Sample records for gan nanorods grown

  1. Effect of ZnO seed layer on the morphology and optical properties of ZnO nanorods grown on GaN buffer layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandi, R., E-mail: rajunandi@iitb.ac.in; Mohan, S., E-mail: rajunandi@iitb.ac.in; Major, S. S.

    2014-04-24

    ZnO nanorods were grown by chemical bath deposition on sputtered, polycrystalline GaN buffer layers with and without ZnO seed layer. Scanning electron microscopy and X-ray diffraction show that the ZnO nanorods on GaN buffer layers are not vertically well aligned. Photoluminescence spectrum of ZnO nanorods grown on GaN buffer layer, however exhibits a much stronger near-band-edge emission and negligible defect emission, compared to the nanorods grown on ZnO buffer layer. These features are attributed to gallium incorporation at the ZnO-GaN interface. The introduction of a thin (25 nm) ZnO seed layer on GaN buffer layer significantly improves the morphology andmore » vertical alignment of ZnO-NRs without sacrificing the high optical quality of ZnO nanorods on GaN buffer layer. The presence of a thick (200 nm) ZnO seed layer completely masks the effect of the underlying GaN buffer layer on the morphology and optical properties of nanorods.« less

  2. Carrier confinement effects of InxGa1-xN/GaN multi quantum disks with GaN surface barriers grown in GaN nanorods

    NASA Astrophysics Data System (ADS)

    Park, Youngsin; Chan, Christopher C. S.; Taylor, Robert A.; Kim, Nammee; Jo, Yongcheol; Lee, Seung W.; Yang, Woochul; Im, Hyunsik

    2018-04-01

    Structural and optical properties of InxGa1-xN/GaN multi quantum disks (QDisks) grown on GaN nanorods by molecular beam epitaxy have been investigated by transmission electron microscopy and micro-photoluminescence (PL) spectroscopy. Two types of InGaN QDisks were grown: a pseudo-3D confined InGaN pillar-type QDisks embedded in GaN nanorods; and QDisks in flanged cone type GaN nanorods. The PL emission peak and excitation dependent PL behavior of the pillar-type Qdisks differ greatly from those of the flanged cone type QDisks. Time resolved PL was carried out to probe the differences in charge carrier dynamics. The results suggest that by constraining the formation of InGaN QDisks within the centre of the nanorod, carriers are restricted from migrating to the surface, decreasing the surface recombination at high carrier densities.

  3. Efficient reduction of defects in (1120) non-polar and (1122) semi-polar GaN grown on nanorod templates

    NASA Astrophysics Data System (ADS)

    Bai, J.; Gong, Y.; Xing, K.; Yu, X.; Wang, T.

    2013-03-01

    (1120) non-polar and (1122) semi-polar GaNs with a low defect density have been achieved by means of an overgrowth on nanorod templates, where a quick coalescence with a thickness even below 1 μm occurs. On-axis and off-axis X-ray rocking curve measurements have shown a massive reduction in the linewidth for our overgrown GaN in comparison with standard GaN films grown on sapphire substrates. Transmission electron microscope observation demonstrates that the overgrowth on the nanorod templates takes advantage of an omni-directional growth around the sidewalls of the nanostructures. The dislocations redirect in basal planes during the overgrowth, leading to their annihilation and termination at voids formed due to a large lateral growth rate. In the non-polar GaN, the priority <0001> lateral growth from vertical sidewalls of nanorods allows basal plane stacking faults (BSFs) to be blocked in the nanorod gaps; while for semi-polar GaN, the propagation of BSFs starts to be impeded when the growth front is changed to be along inclined <0001> direction above the nanorods.

  4. Efficient reduction of defects in (1120) non-polar and (1122) semi-polar GaN grown on nanorod templates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, J.; Gong, Y.; Xing, K.

    2013-03-11

    (1120) non-polar and (1122) semi-polar GaNs with a low defect density have been achieved by means of an overgrowth on nanorod templates, where a quick coalescence with a thickness even below 1 {mu}m occurs. On-axis and off-axis X-ray rocking curve measurements have shown a massive reduction in the linewidth for our overgrown GaN in comparison with standard GaN films grown on sapphire substrates. Transmission electron microscope observation demonstrates that the overgrowth on the nanorod templates takes advantage of an omni-directional growth around the sidewalls of the nanostructures. The dislocations redirect in basal planes during the overgrowth, leading to their annihilationmore » and termination at voids formed due to a large lateral growth rate. In the non-polar GaN, the priority <0001> lateral growth from vertical sidewalls of nanorods allows basal plane stacking faults (BSFs) to be blocked in the nanorod gaps; while for semi-polar GaN, the propagation of BSFs starts to be impeded when the growth front is changed to be along inclined <0001> direction above the nanorods.« less

  5. Exciton emission from bare and hybrid plasmonic GaN nanorods

    NASA Astrophysics Data System (ADS)

    Mohammadi, Fatemesadat; Kunert, Gerd; Hommel, Detlef; Ge, Jingxuan; Duscher, Gerd; Schmitzer, Heidrun; Wagner, Hans Peter

    We study the exciton emission of hybrid gold nanoparticle/Alq3 (aluminiumquinoline)/wurtzite GaN nanorods. GaN nanorods of 1.5 μm length and 250 nm diameter were grown by plasma assisted MBE. Hybrid GaN nanorods were synthesized by organic molecular beam deposition. Temperature and power dependent time integrated (TI) and time resolved (TR) photoluminescence (PL) measurements were performed on bare and hybrid structures. Bare nanorods show donor (D0,X) and acceptor bound (A0,X) exciton emission at 3.473 eV and at 3.463 eV, respectively. TR-PL trace modeling reveal lifetimes of 240 ps and 1.4 ns for the (D0,X) and (A0,X) transition. 10 nm gold coated GaN nanorods show a significant PL quenching and (D0,X) lifetime shortening which is tentatively attributed to impact ionization of (D0,X) due to hot electron injection from the gold nanoparticles. This is supported by electron energy loss spectroscopy that shows a redshift of a midgap state transition indicating a reduction of a preexisting band-bending at the nanorod surface due to positive charging of the gold nanoparticles. Inserting a nominally 5 nm thick Alq3 spacer between the nanorod and the gold reduces the PL quenching and lifetime shortening. Plasmonic nanorods with a 30 nm thick Alq3 spacer reveal lifetimes which are nearly identical to uncoated GaN nanorods.

  6. GaN based nanorods for solid state lighting

    NASA Astrophysics Data System (ADS)

    Li, Shunfeng; Waag, Andreas

    2012-04-01

    In recent years, GaN nanorods are emerging as a very promising novel route toward devices for nano-optoelectronics and nano-photonics. In particular, core-shell light emitting devices are thought to be a breakthrough development in solid state lighting, nanorod based LEDs have many potential advantages as compared to their 2 D thin film counterparts. In this paper, we review the recent developments of GaN nanorod growth, characterization, and related device applications based on GaN nanorods. The initial work on GaN nanorod growth focused on catalyst-assisted and catalyst-free statistical growth. The growth condition and growth mechanisms were extensively investigated and discussed. Doping of GaN nanorods, especially p-doping, was found to significantly influence the morphology of GaN nanorods. The large surface of 3 D GaN nanorods induces new optical and electrical properties, which normally can be neglected in layered structures. Recently, more controlled selective area growth of GaN nanorods was realized using patterned substrates both by metalorganic chemical vapor deposition (MOCVD) and by molecular beam epitaxy (MBE). Advanced structures, for example, photonic crystals and DBRs are meanwhile integrated in GaN nanorod structures. Based on the work of growth and characterization of GaN nanorods, GaN nanoLEDs were reported by several groups with different growth and processing methods. Core/shell nanoLED structures were also demonstrated, which could be potentially useful for future high efficient LED structures. In this paper, we will discuss recent developments in GaN nanorod technology, focusing on the potential advantages, but also discussing problems and open questions, which may impose obstacles during the future development of a GaN nanorod based LED technology.

  7. Emission dynamics of hybrid plasmonic gold/organic GaN nanorods

    NASA Astrophysics Data System (ADS)

    Mohammadi, F.; Schmitzer, H.; Kunert, G.; Hommel, D.; Ge, J.; Duscher, G.; Langbein, W.; Wagner, H. P.

    2017-12-01

    We studied the emission of bare and aluminum quinoline (Alq3)/gold coated wurtzite GaN nanorods by temperature- and intensity-dependent time-integrated and time-resolved photoluminescence (PL). The GaN nanorods of ˜1.5 μm length and ˜250 nm diameter were grown by plasma-assisted molecular beam epitaxy. Gold/Alq3 coated GaN nanorods were synthesized by organic molecular beam deposition. The near band-edge and donor-acceptor pair luminescence was investigated in bare GaN nanorods and compared with multilevel model calculations providing the dynamical parameters for electron-hole pairs, excitons, impurity bound excitons, donors and acceptors. Subsequently, the influence of a 10 nm gold coating without and with an Alq3 spacer layer was studied and the experimental results were analyzed with the multilevel model. Without a spacer layer, a significant PL quenching and lifetime reduction of the near band-edge emission is found. The behavior is attributed to surface band-bending and Förster energy transfer from excitons to surface plasmons in the gold layer. Inserting a 5 nm Alq3 spacer layer reduces the PL quenching and lifetime reduction which is consistent with a reduced band-bending and Förster energy transfer. Increasing the spacer layer to 30 nm results in lifetimes which are similar to uncoated structures, showing a significantly decreased influence of the gold coating on the excitonic dynamics.

  8. Emission dynamics of hybrid plasmonic gold/organic GaN nanorods.

    PubMed

    Mohammadi, F; Schmitzer, H; Kunert, G; Hommel, D; Ge, J; Duscher, G; Langbein, W; Wagner, H P

    2017-12-15

    We studied the emission of bare and aluminum quinoline (Alq 3 )/gold coated wurtzite GaN nanorods by temperature- and intensity-dependent time-integrated and time-resolved photoluminescence (PL). The GaN nanorods of ∼1.5 μm length and ∼250 nm diameter were grown by plasma-assisted molecular beam epitaxy. Gold/Alq 3 coated GaN nanorods were synthesized by organic molecular beam deposition. The near band-edge and donor-acceptor pair luminescence was investigated in bare GaN nanorods and compared with multilevel model calculations providing the dynamical parameters for electron-hole pairs, excitons, impurity bound excitons, donors and acceptors. Subsequently, the influence of a 10 nm gold coating without and with an Alq 3 spacer layer was studied and the experimental results were analyzed with the multilevel model. Without a spacer layer, a significant PL quenching and lifetime reduction of the near band-edge emission is found. The behavior is attributed to surface band-bending and Förster energy transfer from excitons to surface plasmons in the gold layer. Inserting a 5 nm Alq 3 spacer layer reduces the PL quenching and lifetime reduction which is consistent with a reduced band-bending and Förster energy transfer. Increasing the spacer layer to 30 nm results in lifetimes which are similar to uncoated structures, showing a significantly decreased influence of the gold coating on the excitonic dynamics.

  9. Near band gap luminescence in hybrid organic-inorganic structures based on sputtered GaN nanorods.

    PubMed

    Forsberg, Mathias; Serban, Elena Alexandra; Hsiao, Ching-Lien; Junaid, Muhammad; Birch, Jens; Pozina, Galia

    2017-04-26

    Novel hybrid organic-inorganic nanostructures fabricated to utilize non-radiative resonant energy transfer mechanism are considered to be extremely attractive for a variety of light emitters for down converting of ultaviolet light and for photovoltaic applications since they can be much more efficient compared to devices grown with common design. Organic-inorganic hybrid structures based on green polyfluorene (F8BT) and GaN (0001) nanorods grown by magnetron sputtering on Si (111) substrates are studied. In such nanorods, stacking faults can form periodic polymorphic quantum wells characterized by bright luminescence. In difference to GaN exciton emission, the recombination rate for the stacking fault related emission increases in the presence of polyfluorene film, which can be understood in terms of Förster interaction mechanism. From comparison of dynamic properties of the stacking fault related luminescence in the hybrid structures and in the bare GaN nanorods, the pumping efficiency of non-radiative resonant energy transfer in hybrids was estimated to be as high as 35% at low temperatures.

  10. Exciton Emission from Bare and Alq3/Gold Coated GaN Nanorods

    NASA Astrophysics Data System (ADS)

    Mohammadi, Fatemesadat; Kuhnert, Gerd; Hommel, Detlef; Schmitzer, Heidrun; Wagner, Hans-Peter

    We study the excitonic and impurity related emission in bare and aluminum quinoline (Alq3)/gold coated wurtzite GaN nanorods by temperature-dependent time-integrated (TI) and time-resolved (TR) photoluminescence (PL). The GaN nanorods were grown by molecular beam epitaxy. Alq3 as well as Alq3/gold covered nanorods were synthesized by organic molecular beam deposition. In the near-band edge region a donor-bound-exciton (D0X) emission is observed at 3.473 eV. Another emission band at 3.275 eV reveals LO-phonon replica and is attributed to a donor-acceptor-pair (DAP) luminescence. TR PL traces at 20 K show a nearly biexponential decay for the D0X with lifetimes of approximately 180 and 800 ps for both bare and Alq3 coated nanorods. In GaN nanorods which were coated with an Alq3 film and subsequently with a 10 nm thick gold layer we observe a PL quenching of D0X and DAP band and the lifetimes of the D0X transition shorten. The quenching behaviour is partially attributed to the energy-transfer from free excitons and donor-bound-excitons to plasmon oscillations in the gold layer.

  11. Vertically Oriented Growth of GaN Nanorods on Si Using Graphene as an Atomically Thin Buffer Layer.

    PubMed

    Heilmann, Martin; Munshi, A Mazid; Sarau, George; Göbelt, Manuela; Tessarek, Christian; Fauske, Vidar T; van Helvoort, Antonius T J; Yang, Jianfeng; Latzel, Michael; Hoffmann, Björn; Conibeer, Gavin; Weman, Helge; Christiansen, Silke

    2016-06-08

    The monolithic integration of wurtzite GaN on Si via metal-organic vapor phase epitaxy is strongly hampered by lattice and thermal mismatch as well as meltback etching. This study presents single-layer graphene as an atomically thin buffer layer for c-axis-oriented growth of vertically aligned GaN nanorods mediated by nanometer-sized AlGaN nucleation islands. Nanostructures of similar morphology are demonstrated on graphene-covered Si(111) as well as Si(100). High crystal and optical quality of the nanorods are evidenced through scanning transmission electron microscopy, micro-Raman, and cathodoluminescence measurements supported by finite-difference time-domain simulations. Current-voltage characteristics revealed high vertical conduction of the as-grown GaN nanorods through the Si substrates. These findings are substantial to advance the integration of GaN-based devices on any substrates of choice that sustains the GaN growth temperatures, thereby permitting novel designs of GaN-based heterojunction device concepts.

  12. Vertically aligned p-type single-crystalline GaN nanorod arrays on n-type Si for heterojunction photovoltaic cells.

    PubMed

    Tang, Y B; Chen, Z H; Song, H S; Lee, C S; Cong, H T; Cheng, H M; Zhang, W J; Bello, I; Lee, S T

    2008-12-01

    Vertically aligned Mg-doped GaN nanorods have been epitaxially grown on n-type Si substrate to form a heterostructure for fabricating p-n heterojunction photovoltaic cells. The p-type GaN nanorod/n-Si heterojunction cell shows a well-defined rectifying behavior with a rectification ratio larger than 10(4) in dark. The cell has a high short-circuit photocurrent density of 7.6 mAlcm2 and energy conversion efficiency of 2.73% under AM 1.5G illumination at 100 mW/cm2. Moreover, the nanorod array may be used as an antireflection coating for solar cell applications to effectively reduce light loss due to reflection. This study provides an experimental demonstration for integrating one-dimensional nanostructure arrays with the substrate to directly fabricate heterojunction photovoltaic cells.

  13. Study of GaN nanorods converted from β-Ga2O3

    NASA Astrophysics Data System (ADS)

    Li, Yuewen; Xiong, Zening; Zhang, Dongdong; Xiu, Xiangqian; Liu, Duo; Wang, Shuang; Hua, Xuemei; Xie, Zili; Tao, Tao; Liu, Bin; Chen, Peng; Zhang, Rong; Zheng, Youdou

    2018-05-01

    We report here high-quality β-Ga2O3 nanorods (NRs) grown on sapphire substrates by hydrothermal method. Ammoniating the β-Ga2O3 NRs results in strain-free wurtzite gallium nitride (GaN) NRs. It was shown by XRD and Raman spectroscopy that β-Ga2O3 was partially converted to GaN/β-Ga2O3 at 1000 °C and then completely converted to GaN NRs at 1050 °C, as confirmed by high-resolution transmission electron microscopy (HRTEM). There is no band-edge emission of β-Ga2O3 in the cathodoluminescence spectrum, and only a deep-level broad emission observed at 3.68-3.73 eV. The band edge emission (3.39 eV) of GaN NRs converted from β-Ga2O3 can also be observed.

  14. III-nitride core–shell nanorod array on quartz substrates

    PubMed Central

    Bae, Si-Young; Min, Jung-Wook; Hwang, Hyeong-Yong; Lekhal, Kaddour; Lee, Ho-Jun; Jho, Young-Dahl; Lee, Dong-Seon; Lee, Yong-Tak; Ikarashi, Nobuyuki; Honda, Yoshio; Amano, Hiroshi

    2017-01-01

    We report the fabrication of near-vertically elongated GaN nanorods on quartz substrates. To control the preferred orientation and length of individual GaN nanorods, we combined molecular beam epitaxy (MBE) with pulsed-mode metal–organic chemical vapor deposition (MOCVD). The MBE-grown buffer layer was composed of GaN nanograins exhibiting an ordered surface and preferred orientation along the surface normal direction. Position-controlled growth of the GaN nanorods was achieved by selective-area growth using MOCVD. Simultaneously, the GaN nanorods were elongated by the pulsed-mode growth. The microstructural and optical properties of both GaN nanorods and InGaN/GaN core–shell nanorods were then investigated. The nanorods were highly crystalline and the core–shell structures exhibited optical emission properties, indicating the feasibility of fabricating III-nitride nano-optoelectronic devices on amorphous substrates. PMID:28345641

  15. Enzymatic glucose detection using ZnO nanorods on the gate region of AlGaN /GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Kang, B. S.; Wang, H. T.; Ren, F.; Pearton, S. J.; Morey, T. E.; Dennis, D. M.; Johnson, J. W.; Rajagopal, P.; Roberts, J. C.; Piner, E. L.; Linthicum, K. J.

    2007-12-01

    ZnO nanorod-gated AlGaN /GaN high electron mobility transistors (HEMTs) are demonstrated for the detection of glucose. A ZnO nanorod array was selectively grown on the gate area using low temperature hydrothermal decomposition to immobilize glucose oxidase (GOx). The one-dimensional ZnO nanorods provide a large effective surface area with high surface-to-volume ratio and provide a favorable environment for the immobilization of GOx. The AlGaN /GaN HEMT drain-source current showed a rapid response of less than 5s when target glucose in a buffer with a pH value of 7.4 was added to the GOx immobilized on the ZnO nanorod surface. We could detect a wide range of concentrations from 0.5nMto125μM. The sensor exhibited a linear range from 0.5nMto14.5μM and an experiment limit of detection of 0.5nM. This demonstrates the possibility of using AlGaN /GaN HEMTs for noninvasive exhaled breath condensate based glucose detection of diabetic application.

  16. Polarization of stacking fault related luminescence in GaN nanorods

    NASA Astrophysics Data System (ADS)

    Pozina, G.; Forsberg, M.; Serban, E. A.; Hsiao, C.-L.; Junaid, M.; Birch, J.; Kaliteevski, M. A.

    2017-01-01

    Linear polarization properties of light emission are presented for GaN nanorods (NRs) grown along [0001] direction on Si(111) substrates by direct-current magnetron sputter epitaxy. The near band gap photoluminescence (PL) measured at low temperature for a single NR demonstrated an excitonic line at ˜3.48 eV and the stacking faults (SFs) related transition at ˜3.43 eV. The SF related emission is linear polarized in direction perpendicular to the NR growth axis in contrast to a non-polarized excitonic PL. The results are explained in the frame of the model describing basal plane SFs as polymorphic heterostructure of type II, where anisotropy of chemical bonds at the interfaces between zinc blende and wurtzite GaN subjected to in-built electric field is responsible for linear polarization parallel to the interface planes.

  17. Growth process for gallium nitride porous nanorods

    DOEpatents

    Wildeson, Isaac Harshman; Sands, Timothy David

    2015-03-24

    A GaN nanorod and formation method. Formation includes providing a substrate having a GaN film, depositing SiN.sub.x on the GaN film, etching a growth opening through the SiN.sub.x and into the GaN film, growing a GaN nanorod through the growth opening, the nanorod having a nanopore running substantially through its centerline. Focused ion beam etching can be used. The growing can be done using organometallic vapor phase epitaxy. The nanopore diameter can be controlled using the growth opening diameter or the growing step duration. The GaN nanorods can be removed from the substrate. The SiN.sub.x layer can be removed after the growing step. A SiO.sub.x template can be formed on the GaN film and the GaN can be grown to cover the SiO.sub.x template before depositing SiN.sub.x on the GaN film. The SiO.sub.x template can be removed after growing the nanorods.

  18. Stacking fault related luminescence in GaN nanorods.

    PubMed

    Forsberg, M; Serban, A; Poenaru, I; Hsiao, C-L; Junaid, M; Birch, J; Pozina, G

    2015-09-04

    Optical and structural properties are presented for GaN nanorods (NRs) grown in the [0001] direction on Si(111) substrates by direct-current reactive magnetron sputter epitaxy. Transmission electron microscopy (TEM) reveals clusters of dense stacking faults (SFs) regularly distributed along the c-axis. A strong emission line at ∼3.42 eV associated with the basal-plane SFs has been observed in luminescence spectra. The optical signature of SFs is stable up to room temperatures with the activation energy of ∼20 meV. Temperature-dependent time-resolved photoluminescence properties suggest that the recombination mechanism of the 3.42 eV emission can be understood in terms of multiple quantum wells self-organized along the growth axis of NRs.

  19. Correlation of doping, structure, and carrier dynamics in a single GaN nanorod

    NASA Astrophysics Data System (ADS)

    Zhou, Xiang; Lu, Ming-Yen; Lu, Yu-Jung; Gwo, Shangjr; Gradečak, Silvija

    2013-06-01

    We report the nanoscale optical investigation of a single GaN p-n junction nanorod by cathodoluminescence (CL) in a scanning transmission electron microscope. CL emission characteristic of dopant-related transitions was correlated to doping and structural defect in the nanorod, and used to determine p-n junction position and minority carrier diffusion lengths of 650 nm and 165 nm for electrons and holes, respectively. Temperature-dependent CL study reveals an activation energy of 19 meV for non-radiative recombination in Mg-doped GaN nanorods. These results directly correlate doping, structure, carrier dynamics, and optical properties of GaN nanostructure, and provide insights for device design and fabrication.

  20. Selective area growth of N-polar GaN nanorods by plasma-assisted MBE on micro-cone-patterned c-sapphire substrates

    NASA Astrophysics Data System (ADS)

    Jmerik, V. N.; Kuznetsova, N. V.; Nechaev, D. V.; Shubina, T. V.; Kirilenko, D. A.; Troshkov, S. I.; Davydov, V. Yu.; Smirnov, A. N.; Ivanov, S. V.

    2017-11-01

    The site-controlled selective area growth of N-polar GaN nanorods (NR) was developed by plasma-assisted MBE (PA MBE) on micro-cone-patterned sapphire substrates (μ-CPSS) by using a two-stage growth process. A GaN nucleation layer grown by migration enhanced epitaxy provides the best selectivity for nucleation of NRs on the apexes of 3.5-μm-diameter cones, whereas the subsequent growth of 1-μm-high NRs with a constant diameter of about 100 nm proceeds by standard high-temperature PA MBE at nitrogen-rich conditions. These results are explained by anisotropy of the surface energy for GaN of different polarity and crystal orientation. The InGaN single quantum wells inserted in the GaN NRs grown on the μ-CPSS demonstrate photoluminescence at 510 nm with a spatially periodic variation of its intensity with a period of ∼6 μm equal to that of the substrate patterning profile.

  1. Nanoscale characterization of GaN/InGaN multiple quantum wells on GaN nanorods by photoluminescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Weijian; Wen, Xiaoming; Latzel, Michael; Yang, Jianfeng; Huang, Shujuan; Shrestha, Santosh; Patterson, Robert; Christiansen, Silke; Conibeer, Gavin

    2017-02-01

    GaN/InGaN multiple quantum wells (MQW) and GaN nanorods have been widely studied as a candidate material for high-performance light emitting diodes. In this study, GaN/InGaN MQW on top of GaN nanorods are characterized in nanoscale using confocal microscopy associated with photoluminescence spectroscopy, including steady-state PL, timeresolved PL and fluorescence lifetime imaging (FLIM). Nanorods are fabricated by etching planar GaN/InGaN MQWs on top of a GaN layer on a c-plane sapphire substrate. Photoluminescence efficiency from the GaN/InGaN nanorods is evidently higher than that of the planar structure, indicating the emission improvement. Time-resolved photoluminescence (TRPL) prove that surface defects on GaN nanorod sidewalls have a strong influence on the luminescence property of the GaN/InGaN MWQs. Such surface defects can be eliminated by proper surface passivation. Moreover, densely packed nanorod array and sparsely standing nanorods have been studied for better understanding the individual property and collective effects from adjacent nanorods. The combination of the optical characterization techniques guides optoelectronic materials and device fabrication.

  2. Controlled growth of ordered nanopore arrays in GaN.

    PubMed

    Wildeson, Isaac H; Ewoldt, David A; Colby, Robert; Stach, Eric A; Sands, Timothy D

    2011-02-09

    High-quality, ordered nanopores in semiconductors are attractive for numerous biological, electrical, and optical applications. Here, GaN nanorods with continuous pores running axially through their centers were grown by organometallic vapor phase epitaxy. The porous nanorods nucleate on an underlying (0001)-oriented GaN film through openings in a SiN(x) template that are milled by a focused ion beam, allowing direct placement of porous nanorods. Nanopores with diameters ranging from 20-155 nm were synthesized with crystalline sidewalls.

  3. Linearly polarized photoluminescence of InGaN quantum disks embedded in GaN nanorods.

    PubMed

    Park, Youngsin; Chan, Christopher C S; Nuttall, Luke; Puchtler, Tim J; Taylor, Robert A; Kim, Nammee; Jo, Yongcheol; Im, Hyunsik

    2018-05-25

    We have investigated the emission from InGaN/GaN quantum disks grown on the tip of GaN nanorods. The emission at 3.21 eV from the InGaN quantum disk doesn't show a Stark shift, and it is linearly polarized when excited perpendicular to the growth direction. The degree of linear polarization is about 39.3% due to the anisotropy of the nanostructures. In order to characterize a single nanostructure, the quantum disks were dispersed on a SiO 2 substrate patterned with a metal reference grid. By rotating the excitation polarization angle from parallel to perpendicular relative to the nanorods, the variation of overall PL for the 3.21 eV peak was recorded and it clearly showed the degree of linear polarization (DLP) of 51.5%.

  4. Continuous-flux MOVPE growth of position-controlled N-face GaN nanorods and embedded InGaN quantum wells

    NASA Astrophysics Data System (ADS)

    Bergbauer, W.; Strassburg, M.; Kölper, Ch; Linder, N.; Roder, C.; Lähnemann, J.; Trampert, A.; Fündling, S.; Li, S. F.; Wehmann, H.-H.; Waag, A.

    2010-07-01

    We demonstrate the fabrication of N-face GaN nanorods by metal organic vapour phase epitaxy (MOVPE), using continuous-flux conditions. This is in contrast to other approaches reported so far, which have been based on growth modes far off the conventional growth regimes. For position control of nanorods an SiO2 masking layer with a dense hole pattern on a c-plane sapphire substrate was used. Nanorods with InGaN/GaN heterostructures have been grown catalyst-free. High growth rates up to 25 µm h - 1 were observed and a well-adjusted carrier gas mixture between hydrogen and nitrogen enabled homogeneous nanorod diameters down to 220 nm with aspect ratios of approximately 8:1. The structural quality and defect progression within nanorods were determined by transmission electron microscopy (TEM). Different emission energies for InGaN quantum wells (QWs) could be assigned to different side facets by room temperature cathodoluminescence (CL) measurements.

  5. Continuous-flux MOVPE growth of position-controlled N-face GaN nanorods and embedded InGaN quantum wells.

    PubMed

    Bergbauer, W; Strassburg, M; Kölper, Ch; Linder, N; Roder, C; Lähnemann, J; Trampert, A; Fündling, S; Li, S F; Wehmann, H-H; Waag, A

    2010-07-30

    We demonstrate the fabrication of N-face GaN nanorods by metal organic vapour phase epitaxy (MOVPE), using continuous-flux conditions. This is in contrast to other approaches reported so far, which have been based on growth modes far off the conventional growth regimes. For position control of nanorods an SiO(2) masking layer with a dense hole pattern on a c-plane sapphire substrate was used. Nanorods with InGaN/GaN heterostructures have been grown catalyst-free. High growth rates up to 25 microm h(-1) were observed and a well-adjusted carrier gas mixture between hydrogen and nitrogen enabled homogeneous nanorod diameters down to 220 nm with aspect ratios of approximately 8:1. The structural quality and defect progression within nanorods were determined by transmission electron microscopy (TEM). Different emission energies for InGaN quantum wells (QWs) could be assigned to different side facets by room temperature cathodoluminescence (CL) measurements.

  6. Wafer-scale Thermodynamically Stable GaN Nanorods via Two-Step Self-Limiting Epitaxy for Optoelectronic Applications

    NASA Astrophysics Data System (ADS)

    Kum, Hyun; Seong, Han-Kyu; Lim, Wantae; Chun, Daemyung; Kim, Young-Il; Park, Youngsoo; Yoo, Geonwook

    2017-01-01

    We present a method of epitaxially growing thermodynamically stable gallium nitride (GaN) nanorods via metal-organic chemical vapor deposition (MOCVD) by invoking a two-step self-limited growth (TSSLG) mechanism. This allows for growth of nanorods with excellent geometrical uniformity with no visible extended defects over a 100 mm sapphire (Al2O3) wafer. An ex-situ study of the growth morphology as a function of growth time for the two self-limiting steps elucidate the growth dynamics, which show that formation of an Ehrlich-Schwoebel barrier and preferential growth in the c-plane direction governs the growth process. This process allows monolithic formation of dimensionally uniform nanowires on templates with varying filling matrix patterns for a variety of novel electronic and optoelectronic applications. A color tunable phosphor-free white light LED with a coaxial architecture is fabricated as a demonstration of the applicability of these nanorods grown by TSSLG.

  7. GaN grown on nano-patterned sapphire substrates

    NASA Astrophysics Data System (ADS)

    Jing, Kong; Meixin, Feng; Jin, Cai; Hui, Wang; Huaibing, Wang; Hui, Yang

    2015-04-01

    High-quality gallium nitride (GaN) film was grown on nano-patterned sapphire substrates (NPSS) and investigated using XRD and SEM. It was found that the optimum thickness of the GaN buffer layer on the NPSS is 15 nm, which is thinner than that on micro-patterned sapphire substrates (MPSS). An interesting phenomenon was observed for GaN film grown on NPSS:GaN mainly grows on the trench regions and little grows on the sidewalls of the patterns at the initial growth stage, which is dramatically different from GaN grown on MPSS. In addition, the electrical and optical properties of LEDs grown on NPSS were characterized. Project supported by the Suzhou Nanojoin Photonics Co., Ltd and the High-Tech Achievements Transformation of Jiangsu Province, China (No.BA2012010).

  8. A study of the red-shift of a neutral donor bound exciton in GaN nanorods by hydrogenation

    NASA Astrophysics Data System (ADS)

    Park, Byung-Guon; Lee, Sang-Tae; Reddeppa, Maddaka; Kim, Moon-Deock; Oh, Jae-Eung; Lee, Sang-Kwon

    2017-09-01

    In this paper we account for the physics behind the exciton peak shift in GaN nanorods (NRs) due to hydrogenation. GaN NRs were selectively grown on a patterned Ti/Si(111) substrate using plasma-assisted molecular beam epitaxy, and the effect of hydrogenation on their optical properties was investigated in detail using low-temperature photoluminescence measurements. Due to hydrogenation, the emissions corresponding to the donor-acceptor pair and yellow luminescence in GaN NRs were strongly suppressed, while the emission corresponding to the neutral to donor bound exciton (D0X) exhibited red-shift. Thermal annealing of hydrogenated GaN NRs demonstrated the recovery of the D0X and deep level emission. To determine the nature of the D0X peak shift due to hydrogenation, comparative studies were carried out on various diameters of GaN NRs, which can be controlled by different growth conditions and wet-etching times. Our experimental results reveal that the D0X shift depends on the diameter of the GaN NRs after hydrogenation. The results clearly demonstrate that the hydrogenation leads to band bending of GaN NRs as compensated by hydrogen ions, which causes a red-shift in the D0X emission.

  9. A study of the red-shift of a neutral donor bound exciton in GaN nanorods by hydrogenation.

    PubMed

    Park, Byung-Guon; Lee, Sang-Tae; Reddeppa, Maddaka; Kim, Moon-Deock; Oh, Jae-Eung; Lee, Sang-Kwon

    2017-09-08

    In this paper we account for the physics behind the exciton peak shift in GaN nanorods (NRs) due to hydrogenation. GaN NRs were selectively grown on a patterned Ti/Si(111) substrate using plasma-assisted molecular beam epitaxy, and the effect of hydrogenation on their optical properties was investigated in detail using low-temperature photoluminescence measurements. Due to hydrogenation, the emissions corresponding to the donor-acceptor pair and yellow luminescence in GaN NRs were strongly suppressed, while the emission corresponding to the neutral to donor bound exciton (D 0 X) exhibited red-shift. Thermal annealing of hydrogenated GaN NRs demonstrated the recovery of the D 0 X and deep level emission. To determine the nature of the D 0 X peak shift due to hydrogenation, comparative studies were carried out on various diameters of GaN NRs, which can be controlled by different growth conditions and wet-etching times. Our experimental results reveal that the D 0 X shift depends on the diameter of the GaN NRs after hydrogenation. The results clearly demonstrate that the hydrogenation leads to band bending of GaN NRs as compensated by hydrogen ions, which causes a red-shift in the D 0 X emission.

  10. N-face GaN nanorods: Continuous-flux MOVPE growth and morphological properties

    NASA Astrophysics Data System (ADS)

    Bergbauer, W.; Strassburg, M.; Kölper, Ch.; Linder, N.; Roder, C.; Lähnemann, J.; Trampert, A.; Fündling, S.; Li, S. F.; Wehmann, H.-H.; Waag, A.

    2011-01-01

    We demonstrate the morphological properties of height, diameter and shape controlled N-face GaN nanorods (NRs) by adjusting conventional growth parameters of a standard metalorganic vapour phase epitaxy (MOVPE) growth process. Particularly the hydrogen fraction within the carrier gas was shown to be an important shaping tool for the grown nanostructures. Additionally, the aspect ratio of the NRs was successfully tuned by increasing the pitch of the nanoimprint lithography (NIL) pattern, while maintaining the hole-diameter constant. An optimum aspect ratio could be found at pitches between 400 and 800 nm, whereas larger pitches are counter-productive. The major conclusion drawn from our experiments is that the whole amount of growth material available over the masked surface contributes to the growth of the NRs.

  11. Atomic force microscopy studies of homoepitaxial GaN layers grown on GaN template by laser MBE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhary, B. S.; Rajasthan Technical University, Rawatbhata Road, Kota 324010; Singh, A.

    We have grown homoepitaxial GaN films on metal organic chemical vapor deposition (MOCVD) grown 3.5 µm thick GaN on sapphire (0001) substrate (GaN template) using an ultra-high vacuum (UHV) laser assisted molecular beam epitaxy (LMBE) system. The GaN films were grown by laser ablating a polycrystalline solid GaN target in the presence of active r.f. nitrogen plasma. The influence of laser repetition rates (10-30 Hz) on the surface morphology of homoepitaxial GaN layers have been studied using atomic force microscopy. It was found that GaN layer grown at 10 Hz shows a smooth surface with uniform grain size compared to the rough surfacemore » with irregular shape grains obtained at 30 Hz. The variation of surface roughness of the homoepitaxial GaN layer with and without wet chemical etching has been also studied and it was observed that the roughness of the film decreased after wet etching due to the curved structure/rough surface.« less

  12. Electron mobility of self-assembled and dislocation free InN nanorods grown on GaN nano wall network template

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tangi, Malleswararao; De, Arpan; Ghatak, Jay

    2016-05-28

    A kinetically controlled two-step growth process for the formation of an array of dislocation free high mobility InN nanorods (NRs) on GaN nanowall network (NWN) by Molecular Beam Epitaxy is demonstrated here. The epitaxial GaN NWN is formed on c-sapphire under nitrogen rich conditions, and then changing the source from Ga to In at appropriate substrate temperature yields the nucleation of a self assembled spontaneous m-plane side faceted-InN NR. By HRTEM, the NRs are shown to be dislocation-free and have a low band gap value of 0.65 eV. Hall measurements are carried out on a single InN NR along with J-Vmore » measurements that yield mobility values as high as ≈4453 cm{sup 2}/V s and the carrier concentration of ≈1.1 × 10{sup 17} cm{sup −3}, which are unprecedented in the literature for comparable InN NR diameters.« less

  13. Hydrogen effects on the electroluminescence of n-ZnO nanorod/p-GaN film heterojunction light-emitting diodes.

    PubMed

    Fang, Fang; Zhao, Dongxu; Li, Binghui; Zhang, Zhenzhong; Shen, Dezhen

    2010-07-07

    Through a facile low-temperature solution process, vertically n-type ZnO nanorod arrays were grown on a GaN film to form a n-ZnO nanorod/p-GaN film heterojunction. A study of the electroluminescence (EL) characteristics of the heterojunction in air and in air with 2000 ppm hydrogen revealed the sensitivity of such a device to the surrounding atmosphere. The additional hydrogen shallow donors increased the effective electron concentration in ZnO nanorods and the EL recombination zone changed from the ZnO nanorods to the GaN film, which can be identified visually from the color change.

  14. Cathodoluminescence study of Mg activation in non-polar and semi-polar faces of undoped/Mg-doped GaN core-shell nanorods.

    PubMed

    Hortelano, V; Martínez, O; Cuscó, R; Artús, L; Jiménez, J

    2016-03-04

    Spectrally and spatially resolved cathodoluminescence (CL) measurements were carried out at 80 K on undoped/Mg-doped GaN core-shell nanorods grown by selective area growth metalorganic vapor phase epitaxy in order to investigate locally the optical activity of the Mg dopants. A study of the luminescence emission distribution over the different regions of the nanorods is presented. We have investigated the CL fingerprints of the Mg incorporation into the non-polar lateral prismatic facets and the semi-polar facets of the pyramidal tips. The amount of Mg incorporation/activation was varied by using several Mg/Ga flow ratios and post-growth annealing treatment. For lower Mg/Ga flow ratios, the annealed nanorods clearly display a donor-acceptor pair band emission peaking at 3.26-3.27 eV and up to 4 LO phonon replicas, which can be considered as a reliable indicator of effective p-type Mg doping in the nanorod shell. For higher Mg/Ga flow ratios, a substantial enhancement of the yellow luminescence emission as well as several emission subbands are observed, which suggests an increase of disorder and the presence of defects as a consequence of the excess Mg doping.

  15. Cathodoluminescence study of Mg activation in non-polar and semi-polar faces of undoped/Mg-doped GaN core-shell nanorods

    NASA Astrophysics Data System (ADS)

    Hortelano, V.; Martínez, O.; Cuscó, R.; Artús, L.; Jiménez, J.

    2016-03-01

    Spectrally and spatially resolved cathodoluminescence (CL) measurements were carried out at 80 K on undoped/Mg-doped GaN core-shell nanorods grown by selective area growth metalorganic vapor phase epitaxy in order to investigate locally the optical activity of the Mg dopants. A study of the luminescence emission distribution over the different regions of the nanorods is presented. We have investigated the CL fingerprints of the Mg incorporation into the non-polar lateral prismatic facets and the semi-polar facets of the pyramidal tips. The amount of Mg incorporation/activation was varied by using several Mg/Ga flow ratios and post-growth annealing treatment. For lower Mg/Ga flow ratios, the annealed nanorods clearly display a donor-acceptor pair band emission peaking at 3.26-3.27 eV and up to 4 LO phonon replicas, which can be considered as a reliable indicator of effective p-type Mg doping in the nanorod shell. For higher Mg/Ga flow ratios, a substantial enhancement of the yellow luminescence emission as well as several emission subbands are observed, which suggests an increase of disorder and the presence of defects as a consequence of the excess Mg doping.

  16. Self-Healing Thermal Annealing: Surface Morphological Restructuring Control of GaN Nanorods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conroy, Michele; Li, Haoning; Zubialevich, Vitaly Z.

    With advances in nanolithography and dry etching, top-down methods of nanostructuring have become a widely used tool for improving the efficiency of optoelectronics. These nano dimensions can offer various benefits to the device performance in terms of light extraction and efficiency, but often at the expense of emission color quality. Broadening of the target emission peak and unwanted yellow luminescence are characteristic defect-related effects due to the ion beam etching damage, particularly for III–N based materials. In this article we focus on GaN based nanorods, showing that through thermal annealing the surface roughness and deformities of the crystal structure canmore » be “self-healed”. Correlative electron microscopy and atomic force microscopy show the change from spherical nanorods to faceted hexagonal structures, revealing the temperature-dependent surface morphology faceting evolution. The faceted nanorods were shown to be strain- and defect-free by cathodoluminescence hyperspectral imaging, micro-Raman, and transmission electron microscopy (TEM). In-situ TEM thermal annealing experiments allowed for real time observation of dislocation movements and surface restructuring observed in ex-situ annealing TEM sampling. This thermal annealing investigation gives new insight into the redistribution path of GaN material and dislocation movement post growth, allowing for improved understanding and in turn advances in optoelectronic device processing of compound semiconductors.« less

  17. Selective formation of GaN-based nanorod heterostructures on soda-lime glass substrates by a local heating method.

    PubMed

    Hong, Young Joon; Kim, Yong-Jin; Jeon, Jong-Myeong; Kim, Miyoung; Choi, Jun Hee; Baik, Chan Wook; Kim, Sun Il; Park, Sung Soo; Kim, Jong Min; Yi, Gyu-Chul

    2011-05-20

    We report on the fabrication of high-quality GaN on soda-lime glass substrates, heretofore precluded by both the intolerance of soda-lime glass to the high temperatures required for III-nitride growth and the lack of an epitaxial relationship with amorphous glass. The difficulties were circumvented by heteroepitaxial coating of GaN on ZnO nanorods via a local microheating method. Metal-organic chemical vapor deposition of ZnO nanorods and GaN layers using the microheater arrays produced high-quality GaN/ZnO coaxial nanorod heterostructures at only the desired regions on the soda-lime glass substrates. High-resolution transmission electron microscopy examination of the coaxial nanorod heterostructures indicated the formation of an abrupt, semicoherent interface. Photoluminescence and cathodoluminescence spectroscopy was also applied to confirm the high optical quality of the coaxial nanorod heterostructures. Mg-doped GaN/ZnO coaxial nanorod heterostructure arrays, whose GaN shell layers were grown with various different magnesocene flow rates, were further investigated by using photoluminescence spectroscopy for the p-type doping characteristics. The suggested method for fabrication of III-nitrides on glass substrates signifies potentials for low-cost and large-size optoelectronic device applications.

  18. Self-assembled growth and structural analysis of inclined GaN nanorods on nanoimprinted m-sapphire using catalyst-free metal-organic chemical vapor deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Kyuseung; Chae, Sooryong; Jang, Jongjin

    2016-04-15

    In this study, self-assembled inclined (1-10-3)-oriented GaN nanorods (NRs) were grown on nanoimprinted (10-10) m-sapphire substrates using catalyst-free metal-organic chemical vapor deposition. According to X-ray phi-scans, the inclined GaN NRs were tilted at an angle of ∼57.5° to the [10-10]{sub sapp} direction. Specifically, the GaN NRs grew in a single inclined direction to the [11-20]{sub sapp}. Uni-directionally inclined NRs were formed through the one-sided (10-11)-faceted growth of the interfacial a-GaN plane layer. It was confirmed that a thin layer of a-GaN was formed on r-facet nanogrooves of the m-sapphire substrate by nitridation. The interfacial a-GaN nucleation affected both the inclinedmore » angle and the growth direction of the inclined GaN NRs. Using X-ray diffraction and selective area electron diffraction, the epitaxial relationship between the inclined (1-10-3) GaN NRs and interfacial a-GaN layer on m-sapphire substrates was systematically investigated. Moreover, the inclined GaN NRs were observed to be mostly free of stacking fault-related defects using high-resolution transmission electron microscopy.« less

  19. GaN and ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Fündling, Sönke; Sökmen, Ünsal; Behrends, Arne; Al-Suleiman, Mohamed Aid Mansur; Merzsch, Stephan; Li, Shunfeng; Bakin, Andrey; Wehmann, Hergo-Heinrich; Waag, Andreas; Lähnemann, Jonas; Jahn, Uwe; Trampert, Achim; Riechert, Henning

    2010-07-01

    GaN and ZnO are both wide band gap semiconductors with interesting properties concerning optoelectronic and sensor device applications. Due to the lack or the high costs of native substrates, alternatives like sapphire, silicon, or silicon carbide are taken, but the resulting lattice and thermal mismatches lead to increased defect densities which reduce the material quality. In contrast, nanostructures with high aspect ratio have lower defect densities as compared to layers. In this work, we give an overview on our results achieved on both ZnO as well as GaN based nanorods. ZnO nanostructures were grown by a wet chemical approach as well as by VPT on different substrates - even on flexible polymers. To compare the growth results we analyzed the structures by XRD and PL and show possible device applications. The GaN nano- and microstructures were grown by metal organic vapor phase epitaxy either in a self- organized process or by selective area growth for a better control of shape and material composition. Finally we take a look onto possible device applications, presenting our attempts, e.g., to build LEDs based on GaN nanostructures.

  20. The trap states in lightly Mg-doped GaN grown by MOVPE on a freestanding GaN substrate

    NASA Astrophysics Data System (ADS)

    Narita, Tetsuo; Tokuda, Yutaka; Kogiso, Tatsuya; Tomita, Kazuyoshi; Kachi, Tetsu

    2018-04-01

    We investigated traps in lightly Mg-doped (2 × 1017 cm-3) p-GaN fabricated by metalorganic vapor phase epitaxy (MOVPE) on a freestanding GaN substrate and the subsequent post-growth annealing, using deep level transient spectroscopy. We identified four hole traps with energy levels of EV + 0.46, 0.88, 1.0, and 1.3 eV and one electron trap at EC - 0.57 eV in a p-type GaN layer uniformly doped with magnesium (Mg). The Arrhenius plot of hole traps with the highest concentration (˜3 × 1016 cm-3) located at EV + 0.88 eV corresponded to those of hole traps ascribed to carbon on nitrogen sites in n-type GaN samples grown by MOVPE. In fact, the range of the hole trap concentrations at EV + 0.88 eV was close to the carbon concentration detected by secondary ion mass spectroscopy. Moreover, the electron trap at EC - 0.57 eV was also identical to the dominant electron traps commonly observed in n-type GaN. Together, these results suggest that the trap states in the lightly Mg-doped GaN grown by MOVPE show a strong similarity to those in n-type GaN, which can be explained by the Fermi level close to the conduction band minimum in pristine MOVPE grown samples due to existing residual donors and Mg-hydrogen complexes.

  1. Enhanced radial growth of Mg doped GaN nanorods: A combined experimental and first-principles study

    NASA Astrophysics Data System (ADS)

    Nayak, Sanjay; Kumar, Rajendra; Pandey, Nidhi; Nagaraja, K. K.; Gupta, Mukul; Shivaprasad, S. M.

    2018-04-01

    We discuss the microstructural origin of enhanced radial growth in magnesium (Mg) doped single crystalline wurtzite gallium nitride (w-GaN) nanorods (NRs) grown by MBE, using electron microscopy and first-principles Density Functional Theory calculations. Experimentally, we observe that Mg incorporation increases the surface coverage of the grown samples as a consequence of an increase in the radial growth rate of the NRs. We also observe that the coalescence of NRs becomes prominent and the height at which coalescence between proximal rods occurs decreases with increase in Mg concentration. From first-principles calculations, we find that the surface free energy of the Mg doped surface reduces with increasing Mg concentration in the samples. The calculations further suggest a reduction in the adsorption energy and the diffusion barrier of Ga adatoms along [ 11 2 ¯ 0 ] on the side wall surface of the NRs as the underlying mechanism for the observed enhancement in the radial growth rate of GaN NRs. The physics and chemistry behind reduction of the adsorption energy of Ga ad-atoms on the doped surface are explained in the light of electronic structure of the relevant surfaces.

  2. Optical Probing of Low-Pressure Solution Grown GaN Crystal Properties

    DTIC Science & Technology

    2010-04-01

    observed in Mg and Si doped epitaxial films deposited by MBE and MOCVD on freestanding GaN HVPE substrates [23–25]. Considering the purity of the precursors...bands with similar energy positions here reported, a dominant deeper acceptor impurity has been assigned to Zn , a well known deep acceptor in GaN . Room...00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE Optical probing of low-pressure solution grown GaN crystal properties 5a. CONTRACT NUMBER 5b

  3. White light emission of monolithic InGaN/GaN grown on morphology-controlled, nanostructured GaN templates.

    PubMed

    Song, Keun Man; Kim, Do-Hyun; Kim, Jong-Min; Cho, Chu-Young; Choi, Jehyuk; Kim, Kahee; Park, Jinsup; Kim, Hogyoug

    2017-06-02

    We demonstrated an InGaN/GaN-based, monolithic, white light-emitting diode (LED) without phosphors by using morphology-controlled active layers formed on multi-facet GaN templates containing polar and semipolar surfaces. The nanostructured surface morphology was controlled by changing the growth time, and distinct multiple photoluminescence peaks were observed at 360, 460, and 560 nm; these features were caused by InGaN/GaN-based multiple quantum wells (MQWs) on the nanostructured facets. The origin of each multi-peak was related to the different indium (In) compositions in the different planes of the quantum wells grown on the nanostructured GaN. The emitting units of MQWs in the LED structures were continuously connected, which is different from other GaN-based nanorod or nanowire LEDs. Therefore, the suggested structure had a larger active area. From the electroluminescence spectrum of the fabricated LED, monolithic white light emission with CIE color coordinates of x = 0.306 and y = 0.333 was achieved via multi-facet control combined with morphology control of the metal organic chemical vapor deposition-selective area growth of InGaN/GaN MQWs.

  4. White light emission of monolithic InGaN/GaN grown on morphology-controlled, nanostructured GaN templates

    NASA Astrophysics Data System (ADS)

    Song, Keun Man; Kim, Do-Hyun; Kim, Jong-Min; Cho, Chu-Young; Choi, Jehyuk; Kim, Kahee; Park, Jinsup; Kim, Hogyoug

    2017-06-01

    We demonstrated an InGaN/GaN-based, monolithic, white light-emitting diode (LED) without phosphors by using morphology-controlled active layers formed on multi-facet GaN templates containing polar and semipolar surfaces. The nanostructured surface morphology was controlled by changing the growth time, and distinct multiple photoluminescence peaks were observed at 360, 460, and 560 nm; these features were caused by InGaN/GaN-based multiple quantum wells (MQWs) on the nanostructured facets. The origin of each multi-peak was related to the different indium (In) compositions in the different planes of the quantum wells grown on the nanostructured GaN. The emitting units of MQWs in the LED structures were continuously connected, which is different from other GaN-based nanorod or nanowire LEDs. Therefore, the suggested structure had a larger active area. From the electroluminescence spectrum of the fabricated LED, monolithic white light emission with CIE color coordinates of x = 0.306 and y = 0.333 was achieved via multi-facet control combined with morphology control of the metal organic chemical vapor deposition-selective area growth of InGaN/GaN MQWs.

  5. Dislocation filtering in GaN nanostructures.

    PubMed

    Colby, Robert; Liang, Zhiwen; Wildeson, Isaac H; Ewoldt, David A; Sands, Timothy D; García, R Edwin; Stach, Eric A

    2010-05-12

    Dislocation filtering in GaN by selective area growth through a nanoporous template is examined both by transmission electron microscopy and numerical modeling. These nanorods grow epitaxially from the (0001)-oriented GaN underlayer through the approximately 100 nm thick template and naturally terminate with hexagonal pyramid-shaped caps. It is demonstrated that for a certain window of geometric parameters a threading dislocation growing within a GaN nanorod is likely to be excluded by the strong image forces of the nearby free surfaces. Approximately 3000 nanorods were examined in cross-section, including growth through 50 and 80 nm diameter pores. The very few threading dislocations not filtered by the template turn toward a free surface within the nanorod, exiting less than 50 nm past the base of the template. The potential active region for light-emitting diode devices based on these nanorods would have been entirely free of threading dislocations for all samples examined. A greater than 2 orders of magnitude reduction in threading dislocation density can be surmised from a data set of this size. A finite element-based implementation of the eigenstrain model was employed to corroborate the experimentally observed data and examine a larger range of potential nanorod geometries, providing a simple map of the different regimes of dislocation filtering for this class of GaN nanorods. These results indicate that nanostructured semiconductor materials are effective at eliminating deleterious extended defects, as necessary to enhance the optoelectronic performance and device lifetimes compared to conventional planar heterostructures.

  6. Determination of critical diameters for intrinsic carrier diffusion-length of GaN nanorods with cryo-scanning near-field optical microscopy

    PubMed Central

    Chen, Y. T.; Karlsson, K. F.; Birch, J.; Holtz, P. O.

    2016-01-01

    Direct measurements of carrier diffusion in GaN nanorods with a designed InGaN/GaN layer-in-a-wire structure by scanning near-field optical microscopy (SNOM) were performed at liquid-helium temperatures of 10 K. Without an applied voltage, intrinsic diffusion lengths of photo-excited carriers were measured as the diameters of the nanorods differ from 50 to 800 nm. The critical diameter of nanorods for carrier diffusion is concluded as 170 nm with a statistical approach. Photoluminescence spectra were acquired for different positions of the SNOM tip on the nanorod, corresponding to the origins of the well-defined luminescence peaks, each being related to recombination-centers. The phenomenon originated from surface oxide by direct comparison of two nanorods with similar diameters in a single map has been observed and investigated. PMID:26876009

  7. Gradual tilting of crystallographic orientation and configuration of dislocations in GaN selectively grown by vapour phase epitaxy methods

    PubMed

    Kuwan; Tsukamoto; Taki; Horibuchi; Oki; Kawaguchi; Shibata; Sawaki; Hiramatsu

    2000-01-01

    Cross-sectional transmission electron microscope (TEM) observation was performed for selectively grown gallium nitride (GaN) in order to examine the dependence of GaN microstructure on the growth conditions. The GaN films were grown by hydride vapour phase epitaxy (HVPE) or metalorganic vapour phase epitaxy (MOVPE) on GaN covered with a patterned mask. Thin foil specimens for TEM observation were prepared with focused ion beam (FIB) machining apparatus. It was demonstrated that the c-axis of GaN grown over the terrace of the mask tilts towards the centre of the terrace when the GaN is grown in a carrier gas of N2. The wider terrace results in a larger tilting angle if other growth conditions are identical. The tilting is attributed to 'horizontal dislocations' (HDs) generated during the overgrowth of GaN on the mask terrace. The HDs in HVPE-GaN have a semi-loop shape and are tangled with one another, while those in MOVPE-GaN are straight and lined up to form low-angle grain boundaries.

  8. X-ray probe of GaN thin films grown on InGaN compliant substrates

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoqing; Li, Yang; Liu, Jianming; Wei, Hongyuan; Liu, Xianglin; Yang, Shaoyan; Wang, Zhanguo; Wang, Huanhua

    2013-04-01

    GaN thin films grown on InGaN compliant substrates were characterized by several X-ray technologies: X-ray reciprocal space mapping (RSM), grazing incidence X-ray diffraction (GIXRD), and X-ray photoemission spectrum (XPS). Narrow Lorentz broadening and stress free state were observed for GaN grown on InGaN compliant substrate, while mosaic structure and large tensile stress were observed at the presence of residual indium atoms. RSM disclosed the mosaicity, and the GIXRD was conducted to investigate the depth dependences of crystal quality and strain states. XPS depth profile of indium contents indicated that residual indium atoms deteriorated the crystal quality of GaN not only by producing lattice mismatch at the interface of InGaN and GaN but also by diffusing into GaN overlayers. Accordingly, two solutions were proposed to improve the efficiency of self-patterned lateral epitaxial overgrowth method. This research goes a further step in resolving the urgent substrate problem in GaN fabrication.

  9. ZnO nanorods for electronic and photonic device applications

    NASA Astrophysics Data System (ADS)

    Yi, Gyu-Chul; Yoo, Jinkyoung; Park, Won Il; Jung, Sug Woo; An, Sung Jin; Kim, H. J.; Kim, D. W.

    2005-11-01

    We report on catalyst-free growth of ZnO nanorods and their nano-scale electrical and optical device applications. Catalyst-free metalorganic vapor-phase epitaxy (MOVPE) enables fabrication of size-controlled high purity ZnO single crystal nanorods. Various high quality nanorod heterostructures and quantum structures based on ZnO nanorods were also prepared using the MOVPE method and characterized using scanning electron microscopy, transmission electron microscopy, and optical spectroscopy. From the photoluminescence spectra of ZnO/Zn 0.8Mg 0.2O nanorod multi-quantum-well structures, in particular, we observed a systematic blue-shift in their PL peak position due to quantum confinement effect of carriers in nanorod quantum structures. For ZnO/ZnMgO coaxial nanorod heterostructures, photoluminescence intensity was significantly increased presumably due to surface passivation and carrier confinement. In addition to the growth and characterizations of ZnO nanorods and their quantum structures, we fabricated nanoscale electronic devices based on ZnO nanorods. We report on fabrication and device characteristics of metal-oxidesemiconductor field effect transistors (MOSFETs), Schottky diodes, and metal-semiconductor field effect transistors (MESFETs) as examples of the nanodevices. In addition, electroluminescent devices were fabricated using vertically aligned ZnO nanorods grown p-type GaN substrates, exhibiting strong visible electroluminescence.

  10. Effect of an Electrochemically Oxidized ZnO Seed Layer on ZnO Nanorods Grown by using Electrodeposition

    NASA Astrophysics Data System (ADS)

    Jeon, Woosung; Leem, Jae-Young

    2018-05-01

    ZnO nanorods were prepared on a Si substrate with and without a ZnO seed layer formed by electro-oxidation to investigate the effect of the seed layer on their growth. The ZnO nanorods grown on the ZnO seed layer had top surfaces that were flat whereas those grown without it had rough top surfaces, as observed in field-emission scanning electron microscopy images. In the Xray diffraction analysis, all ZnO nanorods showed preferential orientation with the (002) plane. In the case of ZnO nanorods prepared with a ZnO seed layer, the residual stress decreased, and the full width at half maximum of the ZnO (002) plane peak decreased. The photoluminescence spectra show a strong and narrow near-band-edge emission peak and high near-band-edge emission to deep-level emission peak ratio for the ZnO nanorods prepared with the seed layer. With respect to the photoresponse properties, the ZnO nanorods grown with the ZnO seed layer showed higher responsivity and faster rise/decay curves than those grown without it. Thus, the ZnO seed layer formed by electro-oxidation improves the structural, optical, and photoresponse properties of the ZnO nanorods formed on it. This method could serve as a new route for improving the properties of optoelectronic devices.

  11. High-electron-mobility GaN grown on free-standing GaN templates by ammonia-based molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kyle, Erin C. H., E-mail: erinkyle@umail.ucsb.edu; Kaun, Stephen W.; Burke, Peter G.

    2014-05-21

    The dependence of electron mobility on growth conditions and threading dislocation density (TDD) was studied for n{sup −}-GaN layers grown by ammonia-based molecular beam epitaxy. Electron mobility was found to strongly depend on TDD, growth temperature, and Si-doping concentration. Temperature-dependent Hall data were fit to established transport and charge-balance equations. Dislocation scattering was analyzed over a wide range of TDDs (∼2 × 10{sup 6} cm{sup −2} to ∼2 × 10{sup 10} cm{sup −2}) on GaN films grown under similar conditions. A correlation between TDD and fitted acceptor states was observed, corresponding to an acceptor state for almost every c lattice translation along each threading dislocation. Optimizedmore » GaN growth on free-standing GaN templates with a low TDD (∼2 × 10{sup 6} cm{sup −2}) resulted in electron mobilities of 1265 cm{sup 2}/Vs at 296 K and 3327 cm{sup 2}/Vs at 113 K.« less

  12. Multiferroic GaN nanofilms grown within Na-4 mica channels

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Santanu; Datta, A.; Chakravorty, D.

    2010-03-01

    Gallium nitride nanofilms grown within nanochannels of Na-4 mica structure, exhibit ferromagnetism even at room temperature due to the presence of gallium vacancies at the surfaces of the nanofilms. These nanofilms also show a ferroelectric behavior at room temperature ascribed to a small distortion in the crystal structure of GaN due to its growth within the Na-4 mica nanochannels. A colossal increase in 338% in dielectric constant was observed for an applied magnetic field of 26 kOe. The magnetoelectric effect is ascribed to magnetostriction of magnetic GaN phase.

  13. ZnO nanorods/graphene/Ni/Au hybrid structures as transparent conductive layer in GaN LED for low work voltage and high light extraction

    NASA Astrophysics Data System (ADS)

    Xu, Kun; Xie, Yiyang; Ma, Huali; Du, Yinxiao; Zeng, Fanguang; Ding, Pei; Gao, Zhiyuan; Xu, Chen; Sun, Jie

    2016-12-01

    In this paper, by virtue of one-dimensional ZnO nanorods and two-dimensional graphene film hybrid structures, both the enhanced current spreading and enhanced light extraction were realized at the same time. A 1 nm/1 nm Ni/Au layer was used as an interlayer between graphene and pGaN to form ohmic contact, which makes the device have a good forward conduction properties. Through the comparison of the two groups of making ZnO nanorods or not, it was found that the 30% light extraction efficiency of the device was improved by using the ZnO nanorods. By analysis key parameters of two groups such as the turn-on voltage, work voltage and reverse leakage current, it was proved that the method for preparing surface nano structure by hydrothermal method self-organization growth ZnO nanorods applied in GaN LEDs has no influence to device's electrical properties. The hybrid structure application in GaN LED, make an achievement of a good ohmic contact, no use of ITO and enhancement of light extraction at the same time, meanwhile it does not change the device structure, introduce additional process, worsen the electrical properties.

  14. Luminescence studies of laser MBE grown GaN on ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Dewan, Sheetal; Tomar, Monika; Kapoor, Ashok K.; Tandon, R. P.; Gupta, Vinay

    2017-08-01

    GaN films have been successfully fabricated using Laser Molecular Beam Epitaxy (LMBE) technique on bare c-plane sapphire substrate and ZnO nanostructures (NS) decorated Si (100) substrates. The ZnO nanostructures were grown on Si (100) substrate using high pressure assisted Pulsed laser deposition technique in inert gas ambience. Discrete nanostructured morphology of ZnO was obtained using the PLD growth on Si substrates. Photoluminescence studies performed on the prepared GaN/Sapphire and GaN/ZnO-NS/Si systems, revealed a significant PL enhancement in case of GaN/ZnO-NS/Si system compared to the former. The hexagonal nucleation sites provided by the ZnO nanostructures strategically enhanced the emission of GaN film grown by Laser MBE Technique at relatively lower temperature of 700°C. The obtained results are attractive for the realization of highly luminescent GaN films on Si substrate for photonic devices.

  15. Freestanding polyaniline nanorods grown on graphene for highly capacitive energy storage

    NASA Astrophysics Data System (ADS)

    Li, Zijiong; Qin, Zhen; Yang, Baocheng; Guo, Jian; Wang, Haiyan; Zhang, Weiyang; Lv, Xiaowei; Stack, Alison

    2015-02-01

    Freestanding polyaniline (PANI) nanorods grown in situ on microwave-expanded graphene oxide (MEGO) sheets were prepared through a facile solution method. The morphological characterization indicates that large quantity of free-standing PANI nanorods with average diameter of 50 nm were uniformly deposited onto the double sides of the MEGO nanosheets to form a sandwich structure. The hybrid of PANI/MEGO (GPANI) exhibit high specific surface area and high electrical conductivity, compared with pristine PANI nanorods. When evaluated as electrodes for supercapacitors, the GPANI demonstrate high specific capacitance of 628 F g-1 at a current density of 1.1 A g-1, high-rate performance, and excellent cycle stability compared to individual component. Such excellent electrochemical performance should be attributed to the combined double-layer capacitance and pseudo -capacitance mechanisms from the MEGO sheets and PANI nanorods.

  16. Photoelectrochemical etching measurement of defect density in GaN grown by nanoheteroepitaxy

    NASA Astrophysics Data System (ADS)

    Ferdous, M. S.; Sun, X. Y.; Wang, X.; Fairchild, M. N.; Hersee, S. D.

    2006-05-01

    The density of dislocations in n-type GaN was measured by photoelectrochemical etching. A 10× reduction in dislocation density was observed compared to planar GaN grown at the same time. Cross-sectional transmission electron microscopy studies indicate that defect reduction is due to the mutual cancellation of dislocations with equal and opposite Burger's vectors. The nanoheteroepitaxy sample exhibited significantly higher photoluminescence intensity and higher electron mobility than the planar reference sample.

  17. Accumulation of Background Impurities in Hydride Vapor Phase Epitaxy Grown GaN Layers

    NASA Astrophysics Data System (ADS)

    Usikov, Alexander; Soukhoveev, Vitali; Kovalenkov, Oleg; Syrkin, Alexander; Shapovalov, Liza; Volkova, Anna; Ivantsov, Vladimir

    2013-08-01

    We report on accumulation of background Si and O impurities measured by secondary ion mass spectrometry (SIMS) at the sub-interfaces in undoped, Zn- and Mg-doped multi-layer GaN structures grown by hydride vapor phase epitaxy (HVPE) on sapphire substrates with growth interruptions. The impurities accumulation is attributed to reaction of ammonia with the rector quartz ware during the growth interruptions. Because of this effect, HVPE-grown GaN layers had excessive Si and O concentration on the surface that may hamper forming of ohmic contacts especially in the case of p-type layers and may complicate homo-epitaxial growth of a device structure.

  18. Polarity control of GaN epitaxial films grown on LiGaO2(001) substrates and its mechanism.

    PubMed

    Zheng, Yulin; Wang, Wenliang; Li, Xiaochan; Li, Yuan; Huang, Liegen; Li, Guoqiang

    2017-08-16

    The polarity of GaN epitaxial films grown on LiGaO 2 (001) substrates by pulsed laser deposition has been well controlled. It is experimentally proved that the GaN epitaxial films grown on nitrided LiGaO 2 (001) substrates reveal Ga-polarity, while the GaN epitaxial films grown on non-nitrided LiGaO 2 (001) substrates show N-polarity. The growth mechanisms for these two cases are systematically studied by first-principles calculations based on density functional theory. Theoretical calculation presents that the adsorption of a Ga atom preferentially occurs at the center of three N atoms stacked on the nitrided LiGaO 2 (001) substrates, which leads to the formation of Ga-polarity GaN. Whereas the adsorption of a Ga atom preferentially deposits at the top of a N atom stacked on the non-nitrided LiGaO 2 (001) substrates, which results in the formation of N-polarity GaN. This work of controlling the polarity of GaN epitaxial films is of paramount importance for the fabrication of group-III nitride devices for various applications.

  19. Emission Characteristics of InGaN/GaN Core-Shell Nanorods Embedded in a 3D Light-Emitting Diode.

    PubMed

    Jung, Byung Oh; Bae, Si-Young; Lee, Seunga; Kim, Sang Yun; Lee, Jeong Yong; Honda, Yoshio; Amano, Hiroshi

    2016-12-01

    We report the selective-area growth of a gallium nitride (GaN)-nanorod-based InGaN/GaN multiple-quantum-well (MQW) core-shell structure embedded in a three-dimensional (3D) light-emitting diode (LED) grown by metalorganic chemical vapor deposition (MOCVD) and its optical analysis. High-resolution transmission electron microscopy (HR-TEM) observation revealed the high quality of the GaN nanorods and the position dependence of the structural properties of the InGaN/GaN MQWs on multiple facets. The excitation and temperature dependences of photoluminescence (PL) revealed the m-plane emission behaviors of the InGaN/GaN core-shell nanorods. The electroluminescence (EL) of the InGaN/GaN core-shell-nanorod-embedded 3D LED changed color from green to blue with increasing injection current. This phenomenon was mainly due to the energy gradient and deep localization of the indium in the selectively grown InGaN/GaN core-shell MQWs on the 3D architecture.

  20. Stress engineering in GaN structures grown on Si(111) substrates by SiN masking layer application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szymański, Tomasz, E-mail: tomasz.szymanski@pwr.edu.pl; Wośko, Mateusz; Paszkiewicz, Bogdan

    2015-07-15

    GaN layers without and with an in-situ SiN mask were grown by using metal organic vapor phase epitaxy for three different approaches used in GaN on silicon(111) growth, and the physical and optical properties of the GaN layers were studied. For each approach applied, GaN layers of 1.4 μm total thickness were grown, using silan SiH{sub 4} as Si source in order to grow Si{sub x}N{sub x} masking layer. The optical micrographs, scanning electron microscope images, and atomic force microscope images of the grown samples revealed cracks for samples without SiN mask, and micropits, which were characteristic for the samples grownmore » with SiN mask. In situ reflectance signal traces were studied showing a decrease of layer coalescence time and higher degree of 3D growth mode for samples with SiN masking layer. Stress measurements were conducted by two methods—by recording micro-Raman spectra and ex-situ curvature radius measurement—additionally PLs spectra were obtained revealing blueshift of PL peak positions with increasing stress. The authors have shown that a SiN mask significantly improves physical and optical properties of GaN multilayer systems reducing stress in comparison to samples grown applying the same approaches but without SiN masking layer.« less

  1. Microstructures and growth mechanisms of GaN films epitaxially grown on AlN/Si hetero-structures by pulsed laser deposition at different temperatures.

    PubMed

    Wang, Wenliang; Yang, Weijia; Lin, Yunhao; Zhou, Shizhong; Li, Guoqiang

    2015-11-13

    2 inch-diameter GaN films with homogeneous thickness distribution have been grown on AlN/Si(111) hetero-structures by pulsed laser deposition (PLD) with laser rastering technique. The surface morphology, crystalline quality, and interfacial property of as-grown GaN films are characterized in detail. By optimizing the laser rastering program, the ~300 nm-thick GaN films grown at 750 °C show a root-mean-square (RMS) thickness inhomogeneity of 3.0%, very smooth surface with a RMS surface roughness of 3.0 nm, full-width at half-maximums (FWHMs) for GaN(0002) and GaN(102) X-ray rocking curves of 0.7° and 0.8°, respectively, and sharp and abrupt AlN/GaN hetero-interfaces. With the increase in the growth temperature from 550 to 850 °C, the surface morphology, crystalline quality, and interfacial property of as-grown ~300 nm-thick GaN films are gradually improved at first and then decreased. Based on the characterizations, the corresponding growth mechanisms of GaN films grown on AlN/Si hetero-structures by PLD with various growth temperatures are hence proposed. This work would be beneficial to understanding the further insight of the GaN films grown on Si(111) substrates by PLD for the application of GaN-based devices.

  2. Microstructures and growth mechanisms of GaN films epitaxially grown on AlN/Si hetero-structures by pulsed laser deposition at different temperatures

    PubMed Central

    Wang, Wenliang; Yang, Weijia; Lin, Yunhao; Zhou, Shizhong; Li, Guoqiang

    2015-01-01

    2 inch-diameter GaN films with homogeneous thickness distribution have been grown on AlN/Si(111) hetero-structures by pulsed laser deposition (PLD) with laser rastering technique. The surface morphology, crystalline quality, and interfacial property of as-grown GaN films are characterized in detail. By optimizing the laser rastering program, the ~300 nm-thick GaN films grown at 750 °C show a root-mean-square (RMS) thickness inhomogeneity of 3.0%, very smooth surface with a RMS surface roughness of 3.0 nm, full-width at half-maximums (FWHMs) for GaN(0002) and GaN(102) X-ray rocking curves of 0.7° and 0.8°, respectively, and sharp and abrupt AlN/GaN hetero-interfaces. With the increase in the growth temperature from 550 to 850 °C, the surface morphology, crystalline quality, and interfacial property of as-grown ~300 nm-thick GaN films are gradually improved at first and then decreased. Based on the characterizations, the corresponding growth mechanisms of GaN films grown on AlN/Si hetero-structures by PLD with various growth temperatures are hence proposed. This work would be beneficial to understanding the further insight of the GaN films grown on Si(111) substrates by PLD for the application of GaN-based devices. PMID:26563573

  3. Electrical and structural properties of (Pd/Au) Schottky contact to as grown and rapid thermally annealed GaN grown by MBE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nirwal, Varun Singh, E-mail: varun.nirwal30@gmail.com; Singh, Joginder; Gautam, Khyati

    2016-05-06

    We studied effect of thermally annealed GaN surface on the electrical and structural properties of (Pd/Au) Schottky contact to Ga-polar GaN grown by molecular beam epitaxy on Si substrate. Current voltage (I-V) measurement was used to study electrical properties while X-ray diffraction (XRD) measurement was used to study structural properties. The Schottky barrier height calculated using I-V characteristics was 0.59 eV for (Pd/Au) Schottky contact on as grown GaN, which increased to 0.73 eV for the Schottky contact fabricated on 700 °C annealed GaN film. The reverse bias leakage current at -1 V was also significantly reduced from 6.42×10{sup −5} Amore » to 7.31×10{sup −7} A after annealing. The value of series resistance (Rs) was extracted from Cheung method and the value of R{sub s} decreased from 373 Ω to 172 Ω after annealing. XRD results revealed the formation of gallide phases at the interface of (Pd/Au) and GaN for annealed sample, which could be the reason for improvement in the electrical properties of Schottky contact after annealing.« less

  4. Room temperature photoluminescence properties of ZnO nanorods grown by hydrothermal reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwan, S., E-mail: iwan-sugihartono@unj.ac.id; Prodi Ilmu Material, Departemen Fisika, FMIPA, Universitas Indonesia, Kampus UI Depok; Fauzia, Vivi

    Zinc oxide (ZnO) nanorods were fabricated by a hydrothermal reaction on silicon (Si) substrate at 95 °C for 6 hours. The ZnO seed layer was fabricated by depositing ZnO thin films on Si substrates by ultrasonic spray pyrolisis (USP). The annealing effects on crystal structure and optical properties of ZnO nanorods were investigated. The post-annealing treatment was performed at 800 °C with different environments. The annealed of ZnO nanorods were characterized by X-ray diffraction (XRD) and photoluminescence (PL) in order to analyze crystal structure and optical properties, respectively. The results show the orientations of [002], [101], [102], and [103] diffractionmore » peaks were observed and hexagonal wurtzite structure of ZnO nanorods were vertically grown on Si substrates. The room temperature PL spectra show ultra-violet (UV) and visible emissions. The annealed of ZnO nanorods in vacuum condition (3.8 × 10{sup −3} Torr) has dominant UV emission. Meanwhile, non-annealed of ZnO nanorods has dominant visible emission. It was expected that the annealed of ZnO in vacuum condition suppresses the existence of native defects in ZnO nanorods.« less

  5. Characterization of GaN microstructures grown by plasma-assisted molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lo, Ikai; Pang, Wen-Yuan; Hsu, Yu-Chi

    2013-06-15

    The characterization of GaN microstructures grown by plasma-assisted molecular beam epitaxy on LiAlO{sub 2} substrate was studied by cathodoluminescence and photoluminescence measurements. We demonstrated that the cathodoluminescence from oblique semi-polar surfaces of mushroom-shaped GaN was much brighter than that from top polar surface due to the reduction of polarization field on the oblique semi-polar surfaces. It implies that the oblique semi-polar surface is superior for the light-emitting surface of wurtzite nano-devices.

  6. Formation of definite GaN p-n junction by Mg-ion implantation to n--GaN epitaxial layers grown on a high-quality free-standing GaN substrate

    NASA Astrophysics Data System (ADS)

    Oikawa, Takuya; Saijo, Yusuke; Kato, Shigeki; Mishima, Tomoyoshi; Nakamura, Tohru

    2015-12-01

    P-type conversion of n--GaN by Mg-ion implantation was successfully performed using high quality GaN epitaxial layers grown on free-standing low-dislocation-density GaN substrates. These samples showed low-temperature PL spectra quite similar to those observed from Mg-doped MOVPE-grown p-type GaN, consisting of Mg related donor-acceptor pair (DAP) and acceptor bound exciton (ABE) emission. P-n diodes fabricated by the Mg-ion implantation showed clear rectifying I-V characteristics and UV and blue light emissions were observed at forward biased conditions for the first time.

  7. Significantly improved surface morphology of N-polar GaN film grown on SiC substrate by the optimization of V/III ratio

    NASA Astrophysics Data System (ADS)

    Deng, Gaoqiang; Zhang, Yuantao; Yu, Ye; Yan, Long; Li, Pengchong; Han, Xu; Chen, Liang; Zhao, Degang; Du, Guotong

    2018-04-01

    In this paper, N-polar GaN films with different V/III ratios were grown on vicinal C-face SiC substrates by metalorganic chemical vapor deposition. During the growth of N-polar GaN film, the V/III ratio was controlled by adjusting the molar flow rate of ammonia while keeping the trimethylgallium flow rate unchanged. The influence of the V/III ratio on the surface morphology of N-polar GaN film has been studied. We find that the surface root mean square roughness of N-polar GaN film over an area of 20 × 20 μm2 can be reduced from 8.13 to 2.78 nm by optimization of the V/III ratio. Then, using the same growth conditions, N-polar InGaN/GaN multiple quantum wells (MQWs) light-emitting diodes (LEDs) were grown on the rough and the smooth N-polar GaN templates, respectively. Compared with the LED grown on the rough N-polar GaN template, dramatically improved interface sharpness and luminescence uniformity of the InGaN/GaN MQWs are achieved for the LED grown on the smooth N-polar GaN template.

  8. Investigation on the compensation effect of residual carbon impurities in low temperature grown Mg doped GaN films

    NASA Astrophysics Data System (ADS)

    Yang, J.; Zhao, D. G.; Jiang, D. S.; Chen, P.; Liu, Z. S.; Le, L. C.; Li, X. J.; He, X. G.; Liu, J. P.; Zhang, S. M.; Wang, H.; Zhu, J. J.; Yang, H.

    2014-04-01

    The influence of unintentionally doped carbon impurities on electrical resistivity and yellow luminescence (YL) of low-temperature (LT) grown Mg doped GaN films is investigated. It is found that the resistivity of Mg doped GaN films are closely related to the residual carbon impurity concentration, which may be attributed to the compensation effect of carbon impurities. The carbon impurity may preferentially form deep donor complex CN-ON resulting from its relatively low formation energy. This complex is an effective compensate center for MgGa acceptors as well as inducing YL in photoluminescence spectra. Thus, the low resistivity LT grown p-type GaN films can be obtained only when the residual carbon impurity concentration is sufficiently low, which can explain why LT P-GaN films with lower resistivity were obtained more easily when relatively higher pressure, temperature, or NH3/TMGa flow rate ratio were used in the LT grown Mg doped GaN films reported in earlier reports.

  9. Highly resistive C-doped hydride vapor phase epitaxy-GaN grown on ammonothermally crystallized GaN seeds

    NASA Astrophysics Data System (ADS)

    Iwinska, Malgorzata; Piotrzkowski, Ryszard; Litwin-Staszewska, Elzbieta; Sochacki, Tomasz; Amilusik, Mikolaj; Fijalkowski, Michal; Lucznik, Boleslaw; Bockowski, Michal

    2017-01-01

    GaN crystals were grown by hydride vapor phase epitaxy (HVPE) and doped with C. The seeds were high-structural-quality ammonothermally crystallized GaN. The grown crystals were highly resistive at 296 K and of high structural quality. High-temperature Hall effect measurements revealed p-type conductivity and a deep acceptor level in the material with an activation energy of 1 eV. This is in good agreement with density functional theory calculations based on hybrid functionals as presented by the Van de Walle group. They obtained an ionization energy of 0.9 eV when C was substituted for N in GaN and acted as a deep acceptor.

  10. Site-controlled GaN nanocolumns with InGaN insertions grown by MBE

    NASA Astrophysics Data System (ADS)

    Nechaev, D. V.; Semenov, A. N.; Koshelev, O. A.; Jmerik, V. N.; Davydov, V. Yu; Smirnov, A. N.; Pozina, G.; Shubina, T. V.; Ivanov, S. V.

    2017-11-01

    The site-controlled plasma-assisted molecular beam epitaxy (PA MBE) has been developed to fabricate the regular array of GaN nanocolumns (NCs) with InGaN insertions on micro-cone patterned sapphire substrates (μ-CPSSs). Two-stage growth of GaN NCs, including a nucleation layer grown at metal-rich conditions and high temperature GaN growth in strong N-rich condition, has been developed to achieve the selective growth of the NCs. Microcathodoluminescence measurements have demonstrated pronounced emission from the InGaN insertions in 450-600 nm spectral range. The optically isolated NCs can be used as effective nano-emitters operating in the visible range.

  11. ZnO nanorod arrays and direct wire bonding on GaN surfaces for rapid fabrication of antireflective, high-temperature ultraviolet sensors

    NASA Astrophysics Data System (ADS)

    So, Hongyun; Senesky, Debbie G.

    2016-11-01

    Rapid, cost-effective, and simple fabrication/packaging of microscale gallium nitride (GaN) ultraviolet (UV) sensors are demonstrated using zinc oxide nanorod arrays (ZnO NRAs) as an antireflective layer and direct bonding of aluminum wires to the GaN surface. The presence of the ZnO NRAs on the GaN surface significantly reduced the reflectance to less than 1% in the UV and 4% in the visible light region. As a result, the devices fabricated with ZnO NRAs and mechanically stable aluminum bonding wires (pull strength of 3-5 gf) showed higher sensitivity (136.3% at room temperature and 148.2% increase at 250 °C) when compared with devices with bare (uncoated) GaN surfaces. In addition, the devices demonstrated reliable operation at high temperatures up to 300 °C, supporting the feasibility of simple and cost-effective UV sensors operating with higher sensitivity in high-temperature conditions, such as in combustion, downhole, and space exploration applications.

  12. Multilayer porous structures of HVPE and MOCVD grown GaN for photonic applications

    NASA Astrophysics Data System (ADS)

    Braniste, T.; Ciers, Joachim; Monaico, Ed.; Martin, D.; Carlin, J.-F.; Ursaki, V. V.; Sergentu, V. V.; Tiginyanu, I. M.; Grandjean, N.

    2017-02-01

    In this paper we report on a comparative study of electrochemical processes for the preparation of multilayer porous structures in hydride vapor phase epitaxy (HVPE) and metal organic chemical vapor phase deposition (MOCVD) grown GaN. It was found that in HVPE-grown GaN, multilayer porous structures are obtained due to self-organization processes leading to a fine modulation of doping during the crystal growth. However, these processes are not totally under control. Multilayer porous structures with a controlled design have been produced by optimizing the technological process of electrochemical etching in MOCVD-grown samples, consisting of five pairs of thin layers with alternating-doping profiles. The samples have been characterized by SEM imaging, photoluminescence spectroscopy, and micro-reflectivity measurements, accompanied by transfer matrix analysis and simulations by a method developed for the calculation of optical reflection spectra. We demonstrate the applicability of the produced structures for the design of Bragg reflectors.

  13. Deep level transient spectroscopy signatures of majority traps in GaN p-n diodes grown by metal-organic vapor-phase epitaxy technique on GaN substrates

    NASA Astrophysics Data System (ADS)

    PŁaczek-Popko, E.; Trzmiel, J.; Zielony, E.; Grzanka, S.; Czernecki, R.; Suski, T.

    2009-12-01

    In this study, we present the results of investigation on p-n GaN diodes by means of deep level transient spectroscopy (DLTS) within the temperature range of 77-350 K. Si-doped GaN layers were grown by metal-organic vapor-phase epitaxy technique (MOVPE) on the free-standing GaN substrates. Subsequently Mg-doped GaN layers were grown. To perform DLTS measurements Ni/Au contacts to p-type material and Ti/Au contacts to n-type material were processed. DLTS signal spectra revealed the presence of two majority traps of activation energies obtained from Arrhenius plots equal to E1=0.22 eV and E2=0.65 eV. In present work we show that the trap E1 is linked with the extended defects whereas the trap E2 is the point defect related. Its capture cross section is thermally activated with energy barrier for capture equal to 0.2 eV.

  14. Doping of free-standing zinc-blende GaN layers grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Novikov, S. V.; Powell, R. E. L.; Staddon, C. R.; Kent, A. J.; Foxon, C. T.

    2014-10-01

    Currently there is high level of interest in developing of vertical device structures based on the group III nitrides. We have studied n- and p-doping of free-standing zinc-blende GaN grown by plasma-assisted molecular beam epitaxy (PA-MBE). Si was used as the n-dopant and Mg as the p-dopant for zinc-blende GaN. Controllable levels of doping with Si and Mg in free-standing zinc-blende GaN have been achieved by PA-MBE. The Si and Mg doping depth uniformity through the zinc-blende GaN layers have been confirmed by secondary ion mass spectrometry (SIMS). Controllable Si and Mg doping makes PA-MBE a promising method for the growth of conducting group III-nitrides bulk crystals.

  15. Effect of substrate nitridation temperature on the persistent photoconductivity of unintentionally-doped GaN layer grown by PAMBE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prakash, Nisha, E-mail: prakasnisha@gmail.com; Barvat, Arun; Anand, Kritika

    2016-05-23

    The surface roughness and defect density of GaN epitaxial layers grown on c-plane sapphire substrate are investigated and found to be dependent on nitridation temperature. GaN epitaxial layers grown after nitridation of sapphire at 200°C have a higher defect density and higher surface roughness compared to the GaN layers grown at 646°C nitridation as confirmed by atomic force microscopy (AFM). The persistent photoconductivity (PPC) was observed in both samples and it was found to be decreasing with decreasing temperature in the range 150-300°C due to long carrier lifetime and high electron mobility at low temperature. The photoresponse of the GaNmore » films grown in this study exhibit improved PPC due to their better surface morphology at 646°C nitrided sample. The point defects or extended microstructure defects limits the photocarrier lifetime and electron mobility at 200°C nitrided sample.« less

  16. Optical and structural characterisation of epitaxial nanoporous GaN grown by CVD.

    PubMed

    Mena, Josué; Carvajal, Joan J; Martínez, Oscar; Jiménez, Juan; Zubialevich, Vitaly Z; Parbrook, Peter J; Diaz, Francesc; Aguiló, Magdalena

    2017-09-15

    In this paper we study the optical properties of nanoporous gallium nitride (GaN) epitaxial layers grown by chemical vapour deposition on non-porous GaN substrates, using photoluminescence, cathodoluminescence, and resonant Raman scattering, and correlate them with the structural characteristic of these films. We pay special attention to the analysis of the residual strain of the layers and the influence of the porosity in the light extraction. The nanoporous GaN epitaxial layers are under tensile strain, although the strain is progressively reduced as the deposition time and the thickness of the porous layer increases, becoming nearly strain free for a thickness of 1.7 μm. The analysis of the experimental data point to the existence of vacancy complexes as the main source of the tensile strain.

  17. The investigation of stress in freestanding GaN crystals grown from Si substrates by HVPE.

    PubMed

    Lee, Moonsang; Mikulik, Dmitry; Yang, Mino; Park, Sungsoo

    2017-08-17

    We investigate the stress evolution of 400 µm-thick freestanding GaN crystals grown from Si substrates by hydride vapour phase epitaxy (HVPE) and the in situ removal of Si substrates. The stress generated in growing GaN can be tuned by varying the thickness of the MOCVD AlGaN/AlN buffer layers. Micro Raman analysis shows the presence of slight tensile stress in the freestanding GaN crystals and no stress accumulation in HVPE GaN layers during the growth. Additionally, it is demonstrated that the residual tensile stress in HVPE GaN is caused only by elastic stress arising from the crystal quality difference between Ga- and N-face GaN. TEM analysis revealed that the dislocations in freestanding GaN crystals have high inclination angles that are attributed to the stress relaxation of the crystals. We believe that the understanding and characterization on the structural properties of the freestanding GaN crystals will help us to use these crystals for high-performance opto-electronic devices.

  18. Seed layer effect on different properties and UV detection capability of hydrothermally grown ZnO nanorods over SiO2/p-Si substrate

    NASA Astrophysics Data System (ADS)

    Sannakashappanavar, Basavaraj S.; Byrareddy, C. R.; Kumar, Pesala Sudheer; Yadav, Aniruddh Bahadur

    2018-05-01

    Hydrothermally grown one dimensional ZnO nanostructures are among the most widely used semiconductor materials to build high-efficiency electronic devices for various applications. Few researchers have addressed the growth mechanism and effect of ZnO seed layer on different properties of ZnO nanorods grown by hydrothermal method, instead, no one has synthesized ZnO nanorod over SiO2/p-Si substrate. The aim of this study is to study the effect of ZnO seed layer and the growth mechanism of ZnO nanorods over SiO2/p-Si substrate. To achieve the goal, we have synthesized ZnO nanorods over different thickness ZnO seed layers by using the hydrothermal method on SiO2/p-Si substrate. The effects of c-plane area ratio were identified for the growth rate of c-plane, reaction rate constant and stagnant layer thickness also calculated by using a modified rate growth equation. We have identified maximum seed layer thickness for the growth of vertical ZnO nanorod. A step dislocation in the ZnO nanorods grown on 150and 200 nm thick seed layers was observed, the magnitude of Burges vector was calculated for this disorder. The seed layer and ZnO nanorods were characterized by AFM, XPS, UV-visible, XRD (X-ray diffraction, and SEM(scanning electron microscope). To justify the application of the grown ZnO nanorods Ti/Au was deposited over ZnO nanorods grown over all seed layers for the fabrication of photoconductor type UV detector.

  19. Plasma treatment of p-GaN/n-ZnO nanorod light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Leung, Yu Hang; Ng, Alan M. C.; Djurišic, Aleksandra B.; Chan, Wai Kin; Fong, Patrick W. K.; Lui, Hsien Fai; Surya, Charles

    2014-03-01

    Zinc oxide (ZnO) is a material of great interest for short-wavelength optoelectronic applications due to its wide band gap (3.37 eV) and high exciton binding energy (60 meV). Due to the difficulty in stable p-type doping of ZnO, other p-type materials such as gallium nitride (GaN) have been used to form heterojunctions with ZnO. p-GaN/n-ZnO heterojunction devices, in particular light-emitting diodes (LED) have been extensively studied. There was a huge variety of electronic properties and emission colors on the reported devices. It is due to the different energy alignment at the interface caused by different properties of the GaN layer and ZnO counterpart in the junction. Attempts have been made on modifying the heterojunction by various methods, such as introducing a dielectric interlayer and post-growth surface treatment, and changing the growth methods of ZnO. In this study, heterojunction LED devices with p-GaN and ZnO nanorods array are demonstrated. The ZnO nanorods were grown by a solution method. The ZnO nanorods were exposed to different kinds of plasma treatments (such as nitrogen and oxygen) after the growth. It was found that the treatment could cause significant change on the optical properties of the ZnO nanorods, as well as the electronic properties and light emissions of the resultant LED devices.

  20. Influence of growth temperature on laser molecular beam epitaxy and properties of GaN layers grown on c-plane sapphire

    NASA Astrophysics Data System (ADS)

    Dixit, Ripudaman; Tyagi, Prashant; Kushvaha, Sunil Singh; Chockalingam, Sreekumar; Yadav, Brajesh Singh; Sharma, Nita Dilawar; Kumar, M. Senthil

    2017-04-01

    We have investigated the influence of growth temperature on the in-plane strain, structural, optical and mechanical properties of heteroepitaxially grown GaN layers on sapphire (0001) substrate by laser molecular beam epitaxy (LMBE) technique in the temperature range 500-700 °C. The GaN epitaxial layers are found to have a large in-plane compressive stress of about 1 GPa for low growth temperatures but the strain drastically reduced in the layer grown at 700 °C. The nature of the in-plane strain has been analyzed using high resolution x-ray diffraction, atomic force microscopy (AFM), Raman spectroscopy and photoluminescence (PL) measurements. From AFM, a change in GaN growth mode from grain to island is observed at the high growth temperature above 600 °C. A blue shift of 20-30 meV in near band edge PL emission line has been noticed for the GaN layers containing the large in-plane strain. These observations indicate that the in-plane strain in the GaN layers is dominated by a biaxial strain. Using nanoindentation, it is found that the indentation hardness and Young's modulus of the GaN layers increases with increasing growth temperature. The results disclose the critical role of growth mode in determining the in-plane strain and mechanical properties of the GaN layers grown by LMBE technique.

  1. High quality self-separated GaN crystal grown on a novel nanoporous template by HVPE.

    PubMed

    Huo, Qin; Shao, Yongliang; Wu, Yongzhong; Zhang, Baoguo; Hu, Haixiao; Hao, Xiaopeng

    2018-02-16

    In this study, a novel nanoporous template was obtained by a two-step etching process from MOCVD-GaN/Al 2 O 3 (MGA) with electrochemical etching sequentially followed by chemical wet etching. The twice-etched MOCVD-GaN/Al 2 O 3 (TEMGA) templates were utilized to grow GaN crystals by hydride vapor phase epitaxy (HVPE) method. The GaN crystals were separated spontaneously from the TEMGA template with the assistance of voids formed by the etched nanopores. Several techniques were utilized to characterize the quality of the free-standing GaN crystals obtained from the TEMGA template. Results showed that the quality of the as-obtained GaN crystals was improved obviously compared with those grown on the MGA. This convenient technique can be applied to grow high-quality free-standing GaN crystals.

  2. Comparison of stress states in GaN films grown on different substrates: Langasite, sapphire and silicon

    NASA Astrophysics Data System (ADS)

    Park, Byung-Guon; Saravana Kumar, R.; Moon, Mee-Lim; Kim, Moon-Deock; Kang, Tae-Won; Yang, Woo-Chul; Kim, Song-Gang

    2015-09-01

    We demonstrate the evolution of GaN films on novel langasite (LGS) substrate by plasma-assisted molecular beam epitaxy, and assessed the quality of grown GaN film by comparing the experimental results obtained using LGS, sapphire and silicon (Si) substrates. To study the substrate effect, X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy and photoluminescence (PL) spectra were used to characterize the microstructure and stress states in GaN films. Wet etching of GaN films in KOH solution revealed that the films deposited on GaN/LGS, AlN/sapphire and AlN/Si substrates possess Ga-polarity, while the film deposited on GaN/sapphire possess N-polarity. XRD, Raman and PL analysis demonstrated that a compressive stress exist in the films grown on GaN/LGS, AlN/sapphire, and GaN/sapphire substrates, while a tensile stress appears on AlN/Si substrate. Comparative analysis showed the growth of nearly stress-free GaN films on LGS substrate due to the very small lattice mismatch ( 3.2%) and thermal expansion coefficient difference ( 7.5%). The results presented here will hopefully provide a new framework for the further development of high performance III-nitride-related devices using GaN/LGS heteroepitaxy.

  3. Post-annealing effect on optical absorbance of hydrothermally grown zinc oxide nanorods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohar, Rahmat Setiawan; Djuhana, Dede; Imawan, Cuk

    In this study, the optical absorbance of zinc oxide (ZnO) nanorods was investigated. The ZnO thin film were deposited on indium tin oxide (ITO) layers using ultrasonic spray pyrolysis (USP) method and then grown by hydrothermal method. In order to improve the optical absorbance, the ZnO nanorods were then post-annealed for one hour at three different of temperatures, namely 250, 400, and 500 °C. The X-ray diffraction (XRD) spectra and FESEM images show that the ZnO nanorods have the hexagonal wurtzite crystal structure and the increasing of post-annealing temperature resulted in the increasing of crystallite size from 38.2 nm to 48.4 nm.more » The UV-vis spectra shows that all samples of ZnO nanorods exhibited the identical sharp absorption edge at 390 nm indicating that all samples have the same bandgap. The post-annealing process seemed to decrease the optical absorbance in the region of 300-550 nm and increase the optical absorbance in the region of 550-700 nm..« less

  4. White emission from non-planar InGaN/GaN MQW LEDs grown on GaN template with truncated hexagonal pyramids.

    PubMed

    Lee, Ming-Lun; Yeh, Yu-Hsiang; Tu, Shang-Ju; Chen, P C; Lai, Wei-Chih; Sheu, Jinn-Kong

    2015-04-06

    Non-planar InGaN/GaN multiple quantum well (MQW) structures are grown on a GaN template with truncated hexagonal pyramids (THPs) featuring c-plane and r-plane surfaces. The THP array is formed by the regrowth of the GaN layer on a selective-area Si-implanted GaN template. Transmission electron microscopy shows that the InGaN/GaN epitaxial layers regrown on the THPs exhibit different growth rates and indium compositions of the InGaN layer between the c-plane and r-plane surfaces. Consequently, InGaN/GaN MQW light-emitting diodes grown on the GaN THP array emit multiple wavelengths approaching near white light.

  5. High Temperature Annealing of MBE-grown Mg-doped GaN

    NASA Astrophysics Data System (ADS)

    Contreras, S.; Konczewicz, L.; Peyre, H.; Juillaguet, S.; Khalfioui, M. Al; Matta, S.; Leroux, M.; Damilano, B.; Brault, J.

    2017-06-01

    In this report, are shown the results of high temperature resistivity and Hall Effect studies of Mg-doped GaN epilayers. The samples studied were grown on (0001) (c-plane) sapphire by molecular beam epitaxy and 0.5 μm GaN:Mg layers have been achieved on low temperature buffers of GaN (30 nm) and AlN ( 150 nm). The experiments were carried out in the temperature range from 300 K up to 900 K. Up to about 870 K a typical thermally activated conduction process has been observed with the activation energy value EA = 215 meV. However, for higher temperatures, an annealing effect is observed in all the investigated samples. The increase of the free carrier concentration as a function of time leads to an irreversible decrease of sample resistivity of more than 60%.

  6. Infrared Reflectance Analysis of Epitaxial n-Type Doped GaN Layers Grown on Sapphire.

    PubMed

    Tsykaniuk, Bogdan I; Nikolenko, Andrii S; Strelchuk, Viktor V; Naseka, Viktor M; Mazur, Yuriy I; Ware, Morgan E; DeCuir, Eric A; Sadovyi, Bogdan; Weyher, Jan L; Jakiela, Rafal; Salamo, Gregory J; Belyaev, Alexander E

    2017-12-01

    Infrared (IR) reflectance spectroscopy is applied to study Si-doped multilayer n + /n 0 /n + -GaN structure grown on GaN buffer with GaN-template/sapphire substrate. Analysis of the investigated structure by photo-etching, SEM, and SIMS methods showed the existence of the additional layer with the drastic difference in Si and O doping levels and located between the epitaxial GaN buffer and template. Simulation of the experimental reflectivity spectra was performed in a wide frequency range. It is shown that the modeling of IR reflectance spectrum using 2 × 2 transfer matrix method and including into analysis the additional layer make it possible to obtain the best fitting of the experimental spectrum, which follows in the evaluation of GaN layer thicknesses which are in good agreement with the SEM and SIMS data. Spectral dependence of plasmon-LO-phonon coupled modes for each GaN layer is obtained from the spectral dependence of dielectric of Si doping impurity, which is attributed to compensation effects by the acceptor states.

  7. GaN nanostructure design for optimal dislocation filtering

    NASA Astrophysics Data System (ADS)

    Liang, Zhiwen; Colby, Robert; Wildeson, Isaac H.; Ewoldt, David A.; Sands, Timothy D.; Stach, Eric A.; García, R. Edwin

    2010-10-01

    The effect of image forces in GaN pyramidal nanorod structures is investigated to develop dislocation-free light emitting diodes (LEDs). A model based on the eigenstrain method and nonlocal stress is developed to demonstrate that the pyramidal nanorod efficiently ejects dislocations out of the structure. Two possible regimes of filtering behavior are found: (1) cap-dominated and (2) base-dominated. The cap-dominated regime is shown to be the more effective filtering mechanism. Optimal ranges of fabrication parameters that favor a dislocation-free LED are predicted and corroborated by resorting to available experimental evidence. The filtering probability is summarized as a function of practical processing parameters: the nanorod radius and height. The results suggest an optimal nanorod geometry with a radius of ˜50b (26 nm) and a height of ˜125b (65 nm), in which b is the magnitude of the Burgers vector for the GaN system studied. A filtering probability of greater than 95% is predicted for the optimal geometry.

  8. Properties of GaN grown on sapphire substrates

    NASA Technical Reports Server (NTRS)

    Crouch, R. K.; Debnam, W. J.; Fripp, A. L.

    1978-01-01

    Epitaxial growth of GaN on sapphire substrates using an open-tube growth furnace has been carried out to study the effects of substrate orientation and transfer gas upon the properties of the layers. It has been found that for the (0001) substrates, surface appearance was virtually independent of carrier gas and of doping levels. For the (1(-1)02) substrates surface faceting was greatly reduced when He was used as a transfer gas as opposed to H2. Faceting was also reduced when the GaN was doped with Zn, and the best surfaces for the (1(-1)02) substrates were obtained in a Zn-doped run using He as the transfer gas. The best sample in terms of electrical properties for the (1(-1)02) substrate had a mobility greater than 400 sq cm/V per sec and a carrier concentration of about 10 to the 17th per cu cm. This sample was undoped and used He as the transfer gas. The best (0001) sample was also grown undoped with He as the transfer gas and had a mobility of 300 sq cm/V per sec and a carrier concentration of 1 x 10 to the 18th per cu cm.

  9. Phosphor-Free Apple-White LEDs with Embedded Indium-Rich Nanostructures Grown on Strain Relaxed Nano-epitaxy GaN.

    PubMed

    Soh, C B; Liu, W; Yong, A M; Chua, S J; Chow, S Y; Tripathy, S; Tan, R J N

    2010-08-01

    Phosphor-free apple-white light emitting diodes have been fabricated using a dual stacked InGaN/GaN multiple quantum wells comprising of a lower set of long wavelength emitting indium-rich nanostructures incorporated in multiple quantum wells with an upper set of cyan-green emitting multiple quantum wells. The light-emitting diodes were grown on nano-epitaxially lateral overgrown GaN template formed by regrowth of GaN over SiO(2) film patterned with an anodic aluminum oxide mask with holes of 125 nm diameter and a period of 250 nm. The growth of InGaN/GaN multiple quantum wells on these stress relaxed low defect density templates improves the internal quantum efficiency by 15% for the cyan-green multiple quantum wells. Higher emission intensity with redshift in the PL peak emission wavelength is obtained for the indium-rich nanostructures incorporated in multiple quantum wells. The quantum wells grown on the nano-epitaxially lateral overgrown GaN has a weaker piezoelectric field and hence shows a minimal peak shift with application of higher injection current. An enhancement of external quantum efficiency is achieved for the apple-white light emitting diodes grown on the nano-epitaxially lateral overgrown GaN template based on the light -output power measurement. The improvement in light extraction efficiency, η(extraction,) was found to be 34% for the cyan-green emission peak and 15% from the broad long wavelength emission with optimized lattice period.

  10. Phosphor-Free Apple-White LEDs with Embedded Indium-Rich Nanostructures Grown on Strain Relaxed Nano-epitaxy GaN

    NASA Astrophysics Data System (ADS)

    Soh, C. B.; Liu, W.; Yong, A. M.; Chua, S. J.; Chow, S. Y.; Tripathy, S.; Tan, R. J. N.

    2010-11-01

    Phosphor-free apple-white light emitting diodes have been fabricated using a dual stacked InGaN/GaN multiple quantum wells comprising of a lower set of long wavelength emitting indium-rich nanostructures incorporated in multiple quantum wells with an upper set of cyan-green emitting multiple quantum wells. The light-emitting diodes were grown on nano-epitaxially lateral overgrown GaN template formed by regrowth of GaN over SiO2 film patterned with an anodic aluminum oxide mask with holes of 125 nm diameter and a period of 250 nm. The growth of InGaN/GaN multiple quantum wells on these stress relaxed low defect density templates improves the internal quantum efficiency by 15% for the cyan-green multiple quantum wells. Higher emission intensity with redshift in the PL peak emission wavelength is obtained for the indium-rich nanostructures incorporated in multiple quantum wells. The quantum wells grown on the nano-epitaxially lateral overgrown GaN has a weaker piezoelectric field and hence shows a minimal peak shift with application of higher injection current. An enhancement of external quantum efficiency is achieved for the apple-white light emitting diodes grown on the nano-epitaxially lateral overgrown GaN template based on the light -output power measurement. The improvement in light extraction efficiency, ηextraction, was found to be 34% for the cyan-green emission peak and 15% from the broad long wavelength emission with optimized lattice period.

  11. Efficient Incorporation of Mg in Solution Grown GaN Crystals

    NASA Astrophysics Data System (ADS)

    Freitas, Jaime A., Jr.; Feigelson, Boris N.; Anderson, Travis J.

    2013-11-01

    Detailed spectrometry and optical spectroscopy studies carried out on GaN crystals grown in solution detect and identify Mg as the dominant shallow acceptor. Selective etching of crystals with higher Mg levels than that of the donor concentration background indicates that Mg acceptors incorporate preferentially in the N-polar face. Electrical transport measurements verified an efficient incorporation and activation of the Mg acceptors. These results suggest that this growth method has the potential to produce p-type doped epitaxial layers or p-type substrates characterized by high hole concentration and low defect density.

  12. High quality factor whispering gallery modes from self-assembled hexagonal GaN rods grown by metal-organic vapor phase epitaxy.

    PubMed

    Tessarek, C; Sarau, G; Kiometzis, M; Christiansen, S

    2013-02-11

    Self-assembled GaN rods were grown on sapphire by metal-organic vapor phase epitaxy using a simple two-step method that relies first on a nitridation step followed by GaN epitaxy. The mask-free rods formed without any additional catalyst. Most of the vertically aligned rods exhibit a regular hexagonal shape with sharp edges and smooth sidewall facets. Cathodo- and microphotoluminescence investigations were carried out on single GaN rods. Whispering gallery modes with quality factors greater than 4000 were measured demonstrating the high morphological and optical quality of the self-assembled GaN rods.

  13. Anisotropic structural and optical properties of semi-polar (11-22) GaN grown on m-plane sapphire using double AlN buffer layers.

    PubMed

    Zhao, Guijuan; Wang, Lianshan; Yang, Shaoyan; Li, Huijie; Wei, Hongyuan; Han, Dongyue; Wang, Zhanguo

    2016-02-10

    We report the anisotropic structural and optical properties of semi-polar (11-22) GaN grown on m-plane sapphire using a three-step growth method which consisted of a low temperature AlN buffer layer, followed by a high temperature AlN buffer layer and GaN growth. By introducing double AlN buffer layers, we substantially improve the crystal and optical qualities of semi-polar (11-22) GaN, and significantly reduce the density of stacking faults and dislocations. The high resolution x-ray diffraction measurement revealed that the in-plane anisotropic structural characteristics of GaN layer are azimuthal dependent. Transmission electron microscopy analysis showed that the majority of dislocations in the GaN epitaxial layer grown on m-sapphire are the mixed-type and the orientation of GaN layer was rotated 58.4° against the substrate. The room temperature photoluminescence (PL) spectra showed the PL intensity and wavelength have polarization dependence along parallel and perpendicular to the [1-100] axis (polarization degrees ~ 0.63). The realization of a high polarization semi-polar GaN would be useful to achieve III-nitride based lighting emission device for displays and backlighting.

  14. Resistivity control of unintentionally doped GaN films

    NASA Astrophysics Data System (ADS)

    Grzegorczyk, A. P.; Macht, L.; Hageman, P. R.; Rudzinski, M.; Larsen, P. K.

    2005-05-01

    GaN epilayers were grown on sapphire substrates via low temperature GaN and AlN nucleation layers (NL) by metalorganic chemical vapor phase epitaxy (MOCVD). The morphology of the individual NLs strongly depends on the carrier gas used during the growth and recrystallization and this is the key factor for control of the resistivity of the GaN layer grown on it. The GaN nucleation layer grown in presence of N2 has a higher density of islands with a statistically smaller diameter than the samples grown in H2 atmosphere. The NL grown in N2 enables the growth GaN with a sheet resistivity higher than 3×104 cm as opposed to a 0.5 cm value obtained for the NL grown in H2. Introduction of an additional intermediate (IL) low temperature (GaN or AlN) nucleation layer changes the GaN epilayer resistivity to about 50 cm, regardless of the carrier gas used during the growth of the IL. Defect selective etching demonstrated that control of the type and density of the dislocations in GaN enables the growth of highly resistive layers without any intentional acceptor doping (Mg, Zn). It will be demonstrated that by changing the ratio of edge type to screw dislocations the resistivity of the layer can be changed by a few orders of magnitude.

  15. Characterization of GaN nanowires grown on PSi, PZnO and PGaN on Si (111) substrates by thermal evaporation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shekari, Leila; Hassan, Haslan Abu; Thahab, Sabah M.

    2012-06-20

    In this research, we used an easy and inexpensive method to synthesize highly crystalline GaN nanowires (NWs); on different substrates such as porous silicon (PSi), porous zinc oxide (PZnO) and porous gallium nitride (PGaN) on Si (111) wafer by thermal evaporation using commercial GaN powder without any catalyst. Micro structural studies by scanning electron microscopy and transmission electron microscope measurements reveal the role of different substrates in the morphology, nucleation and alignment of the GaN nanowires. The degree of alignment of the synthesized nanowires does not depend on the lattice mismatch between wires and their substrates. Further structural and opticalmore » characterizations were performed using high resolution X-ray diffraction and energy-dispersive X-ray spectroscopy. Results indicate that the nanowires are of single-crystal hexagonal GaN. The quality and density of grown GaN nanowires for different substrates are highly dependent on the lattice mismatch between the nanowires and their substrates and also on the size of the porosity of the substrates. Nanowires grown on PGaN have the best quality and highest density as compared to nanowires on other substrates. By using three kinds of porous substrates, we are able to study the increase in the alignment and density of the nanowires.« less

  16. High nitrogen pressure solution growth of GaN

    NASA Astrophysics Data System (ADS)

    Bockowski, Michal

    2014-10-01

    Results of GaN growth from gallium solution under high nitrogen pressure are presented. Basic of the high nitrogen pressure solution (HNPS) growth method is described. A new approach of seeded growth, multi-feed seed (MFS) configuration, is demonstrated. The use of two kinds of seeds: free-standing hydride vapor phase epitaxy GaN (HVPE-GaN) obtained from metal organic chemical vapor deposition (MOCVD)-GaN/sapphire templates and free-standing HVPE-GaN obtained from the ammonothermally grown GaN crystals, is shown. Depending on the seeds’ structural quality, the differences in the structural properties of pressure grown material are demonstrated and analyzed. The role and influence of impurities, like oxygen and magnesium, on GaN crystals grown from gallium solution in the MFS configuration is presented. The properties of differently doped GaN crystals are discussed. An application of the pressure grown GaN crystals as substrates for electronic and optoelectronic devices is reported.

  17. Optical properties of C-doped bulk GaN wafers grown by halide vapor phase epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khromov, S.; Hemmingsson, C.; Monemar, B.

    2014-12-14

    Freestanding bulk C-doped GaN wafers grown by halide vapor phase epitaxy are studied by optical spectroscopy and electron microscopy. Significant changes of the near band gap (NBG) emission as well as an enhancement of yellow luminescence have been found with increasing C doping from 5 × 10{sup 16} cm{sup −3} to 6 × 10{sup 17} cm{sup −3}. Cathodoluminescence mapping reveals hexagonal domain structures (pits) with high oxygen concentrations formed during the growth. NBG emission within the pits even at high C concentration is dominated by a rather broad line at ∼3.47 eV typical for n-type GaN. In the area without pits,more » quenching of the donor bound exciton (DBE) spectrum at moderate C doping levels of 1–2 × 10{sup 17} cm{sup −3} is observed along with the appearance of two acceptor bound exciton lines typical for Mg-doped GaN. The DBE ionization due to local electric fields in compensated GaN may explain the transformation of the NBG emission.« less

  18. Broad visible emission from GaN nanowires grown on n-Si (1 1 1) substrate by PVD for solar cell application

    NASA Astrophysics Data System (ADS)

    Saron, K. M. A.; Hashim, M. R.

    2013-04-01

    Nanostructured gallium nitrides (GaNs) were grown on a catalyst-free Si (1 1 1) substrates using physical vapor deposition via thermal evaporation of GaN powder at 1150 °C in the absence of NH3 gas for different deposition time. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectrometer (EDX) results indicated that the growth of GaN nanostructure varies with deposition time. Both X-ray diffraction (XRD) patterns and Raman spectra reveals a hexagonal GaN with wurtzite structure. Photoluminescence (PL) showed that the UV emission was suppressed, and the visible band emission was enhanced with increasing deposition time. Enhancement of visible band emission from the GaN NWs is due to the increasement of deep level states, which was resulted from growth process. Current-voltage (IV) characteristics of GaN/Si heterostructure were measured and good rectifying behavior was observed for this photodiode (PD). The forward current under illumination was almost three times than that in the dark current at +5 V. Responsivity of the photodetector was 10.5 A/W at range from 350 nm to 500 nm, which rapidly increased to 13.6 A/W at 700 nm. We found that the fabricated photodiode PD has an infra-red (IR) photoresponse behavior. The analysis of optical and electrical properties indications that the grown GaN in the absent of NH3 is a promising optical material and has potential applications in photo voltage solar cell.

  19. Low temperature grown ZnO@TiO{sub 2} core shell nanorod arrays for dye sensitized solar cell application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goh, Gregory Kia Liang; Le, Hong Quang, E-mail: lehq@imre.a-star.edu.sg; Huang, Tang Jiao

    High aspect ratio ZnO nanorod arrays were synthesized on fluorine-doped tin oxide glasses via a low temperature solution method. By adjusting the growth condition and adding polyethylenimine, ZnO nanorod arrays with tunable length were successfully achieved. The ZnO@TiO{sub 2} core shells structures were realized by a fast growth method of immersion into a (NH{sub 4}){sub 2}·TiF{sub 6} solution. Transmission electron microscopy, X-ray Diffraction and energy dispersive X-ray measurements all confirmed the existence of a titania shell uniformly covering the ZnO nanorod's surface. Results of solar cell testing showed that addition of a TiO{sub 2} shell to the ZnO nanorod significantlymore » increased short circuit current (from 4.2 to 5.2 mA/cm{sup 2}), open circuit voltage (from 0.6 V to 0.8 V) and fill factor (from 42.8% to 73.02%). The overall cell efficiency jumped from 1.1% for bare ZnO nanorod to 3.03% for a ZnO@TiO{sub 2} core shell structured solar cell with a 18–22 nm shell thickness, a nearly threefold increase. - Graphical abstract: The synthesis process of coating TiO{sub 2} shell onto ZnO nanorod core is shown schematically. A thin, uniform, and conformal shell had been grown on the surface of the ZnO core after immersing in the (NH{sub 4}){sub 2}·TiF{sub 6} solution for 5–15 min. - Highlights: • ZnO@TiO{sub 2} core shell nanorod has been grown on FTO substrate using low temperature solution method. • TEM, XRD, EDX results confirmed the existing of titana shell, uniformly covered rod's surface. • TiO{sub 2} shell suppressed recombination, demonstrated significant enhancement in cell's efficiency. • Core shell DSSC's efficiency achieved as high as 3.03%, 3 times higher than that of ZnO nanorods.« less

  20. The Effect of Growth Environment on the Morphological and Extended Defect Evolution in GaN Grown by Metalorganic Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Fini, P.; Wu, X.; Tarsa, E.; Golan, Y.; Srikant, V.; Keller, S.; Denbaars, S.; Speck, J.

    1998-08-01

    The evolution of morphology and associated extended defects in GaN thin films grown on sapphire by metalorganic chemical vapor deposition (MOCVD) are shown to depend strongly on the growth environment. For the commonly used two-step growth process, a change in growth parameter such as reactor pressure influences the initial high temperature (HT) GaN growth mechanism. By means of transmission electron microscopy (TEM), atomic force microscopy (AFM), and high resolution X-ray diffraction (HRXRD) measurements, it is shown that the initial density of HT islands on the nucleation layer (NL) and subsequently the threading dislocation density in the HT GaN film may be directly controlled by tailoring the initial HT GaN growth conditions.

  1. Optical properties of InGaN grown by MOCVD on sapphire and on bulk GaN

    NASA Astrophysics Data System (ADS)

    Osinski, Marek; Eliseev, Petr G.; Lee, Jinhyun; Smagley, Vladimir A.; Sugahara, Tamoya; Sakai, Shiro

    1999-11-01

    Experimental data on photoluminescence of various bulk and quantum-well epitaxial InGaN/GaN structures grown by MOCVD are interpreted in terms of a band-tail model of inhomogeneously broadened radiative recombination. The anomalous temperature-induced blue spectral is shown to result from band-tail recombination under non-degenerate conditions. Significant differences are observed between epilayers grown on sapphire substrates and on GaN substrates prepared by the sublimination method, with no apparent evidence of band tails in homoepitaxial structures, indicating their higher crystalline quality.

  2. Impact of oxygen precursor flow on the forward bias behavior of MOCVD-Al2O3 dielectrics grown on GaN

    NASA Astrophysics Data System (ADS)

    Chan, Silvia H.; Bisi, Davide; Liu, Xiang; Yeluri, Ramya; Tahhan, Maher; Keller, Stacia; DenBaars, Steven P.; Meneghini, Matteo; Mishra, Umesh K.

    2017-11-01

    This paper investigates the effects of the oxygen precursor flow supplied during metalorganic chemical vapor deposition (MOCVD) of Al2O3 films on the forward bias behavior of Al2O3/GaN metal-oxide-semiconductor capacitors. The low oxygen flow (100 sccm) delivered during the in situ growth of Al2O3 on GaN resulted in films that exhibited a stable capacitance under forward stress, a lower density of stress-generated negative fixed charges, and a higher dielectric breakdown strength compared to Al2O3 films grown under high oxygen flow (480 sccm). The low oxygen grown Al2O3 dielectrics exhibited lower gate current transients in stress/recovery measurements, providing evidence of a reduced density of trap states near the GaN conduction band and an enhanced robustness under accumulated gate stress. This work reveals oxygen flow variance in MOCVD to be a strategy for controlling the dielectric properties and performance.

  3. Structural defects in GaN revealed by Transmission Electron Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liliental-Weber, Zuzanna

    This paper reviews the various types of structural defects observed by Transmission Electron Microscopy in GaN heteroepitaxial layers grown on foreign substrates and homoepitaxial layers grown on bulk GaN substrates. The structural perfection of these layers is compared to the platelet self-standing crystals grown by High Nitrogen Pressure Solution. Defects in undoped and Mg doped GaN are discussed. Lastly, some models explaining the formation of inversion domains in heavily Mg doped layers that are possible defects responsible for the difficulties of p-doping in GaN are also reviewed.

  4. Structural defects in GaN revealed by Transmission Electron Microscopy

    DOE PAGES

    Liliental-Weber, Zuzanna

    2014-09-08

    This paper reviews the various types of structural defects observed by Transmission Electron Microscopy in GaN heteroepitaxial layers grown on foreign substrates and homoepitaxial layers grown on bulk GaN substrates. The structural perfection of these layers is compared to the platelet self-standing crystals grown by High Nitrogen Pressure Solution. Defects in undoped and Mg doped GaN are discussed. Lastly, some models explaining the formation of inversion domains in heavily Mg doped layers that are possible defects responsible for the difficulties of p-doping in GaN are also reviewed.

  5. High-quality nonpolar a-plane GaN epitaxial films grown on r-plane sapphire substrates by the combination of pulsed laser deposition and metal–organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Yang, Weijia; Zhang, Zichen; Wang, Wenliang; Zheng, Yulin; Wang, Haiyan; Li, Guoqiang

    2018-05-01

    High-quality a-plane GaN epitaxial films have been grown on r-plane sapphire substrates by the combination of pulsed laser deposition (PLD) and metal–organic chemical vapor deposition (MOCVD). PLD is employed to epitaxial growth of a-plane GaN templates on r-plane sapphire substrates, and then MOCVD is used. The nonpolar a-plane GaN epitaxial films with relatively small thickness (2.9 µm) show high quality, with the full-width at half-maximum values of GaN(11\\bar{2}0) along [1\\bar{1}00] direction and GaN(10\\bar{1}1) of 0.11 and 0.30°, and a root-mean-square surface roughness of 1.7 nm. This result is equivalent to the quality of the films grown by MOCVD with a thickness of 10 µm. This work provides a new and effective approach for achieving high-quality nonpolar a-plane GaN epitaxial films on r-plane sapphire substrates.

  6. Structural and optical properties of ZnO nanorods on Mg0.2Zn0.8O seed layers grown by hydrothermal method.

    PubMed

    Kim, Min Su; Kim, Do Yeob; Kim, Sung-O; Leem, Jae-Young

    2013-05-01

    ZnO nanorods were grown on the Mg0.2Zn0.8O seed layers with different thickness by hydrothermal method. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and photoluminescence (PL) were carried out to investigate the effects of the Mg0.2Zn0.8O seed layer thickness on the structural and the optical properties of the ZnO nanorods. The residual stress in the Mg0.2Zn0.8O seed layers was depended on the thickness while the texture coefficient of the Mg0.2Zn0.8O seed layers was not affected significantly. The smaller full width at half maximum (FWHM) of the ZnO (002) diffraction and near-band-edge emission (NBE) peak and the larger average grain size were observed from the ZnO nanorods grown on the Mg0.2Zn0.8O seed layers with 5 layers (thickness of 350 nm), which indicate the enhancement the structural and the optical properties of the ZnO nanorods.

  7. Improvement in the luminous efficiency of MEH-PPV based light emitting diodes using zinc oxide nanorods grown by the electrochemical deposition technique on ITO substrates

    NASA Astrophysics Data System (ADS)

    Gupta, Rohini B.; Kumar, Jitender; Madhwal, Devinder; Singh, Inderpreet; Kaur, I.; Bhardwaj, L. M.; Nagpal, S.; Bhatnagar, P. K.; Mathur, P. C.

    2011-07-01

    Zinc oxide (ZnO) nanorods grown by the electrochemical technique have been used to enhance the luminance of poly[2-methoxy-5-(2'-ethylhexoxy)-1,4-phenylenevinylene] (MEH-PPV)-based polymer light-emitting diodes. The luminance of the device with ZnO nanorods is found to increase by more than two times as compared with the device without ZnO nanorods. The diameter of the nanorods used in device fabrication was ~145 nm. The size of the nanorods was estimated from field emission scanning electron microscope images. Optical and structural characterizations of the nanorods were also performed by using absorption, photoluminescence and x-ray diffraction, confirming the formation of ZnO nanorods.

  8. Microstructure of In x Ga1-x N nanorods grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Webster, R. F.; Soundararajah, Q. Y.; Griffiths, I. J.; Cherns, D.; Novikov, S. V.; Foxon, C. T.

    2015-11-01

    Transmission electron microscopy is used to examine the structure and composition of In x Ga1-x N nanorods grown by plasma-assisted molecular beam epitaxy. The results confirm a core-shell structure with an In-rich core and In-poor shell resulting from axial and lateral growth sectors respectively. Atomic resolution mapping by energy-dispersive x-ray microanalysis and high angle annular dark field imaging show that both the core and the shell are decomposed into Ga-rich and In-rich platelets parallel to their respective growth surfaces. It is argued that platelet formation occurs at the surfaces, through the lateral expansion of surface steps. Studies of nanorods with graded composition show that decomposition ceases for x ≥ 0.8 and the ratio of growth rates, shell:core, decreases with increasing In concentration.

  9. Characterization of 380nm UV-LEDs grown on free-standing GaN by atmospheric-pressure metal-organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Shieh, C. Y.; Li, Z. Y.; Kuo, H. C.; Chang, J. Y.; Chi, G. C.

    2014-03-01

    We reported the defects and optical characterizations of the ultraviolet light-emitting diodes grown on free-standing GaN substrate (FS-GaN) and sapphire. Cross-sectional transmission electron microscopy (TEM) images showed that the total defect densities of grown UV LEDs on FS-GaN and sapphire including edge, screw and mixed type were 3.6×106 cm-2 and 5.5×108 cm-2. When substrate of UV LEDs was changed from sapphire to FS-GaN, it can be clearly found that the crystallography of GaN epilayers was drastically different from that GaN epilayers on sapphire. Besides, the microstructures or indium clustering can be not observed at UV LEDs on FS-GaN from TEM measurement. The internal quantum efficiency of UVLEDs on FS-GaN and sapphire were 34.8 % and 39.4 % respectively, which attributed to indium clustering in multi-layers quantum wells (MQWs) of UV LEDs on sapphire. The relationship between indiumclustering and efficiency droop were investigated by temperature-dependent electroluminescence (TDEL) measurements.

  10. Microstructures of GaN1-xPx layers grown on (0001) GaN substrates by gas source molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Seong, Tae-Yeon; Bae, In-Tae; Choi, Chel-Jong; Noh, D. Y.; Zhao, Y.; Tu, C. W.

    1999-03-01

    Transmission electron microscope (TEM), transmission electron diffraction (TED), and synchrotron x-ray diffraction (XRD) studies have been performed to investigate microstructural behavior of gas source molecular beam epitaxial GaN1-xPx layers grown on (0001) GaN/sapphire at temperatures (Tg) in the range 500-760 °C. TEM, TED, and XRD results indicate that the samples grown at Tg⩽600 °C undergo phase separation resulting in a mixture of GaN-rich and GaP-rich GaNP with zinc-blende structure. However, the samples grown at Tg⩾730 °C are found to be binary zinc-blende GaN(P) single crystalline materials. As for the 500 °C layer, the two phases are randomly oriented and distributed, whereas the 600 °C layer consists of phases that are elongated and inclined by 60°-70° clockwise from the [0001]α-GaN direction. The samples grown at Tg⩾730 °C are found to consist of two types of microdomains, namely, GaN(P)I and GaN(P)II; the former having twin relation to the latter.

  11. Influence of substrates and rutile seed layers on the assembly of hydrothermally grown rutile TiO2 nanorod arrays

    NASA Astrophysics Data System (ADS)

    Kalb, Julian; Dorman, James A.; Folger, Alena; Gerigk, Melanie; Knittel, Vanessa; Plüisch, Claudia S.; Trepka, Bastian; Lehr, Daniela; Chua, Emily; Goodge, Berit H.; Wittemann, Alexander; Scheu, Christina; Polarz, Sebastian; Schmidt-Mende, Lukas

    2018-07-01

    Rutile TiO2 nanorod arrays (NRAs) are applicable in various prospective technologies. Hydrothermal methods present a simple technique to fabricate such NRAs. In this report, we present the fabrication of seed layers for the hydrothermal growth of rutile TiO2 nanorods via sputter deposition, electron-beam evaporation, and sol-gel method and study the influence of each on the growth behavior. To satisfy the requirements of numerous applications, p-type silicon, platinum, levitating carbon membranes, a template made of polystyrene spheres, and commercial fluorine tin oxide (FTO) were employed as substrates. We document the structural properties of the TiO2 seed layers and describe the relationship between the characteristics of the seed crystals, the growth evolution, and the appearance of as-grown nanorods. Various growth stages of rutile TiO2 nanorods are compared depending on whether they are grown on polycrystalline TiO2 or FTO seed layers. In both cases, a homogenous TiO2 bottom layer is formed at the seed layer/substrate interface, which is essential for electronic applications such as hybrid solar cells. Detached NRAs illustrate the effect of rutile FTO and TiO2 on the porosity of this bottom layer. Further details about the formation process of this layer are obtained from the growth on confined seed layers fabricated by electron-beam lithography.

  12. Near-ultraviolet micro-Raman study of diamond grown on GaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nazari, M., E-mail: m-n79@txstate.edu; Hancock, B. L.; Anderson, J.

    2016-01-18

    Ultraviolet (UV) micro-Raman measurements are reported of diamond grown on GaN using chemical vapor deposition. UV excitation permits simultaneous investigation of the diamond (D) and disordered carbon (DC) comprising the polycrystalline layer. From line scans of a cross-section along the diamond growth direction, the DC component of the diamond layer is found to be highest near the GaN-on-diamond interface and diminish with characteristic length scale of ∼3.5 μm. Transmission electron microscopy (TEM) of the diamond near the interface confirms the presence of DC. Combined micro-Raman and TEM are used to develop an optical method for estimating the DC volume fraction.

  13. GaN epitaxial layers grown on multilayer graphene by MOCVD

    NASA Astrophysics Data System (ADS)

    Li, Tianbao; Liu, Chenyang; Zhang, Zhe; Yu, Bin; Dong, Hailiang; Jia, Wei; Jia, Zhigang; Yu, Chunyan; Gan, Lin; Xu, Bingshe

    2018-04-01

    In this study, GaN epitaxial layers were successfully deposited on a multilayer graphene (MLG) by using metal-organic chemical vapor deposition (MOCVD). Highly crystalline orientations of the GaN films were confirmed through electron backscatter diffraction (EBSD). An epitaxial relationship between GaN films and MLG is unambiguously established by transmission electron microscope (TEM) analysis. The Raman spectra was used to analyze the internal stress of GaN films, and the spectrum shows residual tensile stress in the GaN films. Moreover, the results of the TEM analysis and Raman spectra indicate that the high quality of the MLG substrate is maintained even after the growth of the GaN film. This high-quality MLG makes it possible to easily remove epitaxial layers from the supporting substrate by micro-mechanical exfoliation technology. This work can aid in the development of transferable devices using GaN films.

  14. Probing defect states in polycrystalline GaN grown on Si(111) by sub-bandgap laser-excited scanning tunneling spectroscopy

    NASA Astrophysics Data System (ADS)

    Hsiao, F.-M.; Schnedler, M.; Portz, V.; Huang, Y.-C.; Huang, B.-C.; Shih, M.-C.; Chang, C.-W.; Tu, L.-W.; Eisele, H.; Dunin-Borkowski, R. E.; Ebert, Ph.; Chiu, Y.-P.

    2017-01-01

    We demonstrate the potential of sub-bandgap laser-excited cross-sectional scanning tunneling microscopy and spectroscopy to investigate the presence of defect states in semiconductors. The characterization method is illustrated on GaN layers grown on Si(111) substrates without intentional buffer layers. According to high-resolution transmission electron microscopy and cathodoluminescence spectroscopy, the GaN layers consist of nanoscale wurtzite and zincblende crystallites with varying crystal orientations and hence contain high defect state densities. In order to discriminate between band-to-band excitation and defect state excitations, we use sub-bandgap laser excitation. We probe a clear increase in the tunnel current at positive sample voltages during sub-bandgap laser illumination for the GaN layer with high defect density, but no effect is found for high quality GaN epitaxial layers. This demonstrates the excitation of free charge carriers at defect states. Thus, sub-bandgap laser-excited scanning tunneling spectroscopy is a powerful complimentary characterization tool for defect states.

  15. Electrically active point defects in Mg implanted n-type GaN grown by metal-organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Alfieri, G.; Sundaramoorthy, V. K.; Micheletto, R.

    2018-05-01

    Magnesium (Mg) is the p-type doping of choice for GaN, and selective area doping by ion implantation is a routine technique employed during device processing. While electrically active defects have been thoroughly studied in as-grown GaN, not much is known about defects generated by ion implantation. This is especially true for the case of Mg. In this study, we carried out an electrical characterization investigation of point defects generated by Mg implantation in GaN. We have found at least nine electrically active levels in the 0.2-1.2 eV energy range, below the conduction band. The isochronal annealing behavior of these levels showed that most of them are thermally stable up to 1000 °C. The nature of the detected defects is then discussed in the light of the results found in the literature.

  16. Elimination of macrostep-induced current flow nonuniformity in vertical GaN PN diode using carbon-free drift layer grown by hydride vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Fujikura, Hajime; Hayashi, Kentaro; Horikiri, Fumimasa; Narita, Yoshinobu; Konno, Taichiro; Yoshida, Takehiro; Ohta, Hiroshi; Mishima, Tomoyoshi

    2018-04-01

    In vertical GaN PN diodes (PNDs) grown entirely by metal–organic chemical vapor deposition (MOCVD), large current nonuniformity was observed. This nonuniformity was induced by macrosteps on the GaN surface through modulation of carbon incorporation into the n-GaN crystal. It was eliminated in a hybrid PND consisting of a carbon-free n-GaN layer grown by hydride vapor phase epitaxy (HVPE) and an MOCVD-regrown p-GaN layer. The hybrid PND showed a fairly low on-resistance (2 mΩ cm2) and high breakdown voltage (2 kV) even without a field plate electrode. These results clearly indicated the strong advantages of the HVPE-grown drift layer for improving power device performance, uniformity, and yield.

  17. Enhanced optical output power of InGaN/GaN light-emitting diodes grown on a silicon (111) substrate with a nanoporous GaN layer.

    PubMed

    Lee, Kwang Jae; Chun, Jaeyi; Kim, Sang-Jo; Oh, Semi; Ha, Chang-Soo; Park, Jung-Won; Lee, Seung-Jae; Song, Jae-Chul; Baek, Jong Hyeob; Park, Seong-Ju

    2016-03-07

    We report the growth of InGaN/GaN multiple quantum wells blue light-emitting diodes (LEDs) on a silicon (111) substrate with an embedded nanoporous (NP) GaN layer. The NP GaN layer is fabricated by electrochemical etching of n-type GaN on the silicon substrate. The crystalline quality of crack-free GaN grown on the NP GaN layer is remarkably improved and the residual tensile stress is also decreased. The optical output power is increased by 120% at an injection current of 20 mA compared with that of conventional LEDs without a NP GaN layer. The large enhancement of optical output power is attributed to the reduction of threading dislocation, effective scattering of light in the LED, and the suppression of light propagation into the silicon substrate by the NP GaN layer.

  18. Electrical contact of wurtzite GaN mircrodisks on p-type GaN template

    NASA Astrophysics Data System (ADS)

    Tsai, Cheng-Da; Lo, Ikai; Wang, Ying-Chieh; Hsu, Yu-Chi; Shih, Cheng-Hung; Pang, Wen-Yuan; You, Shuo-Ting; Hu, Chia-Hsuan; Chou, Mitch M. C.; Yang, Chen-Chi; Lin, Yu-Chiao

    2015-03-01

    We developed a back processing to fabricate a secure electrical contact of wurtzite GaN microdisk on a transparent p-type GaN template with the orientation, [10-10]disk // [10-10]template. GaN microdisks were grown on LiAlO2 substrate by using plasma-assisted molecular beam epitaxy. In the further study, we analyzed the TEM specimen of a sample with annealed GaN microdisk/p-typed GaN template by selection area diffraction (SAD) to confirm the alignment of the microdisks with the template at the interface. From the I-V measurements performed on the samples, we obtained a threshold voltage of ~ 5.9 V for the current passing through the GaN microdisks with a resistance of ~ 45 K Ω. The electrical contact can be applied to the nanometer-scaled GaN light-emitting diode.

  19. Ion channeling studies on mixed phases formed in metalorganic chemical vapor deposition grown Mg-doped GaN on Al2O3(0001)

    NASA Astrophysics Data System (ADS)

    Sundaravel, B.; Luo, E. Z.; Xu, J. B.; Wilson, I. H.; Fong, W. K.; Wang, L. S.; Surya, C.

    2000-01-01

    Rutherford backscattering spectrometry and ion channeling were used to determine the relative quantities of wurtzite and zinc-blende phases in metalorganic chemical vapor deposition grown Mg-doped GaN(0001) on an Al2O3(0001) substrate with a GaN buffer layer. Offnormal axial channeling scans were used. High-resolution x-ray diffraction measurements also confirmed the presence of mixed phases. The in-plane orientation was found to be GaN[11¯0]‖GaN[112¯0]‖Al2O3[112¯0]. The effects of rapid thermal annealing on the relative phase content, thickness and crystalline quality of the GaN epilayer were also studied.

  20. Improving optical performance of GaN nanowires grown by selective area growth homoepitaxy: Influence of substrate and nanowire dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aseev, P., E-mail: pavel.aseev@isom.upm.es, E-mail: gacevic@isom.upm.es; Gačević, Ž., E-mail: pavel.aseev@isom.upm.es, E-mail: gacevic@isom.upm.es; Calleja, E.

    2016-06-20

    Series of GaN nanowires (NW) with controlled diameters (160–500 nm) and heights (420–1100 nm) were homoepitaxially grown on three different templates: GaN/Si(111), GaN/AlN/Si(111), and GaN/sapphire(0001). Transmission electron microscopy reveals a strong influence of the NW diameter on dislocation filtering effect, whereas photoluminescence measurements further relate this effect to the GaN NWs near-bandgap emission efficiency. Although the templates' quality has some effects on the GaN NWs optical and structural properties, the NW diameter reduction drives the dislocation filtering effect to the point where a poor GaN template quality becomes negligible. Thus, by a proper optimization of the homoepitaxial GaN NWs growth, the propagationmore » of dislocations into the NWs can be greatly prevented, leading to an exceptional crystal quality and a total dominance of the near-bandgap emission over sub-bandgap, defect-related lines, such as basal stacking faults and so called unknown exciton (UX) emission. In addition, a correlation between the presence of polarity inversion domain boundaries and the UX emission lines around 3.45 eV is established.« less

  1. Defect reduction of SiNx embedded m-plane GaN grown by hydride vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Woo, Seohwi; Kim, Minho; So, Byeongchan; Yoo, Geunho; Jang, Jongjin; Lee, Kyuseung; Nam, Okhyun

    2014-12-01

    Nonpolar (1 0 -1 0) m-plane GaN has been grown on m-plane sapphire substrates by hydride vapor phase epitaxy (HVPE). We studied the defect reduction of m-GaN with embedded SiNx interlayers deposited by ex-situ metal organic chemical vapor deposition (MOCVD). The full-width at half-maximum values of the X-ray rocking curves for m-GaN with embedded SiNx along [1 1 -2 0]GaN and [0 0 0 1]GaN were reduced to 528 and 1427 arcs, respectively, as compared with the respective values of 947 and 3170 arcs, of m-GaN without SiNx. Cross-section transmission electron microscopy revealed that the basal stacking fault density was decreased by approximately one order to 5×104 cm-1 due to the defect blocking of the embedded SiNx. As a result, the near band edge emission intensities of the room-temperature and low-temperature photoluminescence showed approximately two-fold and four-fold improvement, respectively.

  2. Effect of precursors condition on the structural morphology of synthesized GaN

    NASA Astrophysics Data System (ADS)

    Muzammil, P.; Basha, S. Munawar; Muhammad, G. Shakil

    2018-05-01

    GaN nanostructures were synthesized using different mole concentration of precursor composing of gallium nitrate and PVP by sol-gel method. The structural analysis using X-ray diffraction shows the wurtzite form of GaN nanostructure, also it observed that the concentration of precursor play a vital role in structural quality as FWHM increase for higher concentration. From the SEM image it observed that for 0.25 and 0.5 M concentration the honey bee and nanorod structure were obtained. The micro-Raman analysis shows a strong E2H peak of GaN nanostructure.

  3. Growth and characterizations of various GaN nanostructures on C-plane sapphire using laser MBE

    NASA Astrophysics Data System (ADS)

    Ch., Ramesh; Tyagi, P.; Maurya, K. K.; Kumar, M. Senthil; Kushvaha, S. S.

    2017-05-01

    We have grown various GaN nanostructures such as three-dimensional islands, nanowalls and nanocolumns on c-plane sapphire substrates using laser assisted molecular beam epitaxy (LMBE) system. The shape of the GaN nanostructures was controlled by using different nucleation surfaces such as bare and nitridated sapphire with GaN or AlN buffer layers. The structural and surface morphological properties of grown GaN nanostructures were characterized by ex-situ high resolution x-ray diffraction, Raman spectroscopy and field emission scanning electron microscopy. The symmetric x-ray rocking curve along GaN (0002) plane shows that the GaN grown on pre-nitridated sapphire with GaN or AlN buffer layer possesses good crystalline quality compared to sapphire without nitridation. The Raman spectroscopy measurements revealed the wurtzite phase for all the GaN nanostructures grown on c-sapphire.

  4. Temperature dependent growth of GaN nanowires using CVD technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Mukesh, E-mail: mukeshjihrnp@gmail.com; Singh, R.; Kumar, Vikram

    2016-05-23

    Growth of GaN nanowires have been carried out on sapphire substrates with Au as a catalyst using chemical vapour deposition technique. GaN nanowires growth have been studied with the experimental parameter as growth temperature. Diameter of grown GaN nanowires are in the range of 50 nm to 100 nm while the nanowire length depends on growth temperature. Morphology of the GaN nanowires have been studied by scanning electron microscopy. Crystalline nature has been observed by XRD patterns. Optical properties of grown GaN nanowires have been investigated by photoluminescence spectra.

  5. Nanoair-bridged lateral overgrowth of GaN on ordered nanoporous GaN template

    NASA Astrophysics Data System (ADS)

    Wang, Y. D.; Zang, K. Y.; Chua, S. J.; Tripathy, S.; Chen, P.; Fonstad, C. G.

    2005-12-01

    We report the growth of high-quality GaN epilayers on an ordered nanoporous GaN template by metalorganic chemical vapor deposition. The nanopores in GaN template were created by inductively coupled plasma etching using anodic aluminum oxide film as an etch mask. The average pore diameter and interpore distance is about 65 and 110nm, respectively. Subsequent overgrowth of GaN first begins at the GaN crystallite surface between the pores, and then air-bridge-mediated lateral overgrowth leads to the formation of the continuous layer. Microphotoluminescence and micro-Raman measurements show improved optical properties and significant strain relaxation in the overgrown layer when compared to GaN layer of same thickness simultaneously grown on sapphire without any template. Similar to conventional epitaxial lateral overgrown GaN, such overgrown GaN on a nanopatterned surface would also serve as a template for the growth of ultraviolet-visible light-emitting III-nitride devices.

  6. Structural and optical studies of GaN pn-junction with AlN buffer layer grown on Si (111) by RF plasma enhanced MBE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yusoff, Mohd Zaki Mohd; Hassan, Zainuriah; Woei, Chin Che

    2012-06-29

    GaN pn-junction grown on silicon substrates have been the focus in a number of recent reports and further effort is still necessary to improve its crystalline quality for practical applications. GaN has the high n-type background carrier concentration resulting from native defects commonly thought to be nitrogen vacancies. In this work, we present the growth of pn-junction of GaN on Si (111) substrate using RF plasma-enhanced molecular beam epitaxy (MBE). Both of the layers show uniformity with an average thickness of 0.709 {mu}m and 0.095 {mu}m for GaN and AlN layers, respectively. The XRD spectra indicate that no sign ofmore » cubic phase of GaN are found, so it is confirmed that the sample possessed hexagonal structure. It was found that all the allowed Raman optical phonon modes of GaN, i.e. the E2 (low), E1 (high) and A1 (LO) are clearly visible.« less

  7. Influence of stress in GaN crystals grown by HVPE on MOCVD-GaN/6H-SiC substrate

    PubMed Central

    Zhang, Lei; Yu, Jiaoxian; Hao, Xiaopeng; Wu, Yongzhong; Dai, Yuanbin; Shao, Yongliang; Zhang, Haodong; Tian, Yuan

    2014-01-01

    GaN crystals without cracks were successfully grown on a MOCVD-GaN/6H-SiC (MGS) substrate with a low V/III ratio of 20 at initial growth. With a high V/III ratio of 80 at initial growth, opaque GaN polycrystals were obtained. The structural analysis and optical characterization reveal that stress has a great influence on the growth of the epitaxial films. An atomic level model is used to explain these phenomena during crystal growth. It is found that atomic mobility is retarded by compressive stress and enhanced by tensile stress. PMID:24569601

  8. Optical properties of Mg doped p-type GaN nanowires

    NASA Astrophysics Data System (ADS)

    Patsha, Avinash; Pandian, Ramanathaswamy; Dhara, S.; Tyagi, A. K.

    2015-06-01

    Mg doped p-type GaN nanowires are grown using chemical vapor deposition technique in vapor-liquid-solid (VLS) process. Morphological and structural studies confirm the VLS growth process of nanowires and wurtzite phase of GaN. We report the optical properties of Mg doped p-type GaN nanowires. Low temperature photoluminescence studies on as-grown and post-growth annealed samples reveal the successful incorporation of Mg dopants. The as-grwon and annealed samples show passivation and activation of Mg dopants, respectively, in GaN nanowires.

  9. Microstructure and Optical Properties of Nonpolar m-Plane GaN Films Grown on m-Plane Sapphire by Hydride Vapor Phase Epitaxy

    NASA Astrophysics Data System (ADS)

    Wei, Tongbo; Duan, Ruifei; Wang, Junxi; Li, Jinmin; Huo, Ziqiang; Yang, Jiankun; Zeng, Yiping

    2008-05-01

    Thick nonpolar (1010) GaN layers were grown on m-plane sapphire substrates by hydride vapor phase epitaxy (HVPE) using magnetron sputtered ZnO buffers, while semipolar (1013) GaN layers were obtained by the conventional two-step growth method using the same substrate. The in-plane anisotropic structural characteristics and stress distribution of the epilayers were revealed by high resolution X-ray diffraction and polarized Raman scattering measurements. Atomic force microscopy (AFM) images revealed that the striated surface morphologies correlated with the basal plane stacking faults for both (1010) and (1013) GaN films. The m-plane GaN surface showed many triangular-shaped pits aligning uniformly with the tips pointing to the c-axis after etching in boiled KOH, whereas the oblique hillocks appeared on the semipolar epilayers. In addition, the dominant emission at 3.42 eV in m-plane GaN films displayed a red shift with respect to that in semipolar epilayers, maybe owing to the different strain states present in the two epitaxial layers.

  10. Growth rate independence of Mg doping in GaN grown by plasma-assisted MBE

    NASA Astrophysics Data System (ADS)

    Turski, Henryk; Muzioł, Grzegorz; Siekacz, Marcin; Wolny, Pawel; Szkudlarek, Krzesimir; Feduniewicz-Żmuda, Anna; Dybko, Krzysztof; Skierbiszewski, Czeslaw

    2018-01-01

    Doping of Ga(Al)N layers by plasma-assisted molecular beam epitaxy in Ga-rich conditions on c-plane bulk GaN substrates was studied. Ga(Al)N samples, doped with Mg or Si, grown using different growth conditions were compared. In contrast to Si doped layers, no change in the Mg concentration was observed for layers grown using different growth rates for a constant Mg flux and constant growth temperature. This effect enables the growth of Ga(Al)N:Mg layers at higher growth rates, leading to shorter growth time and lower residual background doping, without the need of increasing Mg flux. Enhancement of Mg incorporation for Al containing layers was also observed. Change of Al content from 0% to 17% resulted in more than two times higher Mg concentration.

  11. Local electronic and optical behaviors of a-plane GaN grown via epitaxial lateral overgrowth

    NASA Astrophysics Data System (ADS)

    Moore, J. C.; Kasliwal, V.; Baski, A. A.; Ni, X.; Özgür, Ü.; Morkoç, H.

    2007-01-01

    Conductive atomic force microscopy and near-field optical microscopy (NSOM) were used to study the morphology, conduction, and optical properties of a-plane GaN films grown via epitaxial lateral overgrowth (ELO) by metal organic chemical vapor deposition. The AFM images for the coalesced ELO films show undulations, where the window regions appear as depressions with a high density of surface pits. At reverse bias below 12V, very low uniform conduction (2pA) is seen in the window regions. Above 20V, a lower-quality sample shows localized sites inside the window regions with significant leakage, indicating a correlation between the presence of surface pits and leakage sites. Room temperature NSOM studies explicitly showed enhanced optical quality in the wing regions of the overgrown GaN due to a reduced density of dislocations, with the wings and the windows clearly discernible from near-field photoluminescence mapping.

  12. Carrier concentration dependence of donor activation energy in n-type GaN epilayers grown on Si (1 1 1) by plasma-assisted MBE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Mahesh; Central Research Laboratory, Bharat Electronics, Bangalore 560 013; Bhat, Thirumaleshwara N.

    Highlights: ► The n-type GaN layers were grown by plasma-assisted molecular beam epitaxy. ► The optical characteristics of a donor level in Si-doped GaN were studied. ► Activation energy of a Si-related donor was estimated from temperature dependent PL measurements. ► PL peak positions, FWHM of PL and activation energies are found to be proportional to the cube root of carrier density. ► The involvement of donor levels is supported by the temperature-dependent electron concentration measurements. -- Abstract: The n-type GaN layers were grown by plasma-assisted MBE and either intentionally doped with Si or unintentionally doped. The optical characteristics ofmore » a donor level in Si-doped, GaN were studied in terms of photoluminescence (PL) spectroscopy as a function of electron concentration. Temperature dependent PL measurements allowed us to estimate the activation energy of a Si-related donor from temperature-induced decay of PL intensity. PL peak positions, full width at half maximum of PL and activation energies are found to be proportional to the cube root of carrier density. The involvement of donor levels is supported by the temperature-dependent electron concentration measurements.« less

  13. Characterization of an Mg-implanted GaN p-i-n Diode

    DTIC Science & Technology

    2016-03-31

    unintentionally doped GaN layer was grown by metal organic chemical vapor deposition (MOCVD) on a n+ Ga -face c-oriented GaN substrate. The as-grown MOCVD film...their proper lattice sites. In the case of Mg implanted GaN , the Mg must replace Ga to result in p-type material. In many other semiconductor...Characterization of an Mg-implanted GaN p-i-n Diode Travis J. Anderson, Jordan D. Greenlee, Boris N. Feigelson, Karl D. Hobart, and Francis J

  14. Correlation between mobility collapse and carbon impurities in Si-doped GaN grown by low pressure metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Kaess, Felix; Mita, Seiji; Xie, Jingqiao; Reddy, Pramod; Klump, Andrew; Hernandez-Balderrama, Luis H.; Washiyama, Shun; Franke, Alexander; Kirste, Ronny; Hoffmann, Axel; Collazo, Ramón; Sitar, Zlatko

    2016-09-01

    In the low doping range below 1 × 1017 cm-3, carbon was identified as the main defect attributing to the sudden reduction of the electron mobility, the electron mobility collapse, in n-type GaN grown by low pressure metalorganic chemical vapor deposition. Secondary ion mass spectroscopy has been performed in conjunction with C concentration and the thermodynamic Ga supersaturation model. By controlling the ammonia flow rate, the input partial pressure of Ga precursor, and the diluent gas within the Ga supersaturation model, the C concentration in Si-doped GaN was controllable from 6 × 1019 cm-3 to values as low as 2 × 1015 cm-3. It was found that the electron mobility collapsed as a function of free carrier concentration, once the Si concentration closely approached the C concentration. Lowering the C concentration to the order of 1015 cm-3 by optimizing Ga supersaturation achieved controllable free carrier concentrations down to 5 × 1015 cm-3 with a peak electron mobility of 820 cm2/V s without observing the mobility collapse. The highest electron mobility of 1170 cm2/V s was obtained even in metalorganic vapor deposition-grown GaN on sapphire substrates by optimizing growth parameters in terms of Ga supersaturation to reduce the C concentration.

  15. Surface potential driven dissolution phenomena of [0 0 0 1]-oriented ZnO nanorods grown from ZnO and Pt seed layers

    NASA Astrophysics Data System (ADS)

    Seo, Youngmi; Kim, Jung Hyeun

    2011-06-01

    Highly oriented ZnO nanorods are synthesized hydrothermally on ZnO and Pt seed layers, and they are dissolved in KOH solution. The rods grown on ZnO seed layer show uniform dissolution, but those grown on Pt seed layer are rod-selectively dissolved. The ZnO nanorods from both seed layers show the same crystalline structure through XRD and Raman spectrometer data. However, the surface potential analysis reveals big difference for ZnO and Pt seed cases. The surface potential distribution is very uniform for the ZnO seed case, but it is much fluctuated on the Pt seed case. It suggests that the rod-selective dissolution phenomena on Pt seed case are likely due to the surface energy difference.

  16. Strain-free bulk-like GaN grown by hydride-vapor-phase-epitaxy on two-step epitaxial lateral overgrown GaN template

    NASA Astrophysics Data System (ADS)

    Gogova, D.; Kasic, A.; Larsson, H.; Hemmingsson, C.; Monemar, B.; Tuomisto, F.; Saarinen, K.; Dobos, L.; Pécz, B.; Gibart, P.; Beaumont, B.

    2004-07-01

    Crack-free bulk-like GaN with high crystalline quality has been obtained by hydride-vapor-phase-epitaxy (HVPE) growth on a two-step epitaxial lateral overgrown GaN template on sapphire. During the cooling down stage, the as-grown 270-μm-thick GaN layer was self-separated from the sapphire substrate. Plan-view transmission electron microscopy images show the dislocation density of the free-standing HVPE-GaN to be ˜2.5×107 cm-2 on the Ga-polar face. A low Ga vacancy related defect concentration of about 8×1015 cm-3 is extracted from positron annihilation spectroscopy data. The residual stress and the crystalline quality of the material are studied by two complementary techniques. Low-temperature photoluminescence spectra show the main neutral donor bound exciton line to be composed of a doublet structure at 3.4715 (3.4712) eV and 3.4721 (3.4718) eV for the Ga- (N-) polar face with the higher-energy component dominating. These line positions suggest virtually strain-free material on both surfaces with high crystalline quality as indicated by the small full width at half maximum values of the donor bound exciton lines. The E1(TO) phonon mode position measured at 558.52 cm-1 (Ga face) by infrared spectroscopic ellipsometry confirms the small residual stress in the material, which is hence well suited to act as a lattice-constant and thermal-expansion-coefficient matched substrate for further homoepitaxy, as needed for high-quality III-nitride device applications.

  17. Substrate misorientation induced strong increase in the hole concentration in Mg doped GaN grown by metalorganic vapor phase epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suski, T.; Litwin-Staszewska, E.; Piotrzkowski, R.

    We demonstrate that relatively small GaN substrate misorientation can strongly change hole carrier concentration in Mg doped GaN layers grown by metalorganic vapor phase epitaxy. In this work intentionally misoriented GaN substrates (up to 2 deg. with respect to ideal <0001> plane) were employed. An increase in the hole carrier concentration to the level above 10{sup 18} cm{sup -3} and a decrease in GaN:Mg resistivity below 1 {omega} cm were achieved. Using secondary ion mass spectroscopy we found that Mg incorporation does not change with varying misorientation angle. This finding suggests that the compensation rate, i.e., a decrease in unintentionalmore » donor density, is responsible for the observed increase in the hole concentration. Analysis of the temperature dependence of electrical transport confirms this interpretation.« less

  18. Study on GaN nanostructures: Growth and the suppression of the yellow emission

    NASA Astrophysics Data System (ADS)

    Wang, Ting; Chen, Fei; Ji, Xiaohong; Zhang, Qinyuan

    2018-07-01

    GaN nanostructures were synthesized via a simple chemical vapor deposition using Ga2O3 and NH3 as precursors. Structural and morphological properties were systematically characterized by field emission scanning electron microscopy, X-ray diffractometer, transmission electron microscopy, and Raman spectroscopy. The configuration of GaN nanostructures was found to be strongly dependent on the growth temperature and the NH3 flow rate. Photoluminescence analysis revealed that all the fabricated GaN NSs exhibited a strong ultra-violet emission (∼364 nm), and the yellow emission of GaN nanorods can be suppressed at appropriate III/V ratio. The suppression of the yellow emission was attributed to the low density of surface or the VGa defect. The work demonstrates that the GaN nanostructures have potential applications in the optoelectronic and nanoelectronic devices.

  19. Vacancy-type defects in Mg-doped GaN grown by ammonia-based molecular beam epitaxy probed using a monoenergetic positron beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uedono, Akira; Malinverni, Marco; Martin, Denis

    Vacancy-type defects in Mg-doped GaN were probed using a monoenergetic positron beam. GaN films with a thickness of 0.5–0.7 μm were grown on GaN/sapphire templates using ammonia-based molecular beam epitaxy and characterized by measuring Doppler broadening spectra. Although no vacancies were detected in samples with a Mg concentration [Mg] below 7 × 10{sup 19 }cm{sup −3}, vacancy-type defects were introduced starting at above [Mg] = 1 × 10{sup 20 }cm{sup −3}. The major defect species was identified as a complex between Ga vacancy (V{sub Ga}) and multiple nitrogen vacancies (V{sub N}s). The introduction of vacancy complexes was found to correlate with a decreasemore » in the net acceptor concentration, suggesting that the defect introduction is closely related to the carrier compensation. We also investigated Mg-doped GaN layers grown using In as the surfactant. The formation of vacancy complexes was suppressed in the subsurface region (≤80 nm). The observed depth distribution of defects was attributed to the thermal instability of the defects, which resulted in the introduction of vacancy complexes during the deposition process.« less

  20. Optical spectroscopy of bulk GaN crystals grown from a Na-Ga melt

    NASA Astrophysics Data System (ADS)

    Skromme, B. J.; Palle, K. C.; Poweleit, C. D.; Yamane, H.; Aoki, M.; DiSalvo, F. J.

    2002-11-01

    Colorless transparent platelet and prismatic GaN crystals up to 3-4 mm, grown from a Na-Ga melt (0.6-0.7 mol fraction of Na) at temperatures of 700-800 °C in a modest (5 MPa) pressure of N2, are characterized using Raman scattering, room and low temperature photoluminescence, and reflectance. They exhibit sharp free and bound exciton luminescence features (down to 0.22 meV full width at half maximum), including multiple excited states. Residual Mg and Zn acceptors and a 33.6 meV donor (possibly ON) are identified. Raman spectra suggest free carrier concentrations down to the low to mid 1016 cm-3 range.

  1. Characterization of nonpolar a-plane GaN epi-layers grown on high-density patterned r-plane sapphire substrates

    NASA Astrophysics Data System (ADS)

    Jinno, Daiki; Otsuki, Shunya; Sugimori, Shogo; Daicho, Hisayoshi; Iwaya, Motoaki; Takeuchi, Tetsuya; Kamiyama, Satoshi; Akasaki, Isamu

    2018-02-01

    To reduce the number of threading dislocations (TDs) in nonpolar a-plane GaN (a-GaN) epi-layers grown on flat r-plane sapphire substrates (r-FSS), we investigated the effects on the crystalline quality of the a-GaN epi-layers of high-density patterned r-plane sapphire substrates (r-HPSS), the patterns of which were placed at intervals of several hundred nanometers. Two types of r-HPSS, the patterns of which had diameters and heights on the order of several hundred nanometers (r-NHPSS) or several micrometers (r-MHPSS), were prepared with conventional r-FSS. The effect of these r-HPSS on the a-GaN epi-layers was demonstrated by evaluating the surface morphology and the crystalline quality of the epi-layers. The surfaces of the a-GaN epi-layer grown on r-FSS and r-NHPSS were pit-free and mirror-like, whereas the surface of the a-GaN epi-layer grown on r-MHPSS was very rough due to the large, irregular GaN islands that grew on the patterns, mainly at the initial growth stage. The crystalline quality of the a-GaN epi-layer grown on r-NHPSS was better than that of the a-GaN epi-layer grown on r-FSS. We confirmed that there were fewer TDs in the a-GaN epi-layer grown on r-NHPSS than there were in the a-GaN epi-layer grown on r-FSS. The TDs propagating to the surface in a-GaN epi-layer grown on r-NHPSS were mainly generated on the flat sapphire regions between the patterns. Interestingly, it was also found that the TDs that propagated to the surface concentrated with a periodic pitch along the c-axis direction. The TD densities of a-GaN epi-layers grown on r-FSS and r-NHPSS were estimated to be approximately 5.0 × 1010 and 1.5 × 109 cm-2, respectively. This knowledge will contribute to the further development of a-GaN epi-layers for high-performance devices.

  2. High-quality GaN epitaxially grown on Si substrate with serpentine channels

    NASA Astrophysics Data System (ADS)

    Wei, Tiantian; Zong, Hua; Jiang, Shengxiang; Yang, Yue; Liao, Hui; Xie, Yahong; Wang, Wenjie; Li, Junze; Tang, Jun; Hu, Xiaodong

    2018-06-01

    A novel serpentine-channeled mask was introduced to Si substrate for low-dislocation GaN epitaxial growth and the fully coalesced GaN film on the masked Si substrate was achieved for the first time. Compared with the epitaxial lateral overgrowth (ELOG) growth method, this innovative mask only requires one-step epitaxial growth of GaN which has only one high-dislocation region per mask opening. This new growth method can effectively reduce dislocation density, thus improving the quality of GaN significantly. High-quality GaN with low dislocation density ∼2.4 × 107 cm-2 was obtained, which accounted for about eighty percent of the GaN film in area. This innovative technique is promising for the growth of high-quality GaN templates and the subsequent fabrication of high-performance GaN-based devices like transistors, laser diodes (LDs), and light-emitting diodes (LEDs) on Si substrate.

  3. The nature of catalyst particles and growth mechanisms of GaN nanowires grown by Ni-assisted metal-organic chemical vapor deposition.

    PubMed

    Weng, Xiaojun; Burke, Robert A; Redwing, Joan M

    2009-02-25

    The structure and chemistry of the catalyst particles that terminate GaN nanowires grown by Ni-assisted metal-organic chemical vapor deposition were investigated using a combination of electron diffraction, high-resolution transmission electron microscopy, and x-ray energy dispersive spectrometry. The crystal symmetry, lattice parameter, and chemical composition obtained reveal that the catalyst particles are Ni(3)Ga with an ordered L 1(2) structure. The results suggest that the catalyst is a solid particle during growth and therefore favor a vapor-solid-solid mechanism for the growth of GaN nanowires under these conditions.

  4. Influence of different aspect ratios on the structural and electrical properties of GaN thin films grown on nanoscale-patterned sapphire substrates

    NASA Astrophysics Data System (ADS)

    Lee, Fang-Wei; Ke, Wen-Cheng; Cheng, Chun-Hong; Liao, Bo-Wei; Chen, Wei-Kuo

    2016-07-01

    This study presents GaN thin films grown on nanoscale-patterned sapphire substrates (NPSSs) with different aspect ratios (ARs) using a homemade metal-organic chemical vapor deposition system. The anodic aluminum oxide (AAO) technique is used to prepare the dry etching mask. The cross-sectional view of the scanning electron microscope image shows that voids exist between the interface of the GaN thin film and the high-AR (i.e. ∼2) NPSS. In contrast, patterns on the low-AR (∼0.7) NPSS are filled full of GaN. The formation of voids on the high-AR NPSS is believed to be due to the enhancement of the lateral growth in the initial growth stage, and the quick-merging GaN thin film blocks the precursors from continuing to supply the bottom of the pattern. The atomic force microscopy images of GaN on bare sapphire show a layer-by-layer surface morphology, which becomes a step-flow surface morphology for GaN on a high-AR NPSS. The edge-type threading dislocation density can be reduced from 7.1 × 108 cm-2 for GaN on bare sapphire to 4.9 × 108 cm-2 for GaN on a high-AR NPSS. In addition, the carrier mobility increases from 85 cm2/Vs for GaN on bare sapphire to 199 cm2/Vs for GaN on a high-AR NPSS. However, the increased screw-type threading dislocation density for GaN on a low-AR NPSS is due to the competition of lateral growth on the flat-top patterns and vertical growth on the bottom of the patterns that causes the material quality of the GaN thin film to degenerate. Thus, the experimental results indicate that the AR of the particular patterning of a NPSS plays a crucial role in achieving GaN thin film with a high crystalline quality.

  5. Kinetics of self-induced nucleation and optical properties of GaN nanowires grown by plasma-assisted molecular beam epitaxy on amorphous Al{sub x}O{sub y}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobanska, M., E-mail: sobanska@ifpan.edu.pl; Zytkiewicz, Z. R.; Klosek, K.

    Nucleation kinetics of GaN nanowires (NWs) by molecular beam epitaxy on amorphous Al{sub x}O{sub y} buffers deposited at low temperature by atomic layer deposition is analyzed. We found that the growth processes on a-Al{sub x}O{sub y} are very similar to those observed on standard Si(111) substrates, although the presence of the buffer significantly enhances nucleation rate of GaN NWs, which we attribute to a microstructure of the buffer. The nucleation rate was studied vs. the growth temperature in the range of 720–790 °C, which allowed determination of nucleation energy of the NWs on a-Al{sub x}O{sub y} equal to 6 eV. Thismore » value is smaller than 10.2 eV we found under the same conditions on nitridized Si(111) substrates. Optical properties of GaN NWs on a-Al{sub x}O{sub y} are analyzed as a function of the growth temperature and compared with those on Si(111) substrates. A significant increase of photoluminescence intensity and much longer PL decay times, close to those on silicon substrates, are found for NWs grown at the highest temperature proving their high quality. The samples grown at high temperature have very narrow PL lines. This allowed observation that positions of donor-bound exciton PL line in the NWs grown on a-Al{sub x}O{sub y} are regularly lower than in samples grown directly on silicon suggesting that oxygen, instead of silicon, is the dominant donor. Moreover, PL spectra suggest that total concentration of donors in GaN NWs grown on a-Al{sub x}O{sub y} is lower than in those grown under similar conditions on bare Si. This shows that the a-Al{sub x}O{sub y} buffer efficiently acts as a barrier preventing uptake of silicon from the substrate to GaN.« less

  6. Structural and electrical properties of Pb(Zr ,Ti)O3 grown on (0001) GaN using a double PbTiO3/PbO bridge layer

    NASA Astrophysics Data System (ADS)

    Xiao, Bo; Gu, Xing; Izyumskaya, Natalia; Avrutin, Vitaliy; Xie, Jinqiao; Liu, Huiyong; Morkoç, Hadis

    2007-10-01

    Pb(Zr0.52Ti0.48)O3 films were deposited by rf magnetron sputtering on silicon-doped GaN(0001)/c-sapphire with a PbTiO3/PbO oxide bridge layer grown by molecular beam epitaxy. X-ray diffraction data showed the highly (111)-oriented perovskite phase in lead zirconate titanate (PZT) films with PbTiO3/PbO bridge layers, compared to the pyrochlore phase grown directly on GaN. The in-plane epitaxial relationships were found from x-ray pole figures to be PZT[112¯]‖GaN[11¯00] and PZT[11¯0]‖GaN[112¯0]. The polarization-electric field measurements revealed the ferroelectric behavior with remanent polarization of 30-40μC /cm2 and asymmetric hysteresis loops due to the depletion layer formed in GaN under reverse bias which resulted in a high negative coercive electric field (950kV/cm).

  7. Dislocations limited electronic transport in hydride vapour phase epitaxy grown GaN templates: A word of caution for the epitaxial growers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, Abhishek, E-mail: cabhishek@rrcat.gov.in; Khamari, Shailesh K.; Kumar, R.

    2015-01-12

    GaN templates grown by hydride vapour phase epitaxy (HVPE) and metal organic vapour phase epitaxy (MOVPE) techniques are compared through electronic transport measurements. Carrier concentration measured by Hall technique is about two orders larger than the values estimated by capacitance voltage method for HVPE templates. It is learnt that there exists a critical thickness of HVPE templates below which the transport properties of epitaxial layers grown on top of them are going to be severely limited by the density of charged dislocations lying at layer-substrate interface. On the contrary MOVPE grown templates are found to be free from such limitations.

  8. Growth diagram of N-face GaN (0001{sup ¯}) grown at high rate by plasma-assisted molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okumura, Hironori, E-mail: okumura@engineering.ucsb.edu; McSkimming, Brian M.; Speck, James S.

    2014-01-06

    N-face GaN was grown on free-standing GaN (0001{sup ¯}) substrates at a growth rate of 1.5 μm/h using plasma-assisted molecular beam epitaxy. Difference in growth rate between (0001{sup ¯}) and (0001) oriented GaN depends on nitrogen plasma power, and the (0001{sup ¯}) oriented GaN had only 70% of the growth rate of the (0001) oriented GaN at 300 W. Unintentional impurity concentrations of silicon, carbon, and oxygen were 2 × 10{sup 15}, 2 × 10{sup 16}, and 7 × 10{sup 16} cm{sup −3}, respectively. A growth diagram was constructed that shows the dependence of the growth modes on the difference in the Ga and active nitrogen flux, Φ{sub Ga} − Φ{submore » N*}, and the growth temperature. At high Φ{sub Ga} − Φ{sub N*} (Φ{sub Ga} ≫ Φ{sub N*}), two-dimensional (step-flow and layer-by-layer) growth modes were realized. High growth temperature (780 °C) expanded the growth window of the two-dimensional growth modes, achieving a surface with rms roughness of 0.48 nm without Ga droplets.« less

  9. Role of an ultra-thin AlN/GaN superlattice interlayer on the strain engineering of GaN films grown on Si(110) and Si(111) substrates by plasma-assisted molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, X. Q.; Takahashi, T.; Matsuhata, H.

    2013-12-02

    We investigate the role of an ultra-thin AlN/GaN superlattice interlayer (SL-IL) on the strain engineering of the GaN films grown on Si(110) and Si(111) substrates by plasma-assisted molecular beam epitaxy. It is found that micro-cracks limitted only at the SL-IL position are naturally generated. These micro-cracks play an important role in relaxing the tensile strain caused by the difference of the coefficient of thermal expansion between GaN and Si and keeping the residual strain in the crack-free GaN epilayers resulted from the SL-IL during the growth. The mechanism understanding of the strain modulation by the SL-IL in the GaN epilayersmore » grown on Si substrates makes it possible to design new heterostructures of III-nitrides for optic and electronic device applications.« less

  10. Role of an ultra-thin AlN/GaN superlattice interlayer on the strain engineering of GaN films grown on Si(110) and Si(111) substrates by plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Shen, X. Q.; Takahashi, T.; Rong, X.; Chen, G.; Wang, X. Q.; Shen, B.; Matsuhata, H.; Ide, T.; Shimizu, M.

    2013-12-01

    We investigate the role of an ultra-thin AlN/GaN superlattice interlayer (SL-IL) on the strain engineering of the GaN films grown on Si(110) and Si(111) substrates by plasma-assisted molecular beam epitaxy. It is found that micro-cracks limitted only at the SL-IL position are naturally generated. These micro-cracks play an important role in relaxing the tensile strain caused by the difference of the coefficient of thermal expansion between GaN and Si and keeping the residual strain in the crack-free GaN epilayers resulted from the SL-IL during the growth. The mechanism understanding of the strain modulation by the SL-IL in the GaN epilayers grown on Si substrates makes it possible to design new heterostructures of III-nitrides for optic and electronic device applications.

  11. Identification of point defects in HVPE-grown GaN by steady-state and time-resolved photoluminescence

    NASA Astrophysics Data System (ADS)

    Reshchikov, M. A.; Demchenko, D. O.; Usikov, A.; Helava, H.; Makarov, Yu.

    2015-03-01

    We have investigated point defects in GaN grown by HVPE by using steady-state and time-resolved photoluminescence (PL). Among the most common PL bands in this material are the red luminescence band with a maximum at 1.8 eV and a zero-phonon line (ZPL) at 2.36 eV (attributed to an unknown acceptor having an energy level 1.130 eV above the valence band), the blue luminescence band with a maximum at 2.9 eV (attributed to ZnGa), and the ultraviolet luminescence band with the main peak at 3.27 eV (related to an unknown shallow acceptor). In GaN with the highest quality, the dominant defect-related PL band at high excitation intensity is the green luminescence band with a maximum at about 2.4 eV. We attribute this band to transitions of electrons from the conduction band to the 0/+ level of the isolated CN defect. The yellow luminescence (YL) band, related to transitions via the -/0 level of the same defect, has a maximum at 2.1 eV. Another yellow luminescence band, which has similar shape but peaks at about 2.2 eV, is observed in less pure GaN samples and is attributed to the CNON complex. In semi-insulating GaN, the GL2 band with a maximum at 2.35 eV (attributed to VN) and the BL2 band with a maximum at 3.0 eV and the ZPL at 3.33 eV (attributed to a defect complex involving hydrogen) are observed. We also conclude that the gallium vacancy-related defects act as centers of nonradiative recombination.

  12. Structural anisotropic properties of a-plane GaN epilayers grown on r-plane sapphire by molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lotsari, A.; Kehagias, Th.; Katsikini, M.

    2014-06-07

    Heteroepitaxial non-polar III-Nitride layers may exhibit extensive anisotropy in the surface morphology and the epilayer microstructure along distinct in-plane directions. The structural anisotropy, evidenced by the “M”-shape dependence of the (112{sup ¯}0) x-ray rocking curve widths on the beam azimuth angle, was studied by combining transmission electron microscopy observations, Raman spectroscopy, high resolution x-ray diffraction, and atomic force microscopy in a-plane GaN epilayers grown on r-plane sapphire substrates by plasma-assisted molecular beam epitaxy (PAMBE). The structural anisotropic behavior was attributed quantitatively to the high dislocation densities, particularly the Frank-Shockley partial dislocations that delimit the I{sub 1} intrinsic basal stacking faults,more » and to the concomitant plastic strain relaxation. On the other hand, isotropic samples exhibited lower dislocation densities and a biaxial residual stress state. For PAMBE growth, the anisotropy was correlated to N-rich (or Ga-poor) conditions on the surface during growth, that result in formation of asymmetric a-plane GaN grains elongated along the c-axis. Such conditions enhance the anisotropy of gallium diffusion on the surface and reduce the GaN nucleation rate.« less

  13. Vacancy-hydrogen complexes in ammonothermal GaN

    NASA Astrophysics Data System (ADS)

    Tuomisto, F.; Kuittinen, T.; Zając, M.; Doradziński, R.; Wasik, D.

    2014-10-01

    We have applied positron annihilation spectroscopy to study in-grown vacancy defects in bulk GaN crystals grown by the ammonothermal method. We observe a high concentration of Ga vacancy related defects in n-type samples with varying free electron and oxygen content. The positron lifetimes found in these samples suggest that the Ga vacancies are complexed with hydrogen impurities. The number of hydrogen atoms in each vacancy decreases with increasing free electron concentration and oxygen and hydrogen content. The local vibrational modes observed in infrared absorption support this conclusion. Growth of high-quality ammonothermal GaN single crystals with varying electron concentrations. Identification of defect complexes containing a Ga vacancy and 1 or more hydrogen atoms, and possibly O. These vacancy complexes provide a likely explanation for electrical compensation in ammonothermal GaN.

  14. Preparation of freestanding GaN wafer by hydride vapor phase epitaxy on porous silicon

    NASA Astrophysics Data System (ADS)

    Wu, Xian; Li, Peng; Liang, Renrong; Xiao, Lei; Xu, Jun; Wang, Jing

    2018-05-01

    A freestanding GaN wafer was prepared on porous Si (111) substrate using hydride vapor phase epitaxy (HVPE). To avoid undesirable effects of the porous surface on the crystallinity of the GaN, a GaN seed layer was first grown on the Si (111) bare wafer. A pattern with many apertures was fabricated in the GaN seed layer using lithography and etching processes. A porous layer was formed in the Si substrate immediately adjacent to the GaN seed layer by an anodic etching process. A 500-μm-thick GaN film was then grown on the patterned GaN seed layer using HVPE. The GaN film was separated from the Si substrate through the formation of cracks in the porous layer caused by thermal mismatch stress during the cooling stage of the HVPE. Finally, the GaN film was polished to obtain a freestanding GaN wafer.

  15. Diffusion of Mg dopant in metal-organic vapor-phase epitaxy grown GaN and AlxGa1-xN

    NASA Astrophysics Data System (ADS)

    Köhler, K.; Gutt, R.; Wiegert, J.; Kirste, L.

    2013-02-01

    Diffusion of the p-type dopant Mg in GaN and AlxGa1-xN which is accompanied by segregation and affected by transient effects in metal-organic vapor-phase epitaxy reactors is investigated. We have grown 110 nm thick Mg doped GaN and Al0.1Ga0.9N layers on top of undoped GaN and Al0.1Ga0.9N layers, respectively, in a temperature range between 925 °C and 1050 °C where we placed special emphasis on the lower temperature limit without diffusion to allow separation of Mg transients, diffusion, and segregation. Hereby, AlxGa1-xN layers enable monitoring of the resolution limit by secondary ion mass spectrometry analyses for the respective samples; therefore, thin AlxGa1-xN marker layers are incorporated in the thick GaN layers. We found an upper limit of 1.25 × 1019 cm-3 for diffusing Mg atoms in both sample types. Owing to the marked influence of Mg segregation in Al0.1Ga0.9N, diffusion is only seen by using a GaN cap on top of the Al0.1Ga0.9N layer sequence. Diffusion in Al0.1Ga0.9N is shown to be increased by about 25%-30% compared to GaN. Post growth annealing experiments under conditions equivalent to those used for growth of the Mg doped samples showed negligible diffusion. Comparing the results to well established findings on other doped III-V compounds, diffusion is explained by an interstitial-substitutional mechanism with a diffusion coefficient, which is concentration dependent. Analysis of the temperature dependent diffusivity revealed an activation energy of 5.0 eV for GaN:Mg and 5.2 eV for Al0.1Ga0.9N:Mg.

  16. Facile growth of barium oxide nanorods: structural and optical properties.

    PubMed

    Ahmad, Naushad; Wahab, Rizwan; Alam, Manawwer

    2014-07-01

    This paper reports a large-scale synthesis of barium oxide nanorods (BaO-NRs) by simple solution method at a very low-temperature of - 60 degrees C. The as-grown BaO-NRs were characterized in terms of their morphological, structural, compositional, optical and thermal properties. The morphological characterizations of as-synthesized nanorods were done by scanning electron microscopy (SEM) which confirmed that the synthesized products are rod shaped and grown in high density. The nanorods exhibits smooth and clean surfaces throughout their lengths. The crystalline property of the material was analyzed with X-ray diffraction pattern (XRD). The compositional and thermal properties of synthesized nanorods were observed via Fourier transform infrared (FTIR) spectroscopy and thermogravimetric analysis which confirmed that the synthesized nanorods are pure BaO and showed good thermal stability. The nanorods exhibited good optical properties as was confirmed from the room-temperature UV-vis spectroscopy. Finally, a plausible mechanism for the formation of BaO-NRs is also discussed in this paper.

  17. Growth of β-Ga2O3 and GaN nanowires on GaN for photoelectrochemical hydrogen generation.

    PubMed

    Hwang, Jih-Shang; Liu, Tai-Yan; Chattopadhyay, Surjit; Hsu, Geng-Ming; Basilio, Antonio M; Chen, Han-Wei; Hsu, Yu-Kuei; Tu, Wen-Hsun; Lin, Yan-Gu; Chen, Kuei-Hsien; Li, Chien-Cheng; Wang, Sheng-Bo; Chen, Hsin-Yi; Chen, Li-Chyong

    2013-02-08

    Enhanced photoelectrochemical (PEC) performances of Ga(2)O(3) and GaN nanowires (NWs) grown in situ from GaN were demonstrated. The PEC conversion efficiencies of Ga(2)O(3) and GaN NWs have been shown to be 0.906% and 1.09% respectively, in contrast to their 0.581% GaN thin film counterpart under similar experimental conditions. A low crystallinity buffer layer between the grown NWs and the substrate was found to be detrimental to the PEC performance, but the layer can be avoided at suitable growth conditions. A band bending at the surface of the GaN NWs generates an electric field that drives the photogenerated electrons and holes away from each other, preventing recombination, and was found to be responsible for the enhanced PEC performance. The enhanced PEC efficiency of the Ga(2)O(3) NWs is aided by the optical absorption through a defect band centered 3.3 eV above the valence band of Ga(2)O(3). These findings are believed to have opened up possibilities for enabling visible absorption, either by tailoring ion doping into wide bandgap Ga(2)O(3) NWs, or by incorporation of indium to form InGaN NWs.

  18. Cu-doped ZnO nanorod arrays: the effects of copper precursor and concentration

    PubMed Central

    2014-01-01

    Cu-doped ZnO nanorods have been grown at 90°C for 90 min onto a quartz substrate pre-coated with a ZnO seed layer using a hydrothermal method. The influence of copper (Cu) precursor and concentration on the structural, morphological, and optical properties of ZnO nanorods was investigated. X-ray diffraction analysis revealed that the nanorods grown are highly crystalline with a hexagonal wurtzite crystal structure grown along the c-axis. The lattice strain is found to be compressive for all samples, where a minimum compressive strain of −0.114% was obtained when 1 at.% Cu was added from Cu(NO3)2. Scanning electron microscopy was used to investigate morphologies and the diameters of the grown nanorods. The morphological properties of the Cu-doped ZnO nanorods were influenced significantly by the presence of Cu impurities. Near-band edge (NBE) and a broad blue-green emission bands at around 378 and 545 nm, respectively, were observed in the photoluminescence spectra for all samples. The transmittance characteristics showed a slight increase in the visible range, where the total transmittance increased from approximately 80% for the nanorods doped with Cu(CH3COO)2 to approximately 90% for the nanorods that were doped with Cu(NO3)2. PMID:24855460

  19. Controllable growth of aluminum nanorods using physical vapor deposition

    PubMed Central

    2014-01-01

    This letter proposes and experimentally demonstrates that oxygen, through action as a surfactant, enables the growth of aluminum nanorods using physical vapor deposition. Based on the mechanism through which oxygen acts, the authors show that the diameter of aluminum nanorods can be controlled from 50 to 500 nm by varying the amount of oxygen present, through modulating the vacuum level, and by varying the substrate temperature. When grown under medium vacuum, the nanorods are in the form of an aluminum metal - aluminum oxide core-shell. The thickness of the oxide shell is ~2 nm as grown and is stable when maintained in ambient for 30 days or annealed in air at 475 K for 1 day. As annealing temperature is increased, the nanorod morphology remains stable while the ratio of oxide shell to metallic core increases, resulting in a fully aluminum oxide nanorod at 1,475 K. PMID:25170334

  20. Measurement of second order susceptibilities of GaN and AlGaN

    NASA Astrophysics Data System (ADS)

    Sanford, N. A.; Davydov, A. V.; Tsvetkov, D. V.; Dmitriev, A. V.; Keller, S.; Mishra, U. K.; DenBaars, S. P.; Park, S. S.; Han, J. Y.; Molnar, R. J.

    2005-03-01

    Rotational Maker fringes, scaled with respect to χ11(2) of crystalline quartz, were used to determine the second order susceptibilities χ31(2) and χ33(2) for samples of thin AlxGa1-xN films, a thicker GaN film, and a free-standing GaN platelets. The pump wavelength was 1064nm. The AlxGa1-xN samples, ranging in thickness from roughly 0.5to4.4μm, were grown by metalorganic chemical vapor deposition (MOCVD) and hydride vapor-phase epitaxy (HVPE) on (0001) sapphire substrates. The Al mole fractions x were 0, 0.419, 0.507, 0.618, 0.660, and 0.666, for the MOCVD-grown samples, and x =0, 0.279, 0.363, and 0.593 for the HVPE-grown samples. An additional HVPE-grown GaN sample ˜70μm thick was also examined. The free-standing bulk GaN platelets consisted of an HVPE grown film ˜226μm thick removed from its growth substrate, and a crystal ˜160μm thick grown by high-pressure techniques. For the AlxGa1-xN samples, the magnitudes of χ31(2) and χ33(2) decrease roughly linearly with increasing x and extrapolate to ˜0 for x =1. Furthermore, the constraint expected for a perfect wurtzite structure, namely χ33(2)=-2χ31(2), was seldom observed, and the samples with x =0.660 and x =0.666 showed χ31(2) and χ33(2) having the same sign. These results are consistent with the theoretical studies of nonlinear susceptibilities for AlN and GaN performed by Chen et al. [Appl. Phys. Lett. 66, 1129 (1995)]. The thicker bulk GaN samples displayed a complex superposition of high- and low-frequency Maker fringes due to the multiple-pass interference of the pump and second-harmonic generation beams, and the nonlinear coefficients were approximately consistent with those measured for the thin-film GaN sample.

  1. Direct growth of freestanding GaN on C-face SiC by HVPE.

    PubMed

    Tian, Yuan; Shao, Yongliang; Wu, Yongzhong; Hao, Xiaopeng; Zhang, Lei; Dai, Yuanbin; Huo, Qin

    2015-06-02

    In this work, high quality GaN crystal was successfully grown on C-face 6H-SiC by HVPE using a two steps growth process. Due to the small interaction stress between the GaN and the SiC substrate, the GaN was self-separated from the SiC substrate even with a small thickness of about 100 μm. Moreover, the SiC substrate was excellent without damage after the whole process so that it can be repeatedly used in the GaN growth. Hot phosphoric acid etching (at 240 °C for 30 min) was employed to identify the polarity of the GaN layer. According to the etching results, the obtained layer was Ga-polar GaN. High-resolution X-ray diffraction (HRXRD) and electron backscatter diffraction (EBSD) were done to characterize the quality of the freestanding GaN. The Raman measurements showed that the freestanding GaN film grown on the C-face 6H-SiC was stress-free. The optical properties of the freestanding GaN layer were determined by photoluminescence (PL) spectra.

  2. Selective-area catalyst-free MBE growth of GaN nanowires using a patterned oxide layer.

    PubMed

    Schumann, T; Gotschke, T; Limbach, F; Stoica, T; Calarco, R

    2011-03-04

    GaN nanowires (NWs) were grown selectively in holes of a patterned silicon oxide mask, by rf-plasma-assisted molecular beam epitaxy (PAMBE), without any metal catalyst. The oxide was deposited on a thin AlN buffer layer previously grown on a Si(111) substrate. Regular arrays of holes in the oxide layer were obtained using standard e-beam lithography. The selectivity of growth has been studied varying the substrate temperature, gallium beam equivalent pressure and patterning layout. Adjusting the growth parameters, GaN NWs can be selectively grown in the holes of the patterned oxide with complete suppression of the parasitic growth in between the holes. The occupation probability of a hole with a single or multiple NWs depends strongly on its diameter. The selectively grown GaN NWs have one common crystallographic orientation with respect to the Si(111) substrate via the AlN buffer layer, as proven by x-ray diffraction (XRD) measurements. Based on the experimental data, we present a schematic model of the GaN NW formation in which a GaN pedestal is initially grown in the hole.

  3. Mg incorporation in GaN grown by plasma-assisted molecular beam epitaxy at high temperatures

    NASA Astrophysics Data System (ADS)

    Yang, W. C.; Lee, P. Y.; Tseng, H. Y.; Lin, C. W.; Tseng, Y. T.; Cheng, K. Y.

    2016-04-01

    The influence of growth conditions on the incorporation and activation of Mg in GaN grown by plasma-assisted molecular beam epitaxy at high growth temperature (>700 °C) is presented. It is found that the highest Mg incorporation with optimized electrical properties is highly sensitive both to the Mg/Ga flux ratio and III/V flux ratio. A maximum Mg activation of ~5% can be achieved at a growth temperature of 750 °C. The lowest resistivity achieved is 0.56 Ω-cm which is associated with a high hole mobility of 6.42 cm2/V-s and a moderately high hole concentration of 1.7×1018 cm-3. Although the highest hole concentration achieved in a sample grown under a low III/V flux ratio and a high Mg/Ga flux ratio reaches 7.5×1018 cm-3, the mobility is suffered due to the formation of defects by the excess Mg. In addition, we show that modulated beam growth methods do not enhance Mg incorporation at high growth temperature in contrast to those grown at a low temperature of 500 °C (Appl. Phys. Lett. 93, 172112, Namkoong et al., 2008 [19]).

  4. Ultrafast studies of gold, nickel, and palladium nanorods

    NASA Astrophysics Data System (ADS)

    Sando, Gerald M.; Berry, Alan D.; Owrutsky, Jeffrey C.

    2007-08-01

    Steady state and ultrafast transient absorption studies have been carried out for gold, nickel, and palladium high aspect ratio nanorods. For each metal, nanorods were fabricated by electrochemical deposition into ˜6μm thick polycarbonate templates. Two nominal pore diameters(10 and 30nm, resulting in nanorod diameters of about 40 and 60nm, respectively) were used, yielding nanorods with high aspect ratios (>25). Static spectra of nanorods of all three metals reveal both a longitudinal surface plasmon resonance (SPRL) band in the mid-infrared as well as a transverse band in the visible for the gold and larger diameter nickel and palladium nanorods. The appearance of SPRL bands in the infrared for high aspect ratio metal nanorods and the trends in their maxima for the different aspect ratios and metals are consistent with calculations based on the Gans theory. For the gold and nickel samples, time resolved studies were performed with a subpicosecond resolution using 400nm excitation and a wide range of probe wavelengths from the visible to the mid-IR as well as for infrared excitation (near 2000cm-1) probed at 800nm. The dynamics observed for nanorods of both metals and both diameters include transients due to electron-phonon coupling and impulsively excited coherent acoustic breathing mode oscillations, which are similar to those previously reported for spherical and smaller rod-shaped gold nanoparticles. The dynamics we observe are the same within the experimental uncertainty for 400nm and infrared (5μm) excitation probed at 800nm. The transient absorption using 400nm excitation and 800nm probe pulses of the palladium nanorods also reveal coherent acoustic oscillations. The results demonstrate that the dynamics for high aspect ratio metal nanorods are similar to those for smaller nanoparticles.

  5. Enhanced polarization of (11-22) semi-polar InGaN nanorod array structure

    NASA Astrophysics Data System (ADS)

    Athanasiou, M.; Smith, R. M.; Hou, Y.; Zhang, Y.; Gong, Y.; Wang, T.

    2015-10-01

    By means of a cost effective nanosphere lithography technique, an InGaN/GaN multiple quantum well structure grown on (11-22) semipolar GaN has been fabricated into two dimensional nanorod arrays which form a photonic crystal (PhC) structure. Such a PhC structure demonstrates not only significantly increased emission intensity, but also an enhanced polarization ratio of the emission. This is due to an effective inhibition of the emission in slab modes and then redistribution to the vertical direction, thus minimizing the light scattering processes that lead to randomizing of the optical polarization. The PhC structure is designed based on a standard finite-difference-time-domain simulation, and then optically confirmed by detailed time-resolved photoluminescence measurements. The results presented pave the way for the fabrication of semipolar InGaN/GaN based emitters with both high efficiency and highly polarized emission.

  6. Nucleation and growth of zinc oxide nanorods directly on metal wire by sonochemical method.

    PubMed

    Rayathulhan, Ruzaina; Sodipo, Bashiru Kayode; Aziz, Azlan Abdul

    2017-03-01

    ZnO nanorods were directly grown on four different wires (silver, nickel, copper, and tungsten) using sonochemical method. Zinc nitrate hexahydrate and hexamethylenetetramine (HMT) were used as precursors. Influence of growth parameters such as precursors' concentration and ultrasonic power on the grown nanorods were determined. The results demonstrated that the precursor concentration affected the growth structure and density of the nanorods. The morphology, distribution, and orientation of nanorods changed as the ultrasonic power changed. Nucleation of ZnO nanorods on the wire occurred at lower ultrasonic power and when the power increased, the formation and growth of ZnO nanorods on the wires were initiated. The best morphology, size, distribution, and orientation of the nanorods were observed on the Ag wire. The presence of single crystal nanorod with hexagonal shaped was obtained. This shape indicates that the ZnO nanorods corresponded to the hexagonal wurtzite structure with growth preferential towards the (002) direction. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Low dislocation density InAlN/AlN/GaN heterostructures grown on GaN substrates and the effects on gate leakage characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotani, Junji, E-mail: kotani.junji-01@jp.fujitsu.com; Yamada, Atsushi; Ishiguro, Tetsuro

    2016-04-11

    This paper reports on the electrical characterization of Ni/Au Schottky diodes fabricated on InAlN high-electron-mobility transistor (HEMT) structures grown on low dislocation density free-standing GaN substrates. InAlN HEMT structures were grown on sapphire and GaN substrates by metal-organic vapor phase epitaxy, and the effects of threading dislocation density on the leakage characteristics of Ni/Au Schottky diodes were investigated. Threading dislocation densities were determined to be 1.8 × 10{sup 4 }cm{sup −2} and 1.2 × 10{sup 9 }cm{sup −2} by the cathodoluminescence measurement for the HEMT structures grown on GaN and sapphire substrates, respectively. Leakage characteristics of Ni/Au Schottky diodes were compared between the two samples, andmore » a reduction of the leakage current of about three to four orders of magnitude was observed in the forward bias region. For the high reverse bias region, however, no significant improvement was confirmed. We believe that the leakage current in the low bias region is governed by a dislocation-related Frenkel–Poole emission, and the leakage current in the high reverse bias region originates from field emission due to the large internal electric field in the InAlN barrier layer. Our results demonstrated that the reduction of dislocation density is effective in reducing leakage current in the low bias region. At the same time, it was also revealed that another approach will be needed, for instance, band modulation by impurity doping and insertion of insulating layers beneath the gate electrodes for a substantial reduction of the gate leakage current.« less

  8. A new approach to epitaxially grow high-quality GaN films on Si substrates: the combination of MBE and PLD.

    PubMed

    Wang, Wenliang; Wang, Haiyan; Yang, Weijia; Zhu, Yunnong; Li, Guoqiang

    2016-04-22

    High-quality GaN epitaxial films have been grown on Si substrates with Al buffer layer by the combination of molecular beam epitaxy (MBE) and pulsed laser deposition (PLD) technologies. MBE is used to grow Al buffer layer at first, and then PLD is deployed to grow GaN epitaxial films on the Al buffer layer. The surface morphology, crystalline quality, and interfacial property of as-grown GaN epitaxial films on Si substrates are studied systematically. The as-grown ~300 nm-thick GaN epitaxial films grown at 850 °C with ~30 nm-thick Al buffer layer on Si substrates show high crystalline quality with the full-width at half-maximum (FWHM) for GaN(0002) and GaN(102) X-ray rocking curves of 0.45° and 0.61°, respectively; very flat GaN surface with the root-mean-square surface roughness of 2.5 nm; as well as the sharp and abrupt GaN/AlGaN/Al/Si hetero-interfaces. Furthermore, the corresponding growth mechanism of GaN epitaxial films grown on Si substrates with Al buffer layer by the combination of MBE and PLD is hence studied in depth. This work provides a novel and simple approach for the epitaxial growth of high-quality GaN epitaxial films on Si substrates.

  9. Growth of hierarchical GaN nanowires for optoelectronic device applications

    NASA Astrophysics Data System (ADS)

    Raj, Rishabh; Vignesh, Veeramuthu; Ra, Yong-Ho; Nirmala, Rajkumar; Lee, Cheul-Ro; Navamathavan, Rangaswamy

    2017-01-01

    Gallium nitride nanostructures have been receiving considerable attention as building blocks for nanophotonic technologies due to their unique high aspect ratios, promising the realization of photonic and biological nanodevices such as blue light emitting diodes (LEDs), short-wavelength ultraviolet nanolasers, and nanofluidic biochemical sensors. We report on the growth of hierarchical GaN nanowires (NWs) by dynamically adjusting the growth parameters using the pulsed flow metal-organic chemical vapor deposition technique. We carried out two step growth processes to grow hierarchical GaN NWs. In the first step, the GaN NWs were grown at 950°C, and in the second, we suitably decreased the growth temperature to 630°C and 710°C to grow the hierarchical structures. The surface morphology and optical characterization of the grown GaN NWs were studied by field-emission scanning electron microscopy, high-resolution transmission electron microscopy, photoluminescence, and cathodoluminescence measurements. These kinds of hierarchical GaN NWs are promising for allowing flat band quantum structures that are shown to improve the efficiency of LEDs.

  10. Effects of Chromium Dopant on Ultraviolet Photoresponsivity of ZnO Nanorods

    NASA Astrophysics Data System (ADS)

    Mokhtari, S.; Safa, S.; Khayatian, A.; Azimirad, R.

    2017-07-01

    Structural and optical properties of bare ZnO nanorods, ZnO-encapsulated ZnO nanorods, and Cr-doped ZnO-encapsulated ZnO nanorods have been investigated. Encapsulated ZnO nanorods were grown using a simple two-stage method in which ZnO nanorods were first grown on a glass substrate directly from a hydrothermal bath, then encapsulated with a thin layer of Cr-doped ZnO by dip coating. Comparative study of x-ray diffraction patterns showed that Cr was successfully incorporated into the shell layer of ZnO nanorods. Moreover, energy-dispersive x-ray spectroscopy confirmed presence of Cr in this sample. It was observed that the thickness of the shell layer around the core of the ZnO nanorods was at least about 20 nm. Transmission electron microscopy of bare ZnO nanorods revealed single-crystalline structure. Based on optical results, both the encapsulation process and addition of Cr dopant decreased the optical bandgap of the samples. Indeed, the optical bandgap values of Cr-doped ZnO-encapsulated ZnO nanorods, ZnO-encapsulated ZnO nanorods, and bare ZnO nanorods were 2.89 eV, 3.15 eV, and 3.34 eV, respectively. The ultraviolet (UV) parameters demonstrated that incorporation of Cr dopant into the shell layer of ZnO nanorods considerably facilitated formation and transportation of photogenerated carriers, optimizing their performance as a practical UV detector. As a result, the photocurrent of the Cr-doped ZnO-encapsulated ZnO nanorods was the highest (0.6 mA), compared with ZnO-encapsulated ZnO nanorods and bare ZnO nanorods (0.21 mA and 0.06 mA, respectively).

  11. Control of ZnO Nanorod Defects to Enhance Carrier Transportation in p-Cu₂O/i-ZnO Nanorods/n-IGZO Heterojunction.

    PubMed

    Ke, Nguyen Huu; Trinh, Le Thi Tuyet; Mung, Nguyen Thi; Loan, Phan Thi Kieu; Tuan, Dao Anh; Truong, Nguyen Huu; Tran, Cao Vinh; Hung, Le Vu Tuan

    2017-01-01

    The p-Cu₂O/i-ZnO nanorods/n-IGZO heterojunctions were fabricated by electrochemical and sputtering method. ZnO nanorods were grown on conductive indium gallium zinc oxide (IGZO) thin film and then p-Cu₂O layer was deposited on ZnO nanorods to form the heterojunction. ZnO nanorods play an important role in carrier transport mechanisms and performance of the junction. The changing of defects in ZnO nanorods by annealing samples in air and vacuum have studied. The XRD, photoluminescence (PL) spectroscopy, and FTIR were used to study about structure, and defects in ZnO nanorods. The SEM, i–V characteristics methods were also used to define structure, electrical properties of the heterojunctions layers. The results show that the defects in ZnO nanorods affected remarkably on performance of heterojunctions of solar cells.

  12. Substrate impact on the low-temperature growth of GaN thin films by plasma-assisted atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kizir, Seda; Haider, Ali; Biyikli, Necmi, E-mail: biyikli@unam.bilkent.edu.tr

    2016-07-15

    Gallium nitride (GaN) thin films were grown on Si (100), Si (111), and c-plane sapphire substrates at 200 °C via hollow-cathode plasma-assisted atomic layer deposition (HCPA-ALD) using GaEt{sub 3} and N{sub 2}/H{sub 2} plasma as group-III and V precursors, respectively. The main aim of the study was to investigate the impact of substrate on the material properties of low-temperature ALD-grown GaN layers. Structural, chemical, and optical characterizations were carried out in order to evaluate and compare film quality of GaN on different substrates. X-ray reflectivity measurements showed film density values of 5.70, 5.74, and 5.54 g/cm{sup 3} for GaN grown on Simore » (100), Si (111), and sapphire, respectively. Grazing incidence x-ray diffraction measurements exhibited hexagonal wurtzite structure in all HCPA-ALD grown GaN samples. However, dominant diffraction peak for GaN films grown on Si and sapphire substrates were detected differently as (002) and (103), respectively. X-ray diffraction gonio scans measured from GaN grown on c-plane sapphire primarily showed (002) orientation. All samples exhibited similar refractive index values (∼2.17 at 632 nm) with 2–3 at. % of oxygen impurity existing within the bulk of the films. The grain size was calculated as ∼9–10 nm for GaN grown on Si (100) and Si (111) samples while it was ∼5 nm for GaN/sapphire sample. Root-mean-square surface roughness values found as 0.68, 0.76, and 1.83 nm for GaN deposited on Si (100), Si (111), and sapphire, respectively. Another significant difference observed between the samples was the film growth per cycle: GaN/sapphire sample showed a considerable higher thickness value when compared with GaN/Si samples, which might be attributed to a possibly more-efficient nitridation and faster nucleation of sapphire surface.« less

  13. Study of annealing effect on the growth of ZnO nanorods on ZnO seed layers

    NASA Astrophysics Data System (ADS)

    Sannakashappanavar, Basavaraj S.; Pattanashetti, Nandini A.; Byrareddy, C. R.; Yadav, Aniruddh Bahadur

    2018-04-01

    A zinc oxide (ZnO) seed layer was deposited on the SiO2/Si substrate by RF sputtering. To study the effect of annealing, the seed layers were classified into annealed and unannealed thin films. Annealing of the seed layers was carried at 450°C. Surface morphology of the seed layers were studied by Atomic force microscopy. ZnO nanorods were then grown on both the types of seed layer by hydrothermal method. The morphology and the structural properties of the nanorods were characterized by X-ray diffraction and Scanning electron microscopy. The effect of seed layer annealing on the growth and orientation of the ZnO nanorods were clearly examined on comparing with the nanorods grown on unannealed seed layer. The nanorods grown on annealed seed layers were found to be well aligned and oriented. Further, the I-V characteristic study was carried out on these aligned nanorods. The results supports positively for the future work to further enhance the properties of developed nanorods for their wide applications in electronic and optoelectronic devices.

  14. Codoping characteristics of Zn with Mg in GaN

    NASA Astrophysics Data System (ADS)

    Kim, K. S.; Han, M. S.; Yang, G. M.; Youn, C. J.; Lee, H. J.; Cho, H. K.; Lee, J. Y.

    2000-08-01

    The doping characteristics of Mg-Zn codoped GaN films grown by metalorganic chemical vapor deposition are investigated. By means of the concept of Mg-Zn codoping technique, we have grown p-GaN showing a low electrical resistivity (0.72 Ω cm) and a high hole concentration (8.5×1017cm-3) without structural degradation of the film. It is thought that the codoping of Zn atoms with Mg raises the Mg activation ratio by reducing the hydrogen solubility in p-GaN. In addition, the measured specific contact resistance of Mg-Zn codoped GaN film is 5.0×10-4 Ω cm2, which is one order of magnitude lower than that of Mg doped only GaN film (1.9×10-3 Ω cm2).

  15. Tuning the emission of ZnO nanorods based light emitting diodes using Ag doping

    NASA Astrophysics Data System (ADS)

    Echresh, Ahmad; Chey, Chan Oeurn; Shoushtari, Morteza Zargar; Nur, Omer; Willander, Magnus

    2014-11-01

    We have fabricated, characterized, and compared ZnO nanorods/p-GaN and n-Zn0.94Ag0.06O nanorods/p-GaN light emitting diodes (LEDs). Current-voltage measurement showed an obvious rectifying behaviour of both LEDs. A reduction of the optical band gap of the Zn0.94Ag0.06O nanorods compared to pure ZnO nanorods was observed. This reduction leads to decrease the valence band offset at n-Zn0.94Ag0.06O nanorods/p-GaN interface compared to n-ZnO nanorods/p-GaN heterojunction. Consequently, this reduction leads to increase the hole injection from the GaN to the ZnO. From electroluminescence measurement, white light was observed for the n-Zn0.94Ag0.06O nanorods/p-GaN heterojunction LEDs under forward bias, while for the reverse bias, blue light was observed. While for the n-ZnO nanorods/p-GaN blue light dominated the emission in both forward and reverse biases. Further, the LEDs exhibited a high sensitivity in responding to UV illumination. The results presented here indicate that doping ZnO nanorods might pave the way to tune the light emission from n-ZnO/p-GaN LEDs.

  16. Optical properties of m-plane GaN grown on patterned Si(112) substrates by MOCVD using a two-step approach

    NASA Astrophysics Data System (ADS)

    Izyumskaya, N.; Okur, S.; Zhang, F.; Monavarian, M.; Avrutin, V.; Özgür, Ü.; Metzner, S.; Karbaum, C.; Bertram, F.; Christen, J.; Morkoç, H.

    2014-03-01

    Nonpolar m-plane GaN layers were grown on patterned Si (112) substrates by metal-organic chemical vapor deposition (MOCVD). A two-step growth procedure involving a low-pressure (30 Torr) first step to ensure formation of the m-plane facet and a high-pressure step (200 Torr) for improvement of optical quality was employed. The layers grown in two steps show improvement of the optical quality: the near-bandedge photoluminescence (PL) intensity is about 3 times higher than that for the layers grown at low pressure, and deep emission is considerably weaker. However, emission intensity from m-GaN is still lower than that of polar and semipolar (1 100 ) reference samples grown under the same conditions. To shed light on this problem, spatial distribution of optical emission over the c+ and c- wings of the nonpolar GaN/Si was studied by spatially resolved cathodoluminescence and near-field scanning optical microscopy.

  17. Stress in (Al, Ga)N heterostructures grown on 6H-SiC and Si substrates byplasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Koshelev, O. A.; Nechaev, D. V.; Sitnikova, A. A.; Ratnikov, V. V.; Ivanov, S. V.; Jmerik, V. N.

    2017-11-01

    The paper describes experimental results on low temperature plasma-assisted molecular beam epitaxy of GaN/AlN heterostructures on both 6H-SiC and Si(111) substrates. We demonstrate that application of migration enhanced epitaxy and metal-modulated epitaxy for growth of AlN nucleation and buffer layers lowers the screw and edge(total)threading dislocation (TD) densities down to 1.7·108 and 2·109 cm-2, respectively, in a 2.8-μm-thick GaN buffer layer grown atop of AlN/6H-SiC. The screw and total TD densities of 1.2·109 and 7.4·109 cm-2, respectively, were achieved in a 1-μm-thickGaN/AlNheterostructure on Si(111). Stress generation and relaxation in GaN/AlN heterostructures were investigated by using multi-beam optical stress sensor (MOSS) to achieve zero substrate curvature at room temperature. It is demonstrated that a 1-μm-thick GaN/AlN buffer layer grown by PA MBE provides planar substrate morphology in the case of growth on Si substrates whereas 5-μm-thick GaN buffer layers have to be used to achieve the same when growing on 6H-SiC substrates.

  18. Large electron capture-cross-section of the major nonradiative recombination centers in Mg-doped GaN epilayers grown on a GaN substrate

    NASA Astrophysics Data System (ADS)

    Chichibu, S. F.; Shima, K.; Kojima, K.; Takashima, S.; Edo, M.; Ueno, K.; Ishibashi, S.; Uedono, A.

    2018-05-01

    Complementary time-resolved photoluminescence and positron annihilation measurements were carried out at room temperature on Mg-doped p-type GaN homoepitaxial films for identifying the origin and estimating the electron capture-cross-section ( σ n ) of the major nonradiative recombination centers (NRCs). To eliminate any influence by threading dislocations, free-standing GaN substrates were used. In Mg-doped p-type GaN, defect complexes composed of a Ga-vacancy (VGa) and multiple N-vacancies (VNs), namely, VGa(VN)2 [or even VGa(VN)3], are identified as the major intrinsic NRCs. Different from the case of 4H-SiC, atomic structures of intrinsic NRCs in p-type and n-type GaN are different: VGaVN divacancies are the major NRCs in n-type GaN. The σ n value approximately the middle of 10-13 cm2 is obtained for VGa(VN)n, which is larger than the hole capture-cross-section (σp = 7 × 10-14 cm2) of VGaVN in n-type GaN. Combined with larger thermal velocity of an electron, minority carrier lifetime in Mg-doped GaN becomes much shorter than that of n-type GaN.

  19. Transmission electron microscopy study of microstructural properties and dislocation characterization in the GaN film grown on the cone-shaped patterned Al2O3 substrate.

    PubMed

    Park, Jung Sik; Yang, Jun-Mo; Park, Kyung Jin; Park, Yun Chang; Yoo, Jung Ho; Jeong, Chil Seong; Park, Jucheol; He, Yinsheng; Shin, Keesam

    2014-02-01

    Growing a GaN film on a patterned Al2O3 substrate is one of the methods of reducing threading dislocations (TDs), which can significantly deteriorate the performance of GaN-based LEDs. In this study, the microstructural details of the GaN film grown on a cone-shaped patterned Al2O3 substrate were investigated using high-resolution transmission electron microscopy and weak-beam dark-field techniques. Various defects such as misfit dislocations (MDs), recrystallized GaN (R-GaN) islands and nano-voids were observed on the patterned Al2O3 surfaces, i.e. the flat surface (FS), the inclined surface (IS) and the top surface (TS), respectively. Especially, the crystallographic orientation of R-GaN between the GaN film and the inclined Al2O3 substrate was identified as $[\\overline 1 2\\overline 1 0]_{{\\rm GaN}} \\hbox{//}[\\overline 1 101]_{{\\rm R - GaN} \\,{\\rm on}\\,{\\rm IS}} \\hbox{//}[\\overline 1 100]_{ {{\\rm Al}} _{\\rm 2} {\\rm O}_{\\rm 3}} $, $(\\overline 1 012)_{{\\rm GaN}} \\hbox{//}(1\\overline 1 02)_{{\\rm R - Ga}\\,{\\rm Non}\\,{\\rm IS}} \\hbox{//}(\\overline {11} 26)_{ {{\\rm Al}} _{\\rm 2} {\\rm O}_{\\rm 3}} $. In addition, a rotation by 9° between $(10\\overline 1 1)_{{\\rm R - GaN}} $ and $(0002)_{{\\rm GaN}} $ and between $(10\\overline 1 1)_{{\\rm R - GaN}} $ and $(0006)_{ {{\\rm Al}} _{\\rm 2} {\\rm O}_{\\rm 3}} $ was found to reduce the lattice mismatch between the GaN film and the Al2O3 substrate. Many TDs in the GaN film were observed on the FS and TS of Al2O3. However, few TDs were observed on the IS. Most of the TDs generated from the FS of Al2O3 were bent to the inclined facet rather than propagating to the GaN surface, resulting in a reduction in the dislocation density. Most of the TDs generated from the TS of Al2O3 were characterized as edge dislocations.

  20. Substrate temperature influence on the properties of GaN thin films grown by hollow-cathode plasma-assisted atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alevli, Mustafa, E-mail: mustafaalevli@marmara.edu.tr; Gungor, Neşe; Haider, Ali

    2016-01-15

    Gallium nitride films were grown by hollow cathode plasma-assisted atomic layer deposition using triethylgallium and N{sub 2}/H{sub 2} plasma. An optimized recipe for GaN film was developed, and the effect of substrate temperature was studied in both self-limiting growth window and thermal decomposition-limited growth region. With increased substrate temperature, film crystallinity improved, and the optical band edge decreased from 3.60 to 3.52 eV. The refractive index and reflectivity in Reststrahlen band increased with the substrate temperature. Compressive strain is observed for both samples, and the surface roughness is observed to increase with the substrate temperature. Despite these temperature dependent material properties,more » the chemical composition, E{sub 1}(TO), phonon position, and crystalline phases present in the GaN film were relatively independent from growth temperature.« less

  1. Structural, electrical, and optical characterization of coalescent p-n GaN nanowires grown by molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolkovsky, Vl.; Zytkiewicz, Z. R.; Sobanska, M.

    2015-12-14

    The electrical, structural, and optical properties of coalescent p-n GaN nanowires (NWs) grown by molecular beam epitaxy on Si (111) substrate are investigated. From photoluminescence measurements the full width at half maximum of bound exciton peaks AX and DA is found as 1.3 and 1.2 meV, respectively. These values are lower than those reported previously in the literature. The current-voltage characteristics show the rectification ratio of about 10{sup 2} and the leakage current of about 10{sup −4} A/cm{sup 2} at room temperature. We demonstrate that the thermionic mechanism is not dominant in these samples and spatial inhomogeneties and tunneling processes through amore » ∼2 nm thick SiN{sub x} layer between GaN and Si could be responsible for deviation from the ideal diode behavior. The free carrier concentration in GaN NWs determined by capacitance-voltage measurements is about 4 × 10{sup 15 }cm{sup −3}. Two deep levels (H190 and E250) are found in the structures. We attribute H190 to an extended defect located at the interface between the substrate and the SiN{sub x} interlayer or near the sidewalls at the bottom of the NWs, whereas E250 is tentatively assigned to a gallium-vacancy- or nitrogen interstitials-related defect.« less

  2. Barrier inhomogeneities limited current and 1/f noise transport in GaN based nanoscale Schottky barrier diodes

    PubMed Central

    Kumar, Ashutosh; Heilmann, M.; Latzel, Michael; Kapoor, Raman; Sharma, Intu; Göbelt, M.; Christiansen, Silke H.; Kumar, Vikram; Singh, Rajendra

    2016-01-01

    The electrical behaviour of Schottky barrier diodes realized on vertically standing individual GaN nanorods and array of nanorods is investigated. The Schottky diodes on individual nanorod show highest barrier height in comparison with large area diodes on nanorods array and epitaxial film which is in contrast with previously published work. The discrepancy between the electrical behaviour of nanoscale Schottky diodes and large area diodes is explained using cathodoluminescence measurements, surface potential analysis using Kelvin probe force microscopy and 1ow frequency noise measurements. The noise measurements on large area diodes on nanorods array and epitaxial film suggest the presence of barrier inhomogeneities at the metal/semiconductor interface which deviate the noise spectra from Lorentzian to 1/f type. These barrier inhomogeneities in large area diodes resulted in reduced barrier height whereas due to the limited role of barrier inhomogeneities in individual nanorod based Schottky diode, a higher barrier height is obtained. PMID:27282258

  3. Characterization of Pb-Doped GaN Thin Films Grown by Thermionic Vacuum Arc

    NASA Astrophysics Data System (ADS)

    Özen, Soner; Pat, Suat; Korkmaz, Şadan

    2018-03-01

    Undoped and lead (Pb)-doped gallium nitride (GaN) thin films have been deposited by a thermionic vacuum arc (TVA) method. Glass and polyethylene terephthalate were selected as optically transparent substrates. The structural, optical, morphological, and electrical properties of the deposited thin films were investigated. These physical properties were interpreted by comparison with related analysis methods. The crystalline structure of the deposited GaN thin films was hexagonal wurtzite. The optical bandgap energy of the GaN and Pb-doped GaN thin films was found to be 3.45 eV and 3.47 eV, respectively. The surface properties of the deposited thin films were imaged using atomic force microscopy and field-emission scanning electron microscopy, revealing a nanostructured, homogeneous, and granular surface structure. These results confirm that the TVA method is an alternative layer deposition system for Pb-doped GaN thin films.

  4. Study on the structural, optical, and electrical properties of the yellow light-emitting diode grown on free-standing (0001) GaN substrate

    NASA Astrophysics Data System (ADS)

    Deng, Gaoqiang; Zhang, Yuantao; Yu, Ye; Yan, Long; Li, Pengchong; Han, Xu; Chen, Liang; Zhao, Degang; Du, Guotong

    2018-04-01

    In this paper, GaN-based yellow light-emitting diodes (LEDs) were homoepitaxially grown on free-standing (0001) GaN substrates by metal-organic chemical vapor deposition. X-ray diffraction (XRD), photoluminescence (PL), and electroluminescence (EL) measurements were conducted to investigate the structural, optical, and electrical properties of the yellow LED. The XRD measurement results showed that the InGaN/GaN multiple quantum wells (MQWs) in the LED structure have good periodicity because the distinct MQWs related higher order satellite peaks can be clearly observed from the profile of 2θ-ω XRD scan. The low temperature (10 K) and room temperature PL measurement results yield an internal quantum efficiency of 16% for the yellow LED. The EL spectra of the yellow LED present well Gaussian distribution with relatively low linewidth (47-55 nm), indicating the homogeneous In-content in the InGaN quantum well layers in the yellow LED structure. It is believed that this work will aid in the future development of GaN on GaN LEDs with long emission wavelength.

  5. Effect of annealing time and NH3 flow on GaN films deposited on amorphous SiO2 by MOCVD

    NASA Astrophysics Data System (ADS)

    Li, Tianbao; Liu, Chenyang; Zhang, Zhe; Yu, Bin; Dong, Hailiang; Jia, Wei; Jia, Zhigang; Yu, Chunyan; Xu, Bingshe

    2018-05-01

    GaN polycrystalline films were successfully grown on amorphous SiO2 by metal-organic chemical vapour deposition to fabricate transferable devices using inorganic films. Field-emission scanning electron microscopy images show that by prolonging the annealing time, re-evaporation is enhanced, which reduced the uniformity of the nucleation layer and GaN films. X-ray diffraction patterns indicate that the decomposition rate of the nucleation layer increases when the annealing flow rate of NH3 is 500 sccm, which makes the unstable plane and amorphous domains decompose rapidly, thereby improving the crystallinity of the GaN films. Photoluminescence spectra also indicate the presence of fewer defects when the annealing flow rate of NH3 is 500 sccm. The excellent crystal structure of the GaN films grown under optimized conditions was revealed by transmission electron microscopy analysis. More importantly, the crystal structure and orientation of GaN grown on SiO2 are the same as that of GaN grown on conventional sapphire substrate when a buffer layer is used. This work can aid in the development of transferable devices using GaN films.

  6. Low-temperature growth of aligned ZnO nanorods: effect of annealing gases on the structural and optical properties.

    PubMed

    Umar, Ahmad; Hahn, Yoon-Bong; Al-Hajry, A; Abaker, M

    2014-06-01

    Aligned ZnO nanorods were grown on ZnO/Si substrate via simple aqueous solution process at low-temperature of - 65 degrees C by using zinc nitrate and hexamethylenetetramine (HMTA). The detailed morphological and structural properties measured by FESEM, XRD, EDS and TEM confirmed that the as-grown nanorods are vertically aligned, well-crystalline possessing wurtzite hexagonal phase and grown along the [0001] direction. The room-temperature photoluminescence spectrum of the grown nanorods exhibited a strong and broad green emission and small ultraviolet emission. The as-prepared ZnO nanorods were post-annealed in nitrogen (N2) and oxygen (O2) environments and further characterized in terms of their morphological, structural and optical properties. After annealing the nanorods exhibit well-crystallinity and wurtzite hexagonal phase. Moreover, by annealing the PL spectra show the enhancement in the UV emission and suppression in the green emission. The presented results demonstrate that simply by post-annealing process, the optical properties of ZnO nanostructures can be controlled.

  7. Polarity-inverted lateral overgrowth and selective wet-etching and regrowth (PILOSWER) of GaN.

    PubMed

    Jang, Dongsoo; Jue, Miyeon; Kim, Donghoi; Kim, Hwa Seob; Lee, Hyunkyu; Kim, Chinkyo

    2018-03-07

    On an SiO 2 -patterned c-plane sapphire substrate, GaN domains were grown with their polarity controlled in accordance with the pattern. While N-polar GaN was grown on hexagonally arranged circular openings, Ga-polar GaN was laterally overgrown on mask regions due to polarity inversion occurring at the boundary of the circular openings. After etching of N-polar GaN on the circular openings by H 3 PO 4 , this template was coated with 40-nm Si by sputtering and was slightly etched by KOH. After slight etching, a thin layer of Si left on the circular openings of sapphire,but not on GaN, was oxidized during thermal annealing and served as a dielectric mask during subsequent regrowth. Thus, the subsequent growth of GaN was made only on the existing Ga-polar GaN domains, not on the circular openings of the sapphire substrate. Transmission electron microscopy analysis revealed no sign of threading dislocations in this film. This approach may help fabricating an unholed and merged GaN film physically attached to but epitaxially separated from the SiO 2 -patterned sapphire.

  8. Growth behavior and growth rate dependency in LEDs performance for Mg-doped a-plane GaN

    NASA Astrophysics Data System (ADS)

    Song, Keun-Man; Kim, Jong-Min; Lee, Dong-Hun; Shin, Chan-Soo; Ko, Chul-Gi; Kong, Bo-Hyun; Cho, Hyung-Koun; Yoon, Dae-Ho

    2011-07-01

    We investigated the influence of growth rate of Mg-doped a-plane GaN on the surface morphological and electrical properties, and the characteristics of InGaN-based nonpolar LEDs. Mg-doped a-plane GaN layers were grown on r-plane sapphire substrate by metalorganic chemical vapor deposition (MOCVD). Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and cathode luminescence (CL) analysis exhibited that the surface morphology changed from stripe features with large triangular pits to rough and rugged surface with small asymmetric V-shape pits, as the growth rate increased. The Mg incorporation into a-plane GaN layers increased with increasing growth rate of Mg-doped a-plane GaN, while the activation efficiency of Mg dopants decreased in a-plane GaN. Additionally, it was found that operation voltage at 20 mA decreased in characteristics of LEDs, as the growth rate of Mg-doped a-plane GaN decreased. Meanwhile, the EL intensity of LEDs with p-GaN layers grown at higher growth rate was improved compared to that of LEDs with p-GaN layers grown at lower growth rate. Such an increase of EL intensity is attributed to the rougher surface morphology with increasing growth rate of Mg-doped a-plane GaN.

  9. Optical characterization of CdS nanorods capped with starch

    NASA Astrophysics Data System (ADS)

    Roy, J. S.; Pal Majumder, T.; Schick, C.

    2015-05-01

    Well crystalline uniform CdS nanorods were grown by changing the concentration of maize starch. The highly polymeric (branched) structure of starch enhances the growth of CdS nanorods. The average diameter of the nanorods is 20-25 nm while length is of 500-600 nm as verified from SEM and XRD observations. The optical band gaps of the CdS nanorods are varying from 2.66 eV to 2.52 eV depending on concentration of maize starch. The photoluminescence (PL) emission bands are shifted from 526 nm to 529 nm with concentration of maize starch. We have also observed the enhanced PL intensity in CdS nanorods capped with starch. The Fourier transform infrared (FTIR) spectroscopy shows the significant effect of starch on CdS nanorods.

  10. Conversion between hexagonal GaN and beta-Ga(2)O(3) nanowires and their electrical transport properties.

    PubMed

    Li, Jianye; An, Lei; Lu, Chenguang; Liu, Jie

    2006-02-01

    We have observed that the hexagonal GaN nanowires grown from a simple chemical vapor deposition method using gallium metal and ammonia gas are usually gallium-doped. By annealing in air, the gallium-doped hexagonal GaN nanowires could be completely converted to beta-Ga(2)O(3) nanowires. Annealing the beta-Ga(2)O(3) nanowires in ammonia could convert them back to undoped hexagonal GaN nanowires. Field effect transistors based on these three kinds of nanowires were fabricated, and their performances were studied. Because of gallium doping, the as-grown GaN nanowires show a weak gating effect. Through the conversion process of GaN nanowires (gallium-doped) --> Ga(2)O(3) nanowires --> GaN nanowires (undoped) via annealing, the final undoped GaN nanowires display different electrical properties than the initial gallium-doped GaN nanowires, show a pronounced n-type gating effect, and can be completely turned off.

  11. Activation and evaluation of GaN photocathodes

    NASA Astrophysics Data System (ADS)

    Qian, Yunsheng; Chang, Benkang; Qiao, Jiangliang; Zhang, Yijun; Fu, Rongguo; Qiu, Yafeng

    2009-09-01

    Gallium Nitride (GaN) photocathodes are potentially attractive as UV detective materials and electron sources. Based on the activation and evaluation system for GaAs photocathode, which consists of ultra-high vacuum (UHV) activation chamber, multi-information measurement system, X-ray photoelectron spectroscopy (XPS), and ultraviolet ray photoelectron spectroscopy (UPS), the control and measurement system for the activation of UV photocathodes was developed. The developed system, which consists of Xenon lamp, monochromator with scanner, signal-processing module, power control unit of Cs and O source, A/D adapter, digital I/O card, computer and software, can control the activation of GaN photocathodes and measure on-line the spectral response curves of GaN photocathodes. GaN materials on sapphire substrate were grown by Metal-Organic Chemical Vapor Deposition (MOCVD) with p-type Mg doping. The GaN materials were activated by Cs-O. The spectral response and quantum efficiency (QE) were measured and calculated. The experiment results are discussed.

  12. Epitaxial growth and characterization of approximately 300-nm-thick AlInN films nearly lattice-matched to c-plane GaN grown on sapphire

    NASA Astrophysics Data System (ADS)

    Miyoshi, Makoto; Yamanaka, Mizuki; Egawa, Takashi; Takeuchi, Tetsuya

    2018-05-01

    AlInN epitaxial films with film thicknesses up to approximately 300 nm were grown nearly lattice-matched to a c-plane GaN-on-sapphire template by metalorganic chemical vapor deposition. The AlInN films showed relative good crystal qualities and flat surfaces, despite the existence of surface pits connected to dislocations in the underlying GaN film. The refractive index derived in this study agreed well with a previously reported result obtained over the whole visible wavelength region. The extinction coefficient spectrum exhibited a clear absorption edge, and the bandgap energy for AlInN nearly lattice-matched to GaN was determined to be approximately 4.0 eV.

  13. Pr3+ doped biphasic TiO2 (rutile-brookite) nanorod arrays grown on activated carbon fibers: Hydrothermal synthesis and photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Li, Min; Zhang, Xiaomei; Liu, Ying; Yang, Yi

    2018-05-01

    Praseodymium-doped biphasic TiO2 (rutile-brookite) nanorod arrays (Pr-TiO2 NRAs) were successfully prepared via a two-step hydrothermal reaction on activated carbon fibers (ACFs) which pre-coated with TiO2 nanoparticles at first step. The bicrystalline arrays grown on ACFs are primarily constructed by the well-aligned TiO2 nanorods growing along [0 0 1] direction, which were indicated by the results of SEM and XRD. The nanorods are uniform in diameter and length with about 250 nm and 2.5 μm. The composite photocatalyst with high specific surface area and well-aligned nanostructure are beneficial to enhance the adsorption capacity and even help to suppress electron-hole recombination effectively, which consequently revealed much better (2 times) catalytic performance than that of commercially available P25 TiO2 on methylene blue(MB) photodegradation. In addition, the existence of praseodymium in TiO2 gives rise to shift of absorption edge towards long wavelength, which was indicated by the results of UV-vis DRS. Photodegradation results reveal that Pr-doping significantly improves the activity of TiO2, which was 20% higher than that of undoped TiO2 NRAs for the photodegradation of MB in aqueous medium under visible light irradiation. Meanwhile, the doped amount of Pr had a tiny influence on the photocatalytic performance of the composites. In our experiment, 3% Pr-doped molar concentration was proven to be the relatively optimal dopant concentration for the doping of TiO2 NRAs. Moreover, the photocatalyst grown on ACFs substrates is favorable to reuse and photodegradation rate kept on 76% even after 4 times of reuse.

  14. Plasma-assisted molecular beam epitaxy of ZnO on in-situ grown GaN/4H-SiC buffer layers

    NASA Astrophysics Data System (ADS)

    Adolph, David; Tingberg, Tobias; Andersson, Thorvald; Ive, Tommy

    2015-04-01

    Plasma-assisted molecular beam epitaxy (MBE) was used to grow ZnO (0001) layers on GaN(0001)/4H-SiC buffer layers deposited in the same growth chamber equipped with both N- and O-plasma sources. The GaN buffer layers were grown immediately before initiating the growth of ZnO. Using a substrate temperature of 440°C-445°C and an O2 flow rate of 2.0-2.5 sccm, we obtained ZnO layers with smooth surfaces having a root-mean-square roughness of 0.3 nm and a peak-to-valley distance of 3 nm shown by AFM. The FWHM for X-ray rocking curves recorded across the ZnO(0002) and ZnO(10bar 15) reflections were 200 and 950 arcsec, respectively. These values showed that the mosaicity (tilt and twist) of the ZnO film was comparable to corresponding values of the underlying GaN buffer. It was found that a substrate temperature > 450°C and a high Zn-flux always resulted in a rough ZnO surface morphology. Reciprocal space maps showed that the in-plane relaxation of the GaN and ZnO layers was 82.3% and 73.0%, respectively and the relaxation occurred abruptly during the growth. Room-temperature Hall-effect measurements showed that the layers were intrinsically n-type with an electron concentration of 1019 cm-3 and a Hall mobility of 50 cm2·V-1·s-1.

  15. RBS/Channeling Studies of Swift Heavy Ion Irradiated GaN Layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sathish, N.; Dhamodaran, S.; Pathak, A. P.

    2009-03-10

    Epitaxial GaN layers grown by MOCVD on c-plane sapphire substrates were irradiated with 150 MeV Ag ions at a fluence of 5x10{sup 12} ions/cm{sup 2}. Samples used in this study are 2 {mu}m thick GaN layers, with and without a thin AlN cap-layer. Energy dependent RBS/Channeling measurements have been carried out on both irradiated and unirradiated samples for defects characterization. Observed results are compared and correlated with previous HRXRD, AFM and optical studies. The {chi}{sub min} values for unirradiated samples show very high value and the calculated defect densities are of the order of 10{sup 10} cm{sup -2} as expectedmore » in these samples. Effects of irradiation on these samples are different as initial samples had different defect densities. Epitaxial reconstruction of GaN buffer layer has been attributed to the observed changes, which are generally grown to reduce the strain between GaN and Sapphire.« less

  16. Fine structure of the red luminescence band in undoped GaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reshchikov, M. A., E-mail: mreshchi@vcu.edu; Usikov, A.; Saint-Petersburg National Research University of Information Technologies, Mechanics and Optics, 49 Kronverkskiy Ave., 197101 Saint Petersburg

    2014-01-20

    Many point defects in GaN responsible for broad photoluminescence (PL) bands remain unidentified. Their presence in thick GaN layers grown by hydride vapor phase epitaxy (HVPE) detrimentally affects the material quality and may hinder the use of GaN in high-power electronic devices. One of the main PL bands in HVPE-grown GaN is the red luminescence (RL) band with a maximum at 1.8 eV. We observed the fine structure of this band with a zero-phonon line (ZPL) at 2.36 eV, which may help to identify the related defect. The shift of the ZPL with excitation intensity and the temperature-related transformation of the RLmore » band fine structure indicate that the RL band is caused by transitions from a shallow donor (at low temperature) or from the conduction band (above 50 K) to an unknown deep acceptor having an energy level 1.130 eV above the valence band.« less

  17. Structural investigations of GaN grown by low-pressure chemical vapor deposition on 6H{endash}SiC and Al{sub 2}O{sub 3} from GaCl{sub 3} and NH{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koynov, S.; Topf, M.; Fischer, S.

    1997-08-01

    GaN films grown on (0001) 6H{endash}SiC and (0001) Al{sub 2}O{sub 3} substrates using low-pressure chemical vapor deposition with GaCl{sub 3} and NH{sub 3} as precursors are comparatively explored by optical, scanning tunneling, and transmission electron microscopy. Independent of the substrate material used, the surface of the GaN layers is covered by hexagonally shaped islands. For GaN on 6H{endash}SiC, the islands are larger in diameter ({approx}50 {mu}m) and rather uniformly distributed. An atomically flat interface is observed for GaN on Al{sub 2}O{sub 3} in contrast to GaN grown on 6H{endash}SiC, where the interface is characterized by large steps. For both substrates,more » faceted holes (named as pinholes) are observed in near-surface regions of the GaN layers occurring with a density of about 7{times}10{sup 8} cm{sup {minus}2}. No unequivocal correlation between the density of pinholes and the density of threading dislocations ({approx}1.6{times}10{sup 10} cm{sup {minus}2} for GaN/Al{sub 2}O{sub 3} and {approx}4{times}10{sup 9} cm{sup {minus}2} for GaN/6H{endash}SiC) can be found. Rather, different types of defects are identified to be correlated with the pinholes, implying a dislocation-independent mechanism for the pinhole formation. Despite the small lattice mismatch between GaN and 6H{endash}SiC, the pronounced original surface roughness of this substrate material is believed to account for both the marked interfacial roughness and the still existing high density of threading dislocations. {copyright} {ital 1997 American Institute of Physics.}« less

  18. AlGaN/GaN high electron mobility transistor grown on GaN template substrate by molecule beam epitaxy system

    NASA Astrophysics Data System (ADS)

    Tsai, Jenn-Kai; Chen, Y. L.; Gau, M. H.; Pang, W. Y.; Hsu, Y. C.; Lo, Ikai; Hsieh, C. H.

    2008-03-01

    In this study, AlGaN/GaN high electron mobility transistor (HEMT) structure was grow on GaN template substrate radio frequency plasma assisted molecular beam epitaxy (MBE) equipped with an EPI UNI-Bulb nitrogen plasma source. The undoped GaN template substrate was grown on c-sapphire substrate by metal organic vapor phase epitaxy system (MOPVD). After growth of MOVPE and MBE, the samples are characterized by double crystal X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (SEM), atomic force microscopy (AFM), and Hall effect measurements. We found that the RMS roughness of template substrate play the major role in got the high value of mobility on AlGaN/GaN HEMT. When the roughness was lower than 0.77 nm in a 25 μm x 25 μm area, the mobility of HEMT at the temperature of 77 K was over 10000 cm^2/Vs.

  19. Increased p-type conductivity through use of an indium surfactant in the growth of Mg-doped GaN

    NASA Astrophysics Data System (ADS)

    Kyle, Erin C. H.; Kaun, Stephen W.; Young, Erin C.; Speck, James S.

    2015-06-01

    We have examined the effect of an indium surfactant on the growth of p-type GaN by ammonia-based molecular beam epitaxy. p-type GaN was grown at temperatures ranging from 700 to 780 °C with and without an indium surfactant. The Mg concentration in all films in this study was 4.5-6 × 1019 cm-3 as measured by secondary ion mass spectroscopy. All p-type GaN films grown with an indium surfactant had higher p-type conductivities and higher hole concentrations than similar films grown without an indium surfactant. The lowest p-type GaN room temperature resistivity was 0.59 Ω-cm, and the highest room temperature carrier concentration was 1.6 × 1018 cm-3. Fits of the temperature-dependent carrier concentration data showed a one to two order of magnitude lower unintentional compensating defect concentration in samples grown with the indium surfactant. Samples grown at higher temperature had a lower active acceptor concentration. Improvements in band-edge luminescence were seen by cathodoluminescence for samples grown with the indium surfactant, confirming the trends seen in the Hall data.

  20. Basic ammonothermal GaN growth in molybdenum capsules

    NASA Astrophysics Data System (ADS)

    Pimputkar, S.; Speck, J. S.; Nakamura, S.

    2016-12-01

    Single crystal, bulk gallium nitride (GaN) crystals were grown using the basic ammonothermal method in a high purity growth environment created using a non-hermetically sealed molybdenum (Mo) capsule and compared to growths performed in a similarly designed silver (Ag) capsule and capsule-free René 41 autoclave. Secondary ion mass spectrometry (SIMS) analysis revealed transition metal free (<1×1017 cm-3) GaN crystals. Anomalously low oxygen concentrations ((2-6)×1018 cm-3) were measured in a {0001} seeded crystal boule grown using a Mo capsule, despite higher source material oxygen concentrations ((1-5)×1019 cm-3) suggesting that molybdenum (or molybdenum nitrides) may act to getter oxygen under certain conditions. Total system pressure profiles from growth runs in a Mo capsule system were comparable to those without a capsule, with pressures peaking within 2 days and slowly decaying due to hydrogen diffusional losses. Measured Mo capsule GaN growth rates were comparable to un-optimized growth rates in capsule-free systems and appreciably slower than in Ag-capsule systems. Crystal quality replicated that of the GaN seed crystals for all capsule conditions, with high quality growth occurring on the (0001) Ga-face. Optical absorption and impurity concentration characterization suggests reduced concentrations of hydrogenated gallium vacancies (VGa-Hx).

  1. Enhanced Ferromagnetism in Nanoscale GaN:Mn Wires Grown on GaN Ridges.

    PubMed

    Cheng, Ji; Jiang, Shengxiang; Zhang, Yan; Yang, Zhijian; Wang, Cunda; Yu, Tongjun; Zhang, Guoyi

    2017-05-02

    The problem of weak magnetism has hindered the application of magnetic semiconductors since their invention, and on the other hand, the magnetic mechanism of GaN-based magnetic semiconductors has been the focus of long-standing debate. In this work, nanoscale GaN:Mn wires were grown on the top of GaN ridges by metalorganic chemical vapor deposition (MOCVD), and the superconducting quantum interference device (SQUID) magnetometer shows that its ferromagnetism is greatly enhanced. Secondary ion mass spectrometry (SIMS) and energy dispersive spectroscopy (EDS) reveal an obvious increase of Mn composition in the nanowire part, and transmission electron microscopy (TEM) and EDS mapping results further indicate the correlation between the abundant stacking faults (SFs) and high Mn doping. When further combined with the micro-Raman results, the magnetism in GaN:Mn might be related not only to Mn concentration, but also to some kinds of built-in defects introduced together with the Mn doping or the SFs.

  2. The Pine-Needle-Inspired Structure of Zinc Oxide Nanorods Grown on Electrospun Nanofibers for High-Performance Flexible Supercapacitors.

    PubMed

    Sami, Syed Kamran; Siddiqui, Saqib; Shrivastava, Sajal; Lee, Nae-Eung; Chung, Chan-Hwa

    2017-12-01

    Flexible supercapacitors with high electrochemical performance and stability along with mechanical robustness have gained immense attraction due to the substantial advancements and rampant requirements of storage devices. To meet the exponentially growing demand of microsized energy storage device, a cost-effective and durable supercapacitor is mandatory to realize their practical applications. Here, in this work, the fabrication route of novel electrode materials with high flexibility and charge-storage capability is reported using the hybrid structure of 1D zinc oxide (ZnO) nanorods and conductive polyvinylidene fluoride-tetrafluoroethylene (P(VDF-TrFE)) electrospun nanofibers. The ZnO nanorods are conformably grown on conductive P(VDF-TrFE) nanofibers to fabricate the light-weighted porous electrodes for supercapacitors. The conductive nanofibers acts as a high surface area scaffold with significant electrochemical performance, while the addition of ZnO nanorods further enhances the specific capacitance by 59%. The symmetric cell with the fabricated electrodes presents high areal capacitance of 1.22 mF cm -2 at a current density of 0.1 mA cm -2 with a power density of more than 1600 W kg -1 . Furthermore, these electrodes show outstanding flexibility and high stability with 96% and 78% retention in specific capacitance after 1000 and 5000 cycles, respectively. The notable mechanical durability and robustness of the cell acquire both good flexibility and high performance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Electrochemical fabrication and optoelectronic properties of hybrid heterostructure of CuPc/porous GaN

    NASA Astrophysics Data System (ADS)

    Peng, Fei; Qin, Shuang-Jiao; Hu, Li-Feng; Wang, Juan-Ye; Yang, Jia-Mei; Chen, Xue-Qing; Pan, Ge-Bo

    2016-05-01

    A new hybrid heterostructure of p-type copper phthalocyanine (CuPc) and n-type porous GaN (PGaN) has been fabricated by electrophoretic deposition. The influence of CuPc concentration, electric field intensity, and deposition time on the growth of CuPc film has been explored. The as-prepared CuPc films are made of numerous nanorods. The X-ray diffraction (XRD) spectra revealed that the CuPc films are the β phase and amorphous type on pristine and porous GaN, respectively. Moreover, the prototype devices were fabricated on the basis of the CuPc/PGaN heterostructures. The devices exhibited excellent photodetector performance under ultraviolet (UV) light illumination.

  4. Ethanol surface chemistry on MBE-grown GaN(0001), GaOx/GaN(0001), and Ga2O3(2¯01).

    PubMed

    Kollmannsberger, Sebastian L; Walenta, Constantin A; Winnerl, Andrea; Knoller, Fabian; Pereira, Rui N; Tschurl, Martin; Stutzmann, Martin; Heiz, Ueli

    2017-09-28

    In this work, ethanol is used as a chemical probe to study the passivation of molecular beam epitaxy-grown GaN(0001) by surface oxidation. With a high degree of oxidation, no reaction from ethanol to acetaldehyde in temperature-programmed desorption experiments is observed. The acetaldehyde formation is attributed to a mechanism based on α-H abstraction from the dissociatively bound alcohol molecule. The reactivity is related to negatively charged surface states, which are removed upon oxidation of the GaN(0001) surface. This is compared with the Ga 2 O 3 (2¯01) single crystal surface, which is found to be inert for the acetaldehyde production. These results offer a toolbox to explore the surface chemistry of nitrides and oxynitrides on an atomic scale and relate their intrinsic activity to systems under ambient atmosphere.

  5. GaN membrane MSM ultraviolet photodetectors

    NASA Astrophysics Data System (ADS)

    Muller, A.; Konstantinidis, G.; Kostopoulos, A.; Dragoman, M.; Neculoiu, D.; Androulidaki, M.; Kayambaki, M.; Vasilache, D.; Buiculescu, C.; Petrini, I.

    2006-12-01

    GaN exhibits unique physical properties, which make this material very attractive for wide range of applications and among them ultraviolet detection. For the first time a MSM type UV photodetector structure was manufactured on a 2.2 μm. thick GaN membrane obtained using micromachining techniques. The low unintentionally doped GaN layer structure was grown by MOCVD on high resistivity (ρ>10kΩcm) <111> oriented silicon wafers, 500μm thick. The epitaxially grown layers include a thin AlN layer in order to reduce the stress in the GaN layer and avoid cracking. Conventional contact lithography, e-gun Ni/Au (10nm /200nm) evaporation and lift-off techniques were used to define the interdigitated Schottky metalization on the top of the wafer. Ten digits with a width of 1μm and a length of 100μm were defined for each electrode. The distance between the digits was also 1μm. After the backside lapping of the wafer to a thickness of approximately 150μm, a 400nm thick Al layer was patterned and deposited on the backside, to be used as mask for the selective reactive ion etching of silicon. The backside mask, for the membrane formation, was patterned using double side alignment techniques and silicon was etched down to the 2.2μm thin GaN layer using SF 6 plasma. A very low dark current (30ρA at 3V) was obtained. Optical responsivity measurements were performed at 1.5V. A maximum responsivity of 18mA/W was obtained at a wavelength of 370nm. This value is very good and can be further improved using transparent contacts for the interdigitated structure.

  6. Hall-effect measurements of metalorganic vapor-phase epitaxy-grown p-type homoepitaxial GaN layers with various Mg concentrations

    NASA Astrophysics Data System (ADS)

    Horita, Masahiro; Takashima, Shinya; Tanaka, Ryo; Matsuyama, Hideaki; Ueno, Katsunori; Edo, Masaharu; Takahashi, Tokio; Shimizu, Mitsuaki; Suda, Jun

    2017-03-01

    Mg-doped p-type gallium nitride (GaN) layers with doping concentrations in the range from 6.5 × 1016 cm-3 (lightly doped) to 3.8 × 1019 cm-3 (heavily doped) were investigated by Hall-effect measurement for the analysis of hole concentration and mobility. p-GaN was homoepitaxially grown on a GaN free-standing substrate by metalorganic vapor-phase epitaxy. The threading dislocation density of p-GaN was 4 × 106 cm-2 measured by cathodoluminescence mapping. Hall-effect measurements of p-GaN were carried out at a temperature in the range from 130 to 450 K. For the lightly doped p-GaN, the acceptor concentration of 7.0 × 1016 cm-3 and the donor concentration of 3.2 × 1016 cm-3 were obtained, where the compensation ratio was 46%. We also obtained the depth of the Mg acceptor level to be 220 meV. The hole mobilities of 86, 31, 14 cm2 V-1 s-1 at 200, 300, 400 K, respectively, were observed in the lightly doped p-GaN.

  7. Hall-effect measurements of metalorganic vapor-phase epitaxy-grown p-type homoepitaxial GaN layers with various Mg concentrations

    NASA Astrophysics Data System (ADS)

    Horita, Masahiro; Takashima, Shinya; Tanaka, Ryo; Matsuyama, Hideaki; Ueno, Katsunori; Edo, Masaharu; Suda, Jun

    2016-05-01

    Mg-doped p-type gallium nitride (GaN) layers with doping concentrations in the range from 6.5 × 1016 cm-3 (lightly doped) to 3.8 × 1019 cm-3 (heavily doped) were investigated by Hall-effect measurement for the analysis of hole concentration and mobility. p-GaN was homoepitaxially grown on a GaN free-standing substrate by metalorganic vapor-phase epitaxy. The threading dislocation density of the p-GaN was 4 × 106 cm-2 measured by cathodoluminescence mapping. Hall-effect measurements of p-GaN were carried out at a temperature in the range from 160 to 450 K. A low compensation ratio of less than 1% was revealed. We also obtained the depth of the Mg acceptor level of 235 meV considering the lowering effect by the Coulomb potential of ionized acceptors. The hole mobilities of 33 cm2 V-1 s-1 at 300 K and 72 cm2 V-1 s-1 at 200 K were observed in lightly doped p-GaN.

  8. Far-infrared transmission in GaN, AlN, and AlGaN thin films grown by molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibanez, J.; Hernandez, S.; Alarcon-Llado, E.

    2008-08-01

    We present a far-infrared transmission study on group-III nitride thin films. Cubic GaN and AlN layers and c-oriented wurtzite GaN, AlN, and Al{sub x}Ga{sub 1-x}N (x<0.3) layers were grown by molecular beam epitaxy on GaAs and Si(111) substrates, respectively. The Berreman effect allows us to observe simultaneously the transverse optic and the longitudinal optic phonons of both the cubic and the hexagonal films as transmission minima in the infrared spectra acquired with obliquely incident radiation. We discuss our results in terms of the relevant electromagnetic theory of infrared transmission in cubic and wurtzite thin films. We compare the infrared resultsmore » with visible Raman-scattering measurements. In the case of films with low scattering volumes and/or low Raman efficiencies and also when the Raman signal of the substrate material obscures the weaker peaks from the nitride films, we find that the Berreman technique is particularly useful to complement Raman spectroscopy.« less

  9. Effect of SiC buffer layer on GaN growth on Si via PA-MBE

    NASA Astrophysics Data System (ADS)

    Kukushkin, S. A.; Mizerov, A. M.; Osipov, A. V.; Redkov, A. V.; Telyatnik, R. S.; Timoshnev, S. N.

    2017-11-01

    The study is devoted to comparison of GaN thin films grown on SiC/Si substrates made by the method of atoms substitution with the films grown directly on Si substrates. The growth was performed in a single process via plasma assisted molecular beam epitaxy. The samples were studied via optical microscopy, Raman spectroscopy, ellipsometry, and a comparison of their characteristics was made. Using chemical etching in KOH, the polarity of GaN films grown on SiC/Si and Si substrates was determined.

  10. Hydrothermal Growth of Vertically Aligned ZnO Nanorods Using a Biocomposite Seed Layer of ZnO Nanoparticles.

    PubMed

    Ibupoto, Zafar Hussain; Khun, Kimleang; Eriksson, Martin; AlSalhi, Mohammad; Atif, Muhammad; Ansari, Anees; Willander, Magnus

    2013-08-19

    Well aligned ZnO nanorods have been prepared by a low temperature aqueous chemical growth method, using a biocomposite seed layer of ZnO nanoparticles prepared in starch and cellulose bio polymers. The effect of different concentrations of biocomposite seed layer on the alignment of ZnO nanorods has been investigated. ZnO nanorods grown on a gold-coated glass substrate have been characterized by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) techniques. These techniques have shown that the ZnO nanorods are well aligned and perpendicular to the substrate, and grown with a high density and uniformity on the substrate. Moreover, ZnO nanorods can be grown with an orientation along the c -axis of the substrate and exhibit a wurtzite crystal structure with a dominant (002) peak in an XRD spectrum and possessed a high crystal quality. A photoluminescence (PL) spectroscopy study of the ZnO nanorods has revealed a conventional near band edge ultraviolet emission, along with emission in the visible part of the electromagnetic spectrum due to defect emission. This study provides an alternative method for the fabrication of well aligned ZnO nanorods. This method can be helpful in improving the performance of devices where alignment plays a significant role.

  11. Hydrothermal Growth of Vertically Aligned ZnO Nanorods Using a Biocomposite Seed Layer of ZnO Nanoparticles

    PubMed Central

    Ibupoto, Zafar Hussain; Khun, Kimleang; Eriksson, Martin; AlSalhi, Mohammad; Atif, Muhammad; Ansari, Anees; Willander, Magnus

    2013-01-01

    Well aligned ZnO nanorods have been prepared by a low temperature aqueous chemical growth method, using a biocomposite seed layer of ZnO nanoparticles prepared in starch and cellulose bio polymers. The effect of different concentrations of biocomposite seed layer on the alignment of ZnO nanorods has been investigated. ZnO nanorods grown on a gold-coated glass substrate have been characterized by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) techniques. These techniques have shown that the ZnO nanorods are well aligned and perpendicular to the substrate, and grown with a high density and uniformity on the substrate. Moreover, ZnO nanorods can be grown with an orientation along the c-axis of the substrate and exhibit a wurtzite crystal structure with a dominant (002) peak in an XRD spectrum and possessed a high crystal quality. A photoluminescence (PL) spectroscopy study of the ZnO nanorods has revealed a conventional near band edge ultraviolet emission, along with emission in the visible part of the electromagnetic spectrum due to defect emission. This study provides an alternative method for the fabrication of well aligned ZnO nanorods. This method can be helpful in improving the performance of devices where alignment plays a significant role. PMID:28811454

  12. GaN Schottky diodes with single-crystal aluminum barriers grown by plasma-assisted molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tseng, H. Y.; Yang, W. C.; Lee, P. Y.

    2016-08-22

    GaN-based Schottky barrier diodes (SBDs) with single-crystal Al barriers grown by plasma-assisted molecular beam epitaxy are fabricated. Examined using in-situ reflection high-energy electron diffractions, ex-situ high-resolution x-ray diffractions, and high-resolution transmission electron microscopy, it is determined that epitaxial Al grows with its [111] axis coincident with the [0001] axis of the GaN substrate without rotation. In fabricated SBDs, a 0.2 V barrier height enhancement and 2 orders of magnitude reduction in leakage current are observed in single crystal Al/GaN SBDs compared to conventional thermal deposited Al/GaN SBDs. The strain induced piezoelectric field is determined to be the major source of themore » observed device performance enhancements.« less

  13. The controlled growth of GaN microrods on Si(111) substrates by MOCVD

    NASA Astrophysics Data System (ADS)

    Foltynski, Bartosz; Garro, Nuria; Vallo, Martin; Finken, Matthias; Giesen, Christoph; Kalisch, Holger; Vescan, Andrei; Cantarero, Andrés; Heuken, Michael

    2015-03-01

    In this paper, a selective area growth (SAG) approach for growing GaN microrods on patterned SiNx/Si(111) substrates by metal-organic chemical vapor deposition (MOCVD) is studied. The surface morphology, optical and structural properties of vertical GaN microrods terminated by pyramidal shaped facets (six { 10 1 bar 1} planes) were characterized using scanning electron microscopy (SEM), room temperature photoluminescence (PL) and Raman spectroscopy, respectively. Measurements revealed high-quality GaN microcolumns grown with silane support. Characterized structures were grown nearly strain-free (central frequency of Raman peak of 567±1 cm-1) with crystal quality comparable to bulk crystals (FWHM=4.2±1 cm-1). Such GaN microrods might be used as a next-generation device concept for solid-state lighting (SSL) applications by realizing core-shell InGaN/GaN multi-quantum wells (MQWs) on the n-GaN rod base.

  14. Increased p-type conductivity through use of an indium surfactant in the growth of Mg-doped GaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kyle, Erin C. H., E-mail: erinkyle@engineering.ucsb.edu; Kaun, Stephen W.; Young, Erin C.

    2015-06-01

    We have examined the effect of an indium surfactant on the growth of p-type GaN by ammonia-based molecular beam epitaxy. p-type GaN was grown at temperatures ranging from 700 to 780 °C with and without an indium surfactant. The Mg concentration in all films in this study was 4.5–6 × 10{sup 19} cm{sup −3} as measured by secondary ion mass spectroscopy. All p-type GaN films grown with an indium surfactant had higher p-type conductivities and higher hole concentrations than similar films grown without an indium surfactant. The lowest p-type GaN room temperature resistivity was 0.59 Ω-cm, and the highest room temperature carrier concentration wasmore » 1.6 × 10{sup 18} cm{sup −3}. Fits of the temperature-dependent carrier concentration data showed a one to two order of magnitude lower unintentional compensating defect concentration in samples grown with the indium surfactant. Samples grown at higher temperature had a lower active acceptor concentration. Improvements in band-edge luminescence were seen by cathodoluminescence for samples grown with the indium surfactant, confirming the trends seen in the Hall data.« less

  15. Attachment of Quantum Dots on Zinc Oxide Nanorods

    NASA Astrophysics Data System (ADS)

    Seay, Jared; Liang, Huan; Harikumar, Parameswar

    2011-03-01

    ZnO nanorods grown by hydrothermal technique are of great interest for potential applications in photovoltaic and optoelectronic devices. In this study we investigate the optimization of the optical absorption properties by a low temperature, chemical bath deposition technique. Our group fabricated nanorods on indium tin oxide (ITO) substrate with precursor solution of zinc nitrate hexahydrate and hexamethylenetramine (1:1 molar ratio) at 95C for 9 hours. In order to optimize the light absorption characteristics of ZnO nanorods, CdSe/ZnS core-shell quantum dots (QDs) of various diameters were attached to the surface of ZnO nanostructures grown on ITO and gold-coated silicon substrates. Density of quantum dots was varied by controlling the number drops on the surface of the ZnO nanorods. For a 0.1 M concentration of QDs of 10 nm diameter, the PL intensity at 385 nm increased as the density of the quantum dots on ZnO nanostructures was increased. For quantum dots at 1 M concentration, the PL intensity at 385 nm increased at the beginning and then decreased at higher density. We will discuss the observed changes in PL intensity with QD concentration with ZnO-QD band structure and recombination-diffusion processes taking place at the interface.

  16. Growth of GaN micro/nanolaser arrays by chemical vapor deposition.

    PubMed

    Liu, Haitao; Zhang, Hanlu; Dong, Lin; Zhang, Yingjiu; Pan, Caofeng

    2016-09-02

    Optically pumped ultraviolet lasing at room temperature based on GaN microwire arrays with Fabry-Perot cavities is demonstrated. GaN microwires have been grown perpendicularly on c-GaN/sapphire substrates through simple catalyst-free chemical vapor deposition. The GaN microwires are [0001] oriented single-crystal structures with hexagonal cross sections, each with a diameter of ∼1 μm and a length of ∼15 μm. A possible growth mechanism of the vertical GaN microwire arrays is proposed. Furthermore, we report room-temperature lasing in optically pumped GaN microwire arrays based on the Fabry-Perot cavity. Photoluminescence spectra exhibit lasing typically at 372 nm with an excitation threshold of 410 kW cm(-2). The result indicates that these aligned GaN microwire arrays may offer promising prospects for ultraviolet-emitting micro/nanodevices.

  17. Improved growth of GaN layers on ultra thin silicon nitride/Si (1 1 1) by RF-MBE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Mahesh; Roul, Basanta; Central Research Laboratory, Bharat Electronics, Bangalore 560013

    High-quality GaN epilayers were grown on Si (1 1 1) substrates by molecular beam epitaxy using a new growth process sequence which involved a substrate nitridation at low temperatures, annealing at high temperatures, followed by nitridation at high temperatures, deposition of a low-temperature buffer layer, and a high-temperature overgrowth. The material quality of the GaN films was also investigated as a function of nitridation time and temperature. Crystallinity and surface roughness of GaN was found to improve when the Si substrate was treated under the new growth process sequence. Micro-Raman and photoluminescence (PL) measurement results indicate that the GaN filmmore » grown by the new process sequence has less tensile stress and optically good. The surface and interface structures of an ultra thin silicon nitride film grown on the Si surface are investigated by core-level photoelectron spectroscopy and it clearly indicates that the quality of silicon nitride notably affects the properties of GaN growth.« less

  18. Ethanol surface chemistry on MBE-grown GaN(0001), GaOx/GaN(0001), and Ga2O3(2 \\xAF 01 )

    NASA Astrophysics Data System (ADS)

    Kollmannsberger, Sebastian L.; Walenta, Constantin A.; Winnerl, Andrea; Knoller, Fabian; Pereira, Rui N.; Tschurl, Martin; Stutzmann, Martin; Heiz, Ueli

    2017-09-01

    In this work, ethanol is used as a chemical probe to study the passivation of molecular beam epitaxy-grown GaN(0001) by surface oxidation. With a high degree of oxidation, no reaction from ethanol to acetaldehyde in temperature-programmed desorption experiments is observed. The acetaldehyde formation is attributed to a mechanism based on α -H abstraction from the dissociatively bound alcohol molecule. The reactivity is related to negatively charged surface states, which are removed upon oxidation of the GaN(0001) surface. This is compared with the Ga2O3(2 ¯ 01 ) single crystal surface, which is found to be inert for the acetaldehyde production. These results offer a toolbox to explore the surface chemistry of nitrides and oxynitrides on an atomic scale and relate their intrinsic activity to systems under ambient atmosphere.

  19. Indium Gallium Nitride/Gallium Nitride (InGaN/GaN) Nanorods Superlattice (SL)

    DTIC Science & Technology

    2006-03-29

    Final Report (Technical) 3. DATES COVERED 29-03-2005 to 29-05-2006 4. TITLE AND SUBTITLE Indium Gallium Nitride/ Gallium Nitride (InGaN/GaN...Institution: Quantum functional Semiconductor Research Center (QSRC), Dongguk University - Title of project: Indium Gallium Nitride/ Gallium Nitride...Accepted with minor revision Indium Gallium Nitride / Gallium Nitride (InGaN/ GaN) Nanorods Superlattice (SL) Abstract The growth condition, electrical

  20. Synthesis of p-type GaN nanowires.

    PubMed

    Kim, Sung Wook; Park, Youn Ho; Kim, Ilsoo; Park, Tae-Eon; Kwon, Byoung Wook; Choi, Won Kook; Choi, Heon-Jin

    2013-09-21

    GaN has been utilized in optoelectronics for two decades. However, p-type doping still remains crucial for realization of high performance GaN optoelectronics. Though Mg has been used as a p-dopant, its efficiency is low due to the formation of Mg-H complexes and/or structural defects in the course of doping. As a potential alternative p-type dopant, Cu has been recognized as an acceptor impurity for GaN. Herein, we report the fabrication of Cu-doped GaN nanowires (Cu:GaN NWs) and their p-type characteristics. The NWs were grown vertically via a vapor-liquid-solid (VLS) mechanism using a Au/Ni catalyst. Electrical characterization using a nanowire-field effect transistor (NW-FET) showed that the NWs exhibited n-type characteristics. However, with further annealing, the NWs showed p-type characteristics. A homo-junction structure (consisting of annealed Cu:GaN NW/n-type GaN thin film) exhibited p-n junction characteristics. A hybrid organic light emitting diode (OLED) employing the annealed Cu:GaN NWs as a hole injection layer (HIL) also demonstrated current injected luminescence. These results suggest that Cu can be used as a p-type dopant for GaN NWs.

  1. GaN microcavities: Giant Rabi splitting and optical anisotropy

    NASA Astrophysics Data System (ADS)

    Kavokin, Alexey; Gil, Bernard

    1998-06-01

    Numerical simulation of light reflection from a λ/2 GaN microcavity with Ga0.8Al0.2N/Ga0.5Al0.5N Bragg mirrors grown on the A surface of Al2O3 revealed a Rabi splitting of the order of 50 meV and remarkable optical anisotropy. These effects are originated from the giant exciton oscillator strength in GaN and a pronounced uniaxial strain in the structure.

  2. Viability and proliferation of endothelial cells upon exposure to GaN nanoparticles

    PubMed Central

    Braniste, Tudor; Tiginyanu, Ion; Horvath, Tibor; Raevschi, Simion; Cebotari, Serghei; Lux, Marco; Haverich, Axel

    2016-01-01

    Summary Nanotechnology is a rapidly growing and promising field of interest in medicine; however, nanoparticle–cell interactions are not yet fully understood. The goal of this work was to examine the interaction between endothelial cells and gallium nitride (GaN) semiconductor nanoparticles. Cellular viability, adhesion, proliferation, and uptake of nanoparticles by endothelial cells were investigated. The effect of free GaN nanoparticles versus the effect of growing endothelial cells on GaN functionalized surfaces was examined. To functionalize surfaces with GaN, GaN nanoparticles were synthesized on a sacrificial layer of zinc oxide (ZnO) nanoparticles using hydride vapor phase epitaxy. The uptake of GaN nanoparticles by porcine endothelial cells was strongly dependent upon whether they were fixed to the substrate surface or free floating in the medium. The endothelial cells grown on surfaces functionalized with GaN nanoparticles demonstrated excellent adhesion and proliferation, suggesting good biocompatibility of the nanostructured GaN. PMID:27826507

  3. Viability and proliferation of endothelial cells upon exposure to GaN nanoparticles.

    PubMed

    Braniste, Tudor; Tiginyanu, Ion; Horvath, Tibor; Raevschi, Simion; Cebotari, Serghei; Lux, Marco; Haverich, Axel; Hilfiker, Andres

    2016-01-01

    Nanotechnology is a rapidly growing and promising field of interest in medicine; however, nanoparticle-cell interactions are not yet fully understood. The goal of this work was to examine the interaction between endothelial cells and gallium nitride (GaN) semiconductor nanoparticles. Cellular viability, adhesion, proliferation, and uptake of nanoparticles by endothelial cells were investigated. The effect of free GaN nanoparticles versus the effect of growing endothelial cells on GaN functionalized surfaces was examined. To functionalize surfaces with GaN, GaN nanoparticles were synthesized on a sacrificial layer of zinc oxide (ZnO) nanoparticles using hydride vapor phase epitaxy. The uptake of GaN nanoparticles by porcine endothelial cells was strongly dependent upon whether they were fixed to the substrate surface or free floating in the medium. The endothelial cells grown on surfaces functionalized with GaN nanoparticles demonstrated excellent adhesion and proliferation, suggesting good biocompatibility of the nanostructured GaN.

  4. NO2 Gas Sensing Properties of Multiple Networked ZnGa2O4 Nanorods Coated with TiO2.

    PubMed

    An, Soyeon; Park, Sunghoon; Ko, Hyunsung; Jin, Changhyun; Lee, Chongmu

    2015-01-01

    The NO2 gas sensing properties of ZnGa2O4-TiO2 heterostructure nanorods was examined. ZnGa2O4-core/TiO2-shell nanorods were fabricated by the thermal evaporation of a mixture of Zn and GaN powders and the sputter deposition of TiO2. Multiple networked ZnGa2O4-core/TiO2-shell nanorod sensors showed the response of 876% at 10 ppm NO2 at 300 degrees C. This response value at 10 ppm NO2 is approximately 4 times larger than that of bare ZnGa2O4 nanorod sensors. The response values obtained by the ZnGa2O4-core/TiO2-shell nanorods in this study are more than 13 times higher than those obtained previously by the SnO2-core/ZnO-shell nanofibers at 5% NO2. The significant enhancement in the response of ZnGa2O4 nanorods to NO2 gas by coating them with TiO2 can be explained based on the space-charge model.

  5. Mg doping of GaN grown by plasma-assisted molecular beam epitaxy under nitrogen-rich conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Meng; Bhattacharya, Pallab; Guo, Wei; Banerjee, Animesh

    2010-03-01

    Acceptor doping of GaN with Mg during plasma-assisted molecular beam epitaxy, under N-rich conditions and a relatively high growth temperature of 740 °C, was investigated. The p-doping level steadily increases with increasing Mg flux. The highest doping level achieved, determined from Hall measurements, is 2.1×1018 cm-3. The corresponding doping efficiency and hole mobility are ˜4.9% and 3.7 cm2/V s at room temperature. Cross-sectional transmission electron microscopy and photoluminescence measurements confirm good crystalline and optical quality of the Mg-doped layers. An InGaN/GaN quantum dot light emitting diode (λpeak=529 nm) with p-GaN contact layers grown under N-rich condition exhibits a low series resistance of 9.8 Ω.

  6. Tolerance of GaAs as an original substrate for HVPE growth of free standing GaN

    NASA Astrophysics Data System (ADS)

    Suzuki, Mio; Sato, T.; Suemasu, T.; Hasegawa, F.

    2004-09-01

    In order to investigate possibility of thick GaN growth on a GaAs substrate by halide vapar phase epitaxy (HVPE), GaN was grown on GaAs(111)/Ti wafer with Ti deposited by E-gun. It was found that surface treatment of the GaAs substrate by HF solution deteriorated greatly the tolerence of GaAs and that Ti can protected GaAs from erosion by NH3. By depositing Ti on GaAs(111)A surface, a millor-like GaN layer could be grown at 1000 °C for 1 hour without serious deterioration of the original GaAs substrate. By increasing the growth rate, a thick free standing GaN will be obtained with GaAs as an original substrate in near future.

  7. Defect reduction in GaN on dome-shaped patterned-sapphire substrates

    NASA Astrophysics Data System (ADS)

    Chen, Po-Hsun; Su, Vin-Cent; Wu, Shang-Hsuan; Lin, Ray-Ming; Kuan, Chieh-Hsiung

    2018-02-01

    This paper demonstrates the behavior of defect reduction in un-doped GaN (u-GaN) grown on a commercial dome-shaped patterned-sapphire substrate (CDPSS). Residual strain inside the u-GaN grown on the CDPSS have been investigated as well. As verified by the experimentally measured data, the limited growth rate of the u-GaN on the sidewall of the CDPSS enhances the lateral growth of the GaN on the trench region while increasing the growth time. This subsequently contributes to improve the crystalline quality of the GaN on the CDPSS. The more prominent dislocations occur in the u-GaN epilayers on the CDPSS after reaching the summit of the accumulated strain inside the epilayers. Such prominent bent dislocations improve their blocking abilities, followed by the achievement of the better crystalline quality for the growth of the u-GaN on the CDPSS.

  8. Study of recombination characteristics in MOCVD grown GaN epi-layers on Si

    NASA Astrophysics Data System (ADS)

    Gaubas, E.; Ceponis, T.; Dobrovolskas, D.; Malinauskas, T.; Meskauskaite, D.; Miasojedovas, S.; Mickevicius, J.; Pavlov, J.; Rumbauskas, V.; Simoen, E.; Zhao, M.

    2017-12-01

    The radiative and non-radiative recombination carrier decay lifetimes in GaN epi-layers grown by metal-organic chemical vapour deposition technology on Si substrates were measured by contactless techniques of time-resolved photoluminescence and microwave-probed transients of photoconductivity. The lifetime variations were obtained to be dependent on growth regimes. These variations have been related to varied densities of edge dislocations associated with growth temperature. It has been also revealed that the lateral carrier lifetime and photoluminescence intensity distribution is determined by the formation of dislocation clusters dependent on the growth conditions. For low excitation level, the asymptotic component within the excess carrier decay transients is attributed to carrier trapping and anomalous diffusion through random-walk processes within dislocation cluster regions and barriers at dislocation cores. The two-componential decay process at high excitation conditions, where excess carriers may suppress barriers, proceeds through a nonlinear recombination, where band-to-band transitions determine the nonlinearity of the process, while the asymptotic component is ascribed to the impact of D-A pair PL within the long-wavelength wing of the UV-PL band.

  9. Deep levels in as-grown and electron-irradiated n-type GaN studied by deep level transient spectroscopy and minority carrier transient spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duc, Tran Thien; School of Engineering Physics, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Hanoi; Pozina, Galia

    2016-03-07

    Development of high performance GaN-based devices is strongly dependent on the possibility to control and understand defects in material. Important information about deep level defects is obtained by deep level transient spectroscopy and minority carrier transient spectroscopy on as-grown and electron irradiated n-type bulk GaN with low threading dislocation density produced by halide vapor phase epitaxy. One hole trap labelled H1 (E{sub V} + 0.34 eV) has been detected on as-grown GaN sample. After 2 MeV electron irradiation, the concentration of H1 increases and at fluences higher than 5 × 10{sup 14 }cm{sup −2}, a second hole trap labelled H2 is observed. Simultaneously, the concentration of twomore » electron traps, labelled T1 (E{sub C} – 0.12 eV) and T2 (E{sub C} – 0.23 eV), increases. By studying the increase of the defect concentration versus electron irradiation fluence, the introduction rate of T1 and T2 using 2 MeV- electrons was determined to be 7 × 10{sup −3 }cm{sup −1} and 0.9 cm{sup −1}, respectively. Due to the low introduction rate of T1, it is suggested that the defect is associated with a complex. The high introduction rate of trap H1 and T2 suggests that the defects are associated with primary intrinsic defects or complexes. Some deep levels previously observed in irradiated GaN layers with higher threading dislocation densities are not detected in present investigation. It is therefore suggested that the absent traps may be related to primary defects segregated around dislocations.« less

  10. Growth of ZnO nanorods on stainless steel wire using chemical vapour deposition and their photocatalytic activity.

    PubMed

    Abd Aziz, Siti Nor Qurratu Aini; Pung, Swee-Yong; Ramli, Nurul Najiah; Lockman, Zainovia

    2014-01-01

    The photodegradation efficiency of ZnO nanoparticles in removal of organic pollutants deteriorates over time as a high percentage of the nanoparticles can be drained away by water during the wastewater treatment. This problem can be solved by growing the ZnO nanorods on stainless steel wire. In this work, ZnO nanorods were successfully grown on stainless steel wire by chemical vapour deposition. The SAED analysis indicates that ZnO nanorod is a single crystal and is preferentially grown in [0001] direction. The deconvoluted O 1s peak at 531.5 eV in XPS analysis is associated with oxygen deficient, revealing that the ZnO nanorods contain many oxygen vacancies. This observation is further supported by the finding of the small I(uv)/I(vis) ratio, that is, ~1 in the photoluminescence analysis. The growth of ZnO nanorods on stainless steel wire was governed by vapour-solid mechanism as there were no Fe particles observed at the tips of the nanorods. The photodegradation of Rhodamine B solution by ZnO nanorods followed the first-order kinetics.

  11. Growth of ZnO Nanorods on Stainless Steel Wire Using Chemical Vapour Deposition and Their Photocatalytic Activity

    PubMed Central

    Abd Aziz, Siti Nor Qurratu Aini; Pung, Swee-Yong; Ramli, Nurul Najiah; Lockman, Zainovia

    2014-01-01

    The photodegradation efficiency of ZnO nanoparticles in removal of organic pollutants deteriorates over time as a high percentage of the nanoparticles can be drained away by water during the wastewater treatment. This problem can be solved by growing the ZnO nanorods on stainless steel wire. In this work, ZnO nanorods were successfully grown on stainless steel wire by chemical vapour deposition. The SAED analysis indicates that ZnO nanorod is a single crystal and is preferentially grown in [0001] direction. The deconvoluted O 1s peak at 531.5 eV in XPS analysis is associated with oxygen deficient, revealing that the ZnO nanorods contain many oxygen vacancies. This observation is further supported by the finding of the small I uv/I vis ratio, that is, ~1 in the photoluminescence analysis. The growth of ZnO nanorods on stainless steel wire was governed by vapour-solid mechanism as there were no Fe particles observed at the tips of the nanorods. The photodegradation of Rhodamine B solution by ZnO nanorods followed the first-order kinetics. PMID:24587716

  12. Band offsets and growth mode of molecular beam epitaxy grown MgO (111) on GaN (0002) by x-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Craft, H. S.; Collazo, R.; Losego, M. D.; Mita, S.; Sitar, Z.; Maria, J.-P.

    2007-10-01

    MgO is a proposed dielectric for use as a tunneling barrier in devices integrating GaN and ferroelectric oxides. In this study, we present data regarding the growth mode and band offsets of MgO grown epitaxially on GaN (0002) surfaces using molecular beam epitaxy. Using in situ x-ray photoelectron spectroscopy (XPS) and molecular beam epitaxy, we determine, from sequential growth experiments, that the growth of MgO proceeds via the Volmer-Weber (three-dimensional) mode, and full coalescence of the film does not occur until approximately 12nm of MgO has been deposited. The observation of a three-dimensional growth mode is in agreement with previously published data. For the valence band offset, we find a value of 1.2±0.2eV, which corresponds to a 3.2eV conduction band offset. XPS measurements suggest a chemically abrupt interface and no effect on band lineup due to the slow coalescence behavior.

  13. Epitaxy of GaN in high aspect ratio nanoscale holes over silicon substrate

    NASA Astrophysics Data System (ADS)

    Wang, Kejia; Wang, Anqi; Ji, Qingbin; Hu, Xiaodong; Xie, Yahong; Sun, Ying; Cheng, Zhiyuan

    2017-12-01

    Dislocation filtering in gallium nitride (GaN) by epitaxial growth through patterned nanoscale holes is studied. GaN grown from extremely high aspect ratio holes by metalorganic chemical vapor deposition is examined by transmission electron microscopy and high-resolution transmission electron microscopy. This selective area epitaxial growth method with a reduced epitaxy area and an increased depth to width ratio of holes leads to effective filtering of dislocations within the hole and improves the quality of GaN significantly.

  14. Optimization of GaN Nanorod Growth Conditions for Coalescence Overgrowth

    DTIC Science & Technology

    2016-02-04

    GaN core and QW deposition, an NR LED array can be implemented by covering the NRs with a transparent conductor . It has been demonstrated that the...with a transparent conductor . It has been demonstrated that the optical and electrical performances of an NR LED array can be comparable to those of a...a process of buffered oxide etching for removing this SiNx layer on the sidewalls is required before sidewall QW deposition. Nevertheless, the

  15. Nitridation- and Buffer-Layer-Free Growth of [1100]-Oriented GaN Domains on m-Plane Sapphire Substrates by Using Hydride Vapor Phase Epitaxy

    NASA Astrophysics Data System (ADS)

    Seo, Yeonwoo; Lee, Sanghwa; Jue, Miyeon; Yoon, Hansub; Kim, Chinkyo

    2012-12-01

    Over a wide range of growth conditions, GaN domains were grown on bare m-plane sapphire substrates by using hydride vapor phase epitaxy (HVPE), and the relation between these growth conditions and three possible preferred crystallographic orientations ([1100], [1103], [1122]) of GaN domains was investigated. In contrast with the previous reports by other groups, our results revealed that preferentially [1100]-oriented GaN domains were grown without low-temperature nitridation or a buffer layer, and that the growth condition of preferentially [1100]-oriented GaN was insensitive to V/III ratio.

  16. Growth optimization and characterization of GaN epilayers on multifaceted (111) surfaces etched on Si(100) substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ansah-Antwi, KwaDwo Konadu, E-mail: kakadee@gmail.com; Chua, Soo Jin; Department of Electrical and Computer Engineering, National University of Singapore, E4-5-45, 4 Engineering Drive 3, Singapore 117576

    2015-11-15

    The four nearest Si(111) multifaceted sidewalls were exposed inside an array of 3 μm-wide square holes patterned on an Si(100) substrate, and this patterned Si(100) substrate was used as a substrate for the deposition of a gallium nitride (GaN) epilayer. Subsequently the effect that the growth pressure, the etched-hole profiles, and the etched-hole arrangement had upon the quality of the as-grown GaN was investigated. The coalescence of the as-grown GaN epilayer on the exposed Si(111) facets was observed to be enhanced with reduced growth pressure from 120 to 90 Torr. A larger Si(001) plane area at the bottom of the etched holesmore » resulted in bidirectional GaN domains, which resulted in poor material quality. The bidirectional GaN domains were observed as two sets of six peaks via a high-resolution x-ray diffraction phi scan of the GaN(10-11) reflection. It was also shown that a triangular array of etched holes was more desirable than square arrays of etched holes for the growth high-quality and continuous GaN films.« less

  17. Determination of carrier diffusion length in GaN

    NASA Astrophysics Data System (ADS)

    Hafiz, Shopan; Zhang, Fan; Monavarian, Morteza; Avrutin, Vitaliy; Morkoç, Hadis; Özgür, Ümit; Metzner, Sebastian; Bertram, Frank; Christen, Jürgen; Gil, Bernard

    2015-01-01

    Diffusion lengths of photo-excited carriers along the c-direction were determined from photoluminescence (PL) and cross-sectional cathodoluminescence (CL) measurements in p- and n-type GaN epitaxial layers grown on c-plane sapphire by metal-organic chemical vapor deposition. The investigated samples incorporate a 6 nm thick In0.15Ga0.85N active layer capped with either 500 nm p-GaN or 1500 nm n-GaN. The top GaN layers were etched in steps and PL from the InGaN active region and the underlying layers was monitored as a function of the top GaN thickness upon photo-generation near the surface region by above bandgap excitation. Taking into consideration the absorption in the top GaN layer as well as active and underlying layers, the diffusion lengths at 295 K and at 15 K were measured to be 93 ± 7 nm and 70 ± 7 nm for Mg-doped p-type GaN and 432 ± 30 nm and 316 ± 30 nm for unintentionally doped n-type GaN, respectively, at photogenerated carrier densities of 4.2 × 1018 cm-3 using PL spectroscopy. CL measurements of the unintentionally doped n-type GaN layer at much lower carrier densities of 1017 cm-3 revealed a longer diffusion length of 525 ± 11 nm at 6 K.

  18. Spin injection in epitaxial MnGa(111)/GaN(0001) heterostructures

    NASA Astrophysics Data System (ADS)

    Zube, Christian; Malindretos, Joerg; Watschke, Lars; Zamani, Reza R.; Disterheft, David; Ulbrich, Rainer G.; Rizzi, Angela; Iza, Michael; Keller, Stacia; DenBaars, Steven P.

    2018-01-01

    Ferromagnetic MnGa(111) layers were grown on GaN(0001) by molecular beam epitaxy. MnGa/GaN Schottky diodes with a doping level of around n = 7 × 1018 cm-3 were fabricated to achieve single step tunneling across the metal/semiconductor junction. Below the GaN layer, a thin InGaN quantum well served as optical spin detector ("spin-LED"). For electron spin injection from MnGa into GaN and subsequent spin transport through a 45 nm (70 nm) thick GaN layer, we observe a circular polarization of 0.3% (0.2%) in the electroluminescence at 80 K. Interface mixing, spin polarization losses during electrical transport in the GaN layer, and spin relaxation in the InGaN quantum well are discussed in relation with the low value of the optically detected spin polarization.

  19. The origin of the residual conductivity of GaN films on ferroelectric materials

    NASA Astrophysics Data System (ADS)

    Lee, Kyoung-Keun; Cai, Zhuhua; Ziemer, Katherine; Doolittle, William Alan

    2009-08-01

    In this paper, the origin of the conductivity of GaN films grown on ferroelectric materials was investigated using XPS, AES, and XRD analysis tools. Depth profiles confirmed the existence of impurities in the GaN film originating from the substrates. Bonding energy analysis from XPS and AES verified that oxygen impurities from the substrates were the dominant origin of the conductivity of the GaN film. Furthermore, Ga-rich GaN films have a greater chance of enhancing diffusion of lithium oxide from the substrates, resulting in more substrate phase separation and a wider inter-mixed region confirmed by XRD. Therefore, the direct GaN film growth on ferroelectric materials causes impurity diffusion from the substrates, resulting in highly conductive GaN films. Future work needs to develop non-conductive buffer layers for impurity suppression in order to obtain highly resistive GaN films.

  20. Interfacial Structure and Chemistry of GaN on Ge(111)

    NASA Astrophysics Data System (ADS)

    Zhang, Siyuan; Zhang, Yucheng; Cui, Ying; Freysoldt, Christoph; Neugebauer, Jörg; Lieten, Ruben R.; Barnard, Jonathan S.; Humphreys, Colin J.

    2013-12-01

    The interface of GaN grown on Ge(111) by plasma-assisted molecular beam epitaxy is resolved by aberration corrected scanning transmission electron microscopy. A novel interfacial structure with a 5∶4 closely spaced atomic bilayer is observed that explains why the interface is flat, crystalline, and free of GeNx. Density functional theory based total energy calculations show that the interface bilayer contains Ge and Ga atoms, with no N atoms. The 5∶4 bilayer at the interface has a lower energy than a direct stacking of GaN on Ge(111) and enables the 5∶4 lattice-matching growth of GaN.

  1. Formation of spherical-shaped GaN and InN quantum dots on curved SiN/Si surface.

    PubMed

    Choi, Ilgyu; Lee, Hyunjoong; Lee, Cheul-Ro; Jeong, Kwang-Un; Kim, Jin Soo

    2018-08-03

    This paper reports the formation of GaN and InN quantum dots (QDs) with symmetric spherical shapes, grown on SiN/Si(111). Spherical QDs are grown by modulating initial growth behavior via gallium and indium droplets functioning as nucleation sites for QDs. Field-emission scanning electron microscope (FE-SEM) images show that GaN and InN QDs are formed on curved SiN/Si(111) instead of on a flat surface similar to balls on a latex mattress. This is considerably different from the structural properties of In(Ga)As QDs grown on GaAs or InP. In addition, considering the shape of the other III-V semiconductor QDs, the QDs in this study are very close to the ideal shape of zero-dimensional nanostructures. Transmission-electron microscope images show the formation of symmetric GaN and InN QDs with a round shape, agreeing well with the FE-SEM results. Compared to other III-V semiconductor QDs, the unique structural properties of Si-based GaN and InN QDs are strongly related to the modulation in the initial nucleation characteristics due to the presence of droplets, the degree of lattice mismatch between GaN or InN and SiN/Si(111), and the melt-back etching phenomenon.

  2. Lattice distortions in GaN on sapphire using the CBED-HOLZ technique.

    PubMed

    Sridhara Rao, D V; McLaughlin, K; Kappers, M J; Humphreys, C J

    2009-09-01

    The convergent beam electron diffraction (CBED) methodology was developed to investigate the lattice distortions in wurtzite gallium nitride (GaN) from a single zone-axis pattern. The methodology enabled quantitative measurements of lattice distortions (alpha, beta, gamma and c) in transmission electron microscope (TEM) specimens of a GaN film grown on (0,0,0,1) sapphire by metal-organic vapour-phase epitaxy. The CBED patterns were obtained at different distances from the GaN/sapphire interface. The results show that GaN is triclinic above the interface with an increased lattice parameter c. At 0.85 microm from the interface, alpha=90 degrees , beta=8905 degrees and gamma=11966 degrees . The GaN lattice relaxes steadily back to hexagonal further away from the sapphire substrate. The GaN distortions are mainly confined to the initial stages of growth involving the growth and the coalescence of 3D GaN islands.

  3. Surface potential barrier in m-plane GaN studied by contactless electroreflectance

    NASA Astrophysics Data System (ADS)

    Janicki, Lukasz; Misiewicz, Jan; Cywiński, Grzegorz; Sawicka, Marta; Skierbiszewski, Czeslaw; Kudrawiec, Robert

    2016-02-01

    Contactless electroreflectance (CER) is used to study the surface potential barrier in m-plane GaN UN+ [GaN (d = 20,30,50,70 nm)/GaN:Si] structures grown by using molecular beam epitaxy. Clear bandgap-related transitions followed by Franz-Keldysh oscillations (FKO) have been observed in the CER spectra of all samples at room temperature. The built-in electric fields in the undoped cap layers have been determined from the FKO period. From the built-in electric field and the undoped GaN layer thickness, the Fermi level location at the air-exposed m-plane GaN surface has been estimated as 0.42 ± 0.05 eV below the conduction band.

  4. Growth of High-Density Zinc Oxide Nanorods on Porous Silicon by Thermal Evaporation

    PubMed Central

    Rusli, Nurul Izni; Tanikawa, Masahiro; Mahmood, Mohamad Rusop; Yasui, Kanji; Hashim, Abdul Manaf

    2012-01-01

    The formation of high-density zinc oxide (ZnO) nanorods on porous silicon (PS) substrates at growth temperatures of 600–1000 °C by a simple thermal evaporation of zinc (Zn) powder in the presence of oxygen (O2) gas was systematically investigated. The high-density growth of ZnO nanorods with (0002) orientation over a large area was attributed to the rough surface of PS, which provides appropriate planes to promote deposition of Zn or ZnOx seeds as nucleation sites for the subsequent growth of ZnO nanorods. The geometrical morphologies of ZnO nanorods are determined by the ZnOx seed structures, i.e., cluster or layer structures. The flower-like hexagonal-faceted ZnO nanorods grown at 600 °C seem to be generated from the sparsely distributed ZnOx nanoclusters. Vertically aligned hexagonal-faceted ZnO nanorods grown at 800 °C may be inferred from the formation of dense arrays of ZnOx clusters. The formation of disordered ZnO nanorods formed at 1000 °C may due to the formation of a ZnOx seed layer. The growth mechanism involved has been described by a combination of self-catalyzed vapor-liquid-solid (VLS) and vapor-solid (VS) mechanism. The results suggest that for a more precise study on the growth of ZnO nanostructures involving the introduction of seeds, the initial seed structures must be taken into account given their significant effects.

  5. Chemical lift-off of (11-22) semipolar GaN using periodic triangular cavities

    NASA Astrophysics Data System (ADS)

    Jeon, Dae-Woo; Lee, Seung-Jae; Jeong, Tak; Baek, Jong Hyeob; Park, Jae-Woo; Jang, Lee-Woon; Kim, Myoung; Lee, In-Hwan; Ju, Jin-Woo

    2012-01-01

    Chemical lift-off of (11-22) semipolar GaN using triangular cavities was investigated. The (11-22) semipolar GaN was grown using epitaxial lateral overgrowth by metal-organic chemical vapor deposition on m-plane sapphire, in such a way as to keep N terminated surface of c-plane GaN exposed in the cavities. After regrowing 300 μm thick (11-22) semipolar GaN by hydride vapor phase epitaxy for a free-standing (11-22) semipolar GaN substrate, the triangular cavities of the templates were chemically etched in molten KOH. The (000-2) plane in the triangular cavities can be etched in the [0002] direction with the high lateral etching rate of 196 μm/min. The resulting free-standing (11-22) semipolar GaN substrate was confirmed to be strain-free by the Raman analysis.

  6. Curvature and bow of bulk GaN substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foronda, Humberto M.; Young, Erin C.; Robertson, Christian A.

    2016-07-21

    We investigate the bow of free standing (0001) oriented hydride vapor phase epitaxy grown GaN substrates and demonstrate that their curvature is consistent with a compressive to tensile stress gradient (bottom to top) present in the substrates. The origin of the stress gradient and the curvature is attributed to the correlated inclination of edge threading dislocation (TD) lines away from the [0001] direction. A model is proposed and a relation is derived for bulk GaN substrate curvature dependence on the inclination angle and the density of TDs. The model is used to analyze the curvature for commercially available GaN substratesmore » as determined by high resolution x-ray diffraction. The results show a close correlation between the experimentally determined parameters and those predicted from theoretical model.« less

  7. Optical and Structural Properties of Microcrystalline GaN on an Amorphous Substrate Prepared by a Combination of Molecular Beam Epitaxy and Metal-Organic Chemical Vapor Deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Min, Jung-Wook; Hwang, Hyeong-Yong; Kang, Eun-Kyu

    2016-05-01

    Microscale platelet-shaped GaN grains were grown on amorphous substrates by a combined epitaxial growth method of molecular beam epitaxy (MBE) and metal-organic chemical vapor deposition (MOCVD). First, MBE GaN was grown on an amorphous substrate as a pre-orienting layer and its structural properties were investigated. Second, MOCVD grown GaN samples using the different growth techniques of planar and selective area growth (SAG) were comparatively investigated by transmission electron microscopy (TEM), cathodoluminescence (CL), and photoluminescence (PL). In MOCVD planar GaN, strong bound exciton peaks dominated despite the high density of the threading dislocations (TDs). In MOCVD SAG GaN, on the othermore » hand, TDs were clearly reduced with bending, but basal stacking fault (BSF) PL peaks were observed at 3.42 eV. The combined epitaxial method not only provides a deep understanding of the growth behavior but also suggests an alternative approach for the growth of GaN on amorphous substances.« less

  8. Structural and optical inhomogeneities of Fe doped GaN grown by hydride vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Malguth, E.; Hoffmann, A.; Phillips, M. R.

    2008-12-01

    We present the results of cathodoluminescence experiments on a set of Fe doped GaN samples with Fe concentrations of 5×1017, 1×1018, 1×1019, and 2×1020 cm-3. These specimens were grown by hydride vapor phase epitaxy with different concentrations of Fe. The introduction of Fe is found to promote the formation of structurally inhomogeneous regions of increased donor concentration. We detect a tendency of these regions to form hexagonal pits at the surface. The locally increased carrier concentration leads to enhanced emission from the band edge and the internal T41(G)-A61(S) transition of Fe3+. In these areas, the luminescence forms a finely structured highly symmetric pattern, which is attributed to defect migration along strain-field lines. Fe doping is found to quench the yellow defect luminescence band and to enhance the blue luminescence band due to the lowering of the Fermi level and the formation of point defects, respectively.

  9. Dielectric properties of highly resistive GaN crystals grown by ammonothermal method at microwave frequencies

    NASA Astrophysics Data System (ADS)

    Krupka, Jerzy; Zajåc, Marcin; Kucharski, Robert; Gryglewski, Daniel

    2016-03-01

    Permittivity, the dielectric loss tangent and conductivity of semi-insulating Gallium Nitride crystals have been measured as functions of frequency from 10 GHz to 50 GHz and temperature from 295 to 560 K employing quasi TE0np mode dielectric resonator technique. Crystals were grown using ammonothermal method. Two kinds of doping were used to obtain high resistivity crystals; one with deep acceptors in form of transition metal ions, and the other with shallow Mg acceptors. The sample compensated with transition metal ions exhibited semi-insulating behavior in the whole temperature range. The sample doped with Mg acceptors remained semi-insulating up to 390 K. At temperatures exceeding 390 K the conductivity term in the total dielectric loss tangent of Mg compensated sample becomes dominant and it increases exponentially with activation energy of 1.14 eV. It has been proved that ammonothermal method with appropriate doping allows growth of high quality, temperature stable semi-insulating GaN crystals.

  10. Structural characterization of bulk GaN crystals grown under high hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Liliental-Weber, Zuzanna; Kisielowski, C.; Ruvimov, S.; Chen, Y.; Washburn, J.; Grzegory, I.; Bockowski, M.; Jun, J.; Porowski, S.

    1996-09-01

    This paper describes TEM characterization of bulk GaN crystals grown at 1500-1800Kin the form of plates from a solution of atomic nitrogen in liquid gallium under high nitrogen pressure (up to 20 kbars). The x-ray rocking curves for these crystals were in the range of 20-30 arc-sec. The plate thickness along the c axis was about 100 times smaller than the nonpolar growth directions. A substantial difference in material quality was observed on the opposite sides of the plates normal to the c direction. On one side the surface was atomically flat, while on the other side the surface was rough, with pyramidal features up to 100 nm high. The polarity of the crystals was determined using convergent-beam electron diffraction. The results showed that, regarding the long bond between Ga and N along the c-axis, Ga atoms were found to be closer to the flat side of the crystal, while N atoms were found to be closer to the rough side. Near the rough side, within 1/10 to 1/4 of the plate thickness, there was a high density of planar defects (stacking faults and dislocation loops decorated by Ga/void precipitates). A model explaining the defect formation is proposed.

  11. Transient atomic behavior and surface kinetics of GaN

    NASA Astrophysics Data System (ADS)

    Moseley, Michael; Billingsley, Daniel; Henderson, Walter; Trybus, Elaissa; Doolittle, W. Alan

    2009-07-01

    An in-depth model for the transient behavior of metal atoms adsorbed on the surface of GaN is developed. This model is developed by qualitatively analyzing transient reflection high energy electron diffraction (RHEED) signals, which were recorded for a variety of growth conditions of GaN grown by molecular-beam epitaxy (MBE) using metal-modulated epitaxy (MME). Details such as the initial desorption of a nitrogen adlayer and the formation of the Ga monolayer, bilayer, and droplets are monitored using RHEED and related to Ga flux and shutter cycles. The suggested model increases the understanding of the surface kinetics of GaN, provides an indirect method of monitoring the kinetic evolution of these surfaces, and introduces a novel method of in situ growth rate determination.

  12. Nanoscopic insights into the effect of silicon on core-shell InGaN/GaN nanorods: Luminescence, composition, and structure

    NASA Astrophysics Data System (ADS)

    Ren, Christopher X.; Tang, Fengzai; Oliver, Rachel A.; Zhu, Tongtong

    2018-01-01

    GaN-based nanorods and nanowires have recently shown great potential as a platform for future energy-efficient photonic and optoelectronic applications, such as light emitting diodes and nanolasers. Currently, the most industrially scalable method of growing III-nitride nanorods remains metal-organic vapour phase epitaxy: whilst this growth method is often used in conjunction with extrinsic metallic catalyst particles, these particles can introduce unwanted artifacts in the nanorods such as stacking faults. In this paper, we examine the catalyst-free growth of GaN/InGaN core-shell nanorods by metal-organic vapor phase epitaxy for optoelectronic applications using silane to enhance the vertical growth of the nanorods. We find that both the silane concentration and exposure time can greatly affect the nanorod properties, and that larger concentrations and longer exposure times can severely degrade the nanorod structure and thus result in reduced emission from the InGaN QW shell. Finally, we report that the mechanism behind the effect of silane on the nanorod structure is the unintentional formation of an SiNx interlayer following completion of the growth of the nanorod core. This interlayer induces the growth of GaN islands on the nanorod sidewalls, the spatial distribution of which can affect their subsequent coalescence during the lateral growth stages and result in non-uniformity in the nanorod structure. This suggests that careful control of the silane flow must be exerted during growth to achieve both high aspect ratio nanorods and uniform emission along the length of the nanorod.

  13. Kinetic-limited etching of magnesium doping nitrogen polar GaN in potassium hydroxide solution

    NASA Astrophysics Data System (ADS)

    Jiang, Junyan; Zhang, Yuantao; Chi, Chen; Yang, Fan; Li, Pengchong; Zhao, Degang; Zhang, Baolin; Du, Guotong

    2016-01-01

    KOH based wet etchings were performed on both undoped and Mg-doped N-polar GaN films grown by metal-organic chemical vapor deposition. It is found that the etching rate for Mg-doped N-polar GaN gets slow obviously compared with undoped N-polar GaN. X-ray photoelectron spectroscopy analysis proved that Mg oxide formed on N-polar GaN surface is insoluble in KOH solution so that kinetic-limited etching occurs as the etching process goes on. The etching process model of Mg-doped N-polar GaN in KOH solution is tentatively purposed using a simplified ideal atomic configuration. Raman spectroscopy analysis reveals that Mg doping can induce tensile strain in N-polar GaN films. Meanwhile, p-type N-polar GaN film with a hole concentration of 2.4 ÿ 1017 cm⿿3 was obtained by optimizing bis-cyclopentadienyl magnesium flow rates.

  14. Comparative study of ZnO nanorods and thin films for chemical and biosensing applications and the development of ZnO nanorods based potentiometric strontium ion sensor

    NASA Astrophysics Data System (ADS)

    Khun, K.; Ibupoto, Z. H.; Chey, C. O.; Lu, Jun.; Nur, O.; Willander, M.

    2013-03-01

    In this study, the comparative study of ZnO nanorods and ZnO thin films were performed regarding the chemical and biosensing properties and also ZnO nanorods based strontium ion sensor is proposed. ZnO nanorods were grown on gold coated glass substrates by the hydrothermal growth method and the ZnO thin films were deposited by electro deposition technique. ZnO nanorods and thin films were characterised by field emission electron microscopy [FESEM] and X-ray diffraction [XRD] techniques and this study has shown that the grown nanostructures are highly dense, uniform and exhibited good crystal quality. Moreover, transmission electron microscopy [TEM] was used to investigate the quality of ZnO thin film and we observed that ZnO thin film was comprised of nano clusters. ZnO nanorods and thin films were functionalised with selective strontium ionophore salicylaldehyde thiosemicarbazone [ST] membrane, galactose oxidase, and lactate oxidase for the detection of strontium ion, galactose and L-lactic acid, respectively. The electrochemical response of both ZnO nanorods and thin films sensor devices was measured by using the potentiometric method. The strontium ion sensor has exhibited good characteristics with a sensitivity of 28.65 ± 0.52 mV/decade, for a wide range of concentrations from 1.00 × 10-6 to 5.00 × 10-2 M, selectivity, reproducibility, stability and fast response time of 10.00 s. The proposed strontium ion sensor was used as indicator electrode in the potentiometric titration of strontium ion versus ethylenediamine tetra acetic acid [EDTA]. This comparative study has shown that ZnO nanorods possessed better performance with high sensitivity and low limit of detection due to high surface area to volume ratio as compared to the flat surface of ZnO thin films.

  15. Epitaxial Growth of GaN Films by Pulse-Mode Hot-Mesh Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Komae, Yasuaki; Yasui, Kanji; Suemitsu, Maki; Endoh, Tetsuo; Ito, Takashi; Nakazawa, Hideki; Narita, Yuzuru; Takata, Masasuke; Akahane, Tadashi

    2009-07-01

    Intermittent gas supplies for hot-mesh chemical vapor deposition (CVD) for the epitaxial growth of gallium nitride (GaN) films were investigated to improve film crystallinity and optical properties. The GaN films were deposited on SiC/Si(111) substrates using an alternating-source gas supply or an intermittent supply of source gases such as ammonia (NH3) and trimethylgallium (TMG) in hot-mesh CVD after deposition of an aluminum nitride (AlN) buffer layer. The AlN layer was deposited using NH3 and trimethylaluminum (TMA) on a SiC layer grown by carbonization of a Si substrate using propane (C3H8). GaN films were grown on the AlN layer by a reaction between NHx radicals generated on a ruthenium (Ru)-coated tungsten (W) mesh and TMG molecules. After testing various gas supply modes, GaN films with good crystallinity and surface morphology were obtained using an intermittent supply of TMG and a continuous supply of NH3 gas. An optimal interval for the TMG gas supply was also obtained for the apparatus employed.

  16. Characteristics of Mg-doped and In-Mg co-doped p-type GaN epitaxial layers grown by metal organic chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Chung, S. J.; Senthil Kumar, M.; Lee, Y. S.; Suh, E.-K.; An, M. H.

    2010-05-01

    Mg-doped and In-Mg co-doped p-type GaN epilayers were grown using the metal organic chemical vapour deposition technique. The effect of In co-doping on the physical properties of p-GaN layer was examined by high resolution x-ray diffraction (HRXRD), transmission electron microscopy (TEM), Hall effect, photoluminescence (PL) and persistent photoconductivity (PPC) at room temperature. An improved crystalline quality and a reduction in threading dislocation density are evidenced upon In doping in p-GaN from HRXRD and TEM images. Hole conductivity, mobility and carrier density also significantly improved by In co-doping. PL studies of the In-Mg co-doped sample revealed that the peak position is blue shifted to 3.2 eV from 2.95 eV of conventional p-GaN and the PL intensity is increased by about 25%. In addition, In co-doping significantly reduced the PPC effect in p-type GaN layers. The improved electrical and optical properties are believed to be associated with the active participation of isolated Mg impurities.

  17. Thermal quenching of the yellow luminescence in GaN

    NASA Astrophysics Data System (ADS)

    Reshchikov, M. A.; Albarakati, N. M.; Monavarian, M.; Avrutin, V.; Morkoç, H.

    2018-04-01

    We observed varying thermal quenching behavior of the yellow luminescence band near 2.2 eV in different GaN samples. In spite of the different behavior, the yellow band in all the samples is caused by the same defect—the YL1 center. In conductive n-type GaN, the YL1 band quenches with exponential law, and the Arrhenius plot reveals an ionization energy of ˜0.9 eV for the YL1 center. In semi-insulating GaN, an abrupt and tunable quenching of the YL1 band is observed, where the apparent activation energy in the Arrhenius plot is not related to the ionization energy of the defect. In this case, the ionization energy can be found by analyzing the shift of the characteristic temperature of PL quenching with excitation intensity. We conclude that only one defect, namely, the YL1 center, is responsible for the yellow band in undoped and doped GaN samples grown by different techniques.

  18. Ultralow threading dislocation density in GaN epilayer on near-strain-free GaN compliant buffer layer and its applications in hetero-epitaxial LEDs

    PubMed Central

    Shih, Huan-Yu; Shiojiri, Makoto; Chen, Ching-Hsiang; Yu, Sheng-Fu; Ko, Chung-Ting; Yang, Jer-Ren; Lin, Ray-Ming; Chen, Miin-Jang

    2015-01-01

    High threading dislocation (TD) density in GaN-based devices is a long unresolved problem because of the large lattice mismatch between GaN and the substrate, which causes a major obstacle for the further improvement of next-generation high-efficiency solid-state lighting and high-power electronics. Here, we report InGaN/GaN LEDs with ultralow TD density and improved efficiency on a sapphire substrate, on which a near strain-free GaN compliant buffer layer was grown by remote plasma atomic layer deposition. This “compliant” buffer layer is capable of relaxing strain due to the absorption of misfit dislocations in a region within ~10 nm from the interface, leading to a high-quality overlying GaN epilayer with an unusual TD density as low as 2.2 × 105 cm−2. In addition, this GaN compliant buffer layer exhibits excellent uniformity up to a 6” wafer, revealing a promising means to realize large-area GaN hetero-epitaxy for efficient LEDs and high-power transistors. PMID:26329829

  19. Ultralow threading dislocation density in GaN epilayer on near-strain-free GaN compliant buffer layer and its applications in hetero-epitaxial LEDs.

    PubMed

    Shih, Huan-Yu; Shiojiri, Makoto; Chen, Ching-Hsiang; Yu, Sheng-Fu; Ko, Chung-Ting; Yang, Jer-Ren; Lin, Ray-Ming; Chen, Miin-Jang

    2015-09-02

    High threading dislocation (TD) density in GaN-based devices is a long unresolved problem because of the large lattice mismatch between GaN and the substrate, which causes a major obstacle for the further improvement of next-generation high-efficiency solid-state lighting and high-power electronics. Here, we report InGaN/GaN LEDs with ultralow TD density and improved efficiency on a sapphire substrate, on which a near strain-free GaN compliant buffer layer was grown by remote plasma atomic layer deposition. This "compliant" buffer layer is capable of relaxing strain due to the absorption of misfit dislocations in a region within ~10 nm from the interface, leading to a high-quality overlying GaN epilayer with an unusual TD density as low as 2.2 × 10(5) cm(-2). In addition, this GaN compliant buffer layer exhibits excellent uniformity up to a 6" wafer, revealing a promising means to realize large-area GaN hetero-epitaxy for efficient LEDs and high-power transistors.

  20. Gallium Nitride (GaN) High Power Electronics (FY11)

    DTIC Science & Technology

    2012-01-01

    GaN films grown by metal-organic chemical vapor deposition (MOCVD) and ~1010 in films grown by molecular beam epitaxy (MBE) when they are deposited...inductively coupled plasma I-V current-voltage L-HVPE low doped HVPE MBE molecular beam epitaxy MOCVD metal-organic chemical vapor deposition...figure of merit HEMT high electron mobility transistor H-HVPE high doped HVPE HPE high power electronics HVPE hydride vapor phase epitaxy ICP

  1. Arbitrary cross-section SEM-cathodoluminescence imaging of growth sectors and local carrier concentrations within micro-sampled semiconductor nanorods

    PubMed Central

    Watanabe, Kentaro; Nagata, Takahiro; Oh, Seungjun; Wakayama, Yutaka; Sekiguchi, Takashi; Volk, János; Nakamura, Yoshiaki

    2016-01-01

    Future one-dimensional electronics require single-crystalline semiconductor free-standing nanorods grown with uniform electrical properties. However, this is currently unrealistic as each crystallographic plane of a nanorod grows at unique incorporation rates of environmental dopants, which forms axial and lateral growth sectors with different carrier concentrations. Here we propose a series of techniques that micro-sample a free-standing nanorod of interest, fabricate its arbitrary cross-sections by controlling focused ion beam incidence orientation, and visualize its internal carrier concentration map. ZnO nanorods are grown by selective area homoepitaxy in precursor aqueous solution, each of which has a (0001):+c top-plane and six {1–100}:m side-planes. Near-band-edge cathodoluminescence nanospectroscopy evaluates carrier concentration map within a nanorod at high spatial resolution (60 nm) and high sensitivity. It also visualizes +c and m growth sectors at arbitrary nanorod cross-section and history of local transient growth events within each growth sector. Our technique paves the way for well-defined bottom-up nanoelectronics. PMID:26881966

  2. Photoluminescence transient study of surface defects in ZnO nanorods grown by chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Barbagiovanni, E. G.; Strano, V.; Franzò, G.; Crupi, I.; Mirabella, S.

    2015-03-01

    Two deep level defects (2.25 and 2.03 eV) associated with oxygen vacancies (Vo) were identified in ZnO nanorods (NRs) grown by low cost chemical bath deposition. A transient behaviour in the photoluminescence (PL) intensity of the two Vo states was found to be sensitive to the ambient environment and to NR post-growth treatment. The largest transient was found in samples dried on a hot plate with a PL intensity decay time, in air only, of 23 and 80 s for the 2.25 and 2.03 eV peaks, respectively. Resistance measurements under UV exposure exhibited a transient behaviour in full agreement with the PL transient, indicating a clear role of atmospheric O2 on the surface defect states. A model for surface defect transient behaviour due to band bending with respect to the Fermi level is proposed. The results have implications for a variety of sensing and photovoltaic applications of ZnO NRs.

  3. GaN thin films growth and their application in photocatalytic removal of sulforhodamine B from aqueous solution under UV pulsed laser irradiation.

    PubMed

    Gondal, Mohammed A; Chang, Xiao F; Yamani, Zain H; Yang, Guo F; Ji, Guang B

    2011-01-01

    Single-crystalline Gallium Nitride (GaN) thin films were fabricated and grown by metal organic chemical vapor deposition (MOCVD) method on c-plane sapphire substrates and then characterized by high resolution-X-ray diffraction (HR-XRD) and photoluminescence (PL) measurements. The photocatalytic decomposition of Sulforhodamine B (SRB) molecules on GaN thin films was investigated under 355 nm pulsed UV laser irradiation. The results demonstrate that as-grown GaN thin films exhibited efficient degradation of SRB molecules and exhibited an excellent photocatalytic-activity-stability under UV pulsed laser exposure.

  4. Tuning the surface morphology of aluminium doped zinc oxide thin films by arrayed nanorods through chemical growth process

    NASA Astrophysics Data System (ADS)

    Devasia, Sebin; Anila, E. I.

    2018-04-01

    Here we report the growth and characterization of chemically grown aluminium doped zinc oxide nanorods on seed layers. The seed layers were prepared by chemical spray pyrolysis which acted as the growth centers. The growth duration of nanorods were varied from 3h to 12h in steps of 3h. Further, investigations on their structural, morphological, electrical and optical properties. The SEM images confirmed the hexagonal shaped nanorod arrays grown on the seed layers. Later, the x-ray diffraction measurements revealed the pure zinc oxide phase of the samples. Photoluminescence and photoconductivity studies were carried out to analyze the potential of its optoelectronic properties.

  5. Valence band offset of β-Ga2O3/wurtzite GaN heterostructure measured by X-ray photoelectron spectroscopy.

    PubMed

    Wei, Wei; Qin, Zhixin; Fan, Shunfei; Li, Zhiwei; Shi, Kai; Zhu, Qinsheng; Zhang, Guoyi

    2012-10-10

    A sample of the β-Ga2O3/wurtzite GaN heterostructure has been grown by dry thermal oxidation of GaN on a sapphire substrate. X-ray diffraction measurements show that the β-Ga2O3 layer was formed epitaxially on GaN. The valence band offset of the β-Ga2O3/wurtzite GaN heterostructure is measured by X-ray photoelectron spectroscopy. It is demonstrated that the valence band of the β-Ga2O3/GaN structure is 1.40 ± 0.08 eV.

  6. Oxygen adsorption and incorporation at irradiated GaN(0001) and GaN(0001¯) surfaces: First-principles density-functional calculations

    NASA Astrophysics Data System (ADS)

    Sun, Qiang; Selloni, Annabella; Myers, T. H.; Doolittle, W. Alan

    2006-11-01

    Density functional theory calculations of oxygen adsorption and incorporation at the polar GaN(0001) and GaN(0001¯) surfaces have been carried out to explain the experimentally observed reduced oxygen concentration in GaN samples grown by molecular beam epitaxy in the presence of high energy (˜10keV) electron beam irradiation [Myers , J. Vac. Sci. Technol. B 18, 2295 (2000)]. Using a model in which the effect of the irradiation is to excite electrons from the valence to the conduction band, we find that both the energy cost of incorporating oxygen impurities in deeper layers and the oxygen adatom diffusion barriers are significantly reduced in the presence of the excitation. The latter effect leads to a higher probability for two O adatoms to recombine and desorb, and thus to a reduced oxygen concentration in the irradiated samples, consistent with experimental observations.

  7. Insight into the Near-Conduction Band States at the Crystallized Interface between GaN and SiN x Grown by Low-Pressure Chemical Vapor Deposition.

    PubMed

    Liu, Xinyu; Wang, Xinhua; Zhang, Yange; Wei, Ke; Zheng, Yingkui; Kang, Xuanwu; Jiang, Haojie; Li, Junfeng; Wang, Wenwu; Wu, Xuebang; Wang, Xianping; Huang, Sen

    2018-06-12

    Constant-capacitance deep-level transient Fourier spectroscopy is utilized to characterize the interface between a GaN epitaxial layer and a SiN x passivation layer grown by low-pressure chemical vapor deposition (LPCVD). A near-conduction band (NCB) state E LP ( E C - E T = 60 meV) featuring a very small capture cross section of 1.5 × 10 -20 cm -2 was detected at 70 K at the LPCVD-SiN x /GaN interface. A partially crystallized Si 2 N 2 O thin layer was detected at the interface by high-resolution transmission electron microscopy. Based on first-principles calculations of crystallized Si 2 N 2 O/GaN slabs, it was confirmed that the NCB state E LP mainly originates from the strong interactions between the dangling bonds of gallium and its vicinal atoms near the interface. The partially crystallized Si 2 N 2 O interfacial layer might also give rise to the very small capture cross section of the E LP owing to the smaller lattice mismatch between the Si 2 N 2 O and GaN epitaxial layer and a larger mean free path of the electron in the crystallized portion compared with an amorphous interfacial layer.

  8. Synthesis of GaN by high-pressure ammonolysis of gallium triiodide

    NASA Astrophysics Data System (ADS)

    Purdy, Andrew P.; Case, Sean; Muratore, Nicole

    2003-05-01

    The ammonothermal conversion of GaI 3 to both cubic (zinc-blende) and hexagonal GaN was explored in detail. Gallium triiodide, anhydrous NH 3, and in some cases CuI or LiI co-mineralizers, were sealed in quartz tubes and heated in a pressurized autoclave from 300°C to 515°C. At hot-zone temperatures above 430°C, a deposit of mostly c-GaN collects in the upper portion of the tube, and deposits of phase-pure c-GaN were reliably produced on a 50-60 mg scale when CuI co-mineralizer was added. Crystal morphologies of these microcrystalline c-GaN products are highly dependent on growth conditions and range from triangular prisms to triangular plates, dendritic crystals, and irregular particles. Hexagonal GaN products were either in the form of microrods or micron sized prisms. Nanorods, of presumably h-GaN, also formed in some reactions in low yields, intermixed with microcrystalline c-GaN products.

  9. Deep traps in n-type GaN epilayers grown by plasma assisted molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamyczek, P.; Placzek-Popko, E.; Zielony, E.

    2014-01-14

    In this study, we present the results of investigations on Schottky Au-GaN diodes by means of conventional DLTS and Laplace DLTS methods within the temperature range of 77 K–350 K. Undoped GaN layers were grown using the plasma-assisted molecular beam epitaxy technique on commercial GaN/sapphire templates. The quality of the epilayers was studied by micro-Raman spectroscopy (μ-RS) which proved the hexagonal phase and good crystallinity of GaN epilayers as well as a slight strain. The photoluminescence spectrum confirmed a high crystal quality by intense excitonic emission but it also exhibited a blue emission band of low intensity. DLTS signal spectra revealed themore » presence of four majority traps: two high-temperature and two low-temperature peaks. Using the Laplace DLTS method and Arrhenius plots, the apparent activation energy and capture cross sections were obtained. For two high-temperature majority traps, they were equal to E{sub 1} = 0.65 eV, σ{sub 1} = 8.2 × 10{sup −16} cm{sup 2} and E{sub 2} = 0.58 eV, σ{sub 2} = 2.6 × 10{sup −15} cm{sup 2} whereas for the two low-temperature majority traps they were equal to E{sub 3} = 0.18 eV, σ{sub 3} = 9.7 × 10{sup −18} cm{sup 2} and E{sub 4} = 0.13 eV, σ{sub 4} = 9.2 × 10{sup −18} cm{sup 2}. The possible origin of the traps is discussed and the results are compared with data reported elsewhere.« less

  10. Structure Shift of GaN Among Nanowall Network, Nanocolumn, and Compact Film Grown on Si (111) by MBE.

    PubMed

    Zhong, Aihua; Fan, Ping; Zhong, Yuanting; Zhang, Dongping; Li, Fu; Luo, Jingting; Xie, Yizhu; Hane, Kazuhiro

    2018-02-13

    Structure shift of GaN nanowall network, nanocolumn, and compact film were successfully obtained on Si (111) by plasma-assisted molecular beam epitaxy (MBE). As is expected, growth of the GaN nanocolumns was observed in N-rich condition on bare Si, and the growth shifted to compact film when the Ga flux was improved. Interestingly, if an aluminum (Al) pre-deposition for 40 s was carried out prior to the GaN growth, GaN grows in the form of the nanowall network. Results show that the pre-deposited Al exits in the form of droplets with typical diameter and height of ~ 80 and ~ 6.7 nm, respectively. A growth model for the nanowall network is proposed and the growth mechanism is discussed. GaN grows in the area without Al droplets while the growth above Al droplets is hindered, resulting in the formation of continuous GaN nanowall network that removes the obstacles of nano-device fabrication.

  11. Structure Shift of GaN Among Nanowall Network, Nanocolumn, and Compact Film Grown on Si (111) by MBE

    NASA Astrophysics Data System (ADS)

    Zhong, Aihua; Fan, Ping; Zhong, Yuanting; Zhang, Dongping; Li, Fu; Luo, Jingting; Xie, Yizhu; Hane, Kazuhiro

    2018-02-01

    Structure shift of GaN nanowall network, nanocolumn, and compact film were successfully obtained on Si (111) by plasma-assisted molecular beam epitaxy (MBE). As is expected, growth of the GaN nanocolumns was observed in N-rich condition on bare Si, and the growth shifted to compact film when the Ga flux was improved. Interestingly, if an aluminum (Al) pre-deposition for 40 s was carried out prior to the GaN growth, GaN grows in the form of the nanowall network. Results show that the pre-deposited Al exits in the form of droplets with typical diameter and height of 80 and 6.7 nm, respectively. A growth model for the nanowall network is proposed and the growth mechanism is discussed. GaN grows in the area without Al droplets while the growth above Al droplets is hindered, resulting in the formation of continuous GaN nanowall network that removes the obstacles of nano-device fabrication.

  12. Impact of substrate off-angle on the m-plane GaN Schottky diodes

    NASA Astrophysics Data System (ADS)

    Yamada, Hisashi; Chonan, Hiroshi; Takahashi, Tokio; Shimizu, Mitsuaki

    2018-04-01

    We investigated the effects of the substrate off-angle on the m-plane GaN Schottky diodes. GaN epitaxial layers were grown by metal-organic chemical vapor deposition on m-plane GaN substrates having an off-angle of 0.1, 1.1, 1.7, or 5.1° toward [000\\bar{1}]. The surface of the GaN epitaxial layers on the 0.1°-off substrate consisted of pyramidal hillocks and contained oxygen (>1017 cm-3) and carbon (>1016 cm-3) impurities. The residual carbon and oxygen impurities decreased to <1016 cm-3 when the off-angle of the m-plane GaN substrate was increased. The leakage current of the 0.1°-off m-plane GaN Schottky diodes originated from the +c facet of the pyramidal hillocks. The leakage current was efficiently suppressed through the use of an off-angle that was observed to be greater than 1.1°. The off-angle of the m-plane GaN substrate is critical in obtaining high-performance Schottky diodes.

  13. In-Doped ZnO Hexagonal Stepped Nanorods and Nanodisks as Potential Scaffold for Highly-Sensitive Phenyl Hydrazine Chemical Sensors.

    PubMed

    Umar, Ahmad; Kim, Sang Hoon; Kumar, Rajesh; Al-Assiri, Mohammad S; Al-Salami, A E; Ibrahim, Ahmed A; Baskoutas, Sotirios

    2017-11-21

    Herein, we report the growth of In-doped ZnO (IZO) nanomaterials, i.e., stepped hexagonal nanorods and nanodisks by the thermal evaporation process using metallic zinc and indium powders in the presence of oxygen. The as-grown IZO nanomaterials were investigated by several techniques in order to examine their morphological, structural, compositional and optical properties. The detailed investigations confirmed that the grown nanomaterials, i.e., nanorods and nanodisks possess well-crystallinity with wurtzite hexagonal phase and grown in high density. The room-temperature PL spectra exhibited a suppressed UV emissions with strong green emissions for both In-doped ZnO nanomaterials, i.e., nanorods and nanodisks. From an application point of view, the grown IZO nanomaterials were used as a potential scaffold to fabricate sensitive phenyl hydrazine chemical sensors based on the I-V technique. The observed sensitivities of the fabricated sensors based on IZO nanorods and nanodisks were 70.43 μA·mM -1 cm -2 and 130.18 μA·mM -1 cm -2 , respectively. For both the fabricated sensors, the experimental detection limit was 0.5 μM, while the linear range was 0.5 μM-5.0 mM. The observed results revealed that the simply grown IZO nanomaterials could efficiently be used to fabricate highly sensitive chemical sensors.

  14. Controlled growth of standing Ag nanorod arrays on bare Si substrate using glancing angle deposition for self-cleaning applications

    NASA Astrophysics Data System (ADS)

    Singh, Dhruv P.; Singh, J. P.

    2014-03-01

    A facile approach to manipulate the hydrophobicity of surface by controlled growth of standing Ag nanorod arrays is presented. Instead of following the complicated conventional method of the template-assisted growth, the morphology or particularly average diameter and number density (nanorods cm-2) of nanorods were controlled on bare Si substrate by simply varying the deposition rate during glancing angle deposition. The contact angle measurements showed that the evolution of Ag nanorods reduces the surface energy and makes an increment in the apparent water contact angle compared to the plain Ag thin film. The contact angle was found to increase for the Ag nanorod samples grown at lower deposition rates. Interestingly, the morphology of the nanorod arrays grown at very low deposition rate (1.2 Å sec-1) results in a self-cleaning superhydrophobic surface of contact angle about 157° and a small roll-off angle about 5°. The observed improvement in hydrophobicity with change in the morphology of nanorod arrays is explained as the effect of reduction in solid fraction within the framework of Cassie-Baxter model. These self-cleaning Ag nanorod arrays could have a significant impact in wide range of applications such as anti-icing coatings, sensors and solar panels.

  15. Zinc oxide nanorod clusters deposited seaweed cellulose sheet for antimicrobial activity.

    PubMed

    Bhutiya, Priyank L; Mahajan, Mayur S; Abdul Rasheed, M; Pandey, Manoj; Zaheer Hasan, S; Misra, Nirendra

    2018-06-01

    Seaweed cellulose was isolated from green seaweed Ulva fasciata using a common bleaching agent. Sheet containing porous mesh was prepared from the extracted seaweed crystalline cellulose along with zinc oxide (ZnO) nanorod clusters grown over the sheet by single step hydrothermal method. Seaweed cellulose and zinc oxide nanorod clusters deposited seaweed cellulose sheet was characterized by FT-IR, XRD, TGA, and SEM-EDX. Morphology showed that the diameter of zinc oxide nanorods were around 70nm. Zinc oxide nanorod clusters deposited on seaweed cellulose sheet gave remarkable antibacterial activity towards gram-positive (Staphylococcus aureus, Bacillus ceresus, Streptococcus thermophilis) and gram-negative (Escherichia coli, Pseudomonas aeruginous) microbes. Such deposited sheet has potential applications in pharmaceutical, biomedical, food packaging, water treatment and biotechnological industries. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Multi-angle ZnO microstructures grown on Ag nanorods array for plasmon-enhanced near-UV-blue light emitter

    NASA Astrophysics Data System (ADS)

    Pal, Anil Kumar; Bharathi Mohan, D.

    2017-10-01

    Metal enhanced ultraviolet light emission has been explored in ZnO/Ag hybrid structures prepared by hydrothermal growth of multi-angled ZnO nanorods on slanted Ag nanorods array fabricated by the thermal evaporation technique. Slanted Ag nanorods are realized to be the stacking of non-spherical Ag nanoparticles, resulting in asymmetric surface plasmon resonance spectra. The surface roughness of Ag nanorod array films significantly influences the growth mechanism of ZnO nanorods, leading to the formation of multi-angled ZnO microflowers. ZnO/Ag hybrid structures facilitate the interfacial charge transfer from Ag to ZnO with the realization of negative shift in binding energy of Ag 3d orbitals by ˜0.8 eV. These high quality ZnO nanorods in ZnO/Ag hybrid nanostructures exhibit strong ultraviolet emission in the 383-396 nm region without broad deep level emission, which can be explained by a suitable band diagram. The metal enhanced photoluminescence is witnessed mainly due to interfacial charge transfer with its dependence on surface roughness of bottom layer Ag nanorods, number density of ZnO nanorods and diversity in the interfacial area between Ag and ZnO nanorods. The existence of strong ultraviolet light with minor blue light emission and appearance of CIE shade in strong violet-blue region by ZnO/Ag hybrid structures depict exciting possibilities towards near UV-blue light emitting devices.

  17. Multi-angle ZnO microstructures grown on Ag nanorods array for plasmon-enhanced near-UV-blue light emitter.

    PubMed

    Pal, Anil Kumar; Mohan, D Bharathi

    2017-10-13

    Metal enhanced ultraviolet light emission has been explored in ZnO/Ag hybrid structures prepared by hydrothermal growth of multi-angled ZnO nanorods on slanted Ag nanorods array fabricated by the thermal evaporation technique. Slanted Ag nanorods are realized to be the stacking of non-spherical Ag nanoparticles, resulting in asymmetric surface plasmon resonance spectra. The surface roughness of Ag nanorod array films significantly influences the growth mechanism of ZnO nanorods, leading to the formation of multi-angled ZnO microflowers. ZnO/Ag hybrid structures facilitate the interfacial charge transfer from Ag to ZnO with the realization of negative shift in binding energy of Ag 3d orbitals by ∼0.8 eV. These high quality ZnO nanorods in ZnO/Ag hybrid nanostructures exhibit strong ultraviolet emission in the 383-396 nm region without broad deep level emission, which can be explained by a suitable band diagram. The metal enhanced photoluminescence is witnessed mainly due to interfacial charge transfer with its dependence on surface roughness of bottom layer Ag nanorods, number density of ZnO nanorods and diversity in the interfacial area between Ag and ZnO nanorods. The existence of strong ultraviolet light with minor blue light emission and appearance of CIE shade in strong violet-blue region by ZnO/Ag hybrid structures depict exciting possibilities towards near UV-blue light emitting devices.

  18. Determination of carrier diffusion length in p- and n-type GaN

    NASA Astrophysics Data System (ADS)

    Hafiz, Shopan; Metzner, Sebastian; Zhang, Fan; Monavarian, Morteza; Avrutin, Vitaliy; Morkoç, Hadis; Karbaum, Christopher; Bertram, Frank; Christen, Jürgen; Gil, Bernard; Özgür, Ümit

    2014-03-01

    Diffusion lengths of photo-excited carriers along the c-direction were determined from photoluminescence (PL) measurements in p- and n-type GaN epitaxial layers grown on c-plane sapphire by metal-organic chemical vapor deposition. The investigated samples incorporate a 6 nm thick In0.15Ga0.85N active layer capped with either 500 nm p- GaN or 1300 nm n-GaN. The top GaN layers were etched in steps and PL from the InGaN active region and the underlying layers was monitored as a function of the top GaN thickness upon photogeneration near the surface region by above bandgap excitation. Taking into consideration the absorption in the active and underlying layers, the diffusion lengths at 295 K and at 15 K were measured to be about 92 ± 7 nm and 68 ± 7 nm for Mg-doped p-type GaN and 432 ± 30 nm and 316 ± 30 nm for unintentionally doped n-type GaN, respectively. Cross-sectional cathodoluminescence line-scan measurement was performed on a separate sample and the diffusion length in n-type GaN was measured to be 280 nm.

  19. Undoped p-type GaN1-xSbx alloys: Effects of annealing

    NASA Astrophysics Data System (ADS)

    Segercrantz, N.; Baumgartner, Y.; Ting, M.; Yu, K. M.; Mao, S. S.; Sarney, W. L.; Svensson, S. P.; Walukiewicz, W.

    2016-12-01

    We report p-type behavior for undoped GaN1-xSbx alloys with x ≥ 0.06 grown by molecular beam epitaxy at low temperatures (≤400 °C). Rapid thermal annealing of the GaN1-xSbx films at temperatures >400 °C is shown to generate hole concentrations greater than 1019 cm-3, an order of magnitude higher than typical p-type GaN achieved by Mg doping. The p-type conductivity is attributed to a large upward shift of the valence band edge resulting from the band anticrossing interaction between localized Sb levels and extended states of the host matrix.

  20. High breakdown single-crystal GaN p-n diodes by molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Meng; Zhao, Yuning; Yan, Xiaodong

    2015-12-07

    Molecular beam epitaxy grown GaN p-n vertical diodes are demonstrated on single-crystal GaN substrates. A low leakage current <3 nA/cm{sup 2} is obtained with reverse bias voltage up to −20 V. With a 400 nm thick n-drift region, an on-resistance of 0.23 mΩ cm{sup 2} is achieved, with a breakdown voltage corresponding to a peak electric field of ∼3.1 MV/cm in GaN. Single-crystal GaN substrates with very low dislocation densities enable the low leakage current and the high breakdown field in the diodes, showing significant potential for MBE growth to attain near-intrinsic performance when the density of dislocations is low.

  1. Polarity Control of Heteroepitaxial GaN Nanowires on Diamond.

    PubMed

    Hetzl, Martin; Kraut, Max; Hoffmann, Theresa; Stutzmann, Martin

    2017-06-14

    Group III-nitride materials such as GaN nanowires are characterized by a spontaneous polarization within the crystal. The sign of the resulting sheet charge at the top and bottom facet of a GaN nanowire is determined by the orientation of the wurtzite bilayer of the different atomic species, called N and Ga polarity. We investigate the polarity distribution of heteroepitaxial GaN nanowires on different substrates and demonstrate polarity control of GaN nanowires on diamond. Kelvin Probe Force Microscopy is used to determine the polarity of individual selective area-grown and self-assembled nanowires over a large scale. At standard growth conditions, mixed polarity occurs for selective GaN nanowires on various substrates, namely on silicon, on sapphire and on diamond. To obtain control over the growth orientation on diamond, the substrate surface is modified by nitrogen and oxygen plasma exposure prior to growth, and the growth parameters are adjusted simultaneously. We find that the surface chemistry and the substrate temperature are the decisive factors for obtaining control of up to 93% for both polarity types, whereas the growth mode, namely selective area or self-assembled growth, does not influence the polarity distribution significantly. The experimental results are discussed by a model based on the interfacial bonds between the GaN nanowires, the termination layer, and the substrate.

  2. p-type zinc-blende GaN on GaAs substrates

    NASA Astrophysics Data System (ADS)

    Lin, M. E.; Xue, G.; Zhou, G. L.; Greene, J. E.; Morkoç, H.

    1993-08-01

    We report p-type cubic GaN. The Mg-doped layers were grown on vicinal (100) GaAs substrates by plasma-enhanced molecular beam epitaxy. Thermally sublimed Mg was, with N2 carrier gas, fed into an electron-cyclotron resonance source. p-type zinc-blende-structure GaN films were achieved with hole mobilities as high as 39 cm2/V s at room temperature. The cubic nature of the films were confirmed by x-ray diffractometry. The depth profile of Mg was investigated by secondary ions mass spectroscopy.

  3. Metalorganic chemical vapor deposition growth of high-mobility AlGaN/AlN/GaN heterostructures on GaN templates and native GaN substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jr-Tai, E-mail: jrche@ifm.liu.se; Hsu, Chih-Wei; Forsberg, Urban

    2015-02-28

    Severe surface decomposition of semi-insulating (SI) GaN templates occurred in high-temperature H{sub 2} atmosphere prior to epitaxial growth in a metalorganic chemical vapor deposition system. A two-step heating process with a surface stabilization technique was developed to preserve the GaN template surface. Utilizing the optimized heating process, a high two-dimensional electron gas mobility ∼2000 cm{sup 2}/V·s was obtained in a thin AlGaN/AlN/GaN heterostructure with an only 100-nm-thick GaN spacer layer homoepitaxially grown on the GaN template. This technique was also demonstrated viable for native GaN substrates to stabilize the surface facilitating two-dimensional growth of GaN layers. Very high residual silicon andmore » oxygen concentrations were found up to ∼1 × 10{sup 20 }cm{sup −3} at the interface between the GaN epilayer and the native GaN substrate. Capacitance-voltage measurements confirmed that the residual carbon doping controlled by growth conditions of the GaN epilayer can be used to successfully compensate the donor-like impurities. State-of-the-art structural properties of a high-mobility AlGaN/AlN/GaN heterostructure was then realized on a 1 × 1 cm{sup 2} SI native GaN substrate; the full width at half maximum of the X-ray rocking curves of the GaN (002) and (102) peaks are only 21 and 14 arc sec, respectively. The surface morphology of the heterostructure shows uniform parallel bilayer steps, and no morphological defects were noticeable over the entire epi-wafer.« less

  4. Ultra High p-doping Material Research for GaN Based Light Emitters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vladimir Dmitriev

    2007-06-30

    The main goal of the Project is to investigate doping mechanisms in p-type GaN and AlGaN and controllably fabricate ultra high doped p-GaN materials and epitaxial structures. Highly doped p-type GaN-based materials with low electrical resistivity and abrupt doping profiles are of great importance for efficient light emitters for solid state lighting (SSL) applications. Cost-effective hydride vapor phase epitaxial (HVPE) technology was proposed to investigate and develop p-GaN materials for SSL. High p-type doping is required to improve (i) carrier injection efficiency in light emitting p-n junctions that will result in increasing of light emitting efficiency, (ii) current spreading inmore » light emitting structures that will improve external quantum efficiency, and (iii) parameters of Ohmic contacts to reduce operating voltage and tolerate higher forward currents needed for the high output power operation of light emitters. Highly doped p-type GaN layers and AlGaN/GaN heterostructures with low electrical resistivity will lead to novel device and contact metallization designs for high-power high efficiency GaN-based light emitters. Overall, highly doped p-GaN is a key element to develop light emitting devices for the DOE SSL program. The project was focused on material research for highly doped p-type GaN materials and device structures for applications in high performance light emitters for general illumination P-GaN and p-AlGaN layers and multi-layer structures were grown by HVPE and investigated in terms of surface morphology and structure, doping concentrations and profiles, optical, electrical, and structural properties. Tasks of the project were successfully accomplished. Highly doped GaN materials with p-type conductivity were fabricated. As-grown GaN layers had concentration N{sub a}-N{sub d} as high as 3 x 10{sup 19} cm{sup -3}. Mechanisms of doping were investigated and results of material studies were reported at several International conferences

  5. Valence band offset of β-Ga2O3/wurtzite GaN heterostructure measured by X-ray photoelectron spectroscopy

    PubMed Central

    2012-01-01

    A sample of the β-Ga2O3/wurtzite GaN heterostructure has been grown by dry thermal oxidation of GaN on a sapphire substrate. X-ray diffraction measurements show that the β-Ga2O3 layer was formed epitaxially on GaN. The valence band offset of the β-Ga2O3/wurtzite GaN heterostructure is measured by X-ray photoelectron spectroscopy. It is demonstrated that the valence band of the β-Ga2O3/GaN structure is 1.40 ± 0.08 eV. PMID:23046910

  6. Substrate nitridation induced modulations in transport properties of wurtzite GaN/p-Si (100) heterojunctions grown by molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhat, Thirumaleshwara N.; Rajpalke, Mohana K.; Krupanidhi, S. B.

    Phase pure wurtzite GaN films were grown on Si (100) substrates by introducing a silicon nitride layer followed by low temperature GaN growth as buffer layers. GaN films grown directly on Si (100) were found to be phase mixtured, containing both cubic ({beta}) and hexagonal ({alpha}) modifications. The x-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL) spectroscopy studies reveal that the significant enhancement in the structural as well as in the optical properties of GaN films grown with silicon nitride buffer layer grown at 800 deg. C when compared to the samples grown in the absence of silicon nitridemore » buffer layer and with silicon nitride buffer layer grown at 600 deg. C. Core-level photoelectron spectroscopy of Si{sub x}N{sub y} layers reveals the sources for superior qualities of GaN epilayers grown with the high temperature substrate nitridation process. The discussion has been carried out on the typical inverted rectification behavior exhibited by n-GaN/p-Si heterojunctions. Considerable modulation in the transport mechanism was observed with the nitridation conditions. The heterojunction fabricated with the sample of substrate nitridation at high temperature exhibited superior rectifying nature with reduced trap concentrations. Lowest ideality factors ({approx}1.5) were observed in the heterojunctions grown with high temperature substrate nitridation which is attributed to the recombination tunneling at the space charge region transport mechanism at lower voltages and at higher voltages space charge limited current conduction is the dominating transport mechanism. Whereas, thermally generated carrier tunneling and recombination tunneling are the dominating transport mechanisms in the heterojunctions grown without substrate nitridation and low temperature substrate nitridation, respectively.« less

  7. High hole mobility p-type GaN with low residual hydrogen concentration prepared by pulsed sputtering

    NASA Astrophysics Data System (ADS)

    Arakawa, Yasuaki; Ueno, Kohei; Kobayashi, Atsushi; Ohta, Jitsuo; Fujioka, Hiroshi

    2016-08-01

    We have grown Mg-doped GaN films with low residual hydrogen concentration using a low-temperature pulsed sputtering deposition (PSD) process. The growth system is inherently hydrogen-free, allowing us to obtain high-purity Mg-doped GaN films with residual hydrogen concentrations below 5 × 1016 cm-3, which is the detection limit of secondary ion mass spectroscopy. In the Mg profile, no memory effect or serious dopant diffusion was detected. The as-deposited Mg-doped GaN films showed clear p-type conductivity at room temperature (RT) without thermal activation. The GaN film doped with a low concentration of Mg (7.9 × 1017 cm-3) deposited by PSD showed hole mobilities of 34 and 62 cm2 V-1 s-1 at RT and 175 K, respectively, which are as high as those of films grown by a state-of-the-art metal-organic chemical vapor deposition apparatus. These results indicate that PSD is a powerful tool for the fabrication of GaN-based vertical power devices.

  8. Directed self-assembly of nanorod networks: bringing the top down to the bottom up.

    PubMed

    Einsle, Joshua F; Scheunert, Gunther; Murphy, Antony; McPhillips, John; Zayats, Anatoly V; Pollard, Robert; Bowman, Robert M

    2012-12-21

    Self-assembled electrodeposited nanorod materials have been shown to offer an exciting landscape for a wide array of research ranging from nanophotonics through to biosensing and magnetics. However, until now, the scope for site-specific preparation of the nanorods on wafers has been limited to local area definition. Further there is little or no lateral control of nanorod height. In this work we present a scalable method for controlling the growth of the nanorods in the vertical direction as well as their lateral position. A focused ion beam pre-patterns the Au cathode layer prior to the creation of the anodized aluminium oxide (AAO) template on top. When the pre-patterning is of the same dimension as the pore spacing of the AAO template, lines of single nanorods are successfully grown. Further, for sub-200 nm wide features, a relationship between the nanorod height and distance from the non-patterned cathode can be seen to follow a quadratic growth rate obeying Faraday's law of electrodeposition. This facilitates lateral control of nanorod height combined with localized growth of the nanorods.

  9. Si Complies with GaN to Overcome Thermal Mismatches for the Heteroepitaxy of Thick GaN on Si.

    PubMed

    Tanaka, Atsunori; Choi, Woojin; Chen, Renjie; Dayeh, Shadi A

    2017-10-01

    Heteroepitaxial growth of lattice mismatched materials has advanced through the epitaxy of thin coherently strained layers, the strain sharing in virtual and nanoscale substrates, and the growth of thick films with intermediate strain-relaxed buffer layers. However, the thermal mismatch is not completely resolved in highly mismatched systems such as in GaN-on-Si. Here, geometrical effects and surface faceting to dilate thermal stresses at the surface of selectively grown epitaxial GaN layers on Si are exploited. The growth of thick (19 µm), crack-free, and pure GaN layers on Si with the lowest threading dislocation density of 1.1 × 10 7 cm -2 achieved to date in GaN-on-Si is demonstrated. With these advances, the first vertical GaN metal-insulator-semiconductor field-effect transistors on Si substrates with low leakage currents and high on/off ratios paving the way for a cost-effective high power device paradigm on an Si CMOS platform are demonstrated. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. GaN nanowires with pentagon shape cross-section by ammonia-source molecular beam epitaxy

    DOE PAGES

    Lin, Yong; Leung, Benjamin; Li, Qiming; ...

    2015-07-14

    In this study, ammonia-based molecular beam epitaxy (NH 3-MBE) was used to grow catalyst-assisted GaN nanowires on (11¯02) r-plane sapphire substrates. Dislocation free [112¯0] oriented nanowires are formed with pentagon shape cross-section, instead of the usual triangular shape facet configuration. Specifically, the cross-section is the result of the additional two nonpolar {101¯0} side facets, which appear due to a decrease in relative growth rate of the {101¯0} facets to the {101¯1} and {101¯1} facets under the growth regime in NH 3-MBE. Compared to GaN nanowires grown by Ni-catalyzed metal–organic chemical vapor deposition, the NH 3-MBE grown GaN nanowires show moremore » than an order of magnitude increase in band-edge to yellow luminescence intensity ratio, as measured by cathodoluminescence, indicating improved microstructural and optical properties.« less

  11. Defect-related photoluminescence in Mg-doped GaN nanostructures

    NASA Astrophysics Data System (ADS)

    Reshchikov, M. A.; Shahedipour-Sandvik, F.; Messer, B. J.; Jindal, V.; Tripathi, N.; Tungare, M.

    2009-12-01

    Thin film of GaN:Mg, pyramidal GaN:Mg on GaN, sapphire and AlN substrates were grown in a MOCVD system under same growth conditions and at the same time. In samples with Mg-doped GaN pyramids on GaN:Si template a strong ultraviolet (UVL) band with few phonon replicas dominated at low temperature and was attributed to transitions from shallow donors to shallow Mg acceptor. In samples grown on sapphire and AlN substrates the UVL band appeared as a structureless band with the maximum at about 3.25 eV. There is a possibility that the structureless UVL band and the UVL band with phonon structure have different origin. In addition to the UVL band, the blue luminescence (BL) band peaking at 2.9 eV was observed in samples representing GaN:Mg pyramids on GaN:Si substrate. It is preliminary attributed to transitions from shallow donors to Zn acceptor in GaN:Si substrate.

  12. Synthesis and photoelectrochemical properties of a novel CuO/ZnO nanorod photocathode for solar hydrogen generation

    NASA Astrophysics Data System (ADS)

    Shaislamov, Ulugbek; Lee, Heon-Ju

    2016-10-01

    Here, we present a facile synthesis method and photoelectrochemical characterizations of a p-type CuO-nanorod array photoelectrode with ZnO nanorod branches. Vertically-aligned CuO nanorods were synthesized by using direct oxidation of metallic Cu nanorods grown on a Cu substrate by using a facile template-assisted electrodeposition method. The formed CuONR/ZnONB hierarchically-structured photoelectrode exhibited remarkable photoelectrodechemical performance and outstanding stability compared to the CuO NR photoelectrode without ZnO NR branches. Morphological, optical and electrochemical characterizations were carried out in order to examine the effects of ZnO nanorod branches on the stability and the overall electrochemical performance of the electrode.

  13. Characteristics of zinc oxide nanorod array/titanium oxide film heterojunction prepared by aqueous solution deposition

    NASA Astrophysics Data System (ADS)

    Lee, Ming-Kwei; Hong, Min-Hsuan; Li, Bo-Wei

    2016-07-01

    The characteristics of a ZnO nanorod array/TiO2 film heterojunction were investigated. A TiO2 film was prepared on glass by aqueous solution deposition with precursors of ammonium hexafluorotitanate and boric acid at 40 °C. Then, a ZnO seed layer was prepared on a TiO2 film/glass substrate by RF sputtering. A vertically oriented ZnO nanorod array was grown on a ZnO seed layer/TiO2 film/glass substrate by aqueous solution deposition with precursors of zinc nitrate and hexamethylenetetramine (HMT) at 70 °C. After thermal annealing in N2O ambient at 300 °C, this heterojunction used as an oxygen gas sensor shows much better rise time, decay time, and on/off current ratio than as-grown and annealed ZnO nanorods.

  14. Local electronic and optical behavior of ELO a-plane GaN

    NASA Astrophysics Data System (ADS)

    Baski, A. A.; Moore, J. C.; Ozgur, U.; Kasliwal, V.; Ni, X.; Morkoc, H.

    2007-03-01

    Conductive atomic force microscopy (CAFM) and near-field optical microscopy (NSOM) were used to study a-plane GaN films grown via epitaxial lateral overgrowth (ELO). The ELO films were prepared by metal organic chemical vapor deposition on a patterned SiO2 layer with 4-μm wide windows, which was deposited on a GaN template grown on r-plane sapphire. The window regions of the coalesced ELO films appear as depressions with a high density of surface pits. At reverse bias below 12 V, very low uniform conduction (2 pA) is seen in the window regions. Above 20 V, a lower-quality sample shows localized sites inside the window regions with significant leakage, indicating a correlation between the presence of surface pits and leakage sites. Room temperature NSOM studies also suggest a greater density of surface terminated dislocations in the window regions, while wing regions explicitly show enhanced optical quality of the overgrown GaN. The combination of CAFM and NSOM data therefore indicates a correlation between the presence of surface pits, localized reverse-bias current leakage, and low PL intensity in the window regions.

  15. Gallium hydride vapor phase epitaxy of GaN nanowires

    PubMed Central

    2011-01-01

    Straight GaN nanowires (NWs) with diameters of 50 nm, lengths up to 10 μm and a hexagonal wurtzite crystal structure have been grown at 900°C on 0.5 nm Au/Si(001) via the reaction of Ga with NH3 and N2:H2, where the H2 content was varied between 10 and 100%. The growth of high-quality GaN NWs depends critically on the thickness of Au and Ga vapor pressure while no deposition occurs on plain Si(001). Increasing the H2 content leads to an increase in the growth rate, a reduction in the areal density of the GaN NWs and a suppression of the underlying amorphous (α)-like GaN layer which occurs without H2. The increase in growth rate with H2 content is a direct consequence of the reaction of Ga with H2 which leads to the formation of Ga hydride that reacts efficiently with NH3 at the top of the GaN NWs. Moreover, the reduction in the areal density of the GaN NWs and suppression of the α-like GaN layer is attributed to the reaction of H2 with Ga in the immediate vicinity of the Au NPs. Finally, the incorporation of H2 leads to a significant improvement in the near band edge photoluminescence through a suppression of the non-radiative recombination via surface states which become passivated not only via H2, but also via a reduction of O2-related defects. PMID:21711801

  16. Gallium hydride vapor phase epitaxy of GaN nanowires.

    PubMed

    Zervos, Matthew; Othonos, Andreas

    2011-03-28

    Straight GaN nanowires (NWs) with diameters of 50 nm, lengths up to 10 μm and a hexagonal wurtzite crystal structure have been grown at 900°C on 0.5 nm Au/Si(001) via the reaction of Ga with NH3 and N2:H2, where the H2 content was varied between 10 and 100%. The growth of high-quality GaN NWs depends critically on the thickness of Au and Ga vapor pressure while no deposition occurs on plain Si(001). Increasing the H2 content leads to an increase in the growth rate, a reduction in the areal density of the GaN NWs and a suppression of the underlying amorphous (α)-like GaN layer which occurs without H2. The increase in growth rate with H2 content is a direct consequence of the reaction of Ga with H2 which leads to the formation of Ga hydride that reacts efficiently with NH3 at the top of the GaN NWs. Moreover, the reduction in the areal density of the GaN NWs and suppression of the α-like GaN layer is attributed to the reaction of H2 with Ga in the immediate vicinity of the Au NPs. Finally, the incorporation of H2 leads to a significant improvement in the near band edge photoluminescence through a suppression of the non-radiative recombination via surface states which become passivated not only via H2, but also via a reduction of O2-related defects.

  17. Oxygen induced strain field homogenization in AlN nucleation layers and its impact on GaN grown by metal organic vapor phase epitaxy on sapphire: An x-ray diffraction study

    NASA Astrophysics Data System (ADS)

    Bläsing, J.; Krost, A.; Hertkorn, J.; Scholz, F.; Kirste, L.; Chuvilin, A.; Kaiser, U.

    2009-02-01

    This paper presents an x-ray study of GaN, which is grown on nominally undoped and oxygen-doped AlN nucleation layers on sapphire substrates by metal organic vapor phase epitaxy. Without additional oxygen doping a trimodal nucleation distribution of AlN is observed leading to inhomogeneous in-plane strain fields, whereas in oxygen-doped layers a homogeneous distribution of nucleation centers is observed. In both types of nucleation layers extremely sharp correlation peaks occur in transverse ω-scans which are attributed to a high density of edge-type dislocations having an in-plane Burgers vector. The correlation peaks are still visible in the (0002) ω-scans of 500 nm GaN which might mislead an observer to conclude incorrectly that there exists an extremely high structural quality. For the undoped nucleation layers depth-sensitive measurements in grazing incidence geometry reveal a strong thickness dependence of the lattice parameter a, whereas no such dependence is observed for doped samples. For oxygen-doped nucleation layers, in cross-sectional transmission electron microscopy images a high density of stacking faults parallel to the substrate surface is found in contrast to undoped nucleation layers where a high density of threading dislocations is visible. GaN of 2.5 μm grown on top of 25 nm AlN nucleation layers with an additional in situ SiN mask show full widths at half maximum of 160″ and 190″ in (0002) and (10-10) high-resolution x-ray diffraction ω-scans, respectively.

  18. Functionalized vertically aligned ZnO nanorods for application in electrolyte-insulator-semiconductor based pH sensors and label-free immuno-sensors

    NASA Astrophysics Data System (ADS)

    Kumar, Narendra; Senapati, Sujata; Kumar, Satyendra; Kumar, Jitendra; Panda, Siddhartha

    2016-04-01

    Vertically aligned ZnO nanorods were grown on a SiO2/Si surface by optimization of the temperature and atmosphere for annealing of the seed. The seed layer annealed at 500 °C in vacuum provided well separated and uniform seeds which also provided the best condition to get densely packed, uniformly distributed, and vertically aligned nanorods. These nanorods grown on the substrates were used to fabricate electrolyte-insulator-semiconductor (EIS) devices for pH sensing. Etching of ZnO at acidic pH prevents the direct use of nanorods for pH sensing. Therefore, the nanorods functionalised with 3-aminopropyltriethoxysilane (APTES) were utilized for pH sensing and showed the pH sensitivity of 50.1 mV/pH. APTES is also known to be used as a linker to immobilize biomolecules (such as antibodies). The EIS device with APTES functionalized nanorods was used for the label free detection of prostate-specific antigen (PSA). Finally, voltage shifts of 23 mV and 35 mV were observed with PSA concentrations of 1 ng/ml and 100 ng/ml, respectively.

  19. Nitrogen-Polar (000 1 ¯ ) GaN Grown on c-Plane Sapphire with a High-Temperature AlN Buffer.

    PubMed

    Song, Jie; Han, Jung

    2017-03-02

    We demonstrate growing nitrogen-polar (N-polar) GaN epilayer on c-plane sapphire using a thin AlN buffer layer by metalorganic chemical vapor deposition. We have studied the influence of the AlN buffer layer on the polarity, crystalline quality, and surface morphology of the GaN epilayer and found that the growth temperature of the AlN buffer layer played a critical role in the growth of the GaN epilayer. The low growth temperature of the AlN buffer results in gallium-polar GaN. Even a nitridation process has been conducted. High growth temperature for an AlN buffer layer is required to achieve pure N-polarity, high crystalline quality, and smooth surface morphology for a GaN epilayer.

  20. High-Temperature Growth of GaN and Al x Ga1- x N via Ammonia-Based Metalorganic Molecular-Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Billingsley, Daniel; Henderson, Walter; Doolittle, W. Alan

    2010-05-01

    The effect of high-temperature growth on the crystalline quality and surface morphology of GaN and Al x Ga1- x N grown by ammonia-based metalorganic molecular-beam epitaxy (NH3-MOMBE) has been investigated as a means of producing atomically smooth films suitable for device structures. The effects of V/III ratio on the growth rate and surface morphology are described herein. The crystalline quality of both GaN and AlGaN was found to mimic that of the GaN templates, with (002) x-ray diffraction (XRD) full-widths at half- maximum (FWHMs) of ~350 arcsec. Nitrogen-rich growth conditions have been found to provide optimal surface morphologies with a root-mean-square (RMS) roughness of ~0.8 nm, yet excessive N-rich environments have been found to reduce the growth rate and result in the formation of faceted surface pitting. AlGaN exhibits a decreased growth rate, as compared with GaN, due to increased N recombination as a result of the increased pyrolysis of NH3 in the presence of Al. AlGaN films grown directly on GaN templates exhibited Pendellösung x-ray fringes, indicating an abrupt interface and a planar AlGaN film. AlGaN films grown for this study resulted in an optimal RMS roughness of ~0.85 nm with visible atomic steps.

  1. Laser-induced local activation of Mg-doped GaN with a high lateral resolution for high power vertical devices

    NASA Astrophysics Data System (ADS)

    Kurose, Noriko; Matsumoto, Kota; Yamada, Fumihiko; Roffi, Teuku Muhammad; Kamiya, Itaru; Iwata, Naotaka; Aoyagi, Yoshinobu

    2018-01-01

    A method for laser-induced local p-type activation of an as-grown Mg-doped GaN sample with a high lateral resolution is developed for realizing high power vertical devices for the first time. As-grown Mg-doped GaN is converted to p-type GaN in a confined local area. The transition from an insulating to a p-type area is realized to take place within about 1-2 μm fine resolution. The results show that the technique can be applied in fabricating the devices such as vertical field effect transistors, vertical bipolar transistors and vertical Schottkey diode so on with a current confinement region using a p-type carrier-blocking layer formed by this technique.

  2. High active nitrogen flux growth of GaN by plasma assisted molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McSkimming, Brian M., E-mail: mcskimming@engineering.ucsb.edu; Speck, James S.; Chaix, Catherine

    2015-09-15

    In the present study, the authors report on a modified Riber radio frequency (RF) nitrogen plasma source that provides active nitrogen fluxes more than 30 times higher than those commonly used for plasma assisted molecular beam epitaxy (PAMBE) growth of gallium nitride (GaN) and thus a significantly higher growth rate than has been previously reported. GaN films were grown using N{sub 2} gas flow rates between 5 and 25 sccm while varying the plasma source's RF forward power from 200 to 600 W. The highest growth rate, and therefore the highest active nitrogen flux, achieved was ∼7.6 μm/h. For optimized growth conditions,more » the surfaces displayed a clear step-terrace structure with an average RMS roughness (3 × 3 μm) on the order of 1 nm. Secondary ion mass spectroscopy impurity analysis demonstrates oxygen and hydrogen incorporation of 1 × 10{sup 16} and ∼5 × 10{sup 17}, respectively. In addition, the authors have achieved PAMBE growth of GaN at a substrate temperature more than 150 °C greater than our standard Ga rich GaN growth regime and ∼100 °C greater than any previously reported PAMBE growth of GaN. This growth temperature corresponds to GaN decomposition in vacuum of more than 20 nm/min; a regime previously unattainable with conventional nitrogen plasma sources. Arrhenius analysis of the decomposition rate shows that samples with a flux ratio below stoichiometry have an activation energy greater than decomposition of GaN in vacuum while samples grown at or above stoichiometry have decreased activation energy. The activation energy of decomposition for GaN in vacuum was previously determined to be ∼3.1 eV. For a Ga/N flux ratio of ∼1.5, this activation energy was found to be ∼2.8 eV, while for a Ga/N flux ratio of ∼0.5, it was found to be ∼7.9 eV.« less

  3. Fast Growth of GaN Epilayers via Laser-Assisted Metal-Organic Chemical Vapor Deposition for Ultraviolet Photodetector Applications.

    PubMed

    Rabiee Golgir, Hossein; Li, Da Wei; Keramatnejad, Kamran; Zou, Qi Ming; Xiao, Jun; Wang, Fei; Jiang, Lan; Silvain, Jean-François; Lu, Yong Feng

    2017-06-28

    In this study, we successfully developed a carbon dioxide (CO 2 )-laser-assisted metal-organic chemical vapor deposition (LMOCVD) approach to fast synthesis of high-quality gallium nitride (GaN) epilayers on Al 2 O 3 [sapphire(0001)] substrates. By employing a two-step growth procedure, high crystallinity and smooth GaN epilayers with a fast growth rate of 25.8 μm/h were obtained. The high crystallinity was confirmed by a combination of techniques, including X-ray diffraction, Raman spectroscopy, transmission electron microscopy, and atomic force microscopy. By optimizing growth parameters, the ∼4.3-μm-thick GaN films grown at 990 °C for 10 min showed a smooth surface with a root-mean-square surface roughness of ∼1.9 nm and excellent thickness uniformity with sharp GaN/substrate interfaces. The full-width at half-maximum values of the GaN(0002) X-ray rocking curve of 313 arcsec and the GaN(101̅2) X-ray rocking curve of 390 arcsec further confirmed the high crystallinity of the GaN epilayers. We also fabricated ultraviolet (UV) photodetectors based on the as-grown GaN layers, which exhibited a high responsivity of 0.108 A W -1 at 367 nm and a fast response time of ∼125 ns, demonstrating its high optical quality with potential in optoelectronic applications. Our strategy thus provides a simple and cost-effective means toward fast and high-quality GaN heteroepitaxy growth suitable for fabricating high-performance GaN-based UV detectors.

  4. Graded core/shell semiconductor nanorods and nanorod barcodes

    DOEpatents

    Alivisatos, A. Paul; Scher, Erik C.; Manna, Liberato

    2010-12-14

    Graded core/shell semiconductor nanorods and shaped nanorods are disclosed comprising Group II-VI, Group III-V and Group IV semiconductors and methods of making the same. Also disclosed are nanorod barcodes using core/shell nanorods where the core is a semiconductor or metal material, and with or without a shell. Methods of labeling analytes using the nanorod barcodes are also disclosed.

  5. Graded core/shell semiconductor nanorods and nanorod barcodes

    DOEpatents

    Alivisatos, A. Paul; Scher, Erik C.; Manna, Liberato

    2013-03-26

    Graded core/shell semiconductor nanorods and shapped nanorods are disclosed comprising Group II-VI, Group III-V and Group IV semiconductors and methods of making the same. Also disclosed are nanorod barcodes using core/shell nanorods where the core is a semiconductor or metal material, and with or without a shell. Methods of labeling analytes using the nanorod barcodes are also disclosed.

  6. Comparison of trimethylgallium and triethylgallium as “Ga” source materials for the growth of ultrathin GaN films on Si (100) substrates via hollow-cathode plasma-assisted atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alevli, Mustafa, E-mail: mustafaalevli@marmara.edu.tr; Haider, Ali; Kizir, Seda

    2016-01-15

    GaN films grown by hollow cathode plasma-assisted atomic layer deposition using trimethylgallium (TMG) and triethylgallium (TEG) as gallium precursors are compared. Optimized and saturated TMG/TEG pulse widths were used in order to study the effect of group-III precursors. The films were characterized by grazing incidence x-ray diffraction, atomic force microscopy, x-ray photoelectron spectroscopy, and spectroscopic ellipsometry. Refractive index follows the same trend of crystalline quality, mean grain, and crystallite sizes. GaN layers grown using TMG precursor exhibited improved structural and optical properties when compared to GaN films grown with TEG precursor.

  7. Proximity Effects of Beryllium-Doped GaN Buffer Layers on the Electronic Properties of Epitaxial AlGaN/GaN Heterostructures

    DTIC Science & Technology

    2010-05-17

    arranged by Prof. A. Zaslavsky Keywords: Gallium nitride High electron mobility transistor Molecular beam epitaxy Homoepitaxy Doping a b s t r a c t AlGaN...GaN/Be:GaN heterostructures have been grown by rf-plasma molecular beam epitaxy on free- standing semi-insulating GaN substrates, employing...hydride vapor phase epitaxy (HVPE) grown GaN sub- strates has enabled the growth by molecular beam epitaxy (MBE) of AlGaN/GaNHEMTswith significantly

  8. Optimal activation condition of nonpolar a-plane p-type GaN layers grown on r-plane sapphire substrates by MOCVD

    NASA Astrophysics Data System (ADS)

    Son, Ji-Su; Hyeon Baik, Kwang; Gon Seo, Yong; Song, Hooyoung; Hoon Kim, Ji; Hwang, Sung-Min; Kim, Tae-Geun

    2011-07-01

    The optimal conditions of p-type activation for nonpolar a-plane (1 1 -2 0) p-type GaN films on r-plane (1 -1 0 2) sapphire substrates with various off-axis orientations have been investigated. Secondary ion mass spectrometry (SIMS) measurements show that Mg doping concentrations of 6.58×10 19 cm -3 were maintained in GaN during epitaxial growth. The samples were activated at various temperatures and periods of time in air, oxygen (O 2) and nitrogen (N 2) gas ambient by conventional furnace annealing (CFA) and rapid thermal annealing (RTA). The activation of nonpolar a-plane p-type GaN was successful in similar annealing times and temperatures when compared with polar c-plane p-type GaN. However, activation ambient of nonpolar a-plane p-type GaN was clearly different, where a-plane p-type GaN was effectively activated in air ambient. Photoluminescence shows that the optical properties of Mg-doped a-plane GaN samples are enhanced when activated in air ambient.

  9. Elimination of columnar microstructure in N-face InAlN, lattice-matched to GaN, grown by plasma-assisted molecular beam epitaxy in the N-rich regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmadi, Elaheh; Wienecke, Steven; Keller, Stacia

    2014-02-17

    The microstructure of N-face InAlN layers, lattice-matched to GaN, was investigated by scanning transmission electron microscopy and atom probe tomography. These layers were grown by plasma-assisted molecular beam epitaxy (PAMBE) in the N-rich regime. Microstructural analysis shows an absence of the lateral composition modulation that was previously observed in InAlN films grown by PAMBE. A room temperature two-dimensional electron gas (2DEG) mobility of 1100 cm{sup 2}/V s and 2DEG sheet charge density of 1.9 × 10{sup 13} cm{sup −2} was measured for N-face GaN/AlN/GaN/InAlN high-electron-mobility transistors with lattice-matched InAlN back barriers.

  10. Multicycle rapid thermal annealing optimization of Mg-implanted GaN: Evolution of surface, optical, and structural properties

    NASA Astrophysics Data System (ADS)

    Greenlee, Jordan D.; Feigelson, Boris N.; Anderson, Travis J.; Tadjer, Marko J.; Hite, Jennifer K.; Mastro, Michael A.; Eddy, Charles R.; Hobart, Karl D.; Kub, Francis J.

    2014-08-01

    The first step of a multi-cycle rapid thermal annealing process was systematically studied. The surface, structure, and optical properties of Mg implanted GaN thin films annealed at temperatures ranging from 900 to 1200 °C were investigated by Raman spectroscopy, photoluminescence, UV-visible spectroscopy, atomic force microscopy, and Nomarski microscopy. The GaN thin films are capped with two layers of in-situ metal organic chemical vapor deposition -grown AlN and annealed in 24 bar of N2 overpressure to avoid GaN decomposition. The crystal quality of the GaN improves with increasing annealing temperature as confirmed by UV-visible spectroscopy and the full widths at half maximums of the E2 and A1 (LO) Raman modes. The crystal quality of films annealed above 1100 °C exceeds the quality of the as-grown films. At 1200 °C, Mg is optically activated, which is determined by photoluminescence measurements. However, at 1200 °C, the GaN begins to decompose as evidenced by pit formation on the surface of the samples. Therefore, it was determined that the optimal temperature for the first step in a multi-cycle rapid thermal anneal process should be conducted at 1150 °C due to crystal quality and surface morphology considerations.

  11. Au sensitized ZnO nanorods for enhanced liquefied petroleum gas sensing properties

    NASA Astrophysics Data System (ADS)

    Nakate, U. T.; Bulakhe, R. N.; Lokhande, C. D.; Kale, S. N.

    2016-05-01

    The zinc oxide (ZnO) nanorods have grown on glass substrate by spray pyrolysis deposition (SPD) method using zinc acetate solution. The phase formation, surface morphology and elemental composition of ZnO films have been investigated using X-ray diffraction, field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and energy dispersive X-ray (EDX) techniques. The liquefied petroleum gas (LPG) sensing response was remarkably improved by sensitization of gold (Au) surface noble metal on ZnO nanorods film. Maximum LPG response of 21% was observed for 1040 ppm of LPG, for pure ZnO nanorods sample. After Au sensitization on ZnO nanorods film sample, the LPG response greatly improved up to 48% at operating temperature 623 K. The improved LPG response is attributed Au sensitization with spill-over mechanism. Proposed model for LPG sensing mechanism discussed.

  12. Structural, Electrical and Optical Properties of Sputtered-Grown InN Films on ZnO Buffered Silicon, Bulk GaN, Quartz and Sapphire Substrates

    NASA Astrophysics Data System (ADS)

    Bashir, Umar; Hassan, Zainuriah; Ahmed, Naser M.; Afzal, Naveed

    2018-05-01

    Indium nitride (InN) films were grown on Si (111), bulk GaN, quartz and sapphire substrates by radio frequency magnetron sputtering. Prior to the film deposition, a zinc oxide (ZnO) buffer layer was deposited on all the substrates. The x-ray diffraction patterns of InN films on ZnO-buffered substrates indicated c-plane-oriented films whereas the Raman spectroscopy results indicated A1 (LO) and E2 (high) modes of InN on all the substrates. The crystalline quality of InN was found to be better on sapphire and quartz than on the other substrates. The surface roughness of InN was studied using an atomic force microscope. The results indicated higher surface roughness of the film on sapphire as compared to the others; however, roughness of the film was lower than 8 nm on all the substrates. The electrical properties indicated higher electron mobility of InN (20.20 cm2/Vs) on bulk GaN than on the other substrates. The optical band gap of InN film was more than 2 eV in all the cases and was attributed to high carrier concentration in the film.

  13. Epitaxial MoS2/GaN structures to enable vertical 2D/3D semiconductor heterostructure devices

    NASA Astrophysics Data System (ADS)

    Ruzmetov, D.; Zhang, K.; Stan, G.; Kalanyan, B.; Eichfeld, S.; Burke, R.; Shah, P.; O'Regan, T.; Crowne, F.; Birdwell, A. G.; Robinson, J.; Davydov, A.; Ivanov, T.

    MoS2/GaN structures are investigated as a building block for vertical 2D/3D semiconductor heterostructure devices that utilize a 3D substrate (GaN) as an active component of the semiconductor device without the need of mechanical transfer of the 2D layer. Our CVD-grown monolayer MoS2 has been shown to be epitaxially aligned to the GaN lattice which is a pre-requisite for high quality 2D/3D interfaces desired for efficient vertical transport and large area growth. The MoS2 coverage is nearly 50 % including isolated triangles and monolayer islands. The GaN template is a double-layer grown by MOCVD on sapphire and allows for measurement of transport perpendicular to the 2D layer. Photoluminescence, Raman, XPS, Kelvin force probe microscopy, and SEM analysis identified high quality monolayer MoS2. The MoS2/GaN structures electrically conduct in the out-of-plane direction and across the van der Waals gap, as measured with conducting AFM (CAFM). The CAFM current maps and I-V characteristics are analyzed to estimate the MoS2/GaN contact resistivity to be less than 4 Ω-cm2 and current spreading in the MoS2 monolayer to be approx. 1 μm in diameter. Epitaxial MoS2/GaN heterostructures present a promising platform for the design of energy-efficient, high-speed vertical devices incorporating 2D layered materials with 3D semiconductors.

  14. GaN growth via HVPE on SiC/Si substrates: growth mechanisms

    NASA Astrophysics Data System (ADS)

    Sharofidinov, Sh Sh; Redkov, A. V.; Osipov, A. V.; Kukushkin, S. A.

    2017-11-01

    The article focuses on the study of GaN thin film growth via chloride epitaxy on SiC/Si hybrid substrate. SiC buffer layer was grown by a method of substitution of atoms, which allows one to reduce impact of mechanical stress therein on subsequent growth of III-nitride films. It is shown, that change in GaN growth conditions leads to change in its growth mechanism. Three mechanisms: epitaxial, spiral and stepwise growth are considered and mechanical stresses are estimated via Raman spectroscopy.

  15. Piezo-generator integrating a vertical array of GaN nanowires.

    PubMed

    Jamond, N; Chrétien, P; Houzé, F; Lu, L; Largeau, L; Maugain, O; Travers, L; Harmand, J C; Glas, F; Lefeuvre, E; Tchernycheva, M; Gogneau, N

    2016-08-12

    We demonstrate the first piezo-generator integrating a vertical array of GaN nanowires (NWs). We perform a systematic multi-scale analysis, going from single wire properties to macroscopic device fabrication and characterization, which allows us to establish for GaN NWs the relationship between the material properties and the piezo-generation, and to propose an efficient piezo-generator design. The piezo-conversion of individual MBE-grown p-doped GaN NWs in a dense array is assessed by atomic force microscopy (AFM) equipped with a Resiscope module yielding an average output voltage of 228 ± 120 mV and a maximum value of 350 mV generated per NW. In the case of p-doped GaN NWs, the piezo-generation is achieved when a positive piezo-potential is created inside the nanostructures, i.e. when the NWs are submitted to compressive deformation. The understanding of the piezo-generation mechanism in our GaN NWs, gained from AFM analyses, is applied to design a piezo-generator operated under compressive strain. The device consists of NW arrays of several square millimeters in size embedded into spin-on glass with a Schottky contact for rectification and collection of piezo-generated carriers. The generator delivers a maximum power density of ∼12.7 mW cm(-3). This value sets the new state of the art for piezo-generators based on GaN NWs and more generally on nitride NWs, and offers promising prospects for the use of GaN NWs as high-efficiency ultra-compact energy harvesters.

  16. Morphological Control of GaN and Its Effect within Electrochemical Heterojunctions

    DOE PAGES

    Parameshwaran, Vijay; Clemens, Bruce

    2016-08-17

    With morphological control through a solid source chemical vapor deposition process, GaN polycrystalline films, single-crystal nanowires, and mixed film/wires are grown on silicon to form a heterojunction that is a basis for III-V nitride device development. By contacting the GaN/Si structure to the CoCp 2 0/ + redox pair and performing impedance spectroscopy measurements, the band diagram of this junction is built for these three configurations. This serves as a basis for understanding the electrical nature of III-V nitride/Si interfaces that exist in several photonic device technologies, especially in context of using GaN nanomaterials grown on silicon for various applications.more » When these junctions are exposed to low-power UV illumination in contact with the Fc/Fc + redox pair, photocurrents of 18, 110, and 482 nA/cm 2 are generated for the nanowires, mixed film/wires, and films respectively. These currents, along with the electrostatics investigated through the impedance spectroscopy, show the trends of photoconversion with GaN morphology in this junction. Furthermore, they suggest that the mixed film/wires are a promising design for solar-based applications such as photovoltaics and water splitting electrodes.« less

  17. Morphological Control of GaN and Its Effect within Electrochemical Heterojunctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parameshwaran, Vijay; Clemens, Bruce

    With morphological control through a solid source chemical vapor deposition process, GaN polycrystalline films, single-crystal nanowires, and mixed film/wires are grown on silicon to form a heterojunction that is a basis for III-V nitride device development. By contacting the GaN/Si structure to the CoCp 2 0/ + redox pair and performing impedance spectroscopy measurements, the band diagram of this junction is built for these three configurations. This serves as a basis for understanding the electrical nature of III-V nitride/Si interfaces that exist in several photonic device technologies, especially in context of using GaN nanomaterials grown on silicon for various applications.more » When these junctions are exposed to low-power UV illumination in contact with the Fc/Fc + redox pair, photocurrents of 18, 110, and 482 nA/cm 2 are generated for the nanowires, mixed film/wires, and films respectively. These currents, along with the electrostatics investigated through the impedance spectroscopy, show the trends of photoconversion with GaN morphology in this junction. Furthermore, they suggest that the mixed film/wires are a promising design for solar-based applications such as photovoltaics and water splitting electrodes.« less

  18. Growth of well-aligned ZnO nanorods using auge catalyst by vapor phase transportation.

    PubMed

    Ha, S Y; Jung, M N; Park, S H; Ko, H J; Ko, H; Oh, D C; Yao, T; Chang, J H

    2006-11-01

    Well-aligned ZnO nanorods have been achieved using new alloy (AuGe) catalyst. Zn powder was used as a source material and it was transported in a horizontal tube furnace onto an AuGe deposited Si substrates. The structural and optical properties of ZnO nanorods were characterized by scanning electron microscopy, high resolution X-ray diffraction, and photoluminescence. ZnO nanorods grown at 650 degrees C on 53 nm thick AuGe layer show uniform shape with the length of 8 +/- 0.5 microm and the diameter of 150 +/- 5 nm. Also, the tilting angle of ZnO nanorods (+/- 5.5 degrees) is confirmed by HRXRD. High structural quality of the nanorods is conformed by the photoluminescence measurement. All samples show strong UV emission without considerable deep level emission. However, weak deep level emission appears at high (700 degrees C) temperature due to the increase of oxygen desertion.

  19. NH3-free growth of GaN nanostructure on n-Si (1 1 1) substrate using a conventional thermal evaporation technique

    NASA Astrophysics Data System (ADS)

    Saron, K. M. A.; Hashim, M. R.; Farrukh, M. A.

    2012-06-01

    We have investigated the influence of carrier gas on grown gallium nitride (GaN) epitaxial layers deposited on n-Si (1 1 1) by a physical vapour deposition (PVD) via thermal evaporation of GaN powder at 1150 °C. The GaN nanostructures were grown at a temperature of 1050 °C for 60 min under various gases (N2, H2 mixed with N2, and Ar2) with absence of NH3. The morphology, structure, and optical properties (SEM) images showed that the morphology of GaN displayed various shapes of nanostructured depending on the type of carrier gas. X-ray diffraction (XRD) pattern showed that the GaN polycrystalline reveals a wurtzite-hexagonal structure with [0 0 1] crystal orientation. Raman spectra exhibited a red shift in peaks of E2 (high) as a result of tensile stress. Photoluminescence (PL) measurements showed two band emissions aside from the UV emission. The ultraviolet band gap of GaN nanostructure displayed a red shift as compared with the bulk GaN; this might be attributed to an increase in the defect and stress present in the GaN nanostructure. In addition, the observed blue and green-yellow emissions indicated defects due to the N vacancy and C impurity of the supplied gas. These results clearly indicated that the carrier gas, similar to the growth temperature, is one of the important parameters to control the quality of thermal evaporation (TE)-GaN epilayers.

  20. Nested seaweed cellulose fiber deposited with cuprous oxide nanorods for antimicrobial activity.

    PubMed

    Bhutiya, Priyank L; Misra, Nirendra; Abdul Rasheed, M; Zaheer Hasan, S

    2018-05-30

    Bird's nest type architectural network of cellulosic nanofibers was extracted, with nearly 34% yield, from green filamentous seaweed Chaetomorpha antennina using mild bleaching agent. Nanorods of cuprous oxide (Cu 2 O) were grown over the porous sheet, prepared from the seaweed cellulose, by one step hydrothermal method. The seaweed cellulose and Cu 2 O nanorods deposited seaweed cellulose sheets, were characterized by XRD, SEM-EDX, FT-IR, TGA and tensile test. XRD revealed that seaweed cellulose acted as reducing agent, reducing CuO to Cu 2 O. Morphology showed that the average diameter of seaweed cellulose and deposited Cu 2 O nanorods were 30 nm and 90 nm, respectively. Cuprous oxide nanorods deposited seaweed cellulose sheet gave very good antibacterial activity towards gram-positive (Staphylococcus aureus, Streptococcus thermophilis) and gram-negative (Pseudomonas aeruginous, Escherichia coli) microbes. The Cu 2 O nanorods deposited seaweed cellulose sheet can be viewed to have great potential in biomedical, packaging, biotechnological, textile, water treatment and pharmaceutical applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Miniaturized pH Sensors Based on Zinc Oxide Nanotubes/Nanorods

    PubMed Central

    Fulati, Alimujiang; Ali, Syed M.Usman; Riaz, Muhammad; Amin, Gul; Nur, Omer; Willander, Magnus

    2009-01-01

    ZnO nanotubes and nanorods grown on gold thin film were used to create pH sensor devices. The developed ZnO nanotube and nanorod pH sensors display good reproducibility, repeatability and long-term stability and exhibit a pH-dependent electrochemical potential difference versus an Ag/AgCl reference electrode over a large dynamic pH range. We found the ZnO nanotubes provide sensitivity as high as twice that of the ZnO nanorods, which can be ascribed to the fact that small dimensional ZnO nanotubes have a higher level of surface and subsurface oxygen vacancies and provide a larger effective surface area with higher surface-to-volume ratio as compared to ZnO nanorods, thus affording the ZnO nanotube pH sensor a higher sensitivity. Experimental results indicate ZnO nanotubes can be used in pH sensor applications with improved performance. Moreover, the ZnO nanotube arrays may find potential application as a novel material for measurements of intracellular biochemical species within single living cells. PMID:22291545

  2. Effect of Si, Mg, and Mg Zn doping on structural properties of a GaN layer grown by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Cho, H. K.; Lee, J. Y.; Kim, K. S.; Yang, G. M.

    2001-12-01

    We have studied the structural properties of undoped, Si-doped, Mg-doped, and Mg-Zn codoped GaN using high-resolution X-ray diffraction (HRXRD) and transmission electron microscopy. When compared with undoped GaN, the dislocation density at the surface of the GaN layer decreases with Si doping and increases with Mg doping. In addition, we observed a reduction of dislocation density by codoping with Zn atoms in the Mg-doped GaN layer. The full width at half maximum of HRXRD shows that Si doping and Mg-Zn codoping improve the structural quality of the GaN layer as compared with undoped and Mg-doped GaN, respectively.

  3. Mesoporous titania-vertical nanorod films with interfacial engineering for high performance dye-sensitized solar cells.

    PubMed

    Ahmed, Irfan; Fakharuddin, Azhar; Wali, Qamar; Bin Zainun, Ayib Rosdi; Ismail, Jamil; Jose, Rajan

    2015-03-13

    Working electrode (WE) fabrication offers significant challenges in terms of achieving high-efficiency dye-sensitized solar cells (DSCs). We have combined the beneficial effects of vertical nanorods grown on conducting glass substrate for charge transport and mesoporous particles for dye loading and have achieved a high photoconversion efficiency of (η) > 11% with an internal quantum efficiency of ∼93% in electrode films of thickness ∼7 ± 0.5 μm. Controlling the interface between the vertical nanorods and the mesoporous film is a crucial step in attaining high η. We identify three parameters, viz., large surface area of nanoparticles, increased light scattering of the nanorod-nanoparticle layer, and superior charge transport of nanorods, that simultaneously contribute to the improved photovoltaic performance of the WE developed.

  4. Photoelectrocatalytic activity of a hydrothermally grown branched Zno nanorod-array electrode for paracetamol degradation.

    PubMed

    Lin, Chin Jung; Liao, Shu-Jun; Kao, Li-Cheng; Liou, Sofia Ya Hsuan

    2015-06-30

    Hierarchical branched ZnO nanorod (B-ZnR) arrays as an electrode for efficient photoelectrocatalytic degradation of paracetamol were grown on fluorine-doped tin oxide substrates using a solution route. The morphologic and structural studies show the ZnO trunks are single-crystalline hexagonal wurtzite ZnO with a [0001] growth direction and are densely covered by c-axis-oriented ZnO branches. The obvious enhancement in photocurrent response of the B-ZnR electrode was obtained than that in the ZnO nanoparticle (ZnO NP) electrode. For the photoelectrocatalytic degradation of paracetamol in 20 h, the conversion fraction of the drug increased from 32% over ZnO NP electrode to 62% over B-ZnR arrays with about 3-fold increase in initial reaction rate. The light intensity-dependent photoelectrocatalytic experiment indicated that the superior performance over the B-ZnR electrode was mainly ascribed to the increased specific surface area without significantly sacrificing the charge transport and pollutant diffusion efficiencies. Two aromatic intermediate compounds were observed and eventually converted into harmless carboxylic acids and ammonia. Hierarchical tree-like ZnO arrays can be considered effective alternatives to improve photoelectro degradation rates without the need for expensive additives. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Non-polar a-plane ZnO films grown on r-Al2O3 substrates using GaN buffer layers

    NASA Astrophysics Data System (ADS)

    Xu, C. X.; Chen, W.; Pan, X. H.; Chen, S. S.; Ye, Z. Z.; Huang, J. Y.

    2016-09-01

    In this work, GaN buffer layer has been used to grow non-polar a-plane ZnO films by laser-assisted and plasma-assisted molecular beam epitaxy. The thickness of GaN buffer layer ranges from ∼3 to 12 nm. The GaN buffer thickness effect on the properties of a-plane ZnO thin films is carefully investigated. The results show that the surface morphology, crystal quality and optical properties of a-plane ZnO films are strongly correlated with the thickness of GaN buffer layer. It was found that with 6 nm GaN buffer layer, a-plane ZnO films display the best crystal quality with X-ray diffraction rocking curve full-width at half-maximum of only 161 arcsec for the (101) reflection.

  6. Multicycle rapid thermal annealing optimization of Mg-implanted GaN: Evolution of surface, optical, and structural properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenlee, Jordan D., E-mail: jordan.greenlee.ctr@nrl.navy.mil; Feigelson, Boris N.; Anderson, Travis J.

    2014-08-14

    The first step of a multi-cycle rapid thermal annealing process was systematically studied. The surface, structure, and optical properties of Mg implanted GaN thin films annealed at temperatures ranging from 900 to 1200 °C were investigated by Raman spectroscopy, photoluminescence, UV-visible spectroscopy, atomic force microscopy, and Nomarski microscopy. The GaN thin films are capped with two layers of in-situ metal organic chemical vapor deposition -grown AlN and annealed in 24 bar of N{sub 2} overpressure to avoid GaN decomposition. The crystal quality of the GaN improves with increasing annealing temperature as confirmed by UV-visible spectroscopy and the full widths at halfmore » maximums of the E{sub 2} and A{sub 1} (LO) Raman modes. The crystal quality of films annealed above 1100 °C exceeds the quality of the as-grown films. At 1200 °C, Mg is optically activated, which is determined by photoluminescence measurements. However, at 1200 °C, the GaN begins to decompose as evidenced by pit formation on the surface of the samples. Therefore, it was determined that the optimal temperature for the first step in a multi-cycle rapid thermal anneal process should be conducted at 1150 °C due to crystal quality and surface morphology considerations.« less

  7. Fabrication and photoluminescence properties of graphite fiber/ZnO nanorod core-shell structures.

    PubMed

    Liu, Xianbin; Du, Hejun; Liu, Bo; Wang, Jianxiong; Sun, Xiao Wei; Sun, Handong

    2011-08-01

    Graphite fiber/ZnO nanorod core-shell structures were synthesized by thermal evaporation process. The core-shell hybrid architectures were comprised of ZnO nanorods grown on the surface of graphite fiber. In addition, Hollow ZnO hierarchical structure can be obtained by oxidizing the graphite fiber. Room temperature photoluminescence (PL) of the as-made graphite fiber/ZnO nanorod structures shows two UV peaks at around 3.274 eV and 3.181 eV. The temperature-dependent photoluminescence spectra demonstrate the two UV emissions are attributed to the intrinsic optical transitions and extrinsic defect-related emissions in ZnO. These hybrid structures may be used as the building block for fabrication of nanodevices.

  8. Electron band bending of polar, semipolar and non-polar GaN surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartoš, I.; Romanyuk, O., E-mail: romanyuk@fzu.cz; Houdkova, J.

    2016-03-14

    The magnitudes of the surface band bending have been determined by X-ray photoelectron spectroscopy for polar, semipolar, and non-polar surfaces of wurtzite GaN crystals. All surfaces have been prepared from crystalline GaN samples grown by the hydride-vapour phase epitaxy and separated from sapphire substrates. The Ga 3d core level peak shifts have been used for band bending determination. Small band bending magnitudes and also relatively small difference between the band bendings of the surfaces with opposite polarity have been found. These results point to the presence of electron surface states of different amounts and types on surfaces of different polaritymore » and confirm the important role of the electron surface states in compensation of the bound surface polarity charges in wurtzite GaN crystals.« less

  9. Effects of Mg/Ga and V/III source ratios on hole concentration of N-polar (000\\bar{1}) p-type GaN grown by metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Nonoda, Ryohei; Shojiki, Kanako; Tanikawa, Tomoyuki; Kuboya, Shigeyuki; Katayama, Ryuji; Matsuoka, Takashi

    2016-05-01

    The effects of growth conditions such as Mg/Ga and V/III ratios on the properties of N-polar (000\\bar{1}) p-type GaN grown by metalorganic vapor phase epitaxy were studied. Photoluminescence spectra from Mg-doped GaN depended on Mg/Ga and V/III ratios. For the lightly doped samples, the band-to-acceptor emission was observed at 3.3 eV and its relative intensity decreased with increasing V/III ratio. For the heavily doped samples, the donor-acceptor pair emission was observed at 2.8 eV and its peak intensity monotonically decreased with V/III ratio. The hole concentration was maximum for the Mg/Ga ratio. This is the same tendency as in group-III polar (0001) growth. The V/III ratio also reduced the hole concentration. The higher V/III ratio reduced the concentration of residual donors such as oxygen by substituting nitrogen atoms. The surface became rougher with increasing V/III ratio and the hillock density increased.

  10. Energy bands and acceptor binding energies of GaN

    NASA Astrophysics Data System (ADS)

    Xia, Jian-Bai; Cheah, K. W.; Wang, Xiao-Liang; Sun, Dian-Zhao; Kong, Mei-Ying

    1999-04-01

    The energy bands of zinc-blende and wurtzite GaN are calculated with the empirical pseudopotential method, and the pseudopotential parameters for Ga and N atoms are given. The calculated energy bands are in agreement with those obtained by the ab initio method. The effective-mass theory for the semiconductors of wurtzite structure is established, and the effective-mass parameters of GaN for both structures are given. The binding energies of acceptor states are calculated by solving strictly the effective-mass equations. The binding energies of donor and acceptor are 24 and 142 meV for the zinc-blende structure, 20 and 131, and 97 meV for the wurtzite structure, respectively, which are consistent with recent experimental results. It is proposed that there are two kinds of acceptor in wurtzite GaN. One kind is the general acceptor such as C, which substitutes N, which satisfies the effective-mass theory. The other kind of acceptor includes Mg, Zn, Cd, etc., the binding energy of these acceptors is deviated from that given by the effective-mass theory. In this report, wurtzite GaN is grown by the molecular-beam epitaxy method, and the photoluminescence spectra were measured. Three main peaks are assigned to the donor-acceptor transitions from two kinds of acceptors. Some of the transitions were identified as coming from the cubic phase of GaN, which appears randomly within the predominantly hexagonal material.

  11. Vertically grown zinc oxide nanorods functionalized with ferric oxide for in vivo and non-enzymatic glucose detection

    NASA Astrophysics Data System (ADS)

    Marie, Mohammed; Manoharan, Anishkumar; Kuchuk, Andrian; Ang, Simon; Manasreh, M. O.

    2018-03-01

    An enzyme-free glucose sensor based on vertically grown zinc oxide nanorods (NRs) functionalized with ferric oxide (Fe2O3) is investigated. The well-aligned and high density ZnO NRs were synthesized on an FTO/glass substrate by a sol-gel and hydrothermal growth method. A dip-coating technique was utilized to modify the surface of the as-grown ZnO NRs with Fe2O3. The immobilized surface was coated with a layer of nafion membrane. The fabricated glucose sensor was characterized amperometrically at room temperature using three electrodes stationed in the phosphate buffer solution, where ZnO NRs/Fe2O3/nafion membrane was the sensing or working electrode, and platinum plate and silver/silver chloride were used as the counter and reference electrodes, respectively. The proposed non-enzymatic and modified glucose sensor exhibited a high sensitivity in the order of 0.052 μA cm-2 (mg/dL)-1, a lower detection limit of around 0.95 mmol L-1, a sharp and fast response time of ˜1 s, and a linear response to changes in glucose concentrations from 100-400 mg dL-1. The linear amperometric response of the sensor covers the physiological and clinical interest of glucose levels for diabetic patients. The device continues to function accurately after multiple measurements with a good reproducibility. The proposed glucose sensor is expected to be used clinically for in vivo monitoring of glucose.

  12. Cubic crystalline erbium oxide growth on GaN(0001) by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Chen, Pei-Yu; Posadas, Agham B.; Kwon, Sunah; Wang, Qingxiao; Kim, Moon J.; Demkov, Alexander A.; Ekerdt, John G.

    2017-12-01

    Growth of crystalline Er2O3, a rare earth sesquioxide, on GaN(0001) is described. Ex situ HCl and NH4OH solutions and an in situ N2 plasma are used to remove impurities on the GaN surface and result in a Ga/N stoichiometry of 1.02. Using atomic layer deposition with erbium tris(isopropylcyclopentadienyl) [Er(iPrCp)3] and water, crystalline cubic Er2O3 (C-Er2O3) is grown on GaN at 250 °C. The orientation relationships between the C-Er2O3 film and the GaN substrate are C-Er2O3(222) ǁ GaN(0001), C-Er2O3⟨-440⟩ ǁ GaN ⟨11-20⟩, and C-Er2O3⟨-211⟩ ǁ GaN ⟨1-100⟩. Scanning transmission electron microscopy and electron energy loss spectroscopy are used to examine the microstructure of C-Er2O3 and its interface with GaN. With post-deposition annealing at 600 °C, a thicker interfacial layer is observed, and two transition layers, crystalline GaNwOz and crystalline GaErxOy, are found between GaN and C-Er2O3. The tensile strain in the C-Er2O3 film is studied with x-ray diffraction by changes in both out-of-plane and in-plane d-spacing. Fully relaxed C-Er2O3 films on GaN are obtained when the film thickness is around 13 nm. Additionally, a valence band offset of 0.7 eV and a conduction band offset of 1.2 eV are obtained using x-ray photoelectron spectroscopy.

  13. Y-doping TiO2 nanorod arrays for efficient perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Deng, Xinlian; Wang, Yanqing; Cui, Zhendong; Li, Long; Shi, Chengwu

    2018-05-01

    To improve the electron transportation in TiO2 nanorod arrays and charge separation in the interface of TiO2/perovskite, Y-doping TiO2 nanorod arrays with the length of 200 nm, diameter of 11 nm and areal density of 1050 μm-2 were successfully prepared by the hydrothermal method and the influence of Y/Ti molar ratios of 0%, 3%, 5% in the hydrothermal grown solutions on the growth of TiO2 nanorod arrays was investigated. The results revealed that the appropriate Y/Ti molar ratios can increase the areal density of the corresponding TiO2 nanorod arrays and improve the charge separation in the interface of the TiO2/perovskite. The Y-doping TiO2 nanorod array perovskite solar cells with the Y/Ti molar ratio of 3% exhibited a photoelectric conversion efficiency (PCE) of 18.11% along with an open-circuit voltage (Voc) of 1.06 V, short-circuit photocurrent density (Jsc) of 22.50 mA cm-2 and fill factor (FF) of 76.16%, while the un-doping TiO2 nanorod array perovskite solar cells gave a PCE of 16.42% along with Voc of 1.04 V, Jsc of 21.66 mA cm-2 and FF of 72.97%.

  14. High-voltage vertical GaN Schottky diode enabled by low-carbon metal-organic chemical vapor deposition growth

    NASA Astrophysics Data System (ADS)

    Cao, Y.; Chu, R.; Li, R.; Chen, M.; Chang, R.; Hughes, B.

    2016-02-01

    Vertical GaN Schottky barrier diode (SBD) structures were grown by metal-organic chemical vapor deposition on free-standing GaN substrates. The carbon doping effect on SBD performance was studied by adjusting the growth conditions and spanning the carbon doping concentration between ≤3 × 1015 cm-3 and 3 × 1019 cm-3. Using the optimized growth conditions that resulted in the lowest carbon incorporation, a vertical GaN SBD with a 6-μm drift layer was fabricated. A low turn-on voltage of 0.77 V with a breakdown voltage over 800 V was obtained from the device.

  15. Impact of extended defects on optical properties of (1-101)GaN grown on patterned Si

    NASA Astrophysics Data System (ADS)

    Okur, S.; Izyumskaya, N.; Zhang, F.; Avrutin, V.; Metzner, S.; Karbaum, C.; Bertram, F.; Christen, J.; Morkoç, H.; Özgür, Ü.

    2014-03-01

    The optical quality of semipolar (1 101)GaN layers was explored by time- and polarization-resolved photoluminescence spectroscopy. High intensity bandedge emission was observed in +c-wing regions of the stripes as a result of better structural quality, while -c-wing regions were found to be of poorer optical quality due to basal plane and prismatic stacking faults (BSFs and PSFs) in addition to a high density of TDs. The high optical quality region formed on the +cwings was evidenced also from the much slower biexponential PL decays (0.22 ns and 1.70 ns) and an order of magnitude smaller amplitude ratio of the fast decay (nonradiative origin) to the slow decay component (radiative origin) compared to the -c-wing regions. In regard to defect-related emission, decay times for the BSF and PSF emission lines at 25 K (~ 0.80 ns and ~ 3.5 ns, respectively) were independent of the excitation density within the range employed (5 - 420 W/cm2), and much longer than that for the donor bound excitons (0.13 ns at 5 W/cm2 and 0.22 ns at 420 W/cm2). It was also found that the emission from BSFs had lower polarization degree (0.22) than that from donor bound excitons (0.35). The diminution of the polarization degree when photogenerated carriers recombine within the BSFs is another indication of the negative effects of stacking faults on the optical quality of the semipolar (1101)GaN. In addition, spatial distribution of defects in semipolar (1101)-oriented InGaN active region layers grown on stripe patterned Si substrates was investigated using near-field scanning optical microscopy. The optical quality of -c- wing regions was found to be worse compared to +c-wing regions due to the presence of higher density of stacking faults and threading dislocations. The emission from the +c-wings was very bright and relatively uniform across the sample, which is indicative of a homogeneous In distribution.

  16. Advantages of InGaN/GaN multiple quantum wells with two-step grown low temperature GaN cap layers

    NASA Astrophysics Data System (ADS)

    Zhu, Yadan; Lu, Taiping; Zhou, Xiaorun; Zhao, Guangzhou; Dong, Hailiang; Jia, Zhigang; Liu, Xuguang; Xu, Bingshe

    2017-11-01

    Two-step grown low temperature GaN cap layers (LT-cap) are employed to improve the optical and structural properties of InGaN/GaN multiple quantum wells (MQWs). The first LT-cap layer is grown in nitrogen atmosphere, while a small hydrogen flow is added to the carrier gas during the growth of the second LT-cap layer. High-resolution X-ray diffraction results indicate that the two-step growth method can improve the interface quality of MQWs. Room temperature photoluminescence (PL) tests show about two-fold enhancement in integrated PL intensity, only 25 meV blue-shift in peak energy and almost unchanged line width. On the basis of temperature-dependent PL characteristics analysis, it is concluded that the first and the second LT-cap layer play a different role during the growth of MQWs. The first LT-cap layer acts as a protective layer, which protects quantum well from serious indium loss and interface roughening resulting from the hydrogen over-etching. The hydrogen gas employed in the second LT-cap layer is in favor of reducing defect density and indium segregation. Consequently, interface/surface and optical properties are improved by adopting the two-step growth method.

  17. Cyan laser diode grown by plasma-assisted molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turski, H., E-mail: henryk@unipress.waw.pl; Muziol, G.; Wolny, P.

    We demonstrate AlGaN-cladding-free laser diodes (LDs), operating in continuous wave (CW) mode at 482 nm grown by plasma-assisted molecular beam epitaxy (PAMBE). The maximum CW output power was 230 mW. LDs were grown on c-plane GaN substrates obtained by hydride vapor phase epitaxy. The PAMBE process was carried out in metal-rich conditions, supplying high nitrogen flux (Φ{sub N}) during quantum wells (QWs) growth. We found that high Φ{sub N} improves quality of high In content InGaN QWs. The role of nitrogen in the growth of InGaN on (0001) GaN surface as well as the influence of LDs design on threshold currentmore » density are discussed.« less

  18. Identification of the primary compensating defect level responsible for determining blocking voltage of vertical GaN power diodes

    DOE PAGES

    King, M. P.; Kaplar, R. J.; Dickerson, J. R.; ...

    2016-10-31

    Electrical performance and characterization of deep levels in vertical GaN P-i-N diodes grown on low threading dislocation density (~10 4 –10 6 cm –2) bulk GaN substrates are investigated. The lightly doped n drift region of these devices is observed to be highly compensated by several prominent deep levels detected using deep level optical spectroscopy at E c-2.13, 2.92, and 3.2 eV. A combination of steady-state photocapacitance and lighted capacitance-voltage profiling indicates the concentrations of these deep levels to be N t = 3 × 10 12, 2 × 10 15, and 5 × 10 14 cm –3, respectively. Themore » E c-2.92 eV level is observed to be the primary compensating defect in as-grown n-type metal-organic chemical vapor deposition GaN, indicating this level acts as a limiting factor for achieving controllably low doping. The device blocking voltage should increase if compensating defects reduce the free carrier concentration of the n drift region. Understanding the incorporation of as-grown and native defects in thick n-GaN is essential for enabling large V BD in the next-generation wide-bandgap power semiconductor devices. Furthermore, controlling the as-grown defects induced by epitaxial growth conditions is critical to achieve blocking voltage capability above 5 kV.« less

  19. Magnesium acceptor in gallium nitride. I. Photoluminescence from Mg-doped GaN

    NASA Astrophysics Data System (ADS)

    Reshchikov, M. A.; Ghimire, P.; Demchenko, D. O.

    2018-05-01

    Defect-related photoluminescence (PL) is analyzed in detail for n -type, p -type, and semi-insulating Mg-doped GaN grown by different techniques. The ultraviolet luminescence (UVL) band is the dominant PL band in conductive n -type and p -type GaN:Mg samples grown by hydride vapor phase epitaxy (HVPE) and molecular beam epitaxy. The UVL band in undoped and Mg-doped GaN samples is attributed to the shallow M gGa acceptor with the ionization energy of 223 meV. In semi-insulating GaN:Mg samples, very large shifts of the UVL band (up to 0.6 eV) are observed with variation of temperature or excitation intensity. The shifts are attributed to diagonal transitions, likely due to potential fluctuations or near-surface band bending. The blue luminescence (B LMg ) band is observed only in GaN:Mg samples grown by HVPE or metalorganic chemical vapor deposition when the concentration of Mg exceeds 1019c m-3 . The B LMg band is attributed to electron transitions from an unknown deep donor to the shallow M gGa acceptor. Basic properties of the observed PL are explained with a phenomenological model.

  20. Effect of annealing temperature on the photoluminescence and scintillation properties of ZnO nanorods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurudirek, Sinem V.; Menkara, H.; Klein, Benjamin D. B.

    2018-01-01

    The effect of the annealing to enhance the photoluminescence (PL) and scintillation properties, as determined by pulse height distribution of alpha particle irradiation, has been investigated for solution grown ZnO nanorods For this investigation the ZnO nanorod arrays were grown on glass for 22 h at 95 ◦ C as a substrate using a solution based hydrothermal technique. The samples were first annealed for different times (30, 60, 90 and 120 min) at 300 ◦ C and then at different temperatures (100 ◦ C–600 ◦ C) in order to determine the optimum annealing time and temperature, respectively. Before annealing, themore » ZnO nanorod arrays showed a broad yellow–orange visible and near-band gap UV emission peaks. After annealing in a forming gas atmosphere, the intensity of the sub-band gap PL was significantly reduced and the near-band gap PL emission intensity correspondingly increased (especially at temperatures higher than 100 ◦ C). Based on the ratio of the peak intensity ratio before and after annealing, it was concluded that samples at 350 ◦ C for 90 min resulted in the best near-band gap PL emission. Similarly, the analysis of the pulse height spectrum resulting from alpha particles revealed that ZnO nanorod arrays similarly annealed at 350 ◦ C for 90 min exhibited the highest scintillation response.« less

  1. Comparison of as-grown and annealed GaN/InGaN : Mg samples

    NASA Astrophysics Data System (ADS)

    Deng, Qingwen; Wang, Xiaoliang; Xiao, Hongling; Wang, Cuimei; Yin, Haibo; Chen, Hong; Lin, Defeng; Jiang, Lijuan; Feng, Chun; Li, Jinmin; Wang, Zhanguo; Hou, Xun

    2011-08-01

    Mg-doped InGaN was grown on unintentionally doped GaN layer, and Mg and defect behaviours in both GaN and InGaN : Mg were investigated through photoluminescence measurement at 7 K. Mg acceptor was found in unintentionally doped GaN after thermal annealing in N2 ambient, and Mg activation energy was estimated to be 200 meV and 110 meV for GaN and InGaN, respectively. Particularly, the ultraviolet band (3.0-3.2 eV) in the GaN layer was infrequently observed in the unannealed sample but quenched in the annealed sample; this band may be associated with oxygen-substituted nitrogen defects. Moreover, the measurement errors of photoluminescence and x-ray diffraction originated from strain were taken into account.

  2. Anharmonic phonon decay in cubic GaN

    NASA Astrophysics Data System (ADS)

    Cuscó, R.; Domènech-Amador, N.; Novikov, S.; Foxon, C. T.; Artús, L.

    2015-08-01

    We present a Raman-scattering study of optical phonons in zinc-blende (cubic) GaN for temperatures ranging from 80 to 750 K. The experiments were performed on high-quality, cubic GaN films grown by molecular-beam epitaxy on GaAs (001) substrates. The observed temperature dependence of the optical phonon frequencies and linewidths is analyzed in the framework of anharmonic decay theory, and possible decay channels are discussed in the light of density-functional-theory calculations. The longitudinal-optical (LO) mode relaxation is found to occur via asymmetric decay into acoustic phonons, with an appreciable contribution of higher-order processes. The transverse-optical mode linewidth shows a weak temperature dependence and its frequency downshift is primarily determined by the lattice thermal expansion. The LO phonon lifetime is derived from the observed Raman linewidth and an excellent agreement with previous theoretical predictions is found.

  3. Simple and scalable growth of AgCl nanorods by plasma-assisted strain relaxation on flexible polymer substrates

    NASA Astrophysics Data System (ADS)

    Park, Jae Yong; Lee, Illhwan; Ham, Juyoung; Gim, Seungo; Lee, Jong-Lam

    2017-06-01

    Implementing nanostructures on plastic film is indispensable for highly efficient flexible optoelectronic devices. However, due to the thermal and chemical fragility of plastic, nanostructuring approaches are limited to indirect transfer with low throughput. Here, we fabricate single-crystal AgCl nanorods by using a Cl2 plasma on Ag-coated polyimide. Cl radicals react with Ag to form AgCl nanorods. The AgCl is subjected to compressive strain at its interface with the Ag film because of the larger lattice constant of AgCl compared to Ag. To minimize strain energy, the AgCl nanorods grow in the [200] direction. The epitaxial relationship between AgCl (200) and Ag (111) induces a strain, which leads to a strain gradient at the periphery of AgCl nanorods. The gradient causes a strain-induced diffusion of Ag atoms to accelerate the nanorod growth. Nanorods grown for 45 s exhibit superior haze up to 100% and luminance of optical device increased by up to 33%.

  4. Method of growing GaN films with a low density of structural defects using an interlayer

    DOEpatents

    Bourret-Courchesne, Edith D.

    2003-01-01

    A dramatic reduction of the dislocation density in GaN was obtained by insertion of a single thin interlayer grown at an intermediate temperature (IT-IL) after the growth of an initial grown at high temperature. A description of the growth process is presented with characterization results aimed at understanding the mechanisms of reduction in dislocation density. A large percentage of the threading dislocations present in the first GaN epilayer are found to bend near the interlayer and do not propagate into the top layer which grows at higher temperature in a lateral growth mode. TEM studies show that the mechanisms of dislocation reduction are similar to those described for the epitaxial lateral overgrowth process, however a notable difference is the absence of coalescence boundaries.

  5. Comparing electrical characteristics of in situ and ex situ Al2O3/GaN interfaces formed by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Chan, Silvia H.; Bisi, Davide; Tahhan, Maher; Gupta, Chirag; DenBaars, Steven P.; Keller, Stacia; Zanoni, Enrico; Mishra, Umesh K.

    2018-04-01

    Al2O3/n-GaN MOS-capacitors grown by metalorganic chemical vapor deposition with in-situ- and ex-situ-formed Al2O3/GaN interfaces were characterized. Capacitors grown entirely in situ exhibited ˜4 × 1012 cm-2 fewer positive fixed charges and up to ˜1 × 1013 cm-2 eV-1 lower interface-state density near the band-edge than did capacitors with ex situ oxides. When in situ Al2O3/GaN interfaces were reformed via the insertion of a 10-nm-thick GaN layer, devices exhibited behavior between the in situ and ex situ limits. These results illustrate the extent to which an in-situ-formed dielectric/GaN gate stack improves the interface quality and breakdown performance.

  6. Role of low-temperature AlGaN interlayers in thick GaN on silicon by metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Fritze, S.; Drechsel, P.; Stauss, P.; Rode, P.; Markurt, T.; Schulz, T.; Albrecht, M.; Bläsing, J.; Dadgar, A.; Krost, A.

    2012-06-01

    Thin AlGaN interlayers have been grown into a thick GaN stack on Si substrates to compensate tensile thermal stress and significantly improve the structural perfection of the GaN. In particular, thicker interlayers reduce the density in a-type dislocations as concluded from x-ray diffraction (XRD) measurements. Beyond an interlayer thickness of 28 nm plastic substrate deformation occurs. For a thick GaN stack, the first two interlayers serve as strain engineering layers to obtain a crack-free GaN structure, while a third strongly reduces the XRD ω-(0002)-FWHM. The vertical strain and quality profile determined by several XRD methods demonstrates the individual impact of each interlayer.

  7. Effect of growth pressure on the morphology evolution and doping characteristics in nonpolar a-plane GaN

    NASA Astrophysics Data System (ADS)

    Song, Keun Man; Kim, Jong Min; Kang, Bong Kyun; Shin, Chan Soo; Ko, Chul Gi; Kong, Bo Hyun; Cho, Hyung Koun; Yoon, Dae Ho; Kim, Hogyoung; Hwang, Sung Min

    2012-02-01

    Nonpolar a-plane GaN layers grown on r-plane sapphire substrates were examined by using a two-step growth process. The higher initial growth pressure for the nucleation layer resulted in the improved crystalline quality with lower density of both threading dislocations and basal stacking faults. This was attributed to the higher degree of initial roughening and recovery time via a growth mode transition from three-dimensional (3D) to quasi two-dimensional (2D) lateral growth. Using Hall-effect measurements, the overgrown Si doped GaN layers grown with higher initial growth pressure were found to have higher mobility. The scattering mechanism due to the dislocations was dominant especially at low temperature (<200 K) for the lower initial growth pressure, which was insignificant for the higher initial growth pressure. The temperature-dependent Hall-effect measurements for the Mg doped GaN with a higher initial growth pressure yielded the activation energy and the acceptor concentration to be 128 meV and 1.2 × 1019 cm-3, respectively, corresponding to about 3.6% of activation at room temperature. Two-step growth scheme with a higher initial growth pressure is suggested as a potential method to improve the performance of nonpolar a-plane GaN based devices.

  8. Direct Growth of Crystalline Tungsten Oxide Nanorod Arrays by a Hydrothermal Process and Their Electrochromic Properties

    NASA Astrophysics Data System (ADS)

    Lu, Chih-Hao; Hon, Min Hsiung; Leu, Ing-Chi

    2017-04-01

    Transparent crystalline tungsten oxide nanorod arrays for use as an electrochromic layer have been directly prepared on fluorine-doped tin oxide-coated glass via a facile tungsten film-assisted hydrothermal process using aqueous tungsten hexachloride solution. X-ray diffraction analysis and field-emission scanning electron microscopy were used to characterize the phase and morphology of the grown nanostructures. Arrays of tungsten oxide nanorods with diameter of ˜22 nm and length of ˜240 nm were obtained at 200°C after 8 h of hydrothermal reaction. We propose a growth mechanism for the deposition of the monoclinic tungsten oxide phase in the hydrothermal environment. The tungsten film was first oxidized to tungsten oxide to provide seed sites for crystal growth and address the poor connection between the growing tungsten oxide and substrate. Aligned tungsten oxide nanorod arrays can be grown by a W thin film-assisted heterogeneous nucleation process with NaCl as a structure-directing agent. The fabricated electrochromic device demonstrated optical modulation (coloration/bleaching) at 632.8 nm of ˜41.2% after applying a low voltage of 0.1 V for 10 s, indicating the potential of such nanorod array films for use in energy-saving smart windows.

  9. Growth and characterization of manganese doped gallium nitride nanowires.

    PubMed

    Kumar, V Suresh; Kesavamoorthy, R; Kumar, J

    2008-08-01

    Manganese doped GaN nanowires have been grown by chemical vapour transport method on sapphire (0001) substrates in the temperature range of 800-1050 degrees C. The surface features of nanowires have been investigated using Scanning Electron Microscopy (SEM), Energy Dispersive X-ray analysis (EDAX), Raman scattering studies and Electron Paramagnetic Resonance (EPR). SEM images showed that the morphology of the one dimensional materials included straight nanorods and nanowires around 70-80 nm. Raman spectrum showed the GaMnN vibrational modes at 380, 432 and 445 cm(-1). EPR measurements were performed on Mn doped GaN nanowires in order to evaluate the magnetic behaviour.

  10. Hydrothermal synthesis of highly crystalline ZnO nanorod arrays: Dependence of morphology and alignment on growth conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azzez, Shrook A., E-mail: shurouq44@yahoo.com; Hassan, Z.; Alimanesh, M.

    Highly oriented zinc oxide nanorod were successfully grown on seeded p-type silicon substrate by hydrothermal methode. The morphology and the crystallinty of ZnO c-axis (002) arrays were systematically studied using field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD) methods. The effect of seed layer pre-annealing on nanorods properties was explained according to the nucleation site of ZnO nanoparticles on silicon substrate. In addition, the variation of the equal molarity of zinc nitrate hexahydrate and hexamine concentrations in the reaction vessel play a crucial role related to the ZnO nanorods.

  11. The effects of GaN nanocolumn arrays and thin SixNy buffer layers on the morphology of GaN layers grown by plasma-assisted molecular beam epitaxy on Si(111) substrates

    NASA Astrophysics Data System (ADS)

    Shubina, K. Yu; Pirogov, E. V.; Mizerov, A. M.; Nikitina, E. V.; Bouravleuv, A. D.

    2018-03-01

    The effects of GaN nanocolumn arrays and a thin SixNy layer, used as buffer layers, on the morphology of GaN epitaxial layers are investigated. Two types of samples with different buffer layers were synthesized by PA-MBE. The morphology of the samples was characterized by SEM. The crystalline quality of the samples was assessed by XRD. The possibility of synthesis of continuous crystalline GaN layers on Si(111) substrates without the addition of other materials such as aluminum nitride was demonstrated.

  12. ZnO nanorods/AZO photoanode for perovskite solar cells fabricated in ambient air

    NASA Astrophysics Data System (ADS)

    La Ferrara, Vera; De Maria, Antonella; Rametta, Gabriella; Della Noce, Marco; Vittoria Mercaldo, Lucia; Borriello, Carmela; Bruno, Annalisa; Delli Veneri, Paola

    2017-08-01

    ZnO nanorods are a good candidate for replacing standard photoanodes, such as TiO2, in perovskite solar cells and in principle superseding the high performances already obtained. This is possible because ZnO nanorods have a fast electron transport rate due to their large surface area. An array of ZnO nanorods is grown by chemical bath deposition starting from Al-doped ZnO (AZO) used both as a seed layer and as an efficient transparent anode in the visible spectral range. In particular, in this work we fabricate methylammonium lead iodide (CH3NH3PbI3) perovskite solar cells using glass/AZO/ZnO nanorods/perovskite/Spiro-OMeTAD/Au as the architecture. The growth of ZnO nanorods has been optimized by varying the precursor concentrations, growth time and solution temperature. All the fabrication process and photovoltaic characterizations have been carried out in ambient air and the devices have not been encapsulated. Power conversion efficiency as high as 7.0% has been obtained with a good stability over 20 d. This is the highest reported value to the best of our knowledge and it is a promising result for the development of perovskite solar cells based on ZnO nanorods and AZO.

  13. First-principles Study of Hydrogen depassivation of Mg acceptor by Be in GaN

    NASA Astrophysics Data System (ADS)

    Zhang, Qiming; Wang, Xiao; Wang, Chihsiang

    2010-03-01

    The process of hydrogen depassivation of the acceptor by can convert the as-grown high-resistivity -doped into a - conducting material. A first-principles study on the process will be presented. The formation energies of various complex of impurities and point defects have been calculated and compared. The diffusion barriers of the hydrogen atom in the doped GaN have been obtained by the Nudge-Elastic-Band method. The results explain successfully the experimental observation that the hole concentration has been significantly enhanced in a Be-implanted Mg-doped GaN.

  14. Mg doping of GaN by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Lieten, R. R.; Motsnyi, V.; Zhang, L.; Cheng, K.; Leys, M.; Degroote, S.; Buchowicz, G.; Dubon, O.; Borghs, G.

    2011-04-01

    We present a systematic study on the influence of growth conditions on the incorporation and activation of Mg in GaN layers grown by plasma-assisted molecular beam epitaxy. We show that high quality p-type GaN layers can be obtained on GaN-on-silicon templates. The Mg incorporation and the electrical properties have been investigated as a function of growth temperature, Ga : N flux ratio and Mg : Ga flux ratio. It was found that the incorporation of Mg and the electrical properties are highly sensitive to the Ga : N flux ratio. The highest hole mobility and lowest resistivity were achieved for slightly Ga-rich conditions. In addition to an optimal Ga : N ratio, an optimum Mg : Ga flux ratio was also observed at around 1%. We observed a clear Mg flux window for p-type doping of GaN : 0.31% < Mg : Ga < 5.0%. A lowest resistivity of 0.98 Ω cm was obtained for optimized growth conditions. The p-type GaN layer then showed a hole concentration of 4.3 × 1017 cm-3 and a mobility of 15 cm2 V-1 s-1. Temperature-dependent Hall effect measurements indicate an acceptor depth in these samples of 100 meV for a hole concentration of 5.5 × 1017 cm-3. The corresponding Mg concentration is 5 × 1019 cm-3, indicating approximately 1% activation at room temperature. In addition to continuous growth of Mg-doped GaN layers we also investigated different modulated growth procedures. We show that a modulated growth procedure has only limited influence on Mg doping at a growth temperature of 800 °C or higher. This result is thus in contrast to previously reported GaN : Mg doping at much lower growth temperatures of 500 °C.

  15. Mechanism of nucleation and growth of catalyst-free self-organized GaN columns by MOVPE

    NASA Astrophysics Data System (ADS)

    Wang, Xue; Li, Shunfeng; Fündling, Sönke; Wehmann, Hergo-H.; Strassburg, Martin; Lugauer, Hans-Jürgen; Steegmüller, Ulrich; Waag, Andreas

    2013-05-01

    The growth mechanism of catalyst-free self-organized GaN nuclei and three-dimensional columns on sapphire by metal organic vapour phase epitaxy (MOVPE) is investigated. Temperature- and time-dependent growth is performed. The growth behaviour can be characterized by two different kinetic regimes: mass-transport-limited growth and thermodynamically limited growth. The sum of activation energies for thermodynamic barrier of nucleation and for surface diffusion/mass-transport limitation, i.e. Whet +Ed, is 0.57 eV in the ‘low’-temperature region and 2.43 eV in the ‘high’-temperature region. GaN columns grown under the same conditions have very comparable height, which is not dependent on their diameter or the distance to other columns. Therefore, the growth rate is presumably limited by the incorporation rate on the top surface of columns. The height and diameter at the top of the GaN columns increase linearly with time and no height limit is observed. The GaN columns can reach more than 40 µm in height. Moreover, the investigated GaN columns are Ga-polar.

  16. As-Grown Gallium Nitride Nanowire Electromechanical Resonators

    NASA Astrophysics Data System (ADS)

    Montague, Joshua R.

    Technological development in recent years has led to a ubiquity of micro- and nano-scale electromechanical devices. Sensors for monitoring temperature, pressure, mass, etc., are now found in nearly all electronic devices at both the industrial and consumer levels. As has been true for integrated circuit electronics, these electromechanical devices have continued to be scaled down in size. For many nanometer-scale structures with large surface-to-volume ratio, dissipation (energy loss) becomes prohibitively large causing a decreasing sensitivity with decreasing sensor size. In this work, gallium nitride (GaN) nanowires are investigated as singly-clamped (cantilever) mechanical resonators with typical mechanical quality factors, Q (equal to the ratio of resonance frequency to peak full-width-at-half-maximum-power) and resonance frequencies, respectively, at or above 30,000, and near 1 MHz. These Q values---in vacuum at room temperature---indicate very low levels of dissipation; they are essentially the same as those for bulk quartz crystal resonators that form the basis of simple clocks and mass sensors. The GaN nanowires have lengths and diameters, respectively, of approximately 15 micrometers and hundreds of nanometers. As-grown GaN nanowire Q values are larger than other similarly-sized, bottom-up, cantilever resonators and this property makes them very attractive for use as resonant sensors. We demonstrate the capability of detecting sub-monolayer levels of atomic layer deposited (ALD) films, and the robust nature of the GaN nanowires structure that allows for their 'reuse' after removal of such layers. In addition to electron microscope-based measurement techniques, we demonstrate the successful capacitive detection of a single nanowire using microwave homodyne reflectometry. This technique is then extended to allow for simultaneous measurements of large ensembles of GaN nanowires on a single sample, providing statistical information about the distribution of

  17. Incorporation of Mg in Free-Standing HVPE GaN Substrates

    NASA Astrophysics Data System (ADS)

    Zvanut, M. E.; Dashdorj, J.; Freitas, J. A.; Glaser, E. R.; Willoughby, W. R.; Leach, J. H.; Udwary, K.

    2016-06-01

    Mg, the only effective p-type dopant for nitrides, is well studied in thin films due to the important role of the impurity in light-emitting diodes and high-power electronics. However, there are few reports of Mg in thick free-standing GaN substrates. Here, we demonstrate successful incorporation of Mg into GaN grown by hydride vapor-phase epitaxy (HVPE) using metallic Mg as the doping source. The concentration of Mg obtained from four separate growth runs ranged between 1016 cm-3 and 1019 cm-3. Raman spectroscopy and x-ray diffraction revealed that Mg did not induce stress or perturb the crystalline quality of the HVPE GaN substrates. Photoluminescence (PL) and electron paramagnetic resonance (EPR) spectroscopies were performed to investigate the types of point defects in the crystals. The near-band-edge excitonic and shallow donor-shallow acceptor radiative recombination processes involving shallow Mg acceptors were prominent in the PL spectrum of a sample doped to 3 × 1018 cm-3, while the EPR signal was also thought to represent a shallow Mg acceptor. Detection of this signal reflects minimization of nonuniform strain obtained in the thick free-standing HVPE GaN compared with heteroepitaxial thin films.

  18. High-Brightness Blue Light-Emitting Diodes Enabled by a Directly Grown Graphene Buffer Layer.

    PubMed

    Chen, Zhaolong; Zhang, Xiang; Dou, Zhipeng; Wei, Tongbo; Liu, Zhiqiang; Qi, Yue; Ci, Haina; Wang, Yunyu; Li, Yang; Chang, Hongliang; Yan, Jianchang; Yang, Shenyuan; Zhang, Yanfeng; Wang, Junxi; Gao, Peng; Li, Jinmin; Liu, Zhongfan

    2018-06-08

    Single-crystalline GaN-based light-emitting diodes (LEDs) with high efficiency and long lifetime are the most promising solid-state lighting source compared with conventional incandescent and fluorescent lamps. However, the lattice and thermal mismatch between GaN and sapphire substrate always induces high stress and high density of dislocations and thus degrades the performance of LEDs. Here, the growth of high-quality GaN with low stress and a low density of dislocations on graphene (Gr) buffered sapphire substrate is reported for high-brightness blue LEDs. Gr films are directly grown on sapphire substrate to avoid the tedious transfer process and GaN is grown by metal-organic chemical vapor deposition (MOCVD). The introduced Gr buffer layer greatly releases biaxial stress and reduces the density of dislocations in GaN film and In x Ga 1- x N/GaN multiple quantum well structures. The as-fabricated LED devices therefore deliver much higher light output power compared to that on a bare sapphire substrate, which even outperforms the mature process derived counterpart. The GaN growth on Gr buffered sapphire only requires one-step growth, which largely shortens the MOCVD growth time. This facile strategy may pave a new way for applications of Gr films and bring several disruptive technologies for epitaxial growth of GaN film and its applications in high-brightness LEDs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Investigation of the phototoxic effect of ZnO nanorods on fibroblasts and melanoma human cells

    NASA Astrophysics Data System (ADS)

    Kishwar, S.; Siddique, M.; Israr-Qadir, M.; Nur, O.; Willander, M.; Öllinger, K.

    2014-11-01

    Photocytotoxic effects of as-grown and zinc oxide (ZnO) nanorods coated with 5-aminolevulinic acid (ALA) have been studied on human cells, i.e. melanoma and foreskin fibroblast, under dark and ultraviolet light exposures. Zinc oxide nanorods have been grown on the very sharp tip (diameter = 700 nm) of borosilicate glass pipettes and then were coated by the photosensitizer for targeted investigations inside human cells. The coated glass pipette’s tip with photosensitizer has been inserted inside the cells with the help of a micro-manipulator and irradiated through ultraviolet light (UVA), which reduces the membrane potential of the mitochondria leading to cell death. Cell viability loss has been detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay when exposed to the dissolved ZnO nanorods and the production of the reactive oxygen species (ROS) has been detected along with the enhanced cytotoxic effect under UVA irradiation. Additionally, the influence of the lipid soluble antioxidant vitamin E and water-soluble N-acetyl-cysteine toward the enhancement or reduction of the toxicity has been investigated. A comparative analysis of the toxic nature of ZnO nanorods has been drawn between normal human fibroblast and melanoma cells, which can be favorable for understanding the clinical setting for killing tumor cells.

  20. GaN microwires as optical microcavities: whispering gallery modes Vs Fabry-Perot modes.

    PubMed

    Coulon, Pierre-Marie; Hugues, Maxime; Alloing, Blandine; Beraudo, Emmanuel; Leroux, Mathieu; Zuniga-Perez, Jesus

    2012-08-13

    GaN microwires grown by metalorganic vapour phase epitaxy and with radii typically on the order of 1-5 micrometers exhibit a number of resonances in their photoluminescence spectra. These resonances include whispering gallery modes and transverse Fabry-Perot modes. A detailed spectroscopic study by polarization-resolved microphotoluminescence, in combination with electron microscopy images, has enabled to differentiate both kinds of modes and determined their main spectral properties. Finally, the dispersion of the ordinary and extraordinary refractive indices of strain-free GaN in the visible-UV range has been obtained thanks to the numerical simulation of the observed modes.

  1. Deep level study of Mg-doped GaN using deep level transient spectroscopy and minority carrier transient spectroscopy

    NASA Astrophysics Data System (ADS)

    Duc, Tran Thien; Pozina, Galia; Amano, Hiroshi; Monemar, Bo; Janzén, Erik; Hemmingsson, Carl

    2016-07-01

    Deep levels in Mg-doped GaN grown by metal organic chemical vapor deposition (MOCVD), undoped GaN grown by MOCVD, and halide vapor phase epitaxy (HVPE)-grown GaN have been studied using deep level transient spectroscopy and minority charge carrier transient spectroscopy on Schottky diodes. One hole trap, labeled HT1, was detected in the Mg-doped sample. It is observed that the hole emission rate of the trap is enhanced by increasing electric field. By fitting four different theoretical models for field-assisted carrier emission processes, the three-dimensional Coulombic Poole-Frenkel (PF) effect, three-dimensional square well PF effect, phonon-assisted tunneling, and one-dimensional Coulombic PF effect including phonon-assisted tunneling, it is found that the one-dimensional Coulombic PF model, including phonon-assisted tunneling, is consistent with the experimental data. Since the trap exhibits the PF effect, we suggest it is acceptorlike. From the theoretical model, the zero field ionization energy of the trap and an estimate of the hole capture cross section have been determined. Depending on whether the charge state is -1 or -2 after hole emission, the zero field activation energy Ei 0 is 0.57 eV or 0.60 eV, respectively, and the hole capture cross section σp is 1.3 ×10-15c m2 or 1.6 ×10-16c m2 , respectively. Since the level was not observed in undoped GaN, it is suggested that the trap is associated with an Mg related defect.

  2. Electrochemically deposited gallium oxide nanostructures on silicon substrates

    PubMed Central

    2014-01-01

    We report a synthesis of β-Ga2O3 nanostructures on Si substrate by electrochemical deposition using a mixture of Ga2O3, HCl, NH4OH, and H2O. The presence of Ga3+ ions contributed to the deposition of Ga2O3 nanostructures on the Si surface with the assistance of applied potentials. The morphologies of the grown structures strongly depended on the molarity of Ga2O3 and pH level of electrolyte. β-Ga2O3 nanodot-like structures were grown on Si substrate at a condition with low molarity of Ga2O3. However, Ga2O3 nanodot structures covered with nanorods on top of their surfaces were obtained at higher molarity, and the densities of nanorods seem to increase with the decrease of pH level. High concentration of Ga3+ and OH- ions may promote the reaction of each other to produce Ga2O3 nanorods in the electrolyte. Such similar nature of Ga2O3 nanorods was also obtained by using hydrothermal process. The grown structures seem to be interesting for application in electronic and optoelectronic devices as well as to be used as a seed structure for subsequent chemical synthesis of GaN by thermal transformation method. PMID:24629107

  3. GaN: From three- to two-dimensional single-layer crystal and its multilayer van der Waals solids

    NASA Astrophysics Data System (ADS)

    Onen, A.; Kecik, D.; Durgun, E.; Ciraci, S.

    2016-02-01

    Three-dimensional (3D) GaN is a III-V compound semiconductor with potential optoelectronic applications. In this paper, starting from 3D GaN in wurtzite and zinc-blende structures, we investigated the mechanical, electronic, and optical properties of the 2D single-layer honeycomb structure of GaN (g -GaN ) and its bilayer, trilayer, and multilayer van der Waals solids using density-functional theory. Based on high-temperature ab initio molecular-dynamics calculations, we first showed that g -GaN can remain stable at high temperature. Then we performed a comparative study to reveal how the physical properties vary with dimensionality. While 3D GaN is a direct-band-gap semiconductor, g -GaN in two dimensions has a relatively wider indirect band gap. Moreover, 2D g -GaN displays a higher Poisson ratio and slightly less charge transfer from cation to anion. In two dimensions, the optical-absorption spectra of 3D crystalline phases are modified dramatically, and their absorption onset energy is blueshifted. We also showed that the physical properties predicted for freestanding g -GaN are preserved when g -GaN is grown on metallic as well as semiconducting substrates. In particular, 3D layered blue phosphorus, being nearly lattice-matched to g -GaN , is found to be an excellent substrate for growing g -GaN . Bilayer, trilayer, and van der Waals crystals can be constructed by a special stacking sequence of g -GaN , and they can display electronic and optical properties that can be controlled by the number of g -GaN layers. In particular, their fundamental band gap decreases and changes from indirect to direct with an increasing number of g -GaN layers.

  4. Metal modulation epitaxy growth for extremely high hole concentrations above 1019 cm-3 in GaN

    NASA Astrophysics Data System (ADS)

    Namkoong, Gon; Trybus, Elaissa; Lee, Kyung Keun; Moseley, Michael; Doolittle, W. Alan; Look, David C.

    2008-10-01

    The free hole carriers in GaN have been limited to concentrations in the low 1018cm-3 range due to the deep activation energy, lower solubility, and compensation from defects, therefore, limiting doping efficiency to about 1%. Herein, we report an enhanced doping efficiency up to ˜10% in GaN by a periodic doping, metal modulation epitaxy growth technique. The hole concentrations grown by periodically modulating Ga atoms and Mg dopants were over ˜1.5×1019cm-3.

  5. Phase transformation of molecular beam epitaxy-grown nanometer-thick Gd₂O₃ and Y₂O₃ on GaN.

    PubMed

    Chang, Wen-Hsin; Wu, Shao-Yun; Lee, Chih-Hsun; Lai, Te-Yang; Lee, Yi-Jun; Chang, Pen; Hsu, Chia-Hung; Huang, Tsung-Shiew; Kwo, J Raynien; Hong, Minghwei

    2013-02-01

    High quality nanometer-thick Gd₂O₃ and Y₂O₃ (rare-earth oxide, R₂O₃) films have been epitaxially grown on GaN (0001) substrate by molecular beam epitaxy (MBE). The R₂O₃ epi-layers exhibit remarkable thermal stability at 1100 °C, uniformity, and highly structural perfection. Structural investigation was carried out by in situ reflection high energy electron diffraction (RHEED) and ex-situ X-ray diffraction (XRD) with synchrotron radiation. In the initial stage of epitaxial growth, the R₂O₃ layers have a hexagonal phase with the epitaxial relationship of R₂O₃ (0001)(H)<1120>(H)//GaN(0001)(H)<1120>(H). With the increase in R₂O₃ film thickness, the structure of the R₂O₃ films changes from single domain hexagonal phase to monoclinic phase with six different rotational domains, following the R₂O₃ (201)(M)[020](M)//GaN(0001)(H)<1120>(H) orientational relationship. The structural details and fingerprints of hexagonal and monoclinic phase Gd₂O₃ films have also been examined by using electron energy loss spectroscopy (EELS). Approximate 3-4 nm is the critical thickness for the structural phase transition depending on the composing rare earth element.

  6. Nanoselective area growth of GaN by metalorganic vapor phase epitaxy on 4H-SiC using epitaxial graphene as a mask

    NASA Astrophysics Data System (ADS)

    Puybaret, Renaud; Patriarche, Gilles; Jordan, Matthew B.; Sundaram, Suresh; El Gmili, Youssef; Salvestrini, Jean-Paul; Voss, Paul L.; de Heer, Walt A.; Berger, Claire; Ougazzaden, Abdallah

    2016-03-01

    We report the growth of high-quality triangular GaN nanomesas, 30-nm thick, on the C-face of 4H-SiC using nanoselective area growth (NSAG) with patterned epitaxial graphene grown on SiC as an embedded mask. NSAG alleviates the problems of defects in heteroepitaxy, and the high mobility graphene film could readily provide the back low-dissipative electrode in GaN-based optoelectronic devices. A 5-8 graphene-layer film is first grown on the C-face of 4H-SiC by confinement-controlled sublimation of silicon carbide. Graphene is then patterned and arrays of 75-nm-wide openings are etched in graphene revealing the SiC substrate. A 30-nm-thick GaN is subsequently grown by metal organic vapor phase epitaxy. GaN nanomesas grow epitaxially with perfect selectivity on SiC, in the openings patterned through graphene. The up-or-down orientation of the mesas on SiC, their triangular faceting, and cross-sectional scanning transmission electron microscopy show that they are biphasic. The core is a zinc blende monocrystal surrounded with single-crystal wurtzite. The GaN crystalline nanomesas have no threading dislocations or V-pits. This NSAG process potentially leads to integration of high-quality III-nitrides on the wafer scalable epitaxial graphene/silicon carbide platform.

  7. Nanoselective area growth of GaN by metalorganic vapor phase epitaxy on 4H-SiC using epitaxial graphene as a mask

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puybaret, Renaud; Jordan, Matthew B.; Voss, Paul L.

    We report the growth of high-quality triangular GaN nanomesas, 30-nm thick, on the C-face of 4H-SiC using nanoselective area growth (NSAG) with patterned epitaxial graphene grown on SiC as an embedded mask. NSAG alleviates the problems of defects in heteroepitaxy, and the high mobility graphene film could readily provide the back low-dissipative electrode in GaN-based optoelectronic devices. A 5–8 graphene-layer film is first grown on the C-face of 4H-SiC by confinement-controlled sublimation of silicon carbide. Graphene is then patterned and arrays of 75-nm-wide openings are etched in graphene revealing the SiC substrate. A 30-nm-thick GaN is subsequently grown by metalmore » organic vapor phase epitaxy. GaN nanomesas grow epitaxially with perfect selectivity on SiC, in the openings patterned through graphene. The up-or-down orientation of the mesas on SiC, their triangular faceting, and cross-sectional scanning transmission electron microscopy show that they are biphasic. The core is a zinc blende monocrystal surrounded with single-crystal wurtzite. The GaN crystalline nanomesas have no threading dislocations or V-pits. This NSAG process potentially leads to integration of high-quality III-nitrides on the wafer scalable epitaxial graphene/silicon carbide platform.« less

  8. Enhanced characteristics of blue InGaN /GaN light-emitting diodes by using selective activation to modulate the lateral current spreading length

    NASA Astrophysics Data System (ADS)

    Lin, Ray-Ming; Lu, Yuan-Chieh; Chou, Yi-Lun; Chen, Guo-Hsing; Lin, Yung-Hsiang; Wu, Meng-Chyi

    2008-06-01

    We have studied the characteristics of blue InGaN /GaN multiquantum-well light-emitting diodes (LEDs) after reducing the length of the lateral current path through the transparent layer through formation of a peripheral high-resistance current-blocking region in the Mg-doped GaN layer. To study the mechanism of selective activation in the Mg-doped GaN layer, we deposited titanium (Ti), gold (Au), Ti /Au, silver, and copper individually onto the Mg-doped GaN layer and investigated their effects on the hole concentration in the p-GaN layer. The Mg-doped GaN layer capped with Ti effectively depressed the hole concentration in the p-GaN layer by over one order of magnitude relative to that of the as-grown layer. This may suggest that high resistive regions are formed by diffusion of Ti and depth of high resistive region from the p-GaN surface depends on the capped Ti film thickness. Selective activation of the Mg-doped GaN layer could be used to modulate the length of the lateral current path. Furthermore, the external quantum efficiency of the LEDs was improved significantly after reducing the lateral current spreading length. In our best result, the external quantum efficiency was 52.3% higher (at 100mA) than that of the as-grown blue LEDs.

  9. Development of a physical and electronic model for RuO 2 nanorod rectenna devices

    NASA Astrophysics Data System (ADS)

    Dao, Justin

    Ruthenium oxide (RuO2) nanorods are an emergent technology in nanostructure devices. As the physical size of electronics approaches a critical lower limit, alternative solutions to further device miniaturization are currently under investigation. Thin-film nanorod growth is an interesting technology, being investigated for use in wireless communications, sensor systems, and alternative energy applications. In this investigation, self-assembled RuO2 nanorods are grown on a variety of substrates via a high density plasma, reactive sputtering process. Nanorods have been found to grow on substrates that form native oxide layers when exposed to air, namely silicon, aluminum, and titanium. Samples were analyzed with Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) techniques. Conductive Atomic Force Microscopy (C-AFM) measurements were performed on single nanorods to characterize structure and electrical conductivity. The C-AFM probe tip is placed on a single nanorod and I-V characteristics are measured, potentially exhibiting rectifying capabilities. An analysis of these results using fundamental semiconductor physics principles is presented. Experimental data for silicon substrates was most closely approximated by the Simmons model for direct electron tunneling, whereas that of aluminum substrates was well approximated by Fowler-Nordheim tunneling. The native oxide of titanium is regarded as a semiconductor rather than an insulator and its ability to function as a rectifier is not strong. An electronic model for these nanorods is described herein.

  10. Optical signature of Mg-doped GaN: Transfer processes

    NASA Astrophysics Data System (ADS)

    Callsen, G.; Wagner, M. R.; Kure, T.; Reparaz, J. S.; Bügler, M.; Brunnmeier, J.; Nenstiel, C.; Hoffmann, A.; Hoffmann, M.; Tweedie, J.; Bryan, Z.; Aygun, S.; Kirste, R.; Collazo, R.; Sitar, Z.

    2012-08-01

    Mg doping of high quality, metal organic chemical vapor deposition grown GaN films results in distinct traces in their photoluminescence and photoluminescence excitation spectra. We analyze GaN:Mg grown on sapphire substrates and identify two Mg related acceptor states, one additional acceptor state and three donor states that are involved in the donor-acceptor pair band transitions situated at 3.26-3.29 eV in GaN:Mg. The presented determination of the donor-acceptor pair band excitation channels by photoluminescence excitation spectroscopy in conjunction with temperature-dependent photoluminescence measurements results in a direct determination of the donor and acceptor binding, localization, and activation energies, which is put into a broader context based on Haynes's rule. Furthermore, we analyze the biexponential decay dynamics of the photoluminescence signal of the acceptor and donor bound excitons. As all observed lifetimes scale with the localization energy of the donor and acceptor related bound excitons, defect and complex bound excitons can be excluded as their origin. Detailed analysis of the exciton transfer processes in the close energetic vicinity of the GaN band edge reveals excitation via free and bound excitonic channels but also via an excited state as resolved for the deepest localized Mg related acceptor bound exciton. For the two Mg acceptor states, we determine binding energies of 164 ± 5 and 195 ± 5 meV, which is in good agreement with recent density functional theory results. This observation confirms and quantifies the general dual nature of acceptor states in GaN based on the presented analysis of the photoluminescence and photoluminescence excitation spectra.

  11. Large-area, laterally-grown epitaxial semiconductor layers

    DOEpatents

    Han, Jung; Song, Jie; Chen, Danti

    2017-07-18

    Structures and methods for confined lateral-guided growth of a large-area semiconductor layer on an insulating layer are described. The semiconductor layer may be formed by heteroepitaxial growth from a selective growth area in a vertically-confined, lateral-growth guiding structure. Lateral-growth guiding structures may be formed in arrays over a region of a substrate, so as to cover a majority of the substrate region with laterally-grown epitaxial semiconductor tiles. Quality regions of low-defect, stress-free GaN may be grown on silicon.

  12. Patterned Well-Aligned ZnO Nanorods Assisted with Polystyrene Monolayer by Oxygen Plasma Treatment.

    PubMed

    Choi, Hyun Ji; Lee, Yong-Min; Yu, Jung-Hoon; Hwang, Ki-Hwan; Boo, Jin-Hyo

    2016-08-05

    Zinc oxide is known as a promising material for sensing devices due to its piezoelectric properties. In particular, the alignment of ZnO nanostructures into ordered nanoarrays is expected to improve the device sensitivity due to the large surface area which can be utilized to capture significant quantities of gas particles. However, ZnO nanorods are difficult to grow on the quartz substrate with well-ordered shape. So, we investigated nanostructures by adjusting the interval distance of the arranged ZnO nanorods using polystyrene (PS) spheres of various sizes (800 nm, 1300 nm and 1600 nm). In addition, oxygen plasma treatment was used to specify the nucleation site of round, patterned ZnO nanorod growth. Therefore, ZnO nanorods were grown on a quartz substrate with a patterned polystyrene monolayer by the hydrothermal method after oxygen plasma treatment. The obtained ZnO nanostructures were characterized by X-ray diffraction (XRD) and field-emission scanning electron microscope (FE-SEM).

  13. Epitaxial growth of the zinc oxide nanorods, their characterization and in vitro biocompatibility studies.

    PubMed

    Gopikrishnan, Ramya; Zhang, Kai; Ravichandran, Prabakaran; Biradar, Santhoshkumar; Ramesh, Vani; Goornavar, Virupaxi; Jeffers, Robert B; Pradhan, Aswini; Hall, Joseph C; Baluchamy, Sudhakar; Ramesh, Govindarajan T

    2011-10-01

    Here, we have synthesized Zinc Oxide (ZnO) nanorods at room temperature using zinc acetate and hexamethylenetetramine as precursors followed by characterization using X-ray diffraction (XRD), fourier transform infra red spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy. The growth of the synthesized ZnO was found to be very close to its hexagonal nature, which is confirmed by XRD. The nanorods were grown perpendicular to the long-axis and grew along the [001] direction, which is the nature of ZnO growth. The morphology of the synthesized ZnO nanorods was also confirmed by SEM. The size of the nanorod was estimated to be around 20-25 nm in diameter and approximately 50-60 nm in length. Our biocompatibility studies using synthesized ZnO showed no significant dose- or time-dependent increase in the formation of free radicals, accumulation of peroxidative products, antioxidant depletion or loss of cell viability on lung epithelial cells.

  14. Controllable synthesis of ZnxCd1-xS@ZnO core-shell nanorods with enhanced photocatalytic activity.

    PubMed

    Xie, Shilei; Lu, Xihong; Zhai, Teng; Gan, Jiayong; Li, Wei; Xu, Ming; Yu, Minghao; Zhang, Yuan-Ming; Tong, Yexiang

    2012-07-17

    We report the synthesis of Zn(x)Cd(1-x)S@ZnO nanorod arrays via a facile two-step process and the implementation of these core-shell nanorods as an environmental friendly and recyclable photocatalyst for methyl orange degradation. The band gap of Zn(x)Cd(1-x)S@ZnO core-shell nanorods can be readily tunable by adjusting the ratio of Zn/Cd during the synthesis. These Zn(x)Cd(1-x)S@ZnO core-shell nanorods exhibit a high photocatalytic activity and good stability in the degradation of the methyl orange. Moreover, these films grown on FTO substrates make the collection and recycle of the photocatalyst easier. These findings may open new opportunities for the design of effective, stable, and easy-recyclable photocatalytic materials.

  15. Shell Layer Thickness-Dependent Photocatalytic Activity of Sputtering Synthesized Hexagonally Structured ZnO-ZnS Composite Nanorods

    PubMed Central

    Liang, Yuan-Chang; Lo, Ya-Ru; Wang, Chein-Chung; Xu, Nian-Cih

    2018-01-01

    ZnO-ZnS core-shell nanorods are synthesized by combining the hydrothermal method and vacuum sputtering. The core-shell nanorods with variable ZnS shell thickness (7–46 nm) are synthesized by varying ZnS sputtering duration. Structural analyses demonstrated that the as-grown ZnS shell layers are well crystallized with preferring growth direction of ZnS (002). The sputtering-assisted synthesized ZnO-ZnS core-shell nanorods are in a wurtzite structure. Moreover, photoluminance spectral analysis indicated that the introduction of a ZnS shell layer improved the photoexcited electron and hole separation efficiency of the ZnO nanorods. A strong correlation between effective charge separation and the shell thickness aids the photocatalytic behavior of the nanorods and improves their photoresponsive nature. The results of comparative degradation efficiency toward methylene blue showed that the ZnO-ZnS nanorods with the shell thickness of approximately 17 nm have the highest photocatalytic performance than the ZnO-ZnS nanorods with other shell layer thicknesses. The highly reusable catalytic efficiency and superior photocatalytic performance of the ZnO-ZnS nanorods with 17 nm-thick ZnS shell layer supports their potential for environmental applications. PMID:29316671

  16. Growth Temperature Dependence of Morphology of GaN Single Crystals in the Na-Li-Ca Flux Method

    NASA Astrophysics Data System (ADS)

    Wu, Xi; Hao, Hangfei; Li, Zhenrong; Fan, Shiji; Xu, Zhuo

    2018-02-01

    In this paper, the effect of growth temperature on the morphology and transparency of the GaN crystals obtained by the Li-Ca-added Na Flux method was studied. Addition of Li-Ca was attempted to control the growth habit and further improve transparency of GaN crystals. The samples with wurtzite structure of GaN were confirmed by the x-ray powder diffraction analysis. GaN single crystal with maximum size of about 6 mm was grown at 750°C. As the growth temperature was increased from 700°C to 850°C, the morphology of the crystals changed from pyramid to prism, and their surfaces became smooth. It was found that high growth temperature was beneficial to obtain a transparent crystal, but the evaporation of sodium would suppress its further growth. The E 2 (high) mode in the Raman spectra was at 568 cm-1, and the full-width at half-maximum values of this peak for the crystals obtained at 700°C, 750°C, 800°C, and 850°C were 7.5 cm-1, 10.3 cm-1, 4.4 cm-1, and 4.0 cm-1, respectively. It indicates that all the crystals are stress free and the transparent crystal grown at high temperature has high structural quality or low impurity concentrations.

  17. Zinc oxide nanorods functionalized paper for protein preconcentration in biodiagnostics

    NASA Astrophysics Data System (ADS)

    Tiwari, Sadhana; Vinchurkar, Madhuri; Rao, V. Ramgopal; Garnier, Gil

    2017-03-01

    Distinguishing a specific biomarker from a biofluid sample containing a large variety of proteins often requires the selective preconcentration of that particular biomarker to a detectable level for analysis. Low-cost, paper-based device is an emerging opportunity in diagnostics. In the present study, we report a novel Zinc oxide nanorods functionalized paper platform for the preconcentration of Myoglobin, a cardiac biomarker. Zinc oxide nanorods were grown on a Whatman filter paper no. 1 via the standard hydrothermal route. The growth of Zinc oxide nanorods on paper was confirmed by a combination of techniques consisting of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS,) scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDX) analysis. The Zinc oxide nanorods modified Whatman filter paper (ZnO-NRs/WFP) was further tested for use as a protein preconcentrator. Paper-based ELISA was performed for determination of pre-concentration of cardiac marker protein Myoglobin using the new ZnO-NRs/WFP platform. The ZnO-NRs/WFP could efficiently capture the biomarker even from a very dilute solution (Myoglobin < 50 nM). Our ELISA results show a threefold enhancement in protein capture with ZnO-NRs/WFP compared to unmodified Whatman filter paper, allowing accurate protein analysis and showing the diagnostic concept.

  18. Synthesis and characterizations of nanoscale single crystal GaN grown by ion assisted gas source MBE

    NASA Astrophysics Data System (ADS)

    Cui, Bentao; Cohen, P. I.

    2004-03-01

    Nanoscale patterns could be induced by ion bombardment [1, 2]. In this study, an in-situ real time light scattering technique, combined with Reflection High Energy Electron Diffraction (RHEED), were used to study the surface morphology evolution during the ion beam assisted growth of GaN in a gas source MBE system. Ga was provided by a thermal effusion cell. Ammonia was used as the nitrogen source. A hot-filament Kaufman ion source was used to supply sub-KeV ion beams. Sapphire and MOCVD GaN templates were used as the substrates. A custom-designed Desorption Mass Spectrometer (DMS) was used to calibrate the growth temperature and determine the growth rate. Before growing GaN, the sapphire substrates were pretreated in an ion flux and then annealed for cleaning. The sapphire surface was then nitrided in ammonia at 1100K for about 10 min. After nitridation, a thin GaN buffer layer was prepared by a sequence of adsorption and annealing steps. During the growth, the short-range surface morphology and film quality were monitored in situ by RHEED. In a real-time way, the long-range surface morphology was monitored in-situ by light scattering technique. Photodiode array detector and CCD camera were used to record the reflected light scattering intensity and spectra profile respectively. Periodical patterns, such as ripple, have been observed during ion bombardment on GaN with or without growth. A linear theory (from Bradley and Harper 1988 [3]) has been modified to explain the dependence of ripple wavelength on ion species and ion energy. Partially supported by the National Science Foundation and the Air Force Office of Scientific Research. [1]. J. Erlebacher, M. J. Aziz, E. Chason, M. B. Sinclair, and J. A. Floro, Phys. Rev. Lett. 82, 2330 (1998); J. Erlebacher, M. J. Aziz, E. Chason, M. B. Sinclair, and J. A. Floro, Phys. Rev. Lett. 84, 5800 (2000). [2]. S. Facsko, T. Dekorsy, C. Koerdt, C. Trappe, H. Kurz, A. Vogt et al.. Science 285, 1551 (1999). [3]. R. M. Bradley

  19. Radiation sensors based on GaN microwires

    NASA Astrophysics Data System (ADS)

    Verheij, D.; Peres, M.; Cardoso, S.; Alves, L. C.; Alves, E.; Durand, C.; Eymery, J.; Lorenz, K.

    2018-05-01

    GaN microwires were shown to possess promising characteristics as building blocks for radiation resistant particle detectors. They were grown by metal organic vapour phase epitaxy with diameters between 1 and 2 μm and lengths around 20 μm. Devices were fabricated by depositing gold contacts at the extremities of the wires using photolithography. The response of these single wire radiation sensors was then studied under irradiation with 2 MeV protons. Severe degradation of the majority of devices only sets in for fluences above protons cm‑2 revealing good radiation resistance. During proton irradiation, a clear albeit small current gain was observed with a corresponding decay time below 1 s. Photoconductivity measurements upon irradiation with UV light were carried out before and after the proton irradiation. Despite a relatively low gain, attributed to significant dark currents caused by a high dopant concentration, fast response times of a few seconds were achieved comparable to state-of-the-art GaN nanowire photodetectors. Irradiation and subsequent annealing resulted in an overall improvement of the devices regarding their response to UV radiation. The photocurrent gain increased compared to the values that were obtained prior to the irradiation, without compromising the decay times. The results indicate the possibility of using GaN microwires not only as UV detectors, but also as particle detectors.

  20. Single and multi-layered core-shell structures based on ZnO nanorods obtained by aerosol assisted chemical vapor deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sáenz-Trevizo, A.; Amézaga-Madrid, P.; Pizá-Ruiz, P.

    2015-07-15

    Core–shell nanorod structures were prepared by a sequential synthesis using an aerosol assisted chemical vapor deposition technique. Several samples consisting of ZnO nanorods were initially grown over TiO{sub 2} film-coated borosilicate glass substrates, following the synthesis conditions reported elsewhere. Later on, a uniform layer consisting of individual Al, Ni, Ti or Fe oxides was grown onto ZnO nanorod samples forming the so-called single MO{sub x}/ZnO nanorod core–shell structures, where MO{sub x} was the metal oxide shell. Additionally, a three-layer core–shell sample was developed by growing Fe, Ti and Fe oxides alternately, onto the ZnO nanorods. The microstructure of the core–shellmore » materials was characterized by grazing incidence X-ray diffraction, scanning and transmission electron microscopy. Energy dispersive X-ray spectroscopy was employed to corroborate the formation of different metal oxides. X-ray diffraction outcomes for single core–shell structures showed solely the presence of ZnO as wurtzite and TiO{sub 2} as anatase. For the multi-layered shell sample, the existence of Fe{sub 2}O{sub 3} as hematite was also detected. Morphological observations suggested the existence of an outer material grown onto the nanorods and further microstructural analysis by HR-STEM confirmed the development of core–shell structures in all cases. These studies also showed that the individual Al, Fe, Ni and Ti oxide layers are amorphous; an observation that matched with X-ray diffraction analysis where no apparent extra oxides were detected. For the multi-layered sample, the development of a shell consisting of three different oxide layers onto the nanorods was found. Overall results showed that no alteration in the primary ZnO core was produced during the growth of the shells, indicating that the deposition technique used herein was and it is suitable for the synthesis of homogeneous and complex nanomaterials high in quality and purity. In

  1. Thermal stability of isolated and complexed Ga vacancies in GaN bulk crystals

    NASA Astrophysics Data System (ADS)

    Saarinen, K.; Suski, T.; Grzegory, I.; Look, D. C.

    2001-12-01

    We have applied positron annihilation spectroscopy to show that 2-MeV electron irradiation at 300 K creates primary Ga vacancies in GaN with an introduction rate of 1 cm-1. The Ga vacancies recover in long-range migration processes at 500-600 K with an estimated migration energy of 1.5 (2) eV. Since the native Ga vacancies in as-grown GaN survive up to much higher temperatures (1300-1500 K), we conclude that they are stabilized by forming complexes with oxygen impurities. The estimated binding energy of 2.2 (4) eV of such complexes is in good agreement with the results of theoretical calculations.

  2. Recovery of GaN surface after reactive ion etching

    NASA Astrophysics Data System (ADS)

    Fan, Qian; Chevtchenko, S.; Ni, Xianfeng; Cho, Sang-Jun; Morko, Hadis

    2006-02-01

    Surface properties of GaN subjected to reactive ion etching and the impact on device performance have been investigated by surface potential, optical and electrical measurements. Different etching conditions were studied and essentially high power levels and low chamber pressures resulted in higher etch rates accompanying with the roughening of the surface morphology. Surface potential for the as-grown c-plane GaN was found to be in the range of 0.5~0.7 V using Scanning Kevin Probe Microscopy. However, after reactive ion etching at a power level of 300 W, it decreased to 0.1~0.2 V. A nearly linear reduction was observed on c-plane GaN with increasing power. The nonpolar a-plane GaN samples also showed large surface band bending before and after etching. Additionally, the intensity of the near band-edge photoluminescence decreased and the free carrier density increased after etching. These results suggest that the changes in the surface potential may originate from the formation of possible nitrogen vacancies and other surface oriented defects and adsorbates. To recover the etched surface, N II plasma, rapid thermal annealing, and etching in wet KOH were performed. For each of these methods, the surface potential was found to increase by 0.1~0.3 V, also the reverse leakage current in Schottky diodes fabricated on treated samples was reduced considerably compared with as-etched samples, which implies a partial-to-complete recovery from the plasma-induced damage.

  3. An investigation of GaN thin films on AlN on sapphire substrate by sol-gel spin coating method

    NASA Astrophysics Data System (ADS)

    Amin, Nur Fahana Mohd; Ng, Sha Shiong

    2017-12-01

    In this research, the gallium nitride (GaN) thin films were deposited on aluminium nitride on sapphire (AlN/Al2O3) substrate by sol-gel spin coating method. Simple ethanol-based precursor with the addition of diethanolamine solution was used. The structural and morphology properties of synthesized GaN thin films were characterized by using X-ray Diffraction, Field-Emission Scanning Electron Microscopy and Atomic Force Microscopy. While the elemental compositions and the lattice vibrational properties of the films were investigated by means of the Energy Dispersive X-ray spectroscopy and Raman spectroscopy. All the results revealed that the wurtzite structure GaN thin films with GaN(002) preferred orientation and smooth surface morphology were successfully grown on AlN/Al2O3 substrate by using inexpensive and simplified sol-gel spin coating technique. The sol-gel spin coated GaN thin film with lowest oxygen content was also achieved.FESEM images show that GaN thin films with uniform and packed grains were formed. Based on the obtained results, it can be concluded that wurtzite structure GaN thin films were successfully deposited on AlN/Al2O3 substrate.

  4. Deep-level traps in lightly Si-doped n-GaN on free-standing m-oriented GaN substrates

    NASA Astrophysics Data System (ADS)

    Yamada, H.; Chonan, H.; Takahashi, T.; Yamada, T.; Shimizu, M.

    2018-04-01

    In this study, we investigated the deep-level traps in Si-doped GaN epitaxial layers by metal-organic chemical vapor deposition on c-oriented and m-oriented free-standing GaN substrates. The c-oriented and m-oriented epitaxial layers, grown at a temperature of 1000 °C and V/III ratio of 1000, contained carbon atomic concentrations of 1.7×1016 and 4.0×1015 cm-3, respectively. A hole trap was observed at about 0.89 eV above the valence band maximum by minority carrier transient spectroscopy. The trap concentrations in the c-oriented and m-oriented GaN epitaxial layers were consistent with the carbon atomic concentrations from secondary ion mass spectroscopy and the yellow luminescence intensity at 2.21 eV from photoluminescence. The trap concentrations in the m-oriented GaN epitaxial layers were lower than those in the c-oriented GaN. Two electron traps, 0.24 and 0.61 eV below the conduction band (EC) minimum, were observed in the c-oriented GaN epitaxial layer. In contrast, the m-oriented GaN epitaxial layer was free from the electron trap at EC - 0.24 eV, and the trap concentration at EC - 0.61 eV in the m-oriented GaN epitaxial layer was lower than that in the c-oriented GaN epitaxial layer. The m-oriented GaN epitaxial layer exhibited fewer hole and electron traps compared to the c-oriented GaN epitaxial layers.

  5. Fabrication of WS2/GaN p-n Junction by Wafer-Scale WS2 Thin Film Transfer.

    PubMed

    Yu, Yang; Fong, Patrick W K; Wang, Shifeng; Surya, Charles

    2016-11-29

    High quality wafer-scale free-standing WS 2 grown by van der Waals rheotaxy (vdWR) using Ni as a texture promoting layer is reported. The microstructure of vdWR grown WS 2 was significantly modified from mixture of crystallites with their c-axes both parallel to (type I) and perpendicular to (type II) the substrate to large type II crystallites. Wafer-scale transfer of vdWR grown WS 2 onto different substrates by an etching-free technique was demonstrated for the first time that utilized the hydrophobic property of WS 2 and hydrophilic property of sapphire. Our results show that vdWR is a reliable technique to obtain type-II textured crystallites in WS 2 , which is the key factor for the wafer-scale etching-free transfer. The transferred films were found to be free of observable wrinkles, cracks, or polymer residues. High quality p-n junctions fabricated by room-temperature transfer of the p-type WS 2 onto an n-type GaN was demonstrated with a small leakage current density of 29.6 μA/cm 2 at -1 V which shows superior performances compared to the directly grown WS 2 /GaN heterojunctions.

  6. Vertically aligned TiO2 nanorods-woven carbon fiber for reinforcement of both mechanical and anti-wear properties in resin composite

    NASA Astrophysics Data System (ADS)

    Fei, Jie; Zhang, Chao; Luo, Dan; Cui, Yali; Li, Hejun; Lu, Zhaoqing; Huang, Jianfeng

    2018-03-01

    A series of TiO2 nanorods were successfully grown on woven carbon fiber by hydrothermal method to reinforce the resin composite. The TiO2 nanorods improved the mechanical interlocking among woven carbon fibers and resin matrix, resulting in better fibers/resin interfacial bonding. Compared with desized-woven carbon fiber, the uniform TiO2 nanorods array resulted in an improvement of 84.3% and 73.9% in the tensile and flexural strength of the composite. However, the disorderly TiO2 nanorods on woven carbon fiber leaded to an insignificant promotion of the mechanical strength. The enhanced performance of well-proportioned TiO2 nanorods-woven carbon fiber was also reflected in the nearly 56% decrease of wear rate, comparing to traditional woven carbon fiber reinforced composite.

  7. GaN microring waveguide resonators bonded to silicon substrate by a two-step polymer process.

    PubMed

    Hashida, Ryohei; Sasaki, Takashi; Hane, Kazuhiro

    2018-03-20

    Using a polymer bonding technique, GaN microring waveguide resonators were fabricated on a Si substrate for future hybrid integration of GaN and Si photonic devices. The designed GaN microring consisted of a rib waveguide having a core of 510 nm in thickness, 1000 nm in width, and a clad of 240 nm in thickness. A GaN crystalline layer of 1000 nm in thickness was grown on a Si(111) substrate by metal organic chemical vapor deposition using a buffer layer of 300 nm in thickness for the compensation of lattice constant mismatch between GaN and Si crystals. The GaN/Si wafer was bonded to a Si(100) wafer by a two-step polymer process to prevent it from trapping air bubbles. The bonded GaN layer was thinned from the backside by a fast atom beam etching to remove the buffer layer and to generate the rib waveguides. The transmission characteristics of the GaN microring waveguide resonators were measured. The losses of the straight waveguides were measured to be 4.0±1.7  dB/mm around a wavelength of 1.55 μm. The microring radii ranged from 30 to 60 μm, where the measured free-spectral ranges varied from 2.58 to 5.30 nm. The quality factors of the microring waveguide resonators were from 1710 to 2820.

  8. A crystallographic investigation of GaN nanostructures by reciprocal space mapping in a grazing incidence geometry.

    PubMed

    Lee, Sanghwa; Sohn, Yuri; Kim, Chinkyo; Lee, Dong Ryeol; Lee, Hyun-Hwi

    2009-05-27

    Reciprocal space mapping with a two-dimensional (2D) area detector in a grazing incidence geometry was applied to determine crystallographic orientations of GaN nanostructures epitaxially grown on a sapphire substrate. By using both unprojected and projected reciprocal space mapping with a proper coordinate transformation, the crystallographic orientations of GaN nanostructures with respect to that of a substrate were unambiguously determined. In particular, the legs of multipods in the wurtzite phase were found to preferentially nucleate on the sides of tetrahedral cores in the zinc blende phase.

  9. Gallium nitride nanoneedles grown in extremely non-equilibrium nitrogen plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mangla, O., E-mail: onkarmangla@gmail.com; Physics Department, Hindu College, University of Delhi, Delhi, 110007; Roy, S.

    2016-05-23

    In the present work, gallium nitride (GaN) nanoneedles are grown on quartz substrates using the high fluence ions of GaN produced by hot, dense and extremely non-equlibrium nitrogen plasma in a modified dense plasma focus device. The formation of nanoneedles is obtained from the scanning electron microscopy with mean size of the head of nanoneedles ~ 70 nm. The nanoneedles are found to be poly-crystalline when studied structurally through the X-ray diffraction. The optical properties of nanoneedles studied using absorption spectra which show more absorption for nanoneedles depsoited one shot of ions irradiation. In addition, the band gap of nanoneedles ismore » found to be increased as compared to bulk GaN. The obtained nanoneedles with increased band gap have potential applications in detector systems.« less

  10. Non-enzymatic Fluorescent Biosensor for Glucose Sensing Based on ZnO Nanorods

    NASA Astrophysics Data System (ADS)

    Mai, Hong Hanh; Pham, Van Thanh; Nguyen, Viet Tuyen; Sai, Cong Doanh; Hoang, Chi Hieu; Nguyen, The Binh

    2017-06-01

    We have developed a non-enzymatic fluorescent biosensor for glucose sensing based on ZnO nanorods. ZnO nanorods of high density, high crystallinity, and good alignment were grown on low-cost industrial copper substrates at low temperature. To grow them directly on the substrates without using a seed layer, we utilized a simple one-step seedless hydrothermal method, which is based on galvanic cell structure. Herein, the glucose-treated ZnO nanorods together with the ultraviolet (UV) irradiation of the sample during the photoluminescent measurement played the role of a catalyst. They decomposed glucose into hydrogen peroxide (H2O2) and gluconic acid, which is similar to the glucose oxidase enzyme (GOx) used in enzymatic sensors. Due to the formation of H2O2, the photoluminescence intensity of the UV emission peak of ZnO nanorods decreased as the glucose concentration increased from 1 mM to 100 mM. In comparison with glucose concentration of a normal human serum, which is in the range of 4.4-6.6 mM, the obtained results show potential of non-enzymatic fluorescent biosensors in medical applications.

  11. High-Resolution Mapping of Thermal History in Polymer Nanocomposites: Gold Nanorods as Microscale Temperature Sensors.

    PubMed

    Kennedy, W Joshua; Slinker, Keith A; Volk, Brent L; Koerner, Hilmar; Godar, Trenton J; Ehlert, Gregory J; Baur, Jeffery W

    2015-12-23

    A technique is reported for measuring and mapping the maximum internal temperature of a structural epoxy resin with high spatial resolution via the optically detected shape transformation of embedded gold nanorods (AuNRs). Spatially resolved absorption spectra of the nanocomposites are used to determine the frequencies of surface plasmon resonances. From these frequencies the AuNR aspect ratio is calculated using a new analytical approximation for the Mie-Gans scattering theory, which takes into account coincident changes in the local dielectric. Despite changes in the chemical environment, the calculated aspect ratio of the embedded nanorods is found to decrease over time to a steady-state value that depends linearly on the temperature over the range of 100-200 °C. Thus, the optical absorption can be used to determine the maximum temperature experienced at a particular location when exposure times exceed the temperature-dependent relaxation time. The usefulness of this approach is demonstrated by mapping the temperature of an internally heated structural epoxy resin with 10 μm lateral spatial resolution.

  12. Comparative study of GaN-based ultraviolet LEDs grown on different-sized patterned sapphire substrates with sputtered AlN nucleation layer

    NASA Astrophysics Data System (ADS)

    Zhou, Shengjun; Hu, Hongpo; Liu, Xingtong; Liu, Mengling; Ding, Xinghuo; Gui, Chengqun; Liu, Sheng; Guo, L. Jay

    2017-11-01

    GaN-based ultraviolet-light-emitting diodes (UV LEDs) with 375 nm emission were grown on different-sized patterned sapphire substrates (PSSs) with ex situ 15-nm-thick sputtered AlN nucleation layers by metal-organic chemical vapor deposition (MOCVD). It was observed through in situ optical reflectance monitoring that the transition time from a three-dimensional (3D) island to a two-dimensional (2D) coalescence was prolonged when GaN was grown on a larger PSS, owing to a much longer lateral growth time of GaN. The full widths at half-maximum (FWHMs) of symmetric GaN(002) and asymmetric GaN(102) X-ray diffraction (XRD) rocking curves decreased as the PSS size increased. By cross-sectional transmission electron microscopy (TEM) analysis, it was found that the threading dislocation (TD) density in UV LEDs decreased with increasing pattern size and fill factor of the PSS, thereby resulting in a marked improvement in internal quantum efficiency (IQE). Finite-difference time-domain (FDTD) simulations quantitatively demonstrated a progressive decrease in light extraction efficiency (LEE) as the PSS size increased. However, owing to the significantly reduced TD density in InGaN/AlInGaN multiple quantum wells (MQWs) and thus improved IQE, the light output power of the UV LED grown on a large PSS with a fill factor of 0.71 was 131.8% higher than that of the UV LED grown on a small PSS with a fill factor of 0.4, albeit the UV LED grown on a large PSS exhibited a much lower LEE.

  13. Chemical synthesis of CdS onto TiO2 nanorods for quantum dot sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Pawar, Sachin A.; Patil, Dipali S.; Lokhande, Abhishek C.; Gang, Myeng Gil; Shin, Jae Cheol; Patil, Pramod S.; Kim, Jin Hyeok

    2016-08-01

    A quantum dot sensitized solar cell (QDSSC) is fabricated using hydrothermally grown TiO2 nanorods and successive ionic layer adsorption and reaction (SILAR) deposited CdS. Surface morphology of the TiO2 films coated with different SILAR cycles of CdS is examined by Scanning Electron Microscopy which revealed aggregated CdS QDs coverage grow on increasing onto the TiO2 nanorods with respect to cycle number. Under AM 1.5G illumination, we found the TiO2/CdS QDSSC photoelectrode shows a power conversion efficiency of 1.75%, in an aqueous polysulfide electrolyte with short-circuit photocurrent density of 4.04 mA/cm2 which is higher than that of a bare TiO2 nanorods array.

  14. Proton irradiation effects on deep level states in Mg-doped p-type GaN grown by ammonia-based molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Arehart, A. R.; Kyle, E. C. H.; Chen, J.; Zhang, E. X.; Fleetwood, D. M.; Schrimpf, R. D.; Speck, J. S.; Ringel, S. A.

    2015-01-01

    The impact of proton irradiation on the deep level states throughout the Mg-doped p-type GaN bandgap is investigated using deep level transient and optical spectroscopies. Exposure to 1.8 MeV protons of 1 × 1013 cm-2 and 3 × 1013 cm-2 fluences not only introduces a trap with an EV + 1.02 eV activation energy but also brings monotonic increases in concentration for as-grown deep states at EV + 0.48 eV, EV + 2.42 eV, EV + 3.00 eV, and EV + 3.28 eV. The non-uniform sensitivities for individual states suggest different physical sources and/or defect generation mechanisms. Comparing with prior theoretical calculations reveals that several traps are consistent with associations to nitrogen vacancy, nitrogen interstitial, and gallium vacancy origins, and thus are likely generated through displacing nitrogen and gallium atoms from the crystal lattice in proton irradiation environment.

  15. Synthesis and characterisations of SnO2 nanorods via low temperature hydrothermal method

    NASA Astrophysics Data System (ADS)

    Inderan, Vicinisvarri; Lim, Shin Ye; Ong, Teng Sian; Bastien, Samuel; Braidy, Nadi; Lee, Hooi Ling

    2015-12-01

    In the present study, tin oxide (SnO2) nanorods were successfully synthesized through hydrothermal treatment at a relatively low temperature (180 °C) using various concentrations of metal precursor, SnCl4·5H2O (0.04 M-0.16 M) in a mixed solution of ethanol and water before bringing the pH to 13 by adding 6 M NaOH. The effect of concentration on the morphology and structure of SnO2 were comprehensively studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV-vis) and Fourier Transform Infrared (FTIR). It was found that increasing the concentration of tin precursor from 0.04 M to 0.16 M leads to a complete conversion from nanospheres to nanoplates and finally to nanorods. The SEM results confirmed that SnO2 nanorods are obtained for concentrations up to 0.12 M. At synthesis condition of 0.12 M, SnCl4·5H2O and pH 13, single rutile nanorods with preferential growth in the [002] direction were obtained. It was found that the diameter of nanorods formed at 0.12 M is similar to that of nanoplates formed at 0.08 M (20 nm), which suggests that spear-shaped nanorods might have originated from the primary nanoparticles (the particles grown in lower concentration during hydrothermal treatment). Possible reaction mechanisms are proposed to explain the observed morphologies.

  16. A self-powered nano-photodetector based on PFH/ZnO nanorods organic/inorganic heterojunction

    NASA Astrophysics Data System (ADS)

    Li, Xiaoyun; Liu, Wei; Li, Peigang; Song, Jia; An, Yuehua; Shen, Jingqin; Wang, Shunli; Guo, Daoyou

    2018-03-01

    PFH/ZnO nanorods heterojunctions were fabricated by spin-coating p-type Poly (9,9-dihexylfluorene) (PFH) on n-type vertically aligned ZnO nanorod arrays grown by a facile hydrothermal method on indium tin oxide (ITO) transparent conductive glass. A typical p-n junction behavior was observed in the fabricated heterojunction. The current of heterojunction increases and decreases dramatically by switching the illumination on and off at zero bias, showing potential self-powered photodetector applications. The heterojunction were capable of generating negative current when illuminated under an appropriate wavelength. The photoresponse properties of the heterojunction can be tuned by the applied bias. In vacuum, the rectifying behavior disappeared, and show only simple semiconductor behavior. Band structure of the heterojunction was schematic drawn and explain the mechanism of the properties of PFH/ZnO nanorods heterojunctions.

  17. Side-detecting optical fiber coated with Zn(OH)2 nanorods for ultraviolet sensing applications

    NASA Astrophysics Data System (ADS)

    Azad, S.; Parvizi, R.; Sadeghi, E.

    2017-09-01

    This paper presents an improved coupling efficiency and side detecting of UV radiation induced by light scattering and luminescent features of Zn(OH)2 nanorods coated multimode optical fibers. Uniform and high density Zn(OH)2 nanorods were grown hydrothermally on the core of chemically etched multimode optical fibers. The prepared samples were characterized through x-ray diffraction patterns, scanning electron microscopy and photoluminescence spectroscopy. The detecting technique was based on the intensity modulation of the side coupled light through the Zn(OH)2 nanorods. A simple and cost-effective UV radiation detecting setup has been designed. Experimentally estimated coupling efficiency of the proposed setup was obtained near 11%. The proposed device exhibited stable and reversible responses with a fast rising and decaying time of about 1.4 s and 0.85 s, respectively.

  18. Pyramidal defects in highly Mg-doped GaN: atomic structure and influence on optoelectronic properties

    NASA Astrophysics Data System (ADS)

    Leroux, M.; Vennéguès, P.; Dalmasso, S.; de Mierry, P.; Lorenzini, P.; Damilano, B.; Beaumont, B.; Gibart, P.; Massies, J.

    2004-07-01

    A detailed transmission electron microscopy study is performed on the pyramidal inversion domains that appear in highly Mg-doped GaN grown by metalorganics vapor phase epitaxy or by the high-pressure, high-temperature method. From a comparison between high resolution images of the inversion domain boundaries and simulations using different atomic models, we conclude that both basal and inclined domain boundaries are likely formed of a monomolecular layer of the definite compound Mg{3}N{2}. We show that, due to their high concentration, the formation of these defects may account for auto-compensation in Mg-doped GaN. We also show that the local band bending induced by the polarity inversion due to these defects can be at the origin of the blue luminescence of highly Mg-doped GaN, always observed when nanometric pyramidal inversion domains are also present.

  19. Three-Dimensional Hetero-Integration of Faceted GaN on Si Pillars for Efficient Light Energy Conversion Devices.

    PubMed

    Kim, Dong Rip; Lee, Chi Hwan; Cho, In Sun; Jang, Hanmin; Jeon, Min Soo; Zheng, Xiaolin

    2017-07-25

    An important pathway for cost-effective light energy conversion devices, such as solar cells and light emitting diodes, is to integrate III-V (e.g., GaN) materials on Si substrates. Such integration first necessitates growth of high crystalline III-V materials on Si, which has been the focus of many studies. However, the integration also requires that the final III-V/Si structure has a high light energy conversion efficiency. To accomplish these twin goals, we use single-crystalline microsized Si pillars as a seed layer to first grow faceted Si structures, which are then used for the heteroepitaxial growth of faceted GaN films. These faceted GaN films on Si have high crystallinity, and their threading dislocation density is similar to that of GaN grown on sapphire. In addition, the final faceted GaN/Si structure has great light absorption and extraction characteristics, leading to improved performance for GaN-on-Si light energy conversion devices.

  20. Structure guided GANs

    NASA Astrophysics Data System (ADS)

    Cao, Feidao; Zhao, Huaici; Liu, Pengfei

    2017-11-01

    Generative adversarial networks (GANs) has achieved success in many fields. However, there are some samples generated by many GAN-based works, whose structure is ambiguous. In this work, we propose Structure Guided GANs that introduce structural similar into GANs to overcome the problem. In order to achieve our goal, we introduce an encoder and a decoder into a generator to design a new generator and take real samples as part of the input of a generator. And we modify the loss function of the generator accordingly. By comparison with WGAN, experimental results show that our proposed method overcomes largely sample structure ambiguous and can generate higher quality samples.

  1. TOPICAL REVIEW: The doping process and dopant characteristics of GaN

    NASA Astrophysics Data System (ADS)

    Sheu, J. K.; Chi, G. C.

    2002-06-01

    The characteristic effects of doping with impurities such as Si, Ge, Se, O, Mg, Be, and Zn on the electrical and optical properties of GaN-based materials are reviewed. In addition, the roles of unintentionally introduced impurities, such as C, H, and O, and grown-in defects, such as vacancy and antisite point defects, are also discussed. The doping process during epitaxial growth of GaN, AlGaN, InGaN, and their superlattice structures is described. Doping using the diffusion process and ion implantation techniques is also discussed. A p-n junction formed by Si implantation into p-type GaN is successfully fabricated. The results on crystal structure, electrical resistivity, carrier mobility, and optical spectra obtained by means of x-rays, low-temperature Hall measurements, and photoluminescence are also discussed.

  2. Growth of crack-free GaN films on Si(111) substrate by using Al-rich AlN buffer layer

    NASA Astrophysics Data System (ADS)

    Lu, Yuan; Cong, Guangwei; Liu, Xianglin; Lu, Da-Cheng; Zhu, Qinsheng; Wang, Xiaohui; Wu, Jiejun; Wang, Zhanguo

    2004-11-01

    GaN epilayers were grown on Si(111) substrate by metalorganic chemical vapor deposition. By using the Al-rich AlN buffer which contains Al beyond stoichiometry, crack-free GaN epilayers with 1 μm thickness were obtained. Through x-ray diffraction (XRD) and secondary ion mass spectroscopy analyses, it was found that a lot of Al atoms have diffused into the under part of the GaN epilayer from the Al-rich AlN buffer, which results in the formation of an AlxGa1-xN layer at least with 300 nm thickness in the 1 μm thick GaN epilayer. The Al fraction x was estimated by XRD to be about 2.5%. X-ray photoelectron spectroscopy depth analysis was also applied to investigate the stoichiometry in the Al-rich buffer before GaN growth. It is suggested that the underlayer AlxGa1-xN originated from Al diffusion probably provides a compressive stress to the upper part of the GaN epilayer, which counterbalances a part of tensile stress in the GaN epilayer during cooling down and consequently reduces the cracks of the film effectively. The method using the Al diffusion effect to form a thick AlGaN layer is really feasible to achieve the crack-free GaN films and obtain a high crystal quality simultaneously.

  3. Characterization of Gold-Sputtered Zinc Oxide Nanorods-a Potential Hybrid Material.

    PubMed

    Perumal, Veeradasan; Hashim, Uda; Gopinath, Subash C B; Rajintra Prasad, Haarindraprasad; Wei-Wen, Liu; Balakrishnan, S R; Vijayakumar, Thivina; Rahim, Ruslinda Abdul

    2016-12-01

    Generation of hybrid nanostructures has been attested as a promising approach to develop high-performance sensing substrates. Herein, hybrid zinc oxide (ZnO) nanorod dopants with different gold (Au) thicknesses were grown on silicon wafer and studied for their impact on physical, optical and electrical characteristics. Structural patterns displayed that ZnO crystal lattice is in preferred c-axis orientation and proved the higher purities. Observations under field emission scanning electron microscopy revealed the coverage of ZnO nanorods by Au-spots having diameters in the average ranges of 5-10 nm, as determined under transmission electron microscopy. Impedance spectroscopic analysis of Au-sputtered ZnO nanorods was carried out in the frequency range of 1 to 100 MHz with applied AC amplitude of 1 V RMS. The obtained results showed significant changes in the electrical properties (conductance and dielectric constant) with nanostructures. A clear demonstration with 30-nm thickness of Au-sputtering was apparent to be ideal for downstream applications, due to the lowest variation in resistance value of grain boundary, which has dynamic and superior characteristics.

  4. Enhancing absorption in coated semiconductor nanowire/nanorod core-shell arrays using active host matrices

    NASA Astrophysics Data System (ADS)

    Jule, Leta; Dejene, Francis; Roro, Kittessa

    2016-12-01

    In the present work, we investigated theoretically and experimentally the interaction of radiation field phenomena interacting with arrays of nanowire/nanorod core-shell embedded in active host matrices. The optical properties of composites are explored including the case when the absorption of propagating wave by dissipative component is completely compensated by amplification in active (lasing) medium. On the basis of more elaborated modeling approach and extended effective medium theory, the effective polarizability and the refractive index of electromagnetic mode dispersion of the core-shell nanowire arrays are derived. ZnS(shell)-coated by sulphidation process on ZnO(shell) nanorod arrays grown on (100) silicon substrate by chemical bath deposition (CBD) has been used for theoretical comparison. Compared with the bare ZnO nanorods, ZnS-coated core/shell nanorods exhibit a strongly reduced ultraviolet (UV) emission and a dramatically enhanced deep level (DL) emission. Obviously, the UV and DL emission peaks are attributed to the emissions of ZnO nanorods within ZnO/ZnS core/shell nanorods. The reduction of UV emission after ZnS coating seems to agree with the charge separation mechanism of type-II band alignment that holes transfer from the core to shell, which would quench the UV emission to a certain extent. Our theoretical calculations and numerical simulation demonstrate that the use of active host (amplifying) medium to compensate absorption at metallic inclusions. Moreover the core-shell nanorod/nanowire arrays create the opportunity for broad band absorption and light harvesting applications.

  5. Tellurium n-type doping of highly mismatched amorphous GaN 1-xAs x alloys in plasma-assisted molecular beam epitaxy

    DOE PAGES

    Novikov, S. V.; Ting, M.; Yu, K. M.; ...

    2014-10-01

    In this paper we report our study on n-type Te doping of amorphous GaN 1-xAs x layers grown by plasma-assisted molecular beam epitaxy. We have used a low temperature PbTe source as a source of tellurium. Reproducible and uniform tellurium incorporation in amorphous GaN 1-xAs x layers has been successfully achieved with a maximum Te concentration of 9×10²⁰ cm⁻³. Tellurium incorporation resulted in n-doping of GaN 1-xAs x layers with Hall carrier concentrations up to 3×10¹⁹ cm⁻³ and mobilities of ~1 cm²/V s. The optimal growth temperature window for efficient Te doping of the amorphous GaN 1-xAs x layers hasmore » been determined.« less

  6. Nanoscale Characterization of Carrier Dynamic and Surface Passivation in InGaN/GaN Multiple Quantum Wells on GaN Nanorods.

    PubMed

    Chen, Weijian; Wen, Xiaoming; Latzel, Michael; Heilmann, Martin; Yang, Jianfeng; Dai, Xi; Huang, Shujuan; Shrestha, Santosh; Patterson, Robert; Christiansen, Silke; Conibeer, Gavin

    2016-11-23

    Using advanced two-photon excitation confocal microscopy, associated with time-resolved spectroscopy, we characterize InGaN/GaN multiple quantum wells on nanorod heterostructures and demonstrate the passivation effect of a KOH treatment. High-quality InGaN/GaN nanorods were fabricated using nanosphere lithography as a candidate material for light-emitting diode devices. The depth- and time-resolved characterization at the nanoscale provides detailed carrier dynamic analysis helpful for understanding the optical properties. The nanoscale spatially resolved images of InGaN quantum well and defects were acquired simultaneously. We demonstrate that nanorod etching improves light extraction efficiency, and a proper KOH treatment has been found to reduce the surface defects efficiently and enhance the luminescence. The optical characterization techniques provide depth-resolved and time-resolved carrier dynamics with nanoscale spatially resolved mapping, which is crucial for a comprehensive and thorough understanding of nanostructured materials and provides novel insight into the improvement of materials fabrication and applications.

  7. Laser-induced extreme magnetic field in nanorod targets

    NASA Astrophysics Data System (ADS)

    Lécz, Zsolt; Andreev, Alexander

    2018-03-01

    The application of nano-structured target surfaces in laser-solid interaction has attracted significant attention in the last few years. Their ability to absorb significantly more laser energy promises a possible route for advancing the currently established laser ion acceleration concepts. However, it is crucial to have a better understanding of field evolution and electron dynamics during laser-matter interactions before the employment of such exotic targets. This paper focuses on the magnetic field generation in nano-forest targets consisting of parallel nanorods grown on plane surfaces. A general scaling law for the self-generated quasi-static magnetic field amplitude is given and it is shown that amplitudes up to 1 MT field are achievable with current technology. Analytical results are supported by three-dimensional particle-in-cell simulations. Non-parallel arrangements of nanorods has also been considered which result in the generation of donut-shaped azimuthal magnetic fields in a larger volume.

  8. Fabrication of WS2/GaN p-n Junction by Wafer-Scale WS2 Thin Film Transfer

    PubMed Central

    Yu, Yang; Fong, Patrick W. K.; Wang, Shifeng; Surya, Charles

    2016-01-01

    High quality wafer-scale free-standing WS2 grown by van der Waals rheotaxy (vdWR) using Ni as a texture promoting layer is reported. The microstructure of vdWR grown WS2 was significantly modified from mixture of crystallites with their c-axes both parallel to (type I) and perpendicular to (type II) the substrate to large type II crystallites. Wafer-scale transfer of vdWR grown WS2 onto different substrates by an etching-free technique was demonstrated for the first time that utilized the hydrophobic property of WS2 and hydrophilic property of sapphire. Our results show that vdWR is a reliable technique to obtain type-II textured crystallites in WS2, which is the key factor for the wafer-scale etching-free transfer. The transferred films were found to be free of observable wrinkles, cracks, or polymer residues. High quality p-n junctions fabricated by room-temperature transfer of the p-type WS2 onto an n-type GaN was demonstrated with a small leakage current density of 29.6 μA/cm2 at −1 V which shows superior performances compared to the directly grown WS2/GaN heterojunctions. PMID:27897210

  9. Magnetic-plasmonic multilayered nanorods

    NASA Astrophysics Data System (ADS)

    Thumthan, Orathai

    Multilayered nanorods which consist of alternating magnetic layers separated by Au layers combine two distinctive properties, magnetic properties and surface plasmonic resonance (SPR) properties into one nano-entity. Their magnetic properties are tunable by changing the layer thickness, varying from single domain to superparamagnetic state. Superparamagnetic is a key requirement for magnetic nanoparticles for bioapplications. Superparamagnetic nanoparticles exhibit high magnetic moments at low applied magnetic field while retain no magnetic moments when magnetic field is removed preventing them from aggregation due to magnetic attraction. Au layers in the nanorods provide anchorage sites for functional group attachment. Also, Au nanodisks exhibit SPR properties. The SPR peak can be tuned from 540 nm to 820 nm by controlling the thickness of magnetic segments while keeping Au thickness constant. In this research, there are three types of multilayered nanorod have been fabricated: Au/NiFe nanorods, Au/Fe nanorods, and Au/Co nanorods. These magnetic nanorods were fabricated by templated electrodeposition into the channels in Anodic Aluminum Oxide (AAO) membrane. The setup for AAO fabrication was developed as a part of this research. Our fabricated AAO membrane has channels with a diameter ranging from 40nm to 80 nm and a thickness of 10um to 12um. Magnetic properties of nanorods such as saturation field, saturation moment, coercivity and remanence are able to manipulate through their shape anisotropy. The magnetization will be easier in long axis rather than short axis of particle. In addition, Au nanodisks in the nanorod structure are not only serving as anchorage sites for functional groups but also provide SPR properties. Under irradiation of light Au nanodisks strongly absorb light at SPR frequency which ranging from 540 nm to 820 nm by controlling the thickness of magnetic segments while keeping Au thickness constant. The SPR tunability of nanorods in near

  10. Mechanical properties of nanoporous GaN and its application for separation and transfer of GaN thin films.

    PubMed

    Huang, Shanjin; Zhang, Yu; Leung, Benjamin; Yuan, Ge; Wang, Gang; Jiang, Hao; Fan, Yingmin; Sun, Qian; Wang, Jianfeng; Xu, Ke; Han, Jung

    2013-11-13

    Nanoporous (NP) gallium nitride (GaN) as a new class of GaN material has many interesting properties that the conventional GaN material does not have. In this paper, we focus on the mechanical properties of NP GaN, and the detailed physical mechanism of porous GaN in the application of liftoff. A decrease in elastic modulus and hardness was identified in NP GaN compared to the conventional GaN film. The promising application of NP GaN as release layers in the mechanical liftoff of GaN thin films and devices was systematically studied. A phase diagram was generated to correlate the initial NP GaN profiles with the as-overgrown morphologies of the NP structures. The fracture toughness of the NP GaN release layer was studied in terms of the voided-space-ratio. It is shown that the transformed morphologies and fracture toughness of the NP GaN layer after overgrowth strongly depends on the initial porosity of NP GaN templates. The mechanical separation and transfer of a GaN film over a 2 in. wafer was demonstrated, which proves that this technique is useful in practical applications.

  11. Hafnium nitride buffer layers for growth of GaN on silicon

    DOEpatents

    Armitage, Robert D.; Weber, Eicke R.

    2005-08-16

    Gallium nitride is grown by plasma-assisted molecular-beam epitaxy on (111) and (001) silicon substrates using hafnium nitride buffer layers. Wurtzite GaN epitaxial layers are obtained on both the (111) and (001) HfN/Si surfaces, with crack-free thickness up to 1.2 {character pullout}m. However, growth on the (001) surface results in nearly stress-free films, suggesting that much thicker crack-free layers could be obtained.

  12. The effect of cation doping on the morphology, optical and structural properties of highly oriented wurtzite ZnO-nanorod arrays grown by a hydrothermal method

    NASA Astrophysics Data System (ADS)

    Hassanpour, A.; Guo, P.; Shen, S.; Bianucci, P.

    2017-10-01

    Undoped and C-doped (C: Mg2+, Ni2+, Mn2+, Co2+, Cu2+, Cr3+) ZnO nanorods were synthesized by a hydrothermal method at temperatures as low as 60 °C. The effect of doping on the morphology of the ZnO nanorods was visualized by taking their cross section and top SEM images. The results show that the size of nanorods was increased in both height and diameter by cation doping. The crystallinity change of the ZnO nanorods due to each doping element was thoroughly investigated by an x-ray diffraction (XRD). The XRD patterns show that the wurtzite crystal structure of ZnO nanorods was maintained after cation addition. The optical Raman-active modes of undoped and cation-doped nanorods were measured with a micro-Raman setup at room temperature. The surface chemistry of samples was investigated by x-ray photoelectron spectroscopy and energy-dispersive x-ray spectroscopy. Finally, the effect of each cation dopant on band-gap shift of the ZnO nanorods was investigated by a photoluminescence setup at room temperature. Although the amount of dopants (Mg2+, Ni2+, and Co2+) was smaller than the amount of Mn2+, Cu2+, and Cr3+ in the nanorods, their effect on the band structure of the ZnO nanorods was profound. The highest band-gap shift was achieved for a Co-doped sample, and the best crystal orientation was for Mn-doped ZnO nanorods. Our results can be used as a comprehensive reference for engineering of the morphological, structural and optical properties of cation-doped ZnO nanorods by using a low-temperature synthesis as an economical mass-production approach.

  13. Nanostructural engineering of nitride nucleation layers for GaN substrate dislocation reduction.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koleske, Daniel David; Lee, Stephen Roger; Lemp, Thomas Kerr

    2009-07-01

    With no lattice matched substrate available, sapphire continues as the substrate of choice for GaN growth, because of its reasonable cost and the extensive prior experience using it as a substrate for GaN. Surprisingly, the high dislocation density does not appear to limit UV and blue LED light intensity. However, dislocations may limit green LED light intensity and LED lifetime, especially as LEDs are pushed to higher current density for high end solid state lighting sources. To improve the performance for these higher current density LEDs, simple growth-enabled reductions in dislocation density would be highly prized. GaN nucleation layers (NLs)more » are not commonly thought of as an application of nano-structural engineering; yet, these layers evolve during the growth process to produce self-assembled, nanometer-scale structures. Continued growth on these nuclei ultimately leads to a fully coalesced film, and we show in this research program that their initial density is correlated to the GaN dislocation density. In this 18 month program, we developed MOCVD growth methods to reduce GaN dislocation densities on sapphire from 5 x 10{sup 8} cm{sup -2} using our standard delay recovery growth technique to 1 x 10{sup 8} cm{sup -2} using an ultra-low nucleation density technique. For this research, we firmly established a correlation between the GaN nucleation thickness, the resulting nucleation density after annealing, and dislocation density of full GaN films grown on these nucleation layers. We developed methods to reduce the nuclei density while still maintaining the ability to fully coalesce the GaN films. Ways were sought to improve the GaN nuclei orientation by improving the sapphire surface smoothness by annealing prior to the NL growth. Methods to eliminate the formation of additional nuclei once the majority of GaN nuclei were developed using a silicon nitride treatment prior to the deposition of the nucleation layer. Nucleation layer thickness was

  14. Dislocation confinement in the growth of Na flux GaN on metalorganic chemical vapor deposition-GaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeuchi, S., E-mail: takeuchi@ee.es.osaka-u.ac.jp; Asazu, H.; Nakamura, Y.

    2015-12-28

    We have demonstrated a GaN growth technique in the Na flux method to confine c-, (a+c)-, and a-type dislocations around the interface between a Na flux GaN crystal and a GaN layer grown by metalorganic chemical vapor deposition (MOCVD) on a (0001) sapphire substrate. Transmission electron microscopy (TEM) clearly revealed detailed interface structures and dislocation behaviors that reduced the density of vertically aligned dislocations threading to the Na flux GaN surface. Submicron-scale voids were formed at the interface above the dislocations with a c component in MOCVD-GaN, while no such voids were formed above the a-type dislocations. The penetration ofmore » the dislocations with a c component into Na flux GaN was, in most cases, effectively blocked by the presence of the voids. Although some dislocations with a c component in the MOCVD-GaN penetrated into the Na flux GaN, their propagation direction changed laterally through the voids. On the other hand, the a-type dislocations propagated laterally and collectively near the interface, when these dislocations in the MOCVD-GaN penetrated into the Na flux GaN. These results indicated that the dislocation propagation behavior was highly sensitive to the type of dislocation, but all types of dislocations were confined to within several micrometers region of the Na flux GaN from the interface. The cause of void formation, the role of voids in controlling the dislocation behavior, and the mechanism of lateral and collective dislocation propagation are discussed on the basis of TEM results.« less

  15. Growth of blue GaN LED structures on 150-mm Si(1 1 1)

    NASA Astrophysics Data System (ADS)

    Dadgar, A.; Hums, C.; Diez, A.; Bläsing, J.; Krost, A.

    2006-12-01

    Up to 5.4-μm thick GaN on Si light emitting diode (LED) structures were grown by metalorganic chemical vapor phase epitaxy (MOVPE) on 150 mm Si(1 1 1) substrates. In-situ curvature measurements enable monitoring of stress development during growth and the influence of interlayers on strain balancing after cooling. In X-ray diffraction (XRD) ω-scans the GaN (0 0 0 2) reflection is about 380 arcsec and in θ-2 θ measurements the InGaN/GaN MQW interference peaks are well resolved indicating the high quality of the grown structure. In comparison to the growth on 2-in sapphire the wafer curvature after growth is low (>50 m) for the growth on Si and also during MQW growth at low temperatures a homogeneous wafer temperature can be achieved. The standard deviation of the wavelength over the whole 150-mm test wafer (5-mm edge exclusion) is <3.5 nm and reflects the three different heater zones of the MOVPE system used.

  16. Nonlinear optical effects in semi-polar GaN micro-cavity emitter

    NASA Astrophysics Data System (ADS)

    Butler, Sween; Jiang, Hongxing; Lin, Jingyu; Neogi, Arup

    Nonlinear optical (NLO) response of low dimensional emitters is of current interest because of the need for active elements in photonic applications. NLO effects in a selectively grown array of semi-polar GaN microcavity structures offer a promising route toward devices for integrated optical circuitry in optoelectronics and photonics field. Localized spatial excitation of a single hexagonal GaN microcavity with semipolar facets formed by selective area growth was optimized for nonlinear optical light generation due to second harmonic generation (SHG) and multi-photon luminescence(MPL). Multi-photon transition induced by tightly focused femtosecond NIR incident field results in ultra-violet and yellow luminescence for excitations above and below half bandgap energy, whereas SHG was observed for below half bandgap energy. We show that color and coherence of the light generation from the emitter can be controlled by selective onset of the nonlinear process which depends not only on the incident laser energy and intensity but also on the geometry of the microcavity. Quasi-WGM like modes were observed for off-resonant excitations from the GaN microcavity resulting in enhanced SHG. The directionality of MPL and SHG will be presented as a function of the pump polarization.

  17. Axial p-n junction and space charge limited current in single GaN nanowire.

    PubMed

    Fang, Zhihua; Donatini, Fabrice; Daudin, Bruno; Pernot, Julien

    2018-01-05

    The electrical characterizations of individual basic GaN nanostructures, such as axial nanowire (NW) p-n junctions, are becoming indispensable and crucial for the fully controlled realization of GaN NW based devices. In this study, electron beam induced current (EBIC) measurements were performed on two single axial GaN p-n junction NWs grown by plasma-assisted molecular beam epitaxy. I-V characteristics revealed that both ohmic and space charge limited current (SCLC) regimes occur in GaN p-n junction NW. Thanks to an improved contact process, both the electric field induced by the p-n junction and the SCLC in the p-part of GaN NW were disclosed and delineated by EBIC signals under different biases. Analyzing the EBIC profiles in the vicinity of the p-n junction under 0 V and reverse bias, we deduced a depletion width in the range of 116-125 nm. Following our previous work, the acceptor N a doping level was estimated to be 2-3 × 10 17 at cm -3 assuming a donor level N d of 2-3 × 10 18 at cm -3 . The hole diffusion length in n-GaN was determined to be 75 nm for NW #1 and 43 nm for NW #2, demonstrating a low surface recombination velocity at the m-plane facet of n-GaN NW. Under forward bias, EBIC imaging visualized the electric field induced by the SCLC close to p-side contact, in agreement with unusual SCLC previously reported in GaN NWs.

  18. Axial p-n junction and space charge limited current in single GaN nanowire

    NASA Astrophysics Data System (ADS)

    Fang, Zhihua; Donatini, Fabrice; Daudin, Bruno; Pernot, Julien

    2018-01-01

    The electrical characterizations of individual basic GaN nanostructures, such as axial nanowire (NW) p-n junctions, are becoming indispensable and crucial for the fully controlled realization of GaN NW based devices. In this study, electron beam induced current (EBIC) measurements were performed on two single axial GaN p-n junction NWs grown by plasma-assisted molecular beam epitaxy. I-V characteristics revealed that both ohmic and space charge limited current (SCLC) regimes occur in GaN p-n junction NW. Thanks to an improved contact process, both the electric field induced by the p-n junction and the SCLC in the p-part of GaN NW were disclosed and delineated by EBIC signals under different biases. Analyzing the EBIC profiles in the vicinity of the p-n junction under 0 V and reverse bias, we deduced a depletion width in the range of 116-125 nm. Following our previous work, the acceptor N a doping level was estimated to be 2-3 × 1017 at cm-3 assuming a donor level N d of 2-3 × 1018 at cm-3. The hole diffusion length in n-GaN was determined to be 75 nm for NW #1 and 43 nm for NW #2, demonstrating a low surface recombination velocity at the m-plane facet of n-GaN NW. Under forward bias, EBIC imaging visualized the electric field induced by the SCLC close to p-side contact, in agreement with unusual SCLC previously reported in GaN NWs.

  19. Separation of effects of InGaN/GaN superlattice on performance of light-emitting diodes using mid-temperature-grown GaN layer

    NASA Astrophysics Data System (ADS)

    Sugimoto, Kohei; Okada, Narihito; Kurai, Satoshi; Yamada, Yoichi; Tadatomo, Kazuyuki

    2018-06-01

    We evaluated the electrical properties of InGaN-based light-emitting diodes (LEDs) with a superlattice (SL) layer or a mid-temperature-grown GaN (MT-GaN) layer just beneath the multiple quantum wells (MQWs). Both the SL layer and the MT-GaN layer were effective in improving the electroluminescence (EL) intensity. However, the SL layer had a more pronounced effect on the EL intensity than did the MT-GaN layer. Based on a comparison with devices with an MT-GaN layer, the overall effects of the SL could be separated into the effect of the V-pits and the structural or compositional effect of the SL. It was observed that the V-pits formed account for 30% of the improvement in the LED performance while the remaining 70% can be attributed to the structural or compositional effect of the SL.

  20. Self-organization of dislocation-free, high-density, vertically aligned GaN nanocolumns involving InGaN quantum wells on graphene/SiO2 covered with a thin AlN buffer layer.

    PubMed

    Hayashi, Hiroaki; Konno, Yuta; Kishino, Katsumi

    2016-02-05

    We demonstrated the self-organization of high-density GaN nanocolumns on multilayer graphene (MLG)/SiO2 covered with a thin AlN buffer layer by RF-plasma-assisted molecular beam epitaxy. MLG/SiO2 substrates were prepared by the transfer of CVD graphene onto thermally oxidized SiO2/Si [100] substrates. Employing the MLG with an AlN buffer layer enabled the self-organization of high-density and vertically aligned nanocolumns. Transmission electron microscopy observation revealed that no threading dislocations, stacking faults, or twinning defects were included in the self-organized nanocolumns. The photoluminescence (PL) peak intensities of the self-organized GaN nanocolumns were 2.0-2.6 times higher than those of a GaN substrate grown by hydride vapor phase epitaxy. Moreover, no yellow luminescence or ZB-phase GaN emission was observed from the nanocolumns. An InGaN/GaN MQW and p-type GaN were integrated into GaN nanocolumns grown on MLG, displaying a single-peak PL emission at a wavelength of 533 nm. Thus, high-density nitride p-i-n nanocolumns were fabricated on SiO2/Si using the transferred MLG interlayer, indicating the possibility of developing visible nanocolumn LEDs on graphene/SiO2.

  1. Evolution of Structural and Optical Properties of ZnO Nanorods Grown on Vacuum Annealed Seed Crystallites

    PubMed Central

    Khan, Fasihullah; Ajmal, Hafiz Muhammad Salman; Huda, Noor Ul; Kim, Ji Hyun; Kim, Sam-Dong

    2018-01-01

    In this study, the ambient condition for the as-coated seed layer (SL) annealing at 350 °C is varied from air or nitrogen to vacuum to examine the evolution of structural and optical properties of ZnO nanorods (NRs). The NR crystals of high surface density (~240 rods/μm2) and aspect ratio (~20.3) show greatly enhanced (002) degree of orientation and crystalline quality, when grown on the SLs annealed in vacuum, compared to those annealed in air or nitrogen ambient. This is due to the vacuum-annealed SL crystals of a highly preferred orientation toward (002) and large grain sizes. X-ray photoelectron spectroscopy also reveals that the highest O/Zn atomic ratio of 0.89 is obtained in the case of vacuum-annealed SL crystals, which is due to the effective desorption of hydroxyl groups and other contaminants adsorbed on the surface formed during aqueous solution-based growth process. Near band edge emission (ultra violet range of 360–400 nm) of the vacuum-annealed SLs is also enhanced by 44% and 33% as compared to those annealed in air and nitrogen ambient, respectively, in photoluminescence with significant suppression of visible light emission associated with deep level transition. Due to this improvement of SL optical crystalline quality, the NR crystals grown on the vacuum-annealed SLs produce ~3 times higher ultra violet emission intensity than the other samples. In summary, it is shown that the ZnO NRs preferentially grow along the wurtzite c-axis direction, thereby producing the high crystalline quality of nanostructures when they grow on the vacuum-annealed SLs of high crystalline quality with minimized impurities and excellent preferred orientation. The ZnO nanostructures of high crystalline quality achieved in this study can be utilized for a wide range of potential device applications such as laser diodes, light-emitting diodes, piezoelectric transducers and generators, gas sensors, and ultraviolet detectors. PMID:29373523

  2. Stress evolution of GaN/AlN heterostructure grown on 6H-SiC substrate by plasma assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Agrawal, M.; Ravikiran, L.; Dharmarasu, N.; Radhakrishnan, K.; Karthikeyan, G. S.; Zheng, Y.

    2017-01-01

    The stress evolution of GaN/AlN heterostructure grown on 6H-SiC substrate by plasma assisted molecular beam epitaxy (PA-MBE) has been studied. AlN nucleation layer and GaN layer were grown as a function of III/V ratio. GaN/AlN structure is found to form buried cracks when AlN is grown in the intermediate growth regime(III/V˜1)and GaN is grown under N-rich growth regime (III/V<1). The III/V ratio determines the growth mode of the layers that influences the lattice mismatch at the GaN/AlN interface. The lattice mismatch induced interfacial stress at the GaN/AlN interface relaxes by the formation of buried cracks in the structure. Additionally, the stress also relaxes by misorienting the AlN resulting in two misorientations with different tilts. Crack-free layers were obtained when AlN and GaN were grown in the N-rich growth regime (III/V<1) and metal rich growth regime (III/V≥1), respectively. AlGaN/GaN high electron mobility transistor (HEMT) heterostructure was demonstrated on 2-inch SiC that showed good two dimensional electron gas (2DEG) properties with a sheet resistance of 480 Ω/sq, mobility of 1280 cm2/V.s and sheet carrier density of 1×1013 cm-2.

  3. Fermi Level Control of Point Defects During Growth of Mg-Doped GaN

    NASA Astrophysics Data System (ADS)

    Bryan, Zachary; Hoffmann, Marc; Tweedie, James; Kirste, Ronny; Callsen, Gordon; Bryan, Isaac; Rice, Anthony; Bobea, Milena; Mita, Seiji; Xie, Jinqiao; Sitar, Zlatko; Collazo, Ramón

    2013-05-01

    In this study, Fermi level control of point defects during metalorganic chemical vapor deposition (MOCVD) of Mg-doped GaN has been demonstrated by above-bandgap illumination. Resistivity and photoluminescence (PL) measurements are used to investigate the Mg dopant activation of samples with Mg concentration of 2 × 1019 cm-3 grown with and without exposure to ultraviolet (UV) illumination. Samples grown under UV illumination have five orders of magnitude lower resistivity values compared with typical unannealed GaN:Mg samples. The PL spectra of samples grown with UV exposure are similar to the spectra of those grown without UV exposure that were subsequently annealed, indicating a different incorporation of compensating defects during growth. Based on PL and resistivity measurements we show that Fermi level control of point defects during growth of III-nitrides is feasible.

  4. Topical Review: Development of overgrown semi-polar GaN for high efficiency green/yellow emission

    NASA Astrophysics Data System (ADS)

    Wang, T.

    2016-09-01

    The most successful example of large lattice-mismatched epitaxial growth of semiconductors is the growth of III-nitrides on sapphire, leading to the award of the Nobel Prize in 2014 and great success in developing InGaN-based blue emitters. However, the majority of achievements in the field of III-nitride optoelectronics are mainly limited to polar GaN grown on c-plane (0001) sapphire. This polar orientation poses a number of fundamental issues, such as reduced quantum efficiency, efficiency droop, green and yellow gap in wavelength coverage, etc. To date, it is still a great challenge to develop longer wavelength devices such as green and yellow emitters. One clear way forward would be to grow III-nitride device structures along a semi-/non-polar direction, in particular, a semi-polar orientation, which potentially leads to both enhanced indium incorporation into GaN and reduced quantum confined Stark effects. This review presents recent progress on developing semi-polar GaN overgrowth technologies on sapphire or Si substrates, the two kinds of major substrates which are cost-effective and thus industry-compatible, and also demonstrates the latest achievements on electrically injected InGaN emitters with long emission wavelengths up to and including amber on overgrown semi-polar GaN. Finally, this review presents a summary and outlook on further developments for semi-polar GaN based optoelectronics.

  5. Enhanced piezoelectric output of NiO/nanoporous GaN by suppression of internal carrier screening

    NASA Astrophysics Data System (ADS)

    Waseem, Aadil; Jeong, Dae Kyung; Johar, Muhammad Ali; Kang, Jin-Ho; Ha, Jun-Seok; Key Lee, June; Ryu, Sang-Wan

    2018-06-01

    The efficiency of piezoelectric nanogenerators (PNGs) significantly depends on the free carrier concentration of semiconductors. In the presence of a mechanical stress, piezoelectric charges are generated at both ends of the PNG, which are rapidly screened by the free carriers. The screening effect rapidly decreases the piezoelectric output within fractions of a second. In this study, the piezoelectric outputs of bulk- and nanoporous GaN-based heterojunction PNGs are compared. GaN thin films were epitaxially grown on sapphire substrates using metal organic chemical vapor deposition. Nanoporous GaN was fabricated using electrochemical etching, depleted of free carriers owing to the surface Fermi-level pinning. A highly resistive NiO thin film was deposited on bulk- and nanoporous GaN using radio frequency magnetron sputter. The NiO/nanoporous GaN PNG (NPNG) under a periodic compressive stress of 4 MPa exhibited an output voltage and current of 0.32 V and 1.48 μA cm‑2, respectively. The output voltage and current of the NiO/thin film-GaN PNG (TPNG) were three and five times smaller than those of the NPNG, respectively. Therefore, the high-resistivity of NiO and nanoporous GaN depleted by the Fermi-level pinning are advantageous and provide a better piezoelectric performance of the NPNG, compared with that of the TPNG.

  6. Electrical transport and structural characterization of epitaxial monolayer MoS2 /n- and p-doped GaN vertical lattice-matched heterojunctions

    NASA Astrophysics Data System (ADS)

    Ruzmetov, D.; O'Regan, T.; Zhang, K.; Herzing, A.; Mazzoni, A.; Chin, M.; Huang, S.; Zhang, Z.; Burke, R.; Neupane, M.; Birdwell, Ag; Shah, P.; Crowne, F.; Kolmakov, A.; Leroy, B.; Robinson, J.; Davydov, A.; Ivanov, T.

    We investigate vertical semiconductor junctions consisting of monolayer MoS2 that is epitaxially grown on n- and p-doped GaN crystals. Such a junction represents a building block for 2D/3D vertical semiconductor heterostructures. Epitaxial, lattice-matched growth of MoS2 on GaN is important to ensure high quality interfaces that are crucial for the efficient vertical transport. The MoS2/GaN junctions were characterized with cross-sectional and planar scanning transmission electron microscopy (STEM), scanning tunneling microscopy, and atomic force microscopy. The MoS2/GaN lattice mismatch is measured to be near 1% using STEM. The electrical transport in the out-of-plane direction across the MoS2/GaN junctions was measured using conductive atomic force microscopy and mechanical nano-probes inside a scanning electron microscope. Nano-disc metal contacts to MoS2 were fabricated by e-beam lithography and evaporation. The current-voltage curves of the vertical MoS2/GaN junctions exhibit rectification with opposite polarities for n-doped and p-doped GaN. The metal contact determines the general features of the current-voltage curves, and the MoS2 monolayer modifies the electrical transport across the contact/GaN interface.

  7. Design and fabrication of single-crystal GaN nano-bridge on homogeneous substrate for nanoindentation

    NASA Astrophysics Data System (ADS)

    Hung, Shang-Chao

    2014-12-01

    This study reports a simple method to design and fabricate a freestanding GaN nano-bridge over a homogeneous short column as supporting leg. Test samples were fabricated from MOCVD-grown single-crystal GaN films over sapphire substrate using a FIB milling to leave freestanding short spans. We also investigated the nanoindentation characteristics and the corresponding nanoscopic mechanism of the GaN nano-bridge and its short column with a conical indenter inside transmission electron microscopy. The stress-strain mechanical properties and Young's modulus have also been examined and calculated as 108 GPa ± 4.8 % by the strain energy method. The significant slope switch of the L- D curve corresponds to the transition from the single-point bending indentation to the surface stretching indentation and has been interpreted with the evolution of TEM images. This freestanding fabrication and test have key advantages to characterize nanoscale behavior of one-dimensional bridge structure and greater ease of sample preparation over other micro-fabrication techniques.

  8. Site-controlled crystalline InN growth from the V-pits of a GaN substrate

    NASA Astrophysics Data System (ADS)

    Kuo, Chien-Ting; Hsu, Lung-Hsing; Lai, Yung-Yu; Cheng, Shan-Yun; Kuo, Hao-Chung; Lin, Chien-Chung; Cheng, Yuh-Jen

    2017-05-01

    A site-controlled crystalline InN growth from the V-pits of a GaN substrate was investigated. The V- pits were fabricated by epitaxial lateral growth of GaN over SiO2 disks patterned on a sapphire substrate. InN crystals were found to preferably grow on the inclined {10-11} crystal planes of the V-pits. A V-pit size of 1 μm or less can provide precise site-controlled InN nucleation at the V-pit bottom, while no InN was grown on the rest of the exposed GaN surfaces. The site-controlled nucleation is attributed to the low surface energy point created by the converging six {10-11} crystal facets at the V-pit bottom. When In source supply is below a certain value, this V-pit bottom is the only location able to aggregate enough active sources to start nucleation, thereby providing site-controlled crystal growth.

  9. Control of ion content and nitrogen species using a mixed chemistry plasma for GaN grown at extremely high growth rates >9 μm/h by plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Gunning, Brendan P.; Clinton, Evan A.; Merola, Joseph J.; Doolittle, W. Alan; Bresnahan, Rich C.

    2015-10-01

    Utilizing a modified nitrogen plasma source, plasma assisted molecular beam epitaxy (PAMBE) has been used to achieve higher growth rates in GaN. A higher conductance aperture plate, combined with higher nitrogen flow and added pumping capacity, resulted in dramatically increased growth rates up to 8.4 μm/h using 34 sccm of N2 while still maintaining acceptably low operating pressure. It was further discovered that argon could be added to the plasma gas to enhance growth rates up to 9.8 μm/h, which was achieved using 20 sccm of N2 and 7.7 sccm Ar flows at 600 W radio frequency power, for which the standard deviation of thickness was just 2% over a full 2 in. diameter wafer. A remote Langmuir style probe employing the flux gauge was used to indirectly measure the relative ion content in the plasma. The use of argon dilution at low plasma pressures resulted in a dramatic reduction of the plasma ion current by more than half, while high plasma pressures suppressed ion content regardless of plasma gas chemistry. Moreover, different trends are apparent for the molecular and atomic nitrogen species generated by varying pressure and nitrogen composition in the plasma. Argon dilution resulted in nearly an order of magnitude achievable growth rate range from 1 μm/h to nearly 10 μm/h. Even for films grown at more than 6 μm/h, the surface morphology remained smooth showing clear atomic steps with root mean square roughness less than 1 nm. Due to the low vapor pressure of Si, Ge was explored as an alternative n-type dopant for high growth rate applications. Electron concentrations from 2.2 × 1016 to 3.8 × 1019 cm-3 were achieved in GaN using Ge doping, and unintentionally doped GaN films exhibited low background electron concentrations of just 1-2 × 1015 cm-3. The highest growth rates resulted in macroscopic surface features due to Ga cell spitting, which is an engineering challenge still to be addressed. Nonetheless, the dramatically enhanced growth rates demonstrate

  10. Ag nanoparticles-decorated ZnO nanorod array on a mechanical flexible substrate with enhanced optical and antimicrobial properties

    NASA Astrophysics Data System (ADS)

    Chen, Yi; Tse, Wai Hei; Chen, Longyan; Zhang, Jin

    2015-03-01

    Heteronanostructured zinc oxide nanorod (ZnO NR) array are vertically grown on polydimethylsiloxane (PDMS) through a hydrothermal method followed by an in situ deposition of silver nanoparticles (Ag NPs) through a photoreduction process. The Ag-ZnO heterostructured nanorods on PDMS are measured with an average diameter of 160 nm and an average length of 2 μm. ZnO NRs measured by high-resolution transmission electron microscope (HRTEM) shows highly crystalline with a lattice fringe of 0.255 nm, which corresponds to the (0002) planes in ZnO crystal lattice. The average diameter of the Ag NPs in situ deposited on the ZnO NRs is estimated at 22 ± 2 nm. As compared to the bare ZnO NRs, the heterostructured Ag-ZnO nanorod array shows enhanced ultraviolet (UV) absorption at 440 nm, and significant emission in the visible region (λem = 542 nm). In addition, the antimicrobial efficiency of Ag-ZnO heterostructured nanorod array shows obvious improvement as compared to bare ZnO nanorod array. The cytotoxicity of ZnO nanorod array with and without Ag NPs was studied by using 3 T3 mouse fibroblast cell line. No significant toxic effect is imposed on the cells.

  11. Ag nanoparticles-decorated ZnO nanorod array on a mechanical flexible substrate with enhanced optical and antimicrobial properties.

    PubMed

    Chen, Yi; Tse, Wai Hei; Chen, Longyan; Zhang, Jin

    2015-01-01

    Heteronanostructured zinc oxide nanorod (ZnO NR) array are vertically grown on polydimethylsiloxane (PDMS) through a hydrothermal method followed by an in situ deposition of silver nanoparticles (Ag NPs) through a photoreduction process. The Ag-ZnO heterostructured nanorods on PDMS are measured with an average diameter of 160 nm and an average length of 2 μm. ZnO NRs measured by high-resolution transmission electron microscope (HRTEM) shows highly crystalline with a lattice fringe of 0.255 nm, which corresponds to the (0002) planes in ZnO crystal lattice. The average diameter of the Ag NPs in situ deposited on the ZnO NRs is estimated at 22 ± 2 nm. As compared to the bare ZnO NRs, the heterostructured Ag-ZnO nanorod array shows enhanced ultraviolet (UV) absorption at 440 nm, and significant emission in the visible region (λem = 542 nm). In addition, the antimicrobial efficiency of Ag-ZnO heterostructured nanorod array shows obvious improvement as compared to bare ZnO nanorod array. The cytotoxicity of ZnO nanorod array with and without Ag NPs was studied by using 3 T3 mouse fibroblast cell line. No significant toxic effect is imposed on the cells.

  12. Nanorod-Based Fast-Response Pressure-Sensitive Paints

    NASA Technical Reports Server (NTRS)

    Bencic, Timothy; VanderWal, Randall

    2007-01-01

    forms, by use of chemical vapor deposition (CVD) and wet chemical processes, respectively. The rods would be coated with a PSP dye, and the resulting PSP signals would be compared with those obtained from PSP dye coats on conventional support materials. Another aspect of the proposed development would be to seek to exploit the quantum properties of nanorods of a suitable semiconductor (possibly GaN), which would be synthesized by CVD. These quantum properties of semiconductor nanorods include narrow-wavelength-band optical absorption and emission characteristics that vary with temperature. The temperature sensitivity might enable simultaneous measurement of fluctuating temperature and pressure and to provide a temperature correction for the PSP response.

  13. Uptake, translocation, and toxicity of gold nanorods in maize

    NASA Astrophysics Data System (ADS)

    Moradi Shahmansouri, Nastaran

    Nanomaterials are widely used in many different products, such as electronics, cosmetics, industrial goods, biomedical uses, and other material applications. The heavy emission of nanomaterials into the environment has motived increasing concern regarding the effects on ecosystems, food chains, and, human health. Plants can tolerate a certain amount of natural nanomaterials, but large amounts of ENMs released from a variety of industries could be toxic to plants and possibly threaten the ecosystem. Employing phytoremediation as a contamination treatment method may show promise. However a pre-requisite to successful treatment is a better understanding of the behavior and effects of nanomaterials within plant systems. This study is designed to investigate the uptake, translocation, bioavailability, and toxicity of gold nanorods in maize plants. Maize is an important food and feed crop that can be used to understand the potential hazardous effects of nanoparticle uptake and distribution in the food chain. The findings could be an important contribution to the fields of phytoremediation, agri-nanotechnology, and nanoparticle toxicity on plants. In the first experiment, hydroponically grown maize seedlings were exposed to similar doses of commercial non-coated gold nanorods in three sizes, 10x34 nm, 20x75 nm, and 40x96 nm. The three nanorod species were suspended in solutions at concentrations of 350 mg/l, 5.8 mg/l, and 14 mg/l, respectively. Maize plants were exposed to all three solutions resulting in considerably lower transpiration and wet biomass than control plants. Likewise, dry biomass was reduced, but the effect is less pronounced than that of transpiration and wet biomass. The reduced transpiration and water content, which eventually proved fatal to exposed plants, were most likely a result of toxic effect of gold nanorod, which appeared to physically hinder the root system. TEM images proved that maize plants can uptake gold particles and accumulate them in

  14. Resonant Raman and FTIR spectra of carbon doped GaN

    NASA Astrophysics Data System (ADS)

    Ito, S.; Kobayashi, H.; Araki, K.; Suzuki, K.; Sawaki, N.; Yamashita, K.; Honda, Y.; Amano, H.

    2015-03-01

    Intentionally carbon (C) doped (0 0 0 1)GaN was grown using C2H2 on a sapphire substrate by metalorganic vapor phase epitaxy. Optical spectra of the heavily doped samples were investigated at room temperature. In Raman spectra excited by the 325 nm line of a He-Cd laser, multiple LO phonon scattering signals up to 7th order were observed, and the A1(LO) phonon energy was determined to be 737.5 cm-1 (91.45 meV). In infrared reflectance spectra, on the other hand, a local vibration mode was found at 777.5 cm-1, which is attributed to a Ga-C bond in the GaN matrix suggesting that the C sits on an N site (CN). In spite of the strong suggestion of CN, the samples did not show p-type conduction. Possible origin of the carrier compensation is discussed in relation to the enhancement of defect related yellow luminescence in the photoluminescence spectra.

  15. Effect of stacking faults on the photoluminescence spectrum of zincblende GaN

    NASA Astrophysics Data System (ADS)

    Church, S. A.; Hammersley, S.; Mitchell, P. W.; Kappers, M. J.; Lee, L. Y.; Massabuau, F.; Sahonta, S. L.; Frentrup, M.; Shaw, L. J.; Wallis, D. J.; Humphreys, C. J.; Oliver, R. A.; Binks, D. J.; Dawson, P.

    2018-05-01

    The photoluminescence spectra of a zincblende GaN epilayer grown via metal-organic chemical vapour deposition upon 3C-SiC/Si (001) substrates were investigated. Of particular interest was a broad emission band centered at 3.4 eV, with a FWHM of 200 meV, which extends above the bandgap of both zincblende and wurtzite GaN. Photoluminescence excitation measurements show that this band is associated with an absorption edge centered at 3.6 eV. Photoluminescence time decays for the band are monoexponential, with lifetimes that reduce from 0.67 ns to 0.15 ns as the recombination energy increases. TEM measurements show no evidence of wurtzite GaN inclusions which are typically used to explain emission in this energy range. However, dense stacking fault bunches are present in the epilayers. A model for the band alignment at the stacking faults was developed to explain this emission band, showing how both electrons and holes can be confined adjacent to stacking faults. Different stacking fault separations can change the carrier confinement energies sufficiently to explain the width of the emission band, and change the carrier wavefunction overlap to account for the variation in decay time.

  16. Effect of screw threading dislocations and inverse domain boundaries in GaN on the shape of reciprocal-space maps.

    PubMed

    Barchuk, Mykhailo; Motylenko, Mykhaylo; Lukin, Gleb; Pätzold, Olf; Rafaja, David

    2017-04-01

    The microstructure of polar GaN layers, grown by upgraded high-temperature vapour phase epitaxy on [001]-oriented sapphire substrates, was studied by means of high-resolution X-ray diffraction and transmission electron microscopy. Systematic differences between reciprocal-space maps measured by X-ray diffraction and those which were simulated for different densities of threading dislocations revealed that threading dislocations are not the only microstructure defect in these GaN layers. Conventional dark-field transmission electron microscopy and convergent-beam electron diffraction detected vertical inversion domains as an additional microstructure feature. On a series of polar GaN layers with different proportions of threading dislocations and inversion domain boundaries, this contribution illustrates the capability and limitations of coplanar reciprocal-space mapping by X-ray diffraction to distinguish between these microstructure features.

  17. Hierarchical structures consisting of SiO2 nanorods and p-GaN microdomes for efficiently harvesting solar energy for InGaN quantum well photovoltaic cells.

    PubMed

    Ho, Cheng-Han; Lien, Der-Hsien; Chang, Hung-Chih; Lin, Chin-An; Kang, Chen-Fang; Hsing, Meng-Kai; Lai, Kun-Yu; He, Jr-Hau

    2012-12-07

    We experimentally and theoretically demonstrated the hierarchical structure of SiO(2) nanorod arrays/p-GaN microdomes as a light harvesting scheme for InGaN-based multiple quantum well solar cells. The combination of nano- and micro-structures leads to increased internal multiple reflection and provides an intermediate refractive index between air and GaN. Cells with the hierarchical structure exhibit improved short-circuit current densities and fill factors, rendering a 1.47 fold efficiency enhancement as compared to planar cells.

  18. Facet control of gold nanorods

    DOE PAGES

    Zhang, Qingfeng; Han, Lili; Jing, Hao; ...

    2016-01-21

    While great success has been achieved in fine-tuning the aspect ratios and thereby the plasmon resonances of cylindrical Au nanorods, facet control with atomic level precision on the highly curved nanorod surfaces has long been a significantly more challenging task. The intrinsic structural complexity and lack of precise facet control of the nanorod surfaces remain the major obstacles for the atomic-level elucidation of the structure–property relationships that underpin the intriguing catalytic performance of Au nanorods. Here we demonstrate that the facets of single-crystalline Au nanorods can be precisely tailored using cuprous ions and cetyltrimethylammonium bromide as a unique pair ofmore » surface capping competitors to guide the particle geometry evolution during nanorod overgrowth. By deliberately maneuvering the competition between cuprous ions and cetyltrimethylammonium bromide, we have been able to create, in a highly controllable and selective manner, an entire family of nanorod-derived anisotropic multifaceted geometries whose surfaces are enclosed by specific types of well-defined high-index and low-index facets. This facet-controlled nanorod overgrowth approach also allows us to fine-tune the particle aspect ratios while well-preserving all the characteristic facets and geometric features of the faceted Au nanorods. Furthermore, taking full advantage of the combined structural and plasmonic tunability, we have further studied the facet-dependent heterogeneous catalysis on well-faceted Au nanorods using surface-enhanced Raman spectroscopy as an ultrasensitive spectroscopic tool with unique time-resolving and molecular finger-printing capabilities.« less

  19. Free and bound excitons in thin wurtzite GaN layers on sapphire

    NASA Astrophysics Data System (ADS)

    Merz, C.; Kunzer, M.; Kaufmann, U.; Akasaki, I.; Amano, H.

    1996-05-01

    Free and bound excitons have been studied by photoluminescence in thin (0268-1242/11/5/010/img8) wurtzite-undoped GaN, n-type GaN:Si as well as p-type GaN:Mg and GaN:Zn layers grown by metal-organic chemical vapour phase deposition (MOCVD). An accurate value for the free A exciton binding energy and an estimate for the isotropically averaged hole mass of the uppermost 0268-1242/11/5/010/img9 valence band are deduced from the data on undoped samples. The acceptor-doped samples reveal recombination lines which are attributed to excitons bound to 0268-1242/11/5/010/img10 and 0268-1242/11/5/010/img11 respectively. These lines are spectrally clearly separated and the exciton localization energies are in line with Haynes' rule. Whenever a comparison is possible, it is found that the exciton lines in these thin MOCVD layers are ultraviolet-shifted by 20 to 25 meV as compared to quasi-bulk (0268-1242/11/5/010/img12) samples. This effect is interpreted in terms of the compressive hydrostatic stress component which thin GaN layers experience when grown on sapphire with an AlN buffer layer.

  20. Very low-refractive-index optical thin films consisting of an array of SiO2 nanorods

    NASA Astrophysics Data System (ADS)

    Xi, J.-Q.; Kim, Jong Kyu; Schubert, E. F.; Ye, Dexian; Lu, T.-M.; Lin, Shawn-Yu; Juneja, Jasbir S.

    2006-03-01

    The refractive-index contrast in dielectric multilayer structures, optical resonators, and photonic crystals is an important figure of merit that creates a strong demand for high-quality thin films with a low refractive index. A SiO2 nanorod layer with low refractive index of n=1.08, to our knowledge the lowest ever reported in thin-film materials, is grown by oblique-angle electron-beam deposition of SiO2. A single-pair distributed Bragg reflector employing a SiO2 nanorod layer is demonstrated to have enhanced reflectivity, showing the great potential of low-refractive-index films for applications in photonic structures and devices.

  1. Vertical growth of ZnO nanorods on ZnO seeded FTO substrate for dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Marimuthu, T.; Anandhan, N.

    2018-04-01

    Zinc oxide (ZnO) nanorods (NRs) were electrochemically grown on fluorine doped tin oxide (FTO) and ZnO seeded FTO substrates. X-ray diffraction (XRD) patterns, Raman spectra and photoluminescence (PL) spectra reveal that the hexagonal wurtzite structured ZnO grown on a seeded FTO substrate has a high crystallinity, crystal quality and less atomic defects. Felid emission scanning electron microscope (FE-SEM) images display a high growth density of NRs grown on seeded FTO substrate compared to NRs grown on FTO substrate. The efficiency of the DSSCs based on NRs grown on FTO and seeded FTO substrates is 0.85 and 1.52 %, respectively. UV-Vis absorption spectra and electrochemical impedance spectra depict that the NRs grown on seeded FTO photoanode have higher dye absorption and charge recombination resistance than that of the NRs grown on FTO substrate.

  2. GaN transistors on Si for switching and high-frequency applications

    NASA Astrophysics Data System (ADS)

    Ueda, Tetsuzo; Ishida, Masahiro; Tanaka, Tsuyoshi; Ueda, Daisuke

    2014-10-01

    In this paper, recent advances of GaN transistors on Si for switching and high-frequency applications are reviewed. Novel epitaxial structures including superlattice interlayers grown by metal organic chemical vapor deposition (MOCVD) relieve the strain and eliminate the cracks in the GaN over large-diameter Si substrates up to 8 in. As a new device structure for high-power switching application, Gate Injection Transistors (GITs) with a p-AlGaN gate over an AlGaN/GaN heterostructure successfully achieve normally-off operations maintaining high drain currents and low on-state resistances. Note that the GITs on Si are free from current collapse up to 600 V, by which the drain current would be markedly reduced after the application of high drain voltages. Highly efficient operations of an inverter and DC-DC converters are presented as promising applications of GITs for power switching. The high efficiencies in an inverter, a resonant LLC converter, and a point-of-load (POL) converter demonstrate the superior potential of the GaN transistors on Si. As for high-frequency transistors, AlGaN/GaN heterojuction field-effect transistors (HFETs) on Si designed specifically for microwave and millimeter-wave frequencies demonstrate a sufficiently high output power at these frequencies. Output powers of 203 W at 2.5 GHz and 10.7 W at 26.5 GHz are achieved by the fabricated GaN transistors. These devices for switching and high-frequency applications are very promising as future energy-efficient electronics because of their inherent low fabrication cost and superior device performance.

  3. Structural and optical properties of vanadium ion-implanted GaN

    NASA Astrophysics Data System (ADS)

    Macková, A.; Malinský, P.; Jagerová, A.; Sofer, Z.; Klímová, K.; Sedmidubský, D.; Mikulics, M.; Lorinčík, J.; Veselá, D.; Böttger, R.; Akhmadaliev, S.

    2017-09-01

    The field of advanced electronic and optical devices searches for a new generation of transistors and lasers. The practical development of these novel devices depends on the availability of materials with the appropriate magnetic and optical properties, which is strongly connected to the internal morphology and the structural properties of the prepared doped structures. In this contribution, we present the characterisation of V ion-doped GaN epitaxial layers. GaN layers, oriented along the (0 0 0 1) crystallographic direction, grown by low-pressure metal-organic vapour-phase epitaxy (MOVPE) on c-plane sapphire substrates were implanted with 400 keV V+ ions at fluences of 5 × 1015 and 5 × 1016 cm-2. Elemental depth profiling was accomplished by Rutherford Backscattering Spectrometry (RBS) and Secondary Ion Mass Spectrometry (SIMS) to obtain precise information about the dopant distribution. Structural investigations are needed to understand the influence of defect distribution on the crystal-matrix recovery and the desired structural and optical properties. The structural properties of the ion-implanted layers were characterised by RBS-channelling and Raman spectroscopy to get a comprehensive insight into the structural modification of implanted GaN and to study the influence of subsequent annealing on the crystalline matrix reconstruction. Photoluminescence measurement was carried out to check the optical properties of the prepared structures.

  4. Epitaxy of Zn{sub 2}TiO{sub 4} (1 1 1) thin films on GaN (0 0 1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsiao, Chu-Yun; Wu, Jhih-Cheng; Shih, Chuan-Feng, E-mail: cfshih@mail.ncku.edu.tw

    2013-03-15

    Highlights: ► High-permittivity spinel Zn{sub 2}TiO{sub 4} thin films were grown on GaN (0 0 1) by sputtering. ► Oxygen atmosphere and post heat-treatment annealing effectively enhanced epitaxy. ► The epitaxial Zn{sub 2}TiO{sub 4} modifies the dielectric properties of ceramic oxide. - Abstract: High-permittivity spinel Zn{sub 2}TiO{sub 4} thin films were grown on GaN (0 0 1) by rf-sputtering. Grazing-angle, powder, and pole-figure X-ray diffractometries (XRD) were performed to identify the crystallinity and the preferred orientation of the Zn{sub 2}TiO{sub 4} films. Lattice image at the Zn{sub 2}TiO{sub 4} (1 1 1)/GaN (0 0 1) interface was obtained by high-resolutionmore » transmission-electron microscopy (HR-TEM). An oxygen atmosphere in sputtering and post heat-treatment using rapid thermal annealing effectively enhanced the epitaxy. The epitaxial relationship was determined from the XRD and HR-TEM results: (111){sub Zn{sub 2TiO{sub 4}}}||(001){sub GaN}, (202{sup ¯}){sub Zn{sub 2TiO{sub 4}}}||(110){sub GaN},and[21{sup ¯}1{sup ¯}]{sub Zn{sub 2TiO{sub 4}}}||[01{sup ¯}10]{sub GaN}. Finally, the relative permittivity, interfacial trap density and the flat-band voltage of the Zn{sub 2}TiO{sub 4} based capacitor were ∼18.9, 8.38 × 10{sup 11} eV{sup −1} cm{sup −2}, and 1.1 V, respectively, indicating the potential applications of the Zn{sub 2}TiO{sub 4} thin film to the GaN-based metal-oxide-semiconductor capacitor.« less

  5. Structural properties and defects of GaN crystals grown at ultra-high pressures: A molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Gao, Tinghong; Li, Yidan; Xie, Quan; Tian, Zean; Chen, Qian; Liang, Yongchao; Ren, Lei; Hu, Xuechen

    2018-01-01

    The growth of GaN crystals at different pressures was studied by molecular dynamics simulation employing the Stillinger-Weber potential, and their structural properties and defects were characterized using the radial distribution function, the Voronoi polyhedron index method, and a suitable visualization technology. Crystal structures formed at 0, 1, 5, 10, and 20 GPa featured an overwhelming number of <4 0 0 0> Voronoi polyhedra, whereas amorphous structures comprising numerous disordered polyhedra were produced at 50 GPa. During quenching, coherent twin boundaries were easily formed between zinc-blende and wurtzite crystal structures in GaN. Notably, point defects usually appeared at low pressure, whereas dislocations were observed at high pressure, since the simultaneous growth of two crystal grains with different crystal orientations and their boundary expansion was hindered in the latter case, resulting in the formation of a dislocation between these grains.

  6. Novel approach for III-N on Si (111) templates fabrication by low-temperature PA MBE using porous Si layer

    NASA Astrophysics Data System (ADS)

    Zolotukhin, D.; Seredin, P.; Lenshin, A.; Goloshchapov, D.; Mizerov, A.

    2017-11-01

    We report on successful growth of GaN nanorods by low-temperature plasma-assisted molecular beam epitaxy on a Si(111) substrate with and without preformed thin porous Si layer (por-Si). The deposited GaN initially forms islands which act as a seed for the wires. Porous structure of the por-Si layer helps to control nucleation islands sizes and achieve homogeneous distribution of the nanorods diameters. In addition 850 nm-thick crack-free GaN layer was formed on Si(111) substrate with preformed por-Si layer.

  7. Hydrogen depassivation of the magnesium acceptor by beryllium in p-type GaN

    NASA Astrophysics Data System (ADS)

    Wang, Chihsiang; Wang, Xiao; Zhang, Qiming

    2010-05-01

    Under nitrogen-rich growth conditions, the present ab initio study predicts that hydrogen passivation is more effective on the acceptor Be instead of Mg in a co-doped p-type GaN. The formation energy is 0.24 eV for (H-Be Ga) complex, and 0.46 eV for (H-Mg Ga) complex. Congruently, the binding energy is 1.40 eV for (H-Be Ga), and 0.60 eV for (H-Mg Ga). Owing to the lower binding energy, (H-Mg Ga) is not thermally stable. As Be is incorporated in Mg-doped GaN, a (H-Mg Ga) may release a H + cation at relatively elevated temperatures. Consequently, the H + diffuses swiftly away from a Mg -Ga, across a barrier of 1.17 eV, towards a Be -Ga and forms a stable (H-Be Ga) with it. The activation of Mg acceptors can be thus facilitated. In this view, the process of hydrogen depassivation of the Mg acceptor by Be can convert the as-grown high-resistivity Mg-doped GaN into a p-conducting material, as observed in the experiments.

  8. Detection of deep-level defects and reduced carrier concentration in Mg-ion-implanted GaN before high-temperature annealing

    NASA Astrophysics Data System (ADS)

    Akazawa, Masamichi; Yokota, Naoshige; Uetake, Kei

    2018-02-01

    We report experimental results for the detection of deep-level defects in GaN after Mg ion implantation before high-temperature annealing. The n-type GaN samples were grown on GaN free-standing substrates by metalorganic vapor phase epitaxy. Mg ions were implanted at 50 keV with a small dosage of 1.5×1011 cm-2, which did not change the conduction type of the n-GaN. By depositing Al2O3 and a Ni/Au electrode onto the implanted n-GaN, metal-oxide-semiconductor (MOS) diodes were fabricated and tested. The measured capacitance-voltage (C-V) characteristics showed a particular behavior with a plateau region and a region with an anomalously steep slope. Fitting to the experimental C-V curves by simulation showed the existence of deep-level defects and a reduction of the carrier concentration near the GaN surface. By annealing at 800oC, the density of the deep-level defects was reduced and the carrier concentration partially recovered.

  9. Understanding luminescence properties of grain boundaries in GaN thin films and their atomistic origin

    NASA Astrophysics Data System (ADS)

    Yoo, Hyobin; Yoon, Sangmoon; Chung, Kunook; Kang, Seoung-Hun; Kwon, Young-Kyun; Yi, Gyu-Chul; Kim, Miyoung

    2018-03-01

    We report our findings on the optical properties of grain boundaries in GaN films grown on graphene layers and discuss their atomistic origin. We combine electron backscatter diffraction with cathodoluminescence to directly correlate the structural defects with their optical properties, enabling the high-precision local luminescence measurement of the grain boundaries in GaN films. To further understand the atomistic origin of the luminescence properties, we carefully probed atomic core structures of the grain boundaries by exploiting aberration-corrected scanning transmission electron microscopy. The atomic core structures of grain boundaries show different ordering behaviors compared with those observed previously in threading dislocations. Energetics of the grain boundary core structures and their correlation with electronic structures were studied by first principles calculation.

  10. Low p-type contact resistance by field-emission tunneling in highly Mg-doped GaN

    NASA Astrophysics Data System (ADS)

    Okumura, Hironori; Martin, Denis; Grandjean, Nicolas

    2016-12-01

    Mg-doped GaN with a net acceptor concentration (NA-ND) in the high 1019 cm-3 range was grown using ammonia molecular-beam epitaxy. Electrical properties of NiO contact on this heavily doped p-type GaN were investigated. A potential-barrier height of 0.24 eV was extracted from the relationship between NA-ND and the specific contact resistivity (ρc). We found that there is an optimum NA-ND value of 5 × 1019 cm-3 for which ρc is as low as 2 × 10-5 Ω cm2. This low ρc is ascribed to hole tunneling through the potential barrier at the NiO/p+-GaN interface, which is well accounted for by the field-emission model.

  11. Low-Angle-Incidence Microchannel Epitaxy of a-Plane GaN Grown by Ammonia-Based Metal-Organic Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Hung; Uchiyama, Shota; Maruyama, Takahiro; Naritsuka, Shigeya

    2012-04-01

    Low-angle-incidence microchannel epitaxy (LAIMCE) of a-plane GaN was performed using ammonia-based metal-organic molecular beam epitaxy to obtain wide and thin lateral overgrowth over a SiO2 mask. Trimethylgallium (TMG) was supplied perpendicular to the openings cut in the mask with a low incident angle of 5° relative to the substrate plane. The [NH3]/[TMG] ratio (R) dependence of GaN LAIMCE was optimized by varying R from 5 to 30. A wide lateral overgrowth of 3.7 µm with a dislocation density below the transmission electron microscope detection limit was obtained at R=15 for a thickness of 520 nm.

  12. Flower-like ZnO nanorod arrays grown on HF-etched Si (111): constraining relation between ZnO seed layer and Si (111)

    NASA Astrophysics Data System (ADS)

    Brahma, Sanjaya; Liu, C.-W.; Huang, R.-J.; Chang, S.-J.; Lo, K.-Y.

    2015-11-01

    We demonstrate the formation of self-assembled homogenous flower-like ZnO nanorods over a ZnO seed layer deposited on a HF-etched Si (111) substrate. The typical flower-like morphology of ZnO nanorod arrays is ascribed to the formation of the island-like seed layer which is deposited by the drop method followed by annealing at 300 °C. The island-like ZnO seed layer consists of larger ZnO grains, and is built by constraining of the Si (111) surface due to pattern matching. Pattern matching of Si with ZnO determines the shape and size of the seed layer and this controls the final morphology of ZnO nanorods to be either flower like or vertically aligned. The high quality of the island-like ZnO seed layer enhances the diameter and length of ZnO nanorods. Besides, while the amorphous layer formed during the annealing process would influence the strained ZnO grain, that subsequent amorphous layer will not block the constraining between the ZnO grain and the substrate.

  13. Nonenzymetic glucose sensing using carbon functionalized carbon doped ZnO nanorod arrays

    NASA Astrophysics Data System (ADS)

    Chakraborty, Pinak; Majumder, Tanmoy; Dhar, Saurab; Mondal, Suvra Prakash

    2018-04-01

    Fabrication of highly sensitive, long stability and low cost glucose sensors are attractive for biomedical applications and food industries. Most of the commercial glucose sensors are based on enzymatic detection which suffers from problems underlying in enzyme activities. Development of high sensitive, enzyme free sensors is a great challenge for next generation glucose sensing applications. In our study Zinc oxide nanorod sensing electrodes have been grown using low cost hydrothermal route and their nonenzymatic glucose sensing properties have been demonstrated with carbon functionalized, carbon doped ZnO nanorods (C-ZnO NRs) in neutral medium (0.1M PBS, pH 7.4) using cyclic voltammetry and amperometry measurements. The C-ZnO NRs electrodes demonstrated glucose sensitivity˜ 13.66 µAmM-1cm-2 in the concentration range 0.7 - 14 mM.

  14. (11-22) semipolar InGaN emitters from green to amber on overgrown GaN on micro-rod templates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, J., E-mail: j.bai@sheffield.ac.uk; Xu, B.; Guzman, F. G.

    2015-12-28

    We demonstrate semipolar InGaN single-quantum-well light emitting diodes (LEDs) in the green, yellow-green, yellow and amber spectral region. The LEDs are grown on our overgrown semipolar (11-22) GaN on micro-rod array templates, which are fabricated on (11-22) GaN grown on m-plane sapphire. Electroluminescence measurements on the (11-22) green LED show a reduced blue-shift in the emission wavelength with increasing driving current, compared to a reference commercial c-plane LED. The blue-shifts for the yellow-green and yellow LEDs are also significantly reduced. All these suggest an effective suppression in quantum confined Stark effect in our (11-22) LEDs. On-wafer measurements yield a linearmore » increase in the light output with the current, and external quantum efficiency demonstrates a significant improvement in the efficiency-droop compared to a commercial c-plane LED. Electro-luminescence polarization measurements show a polarization ratio of about 25% in our semipolar LEDs.« less

  15. MOVPE growth of violet GaN LEDs on β-Ga2O3 substrates

    NASA Astrophysics Data System (ADS)

    Li, Ding; Hoffmann, Veit; Richter, Eberhard; Tessaro, Thomas; Galazka, Zbigniew; Weyers, Markus; Tränkle, Günther

    2017-11-01

    We report that a H2-free atmosphere is essential for the initial stage of metalorganic vapour phase epitaxy (MOVPE) growth of GaN on β-Ga2O3 to prevent the surface from damage. A simple growth method is proposed that can easily transfer established GaN growth recipes from sapphire to β-Ga2O3 with both (-2 0 1) and (1 0 0) orientations. This method features a thin AlN nucleation layer grown below 900 °C in N2 atmosphere to protect the surface of β-Ga2O3 from deterioration during further growth under the H2 atmosphere. Based on this, we demonstrate working violet vertical light emitting diodes (VLEDs) on n-conductive β-Ga2O3 substrates.

  16. Hydroxyaptite nanorods patterned ZrO2 bilayer coating on zirconium for the application of percutaneous implants.

    PubMed

    Zhang, Lan; Han, Yong; Tan, Guoxin

    2015-03-01

    Percutaneous implant requires a tight bond between the underlying dermis of skin and implant surface to prevent epithelial down-growth and infection, while fibroblasts play a key role in the skin-implant integration. In this work, nanorod-shaped hydroxyaptite (HA) with a mean diameter of 70 nm and length of 400 nm was hydrothermally grown on micro-arc oxidized (MAOed) Ca- and P-doped ZrO2 to form a bilayer coating. The hydrothermal formation mechanism of HA nanorods was explored, and the adsorption of total protein on the coating from α-MEM medium containing 10% fetal bovine serum was examined. Employing L-929 cells, the behaviors of fibroblasts on the bilayer coating, including adhesion and proliferation were evaluated together the polished Zr and as-MAOed ZrO2. The obtained results show that the HA nanorods nucleated on ZrO2 and grew at the expense of the doped Ca and P ions during the hydrothermal treatment (HT). The HA nanorods patterned coating enhanced protein absorption, and significantly improved the adhesion and proliferation of fibroblasts compared to the as-MAOed ZrO2 and polished Zr. It suggests that the HA nanorods/ZrO2 coated zirconium has a potential application for percutaneous implants to enhance the attachment of skin. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Photoluminescence enhancement from GaN by beryllium doping

    NASA Astrophysics Data System (ADS)

    García-Gutiérrez, R.; Ramos-Carrazco, A.; Berman-Mendoza, D.; Hirata, G. A.; Contreras, O. E.; Barboza-Flores, M.

    2016-10-01

    High quality Be-doped (Be = 0.19 at.%) GaN powder has been grown by reacting high purity Ga diluted alloys (Be-Ga) with ultra high purity ammonia in a horizontal quartz tube reactor at 1200 °C. An initial low-temperature treatment to dissolve ammonia into the Ga melt produced GaN powders with 100% reaction efficiency. Doping was achieved by dissolving beryllium into the gallium metal. The powders synthesized by this method regularly consist of two particle size distributions: large hollow columns with lengths between 5 and 10 μm and small platelets in a range of diameters among 1 and 3 μm. The GaN:Be powders present a high quality polycrystalline profile with preferential growth on the [10 1 bar 1] plane, observed by means of X-ray diffraction. The three characteristics growth planes of the GaN crystalline phase were found by using high resolution TEM microscopy. The optical enhancing of the emission in the GaN powder is attributed to defects created with the beryllium doping. The room temperature photoluminescence emission spectra of GaN:Be powders, revealed the presence of beryllium on a shoulder peak at 3.39 eV and an unusual Y6 emission at 3.32eV related to surface donor-acceptor pairs. Also, a donor-acceptor-pair transition at 3.17 eV and a phonon replica transition at 3.1 eV were observed at low temperature (10 K). The well-known yellow luminescence band coming from defects was observed in both spectra at room and low temperature. Cathodoluminescence emission from GaN:Be powders presents two main peaks associated with an ultraviolet band emission and the yellow emission known from defects. To study the trapping levels related with the defects formed in the GaN:Be, thermoluminescence glow curves were obtained using UV and β radiation in the range of 50 and 150 °C.

  18. Influence of aspect ratio and surface defect density on hydrothermally grown ZnO nanorods towards amperometric glucose biosensing applications

    NASA Astrophysics Data System (ADS)

    Shukla, Mayoorika; Pramila; Dixit, Tejendra; Prakash, Rajiv; Palani, I. A.; Singh, Vipul

    2017-11-01

    In this work, hydrothermally grown ZnO Nanorods Array (ZNA) has been synthesized over Platinum (Pt) coated glass substrate, for biosensing applications. In-situ addition of strong oxidizing agent viz KMnO4 during hydrothermal growth was found to have profound effect on the physical properties of ZNA. Glucose oxidase (GOx) was later immobilized over ZNA by means of physical adsorption process. Further influence of varying aspect ratio, enzyme loading and surface defects on amperometric glucose biosensor has been analyzed. Significant variation in biosensor performance was observed by varying the amount of KMnO4 addition during the growth. Moreover, investigations revealed that the suppression of surface defects and aspect ratio variation of the ZNA played key role towards the observed improvement in the biosensor performance, thereby significantly affecting the sensitivity and response time of the fabricated biosensor. Among different biosensors fabricated having varied aspect ratio and surface defect density of ZNA, the best electrode resulted into sensitivity and response time to be 18.7 mA cm-2 M-1 and <5 s respectively. The observed results revealed that apart from high aspect ratio nanostructures and the extent of enzyme loading, surface defect density also hold a key towards ZnO nanostructures based bio-sensing applications.

  19. Characterisation of Cs ion implanted GaN by DLTS

    NASA Astrophysics Data System (ADS)

    Ngoepe, P. N. M.; Meyer, W. E.; Auret, F. D.; Omotoso, E.; Hlatshwayo, T. T.; Diale, M.

    2018-04-01

    Deep level transient spectroscopy (DLTS) was used to characterise Cs implanted GaN grown by hydride vapour phase epitaxy (HVPE). This implantation was done at room temperature using energy of 360 keV to a fluence of 10-11 cm-2. A defect with activation energy of 0.19 eV below the conduction band and an apparent capture cross section of 1.1 × 10-15 cm2 was induced. This defect has previously been observed after rare earth element (Eu, Er and Pr) implantation. It has also been reported after electron, proton and He ion implantation.

  20. Size effects in the thermal conductivity of gallium oxide (β-Ga{sub 2}O{sub 3}) films grown via open-atmosphere annealing of gallium nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szwejkowski, Chester J.; Giri, Ashutosh; Donovan, Brian F.

    2015-02-28

    Gallium nitride (GaN) is a widely used semiconductor for high frequency and high power devices due to of its unique electrical properties: a wide band gap, high breakdown field, and high electron mobility. However, thermal management has become a limiting factor regarding efficiency, lifetime, and advancement of GaN devices and GaN-based applications. In this work, we study the thermal conductivity of beta-phase gallium oxide (β-Ga{sub 2}O{sub 3}) thin films, a component of typical gate oxides used in such devices. We use time domain thermoreflectance to measure the thermal conductivity of a variety of polycrystalline β-Ga{sub 2}O{sub 3} films of differentmore » thicknesses grown via open atmosphere annealing of the surfaces of GaN films on sapphire substrates. We show that the measured effective thermal conductivity of these β-Ga{sub 2}O{sub 3} films can span 1.5 orders of magnitude, increasing with an increased film thickness, which is indicative of the relatively large intrinsic thermal conductivity of the β-Ga{sub 2}O{sub 3} grown via this technique (8.8 ± 3.4 W m{sup −1} K{sup −1}) and large mean free paths compared to typical gate dielectrics commonly used in GaN device contacts. By conducting time domain thermoreflectance (TDTR) measurements with different metal transducers (Al, Au, and Au with a Ti wetting layer), we attribute this variation in effective thermal conductivity to a combination of size effects in the β-Ga{sub 2}O{sub 3} film resulting from phonon scattering at the β-Ga{sub 2}O{sub 3}/GaN interface and thermal transport across the β-Ga{sub 2}O{sub 3}/GaN interface. The measured thermal properties of open atmosphere-grown β-Ga{sub 2}O{sub 3} and its interface with GaN set the stage for thermal engineering of gate contacts in high frequency GaN-based devices.« less

  1. Color tunable light-emitting diodes based on p+-Si/p-CuAlO2/n-ZnO nanorod array heterojunctions

    NASA Astrophysics Data System (ADS)

    Ling, Bo; Zhao, Jun Liang; Sun, Xiao Wei; Tan, Swee Tiam; Kyaw, Aung Ko Ko; Divayana, Yoga; Dong, Zhi Li

    2010-07-01

    Wide-range color tuning from red to blue was achieved in phosphor-free p+-Si/p-CuAlO2/n-ZnO nanorod light-emitting diodes at room temperature. CuAlO2 films were deposited on p+-Si substrates by sputtering followed by annealing. ZnO nanorods were further grown on the annealed p+-Si/p-CuAlO2 substrates by vapor phase transport. The color of the p-CuAlO2/n-ZnO nanorod array heterojunction electroluminescence depended on the annealing temperature of the CuAlO2 film. With the increase of the annealing temperature from 900 to 1050 °C, the emission showed a blueshift under the same forward bias. The origin of the blueshift is related to the amount of Cu concentration diffused into ZnO.

  2. Microstructural dependency of optical properties of m-plane InGaN multiple quantum wells grown on 2° misoriented bulk GaN substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Fengzai; Barnard, Jonathan S.; Zhu, Tongtong

    A non-polar m-plane structure consisting of five InGaN/GaN quantum wells (QWs) was grown on ammonothermal bulk GaN by metal-organic vapor phase epitaxy. Surface step bunches propagating through the QW stack were found to accommodate the 2° substrate miscut towards the -c direction. Both large steps with heights of a few tens of nanometres and small steps between one and a few atomic layers in height are observed, the former of which exhibit cathodoluminescence at longer wavelengths than the adjacent m-plane terraces. This is attributed to the formation of semi-polar facets at the steps on which the QWs are shown tomore » be thicker and have higher Indium contents than those in the adjacent m-plane regions. Discrete basal-plane stacking faults (BSFs) were occasionally initiated from the QWs on the main m-plane terraces, but groups of BSFs were frequently observed to initiate from those on the large steps, probably related to the increased strain associated with the locally higher indium content and thickness.« less

  3. P-type doping of GaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Raechelle Kimberly

    2000-04-01

    After implantation of As, As + Be, and As + Ga into GaN and annealing for short durations at temperatures as high as 1500 C, the GaN films remained highly resistive. It was apparent from c-RBS studies that although implantation damage did not create an amorphous layer in the GaN film, annealing at 1500 C did not provide enough energy to completely recover the radiation damage. Disorder recovered significantly after annealing at temperatures up to 1500 C, but not completely. From SIMS analysis, oxygen contamination in the AIN capping layer causes oxygen diffusion into the GaN film above 1400 C.more » The sapphire substrate (A1203) also decomposed and oxygen penetrated into the backside of the GaN layer above 1400 C. To prevent donor-like oxygen impurities from the capping layer and the substrate from contaminating the GaN film and compensating acceptors, post-implantation annealing should be done at temperatures below 1500 C. Oxygen in the cap could be reduced by growing the AIN cap on the GaN layer after the GaN growth run or by depositing the AIN layer in a ultra high vacuum (UHV) system post-growth to minimize residual oxygen and water contamination. With longer annealing times at 1400 C or at higher temperatures with a higher quality AIN, the implantation drainage may fully recover.« less

  4. Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers.

    PubMed

    Willander, M; Nur, O; Zhao, Q X; Yang, L L; Lorenz, M; Cao, B Q; Zúñiga Pérez, J; Czekalla, C; Zimmermann, G; Grundmann, M; Bakin, A; Behrends, A; Al-Suleiman, M; El-Shaer, A; Che Mofor, A; Postels, B; Waag, A; Boukos, N; Travlos, A; Kwack, H S; Guinard, J; Le Si Dang, D

    2009-08-19

    Zinc oxide (ZnO), with its excellent luminescent properties and the ease of growth of its nanostructures, holds promise for the development of photonic devices. The recent advances in growth of ZnO nanorods are discussed. Results from both low temperature and high temperature growth approaches are presented. The techniques which are presented include metal-organic chemical vapour deposition (MOCVD), vapour phase epitaxy (VPE), pulse laser deposition (PLD), vapour-liquid-solid (VLS), aqueous chemical growth (ACG) and finally the electrodeposition technique as an example of a selective growth approach. Results from structural as well as optical properties of a variety of ZnO nanorods are shown and analysed using different techniques, including high resolution transmission electron microscopy (HR-TEM), scanning electron microscopy (SEM), photoluminescence (PL) and cathodoluminescence (CL), for both room temperature and for low temperature performance. These results indicate that the grown ZnO nanorods possess reproducible and interesting optical properties. Results on obtaining p-type doping in ZnO micro- and nanorods are also demonstrated using PLD. Three independent indications were found for p-type conducting, phosphorus-doped ZnO nanorods: first, acceptor-related CL peaks, second, opposite transfer characteristics of back-gate field effect transistors using undoped and phosphorus doped wire channels, and finally, rectifying I-V characteristics of ZnO:P nanowire/ZnO:Ga p-n junctions. Then light emitting diodes (LEDs) based on n-ZnO nanorods combined with different technologies (hybrid technologies) are suggested and the recent electrical, as well as electro-optical, characteristics of these LEDs are shown and discussed. The hybrid LEDs reviewed and discussed here are mainly presented for two groups: those based on n-ZnO nanorods and p-type crystalline substrates, and those based on n-ZnO nanorods and p-type amorphous substrates. Promising electroluminescence

  5. Praseodymium hydroxide and oxide nanorods and Au/Pr6O11 nanorod catalysts for CO oxidation.

    PubMed

    Huang, P X; Wu, F; Zhu, B L; Li, G R; Wang, Y L; Gao, X P; Zhu, H Y; Yan, T Y; Huang, W P; Zhang, S M; Song, D Y

    2006-02-02

    Praseodymium hydroxide nanorods were synthesized by a two-step approach: First, metallic praseodymium was used to form praseodymium chloride, which reacted subsequently with KOH solution to produce praseodymium hydroxide. In the second step the hydroxide was treated with a concentrated alkaline solution at 180 degrees C for 45 h, yielding nanorods as shown by the scanning and transmission electron microscopy images. The results of X-ray diffraction and energy-dispersive X-ray spectroscopy experiments indicate that these nanorods are pure praseodymium hydroxide with a hexagonal structure, which can be converted into praseodymium oxide (Pr6O11) nanorods of a face-centered cubic structure after calcination at 600 degrees C for 2 h in air. Gold was loaded on the praseodymium oxide nanorods using HAuCl4 as the gold source, and NaBH4 was used to reduce the gold species to metallic nanoparticles with sizes of 8-12 nm on the nanorod surface. These Au/Pr6O11 nanorods exhibit superior catalytic activity for CO oxidation.

  6. ZnO Nanorods Based Enzymatic Biosensor for Selective Determination of Penicillin

    PubMed Central

    Ibupoto, Zafar Hussain; Ali, Syed Muhammad Usman; Khun, Kimleang; Chey, Chan Oeurn; Nur, Omer; Willander, Magnus

    2011-01-01

    In this study, we have successfully demonstrated the fabrication of a biosensor based on well aligned single-crystal zinc oxide (ZnO) nanorods which were grown on gold coated glass substrate using a low temperature aqueous chemical growth (ACG) method. The ZnO nanorods were immobilized with penicillinase enzyme using the physical adsorption approach in combination with N-5-azido-2-nitrobenzoyloxysuccinimide (ANB-NOS) as cross linking molecules. The potentiometric response of the sensor configuration revealed good linearity over a large logarithmic concentration range from 100 µM to 100 mM. During the investigations, the proposed sensor showed a good stability with high sensitivity of ~121 mV/decade for sensing of penicillin. A quick electrochemical response of less than 5 s with a good selectivity, repeatability, reproducibility and a negligible response to common interferents such as Na1+, K1+, d-glucose, l-glucose, ascorbic acid, uric acid, urea, sucrose, lactose, glycine, penicilloic acid and cephalosporins, was observed. PMID:25585565

  7. ZnO Nanorods Based Enzymatic Biosensor for Selective Determination of Penicillin.

    PubMed

    Ibupoto, Zafar Hussain; Ali, Syed Muhammad Usman; Khun, Kimleang; Chey, Chan Oeurn; Nur, Omer; Willander, Magnus

    2011-10-27

    In this study, we have successfully demonstrated the fabrication of a biosensor based on well aligned single-crystal zinc oxide (ZnO) nanorods which were grown on gold coated glass substrate using a low temperature aqueous chemical growth (ACG) method. The ZnO nanorods were immobilized with penicillinase enzyme using the physical adsorption approach in combination with N-5-azido-2-nitrobenzoyloxysuccinimide (ANB-NOS) as cross linking molecules. The potentiometric response of the sensor configuration revealed good linearity over a large logarithmic concentration range from 100 µM to 100 mM. During the investigations, the proposed sensor showed a good stability with high sensitivity of ~121 mV/decade for sensing of penicillin. A quick electrochemical response of less than 5 s with a good selectivity, repeatability, reproducibility and a negligible response to common interferents such as Na1+, K1+, d-glucose, l-glucose, ascorbic acid, uric acid, urea, sucrose, lactose, glycine, penicilloic acid and cephalosporins, was observed.

  8. Synthesis and impurity doping of GaN powders by the two-stage vapor-phase method for phosphor applications

    NASA Astrophysics Data System (ADS)

    Hara, K.; Okuyama, E.; Yonemura, A.; Uchida, T.; Okamoto, N.

    2006-09-01

    The analysis of particle formation and the doping of luminescent impurities during the two-stage vapor-phase synthesis of GaN powder were carried. GaN particles were grown very fast during the second stage of this method, and the increment in particle size was larger for higher reaction temperature in the region between 800 and 1000 °C. The analysis on the behaviour of particle growth based on the reaction kinetics suggested that the growth almost finishes in a few seconds with an extremely high rate at the early stage at 1000 °C, whereas the growth lasts with relatively low rates for a time longer than the actual growth duration for the case of lower temperature synthesis. GaN powders doped with various impurity atoms were synthesized by supplying impurity sources with GaCl during the second stage. The samples doped with Zn, Mg and Tb showed emissions characteristic for each doped impurity.

  9. Electronic and optical device applications of hollow cathode plasma assisted atomic layer deposition based GaN thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolat, Sami, E-mail: bolat@ee.bilkent.edu.tr; Tekcan, Burak; Ozgit-Akgun, Cagla

    2015-01-15

    Electronic and optoelectronic devices, namely, thin film transistors (TFTs) and metal–semiconductor–metal (MSM) photodetectors, based on GaN films grown by hollow cathode plasma-assisted atomic layer deposition (PA-ALD) are demonstrated. Resistivity of GaN thin films and metal-GaN contact resistance are investigated as a function of annealing temperature. Effect of the plasma gas and postmetallization annealing on the performances of the TFTs as well as the effect of the annealing on the performance of MSM photodetectors are studied. Dark current to voltage and responsivity behavior of MSM devices are investigated as well. TFTs with the N{sub 2}/H{sub 2} PA-ALD based GaN channels aremore » observed to have improved stability and transfer characteristics with respect to NH{sub 3} PA-ALD based transistors. Dark current of the MSM photodetectors is suppressed strongly after high-temperature annealing in N{sub 2}:H{sub 2} ambient.« less

  10. Roma Gans: Still Writing at 95.

    ERIC Educational Resources Information Center

    Sullivan, Joanna

    1991-01-01

    Recounts discussions with reading educator Roma Gans over a 25-year period. Presents Gans' views about reading, teachers, her family, and her years at Teachers College, Columbia. Notes that Gans has seen the teaching of reading come full circle since her first teaching assignment in 1919. (RS)

  11. Dimensional and compositional dependent analysis of plasmonic bimetallic nanorods

    NASA Astrophysics Data System (ADS)

    Bansal, Amit; Singh Sekhon, Jagmeet; Verma, S. S.

    2015-11-01

    The individual noble metal nanoparticles (NPs) are combined to form alloys with improved optical response, cost effectiveness and better stability. The selection of noble metal alloy NPs for their better use in plasmonic applications is being made on the bases of surface plasmon resonance peak position, its intensity and full width at half maxima (FWHM). Presently, the effect of metal composition (x), aspect ratio (R), size and metal type on the longitudinal plasmon resonance (LPR) of noble metal Ag-Au alloy nanorods (NRs) has been studied by applying modified Gans theory including finite wavelength effects and found that the LPR shifts towards the longer wavelength region with increase in aspect ratio and size of the NR. Moreover, a linear relationship which is in good agreement to the experimental results between the plasmon resonance and aspect ratio has been obtained. The aspect ratio and NR width-dependent absorption efficiency and FWHM have also been calculated. Further, a negligible effect of metal composition and its type is found on the LPR.

  12. A DFT study on NEA GaN photocathode with an ultrathin n-type Si-doped GaN cap layer

    NASA Astrophysics Data System (ADS)

    Xia, Sihao; Liu, Lei; Kong, Yike; Diao, Yu

    2016-10-01

    Due to the drawbacks of conventional negative electron affinity (NEA) GaN photocathodes activated by Cs or Cs/O, a new-type NEA GaN photocathodes with heterojunction surface dispense with Cs activation are proposed. This structure can be obtained through the coverage of an ultrathin n-type Si-doped GaN cap layer on the p-type Mg-doped GaN emission layer. The influences of the cap layer on the photocathode are calculated using DFT. This study indicates that the n-type cap layer can promote the photoemission characteristics of GaN photocathode and demonstrates the probability of the preparation of a NEA GaN photocathode with an n-type cap layer.

  13. Surface passivation and self-regulated shell growth in selective area-grown GaN-(Al,Ga)N core-shell nanowires.

    PubMed

    Hetzl, Martin; Winnerl, Julia; Francaviglia, Luca; Kraut, Max; Döblinger, Markus; Matich, Sonja; Fontcuberta I Morral, Anna; Stutzmann, Martin

    2017-06-01

    The large surface-to-volume ratio of GaN nanowires implicates sensitivity of the optical and electrical properties of the nanowires to their surroundings. The implementation of an (Al,Ga)N shell with a larger band gap around the GaN nanowire core is a promising geometry to seal the GaN surface. We investigate the luminescence and structural properties of selective area-grown GaN-(Al,Ga)N core-shell nanowires grown on Si and diamond substrates. While the (Al,Ga)N shell allows a suppression of yellow defect luminescence from the GaN core, an overall intensity loss due to Si-related defects at the GaN/(Al,Ga)N interface has been observed in the case of Si substrates. Scanning transmission electron microscopy measurements indicate a superior crystal quality of the (Al,Ga)N shell along the nanowire side facets compared to the (Al,Ga)N cap at the top facet. A nucleation study of the (Al,Ga)N shell reveals a pronounced bowing of the nanowires along the c-direction after a short deposition time which disappears for longer growth times. This is assigned to an initially inhomogeneous shell nucleation. A detailed study of the proceeding shell growth allows the formulation of a strain-driven self-regulating (Al,Ga)N shell nucleation model.

  14. Electrochemical growth of controlled tip shapes of ZnO nanorod arrays on silicon substrate and enhanced photoluminescence emission from nanopyramid arrays compared with flat-head nanorods

    NASA Astrophysics Data System (ADS)

    Alimanesh, Mahmoud; Hassan, Z.; Zainal, Norzaini

    2017-10-01

    Zinc oxide (ZnO) nanorod arrays (NRAs) with different morphologies such as; perfect hexagon flat-head, pyramidal, compact pencil, nail-shaped, and high-compact ZnO nanorod thin films, were successfully grown on silicon substrates. These NRAs were formed on substrates using a simple low-temperature electrochemical method without adding any catalyst or template via the precursors of zinc nitrate hexahydrate [Zn(NO3)2·6H2O] and hexamethylenetetramine [HMT; C6H12N4] with an equal molar concentration of 0.025 mol/l. The morphologies of the ZnO nanorods (NRs) could be controlled and transformed successfully in to other morphologies by changing the growth conditions, such as; growth temperature and applied current density. Detailed structural investigations reveal that the synthesized various NRs are single crystalline with wurtzite hexagonal phase and preferentially grow along the c-axis direction. The room temperature photoluminescence spectra show that each spectrum consists of an ultraviolet (UV) band and a relative broad visible light emission and infrared emission peak. The enhanced light emission intensity at UV peak (∼375 nm) is observed significantly from ZnO nanopyramid (NP) arrays because of the conical shape of NP. The photoluminescence intensity of the UV peak from the NPs is found to be 1.5-17 times larger than those from the other various NRs.

  15. Control of ion content and nitrogen species using a mixed chemistry plasma for GaN grown at extremely high growth rates >9 μm/h by plasma-assisted molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunning, Brendan P.; Clinton, Evan A.; Merola, Joseph J.

    2015-10-21

    Utilizing a modified nitrogen plasma source, plasma assisted molecular beam epitaxy (PAMBE) has been used to achieve higher growth rates in GaN. A higher conductance aperture plate, combined with higher nitrogen flow and added pumping capacity, resulted in dramatically increased growth rates up to 8.4 μm/h using 34 sccm of N{sub 2} while still maintaining acceptably low operating pressure. It was further discovered that argon could be added to the plasma gas to enhance growth rates up to 9.8 μm/h, which was achieved using 20 sccm of N{sub 2} and 7.7 sccm Ar flows at 600 W radio frequency power, for which themore » standard deviation of thickness was just 2% over a full 2 in. diameter wafer. A remote Langmuir style probe employing the flux gauge was used to indirectly measure the relative ion content in the plasma. The use of argon dilution at low plasma pressures resulted in a dramatic reduction of the plasma ion current by more than half, while high plasma pressures suppressed ion content regardless of plasma gas chemistry. Moreover, different trends are apparent for the molecular and atomic nitrogen species generated by varying pressure and nitrogen composition in the plasma. Argon dilution resulted in nearly an order of magnitude achievable growth rate range from 1 μm/h to nearly 10 μm/h. Even for films grown at more than 6 μm/h, the surface morphology remained smooth showing clear atomic steps with root mean square roughness less than 1 nm. Due to the low vapor pressure of Si, Ge was explored as an alternative n-type dopant for high growth rate applications. Electron concentrations from 2.2 × 10{sup 16} to 3.8 × 10{sup 19} cm{sup −3} were achieved in GaN using Ge doping, and unintentionally doped GaN films exhibited low background electron concentrations of just 1–2 × 10{sup 15} cm{sup −3}. The highest growth rates resulted in macroscopic surface features due to Ga cell spitting, which is an engineering challenge still

  16. Growing GaN LEDs on amorphous SiC buffer with variable C/Si compositions

    PubMed Central

    Cheng, Chih-Hsien; Tzou, An-Jye; Chang, Jung-Hung; Chi, Yu-Chieh; Lin, Yung-Hsiang; Shih, Min-Hsiung; Lee, Chao-Kuei; Wu, Chih-I; Kuo, Hao-Chung; Chang, Chun-Yen; Lin, Gong-Ru

    2016-01-01

    The epitaxy of high-power gallium nitride (GaN) light-emitting diode (LED) on amorphous silicon carbide (a-SixC1−x) buffer is demonstrated. The a-SixC1−x buffers with different nonstoichiometric C/Si composition ratios are synthesized on SiO2/Si substrate by using a low-temperature plasma enhanced chemical vapor deposition. The GaN LEDs on different SixC1−x buffers exhibit different EL and C-V characteristics because of the extended strain induced interfacial defects. The EL power decays when increasing the Si content of SixC1−x buffer. The C-rich SixC1−x favors the GaN epitaxy and enables the strain relaxation to suppress the probability of Auger recombination. When the SixC1−x buffer changes from Si-rich to C-rich condition, the EL peak wavelengh shifts from 446 nm to 450 nm. Moreover, the uniform distribution contour of EL intensity spreads between the anode and the cathode because the traping density of the interfacial defect gradually reduces. In comparison with the GaN LED grown on Si-rich SixC1−x buffer, the device deposited on C-rich SixC1−x buffer shows a lower turn-on voltage, a higher output power, an external quantum efficiency, and an efficiency droop of 2.48 V, 106 mW, 42.3%, and 7%, respectively. PMID:26794268

  17. Photo-induced changes of the surface band bending in GaN: Influence of growth technique, doping and polarity

    NASA Astrophysics Data System (ADS)

    Winnerl, Andrea; Pereira, Rui N.; Stutzmann, Martin

    2017-05-01

    In this work, we use conductance and contact potential difference photo-transient data to study the influence of the growth technique, doping, and crystal polarity on the kinetics of photo-generated charges in GaN. We found that the processes, and corresponding time scales, involved in the decay of charge carriers generated at and close to the GaN surface via photo-excitation are notably independent of the growth technique, doping (n- and p-types), and also crystal polarity. Hence, the transfer of photo-generated charges from band states back to surface states proceeds always by hopping via shallow defect states in the space-charge region (SCR) close to the surface. Concerning the charge carrier photo-generation kinetics, we observe considerable differences between samples grown with different techniques. While for GaN grown by metal-organic chemical vapor deposition, the accumulation of photo-conduction electrons results mainly from a combined trapping-hopping process (slow), where photo-generated electrons hop via shallow defect states to the conduction band (CB), in hydride vapor phase epitaxy and molecular beam epitaxy materials, a faster direct process involving electron transfer via CB states is also present. The time scales of both processes are quite insensitive to the doping level and crystal polarity. However, these processes become irrelevant for very high doping levels (both n- and p-types), where the width of the SCR is much smaller than the photon penetration depth, and therefore, most charge carriers are generated outside the SCR.

  18. Embedded vertically aligned cadmium telluride nanorod arrays grown by one-step electrodeposition for enhanced energy conversion efficiency in three-dimensional nanostructured solar cells.

    PubMed

    Wang, Jun; Liu, Shurong; Mu, Yannan; Liu, Li; A, Runa; Yang, Jiandong; Zhu, Guijie; Meng, Xianwei; Fu, Wuyou; Yang, Haibin

    2017-11-01

    Vertically aligned CdTe nanorods (NRs) arrays are successfully grown by a simple one-step and template-free electrodeposition method, and then embedded in the CdS window layer to form a novel three-dimensional (3D) heterostructure on flexible substrates. The parameters of electrodeposition such as deposition potential and pH of the solution are varied to analyze their important role in the formation of high quality CdTe NRs arrays. The photovoltaic conversion efficiency of the solar cell based on the 3D heterojunction structure is studied in detail. In comparison with the standard planar heterojunction solar cell, the 3D heterojunction solar cell exhibits better photovoltaic performance, which can be attributed to its enhanced optical absorption ability, increased heterojunction area and improved charge carrier transport. The better photoelectric property of the 3D heterojunction solar cell suggests great application potential in thin film solar cells, and the simple electrodeposition process represents a promising technique for large-scale fabrication of other nanostructured solar energy conversion devices. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Fabrication of needle-like ZnO nanorods arrays by a low-temperature seed-layer growth approach in solution

    NASA Astrophysics Data System (ADS)

    Zhang, Haimin; Quan, Xie; Chen, Shuo; Zhao, Huimin

    2007-11-01

    Uniform, large-scale, and well-aligned needle-like ZnO nanorods with good photoluminescence and photocatalysis properties on Zn substrates, have been successfully fabricated using a simple low-temperature seed-layer growth approach in solution (50 °C). The formation of ZnO seed-layer by the anodic oxidation technique (AOT) plays an important role in the subsequent growth of highly oriented ZnO nanorods arrays. Temperature also proved to be a significant factor in the growth of ZnO nanorods and had a great effect on their optical properties. X-ray diffraction (XRD) analysis, selected-area electron diffraction (SAED) pattern and high-resolution TEM (HRTEM) indicated that the needle-like ZnO nanorods were single crystal in nature and that they had grown up preferentially along the [0001] direction. The well-aligned ZnO nanorods arrays on Zn substrates exhibited strong UV emission at around 380 nm at room temperature. To investigate their potential as photocatalysts, degradation of pentachlorophenol (PCP) in aqueous solution was carried out using photocatalytic processes, with comparison to direct photolysis. After 1 h, the degradation efficiencies of PCP by direct photolysis and photocatalytic processes achieved 57% and 76% under given experimental conditions, respectively. This improved degradation efficiency of PCP illustrates that ZnO nanorods arrays on Zn substrates have good photocatalytic activity. This simple low-temperature seed-layer growth approach in solution resulted in the development of an effective and low-cost fabrication process for high-quality ZnO nanorods arrays with good optical and photocatalytic properties that can be applicable in many fields such as photocatalysis, photovoltaic cells, luminescent sensors, and photoconductive sensors.

  20. Optical and structural characteristics of high indium content InGaN/GaN multi-quantum wells with varying GaN cap layer thickness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, J.; Zhao, D. G., E-mail: dgzhao@red.semi.ac.cn; Jiang, D. S.

    2015-02-07

    The optical and structural properties of InGaN/GaN multi-quantum wells (MQWs) with different thicknesses of low temperature grown GaN cap layers are investigated. It is found that the MQW emission energy red-shifts and the peak intensity decreases with increasing GaN cap layer thickness, which may be partly caused by increased floating indium atoms accumulated at quantum well (QW) surface. They will result in the increased interface roughness, higher defect density, and even lead to a thermal degradation of QW layers. An extra growth interruption introduced before the growth of GaN cap layer can help with evaporating the floating indium atoms, andmore » therefore is an effective method to improve the optical properties of high indium content InGaN/GaN MQWs.« less

  1. AlGaN/GaN High Electron Mobility Transistor Grown and Fabricated on ZrTi Metallic Alloy Buffer Layers

    DOE PAGES

    Ren, Fan; Pearton, Stephen J.; Ahn, Shihyun; ...

    2017-09-26

    AlGaN/GaN high electron mobility transistors (HEMTs) were demonstrated for structures grown on ZrTi metallic alloy buffer layers, which provided lattice matching of the in-plane lattice parameter (“a-parameter”) to hexagonal GaN. The quality of the GaN buffer layer and HEMT structure were confirmed with X-ray 2θ and rocking scans as well as cross-section transmission electron microscopy (TEM) images. The X-ray 2θ scans showed full widths at half maximum (FWHM) of 0.06°, 0.05° and 0.08° for ZrTi alloy, GaN buffer layer, and the entire HEMT structure, respectively. TEM of the lower section of the HEMT structure containing the GaN buffer layer andmore » the AlN/ZrTi/AlN stack on the Si substrate showed that it was important to grow AlN on the top of ZrTi prior to growing the GaN buffer layer. Finally, the estimated threading dislocation (TD) density in the GaN channel layer of the HEMT structure was in the 10 8 cm -2 range.« less

  2. Growth and characterization of GaN thin film on Si substrate by thermionic vacuum arc (TVA)

    NASA Astrophysics Data System (ADS)

    Kundakçı, Mutlu; Mantarcı, Asim; Erdoğan, Erman

    2017-01-01

    Gallium nitride (GaN) is an attractive material with a wide-direct band gap (3.4 eV) and is one of the significant III-nitride materials, with many advantageous device applications such as high electron mobility transistors, lasers, sensors, LEDs, detectors, and solar cells, and has found applications in optoelectronic devices. GaN could also be useful for industrial research in the future. Chemical vapor deposition (CVD), molecular beam epitaxy (MBE), sputter, and pulsed laser deposition (PLD) are some of the methods used to fabricate GaN thin film. In this research, a GaN thin film grown on a silicon substrate using the thermionic vacuum arc (TVA) technique has been extensively studied. Fast deposition, short production time, homogeneity, and uniform nanostructure with low roughness can be seen as some of the merits of this method. The growth of the GaN was conducted at an operating pressure of 1× {{10}-6} \\text{Torr} , a plasma current 0.6 \\text{A} and for a very short period of time of 40 s. For the characterization process, scanning electron microscopy (SEM) was conducted to determine the structure and surface morphology of the material. Energy dispersive x-ray spectroscopy (EDX) was used to comprehend the elemental analysis characterization of the film. X-ray diffraction (XRD) was used to analyze the structure of the film. Raman measurements were taken to investigate the phonon modes of the material. The morphological properties of the material were analyzed in detail by atomic force microscopy (AFM).

  3. Contactless electroreflectance studies of surface potential barrier for N- and Ga-face epilayers grown by molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kudrawiec, R.; Janicki, L.; Gladysiewicz, M.

    2013-07-29

    Two series of N- and Ga-face GaN Van Hoof structures were grown by plasma-assisted molecular beam epitaxy to study the surface potential barrier by contactless electroreflectance (CER). A clear CER resonance followed by strong Franz-Keldysh oscillation of period varying with the thickness of undoped GaN layer was observed for these structures. This period was much shorter for N-polar structures that means smaller surface potential barrier in these structures than in Ga-polar structures. From the analysis of built-in electric field it was determined that the Fermi-level is located 0.27 ± 0.05 and 0.60 ± 0.05 eV below the conduction band formore » N- and Ga-face GaN surface, respectively.« less

  4. Reproducible increased Mg incorporation and large hole concentration in GaN using metal modulated epitaxy

    NASA Astrophysics Data System (ADS)

    Burnham, Shawn D.; Namkoong, Gon; Look, David C.; Clafin, Bruce; Doolittle, W. Alan

    2008-07-01

    The metal modulated epitaxy (MME) growth technique is reported as a reliable approach to obtain reproducible large hole concentrations in Mg-doped GaN grown by plasma-assisted molecular-beam epitaxy on c-plane sapphire substrates. An extremely Ga-rich flux was used, and modulated with the Mg source according to the MME growth technique. The shutter modulation approach of the MME technique allows optimal Mg surface coverage to build between MME cycles and Mg to incorporate at efficient levels in GaN films. The maximum sustained concentration of Mg obtained in GaN films using the MME technique was above 7×1020cm-3, leading to a hole concentration as high as 4.5×1018cm-3 at room temperature, with a mobility of 1.1cm2V-1s-1 and a resistivity of 1.3Ωcm. At 580K, the corresponding values were 2.6×1019cm-3, 1.2cm2V-1s-1, and 0.21Ωcm, respectively. Even under strong white light, the sample remained p-type with little change in the electrical parameters.

  5. A selective potentiometric copper (II) ion sensor based on the functionalized ZnO nanorods.

    PubMed

    Khun, K; Ibupoto, Z H; Liu, X; Nur, O; Willander, M; Danielsson, B

    2014-09-01

    In this work, ZnO nanorods were hydrothermally grown on the gold-coated glass substrate and characterized by field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD) techniques. The ZnO nanorods were functionalized by two different approaches and performance of the sensor electrode was monitored. Fourier transform infrared spectroscopy (FTIR) was carried out for the confirmation of interaction between the ionophore molecules and ZnO nanorods. In addition to this, the surface of the electrode was characterized by X-ray photoelectron spectroscopy (XPS) showing the chemical and electronic state of the ionophore and ZnO nanorod components. The ionophore solution was prepared in the stabilizer, poly vinyl chloride (PVC) and additives, and then functionalized on the ZnO nanorods that have shown the Nernstian response with the slope of 31 mV/decade. However, the Cu2+ ion sensor was fabricated only by immobilizing the selective copper ion ionophore membrane without the use of PVC, plasticizers, additives and stabilizers and the sensor electrode showed a linear potentiometric response with a slope of 56.4 mV/decade within a large dynamic concentration range (from 1.0 x 10(-6) to 1.0 x 10(-1) M) of copper (II) nitrate solutions. The sensor showed excellent repeatability and reproducibility with response time of less than 10 s. The negligible response to potentially interfering metal ions such as calcium (Ca2+), magnesium (Mg2+), potassium (K+), iron (Fe3+), zinc (Zn2+), and sodium (Na+) allows this sensor to be used in biological studies. It may also be used as an indicator electrode in the potentiometric titration.

  6. Luminescence from defects in GaN

    NASA Astrophysics Data System (ADS)

    Reshchikov, M. A.; Morkoç, H.

    2006-04-01

    We briefly review the luminescence properties of defects in GaN and focus on the most interesting defects. In particular, the blue luminescence band peaking at about 3 eV is assigned to different defects and even different types of transitions in undoped, Zn-, C-, and Mg-doped GaN. Another omnipresent luminescence band, the yellow luminescence band may have different origin in nearly dislocation-free freestanding GaN templates, undoped thin layers, and carbon-doped GaN. The Y4 and Y7 lines are caused by recombination at unidentified point defects captured by threading edge dislocations.

  7. p-Type Doping of GaN Nanowires Characterized by Photoelectrochemical Measurements.

    PubMed

    Kamimura, Jumpei; Bogdanoff, Peter; Ramsteiner, Manfred; Corfdir, Pierre; Feix, Felix; Geelhaar, Lutz; Riechert, Henning

    2017-03-08

    GaN nanowires (NWs) doped with Mg as a p-type impurity were grown on Si(111) substrates by plasma-assisted molecular beam epitaxy. In a systematic series of experiments, the amount of Mg supplied during NW growth was varied. The incorporation of Mg into the NWs was confirmed by the observation of donor-acceptor pairs and acceptor-bound excitons in low-temperature photoluminescence spectroscopy. Quantitative information about the Mg concentrations was deduced from Raman scattering by local vibrational modes related to Mg. In order to study the type and density of charge carriers present in the NWs, we employed two photoelectrochemical techniques, open-circuit potential and Mott-Schottky measurements. Both methods showed the expected transition from n-type to p-type conductivity with increasing Mg doping level, and the latter characterization technique allowed us to quantify the charge carrier concentration. Beyond the quantitative information obtained for Mg doping of GaN NWs, our systematic and comprehensive investigation demonstrates the benefit of photoelectrochemical methods for the analysis of doping in semiconductor NWs in general.

  8. Impact of Mg-ion implantation with various fluence ranges on optical properties of n-type GaN

    NASA Astrophysics Data System (ADS)

    Tsuge, Hirofumi; Ikeda, Kiyoji; Kato, Shigeki; Nishimura, Tomoaki; Nakamura, Tohru; Kuriyama, Kazuo; Mishima, Tomoyoshi

    2017-10-01

    Optical characteristics of Mg-ion implanted GaN layers with various fluence ranges were evaluated. Mg ion implantation was performed twice at energies of 30 and 60 keV on n-GaN layers. The first implantation at 30 keV was performed with three different fluence ranges of 1.0 × 1014, 1.0 × 1015 and 5.0 × 1015 cm-2. The second implantation at an energy of 60 keV was performed with a fluence of 6.5 × 1013 cm-2. After implantation, samples were annealed at 1250 °C for 1 min under N2 atmosphere. Photoluminescence (PL) spectrum of the GaN layer with the Mg ion implantation at the fluence range of 1.0 × 1014 cm-2 at 30 keV was similar to the one of Mg-doped p-GaN layers grown by MOVPE (Metal-Organic Vapor Phase Epitaxy) on free-standing GaN substrates and those at the fluence ranges over 1.0 × 1015 cm-2 were largely degraded.

  9. Ga flux dependence of Er-doped GaN luminescent thin films

    NASA Astrophysics Data System (ADS)

    Lee, D. S.; Steckl, A. J.

    2002-02-01

    Er-doped GaN thin films have been grown on (111) Si substrates with various Ga fluxes in a radio frequency plasma molecular beam epitaxy system. Visible photoluminescence (PL) and electroluminescence (EL) emission at 537/558 nm and infrared (IR) PL emission at 1.5 μm from GaN:Er films exhibited strong dependence on the Ga flux. Both visible and IR PL and visible EL increase with the Ga flux up to the stoichiometric growth condition, as determined by growth rate saturation. Beyond this condition, all luminescence levels abruptly dropped to the detection limit with increasing Ga flux. The Er concentration, measured by secondary ion mass spectroscopy and Rutherford backscattering, decreases with increasing Ga flux under N-rich growth conditions and remains constant above the stoichiometric growth condition. X-ray diffraction indicated that the crystalline quality of the GaN:Er film was improved with increasing Ga flux up to stoichiometric growth condition and then saturated. Er ions in the films grown under N-rich conditions appear much more optically active than those in the films grown under Ga-rich conditions.

  10. Bandgap engineering of GaN nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ming, Bang-Ming; Yan, Hui; Wang, Ru-Zhi, E-mail: wrz@bjut.edu.cn, E-mail: yamcy@csrc.ac.cn

    2016-05-15

    Bandgap engineering has been a powerful technique for manipulating the electronic and optical properties of semiconductors. In this work, a systematic investigation of the electronic properties of [0001] GaN nanowires was carried out using the density functional based tight-binding method (DFTB). We studied the effects of geometric structure and uniaxial strain on the electronic properties of GaN nanowires with diameters ranging from 0.8 to 10 nm. Our results show that the band gap of GaN nanowires depends linearly on both the surface to volume ratio (S/V) and tensile strain. The band gap of GaN nanowires increases linearly with S/V, whilemore » it decreases linearly with increasing tensile strain. These linear relationships provide an effect way in designing GaN nanowires for their applications in novel nano-devices.« less

  11. On the growth and photocatalytic activity of the vertically aligned ZnO nanorods grafted by CdS shells

    NASA Astrophysics Data System (ADS)

    Zirak, M.; Moradlou, O.; Bayati, M. R.; Nien, Y. T.; Moshfegh, A. Z.

    2013-05-01

    We have studied systematically photocatalytic properties of the vertically aligned ZnO@CdS core-shell nanorods where the features were grown through a multistep procedure including sol-gel for the formation of ZnO seed layer, hydrothermal process to grow ZnO nanorods, and successive ion layer adsorption and reaction (SILAR) process to deposit CdS nanoshells onto the ZnO nanorods. Formation of the ZnO seed layer and vertically aligned ZnO nanorods (d ∼ 40 nm) with a hexagonal cross-section was confirmed by AFM and SEM imaging. Successful capping of ZnO nanorods with homogeneous CdS nanocrystallites (∼5 nm) was ascertained by HRTEM diffraction and imaging. Optical properties of the samples were also studied using UV-vis spectrophotometry. It was found that the absorption edge of the CdS shell has a red shift when its thickness increases. Photocatalytic activity of the samples was examined by photodecomposition of methylene blue under UV and visible lights where the maximum reaction rate constant was found to be 0.012 min-1 under UV illumination and 0.007 min-1 under visible light. The difference in catalytic activities of the ZnO@CdS core-shell nanorods under UV and visible irradiations was explained based upon the electronic structure as well as the arrangement of the energy levels in the ZnO@CdS core-shells. It is shown that the structure and photocatalytic efficiency of the samples can be tuned by manipulating the SILAR variables.

  12. Enhancement of optical and structural quality of semipolar (11-22) GaN by introducing nanoporous SiNx interlayers

    NASA Astrophysics Data System (ADS)

    Monavarian, Morteza; Metzner, Sebastian; Izyumskaya, Natalia; Müller, Marcus; Okur, Serdal; Zhang, Fan; Can, Nuri; Das, Saikat; Avrutin, Vitaliy; Özgür, Ümit; Bertram, Frank; Christen, Juergen; Morkoç, Hadis

    2015-03-01

    Enhancement of optical and structural quality of semipolar (11‾22) GaN grown by metal-organic chemical vapor deposition on planar m-sapphire substrates was achieved by using an in-situ epitaxial lateral overgrowth (ELO) technique with nanoporous SiNx layers employed as masks. In order to optimize the procedure, the effect of SiNx deposition time was studied by steady-state photoluminescence (PL), and X-ray diffraction. The intensity of room temperature PL for the (11‾22) GaN layers grown under optimized conditions was about three times higher compared to those for the reference samples having the same thickness but no SiNx interlayers. This finding is attributed to the blockage of extended defect propagation toward the surface by the SiNx interlayers as evidenced from the suppression of emissions associated with basal-plane and prismatic stacking faults with regard to the intensity of donor bound excitons (D0X) in lowtemperature PL spectra. In agreement with the optical data, full width at half maximum values of (11‾22) X-ray rocking curves measured for two different in-plane rotational orientations of [1‾100] and [11‾23] reduced from 0.33º and 0.26º for the reference samples to 0.2º and 0.16º for the nano-ELO structures grown under optimized conditions, respectively.

  13. Anisotropic growth of NiO nanorods from Ni nanoparticles by rapid thermal oxidation.

    PubMed

    Koga, Kenji; Hirasawa, Makoto

    2013-09-20

    NiO nanorods with extremely high crystallinity were grown by rapid thermal oxidation through exposure of Ni nanoparticles (NPs) heated above 400° C to oxygen. Oxidation proceeds by nucleation of a NiO island on a Ni NP that grows anisotropically to produce a NiO nanorod. This process differs completely from that under mild oxidation conditions, where the surface of the NPs is completely covered with an oxide film during the early stage of oxidation. The observed novel behaviour strongly suggests an interfacial oxidation mechanism driven by the dissolution of adsorbed oxygen into the Ni NP sub-surface region, subsequent diffusion and reaction at the NiO/Ni interface. The early oxidation conditions of metal NPs impose a significant influence on the entire oxidation process at the nanoscale and are therefore inherently important for the precise morphological control of oxidized NPs to design functional nanomaterials.

  14. Electrical properties of polycrystalline GaN films functionalized with cysteine and stabilization of GaN nanoparticles in aqueous media.

    PubMed

    Arízaga, Gregorio Guadalupe Carbajal; Oviedo, Mariana J; López, Oscar Edel Contreras

    2012-10-01

    GaN was synthesized onto sapphire substrates by chemical vapor deposition, reacting gallium, ammonium chloride and ammonia. The polycrystalline films were immersed in glycine, aspartic acid and cysteine solutions. Cysteine chemisorbed onto GaN films produced detectable changes in conductivity, mobility and Hall coefficient indicating that GaN is capable of detecting and reacting with thiolate groups, which was confirmed by X-ray photoelectron spectroscopy. The Cys-GaN film solution was adjusted to pH 10, upon which the GaN nanoparticles were transferred to the aqueous phase forming a suspension stable for seven days. The alkaline colloid was then further adjusted down to pH 3 retaining stability for three days. The GaN colloid obtained represents a suitable medium to study GaN properties for biological applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Effect of growth time on Ti-doped ZnO nanorods prepared by low-temperature chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Bidier, Shaker A.; Hashim, M. R.; Al-Diabat, Ahmad M.; Bououdina, M.

    2017-04-01

    Ti-doped ZnO nanorod arrays were grown onto Si substrate using chemical bath deposition (CBD) method at 93 °C. To investigate the effect of time deposition on the morphological, and structural properties, four Ti-doped ZnO samples were prepared at various deposition periods of time (2, 3.5, 5, and 6.5 h). FESEM images displayed high-quality and uniform nanorods with a mean length strongly dependent upon deposition time; i.e. it increases for prolonged growth time. Additionally, EFTEM images reveal a strong erosion on the lateral side for the sample prepared for 6.5 h as compared to 5 h. This might be attributed to the dissolution reaction of ZnO with for prolonged growth time. XRD analysis confirms the formation of a hexagonal wurtzite-type structure for all samples with a preferred growth orientation along the c-axis direction. The (100) peak intensity was enhanced and then quenched, which might be the result of an erosion on the lateral side of nanorods as seen in EFTEM. This study confirms the important role of growth time on the morphological features of Ti-doped ZnO nanorods prepared using CBD. Increase the growth time causes an erosion in lateral side -(100) direction XRD- and enhances the axial direction -(002), XRD.

  16. Collective alignment of nanorods in thin Newtonian films

    NASA Astrophysics Data System (ADS)

    Gu, Yu; Burtovyy, Ruslan; Townsend, James; Owens, Jeffery; Luzinov, Igor; Kornev, Konstantin

    2013-11-01

    We provide a complete analytical description of the alignment kinetics of magnetic nanorods in magnetic field. Nickel nanorods were formed by template electrochemical deposition in alumina membranes from a dispersion in a water-glycerol mixture. To ensure uniformity of the dispersion, the surface of the nickel nanorods was covered with polyvinylpyrrolidone (PVP). A 40-70 nm coating prevented aggregation of nanoroda. These modifications allowed us to control alignment of the nanorods in a magnetic field and test the proposed theory. An orientational distribution function of nanorods was introduced. We demonstrated that the 0.04% volume fraction of nanorods in the glycerol-water mixture behaves as a system of non-interacting particles. However, the kinetics of alignment of a nanorod assembly does not follow the predictions of the single-nanorod theory. The distribution function theory explains the kinetics of alignment of a nanorod assembly and shows the significance of the initial distribution of nanorods in the film. It can be used to develop an experimental protocol for controlled ordering of magnetic nanorods in thin films. This work was supported by the Air Force Office of Scientific Research, Grant numbers FA9550-12-1-0459 and FA8650-09-D-507 5900.

  17. Leakage current analysis for dislocations in Na-flux GaN bulk single crystals by conductive atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Hamachi, T.; Takeuchi, S.; Tohei, T.; Imanishi, M.; Imade, M.; Mori, Y.; Sakai, A.

    2018-04-01

    The mechanisms associated with electrical conduction through individual threading dislocations (TDs) in a Na-flux GaN crystal grown with a multipoint-seed-GaN technique were investigated by conductive atomic force microscopy (C-AFM). To focus on individual TDs, dislocation-related etch pits (DREPs) were formed on the Na-flux GaN surface by wet chemical etching, after which microscopic Pt electrodes were locally fabricated on the DREPs to form conformal contacts to the Na-flux GaN crystal, using electron beam assisted deposition. The C-AFM data clearly demonstrate that the leakage current flows through the individual TD sites. It is also evident that the leakage current and the electrical conduction mechanism vary significantly based on the area within the Na-flux GaN crystal where the TDs are formed. These regions include the c-growth sector (cGS) in which the GaN grows in the [0001 ] direction on top of the point-seed with a c-plane growth front, the facet-growth sector (FGS) in which the GaN grows with {10 1 ¯ 1 } facets on the side of the cGS, the boundary region between the cGS and FGS (BR), and the coalescence boundary region between FGSs (CBR). The local current-voltage (I-V) characteristics of the specimen demonstrate space charge limited current conduction and conduction related to band-like trap states associated with TDs in the FGS, BR, and CBR. A detailed analysis of the I-V data indicates that the electrical conduction through TDs in the cGS may proceed via the Poole-Frenkel emission mechanism.

  18. Sensitivity of Fermi level position at Ga-polar, N-polar, and nonpolar m-plane GaN surfaces to vacuum and air ambient

    NASA Astrophysics Data System (ADS)

    Janicki, Łukasz; Ramírez-López, Manolo; Misiewicz, Jan; Cywiński, Grzegorz; Boćkowski, Michał; Muzioł, Grzegorz; Chèze, Caroline; Sawicka, Marta; Skierbiszewski, Czesław; Kudrawiec, Robert

    2016-05-01

    Ga-polar, N-polar, and nonpolar m-plane GaN UN+ structures have been examined in air and vacuum ambient by contactless electroreflectance (CER). This technique is very sensitive to the surface electric field that varies with the Fermi level position at the surface. For UN+ GaN structures [i.e., GaN (undoped)/GaN (n-type)/substrate], a homogeneous built-in electric field is expected in the undoped GaN layer that is manifested by Franz-Keldysh oscillation (FKO) in CER spectra. A clear change in FKO has been observed in CER spectra for N-polar and nonpolar m-plane structures when changing from air to vacuum ambient. This means that those surfaces are very sensitive to ambient atmosphere. In contrast to that, only a small change in FKO can be seen in the Ga-polar structure. This clearly shows that the ambient sensitivity of the Fermi level position at the GaN surface varies with the crystallographic orientation and is very high for N-polar and nonpolar m-plane surfaces. This feature of the N-polar and nonpolar m-plane surfaces can be very important for GaN-based devices grown on these crystallographic orientations and can be utilized in some of the devices, e.g., sensors.

  19. Structural defects in bulk GaN

    NASA Astrophysics Data System (ADS)

    Liliental-Weber, Z.; dos Reis, R.; Mancuso, M.; Song, C. Y.; Grzegory, I.; Porowski, S.; Bockowski, M.

    2014-10-01

    Transmission Electron Microscopy (TEM) studies of undoped and Mg doped GaN layers grown on the HVPE substrates by High Nitrogen Pressure Solution (HNPS) with the multi-feed-seed (MFS) configuration are shown. The propagation of dislocations from the HVPE substrate to the layer is observed. Due to the interaction between these dislocations in the thick layers much lower density of these defects is observed in the upper part of the HNPS layers. Amorphous Ga precipitates with attached voids pointing toward the growth direction are observed in the undoped layer. This is similar to the presence of Ga precipitates in high-pressure platelets, however the shape of these precipitates is different. The Mg doped layers do not show Ga precipitates, but MgO rectangular precipitates are formed, decorating the dislocations. Results of TEM studies of HVPE layers grown on Ammonothermal substrates are also presented. These layers have superior crystal quality in comparison to the HNPS layers, as far as density of dislocation is concern. Occasionally some small inclusions can be found, but their chemical composition was not yet determined. It is expected that growth of the HNPS layers on these substrate will lead to large layer thickness obtained in a short time and with high crystal perfection needed in devices.

  20. High optical quality GaN nanopillar arrays

    NASA Astrophysics Data System (ADS)

    Wang, Y. D.; Chua, S. J.; Tripathy, S.; Sander, M. S.; Chen, P.; Fonstad, C. G.

    2005-02-01

    GaN nanopillar arrays have been fabricated by inductively coupled plasma etching of GaN films using anodic aluminum oxide film as an etch mask. The average diameter and length of these pillars are 60-65nm and 350-400nm, respectively. Ultraviolet microphotoluminescence measurements indicate high photoluminescence intensity and stress relaxation in these GaN nanopillars as compared to the starting epitaxial GaN films. Evidence of good crystalline quality is also observed by micro-Raman measurements, wherein a redshift of the E2high mode from GaN nanopillars suggests partial relaxation of the compressive strain. In addition, breakdown of the polarization selection rules led to the appearance of symmetry-forbidden and quasipolar modes.