-dependent status database

  1. Regularized Generalized Canonical Correlation Analysis

    ERIC Educational Resources Information Center

    Tenenhaus, Arthur; Tenenhaus, Michel

    2011-01-01

    Regularized generalized canonical correlation analysis (RGCCA) is a generalization of regularized canonical correlation analysis to three or more sets of variables. It constitutes a general framework for many multi-block data analysis methods. It combines the power of multi-block data analysis methods (maximization of well identified criteria) and…

  2. Correlates of depression in type 2 diabetic elderly patients: a correlational study.

    PubMed

    Bai, Yu-Ling; Chiou, Chou-Ping; Chang, Yong-Yuan; Lam, Hing-Chung

    2008-04-01

    This aim of this study was to investigate depression and related factors in elderly patients (65 years) with type 2 diabetics. The study utilized a descriptive-correlational design. Convenience sampling was applied to enroll 156 subjects, aged >or= 65 years from diabetic outpatient clinics at three hospitals in Kaohsiung. This study applied the Personal Resource Questionnaire 2000 (PRQ 2000), Taiwan Geriatric Depression Scale (TGDS), and a form for demographic data. (1) The mean index score for depression level was 26, indicating that study subjects had a low level of depression. The social support index score was 76. (2) Significant differences in TGDS scores existed for diabetes duration, diabetes complications, and treatment type. (3) Social support and regular exercise were significantly and negatively correlated with depression. (4) Social support and diabetes complications were significant correlates of depression and accounted for 25.9% of variance in depression. Analytical results may assist nurses in understanding depression and related factors for diabetic patients aged >or= 65. Therefore, this study could form a basis for caring older people with diabetes, and provide a reference for further research.

  3. Correlational approach to turbulent saturated film boiling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, T.Y.

    A correlation method for saturated film boiling is proposed. The correlation is based on the analogy between film boiling and natural convection. As in the case of natural convection, the turbulent film boiling correlation takes the form of a Nusselt number versus the Raleigh number power law, Nu[sub B] [proportional to] Ra[sub B][sup 1.3]. The proposed correlation shows very good agreement with current data for film boiling of water from vertical surfaces. The general applicability of the correlation is established by comparisons with film boiling data from R-113 and cryogenic fluids. 25 refs., 8 figs.

  4. Noise correlations in cosmic microwave background experiments

    NASA Technical Reports Server (NTRS)

    Dodelson, Scott; Kosowsky, Arthur; Myers, Steven T.

    1995-01-01

    Many analysis of microwave background experiments neglect the correlation of noise in different frequency of polarization channels. We show that these correlations, should they be present, can lead to serve misinterpretation of an experiment. In particular, correlated noise arising from either electronics or atmosphere may mimic a cosmic signal. We quantify how the likelihood function for a given experiment varies with noise correlation, using both simple analytic models and actual data. For a typical microwave background anisotropy experiment, noise correlations at the level of 1% of the overall noise can seriously reduce the significance of a given detection.

  5. Measurement of the eta'-meson mass using J/psi-->gammaeta'.

    PubMed

    Libby, J; Martin, L; Powell, A; Wilkinson, G; Ecklund, K M; Love, W; Savinov, V; Mendez, H; Ge, J Y; Miller, D H; Shipsey, I P J; Xin, B; Adams, G S; Anderson, M; Cummings, J P; Danko, I; Hu, D; Moziak, B; Napolitano, J; He, Q; Insler, J; Muramatsu, H; Park, C S; Thorndike, E H; Yang, F; Artuso, M; Blusk, S; Khalil, S; Li, J; Mountain, R; Nisar, S; Randrianarivony, K; Sultana, N; Skwarnicki, T; Stone, S; Wang, J C; Zhang, L M; Bonvicini, G; Cinabro, D; Dubrovin, M; Lincoln, A; Naik, P; Rademacker, J; Asner, D M; Edwards, K W; Reed, J; Briere, R A; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Rosner, J L; Alexander, J P; Cassel, D G; Duboscq, J E; Ehrlich, R; Fields, L; Galik, R S; Gibbons, L; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Hunt, J M; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Ledoux, J; Mahlke-Krüger, H; Mohapatra, D; Onyisi, P U E; Patterson, J R; Peterson, D; Riley, D; Ryd, A; Sadoff, A J; Shi, X; Stroiney, S; Sun, W M; Wilksen, T; Athar, S B; Patel, R; Yelton, J; Rubin, P; Eisenstein, B I; Karliner, I; Mehrabyan, S; Lowrey, N; Selen, M; White, E J; Wiss, J; Mitchell, R E; Shepherd, M R; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Poling, R; Scott, A W; Zweber, P; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A

    2008-10-31

    We measure the mass of the eta;{'} meson using psi(2S)-->pi;{+}pi;{-}J/psi, J/psi-->gammaeta;{'} events acquired with the CLEO-c detector operating at the CESR e;{+}e;{-} collider. Using three decay modes, eta;{'}-->rho;{0}gamma, eta;{'}-->pi;{+}pi;{-}eta with eta-->gammagamma, and eta;{'}-->pi;{+}pi;{-}eta with eta-->pi;{+}pi;{-}pi;{0}, we find M_{eta;{'}}=957.793+/-0.054+/-0.036 MeV, in which the uncertainties are statistical and systematic, respectively. This result is consistent with but substantially more precise than the current world average.

  6. Structure of {sup 81}Ga populated from the {beta}{sup -} decay of {sup 81}Zn

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paziy, V.; Mach, H.; Fraile, L. M.

    2013-06-10

    We report on the results of the {beta}-decay of {sup 81}Zn. The experiment was performed at the CERN ISOLDE facility in the framework of a systematic ultra-fast timing investigation of neutron-rich nuclei populated in the decay of Zn. The present analysis included {beta}-gated {gamma}-ray singles and {gamma}-{gamma} coincidences from the decay of {sup 81}Zn to {sup 81}Ga and leads to a new and much more extensive level scheme of {sup 81}Ga. A new half-life of {sup 81}Zn is provided.

  7. Ring correlations in random networks.

    PubMed

    Sadjadi, Mahdi; Thorpe, M F

    2016-12-01

    We examine the correlations between rings in random network glasses in two dimensions as a function of their separation. Initially, we use the topological separation (measured by the number of intervening rings), but this leads to pseudo-long-range correlations due to a lack of topological charge neutrality in the shells surrounding a central ring. This effect is associated with the noncircular nature of the shells. It is, therefore, necessary to use the geometrical distance between ring centers. Hence we find a generalization of the Aboav-Weaire law out to larger distances, with the correlations between rings decaying away when two rings are more than about three rings apart.

  8. A 32-channel photon counting module with embedded auto/cross-correlators for real-time parallel fluorescence correlation spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, S.; Labanca, I.; Rech, I.

    2014-10-15

    Fluorescence correlation spectroscopy (FCS) is a well-established technique to study binding interactions or the diffusion of fluorescently labeled biomolecules in vitro and in vivo. Fast FCS experiments require parallel data acquisition and analysis which can be achieved by exploiting a multi-channel Single Photon Avalanche Diode (SPAD) array and a corresponding multi-input correlator. This paper reports a 32-channel FPGA based correlator able to perform 32 auto/cross-correlations simultaneously over a lag-time ranging from 10 ns up to 150 ms. The correlator is included in a 32 × 1 SPAD array module, providing a compact and flexible instrument for high throughput FCS experiments.more » However, some inherent features of SPAD arrays, namely afterpulsing and optical crosstalk effects, may introduce distortions in the measurement of auto- and cross-correlation functions. We investigated these limitations to assess their impact on the module and evaluate possible workarounds.« less

  9. Phase coherence induced by correlated disorder.

    PubMed

    Hong, Hyunsuk; O'Keeffe, Kevin P; Strogatz, Steven H

    2016-02-01

    We consider a mean-field model of coupled phase oscillators with quenched disorder in the coupling strengths and natural frequencies. When these two kinds of disorder are uncorrelated (and when the positive and negative couplings are equal in number and strength), it is known that phase coherence cannot occur and synchronization is absent. Here we explore the effects of correlating the disorder. Specifically, we assume that any given oscillator either attracts or repels all the others, and that the sign of the interaction is deterministically correlated with the given oscillator's natural frequency. For symmetrically correlated disorder with zero mean, we find that the system spontaneously synchronizes, once the width of the frequency distribution falls below a critical value. For asymmetrically correlated disorder, the model displays coherent traveling waves: the complex order parameter becomes nonzero and rotates with constant frequency different from the system's mean natural frequency. Thus, in both cases, correlated disorder can trigger phase coherence.

  10. Core-core and core-valence correlation

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1988-01-01

    The effect of (1s) core correlation on properties and energy separations was analyzed using full configuration-interaction (FCI) calculations. The Be 1 S - 1 P, the C 3 P - 5 S and CH+ 1 Sigma + or - 1 Pi separations, and CH+ spectroscopic constants, dipole moment and 1 Sigma + - 1 Pi transition dipole moment were studied. The results of the FCI calculations are compared to those obtained using approximate methods. In addition, the generation of atomic natural orbital (ANO) basis sets, as a method for contracting a primitive basis set for both valence and core correlation, is discussed. When both core-core and core-valence correlation are included in the calculation, no suitable truncated CI approach consistently reproduces the FCI, and contraction of the basis set is very difficult. If the (nearly constant) core-core correlation is eliminated, and only the core-valence correlation is included, CASSCF/MRCI approached reproduce the FCI results and basis set contraction is significantly easier.

  11. Quantum Correlations in Nonlocal Boson Sampling.

    PubMed

    Shahandeh, Farid; Lund, Austin P; Ralph, Timothy C

    2017-09-22

    Determination of the quantum nature of correlations between two spatially separated systems plays a crucial role in quantum information science. Of particular interest is the questions of if and how these correlations enable quantum information protocols to be more powerful. Here, we report on a distributed quantum computation protocol in which the input and output quantum states are considered to be classically correlated in quantum informatics. Nevertheless, we show that the correlations between the outcomes of the measurements on the output state cannot be efficiently simulated using classical algorithms. Crucially, at the same time, local measurement outcomes can be efficiently simulated on classical computers. We show that the only known classicality criterion violated by the input and output states in our protocol is the one used in quantum optics, namely, phase-space nonclassicality. As a result, we argue that the global phase-space nonclassicality inherent within the output state of our protocol represents true quantum correlations.

  12. Community Detection for Correlation Matrices

    NASA Astrophysics Data System (ADS)

    MacMahon, Mel; Garlaschelli, Diego

    2015-04-01

    A challenging problem in the study of complex systems is that of resolving, without prior information, the emergent, mesoscopic organization determined by groups of units whose dynamical activity is more strongly correlated internally than with the rest of the system. The existing techniques to filter correlations are not explicitly oriented towards identifying such modules and can suffer from an unavoidable information loss. A promising alternative is that of employing community detection techniques developed in network theory. Unfortunately, this approach has focused predominantly on replacing network data with correlation matrices, a procedure that we show to be intrinsically biased because of its inconsistency with the null hypotheses underlying the existing algorithms. Here, we introduce, via a consistent redefinition of null models based on random matrix theory, the appropriate correlation-based counterparts of the most popular community detection techniques. Our methods can filter out both unit-specific noise and system-wide dependencies, and the resulting communities are internally correlated and mutually anticorrelated. We also implement multiresolution and multifrequency approaches revealing hierarchically nested subcommunities with "hard" cores and "soft" peripheries. We apply our techniques to several financial time series and identify mesoscopic groups of stocks which are irreducible to a standard, sectorial taxonomy; detect "soft stocks" that alternate between communities; and discuss implications for portfolio optimization and risk management.

  13. Higher order correlations of IRAS galaxies

    NASA Technical Reports Server (NTRS)

    Meiksin, Avery; Szapudi, Istvan; Szalay, Alexander

    1992-01-01

    The higher order irreducible angular correlation functions are derived up to the eight-point function, for a sample of 4654 IRAS galaxies, flux-limited at 1.2 Jy in the 60 microns band. The correlations are generally found to be somewhat weaker than those for the optically selected galaxies, consistent with the visual impression of looser clusters in the IRAS sample. It is found that the N-point correlation functions can be expressed as the symmetric sum of products of N - 1 two-point functions, although the correlations above the four-point function are consistent with zero. The coefficients are consistent with the hierarchical clustering scenario as modeled by Hamilton and by Schaeffer.

  14. Anomalous Quantum Correlations of Squeezed Light

    NASA Astrophysics Data System (ADS)

    Kühn, B.; Vogel, W.; Mraz, M.; Köhnke, S.; Hage, B.

    2017-04-01

    Three different noise moments of field strength, intensity, and their correlations are simultaneously measured. For this purpose a homodyne cross-correlation measurement [1] is implemented by superimposing the signal field and a weak local oscillator on an unbalanced beam splitter. The relevant information is obtained via the intensity noise correlation of the output modes. Detection details like quantum efficiencies or uncorrelated dark noise are meaningless for our technique. Yet unknown insight in the quantumness of a squeezed signal field is retrieved from the anomalous moment, correlating field strength with intensity noise. A classical inequality including this moment is violated for almost all signal phases. Precognition on quantum theory is superfluous, as our analysis is solely based on classical physics.

  15. Accurate Structural Correlations from Maximum Likelihood Superpositions

    PubMed Central

    Theobald, Douglas L; Wuttke, Deborah S

    2008-01-01

    The cores of globular proteins are densely packed, resulting in complicated networks of structural interactions. These interactions in turn give rise to dynamic structural correlations over a wide range of time scales. Accurate analysis of these complex correlations is crucial for understanding biomolecular mechanisms and for relating structure to function. Here we report a highly accurate technique for inferring the major modes of structural correlation in macromolecules using likelihood-based statistical analysis of sets of structures. This method is generally applicable to any ensemble of related molecules, including families of nuclear magnetic resonance (NMR) models, different crystal forms of a protein, and structural alignments of homologous proteins, as well as molecular dynamics trajectories. Dominant modes of structural correlation are determined using principal components analysis (PCA) of the maximum likelihood estimate of the correlation matrix. The correlations we identify are inherently independent of the statistical uncertainty and dynamic heterogeneity associated with the structural coordinates. We additionally present an easily interpretable method (“PCA plots”) for displaying these positional correlations by color-coding them onto a macromolecular structure. Maximum likelihood PCA of structural superpositions, and the structural PCA plots that illustrate the results, will facilitate the accurate determination of dynamic structural correlations analyzed in diverse fields of structural biology. PMID:18282091

  16. Quantifying Differential Privacy under Temporal Correlations

    PubMed Central

    Cao, Yang; Yoshikawa, Masatoshi; Xiao, Yonghui; Xiong, Li

    2017-01-01

    Differential Privacy (DP) has received increasing attention as a rigorous privacy framework. Many existing studies employ traditional DP mechanisms (e.g., the Laplace mechanism) as primitives, which assume that the data are independent, or that adversaries do not have knowledge of the data correlations. However, continuous generated data in the real world tend to be temporally correlated, and such correlations can be acquired by adversaries. In this paper, we investigate the potential privacy loss of a traditional DP mechanism under temporal correlations in the context of continuous data release. First, we model the temporal correlations using Markov model and analyze the privacy leakage of a DP mechanism when adversaries have knowledge of such temporal correlations. Our analysis reveals that the privacy loss of a DP mechanism may accumulate and increase over time. We call it temporal privacy leakage. Second, to measure such privacy loss, we design an efficient algorithm for calculating it in polynomial time. Although the temporal privacy leakage may increase over time, we also show that its supremum may exist in some cases. Third, to bound the privacy loss, we propose mechanisms that convert any existing DP mechanism into one against temporal privacy leakage. Experiments with synthetic data confirm that our approach is efficient and effective. PMID:28883711

  17. Quantifying Differential Privacy under Temporal Correlations.

    PubMed

    Cao, Yang; Yoshikawa, Masatoshi; Xiao, Yonghui; Xiong, Li

    2017-04-01

    Differential Privacy (DP) has received increasing attention as a rigorous privacy framework. Many existing studies employ traditional DP mechanisms (e.g., the Laplace mechanism) as primitives, which assume that the data are independent, or that adversaries do not have knowledge of the data correlations. However, continuous generated data in the real world tend to be temporally correlated, and such correlations can be acquired by adversaries. In this paper, we investigate the potential privacy loss of a traditional DP mechanism under temporal correlations in the context of continuous data release. First, we model the temporal correlations using Markov model and analyze the privacy leakage of a DP mechanism when adversaries have knowledge of such temporal correlations. Our analysis reveals that the privacy loss of a DP mechanism may accumulate and increase over time . We call it temporal privacy leakage . Second, to measure such privacy loss, we design an efficient algorithm for calculating it in polynomial time. Although the temporal privacy leakage may increase over time, we also show that its supremum may exist in some cases. Third, to bound the privacy loss, we propose mechanisms that convert any existing DP mechanism into one against temporal privacy leakage. Experiments with synthetic data confirm that our approach is efficient and effective.

  18. Joint transform correlators with spatially incoherent illumination

    NASA Astrophysics Data System (ADS)

    Bykovsky, Yuri A.; Karpiouk, Andrey B.; Markilov, Anatoly A.; Rodin, Vladislav G.; Starikov, Sergey N.

    1997-03-01

    Two variants of joint transform correlators with monochromatic spatially incoherent illumination are considered. The Fourier-holograms of the reference and recognized images are recorded simultaneously or apart in a time on the same spatial light modulator directly by monochromatic spatially incoherent light. To create the signal of mutual correlation of the images it is necessary to execute nonlinear transformation when the hologram is illuminated by coherent light. In the first scheme of the correlator this aim was achieved by using double pas of a restoring coherent wave through the hologram. In the second variant of the correlator the non-linearity of the characteristic of the spatial light modulator for hologram recording was used. Experimental schemes and results on processing teste images by both variants of joint transform correlators with monochromatic spatially incoherent illumination. The use of spatially incoherent light on the input of joint transform correlators permits to reduce the requirements to optical quality of elements, to reduce accuracy requirements on elements positioning and to expand a number of devices suitable to input images in correlators.

  19. FPGA design of correlation-based pattern recognition

    NASA Astrophysics Data System (ADS)

    Jridi, Maher; Alfalou, Ayman

    2017-05-01

    Optical/Digital pattern recognition and tracking based on optical/digital correlation are a well-known techniques to detect, identify and localize a target object in a scene. Despite the limited number of treatments required by the correlation scheme, computational time and resources are relatively high. The most computational intensive treatment required by the correlation is the transformation from spatial to spectral domain and then from spectral to spatial domain. Furthermore, these transformations are used on optical/digital encryption schemes like the double random phase encryption (DRPE). In this paper, we present a VLSI architecture for the correlation scheme based on the fast Fourier transform (FFT). One interesting feature of the proposed scheme is its ability to stream image processing in order to perform correlation for video sequences. A trade-off between the hardware consumption and the robustness of the correlation can be made in order to understand the limitations of the correlation implementation in reconfigurable and portable platforms. Experimental results obtained from HDL simulations and FPGA prototype have demonstrated the advantages of the proposed scheme.

  20. Correlation ion mobility spectroscopy

    DOEpatents

    Pfeifer, Kent B [Los Lunas, NM; Rohde, Steven B [Corrales, NM

    2008-08-26

    Correlation ion mobility spectrometry (CIMS) uses gating modulation and correlation signal processing to improve IMS instrument performance. Closely spaced ion peaks can be resolved by adding discriminating codes to the gate and matched filtering for the received ion current signal, thereby improving sensitivity and resolution of an ion mobility spectrometer. CIMS can be used to improve the signal-to-noise ratio even for transient chemical samples. CIMS is especially advantageous for small geometry IMS drift tubes that can otherwise have poor resolution due to their small size.

  1. Strong correlations in gravity and biophysics

    NASA Astrophysics Data System (ADS)

    Krotov, Dmitry

    The unifying theme of this dissertation is the use of correlations. In the first part (chapter 2), we investigate correlations in quantum field theories in de Sitter space. In the second part (chapters 3,4,5), we use correlations to investigate a theoretical proposal that real (observed in nature) transcriptional networks of biological organisms are operating at a critical point in their phase diagram. In chapter 2 we study the infrared dependence of correlators in various external backgrounds. Using the Schwinger-Keldysh formalism we calculate loop corrections to the correlators in the case of the Poincare patch and the complete de Sitter space. In the case of the Poincare patch, the loop correction modifies the behavior of the correlator at large distances. In the case of the complete de Sitter space, the loop correction has a strong dependence on the infrared cutoff in the past. It grows linearly with time, suggesting that at some point the correlations become strong and break the symmetry of the classical background. In chapter 3 we derive the signatures of critical behavior in a model organism, the embryo of Drosophila melanogaster. They are: strong correlations in the fluctuations of different genes, a slowing of dynamics, long range correlations in space, and departures from a Gaussian distribution of these fluctuations. We argue that these signatures are observed experimentally. In chapter 4 we construct an effective theory for the zero mode in this system. This theory is different from the standard Landau-Ginsburg description. It contains gauge fields (the result of the broken translational symmetry inside the cell), which produce observable contributions to the two-point function of the order parameter. We show that the behavior of the two-point function for the network of N genes is described by the action of a relativistic particle moving on the surface of the N - 1 dimensional sphere. We derive a theoretical bound on the decay of the correlations and

  2. Electron correlation in real time.

    PubMed

    Sansone, Giuseppe; Pfeifer, Thomas; Simeonidis, Konstantinos; Kuleff, Alexander I

    2012-02-01

    Electron correlation, caused by the interaction among electrons in a multielectron system, manifests itself in all states of matter. A complete theoretical description of interacting electrons is challenging; different approximations have been developed to describe the fundamental aspects of the correlation that drives the evolution of simple (few-electron systems in atoms/molecules) as well as complex (multielectron wave functions in atoms, molecules, and solids) systems. Electron correlation plays a key role in the relaxation mechanisms that characterize excited states of neutral or ionized atoms and molecules populated by absorption of extreme ultraviolet (XUV) or X-ray radiation. The dynamics of these states can lead to different processes such as Fano resonance and Auger decay in atoms or interatomic Coulombic decay or charge migration in molecules and clusters. Many of these relaxation mechanisms are ubiquitous in nature and characterize the interaction of complex systems, such as biomolecules, adsorbates on surfaces, and hydrogen-bonded clusters, with XUV light. These mechanisms evolve typically on the femtosecond (1 fs=10(-15) s) or sub-femtosecond timescale. The experimental availability of few-femtosecond and attosecond (1 as=10(-18) s) XUV pulses achieved in the last 10 years offers, for the first time, the opportunity to excite and probe in time these dynamics giving the possibility to trace and control multielectron processes. The generation of ultrashort XUV radiation has triggered the development and application of spectroscopy techniques that can achieve time resolution well into the attosecond domain, thereby offering information on the correlated electronic motion and on the correlation between electron and nuclear motion. A deeper understanding of how electron correlation works could have a large impact in several research fields, such as biochemistry and biology, and trigger important developments in the design and optimization of electronic

  3. The Bonn MK IV Correlator Project

    NASA Astrophysics Data System (ADS)

    Alef, W.; Graham, D. A.; Zensus, J. A.; Müskens, A.; Schlüter, W.

    2000-05-01

    We describe the present status of the VLBI correlator in Bonn. The old MK III correlator has been made Y2K compliant, but it is expected to be taken out of operation this year. We report our first experience with the new MK IV correlator, jointly operated by the MPIfR and the BKG, as well as our short-term and long-term plans, both with respect to astronomical and geodetic requirements.

  4. In vivo correlation mapping microscopy

    NASA Astrophysics Data System (ADS)

    McGrath, James; Alexandrov, Sergey; Owens, Peter; Subhash, Hrebesh; Leahy, Martin

    2016-04-01

    To facilitate regular assessment of the microcirculation in vivo, noninvasive imaging techniques such as nailfold capillaroscopy are required in clinics. Recently, a correlation mapping technique has been applied to optical coherence tomography (OCT), which extends the capabilities of OCT to microcirculation morphology imaging. This technique, known as correlation mapping optical coherence tomography, has been shown to extract parameters, such as capillary density and vessel diameter, and key clinical markers associated with early changes in microvascular diseases. However, OCT has limited spatial resolution in both the transverse and depth directions. Here, we extend this correlation mapping technique to other microscopy modalities, including confocal microscopy, and take advantage of the higher spatial resolution offered by these modalities. The technique is achieved as a processing step on microscopy images and does not require any modification to the microscope hardware. Results are presented which show that this correlation mapping microscopy technique can extend the capabilities of conventional microscopy to enable mapping of vascular networks in vivo with high spatial resolution in both the transverse and depth directions.

  5. In-Beam Studies of High Spin States in Mercury -182 and MERCURY-184

    NASA Astrophysics Data System (ADS)

    Bindra, Kanwarjit Singh

    The high spin states in ^{182 }Hg were studied by using the reaction ^{154}Gd(^{32}S, 4n) at the Holifield Heavy Ion Research Facility. In addition, the in-beam gamma-rays in ^{183}Hg were identified for the first time using the reaction ^{155}Gd(^{32}S, 4n) at the Argonne BGO-FMA facility. Five new bands were observed for the first time in ^{182}Hg by studying the gamma-gamma coincidence relationships. The spins and parities of the nuclear levels were assigned on the basis of the measured ratios of directional correlations for oriented nuclei (DCO ratios). Shape co-existence similar to that observed in ^{184{-}186}Hg was established. The well deformed prolate band was extended to a state with tentative spin (20^+). The 2^+ state of the prolate band was identified at an energy of 548.6 keV which is higher in energy than in ^{184}Hg. A two parameter band mixing calculation yielded an interaction strength of 87 keV between the prolate 2^+ and the oblate 2^+ states. Four of the five new bands were found to be similar in behavior to ones seen in ^{184}Hg. An attempt was made to study the behavior of some of these bands at high spins by analyzing their kinematic and dynamic moments of inertia. The gamma-ray transitions in ^{183}Hg were identified from fragment-gamma and gamma-gamma coincidence measurements. A total of five bands of levels were identified and the spins and parities of the levels were assigned by comparing the level scheme of ^{138 }Hg obtained with that of ^ {185}Hg established previously. The interpretation of these bands in terms of associated quasi-particle configurations also relies on noted similarities with the structure of ^{185}Hg. Shape co-existence was established in ^{183}Hg as a result of this study. Two of the bands associated with the (624) 9/2^+ orbital were found to exhibit signature splitting, as expected for i _{13/2} excitations built on the prolate shape with moderate deformation. Two other bands which do not show signature splitting

  6. Design of Modern High Nb-Content gamma-gamma' Ni-Base Superalloys

    NASA Astrophysics Data System (ADS)

    Antonov, Stoichko

    Certain elemental additions to Ni-base superalloys can significantly improve properties when added in high contents, but can quickly deteriorate the high temperature structural integrity and stability of the alloy, when solubility limits are exceeded and secondary phases are formed. Improved understanding of solubility limits of various elements in high refractory content Ni-base supralloys is therefore essential to improved alloy design. The morphology, formation, and composition of precipitate phases in a number of experimental alloys spanning a broad range of compositions were explored and compositional relationships were developed. The effect of increasing Nb alloying additions on formation and long term stability of topologically close packed (TCP) phases, as well as assessment of grain boundary phase compositions and local segregation along it before and after a 1000 hour thermal exposure at 800°C, was studied via electron microscopy and atom probe tomography (APT). Beneficial secondary phase precipitation, such as carbides and borides, was also studied through B, Hf and C doping. Elemental boron was observed to segregate to the grain boundary and phase interfaces, but did not form borides. APT studies on MC carbides of the alloys revealed the formation kinetics and morphological differences between NbC and Hf doped NbC, which were further explained using density functional theory (DFT) calculations of the formation energies of different facets of the MC carbide. Detailed electron microscopy and APT techniques were then used to systematically quantify the chemical and morphological instabilities that occur during aging of polycrystalline γ-γ' Ni-base superalloys containing elevated levels of refractory alloying additions. The morphological changes and splitting phenomenon associated with the secondary γ' precipitates were related to the discrete chemical compositions of the secondary and tertiary γ' along with the phase compositions of the γ matrix and the γ precipitates that form within the secondary γ' particles. In addition, compositions of the constituent phases were measured in four high Nb-content γ-γ' Ni-base superalloys and the results were compared to thermodynamic database models from Thermo-Calc. Results were also used to predict the solid solution strength behavior of the four alloys. Finally, creep behavior of high Nb-content γ-γ' Ni-Based superalloys was related to the formation of secondary phases mainly at grain boundaries. As secondary phases form, their brittle nature leads to crack formation, which can propagate under the tensile load and lead to premature failure of the alloy.

  7. Biostatistics Series Module 6: Correlation and Linear Regression.

    PubMed

    Hazra, Avijit; Gogtay, Nithya

    2016-01-01

    Correlation and linear regression are the most commonly used techniques for quantifying the association between two numeric variables. Correlation quantifies the strength of the linear relationship between paired variables, expressing this as a correlation coefficient. If both variables x and y are normally distributed, we calculate Pearson's correlation coefficient ( r ). If normality assumption is not met for one or both variables in a correlation analysis, a rank correlation coefficient, such as Spearman's rho (ρ) may be calculated. A hypothesis test of correlation tests whether the linear relationship between the two variables holds in the underlying population, in which case it returns a P < 0.05. A 95% confidence interval of the correlation coefficient can also be calculated for an idea of the correlation in the population. The value r 2 denotes the proportion of the variability of the dependent variable y that can be attributed to its linear relation with the independent variable x and is called the coefficient of determination. Linear regression is a technique that attempts to link two correlated variables x and y in the form of a mathematical equation ( y = a + bx ), such that given the value of one variable the other may be predicted. In general, the method of least squares is applied to obtain the equation of the regression line. Correlation and linear regression analysis are based on certain assumptions pertaining to the data sets. If these assumptions are not met, misleading conclusions may be drawn. The first assumption is that of linear relationship between the two variables. A scatter plot is essential before embarking on any correlation-regression analysis to show that this is indeed the case. Outliers or clustering within data sets can distort the correlation coefficient value. Finally, it is vital to remember that though strong correlation can be a pointer toward causation, the two are not synonymous.

  8. Biostatistics Series Module 6: Correlation and Linear Regression

    PubMed Central

    Hazra, Avijit; Gogtay, Nithya

    2016-01-01

    Correlation and linear regression are the most commonly used techniques for quantifying the association between two numeric variables. Correlation quantifies the strength of the linear relationship between paired variables, expressing this as a correlation coefficient. If both variables x and y are normally distributed, we calculate Pearson's correlation coefficient (r). If normality assumption is not met for one or both variables in a correlation analysis, a rank correlation coefficient, such as Spearman's rho (ρ) may be calculated. A hypothesis test of correlation tests whether the linear relationship between the two variables holds in the underlying population, in which case it returns a P < 0.05. A 95% confidence interval of the correlation coefficient can also be calculated for an idea of the correlation in the population. The value r2 denotes the proportion of the variability of the dependent variable y that can be attributed to its linear relation with the independent variable x and is called the coefficient of determination. Linear regression is a technique that attempts to link two correlated variables x and y in the form of a mathematical equation (y = a + bx), such that given the value of one variable the other may be predicted. In general, the method of least squares is applied to obtain the equation of the regression line. Correlation and linear regression analysis are based on certain assumptions pertaining to the data sets. If these assumptions are not met, misleading conclusions may be drawn. The first assumption is that of linear relationship between the two variables. A scatter plot is essential before embarking on any correlation-regression analysis to show that this is indeed the case. Outliers or clustering within data sets can distort the correlation coefficient value. Finally, it is vital to remember that though strong correlation can be a pointer toward causation, the two are not synonymous. PMID:27904175

  9. Almost-Quantum Correlations Violate the No-Restriction Hypothesis

    NASA Astrophysics Data System (ADS)

    Sainz, Ana Belén; Guryanova, Yelena; Acín, Antonio; Navascués, Miguel

    2018-05-01

    To identify which principles characterize quantum correlations, it is essential to understand in which sense this set of correlations differs from that of almost-quantum correlations. We solve this problem by invoking the so-called no-restriction hypothesis, an explicit and natural axiom in many reconstructions of quantum theory stating that the set of possible measurements is the dual of the set of states. We prove that, contrary to quantum correlations, no generalized probabilistic theory satisfying the no-restriction hypothesis is able to reproduce the set of almost-quantum correlations. Therefore, any theory whose correlations are exactly, or very close to, the almost-quantum correlations necessarily requires a rule limiting the possible measurements. Our results suggest that the no-restriction hypothesis may play a fundamental role in singling out the set of quantum correlations among other nonsignaling ones.

  10. Almost-Quantum Correlations Violate the No-Restriction Hypothesis.

    PubMed

    Sainz, Ana Belén; Guryanova, Yelena; Acín, Antonio; Navascués, Miguel

    2018-05-18

    To identify which principles characterize quantum correlations, it is essential to understand in which sense this set of correlations differs from that of almost-quantum correlations. We solve this problem by invoking the so-called no-restriction hypothesis, an explicit and natural axiom in many reconstructions of quantum theory stating that the set of possible measurements is the dual of the set of states. We prove that, contrary to quantum correlations, no generalized probabilistic theory satisfying the no-restriction hypothesis is able to reproduce the set of almost-quantum correlations. Therefore, any theory whose correlations are exactly, or very close to, the almost-quantum correlations necessarily requires a rule limiting the possible measurements. Our results suggest that the no-restriction hypothesis may play a fundamental role in singling out the set of quantum correlations among other nonsignaling ones.

  11. Correlation Weights in Multiple Regression

    ERIC Educational Resources Information Center

    Waller, Niels G.; Jones, Jeff A.

    2010-01-01

    A general theory on the use of correlation weights in linear prediction has yet to be proposed. In this paper we take initial steps in developing such a theory by describing the conditions under which correlation weights perform well in population regression models. Using OLS weights as a comparison, we define cases in which the two weighting…

  12. Visualization of synchronization of the uterine contraction signals: running cross-correlation and wavelet running cross-correlation methods.

    PubMed

    Oczeretko, Edward; Swiatecka, Jolanta; Kitlas, Agnieszka; Laudanski, Tadeusz; Pierzynski, Piotr

    2006-01-01

    In physiological research, we often study multivariate data sets, containing two or more simultaneously recorded time series. The aim of this paper is to present the cross-correlation and the wavelet cross-correlation methods to assess synchronization between contractions in different topographic regions of the uterus. From a medical point of view, it is important to identify time delays between contractions, which may be of potential diagnostic significance in various pathologies. The cross-correlation was computed in a moving window with a width corresponding to approximately two or three contractions. As a result, the running cross-correlation function was obtained. The propagation% parameter assessed from this function allows quantitative description of synchronization in bivariate time series. In general, the uterine contraction signals are very complicated. Wavelet transforms provide insight into the structure of the time series at various frequencies (scales). To show the changes of the propagation% parameter along scales, a wavelet running cross-correlation was used. At first, the continuous wavelet transforms as the uterine contraction signals were received and afterwards, a running cross-correlation analysis was conducted for each pair of transformed time series. The findings show that running functions are very useful in the analysis of uterine contractions.

  13. Fourth-Order Spatial Correlation of Thermal Light

    NASA Astrophysics Data System (ADS)

    Wen, Feng; Zhang, Xun; Xue, Xin-Xin; Sun, Jia; Song, Jian-Ping; Zhang, Yan-Peng

    2014-11-01

    We investigate the fourth-order spatial correlation properties of pseudo-thermal light in the photon counting regime, and apply the Klyshko advanced-wave picture to describe the process of four-photon coincidence counting measurement. We deduce the theory of a proof-of-principle four-photon coincidence counting configuration, and find that if the four randomly radiated photons come from the same radiation area and are indistinguishable in principle, the fourth-order correlation of them is 24 times larger than that when four photons come from different radiation areas. In addition, we also show that the higher-order spatial correlation function can be decomposed into multiple lower-order correlation functions, and the contrast and visibility of low-order correlation peaks are less than those of higher orders, while the resolutions all are identical. This study may be useful for better understanding the four-photon interference and multi-channel correlation imaging.

  14. Bayesian Correlation Analysis for Sequence Count Data

    PubMed Central

    Lau, Nelson; Perkins, Theodore J.

    2016-01-01

    Evaluating the similarity of different measured variables is a fundamental task of statistics, and a key part of many bioinformatics algorithms. Here we propose a Bayesian scheme for estimating the correlation between different entities’ measurements based on high-throughput sequencing data. These entities could be different genes or miRNAs whose expression is measured by RNA-seq, different transcription factors or histone marks whose expression is measured by ChIP-seq, or even combinations of different types of entities. Our Bayesian formulation accounts for both measured signal levels and uncertainty in those levels, due to varying sequencing depth in different experiments and to varying absolute levels of individual entities, both of which affect the precision of the measurements. In comparison with a traditional Pearson correlation analysis, we show that our Bayesian correlation analysis retains high correlations when measurement confidence is high, but suppresses correlations when measurement confidence is low—especially for entities with low signal levels. In addition, we consider the influence of priors on the Bayesian correlation estimate. Perhaps surprisingly, we show that naive, uniform priors on entities’ signal levels can lead to highly biased correlation estimates, particularly when different experiments have widely varying sequencing depths. However, we propose two alternative priors that provably mitigate this problem. We also prove that, like traditional Pearson correlation, our Bayesian correlation calculation constitutes a kernel in the machine learning sense, and thus can be used as a similarity measure in any kernel-based machine learning algorithm. We demonstrate our approach on two RNA-seq datasets and one miRNA-seq dataset. PMID:27701449

  15. Quantum correlations for bipartite continuous-variable systems

    NASA Astrophysics Data System (ADS)

    Ma, Ruifen; Hou, Jinchuan; Qi, Xiaofei; Wang, Yangyang

    2018-04-01

    Two quantum correlations Q and Q_P for (m+n)-mode continuous-variable systems are introduced in terms of average distance between the reduced states under the local Gaussian positive operator-valued measurements, and analytical formulas of these quantum correlations for bipartite Gaussian states are provided. It is shown that the product states do not contain these quantum correlations, and conversely, all (m+n)-mode Gaussian states with zero quantum correlations are product states. Generally, Q≥ Q_{P}, but for the symmetric two-mode squeezed thermal states, these quantum correlations are the same and a computable formula is given. In addition, Q is compared with Gaussian geometric discord for symmetric squeezed thermal states.

  16. On the insignificance of Herschel's sunspot correlation

    NASA Astrophysics Data System (ADS)

    Love, Jeffrey J.

    2013-08-01

    We examine William Herschel's hypothesis that solar-cycle variation of the Sun's irradiance has a modulating effect on the Earth's climate and that this is, specifically, manifested as an anticorrelation between sunspot number and the market price of wheat. Since Herschel first proposed his hypothesis in 1801, it has been regarded with both interest and skepticism. Recently, reports have been published that either support Herschel's hypothesis or rely on its validity. As a test of Herschel's hypothesis, we seek to reject a null hypothesis of a statistically random correlation between historical sunspot numbers, wheat prices in London and the United States, and wheat farm yields in the United States. We employ binary-correlation, Pearson-correlation, and frequency-domain methods. We test our methods using a historical geomagnetic activity index, well known to be causally correlated with sunspot number. As expected, the measured correlation between sunspot number and geomagnetic activity would be an unlikely realization of random data; the correlation is "statistically significant." On the other hand, measured correlations between sunspot number and wheat price and wheat yield data would be very likely realizations of random data; these correlations are "insignificant." Therefore, Herschel's hypothesis must be regarded with skepticism. We compare and contrast our results with those of other researchers. We discuss procedures for evaluating hypotheses that are formulated from historical data.

  17. On the insignificance of Herschel's sunspot correlation

    USGS Publications Warehouse

    Love, Jeffrey J.

    2013-01-01

    We examine William Herschel's hypothesis that solar-cycle variation of the Sun's irradiance has a modulating effect on the Earth's climate and that this is, specifically, manifested as an anticorrelation between sunspot number and the market price of wheat. Since Herschel first proposed his hypothesis in 1801, it has been regarded with both interest and skepticism. Recently, reports have been published that either support Herschel's hypothesis or rely on its validity. As a test of Herschel's hypothesis, we seek to reject a null hypothesis of a statistically random correlation between historical sunspot numbers, wheat prices in London and the United States, and wheat farm yields in the United States. We employ binary-correlation, Pearson-correlation, and frequency-domain methods. We test our methods using a historical geomagnetic activity index, well known to be causally correlated with sunspot number. As expected, the measured correlation between sunspot number and geomagnetic activity would be an unlikely realization of random data; the correlation is “statistically significant.” On the other hand, measured correlations between sunspot number and wheat price and wheat yield data would be very likely realizations of random data; these correlations are “insignificant.” Therefore, Herschel's hypothesis must be regarded with skepticism. We compare and contrast our results with those of other researchers. We discuss procedures for evaluating hypotheses that are formulated from historical data.

  18. Energy normalization of TV viewed optical correlation (automated correlation plane analyzer for an optical processor)

    NASA Technical Reports Server (NTRS)

    Grumet, A.

    1981-01-01

    An automatic correlation plane processor that can rapidly acquire, identify, and locate the autocorrelation outputs of a bank of multiple optical matched filters is described. The read-only memory (ROM) stored digital silhouette of each image associated with each matched filter allows TV video to be used to collect image energy to provide accurate normalization of autocorrelations. The resulting normalized autocorrelations are independent of the illumination of the matched input. Deviation from unity of a normalized correlation can be used as a confidence measure of correct image identification. Analog preprocessing circuits permit digital conversion and random access memory (RAM) storage of those video signals with the correct amplitude, pulse width, rising slope, and falling slope. TV synchronized addressing of 3 RAMs permits on-line storage of: (1) the maximum unnormalized amplitude, (2) the image x location, and (3) the image y location of the output of each of up to 99 matched filters. A fourth RAM stores all normalized correlations. A normalization approach, normalization for cross correlations, a system's description with block diagrams, and system's applications are discussed.

  19. Structuring Stokes correlation functions using vector-vortex beam

    NASA Astrophysics Data System (ADS)

    Kumar, Vijay; Anwar, Ali; Singh, R. P.

    2018-01-01

    Higher order statistical correlations of the optical vector speckle field, formed due to scattering of a vector-vortex beam, are explored. Here, we report on the experimental construction of the Stokes parameters covariance matrix, consisting of all possible spatial Stokes parameters correlation functions. We also propose and experimentally realize a new Stokes correlation functions called Stokes field auto correlation functions. It is observed that the Stokes correlation functions of the vector-vortex beam will be reflected in the respective Stokes correlation functions of the corresponding vector speckle field. The major advantage of proposing Stokes correlation functions is that the Stokes correlation function can be easily tuned by manipulating the polarization of vector-vortex beam used to generate vector speckle field and to get the phase information directly from the intensity measurements. Moreover, this approach leads to a complete experimental Stokes characterization of a broad range of random fields.

  20. Origin of information-limiting noise correlations

    PubMed Central

    Kanitscheider, Ingmar; Coen-Cagli, Ruben; Pouget, Alexandre

    2015-01-01

    The ability to discriminate between similar sensory stimuli relies on the amount of information encoded in sensory neuronal populations. Such information can be substantially reduced by correlated trial-to-trial variability. Noise correlations have been measured across a wide range of areas in the brain, but their origin is still far from clear. Here we show analytically and with simulations that optimal computation on inputs with limited information creates patterns of noise correlations that account for a broad range of experimental observations while at same time causing information to saturate in large neural populations. With the example of a network of V1 neurons extracting orientation from a noisy image, we illustrate to our knowledge the first generative model of noise correlations that is consistent both with neurophysiology and with behavioral thresholds, without invoking suboptimal encoding or decoding or internal sources of variability such as stochastic network dynamics or cortical state fluctuations. We further show that when information is limited at the input, both suboptimal connectivity and internal fluctuations could similarly reduce the asymptotic information, but they have qualitatively different effects on correlations leading to specific experimental predictions. Our study indicates that noise at the sensory periphery could have a major effect on cortical representations in widely studied discrimination tasks. It also provides an analytical framework to understand the functional relevance of different sources of experimentally measured correlations. PMID:26621747

  1. Triplet correlation functions in liquid water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhabal, Debdas; Chakravarty, Charusita, E-mail: charus@chemistry.iitd.ac.in; Singh, Murari

    Triplet correlations have been shown to play a crucial role in the transformation of simple liquids to anomalous tetrahedral fluids [M. Singh, D. Dhabal, A. H. Nguyen, V. Molinero, and C. Chakravarty, Phys. Rev. Lett. 112, 147801 (2014)]. Here we examine triplet correlation functions for water, arguably the most important tetrahedral liquid, under ambient conditions, using configurational ensembles derived from molecular dynamics (MD) simulations and reverse Monte Carlo (RMC) datasets fitted to experimental scattering data. Four different RMC data sets with widely varying hydrogen-bond topologies fitted to neutron and x-ray scattering data are considered [K. T. Wikfeldt, M. Leetmaa, M.more » P. Ljungberg, A. Nilsson, and L. G. M. Pettersson, J. Phys. Chem. B 113, 6246 (2009)]. Molecular dynamics simulations are performed for two rigid-body effective pair potentials (SPC/E and TIP4P/2005) and the monatomic water (mW) model. Triplet correlation functions are compared with other structural measures for tetrahedrality, such as the O–O–O angular distribution function and the local tetrahedral order distributions. In contrast to the pair correlation functions, which are identical for all the RMC ensembles, the O–O–O triplet correlation function can discriminate between ensembles with different degrees of tetrahedral network formation with the maximally symmetric, tetrahedral SYM dataset displaying distinct signatures of tetrahedrality similar to those obtained from atomistic simulations of the SPC/E model. Triplet correlations from the RMC datasets conform closely to the Kirkwood superposition approximation, while those from MD simulations show deviations within the first two neighbour shells. The possibilities for experimental estimation of triplet correlations of water and other tetrahedral liquids are discussed.« less

  2. Holographic thermalization with initial long range correlation

    DOE PAGES

    Lin, Shu

    2016-01-19

    Here, we studied the evolution of the Wightman correlator in a thermalizing state modeled by AdS 3-Vaidya background. A prescription was given for calculating the Wightman correlator in coordinate space without using any approximation. For equal-time correlator , we obtained an enhancement factor v 2 due to long range correlation present in the initial state. This was missed by previous studies based on geodesic approximation. Moreover, we found that the long range correlation in initial state does not lead to significant modification to thermalization time as compared to known results with generic initial state. We also studied the spatially integratedmore » Wightman correlator and showed evidence on the distinction between long distance and small momentum physics for an out-of-equilibrium state. We also calculated the radiation spectrum of particles weakly coupled to O and found that lower frequency mode approaches thermal spectrum faster than high frequency mode.« less

  3. Active motion assisted by correlated stochastic torques.

    PubMed

    Weber, Christian; Radtke, Paul K; Schimansky-Geier, Lutz; Hänggi, Peter

    2011-07-01

    The stochastic dynamics of an active particle undergoing a constant speed and additionally driven by an overall fluctuating torque is investigated. The random torque forces are expressed by a stochastic differential equation for the angular dynamics of the particle determining the orientation of motion. In addition to a constant torque, the particle is supplemented by random torques, which are modeled as an Ornstein-Uhlenbeck process with given correlation time τ(c). These nonvanishing correlations cause a persistence of the particles' trajectories and a change of the effective spatial diffusion coefficient. We discuss the mean square displacement as a function of the correlation time and the noise intensity and detect a nonmonotonic dependence of the effective diffusion coefficient with respect to both correlation time and noise strength. A maximal diffusion behavior is obtained if the correlated angular noise straightens the curved trajectories, interrupted by small pirouettes, whereby the correlated noise amplifies a straightening of the curved trajectories caused by the constant torque.

  4. Phase correlation of foreign exchange time series

    NASA Astrophysics Data System (ADS)

    Wu, Ming-Chya

    2007-03-01

    Correlation of foreign exchange rates in currency markets is investigated based on the empirical data of USD/DEM and USD/JPY exchange rates for a period from February 1 1986 to December 31 1996. The return of exchange time series is first decomposed into a number of intrinsic mode functions (IMFs) by the empirical mode decomposition method. The instantaneous phases of the resultant IMFs calculated by the Hilbert transform are then used to characterize the behaviors of pricing transmissions, and the correlation is probed by measuring the phase differences between two IMFs in the same order. From the distribution of phase differences, our results show explicitly that the correlations are stronger in daily time scale than in longer time scales. The demonstration for the correlations in periods of 1986-1989 and 1990-1993 indicates two exchange rates in the former period were more correlated than in the latter period. The result is consistent with the observations from the cross-correlation calculation.

  5. Unexpected flood loss correlations across Europe

    NASA Astrophysics Data System (ADS)

    Booth, Naomi; Boyd, Jessica

    2017-04-01

    Floods don't observe country borders, as highlighted by major events across Europe that resulted in heavy economic and insured losses in 1999, 2002, 2009 and 2013. Flood loss correlations between some countries occur along multi-country river systems or between neighbouring nations affected by the same weather systems. However, correlations are not so obvious and whilst flooding in multiple locations across Europe may appear independent, for a re/insurer providing cover across the continent, these unexpected correlations can lead to high loss accumulations. A consistent, continental-scale method that allows quantification and comparison of losses, and identifies correlations in loss between European countries is therefore essential. A probabilistic model for European river flooding was developed that allows estimation of potential losses to pan-European property portfolios. By combining flood hazard and exposure information in a catastrophe modelling platform, we can consider correlations between river basins across Europe rather than being restricted to country boundaries. A key feature of the model is its statistical event set based on extreme value theory. Using historical river flow data, the event set captures spatial and temporal patterns of flooding across Europe and simulates thousands of events representing a full range of possible scenarios. Some known correlations were identified, such as between neighbouring Belgium and Luxembourg where 28% of events that affect either country produce a loss in both. However, our model identified some unexpected correlations including between Austria and Poland, and Poland and France, which are geographically distant. These correlations in flood loss may be missed by traditional methods and are key for re/insurers with risks in multiple countries. The model also identified that 46% of European river flood events affect more than one country. For more extreme events with a return period higher than 200 years, all events

  6. Measures and models for angular correlation and angular-linear correlation. [correlation of random variables

    NASA Technical Reports Server (NTRS)

    Johnson, R. A.; Wehrly, T.

    1976-01-01

    Population models for dependence between two angular measurements and for dependence between an angular and a linear observation are proposed. The method of canonical correlations first leads to new population and sample measures of dependence in this latter situation. An example relating wind direction to the level of a pollutant is given. Next, applied to pairs of angular measurements, the method yields previously proposed sample measures in some special cases and a new sample measure in general.

  7. Multiscale Detrended Cross-Correlation Analysis of STOCK Markets

    NASA Astrophysics Data System (ADS)

    Yin, Yi; Shang, Pengjian

    2014-06-01

    In this paper, we employ the detrended cross-correlation analysis (DCCA) to investigate the cross-correlations between different stock markets. We report the results of cross-correlated behaviors in US, Chinese and European stock markets in period 1997-2012 by using DCCA method. The DCCA shows the cross-correlated behaviors of intra-regional and inter-regional stock markets in the short and long term which display the similarities and differences of cross-correlated behaviors simply and roughly and the persistence of cross-correlated behaviors of fluctuations. Then, because of the limitation and inapplicability of DCCA method, we propose multiscale detrended cross-correlation analysis (MSDCCA) method to avoid "a priori" selecting the ranges of scales over which two coefficients of the classical DCCA method are identified, and employ MSDCCA to reanalyze these cross-correlations to exhibit some important details such as the existence and position of minimum, maximum and bimodal distribution which are lost if the scale structure is described by two coefficients only and essential differences and similarities in the scale structures of cross-correlation of intra-regional and inter-regional markets. More statistical characteristics of cross-correlation obtained by MSDCCA method help us to understand how two different stock markets influence each other and to analyze the influence from thus two inter-regional markets on the cross-correlation in detail, thus we get a richer and more detailed knowledge of the complex evolutions of dynamics of the cross-correlations between stock markets. The application of MSDCCA is important to promote our understanding of the internal mechanisms and structures of financial markets and helps to forecast the stock indices based on our current results demonstrated the cross-correlations between stock indices. We also discuss the MSDCCA methods of secant rolling window with different sizes and, lastly, provide some relevant implications and

  8. Recent mathematical developments in 2D correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Noda, I.

    2000-03-01

    Recent mathematical developments in the field of 2D correlation spectroscopy, especially those related to the statistical theory, are reported. The notion of correlation phase angle is introduced. The significance of correlation phase angle between dynamic fluctuations of signals measured at two different spectral variables may be linked to more commonly known statistical concepts, such as coherence and correlation coefficient. This treatment provides the direct mathematical connection between the synchronous 2D correlation spectrum with a continuous form of the variance-covariance matrix. Moreover, it gives the background for the formal definition of the disrelation spectrum, which may be used as a heuristic substitution for the asynchronous 2D spectrum. The 2D correlation intensity may be separated into two independent factors representing the normalized extent of signal fluctuation coherence (i.e., correlation coefficient) and the magnitude of spectral intensity changes (i.e., variance). Such separation offers a convenient way to artificially enhance the discriminating power of 2D correlation spectra.

  9. Origins of correlated activity in an olfactory circuit.

    PubMed

    Kazama, Hokto; Wilson, Rachel I

    2009-09-01

    Multineuronal recordings often reveal synchronized spikes in different neurons. The manner in which correlated spike timing affects neural codes depends on the statistics of correlations, which in turn reflects the connectivity that gives rise to correlations. However, determining the connectivity of neurons recorded in vivo can be difficult. We investigated the origins of correlated activity in genetically labeled neurons of the Drosophila antennal lobe. Dual recordings showed synchronized spontaneous spikes in projection neurons (PNs) postsynaptic to the same type of olfactory receptor neuron (ORN). Odors increased these correlations. The primary origin of correlations lies in the divergence of each ORN onto every PN in its glomerulus. Reciprocal PN-PN connections make a smaller contribution to correlations and PN spike trains in different glomeruli were only weakly correlated. PN axons from the same glomerulus reconverge in the lateral horn, where pooling redundant signals may allow lateral horn neurons to average out noise that arises independently in these PNs.

  10. Thermodynamic equilibrium-air correlations for flowfield applications

    NASA Technical Reports Server (NTRS)

    Zoby, E. V.; Moss, J. N.

    1981-01-01

    Equilibrium-air thermodynamic correlations have been developed for flowfield calculation procedures. A comparison between the postshock results computed by the correlation equations and detailed chemistry calculations is very good. The thermodynamic correlations are incorporated in an approximate inviscid flowfield code with a convective heating capability for the purpose of defining the thermodynamic environment through the shock layer. Comparisons of heating rates computed by the approximate code and a viscous-shock-layer method are good. In addition to presenting the thermodynamic correlations, the impact of several viscosity models on the convective heat transfer is demonstrated.

  11. Dynamics of electricity market correlations

    NASA Astrophysics Data System (ADS)

    Alvarez-Ramirez, J.; Escarela-Perez, R.; Espinosa-Perez, G.; Urrea, R.

    2009-06-01

    Electricity market participants rely on demand and price forecasts to decide their bidding strategies, allocate assets, negotiate bilateral contracts, hedge risks, and plan facility investments. However, forecasting is hampered by the non-linear and stochastic nature of price time series. Diverse modeling strategies, from neural networks to traditional transfer functions, have been explored. These approaches are based on the assumption that price series contain correlations that can be exploited for model-based prediction purposes. While many works have been devoted to the demand and price modeling, a limited number of reports on the nature and dynamics of electricity market correlations are available. This paper uses detrended fluctuation analysis to study correlations in the demand and price time series and takes the Australian market as a case study. The results show the existence of correlations in both demand and prices over three orders of magnitude in time ranging from hours to months. However, the Hurst exponent is not constant over time, and its time evolution was computed over a subsample moving window of 250 observations. The computations, also made for two Canadian markets, show that the correlations present important fluctuations over a seasonal one-year cycle. Interestingly, non-linearities (measured in terms of a multifractality index) and reduced price predictability are found for the June-July periods, while the converse behavior is displayed during the December-January period. In terms of forecasting models, our results suggest that non-linear recursive models should be considered for accurate day-ahead price estimation. On the other hand, linear models seem to suffice for demand forecasting purposes.

  12. Psychophysical correlations, synchronicity and meaning.

    PubMed

    Atmanspacher, Harald

    2014-04-01

    The dual-aspect framework which Jung developed with Wolfgang Pauli implies that psychophysical phenomena are neither reducible to physical processes nor to conscious mental activity. Rather, they constitute a radically novel kind of phenomena, deriving from correlations between the physical and the mental. In synchronistic events, a particular subclass of psychophysical phenomena, these correlations are explicated as experienced meaning. © 2014, The Society of Analytical Psychology.

  13. Estimation of Rank Correlation for Clustered Data

    PubMed Central

    Rosner, Bernard; Glynn, Robert

    2017-01-01

    It is well known that the sample correlation coefficient (Rxy) is the maximum likelihood estimator (MLE) of the Pearson correlation (ρxy) for i.i.d. bivariate normal data. However, this is not true for ophthalmologic data where X (e.g., visual acuity) and Y (e.g., visual field) are available for each eye and there is positive intraclass correlation for both X and Y in fellow eyes. In this paper, we provide a regression-based approach for obtaining the MLE of ρxy for clustered data, which can be implemented using standard mixed effects model software. This method is also extended to allow for estimation of partial correlation by controlling both X and Y for a vector U of other covariates. In addition, these methods can be extended to allow for estimation of rank correlation for clustered data by (a) converting ranks of both X and Y to the probit scale, (b) estimating the Pearson correlation between probit scores for X and Y, and (c) using the relationship between Pearson and rank correlation for bivariate normally distributed data. The validity of the methods in finite-sized samples is supported by simulation studies. Finally, two examples from ophthalmology and analgesic abuse are used to illustrate the methods. PMID:28399615

  14. Time-localized wavelet multiple regression and correlation

    NASA Astrophysics Data System (ADS)

    Fernández-Macho, Javier

    2018-02-01

    This paper extends wavelet methodology to handle comovement dynamics of multivariate time series via moving weighted regression on wavelet coefficients. The concept of wavelet local multiple correlation is used to produce one single set of multiscale correlations along time, in contrast with the large number of wavelet correlation maps that need to be compared when using standard pairwise wavelet correlations with rolling windows. Also, the spectral properties of weight functions are investigated and it is argued that some common time windows, such as the usual rectangular rolling window, are not satisfactory on these grounds. The method is illustrated with a multiscale analysis of the comovements of Eurozone stock markets during this century. It is shown how the evolution of the correlation structure in these markets has been far from homogeneous both along time and across timescales featuring an acute divide across timescales at about the quarterly scale. At longer scales, evidence from the long-term correlation structure can be interpreted as stable perfect integration among Euro stock markets. On the other hand, at intramonth and intraweek scales, the short-term correlation structure has been clearly evolving along time, experiencing a sharp increase during financial crises which may be interpreted as evidence of financial 'contagion'.

  15. Effective correlator for RadioAstron project

    NASA Astrophysics Data System (ADS)

    Sergeev, Sergey

    This paper presents the implementation of programme FX-correlator for Very Long Baseline Interferometry, adapted for the project "RadioAstron". Software correlator implemented for heterogeneous computing systems using graphics accelerators. It is shown that for the task interferometry implementation of the graphics hardware has a high efficiency. The host processor of heterogeneous computing system, performs the function of forming the data flow for graphics accelerators, the number of which corresponds to the number of frequency channels. So, for the Radioastron project, such channels is seven. Each accelerator is perform correlation matrix for all bases for a single frequency channel. Initial data is converted to the floating-point format, is correction for the corresponding delay function and computes the entire correlation matrix simultaneously. Calculation of the correlation matrix is performed using the sliding Fourier transform. Thus, thanks to the compliance of a solved problem for architecture graphics accelerators, managed to get a performance for one processor platform Kepler, which corresponds to the performance of this task, the computing cluster platforms Intel on four nodes. This task successfully scaled not only on a large number of graphics accelerators, but also on a large number of nodes with multiple accelerators.

  16. A double-correlation tremor-location method

    NASA Astrophysics Data System (ADS)

    Li, Ka Lok; Sgattoni, Giulia; Sadeghisorkhani, Hamzeh; Roberts, Roland; Gudmundsson, Olafur

    2017-02-01

    A double-correlation method is introduced to locate tremor sources based on stacks of complex, doubly-correlated tremor records of multiple triplets of seismographs back projected to hypothetical source locations in a geographic grid. Peaks in the resulting stack of moduli are inferred source locations. The stack of the moduli is a robust measure of energy radiated from a point source or point sources even when the velocity information is imprecise. Application to real data shows how double correlation focuses the source mapping compared to the common single correlation approach. Synthetic tests demonstrate the robustness of the method and its resolution limitations which are controlled by the station geometry, the finite frequency of the signal, the quality of the used velocity information and noise level. Both random noise and signal or noise correlated at time shifts that are inconsistent with the assumed velocity structure can be effectively suppressed. Assuming a surface wave velocity, we can constrain the source location even if the surface wave component does not dominate. The method can also in principle be used with body waves in 3-D, although this requires more data and seismographs placed near the source for depth resolution.

  17. Reassessment of the nonlocality of correlation boxes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costa, A.P.; Parisio, Fernando, E-mail: parisio@df.ufpe.br

    Correlation boxes are hypothetical systems usually designed to produce the maximal algebraic violation of a Bell inequality, beyond the quantum bound and without superluminal signalling. The fact that these systems show stronger correlations than those presented by maximally entangled quantum states, as the spin singlet, has been regarded as a demonstration that the former are more nonlocal than the latter. By applying an alternative, consistent measure of nonlocality to a family of correlation boxes, we show that this conclusion is not necessarily true. Complementarily, we define a class of systems displaying subquantum correlations which, nevertheless, are more nonlocal than themore » singlet state, showing that the extent of the numeric violation of an inequality may have little to do with the degree of nonlocality, especially in the case of correlation boxes.« less

  18. Simulating Optical Correlation on a Digital Image Processing

    NASA Astrophysics Data System (ADS)

    Denning, Bryan

    1998-04-01

    Optical Correlation is a useful tool for recognizing objects in video scenes. In this paper, we explore the characteristics of a composite filter known as the equal correlation peak synthetic discriminant function (ECP SDF). Although the ECP SDF is commonly used in coherent optical correlation systems, the authors simulated the operation of a correlator using an EPIX frame grabber/image processor board to complete this work. Issues pertaining to simulating correlation using an EPIX board will be discussed. Additionally, the ability of the ECP SDF to detect objects that have been subjected to inplane rotation and small scale changes will be addressed by correlating filters against true-class objects placed randomly within a scene. To test the robustness of the filters, the results of correlating the filter against false-class objects that closely resemble the true class will also be presented.

  19. Temporal evolution of financial-market correlations.

    PubMed

    Fenn, Daniel J; Porter, Mason A; Williams, Stacy; McDonald, Mark; Johnson, Neil F; Jones, Nick S

    2011-08-01

    We investigate financial market correlations using random matrix theory and principal component analysis. We use random matrix theory to demonstrate that correlation matrices of asset price changes contain structure that is incompatible with uncorrelated random price changes. We then identify the principal components of these correlation matrices and demonstrate that a small number of components accounts for a large proportion of the variability of the markets that we consider. We characterize the time-evolving relationships between the different assets by investigating the correlations between the asset price time series and principal components. Using this approach, we uncover notable changes that occurred in financial markets and identify the assets that were significantly affected by these changes. We show in particular that there was an increase in the strength of the relationships between several different markets following the 2007-2008 credit and liquidity crisis.

  20. Quantum correlations in multipartite quantum systems

    NASA Astrophysics Data System (ADS)

    Jafarizadeh, M. A.; Heshmati, A.; Karimi, N.; Yahyavi, M.

    2018-03-01

    Quantum entanglement is the most famous type of quantum correlation between elements of a quantum system that has a basic role in quantum communication protocols like quantum cryptography, teleportation and Bell inequality detection. However, it has already been shown that various applications in quantum information theory do not require entanglement. Quantum discord as a new kind of quantum correlations beyond entanglement, is the most popular candidate for general quantum correlations. In this paper, first we find the entanglement witness in a particular multipartite quantum system which consists of a N-partite system in 2 n -dimensional space. Then we give an exact analytical formula for the quantum discord of this system. At the end of the paper, we investigate the additivity relation of the quantum correlation and show that this relation is satisfied for a N-partite system with 2 n -dimensional space.

  1. Temporal evolution of financial-market correlations

    NASA Astrophysics Data System (ADS)

    Fenn, Daniel J.; Porter, Mason A.; Williams, Stacy; McDonald, Mark; Johnson, Neil F.; Jones, Nick S.

    2011-08-01

    We investigate financial market correlations using random matrix theory and principal component analysis. We use random matrix theory to demonstrate that correlation matrices of asset price changes contain structure that is incompatible with uncorrelated random price changes. We then identify the principal components of these correlation matrices and demonstrate that a small number of components accounts for a large proportion of the variability of the markets that we consider. We characterize the time-evolving relationships between the different assets by investigating the correlations between the asset price time series and principal components. Using this approach, we uncover notable changes that occurred in financial markets and identify the assets that were significantly affected by these changes. We show in particular that there was an increase in the strength of the relationships between several different markets following the 2007-2008 credit and liquidity crisis.

  2. Ultralow-Power Digital Correlator for Microwave Polarimetry

    NASA Technical Reports Server (NTRS)

    Piepmeier, Jeffrey R.; Hass, K. Joseph

    2004-01-01

    A recently developed high-speed digital correlator is especially well suited for processing readings of a passive microwave polarimeter. This circuit computes the autocorrelations of, and the cross-correlations among, data in four digital input streams representing samples of in-phase (I) and quadrature (Q) components of two intermediate-frequency (IF) signals, denoted A and B, that are generated in heterodyne reception of two microwave signals. The IF signals arriving at the correlator input terminals have been digitized to three levels (-1,0,1) at a sampling rate up to 500 MHz. Two bits (representing sign and magnitude) are needed to represent the instantaneous datum in each input channel; hence, eight bits are needed to represent the four input signals during any given cycle of the sampling clock. The accumulation (integration) time for the correlation is programmable in increments of 2(exp 8) cycles of the sampling clock, up to a maximum of 2(exp 24) cycles. The basic functionality of the correlator is embodied in 16 correlation slices, each of which contains identical logic circuits and counters (see figure). The first stage of each correlation slice is a logic gate that computes one of the desired correlations (for example, the autocorrelation of the I component of A or the negative of the cross-correlation of the I component of A and the Q component of B). The sampling of the output of the logic gate output is controlled by the sampling-clock signal, and an 8-bit counter increments in every clock cycle when the logic gate generates output. The most significant bit of the 8-bit counter is sampled by a 16-bit counter with a clock signal at 2(exp 8) the frequency of the sampling clock. The 16-bit counter is incremented every time the 8-bit counter rolls over.

  3. A cyber-event correlation framework and metrics

    NASA Astrophysics Data System (ADS)

    Kang, Myong H.; Mayfield, Terry

    2003-08-01

    In this paper, we propose a cyber-event fusion, correlation, and situation assessment framework that, when instantiated, will allow cyber defenders to better understand the local, regional, and global cyber-situation. This framework, with associated metrics, can be used to guide assessment of our existing cyber-defense capabilities, and to help evaluate the state of cyber-event correlation research and where we must focus our future cyber-event correlation research. The framework, based on the cyber-event gathering activities and analysis functions, consists of five operational steps, each of which provides a richer set of contextual information to support greater situational understanding. The first three steps are categorically depicted as increasingly richer and broader-scoped contexts achieved through correlation activity, while in the final two steps, these richer contexts are achieved through analytical activities (situation assessment, and threat analysis & prediction). Category 1 Correlation focuses on the detection of suspicious activities and the correlation of events from a single cyber-event source. Category 2 Correlation clusters the same or similar events from multiple detectors that are located at close proximity and prioritizes them. Finally, the events from different time periods and event sources at different location/regions are correlated at Category 3 to recognize the relationship among different events. This is the category that focuses on the detection of large-scale and coordinated attacks. The situation assessment step (Category 4) focuses on the assessment of cyber asset damage and the analysis of the impact on missions. The threat analysis and prediction step (Category 5) analyzes attacks based on attack traces and predicts the next steps. Metrics that can distinguish correlation and cyber-situation assessment tools for each category are also proposed.

  4. Economic and Educational Correlates of TIMSS Results

    ERIC Educational Resources Information Center

    Mikk, Jaan

    2005-01-01

    The good knowledge of the correlates of educational achievement highlights the ways to the efficient use of economic and human capital in raising the efficiency of education. The present paper investigates the correlates and compares the values of the correlates for the Republic of Lithuania with the average international values. The data for the…

  5. Inference for High-dimensional Differential Correlation Matrices *

    PubMed Central

    Cai, T. Tony; Zhang, Anru

    2015-01-01

    Motivated by differential co-expression analysis in genomics, we consider in this paper estimation and testing of high-dimensional differential correlation matrices. An adaptive thresholding procedure is introduced and theoretical guarantees are given. Minimax rate of convergence is established and the proposed estimator is shown to be adaptively rate-optimal over collections of paired correlation matrices with approximately sparse differences. Simulation results show that the procedure significantly outperforms two other natural methods that are based on separate estimation of the individual correlation matrices. The procedure is also illustrated through an analysis of a breast cancer dataset, which provides evidence at the gene co-expression level that several genes, of which a subset has been previously verified, are associated with the breast cancer. Hypothesis testing on the differential correlation matrices is also considered. A test, which is particularly well suited for testing against sparse alternatives, is introduced. In addition, other related problems, including estimation of a single sparse correlation matrix, estimation of the differential covariance matrices, and estimation of the differential cross-correlation matrices, are also discussed. PMID:26500380

  6. Digital Correlation Microwave Polarimetry: Analysis and Demonstration

    NASA Technical Reports Server (NTRS)

    Piepmeier, J. R.; Gasiewski, A. J.; Krebs, Carolyn A. (Technical Monitor)

    2000-01-01

    The design, analysis, and demonstration of a digital-correlation microwave polarimeter for use in earth remote sensing is presented. We begin with an analysis of three-level digital correlation and develop the correlator transfer function and radiometric sensitivity. A fifth-order polynomial regression is derived for inverting the digital correlation coefficient into the analog statistic. In addition, the effects of quantizer threshold asymmetry and hysteresis are discussed. A two-look unpolarized calibration scheme is developed for identifying correlation offsets. The developed theory and calibration method are verified using a 10.7 GHz and a 37.0 GHz polarimeter. The polarimeters are based upon 1-GS/s three-level digital correlators and measure the first three Stokes parameters. Through experiment, the radiometric sensitivity is shown to approach the theoretical as derived earlier in the paper and the two-look unpolarized calibration method is successfully compared with results using a polarimetric scheme. Finally, sample data from an aircraft experiment demonstrates that the polarimeter is highly-useful for ocean wind-vector measurement.

  7. Inference for High-dimensional Differential Correlation Matrices.

    PubMed

    Cai, T Tony; Zhang, Anru

    2016-01-01

    Motivated by differential co-expression analysis in genomics, we consider in this paper estimation and testing of high-dimensional differential correlation matrices. An adaptive thresholding procedure is introduced and theoretical guarantees are given. Minimax rate of convergence is established and the proposed estimator is shown to be adaptively rate-optimal over collections of paired correlation matrices with approximately sparse differences. Simulation results show that the procedure significantly outperforms two other natural methods that are based on separate estimation of the individual correlation matrices. The procedure is also illustrated through an analysis of a breast cancer dataset, which provides evidence at the gene co-expression level that several genes, of which a subset has been previously verified, are associated with the breast cancer. Hypothesis testing on the differential correlation matrices is also considered. A test, which is particularly well suited for testing against sparse alternatives, is introduced. In addition, other related problems, including estimation of a single sparse correlation matrix, estimation of the differential covariance matrices, and estimation of the differential cross-correlation matrices, are also discussed.

  8. The cluster-cluster correlation function. [of galaxies

    NASA Technical Reports Server (NTRS)

    Postman, M.; Geller, M. J.; Huchra, J. P.

    1986-01-01

    The clustering properties of the Abell and Zwicky cluster catalogs are studied using the two-point angular and spatial correlation functions. The catalogs are divided into eight subsamples to determine the dependence of the correlation function on distance, richness, and the method of cluster identification. It is found that the Corona Borealis supercluster contributes significant power to the spatial correlation function to the Abell cluster sample with distance class of four or less. The distance-limited catalog of 152 Abell clusters, which is not greatly affected by a single system, has a spatial correlation function consistent with the power law Xi(r) = 300r exp -1.8. In both the distance class four or less and distance-limited samples the signal in the spatial correlation function is a power law detectable out to 60/h Mpc. The amplitude of Xi(r) for clusters of richness class two is about three times that for richness class one clusters. The two-point spatial correlation function is sensitive to the use of estimated redshifts.

  9. Quantum correlations of lights in macroscopic environments

    NASA Astrophysics Data System (ADS)

    Sua, Yong Meng

    This dissertation presents a detailed study in exploring quantum correlations of lights in macroscopic environments. We have explored quantum correlations of single photons, weak coherent states, and polarization-correlated/polarization-entangled photons in macroscopic environments. These included macroscopic mirrors, macroscopic photon number, spatially separated observers, noisy photons source and propagation medium with loss or disturbances. We proposed a measurement scheme for observing quantum correlations and entanglement in the spatial properties of two macroscopic mirrors using single photons spatial compass state. We explored the phase space distribution features of spatial compass states, such as chessboard pattern by using the Wigner function. The displacement and tilt correlations of the two mirrors were manifested through the propensities of the compass states. This technique can be used to extract Einstein-Podolsky-Rosen correlations (EPR) of the two mirrors. We then formulated the discrete-like property of the propensity P b(m,n), which can be used to explore environmental perturbed quantum jumps of the EPR correlations in phase space. With single photons spatial compass state, the variances in position and momentum are much smaller than standard quantum limit when using a Gaussian TEM 00 beam. We observed intrinsic quantum correlations of weak coherent states between two parties through balanced homodyne detection. Our scheme can be used as a supplement to decoy-state BB84 protocol and differential phase-shift QKD protocol. We prepared four types of bipartite correlations +/- cos2(theta1 +/- theta 2) that shared between two parties. We also demonstrated bits correlations between two parties separated by 10 km optical fiber. The bits information will be protected by the large quantum phase fluctuation of weak coherent states, adding another physical layer of security to these protocols for quantum key distribution. Using 10 m of highly nonlinear

  10. The Software Correlator of the Chinese VLBI Network

    NASA Technical Reports Server (NTRS)

    Zheng, Weimin; Quan, Ying; Shu, Fengchun; Chen, Zhong; Chen, Shanshan; Wang, Weihua; Wang, Guangli

    2010-01-01

    The software correlator of the Chinese VLBI Network (CVN) has played an irreplaceable role in the CVN routine data processing, e.g., in the Chinese lunar exploration project. This correlator will be upgraded to process geodetic and astronomical observation data. In the future, with several new stations joining the network, CVN will carry out crustal movement observations, quick UT1 measurements, astrophysical observations, and deep space exploration activities. For the geodetic or astronomical observations, we need a wide-band 10-station correlator. For spacecraft tracking, a realtime and highly reliable correlator is essential. To meet the scientific and navigation requirements of CVN, two parallel software correlators in the multiprocessor environments are under development. A high speed, 10-station prototype correlator using the mixed Pthreads and MPI (Massage Passing Interface) parallel algorithm on a computer cluster platform is being developed. Another real-time software correlator for spacecraft tracking adopts the thread-parallel technology, and it runs on the SMP (Symmetric Multiple Processor) servers. Both correlators have the characteristic of flexible structure and scalability.

  11. Cross-correlations and influence in world gold markets

    NASA Astrophysics Data System (ADS)

    Lin, Min; Wang, Gang-Jin; Xie, Chi; Stanley, H. Eugene

    2018-01-01

    Using the detrended cross-correlation analysis (DCCA) coefficient and the detrended partial cross-correlation analysis (DPCCA) coefficient, we investigate cross-correlations and net cross-correlations among five major world gold markets (London, New York, Shanghai, Tokyo, and Mumbai) at different time scales. We propose multiscale influence measures for examining the influence of individual markets on other markets and on the entire system. We find (i) that the cross-correlations, net cross-correlations, and net influences among the five gold markets vary across time scales, (ii) that the cross-market correlation between London and New York at each time scale is intense and inherent, meaning that the influence of other gold markets on the London-New York market is negligible, (iii) that the remaining cross-market correlations (i.e., those other than London-New York) are greatly affected by other gold markets, and (iv) that the London gold market significantly affects the other four gold markets and dominates the world-wide gold market. Our multiscale findings give market participants and market regulators new information on cross-market linkages in the world-wide gold market.

  12. 2004 Photon Correlation and Scattering Conference

    NASA Technical Reports Server (NTRS)

    Meyer, William (Editor); Smart, Anthony (Editor); Wegdam, Gerard (Editor); Dogariu, Aristide (Editor); Carpenter, Bradley (Editor)

    2004-01-01

    The Photon Correlation and Scattering (PCS) meeting welcomes all who are interested in the art and science of photon correlation and its application to optical scattering. The meeting is intended to enhance interactions between theory, applications, instrument design, and participants.

  13. Rapidity dependence of proton cumulants and correlation functions

    DOE PAGES

    Bzdak, Adam; Koch, Volker

    2017-11-13

    The dependence of multiproton correlation functions and cumulants on the acceptance in rapidity and transverse momentum is studied. Here, we found that the preliminary data of various cumulant ratios are consistent, within errors, with rapidity and transverse momentum-independent correlation functions. But, rapidity correlations which moderately increase with rapidity separation between protons are slightly favored. We propose to further explore the rapidity dependence of multiparticle correlation functions by measuring the dependence of the integrated reduced correlation functions as a function of the size of the rapidity window.

  14. Rapidity dependence of proton cumulants and correlation functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bzdak, Adam; Koch, Volker

    The dependence of multiproton correlation functions and cumulants on the acceptance in rapidity and transverse momentum is studied. Here, we found that the preliminary data of various cumulant ratios are consistent, within errors, with rapidity and transverse momentum-independent correlation functions. But, rapidity correlations which moderately increase with rapidity separation between protons are slightly favored. We propose to further explore the rapidity dependence of multiparticle correlation functions by measuring the dependence of the integrated reduced correlation functions as a function of the size of the rapidity window.

  15. Density correlators in a self-similar cascade

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Czyz˙; Ewski, J.

    1999-09-01

    Multivariate density moments (correlators) of arbitrary order are obtained for the multiplicative self-similar cascade. This result is based on the calculation by Greiner, Eggers and Lipa where the correlators of the logarithms of the particle densities have been obtained. The density correlators, more suitable for comparison with multiparticle data, appear to have a simple factorizable form.

  16. Edge-based correlation image registration for multispectral imaging

    DOEpatents

    Nandy, Prabal [Albuquerque, NM

    2009-11-17

    Registration information for images of a common target obtained from a plurality of different spectral bands can be obtained by combining edge detection and phase correlation. The images are edge-filtered, and pairs of the edge-filtered images are then phase correlated to produce phase correlation images. The registration information can be determined based on these phase correlation images.

  17. Correlation between three color coordinates of human teeth.

    PubMed

    Lee, Yong-Keun

    2014-11-01

    The objective was to determine whether there were significant correlations in the three color coordinates within each of two color coordinate systems, such as the Commission Internationale de l’Eclairage (CIE) L*a*b* system, and the lightness, chroma, and hue angle system, of human vital teeth. The color of six maxillary and six mandibular anterior teeth was measured by the Shade Vision System. Pearson correlations between each pair of the color coordinates were determined (α=0.01 ). The influence of two color coordinates on the other color coordinate was determined with a multiple regression analysis (α=0.01 ). Based on correlation analyses, all the color coordinate pairs showed significant correlations except for the chroma and hue angle pair. The CIE L* was negatively correlated with the CIE a*,b*, and chroma, but positively correlated with the hue angle. The CIE a* was positively correlated with the CIE b* and chroma. Tooth color coordinates were correlated each other. Lighter teeth were less chromatic both in the CIE a* and b* coordinates. Therefore, it was postulated that the three color coordinates of human teeth were harmonized within certain color attribute ranges, and a lack of correlations in these coordinates might indicate external/internal discolorations and/or anomalies of teeth.

  18. Correlation between three color coordinates of human teeth

    NASA Astrophysics Data System (ADS)

    Lee, Yong-Keun

    2014-11-01

    The objective was to determine whether there were significant correlations in the three color coordinates within each of two color coordinate systems, such as the Commission Internationale de l'Eclairage (CIE) L*a*b* system, and the lightness, chroma, and hue angle system, of human vital teeth. The color of six maxillary and six mandibular anterior teeth was measured by the Shade Vision System. Pearson correlations between each pair of the color coordinates were determined (α=0.01). The influence of two color coordinates on the other color coordinate was determined with a multiple regression analysis (α=0.01). Based on correlation analyses, all the color coordinate pairs showed significant correlations except for the chroma and hue angle pair. The CIE L* was negatively correlated with the CIE a*, b*, and chroma, but positively correlated with the hue angle. The CIE a* was positively correlated with the CIE b* and chroma. Tooth color coordinates were correlated each other. Lighter teeth were less chromatic both in the CIE a* and b* coordinates. Therefore, it was postulated that the three color coordinates of human teeth were harmonized within certain color attribute ranges, and a lack of correlations in these coordinates might indicate external/internal discolorations and/or anomalies of teeth.

  19. Asymmetric correlation matrices: an analysis of financial data

    NASA Astrophysics Data System (ADS)

    Livan, G.; Rebecchi, L.

    2012-06-01

    We analyse the spectral properties of correlation matrices between distinct statistical systems. Such matrices are intrinsically non-symmetric, and lend themselves to extend the spectral analyses usually performed on standard Pearson correlation matrices to the realm of complex eigenvalues. We employ some recent random matrix theory results on the average eigenvalue density of this type of matrix to distinguish between noise and non-trivial correlation structures, and we focus on financial data as a case study. Namely, we employ daily prices of stocks belonging to the American and British stock exchanges, and look for the emergence of correlations between two such markets in the eigenvalue spectrum of their non-symmetric correlation matrix. We find several non trivial results when considering time-lagged correlations over short lags, and we corroborate our findings by additionally studying the asymmetric correlation matrix of the principal components of our datasets.

  20. Analyzing the Cross-Correlation Between Onshore and Offshore RMB Exchange Rates Based on Multifractal Detrended Cross-Correlation Analysis (MF-DCCA)

    NASA Astrophysics Data System (ADS)

    Xie, Chi; Zhou, Yingying; Wang, Gangjin; Yan, Xinguo

    We use the multifractal detrended cross-correlation analysis (MF-DCCA) method to explore the multifractal behavior of the cross-correlation between exchange rates of onshore RMB (CNY) and offshore RMB (CNH) against US dollar (USD). The empirical data are daily prices of CNY/USD and CNH/USD from May 1, 2012 to February 29, 2016. The results demonstrate that: (i) the cross-correlation between CNY/USD and CNH/USD is persistent and its fluctuation is smaller when the order of fluctuation function is negative than that when the order is positive; (ii) the multifractal behavior of the cross-correlation between CNY/USD and CNH/USD is significant during the sample period; (iii) the dynamic Hurst exponents obtained by the rolling windows analysis show that the cross-correlation is stable when the global economic situation is good and volatile in bad situation; and (iv) the non-normal distribution of original data has a greater effect on the multifractality of the cross-correlation between CNY/USD and CNH/USD than the temporary correlation.

  1. Response time correlations for platinum resistance thermometers

    NASA Technical Reports Server (NTRS)

    Pandey, D. K.; Ash, R. L.; Dillon-Townes, L. A.

    1985-01-01

    The 'plunge method' recommended by ASTM has been used to determine the time constant of 100-ohm platinum resistance thermometers (PRT) considered for use in the National Transonic Facility. It is shown that the response time of ventilated PRT can be correlated with the reciprocal of the heat transfer coefficient in a given field. Universal correlations are established for the 100- and 1000-ohm PRT with uncertainties of 20 and 30 percent, respectively. The correlations are found to be consistent with the uncertainty involved in heat transfer correlations available in the literature and are recommended for use in flowing liquids and gases.

  2. Effects of cross correlation on the relaxation time of a bistable system driven by cross-correlated noise

    NASA Astrophysics Data System (ADS)

    Mei, Dongcheng; Xie, Chongwei; Zhang, Li

    2003-11-01

    We study the effects of correlations between additive and multiplicative noise on relaxation time in a bistable system driven by cross-correlated noise. Using the projection-operator method, we derived an analytic expression for the relaxation time Tc of the system, which is the function of additive (α) and multiplicative (D) noise intensities, correlation intensity λ of noise, and correlation time τ of noise. After introducing a noise intensity ratio and a dimensionless parameter R=D/α, and then performing numerical computations, we find the following: (i) For the case of R<1, the relaxation time Tc increases as R increases. (ii) For the cases of R⩾1, there is a one-peak structure on the Tc-R plot and the effects of cross-correlated noise on the relaxation time are very notable. (iii) For the case of R<1, Tc almost does not change with both λ and τ, and for the cases of R⩾1, Tc decreases as λ increases, however Tc increases as τ increases. λ and τ play opposite roles in Tc, i.e., λ enhances the fluctuation decay of dynamical variable and τ slows down the fluctuation decay of dynamical variable.

  3. Investigation of Correlation Effects in Nonlinear Optics

    NASA Astrophysics Data System (ADS)

    Friberg, Stephen Richard

    This thesis deals with intensity correlation measurement methods as they apply to the study of light generated by a parametric downconversion process. The correlation properties of light can be used to distinguish between quantum mechanical light and classical light, where quantum mechanical light is electromagnetic radiation that can be accurately described only by a theory that quantizes the field. Spontaneous parametric downconversion produces quantum mechanical light, and we investigate some of its properties. A unique aspect of downconverted light is that pairs of photons are emitted in an interval that can be made smaller than the resolving time of any photon counting apparatus. Our experiments indicate that the interval is not affected by the bandwidth of the pump laser, nor by the length of the crystal. It is apparently determined only by the bandwidth of the detection apparatus, which in our experiment implies that the photons are produced in less than 1 psec, which is much shorter than the 100 psec resolution of our detection apparatus. The normalized cross-correlation functions for spontaneous downconversion are inversely dependent on intensity, but the normalized auto-correlations are independent of intensity. Measurements of the magnitude of the cross -correlations for several different pump beam intensities confirm this relationship. One of the inequalities imposed by classical theory relates the magnitude of the auto-correlations to the magnitude of the cross-correlations. Because of the inverse intensity dependence, this inequality is violated, thereby showing the quantum mechanical nature of the downconverted light. As an application of the large cross-correlations in downconversion, we apply the process to an optical communication channel which transmits information via coincidences between two light beams. Because of the strong discrimination against background provided by this technique, the channel can operate with large amounts of background

  4. EDITORIAL: Strongly correlated electron systems Strongly correlated electron systems

    NASA Astrophysics Data System (ADS)

    Ronning, Filip; Batista, Cristian

    2011-03-01

    Strongly correlated electrons is an exciting and diverse field in condensed matter physics. This special issue aims to capture some of that excitement and recent developments in the field. Given that this issue was inspired by the 2010 International Conference on Strongly Correlated Electron Systems (SCES 2010), we briefly give some history in order to place this issue in context. The 2010 International Conference on Strongly Correlated Electron Systems was held in Santa Fe, New Mexico, a reunion of sorts from the 1989 International Conference on the Physics of Highly Correlated Electron Systems that also convened in Santa Fe. SCES 2010—co-chaired by John Sarrao and Joe Thompson—followed the tradition of earlier conferences, in this century, hosted by Buzios (2008), Houston (2007), Vienna (2005), Karlsruhe (2004), Krakow (2002) and Ann Arbor (2001). Every three years since 1997, SCES has joined the International Conference on Magnetism (ICM), held in Recife (2000), Rome (2003), Kyoto (2006) and Karlsruhe (2009). Like its predecessors, SCES 2010 topics included strongly correlated f- and d-electron systems, heavy-fermion behaviors, quantum-phase transitions, non-Fermi liquid phenomena, unconventional superconductivity, and emergent states that arise from electronic correlations. Recent developments from studies of quantum magnetism and cold atoms complemented the traditional subjects and were included in SCES 2010. 2010 celebrated the 400th anniversary of Santa Fe as well as the birth of astronomy. So what's the connection to SCES? The Dutch invention of the first practical telescope and its use by Galileo in 1610 and subsequent years overturned dogma that the sun revolved about the earth. This revolutionary, and at the time heretical, conclusion required innovative combinations of new instrumentation, observation and mathematics. These same combinations are just as important 400 years later and are the foundation of scientific discoveries that were discussed

  5. Anisotropic stress correlations in two-dimensional liquids

    DOE PAGES

    Wu, Bin; Iwashita, Takuya; Egami, Takeshi

    2015-03-01

    In this paper we demonstrate the presence of anisotropic stress correlations in the simulated 2D liquids. Whereas the temporal correlation of macroscopic shear stress is known to contribute to viscosity via the Green-Kubo formula, the general question regarding angular dependence of the spatial correlation among atomic level stresses in liquids without external shear has not been explored. Besides the apparent anisotropicity with well-defined symmetry, we found that the characteristic length of shear stress correlation depends on temperature and follows the power law, suggesting divergence around the glass transition temperature. The anisotropy of the stress correlations can be explained in termsmore » of the inclusion model by Eshelby, based upon which we suggest that the mismatch between the atom and its nearest neighbor cage produces the atomic level stress as well as the long-range stress fields.« less

  6. Estimation of rank correlation for clustered data.

    PubMed

    Rosner, Bernard; Glynn, Robert J

    2017-06-30

    It is well known that the sample correlation coefficient (R xy ) is the maximum likelihood estimator of the Pearson correlation (ρ xy ) for independent and identically distributed (i.i.d.) bivariate normal data. However, this is not true for ophthalmologic data where X (e.g., visual acuity) and Y (e.g., visual field) are available for each eye and there is positive intraclass correlation for both X and Y in fellow eyes. In this paper, we provide a regression-based approach for obtaining the maximum likelihood estimator of ρ xy for clustered data, which can be implemented using standard mixed effects model software. This method is also extended to allow for estimation of partial correlation by controlling both X and Y for a vector U_ of other covariates. In addition, these methods can be extended to allow for estimation of rank correlation for clustered data by (i) converting ranks of both X and Y to the probit scale, (ii) estimating the Pearson correlation between probit scores for X and Y, and (iii) using the relationship between Pearson and rank correlation for bivariate normally distributed data. The validity of the methods in finite-sized samples is supported by simulation studies. Finally, two examples from ophthalmology and analgesic abuse are used to illustrate the methods. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  7. Positron Annihilation Induced Auger and Gamma Spectroscopy of Catalytically Important Surfaces

    NASA Astrophysics Data System (ADS)

    Weiss, A. H.; Nadesalingam, M. P.; Sundaramoorthy, R.; Mukherjee, S.; Fazleev, N. G.

    2006-10-01

    The annihilation of positrons with core electrons results in unique signatures in the spectra of Auger-electron and annihilation-gamma rays that can be used to make clear chemical identification of atoms at the surface. Because positrons implanted at low energies are trapped with high efficiency in the image-correlation well where they are localized just outside the surface it is possible to use annihilation induced Auger and Gamma signals to probe the surfaces of solids with single atomic layer depth resolution. In this talk we will report recent applications of Positron Annihilation Induced Auger Electron Spectroscopy (PAES) and Auger-Gamma Coincidence Spectroscopy (AGCS) to the study of surface structure and surface chemistry. Our research has demonstrated that PAES spectra can provide new information regarding the composition of the top-most atomic layer. Applications of PAES to the study of catalytically important surfaces of oxides and wide band-gap semiconductors including TiO2, SiO2,Cu2O, and SiC will be presented. We conclude with a discussion of the use of Auger-Gamma and Gamma-Gamma coincidence spectroscopy for the study of surfaces at pressures closer to those found in practical chemical reactors. Research supported by the Welch Foundation Grant Number Y-1100.

  8. Velocity correlations in laboratory insect swarms

    NASA Astrophysics Data System (ADS)

    Ni, R.; Ouellette, N. T.

    2015-12-01

    In contrast to animal groups such as bird flocks or migratory herds that display net, directed motion, insect swarms do not possess global order. Without such order, it is difficult to define and characterize the transition to collective behavior in swarms; nevertheless, visual observation of swarms strongly suggests that swarming insects do behave collectively. It has recently been suggested that correlation rather than order is the hallmark of emergent collective behavior. Here, we report measurements of spatial velocity correlation functions in laboratory mating swarms of the non-biting midge Chironomus riparius. Although we find some correlation at short distances, our swarms are in general only weakly correlated, in contrast to what has been observed in field studies. Our results hint at the potentially important role of environmental conditions on collective behavior, and suggest that general indicators of the collective nature of swarming are still needed.

  9. Quantum correlation exists in any non-product state

    PubMed Central

    Guo, Yu; Wu, Shengjun

    2014-01-01

    Simultaneous existence of correlation in complementary bases is a fundamental feature of quantum correlation, and we show that this characteristic is present in any non-product bipartite state. We propose a measure via mutually unbiased bases to study this feature of quantum correlation, and compare it with other measures of quantum correlation for several families of bipartite states. PMID:25434458

  10. Structure of amplitude correlations in open chaotic systems

    NASA Astrophysics Data System (ADS)

    Ericson, Torleif E. O.

    2013-02-01

    The Verbaarschot-Weidenmüller-Zirnbauer (VWZ) model is believed to correctly represent the correlations of two S-matrix elements for an open quantum chaotic system, but the solution has considerable complexity and is presently only accessed numerically. Here a procedure is developed to deduce its features over the full range of the parameter space in a transparent and simple analytical form preserving accuracy to a considerable degree. The bulk of the VWZ correlations are described by the Gorin-Seligman expression for the two-amplitude correlations of the Ericson-Gorin-Seligman model. The structure of the remaining correction factors for correlation functions is discussed with special emphasis of the rôle of the level correlation hole both for inelastic and elastic correlations.

  11. Classical, Quantum and Superquantum Correlations

    NASA Astrophysics Data System (ADS)

    Ghirardi, Giancarlo; Romano, Raffaele

    2012-04-01

    A deeper understanding of the origin of quantum correlations is expected to allow a better comprehension of the physical principles underlying quantum mechanics. In this work, we reconsider the possibility of devising "crypto-nonlocal theories", using a terminology firstly introduced by Leggett. We generalize and simplify the investigations on this subject which can be found in the literature. At their deeper level, such theories allow nonlocal correlations which can overcome the quantum limit.

  12. Classical, Quantum and Superquantum Correlations

    NASA Astrophysics Data System (ADS)

    Ghirardi, Giancarlo; Romano, Raffaele

    2013-01-01

    A deeper understanding of the origin of quantum correlations is expected to allow a better comprehension of the physical principles underlying quantum mechanics. In this work, we reconsider the possibility of devising "crypto-nonlocal theories", using a terminology firstly introduced by Leggett. We generalize and simplify the investigations on this subject which can be found in the literature. At their deeper level, such theories allow nonlocal correlations which can overcome the quantum limit.

  13. Generating series for GUE correlators

    NASA Astrophysics Data System (ADS)

    Dubrovin, Boris; Yang, Di

    2017-11-01

    We extend to the Toda lattice hierarchy the approach of Bertola et al. (Phys D Nonlinear Phenom 327:30-57, 2016; IMRN, 2016) to computation of logarithmic derivatives of tau-functions in terms of the so-called matrix resolvents of the corresponding difference Lax operator. As a particular application we obtain explicit generating series for connected GUE correlators. On this basis an efficient recursive procedure for computing the correlators in full genera is developed.

  14. Node Survival in Networks under Correlated Attacks

    PubMed Central

    Hao, Yan; Armbruster, Dieter; Hütt, Marc-Thorsten

    2015-01-01

    We study the interplay between correlations, dynamics, and networks for repeated attacks on a socio-economic network. As a model system we consider an insurance scheme against disasters that randomly hit nodes, where a node in need receives support from its network neighbors. The model is motivated by gift giving among the Maasai called Osotua. Survival of nodes under different disaster scenarios (uncorrelated, spatially, temporally and spatio-temporally correlated) and for different network architectures are studied with agent-based numerical simulations. We find that the survival rate of a node depends dramatically on the type of correlation of the disasters: Spatially and spatio-temporally correlated disasters increase the survival rate; purely temporally correlated disasters decrease it. The type of correlation also leads to strong inequality among the surviving nodes. We introduce the concept of disaster masking to explain some of the results of our simulations. We also analyze the subsets of the networks that were activated to provide support after fifty years of random disasters. They show qualitative differences for the different disaster scenarios measured by path length, degree, clustering coefficient, and number of cycles. PMID:25932635

  15. The mechanics of state dependent neural correlations

    PubMed Central

    Doiron, Brent; Litwin-Kumar, Ashok; Rosenbaum, Robert; Ocker, Gabriel K.; Josić, Krešimir

    2016-01-01

    Simultaneous recordings from large neural populations are becoming increasingly common. An important feature of the population activity are the trial-to-trial correlated fluctuations of the spike train outputs of recorded neuron pairs. Like the firing rate of single neurons, correlated activity can be modulated by a number of factors, from changes in arousal and attentional state to learning and task engagement. However, the network mechanisms that underlie these changes are not fully understood. We review recent theoretical results that identify three separate biophysical mechanisms that modulate spike train correlations: changes in input correlations, internal fluctuations, and the transfer function of single neurons. We first examine these mechanisms in feedforward pathways, and then show how the same approach can explain the modulation of correlations in recurrent networks. Such mechanistic constraints on the modulation of population activity will be important in statistical analyses of high dimensional neural data. PMID:26906505

  16. Communication Strength of Correlations Violating Monogamy Relations

    NASA Astrophysics Data System (ADS)

    Kłobus, Waldemar; Oszmaniec, Michał; Augusiak, Remigiusz; Grudka, Andrzej

    2016-05-01

    In any theory satisfying the no-signaling principle correlations generated among spatially separated parties in a Bell-type experiment are subject to certain constraints known as monogamy relations. Recently, in the context of the black hole information loss problem it was suggested that these monogamy relations might be violated. This in turn implies that correlations arising in such a scenario must violate the no-signaling principle and hence can be used to send classical information between parties. Here, we study the amount of information that can be sent using such correlations. To this aim, we first provide a framework associating them with classical channels whose capacities are then used to quantify the usefulness of these correlations in sending information. Finally, we determine the minimal amount of information that can be sent using signaling correlations violating the monogamy relation associated to the chained Bell inequalities.

  17. Correlation Between Posttraumatic Growth and Posttraumatic Stress Disorder Symptoms Based on Pearson Correlation Coefficient: A Meta-Analysis.

    PubMed

    Liu, An-Nuo; Wang, Lu-Lu; Li, Hui-Ping; Gong, Juan; Liu, Xiao-Hong

    2017-05-01

    The literature on posttraumatic growth (PTG) is burgeoning, with the inconsistencies in the literature of the relationship between PTG and posttraumatic stress disorder (PTSD) symptoms becoming a focal point of attention. Thus, this meta-analysis aims to explore the relationship between PTG and PTSD symptoms through the Pearson correlation coefficient. A systematic search of the literature from January 1996 to November 2015 was completed. We retrieved reports on 63 studies that involved 26,951 patients. The weighted correlation coefficient revealed an effect size of 0.22 with a 95% confidence interval of 0.18 to 0.25. Meta-analysis provides evidence that PTG may be positively correlated with PTSD symptoms and that this correlation may be modified by age, trauma type, and time since trauma. Accordingly, people with high levels of PTG should not be ignored, but rather, they should continue to receive help to alleviate their PTSD symptoms.

  18. A hybrid correlation analysis with application to imaging genetics

    NASA Astrophysics Data System (ADS)

    Hu, Wenxing; Fang, Jian; Calhoun, Vince D.; Wang, Yu-Ping

    2018-03-01

    Investigating the association between brain regions and genes continues to be a challenging topic in imaging genetics. Current brain region of interest (ROI)-gene association studies normally reduce data dimension by averaging the value of voxels in each ROI. This averaging may lead to a loss of information due to the existence of functional sub-regions. Pearson correlation is widely used for association analysis. However, it only detects linear correlation whereas nonlinear correlation may exist among ROIs. In this work, we introduced distance correlation to ROI-gene association analysis, which can detect both linear and nonlinear correlations and overcome the limitation of averaging operations by taking advantage of the information at each voxel. Nevertheless, distance correlation usually has a much lower value than Pearson correlation. To address this problem, we proposed a hybrid correlation analysis approach, by applying canonical correlation analysis (CCA) to the distance covariance matrix instead of directly computing distance correlation. Incorporating CCA into distance correlation approach may be more suitable for complex disease study because it can detect highly associated pairs of ROI and gene groups, and may improve the distance correlation level and statistical power. In addition, we developed a novel nonlinear CCA, called distance kernel CCA, which seeks the optimal combination of features with the most significant dependence. This approach was applied to imaging genetic data from the Philadelphia Neurodevelopmental Cohort (PNC). Experiments showed that our hybrid approach produced more consistent results than conventional CCA across resampling and both the correlation and statistical significance were increased compared to distance correlation analysis. Further gene enrichment analysis and region of interest (ROI) analysis confirmed the associations of the identified genes with brain ROIs. Therefore, our approach provides a powerful tool for finding

  19. Life History Correlates of Ministerial Success

    ERIC Educational Resources Information Center

    Umeda, John K.; Frey, David H.

    1974-01-01

    Life history or biodata correlates of ministerial success were investigated for a group of 92 Seventh-Day Adventist ministers. Two significant bivariate correlations indicated that successful ministers chose their career later than less successful ones and that earning college expenses was predictive of success. (Author/HMV)

  20. Spatial versus sequential correlations for random access coding

    NASA Astrophysics Data System (ADS)

    Tavakoli, Armin; Marques, Breno; Pawłowski, Marcin; Bourennane, Mohamed

    2016-03-01

    Random access codes are important for a wide range of applications in quantum information. However, their implementation with quantum theory can be made in two very different ways: (i) by distributing data with strong spatial correlations violating a Bell inequality or (ii) using quantum communication channels to create stronger-than-classical sequential correlations between state preparation and measurement outcome. Here we study this duality of the quantum realization. We present a family of Bell inequalities tailored to the task at hand and study their quantum violations. Remarkably, we show that the use of spatial and sequential quantum correlations imposes different limitations on the performance of quantum random access codes: Sequential correlations can outperform spatial correlations. We discuss the physics behind the observed discrepancy between spatial and sequential quantum correlations.

  1. Cross-correlations between crude oil and agricultural commodity markets

    NASA Astrophysics Data System (ADS)

    Liu, Li

    2014-02-01

    In this paper, we investigate cross-correlations between crude oil and agricultural commodity markets. Based on a popular statistical test proposed by Podobnik et al. (2009), we find that the linear return cross-correlations are significant at larger lag lengths and the volatility cross-correlations are highly significant at all of the lag lengths under consideration. Using a detrended cross-correlation analysis (DCCA), we find that the return cross-correlations are persistent for corn and soybean and anti-persistent for oat and soybean. The volatility cross-correlations are strongly persistent. Using a nonlinear cross-correlation measure, our results show that cross-correlations are relatively weak but they are significant for smaller time scales. For larger time scales, the cross-correlations are not significant. The reason may be that information transmission from crude oil market to agriculture markets can complete within a certain period of time. Finally, based on multifractal extension of DCCA, we find that the cross-correlations are multifractal and high oil prices partly contribute to food crisis during the period of 2006-mid-2008.

  2. Correlated responses to clonal selection in populations of Daphnia pulicaria: mechanisms of genetic correlation and the creative power of sex.

    PubMed

    Dudycha, Jeffry L; Snoke-Smith, Margaret; Alía, Ricardo

    2013-02-01

    Genetic correlations among traits alter evolutionary trajectories due to indirect selection. Pleiotropy, chance linkage, and selection can all lead to genetic correlations, but have different consequences for phenotypic evolution. We sought to assess the mechanisms contributing to correlations with size at maturity in the cyclic parthenogen Daphnia pulicaria. We selected on size in each of four populations that differ in the frequency of sex, and evaluated correlated responses in a life table. Size at advanced adulthood, reproductive output, and adult growth rate clearly showed greater responses in high-sex populations, with a similar pattern in neonate size and r. This pattern is expected only when trait correlations are favored by selection and the frequency of sex favors the creation and demographic expansion of highly fit clones. Juvenile growth and age at maturity did not diverge consistently. The inter-clutch interval appeared to respond more strongly in low-sex populations, but this was not statistically significant. Our data support the hypothesis that correlated selection is the strongest driver of genetic correlations, and suggest that in organisms with both sexual and asexual reproduction, adaptation can be enhanced by recombination.

  3. Learning Bayesian Networks from Correlated Data

    NASA Astrophysics Data System (ADS)

    Bae, Harold; Monti, Stefano; Montano, Monty; Steinberg, Martin H.; Perls, Thomas T.; Sebastiani, Paola

    2016-05-01

    Bayesian networks are probabilistic models that represent complex distributions in a modular way and have become very popular in many fields. There are many methods to build Bayesian networks from a random sample of independent and identically distributed observations. However, many observational studies are designed using some form of clustered sampling that introduces correlations between observations within the same cluster and ignoring this correlation typically inflates the rate of false positive associations. We describe a novel parameterization of Bayesian networks that uses random effects to model the correlation within sample units and can be used for structure and parameter learning from correlated data without inflating the Type I error rate. We compare different learning metrics using simulations and illustrate the method in two real examples: an analysis of genetic and non-genetic factors associated with human longevity from a family-based study, and an example of risk factors for complications of sickle cell anemia from a longitudinal study with repeated measures.

  4. Quantum correlations with no causal order

    PubMed Central

    Oreshkov, Ognyan; Costa, Fabio; Brukner, Časlav

    2012-01-01

    The idea that events obey a definite causal order is deeply rooted in our understanding of the world and at the basis of the very notion of time. But where does causal order come from, and is it a necessary property of nature? Here, we address these questions from the standpoint of quantum mechanics in a new framework for multipartite correlations that does not assume a pre-defined global causal structure but only the validity of quantum mechanics locally. All known situations that respect causal order, including space-like and time-like separated experiments, are captured by this framework in a unified way. Surprisingly, we find correlations that cannot be understood in terms of definite causal order. These correlations violate a 'causal inequality' that is satisfied by all space-like and time-like correlations. We further show that in a classical limit causal order always arises, which suggests that space-time may emerge from a more fundamental structure in a quantum-to-classical transition. PMID:23033068

  5. Coding stimulus amplitude by correlated neural activity

    NASA Astrophysics Data System (ADS)

    Metzen, Michael G.; Ávila-Åkerberg, Oscar; Chacron, Maurice J.

    2015-04-01

    While correlated activity is observed ubiquitously in the brain, its role in neural coding has remained controversial. Recent experimental results have demonstrated that correlated but not single-neuron activity can encode the detailed time course of the instantaneous amplitude (i.e., envelope) of a stimulus. These have furthermore demonstrated that such coding required and was optimal for a nonzero level of neural variability. However, a theoretical understanding of these results is still lacking. Here we provide a comprehensive theoretical framework explaining these experimental findings. Specifically, we use linear response theory to derive an expression relating the correlation coefficient to the instantaneous stimulus amplitude, which takes into account key single-neuron properties such as firing rate and variability as quantified by the coefficient of variation. The theoretical prediction was in excellent agreement with numerical simulations of various integrate-and-fire type neuron models for various parameter values. Further, we demonstrate a form of stochastic resonance as optimal coding of stimulus variance by correlated activity occurs for a nonzero value of noise intensity. Thus, our results provide a theoretical explanation of the phenomenon by which correlated but not single-neuron activity can code for stimulus amplitude and how key single-neuron properties such as firing rate and variability influence such coding. Correlation coding by correlated but not single-neuron activity is thus predicted to be a ubiquitous feature of sensory processing for neurons responding to weak input.

  6. HIM Correlational Study

    ERIC Educational Resources Information Center

    Powell, Evan R.

    1977-01-01

    This study uses two methods of analysis to examine the degree to which items within the cells of the Hill Interaction Matrix correlate. It is found that the table of specifications does not hold up. But the author recommends caution in interpreting this finding. (Author/BP)

  7. A new correlation coefficient for bivariate time-series data

    NASA Astrophysics Data System (ADS)

    Erdem, Orhan; Ceyhan, Elvan; Varli, Yusuf

    2014-11-01

    The correlation in time series has received considerable attention in the literature. Its use has attained an important role in the social sciences and finance. For example, pair trading in finance is concerned with the correlation between stock prices, returns, etc. In general, Pearson’s correlation coefficient is employed in these areas although it has many underlying assumptions which restrict its use. Here, we introduce a new correlation coefficient which takes into account the lag difference of data points. We investigate the properties of this new correlation coefficient. We demonstrate that it is more appropriate for showing the direction of the covariation of the two variables over time. We also compare the performance of the new correlation coefficient with Pearson’s correlation coefficient and Detrended Cross-Correlation Analysis (DCCA) via simulated examples.

  8. Digital Correlation In Laser-Speckle Velocimetry

    NASA Technical Reports Server (NTRS)

    Gilbert, John A.; Mathys, Donald R.

    1992-01-01

    Periodic recording helps to eliminate spurious results. Improved digital-correlation process extracts velocity field of two-dimensional flow from laser-speckle images of seed particles distributed sparsely in flow. Method which involves digital correlation of images recorded at unequal intervals, completely automated and has potential to be fastest yet.

  9. Organizational Correlates of Management Training Interests.

    ERIC Educational Resources Information Center

    Tills, Marvin

    A study was made of a sample of Wisconsin manufacturing firms and a subsample of firms in different size categories to determine organizational correlates of management training interests. Correlations were sought between characteristics of firms (ownership, relationship to parent company, size of employment, market orientation, growth trends,…

  10. Retention capacity of correlated surfaces.

    PubMed

    Schrenk, K J; Araújo, N A M; Ziff, R M; Herrmann, H J

    2014-06-01

    We extend the water retention model [C. L. Knecht et al., Phys. Rev. Lett. 108, 045703 (2012)] to correlated random surfaces. We find that the retention capacity of discrete random landscapes is strongly affected by spatial correlations among the heights. This phenomenon is related to the emergence of power-law scaling in the lake volume distribution. We also solve the uncorrelated case exactly for a small lattice and present bounds on the retention of uncorrelated landscapes.

  11. Correlation functions in first-order phase transitions

    NASA Astrophysics Data System (ADS)

    Garrido, V.; Crespo, D.

    1997-09-01

    Most of the physical properties of systems underlying first-order phase transitions can be obtained from the spatial correlation functions. In this paper, we obtain expressions that allow us to calculate all the correlation functions from the droplet size distribution. Nucleation and growth kinetics is considered, and exact solutions are obtained for the case of isotropic growth by using self-similarity properties. The calculation is performed by using the particle size distribution obtained by a recently developed model (populational Kolmogorov-Johnson-Mehl-Avrami model). Since this model is less restrictive than that used in previously existing theories, the result is that the correlation functions can be obtained for any dependence of the kinetic parameters. The validity of the method is tested by comparison with the exact correlation functions, which had been obtained in the available cases by the time-cone method. Finally, the correlation functions corresponding to the microstructure developed in partitioning transformations are obtained.

  12. Matching and correlation computations in stereoscopic depth perception.

    PubMed

    Doi, Takahiro; Tanabe, Seiji; Fujita, Ichiro

    2011-03-02

    A fundamental task of the visual system is to infer depth by using binocular disparity. To encode binocular disparity, the visual cortex performs two distinct computations: one detects matched patterns in paired images (matching computation); the other constructs the cross-correlation between the images (correlation computation). How the two computations are used in stereoscopic perception is unclear. We dissociated their contributions in near/far discrimination by varying the magnitude of the disparity across separate sessions. For small disparity (0.03°), subjects performed at chance level to a binocularly opposite-contrast (anti-correlated) random-dot stereogram (RDS) but improved their performance with the proportion of contrast-matched (correlated) dots. For large disparity (0.48°), the direction of perceived depth reversed with an anti-correlated RDS relative to that for a correlated one. Neither reversed nor normal depth was perceived when anti-correlation was applied to half of the dots. We explain the decision process as a weighted average of the two computations, with the relative weight of the correlation computation increasing with the disparity magnitude. We conclude that matching computation dominates fine depth perception, while both computations contribute to coarser depth perception. Thus, stereoscopic depth perception recruits different computations depending on the disparity magnitude.

  13. Optimizing correlation techniques for improved earthquake location

    USGS Publications Warehouse

    Schaff, D.P.; Bokelmann, G.H.R.; Ellsworth, W.L.; Zanzerkia, E.; Waldhauser, F.; Beroza, G.C.

    2004-01-01

    Earthquake location using relative arrival time measurements can lead to dramatically reduced location errors and a view of fault-zone processes with unprecedented detail. There are two principal reasons why this approach reduces location errors. The first is that the use of differenced arrival times to solve for the vector separation of earthquakes removes from the earthquake location problem much of the error due to unmodeled velocity structure. The second reason, on which we focus in this article, is that waveform cross correlation can substantially reduce measurement error. While cross correlation has long been used to determine relative arrival times with subsample precision, we extend correlation measurements to less similar waveforms, and we introduce a general quantitative means to assess when correlation data provide an improvement over catalog phase picks. We apply the technique to local earthquake data from the Calaveras Fault in northern California. Tests for an example streak of 243 earthquakes demonstrate that relative arrival times with normalized cross correlation coefficients as low as ???70%, interevent separation distances as large as to 2 km, and magnitudes up to 3.5 as recorded on the Northern California Seismic Network are more precise than relative arrival times determined from catalog phase data. Also discussed are improvements made to the correlation technique itself. We find that for large time offsets, our implementation of time-domain cross correlation is often more robust and that it recovers more observations than the cross spectral approach. Longer time windows give better results than shorter ones. Finally, we explain how thresholds and empirical weighting functions may be derived to optimize the location procedure for any given region of interest, taking advantage of the respective strengths of diverse correlation and catalog phase data on different length scales.

  14. Alpha trimmed correlation for touchless finger image mosaicing

    NASA Astrophysics Data System (ADS)

    Rao, Shishir P.; Rajendran, Rahul; Agaian, Sos S.; Mulawka, Marzena Mary Ann

    2016-05-01

    In this paper, a novel technique to mosaic multiview contactless finger images is presented. This technique makes use of different correlation methods, such as, the Alpha-trimmed correlation, Pearson's correlation [1], Kendall's correlation [2], and Spearman's correlation [2], to combine multiple views of the finger. The key contributions of the algorithm are: 1) stitches images more accurately, 2) provides better image fusion effects, 3) has better visual effect on the overall image, and 4) is more reliable. The extensive computer simulations show that the proposed method produces better or comparable stitched images than several state-of-the-art methods, such as those presented by Feng Liu [3], K Choi [4], H Choi [5], and G Parziale [6]. In addition, we also compare various correlation techniques with the correlation method mentioned in [3] and analyze the output. In the future, this method can be extended to obtain a 3D model of the finger using multiple views of the finger, and help in generating scenic panoramic images and underwater 360-degree panoramas.

  15. Polyakov loop correlator in perturbation theory

    DOE PAGES

    Berwein, Matthias; Brambilla, Nora; Petreczky, Péter; ...

    2017-07-25

    We study the Polyakov loop correlator in the weak coupling expansion and show how the perturbative series re-exponentiates into singlet and adjoint contributions. We calculate the order g 7 correction to the Polyakov loop correlator in the short distance limit. We show how the singlet and adjoint free energies arising from the re-exponentiation formula of the Polyakov loop correlator are related to the gauge invariant singlet and octet free energies that can be defined in pNRQCD, namely we find that the two definitions agree at leading order in the multipole expansion, but differ at first order in the quark-antiquark distance.

  16. Redundant correlation effect on personalized recommendation

    NASA Astrophysics Data System (ADS)

    Qiu, Tian; Han, Teng-Yue; Zhong, Li-Xin; Zhang, Zi-Ke; Chen, Guang

    2014-02-01

    The high-order redundant correlation effect is investigated for a hybrid algorithm of heat conduction and mass diffusion (HHM), through both heat conduction biased (HCB) and mass diffusion biased (MDB) correlation redundancy elimination processes. The HCB and MDB algorithms do not introduce any additional tunable parameters, but keep the simple character of the original HHM. Based on two empirical datasets, the Netflix and MovieLens, the HCB and MDB are found to show better recommendation accuracy for both the overall objects and the cold objects than the HHM algorithm. Our work suggests that properly eliminating the high-order redundant correlations can provide a simple and effective approach to accurate recommendation.

  17. Polyakov loop correlator in perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berwein, Matthias; Brambilla, Nora; Petreczky, Péter

    We study the Polyakov loop correlator in the weak coupling expansion and show how the perturbative series re-exponentiates into singlet and adjoint contributions. We calculate the order g 7 correction to the Polyakov loop correlator in the short distance limit. We show how the singlet and adjoint free energies arising from the re-exponentiation formula of the Polyakov loop correlator are related to the gauge invariant singlet and octet free energies that can be defined in pNRQCD, namely we find that the two definitions agree at leading order in the multipole expansion, but differ at first order in the quark-antiquark distance.

  18. Optimal Correlations in Many-Body Quantum Systems

    NASA Astrophysics Data System (ADS)

    Amico, L.; Rossini, D.; Hamma, A.; Korepin, V. E.

    2012-06-01

    Information and correlations in a quantum system are closely related through the process of measurement. We explore such relation in a many-body quantum setting, effectively bridging between quantum metrology and condensed matter physics. To this aim we adopt the information-theory view of correlations and study the amount of correlations after certain classes of positive-operator-valued measurements are locally performed. As many-body systems, we consider a one-dimensional array of interacting two-level systems (a spin chain) at zero temperature, where quantum effects are most pronounced. We demonstrate how the optimal strategy to extract the correlations depends on the quantum phase through a subtle interplay between local interactions and coherence.

  19. Long-Range Rapidity Correlations in Heavy-Light Ion Collisions

    NASA Astrophysics Data System (ADS)

    Kovchegov, Yuri; Wertepny, Douglas

    2013-04-01

    We study two-particle long-range rapidity correlations arising in the early stages of heavy ion collisions in the saturation/Color Glass Condensate framework, assuming for simplicity that one colliding nucleus is much larger than the other. We calculate the two-gluon production cross section while including all-order saturation effects in the heavy nucleus with the lowest-order rescattering in the lighter nucleus. We find four types of correlations in the two-gluon production cross section: (i) geometric correlations, (ii) HBT correlations, (iii) back-to-back correlations, and (iv) near-side azimuthal correlations which are long-range in rapidity. The geometric correlations (i) are due to the fact that nucleons are correlated by simply being confined within the same nucleus and may lead to long-range rapidity correlations for the produced particles without strong azimuthal angle dependence. Somewhat surprisingly, long-range rapidity correlations (iii) and (iv) have exactly the same amplitudes along with azimuthal and rapidity shapes: one centered around δφ=π with the other one centered around δφ=0 (here δφ is the azimuthal angle between the two produced gluons). This prediction is in agreement with the recent ALICE p+Pb data.

  20. The new Heavy-ion MCP-based Ancillary Detector DANTE for the CLARA-PRISMA Setup

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valiente-Dobon, J. J.; Gadea, A.; Corradi, L.

    2006-08-14

    The CLARA-PRISMA setup is a powerful tool for spectroscopic studies of neutron-rich nuclei produced in multi-nucleon transfer and deep-inelastic reactions. It combines the large acceptance spectrometer PRISMA with the {gamma}-ray array CLARA. At present, the ancillary heavy-ion detector DANTE, based on Micro-Channel Plates to be installed at the CLARA-PRISMA setup, is being constructed at LNL. DANTE will open the possibility of measuring {gamma}-{gamma} Doppler-corrected coincidences for the events outside the acceptance of PRISMA. In this presentation, it is described the heavy-ion detector DANTE, as well as the performances of the first prototype.

  1. Microstructural study of the nickel-base alloy WAZ-20 using qualitative and quantitative electron optical techniques

    NASA Technical Reports Server (NTRS)

    Young, S. G.

    1973-01-01

    The NASA nickel-base alloy WAZ-20 was analyzed by advanced metallographic techniques to qualitatively and quantitatively characterize its phases and stability. The as-cast alloy contained primary gamma-prime, a coarse gamma-gamma prime eutectic, a gamma-fine gamma prime matrix, and MC carbides. A specimen aged at 870 C for 1000 hours contained these same constituents and a few widely scattered high W particles. No detrimental phases (such as sigma or mu) were observed. Scanning electron microscope, light metallography, and replica electron microscope methods are compared. The value of quantitative electron microprobe techniques such as spot and area analysis is demonstrated.

  2. Evaluation of an advanced directionally solidified gamma/gamma'-alpha Mo eutectic alloy

    NASA Technical Reports Server (NTRS)

    Henry, M. F.; Jackson, M. R.; Gigliotti, M. F. X.; Nelson, P. B.

    1979-01-01

    An attempt was made to improve on the properties of the candidate jet engine turbine blade material AG-60, a gamma/gamma prime-alpha Mo eutectic composite. Alloy 38 (AG-170) was evaluated in the greatest detail. This alloy, Ni-5.88 A1-29.74 Mo-1.65 V-1.2C Re (weight percent), represents an improvement beyond AG-60, based on mechanical testing of the transverse and/or longitudinal orientations over a range of temperatures in tension, shear, rupture, and rupture after thermal exposure. It is likely that other alloys in the study represent a similar improvement.

  3. Multifractal detrended cross-correlation analysis in the MENA area

    NASA Astrophysics Data System (ADS)

    El Alaoui, Marwane; Benbachir, Saâd

    2013-12-01

    In this paper, we investigated multifractal cross-correlations qualitatively and quantitatively using a cross-correlation test and the Multifractal detrended cross-correlation analysis method (MF-DCCA) for markets in the MENA area. We used cross-correlation coefficients to measure the level of this correlation. The analysis concerns four stock market indices of Morocco, Tunisia, Egypt and Jordan. The countries chosen are signatory of the Agadir agreement concerning the establishment of a free trade area comprising Arab Mediterranean countries. We computed the bivariate generalized Hurst exponent, Rényi exponent and spectrum of singularity for each pair of indices to measure quantitatively the cross-correlations. By analyzing the results, we found the existence of multifractal cross-correlations between all of these markets. We compared the spectrum width of these indices; we also found which pair of indices has a strong multifractal cross-correlation.

  4. Entanglement, nonlocality and multi-particle quantum correlations

    NASA Astrophysics Data System (ADS)

    Reid, Margaret D.

    2018-04-01

    This paper contributes to the proceedings of the Latin-American School of Physics (ELAF-2017) on Quantum Correlations, and is a brief review of quantum entanglement and nonlocality. In such a brief review, only some topics can be covered. The emphasis is on those topics relevant that may be relevant to detecting multi-particle quantum correlations arising in atomic and Bose-Einstein condensate (BEC) experiments. The paper is divided into five sections. In the first section, the historical papers of Einstein-Podolsky-Rosen (EPR), Bell, Schrodinger and Greenberger-Zeilinger-Horne (GHZ) are described in a tutorial fashion. This is followed by an introduction to entanglement and density operators. A discussion of the classes of nonlocality is given in the third section, including the modern interpretation of the correlations of the EPR paradox experiments, known as EPR steering correlations. The fourth section covers the detection and generation of so-called continuous variable entanglement and EPR steering. Various known criteria are derived with the details of the proofs given for tutorial purposes. The final section focuses on the criteria and methods that have been useful to detect quantum correlation in BEC or atomic systems. Recent results relating spin squeezing with quantum correlations, including entanglement and EPR steering, are summarised.

  5. Correlates of Circulating 25-Hydroxyvitamin D

    PubMed Central

    McCullough, Marjorie L.; Weinstein, Stephanie J.; Freedman, D. Michal; Helzlsouer, Kathy; Flanders, W. Dana; Koenig, Karen; Kolonel, Laurence; Laden, Francine; Le Marchand, Loic; Purdue, Mark; Snyder, Kirk; Stevens, Victoria L.; Stolzenberg-Solomon, Rachael; Virtamo, Jarmo; Yang, Gong; Yu, Kai; Zheng, Wei; Albanes, Demetrius; Ashby, Jason; Bertrand, Kimberly; Cai, Hui; Chen, Yu; Gallicchio, Lisa; Giovannucci, Edward; Jacobs, Eric J.; Hankinson, Susan E.; Hartge, Patricia; Hartmuller, Virginia; Harvey, Chinonye; Hayes, Richard B.; Horst, Ronald L.; Shu, Xiao-Ou

    2010-01-01

    Low vitamin D status is common globally and is associated with multiple disease outcomes. Understanding the correlates of vitamin D status will help guide clinical practice, research, and interpretation of studies. Correlates of circulating 25-hydroxyvitamin D (25(OH)D) concentrations measured in a single laboratory were examined in 4,723 cancer-free men and women from 10 cohorts participating in the Cohort Consortium Vitamin D Pooling Project of Rarer Cancers, which covers a worldwide geographic area. Demographic and lifestyle characteristics were examined in relation to 25(OH)D using stepwise linear regression and polytomous logistic regression. The prevalence of 25(OH)D concentrations less than 25 nmol/L ranged from 3% to 36% across cohorts, and the prevalence of 25(OH)D concentrations less than 50 nmol/L ranged from 29% to 82%. Seasonal differences in circulating 25(OH)D were most marked among whites from northern latitudes. Statistically significant positive correlates of 25(OH)D included male sex, summer blood draw, vigorous physical activity, vitamin D intake, fish intake, multivitamin use, and calcium supplement use. Significant inverse correlates were body mass index, winter and spring blood draw, history of diabetes, sedentary behavior, smoking, and black race/ethnicity. Correlates varied somewhat within season, race/ethnicity, and sex. These findings help identify persons at risk for low vitamin D status for both clinical and research purposes. PMID:20562191

  6. Temporal correlation coefficient for directed networks.

    PubMed

    Büttner, Kathrin; Salau, Jennifer; Krieter, Joachim

    2016-01-01

    Previous studies dealing with network theory focused mainly on the static aggregation of edges over specific time window lengths. Thus, most of the dynamic information gets lost. To assess the quality of such a static aggregation the temporal correlation coefficient can be calculated. It measures the overall possibility for an edge to persist between two consecutive snapshots. Up to now, this measure is only defined for undirected networks. Therefore, we introduce the adaption of the temporal correlation coefficient to directed networks. This new methodology enables the distinction between ingoing and outgoing edges. Besides a small example network presenting the single calculation steps, we also calculated the proposed measurements for a real pig trade network to emphasize the importance of considering the edge direction. The farm types at the beginning of the pork supply chain showed clearly higher values for the outgoing temporal correlation coefficient compared to the farm types at the end of the pork supply chain. These farm types showed higher values for the ingoing temporal correlation coefficient. The temporal correlation coefficient is a valuable tool to understand the structural dynamics of these systems, as it assesses the consistency of the edge configuration. The adaption of this measure for directed networks may help to preserve meaningful additional information about the investigated network that might get lost if the edge directions are ignored.

  7. Lieb-Robinson bounds on n -partite connected correlation functions

    NASA Astrophysics Data System (ADS)

    Tran, Minh Cong; Garrison, James R.; Gong, Zhe-Xuan; Gorshkov, Alexey V.

    2017-11-01

    Lieb and Robinson provided bounds on how fast bipartite connected correlations can arise in systems with only short-range interactions. We generalize Lieb-Robinson bounds on bipartite connected correlators to multipartite connected correlators. The bounds imply that an n -partite connected correlator can reach unit value in constant time. Remarkably, the bounds also allow for an n -partite connected correlator to reach a value that is exponentially large with system size in constant time, a feature which stands in contrast to bipartite connected correlations. We provide explicit examples of such systems.

  8. RELAP-7 Closure Correlations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Ling; Berry, R. A.; Martineau, R. C.

    The RELAP-7 code is the next generation nuclear reactor system safety analysis code being developed at the Idaho National Laboratory (INL). The code is based on the INL’s modern scientific software development framework, MOOSE (Multi-Physics Object Oriented Simulation Environment). The overall design goal of RELAP-7 is to take advantage of the previous thirty years of advancements in computer architecture, software design, numerical integration methods, and physical models. The end result will be a reactor systems analysis capability that retains and improves upon RELAP5’s and TRACE’s capabilities and extends their analysis capabilities for all reactor system simulation scenarios. The RELAP-7 codemore » utilizes the well-posed 7-equation two-phase flow model for compressible two-phase flow. Closure models used in the TRACE code has been reviewed and selected to reflect the progress made during the past decades and provide a basis for the colure correlations implemented in the RELAP-7 code. This document provides a summary on the closure correlations that are currently implemented in the RELAP-7 code. The closure correlations include sub-grid models that describe interactions between the fluids and the flow channel, and interactions between the two phases.« less

  9. A Reformulated Correlated Trait-Correlated Method Model for Multitrait-Multimethod Data Effectively Increases Convergence and Admissibility Rates

    ERIC Educational Resources Information Center

    Fan, Yi; Lance, Charles E.

    2017-01-01

    The correlated trait-correlated method (CTCM) model for the analysis of multitrait-multimethod (MTMM) data is known to suffer convergence and admissibility (C&A) problems. We describe a little known and seldom applied reparameterized version of this model (CTCM-R) based on Rindskopf's reparameterization of the simpler confirmatory factor…

  10. A minimalistic approach to static and dynamic electron correlations: Amending generalized valence bond method with extended random phase approximation correlation correction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, Koushik; Jawulski, Konrad; Pastorczak, Ewa

    A perfect-pairing generalized valence bond (GVB) approximation is known to be one of the simplest approximations, which allows one to capture the essence of static correlation in molecular systems. In spite of its attractive feature of being relatively computationally efficient, this approximation misses a large portion of dynamic correlation and does not offer sufficient accuracy to be generally useful for studying electronic structure of molecules. We propose to correct the GVB model and alleviate some of its deficiencies by amending it with the correlation energy correction derived from the recently formulated extended random phase approximation (ERPA). On the examples ofmore » systems of diverse electronic structures, we show that the resulting ERPA-GVB method greatly improves upon the GVB model. ERPA-GVB recovers most of the electron correlation and it yields energy barrier heights of excellent accuracy. Thanks to a balanced treatment of static and dynamic correlation, ERPA-GVB stays reliable when one moves from systems dominated by dynamic electron correlation to those for which the static correlation comes into play.« less

  11. Covariate-adjusted Spearman's rank correlation with probability-scale residuals.

    PubMed

    Liu, Qi; Li, Chun; Wanga, Valentine; Shepherd, Bryan E

    2018-06-01

    It is desirable to adjust Spearman's rank correlation for covariates, yet existing approaches have limitations. For example, the traditionally defined partial Spearman's correlation does not have a sensible population parameter, and the conditional Spearman's correlation defined with copulas cannot be easily generalized to discrete variables. We define population parameters for both partial and conditional Spearman's correlation through concordance-discordance probabilities. The definitions are natural extensions of Spearman's rank correlation in the presence of covariates and are general for any orderable random variables. We show that they can be neatly expressed using probability-scale residuals (PSRs). This connection allows us to derive simple estimators. Our partial estimator for Spearman's correlation between X and Y adjusted for Z is the correlation of PSRs from models of X on Z and of Y on Z, which is analogous to the partial Pearson's correlation derived as the correlation of observed-minus-expected residuals. Our conditional estimator is the conditional correlation of PSRs. We describe estimation and inference, and highlight the use of semiparametric cumulative probability models, which allow preservation of the rank-based nature of Spearman's correlation. We conduct simulations to evaluate the performance of our estimators and compare them with other popular measures of association, demonstrating their robustness and efficiency. We illustrate our method in two applications, a biomarker study and a large survey. © 2017, The International Biometric Society.

  12. Correlation between the Mayan calendar and ours: Astronomy helps to answer why the most popular correlation (GMT) is wrong

    NASA Astrophysics Data System (ADS)

    Klokočník, J.; Kostelecký, J.; Böhm, V.; Böhm, B.; Vondrák, J.; Vítek, F.

    2008-05-01

    The Maya used their own very precise calendar. When transforming data from the Mayan calendar to ours, or vice versa, a surprisingly large uncertainty is found. The relationship between the two calendars has been investigated by many researchers during the last century and about 50 different values of the transformation coefficient, known as the correlation, have been deduced. They can differ by centuries, potentially yielding an incredibly large error in the relation of Mayan history to the history of other civilizations. The most frequently used correlation is the GMT one (of Goodman-Martínez-Thompson), based largely on historical evidence from colonial times. Astronomy (celestial mechanics) may resolve the problem of the correlation, provided that historians have correctly decoded the records of various astronomical phenomena discovered, namely, in one extremely important and rare Mayan book, the Dresden Codex (DC). This describes (among other matters) observations of various astronomical phenomena (eclipses, conjunctions, maximum elongations, heliacal aspects, etc), made by the Maya. Modern celestial mechanics enables us to compute exactly when the phenomena occurred in the sky for the given place on the Earth, even though far back in time. Here we check (by a completely independent method), confirming the value of the correlation obtained by Böhm & Böhm (1996, 1999). In view of these tests, we advocate rejecting the GMT correlation and replacing it by the Böhm's correlation. We also comment on the criticism of GMT by some investigators. The replacement of GMT by another correlation seems, however, unacceptable to many Mayanists, as they would need to rewrite the whole history of Mesoamerica. The history of the Maya would be - for example with Böhm's correlation - closer to our time by 104 years.

  13. Correlated evolution of personality, morphology and performance

    PubMed Central

    Kern, Elizabeth M. A.; Robinson, Detric; Gass, Erika; Godwin, John; Langerhans, R. Brian

    2018-01-01

    Evolutionary change in one trait can elicit evolutionary changes in other traits due to genetic correlations. This constrains the independent evolution of traits and can lead to unpredicted ecological and evolutionary outcomes. Animals might frequently exhibit genetic associations among behavioural and morphological-physiological traits, because the physiological mechanisms behind animal personality can have broad multitrait effects and because many selective agents influence the evolution of multiple types of traits. However, we currently know little about genetic correlations between animal personalities and nonbehavioural traits. We tested for associations between personality, morphology and locomotor performance by comparing zebrafish (Danio rerio) collected from the wild and then selectively bred for either a proactive or reactive stress coping style (‘bold’ or ‘shy’ phenotypes). Based on adaptive hypotheses of correlational selection in the wild, we predicted that artificial selection for boldness would produce correlated evolutionary responses of larger caudal regions and higher fast-start escape performance (and the opposite for shyness). After four to seven generations, morphology and locomotor performance differed between personality lines: bold zebrafish exhibited a larger caudal region and higher fast-start performance than fish in the shy line, matching predictions. Individual-level phenotypic correlations suggested that pleiotropy or physical gene linkage likely explained the correlated response of locomotor performance, while the correlated response of body shape may have reflected linkage disequilibrium, which is breaking down each generation in the laboratory. Our results indicate that evolution of personality can result in concomitant changes in morphology and whole-organism performance, and vice versa. PMID:29398712

  14. Modified Regression Correlation Coefficient for Poisson Regression Model

    NASA Astrophysics Data System (ADS)

    Kaengthong, Nattacha; Domthong, Uthumporn

    2017-09-01

    This study gives attention to indicators in predictive power of the Generalized Linear Model (GLM) which are widely used; however, often having some restrictions. We are interested in regression correlation coefficient for a Poisson regression model. This is a measure of predictive power, and defined by the relationship between the dependent variable (Y) and the expected value of the dependent variable given the independent variables [E(Y|X)] for the Poisson regression model. The dependent variable is distributed as Poisson. The purpose of this research was modifying regression correlation coefficient for Poisson regression model. We also compare the proposed modified regression correlation coefficient with the traditional regression correlation coefficient in the case of two or more independent variables, and having multicollinearity in independent variables. The result shows that the proposed regression correlation coefficient is better than the traditional regression correlation coefficient based on Bias and the Root Mean Square Error (RMSE).

  15. Quantum correlations beyond Tsirelson's bound

    NASA Astrophysics Data System (ADS)

    Berry, Dominic; Ringbauer, Martin; Fedrizzi, Alessandro; White, Andrew

    2014-03-01

    Violations of Bell inequalities show that there are correlations that cannot explained by any classical theory. Further violation, beyond Tsirelson's bound, shows that there are correlations that are not explained by quantum mechanics. Such super-quantum correlations would enable violation of information causality, where communication of one bit provides more than one bit of information [Nature 461, 1101 (2009)]. An unavoidable feature of all realistic Bell inequality experiments is loss. If one postselects on successful measurements, unentangled states can violate Bell inequalities. On the other hand, loss can be used to enhance the violation of Bell inequalities for entangled states. This can improve the ability to distinguish between entangled and unentangled states, despite loss. Here we report an optical experiment providing maximal violation of the CHSH-Bell inequality with entangled states. Due to loss and postselection, Tsirelson's bound is also violated. This enables us to more easily distinguish between entangled and unentangled states. In addition, it provides violation of information causality for the postselected data.

  16. Correlated optical and isotopic nanoscopy

    NASA Astrophysics Data System (ADS)

    Saka, Sinem K.; Vogts, Angela; Kröhnert, Katharina; Hillion, François; Rizzoli, Silvio O.; Wessels, Johannes T.

    2014-04-01

    The isotopic composition of different materials can be imaged by secondary ion mass spectrometry. In biology, this method is mainly used to study cellular metabolism and turnover, by pulsing the cells with marker molecules such as amino acids labelled with stable isotopes (15N, 13C). The incorporation of the markers is then imaged with a lateral resolution that can surpass 100 nm. However, secondary ion mass spectrometry cannot identify specific subcellular structures like organelles, and needs to be correlated with a second technique, such as fluorescence imaging. Here, we present a method based on stimulated emission depletion microscopy that provides correlated optical and isotopic nanoscopy (COIN) images. We use this approach to study the protein turnover in different organelles from cultured hippocampal neurons. Correlated optical and isotopic nanoscopy can be applied to a variety of biological samples, and should therefore enable the investigation of the isotopic composition of many organelles and subcellular structures.

  17. The neural correlates of dreaming

    PubMed Central

    Siclari, F.; Baird, B.; Perogamvros, L.; Bernardi, G.; LaRocque, J. J.; Riedner, B.; Boly, M.; Postle, B. R.; Tononi, G.

    2017-01-01

    Consciousness never fades during wake. However, if awakened from sleep, sometimes we report dreams and sometimes no experiences. Traditionally, dreaming has been identified with REM sleep, characterized by a wake-like, globally ‘activated’, high-frequency EEG. However, dreaming also occurs in NREM sleep, characterized by prominent low-frequency activity. This challenges our understanding of the neural correlates of conscious experiences in sleep. Using high-density EEG, we contrasted the presence and absence of dreaming within NREM and REM sleep. In both NREM and REM sleep, reports of dream experience were associated with a local decrease in low-frequency activity in posterior cortical regions. High-frequency activity within these regions correlated with specific dream contents. Monitoring this posterior ‘hot zone’ predicted whether an individual reported dreaming or the absence of experiences during NREM sleep in real time, suggesting that it may constitute a core correlate of conscious experiences in sleep. PMID:28394322

  18. Correlative Fluorescence and Electron Microscopy

    PubMed Central

    Schirra, Randall T.; Zhang, Peijun

    2014-01-01

    Correlative fluorescence and electron microscopy (CFEM) is a multimodal technique that combines dynamic and localization information from fluorescence methods with ultrastructural data from electron microscopy, to give new information about how cellular components change relative to the spatiotemporal dynamics within their environment. In this review, we will discuss some of the basic techniques and tools of the trade for utilizing this attractive research method, which is becoming a very powerful tool for biology labs. The information obtained from correlative methods has proven to be invaluable in creating consensus between the two types of microscopy, extending the capability of each, and cutting the time and expense associate with using each method separately for comparative analysis. The realization of the advantages of these methods in cell biology have led to rapid improvement in the protocols and have ushered in a new generation of instruments to reach the next level of correlation – integration. PMID:25271959

  19. Correlated Temporal and Spectral Variability

    NASA Technical Reports Server (NTRS)

    Swank, Jean H.

    2007-01-01

    The variability of neutron star and black hole X-ray sources has several dimensions, because of the roles played by different important time-scales. The variations on time scales of hours, weeks, and months, ranging from 50% to orders of magnitude, arise out of changes in the flow in the disk. The most important driving forces for those changes are probably various possible instabilities in the disk, though there may be effects with other dominant causes. The changes in the rate of flow appear to be associated with changes in the flow's configuration, as the accreting material approaches the compact object, for there are generally correlated changes in both the Xray spectra and the character of the faster temporal variability. There has been a lot of progress in tracking these correlations, both for Z and Atoll neutron star low-mass X-ray binaries, and for black hole binaries. I will discuss these correlations and review briefly what they tell us about the physical states of the systems.

  20. The neural correlates of dreaming.

    PubMed

    Siclari, Francesca; Baird, Benjamin; Perogamvros, Lampros; Bernardi, Giulio; LaRocque, Joshua J; Riedner, Brady; Boly, Melanie; Postle, Bradley R; Tononi, Giulio

    2017-06-01

    Consciousness never fades during waking. However, when awakened from sleep, we sometimes recall dreams and sometimes recall no experiences. Traditionally, dreaming has been identified with rapid eye-movement (REM) sleep, characterized by wake-like, globally 'activated', high-frequency electroencephalographic activity. However, dreaming also occurs in non-REM (NREM) sleep, characterized by prominent low-frequency activity. This challenges our understanding of the neural correlates of conscious experiences in sleep. Using high-density electroencephalography, we contrasted the presence and absence of dreaming in NREM and REM sleep. In both NREM and REM sleep, reports of dream experience were associated with local decreases in low-frequency activity in posterior cortical regions. High-frequency activity in these regions correlated with specific dream contents. Monitoring this posterior 'hot zone' in real time predicted whether an individual reported dreaming or the absence of dream experiences during NREM sleep, suggesting that it may constitute a core correlate of conscious experiences in sleep.

  1. From degree-correlated to payoff-correlated activity for an optimal resolution of social dilemmas

    NASA Astrophysics Data System (ADS)

    Aleta, Alberto; Meloni, Sandro; Perc, Matjaž; Moreno, Yamir

    2016-12-01

    An active participation of players in evolutionary games depends on several factors, ranging from personal stakes to the properties of the interaction network. Diverse activity patterns thus have to be taken into account when studying the evolution of cooperation in social dilemmas. Here we study the weak prisoner's dilemma game, where the activity of each player is determined in a probabilistic manner either by its degree or by its payoff. While degree-correlated activity introduces cascading failures of cooperation that are particularly severe on scale-free networks with frequently inactive hubs, payoff-correlated activity provides a more nuanced activity profile, which ultimately hinders systemic breakdowns of cooperation. To determine optimal conditions for the evolution of cooperation, we introduce an exponential decay to payoff-correlated activity that determines how fast the activity of a player returns to its default state. We show that there exists an intermediate decay rate at which the resolution of the social dilemma is optimal. This can be explained by the emerging activity patterns of players, where the inactivity of hubs is compensated effectively by the increased activity of average-degree players, who through their collective influence in the network sustain a higher level of cooperation. The sudden drops in the fraction of cooperators observed with degree-correlated activity therefore vanish, and so does the need for the lengthy spatiotemporal reorganization of compact cooperative clusters. The absence of such asymmetric dynamic instabilities thus leads to an optimal resolution of social dilemmas, especially when the conditions for the evolution of cooperation are strongly adverse.

  2. Enhancing the sensitivity of fluorescence correlation spectroscopy by using time-correlated single photon counting.

    PubMed

    Lamb, D C; Müller, B K; Bräuchle, C

    2005-10-01

    Fluorescence correlation spectroscopy (FCS) and fluorescence cross-correlation spectroscopy (FCCS) are methods that extract information about a sample from the influence of thermodynamic equilibrium fluctuations on the fluorescence intensity. This method allows dynamic information to be obtained from steady state equilibrium measurements and its popularity has dramatically increased in the last 10 years due to the development of high sensitivity detectors and its combination with confocal microscopy. Using time-correlated single-photon counting (TCSPC) detection and pulsed excitation, information over the duration of the excited state can be extracted and incorporated in the analysis. In this short review, we discuss new methodologies that have recently emerged which incorporated fluorescence lifetime information or TCSPC data in the FCS and FCCS analysis. Time-gated FCS discriminates between which photons are to be incorporated in the analysis dependent upon their arrival time after excitation. This allows for accurate FCS measurements in the presence of fluorescent background, determination of sample homogeneity, and the ability to distinguish between static and dynamic heterogeneities. A similar method, time-resolved FCS can be used to resolve the individual correlation functions from multiple fluorophores through the different fluorescence lifetimes. Pulsed interleaved excitation (PIE) encodes the excitation source into the TCSPC data. PIE can be used to perform dual-channel FCCS with a single detector and allows elimination of spectral cross-talk with dual-channel detection. For samples that undergo fluorescence resonance energy transfer (FRET), quantitative FCCS measurements can be performed in spite of the FRET and the static FRET efficiency can be determined.

  3. Frequency-Modulation Correlation Spectrometer

    NASA Technical Reports Server (NTRS)

    Margolis, J. S.; Martonchik, J. V.

    1985-01-01

    New type of correlation spectrometer eliminates need to shift between two cells, one empty and one containing reference gas. Electrooptical phase modulator sinusoidally shift frequencies of sample transmission spectrum.

  4. Approximate correlations for chevron-type plate heat exchangers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wanniarachchi, A.S.; Ratnam, U.; Tilton, B.E.

    1995-12-31

    There exists very little useful data representing the performance of industrial plate heat exchangers (PHEs) in the open literature. As a result, it has been difficult to arrive at any generalized correlations. While every PHE manufacturer is believed to have a comprehensive set of performance curves for their own designs, there exists the need to generate an approximate set of generalized correlations for the heat-transfer community. Such correlations can be used for preliminary designs and analytical studies. This paper attempts to develop such a set of generalized correlations to quantify the heat-transfer and pressure-drop performance of chevron-type PHEs. For thismore » purpose, the experimental data reported by Heavner et al. were used for the turbulent region. For the laminar region, a semi-theoretical approach was used to express, for example, the friction factor as a function of the Reynolds number and the chevron angle. Asymptotic curves were used for the transitional region. Physical explanations are provided for the trends shown by the generalized correlations. The correlations are compared against the open-literature data, where appropriate. These correlations are expected to be improved in the future when more data become available.« less

  5. Coarse-grained hydrodynamics from correlation functions

    NASA Astrophysics Data System (ADS)

    Palmer, Bruce

    2018-02-01

    This paper will describe a formalism for using correlation functions between different grid cells as the basis for determining coarse-grained hydrodynamic equations for modeling the behavior of mesoscopic fluid systems. Configurations from a molecular dynamics simulation or other atomistic simulation are projected onto basis functions representing grid cells in a continuum hydrodynamic simulation. Equilibrium correlation functions between different grid cells are evaluated from the molecular simulation and used to determine the evolution operator for the coarse-grained hydrodynamic system. The formalism is demonstrated on a discrete particle simulation of diffusion with a spatially dependent diffusion coefficient. Correlation functions are calculated from the particle simulation and the spatially varying diffusion coefficient is recovered using a fitting procedure.

  6. Experimental results for correlation-based wavefront sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poyneer, L A; Palmer, D W; LaFortune, K N

    2005-07-01

    Correlation wave-front sensing can improve Adaptive Optics (AO) system performance in two keys areas. For point-source-based AO systems, Correlation is more accurate, more robust to changing conditions and provides lower noise than a centroiding algorithm. Experimental results from the Lick AO system and the SSHCL laser AO system confirm this. For remote imaging, Correlation enables the use of extended objects for wave-front sensing. Results from short horizontal-path experiments will show algorithm properties and requirements.

  7. Correlation and prediction of gaseous diffusion coefficients.

    NASA Technical Reports Server (NTRS)

    Marrero, T. R.; Mason, E. A.

    1973-01-01

    A new correlation method for binary gaseous diffusion coefficients from very low temperatures to 10,000 K is proposed based on an extended principle of corresponding states, and having greater range and accuracy than previous correlations. There are two correlation parameters that are related to other physical quantities and that are predictable in the absence of diffusion measurements. Quantum effects and composition dependence are included, but high-pressure effects are not. The results are directly applicable to multicomponent mixtures.

  8. Correlation of Helium Solubility in Liquid Nitrogen

    NASA Technical Reports Server (NTRS)

    VanDresar, Neil T.; Zimmerli, Gregory A.

    2012-01-01

    A correlation has been developed for the equilibrium mole fraction of soluble gaseous helium in liquid nitrogen as a function of temperature and pressure. Experimental solubility data was compiled and provided by National Institute of Standards and Technology (NIST). Data from six sources was used to develop a correlation within the range of 0.5 to 9.9 MPa and 72.0 to 119.6 K. The relative standard deviation of the correlation is 6.9 percent.

  9. Generalized interferometry - I: theory for interstation correlations

    NASA Astrophysics Data System (ADS)

    Fichtner, Andreas; Stehly, Laurent; Ermert, Laura; Boehm, Christian

    2017-02-01

    We develop a general theory for interferometry by correlation that (i) properly accounts for heterogeneously distributed sources of continuous or transient nature, (ii) fully incorporates any type of linear and nonlinear processing, such as one-bit normalization, spectral whitening and phase-weighted stacking, (iii) operates for any type of medium, including 3-D elastic, heterogeneous and attenuating media, (iv) enables the exploitation of complete correlation waveforms, including seemingly unphysical arrivals, and (v) unifies the earthquake-based two-station method and ambient noise correlations. Our central theme is not to equate interferometry with Green function retrieval, and to extract information directly from processed interstation correlations, regardless of their relation to the Green function. We demonstrate that processing transforms the actual wavefield sources and actual wave propagation physics into effective sources and effective wave propagation. This transformation is uniquely determined by the processing applied to the observed data, and can be easily computed. The effective forward model, that links effective sources and propagation to synthetic interstation correlations, may not be perfect. A forward modelling error, induced by processing, describes the extent to which processed correlations can actually be interpreted as proper correlations, that is, as resulting from some effective source and some effective wave propagation. The magnitude of the forward modelling error is controlled by the processing scheme and the temporal variability of the sources. Applying adjoint techniques to the effective forward model, we derive finite-frequency Fréchet kernels for the sources of the wavefield and Earth structure, that should be inverted jointly. The structure kernels depend on the sources of the wavefield and the processing scheme applied to the raw data. Therefore, both must be taken into account correctly in order to make accurate inferences on

  10. Correlation among chronologic age, skeletal maturity, and dental age.

    PubMed

    Sukhia, Rashna H; Fida, Mubassar

    2010-01-01

    To determine the correlation among chronologic age, skeletal maturity, and dental age in reference to both sexes. In 380 subjects (147 males and 233 females) between 7 and 17 years of age, skeletal maturity was assessed using the cervical vertebral maturation stages described by Baccetti et al. Dental age was determined using the Demirjian method. The correlation between skeletal maturity and chronologic age on one side and between skeletal maturity and dental age on the other was assessed with Spearman rank correlation coefficients. Pearson correlation coefficients were used to assess the correlation between chronologic and dental age. For both sexes, significant correlations among chronologic age, skeletal maturity, and dental age were found. The mandibular first premolar had the highest correlation with skeletal maturation in both sexes. As skeletal maturity and dental age are significantly correlated, tooth development may be used to assess a patient's skeletal maturity at an early age. © 2011 BY QUINTESSENCE PUBLISHING CO, INC.

  11. Correlations among assays of porcine semen quality following cryopreservation.

    PubMed

    Hammitt, D G; Martin, P A

    1989-09-01

    Correlations between in vitro tests of semen quality, used to predict the in vivo fertilizing potential of sperm, indicate that the tests may substitute for each other in predicting fertilizing potential. Lack of correlation between tests suggest that both tests should be used to estimate the fertilizing potential. The purpose of this study was to establish correlations between several in vitro tests of porcine semen quality following freezing. Tests of motility with and without caffeine, spermatozoa with normal apical ridges, sephadex filtration with and without caffeine and acrosin activity were all correlated with each other. Correlations among these tests ranged from 0.45 to 0.83 (P<0.05). Assays for glutamic oxalacetic transaninase (GOT) were not consistently correlated with other tests. None of these tests of semen quality were correlated with the sperm penetration assay except for the test of motility without caffeine, which was correlated with the number of penetrations per hamster oocyte (r = 0.71, P<0.05).

  12. Robust Statistical Detection of Power-Law Cross-Correlation.

    PubMed

    Blythe, Duncan A J; Nikulin, Vadim V; Müller, Klaus-Robert

    2016-06-02

    We show that widely used approaches in statistical physics incorrectly indicate the existence of power-law cross-correlations between financial stock market fluctuations measured over several years and the neuronal activity of the human brain lasting for only a few minutes. While such cross-correlations are nonsensical, no current methodology allows them to be reliably discarded, leaving researchers at greater risk when the spurious nature of cross-correlations is not clear from the unrelated origin of the time series and rather requires careful statistical estimation. Here we propose a theory and method (PLCC-test) which allows us to rigorously and robustly test for power-law cross-correlations, correctly detecting genuine and discarding spurious cross-correlations, thus establishing meaningful relationships between processes in complex physical systems. Our method reveals for the first time the presence of power-law cross-correlations between amplitudes of the alpha and beta frequency ranges of the human electroencephalogram.

  13. Robust Statistical Detection of Power-Law Cross-Correlation

    PubMed Central

    Blythe, Duncan A. J.; Nikulin, Vadim V.; Müller, Klaus-Robert

    2016-01-01

    We show that widely used approaches in statistical physics incorrectly indicate the existence of power-law cross-correlations between financial stock market fluctuations measured over several years and the neuronal activity of the human brain lasting for only a few minutes. While such cross-correlations are nonsensical, no current methodology allows them to be reliably discarded, leaving researchers at greater risk when the spurious nature of cross-correlations is not clear from the unrelated origin of the time series and rather requires careful statistical estimation. Here we propose a theory and method (PLCC-test) which allows us to rigorously and robustly test for power-law cross-correlations, correctly detecting genuine and discarding spurious cross-correlations, thus establishing meaningful relationships between processes in complex physical systems. Our method reveals for the first time the presence of power-law cross-correlations between amplitudes of the alpha and beta frequency ranges of the human electroencephalogram. PMID:27250630

  14. The Correlated Jacobi and the Correlated Cauchy-Lorentz Ensembles

    NASA Astrophysics Data System (ADS)

    Wirtz, Tim; Waltner, Daniel; Kieburg, Mario; Kumar, Santosh

    2016-01-01

    We calculate the k-point generating function of the correlated Jacobi ensemble using supersymmetric methods. We use the result for complex matrices for k=1 to derive a closed-form expression for the eigenvalue density. For real matrices we obtain the density in terms of a twofold integral that we evaluate numerically. For both expressions we find agreement when comparing with Monte Carlo simulations. Relations between these quantities for the Jacobi and the Cauchy-Lorentz ensemble are derived.

  15. Colorstratigraphy; A New Stratigraphic Correlation Technique

    NASA Astrophysics Data System (ADS)

    Nanayakkara, N. U.; Ranasinghage, P. N.; Priyantha, C.; Abillapitiya, T.

    2016-12-01

    Here we introduce a novel stratigraphic technique namely colorstratigraphy for correlating sedimentary sequences. Minihagalkanda is about 1 km long amphitheater like sedimentary terrain, situated at the southeastern coast of Sri Lanka. It has Miocene sedimentary sequences, separated in to 10-12 m high small hillocks by erosion, and bounded by about 30 m high escarpment. Sandstone, yellowish sandy clay, greenish silty clay sequences are capped by 4-5 m limestone bed in these hillocks but not at the boundary escarpment. Stratigraphic profiles at two hillocks and the boundary escarpment, separated each other by 200-300 m, were selected to test the new colorstartigraphic correlation technique. Color reflectance (DSR) was measured at four samples in each sequence at every profile and hence altogether 36 reflectance measurements were taken using Minolta 2500D hand-held color spectrophotometer. The first-derivative of the reflectance spectra (dR/dλ) defines the "spectral shape" of the sample. Therefore, DSR data (360-740 nm) measured at 10 nm resolution were used to calculate a center-weighted, first-derivative spectra for each reflectance sample consisting of 39 channels. Particle size of each sequence was measured at all 03 profiles using laser particle size analyzer to verify the stratigraphic correlation. Mean reflectance spectrum for each sequence at all 03 profiles were plotted on the same graph for comparison. Same was done for the grain size spectrums. Discriminant function analysis was performed separately for dsr data and grain size data using a number assigned to each sedimentary sequence as the grouping variable Color spectrums of sandstone, yellowish sandy clay, and greenish silty clay sequences at all three profiles perfectly match showing clear stratigraphic correlation among these three stratigraphic profiles. Matching grain size distribution curves of the three sequence at the three profiles verify the stratigraphic correlation. Perfect 100

  16. Electron correlation within the relativistic no-pair approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almoukhalalati, Adel; Saue, Trond, E-mail: trond.saue@irsamc.ups-tlse.fr; Knecht, Stefan

    This paper addresses the definition of correlation energy within 4-component relativistic atomic and molecular calculations. In the nonrelativistic domain the correlation energy is defined as the difference between the exact eigenvalue of the electronic Hamiltonian and the Hartree-Fock energy. In practice, what is reported is the basis set correlation energy, where the “exact” value is provided by a full Configuration Interaction (CI) calculation with some specified one-particle basis. The extension of this definition to the relativistic domain is not straightforward since the corresponding electronic Hamiltonian, the Dirac-Coulomb Hamiltonian, has no bound solutions. Present-day relativistic calculations are carried out within themore » no-pair approximation, where the Dirac-Coulomb Hamiltonian is embedded by projectors eliminating the troublesome negative-energy solutions. Hartree-Fock calculations are carried out with the implicit use of such projectors and only positive-energy orbitals are retained at the correlated level, meaning that the Hartree-Fock projectors are frozen at the correlated level. We argue that the projection operators should be optimized also at the correlated level and that this is possible by full Multiconfigurational Self-Consistent Field (MCSCF) calculations, that is, MCSCF calculations using a no-pair full CI expansion, but including orbital relaxation from the negative-energy orbitals. We show by variational perturbation theory that the MCSCF correlation energy is a pure MP2-like correlation expression, whereas the corresponding CI correlation energy contains an additional relaxation term. We explore numerically our theoretical analysis by carrying out variational and perturbative calculations on the two-electron rare gas atoms with specially tailored basis sets. In particular, we show that the correlation energy obtained by the suggested MCSCF procedure is smaller than the no-pair full CI correlation energy, in accordance with

  17. Modeling correlated bursts by the bursty-get-burstier mechanism

    NASA Astrophysics Data System (ADS)

    Jo, Hang-Hyun

    2017-12-01

    Temporal correlations of time series or event sequences in natural and social phenomena have been characterized by power-law decaying autocorrelation functions with decaying exponent γ . Such temporal correlations can be understood in terms of power-law distributed interevent times with exponent α and/or correlations between interevent times. The latter, often called correlated bursts, has recently been studied by measuring power-law distributed bursty trains with exponent β . A scaling relation between α and γ has been established for the uncorrelated interevent times, while little is known about the effects of correlated interevent times on temporal correlations. In order to study these effects, we devise the bursty-get-burstier model for correlated bursts, by which one can tune the degree of correlations between interevent times, while keeping the same interevent time distribution. We numerically find that sufficiently strong correlations between interevent times could violate the scaling relation between α and γ for the uncorrelated case. A nontrivial dependence of γ on β is also found for some range of α . The implication of our results is discussed in terms of the hierarchical organization of bursty trains at various time scales.

  18. Understanding the amplitudes of noise correlation measurements

    USGS Publications Warehouse

    Tsai, Victor C.

    2011-01-01

    Cross correlation of ambient seismic noise is known to result in time series from which station-station travel-time measurements can be made. Part of the reason that these cross-correlation travel-time measurements are reliable is that there exists a theoretical framework that quantifies how these travel times depend on the features of the ambient noise. However, corresponding theoretical results do not currently exist to describe how the amplitudes of the cross correlation depend on such features. For example, currently it is not possible to take a given distribution of noise sources and calculate the cross correlation amplitudes one would expect from such a distribution. Here, we provide a ray-theoretical framework for calculating cross correlations. This framework differs from previous work in that it explicitly accounts for attenuation as well as the spatial distribution of sources and therefore can address the issue of quantifying amplitudes in noise correlation measurements. After introducing the general framework, we apply it to two specific problems. First, we show that we can quantify the amplitudes of coherency measurements, and find that the decay of coherency with station-station spacing depends crucially on the distribution of noise sources. We suggest that researchers interested in performing attenuation measurements from noise coherency should first determine how the dominant sources of noise are distributed. Second, we show that we can quantify the signal-to-noise ratio of noise correlations more precisely than previous work, and that these signal-to-noise ratios can be estimated for given situations prior to the deployment of seismometers. It is expected that there are applications of the theoretical framework beyond the two specific cases considered, but these applications await future work.

  19. Correlated uncertainties in Monte Carlo reaction rate calculations

    NASA Astrophysics Data System (ADS)

    Longland, Richard

    2017-07-01

    Context. Monte Carlo methods have enabled nuclear reaction rates from uncertain inputs to be presented in a statistically meaningful manner. However, these uncertainties are currently computed assuming no correlations between the physical quantities that enter those calculations. This is not always an appropriate assumption. Astrophysically important reactions are often dominated by resonances, whose properties are normalized to a well-known reference resonance. This insight provides a basis from which to develop a flexible framework for including correlations in Monte Carlo reaction rate calculations. Aims: The aim of this work is to develop and test a method for including correlations in Monte Carlo reaction rate calculations when the input has been normalized to a common reference. Methods: A mathematical framework is developed for including correlations between input parameters in Monte Carlo reaction rate calculations. The magnitude of those correlations is calculated from the uncertainties typically reported in experimental papers, where full correlation information is not available. The method is applied to four illustrative examples: a fictional 3-resonance reaction, 27Al(p, γ)28Si, 23Na(p, α)20Ne, and 23Na(α, p)26Mg. Results: Reaction rates at low temperatures that are dominated by a few isolated resonances are found to minimally impacted by correlation effects. However, reaction rates determined from many overlapping resonances can be significantly affected. Uncertainties in the 23Na(α, p)26Mg reaction, for example, increase by up to a factor of 5. This highlights the need to take correlation effects into account in reaction rate calculations, and provides insight into which cases are expected to be most affected by them. The impact of correlation effects on nucleosynthesis is also investigated.

  20. BONNSAI: correlated stellar observables in Bayesian methods

    NASA Astrophysics Data System (ADS)

    Schneider, F. R. N.; Castro, N.; Fossati, L.; Langer, N.; de Koter, A.

    2017-02-01

    In an era of large spectroscopic surveys of stars and big data, sophisticated statistical methods become more and more important in order to infer fundamental stellar parameters such as mass and age. Bayesian techniques are powerful methods because they can match all available observables simultaneously to stellar models while taking prior knowledge properly into account. However, in most cases it is assumed that observables are uncorrelated which is generally not the case. Here, we include correlations in the Bayesian code Bonnsai by incorporating the covariance matrix in the likelihood function. We derive a parametrisation of the covariance matrix that, in addition to classical uncertainties, only requires the specification of a correlation parameter that describes how observables co-vary. Our correlation parameter depends purely on the method with which observables have been determined and can be analytically derived in some cases. This approach therefore has the advantage that correlations can be accounted for even if information for them are not available in specific cases but are known in general. Because the new likelihood model is a better approximation of the data, the reliability and robustness of the inferred parameters are improved. We find that neglecting correlations biases the most likely values of inferred stellar parameters and affects the precision with which these parameters can be determined. The importance of these biases depends on the strength of the correlations and the uncertainties. For example, we apply our technique to massive OB stars, but emphasise that it is valid for any type of stars. For effective temperatures and surface gravities determined from atmosphere modelling, we find that masses can be underestimated on average by 0.5σ and mass uncertainties overestimated by a factor of about 2 when neglecting correlations. At the same time, the age precisions are underestimated over a wide range of stellar parameters. We conclude that

  1. Halo correlations in nonlinear cosmic density fields

    NASA Astrophysics Data System (ADS)

    Bernardeau, F.; Schaeffer, R.

    1999-09-01

    The question we address in this paper is the determination of the correlation properties of the dark matter halos appearing in cosmic density fields once they underwent a strongly nonlinear evolution induced by gravitational dynamics. A series of previous works have given indications that kind of non-Gaussian features are induced by nonlinear evolution in term of the high-order correlation functions. Assuming such patterns for the matter field, i.e. that the high-order correlation functions behave as products of two-body correlation functions, we derive the correlation properties of the halos, that are assumed to represent the correlation properties of galaxies or clusters. The hierarchical pattern originally induced by gravity is shown to be conserved for the halos. The strength of their correlations at any order varies, however, but is found to depend only on their internal properties, namely on the parameter x~ m/r(3-gamma ) where m is the mass of the halo, r its size and gamma is the power law index of the two-body correlation function. This internal parameter is seen to be close to the depth of the internal potential well of virialized objects. We were able to derive the explicit form of the generating function of the moments of the halo counts probability distribution function. In particular we show explicitly that, generically, S_P(x)-> P(P-2) in the rare halo limit. Various illustrations of our general results are presented. As a function of the properties of the underlying matter field, we construct the count probabilities for halos and in particular discuss the halo void probability. We evaluate the dependence of the halo mass function on the environment: within clusters, hierarchical clustering implies the higher masses are favored. These properties solely arise from what is a natural bias (ie, naturally induced by gravity) between the observed objects and the unseen matter field, and how it manifests itself depending on which selection effects are

  2. Stimulus Dependence of Correlated Variability across Cortical Areas

    PubMed Central

    Cohen, Marlene R.

    2016-01-01

    The way that correlated trial-to-trial variability between pairs of neurons in the same brain area (termed spike count or noise correlation, rSC) depends on stimulus or task conditions can constrain models of cortical circuits and of the computations performed by networks of neurons (Cohen and Kohn, 2011). In visual cortex, rSC tends not to depend on stimulus properties (Kohn and Smith, 2005; Huang and Lisberger, 2009) but does depend on cognitive factors like visual attention (Cohen and Maunsell, 2009; Mitchell et al., 2009). However, neurons across visual areas respond to any visual stimulus or contribute to any perceptual decision, and the way that information from multiple areas is combined to guide perception is unknown. To gain insight into these issues, we recorded simultaneously from neurons in two areas of visual cortex (primary visual cortex, V1, and the middle temporal area, MT) while rhesus monkeys viewed different visual stimuli in different attention conditions. We found that correlations between neurons in different areas depend on stimulus and attention conditions in very different ways than do correlations within an area. Correlations across, but not within, areas depend on stimulus direction and the presence of a second stimulus, and attention has opposite effects on correlations within and across areas. This observed pattern of cross-area correlations is predicted by a normalization model where MT units sum V1 inputs that are passed through a divisive nonlinearity. Together, our results provide insight into how neurons in different areas interact and constrain models of the neural computations performed across cortical areas. SIGNIFICANCE STATEMENT Correlations in the responses of pairs of neurons within the same cortical area have been a subject of growing interest in systems neuroscience. However, correlated variability between different cortical areas is likely just as important. We recorded simultaneously from neurons in primary visual cortex

  3. Improved correlation corrections to the local-spin-density approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Painter, G.S.

    1981-10-15

    The accurate correlation energies for the para- and ferromagnetic states of the electron liquid calculated by Ceperley and Alder were recently used by Vosko, Wilk, and Nusair to produce a new correlation-energy density of increased accuracy and proper limiting behavior in the metallic density regime (r/sub s/< or =6). In the present work, the correlation potential in the local-spin-density approximation (LSDA) is derived from the correlation-energy-density representation of Vosko et al. Characteristics of the new exchange-correlation model are compared with those of the LSDA model of Gunnarsson and Lundqvist. Specific comparison is made between these models and exact results inmore » the treatment of atomic and molecular hydrogen. Since the new treatment of correlation primarily affects the region of small r/sub s/, which is exchange dominated, correlation corrections are small compared with errors in the exchange energy. Thus, in light atoms the improved correlation model leads to a reduced cancellation of error between exchange and correlation energies, emphasizing the necessity for improved exchange treatment. For more homogeneous systems, the model should offer real improvement. The present results obtained with precise treatment of correlation within the prescription of Vosko et al. serve to define the present limitations of the LSDA and indicate the importance of nonlocal corrections, particularly for atoms.« less

  4. Exchange and correlation in positronium-molecule scattering

    NASA Astrophysics Data System (ADS)

    Fabrikant, I. I.; Wilde, R. S.

    2018-05-01

    Exchange and correlations play a particularly important role in positronium (Ps) collisions with atoms and molecules, since the static potential for Ps interaction with a neutral system is zero. Theoretical description of both effects is a very challenging task. In the present work we use the free-electron-gas model to describe exchange and correlations in Ps collisions with molecules similar to the approach widely used in the theory of electron-molecule collisions. The results for exchange and correlation energies are presented as functions of the Fermi momentum of the electron gas and the Ps incident energy. Using the Thomas-Fermi model, these functions can be converted into exchange and correlation potentials for Ps interaction with molecules as functions of the distance between the projectile and the target.

  5. Minimum Bayes risk image correlation

    NASA Technical Reports Server (NTRS)

    Minter, T. C., Jr.

    1980-01-01

    In this paper, the problem of designing a matched filter for image correlation will be treated as a statistical pattern recognition problem. It is shown that, by minimizing a suitable criterion, a matched filter can be estimated which approximates the optimum Bayes discriminant function in a least-squares sense. It is well known that the use of the Bayes discriminant function in target classification minimizes the Bayes risk, which in turn directly minimizes the probability of a false fix. A fast Fourier implementation of the minimum Bayes risk correlation procedure is described.

  6. Neural correlates of gratitude.

    PubMed

    Fox, Glenn R; Kaplan, Jonas; Damasio, Hanna; Damasio, Antonio

    2015-01-01

    Gratitude is an important aspect of human sociality, and is valued by religions and moral philosophies. It has been established that gratitude leads to benefits for both mental health and interpersonal relationships. It is thus important to elucidate the neurobiological correlates of gratitude, which are only now beginning to be investigated. To this end, we conducted an experiment during which we induced gratitude in participants while they underwent functional magnetic resonance imaging. We hypothesized that gratitude ratings would correlate with activity in brain regions associated with moral cognition, value judgment and theory of mind. The stimuli used to elicit gratitude were drawn from stories of survivors of the Holocaust, as many survivors report being sheltered by strangers or receiving lifesaving food and clothing, and having strong feelings of gratitude for such gifts. The participants were asked to place themselves in the context of the Holocaust and imagine what their own experience would feel like if they received such gifts. For each gift, they rated how grateful they felt. The results revealed that ratings of gratitude correlated with brain activity in the anterior cingulate cortex and medial prefrontal cortex, in support of our hypotheses. The results provide a window into the brain circuitry for moral cognition and positive emotion that accompanies the experience of benefitting from the goodwill of others.

  7. Neural correlates of gratitude

    PubMed Central

    Fox, Glenn R.; Kaplan, Jonas; Damasio, Hanna; Damasio, Antonio

    2015-01-01

    Gratitude is an important aspect of human sociality, and is valued by religions and moral philosophies. It has been established that gratitude leads to benefits for both mental health and interpersonal relationships. It is thus important to elucidate the neurobiological correlates of gratitude, which are only now beginning to be investigated. To this end, we conducted an experiment during which we induced gratitude in participants while they underwent functional magnetic resonance imaging. We hypothesized that gratitude ratings would correlate with activity in brain regions associated with moral cognition, value judgment and theory of mind. The stimuli used to elicit gratitude were drawn from stories of survivors of the Holocaust, as many survivors report being sheltered by strangers or receiving lifesaving food and clothing, and having strong feelings of gratitude for such gifts. The participants were asked to place themselves in the context of the Holocaust and imagine what their own experience would feel like if they received such gifts. For each gift, they rated how grateful they felt. The results revealed that ratings of gratitude correlated with brain activity in the anterior cingulate cortex and medial prefrontal cortex, in support of our hypotheses. The results provide a window into the brain circuitry for moral cognition and positive emotion that accompanies the experience of benefitting from the goodwill of others. PMID:26483740

  8. Parallel algorithm of VLBI software correlator under multiprocessor environment

    NASA Astrophysics Data System (ADS)

    Zheng, Weimin; Zhang, Dong

    2007-11-01

    The correlator is the key signal processing equipment of a Very Lone Baseline Interferometry (VLBI) synthetic aperture telescope. It receives the mass data collected by the VLBI observatories and produces the visibility function of the target, which can be used to spacecraft position, baseline length measurement, synthesis imaging, and other scientific applications. VLBI data correlation is a task of data intensive and computation intensive. This paper presents the algorithms of two parallel software correlators under multiprocessor environments. A near real-time correlator for spacecraft tracking adopts the pipelining and thread-parallel technology, and runs on the SMP (Symmetric Multiple Processor) servers. Another high speed prototype correlator using the mixed Pthreads and MPI (Massage Passing Interface) parallel algorithm is realized on a small Beowulf cluster platform. Both correlators have the characteristic of flexible structure, scalability, and with 10-station data correlating abilities.

  9. Interferometric constraints on quantum geometrical shear noise correlations

    DOE PAGES

    Chou, Aaron; Glass, Henry; Richard Gustafson, H.; ...

    2017-07-20

    Final measurements and analysis are reported from the first-generation Holometer, the first instrument capable of measuring correlated variations in space-time position at strain noise power spectral densities smaller than a Planck time. The apparatus consists of two co-located, but independent and isolated, 40 m power-recycled Michelson interferometers, whose outputs are cross-correlated to 25 MHz. The data are sensitive to correlations of differential position across the apparatus over a broad band of frequencies up to and exceeding the inverse light crossing time, 7.6 MHz. By measuring with Planck precision the correlation of position variations at spacelike separations, the Holometer searches formore » faint, irreducible correlated position noise backgrounds predicted by some models of quantum space-time geometry. The first-generation optical layout is sensitive to quantum geometrical noise correlations with shear symmetry---those that can be interpreted as a fundamental noncommutativity of space-time position in orthogonal directions. General experimental constraints are placed on parameters of a set of models of spatial shear noise correlations, with a sensitivity that exceeds the Planck-scale holographic information bound on position states by a large factor. This result significantly extends the upper limits placed on models of directional noncommutativity by currently operating gravitational wave observatories.« less

  10. Modeling of Momentum Correlations in Heavy Ion Collisions

    NASA Astrophysics Data System (ADS)

    Pruneau, Claude; Sharma, Monika

    2010-02-01

    Measurements of transverse momentum (pt) correlations and fluctuations in heavy ion collisions (HIC) are of interest because they provide information on the collision dynamics not readily available from number correlations. For instance, pt fluctuations are expected to diverge for a system near its tri-critical point [1]. Integral momentum correlations may also be used to estimate the shear viscosity of the quark gluon plasma produced in HIC [2]. Integral correlations measured over large fractions of the particle phase space average out several dynamical contributions and as such may be difficult to interpret. It is thus of interest to seek extensions of integral correlation variables that may provide more detailed information about the collision dynamics. We introduce a variety of differential momentum correlations and discuss their basic properties in the light of simple toy models. We also present theoretical predictions based on the PYTHIA, HIJING, AMPT, and EPOS models. Finally, we discuss the interplay of various dynamical effects that may play a role in the determination of the shear viscosity based on the broadening of momentum correlations measured as function of collision centrality. [1] L. Stodolsky, Phys. Rev. Lett. 75 (1995) 1044. [2] S. Gavin and M. A. Aziz, Phys. Rev. Lett. 97 (2006) 162302. )

  11. Statistical tests for power-law cross-correlated processes

    NASA Astrophysics Data System (ADS)

    Podobnik, Boris; Jiang, Zhi-Qiang; Zhou, Wei-Xing; Stanley, H. Eugene

    2011-12-01

    For stationary time series, the cross-covariance and the cross-correlation as functions of time lag n serve to quantify the similarity of two time series. The latter measure is also used to assess whether the cross-correlations are statistically significant. For nonstationary time series, the analogous measures are detrended cross-correlations analysis (DCCA) and the recently proposed detrended cross-correlation coefficient, ρDCCA(T,n), where T is the total length of the time series and n the window size. For ρDCCA(T,n), we numerically calculated the Cauchy inequality -1≤ρDCCA(T,n)≤1. Here we derive -1≤ρDCCA(T,n)≤1 for a standard variance-covariance approach and for a detrending approach. For overlapping windows, we find the range of ρDCCA within which the cross-correlations become statistically significant. For overlapping windows we numerically determine—and for nonoverlapping windows we derive—that the standard deviation of ρDCCA(T,n) tends with increasing T to 1/T. Using ρDCCA(T,n) we show that the Chinese financial market's tendency to follow the U.S. market is extremely weak. We also propose an additional statistical test that can be used to quantify the existence of cross-correlations between two power-law correlated time series.

  12. The Index cohesive effect on stock market correlations

    NASA Astrophysics Data System (ADS)

    Shapira, Y.; Kenett, D. Y.; Ben-Jacob, E.

    2009-12-01

    We present empirical examination and reassessment of the functional role of the market Index, using datasets of stock returns for eight years, by analyzing and comparing the results for two very different markets: 1) the New York Stock Exchange (NYSE), representing a large, mature market, and 2) the Tel Aviv Stock Exchange (TASE), representing a small, young market. Our method includes special collective (holographic) analysis of stock-Index correlations, of nested stock correlations (including the Index as an additional ghost stock) and of bare stock correlations (after subtraction of the Index return from the stocks returns). Our findings verify and strongly substantiate the assumed functional role of the index in the financial system as a cohesive force between stocks, i.e., the correlations between stocks are largely due to the strong correlation between each stock and the Index (the adhesive effect), rather than inter-stock dependencies. The Index adhesive and cohesive effects on the market correlations in the two markets are presented and compared in a reduced 3-D principal component space of the correlation matrices (holographic presentation). The results provide new insights into the interplay between an index and its constituent stocks in TASE-like versus NYSE-like markets.

  13. Interferometric constraints on quantum geometrical shear noise correlations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, Aaron; Glass, Henry; Richard Gustafson, H.

    Final measurements and analysis are reported from the first-generation Holometer, the first instrument capable of measuring correlated variations in space-time position at strain noise power spectral densities smaller than a Planck time. The apparatus consists of two co-located, but independent and isolated, 40 m power-recycled Michelson interferometers, whose outputs are cross-correlated to 25 MHz. The data are sensitive to correlations of differential position across the apparatus over a broad band of frequencies up to and exceeding the inverse light crossing time, 7.6 MHz. By measuring with Planck precision the correlation of position variations at spacelike separations, the Holometer searches formore » faint, irreducible correlated position noise backgrounds predicted by some models of quantum space-time geometry. The first-generation optical layout is sensitive to quantum geometrical noise correlations with shear symmetry---those that can be interpreted as a fundamental noncommutativity of space-time position in orthogonal directions. General experimental constraints are placed on parameters of a set of models of spatial shear noise correlations, with a sensitivity that exceeds the Planck-scale holographic information bound on position states by a large factor. This result significantly extends the upper limits placed on models of directional noncommutativity by currently operating gravitational wave observatories.« less

  14. Mesomorphy correlates with experiential cognitive style.

    PubMed

    Genovese, Jeremy E C; Little, Kathleen D

    2011-01-01

    The purpose of this study was to test for a relationship between mesomorphy and experiential cognitive style (S. Epstein, 1994) in a sample of university students (30 women and 24 men). Anthropometric somatotypes were obtained using the Heath-Carter procedure (J. E. L. Carter, 2002). Experiential cognitive style was operationalized as scores on the experiential scale of the Rational Experiential Inventory for Adolescents (A. D. Marks, D. W. Hine, R. L. Blore, & W. J. Phillips, 2008). Nonparametric bootstrap correlations were calculated using 80% confidence intervals. There were significant correlations between mesomorphy and experiential cognitive style for men (r(s) = .33) and women (r(s) = .25). For men, experiential cognitive style was also correlated with endomorphy (r(s) = .39) and ectomorphy (rs = -.48).

  15. Arousal and Anxiety Correlates of Gymnastic Performance

    ERIC Educational Resources Information Center

    Basler, Marilyn L.; And Others

    1976-01-01

    Tests on a women's gymnastic team to explore correlation between arousal, anxiety, and performance, revealed limited relationships between performance and arousal/anxiety measures and indicated that gymnastic ability is the best correlate of gymnastic performance. (JD)

  16. Estimating and Identifying Unspecified Correlation Structure for Longitudinal Data

    PubMed Central

    Hu, Jianhua; Wang, Peng; Qu, Annie

    2014-01-01

    Identifying correlation structure is important to achieving estimation efficiency in analyzing longitudinal data, and is also crucial for drawing valid statistical inference for large size clustered data. In this paper, we propose a nonparametric method to estimate the correlation structure, which is applicable for discrete longitudinal data. We utilize eigenvector-based basis matrices to approximate the inverse of the empirical correlation matrix and determine the number of basis matrices via model selection. A penalized objective function based on the difference between the empirical and model approximation of the correlation matrices is adopted to select an informative structure for the correlation matrix. The eigenvector representation of the correlation estimation is capable of reducing the risk of model misspecification, and also provides useful information on the specific within-cluster correlation pattern of the data. We show that the proposed method possesses the oracle property and selects the true correlation structure consistently. The proposed method is illustrated through simulations and two data examples on air pollution and sonar signal studies. PMID:26361433

  17. Neural Correlation Is Stimulus Modulated by Feedforward Inhibitory Circuitry

    PubMed Central

    Middleton, Jason W.; Omar, Cyrus; Doiron, Brent; Simons, Daniel J.

    2012-01-01

    Correlated variability of neural spiking activity has important consequences for signal processing. How incoming sensory signals shape correlations of population responses remains unclear. Cross-correlations between spiking of different neurons may be particularly consequential in sparsely firing neural populations such as those found in layer 2/3 of sensory cortex. In rat whisker barrel cortex, we found that pairs of excitatory layer 2/3 neurons exhibit similarly low levels of spike count correlation during both spontaneous and sensory-evoked states. The spontaneous activity of excitatory–inhibitory neuron pairs is positively correlated, while sensory stimuli actively decorrelate joint responses. Computational modeling shows how threshold nonlinearities and local inhibition form the basis of a general decorrelating mechanism. We show that inhibitory population activity maintains low correlations in excitatory populations, especially during periods of sensory-evoked coactivation. The role of feedforward inhibition has been previously described in the context of trial-averaged phenomena. Our findings reveal a novel role for inhibition to shape correlations of neural variability and thereby prevent excessive correlations in the face of feedforward sensory-evoked activation. PMID:22238086

  18. High-speed technique based on a parallel projection correlation procedure for digital image correlation

    NASA Astrophysics Data System (ADS)

    Zaripov, D. I.; Renfu, Li

    2018-05-01

    The implementation of high-efficiency digital image correlation methods based on a zero-normalized cross-correlation (ZNCC) procedure for high-speed, time-resolved measurements using a high-resolution digital camera is associated with big data processing and is often time consuming. In order to speed-up ZNCC computation, a high-speed technique based on a parallel projection correlation procedure is proposed. The proposed technique involves the use of interrogation window projections instead of its two-dimensional field of luminous intensity. This simplification allows acceleration of ZNCC computation up to 28.8 times compared to ZNCC calculated directly, depending on the size of interrogation window and region of interest. The results of three synthetic test cases, such as a one-dimensional uniform flow, a linear shear flow and a turbulent boundary-layer flow, are discussed in terms of accuracy. In the latter case, the proposed technique is implemented together with an iterative window-deformation technique. On the basis of the results of the present work, the proposed technique is recommended to be used for initial velocity field calculation, with further correction using more accurate techniques.

  19. Relating quantum coherence and correlations with entropy-based measures.

    PubMed

    Wang, Xiao-Li; Yue, Qiu-Ling; Yu, Chao-Hua; Gao, Fei; Qin, Su-Juan

    2017-09-21

    Quantum coherence and quantum correlations are important quantum resources for quantum computation and quantum information. In this paper, using entropy-based measures, we investigate the relationships between quantum correlated coherence, which is the coherence between subsystems, and two main kinds of quantum correlations as defined by quantum discord as well as quantum entanglement. In particular, we show that quantum discord and quantum entanglement can be well characterized by quantum correlated coherence. Moreover, we prove that the entanglement measure formulated by quantum correlated coherence is lower and upper bounded by the relative entropy of entanglement and the entanglement of formation, respectively, and equal to the relative entropy of entanglement for all the maximally correlated states.

  20. Generation of Synthetic Spike Trains with Defined Pairwise Correlations

    PubMed Central

    Niebur, Ernst

    2008-01-01

    Recent technological advances as well as progress in theoretical understanding of neural systems have created a need for synthetic spike trains with controlled mean rate and pairwise cross-correlation. This report introduces and analyzes a novel algorithm for the generation of discretized spike trains with arbitrary mean rates and controlled cross correlation. Pairs of spike trains with any pairwise correlation can be generated, and higher-order correlations are compatible with common synaptic input. Relations between allowable mean rates and correlations within a population are discussed. The algorithm is highly efficient, its complexity increasing linearly with the number of spike trains generated and therefore inversely with the number of cross-correlated pairs. PMID:17521277

  1. Weighted network analysis of high-frequency cross-correlation measures

    NASA Astrophysics Data System (ADS)

    Iori, Giulia; Precup, Ovidiu V.

    2007-03-01

    In this paper we implement a Fourier method to estimate high-frequency correlation matrices from small data sets. The Fourier estimates are shown to be considerably less noisy than the standard Pearson correlation measures and thus capable of detecting subtle changes in correlation matrices with just a month of data. The evolution of correlation at different time scales is analyzed from the full correlation matrix and its minimum spanning tree representation. The analysis is performed by implementing measures from the theory of random weighted networks.

  2. Extrapolating MP2 and CCSD explicitly correlated correlation energies to the complete basis set limit with first and second row correlation consistent basis sets

    NASA Astrophysics Data System (ADS)

    Hill, J. Grant; Peterson, Kirk A.; Knizia, Gerald; Werner, Hans-Joachim

    2009-11-01

    Accurate extrapolation to the complete basis set (CBS) limit of valence correlation energies calculated with explicitly correlated MP2-F12 and CCSD(T)-F12b methods have been investigated using a Schwenke-style approach for molecules containing both first and second row atoms. Extrapolation coefficients that are optimal for molecular systems containing first row elements differ from those optimized for second row analogs, hence values optimized for a combined set of first and second row systems are also presented. The new coefficients are shown to produce excellent results in both Schwenke-style and equivalent power-law-based two-point CBS extrapolations, with the MP2-F12/cc-pV(D,T)Z-F12 extrapolations producing an average error of just 0.17 mEh with a maximum error of 0.49 for a collection of 23 small molecules. The use of larger basis sets, i.e., cc-pV(T,Q)Z-F12 and aug-cc-pV(Q,5)Z, in extrapolations of the MP2-F12 correlation energy leads to average errors that are smaller than the degree of confidence in the reference data (˜0.1 mEh). The latter were obtained through use of very large basis sets in MP2-F12 calculations on small molecules containing both first and second row elements. CBS limits obtained from optimized coefficients for conventional MP2 are only comparable to the accuracy of the MP2-F12/cc-pV(D,T)Z-F12 extrapolation when the aug-cc-pV(5+d)Z and aug-cc-pV(6+d)Z basis sets are used. The CCSD(T)-F12b correlation energy is extrapolated as two distinct parts: CCSD-F12b and (T). While the CCSD-F12b extrapolations with smaller basis sets are statistically less accurate than those of the MP2-F12 correlation energies, this is presumably due to the slower basis set convergence of the CCSD-F12b method compared to MP2-F12. The use of larger basis sets in the CCSD-F12b extrapolations produces correlation energies with accuracies exceeding the confidence in the reference data (also obtained in large basis set F12 calculations). It is demonstrated that the use

  3. Forward-backward elliptic anisotropy correlations in parton cascades

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, L. X.; Graduate School of the Chinese Academy of Sciences, Beijing 100080; Ma, G. L.

    2011-04-15

    A potential experimental probe, the forward-backward elliptic anisotropy correlation (C{sub FB}), has been proposed by Liao and Koch to distinguish the jet and true elliptic flow contribution to the measured elliptic flow (v{sub 2}) in relativistic heavy-ion collisions. The jet and flow fluctuation contribution to elliptic flow is investigated within the framework of a multiphase transport model using the C{sub FB} probe. We find that the C{sub FB} correlation is remarkably different from, and about two times that, proposed by Liao and Koch. It originates from the correlation between fluctuation of forward and that of backward elliptic flow at amore » low transverse momentum, which is mainly caused by the initial correlation between fluctuation of forward and that of backward eccentricity. This results in an amendment of the C{sub FB} by a term related to the correlation between fluctuation of forward and that of backward elliptic flow. Our results suggest that a suitable rapidity gap for C{sub FB} correlation studies is about {+-}3.5.« less

  4. A study of correlations in the stock market

    NASA Astrophysics Data System (ADS)

    Sharma, Chandradew; Banerjee, Kinjal

    2015-08-01

    We study the various sectors of the Bombay Stock Exchange (BSE) for a period of 8 years from April 2006 to March 2014. Using the data of daily returns of a period of eight years we make a direct model free analysis of the pattern of the sectorial indices movement and the correlations among them. Our analysis shows significant auto correlation among the individual sectors and also strong cross-correlation among sectors. We also find that auto correlations in some of the sectors persist in time. This is a very significant result and has not been reported so far in Indian context. These findings will be very useful in model building for prediction of price movement of equities, derivatives and portfolio management. We show that the Random Walk Hypothesis is not applicable in modeling the Indian market and mean-variance-skewness-kurtosis based portfolio optimization might be required. We also find that almost all sectors are highly correlated during large fluctuation periods and have only moderate correlation during normal periods.

  5. Correlates of minimal dating.

    PubMed

    Leck, Kira

    2006-10-01

    Researchers have associated minimal dating with numerous factors. The present author tested shyness, introversion, physical attractiveness, performance evaluation, anxiety, social skill, social self-esteem, and loneliness to determine the nature of their relationships with 2 measures of self-reported minimal dating in a sample of 175 college students. For women, shyness, introversion, physical attractiveness, self-rated anxiety, social self-esteem, and loneliness correlated with 1 or both measures of minimal dating. For men, physical attractiveness, observer-rated social skill, social self-esteem, and loneliness correlated with 1 or both measures of minimal dating. The patterns of relationships were not identical for the 2 indicators of minimal dating, indicating the possibility that minimal dating is not a single construct as researchers previously believed. The present author discussed implications and suggestions for future researchers.

  6. Understanding GRETINA using angular correlation method

    NASA Astrophysics Data System (ADS)

    Austin, Madeline

    2015-10-01

    The ability to trace the path of gamma rays through germanium is not only necessary for taking full advantage of GRETINA but also a promising possibility for homeland security defense against nuclear threats. This research tested the current tracking algorithm using the angular correlation method by comparing results from raw and tracked data to the theoretical model for Co-60. It was found that the current tracking method is unsuccessful in reproducing angular correlation. Variations to the tracking algorithm were made in the FM value, tracking angle, number of angles of separation observed, and window of coincidence in attempt to improve correlation results. From these variations it was observed that having a larger FM improved results, reducing the number of observational angles worsened correlation, and that overall larger tracking angles improved with larger windows of coincidence and vice-verse. Future research would be to refine the angle of measurement for raw data and to explore the possibility of an energy dependence by testing other elements. This work is supported by the United States Department of Energy, Office of Science, under Contract Number DE-AC02-06CH11357

  7. From quantum coherence to quantum correlations

    NASA Astrophysics Data System (ADS)

    Sun, Yuan; Mao, Yuanyuan; Luo, Shunlong

    2017-06-01

    In quantum mechanics, quantum coherence of a state relative to a quantum measurement can be identified with the quantumness that has to be destroyed by the measurement. In particular, quantum coherence of a bipartite state relative to a local quantum measurement encodes quantum correlations in the state. If one takes minimization with respect to the local measurements, then one is led to quantifiers which capture quantum correlations from the perspective of coherence. In this vein, quantum discord, which quantifies the minimal correlations that have to be destroyed by quantum measurements, can be identified as the minimal coherence, with the coherence measured by the relative entropy of coherence. To advocate and formulate this idea in a general context, we first review coherence relative to Lüders measurements which extends the notion of coherence relative to von Neumann measurements (or equivalently, orthonomal bases), and highlight the observation that quantum discord arises as minimal coherence through two prototypical examples. Then, we introduce some novel measures of quantum correlations in terms of coherence, illustrate them through examples, investigate their fundamental properties and implications, and indicate their applications to quantum metrology.

  8. An improved Brass correlational fertility model.

    PubMed

    Zhang, E; Chen, J

    1995-01-01

    Demographers have for years tried to establish a mathematical model capable of accurately describing patterns of fertility change. William Brass's Gompertz correlational fertility model is based upon a standard age-specific fertility pattern correlated to the age-specific fertility rate of the area under study with the purpose of simulating the actual age-specific fertility rate of the area. While the Brass correlational fertility model has solved many problems in quantitative studies of fertility and has been applied in population simulation and prediction, it has been unsatisfactory in analyzing fertility changes in China. The authors therefore developed a parity-specific correlational model to better reflect the situation of rapid fertility decline in China. This modified model better describes the impact of current family planning policy in China. Moreover, satisfactory results can be obtained by simulating and analyzing fertility in recent years, and major parameters can be identified by using demographically definite and readily manageable indicators. These indicators can clearly reflect the goals of the country's family planning policy, such as the average age at child-bearing, median age at child-bearing, early reproduction ratio, and percentage of the second child.

  9. Long-range correlation and market segmentation in bond market

    NASA Astrophysics Data System (ADS)

    Wang, Zhongxing; Yan, Yan; Chen, Xiaosong

    2017-09-01

    This paper investigates the long-range auto-correlations and cross-correlations in bond market. Based on Detrended Moving Average (DMA) method, empirical results present a clear evidence of long-range persistence that exists in one year scale. The degree of long-range correlation related to maturities has an upward tendency with a peak in short term. These findings confirm the expectations of fractal market hypothesis (FMH). Furthermore, we have developed a method based on a complex network to study the long-range cross-correlation structure and applied it to our data, and found a clear pattern of market segmentation in the long run. We also detected the nature of long-range correlation in the sub-period 2007-2012 and 2011-2016. The result from our research shows that long-range auto-correlations are decreasing in the recent years while long-range cross-correlations are strengthening.

  10. Joint statistics of strongly correlated neurons via dimensionality reduction

    NASA Astrophysics Data System (ADS)

    Deniz, Taşkın; Rotter, Stefan

    2017-06-01

    The relative timing of action potentials in neurons recorded from local cortical networks often shows a non-trivial dependence, which is then quantified by cross-correlation functions. Theoretical models emphasize that such spike train correlations are an inevitable consequence of two neurons being part of the same network and sharing some synaptic input. For non-linear neuron models, however, explicit correlation functions are difficult to compute analytically, and perturbative methods work only for weak shared input. In order to treat strong correlations, we suggest here an alternative non-perturbative method. Specifically, we study the case of two leaky integrate-and-fire neurons with strong shared input. Correlation functions derived from simulated spike trains fit our theoretical predictions very accurately. Using our method, we computed the non-linear correlation transfer as well as correlation functions that are asymmetric due to inhomogeneous intrinsic parameters or unequal input.

  11. Alzheimer's disease: a correlative study.

    PubMed Central

    Neary, D; Snowden, J S; Mann, D M; Bowen, D M; Sims, N R; Northen, B; Yates, P O; Davison, A N

    1986-01-01

    In a study of 17 patients with histologically proven Alzheimer's disease the relationship between psychological, pathological and chemical measures of disorder was examined. Severity of dementia, determined by mental test performance, correlated highly with pathological change in large cortical neurons (cell loss and reduction in nuclear and nucleolar volume and cytoplasmic RNA content), to a lesser extent with cortical senile plaque and neurofibrillary tangle frequency and reduction in acetylcholine (ACh) synthesis, and not with reduction in choline acetyltransferase (CAT) activity. A strongly significant relationship was demonstrated between cell loss and reductions in nuclear and nucleolar volume and cytoplasmic RNA content. Reduction in CAT activity and senile plaque frequency were significantly correlated, thereby linking changes in the sub-cortical projection system of the nucleus basalis with the cortical pathology. The pattern of correlations suggests that the dementia of Alzheimer's disease is largely a reflection of the state of large cortical neurons, and it is argued that abnormalities in the latter may not be directly related to primary loss of cholinergic neurons in the subcortex. PMID:2420941

  12. Oscillatory Correlates of Visual Consciousness

    PubMed Central

    Gallotto, Stefano; Sack, Alexander T.; Schuhmann, Teresa; de Graaf, Tom A.

    2017-01-01

    Conscious experiences are linked to activity in our brain: the neural correlates of consciousness (NCC). Empirical research on these NCCs covers a wide range of brain activity signals, measures, and methodologies. In this paper, we focus on spontaneous brain oscillations; rhythmic fluctuations of neuronal (population) activity which can be characterized by a range of parameters, such as frequency, amplitude (power), and phase. We provide an overview of oscillatory measures that appear to correlate with conscious perception. We also discuss how increasingly sophisticated techniques allow us to study the causal role of oscillatory activity in conscious perception (i.e., ‘entrainment’). This review of oscillatory correlates of consciousness suggests that, for example, activity in the alpha-band (7–13 Hz) may index, or even causally support, conscious perception. But such results also showcase an increasingly acknowledged difficulty in NCC research; the challenge of separating neural activity necessary for conscious experience to arise (prerequisites) from neural activity underlying the conscious experience itself (substrates) or its results (consequences). PMID:28736543

  13. Psychophysical Reverse Correlation with Multiple Response Alternatives

    PubMed Central

    Dai, Huanping; Micheyl, Christophe

    2011-01-01

    Psychophysical reverse-correlation methods such as the “classification image” technique provide a unique tool to uncover the internal representations and decision strategies of individual participants in perceptual tasks. Over the last thirty years, these techniques have gained increasing popularity among both visual and auditory psychophysicists. However, thus far, principled applications of the psychophysical reverse-correlation approach have been almost exclusively limited to two-alternative decision (detection or discrimination) tasks. Whether and how reverse-correlation methods can be applied to uncover perceptual templates and decision strategies in situations involving more than just two response alternatives remains largely unclear. Here, the authors consider the problem of estimating perceptual templates and decision strategies in stimulus identification tasks with multiple response alternatives. They describe a modified correlational approach, which can be used to solve this problem. The approach is evaluated under a variety of simulated conditions, including different ratios of internal-to-external noise, different degrees of correlations between the sensory observations, and various statistical distributions of stimulus perturbations. The results indicate that the proposed approach is reasonably robust, suggesting that it could be used in future empirical studies. PMID:20695712

  14. Synchronous correlation matrices and Connes’ embedding conjecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dykema, Kenneth J., E-mail: kdykema@math.tamu.edu; Paulsen, Vern, E-mail: vern@math.uh.edu

    In the work of Paulsen et al. [J. Funct. Anal. (in press); preprint arXiv:1407.6918], the concept of synchronous quantum correlation matrices was introduced and these were shown to correspond to traces on certain C*-algebras. In particular, synchronous correlation matrices arose in their study of various versions of quantum chromatic numbers of graphs and other quantum versions of graph theoretic parameters. In this paper, we develop these ideas further, focusing on the relations between synchronous correlation matrices and microstates. We prove that Connes’ embedding conjecture is equivalent to the equality of two families of synchronous quantum correlation matrices. We prove thatmore » if Connes’ embedding conjecture has a positive answer, then the tracial rank and projective rank are equal for every graph. We then apply these results to more general non-local games.« less

  15. Correlators in tensor models from character calculus

    NASA Astrophysics Data System (ADS)

    Mironov, A.; Morozov, A.

    2017-11-01

    We explain how the calculations of [20], which provided the first evidence for non-trivial structures of Gaussian correlators in tensor models, are efficiently performed with the help of the (Hurwitz) character calculus. This emphasizes a close similarity between technical methods in matrix and tensor models and supports a hope to understand the emerging structures in very similar terms. We claim that the 2m-fold Gaussian correlators of rank r tensors are given by r-linear combinations of dimensions with the Young diagrams of size m. The coefficients are made from the characters of the symmetric group Sm and their exact form depends on the choice of the correlator and on the symmetries of the model. As the simplest application of this new knowledge, we provide simple expressions for correlators in the Aristotelian tensor model as tri-linear combinations of dimensions.

  16. Periodic diffraction correlation imaging without a beam-splitter.

    PubMed

    Li, Hu; Chen, Zhipeng; Xiong, Jin; Zeng, Guihua

    2012-01-30

    In this paper, we proposed and demonstrated a new correlation imaging mechanism based on the periodic diffraction effect. In this effect, a periodic intensity pattern is generated at the output surface of a periodic point source array. This novel correlation imaging mechanism can realize super-resolution imaging, Nth-order ghost imaging without a beam-splitter and correlation microscopy.

  17. Interpretation of correlations in clinical research.

    PubMed

    Hung, Man; Bounsanga, Jerry; Voss, Maren Wright

    2017-11-01

    Critically analyzing research is a key skill in evidence-based practice and requires knowledge of research methods, results interpretation, and applications, all of which rely on a foundation based in statistics. Evidence-based practice makes high demands on trained medical professionals to interpret an ever-expanding array of research evidence. As clinical training emphasizes medical care rather than statistics, it is useful to review the basics of statistical methods and what they mean for interpreting clinical studies. We reviewed the basic concepts of correlational associations, violations of normality, unobserved variable bias, sample size, and alpha inflation. The foundations of causal inference were discussed and sound statistical analyses were examined. We discuss four ways in which correlational analysis is misused, including causal inference overreach, over-reliance on significance, alpha inflation, and sample size bias. Recent published studies in the medical field provide evidence of causal assertion overreach drawn from correlational findings. The findings present a primer on the assumptions and nature of correlational methods of analysis and urge clinicians to exercise appropriate caution as they critically analyze the evidence before them and evaluate evidence that supports practice. Critically analyzing new evidence requires statistical knowledge in addition to clinical knowledge. Studies can overstate relationships, expressing causal assertions when only correlational evidence is available. Failure to account for the effect of sample size in the analyses tends to overstate the importance of predictive variables. It is important not to overemphasize the statistical significance without consideration of effect size and whether differences could be considered clinically meaningful.

  18. Correlations and clustering in wholesale electricity markets

    DOE PAGES

    Cui, Tianyu; Caravelli, Francesco; Ududec, Cozmin

    2017-11-24

    We study the structure of locational marginal prices in day-ahead and real-time wholesale electricity markets. In particular, we consider the case of two North American markets and show that the price correlations contain information on the locational structure of the grid. We study various clustering methods and introduce a type of correlation function based on event synchronization for spiky time series, and another based on string correlations of location names provided by the markets. As a result, this allows us to reconstruct aspects of the locational structure of the grid.

  19. Correlations and clustering in wholesale electricity markets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Tianyu; Caravelli, Francesco; Ududec, Cozmin

    We study the structure of locational marginal prices in day-ahead and real-time wholesale electricity markets. In particular, we consider the case of two North American markets and show that the price correlations contain information on the locational structure of the grid. We study various clustering methods and introduce a type of correlation function based on event synchronization for spiky time series, and another based on string correlations of location names provided by the markets. As a result, this allows us to reconstruct aspects of the locational structure of the grid.

  20. Correlations and clustering in wholesale electricity markets

    NASA Astrophysics Data System (ADS)

    Cui, Tianyu; Caravelli, Francesco; Ududec, Cozmin

    2018-02-01

    We study the structure of locational marginal prices in day-ahead and real-time wholesale electricity markets. In particular, we consider the case of two North American markets and show that the price correlations contain information on the locational structure of the grid. We study various clustering methods and introduce a type of correlation function based on event synchronization for spiky time series, and another based on string correlations of location names provided by the markets. This allows us to reconstruct aspects of the locational structure of the grid.

  1. Estimated correlation matrices and portfolio optimization

    NASA Astrophysics Data System (ADS)

    Pafka, Szilárd; Kondor, Imre

    2004-11-01

    Correlations of returns on various assets play a central role in financial theory and also in many practical applications. From a theoretical point of view, the main interest lies in the proper description of the structure and dynamics of correlations, whereas for the practitioner the emphasis is on the ability of the models to provide adequate inputs for the numerous portfolio and risk management procedures used in the financial industry. The theory of portfolios, initiated by Markowitz, has suffered from the “curse of dimensions” from the very outset. Over the past decades a large number of different techniques have been developed to tackle this problem and reduce the effective dimension of large bank portfolios, but the efficiency and reliability of these procedures are extremely hard to assess or compare. In this paper, we propose a model (simulation)-based approach which can be used for the systematical testing of all these dimensional reduction techniques. To illustrate the usefulness of our framework, we develop several toy models that display some of the main characteristic features of empirical correlations and generate artificial time series from them. Then, we regard these time series as empirical data and reconstruct the corresponding correlation matrices which will inevitably contain a certain amount of noise, due to the finiteness of the time series. Next, we apply several correlation matrix estimators and dimension reduction techniques introduced in the literature and/or applied in practice. As in our artificial world the only source of error is the finite length of the time series and, in addition, the “true” model, hence also the “true” correlation matrix, are precisely known, therefore in sharp contrast with empirical studies, we can precisely compare the performance of the various noise reduction techniques. One of our recurrent observations is that the recently introduced filtering technique based on random matrix theory performs

  2. ALMA Correlator Real-Time Data Processor

    NASA Astrophysics Data System (ADS)

    Pisano, J.; Amestica, R.; Perez, J.

    2005-10-01

    The design of a real-time Linux application utilizing Real-Time Application Interface (RTAI) to process real-time data from the radio astronomy correlator for the Atacama Large Millimeter Array (ALMA) is described. The correlator is a custom-built digital signal processor which computes the cross-correlation function of two digitized signal streams. ALMA will have 64 antennas with 2080 signal streams each with a sample rate of 4 giga-samples per second. The correlator's aggregate data output will be 1 gigabyte per second. The software is defined by hard deadlines with high input and processing data rates, while requiring interfaces to non real-time external computers. The designed computer system - the Correlator Data Processor or CDP, consists of a cluster of 17 SMP computers, 16 of which are compute nodes plus a master controller node all running real-time Linux kernels. Each compute node uses an RTAI kernel module to interface to a 32-bit parallel interface which accepts raw data at 64 megabytes per second in 1 megabyte chunks every 16 milliseconds. These data are transferred to tasks running on multiple CPUs in hard real-time using RTAI's LXRT facility to perform quantization corrections, data windowing, FFTs, and phase corrections for a processing rate of approximately 1 GFLOPS. Highly accurate timing signals are distributed to all seventeen computer nodes in order to synchronize them to other time-dependent devices in the observatory array. RTAI kernel tasks interface to the timing signals providing sub-millisecond timing resolution. The CDP interfaces, via the master node, to other computer systems on an external intra-net for command and control, data storage, and further data (image) processing. The master node accesses these external systems utilizing ALMA Common Software (ACS), a CORBA-based client-server software infrastructure providing logging, monitoring, data delivery, and intra-computer function invocation. The software is being developed in tandem

  3. Multipion correlations induced by isospin conservation of coherent emission

    DOE PAGES

    Gangadharan, Dhevan

    2016-09-15

    Recent measurements have revealed a significant suppression of multipion Bose–Einstein correlations in heavy-ion collisions at the LHC. The suppression may be explained by postulating coherent pion emission. Typically, the suppression of Bose–Einstein correlations due to coherence is taken into account with the coherent state formalism in quantum optics. However, since charged pion correlations are most often measured, the additional constraint of isospin conservation, which is absent in quantum optics, needs to be taken into account. As a consequence, correlations emerge between pions of opposite charge. A calculation of the correlations induced by isospin conservation of coherent emission is made formore » two, three- and four-pion correlation functions and compared to the data from the LHC.« less

  4. Signal Digitizer and Cross-Correlation Application Specific Integrated Circuit

    NASA Technical Reports Server (NTRS)

    Baranauskas, Gytis (Inventor); Lim, Boon H. (Inventor); Baranauskas, Dalius (Inventor); Zelenin, Denis (Inventor); Kangaslahti, Pekka (Inventor); Tanner, Alan B. (Inventor)

    2017-01-01

    According to one embodiment, a cross-correlator comprises a plurality of analog front ends (AFEs), a cross-correlation circuit and a data serializer. Each of the AFEs comprises a variable gain amplifier (VGA) and a corresponding analog-to-digital converter (ADC) in which the VGA receives and modifies a unique analog signal associates with a measured analog radio frequency (RF) signal and the ADC produces digital data associated with the modified analog signal. Communicatively coupled to the AFEs, the cross-correlation circuit performs a cross-correlation operation on the digital data produced from different measured analog RF signals. The data serializer is communicatively coupled to the summing and cross-correlating matrix and continuously outputs a prescribed amount of the correlated digital data.

  5. Cumulants and correlation functions versus the QCD phase diagram

    DOE PAGES

    Bzdak, Adam; Koch, Volker; Strodthoff, Nils

    2017-05-12

    Here, we discuss the relation of particle number cumulants and correlation functions. It is argued that measuring couplings of the genuine multiparticle correlation functions could provide cleaner information on possible nontrivial dynamics in heavy-ion collisions. We also extract integrated multiproton correlation functions from the presently available experimental data on proton cumulants. We find that the STAR data contain significant four-proton correlations, at least at the lower energies, with indication of changing dynamics in central collisions. We also find that these correlations are rather long ranged in rapidity. Finally, using the Ising model, we demonstrate how the signs of the multiprotonmore » correlation functions may be used to exclude certain regions of the phase diagram close to the critical point.« less

  6. Simulation of speckle patterns with pre-defined correlation distributions.

    PubMed

    Song, Lipei; Zhou, Zhen; Wang, Xueyan; Zhao, Xing; Elson, Daniel S

    2016-03-01

    We put forward a method to easily generate a single or a sequence of fully developed speckle patterns with pre-defined correlation distribution by utilizing the principle of coherent imaging. The few-to-one mapping between the input correlation matrix and the correlation distribution between simulated speckle patterns is realized and there is a simple square relationship between the values of these two correlation coefficient sets. This method is demonstrated both theoretically and experimentally. The square relationship enables easy conversion from any desired correlation distribution. Since the input correlation distribution can be defined by a digital matrix or a gray-scale image acquired experimentally, this method provides a convenient way to simulate real speckle-related experiments and to evaluate data processing techniques.

  7. Cumulants and correlation functions versus the QCD phase diagram

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bzdak, Adam; Koch, Volker; Strodthoff, Nils

    Here, we discuss the relation of particle number cumulants and correlation functions. It is argued that measuring couplings of the genuine multiparticle correlation functions could provide cleaner information on possible nontrivial dynamics in heavy-ion collisions. We also extract integrated multiproton correlation functions from the presently available experimental data on proton cumulants. We find that the STAR data contain significant four-proton correlations, at least at the lower energies, with indication of changing dynamics in central collisions. We also find that these correlations are rather long ranged in rapidity. Finally, using the Ising model, we demonstrate how the signs of the multiprotonmore » correlation functions may be used to exclude certain regions of the phase diagram close to the critical point.« less

  8. Simulation of speckle patterns with pre-defined correlation distributions

    PubMed Central

    Song, Lipei; Zhou, Zhen; Wang, Xueyan; Zhao, Xing; Elson, Daniel S.

    2016-01-01

    We put forward a method to easily generate a single or a sequence of fully developed speckle patterns with pre-defined correlation distribution by utilizing the principle of coherent imaging. The few-to-one mapping between the input correlation matrix and the correlation distribution between simulated speckle patterns is realized and there is a simple square relationship between the values of these two correlation coefficient sets. This method is demonstrated both theoretically and experimentally. The square relationship enables easy conversion from any desired correlation distribution. Since the input correlation distribution can be defined by a digital matrix or a gray-scale image acquired experimentally, this method provides a convenient way to simulate real speckle-related experiments and to evaluate data processing techniques. PMID:27231589

  9. Ozone Correlative Measurements Workshop

    NASA Technical Reports Server (NTRS)

    Hilsenrath, E. (Editor)

    1985-01-01

    A study was conducted to determine the necessary parameters for the correlation of data on Earth ozone. Topics considered were: (1) measurement accuracy; (2) equipment considerations (SBUV); and (3) ground based measurements to support satellite data.

  10. Correlations of multiscale entropy in the FX market

    NASA Astrophysics Data System (ADS)

    Stosic, Darko; Stosic, Dusan; Ludermir, Teresa; Stosic, Tatijana

    2016-09-01

    The regularity of price fluctuations in exchange rates plays a crucial role in FX market dynamics. Distinct variations in regularity arise from economic, social and political events, such as interday trading and financial crisis. This paper applies a multiscale time-dependent entropy method on thirty-three exchange rates to analyze price fluctuations in the FX. Correlation matrices of entropy values, termed entropic correlations, are in turn used to describe global behavior of the market. Empirical results suggest a weakly correlated market with pronounced collective behavior at bi-weekly trends. Correlations arise from cycles of low and high regularity in long-term trends. Eigenvalues of the correlation matrix also indicate a dominant European market, followed by shifting American, Asian, African, and Pacific influences. As a result, we find that entropy is a powerful tool for extracting important information from the FX market.

  11. A structural-phenomenological typology of mind-matter correlations.

    PubMed

    Atmanspacher, Harald; Fach, Wolfgang

    2013-04-01

    We present a typology of mind-matter correlations embedded in a dual-aspect monist framework as proposed by Pauli and Jung. They conjectured a picture in which the mental and the material arise as two complementary aspects of one underlying psychophysically neutral reality to which they cannot be reduced and to which direct empirical access is impossible. This picture suggests structural, persistent, reproducible mind-matter correlations by splitting the underlying reality into aspects. In addition, it suggests induced, occasional, evasive mind-matter correlations above and below, respectively, those stable baseline correlations. Two significant roles for the concept of meaning in this framework are elucidated. Finally, it is shown that the obtained typology is in perfect agreement with an empirically based classification of the phenomenology of mind-matter correlations as observed in exceptional human experiences. © 2013, The Society of Analytical Psychology.

  12. Redshift distortions of galaxy correlation functions

    NASA Technical Reports Server (NTRS)

    Fry, J. N.; Gaztanaga, Enrique

    1994-01-01

    To examine how peculiar velocities can affect the two-, three-, and four-point redshift correlation functions, we evaluate volume-average correlations for configurations that emphasize and minimize redshift distortions for four different volume-limited samples from each of the CfA, SSRS, and IRAS redshift catalogs. We present the results as the correlation length r(sub 0) and power index gamma of the two-point correlations, bar-xi(sub 0) = (r(sub 0)/r)(exp gamma), and as the hierarchical amplitudes of the three- and four-point functions, S(sub 3) = bar-xi(sub 3)/bar-xi(exp 2)(sub 2) and S(sub 4) = bar-xi(sub 4)/bar-xi(exp 3)(sub 2). We find a characteristic distortion for bar-xi(sub 2), the slope gamma is flatter and the correlation length is larger in redshift space than in real space; that is, redshift distortions 'move' correlations from small to large scales. At the largest scales (up to 12 Mpc), the extra power in the redshift distribution is compatible with Omega(exp 4/7)/b approximately equal to 1. We estimate Omega(exp 4/7)/b to be 0.53 +/- 0.15, 1.10 +/- 0.16, and 0.84 +/- 0.45 for the CfA, SSRS, and IRAS catalogs. Higher order correlations bar-xi(sub 3) and bar-xi(sub 4) suffer similar redshift distortions but in such a way that, within the accuracy of our ananlysis, the normalized amplitudes S(sub 3) and S(sub 4) are insensitive to this effect. The hierarchical amplitudes S(sub 3) and S(sub 4) are constant as a function of scale between 1 and 12 Mpc and have similar values in all samples and catalogs, S(sub 3) approximately equal to 2 and S(sub 4) approximately equal to 6, despite the fact that bar-xi(sub 2), bar-xi(sub 3), and bar-xi(sub 4) differ from one sample to another by large factors (up to a factor of 4 in bar-xi(sub 2), 8 for bar-xi(sub 3), and 12 for bar-xi(sub 4)). The agreement between the independent estimations of S(sub 3) and S(sub 4) is remarkable given the different criteria in the selection of galaxies and also the difference in the

  13. Correlations in fertility across generations: can low fertility persist?

    PubMed

    Kolk, Martin; Cownden, Daniel; Enquist, Magnus

    2014-03-22

    Correlations in family size across generations could have a major influence on human population size in the future. Empirical studies have shown that the associations between the fertility of parents and the fertility of children are substantial and growing over time. Despite their potential long-term consequences, intergenerational fertility correlations have largely been ignored by researchers. We present a model of the fertility transition as a cultural process acting on new lifestyles associated with fertility. Differences in parental and social influences on the acquisition of these lifestyles result in intergenerational correlations in fertility. We show different scenarios for future population size based on models that disregard intergenerational correlations in fertility, models with fertility correlations and a single lifestyle, and models with fertility correlations and multiple lifestyles. We show that intergenerational fertility correlations will result in an increase in fertility over time. However, present low-fertility levels may persist if the rapid introduction of new cultural lifestyles continues into the future.

  14. Correlations in fertility across generations: can low fertility persist?

    PubMed Central

    Kolk, Martin; Cownden, Daniel; Enquist, Magnus

    2014-01-01

    Correlations in family size across generations could have a major influence on human population size in the future. Empirical studies have shown that the associations between the fertility of parents and the fertility of children are substantial and growing over time. Despite their potential long-term consequences, intergenerational fertility correlations have largely been ignored by researchers. We present a model of the fertility transition as a cultural process acting on new lifestyles associated with fertility. Differences in parental and social influences on the acquisition of these lifestyles result in intergenerational correlations in fertility. We show different scenarios for future population size based on models that disregard intergenerational correlations in fertility, models with fertility correlations and a single lifestyle, and models with fertility correlations and multiple lifestyles. We show that intergenerational fertility correlations will result in an increase in fertility over time. However, present low-fertility levels may persist if the rapid introduction of new cultural lifestyles continues into the future. PMID:24478294

  15. Correlation Filter Learning Toward Peak Strength for Visual Tracking.

    PubMed

    Sui, Yao; Wang, Guanghui; Zhang, Li

    2018-04-01

    This paper presents a novel visual tracking approach to correlation filter learning toward peak strength of correlation response. Previous methods leverage all features of the target and the immediate background to learn a correlation filter. Some features, however, may be distractive to tracking, like those from occlusion and local deformation, resulting in unstable tracking performance. This paper aims at solving this issue and proposes a novel algorithm to learn the correlation filter. The proposed approach, by imposing an elastic net constraint on the filter, can adaptively eliminate those distractive features in the correlation filtering. A new peak strength metric is proposed to measure the discriminative capability of the learned correlation filter. It is demonstrated that the proposed approach effectively strengthens the peak of the correlation response, leading to more discriminative performance than previous methods. Extensive experiments on a challenging visual tracking benchmark demonstrate that the proposed tracker outperforms most state-of-the-art methods.

  16. Noninvasive measurement of dynamic correlation functions

    NASA Astrophysics Data System (ADS)

    Uhrich, Philipp; Castrignano, Salvatore; Uys, Hermann; Kastner, Michael

    2017-08-01

    The measurement of dynamic correlation functions of quantum systems is complicated by measurement backaction. To facilitate such measurements we introduce a protocol, based on weak ancilla-system couplings, that is applicable to arbitrary (pseudo)spin systems and arbitrary equilibrium or nonequilibrium initial states. Different choices of the coupling operator give access to the real and imaginary parts of the dynamic correlation function. This protocol reduces disturbances due to the early-time measurements to a minimum, and we quantify the deviation of the measured correlation functions from the theoretical, unitarily evolved ones. Implementations of the protocol in trapped ions and other experimental platforms are discussed. For spin-1 /2 models and single-site observables we prove that measurement backaction can be avoided altogether, allowing for the use of ancilla-free protocols.

  17. Exotic Superconductivity in Correlated Electron Systems

    DOE PAGES

    Mu, Gang; Sandu, Viorel; Li, Wei; ...

    2015-05-25

    Over the past decades, the search for high-T c superconductivity (SC) and its novel superconducting mechanisms is one of the most challenging tasks of condensed matter physicists and material scientists, wherein the most striking achievement is the discovery of high- c and unconventional superconductivity in strongly correlated 3d-electron systems, such as cuprates and iron pnictides/chalcogenides. Those exotic superconductors display the behaviors beyond the scope of the BCS theory (in the SC states) and the Landau-Fermi liquid theory (in the normal states). In general, such exotic superconductivity can be seen as correlated electron systems, where there are strong interplays among charge,more » spin, orbital, and lattice degrees of freedom. Thus, we focus on the exotic superconductivity in materials with correlated electrons in the present special issue.« less

  18. Correlation function of the luminosity distances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biern, Sang Gyu; Yoo, Jaiyul, E-mail: sgbiern@physik.uzh.ch, E-mail: jyoo@physik.uzh.ch

    We present the correlation function of the luminosity distances in a flat ΛCDM universe. Decomposing the luminosity distance fluctuation into the velocity, the gravitational potential, and the lensing contributions in linear perturbation theory, we study their individual contributions to the correlation function. The lensing contribution is important at large redshift ( z ∼> 0.5) but only for small angular separation (θ ∼< 3°), while the velocity contribution dominates over the other contributions at low redshift or at larger separation. However, the gravitational potential contribution is always subdominant at all scale, if the correct gauge-invariant expression is used. The correlation functionmore » of the luminosity distances depends significantly on the matter content, especially for the lensing contribution, thus providing a novel tool of estimating cosmological parameters.« less

  19. Quantum Correlation Properties in Composite Parity-Conserved Matrix Product States

    NASA Astrophysics Data System (ADS)

    Zhu, Jing-Min

    2016-09-01

    We give a new thought for constructing long-range quantum correlation in quantum many-body systems. Our proposed composite parity-conserved matrix product state has long-range quantum correlation only for two spin blocks where their spin-block length larger than 1 compared to any subsystem only having short-range quantum correlation, and we investigate quantum correlation properties of two spin blocks varying with environment parameter and spacing spin number. We also find that the geometry quantum discords of two nearest-neighbor spin blocks and two next-nearest-neighbor spin blocks become smaller and for other conditions the geometry quantum discord becomes larger than that in any subcomponent, i.e., the increase or the production of the long-range quantum correlation is at the cost of reducing the short-range quantum correlation compared to the corresponding classical correlation and total correlation having no any characteristic of regulation. For nearest-neighbor and next-nearest-neighbor all the correlations take their maximal values at the same points, while for other conditions no whether for spacing same spin number or for different spacing spin numbers all the correlations taking their maximal values are respectively at different points which are very close. We believe that our work is helpful to comprehensively and deeply understand the organization and structure of quantum correlation especially for long-range quantum correlation of quantum many-body systems; and further helpful for the classification, the depiction and the measure of quantum correlation of quantum many-body systems.

  20. BINARY CORRELATIONS IN IONIZED GASES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balescu, R.; Taylor, H.S.

    1961-01-01

    An equation of evolution for the binary distribution function in a classical homogeneous, nonequilibrium plasma was derived. It is shown that the asymptotic (long-time) solution of this equation is the Debye distribution, thus providing a rigorous dynamical derivation of the equilibrium distribution. This proof is free from the fundamental conceptual difficulties of conventional equilibrium derivations. Out of equilibrium, a closed formula was obtained for the long living correlations, in terms of the momentum distribution function. These results should form an appropriate starting point for a rigorous theory of transport phenomena in plasmas, including the effect of molecular correlations. (auth)

  1. Registration of prone and supine CT colonography scans using correlation optimized warping and canonical correlation analysis

    PubMed Central

    Wang, Shijun; Yao, Jianhua; Liu, Jiamin; Petrick, Nicholas; Van Uitert, Robert L.; Periaswamy, Senthil; Summers, Ronald M.

    2009-01-01

    Purpose: In computed tomographic colonography (CTC), a patient will be scanned twice—Once supine and once prone—to improve the sensitivity for polyp detection. To assist radiologists in CTC reading, in this paper we propose an automated method for colon registration from supine and prone CTC scans. Methods: We propose a new colon centerline registration method for prone and supine CTC scans using correlation optimized warping (COW) and canonical correlation analysis (CCA) based on the anatomical structure of the colon. Four anatomical salient points on the colon are first automatically distinguished. Then correlation optimized warping is applied to the segments defined by the anatomical landmarks to improve the global registration based on local correlation of segments. The COW method was modified by embedding canonical correlation analysis to allow multiple features along the colon centerline to be used in our implementation. Results: We tested the COW algorithm on a CTC data set of 39 patients with 39 polyps (19 training and 20 test cases) to verify the effectiveness of the proposed COW registration method. Experimental results on the test set show that the COW method significantly reduces the average estimation error in a polyp location between supine and prone scans by 67.6%, from 46.27±52.97 to 14.98 mm±11.41 mm, compared to the normalized distance along the colon centerline algorithm (p<0.01). Conclusions: The proposed COW algorithm is more accurate for the colon centerline registration compared to the normalized distance along the colon centerline method and the dynamic time warping method. Comparison results showed that the feature combination of z-coordinate and curvature achieved lowest registration error compared to the other feature combinations used by COW. The proposed method is tolerant to centerline errors because anatomical landmarks help prevent the propagation of errors across the entire colon centerline. PMID:20095272

  2. Registration of prone and supine CT colonography scans using correlation optimized warping and canonical correlation analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Shijun; Yao Jianhua; Liu Jiamin

    Purpose: In computed tomographic colonography (CTC), a patient will be scanned twice--Once supine and once prone--to improve the sensitivity for polyp detection. To assist radiologists in CTC reading, in this paper we propose an automated method for colon registration from supine and prone CTC scans. Methods: We propose a new colon centerline registration method for prone and supine CTC scans using correlation optimized warping (COW) and canonical correlation analysis (CCA) based on the anatomical structure of the colon. Four anatomical salient points on the colon are first automatically distinguished. Then correlation optimized warping is applied to the segments defined bymore » the anatomical landmarks to improve the global registration based on local correlation of segments. The COW method was modified by embedding canonical correlation analysis to allow multiple features along the colon centerline to be used in our implementation. Results: We tested the COW algorithm on a CTC data set of 39 patients with 39 polyps (19 training and 20 test cases) to verify the effectiveness of the proposed COW registration method. Experimental results on the test set show that the COW method significantly reduces the average estimation error in a polyp location between supine and prone scans by 67.6%, from 46.27{+-}52.97 to 14.98 mm{+-}11.41 mm, compared to the normalized distance along the colon centerline algorithm (p<0.01). Conclusions: The proposed COW algorithm is more accurate for the colon centerline registration compared to the normalized distance along the colon centerline method and the dynamic time warping method. Comparison results showed that the feature combination of z-coordinate and curvature achieved lowest registration error compared to the other feature combinations used by COW. The proposed method is tolerant to centerline errors because anatomical landmarks help prevent the propagation of errors across the entire colon centerline.« less

  3. Parameter Optimization for Selected Correlation Analysis of Intracranial Pathophysiology.

    PubMed

    Faltermeier, Rupert; Proescholdt, Martin A; Bele, Sylvia; Brawanski, Alexander

    2015-01-01

    Recently we proposed a mathematical tool set, called selected correlation analysis, that reliably detects positive and negative correlations between arterial blood pressure (ABP) and intracranial pressure (ICP). Such correlations are associated with severe impairment of the cerebral autoregulation and intracranial compliance, as predicted by a mathematical model. The time resolved selected correlation analysis is based on a windowing technique combined with Fourier-based coherence calculations and therefore depends on several parameters. For real time application of this method at an ICU it is inevitable to adjust this mathematical tool for high sensitivity and distinct reliability. In this study, we will introduce a method to optimize the parameters of the selected correlation analysis by correlating an index, called selected correlation positive (SCP), with the outcome of the patients represented by the Glasgow Outcome Scale (GOS). For that purpose, the data of twenty-five patients were used to calculate the SCP value for each patient and multitude of feasible parameter sets of the selected correlation analysis. It could be shown that an optimized set of parameters is able to improve the sensitivity of the method by a factor greater than four in comparison to our first analyses.

  4. Parameter Optimization for Selected Correlation Analysis of Intracranial Pathophysiology

    PubMed Central

    Faltermeier, Rupert; Proescholdt, Martin A.; Bele, Sylvia; Brawanski, Alexander

    2015-01-01

    Recently we proposed a mathematical tool set, called selected correlation analysis, that reliably detects positive and negative correlations between arterial blood pressure (ABP) and intracranial pressure (ICP). Such correlations are associated with severe impairment of the cerebral autoregulation and intracranial compliance, as predicted by a mathematical model. The time resolved selected correlation analysis is based on a windowing technique combined with Fourier-based coherence calculations and therefore depends on several parameters. For real time application of this method at an ICU it is inevitable to adjust this mathematical tool for high sensitivity and distinct reliability. In this study, we will introduce a method to optimize the parameters of the selected correlation analysis by correlating an index, called selected correlation positive (SCP), with the outcome of the patients represented by the Glasgow Outcome Scale (GOS). For that purpose, the data of twenty-five patients were used to calculate the SCP value for each patient and multitude of feasible parameter sets of the selected correlation analysis. It could be shown that an optimized set of parameters is able to improve the sensitivity of the method by a factor greater than four in comparison to our first analyses. PMID:26693250

  5. Similarity analysis between chromosomes of Homo sapiens and monkeys with correlation coefficient, rank correlation coefficient and cosine similarity measures

    PubMed Central

    Someswara Rao, Chinta; Viswanadha Raju, S.

    2016-01-01

    In this paper, we consider correlation coefficient, rank correlation coefficient and cosine similarity measures for evaluating similarity between Homo sapiens and monkeys. We used DNA chromosomes of genome wide genes to determine the correlation between the chromosomal content and evolutionary relationship. The similarity among the H. sapiens and monkeys is measured for a total of 210 chromosomes related to 10 species. The similarity measures of these different species show the relationship between the H. sapiens and monkey. This similarity will be helpful at theft identification, maternity identification, disease identification, etc. PMID:26981409

  6. Similarity analysis between chromosomes of Homo sapiens and monkeys with correlation coefficient, rank correlation coefficient and cosine similarity measures.

    PubMed

    Someswara Rao, Chinta; Viswanadha Raju, S

    2016-03-01

    In this paper, we consider correlation coefficient, rank correlation coefficient and cosine similarity measures for evaluating similarity between Homo sapiens and monkeys. We used DNA chromosomes of genome wide genes to determine the correlation between the chromosomal content and evolutionary relationship. The similarity among the H. sapiens and monkeys is measured for a total of 210 chromosomes related to 10 species. The similarity measures of these different species show the relationship between the H. sapiens and monkey. This similarity will be helpful at theft identification, maternity identification, disease identification, etc.

  7. When do correlations increase with firing rates in recurrent networks?

    PubMed Central

    2017-01-01

    A central question in neuroscience is to understand how noisy firing patterns are used to transmit information. Because neural spiking is noisy, spiking patterns are often quantified via pairwise correlations, or the probability that two cells will spike coincidentally, above and beyond their baseline firing rate. One observation frequently made in experiments, is that correlations can increase systematically with firing rate. Theoretical studies have determined that stimulus-dependent correlations that increase with firing rate can have beneficial effects on information coding; however, we still have an incomplete understanding of what circuit mechanisms do, or do not, produce this correlation-firing rate relationship. Here, we studied the relationship between pairwise correlations and firing rates in recurrently coupled excitatory-inhibitory spiking networks with conductance-based synapses. We found that with stronger excitatory coupling, a positive relationship emerged between pairwise correlations and firing rates. To explain these findings, we used linear response theory to predict the full correlation matrix and to decompose correlations in terms of graph motifs. We then used this decomposition to explain why covariation of correlations with firing rate—a relationship previously explained in feedforward networks driven by correlated input—emerges in some recurrent networks but not in others. Furthermore, when correlations covary with firing rate, this relationship is reflected in low-rank structure in the correlation matrix. PMID:28448499

  8. Cross correlation in the two-mode laser

    NASA Astrophysics Data System (ADS)

    Kennedy, T. A. B.; Swain, S.

    1984-11-01

    Thomas et al. proposed the generation of cross correlation between two laser fields interacting with a three-level system as a means of reducing noise and subsequently exploited this property in the observation of very narrow Ramsey fringes. Cross correlation has been discussed theoretically by Dalton and Knight and shown to have interesting effects in population trapping. For such effects to be important, the cross correlation coefficient must be as large as possible. The degree of correlation between the two modes of a two-mode laser is discussed using the approach of Scully and Lamb, and it is shown that it can be large. The linewidths of the two laser modes are evaluated. It is found that if the laser parameters for the two modes are equal, the two-mode linewidth is one half the value of the linewidth of the corresponding single-mode laser, well above threshold.

  9. Strong correlation in incremental full configuration interaction

    NASA Astrophysics Data System (ADS)

    Zimmerman, Paul M.

    2017-06-01

    Incremental Full Configuration Interaction (iFCI) reaches high accuracy electronic energies via a many-body expansion of the correlation energy. In this work, the Perfect Pairing (PP) ansatz replaces the Hartree-Fock reference of the original iFCI method. This substitution captures a large amount of correlation at zero-order, which allows iFCI to recover the remaining correlation energy with low-order increments. The resulting approach, PP-iFCI, is size consistent, size extensive, and systematically improvable with increasing order of incremental expansion. Tests on multiple single bond, multiple double bond, and triple bond dissociations of main group polyatomics using double and triple zeta basis sets demonstrate the power of the method for handling strong correlation. The smooth dissociation profiles that result from PP-iFCI show that FCI-quality ground state computations are now within reach for systems with up to about 10 heavy atoms.

  10. Complex-valued time-series correlation increases sensitivity in FMRI analysis.

    PubMed

    Kociuba, Mary C; Rowe, Daniel B

    2016-07-01

    To develop a linear matrix representation of correlation between complex-valued (CV) time-series in the temporal Fourier frequency domain, and demonstrate its increased sensitivity over correlation between magnitude-only (MO) time-series in functional MRI (fMRI) analysis. The standard in fMRI is to discard the phase before the statistical analysis of the data, despite evidence of task related change in the phase time-series. With a real-valued isomorphism representation of Fourier reconstruction, correlation is computed in the temporal frequency domain with CV time-series data, rather than with the standard of MO data. A MATLAB simulation compares the Fisher-z transform of MO and CV correlations for varying degrees of task related magnitude and phase amplitude change in the time-series. The increased sensitivity of the complex-valued Fourier representation of correlation is also demonstrated with experimental human data. Since the correlation description in the temporal frequency domain is represented as a summation of second order temporal frequencies, the correlation is easily divided into experimentally relevant frequency bands for each voxel's temporal frequency spectrum. The MO and CV correlations for the experimental human data are analyzed for four voxels of interest (VOIs) to show the framework with high and low contrast-to-noise ratios in the motor cortex and the supplementary motor cortex. The simulation demonstrates the increased strength of CV correlations over MO correlations for low magnitude contrast-to-noise time-series. In the experimental human data, the MO correlation maps are noisier than the CV maps, and it is more difficult to distinguish the motor cortex in the MO correlation maps after spatial processing. Including both magnitude and phase in the spatial correlation computations more accurately defines the correlated left and right motor cortices. Sensitivity in correlation analysis is important to preserve the signal of interest in f

  11. Correlation between ocular parameters and amplitude of accommodation

    PubMed Central

    Abraham, Lekha Mary; Kuriakose, Thomas; Sivanandam, Viswanathan; Venkatesan, Nithya; Thomas, Ravi; Muliyil, Jayaprakash

    2010-01-01

    Aim: To study the relationship between ocular parameters and amplitude of accommodation (AA) in the peri-presbyopic age group (35–50 years). Materials and Methods: Three hundred and sixteen right eyes of consecutive patients in the age group 35–50 years, who attended our outpatient clinic, were studied. Emmetropes, hypermetropes and myopes with best-corrected visual acuity of 20/20, J1 in both eyes were included. The AA was calculated by measuring the near point of accommodation. The axial length (AL), central anterior chamber depth (CACD) and lens thickness (LT) were also measured. Results: There was moderate correlation (Pearson’s correlation coefficient r = 0.56) between AL and AA as well as between CACD and AA (r = 0.53) in myopes in the age group 35–39 years. In the other age groups and the groups taken as a whole, there was no correlation. In hypermetropes and emmetropes, there was no correlation between AA and the above ocular parameters. No significant correlation existed between LT and AA across different age groups and refractive errors. Conclusion: There was no significant correlation between AA and ocular parameters like anterior chamber depth, AL and LT. PMID:20952831

  12. Correlated bursts and the role of memory range

    NASA Astrophysics Data System (ADS)

    Jo, Hang-Hyun; Perotti, Juan I.; Kaski, Kimmo; Kertész, János

    2015-08-01

    Inhomogeneous temporal processes in natural and social phenomena have been described by bursts that are rapidly occurring events within short time periods alternating with long periods of low activity. In addition to the analysis of heavy-tailed interevent time distributions, higher-order correlations between interevent times, called correlated bursts, have been studied only recently. As the underlying mechanism behind such correlated bursts is far from being fully understood, we devise a simple model for correlated bursts using a self-exciting point process with a variable range of memory. Whether a new event occurs is stochastically determined by a memory function that is the sum of decaying memories of past events. In order to incorporate the noise and/or limited memory capacity of systems, we apply two memory loss mechanisms: a fixed number or a variable number of memories. By analysis and numerical simulations, we find that too much memory effect may lead to a Poissonian process, implying that there exists an intermediate range of memory effect to generate correlated bursts comparable to empirical findings. Our conclusions provide a deeper understanding of how long-range memory affects correlated bursts.

  13. Dance and music share gray matter structural correlates.

    PubMed

    Karpati, Falisha J; Giacosa, Chiara; Foster, Nicholas E V; Penhune, Virginia B; Hyde, Krista L

    2017-02-15

    Intensive practise of sensorimotor skills, such as music and dance, is associated with brain structural plasticity. While the neural correlates of music have been well-investigated, less is known about the neural correlates of dance. Additionally, the gray matter structural correlates of dance versus music training have not yet been directly compared. The objectives of the present study were to compare gray matter structure as measured by surface- and voxel-based morphometry between expert dancers, expert musicians and untrained controls, as well as to correlate gray matter structure with performance on dance- and music-related tasks. Dancers and musicians were found to have increased cortical thickness compared to controls in superior temporal regions. Gray matter structure in the superior temporal gyrus was also correlated with performance on dance imitation, rhythm synchronization and melody discrimination tasks. These results suggest that superior temporal regions are important in both dance- and music-related skills and may be affected similarly by both types of long-term intensive training. This work advances knowledge of the neural correlates of dance and music, as well as training-associated brain plasticity in general. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Effects of low-dose radiation - a correlation study.

    PubMed

    Edling, C; Comba, P; Axelson, O; Flodin, U

    1982-01-01

    The effects of low-dose radiation have been a matter of controversy over the years, and the epidemiologic results have been conflicting. A couple of recent studies have indicated a possible impact on lung cancer mortality from exposure to indoor levels of radon and radon daughters. In this study, selected mortality rates, ie, lung cancer, pancreatic cancer, breast cancer (females only), leukemia, and multiple myeloma were correlated for the counties of Sweden with estimates of average background radiation exposure in these areas. Significant correlations were obtained for lung cancer (males, r = 0.46; females r = 0.55) and pancreatic cancer (males, r = 0.59; females, r = 0.40) , and there was a borderline correlation (r = 0.36; p = 0.04) for leukemia in males. In all, there were positive correlations for eight out of the nine computations made. Since background radiation correlates with urbanization and therefore with smoking, air pollution, etc, the correlations might be spurious due to confounding; on the other hand confounding is a reciprocal phenomenon which suggests that background radiation should to be taken into consideration when widespread risk factors like smoking, coffee drinking, general air pollution, etc, are studied.

  15. Intrinsic Correlations for Flaring Blazars Detected by Fermi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, J. H.; Xiao, H. B.; Lin, C.

    2017-02-01

    Blazars are an extreme subclass of active galactic nuclei. Their rapid variability, luminous brightness, superluminal motion, and high and variable polarization are probably due to a beaming effect. However, this beaming factor (or Doppler factor) is very difficult to measure. Currently, a good way to estimate it is to use the timescale of their radio flares. In this Letter, we use multiwavelength data and Doppler factors reported in the literature for a sample of 86 flaring blazars detected by Fermi to compute their intrinsic multiwavelength data and intrinsic spectral energy distributions and investigate the correlations among observed and intrinsic data.more » Quite interestingly, intrinsic data show a positive correlation between luminosity and peak frequency, in contrast with the behavior of observed data, and a tighter correlation between γ -ray luminosity and the lower-energy ones. For flaring blazars detected by Fermi , we conclude that (1) observed emissions are strongly beamed; (2) the anti-correlation between luminosity and peak frequency from the observed data is an apparent result, the correlation between intrinsic data being positive; and (3) intrinsic γ -ray luminosity is strongly correlated with other intrinsic luminosities.« less

  16. An Accurate Link Correlation Estimator for Improving Wireless Protocol Performance

    PubMed Central

    Zhao, Zhiwei; Xu, Xianghua; Dong, Wei; Bu, Jiajun

    2015-01-01

    Wireless link correlation has shown significant impact on the performance of various sensor network protocols. Many works have been devoted to exploiting link correlation for protocol improvements. However, the effectiveness of these designs heavily relies on the accuracy of link correlation measurement. In this paper, we investigate state-of-the-art link correlation measurement and analyze the limitations of existing works. We then propose a novel lightweight and accurate link correlation estimation (LACE) approach based on the reasoning of link correlation formation. LACE combines both long-term and short-term link behaviors for link correlation estimation. We implement LACE as a stand-alone interface in TinyOS and incorporate it into both routing and flooding protocols. Simulation and testbed results show that LACE: (1) achieves more accurate and lightweight link correlation measurements than the state-of-the-art work; and (2) greatly improves the performance of protocols exploiting link correlation. PMID:25686314

  17. Functional-anatomic correlates of individual differences in memory.

    PubMed

    Kirchhoff, Brenda A; Buckner, Randy L

    2006-07-20

    Memory abilities differ greatly across individuals. To explore a source of these differences, we characterized the varied strategies people adopt during unconstrained encoding. Participants intentionally encoded object pairs during functional MRI. Principal components analysis applied to a strategy questionnaire revealed that participants variably used four main strategies to aid learning. Individuals' use of verbal elaboration and visual inspection strategies independently correlated with their memory performance. Verbal elaboration correlated with activity in a network of regions that included prefrontal regions associated with controlled verbal processing, while visual inspection correlated with activity in a network of regions that included an extrastriate region associated with object processing. Activity in regions associated with use of these strategies was also correlated with memory performance. This study reveals functional-anatomic correlates of verbal and perceptual strategies that are variably used by individuals during encoding. These strategies engage distinct brain regions and may separately influence memory performance.

  18. An Improved Correlation between Impression and Uniaxial Creep

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsueh, Chun-Hway; Miranda, Pedro; Becher, Paul F

    2006-01-01

    A semiempirical correlation between impression and uniaxial creep has been established by Hyde et al. [Int. J. Mech. Sci. 35, 451 (1993) ] using finite element results for materials exhibiting general power-law creep with the stress exponent n in the range 2 {<=} n {<=} 15. Here, we derive the closed-form solution for a special case of viscoelastic materials, i.e., n = 1, subjected to impression creep and obtain the exact correlation between impression and uniaxial creep. This analytical solution serves as a checkpoint for the finite element results. We then perform finite element analyses for the general case tomore » derive a semiempirical correlation, which agrees well with both analytical viscoelastic results and the existing experimental data. Our improved correlation agrees with the correlation of Hyde et al. for n {>=} 4, and the difference increases with decreasing n for n<4.« less

  19. Feasibility study of parallel optical correlation-decoding analysis of lightning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Descour, M.R.; Sweatt, W.C.; Elliott, G.R.

    The optical correlator described in this report is intended to serve as an attention-focusing processor. The objective is to narrowly bracket the range of a parameter value that characterizes the correlator input. The input is a waveform collected by a satellite-borne receiver. In the correlator, this waveform is simultaneously correlated with an ensemble of ionosphere impulse-response functions, each corresponding to a different total-electron-count (TEC) value. We have found that correlation is an effective method of bracketing the range of TEC values likely to be represented by the input waveform. High accuracy in a computational sense is not required of themore » correlator. Binarization of the impulse-response functions and the input waveforms prior to correlation results in a lower correlation-peak-to-background-fluctuation (signal-to-noise) ratio than the peak that is obtained when all waveforms retain their grayscale values. The results presented in this report were obtained by means of an acousto-optic correlator previously developed at SNL as well as by simulation. An optical-processor architecture optimized for 1D correlation of long waveforms characteristic of this application is described. Discussions of correlator components, such as optics, acousto-optic cells, digital micromirror devices, laser diodes, and VCSELs are included.« less

  20. Extension of latin hypercube samples with correlated variables.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hora, Stephen Curtis; Helton, Jon Craig; Sallaberry, Cedric J. PhD.

    2006-11-01

    A procedure for extending the size of a Latin hypercube sample (LHS) with rank correlated variables is described and illustrated. The extension procedure starts with an LHS of size m and associated rank correlation matrix C and constructs a new LHS of size 2m that contains the elements of the original LHS and has a rank correlation matrix that is close to the original rank correlation matrix C. The procedure is intended for use in conjunction with uncertainty and sensitivity analysis of computationally demanding models in which it is important to make efficient use of a necessarily limited number ofmore » model evaluations.« less

  1. Characterizing nonclassical correlations via local quantum Fisher information

    NASA Astrophysics Data System (ADS)

    Kim, Sunho; Li, Longsuo; Kumar, Asutosh; Wu, Junde

    2018-03-01

    We define two ways of quantifying the quantum correlations based on quantum Fisher information (QFI) in order to study the quantum correlations as a resource in quantum metrology. By investigating the hierarchy of measurement-induced Fisher information introduced in Lu et al. [X. M. Lu, S. Luo, and C. H. Oh, Phys. Rev. A 86, 022342 (2012), 10.1103/PhysRevA.86.022342], we show that the presence of quantum correlation can be confirmed by the difference of the Fisher information induced by the measurements of two hierarchies. In particular, the quantitative quantum correlations based on QFI coincide with the geometric discord for pure quantum states.

  2. ANALYZING CORRELATIONS BETWEEN STREAM AND WATERSHED ATTRIBUTES

    EPA Science Inventory

    Bivariate correlation analysis has been widely used to explore relationships between stream and watershed attributes that have all been measured on the same set of watersheds or sampling locations. Researchers routinely test H0: =0 for each correlation in a large table and then ...

  3. Road roughness correlation study.

    DOT National Transportation Integrated Search

    1970-06-01

    The Research and Development Section of the Louisiana Department of Highways has been using a PCA Road Meter to gather information concerning Present Serviceability Indices for the AASHO Correlation Study. the PCA Road Meter has replaced the Chloe Pr...

  4. Rainbow correlation imaging with macroscopic twin beam

    NASA Astrophysics Data System (ADS)

    Allevi, Alessia; Bondani, Maria

    2017-06-01

    We present the implementation of a correlation-imaging protocol that exploits both the spatial and spectral correlations of macroscopic twin-beam states generated by parametric downconversion. In particular, the spectral resolution of an imaging spectrometer coupled to an EMCCD camera is used in a proof-of-principle experiment to encrypt and decrypt a simple code to be transmitted between two parties. In order to optimize the trade-off between visibility and resolution, we provide the characterization of the correlation images as a function of the spatio-spectral properties of twin beams generated at different pump power values.

  5. Fast correlation method for passive-solar design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wray, W.O.; Biehl, F.A.; Kosiewicz, C.E.

    1982-01-01

    A passive-solar design manual for single-family detached residences and dormitory-type buildings is being developed. The design procedure employed in the manual is a simplification of the original monthly solar load ratio (SLR) method. The new SLR correlations involve a single constant for each system. The correlation constant appears as a scale factor permitting the use of a universal performance curve for all passive systems. Furthermore, by providing location-dependent correlations between the annual solar heating fraction (SHF) and the minimum monthly SHF, we have eliminated the need to perform an SLR calculation for each month of the heating season.

  6. Optical-Correlator Neural Network Based On Neocognitron

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin; Stoner, William W.

    1994-01-01

    Multichannel optical correlator implements shift-invariant, high-discrimination pattern-recognizing neural network based on paradigm of neocognitron. Selected as basic building block of this neural network because invariance under shifts is inherent advantage of Fourier optics included in optical correlators in general. Neocognitron is conceptual electronic neural-network model for recognition of visual patterns. Multilayer processing achieved by iteratively feeding back output of feature correlator to input spatial light modulator and updating Fourier filters. Neural network trained by use of characteristic features extracted from target images. Multichannel implementation enables parallel processing of large number of selected features.

  7. Semi-quantitative spectrographic analysis and rank correlation in geochemistry

    USGS Publications Warehouse

    Flanagan, F.J.

    1957-01-01

    The rank correlation coefficient, rs, which involves less computation than the product-moment correlation coefficient, r, can be used to indicate the degree of relationship between two elements. The method is applicable in situations where the assumptions underlying normal distribution correlation theory may not be satisfied. Semi-quantitative spectrographic analyses which are reported as grouped or partly ranked data can be used to calculate rank correlations between elements. ?? 1957.

  8. Correlation effects in elastic e-N2 scattering

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Lima, Marco A. P.; Gibson, Thomas L.; Mckoy, Vincent

    1987-01-01

    The Schwinger multichannel formulation has been applied to study the role of electron correlation in low-energy e-N2 scattering. For the five nonresonant partial-wave channels studied here, angular correlation is found to be much more important than radial correlation. The calculated total and differential cross sections agree well with experiment except for the differential cross sections at 1.5 eV.

  9. Clinical applications of correlational vestibular autorotation test.

    PubMed

    Hsieh, Li-Chun; Lin, Te-Ming; Chang, Yu-Min; Kuo, Terry B J; Lee, Gho-She

    2015-06-01

    The correlational vestibular autorotation test (VAT) system has the advantages of good test-retest reliability and calibrations of absolute degrees of eye movement are unnecessary when acquiring a cross correlation coefficient (CCC). The approach is able to efficiently detect peripheral vestibulopathies. A VAT has some drawbacks including poor test-retest reliability and slippage of sensor. This study aimed to develop a correlational VAT system and to evaluate the reliability and applicability of this system. Twenty healthy participants and 10 vertiginous patients were enrolled. Vertical and horizontal autorotations from 0 to 3 Hz with either closed or open eyes were performed. A small sensor and a wireless transmission technique were used to acquire the electro-ocular graph and head velocity signals. The two signals were analyzed using CCCs to assess the functioning of the vestibular ocular reflex (VOR). The results showed a significantly greater CCC for open-eye versus closed-eye of head autorotations. The CCCs also increased significantly with head rotational frequencies. Moreover, the CCCs significantly correlated with the VOR gains at autorotation frequencies ≥1.0 Hz. The test-retest reliability was good (intraclass correlation coefficients ≥0.85). The vertiginous participants had significantly lower individual CCCs and overall average CCC than age- and-gender matched controls.

  10. A Kinematically Consistent Two-Point Correlation Function

    NASA Technical Reports Server (NTRS)

    Ristorcelli, J. R.

    1998-01-01

    A simple kinematically consistent expression for the longitudinal two-point correlation function related to both the integral length scale and the Taylor microscale is obtained. On the inner scale, in a region of width inversely proportional to the turbulent Reynolds number, the function has the appropriate curvature at the origin. The expression for two-point correlation is related to the nonlinear cascade rate, or dissipation epsilon, a quantity that is carried as part of a typical single-point turbulence closure simulation. Constructing an expression for the two-point correlation whose curvature at the origin is the Taylor microscale incorporates one of the fundamental quantities characterizing turbulence, epsilon, into a model for the two-point correlation function. The integral of the function also gives, as is required, an outer integral length scale of the turbulence independent of viscosity. The proposed expression is obtained by kinematic arguments; the intention is to produce a practically applicable expression in terms of simple elementary functions that allow an analytical evaluation, by asymptotic methods, of diverse functionals relevant to single-point turbulence closures. Using the expression devised an example of the asymptotic method by which functionals of the two-point correlation can be evaluated is given.

  11. Estimation of Forest Structure from SRTM correlation data

    NASA Astrophysics Data System (ADS)

    Chapman, B. D.; Hensley, S.; Siqueira, P.; Simard, M.; Treuhaft, R. N.

    2012-12-01

    In the year 2000, NASA flew a C-band interferometric SAR mission on the Space Shuttle Endeavour called the NASA Shuttle Radar Topography Mission (SRTM). The objective of this 10 day mission was to measure the topography of the Earth between latitudes of ±60 degrees. The Digital Elevation Model (DEM) obtained by processing the collected interferometric SAR data has been made freely available by NASA for many uses. During SRTM InSAR processing, the interferometric correlation was determined as well. One component of the observed SRTM interferometric correlation is the volumetric correlation. The volumetric correlation contains desired vertical structure information. Therefore, if the other components of the correlation can be determined and removed, the remaining correlation should be related to the along-sight distribution of objects within each image pixel. In the presence of vegetation, where we postulate the radiation is scattering in varying amounts from the top of the vegetation to the ground surface, the decorrelation should be related to thickness of the vegetation layer. If successfully demonstrated, the SRTM data set could be used to derive estimates of year 2000 vegetation structure for a large part of the Earth's land surface. Unfortunately, not all the SRTM data are equally sensitive to vertical structure information. Beam 1, the sub-swath in the near range of the SRTM ScanSAR swath, has the greatest sensitivity. Therefore, this presentation will concentrate on the analysis of data from that sub-swath. First, we will describe the corrections necessary to extract the volumetric correlation from the observed correlation. Second, we will examine methods to model the vegetation structure. Last, vegetation-modeling results based on the SRTM correlation data will be compared with results from other measurements of vegetation structural information. Results for a variety of vegetation types will be examined. This paper was partially written at the Jet

  12. Experimental demonstration of nonbilocal quantum correlations

    PubMed Central

    Saunders, Dylan J.; Bennet, Adam J.; Branciard, Cyril; Pryde, Geoff J.

    2017-01-01

    Quantum mechanics admits correlations that cannot be explained by local realistic models. The most studied models are the standard local hidden variable models, which satisfy the well-known Bell inequalities. To date, most works have focused on bipartite entangled systems. We consider correlations between three parties connected via two independent entangled states. We investigate the new type of so-called “bilocal” models, which correspondingly involve two independent hidden variables. These models describe scenarios that naturally arise in quantum networks, where several independent entanglement sources are used. Using photonic qubits, we build such a linear three-node quantum network and demonstrate nonbilocal correlations by violating a Bell-like inequality tailored for bilocal models. Furthermore, we show that the demonstration of nonbilocality is more noise-tolerant than that of standard Bell nonlocality in our three-party quantum network. PMID:28508045

  13. Experimental demonstration of nonbilocal quantum correlations.

    PubMed

    Saunders, Dylan J; Bennet, Adam J; Branciard, Cyril; Pryde, Geoff J

    2017-04-01

    Quantum mechanics admits correlations that cannot be explained by local realistic models. The most studied models are the standard local hidden variable models, which satisfy the well-known Bell inequalities. To date, most works have focused on bipartite entangled systems. We consider correlations between three parties connected via two independent entangled states. We investigate the new type of so-called "bilocal" models, which correspondingly involve two independent hidden variables. These models describe scenarios that naturally arise in quantum networks, where several independent entanglement sources are used. Using photonic qubits, we build such a linear three-node quantum network and demonstrate nonbilocal correlations by violating a Bell-like inequality tailored for bilocal models. Furthermore, we show that the demonstration of nonbilocality is more noise-tolerant than that of standard Bell nonlocality in our three-party quantum network.

  14. "K" value correlation study.

    DOT National Transportation Integrated Search

    1972-08-01

    One objective of this study was to determine what correlation existed between the modulus of subgrade reaction as determined by the Plate Bearing Test and the deflection determined by the first snsor of the Lane Wells "Dynaflect". The Research and De...

  15. Single neuron firing properties impact correlation-based population coding

    PubMed Central

    Hong, Sungho; Ratté, Stéphanie; Prescott, Steven A.; De Schutter, Erik

    2012-01-01

    Correlated spiking has been widely observed but its impact on neural coding remains controversial. Correlation arising from co-modulation of rates across neurons has been shown to vary with the firing rates of individual neurons. This translates into rate and correlation being equivalently tuned to the stimulus; under those conditions, correlated spiking does not provide information beyond that already available from individual neuron firing rates. Such correlations are irrelevant and can reduce coding efficiency by introducing redundancy. Using simulations and experiments in rat hippocampal neurons, we show here that pairs of neurons receiving correlated input also exhibit correlations arising from precise spike-time synchronization. Contrary to rate co-modulation, spike-time synchronization is unaffected by firing rate, thus enabling synchrony- and rate-based coding to operate independently. The type of output correlation depends on whether intrinsic neuron properties promote integration or coincidence detection: “ideal” integrators (with spike generation sensitive to stimulus mean) exhibit rate co-modulation whereas “ideal” coincidence detectors (with spike generation sensitive to stimulus variance) exhibit precise spike-time synchronization. Pyramidal neurons are sensitive to both stimulus mean and variance, and thus exhibit both types of output correlation proportioned according to which operating mode is dominant. Our results explain how different types of correlations arise based on how individual neurons generate spikes, and why spike-time synchronization and rate co-modulation can encode different stimulus properties. Our results also highlight the importance of neuronal properties for population-level coding insofar as neural networks can employ different coding schemes depending on the dominant operating mode of their constituent neurons. PMID:22279226

  16. Full waveform inversion using envelope-based global correlation norm

    NASA Astrophysics Data System (ADS)

    Oh, Ju-Won; Alkhalifah, Tariq

    2018-05-01

    To increase the feasibility of full waveform inversion on real data, we suggest a new objective function, which is defined as the global correlation of the envelopes of modelled and observed data. The envelope-based global correlation norm has the advantage of the envelope inversion that generates artificial low-frequency information, which provides the possibility to recover long-wavelength structure in an early stage. In addition, the envelope-based global correlation norm maintains the advantage of the global correlation norm, which reduces the sensitivity of the misfit to amplitude errors so that the performance of inversion on real data can be enhanced when the exact source wavelet is not available and more complex physics are ignored. Through the synthetic example for 2-D SEG/EAGE overthrust model with inaccurate source wavelet, we compare the performance of four different approaches, which are the least-squares waveform inversion, least-squares envelope inversion, global correlation norm and envelope-based global correlation norm. Finally, we apply the envelope-based global correlation norm on the 3-D Ocean Bottom Cable (OBC) data from the North Sea. The envelope-based global correlation norm captures the strong reflections from the high-velocity caprock and generates artificial low-frequency reflection energy that helps us recover long-wavelength structure of the model domain in the early stages. From this long-wavelength model, the conventional global correlation norm is sequentially applied to invert for higher-resolution features of the model.

  17. The Attenuation of Correlation Coefficients: A Statistical Literacy Issue

    ERIC Educational Resources Information Center

    Trafimow, David

    2016-01-01

    Much of the science reported in the media depends on correlation coefficients. But the size of correlation coefficients depends, in part, on the reliability with which the correlated variables are measured. Understanding this is a statistical literacy issue.

  18. Pipelined digital SAR azimuth correlator using hybrid FFT-transversal filter

    NASA Technical Reports Server (NTRS)

    Wu, C.; Liu, K. Y. (Inventor)

    1984-01-01

    A synthetic aperture radar system (SAR) having a range correlator is provided with a hybrid azimuth correlator which utilizes a block-pipe-lined fast Fourier transform (FFT). The correlator has a predetermined FFT transform size with delay elements for delaying SAR range correlated data so as to embed in the Fourier transform operation a corner-turning function as the range correlated SAR data is converted from the time domain to a frequency domain. The azimuth correlator is comprised of a transversal filter to receive the SAR data in the frequency domain, a generator for range migration compensation and azimuth reference functions, and an azimuth reference multiplier for correlation of the SAR data. Following the transversal filter is a block-pipelined inverse FFT used to restore azimuth correlated data in the frequency domain to the time domain for imaging.

  19. Uses and Misuses of the Correlation Coefficient.

    ERIC Educational Resources Information Center

    Onwuegbuzie, Anthony J.; Daniel, Larry G.

    The purpose of this paper is to provide an in-depth critical analysis of the use and misuse of correlation coefficients. Various analytical and interpretational misconceptions are reviewed, beginning with the egregious assumption that correlational statistics may be useful in inferring causality. Additional misconceptions, stemming from…

  20. Intelligence and Semen Quality Are Positively Correlated

    ERIC Educational Resources Information Center

    Arden, Rosalind; Gottfredson, Linda S.; Miller, Geoffrey; Pierce, Arand

    2009-01-01

    Human cognitive abilities inter-correlate to form a positive matrix, from which a large first factor, called "Spearman's g" or general intelligence, can be extracted. General intelligence itself is correlated with many important health outcomes including cardio-vascular function and longevity. However, the important evolutionary question of…