Sample records for ganglion block efficacy

  1. Sphenopalatine ganglion: block, radiofrequency ablation and neurostimulation - a systematic review.

    PubMed

    Ho, Kwo Wei David; Przkora, Rene; Kumar, Sanjeev

    2017-12-28

    Sphenopalatine ganglion is the largest collection of neurons in the calvarium outside of the brain. Over the past century, it has been a target for interventional treatment of head and facial pain due to its ease of access. Block, radiofrequency ablation, and neurostimulation have all been applied to treat a myriad of painful syndromes. Despite the routine use of these interventions, the literature supporting their use has not been systematically summarized. This systematic review aims to collect and summarize the level of evidence supporting the use of sphenopalatine ganglion block, radiofrequency ablation and neurostimulation. Medline, Google Scholar, and the Cochrane Central Register of Controlled Trials (CENTRAL) databases were reviewed for studies on sphenopalatine ganglion block, radiofrequency ablation and neurostimulation. Studies included in this review were compiled and analyzed for their treated medical conditions, study design, outcomes and procedural details. Studies were graded using Oxford Center for Evidence-Based Medicine for level of evidence. Based on the level of evidence, grades of recommendations are provided for each intervention and its associated medical conditions. Eighty-three publications were included in this review, of which 60 were studies on sphenopalatine ganglion block, 15 were on radiofrequency ablation, and 8 were on neurostimulation. Of all the studies, 23 have evidence level above case series. Of the 23 studies, 19 were on sphenopalatine ganglion block, 1 study on radiofrequency ablation, and 3 studies on neurostimulation. The rest of the available literature was case reports and case series. The strongest evidence lies in using sphenopalatine ganglion block, radiofrequency ablation and neurostimulation for cluster headache. Sphenopalatine ganglion block also has evidence in treating trigeminal neuralgia, migraines, reducing the needs of analgesics after endoscopic sinus surgery and reducing pain associated with nasal packing

  2. Ganglion blocks as a treatment of pain: current perspectives

    PubMed Central

    Gunduz, Osman Hakan; Kenis-Coskun, Ozge

    2017-01-01

    The inputs from sympathetic ganglia have been known to be involved in the pathophysiology of various painful conditions such as complex regional pain syndrome, cancer pain of different origin, and coccygodynia. Sympathetic ganglia blocks are used to relieve patients who suffer from these conditions for over a century. Many numbers of local anesthetics such as bupivacaine or neurolytic agents such as alcohol can be chosen for a successful block. The agent is selected according to its duration of effect and the purpose of the injection. Most commonly used sympathetic blocks are stellate ganglion block, lumbar sympathetic block, celiac plexus block, superior hypogastric block, and ganglion Impar block. In this review, indications, methods, effectiveness, and complications of these blocks are discussed based on the data from the current literature. PMID:29276402

  3. Strychnine blocks transient but not sustained inhibition in mudpuppy retinal ganglion cells.

    PubMed Central

    Belgum, J H; Dvorak, D R; McReynolds, J S

    1984-01-01

    Transient and sustained inhibitory synaptic inputs to on-centre, off-centre, and on-off ganglion cells in the mudpuppy retina were studied using intracellular recording in the superfused eye-cup preparation. When chemical transmission was blocked with 4 mM-Co2+, application of either glycine or gamma-aminobutyric acid (GABA) caused a hyperpolarization and conductance increase in all ganglion cells. For both amino acids, the responses were dose dependent in the range 0.05-10 mM, with a half-maximal response at about 0.7 mM. Glycine and GABA sensitivities were very similar in all three types of ganglion cells. The response to applied glycine was selectively antagonized by 10(-5) M-strychnine and the response to applied GABA was selectively antagonized by 10(-5) M-picrotoxin. In all ganglion cells, 10(-5) M-strychnine eliminated the transient inhibitory events which occur at the onset and termination of a light stimulus. The block of transient inhibition was associated with a relative depolarization of membrane potential and decrease in conductance at these times. Strychnine had no effect on membrane potential or conductance in darkness or during sustained inhibitory responses to light. Picrotoxin (10(-5) M) did not block transient inhibitory events in any ganglion cells, but did affect other components of their responses. The results suggest that in all three classes of ganglion cells transient inhibition, but not sustained inhibition, may be mediated by glycine or a closely related substance. PMID:6481635

  4. Thalamic pain alleviated by stellate ganglion block: A case report.

    PubMed

    Liao, Chenlong; Yang, Min; Liu, Pengfei; Zhong, Wenxiang; Zhang, Wenchuan

    2017-02-01

    Thalamic pain is a distressing and treatment-resistant type of central post-stroke pain. Although stellate ganglion block is an established intervention used in pain management, its use in the treatment of thalamic pain has never been reported. A 66-year-old woman presented with a 3-year history of severe intermittent lancinating pain on the right side of the face and the right hand. The pain started from the ulnar side of the right forearm after a mild ischemic stroke in bilateral basal ganglia and left thalamus. Weeks later, the pain extended to the dorsum of the finger tips and the whole palmar surface, becoming more severe. Meanwhile, there was also pain with similar characteristics emerging on her right face, resembling atypical trigeminal neuralgia. Thalamic pain was diagnosed. After refusing the further invasive treatment, she was suggested to try stellate ganglion block. After a 3-day period of pain free (numerical rating scale: 0) postoperatively, she reported moderate to good pain relief with a numerical rating scale of about 3 to 4 lasting 1 month after the first injection. Pain as well as the quality of life was markedly improved with less dose of analgesic agents. Stellate ganglion block may be an optional treatment for thalamic pain.

  5. [Ropivacaine use in transnasal sphenopalatine ganglion block for post dural puncture headache in obstetric patients - case series].

    PubMed

    Furtado, Inês; Lima, Isabel Flor de; Pedro, Sérgio

    2018-02-02

    Sphenopalatine ganglion block is widely accepted in chronic pain; however it has been underestimated in post dural puncture headache treatment. The ganglion block does not restore normal cerebrospinal fluid dynamics but effectively reduces symptoms associated with resultant hypotension. When correctly applied it may avoid performance of epidural blood patch. The transnasal approach is a simple and minimally invasive technique. In the cases presented, we attempted to perform and report the ganglion block effectiveness and duration, using ropivacaine. We present four obstetrics patients with post dural puncture headache, after epidural or combined techniques, with Tuohy needle 18G that underwent a safe and successful Sphenopalatine ganglion block. We performed the block 24-48h after dural puncture, with 4mL of ropivacaine 0.75% in each nostril. In three cases pain recurred within 12-48h, although less intense. In one patient a second block was performed with complete relief and without further recurrence. In the other two patients a blood patch was performed without success. All patients were asymptomatic within 7 days. The average duration of analgesic effect of the block remains poorly defined. In the cases reported, blocking with ropivacaine was a simple, safe and effective technique, with immediate and sustained pain relief for at least 12-24h. Copyright © 2017 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  6. Gasserian Ganglion and Retrobulbar Nerve Block in the Treatment of Ophthalmic Postherpetic Neuralgia: A Case Report.

    PubMed

    Huang, Jie; Ni, Zhongge; Finch, Philip

    2017-09-01

    Varicella zoster virus reactivation can cause permanent histological changes in the central and peripheral nervous system. Neural inflammatory changes or damage to the dorsal root ganglia sensory nerve fibers during reactivation can lead to postherpetic neuralgia (PHN). For PHN of the first division of the fifth cranial nerve (ophthalmic division of the trigeminal ganglion), there is evidence of inflammatory change in the ganglion and adjacent ocular neural structures. First division trigeminal nerve PHN can prove to be difficult and sometimes even impossible to manage despite the use of a wide range of conservative measures, including anticonvulsant and antidepressant medication. Steroids have been shown to play an important role by suppressing neural inflammatory processes. We therefore chose the trigeminal ganglion as an interventional target for an 88-year-old woman with severe ophthalmic division PHN after she failed to respond to conservative treatment. Under fluoroscopic guidance, a trigeminal ganglion nerve block was performed with lidocaine combined with dexamethasone. A retrobulbar block with lidocaine and triamcinolone settled residual oculodynia. At 1-year follow-up, the patient remained pain free and did not require analgesic medication. To our knowledge, this is the first reported case of ophthalmic division PHN successfully treated with a combination of trigeminal ganglion and retrobulbar nerve block using a local anesthetic agent and steroid for central and peripheral neural inflammatory processes. © 2016 World Institute of Pain.

  7. Therapeutic potential of stellate ganglion block in orofacial pain: a mini review.

    PubMed

    Jeon, Younghoon

    2016-09-01

    Orofacial pain is a common complaint of patients that causes distress and compromises the quality of life. It has many etiologies including trauma, interventional procedures, nerve injury, varicella-zoster (shingles), tumor, and vascular and idiopathic factors. It has been demonstrated that the sympathetic nervous system is usually involved in various orofacial pain disorders such as postherpetic neuralgia, complex regional pain syndromes, and atypical facial pain. The stellate sympathetic ganglion innervates the head, neck, and upper extremity. In this review article, the effect of stellate ganglion block and its mechanism of action in orofacial pain disorders are discussed.

  8. Effectiveness of Stellate Ganglion Block Under Fuoroscopy or Ultrasound Guidance in Upper Extremity CRPS.

    PubMed

    Imani, Farnad; Hemati, Karim; Rahimzadeh, Poupak; Kazemi, Mohamad Reza; Hejazian, Kokab

    2016-01-01

    Stellate Ganglion Block (SGB) is an effective technique which may be used to manage upper extremities pain due to Chronic Regional Pain Syndrome (CRPS), in this study we tried to evaluate the effectiveness of this procedure under two different guidance for management of this syndrome. The purpose of this study was to evaluate the effectiveness of ultrsound guide SGB by comparing it with the furoscopy guided SGB in upper extermities CRPS patients in reducing pain & dysfuction of the affected link. Fourteen patients with sympathetic CRPS in upper extremities in a randomized method with block randomization divided in two equal groups (with ultrasound or fluoroscopic guidance). First group was blocked under fluoroscopic guidance and second group blocked under ultrasound guidance. After correct positioning of the needle, a mixture of 5 ml bupivacaine 0.25% and 1 mL of triamcinolone was injected. These data represent no meaningful statistical difference between the two groups in terms of the number of pain attacks before the blocks, a borderline correlation between two groups one week and one month after the block and a significant statistical correlation between two groups three month after the block. These data represent no meaningful statistical difference between the patients of any group in terms of the pain intensity (from one week to six months after block), p-value = 0.61. These data represent a meaningful statistical difference among patients of any group and between the two groups in terms of the pain intensity (before the block until six months after block), p-values were 0.001, 0.031 respectively. According the above mentioned data, in comparison with fluoroscopic guidance, stellate ganglion block under ultrasound guidance is a safe and effective method with lower complication and better improvement in patient's disability indexes.

  9. Ultrasound-guided stellate ganglion blocks combined with pharmacological and occupational therapy in Complex Regional Pain Syndrome (CRPS): a pilot case series ad interim.

    PubMed

    Wei, Karin; Feldmann, Robert E; Brascher, Anne-Kathrin; Benrath, Justus

    2014-12-01

    This preliminary and retrospective pilot case series examines a treatment concept consisting of ultrasound-guided stellate ganglion blocks (SGBs) combined with pharmacological and occupational therapy in patients with complex regional pain syndrome (CRPS) of the hand. Efficacy of combined treatment concepts and safety of ultrasound-guided SGB have not been sufficiently investigated yet. A total number of 156 blocks were evaluated in 16 patients with CRPS in a retrospective analysis. All patients received pharmacotherapy and a standard regimen of occupational therapy offered simultaneously to the SGBs. Changes in both spontaneous and evoked pain levels were assessed by numerical pain rating score before and after the last blockade of a series. Side effects were documented. The overall mean pain reduction was 63.2% regarding spontaneous and 45.3% regarding evoked pain. Mild complications, such as hoarseness or dysphagia, occurred in 13.5% of the blocks (21 SGBs). Serious complications, such as plexus paresis or accidental puncture of vessels or other structures, did not occur. Time between symptom onset and start of treatment did not affect the extent of pain reduction. The combination of ultrasound-guided SGB and simultaneous pharmacological and occupational therapy showed encouraging treatment results under conditions of this pilot case series. Assessment of efficacy of this combined treatment concept and safety of ultrasound-guided SGB require further prospective clinical studies with larger number of participants. Wiley Periodicals, Inc.

  10. [The neurotrophic effect of endogenous NT-3 from adult cat spared dorsal root ganglion on ganglionic neurons].

    PubMed

    Zhang, Wei; Zhou, Xue; Wang, Ting-hua; Wang, Te-wei; Liu, Su; Chen, Si-xiu; Ou, Ke-qun

    2004-01-01

    To investigate the neurotrophic effect of endogenous NT-3 from adult cat dorsal root ganglion (DRG) on ganglionic neurons. Rhizotomy of bilateral L1, L3, L5 and L7 dorsal roots of cats was performed, leaving L2, L4 and L6 DRG as spared DRGs. The separate neurons of normal (control) DRG, spared DRG and anti-NT-3 antibody blocking DRG were cultured in vitro respectively. The number of survival neurons and the length of neurites were measured and used for comparison in the control, spared DRG, and block groups. There were survival neurons and cell clusters in every group. The number of survival neurons and cell clusters of spared DRG group were much larger than those of the control and block groups. The neurite length of neurons, the neurite number and the length of cell clusters of spared DRG group were much greater than those of control and block groups. Endogenous NT-3 from spared DRG may act on ganglionic neurons to maintain survival of neuron and stimulate growth of neurite.

  11. Effects of nifedipine and captopril on vascular capacitance of ganglion-blocked anesthetized dogs.

    PubMed

    Ogilvie, R I; Zborowska-Sluis, D

    1990-03-01

    The hemodynamic effects of nifedipine and captopril at doses producing similar reductions in arterial pressure were studied in pentobarbital-anesthetized ventilated dogs after splenectomy during ganglion blockade with hexamethonium. Mean circulatory filling pressure (Pmcf) was determined during transient circulatory arrest induced by acetylcholine at baseline circulating blood volumes and after increases of 5 and 10 mL/kg. Central blood volumes (pulmonary artery to aortic root) were determined from transit times, and separately determined cardiac outputs (right atrium to pulmonary artery) were estimated by thermodilution. Nifedipine (n = 5) increased Pmcf at all circulating blood volumes and reduced total vascular capacitance without a change in total vascular compliance. Central blood volume, right atrial pressure, and cardiac output were increased with induced increases in circulating blood volume. In contrast, captopril (n = 5) did not alter total vascular capacitance, central blood volume, right atrial pressure, or cardiac output at baseline or with increased circulating volume. Thus, at doses producing similar reductions in arterial pressure, nifedipine but not captopril increased venous return and cardiac output in ganglion-blocked dogs.

  12. Management of complex regional pain syndrome type I in upper extremity-evaluation of continuous stellate ganglion block and continuous infraclavicular brachial plexus block: a pilot study.

    PubMed

    Toshniwal, Gokul; Sunder, Rani; Thomas, Ronald; Dureja, G P

    2012-01-01

    Interventional pain management techniques play an important role in the multidisciplinary approach to management of complex regional pain syndrome (CRPS). In this preliminary study we compared the efficacy of continuous stellate ganglion (CSG) block with that of continuous infraclavicular brachial plexus (CIBP) block in management of CRPS type I of upper extremity. Thirty-three patients with CRPS type I of upper extremity were randomly assigned to either CSG or CIBP group. Patients were treated for 1 week with continuous infusion of 0.125% bupivacaine at 2and 5mL/h, respectively. Catheter was removed at 1 week and patients were followed up for 4 weeks. The outcome was evaluated in terms of neuropathic pain scale score (NPSS), edema scores (Grades 0-2), and range of motion (ROM) of all upper extremity joints (Grades 0-2). CIBP group showed statistically significant improvement in NPSS compared with CSG group during the first 12 hours after the procedures (P value <0.05). After 12 hours, the NPSS was comparable between the groups. At 4 weeks, both groups showed clinically significant improvement in edema score and ROM of all upper extremity joints when compared with the baseline. This preliminary study suggests that CIBP block and CSG block may be feasible and effective interventional techniques for the management of CRPS type I of upper extremities. Hence, we recommend a larger well-randomized, well-controlled, clinical trial to confirm our findings and determine if any significant difference exists between the groups in terms of long-term pain relief and functional restoration. Wiley Periodicals, Inc.

  13. Non-steroidal Anti-inflammatory Drugs Attenuate Hyperalgesia and Block Upregulation of Trigeminal Ganglionic Sodium Channel 1.7 after Induction of Temporomandibular Joint Inflammation in Rats.

    PubMed

    Bi, Rui Yun; Ding, Yun; Gan, Ye Hua

    2016-03-01

    To investigate the association between the analgesic effect of non-steroidal antiinflammatory drugs (NSAIDs) and sodium channel 1.7 (Nav1.7) expression in the trigeminal ganglion (TG). Temporomandibular joint (TMJ) inflammation was induced by complete Freund's adjuvant (CFA) in female rats. Ibuprofen, diclofenac sodium and meloxicam were given intragastrically before induction of TMJ inflammation. Histopathological evaluation and scoring of TMJ inflammation was used to evaluate the level of inflammation. The head withdrawal threshold and food intake were measured to evaluate TMJ nociceptive responses. The mRNA and protein expression of trigeminal ganglionic Nav1.7 was examined using real-time polymerase chain reaction and western blot. Twenty-four hours after the injection of CFA into the TMJs, NSAIDs attenuated hyperalgesia of inflamed TMJ and simultaneously blocked inflammation-induced upregulation of Nav1.7 mRNA and protein expression in the TG. However, ibuprofen and diclofenac sodium slightly attenuated TMJ inflammation and meloxicam did not affect TMJ inflammation. Attenuation of hyperalgesia of inflamed TMJ by NSAIDs might be associated with their role in blocking upregulation of trigeminal ganglionic Nav1.7.

  14. A novel revision to the classical transnasal topical sphenopalatine ganglion block for the treatment of headache and facial pain.

    PubMed

    Candido, Kenneth D; Massey, Scott T; Sauer, Ruben; Darabad, Raheleh Rahimi; Knezevic, Nebojsa Nick

    2013-01-01

    The sphenopalatine ganglion (SPG) is located with some degree of variability near the tail or posterior aspect of the middle nasal turbinate. The SPG has been implicated as a strategic target in the treatment of various headache and facial pain conditions, some of which are featured in this manuscript. Interventions for blocking the SPG range from minimally to highly invasive procedures often associated with great cost and unfavorable risk profiles. The purpose of this pilot study was to present a novel, FDA-cleared medication delivery device, the Tx360® nasal applicator, incorporating a transnasal needleless topical approach for SPG blocks. This study features the technical aspects of this new device and presents some limited clinical experience observed in a small series of head and face pain cases. Case series. Pain management center, part of teaching-community hospital, major metropolitan city, United States. After Institutional Review Board (IRB) approval, the technical aspects of this technique were examined on 3 patients presenting with various head and face pain conditions including trigeminal neuralgia (TN), chronic migraine headache (CM), and post-herpetic neuralgia (PHN). The subsequent response to treatment and quality of life was quantified using the following tools: the 11-point Numeric Rating Scale (NRS), Modified Brief Pain Inventory - short form (MBPI-sf), Patient Global Impression of Change (PGIC), and patient satisfaction surveys. The Tx360® nasal applicator was used to deliver 0.5 mL of ropivacaine 0.5% and 2 mg of dexamethasone for SPG block. Post-procedural assessments were repeated at 15 and 30 minutes, and on days one, 7, 14, and 21 with a final assessment at 28 days post-treatment. All patients were followed for one year. Individual patients received up to 10 SPG blocks, as clinically indicated, after the initial 28 days. Three women, ages 43, 18, and 15, presented with a variety of headache and face pain disorders including TN, CM, and

  15. Photoacoustic microscopy of complex regional pain syndrome type I (CRPS-1) after stellate ganglion blocks in vivo

    NASA Astrophysics Data System (ADS)

    Zhou, Yong; Yi, Xiaobin; Xing, Wenxin; Hu, Song; Maslov, Konstantin I.; Wang, Lihong V.

    2015-03-01

    We used photoacoustic microscopy (PAM) to assist diagnoses and monitor the progress and treatment outcome of complex regional pain syndrome type 1 (CRPS-1). Blood vasculature and oxygen saturation (sO2) were imaged by PAM in eight adult patients with CRPS-1. Patients' hands and cuticles were imaged both before and after stellate ganglion block (SGB) for comparison. For all patients, both the vascular structure and sO2 could be assessed by PAM. In addition, more vessels and stronger signals were observed after SGB.

  16. [Long-term effects of pulsed radiofrequency on the dorsal root ganglion and segmental nerve roots for lumbosacral radicular pain: a prospective controlled randomized trial with nerve root block].

    PubMed

    Fujii, Hiromi; Kosogabe, Yoshinori; Kajiki, Hideki

    2012-08-01

    Although pulsed radiofrequency (PRF) method for lumbosacral radicular pain (LSRP) is reportedly effective, there are no prospective controlled trials. We assessed the long-term efficacy of PRF of the dorsal root ganglion and nerve roots for LSRP as compared with nerve root block (RB). The study included 27 patients suffering from LSRP. The design of this study was randomized with a RB control. In the PRF group, the PRF current was applied for 120 seconds after RB. In the RB group, the patients received RB only. Visual analogue scale (VAS) was assessed immediately before, and immediately, 2 hours, 1 day, 1 week, 1 month, 3 months, 6 months, and 1 year after the procedure. P<0.05 was regarded as denoting statistical significance. In both groups, the VAS not only of short-term but also of long-term (6 months and 1 year after procedure) significantly decreased as compared with that before treatment (P<0.05). There were no significant differences of VAS between the two groups at the same time points. This study indicates that PRF adjacent to the dorsal root ganglion and nerve roots for LSRP has long-term effects. There were no significant differences of long-term effects between the two groups.

  17. Block of the superior cervical ganglion, description of a novel ultrasound-guided technique in human cadavers.

    PubMed

    Siegenthaler, Andreas; Haug, Matthias; Eichenberger, Urs; Suter, Marc Rene; Moriggl, Bernhard

    2013-05-01

    Injection of opioids to the superior cervical ganglion (SCG) has been reported to provide pain relief in patients suffering from different kinds of neuropathic facial pain conditions, such as trigeminal neuralgia, postherpetic neuralgia, and atypical facial pain. The classic approach to the SCG is a transoral technique using a so-called "stopper" to prevent accidental carotid artery puncture. The main disadvantage of this technique is that the needle tip is positioned distant from the actual target, possibly impeding successful block of the SCG. A further limitation is that injection of local anesthetics due to potential carotid artery puncture is contraindicated. We hypothesized that the SCG can be identified and blocked using ultrasound imaging, potentially increasing precision of this technique. In this pilot study, 20 US-guided simulated blocks of the SCG were performed in 10 human cadavers in order to determine the accuracy of this novel block technique. After injection of 0.1 mL of dye, the cadavers were dissected to evaluate the needle position and coloring of the SCG. Nineteen of the 20 needle tips were located in or next to the SCG. This corresponded to a simulated block success rate of 95% (95% confidence interval 85-100%). In 17 cases, the SCG was completely colored, and in two cases, the caudal half of the SCG was colored with dye. The anatomical dissections confirmed that our ultrasound-guided approach to the SCG is accurate. Ultrasound could become an attractive alternative to the "blind" transoral technique of SCG blocks. Wiley Periodicals, Inc.

  18. Pharmacological properties of pempidine (1:2:2:6:6-pentamethylpiperidine), a new ganglion-blocking compound

    PubMed Central

    Corne, S. J.; Edge, N. D.

    1958-01-01

    Pempidine (1:2:2:6:6-pentamethylpiperidine) is a long-acting ganglion-blocking compound which is effective by mouth. By intravenous injection it has a similar potency to hexamethonium on the preganglionically stimulated nictitating membrane of the cat. The compound blocks the effects of intravenous nicotine and of peripheral vagal stimulation on the blood pressure; it also causes dilatation of the pupil after removal of the sympathetic innervation. On the guinea-pig ileum, the predominant effect of the compound is to inhibit nicotine contractions. Pempidine is well absorbed from the gastro-intestinal tract as judged by (a) the low ratio (6.9) of oral to intravenous toxicities, (b) the rapid development of mydriasis in mice after oral administration of small doses, and (c) the rapid onset of hypotension when the compound is injected directly into the duodenum of anaesthetized cats. Other actions include neuromuscular paralysis of curare-like type when large doses of the compound are injected intravenously and central effects such as tremors which occur with near toxic doses. In cats with a low blood pressure, large intravenous doses have a slight pressor action. PMID:13584741

  19. The efficacy of supplemental intraosseous anesthesia after insufficient mandibular block.

    PubMed

    Prohić, Samir; Sulejmanagić, Halid; Secić, Sadeta

    2005-02-01

    It is a well-known scientific fact that only a small percentage of infiltration of inferior alveolar nerve is clinically proven to be efficient. The objective of this study was to determine the anesthetic efficacy of supplemental intraosseous injection, used after the insufficient classical mandibular block that didn't provide deep pulp anesthesia of mandibular molar planed for extraction. The experimental teeth consisted of 98 mandibular molars with clinical indication for extraction. Based on the history of disease, we indicated the extraction of the tooth. After that each tooth was tested with a electric pulp tester P1. We tested the pulp vitality and precisely determined the level of vitality. After that, each patient received classical mandibular block, and the pulp vitality was tested again. If the pulp tester indicated negative vitality for the certain mandibular molar, and the patient didn't complain about pain or discomfort during the extraction, the molar was extracted and the result was added to anesthetic success rate for the classical mandibular block. If, five minutes after receiving the mandibular block, the pulp tester indicated positive vitality (parameters of vitality) or the patient complained about pain or discomfort (parameters of pain and discomfort), we used the Stabident intraosseous anesthesia system. Three minutes after the application of supplemental intraosseous injection the molar was tested with the pulp tester again. The anesthetic solution used in both anesthetic techniques is lidocaine with 1:100.000 epinephrine. The results of this study indicate that the anesthetic efficacy of the mandibular block is 74.5%, and that supplemental intraosseous anesthesia, applied after the insufficient mandibular block, provides pulpal anesthesia in 94.9% of mandibular molars. The difference between anesthetic efficacy of the classical mandibular block and anesthetic efficacy of the supplemental intraosseous anesthesia, applied after the

  20. Stellate ganglion block promotes recovery of Bell's palsy in patients with diabetes mellitus.

    PubMed

    Liu, Guo-Dong; He, Chun-Jing

    2014-06-01

    Stellate ganglion block (SGB) is effective for treatment of Bell's palsy in patients with diabetes mellitus. Corticosteroids are widely used for treatment of Bell's palsy in patients with diabetes mellitus but may induce complications like hyperglycemia, which calls for an alternative therapy. This study aimed to ascertain the effect of SGB on Bell's palsy in patients with diabetes mellitus. This randomized and single-blinded clinical trial involved 96 diabetic patients with Bell's palsy that were randomly divided into a control group (n = 48) and a treatment group (SGB group, n = 48). The House-Brackmann scale and facial disability index (FDI, including FDIP and FDIS) were observed before treatment and at 1 and 3 months after treatment for assessment of the outcome. No statistically significant difference was found between the two groups before treatment as regards the House-Brackmann scale and FDI. There was a statistically significant difference in FDIP score in the two groups after treatment in comparison with before treatment. The FDIS score showed a statistical difference between the two groups after treatment.

  1. Paracoccygeal corkscrew approach to ganglion impar injections for tailbone pain.

    PubMed

    Foye, Patrick M; Patel, Shounuck I

    2009-01-01

    A new technique for performing nerve blocks of the ganglion impar (ganglion Walther) is presented. These injections have been reported to relieve coccydynia (tailbone pain), as well as other malignant and nonmalignant pelvic pain syndromes. A variety of techniques have been previously described for blocking this sympathetic nerve ganglion, which is located in the retrorectal space just anterior to the upper coccygeal segments. Prior techniques have included approaches through the anococcygeal ligament, through the sacrococcygeal joint, and through intracoccygeal joint spaces. This article presents a new, paracoccygeal approach whereby the needle is inserted alongside the coccyx and the needle is guided through three discrete steps with a rotating or corkscrew trajectory. Compared with some of the previously published techniques, this paracoccygeal corkscrew approach has multiple potential benefits, including ease of fluoroscopic guidance using the lateral view, ability to easily use a stylet for the spinal needle, and use of a shorter, thinner needle. While no single technique works best for all patients and each technique has potential advantages and disadvantages, this new technique adds to the available options.

  2. Effectiveness and Patient Acceptability of Stellate Ganglion Block (SGB) for Treatment of Posttraumatic Stress Disorder (PTSD) Symptoms among Active Duty Military Members

    DTIC Science & Technology

    2017-03-01

    ORGANIZATION: Research Triangle Institute Research Triangle Park, NC 27709-0155 REPORT DATE: March 2017 TYPE OF REPORT: Annual PREPARED FOR: U.S...ganglion block, Posttraumatic Stress Disorder, randomized controlled trial, qualitative research 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...Posttraumatic Stress Disorder, randomized controlled trial,  qualitative   research     3.  Accomplishments    The major goals of this project for year two

  3. Endoscopic sphenopalatine ganglion blockade efficacy in pain control after endoscopic sinus surgery.

    PubMed

    Al-Qudah, Mohannad

    2016-03-01

    The objective of this study was to evaluate the efficacy of bilateral endoscopic injection of lidocaine with epinephrine in the sphenopalatine ganglion at the end of endoscopic sinus surgery (ESS) in controlling postoperative pain and rescue analgesic requirements. A prospective, double blinded, placebo-controlled clinical trial of 60 patients with chronic rhinosinusitis (CRS) undergoing general anesthesia for ESS was undertaken. Patients were randomized to receive injection of 2 mL of 2% lidocaine with epinephrine or 2 mL saline at the end of surgery. Postoperatively, patients were observed for 24 hours. Pain severity was reported immediately, 6 hours, and 24 hours after surgery using a 10-cm visual analog scale (VAS). The need of rescue analgesia was recorded and compared between the 2 groups. The 2 groups were matched in demographic and intraoperative details. Postoperative pain severity average was 3.4, 3.0, and 1.6 in the saline group compared to 1.6, 1.7, and 1.0 in the lidocaine group. These differences reached statically significant for the first 2 follow-up intervals. Also, there was significant difference in the whole-day postoperative average score between the 2 groups (2.6 vs 1.4). Twelve patients in the saline group required rescue analgesia compared to 5 in the lidocaine group. The average rescue analgesia dose was 27.5 mg of tramadol in the saline group vs 11.6 in the lidocaine group. These differences were statistically significant. No complications were reported in either group. Sphenopalatine ganglion injection of lidocaine at the end of surgery is safe, simple, noninvasive, and an effective method of short-term pain control after sinus surgery. © 2015 ARS-AAOA, LLC.

  4. Ganglion Cysts

    MedlinePlus

    ... Ganglion Cysts Find a hand surgeon near you. Videos Ganglion Cysts Close Popup Figures Figure 1 - Ganglion ... or "in." Also, avoid using media types like "video," "article," and "picture." Tip 4: Your results can ...

  5. Adenovector GAD65 gene delivery into the rat trigeminal ganglion produces orofacial analgesia

    PubMed Central

    Vit, Jean-Philippe; Ohara, Peter T; Sundberg, Christopher; Rubi, Blanca; Maechler, Pierre; Liu, Chunyan; Puntel, Mariana; Lowenstein, Pedro; Castro, Maria; Jasmin, Luc

    2009-01-01

    Background Our goal is to use gene therapy to alleviate pain by targeting glial cells. In an animal model of facial pain we tested the effect of transfecting the glutamic acid decarboxylase (GAD) gene into satellite glial cells (SGCs) of the trigeminal ganglion by using a serotype 5 adenovector with high tropisms for glial cells. We postulated that GABA produced from the expression of GAD would reduce pain behavior by acting on GABA receptors on neurons within the ganglion. Results Injection of adenoviral vectors (AdGAD65) directly into the trigeminal ganglion leads to sustained expression of the GAD65 isoform over the 4 weeks observation period. Immunohistochemical analysis showed that adenovirus-mediated GAD65 expression and GABA synthesis were mainly in SGCs. GABAA and GABAB receptors were both seen in sensory neurons, yet only GABAA receptors decorated the neuronal surface. GABA receptors were not found on SGCs. Six days after injection of AdGAD65 into the trigeminal ganglion, there was a statistically significant decrease of pain behavior in the orofacial formalin test, a model of inflammatory pain. Rats injected with control virus (AdGFP or AdLacZ) had no reduction in their pain behavior. AdGAD65-dependent analgesia was blocked by bicuculline, a selective GABAA receptor antagonist, but not by CGP46381, a selective GABAB receptor antagonist. Conclusion Transfection of glial cells in the trigeminal ganglion with the GAD gene blocks pain behavior by acting on GABAA receptors on neuronal perikarya. PMID:19656360

  6. Adenovector GAD65 gene delivery into the rat trigeminal ganglion produces orofacial analgesia.

    PubMed

    Vit, Jean-Philippe; Ohara, Peter T; Sundberg, Christopher; Rubi, Blanca; Maechler, Pierre; Liu, Chunyan; Puntel, Mariana; Lowenstein, Pedro; Castro, Maria; Jasmin, Luc

    2009-08-05

    Our goal is to use gene therapy to alleviate pain by targeting glial cells. In an animal model of facial pain we tested the effect of transfecting the glutamic acid decarboxylase (GAD) gene into satellite glial cells (SGCs) of the trigeminal ganglion by using a serotype 5 adenovector with high tropisms for glial cells. We postulated that GABA produced from the expression of GAD would reduce pain behavior by acting on GABA receptors on neurons within the ganglion. Injection of adenoviral vectors (AdGAD65) directly into the trigeminal ganglion leads to sustained expression of the GAD65 isoform over the 4 weeks observation period. Immunohistochemical analysis showed that adenovirus-mediated GAD65 expression and GABA synthesis were mainly in SGCs. GABAA and GABAB receptors were both seen in sensory neurons, yet only GABAA receptors decorated the neuronal surface. GABA receptors were not found on SGCs. Six days after injection of AdGAD65 into the trigeminal ganglion, there was a statistically significant decrease of pain behavior in the orofacial formalin test, a model of inflammatory pain. Rats injected with control virus (AdGFP or AdLacZ) had no reduction in their pain behavior. AdGAD65-dependent analgesia was blocked by bicuculline, a selective GABAA receptor antagonist, but not by CGP46381, a selective GABAB receptor antagonist. Transfection of glial cells in the trigeminal ganglion with the GAD gene blocks pain behavior by acting on GABAA receptors on neuronal perikarya.

  7. Conventional Radiofrequency Thermocoagulation vs Pulsed Radiofrequency Neuromodulation of Ganglion Impar in Chronic Perineal Pain of Nononcological Origin.

    PubMed

    Usmani, Hammad; Dureja, G P; Andleeb, Roshan; Tauheed, Nazia; Asif, Naiyer

    2018-01-10

    Chronic nononcological perineal pain has been effectively managed by ganglion Impar block. Chemical neurolysis, cryoablation, and radiofrequency ablation have been the accepted methods of blockade. Recently, pulsed radiofrequency, a novel variant of conventional radiofrequency, has been used for this purpose. This was a prospective, randomized, double-blind study. Two different interventional pain management centers in India. To compare the efficacy of conventional radiofrequency and pulsed radiofrequency for gangliom Impar block. The patients were randomly allocated to one of two groups. In the conventional radiofrequency (CRF) group (N = 34), conventional radiofrequency ablation was done, and in the PRF pulsed radiofrequency (PRF) group (N = 31), pulsed radiofrequency ablation was done. After informed and written consent, fluoroscopy-guided ganglion Impar block was performed through the first intracoccygeal approach. The extent of pain relief was assessed by visual analog scale (VAS) at 24 hours, and at the first, third, and sixth weeks following the intervention. A questionnaire to evaluate subjective patient satisfaction was also used at each follow-up visit. In the CRF group, the mean VAS score decreased significantly from the baseline value at each follow-up visit. But in the PRF group, this decrease was insignificant except at 24-hour follow-up. Intergroup comparison also showed significantly better pain relief in the CRF group as compared with the PRF group. At the end of follow-up, 28 patients (82%) in the CRF group and four patients (13%) in the PRF group had excellent results, as assessed by the subjective patient satisfaction questionnaire. There was no complication in any patient of either study group, except for short-lived infection at the site of skin puncture in a few. Ganglion Impar block by conventional radiofrequency provided a significantly better quality of pain relief with no major side effects in patients with chronic

  8. Depicting the pterygopalatine ganglion on 3 Tesla magnetic resonance images.

    PubMed

    Bratbak, Daniel Fossum; Folvik, Mari; Nordgård, Ståle; Stovner, Lars Jacob; Dodick, David W; Matharu, Manjit; Tronvik, Erling

    2018-06-01

    The pterygopalatine ganglion has yet not been identified on medical images in living humans. The primary aim of this study was to evaluate whether the pterygopalatine ganglion could be identified on 3 T MR imaging. This study was performed on medical images of 20 Caucasian subjects on both sides (n = 40 ganglia) with an exploratory design. 3 T MR images were assessed by two physicians for the presence and size of the pterygopalatine ganglion. The distance from the pterygopalatine ganglion to four bony landmarks was registered from fused MR and CT images. In an equivalence analysis, the distances were compared to those obtained in an anatomical cadaveric study serving as historical controls (n = 50). A structure assumed to be the pterygopalatine ganglion was identified on MR images in all patients on both sides by both physicians. The mean size was depth 2.1 ± 0.5 mm, width 4.2 ± 1.1 mm and height 5.1 ± 1.4 mm, which is in accordance with formerly published data. Equivalence of the measurements on MR images and the historical controls was established, suggesting that the structure identified on the MR images is the pterygopalatine ganglion. Our findings suggest that the pterygopalatine ganglion can be detected on 3 T MR images. Identification of the pterygopalatine ganglion may be important for image-guided interventions targeting the pterygopalatine ganglion, and has the potential to increase the efficacy, safety and reliability for these treatments.

  9. Bilateral sphenopalatine ganglion block reduces blood pressure in never treated patients with essential hypertension. A randomized controlled single-blinded study.

    PubMed

    Triantafyllidi, Helen; Arvaniti, Chrysa; Schoinas, Antonios; Benas, Dimitris; Vlachos, Stefanos; Palaiodimos, Leonidas; Pavlidis, George; Ikonomidis, Ignatios; Batistaki, Chrysanthi; Voumvourakis, Costas; Lekakis, John

    2018-01-01

    Sympathetic fibers connect sphenopalatine ganglion (SPG) with the central nervous system. We aimed to study the effect of SPG block in blood pressure (BP) in never treated patients with stage I-II essential hypertension. We performed bilateral SPG block with lidocaine 2% in 33 hypertensive patients (mean age 48±12years, 24 men) and a sham operation with water for injection in 11 patients who served as the control group (mean age 51±12years, 8 men). All patients have been subjected to 24h ambulatory blood pressure monitoring prior and a month after the SBG block in order to estimate any differences in blood pressure parameters. We defined as responders to SBG block those patients with a 24h SBP decrease ≥5mmHg. We found that 24h and daytime DBP (p=0.02) as well as daytime DBP load (p=0.03) were decreased in the study group a month after SPG block. In addition, a significant response was noted in 12/33 responders (36%) regarding: a. SBP and DBP during overall 24h and daytime (p<0.001) and night-time periods, b. pre-awake and early morning SBP and c. SBP (daytime and night-time) and DBP (daytime) load. No differences regarding BP were found in the sham operation group. SPG block is a promising, minimally invasive option of BP decrease in hypertensives, probably through SNS modulation. Additionally, due to its anesthetic effect, SPG block might act as a method of selection for those hypertensive patients with an activated SNS before any other invasive antihypertensive procedure. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Tibial periosteal ganglion cyst: The ganglion in disguise.

    PubMed

    Reghunath, Anjuna; Mittal, Mahesh K; Khanna, Geetika; Anil, V

    2017-01-01

    Soft tissue ganglions are commonly encountered cystic lesions around the wrist presumed to arise from myxomatous degeneration of periarticular connective tissue. Lesions with similar pathology in subchondral location close to joints, and often simulating a geode, is the less common entity called intraosseous ganglion. Rarer still is a lesion produced by mucoid degeneration and cyst formation of the periostium of long bones, rightly called the periosteal ganglion. They are mostly found in the lower extremities at the region of pes anserinus, typically limited to the periosteum and outer cortex without any intramedullary component. We report the case of a 62 year-old male who presented with a tender swelling on the mid shaft of the left tibia, which radiologically suggested a juxtacortical lesion extending to the soft tissue or a soft tissue neoplasm eroding the bony cortex of tibia. It was later diagnosed definitively as a periosteal ganglion in an atypical location, on further radiologic work-up and histopathological correlation.

  11. Tibial periosteal ganglion cyst: The ganglion in disguise

    PubMed Central

    Reghunath, Anjuna; Mittal, Mahesh K; Khanna, Geetika; Anil, V

    2017-01-01

    Soft tissue ganglions are commonly encountered cystic lesions around the wrist presumed to arise from myxomatous degeneration of periarticular connective tissue. Lesions with similar pathology in subchondral location close to joints, and often simulating a geode, is the less common entity called intraosseous ganglion. Rarer still is a lesion produced by mucoid degeneration and cyst formation of the periostium of long bones, rightly called the periosteal ganglion. They are mostly found in the lower extremities at the region of pes anserinus, typically limited to the periosteum and outer cortex without any intramedullary component. We report the case of a 62 year-old male who presented with a tender swelling on the mid shaft of the left tibia, which radiologically suggested a juxtacortical lesion extending to the soft tissue or a soft tissue neoplasm eroding the bony cortex of tibia. It was later diagnosed definitively as a periosteal ganglion in an atypical location, on further radiologic work-up and histopathological correlation. PMID:28515597

  12. [Botulinum toxin type A does not affect spontaneous discharge but blocks sympathetic-sensory coupling in chronically compressed rat dorsal root ganglion neurons].

    PubMed

    Yang, Hong-jun; Peng, Kai-run; Hu, San-jue; Duan, Jian-hong

    2007-11-01

    To study the effect of botulinum toxin type A (BTXA) on spontaneous discharge and sympathetic- sensory coupling in chronically compressed dorsal root ganglion (DRG) neurons in rats. In chronically compressed rat DRG, spontaneous activities of the single fibers from DRG neurons were recorded and their changes observed after BTAX application on the damaged DGR. Sympathetic modulation of the spontaneous discharge from the compressed DRG neurons was observed by electric stimulation of the lumbar sympathetic trunk, and the changes in this effect were evaluated after intravenous BTXA injection in the rats. Active spontaneous discharges were recorded in the injured DRG neurons, and 47 injured DRG neurons responded to Ca2+-free artificial cerebrospinal fluid but not to BTXA treatment. Sixty-four percent of the neurons in the injured DRG responded to sympathetic stimulation, and this response was blocked by intravenously injection of BTXA. BTXA does not affect spontaneous activities of injured DRG neurons, but blocks sympathetic-sensory coupling in these neurons.

  13. Synaptic potentials recorded by the sucrosegap method from the rabbit superior cervical ganglion

    PubMed Central

    Kosterlitz, H. W.; Lees, G. M.; Wallis, D. I.

    1970-01-01

    1. Compound ganglionic potentials evoked by stimulation of the preganglionic nerves to the superior cervical ganglion of the rabbit were recorded by the sucrose-gap method. 2. When the distal part of the ganglion was bathed in flowing isotonic sucrose solution or sodium-deficient solutions, ganglionic action potentials were no longer evoked, only large synaptic potentials. 3. The compound synaptic potential, which remained unaltered for more than 1 h, originated in a population of cells at the interface between the Krebs and sucrose solutions. Hexamethonium reduced the size but did not alter the time course of the synaptic potential. 4. It is suggested that a higher concentration of sodium ions is required for the generation of ganglionic action potentials than for either conduction in the postganglionic axons or production of synaptic potentials. 5. When lithium replaced sodium in the solution bathing the distal part of the ganglion, the synaptic potential was greatly reduced in amplitude. Impulse propagation in the postganglionic axons was only slightly impaired when lithium replaced sodium in the solution bathing the axons. 6. A quantitative assessment of the potency of the ganglion-blocking drugs nicotine, pentolinium, hexamethonium and pempidine was made by measuring the depression of the synaptic potentials produced by bathing the distal part of the ganglion in flowing isotonic sucrose solution. The concentrations which produced a 50% depression were 8·1 μM nicotine, 26·5 μM pentolinium, 111 μM hexamethonium and 22·2 μM pempidine. PMID:5492898

  14. Acute effects of unilateral temporary stellate ganglion block on human atrial electrophysiological properties and atrial fibrillation inducibility.

    PubMed

    Leftheriotis, Dionyssios; Flevari, Panayota; Kossyvakis, Charalampos; Katsaras, Dimitrios; Batistaki, Chrysanthi; Arvaniti, Chrysa; Giannopoulos, Georgios; Deftereos, Spyridon; Kostopanagiotou, Georgia; Lekakis, John

    2016-11-01

    In experimental models, stellate ganglion block (SGB) reduces the induction of atrial fibrillation (AF), while data in humans are limited. The aim of this study was to assess the effect of unilateral SGB on atrial electrophysiological properties and AF induction in patients with paroxysmal AF. Thirty-six patients with paroxysmal AF were randomized in a 2:1 order to temporary, transcutaneous, pharmaceutical SGB with lidocaine or placebo before pulmonary vein isolation. Lidocaine was 1:1 randomly infused to the right or left ganglion. Before and after randomization, atrial effective refractory period (ERP) of each atrium, difference between right and left atrial ERP, intra- and interatrial conduction time, AF inducibility, and AF duration were assessed. After SGB, right atrial ERP was prolonged from a median (1st-3rd quartile) of 240 (220-268) ms to 260 (240-300) ms (P < .01) and left atrial ERP from 235 (220-260) ms to 245 (240-280) ms (P < .01). AF was induced by atrial pacing in all 24 patients before SGB, but only in 13 patients (54%) after the intervention (P < .01). AF duration was shorter after SGB: 1.5 (0.0-5.8) minutes from 5.5 (3.0-12.0) minutes (P < .01). Intra- and interatrial conduction time was not significantly prolonged. No significant differences were observed between right and left SGB. No changes were observed in the placebo group. Unilateral temporary SGB prolonged atrial ERP, reduced AF inducibility, and decreased AF duration. An equivalent effect of right and left SGB on both atria was observed. These findings may have a clinical implication in the prevention of drug refractory and postsurgery AF and deserve further clinical investigation. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Neuromuscular blocking properties of some bistropinium esters

    PubMed Central

    Haining, C. G.; Johnston, R. G.

    1962-01-01

    The neuromuscular blocking, anti-acetylcholine and ganglion blocking properties of two series of bistropinium esters were examined. The neuromuscular blocking activities of the mandelic acid esters of NN'-polymethylenebis(tropinium halides) were found to depend upon the number of carbon atoms (n) in the linking chain. Potency was enhanced more than 50 times as n was increased from 2 to 7. Compounds in which n equalled 7, 8, 9, 10 and 12 differed little in activity, but were generally more potent than tubocurarine in cats and rabbits. A peak of ganglion blocking action was obtained at the pentamethylene member. Esterification enhanced the feeble neuromuscular blocking properties of NN'-decamethylenebis(tropinium halide), the mandelic acid ester being more effective than the tropic, benzoic or phenylacetic acid esters in cats and rabbits. When two benzoic or mandelic acid esters of tropine were linked through their nitrogen atoms by a phenylenedimethyl grouping (-CH2.C6H4.CH2-), meta substitution was more effective than was ortho or para in producing neuromuscular block. The effectiveness of esterifying acids in m-phenylenedimethyl derivatives decreased in the following order, phenylacetic> tropic or mandelic>benzoic>acetic and diphenylacetic. PMID:13903721

  16. Epibatidine, an alkaloid from the poison frog Epipedobates tricolor, is a powerful ganglionic depolarizing agent.

    PubMed

    Fisher, M; Huangfu, D; Shen, T Y; Guyenet, P G

    1994-08-01

    Epibatidine, a newly discovered alkaloid from the skin of Dendrobatidae frogs, has structural similarities to nicotine. We examined the effects of epibatidine on cardiorespiratory function and ganglionic synaptic transmission. Superior cervical or splanchnic sympathetic nerve discharge (sSND) and phrenic nerve discharge (PND) were recorded along with arterial pressure (AP) in urethane-anesthetized, paralyzed and artificially ventilated rats. Epibatidine administered i.v. at low doses (0.5-2 micrograms/kg) produced a transient increase in AP and sSND, followed by a decrease and return to baseline; this low dose of epibatidine also produced a dose-dependent increase in PND. At high doses (cumulative dose of 8-16 micrograms/kg), epibatidine produced bradycardia, a profound depression in sSND and a transient elimination of PND. After i.v. administration of the ganglionic blocker chlorisondamine (5 mg/kg), AP was still increased by 1 microgram/kg epibatidine (+39 +/- 11 mm Hg). This pressor effect was not altered by pretreatment with the alpha-1 adrenergic antagonist phentolamine (+40 +/- 10 mm Hg); however, it was blocked by additional pretreatment with the vasopressin antagonist [beta-mercapto-beta,beta-cyclopentamethylenepropiony1, O-ET-Tyr2,Val4,Arg8]vasopressin (50 micrograms/kg i.v.; +2 +/- 0.4 mm Hg). Low doses of epibatidine (0.5-2 micrograms/kg) produced firing of postganglionic neurons in a decentralized ganglion preparation and potentiated synaptic transmission; at high doses (cumulative dose of 8-16 micrograms/kg), the alkaloid blocked ganglionic synaptic transmission. These results suggest that epibatidine is a potent agonist of ganglionic nicotinic receptors and that the alkaloid elicits cardiorespiratory effects similar to those of nicotine.

  17. Denervation does not alter the number of neuronal bungarotoxin binding sites on autonomic neurons in the frog cardiac ganglion.

    PubMed

    Sargent, P B; Bryan, G K; Streichert, L C; Garrett, E N

    1991-11-01

    The binding of neuronal bungarotoxin (n-BuTX; also known as bungarotoxin 3.1, kappa-bungarotoxin, and toxin F) was analyzed in normal and denervated parasympathetic cardiac ganglia of the frog Rana pipiens, n-BuTX blocks both EPSPs and ACh potentials at 5-20 nM, as determined by intracellular recording techniques. Scatchard analysis on homogenates indicates that cardiac ganglia have two classes of binding sites for 125I-n-BuTX: a high-affinity site with an apparent dissociation constant (Kd,app) of 1.7 nM and a Bmax (number of binding sites) of 3.8 fmol/ganglion and a low-affinity site with a Kd,app of 12 microM and a Bmax of 14 pmol/ganglion. alpha-Bungarotoxin does not appear to interfere with the binding of 125I-n-BuTX to either site. The high-affinity binding site is likely to be the functional nicotinic ACh receptor (AChR), given the similarity between its affinity for 125I-n-BuTX and the concentration of n-BuTX required to block AChR function. Light microscopic autoradiographic analysis of 125I-n-BuTX binding to the ganglion cell surface reveals that toxin binding is concentrated at synaptic sites, which were identified using a synaptic vesicle-specific antibody. Scatchard analysis of autoradiographic data reveals that 125I-n-BuTX binding to the neuronal surface is saturable and has a Kd,app similar to that of the high-affinity binding site characterized in homogenates. Surface binding of 125I-n-BuTX is blocked by nicotine, carbachol, and d-tubocurarine (IC50 less than 20 microM), but not by atropine (IC50 greater than 10 mM). Denervation of the heart increases the ACh sensitivity of cardiac ganglion cells but has no effect upon the number of high-affinity binding sites for 125I-n-BuTX in tissue homogenates. Moreover, autoradiographic analysis indicates that denervation does not alter the number of 125I-n-BuTX binding sites on the ganglion cell surface. n-BuTX is as effective in reducing ganglion cell responses to ACh in denervated ganglia as it is in

  18. Neurocognitive Performance is Not Degraded After Stellate Ganglion Block Treatment for Post-Traumatic Stress Disorder: A Case Series.

    PubMed

    Mulvaney, Sean W; Lynch, James H; de Leeuw, Jason; Schroeder, Matthew; Kane, Shawn

    2015-05-01

    To measure key neurocognitive performance effects following stellate ganglion block (SGB) administered to treat post-traumatic stress disorder (PTSD) symptoms. Eleven patients diagnosed, screened, and scheduled for SGB to treat their PTSD symptoms were administered a panel of eight cognitive measures before and 1 to 3 weeks after undergoing this procedure. PTSD symptoms were evaluated using the Posttraumatic Stress Disorder Checklist-Military. One to three weeks post-SGB, none of the patients showed any statistically significant decline in neurocognitive performance. Rather, there was a clear trend in improvement, with four out of eight measures reaching statistical significance following SGB. All patients improved in PTSD symptoms with a mean improvement on Posttraumatic Stress Disorder Checklist-Military of 29. In this case series of 11 patients, SGB effectively treated PTSD symptoms and did not impair reaction time, memory, or concentration. Therefore, SGB should be considered as a viable treatment option for personnel with PTSD symptoms who will be placed in demanding conditions such as combat. Reprint & Copyright © 2015 Association of Military Surgeons of the U.S.

  19. Evaluation of the percentage of ganglion cells in the ganglion cell layer of the rodent retina

    PubMed Central

    Schlamp, Cassandra L.; Montgomery, Angela D.; Mac Nair, Caitlin E.; Schuart, Claudia; Willmer, Daniel J.

    2013-01-01

    Purpose Retinal ganglion cells comprise a percentage of the neurons actually residing in the ganglion cell layer (GCL) of the rodent retina. This estimate is useful to extrapolate ganglion cell loss in models of optic nerve disease, but the values reported in the literature are highly variable depending on the methods used to obtain them. Methods We tested three retrograde labeling methods and two immunostaining methods to calculate ganglion cell number in the mouse retina (C57BL/6). Additionally, a double-stain retrograde staining method was used to label rats (Long-Evans). The number of total neurons was estimated using a nuclear stain and selecting for nuclei that met specific criteria. Cholinergic amacrine cells were identified using transgenic mice expressing Tomato fluorescent protein. Total neurons and total ganglion cell numbers were measured in microscopic fields of 104 µm2 to determine the percentage of neurons comprising ganglion cells in each field. Results Historical estimates of the percentage of ganglion cells in the mouse GCL range from 36.1% to 67.5% depending on the method used. Experimentally, retrograde labeling methods yielded a combined estimate of 50.3% in mice. A retrograde method also yielded a value of 50.21% for rat retinas. Immunolabeling estimates were higher at 64.8%. Immunolabeling may introduce overestimates, however, with non-specific labeling effects, or ectopic expression of antigens in neurons other than ganglion cells. Conclusions Since immunolabeling methods may overestimate ganglion cell numbers, we conclude that 50%, which is consistently derived from retrograde labeling methods, is a reliable estimate of the ganglion cells in the neuronal population of the GCL. PMID:23825918

  20. Efficacy of Noninvasive Stellate Ganglion Blockade Performed Using Physical Agent Modalities in Patients with Sympathetic Hyperactivity-Associated Disorders: A Systematic Review and Meta-Analysis.

    PubMed

    Liao, Chun-De; Tsauo, Jau-Yih; Liou, Tsan-Hon; Chen, Hung-Chou; Rau, Chi-Lun

    2016-01-01

    Stellate ganglion blockade (SGB) is mainly used to relieve symptoms of neuropathic pain in conditions such as complex regional pain syndrome and has several potential complications. Noninvasive SGB performed using physical agent modalities (PAMs), such as light irradiation and electrical stimulation, can be clinically used as an alternative to conventional invasive SGB. However, its application protocols vary and its clinical efficacy remains controversial. This study investigated the use of noninvasive SGB for managing neuropathic pain or other disorders associated with sympathetic hyperactivity. We performed a comprehensive search of the following online databases: Medline, PubMed, Excerpta Medica Database, Cochrane Library Database, Ovid MEDLINE, Europe PubMed Central, EBSCOhost Research Databases, CINAHL, ProQuest Research Library, Physiotherapy Evidence Database, WorldWideScience, BIOSIS, and Google Scholar. We identified and included quasi-randomized or randomized controlled trials reporting the efficacy of SGB performed using therapeutic ultrasound, transcutaneous electrical nerve stimulation, light irradiation using low-level laser therapy, or xenon light or linearly polarized near-infrared light irradiation near or over the stellate ganglion region in treating complex regional pain syndrome or disorders requiring sympatholytic management. The included articles were subjected to a meta-analysis and risk of bias assessment. Nine randomized and four quasi-randomized controlled trials were included. Eleven trials had good methodological quality with a Physiotherapy Evidence Database (PEDro) score of ≥6, whereas the remaining two trials had a PEDro score of <6. The meta-analysis results revealed that the efficacy of noninvasive SGB on 100-mm visual analog pain score is higher than that of a placebo or active control (weighted mean difference, -21.59 mm; 95% CI, -34.25, -8.94; p = 0.0008). Noninvasive SGB performed using PAMs effectively relieves pain of

  1. Enkephalin-like immunoreactive principal ganglion cells and nerve fibres in the inferior mesenteric ganglion of the cat.

    PubMed

    Balayadi, M; Jule, Y; Cupo, A

    1988-10-05

    The occurrence and distribution of methionine-enkephalin (ME), leucine-enkephalin (LE) and methionine-enkephalin-Arg6-Gly7-Leu8 (MERGL)-like (LI) immunoreactive material in the inferior mesenteric ganglion (IMG) of the cat were studied by immunohistochemical techniques using the peroxidase-antiperoxidase method. Numerous ME-Li, LE-Li and MERGL-Li immunoreactive fibres with the same distribution pattern were observed. They were varicose and often surrounded closely neighbouring unlabelled ganglion cell bodies. Sometimes they ran in strands between ganglion cells. ME-Li immunoreactive material was detected in a number of cell bodies, the diameter of which was similar to that of unlabelled principal ganglion cell bodies, and which were probably Enk-Li-containing principal ganglion cells. These immunoreactive cells were often surrounded by ME-Li immunoreactive fibres. No LE-Li or MERGL-Li immunoreactive ganglion cell bodies were observed. The presence of ME-Li immunoreactive principal ganglion cells raises the possibility that the Enk-Li immunoreactive fibres present in the IMG may have a prevertebral ganglionic source. The possibility that the Enk-Li material present in nerve fibres might be derived from preproenkephalin-A was suggested by the occurrence of MERGL-Li immunoreactivity.

  2. Thresholds for activation of rabbit retinal ganglion cells with an ultrafine, extracellular microelectrode.

    PubMed

    Jensen, Ralph J; Rizzo, Joseph F; Ziv, Ofer R; Grumet, Andrew; Wyatt, John

    2003-08-01

    To determine electrical thresholds required for extracellular activation of retinal ganglion cells as part of a project to develop an epiretinal prosthesis. Retinal ganglion cells were recorded extracellularly in retinas isolated from adult New Zealand White rabbits. Electrical current pulses of 100- micro s duration were delivered to the inner surface of the retina from a 5- micro m long electrode. In about half of the cells, the point of lowest threshold was found by searching with anodal current pulses; in the other cells, cathodal current pulses were used. Threshold measurements were obtained near the cell bodies of 20 ganglion cells and near the axons of 19 ganglion cells. Both cathodal and anodal stimuli evoked a neural response in the ganglion cells that consisted of a single action potential of near-constant latency that persisted when retinal synaptic transmission was blocked with cadmium chloride. For cell bodies, but not axons, thresholds for both cathodal and anodal stimulation were dependent on the search method used to find the point of lowest threshold. With search and stimulation of matching polarity, cathodal stimuli evoked a ganglion cell response at lower currents (approximately one seventh to one tenth axonal threshold) than did anodal stimuli for both cell bodies and axons. With cathodal search and stimulation, cell body median thresholds were somewhat lower (approximately one half) than the axonal median thresholds. With anodal search and stimulation, cell body median thresholds were approximately the same as axonal median thresholds. The results suggest that cathodal stimulation should produce lower thresholds, more localized stimulation, and somewhat better selectivity for cell bodies over axons than would anodal stimulation.

  3. Thermoablation of Liver Metastases: Efficacy of Temporary Celiac Plexus Block

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beck, A.N., E-mail: alexander.beck@charite.de; Schaefer, M.; Werk, M.

    Purpose. To determine the efficacy of celiac plexus block during thermoablation of liver metastases. Methods. Fifty-five consecutive patients underwent thermoablation therapy of liver tumors by laser-induced thermotherapy. Twenty-nine patients received a temporary celiac plexus block, 26 patients acted as control group. In both groups fentanyl and midazolam were administered intravenously upon request of the patient. The duration of the intervention, consumption of opiates, and individual pain sensations were documented. Results. No complications resulting from the celiac plexus block were recorded. Celiac plexus block significantly reduced the amount of pain medication used during thermoablation therapy of liver tumors (with block, 2.45more » {mu}g fentanyl per kg body weight; without block, 3.58 {mu}g fentanyl per kg body weight, p < 0.05; midazolam consumption was not reduced) in patients with metastases {<=}5 mm from the liver capsule. For metastases farther away from the capsule no significant differences in opiate consumption were seen. Celiac plexus block reduced the time for thermoablation significantly (178 min versus 147 min, p < 0.05) no matter how far the metastases were from the liver capsule. Average time needed to set the block was 12 min (range 9-15 min); additional costs for the block were marginal. As expected (as pain medications were given according to individual patients' needs) pain indices did not differ significantly between the two groups. Conclusion. In patients with liver metastases {<=}5 mm from the liver capsule, celiac plexus block reduces the amount of opiates necessary, simplifying patient monitoring. In addition celiac plexus block reduces intervention time, with positive effects on overall workflow for all patients.« less

  4. Neuroprotective Effect of Tauroursodeoxycholic Acid on N-Methyl-D-Aspartate-Induced Retinal Ganglion Cell Degeneration

    PubMed Central

    Fernández-Sánchez, Laura; Rondón, Netxibeth; Esquiva, Gema; Germain, Francisco; de la Villa, Pedro; Cuenca, Nicolás

    2015-01-01

    Retinal ganglion cell degeneration underlies the pathophysiology of diseases affecting the retina and optic nerve. Several studies have previously evidenced the anti-apoptotic properties of the bile constituent, tauroursodeoxycholic acid, in diverse models of photoreceptor degeneration. The aim of this study was to investigate the effects of systemic administration of tauroursodeoxycholic acid on N-methyl-D-aspartate (NMDA)-induced damage in the rat retina using a functional and morphological approach. Tauroursodeoxycholic acid was administered intraperitoneally before and after intravitreal injection of NMDA. Three days after insult, full-field electroretinograms showed reductions in the amplitudes of the positive and negative-scotopic threshold responses, scotopic a- and b-waves and oscillatory potentials. Quantitative morphological evaluation of whole-mount retinas demonstrated a reduction in the density of retinal ganglion cells. Systemic administration of tauroursodeoxycholic acid attenuated the functional impairment induced by NMDA, which correlated with a higher retinal ganglion cell density. Our findings sustain the efficacy of tauroursodeoxycholic acid administration in vivo, suggesting it would be a good candidate for the pharmacological treatment of degenerative diseases coursing with retinal ganglion cell loss. PMID:26379056

  5. Effect of Stellate Ganglion Block on Specific Symptom Clusters for Treatment of Post-Traumatic Stress Disorder.

    PubMed

    Lynch, James H; Mulvaney, Sean W; Kim, Eugene H; de Leeuw, Jason B; Schroeder, Matthew J; Kane, Shawn F

    2016-09-01

    This study assessed which symptoms are most impacted following stellate ganglion block (SGB) used to treat post-traumatic stress disorder (PTSD) symptoms. 30 active military service members with combat-related PTSD self-referred to their physician and psychologist. Patients were offered a SGB as part of their treatment program. Primary outcome was the magnitude of change for the 17 items on the PTSD Checklist-Military (PCL-M), which was administered the week before SGB, 1 week after SGB, and 2 to 4 months later. Mean PCL-M score decreased from 49 at baseline to 32, 1 week after the procedure (p < 0.001). 2 to 4 months after SGB, patients maintained an average PCL-M of 32. Patients reported greatest improvement in the first week after SGB for the following symptoms: irritability or angry outbursts, difficulty concentrating, and sleep disturbance. 2 to 4 months later, patients reported greatest improvement in the following: feeling distant or cut off, feeling emotionally numb, irritability or angry outbursts, and difficulty concentrating. SGB is a safe procedure that may provide extended relief for all clusters of PTSD symptoms. As a result of the significant reduction in hyperarousal and avoidance symptoms observed, this study supports incorporation of SGB into PTSD treatment plans. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.

  6. Efficacy of stellate ganglion blockade for the management of type 1 complex regional pain syndrome.

    PubMed

    Ackerman, William E; Zhang, Jun-Ming

    2006-10-01

    The purpose of this study was to examine the efficacy of stellate ganglion blockade (SGB) in patients with complex regional pain syndromes (CRPS I) of their hands. After IRB approval and patient informed consent, 25 subjects, with a clinical diagnosis of CRPS I of one hand as defined by the International Association for the Study of Pain (IASP) criteria, had three SGB's performed at weekly intervals. Laser Doppler fluxmetric hand perfusion studies were performed on the normal and CRPS I hands pre- and post-SGB therapy. No patient was included in this study if they used tobacco products or any medication or substance that could affect sympathetic function. The appropriate parametric and nonparametric data analyses were performed and a p value <0.05 was used to reject the null hypothesis. Symptom onset of CRPS I until the initiation of SGB therapy ranged between 3 to 34 weeks. Following the SGB series, patient pain relief was as follows: group I, 10/25 (40%) had complete symptom relief; group II, 9/25 (36%) had partial relief and group III, 6/25 (24%) had no relief. The duration of symptoms until SGB therapy was: group I, 4.6 +/- 1.8 weeks, group II, 11.9 +/- 1.6 weeks and group III, 35.8 +/- 27 weeks. Compared with the normal control hand, the skin perfusion in the CRPS I affected hand was greater in group I and decreased in groups II and III. The results of our study demonstrate that an inverse relationship exists between hand perfusion and the duration of symptoms of CRPS I. On the other hand, a positive correlation exists between SGB efficacy and how soon SGB therapy is initiated. A duration of symptoms greater than 16 weeks before the initial SGB and/or a decrease in skin perfusion of 22% between the normal and affected hands adversely affects the efficacy of SGB therapy.

  7. Sonoanatomical Change of Phrenic Nerve According to Posture During Ultrasound-Guided Stellate Ganglion Block

    PubMed Central

    Joeng, Eui Soo; Jeong, Young Cheol; Park, Bum Jun; Kang, Seok; Yang, Seung Nam

    2016-01-01

    Objective To evaluate the risk of phrenic nerve injury during ultrasound-guided stellate ganglion block (US-SGB) according to sonoanatomy of the phrenic nerve, and determine a safer posture for needle insertion by assessing its relationship with surrounding structure according to positional change. Methods Twenty-nine healthy volunteers were recruited and underwent ultrasound in two postures, i.e., supine position with the neck extension and head rotation, and lateral decubitus position. The transducer was placed at the anterior tubercle of the C6 level to identify phrenic nerve. The cross-sectional area (CSA), depth from skin, distance between phrenic nerve and anterior tubercle of C6 transverse process, and the angle formed by anterior tubercle, posterior tubercle and phrenic nerve were measured. Results The phrenic nerve was clearly identified in the intermuscular fascia layer between the anterior scalene and sternocleidomastoid muscles. The distance between the phrenic nerve and anterior tubercle was 10.33±3.20 mm with the supine position and 9.20±3.31 mm with the lateral decubitus position, respectively. The mean CSA and skin depth of phrenic nerve were not statistically different between the two positions. The angle with the supine position was 48.37°±27.43°, and 58.89°±30.02° with the lateral decubitus position. The difference of angle between the two positions was statistically significant. Conclusion Ultrasound is a useful tool for assessing the phrenic nerve and its anatomical relation with other cervical structures. In addition, lateral decubitus position seems to be safer by providing wider angle for needle insertion than the supine position in US-SGB. PMID:27152274

  8. Sonoanatomical Change of Phrenic Nerve According to Posture During Ultrasound-Guided Stellate Ganglion Block.

    PubMed

    Joeng, Eui Soo; Jeong, Young Cheol; Park, Bum Jun; Kang, Seok; Yang, Seung Nam; Yoon, Joon Shik

    2016-04-01

    To evaluate the risk of phrenic nerve injury during ultrasound-guided stellate ganglion block (US-SGB) according to sonoanatomy of the phrenic nerve, and determine a safer posture for needle insertion by assessing its relationship with surrounding structure according to positional change. Twenty-nine healthy volunteers were recruited and underwent ultrasound in two postures, i.e., supine position with the neck extension and head rotation, and lateral decubitus position. The transducer was placed at the anterior tubercle of the C6 level to identify phrenic nerve. The cross-sectional area (CSA), depth from skin, distance between phrenic nerve and anterior tubercle of C6 transverse process, and the angle formed by anterior tubercle, posterior tubercle and phrenic nerve were measured. The phrenic nerve was clearly identified in the intermuscular fascia layer between the anterior scalene and sternocleidomastoid muscles. The distance between the phrenic nerve and anterior tubercle was 10.33±3.20 mm with the supine position and 9.20±3.31 mm with the lateral decubitus position, respectively. The mean CSA and skin depth of phrenic nerve were not statistically different between the two positions. The angle with the supine position was 48.37°±27.43°, and 58.89°±30.02° with the lateral decubitus position. The difference of angle between the two positions was statistically significant. Ultrasound is a useful tool for assessing the phrenic nerve and its anatomical relation with other cervical structures. In addition, lateral decubitus position seems to be safer by providing wider angle for needle insertion than the supine position in US-SGB.

  9. Efficacy of Noninvasive Stellate Ganglion Blockade Performed Using Physical Agent Modalities in Patients with Sympathetic Hyperactivity-Associated Disorders: A Systematic Review and Meta-Analysis

    PubMed Central

    Liao, Chun-De; Tsauo, Jau-Yih; Liou, Tsan-Hon

    2016-01-01

    Background Stellate ganglion blockade (SGB) is mainly used to relieve symptoms of neuropathic pain in conditions such as complex regional pain syndrome and has several potential complications. Noninvasive SGB performed using physical agent modalities (PAMs), such as light irradiation and electrical stimulation, can be clinically used as an alternative to conventional invasive SGB. However, its application protocols vary and its clinical efficacy remains controversial. This study investigated the use of noninvasive SGB for managing neuropathic pain or other disorders associated with sympathetic hyperactivity. Materials and Methods We performed a comprehensive search of the following online databases: Medline, PubMed, Excerpta Medica Database, Cochrane Library Database, Ovid MEDLINE, Europe PubMed Central, EBSCOhost Research Databases, CINAHL, ProQuest Research Library, Physiotherapy Evidence Database, WorldWideScience, BIOSIS, and Google Scholar. We identified and included quasi-randomized or randomized controlled trials reporting the efficacy of SGB performed using therapeutic ultrasound, transcutaneous electrical nerve stimulation, light irradiation using low-level laser therapy, or xenon light or linearly polarized near-infrared light irradiation near or over the stellate ganglion region in treating complex regional pain syndrome or disorders requiring sympatholytic management. The included articles were subjected to a meta-analysis and risk of bias assessment. Results Nine randomized and four quasi-randomized controlled trials were included. Eleven trials had good methodological quality with a Physiotherapy Evidence Database (PEDro) score of ≥6, whereas the remaining two trials had a PEDro score of <6. The meta-analysis results revealed that the efficacy of noninvasive SGB on 100-mm visual analog pain score is higher than that of a placebo or active control (weighted mean difference, −21.59 mm; 95% CI, −34.25, −8.94; p = 0.0008). Conclusions Noninvasive

  10. Effects of stellate ganglion block on sedation as assessed by bispectral index in normal healthy volunteers.

    PubMed

    Yeo, Jinseok; Jeon, Younghoon

    2015-01-01

    The sympathetic nervous system plays an important role in the arousal response. Recently, the stellate ganglion block (SGB) was found to effectively treat anxiety and night awakening in humans and decrease electroencephalogram (EEG) indices of arousal responses in rat. But, the role of the sympathetic block in human arousal responses has not yet been studied. We performed this prospective, double-blinded, controlled volunteer study to investigate the sedative effects and bispectral index (BIS) changes of SGB. A randomized, double-blind trial. Single academic medical center. This study was approved by the Ethics Committee of Kyungpook National University Hospital (ref: KNUH-10-1081) and registered with CRiS (Clinical Research Information Service, http://cris.cdc.go.kr, ref: KCT0000036, 2010. 9.24). Twenty healthy volunteers were enrolled in this study. The volunteers were randomly assigned to one of 2 groups: the SGB group (n = 10) and the sham group (n =10). Volunteers in SGB group received SGB and volunteers in the sham group received a sham procedure. BIS value, heart rate, and blood pressure were measured before and 5, 10, 20, and 30 minutes after the procedure. Observer's Assessment of Alertness/Sedation (OAA/S) scores were assessed before and 10 and 30 minutes after the intervention. In the SGB group, BIS values and OAA/S scores significantly decreased after the intervention as compared to baseline (P < 0.05). The values were also significantly decreased in the SGB group when compared to the values in sham group after the intervention (P < 0.05). There was a significant change of mean blood pressure 10 to 30 minutes after SGB (P < 0.05). There were no differences in heart rate during study period between groups. This study is limited by a relatively small sample size. This study showed that SGB has a sedative effect in normal healthy volunteers, as evidenced by decreased OAA/S scores and BIS values.

  11. Synaptic transmission in the superior cervical ganglion of the cat after reinnervation by vagus fibres

    PubMed Central

    Ceccarelli, B.; Clementi, F.; Mantegazza, P.

    1971-01-01

    1. A vagus-sympathetic anastomosis was performed in the cat by connecting end to end the cranial trunk of the vagus to the cranial end of the cervical sympathetic trunk, both severed under the ganglia. 2. Forty to sixty days after the anastomosis, the ocular signs of sympathetic paralysis (such as myosis and prolapse of the nictitating membrane) which had developed shortly after the operation, had completely disappeared, thus suggesting the recovery of synaptic transmission in the ganglion. In case of plain preganglionic denervation after the same period the ocular signs of cervical sympathetic paralysis were still present. 3. Contraction of the nictitating membrane could be induced by electrical stimulation of both the vagus preanastomotic and the sympathetic postanastomotic—preganglionic trunks. Ganglionic blocking agents induced the blockade of the `new' ganglionic synaptic function, while nicotine and pilocarpine provoked a marked contraction of the nictitating membrane. 4. Electron microscopy showed that the preganglionic regeneration of vagus fibers resulted in the formation of new synapses, mainly of axodendritic type, identical to normal ganglionic synapses. Moreover, after cutting the preanastomotic trunk of the vagus, these new ganglionic presynaptic profiles degenerated, thus proving their vagal origin. 5. During restoration of the synaptic contacts readjustment of dendritic tips occurred. ImagesText-fig. 2Fig. 9Fig. 10Fig. 11Fig. 12Fig. 13Fig. 16Fig. 17Fig. 14Fig. 15Fig. 1Fig. 2Fig. 3Fig. 4Fig. 5Fig. 7Fig. 8 PMID:4326851

  12. Ganglion Cyst

    MedlinePlus

    ... with aspiration and injection therapy, there are nevertheless cases in which the ganglion cyst returns. Find an ACFAS Physician Search Search Tools Find an ACFAS Physician: Search by Mail Address ...

  13. Molecular biology of retinal ganglion cells.

    PubMed Central

    Xiang, M; Zhou, H; Nathans, J

    1996-01-01

    Retinal ganglion cells are the output neurons that encode and transmit information from the eye to the brain. Their diverse physiologic and anatomic properties have been intensively studied and appear to account well for a number of psychophysical phenomena such as lateral inhibition and chromatic opponency. In this paper, we summarize our current view of retinal ganglion cell properties and pose a number of questions regarding underlying molecular mechanisms. As an example of one approach to understanding molecular mechanisms, we describe recent work on several POU domain transcription factors that are expressed in subsets of retinal ganglion cells and that appear to be involved in ganglion cell development. Images Fig. 1 Fig. 2 Fig. 4 Fig. 5 Fig. 6 PMID:8570601

  14. High-wattage pulsed irradiation of linearly polarized near-infrared light to stellate ganglion area for burning mouth syndrome.

    PubMed

    Momota, Yukihiro; Kani, Koichi; Takano, Hideyuki; Matsumoto, Fumihiro; Aota, Keiko; Takegawa, Daisuke; Yamanoi, Tomoko; Kondo, Chika; Tomioka, Shigemasa; Azuma, Masayuki

    2014-01-01

    The purpose of this study was to apply high-wattage pulsed irradiation of linearly polarized near-infrared light to the stellate ganglion area for burning mouth syndrome (BMS) and to assess the efficacy of the stellate ganglion area irradiation (SGR) on BMS using differential time-/frequency-domain parameters (D parameters). Three patients with BMS received high-wattage pulsed SGR; the response to SGR was evaluated by visual analogue scale (VAS) representing the intensity of glossalgia and D parameters used in heart rate variability analysis. High-wattage pulsed SGR significantly decreased the mean value of VAS in all cases without any adverse event such as thermal injury. D parameters mostly correlated with clinical condition of BMS. High-wattage pulsed SGR was safe and effective for the treatment of BMS; D parameters are useful for assessing efficacy of SGR on BMS.

  15. The therapeutic efficacy of sacroiliac joint blocks with triamcinolone acetonide in the treatment of sacroiliac joint dysfunction without spondyloarthropathy.

    PubMed

    Liliang, Po-Chou; Lu, Kang; Weng, Hui-Ching; Liang, Cheng-Loong; Tsai, Yu-Duan; Chen, Han-Jung

    2009-04-20

    Prospective case series. The study aimed to investigate the therapeutic efficacy of sacroiliac joint (SIJ) blocks with triamcinolone acetonide in patients with SIJ pain without spondyloarthropathy. Numerous studies have demonstrated that SIJ blocks with corticosteroid/anesthetic provide long-term pain relief in seronegative spondyloarthropathy. However, only one report on SIJ dysfunction patients without spondyloarthropathy shows promising results. We conducted a prospective observational study of patients at a University Spine Center from March 2005 to May 2006. The above mentioned SIJ blocks were performed in 150 patients, and dual SIJ blocks confirmed SIJ pain in 39 patients (26%). Twenty-six patients (66.7%) experienced significant pain reduction for more than 6 weeks; the overall mean duration of pain reduction in these responders was 36.8 +/- 9.9 weeks. SIJ blocks were ineffective in 13 patients (33.3%); the mean duration of pain reduction in these patients was 4.4 +/- 1.8 weeks. Univariate analysis revealed that treatment failure was significantly associated with a history of lumbar/lumbosacral fusion (P = 0.03). SIJ blocks with triamcinolone acetonide are beneficial for some patients with SIJ pain without spondyloarthropathy. The SIJ blocks showed a long-lasting efficacy in two-thirds of the patients; however, the duration of its efficacy was shorter in patients with a history of lumbar/lumbosacral fusion. These findings suggest the need for further studies.

  16. On the impact of masking and blocking hypotheses for measuring the efficacy of new tuberculosis vaccines.

    PubMed

    Arregui, Sergio; Sanz, Joaquín; Marinova, Dessislava; Martín, Carlos; Moreno, Yamir

    2016-01-01

    Over the past 60 years, the Mycobacterium bovis bacille Calmette-Guérin (BCG) has been used worldwide to prevent tuberculosis (TB). However, BCG has shown a very variable efficacy in different trials, offering a wide range of protection in adults against pulmonary TB. One of the most accepted hypotheses to explain these inconsistencies points to the existence of a pre-existing immune response to antigens that are common to environmental sources of mycobacterial antigens and Mycobacterium tuberculosis. Specifically, two different mechanisms have been hypothesized to explain this phenomenon: the masking and the blocking effects. According to masking hypothesis, previous sensitization confers some level of protection against TB that masks vaccine's effects. In turn, the blocking hypothesis postulates that previous immune response prevents vaccine taking of a new TB vaccine. In this work we introduce a series of models to discriminate between masking and blocking mechanisms and address their relative likelihood. We apply our methodology to the data reported by BCG-REVAC clinical trials, which were specifically designed for studying BCG efficacy variability. Our results yield estimates that are consistent with high levels of blocking (41% in Manaus -95% CI [14-68]- and 96% in Salvador -95% CI [52-100]-). Moreover, we also show that masking does not play any relevant role in modifying vaccine's efficacy either alone or in addition to blocking. The quantification of these effects around a plausible model constitutes a relevant step towards impact evaluation of novel anti-tuberculosis vaccines, which are susceptible of being affected by similar effects, especially if applied on individuals previously exposed to mycobacterial antigens.

  17. Anesthetic Efficacy of Bupivacaine Solutions in Inferior Alveolar Nerve Block

    PubMed Central

    Volpato, Maria Cristina; Ranali, José; Ramacciato, Juliana Cama; de Oliveira, Patrícia Cristine; Ambrosano, Glaúcia Maria Bovi; Groppo, Francisco Carlos

    2005-01-01

    The purpose of this study was to compare the anesthetic efficacy of 2 bupivacaine solutions. Twenty-two volunteers randomly received in a crossover, double-blinded manner 2 inferior alveolar nerve blocks with 1.8 mL of racemic bupivacaine and a mixture of 75% levobupivacaine and 25% dextrobupivacaine, both 0.5% and with 1 : 200,000 epinephrine. Before and after the injection, the first mandibular pre-molar was evaluated every 2 minutes until no response to the maximal output (80 reading) of the pulp tester and then again every 20 minutes. Data were analyzed using the Wilcoxon paired test and the paired t test. No differences were found between the solutions for onset and duration of pulpal anesthesia and duration of soft tissue anesthesia (P > .05). It was concluded that the solutions have similar anesthetic efficacy. PMID:16596912

  18. Cortical-basal ganglionic degeneration.

    PubMed

    Riley, D E; Lang, A E; Lewis, A; Resch, L; Ashby, P; Hornykiewicz, O; Black, S

    1990-08-01

    We report our experience with 15 patients believed to have cortical-basal ganglionic degeneration. The clinical picture is distinctive, comprising features referable to both cortical and basal ganglionic dysfunction. Characteristic manifestations include cortical sensory loss, focal reflex myoclonus, "alien limb" phenomena, apraxia, rigidity and akinesia, a postural-action tremor, limb dystonia, hyperreflexia, and postural instability. The asymmetry of symptoms and signs is often striking. Brain imaging may demonstrate greater abnormalities contralateral to the more affected side. Postmortem studies in 2 patients revealed the characteristic pathologic features of swollen, poorly staining (achromatic) neurons and degeneration of cerebral cortex and substantia nigra. Biochemical analysis of 1 brain showed a severe, diffuse loss of dopamine in the striatum. This condition is more frequent than previously believed, and the diagnosis can be predicted during life on the basis of clinical findings. However, as with other "degenerative" diseases of the nervous system, a definitive diagnosis of cortical-basal ganglionic degeneration requires confirmation by autopsy.

  19. Modulation of release of [3H]acetylcholine in the major pelvic ganglion of the rat.

    PubMed

    Somogyi, G T; de Groat, W C

    1993-06-01

    Cholinergic modulation of [3H]acetylcholine release evoked by electrical stimulation was studied in the rat major pelvic ganglion, which was prelabeled with [3H]choline. Acetylcholine (ACh) release was independent of the frequency of stimulation; 0.3 Hz produced the same volley output as 10 Hz. Tetrodotoxin (1 microM) or omission of Ca2+ from the medium abolished ACh release. The M1 receptor agonist (4-hydroxy-2-butynyl)-1-trimethylammonium m-chlorocarbanilate chloride (McN-A 343, 50 microM) increased release (by 136%), whereas the M2 muscarinic agonist oxotremorine (1 microM) decreased ACh release (by 22%). The muscarinic antagonists, atropine (1 microM) or pirenzepine (M1 selective, 1 microM), did not change ACh release. However, pirenzepine (1 microM) blocked the facilitatory effect of McN-A 343, and atropine (1 microM) blocked the inhibitory effect of oxotremorine. The cholinesterase inhibitor physostigmine (1-5 microM), the nicotinic agonist 1,1-dimethyl-4-phenylpiperazinium (DMPP, 10 microM), and the nicotinic antagonist D-tubocurarine (50 microM) did not change ACh release. 4-Aminopyridine, a K+ channel blocker, significantly increased the release (by 146%). Seven days after decentralization of the major pelvic ganglion, the evoked release of ACh was abolished. It is concluded that release of ACh occurs from the preganglionic nerve terminals rather than from the cholinergic cell bodies and is not modulated by actions of endogenous ACh on either muscarinic or nicotinic autoreceptors. These data confirm and extend previous electrophysiological findings indicating that synapses in the major pelvic ganglion have primarily a relay function.

  20. Simultaneous cell death in the trigeminal ganglion and in ganglion neurons present in the oculomotor nerve of the bovine fetus.

    PubMed Central

    Bortolami, R; Lucchi, M L; Callegari, E; Barazzoni, A M; Costerbosa, G L; Scapolo, P A

    1990-01-01

    A well-developed ganglion and scattered ganglion cells are present in the intracranial portion of the oculomotor nerve during the first half of fetal life in the ox. In the second half of fetal life a dramatic reduction of the ganglion cells associated with the oculomotor nerve occurs because of spontaneous cell death. Concomitantly, the same phenomenon of cell death is found in the trigeminal ganglion, especially in its rostromedial portion. Free degenerating perikarya can be found in the cavernous sinus. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 PMID:2384329

  1. Vascular Leiomyoma and Geniculate Ganglion

    PubMed Central

    Magliulo, Giuseppe; Iannella, Giannicola; Valente, Michele; Greco, Antonio; Appiani, Mario Ciniglio

    2013-01-01

    Objectives Discussion of a rare case of angioleiomyoma involving the geniculate ganglion and the intratemporal facial nerve segment and its surgical treatment. Design Case report. Setting Presence of an expansive lesion englobing the geniculate ganglion without any lesion to the cerebellopontine angle. Participants A 45-year-old man with a grade III facial paralysis according to the House-Brackmann scale of evaluation. Main Outcomes Measure Surgical pathology, radiologic appearance, histological features, and postoperative facial function. Results Removal of the entire lesion was achieved, preserving the anatomic integrity of the nerve; no nerve graft was necessary. Postoperative histology and immunohistochemical studies revealed features indicative of solid vascular leiomyoma. Conclusion Angioleiomyoma should be considered in the differential diagnosis of geniculate ganglion lesions. Optimal postoperative facial function is possible only by preserving the anatomical and functional integrity of the facial nerve. PMID:23943721

  2. Acetylcholine release from the rabbit isolated superior cervical ganglion preparation.

    PubMed

    Dawes, P M; Vizi, E S

    1973-06-01

    1. The rabbit isolated superior cervical ganglion preparation has been used to measure the release of acetylcholine from the tissue at rest and during preganglionic nerve stimulation.2. In the presence of physostigmine, the resting release of acetylcholine was 0.13 +/- 0.01 (nmol/g)/min (10 experiments) and that during stimulation with 300 shocks at 10 Hz was 3.1 +/- 0.4 (pmol/g)/volley in 4 experiments (means +/- S.E.M.). The volley output was independent of the frequency of stimulation over the range 1 to 10 Hz but was higher at 0.3 Hz.3. Tetrodotoxin, 0.8 muM, had no effect on the resting release of acetylcholine but reduced the stimulated release below detectable levels (2 pmol). Lowering the temperature of the bathing fluid to 5 degrees C reduced to below detectable levels both the resting release and that produced by nerve stimulation.4. The resting release of acetylcholine was increased by a potassium-rich (49.4 mM K(+)) bathing solution and by replacing the sodium chloride in the solution with lithium chloride (113 mM Li(+)).5. (-)-Noradrenaline bitartrate, 3 muM, and (+/-)-adrenaline bitartrate, 1.5 muM, reduced by 70% the output of acetylcholine induced by stimulation at 0.3 Hz, but failed to reduce the resting release or that evoked by stimulation at 10 Hz. The inhibition was reversed by phentolamine.6. It is concluded that the rabbit superior cervical ganglion in vitro is a suitable preparation for studying transmitter release and that the ganglion blocking effect of catecholamines is due to a reduction in transmitter release.

  3. Efficacy of Exclusive Lingual Nerve Block versus Conventional Inferior Alveolar Nerve Block in Achieving Lingual Soft-tissue Anesthesia.

    PubMed

    Balasubramanian, Sasikala; Paneerselvam, Elavenil; Guruprasad, T; Pathumai, M; Abraham, Simin; Krishnakumar Raja, V B

    2017-01-01

    The aim of this randomized clinical trial was to assess the efficacy of exclusive lingual nerve block (LNB) in achieving selective lingual soft-tissue anesthesia in comparison with conventional inferior alveolar nerve block (IANB). A total of 200 patients indicated for the extraction of lower premolars were recruited for the study. The samples were allocated by randomization into control and study groups. Lingual soft-tissue anesthesia was achieved by IANB and exclusive LNB in the control and study group, respectively. The primary outcome variable studied was anesthesia of ipsilateral lingual mucoperiosteum, floor of mouth and tongue. The secondary variables assessed were (1) taste sensation immediately following administration of local anesthesia and (2) mouth opening and lingual nerve paresthesia on the first postoperative day. Data analysis for descriptive and inferential statistics was performed using SPSS (IBM SPSS Statistics for Windows, Version 22.0, Armonk, NY: IBM Corp. Released 2013) and a P < 0.05 was considered statistically significant. In comparison with the control group, the study group (LNB) showed statistically significant anesthesia of the lingual gingiva of incisors, molars, anterior floor of the mouth, and anterior tongue. Exclusive LNB is superior to IAN nerve block in achieving selective anesthesia of lingual soft tissues. It is technically simple and associated with minimal complications as compared to IAN block.

  4. Efficacy of Exclusive Lingual Nerve Block versus Conventional Inferior Alveolar Nerve Block in Achieving Lingual Soft-tissue Anesthesia

    PubMed Central

    Balasubramanian, Sasikala; Paneerselvam, Elavenil; Guruprasad, T; Pathumai, M; Abraham, Simin; Krishnakumar Raja, V. B.

    2017-01-01

    Objective: The aim of this randomized clinical trial was to assess the efficacy of exclusive lingual nerve block (LNB) in achieving selective lingual soft-tissue anesthesia in comparison with conventional inferior alveolar nerve block (IANB). Materials and Methods: A total of 200 patients indicated for the extraction of lower premolars were recruited for the study. The samples were allocated by randomization into control and study groups. Lingual soft-tissue anesthesia was achieved by IANB and exclusive LNB in the control and study group, respectively. The primary outcome variable studied was anesthesia of ipsilateral lingual mucoperiosteum, floor of mouth and tongue. The secondary variables assessed were (1) taste sensation immediately following administration of local anesthesia and (2) mouth opening and lingual nerve paresthesia on the first postoperative day. Results: Data analysis for descriptive and inferential statistics was performed using SPSS (IBM SPSS Statistics for Windows, Version 22.0, Armonk, NY: IBM Corp. Released 2013) and a P < 0.05 was considered statistically significant. In comparison with the control group, the study group (LNB) showed statistically significant anesthesia of the lingual gingiva of incisors, molars, anterior floor of the mouth, and anterior tongue. Conclusion: Exclusive LNB is superior to IAN nerve block in achieving selective anesthesia of lingual soft tissues. It is technically simple and associated with minimal complications as compared to IAN block. PMID:29264294

  5. The transcription factor C/EBPβ in the dorsal root ganglion contributes to peripheral nerve trauma–induced nociceptive hypersensitivity

    PubMed Central

    Li, Zhisong; Mao, Yuanyuan; Liang, Lingli; Wu, Shaogen; Yuan, Jingjing; Mo, Kai; Cai, Weihua; Mao, Qingxiang; Cao, Jing; Bekker, Alex; Zhang, Wei; Tao, Yuan-Xiang

    2017-01-01

    Changes in gene transcription in the dorsal root ganglion (DRG) after nerve trauma contribute to the genesis of neuropathic pain. We report that peripheral nerve trauma caused by chronic constriction injury (CCI) increased the abundance of the transcription factor C/EBPβ (CCAAT/enhancer binding protein β) in the DRG. Blocking this increase mitigated the development and maintenance of CCI-induced mechanical, thermal, and cold pain hypersensitivities without affecting basal responses to acute pain and locomotor activity. Conversely, mimicking this increase produced hypersensitivity to mechanical, thermal, or cold pain. In the ipsilateral DRG, C/EBPβ promoted a decrease in the abundance of the voltage-gated potassium channel subunit Kv1.2 and µ opioid receptor (MOR) at the mRNA and protein levels, which would be predicted to increase excitability in the ipsilateral DRG neurons and reduce the efficacy of morphine analgesia. These effects required C/EPBβ-mediated transcriptional activation of Ehmt2 (euchromatic histonelysine N-methyltransferase 2), which encodes G9a, an epigenetic silencer of the genes encoding Kv1.2 and MOR. Blocking the increase in C/EBPβ in the DRG improved morphine analgesia after CCI. These results suggest that C/EBPβ is an endogenous initiator of neuropathic pain and could be a potential target for the prevention and treatment of this disorder. PMID:28698219

  6. Short-wavelength cone-opponent retinal ganglion cells in mammals.

    PubMed

    Marshak, David W; Mills, Stephen L

    2014-03-01

    In all of the mammalian species studied to date, the short-wavelength-sensitive (S) cones and the S-cone bipolar cells that receive their input are very similar, but the retinal ganglion cells that receive synapses from the S-cone bipolar cells appear to be quite different. Here, we review the literature on mammalian retinal ganglion cells that respond selectively to stimulation of S-cones and respond with opposite polarity to longer wavelength stimuli. There are at least three basic mechanisms to generate these color-opponent responses, including: (1) opponency is generated in the outer plexiform layer by horizontal cells and is conveyed to the ganglion cells via S-cone bipolar cells, (2) inputs from bipolar cells with different cone inputs and opposite response polarity converge directly on the ganglion cells, and (3) inputs from S-cone bipolar cells are inverted by S-cone amacrine cells. These are not mutually exclusive; some mammalian ganglion cells that respond selectively to S-cone stimulation seem to utilize at least two of them. Based on these findings, we suggest that the small bistratified ganglion cells described in primates are not the ancestral type, as proposed previously. Instead, the known types of ganglion cells in this pathway evolved from monostratified ancestral types and became bistratified in some mammalian lineages.

  7. Efficacy of pectoral nerve block versus thoracic paravertebral block for postoperative analgesia after radical mastectomy: a randomized controlled trial.

    PubMed

    Kulhari, S; Bharti, N; Bala, I; Arora, S; Singh, G

    2016-09-01

    Pectoral nerve (PecS) block is a recently introduced technique for providing surgical anaesthesia and postoperative analgesia during breast surgery. The present study was planned to compare the efficacy and safety of ultrasound-guided PecS II block with thoracic paravertebral block (TPVB) for postoperative analgesia after modified radical mastectomy. Forty adult female patients undergoing radical mastectomy were randomly allocated into two groups. Group 1 patients received a TPVB with ropivacaine 0.5%, 25 ml, whereas Group 2 patents received a PecS II block using same volume of ropivacaine 0.5% before induction of anaesthesia. Patient-controlled morphine analgesia was used for postoperative pain relief. The duration of analgesia was significantly prolonged in patients receiving the PecS II block compared with TPVB [mean (sd), 294.5 (52.76) vs 197.5 (31.35) min in the PecS II and TPVB group, respectively; P<0.0001]. The 24 h morphine consumption was also less in the PecS II block group [mean (sd), 3.90 (0.79) vs 5.30 (0.98) mg in PecS II and TPVB group, respectively; P<0.0001]. Postoperative pain scores were lower in the PecS II group compared with the TVPB group in the initial 2 h after surgery [median (IQR), 2 (2-2.5) vs 4 (3-4) in the Pecs II and TPVB group, respectively; P<0.0001]. Seventeen patients in the PecS II block group had T2 dermatomal spread compared with four patients in the TPVB group (P<0.001). No block-related complication was recorded. We found that the PecS II block provided superior postoperative analgesia than the TPVB in patients undergoing modified radical mastectomy without causing any adverse effect. CTRI/2014/06/004692. © The Author 2016. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells

    NASA Astrophysics Data System (ADS)

    Gray, Daniel C.; Merigan, William; Wolfing, Jessica I.; Gee, Bernard P.; Porter, Jason; Dubra, Alfredo; Twietmeyer, Ted H.; Ahamd, Kamran; Tumbar, Remy; Reinholz, Fred; Williams, David R.

    2006-08-01

    The ability to resolve single cells noninvasively in the living retina has important applications for the study of normal retina, diseased retina, and the efficacy of therapies for retinal disease. We describe a new instrument for high-resolution, in vivo imaging of the mammalian retina that combines the benefits of confocal detection, adaptive optics, multispectral, and fluorescence imaging. The instrument is capable of imaging single ganglion cells and their axons through retrograde transport in ganglion cells of fluorescent dyes injected into the monkey lateral geniculate nucleus (LGN). In addition, we demonstrate a method involving simultaneous imaging in two spectral bands that allows the integration of very weak signals across many frames despite inter-frame movement of the eye. With this method, we are also able to resolve the smallest retinal capillaries in fluorescein angiography and the mosaic of retinal pigment epithelium (RPE) cells with lipofuscin autofluorescence.

  9. Reactive oxygen species alters the electrophysiological properties and raises [Ca2+]i in intracardiac ganglion neurons

    PubMed Central

    Dyavanapalli, Jhansi; Rimmer, Katrina

    2010-01-01

    We have investigated the effects of the reactive oxygen species (ROS) donors hydrogen peroxide (H2O2) and tert-butyl hydroperoxide (t-BHP) on the intrinsic electrophysiological characteristics: ganglionic transmission and resting [Ca2+]i in neonate and adult rat intracardiac ganglion (ICG) neurons. Intracellular recordings were made using sharp microelectrodes filled with either 0.5 M KCl or Oregon Green 488 BAPTA-1, allowing recording of electrical properties and measurement of [Ca2+]i. H2O2 and t-BHP both hyperpolarized the resting membrane potential and reduced membrane resistance. In adult ICG neurons, the hyperpolarizing action of H2O2 was reversed fully by Ba2+ and partially by tetraethylammonium, muscarine, and linopirdine. H2O2 and t-BHP reduced the action potential afterhyperpolarization (AHP) amplitude but had no impact on either overshoot or AHP duration. ROS donors evoked an increase in discharge adaptation to long depolarizing current pulses. H2O2 blocked ganglionic transmission in most ICG neurons but did not alter nicotine-evoked depolarizations. By contrast, t-BHP had no significant action on ganglionic transmission. H2O2 and t-BHP increased resting intracellular Ca2+ levels to 1.6 ( ± 0.6, n = 11, P < 0.01) and 1.6 ( ± 0.3, n = 8, P < 0.001), respectively, of control value (1.0, ∼60 nM). The ROS scavenger catalase prevented the actions of H2O2, and this protection extended beyond the period of application. Superoxide dismutase partially shielded against the action of H2O2, but this was limited to the period of application. These data demonstrate that ROS decreases the excitability and ganglionic transmission of ICG neurons, attenuating parasympathetic control of the heart. PMID:20445155

  10. Piriformis ganglion: An uncommon cause of sciatica.

    PubMed

    Park, J H; Jeong, H J; Shin, H K; Park, S J; Lee, J H; Kim, E

    2016-04-01

    Sciatica can occur due to a spinal lesion, intrapelvic tumor, diabetic neuropathy, and rarely piriformis syndrome. The causes of piriformis syndrome vary by a space-occupying lesion. A ganglionic cyst can occur in various lesions in the body but seldom around the hip joint. In addition, sciatica due to a ganglionic cyst around the hip joint has been reported in one patient in Korea who underwent surgical treatment. We experienced two cases of sciatica from a piriformis ganglionic cyst and we report the clinical characterics and progress after non-operative treatment by ultrasonography-guided aspiration. The two cases were diagnosed by magnetic resonance imaging and were treated by ultrasonography-guided aspiration. We followed the patients for more than 6months. The symptoms of piriformis syndrome from the ganglion improved following aspiration and this conservative treatment is a treatment method that can be used without extensive incision or cyst excision. Level IV historical case. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. Incomplete segregation of endorgan-specific vestibular ganglion cells in mice and rats

    NASA Technical Reports Server (NTRS)

    Maklad, A.; Fritzsch, B.

    1999-01-01

    The endorgan-specific distribution of vestibular ganglion cells was studied in neonatal and postnatal rats and mice using indocarbocyanine dye (DiI) and dextran amines for retrograde and anterograde labeling. Retrograde DiI tracing from the anterior vertical canal labeled neurons scattered throughout the whole superior vestibular ganglion, with denser labeling at the dorsal and central regions. Horizontal canal neurons were scattered along the dorsoventral axis with more clustering toward the dorsal and ventral poles of this axis. Utricular ganglion cells occupied predominantly the central region of the superior vestibular ganglion. This utricular population overlapped with both the anterior vertical and horizontal canals' ganglion cells. Posterior vertical canal neurons were clustered in the posterior part of the inferior vestibular ganglion. The saccular neurons were distributed in the two parts of the vestibular ganglion, the superior and inferior ganglia. Within the inferior ganglion, the saccular neurons were clustered in the anterior part. In the superior ganglion, the saccular neurons were widely scattered throughout the whole ganglion with more numerous neurons at the posterior half. Small and large neurons were labeled from all endorgans. Examination of the fiber trajectory within the superior division of the vestibular nerve showed no clear lamination of the fibers innervating the different endorgans. These results demonstrate an overlapping pattern between the different populations within the superior ganglion, while in the inferior ganglion, the posterior canal and saccular neurons show tighter clustering but incomplete segregation. This distribution implies that the ganglion cells are assigned for their target during development in a stochastic rather than topographical fashion.

  12. Calcium channels in solitary retinal ganglion cells from post-natal rat.

    PubMed Central

    Karschin, A; Lipton, S A

    1989-01-01

    -Conotoxin fraction GVIA (omega-CgTX VIA), a peptide from the venom of the snail Conus geographus, produces a readily reversible blockade of all components of the calcium current in these central mammalian neurones. This finding is in contrast to that of other preparations in which this toxin is responsible for an ephemeral block of T-current but a long-lasting block of other components of calcium current. 5. In summary, at least two components of calcium current with discrete underlying unitary events are present in post-natal retinal ganglion cells from rat. One component closely resembles the T or transient current observed in other cell types.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:2559971

  13. Acetylcholine release from the rabbit isolated superior cervical ganglion preparation

    PubMed Central

    Dawes, P. M.; Vizi, E. S.

    1973-01-01

    1. The rabbit isolated superior cervical ganglion preparation has been used to measure the release of acetylcholine from the tissue at rest and during preganglionic nerve stimulation. 2. In the presence of physostigmine, the resting release of acetylcholine was 0·13 ± 0·01 (nmol/g)/min (10 experiments) and that during stimulation with 300 shocks at 10 Hz was 3·1 ± 0·4 (pmol/g)/volley in 4 experiments (means ± S.E.M.). The volley output was independent of the frequency of stimulation over the range 1 to 10 Hz but was higher at 0·3 Hz. 3. Tetrodotoxin, 0·8 μM, had no effect on the resting release of acetylcholine but reduced the stimulated release below detectable levels (2 pmol). Lowering the temperature of the bathing fluid to 5° C reduced to below detectable levels both the resting release and that produced by nerve stimulation. 4. The resting release of acetylcholine was increased by a potassium-rich (49·4 mM K+) bathing solution and by replacing the sodium chloride in the solution with lithium chloride (113 mM Li+). 5. (-)-Noradrenaline bitartrate, 3 μM, and (±)-adrenaline bitartrate, 1·5 μM, reduced by 70% the output of acetylcholine induced by stimulation at 0·3 Hz, but failed to reduce the resting release or that evoked by stimulation at 10 Hz. The inhibition was reversed by phentolamine. 6. It is concluded that the rabbit superior cervical ganglion in vitro is a suitable preparation for studying transmitter release and that the ganglion blocking effect of catecholamines is due to a reduction in transmitter release. PMID:4733726

  14. Light-evoked currents in retinal ganglion cells from dystrophic RCS rats.

    PubMed

    Liu, Kang; Wang, Yi; Yin, Zhengqin; Weng, Chuanhuang

    2013-01-01

    To study the electrophysiological properties of the light-evoked currents in ganglion cells in situations of retinal degeneration. We investigated light-evoked currents in ganglion cells by performing whole-cell patch-clamp recordings from ganglion cells using a retina-stretched preparation from Royal College of Surgeons (RCS) rats, a model of retinal degeneration and congenic controls at different ages. Pharmacological inhibitors of the AMPA receptor (NBQX), GABA receptor (BMI), and sodium channels (TTX) were used to identify the components of the light-evoked currents in ON, OFF and ON-OFF retinal ganglion cells. We found that the light-evoked currents in ganglion cells from control rats were inhibited by NBQX, BMI and TTX, suggesting that AMPA receptors, GABA receptors and sodium channels contribute to these currents in ganglion cells. However, only AMPA receptor-mediated currents were recorded in RCS rats. Light-evoked inward currents were absent in the majority of ganglion cells from RCS rats, particularly at the later stages of retinal degeneration. At earlier stages of retinal degeneration, we found that both the timing and amplitude of light-evoked currents are significantly different in ganglion cells from RCS and control rats. Our study furthers the understanding of the electrophysiological characteristics of retinal ganglion cells during retinal degeneration, and provides insight into the optimal timing for the treatment of retinal degeneration. Copyright © 2013 S. Karger AG, Basel.

  15. Morphological relationship between the superior cervical ganglion and cervical nerves in Japanese cadaver donors.

    PubMed

    Mitsuoka, Kazuyuki; Kikutani, Takeshi; Sato, Iwao

    2017-02-01

    There are various communications between the superior cervical ganglion (SCG) and the vagus and glossopharyngeal nerves. However, little information exists concerning the origin of these sympathetic ganglion branches at the superior, middle, and inferior regions of the human SCG. The aim of this study was to describe the human SCG in a morphometric manner with the communication with cranial and cervical nerves and supply. This study characterized 72 SCG samples from 54 elderly Japanese human cadavers (30 males, 24 females; 65-100 years old). The SCG size (length, width, and thickness) and location were measured from the jugular foramen. We also defined the communication branches of the SCG to the vagus, glossopharyngeal, cervical, and accessory nerves at three regions (superior, middle, and inferior regions) of the SCG. Finally, we examined the arrangement and origin of the branch communications in detail and confirmed our observations, using histological sections of the SCG. The SCG in all cadaver donors was detected at the C2 and C3 vertebra levels. The number of SCG branches supplied the communicating branches, such as the carotid branch, communicating branch of the vagus nerve, and glossopharyngeal nerve, were frequently detected in the superior region of the SCG (χ 2  = 587.72, df = 26, p  <   .001). The number of ganglion cells with a large number of neurons per unit area (1 mm 2 ) was most often found in the middle region with shrunken neurons of the SCG compared with other regions. The communication branches of the SCG are mainly connected to the vagus and glossopharyngeal nerves. Characterizing these branches can provide useful data for head and neck ganglion block and surgical treatments.

  16. Bioelectronic block of paravertebral sympathetic nerves mitigates post-myocardial infarction ventricular arrhythmias.

    PubMed

    Chui, Ray W; Buckley, Una; Rajendran, Pradeep S; Vrabec, Tina; Shivkumar, Kalyanam; Ardell, Jeffrey L

    2017-11-01

    Autonomic dysfunction contributes to induction of ventricular tachyarrhythmia (VT). To determine the efficacy of charge-balanced direct current (CBDC), applied to the T1-T2 segment of the paravertebral sympathetic chain, on VT inducibility post-myocardial infarction (MI). In a porcine model, CBDC was applied in acute animals (n = 7) to optimize stimulation parameters for sympathetic blockade and in chronic MI animals (n = 7) to evaluate the potential for VTs. Chronic MI was induced by microsphere embolization of the left anterior descending coronary artery. At termination, in anesthetized animals and following thoracotomy, an epicardial sock array was placed over both ventricles and a quadripolar carousel electrode positioned underlying the right T1-T2 paravertebral chain. In acute animals, the efficacy of CBDC carousel (CBDCC) block was assessed by evaluating cardiac function during T2 paravertebral ganglion stimulation with and without CBDCC. In chronic MI animals, VT inducibility was assessed by extrasystolic (S1-S2) stimulations at baseline and under >66% CBDCC blockade of T2-evoked sympathoexcitation. CBDCC demonstrated a current-dependent and reversible block without impacting basal cardiac function. VT was induced at baseline in all chronic MI animals. One animal died after baseline induction. Of the 6 remaining animals, only 1 was reinducible with simultaneous CBDCC application (P < .002 from baseline). The ventricular effective refractory period (VERP) was prolonged with CBDCC (323 ± 26 ms) compared to baseline (271 ± 32 ms) (P < .05). Axonal block of the T1-T2 paravertebral chain with CBDCC reduced VT in a chronic MI model. CBDCC prolonged VERP, without altering baseline cardiac function, resulting in improved electrical stability. Copyright © 2017 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  17. Pine Oil Effects on Chemical and Thermal Injury in Mice and Cultured Mouse Dorsal Root Ganglion Neurons

    PubMed Central

    Clark, SP; Bollag, WB; Westlund, KN; Ma, F; Falls, G; Xie, D; Johnson, M; Isales, CM; Bhattacharyya, MH

    2013-01-01

    A commercial resin-based pine oil derived from Pinus palustris and Pinus elliottii was the major focus of this investigation. Extracts of pine resins, needles and bark are folk medicines commonly used to treat skin ailments, including burns. The American Burn Association estimates that 500,000 people with burn injuries receive medical treatment each year; one-half of US burn victims are children, most with scald burns. This systematic study was initiated as follow-up to personal anecdotal evidence acquired over more than 10 years by MH Bhattacharyya regarding pine oil’s efficacy for treating burns. The results demonstrate that pine oil counteracted dermal inflammation in both a mouse ear model of contact irritant-induced dermal inflammation and a 2nd degree scald burn to the mouse paw. Furthermore, pine oil significantly counteracted the tactile allodynia and soft tissue injury caused by the scald burn. In mouse dorsal root ganglion (DRG) neuronal cultures, pine oil added to the medium blocked ATP-activated, but not capsaicin-activated, pain pathways, demonstrating specificity. These results together support the hypothesis that a pine-oil-based treatment can be developed to provide effective in-home care for 2nd degree burns. PMID:23595692

  18. The effects of ropivacaine hydrochloride on the expression of CaMK II mRNA in the dorsal root ganglion neurons.

    PubMed

    Wen, Xianjie; Lai, Xiaohong; Li, Xiaohong; Zhang, Tao; Liang, Hua

    2016-12-01

    In this study, we identified the subtype of Calcium/calmodulin-dependent protein kinase II (CaMK II) mRNA in dorsal root ganglion neurons and observed the effects of ropivacaine hydrochloride in different concentration and different exposure time on the mRNA expression. Dorsal root ganglion neurons were isolated from the SD rats and cultured in vitro. The mRNA of the CaMK II subtype in dorsal root ganglion neurons were detected by real-time PCR. As well as, the dorsal root ganglion neurons were treated with ropivacaine hydrochloride in different concentration (1mM,2mM, 3mM and 4mM) for the same exposure time of 4h, or different exposure time (0h,2h,3h,4h and 6h) at the same concentration(3mM). The changes of the mRNA expression of the CaMK II subtype were observed with real-time PCR. All subtype mRNA of the CaMK II, CaMK II α , CaMK II β , CaMK II δ , CaMK II γ , can be detected in dorsal root ganglion neurons. With the increased of the concentration and exposure time of the ropivacaine hydrochloride, all the subtype mRNA expression increased. Ropivacaine hydrochloride up-regulate the CaMK II β , CaMK II δ , CaMK II g mRNA expression with the concentration and exposure time increasing. The nerve blocking or the neurotoxicity of the ropivacaine hydrochloride maybe involved with CaMK II. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  19. Palatability and efficacy of bromadiolone rodenticide block bait previously exposed to environmental conditions.

    PubMed

    Nakagawa, Lia; de Masi, Eduardo; Narciso, Emerson; Neto, Hildebrando Montenegro; Papini, Solange

    2015-10-01

    In São Paulo city, rodent infestation is considered to be a serious public health problem and is the object of a municipal rodent control programme. One of the most important routine methods involves baiting in sewers, using bromadiolone block bait in a pulsed baiting strategy. It has been observed that, after each pulse, bait is not always consumed, and its appearance is altered, which has led to concerns about efficacy. We assessed whether exposure to sewer conditions influences the palatability and efficacy of rodenticide baits to Norway rats (Rattus norvegicus). Baits containing bromadiolone as active ingredient were placed in sewers, removed after 30 days and offered to rats in a two-choice food trial and a no-choice food trial. The appearance of the rodenticide baits changed after 30 days exposure to sewer conditions, but they continued to be palatable and effective against rats. The level of mortality was considered to be satisfactory, 75% in the two-choice food trial and 100% in the no-choice food trial. Results support the reuse of rodenticide block bait in rodent control. It seems to be justified to continue using/reuse baits even when their appearance has changed after 30 days exposure in sewer systems. © 2014 Society of Chemical Industry.

  20. Can nerve regeneration on an artificial nerve conduit be enhanced by ethanol-induced cervical sympathetic ganglion block?

    PubMed Central

    Sunada, Katsuhisa; Shigeno, Keiji; Nakada, Akira; Honda, Michitaka; Nakamura, Tatsuo

    2017-01-01

    This study aimed to determine whether nerve regeneration by means of an artificial nerve conduit is promoted by ethanol-induced cervical sympathetic ganglion block (CSGB) in a canine model. This study involved two experiments—in part I, the authors examined the effect of CSGB by ethanol injection on long-term blood flow to the orofacial region; part II involved evaluation of the effect of CSGB by ethanol injection on inferior alveolar nerve (IAN) repair using polyglycolic acid-collagen tubes. In part I, seven Beagles were administered left CSGB by injection of 99.5% ethanol under direct visualization by means of thoracotomy, and changes in oral mucosal blood flow in the mental region and nasal skin temperature were evaluated. The increase in blood flow on the left side lasted for 7 weeks, while the increase in average skin temperature lasted 10 weeks on the left side and 3 weeks on the right. In part II, fourteen Beagles were each implanted with a polyglycolic acid-collagen tube across a 10-mm gap in the left IAN. A week after surgery, seven of these dogs were administered CSGB by injection of ethanol. Electrophysiological findings at 3 months after surgery revealed significantly higher sensory nerve conduction velocity and recovery index (ratio of left and right IAN peak amplitudes) after nerve regeneration in the reconstruction+CSGB group than in the reconstruction-only group. Myelinated axons in the reconstruction+CSGB group were greater in diameter than those in the reconstruction-only group. Administration of CSGB with ethanol resulted in improved nerve regeneration in some IAN defects. However, CSGB has several physiological effects, one of which could possibly be the long-term increase in adjacent blood flow. PMID:29220373

  1. Morphological patterns in children with ganglion related enteric neuronal abnormalities.

    PubMed

    Henna, Nausheen; Nagi, Abdul H; Sheikh, Muhammad A; Shaukat, Mahmood

    2011-01-01

    Hirschsprung's Disease (HD) is a developmental disorder of enteric nervous system characterised by the absence of ganglion cells in submucosal (Meissner's) and myenteric (Aurbach's) plexuses of distal bowel. The purpose of the present study was to observe and report the morphological patterns of ganglion related enteric neuronal abnormalities in children presented with clinical features of (HD) in a Pakistani population. A total of 92 patients with clinical presentation of HD were enrolled between March 2009 and October 2009. Among them, 8 were excluded according to the exclusion criteria. After detailed history and physical examination, paraffin embedded H and E stained sections were prepared from the serial open biopsies from colorectum. The data was analysed using SPSS-17. Frequencies and percentages are given for qualitative variables. Non-parametric Binomial Chi-Square test was applied to observe within group associations and p<0.05 was considered statistically significant. Among 84 patients, 13 (15.5%) proved to be normally ganglionic whereas 71 (84.5%) showed ganglion related enteric neuronal abnormalities namely isolated hypoganglionosis 9 (12.7%), immaturity of ganglion cells 9 (12.7%), isolated hyperganglionosis (IND Type B) 2 (2.8%) and Hirschsprung's disease 51 (71.8%). Among HD group, 34 (66.7%) belonged to isolated form and 17 (33.3%) showed combined ganglion related abnormalities. Hirschsprung's disease is common in Pakistani population, followed by hypoganglionosis, immaturity of ganglion cells and IND type B. The presence of hypertrophic nerve fibres was significant in HD, hyperganglionosis and hypoganglionosis, whereas, no hypertrophic nerve fibres were appreciated in immaturity of ganglion cell group.

  2. Relative Efficacy of Ultrasound-guided Ilioinguinal-iliohypogastric Nerve Block versus Transverse Abdominis Plane Block for Postoperative Analgesia following Lower Segment Cesarean Section: A Prospective, Randomized Observer-blinded Trial.

    PubMed

    Kiran, L Vamsee; Sivashanmugam, T; Kumar, V R Hemanth; Krishnaveni, N; Parthasarathy, S

    2017-01-01

    Quality of postoperative analgesia after cesarean section makes difference to mother in child bonding, early ambulation, and discharge. Ilioinguinal iliohypogastric (ILIH) and transverse abdominis plane (TAP) block had been tried to reduce the opioid analgesics, but the relative efficacy is unknown. Hence, this study was designed to compare the efficacy of these two regional analgesic techniques in sparing postoperative rescue analgesic requirement following lower segment cesarean section (LSCS). Sixty patients who underwent LSCS were randomly allocated into two groups to receive either US-guided TAP block or ILIH nerve block using sealed envelope technique at the end of the surgery. In the postoperative ward, whenever patient complained of pain, pain nurse in-charge administered the rescue analgesics as per the study protocol. A blinded observer visited the patient at 0, 2, 4, 6, 8, 10, 12, and 24 h postoperative intervals and recorded the quality of pain relief and the amount of rescue analgesic consumed. All patients in both the study groups required one dose of rescue analgesics in the form of injection diclofenac sodium 50 mg intravenously but subsequently 57% of patients did not require any further analgesics till 24 h in the TAP block group whereas in ILIH group, only 13% did not require further analgesics ( P = 0.00), correspondingly the cumulative tramadol dose was significantly higher at all the time interval in the ILIH group when compared to the TAP group. Quality of postoperative analgesia provided by TAP block was superior to ILIH block following LSCS.

  3. Comparative anatomy of the accessory ciliary ganglion in mammals.

    PubMed

    Kuchiiwa, S; Kuchiiwa, T; Suzuki, T

    1989-01-01

    The orbits of 13 mammalian species (pig, sika deer, domestic sheep, horse, cat, fox, racoon dog, marten, rat, rabbit, crab-eating macaque, japanese macaque and man) were stained with silver nitrate and dissected under a dissecting microscope with special attention to the presence and location of the accessory ciliary ganglion. Some preparations were stained with thionin and examined as whole-mounts in a transmission microscope. The accessory ciliary ganglion was present in all 13 species, although the number and degree of development varied greatly from species to species. The accessory ciliary ganglion could be readily differentiated from the main ciliary ganglion in the following respects: it was located on the short ciliary nerve, and it had no root derived directly from the inferior trunk of the oculomotor nerve and it never attaches to this nerve. In many species, ganglion cells were also scattered in the short ciliary nerves in the stained whole preparations. In a few species, there were one or more small ganglia on the nerve to the inferior oblique muscle.

  4. Stellate ganglion block used to treat symptoms associated with combat-related post-traumatic stress disorder: a case series of 166 patients.

    PubMed

    Mulvaney, Sean W; Lynch, James H; Hickey, Matthew J; Rahman-Rawlins, Tabassum; Schroeder, Matthew; Kane, Shawn; Lipov, Eugene

    2014-10-01

    Report the successful use of stellate ganglion blocks (SGBs) in 166 active duty service members with multiple combat deployments experiencing anxiety symptoms associated with post-traumatic stress disorder (PTSD). Successful treatment of PTSD symptoms with SGB has been reported previously. This is the largest published case series evaluating SGB with a minimum of 3 months follow-up. Following clinical interview including administration of the PTSD Checklist (PCL), 166 service members with symptoms of PTSD elected to receive a SGB. All patients received a SGB on the right side at the level of the sixth cervical vertebrae (C6). The PCL was administered the day before treatment to establish a baseline, repeated 1 week later, and then monthly out to 3 months. A positive response was considered to be an improvement in the PCL score by 10 or greater points. Follow-up PCL scores from 3 to 6 months were obtained and analyzed for 166 patients. In a military population with multiple combat deployments, over 70% of the patients treated had a clinically significant improvement in their PCL score which persisted beyond 3 to 6 months postprocedure. Selective blockade of the right cervical sympathetic chain at the C6 level is a safe and minimally invasive procedure that may provide durable relief from anxiety symptoms associated with PTSD. Reprint & Copyright © 2014 Association of Military Surgeons of the U.S.

  5. [Sphenopalatine ganglion pulsed radiofrequency treatment in patients suffering from chronic face and head pain].

    PubMed

    Akbas, Mert; Gunduz, Emel; Sanli, Suat; Yegin, Arif

    2016-01-01

    There are various facial pain syndromes including trigeminal neuralgia, trigeminal neuropathic pain and atypical facial pain syndromes. Effectiveness of the pulsed radiofrequency in managing various pain syndromes has been clearly demonstrated. There are a limited number of studies on the pulsed radiofrequency treatment for sphenopalatine ganglion in patients suffering from face and head pain. The purpose of this study is to evaluate the satisfaction of pulsed radiofrequency treatment at our patients retrospectively. Infrazygomatic approach was used for the pulsed radiofrequency of the sphenopalatine ganglion under fluoroscopic guidance. After the tip of the needle reached the target point, 0.25-0.5ms pulse width was applied for sensory stimulation at frequencies from 50Hz to 1V. Paraesthesias were exposed at the roof of the nose at 0.5-0.7V. To rule out trigeminal contact that led to rhythmic mandibular contraction, motor stimulation at a frequency of 2Hz was applied. Then, four cycles of pulsed radiofrequency lesioning were performed for 120s at a temperature of 42°C. Pain relief could not be achieved in 23% of the patients (unacceptable), whereas pain was completely relieved in 35% of the patients (excellent) and mild to moderate pain relief could be achieved in 42% of the patients (good) through sphenopalatine ganglion-pulsed radiofrequency treatment. Pulsed radiofrequency of the sphenopalatine ganglion is effective in treating the patients suffering from intractable chronic facial and head pain as shown by our findings. There is a need for prospective, randomized, controlled trials in order to confirm the efficacy and safety of this new treatment modality in chronic head and face pain. Copyright © 2014 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  6. Sphenopalatine ganglion pulsed radiofrequency treatment in patients suffering from chronic face and head pain.

    PubMed

    Akbas, Mert; Gunduz, Emel; Sanli, Suat; Yegin, Arif

    2016-01-01

    There are various facial pain syndromes including trigeminal neuralgia, trigeminal neuropathic pain and atypical facial pain syndromes. Effectiveness of the pulsed radiofrequency in managing various pain syndromes has been clearly demonstrated. There are a limited number of studies on the pulsed radiofrequency treatment for sphenopalatine ganglion in patients suffering from face and head pain. The purpose of this study is to evaluate the satisfaction of pulsed radiofrequency treatment at our patients retrospectively. Infrazygomatic approach was used for the pulsed radiofrequency of the sphenopalatine ganglion under fluoroscopic guidance. After the tip of the needle reached the target point, 0.25-0.5 ms pulse width was applied for sensory stimulation at frequencies from 50 Hz to 1 V. Paraesthesias were exposed at the roof of the nose at 0.5-0.7 V. To rule out trigeminal contact that led to rhythmic mandibular contraction, motor stimulation at a frequency of 2 Hz was applied. Then, four cycles of pulsed radiofrequency lesioning were performed for 120 s at a temperature of 42°C. Pain relief could not be achieved in 23% of the patients (unacceptable), whereas pain was completely relieved in 35% of the patients (excellent) and mild to moderate pain relief could be achieved in 42% of the patients (good) through sphenopalatine ganglion-pulsed radiofrequency treatment. Pulsed radiofrequency of the sphenopalatine ganglion is effective in treating the patients suffering from intractable chronic facial and head pain as shown by our findings. There is a need for prospective, randomized, controlled trials in order to confirm the efficacy and safety of this new treatment modality in chronic head and face pain. Copyright © 2014 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.

  7. Arthroscopic excision of ganglion cysts.

    PubMed

    Bontempo, Nicholas A; Weiss, Arnold-Peter C

    2014-02-01

    Arthroscopy is an advancing field in orthopedics, the applications of which have been expanding over time. Traditionally, excision of ganglion cysts has been done in an open fashion. However, more recently, studies show outcomes following arthroscopic excision to be as good as open excision. Cosmetically, the incisions are smaller and heal faster following arthroscopy. In addition, there is the suggested benefit that patients will regain function and return to work faster following arthroscopic excision. More prospective studies comparing open and arthroscopic excision of ganglion cysts need to be done in order to delineate if there is a true functional benefit. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Wasp venom blocks central cholinergic synapses to induce transient paralysis in cockroach prey.

    PubMed

    Haspel, G; Libersat, F

    2003-03-01

    The parasitoid wasp Ampulex compressa induces a set of unique behavioral effects upon stinging its prey, the cockroach. It stings into the first thoracic segment inducing 2 to 3 min of transient flaccid paralysis of the front legs. This facilitates a second sting in the cockroach's head that induces 30 min of excessive grooming followed by a 2 to 5-week long lethargic state. In the present study, we examine the immediate effect of the first sting, which is a transient paralysis of the front legs. Using radiolabeled wasps, we demonstrate that the wasp injects its venom directly into the cockroach's first thoracic ganglion. The artificial injection of milked venom into a thoracic ganglion abolishes spontaneous and evoked responses of the motoneurons associated with leg movements. To investigate the physiological mechanism of action of the venom, we injected venom into the last abdominal ganglion of the cockroach, which houses a well-characterized cholinergic synapse. Injected venom abolishes both sensory-evoked and agonist-evoked postsynaptic potentials recorded in the postsynaptic neuron for 2 to 3 min without affecting action potential propagation. Thus, the venom blocking effect has a postsynaptic component that follows the same time course as the transient paralysis induced by the thoracic sting. Finally, injection of a nicotinic antagonist in the front thoracic ganglion induces paralysis of the front legs. We conclude that the transient paralytic effect of the thoracic sting can be mainly accounted for by the presence of a venom active component that induces a postsynaptic block of central cholinergic synaptic transmission. Copyright 2003 Wiley Periodicals, Inc. J Neurobiol 54: 628-637, 2003

  9. Efficacy of an energy block containing Duddingtonia flagrans in the control of gastrointestinal nematodes of sheep.

    PubMed

    Sagüés, María F; Fusé, Luis A; Fernández, Alicia S; Iglesias, Lucía E; Moreno, Fabiana C; Saumell, Carlos A

    2011-09-01

    The efficacy of the nematode-trapping fungus Duddingtonia flagrans incorporated into an energy block was evaluated for the control of gastrointestinal nematodes in sheep. Four naturally parasitised sheep with average nematode egg counts of 2,470 eggs per gram grazed by pairs on two similar parasite-free paddocks for 30 days. During that period, one pair of sheep (treated animals, T1) received an energy block containing chlamydospores of D. flagrans at a dose of 200,000 chlamydopores/kg bw/day, while the second pair (control animals, C1) received a fungus-free energy block. The animals in both groups were taken off the paddocks after contaminating the pastures for a month with either nematode eggs plus fungal chlamydospores (T1) or nematode eggs alone (C1). Twelve parasite-free sheep were divided into two groups of six animals each, the treated group (T2) was placed on the paddock previously contaminated with parasites and fungus, while the control group (C2) was placed on the parasite-only paddock. These two groups grazed on their respective paddocks during 30 days and were then housed for 15 days, after which period they were slaughtered in order to determine the parasite burden present in each animal. Results showed that animals in group T2 harboured significantly less nematodes than their counterpart in group C2. The efficacy of D. flagrans was 92% against the total parasite burden, 100% against Haemonchus contortus and Teladorsagia circumcincta, 89.9% against Trichostrongylus colubriformis, 87.5% against Cooperia onchopora, and 90% against Trichostrongylus axei. No efficacy was detected against Nematodirus spathiger, Trichuris ovis and T. skrjabini.

  10. Inhibition of mTOR by Rapamycin Results in Auditory Hair Cell Damage and Decreased Spiral Ganglion Neuron Outgrowth and Neurite Formation In Vitro

    PubMed Central

    Leitmeyer, Katharina; Glutz, Andrea; Radojevic, Vesna; Setz, Cristian; Huerzeler, Nathan; Bumann, Helen; Bodmer, Daniel; Brand, Yves

    2015-01-01

    Rapamycin is an antifungal agent with immunosuppressive properties. Rapamycin inhibits the mammalian target of rapamycin (mTOR) by blocking the mTOR complex 1 (mTORC1). mTOR is an atypical serine/threonine protein kinase, which controls cell growth, cell proliferation, and cell metabolism. However, less is known about the mTOR pathway in the inner ear. First, we evaluated whether or not the two mTOR complexes (mTORC1 and mTORC2, resp.) are present in the mammalian cochlea. Next, tissue explants of 5-day-old rats were treated with increasing concentrations of rapamycin to explore the effects of rapamycin on auditory hair cells and spiral ganglion neurons. Auditory hair cell survival, spiral ganglion neuron number, length of neurites, and neuronal survival were analyzed in vitro. Our data indicates that both mTOR complexes are expressed in the mammalian cochlea. We observed that inhibition of mTOR by rapamycin results in a dose dependent damage of auditory hair cells. Moreover, spiral ganglion neurite number and length of neurites were significantly decreased in all concentrations used compared to control in a dose dependent manner. Our data indicate that the mTOR may play a role in the survival of hair cells and modulates spiral ganglion neuronal outgrowth and neurite formation. PMID:25918725

  11. Inhibition of mTOR by Rapamycin Results in Auditory Hair Cell Damage and Decreased Spiral Ganglion Neuron Outgrowth and Neurite Formation In Vitro.

    PubMed

    Leitmeyer, Katharina; Glutz, Andrea; Radojevic, Vesna; Setz, Cristian; Huerzeler, Nathan; Bumann, Helen; Bodmer, Daniel; Brand, Yves

    2015-01-01

    Rapamycin is an antifungal agent with immunosuppressive properties. Rapamycin inhibits the mammalian target of rapamycin (mTOR) by blocking the mTOR complex 1 (mTORC1). mTOR is an atypical serine/threonine protein kinase, which controls cell growth, cell proliferation, and cell metabolism. However, less is known about the mTOR pathway in the inner ear. First, we evaluated whether or not the two mTOR complexes (mTORC1 and mTORC2, resp.) are present in the mammalian cochlea. Next, tissue explants of 5-day-old rats were treated with increasing concentrations of rapamycin to explore the effects of rapamycin on auditory hair cells and spiral ganglion neurons. Auditory hair cell survival, spiral ganglion neuron number, length of neurites, and neuronal survival were analyzed in vitro. Our data indicates that both mTOR complexes are expressed in the mammalian cochlea. We observed that inhibition of mTOR by rapamycin results in a dose dependent damage of auditory hair cells. Moreover, spiral ganglion neurite number and length of neurites were significantly decreased in all concentrations used compared to control in a dose dependent manner. Our data indicate that the mTOR may play a role in the survival of hair cells and modulates spiral ganglion neuronal outgrowth and neurite formation.

  12. Therapeutic and Transmission-BlockingEfficacy of Dihydroartemisinin/Piperaquine and Chloroquine against Plasmodium vivax Malaria, Cambodia.

    PubMed

    Popovici, Jean; Vantaux, Amelie; Primault, Lyse; Samreth, Reingsey; Piv, Eak Por; Bin, Sophalai; Kim, Saorin; Lek, Dysoley; Serre, David; Menard, Didier

    2018-08-17

    We assessed the efficacy of standard 3-day courses of chloroquine and dihydroartemisinin/piperaquine against Plasmodium vivax malaria. Compared with chloroquine, dihydroartemisinin/piperaquine was faster in clearing asexual P. vivax parasites and blocking human-to-mosquito transmission. This drug combination was also more effective in preventing potential recurrences for >2 months.

  13. Effects of applying nerve blocks to prevent postherpetic neuralgia in patients with acute herpes zoster: a systematic review and meta-analysis

    PubMed Central

    Kim, Hyun Jung; Ahn, Hyeong Sik; Lee, Jae Young; Choi, Seong Soo; Cheong, Yu Seon; Kwon, Koo; Yoon, Syn Hae

    2017-01-01

    Background Postherpetic neuralgia (PHN) is a common and painful complication of acute herpes zoster. In some cases, it is refractory to medical treatment. Preventing its occurrence is an important issue. We hypothesized that applying nerve blocks during the acute phase of herpes zoster could reduce PHN incidence by attenuating central sensitization and minimizing nerve damage and the anti-inflammatory effects of local anesthetics and steroids. Methods This systematic review and meta-analysis evaluates the efficacy of using nerve blocks to prevent PHN. We searched the MEDLINE, EMBASE, Cochrane Library, ClinicalTrials.gov and KoreaMed databases without language restrictions on April, 30 2014. We included all randomized controlled trials performed within 3 weeks after the onset of herpes zoster in order to compare nerve blocks vs active placebo and standard therapy. Results Nine trials were included in this systematic review and meta-analysis. Nerve blocks reduced the duration of herpes zoster-related pain and PHN incidence of at 3, 6, and 12 months after final intervention. Stellate ganglion block and single epidural injection did not achieve positive outcomes, but administering paravertebral blockage and continuous/repeated epidural blocks reduced PHN incidence at 3 months. None of the included trials reported clinically meaningful serious adverse events. Conclusions Applying nerve blocks during the acute phase of the herpes zoster shortens the duration of zoster-related pain, and somatic blocks (including paravertebral and repeated/continuous epidural blocks) are recommended to prevent PHN. In future studies, consensus-based PHN definitions, clinical cutoff points that define successful treatment outcomes and standardized outcome-assessment tools will be needed. PMID:28119767

  14. Diversity in spatial scope of contrast adaptation among mouse retinal ganglion cells.

    PubMed

    Khani, Mohammad Hossein; Gollisch, Tim

    2017-12-01

    Retinal ganglion cells adapt to changes in visual contrast by adjusting their response kinetics and sensitivity. While much work has focused on the time scales of these adaptation processes, less is known about the spatial scale of contrast adaptation. For example, do small, localized contrast changes affect a cell's signal processing across its entire receptive field? Previous investigations have provided conflicting evidence, suggesting that contrast adaptation occurs either locally within subregions of a ganglion cell's receptive field or globally over the receptive field in its entirety. Here, we investigated the spatial extent of contrast adaptation in ganglion cells of the isolated mouse retina through multielectrode-array recordings. We applied visual stimuli so that ganglion cell receptive fields contained regions where the average contrast level changed periodically as well as regions with constant average contrast level. This allowed us to analyze temporal stimulus integration and sensitivity separately for stimulus regions with and without contrast changes. We found that the spatial scope of contrast adaptation depends strongly on cell identity, with some ganglion cells displaying clear local adaptation, whereas others, in particular large transient ganglion cells, adapted globally to contrast changes. Thus, the spatial scope of contrast adaptation in mouse retinal ganglion cells appears to be cell-type specific. This could reflect differences in mechanisms of contrast adaptation and may contribute to the functional diversity of different ganglion cell types. NEW & NOTEWORTHY Understanding whether adaptation of a neuron in a sensory system can occur locally inside the receptive field or whether it always globally affects the entire receptive field is important for understanding how the neuron processes complex sensory stimuli. For mouse retinal ganglion cells, we here show that both local and global contrast adaptation exist and that this diversity in

  15. Diversity in spatial scope of contrast adaptation among mouse retinal ganglion cells

    PubMed Central

    Khani, Mohammad Hossein

    2017-01-01

    Retinal ganglion cells adapt to changes in visual contrast by adjusting their response kinetics and sensitivity. While much work has focused on the time scales of these adaptation processes, less is known about the spatial scale of contrast adaptation. For example, do small, localized contrast changes affect a cell’s signal processing across its entire receptive field? Previous investigations have provided conflicting evidence, suggesting that contrast adaptation occurs either locally within subregions of a ganglion cell’s receptive field or globally over the receptive field in its entirety. Here, we investigated the spatial extent of contrast adaptation in ganglion cells of the isolated mouse retina through multielectrode-array recordings. We applied visual stimuli so that ganglion cell receptive fields contained regions where the average contrast level changed periodically as well as regions with constant average contrast level. This allowed us to analyze temporal stimulus integration and sensitivity separately for stimulus regions with and without contrast changes. We found that the spatial scope of contrast adaptation depends strongly on cell identity, with some ganglion cells displaying clear local adaptation, whereas others, in particular large transient ganglion cells, adapted globally to contrast changes. Thus, the spatial scope of contrast adaptation in mouse retinal ganglion cells appears to be cell-type specific. This could reflect differences in mechanisms of contrast adaptation and may contribute to the functional diversity of different ganglion cell types. NEW & NOTEWORTHY Understanding whether adaptation of a neuron in a sensory system can occur locally inside the receptive field or whether it always globally affects the entire receptive field is important for understanding how the neuron processes complex sensory stimuli. For mouse retinal ganglion cells, we here show that both local and global contrast adaptation exist and that this diversity

  16. Agmatine protects retinal ganglion cells from hypoxia-induced apoptosis in transformed rat retinal ganglion cell line

    PubMed Central

    Hong, Samin; Lee, Jong Eun; Kim, Chan Yun; Seong, Gong Je

    2007-01-01

    Background Agmatine is an endogenous polyamine formed by the decarboxylation of L-arginine. We investigated the protective effects of agmatine against hypoxia-induced apoptosis of immortalized rat retinal ganglion cells (RGC-5). RGC-5 cells were cultured in a closed hypoxic chamber (5% O2) with or without agmatine. Cell viability was determined by lactate dehydrogenase (LDH) assay and apoptosis was examined by annexin V and caspase-3 assays. Expression and phosphorylation of mitogen-activated protein kinases (MAPKs; JNK, ERK p44/42, and p38) and nuclear factor-kappa B (NF-κB) were investigated by Western immunoblot analysis. The effects of agmatine were compared to those of brain-derived neurotrophic factor (BDNF), a well-known protective neurotrophin for retinal ganglion cells. Results After 48 hours of hypoxic culture, the LDH assay showed 52.3% cell loss, which was reduced to 25.6% and 30.1% when agmatine and BDNF were administered, respectively. This observed cell loss was due to apoptotic cell death, as established by annexin V and caspase-3 assays. Although total expression of MAPKs and NF-κB was not influenced by hypoxic injury, phosphorylation of these two proteins was increased. Agmatine reduced phosphorylation of JNK and NF-κB, while BDNF suppressed phosphorylation of ERK and p38. Conclusion Our results show that agmatine has neuroprotective effects against hypoxia-induced retinal ganglion cell damage in RGC-5 cells and that its effects may act through the JNK and NF-κB signaling pathways. Our data suggest that agmatine may lead to a novel therapeutic strategy to reduce retinal ganglion cell injury related to hypoxia. PMID:17908330

  17. Spiral Ganglion Stem Cells Can Be Propagated and Differentiated Into Neurons and Glia

    PubMed Central

    Zecha, Veronika; Wagenblast, Jens; Arnhold, Stefan; Edge, Albert S. B.; Stöver, Timo

    2014-01-01

    Abstract The spiral ganglion is an essential functional component of the peripheral auditory system. Most types of hearing loss are associated with spiral ganglion cell degeneration which is irreversible due to the inner ear's lack of regenerative capacity. Recent studies revealed the existence of stem cells in the postnatal spiral ganglion, which gives rise to the hope that these cells might be useful for regenerative inner ear therapies. Here, we provide an in-depth analysis of sphere-forming stem cells isolated from the spiral ganglion of postnatal mice. We show that spiral ganglion spheres have characteristics similar to neurospheres isolated from the brain. Importantly, spiral ganglion sphere cells maintain their major stem cell characteristics after repeated propagation, which enables the culture of spheres for an extended period of time. In this work, we also demonstrate that differentiated sphere-derived cell populations not only adopt the immunophenotype of mature spiral ganglion cells but also develop distinct ultrastructural features of neurons and glial cells. Thus, our work provides further evidence that self-renewing spiral ganglion stem cells might serve as a promising source for the regeneration of lost auditory neurons. PMID:24940560

  18. Anesthetic efficacy of articaine for inferior alveolar nerve blocks in patients with irreversible pulpitis.

    PubMed

    Claffey, Elizabeth; Reader, Al; Nusstein, John; Beck, Mike; Weaver, Joel

    2004-08-01

    The purpose of this prospective, randomized, double-blind study was to compare the anesthetic efficacy of 4% articaine with 1:100,000 epinephrine to 2% lidocaine with 1:100,000 epinephrine for inferior alveolar nerve blocks in patients experiencing irreversible pulpitis in mandibular posterior teeth. Seventy-two emergency patients diagnosed with irreversible pulpitis of a mandibular posterior tooth randomly received, in a double-blind manner, 2.2 ml of 4% articaine with 1:100,000 epinephrine or 2.2 ml of 2% lidocaine with 1:100,000 epinephrine using a conventional inferior alveolar nerve block. Endodontic access was begun 15 min after solution deposition, and all patients were required to have profound lip numbness. Success was defined as none or mild pain (Visual Analogue Scale recordings) on endodontic access or initial instrumentation. The success rate for the inferior alveolar nerve block using articaine was 24% and for the lidocaine solution success was 23%. There was no significant difference (p = 0.89) between the articaine and lidocaine solutions. Neither solution resulted in an acceptable rate of anesthetic success in patients with irreversible pulpitis.

  19. Two distinct classes of functional α7-containing nicotinic receptor on rat superior cervical ganglion neurons

    PubMed Central

    Cuevas, Javier; Roth, Adelheid L; Berg, Darwin K

    2000-01-01

    Nicotinic acetylcholine receptors (nAChRs) that bind α-bungarotoxin (αBgt) were studied on isolated rat superior cervical ganglion (SCG) neurons using whole-cell patch clamp recording techniques.Rapid application of ACh onto the soma of voltage clamped neurons evoked a slowly desensitizing current that was reversibly blocked by αBgt (50 nm). The toxin-sensitive current constituted on average about half of the peak whole-cell response evoked by ACh.Nanomolar concentrations of methyllycaconitine blocked the αBgt-sensitive component of the ACh-evoked current as did intracellular dialysis with an anti-α7 monoclonal antibody. The results indicate that the slowly reversible toxin-sensitive response elicited by ACh arises from activation of an unusual class of α7-containing receptor (α7-nAChR) similar to that reported previously for rat intracardiac ganglion neurons.A second class of functional α7-nAChR was identified on some SCG neurons by using rapid application of choline to elicit responses. In these cases a biphasic response was obtained, which included a rapidly desensitizing component that was blocked by αBgt in a pseudo-irreversible manner. The pharmacology and kinetics of the responses resembled those previously attributed to α7-nAChRs in a number of other neuronal cell types.Experiments measuring the dissociation rate of 125I-labelled αBgt from SCG neurons revealed two classes of toxin-binding site. The times for toxin dissociation were consistent with those required to reverse blockade of the two kinds of αBgt-sensitive response.These results indicate that rat SCG neurons express two types of functional α7-nAChR, differing in pharmacology, desensitization and reversibility of αBgt blockade. PMID:10856125

  20. The sympathetic postganglionic fibre and the block by bretylium; the block prevented by hexamethonium and imitated by mecamylamine

    PubMed Central

    Burn, J. H.; Gibbons, W. R.

    1964-01-01

    Acetylcholine, in the presence of atropine, has an action like that of sympathetic stimulation. When injected into the splenic artery it causes contraction of the spleen, but this action is blocked by hexamethonium; stimulation of the splenic nerves, however, is still effective. Thus hexamethonium distinguishes between sympathetic nerve stimulation and the action of acetylcholine. If bretylium is used instead of hexamethonium, there is no such distinction, for bretylium blocks the response to nerve stimulation as well as that to acetylcholine. It appeared that hexamethonium might block the action of acetylcholine by preventing its entry into the sympathetic fibre. Acetylcholine has some structural similarity to bretylium, since acetylcholine is a derivative of trimethylammonium and bretylium is a derivative of dimethylethylammonium. It has been found that hexamethonium, pentolinium and hemicholinium (HC-3), which are all bis-quaternary compounds, block the action of bretylium, presumably by preventing its entry into the fibre. Consistent with the view that ability to enter the fibre is important is the observation that mecamylamine and pempidine, which are ganglion-blocking agents, but not either mono- or bis-quaternary compounds, often abolish the response to stimulation of the sympathetic postganglionic fibre. PMID:14211685

  1. The anti-nociceptive agent ralfinamide inhibits tetrodotoxin-resistant and tetrodotoxin-sensitive Na+ currents in dorsal root ganglion neurons.

    PubMed

    Stummann, Tina C; Salvati, Patricia; Fariello, Ruggero G; Faravelli, Laura

    2005-03-14

    Tetrodotoxin-resistant and tetrodotoxin-sensitive Na+ channels contribute to the abnormal spontaneous firing in dorsal root ganglion neurons associated with neuropathic pain. Effects of the anti-nociceptive agent ralfinamide on tetrodotoxin-resistant and tetrodotoxin-sensitive currents in rat dorsal root ganglion neurons were therefore investigated by patch clamp experiments. Ralfinamide inhibition was voltage-dependent showing highest potency towards inactivated channels. IC50 values for tonic block of half-maximal inactivated tetrodotoxin-resistant and tetrodotoxin-sensitive currents were 10 microM and 22 microM. Carbamazepine, an anticonvulsant used in the treatment of pain, showed significantly lower potency. Ralfinamide produced a hyperpolarising shift in the steady-state inactivation curves of both currents confirming the preferential interaction with inactivated channels. Additionally, ralfinamide use and frequency dependently inhibited both currents and significantly delayed repriming from inactivation. All effects were more pronounced for tetrodotoxin-resistant than tetrodotoxin-sensitive currents. The potency and mechanisms of actions of ralfinamide provide a hypothesis for the anti-nociceptive properties found in animal models.

  2. Efficacy of transverse abdominis plane block in reduction of postoperation pain in laparoscopic cholecystectomy.

    PubMed

    Saliminia, Alireza; Azimaraghi, Omid; Babayipour, Shiva; Ardavan, Kamelia; Movafegh, Ali

    2015-12-01

    Transversus abdominis plane (TAP) block is a recently introduced regional anesthesia technique that is used for postoperative pain reduction in some abdominal surgeries. The present study evaluated the efficacy of the TAP block on the post laparoscopic cholecystectomy pain intensity and analgesic consumption. Fifty-four patients were enrolled in three groups: TAP block with normal saline (Group 1, n = 18); TAP block with bupivacaine (Group 2, n = 18); and TAP block with bupivacaine plus sufentanil (Group 3, n = 18). The time to the first fentanyl request, fentanyl consumption in the 24 hours following surgery, and postoperative pain intensity at 30 minutes, 1 hour, 6 hours, 12 hours, and 24 hours following discharge for recovery were measured and recorded. The total amount of 24-hour fentanyl consumption was higher in Group 1 (877.8 ± 338.8 μg) than either Group 2 (566.7 ± 367.8 μg) or Group 3 (555.5 ± 356.8 μg; p = 0.03). Postoperative pain score was higher in Group 1 than intervention groups (p = 0.006); however, there was no significant difference in intervention groups. The time to the first fentanyl request in Group 1 (79.44 ± 42.2) was significantly lower than Group 3 (206.38 ± 112.7; p = 0.001). The present study demonstrated that bilateral TAP block with 0.5% bupivacaine reduces post laparoscopic cholecystectomy pain intensity and fentanyl request and prolongs time to the first analgesic request. Adding sufentanil to the block solution reduced neither pain intensity nor fentanyl further consumption. Copyright © 2015. Published by Elsevier B.V.

  3. Postoperative analgesic efficacy of ultrasound-guided ilioinguinal-iliohypogastric nerve block compared with medial transverse abdominis plane block in inguinal hernia repair: A prospective, randomised trial.

    PubMed

    Bhatia, Nidhi; Sen, Indu Mohini; Mandal, Banashree; Batra, Ankita

    2018-03-29

    Analgesic efficacy of ultrasound-guided transverse abdominis plane block, administered a little more medially, just close to the origin of the transverse abdominis muscle has not yet been investigated in patients undergoing unilateral inguinal hernia repair. We hypothesised that medial transverse abdominis plane block would provide comparable postoperative analgesia to ilioinguinal-iliohypogastric nerve block in inguinal hernia repair patients. This prospective, randomised trial was conducted in 50 ASA I and II male patients≥18 years of age. Patients were randomised into two groups to receive either pre-incisional ipsilateral ultrasound-guided ilioinguinal-iliohypogastric nerve block or medial transverse abdominis plane block, with 0.3ml/kg of 0.25% bupivacaine. Our primary objective was postoperative 24-hour analgesic consumption and secondary outcomes included pain scores, time to first request for rescue analgesic and side effects, if any, in the postoperative period. There was no significant difference in the total postoperative analgesic consumption [group I: 66.04mg; group II: 68.33mg (P value 0.908)]. Time to first request for rescue analgesic was delayed, though statistically non-significant (P value 0.326), following medial transverse abdominis plane block, with excellent pain relief seen in 58.3% patients as opposed to 45.8% patients in ilioinguinal-iliohypogastric nerve block group. Medial transverse abdominis plane block being a novel, simple and easily performed procedure can serve as an useful alternative to ilioinguinal-iliohypogastric nerve block for providing postoperative pain relief in inguinal hernia repair patients. Copyright © 2018 Société française d'anesthésie et de réanimation (Sfar). Published by Elsevier Masson SAS. All rights reserved.

  4. Characterization of Ganglionic Acetylcholine Receptor Autoantibodies

    PubMed Central

    Vernino, Steven; Lindstrom, Jon; Hopkins, Steve; Wang, Zhengbei; Low, Phillip A.

    2008-01-01

    In myasthenia gravis (MG), autoantibodies bind to the α1 subunit and other subunits of the muscle nicotinic acetylcholine receptor (AChR). Autoimmune autonomic ganglionopathy (AAG) is an antibody-mediated neurological disorder caused by antibodies against neuronal AChRs in autonomic ganglia. Subunits of muscle and neuronal AChR are homologous. We examined the specificity of AChR antibodies in patients with MG and AAG. Ganglionic AChR autoantibodies found in AAG patients are specific for AChRs containing the α3 subunit. Muscle and ganglionic AChR antibody specificities are distinct. Antibody crossreactivity between AChRs with different α subunits is uncommon but can occur. PMID:18485491

  5. Ganglionic adrenergic action modulates ovarian steroids and nitric oxide in prepubertal rat.

    PubMed

    Delgado, Silvia Marcela; Casais, Marilina; Sosa, Zulema; Rastrilla, Ana María

    2006-08-01

    Both peripheral innervation and nitric oxide (NO) participate in ovarian steroidogenesis. The purpose of this work was to analyse the ganglionic adrenergic influence on the ovarian release of steroids and NO and the possible steroids/NO relationship. The experiments were carried out in the ex vivo coeliac ganglion-superior ovarian nerve (SON)-ovary system of prepubertal rats. The coeliac ganglion-SON-ovary system was incubated in Krebs Ringer-bicarbonate buffer in presence of adrenergic agents in the ganglionic compartment. The accumulation of progesterone, androstenedione, oestradiol and NO in the ovarian incubation liquid was measured. Norepinephrine in coeliac ganglion inhibited the liberation of progesterone and increased androstenedione, oestradiol and NO in ovary. The addition of alpha and beta adrenergic antagonists also showed different responses in the liberation of the substances mentioned before, which, from a physiological point of view, reveals the presence of adrenergic receptors in coeliac ganglion. In relation to propranolol, it does not revert the effect of noradrenaline on the liberation of progesterone, which leads us to think that it might also have a "per se" effect on the ganglion, responsible for the ovarian response observed for progesterone. Finally, we can conclude that the ganglionic adrenergic action via SON participates on the regulation of the prepubertal ovary in one of two ways: either increasing the NO, a gaseous neurotransmitter with cytostatic characteristics, to favour the immature follicles to remain dormant or increasing the liberation of androstenedione and oestradiol, the steroids necessary for the beginning of the near first estral cycle.

  6. Efficacy of the Bilateral Ilioinguinal-Iliohypogastric Block with Intrathecal Morphine for Postoperative Cesarean Delivery Analgesia

    PubMed Central

    Vallejo, Manuel C.; Steen, Talora L.; Cobb, Benjamin T.; Phelps, Amy L.; Pomerantz, Joel M.; Orebaugh, Steven L.; Chelly, Jacques E.

    2012-01-01

    The ilioinguinal-iliohypogastric (IIIH) block is frequently used as multimodal analgesia for lower abdominal surgeries. The aim of this study is to compare the efficacy of IIIH block using ultrasound visualization for reducing postoperative pain after caesarean delivery (CD) in patients receiving intrathecal morphine (ITM) under spinal anesthesia. Participants were randomly assigned to 1 of 3 treatment groups for the bilateral IIIH block: Group A = 10 mL of 0.5% bupivacaine, Group B = 10 mL of 0.5% bupivacaine on one side and 10 mL of a normal saline (NSS) placebo block on the opposite side, and Group C = 10 mL of NSS placebo per side. Pain and nausea scores, treatment for pain and nausea, and patient satisfaction were recorded for 48 hours after CD. No differences were noted with respect to pain scores or treatment for pain over the 48 hours. There were no differences to the presence of nausea (P = 0.64), treatment for nausea (P = 0.21), pruritus (P = 0.39), emesis (P = 0.35), or patient satisfaction (P = 0.29). There were no differences in pain and nausea scores over the measured time periods (MANOVA, P > 0.05). In parturients receiving ITM for elective CD, IIIH block offers no additional postoperative benefit for up to 48 hours. PMID:23304075

  7. Evidence that ganglion cells react to retinal detachment.

    PubMed

    Coblentz, Francie E; Radeke, Monte J; Lewis, Geoffrey P; Fisher, Steven K

    2003-03-01

    Growth associated protein 43 (GAP 43) is involved in synapse formation and it is expressed in the retina in a very specific pattern. Although GAP 43 is downregulated at the time of synapse formation, it can be re-expressed following injury such as axotomy or ischemia. Because of this we sought to characterize the expression of GAP 43 after retinal detachment (RD). Immunoblot, immunocytochemical and quantitative polymerase chain reaction (QPCR) techniques were used to assess the level of GAP 43 expression after experimental RD. GAP 43 was localized to three sublaminae of the inner plexiform layer of the normal retina. GAP 43 became upregulated in a subset of retinal ganglion cells following at least 7 days of RD. By immunoblot GAP 43 could be detected by 3 days. QPCR shows the upregulation of GAP 43 message by 6hr of detachment. To further characterize changes in ganglion cells, we used an antibody to neurofilament 70 and 200kDa (NF) proteins. Anti-NF labels horizontal cells, ganglion cell dendrites in the inner plexiform layer, and ganglion cell axons (fasicles) in the normal retina. Following detachment it is upregulated in horizontal cells and ganglion cells. When detached retina was double labelled with anti-GAP 43 and anti-NF, some cells were labelled with both markers, while others labelled with only one. We have previously shown that second order neurons respond to detachment; here we show that third order neurons are responding as well. Cellular remodelling of this type in response to detachment may explain the slow recovery of vision that often occurs after reattachment, or those changes that are often assumed to be permanent.

  8. Retinal ganglion cell topography and spatial resolving power in penguins.

    PubMed

    Coimbra, João Paulo; Nolan, Paul M; Collin, Shaun P; Hart, Nathan S

    2012-01-01

    Penguins are a group of flightless seabirds that exhibit numerous morphological, behavioral and ecological adaptations to their amphibious lifestyle, but little is known about the topographic organization of neurons in their retinas. In this study, we used retinal wholemounts and stereological methods to estimate the total number and topographic distribution of retinal ganglion cells in addition to an anatomical estimate of spatial resolving power in two species of penguins: the little penguin, Eudyptula minor, and the king penguin, Aptenodytes patagonicus. The total number of ganglion cells per retina was approximately 1,200,000 in the little penguin and 1,110,000 in the king penguin. The topographic distribution of retinal ganglion cells in both species revealed the presence of a prominent horizontal visual streak with steeper gradients in the little penguin. The little penguin retinas showed ganglion cell density peaks of 21,867 cells/mm², affording spatial resolution in water of 17.07-17.46 cycles/degree (12.81-13.09 cycles/degree in air). In contrast, the king penguin showed a relatively lower peak density of ganglion cells of 14,222 cells/mm², but--due to its larger eye--slightly higher spatial resolution in water of 20.40 cycles/degree (15.30 cycles/degree in air). In addition, we mapped the distribution of giant ganglion cells in both penguin species using Nissl-stained wholemounts. In both species, topographic mapping of this cell type revealed the presence of an area gigantocellularis with a concentric organization of isodensity contours showing a peak in the far temporal retina of approximately 70 cells/mm² in the little penguin and 39 cells/mm² in the king penguin. Giant ganglion cell densities gradually fall towards the outermost isodensity contours revealing the presence of a vertically organized streak. In the little penguin, we confirmed our cytological characterization of giant ganglion cells using immunohistochemistry for microtubule

  9. Computerized tomography-guided sphenopalatine ganglion pulsed radiofrequency treatment in 16 patients with refractory cluster headaches: Twelve- to 30-month follow-up evaluations.

    PubMed

    Fang, Luo; Jingjing, Lu; Ying, Shen; Lan, Meng; Tao, Wang; Nan, Ji

    2016-02-01

    Sphenopalatine ganglion percutaneous radiofrequency thermocoagulation treatment can improve the symptoms of cluster headaches to some extent. However, as an ablation treatment, radiofrequency thermocoagulation treatment also has side effects. To preliminarily evaluate the efficacy and safety of a non-ablative computerized tomography-guided pulsed radiofrequency treatment of sphenopalatine ganglion in patients with refractory cluster headaches. We included and analysed 16 consecutive cluster headache patients who failed to respond to conservative therapy from the Pain Management Center at the Beijing Tiantan Hospital between April 2012 and September 2013 treated with pulsed radiofrequency treatment of sphenopalatine ganglion. Eleven of 13 episodic cluster headaches patients and one of three chronic cluster headaches patient were completely relieved of the headache within an average of 6.3 ± 6.0 days following the treatment. Two episodic cluster headache patients and two chronic cluster headache patients showed no pain relief following the treatment. The mean follow-up time was 17.0 ± 5.5 months. All patients enrolled in this study showed no treatment-related side effects or complications. Our data show that patients with refractory episodic cluster headaches were quickly, effectively and safely relieved from the cluster period after computerized tomography-guided pulsed radiofrequency treatment of sphenopalatine ganglion, suggesting that it may be a therapeutic option if conservative treatments fail. © International Headache Society 2015.

  10. Pulsed Radiofrequency to the Dorsal Root Ganglion in Acute Herpes Zoster and Postherpetic Neuralgia.

    PubMed

    Kim, Koohyun; Jo, Daehyun; Kim, EungDon

    2017-03-01

    Latent varicella zoster virus reactivates mainly in sensory ganglia such as the dorsal root ganglion (DRG) or trigeminal ganglion. The DRG contains many receptor channels and is an important region for pain signal transduction. Sustained abnormal electrical activity to the spinal cord via the DRG in acute herpes zoster can result in neuropathic conditions such as postherpetic neuralgia (PHN). Although the efficacy of pulsed radiofrequency (PRF) application to the DRG in various pain conditions has been previously reported, the application of PRF to the DRG in patients with herpes zoster has not yet been studied. The aim of the present study was to compare the clinical effects of PRF to the DRG in patients with herpes zoster to those of PRF to the DRG in patients with PHN. Retrospective comparative study. University hospital pain center in Korea. The medical records of 58 patients who underwent PRF to the DRG due to zoster related pain (herpes zoster or PHN) were retrospectively analyzed. Patients were divided into 2 groups according to the timing of PRF after zoster onset: an early PRF group (within 90 days) and a PHN PRF group (more than 90 days). The efficacy of PRF was assessed by a numeric rating scale (NRS) and by recording patient medication doses before PRF and at one week, 4 weeks, 8 weeks, and 12 weeks after PRF. Pain intensity was decreased after PRF in all participants. However, the degree of pain reduction was significantly higher in the early PRF group. Moreover, more patients discontinued their medication in the early PRF group, and the PRF success rate was also higher in the early PRF group. The relatively small sample size from a single center, short duration of review of medical records, and the retrospective nature of the study. PRF to the DRG is a useful treatment for treatment-resistant cases of herpes zoster and PHN. Particularly in herpes zoster patients with intractable pain, application of PRF to the DRG should be considered for pain control

  11. Structural basis of orientation sensitivity of cat retinal ganglion cells.

    PubMed

    Leventhal, A G; Schall, J D

    1983-11-10

    We investigated the structural basis of the physiological orientation sensitivity of retinal ganglion cells (Levick and Thibos, '82). The dendritic fields of 840 retinal ganglion cells labeled by injections of horseradish peroxidase into the dorsal lateral geniculate nucleus (LGNd) or optic tracts of normal cats. Siamese cats, and cat deprived of patterned visual experience from birth by monocular lid-suture (MD) were studied. Mathematical techniques designed to analyze direction were used to find the dendritic field orientation of each cell. Statistical techniques designed for angular data were used to determine the relationship between dendritic field orientation and angular position on the retina (polar angle). Our results indicate that 88% of retinal ganglion cells have oriented dendritic fields and that dendritic field orientation is related systematically to retinal position. In all regions of retina more that 0.5 mm from the area centralis the dendritic fields of retinal ganglion cells are oriented radially, i.e., like the spokes of a wheel having the area centralis at its hub. This relationship was present in all animals and cell types studied and was strongest for cells located close to the horizontal meridian (visual streak) of the retina. Retinal ganglion cells appear to be sensitive to stimulus orientation because they have oriented dendritic fields.

  12. Morphology of retinal ganglion cells in the ferret (Mustela putorius furo).

    PubMed

    Isayama, Tomoki; O'Brien, Brendan J; Ugalde, Irma; Muller, Jay F; Frenz, Aaron; Aurora, Vikas; Tsiaras, William; Berson, David M

    2009-12-01

    The ferret is the premiere mammalian model of retinal and visual system development, but the spectrum and properties of its retinal ganglion cells are less well understood than in another member of the Carnivora, the domestic cat. Here, we have extensively surveyed the dendritic architecture of ferret ganglion cells and report that the classification scheme previously developed for cat ganglion cells can be applied with few modifications to the ferret retina. We confirm the presence of alpha and beta cells in ferret retina, which are very similar to those in cat retina. Both cell types exhibited an increase in dendritic field size with distance from the area centralis (eccentricity) and with distance from the visual streak. Both alpha and beta cell populations existed as two subtypes whose dendrites stratified mainly in sublamina a or b of the inner plexiform layer. Six additional morphological types of ganglion cells were identified: four monostratified cell types (delta, epsilon, zeta, and eta) and two bistratified types (theta and iota). These types closely resembled their counterparts in the cat in terms of form, relative field size, and stratification. Our data indicate that, among carnivore species, the retinal ganglion cells resemble one another closely and that the ferret is a useful model for studies of the ontogenetic differentiation of ganglion cell types.

  13. Ganglion cyst of the temporomandibular joint.

    PubMed

    Heng-Kun, W; Yan-Ling, G; Wen-Feng, Z; Zhe, S; Ren-Xin, W; Xiao-Tao, Z

    2014-02-01

    Ganglion cyst of the temporomandibular joint is a rare disease, which may arise from myxoid degeneration of the collagenous tissue of the temporomandibular joint capsule, without epithelial or endothelial lining. We report a case of cystic lesion in a 40-year-old female patient. The patient had a left pre-auricular oval-shaped swelling without any articular symptoms. The pathological analysis after surgical removal allowed diagnosing the lesion as a ganglion cyst of the left temporomandibular joint. We made a literature review and noted that this condition was predominant in female patients. We recommend using MRI for diagnostic purposes and surgery as the best therapeutic alternative. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  14. Effects of nitroglycerin and nitroprusside on vascular capacitance of anesthetized ganglion-blocked dogs.

    PubMed

    Ogilvie, R I; Zborowska-Sluis, D

    1991-10-01

    To determine whether changes in vascular capacitance induced by nitroglycerin (NTG) and nitroprusside were due to changes in compliance or unstressed vascular volume, doses producing similar reductions in arterial pressure (Psa) were studied on separate days in six dogs anesthetized and ventilated with pentobarbital after splenectomy during ganglion blockade with hexamethonium. Mean circulatory filling pressure (Pmcf) was determined during transient circulatory arrest induced by acetylcholine at baseline blood volumes and after increases of 5 and 10 ml/kg. Central blood volumes (CBVs, pulmonary artery to aortic root) were determined from transit times, and separately measured cardiac output (CO) was estimated by thermodilution (right atrium to pulmonary artery). NTG and nitroprusside produced similar reductions in Psa and Pmcf without significantly altering right atrial pressure (Pra), pressure gradient for venous return, or CO. Total vascular compliance was not altered, but total vascular capacitance was increased on an average of 4.0 +/- 1.4 ml/kg after NTG and 3.0 +/- 1.3 ml/kg after nitroprusside by increases in unstressed volume. Both drugs caused a variable reduction in CBV, averaging 2 ml/kg. Thus, both drugs produced a large increase in peripheral venous capacitance by increasing unstressed vascular volume without altering total vascular compliance.

  15. Comparison of the Efficacy of Local Infiltration and Mandibular Block Anesthesia With Articaine for Harvesting Ramus Grafts.

    PubMed

    Göçmen, Gökhan; Özkan, Yaşar

    2016-11-01

    We compared the efficacy of local infiltrative anesthesia and regional mandibular block anesthesia using articaine to harvest ramus grafts and the postoperative sequelae. A total of 20 patients with alveolar bone deficiency participated in the present comparative, prospective, randomized study. The first group received regional anesthesia with the mandibular block technique (group A; n = 10), and those in the second group received local infiltration anesthesia (group B; n = 10). Intraoperative pain and bleeding were evaluated as the primary outcome variables. The visual analog scale (VAS) scores were compared at 0.5, 1, 2, and 4 hours postoperatively. The maximal interincisal mouth opening (MIO) (on days 3 and 7) and VAS scores (at 6, 12, 24, and 48 hours and on days 3 and 7) were compared as secondary outcome variables. The correlation between pain (VAS scores) and trismus (MIO) were also compared. A painless procedure was performed in both groups. The VAS score, MIO, and intraoperative bleeding were not significantly different between the 2 groups. Paresthesia was not observed in either group postoperatively. No statistically significant correlations were found between the VAS scores and MIO. Local infiltrative anesthesia preserves almost the same depth of anesthesia as mandibular block anesthesia. No differences were found between these techniques in terms of efficacy and postoperative sequelae during and after ramus graft harvest. Thus, using articaine with a local infiltration technique is an alternative to mandibular block anesthesia during ramus graft harvesting and results in a reduced risk of inferior alveolar nerve damage. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  16. An anatomic and morphometric study of C2 nerve root ganglion and its corresponding foramen.

    PubMed

    Bilge, Okan

    2004-03-01

    Exposing and measuring the dorsal root ganglion of the second cervical spinal nerve (C2 ganglion) and the second intervertebral space, which is present between posterior arch of atlas (APA) and lamina of axis (LA). This study aims to investigate the shape, size, and relation of the C2 ganglion with the adjacent structures that limits the corresponding intervertebral space and the alterations of relation between C2 ganglion and APA and between C2 ganglion and LA with the movements of the head bilaterally. In previous studies, the position and the heights of the C2 ganglion have been described. But the shape of the C2 ganglion and its relation to APA and LA by the movement of the head had not been considered previously. Upper cervical spines of 20 cadavers were dissected posteriorly. The muscles attaching to the atlas and axis were resected to ease the head movements. The heights of the C2 ganglion and space were measured in anatomic position and in hyperextension with opposite rotation position of the head. Originally in this study, plastic dough casts were used to obtain reliable outcomes. The shape of the ganglions was defined in three types: 70% were oval, 20% were spindle-like, and 10% were spherical. The height of the C2 ganglion was 4.97 +/- 0.92 mm on the right side and 4.6 +/- 0.84 mm on the left side. The height of the intervertebral space in anatomic position and in hyperextension with rotation to the opposite position of the head were, respectively, 9.74 +/- 1.77 mm and 7.48 +/- 1.44 mm on the right side and 9.64 +/- 1.47 mm and 7.12 +/- 0.96 mm on the left side. There was no bone contact or impact to the ganglion in each position of the head. The C2 ganglions are confident in their place between APA and LA. No bone contact to the C2 ganglion was detected in either normal limited or in forced head motions.

  17. Changes in morphology of retinal ganglion cells with eccentricity in retinal degeneration.

    PubMed

    Anderson, E E; Greferath, U; Fletcher, E L

    2016-05-01

    Ganglion cells are the output neurons of the retina and are known to remodel during the subtle plasticity changes that occur following the death of photoreceptors in inherited retinal degeneration. We examine the influence of retinal eccentricity on anatomical remodelling and ganglion cell morphology well after photoreceptor loss. Rd1 mice that have a mutation in the β subunit of phosphodiesterase 6 were used as a model of retinal degeneration and gross remodelling events were examined by processing serial sections for immunocytochemistry. Retinal wholemounts from rd1-Thy1 and control Thy1 mice that contained a fluorescent protein labelling a subset of ganglion cells were processed for immunohistochemistry at 11 months of age. Ganglion cells were classified based on their soma size, dendritic field size and dendritic branching pattern and their dendritic fields were analysed for their length, area and quantity of branching points. Overall, more remodelling was found in the central compared with the peripheral retina. In addition, the size and complexity of A2, B1, C1 and D type ganglion cells located in the central region of the retina decreased. We propose that the changes in ganglion cell morphology are correlated with remodelling events in these regions and impact the function of retinal circuitry in the degenerated retina.

  18. A Case Report of an Acromioclavicular Joint Ganglion Associated with a Rotator Cuff Tear.

    PubMed

    Tanaka, Suguru; Gotoh, Masafumi; Mitsui, Yasuhiro; Shirachi, Isao; Okawa, Takahiro; Higuchi, Fujio; Shiba, Naoto

    2017-04-13

    We report a case of subcutaneous ganglion adjacent to the acromioclavicular joint with massive rotator cuff tear [1-7]. An 81-year-old woman presented with a ganglion adjacent to the acromioclavicular joint that had first been identified 9 months earlier. The ganglion had recurred after having been aspirated by her local physician, so she was referred to our hospital. The puncture fluid was yellowish, clear and viscous. Magnetic resonance imaging identified a massive rotator cuff tear with multi- lobular cystic lesions continuous to the acromioclavicular joint, presenting the "geyser sign". During arthroscopy, distal clavicular resection and excision of the ganglion were performed together with joint debridement. At present, the ganglion has not recurred and the patient has returned to normal daily activity. In this case, the ganglion may have developed subsequent to the concomitant massive cuff tear, due to subcutaneous fluid flow through the damaged acromioclavicular joint.

  19. Regenerating reptile retinas: a comparative approach to restoring retinal ganglion cell function.

    PubMed

    Williams, D L

    2017-02-01

    Transection or damage to the mammalian optic nerve generally results in loss of retinal ganglion cells by apoptosis. This cell death is seen less in fish or amphibians where retinal ganglion cell survival and axon regeneration leads to recovery of sight. Reptiles lie somewhere in the middle of this spectrum of nerve regeneration, and different species have been reported to have a significant variation in their retinal ganglion cell regenerative capacity. The ornate dragon lizard Ctenophoris ornatus exhibits a profound capacity for regeneration, whereas the Tenerife wall lizard Gallotia galloti has a more variable response to optic nerve damage. Some individuals regain visual activity such as the pupillomotor responses, whereas in others axons fail to regenerate sufficiently. Even in Ctenophoris, although the retinal ganglion cell axons regenerate adequately enough to synapse in the tectum, they do not make long-term topographic connections allowing recovery of complex visually motivated behaviour. The question then centres on where these intraspecies differences originate. Is it variation in the innate ability of retinal ganglion cells from different species to regenerate with functional validity? Or is it variances between different species in the substrate within which the nerves regenerate, the extracellular environment of the damaged nerve or the supporting cells surrounding the regenerating axons? Investigations of retinal ganglion cell regeneration between different species of lower vertebrates in vivo may shed light on these questions. Or perhaps more interesting are in vitro studies comparing axon regeneration of retinal ganglion cells from various species placed on differing substrates.

  20. Efficacies of gentamicin-loaded magnetite block ionomer complexes against chronic Brucella melitensis infection

    NASA Astrophysics Data System (ADS)

    Jain-Gupta, Neeta; Pothayee, Nipon; Pothayee, Nikorn; Tyler, Ronald; Caudell, David L.; Balasubramaniam, Sharavanan; Hu, Nan; Davis, Richey M.; Riffle, Judy S.; Sriranganathan, Nammalwar

    2013-11-01

    Anionic copolymers can enable intracellular delivery of cationic drugs which otherwise cannot cross cell membrane barriers. We tested the efficacy of gentamicin-loaded magnetite block ionomer complexes (MBICs) against intracellular Brucella melitensis. Anionic block copolymers were used to coat nanomagnetite through adsorption of a portion of anions on the particle surfaces, then the remaining anions were complexed with 30-32 weight percentage of gentamicin. The zeta potential changed from -39 to -13 mV after encapsulation of the drug with complementary charge. The gentamicin-loaded MBICs had intensity average hydrodynamic diameters of 62 nm, while the polymer-coated nanomagnetite particles without drug were 34 nm in size. No toxicity as measured by a MTS assay was observed upon incubation of the MBICs with J774A.1 murine macrophage-like cells. Confocal microscopic images showed that the MBICs were taken up by the macrophages and distributed in the cell cytoplasm and endosomal/lysosomal compartments. Upon treatment with gentamicin-loaded MBICs (3.5 Log10), B. melitensis-infected macrophages showed significantly higher clearance of Brucella compared to the treatment with free g (0.9 Log10). Compared to doxycycline alone, a combination of doxycycline and gentamicin (either free or encapsulated in MBICs) showed significantly higher clearance of B. melitensis from chronically infected mice. Histopathological examination of kidneys from the MBICs-treated mice revealed multifocal infiltration of macrophages containing intracytoplasmic iron (MBICs) in peri-renal adipose. Although MBICs showed similar efficacy as free gentamicin against Brucella in mice, our strategy presents an effective way to deliver higher loads of drugs intracellularly and ability to study the bio-distribution of drug carriers.

  1. Dorsal raphe nucleus projecting retinal ganglion cells: Why Y cells?

    PubMed Central

    Pickard, Gary E.; So, Kwok-Fai; Pu, Mingliang

    2015-01-01

    Retinal ganglion Y (alpha) cells are found in retinas ranging from frogs to mice to primates. The highly conserved nature of the large, fast conducting retinal Y cell is a testament to its fundamental task, although precisely what this task is remained ill-defined. The recent discovery that Y-alpha retinal ganglion cells send axon collaterals to the serotonergic dorsal raphe nucleus (DRN) in addition to the lateral geniculate nucleus (LGN), medial interlaminar nucleus (MIN), pretectum and the superior colliculus (SC) has offered new insights into the important survival tasks performed by these cells with highly branched axons. We propose that in addition to its role in visual perception, the Y-alpha retinal ganglion cell provides concurrent signals via axon collaterals to the DRN, the major source of serotonergic afferents to the forebrain, to dramatically inhibit 5-HT activity during orientation or alerting/escape responses, which dis-facilitates ongoing tonic motor activity while dis-inhibiting sensory information processing throughout the visual system. The new data provide a fresh view of these evolutionarily old retinal ganglion cells. PMID:26363667

  2. Postoperative analgesic efficacy of single-shot and continuous transversus abdominis plane block after laparoscopic cholecystectomy: A randomized controlled clinical trial.

    PubMed

    Choi, Yun-Mi; Byeon, Gyeong-Jo; Park, Soon-Ji; Ok, Young-Min; Shin, Sang-Wook; Yang, Kwangho

    2017-06-01

    To compare the analgesic efficacy of ultrasound-guided single-shot and continuous transversus abdominis plane (TAP) block to that of IV-PCA in patients undergoing laparoscopic cholecystectomy. Prospective randomized controlled trial. Post-anesthesia care unit and General ward. 108 American Society of Anesthesiologist (ASA) physical status I-II patients undergoing laparoscopic cholecystectomy. Group A received IV-PCA; group B received both ultrasound-guided single-shot TAP block with 0.2% ropivacaine (20mL) and IV-PCA; and group C received continuous TAP block using an ultrasound-guidance-inserted indwelling catheter. In group C, infusion of 0.2% ropivacaine at a basal rate of 3mL/h, bolus dose of 4mL, and a lockout interval of 30min was maintained for 48h postoperatively. The primary outcome was evaluated analgesic efficacy using the numeric rating scale (NRS) for 48h postoperatively. Other outcomes included the number of patients requiring additional analgesics, patient satisfaction with postoperative pain control, and incidence of postoperative adverse events. Compared to other groups, group C had higher deep abdominal NRS at 1h postoperatively (P<0.05), and lower incidence of postoperative urinary retention (P<0.05). There were no significant intergroup differences in the number of patients requiring additional analgesics, and patient satisfaction with postoperative pain control. Compared to IV-PCA with or without single-shot TAP block, ultrasound-guided continuous TAP block provided similar analgesia in somatic pain and less analgesia in visceral pain. Moreover, the latter resulted in a lower incidence of postoperative urinary retention. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. [Ganglions of the wrist: proposals for topographical systematization and natural history].

    PubMed

    Kuhlmann, J-N; Luboinski, J; Baux, S; Mimoun, M

    2003-06-01

    We looked for the anatomic origin and mechanism of constitution of the so-called "ganglions" of the wrist. Fifty-nine formations considered to be synovial ganglions were dissected and removed according to the same protocol by the same surgeon. Eleven were re-examined by a pathologist. All ganglions were extra-articular but had intra- and extra-capsular components. The extra-capsular part was the clinically palpable main cyst. The intra-capsular part was composed of the cystic stalk and its base of implantation. An intra-capsular stalk was present in 58 cases. The stalk was situated between the joint synovium and the capsula which it perforated at a weak point between two ligaments, forming a collar before expanding outwardly. Based on our findings, we propose a topographical systematization and natural history of ganglions of the wrist. The stalk's implantation base was always located on bone and found in the intermediate area of Colomniati and Soubbotine, which lies outside the articular cartilage between the synovium and the ligamentous capsula. This area is exposed to mechanical stress initiating histological degenerative lesions, particularly mucoid degeneration. At the radiocarpal joint, the stalk's base of implantation was located at the distal end of the lateral dorsal or volar edge of the lunate bone or at the corresponding part of the scaphoid. The collar of the proximal ganglions was situated between the dorsal radiocarpal and transverse scaphotriquetral ligament. The collar of distal dorsal ganglions was situated between the transverse scaphotriquetral and the trapezotriquetral ligament. The collar of the lateral ganglions was situated between the lateral collateral and the transverse ligament. The collar of the volar ganglions was situated between the stylocarpal ligament and the radiolunotriquetral ligament, or between the different stylocarpal ligaments. At the level of the scaphotrapezal joint, the stalk's base of implantation was located near the

  4. A Comparison of Efficacy of Segmental Epidural Block versus Spinal Anaesthesia for Percutaneous Nephrolithotomy

    PubMed Central

    Nandanwar, Avinash S; Patil, Yogita; Baheti, Vidyasagar H.; Tanwar, Harshwardhan V.; Patwardhan, Sujata K.

    2015-01-01

    Introduction Percutaneous nephrolithotomy (PCNL) is done under general anaesthesia in most of the centres. Associated complications and cost are higher for general anaesthesia than for regional anaesthesia. Present study is designed to compare the efficacy of epidural block versus spinal anaesthesia with regards to intraoperative mean arterial pressure, heart rate, postoperative pain intensity, analgesic requirement, Postoperative complications and patient satisfaction in patients undergoing PCNL. Materials and Methods After taking Ethical Committee clearance, patients were randomly allocated into 2 groups using table of randomization (n= 40 each) Group E- Epidural block, Group S- Spinal block. Various parameters like intraoperative mean arterial pressure, heart rate, postoperative pain intensity, analgesic requirement, postoperative complications and patient satisfaction were studied in these groups. Statistical Analysis Quantitative data was analysed using unpaired t-test and qualitative data was analysed using chi-square test. Results Twenty four times in Epidural as compared to fifteen times in spinal anaesthesia two or more attempts required. Mean time (min) required to achieve the block of anaesthesia in group E and group S was 15.45±2.8 and 8.52±2.62 min respectively. Mean arterial pressure (MAP) at 5 min, 10 min and 15 min were significantly lower in spinal group as compared to epidural group. After 30 minutes, differences were not significant but still MAP was lower in spinal group. After 30 minutes difference in heart rate between two groups was statistically significant and higher rate recorded in spinal group till the end of 3 hours. Postoperative VAS score was significantly higher in spinal group and 4 hours onwards difference was highly significant. Postoperative Nausea Vomiting (PONV) Score was significantly higher in spinal group as compared to epidural group. Conclusion For PCNL, segmental epidural block is better than spinal anaesthesia in terms

  5. A Comparison of Efficacy of Segmental Epidural Block versus Spinal Anaesthesia for Percutaneous Nephrolithotomy.

    PubMed

    Nandanwar, Avinash S; Patil, Yogita; Wagaskar, Vinayak G; Baheti, Vidyasagar H; Tanwar, Harshwardhan V; Patwardhan, Sujata K

    2015-08-01

    Percutaneous nephrolithotomy (PCNL) is done under general anaesthesia in most of the centres. Associated complications and cost are higher for general anaesthesia than for regional anaesthesia. Present study is designed to compare the efficacy of epidural block versus spinal anaesthesia with regards to intraoperative mean arterial pressure, heart rate, postoperative pain intensity, analgesic requirement, Postoperative complications and patient satisfaction in patients undergoing PCNL. After taking Ethical Committee clearance, patients were randomly allocated into 2 groups using table of randomization (n= 40 each) Group E- Epidural block, Group S- Spinal block. Various parameters like intraoperative mean arterial pressure, heart rate, postoperative pain intensity, analgesic requirement, postoperative complications and patient satisfaction were studied in these groups. Quantitative data was analysed using unpaired t-test and qualitative data was analysed using chi-square test. Twenty four times in Epidural as compared to fifteen times in spinal anaesthesia two or more attempts required. Mean time (min) required to achieve the block of anaesthesia in group E and group S was 15.45±2.8 and 8.52±2.62 min respectively. Mean arterial pressure (MAP) at 5 min, 10 min and 15 min were significantly lower in spinal group as compared to epidural group. After 30 minutes, differences were not significant but still MAP was lower in spinal group. After 30 minutes difference in heart rate between two groups was statistically significant and higher rate recorded in spinal group till the end of 3 hours. Postoperative VAS score was significantly higher in spinal group and 4 hours onwards difference was highly significant. Postoperative Nausea Vomiting (PONV) Score was significantly higher in spinal group as compared to epidural group. For PCNL, segmental epidural block is better than spinal anaesthesia in terms of haemodynamic stability, postoperative analgesia, patient satisfaction

  6. Calcium Channel Block by Cadmium in Chicken Sensory Neurons

    NASA Astrophysics Data System (ADS)

    Swandulla, D.; Armstrong, C. M.

    1989-03-01

    Cadmium block of calcium channels was studied in chicken dorsal root ganglion cells by a whole-cell patch clamp that provides high time resolution. Barium ion was the current carrier, and the channel type studied had a high threshold of activation and fast deactivation (type FD). Block of these channels by 20 μ M external Cd2+ is voltage dependent. Cd2+ ions can be cleared from blocked channels by stepping the membrane voltage (Vm) to a negative value. Clearing the channels is progressively faster and more complete as Vm is made more negative. Once cleared of Cd2+, the channels conduct transiently on reopening but reequilibrate with Cd2+ and become blocked within a few milliseconds. Cd2+ equilibrates much more slowly with closed channels, but at a holding potential of -80 mV virtually all channels are blocked at equilibrium. Cd2+ does not slow closing of the channels, as would be expected if it were necessary for Cd2+ to leave the channels before closing occurred. Instead, the data show unambiguously that the channel gate can close when the channel is Cd2+ occupied.

  7. Evidence-based clinical update: Which local anesthetic drug for pediatric caudal block provides optimal efficacy with the fewest side effects?

    PubMed

    Dobereiner, Elisabeth F A; Cox, Robin G; Ewen, Alastair; Lardner, David R

    2010-12-01

    The purpose of this evidence-based clinical update is to identify the best evidence when selecting a long-acting local anesthetic agent for single-shot pediatric caudal anesthesia in children. A structured literature search was conducted using PubMed and Medline (OVID) using the terms "caudal" and combinations of at least two of "bupivacaine", "ropivacaine", and "levobupivacaine". The search limits included "randomized controlled trials" (RCTs), "meta-analysis", "evidence-based reviews" or "reviews", "human", and "all child: 0-18 yr". Seventeen RCTs were identified that concerned single-shot pediatric caudal anesthesia with at least two of the three drugs in question. Data were extracted for the areas of clinical efficacy and side effects. Study findings were assigned levels of evidence, and grades of recommendation were made according to Centre for Evidence-Based Medicine criteria. The three drugs investigated were found to be equivalent in terms of efficacy. Evidence showed bupivacaine with the highest incidence of motor block and ropivacaine with the lowest. Adverse effects were rare and unrelated to the choice of drug. There were no serious adverse events. None of the three agents was shown to be superior in terms of efficacy. Bupivacaine is preferred if motor block is desired, ropivacaine is preferred if motor block is to be minimized. Adverse effects in human studies are rare, mild, and unrelated to the choice of drug. Despite encountering the absence of serious adverse events in each of the studies reviewed, it is noted that animal studies suggest a safer profile with ropivacaine or levobupivacaine than with bupivacaine.

  8. Bilirubin Modulates Acetylcholine Receptors In Rat Superior Cervical Ganglionic Neurons In a Bidirectional Manner

    PubMed Central

    Zhang, Chengmi; Wang, Zhenmeng; Dong, Jing; Pan, Ruirui; Qiu, Haibo; Zhang, Jinmin; Zhang, Peng; Zheng, Jijian; Yu, Weifeng

    2014-01-01

    Autonomic dysfunction as a partial contributing factor to cardiovascular instability in jaundiced patients is often associated with increased serum bilirubin levels. Whether increased serum bilirubin levels could directly inhibit sympathetic ganglion transmission by blocking neuronal nicotinic acetylcholine receptors (nAChRs) remains to be elucidated. Conventional patch-clamp recordings were used to study the effect of bilirubin on nAChRs currents from enzymatically dissociated rat superior cervical ganglia (SCG) neurons. The results showed that low concnetrations (0.5 and 2 μM) of bilirubin enhanced the peak ACh-evoked currents, while high concentrations (3 to 5.5 µM) of bilirubin suppressed the currents with an IC50 of 4 ± 0.5 μM. In addition, bilirubin decreased the extent of desensitization of nAChRs in a concentration-dependent manner. This inhibitory effect of bilirubin on nAChRs channel currents was non-competitive and voltage independent. Bilirubin partly improved the inhibitory effect of forskolin on ACh-induced currents without affecting the action of H-89. These data suggest that the dual effects of enhancement and suppression of bilirubin on nAChR function may be ascribed to the action mechanism of positive allosteric modulation and direct blockade. Thus, suppression of sympathetic ganglionic transmission through postganglionic nAChRs inhibition may partially contribute to the adverse cardiovascular effects in jaundiced patients. PMID:25503810

  9. [Analgesic efficacy and clinical safety of intraperitoneal instillation combined with rectus sheath block using ropivacaine for pain relief after laparoscopic gynecological surgery].

    PubMed

    Yakoshi, Chihiro; Hashimoto, Hiroshi; Niwa, Hidetomo; Kitayama, Masatou; Kudo, Tsuyoshi; Kudo, Mihoko; Hirota, Kazuyoshi

    2014-03-01

    The aim of this study was to evaluate the analgesic efficacy and safety of rectus sheath block combined with intraperitoneal instillation using two doses of ropivacaine in patients undergoing laparoscopic gynecological surgery. Altogether 53 consenting women were randomized to receive intraperitoneal infiltration with 0.25% ropivacaine or 0.5% ropivacaine followed by rectus sheath block with 0.375% ropivacaine. The outcomes of clinical safety were measured using plasma concentration of local anesthetics and occurrence of toxic symptoms. The analgesic efficacy was assessed using numerical rating scales for pain and morphine consumption up to 24 hours after surgery. Patients' baseline characteristics, surgical factors, and analgesic outcomes were comparable between the two groups. Although peak plasma concentration of ropivacaine was significantly higher in patients receiving 0.5% ropivacaine, none of analyzed concentrations was above the toxic ones. Besides, no patients showed any symptoms of local anesthetic toxicity. The present study showed that the combination of rectus sheath block with intraperitoneal instillation of ropivacaine was safe and potent enough to relieve pain after laparoscopic surgery.

  10. Efficacy of the Greater Occipital Nerve Block for Cervicogenic Headache: Comparing Classical and Subcompartmental Techniques.

    PubMed

    Lauretti, Gabriela R; Corrêa, Selma W R O; Mattos, Anita L

    2015-09-01

    The aim of the study was to compare the efficacy of the greater occipital nerve (GON) block using the classical technique and different volumes of injectate with the subcompartmental technique for the treatment of cervicogenic headache (CH). Thirty patients acted as his/her own control. All patients were submitted to the GON block by the classical technique with 10 mg dexamethasone, plus 40 mg lidocaine (5 mL volume). Patients were randomly allocated into 1 of 3 groups (n = 10) when pain VAS was > 3 cm. Each group was submitted to a GON subcompartmental technique (10 mg dexamethasone + 40 mg lidocaine + nonionic iodine contrast + saline) under fluoroscopy using either 5, 10, or 15 mL final volume. Analgesia and quality of life were evaluated. The classical GON technique resulted in 2 weeks of analgesia and less rescue analgesic consumption, compared to 24 weeks after the subcompartmental technique (P < 0.01). Quality of life improved at 2 and 24 weeks after the classical and the suboccipital techniques, respectively (P < 0.05). The data revealed that groups were similar regarding analgesia when compared to volume of injection (P > 0.05). While the classical technique for GON block resulted in only 2 weeks of analgesia, the subcompartmental technique resulted in at least 24 weeks of analgesia, being 5 mL volume sufficient for the performance of the block under fluoroscopy. © 2014 World Institute of Pain.

  11. Long-term outcome and prognostic factors after C2 ganglion decompression in 68 consecutive patients with intractable occipital neuralgia.

    PubMed

    Choi, Kyu-Sun; Ko, Yong; Kim, Young-Soo; Yi, Hyeong-Joong

    2015-01-01

    Occipital neuralgia is a rare cause of severe headache characterized by paroxysmal shooting or stabbing pain in the distribution of the greater occipital or lesser occipital nerve. In cases of intractable occipital neuralgia, a definite cause has not been uncovered, so various types of treatment have been applied. The aim of this study is to evaluate the prognostic factors, safety, and long-term clinical efficacy of second cervical (C2) ganglion decompression for intractable occipital neuralgia. Retrospective analysis was performed in 68 patients with medically refractory occipital neuralgia who underwent C2 ganglion decompression. Factors based on patients' demography, pre- and postoperative headache severity/characteristics, medication use, and postoperative complications were investigated. Therapeutic success was defined as pain relief by at least 50 % without ongoing medication. The visual analog scale (VAS) score was significantly reduced between the preoperative and most recent follow-up period. One year later, excellent or good results were achieved in 57 patients (83.9 %), but poor in 11 patients (16.1 %). The long-term outcome after 5 years was only slightly less than the 1-year outcome; 47 of the 68 patients (69.1 %) obtained therapeutic success. Longer duration of headache (over 13 years; p = 0.029) and presence of retro-orbital/frontal radiation (p = 0.040) were significantly associated with poor prognosis. In the current study, C2 ganglion decompression provided durable, adequate pain relief with minimal complications in patients suffering from intractable occipital neuralgia. Due to the minimally invasive and nondestructive nature of this surgical procedure, C2 ganglion decompression is recommended as an initial surgical treatment option for intractable occipital neuralgia before attempting occipital nerve stimulation. However, further study is required to manage the pain recurrence associated with longstanding nerve injury.

  12. The Sigma Receptor Ligand (+)-Pentazocine Prevents Apoptotic Retinal Ganglion Cell Death induced in vitro by Homocysteine and Glutamate

    PubMed Central

    Martin, Pamela Moore; Ola, Mohammad S.; Agarwal, Neeraj; Ganapathy, Vadivel; Smith, Sylvia B.

    2013-01-01

    Recent studies demonstrated that the excitotoxic amino acid homocysteine induces apoptotic death of retinal ganglion cells in vivo. In the present study, an in vitro rat retinal ganglion cell (RGC-5) culture system was used to analyze the toxicity of acute exposure to high levels of homocysteine, the mechanism of homocysteine-induced toxicity and the usefulness of σR1 ligands as neuroprotectants. When cultured RGC-5 cells were subjected to treatment with 1 mM D, L- homocysteine, a significant increase in cell death was detected by TUNEL analysis and analysis of activated caspase. When cells were treated with homocysteine- or glutamate in the presence of MK-801, an antagonist of the NMDA receptor, the cell death was inhibited significantly. In contrast, NBQX, an antagonist of the AMPA/Kainate receptor, and nifedipine, a calcium channel blocker, did not prevent the homocysteine- or glutamate-induced cell death. Semi-quantitative RT-PCR and immunocytochemical analysis demonstrated that RGC-5 cells exposed to homocysteine or glutamate express type 1 sigma receptor at levels similar to control cells. Treatment of RGC-5 cells with 3 µM or 10 µM concentrations of the σR1-specific ligand (+)-pentazocine inhibited significantly the apoptotic cell death induced by homocysteine or glutamate. The results suggest that homocysteine is toxic to ganglion cells in vitro, that the toxicity is mediated via NMDA receptor activation, and that the σR1-specific ligand (+)-pentazocine can block the RGC-5 cell death induced by homocysteine and glutamate. PMID:15046867

  13. Quantifying Spiral Ganglion Neurite and Schwann Behavior on Micropatterned Polymer Substrates.

    PubMed

    Cheng, Elise L; Leigh, Braden; Guymon, C Allan; Hansen, Marlan R

    2016-01-01

    The first successful in vitro experiments on the cochlea were conducted in 1928 by Honor Fell (Fell, Arch Exp Zellforsch 7(1):69-81, 1928). Since then, techniques for culture of this tissue have been refined, and dissociated primary culture of the spiral ganglion has become a widely accepted in vitro model for studying nerve damage and regeneration in the cochlea. Additionally, patterned substrates have been developed that facilitate and direct neural outgrowth. A number of automated and semi-automated methods for quantifying this neurite outgrowth have been utilized in recent years (Zhang et al., J Neurosci Methods 160(1):149-162, 2007; Tapias et al., Neurobiol Dis 54:158-168, 2013). Here, we describe a method to study the effect of topographical cues on spiral ganglion neurite and Schwann cell alignment. We discuss our microfabrication process, characterization of pattern features, cell culture techniques for both spiral ganglion neurons and spiral ganglion Schwann cells. In addition, we describe protocols for reducing fibroblast count, immunocytochemistry, and methods for quantifying neurite and Schwann cell alignment.

  14. Characterization of peripheral and central sensitization after dorsal root ganglion intervention in patients with unilateral lumbosacral radicular pain: a prospective pilot study.

    PubMed

    Mehta, V; Snidvongs, S; Ghai, B; Langford, R; Wodehouse, T

    2017-06-01

    Quantitative sensory testing (QST) has been used to predict the outcome of epidural steroid injections in lumbosacral radicular pain and has the potential to be an important tool in the selection of appropriate treatment (such as epidural steroid injections vs surgery) for patients with chronic radicular pain. In addition, QST assists in identification of the pain pathways of peripheral and central sensitization in selected groups of patients. Twenty-three patients were given dorsal root ganglion (DRG) infiltration with local anaesthesia and steroid ('DRG block'), and those who demonstrated at least 50% pain relief were offered pulsed radiofrequency (PRF) to the DRG. Questionnaires and QST scores were measured before the DRG blocks and at 1 week and 3 months after their procedure. Those who received PRF also answered questionnaires and underwent QST measurements at 1 week and 3 months after their procedure. There was a significant increase in pressure pain threshold scores after DRG blocks. A reduced conditioned pain modulation response was seen before DRG, which increased after the procedure. Ten out of 23 patients underwent PRF to the DRG, and an increase in pressure pain threshold scores after PRF was observed. The conditioned pain modulation response was maintained in this group and increased after PRF. The study demonstrates that patients with unilateral radicular low back pain who receive dorsal root ganglion interventions show changes in pressure pain thresholds and conditioned pain modulation that are consistent with a 'normalization' of peripheral and central sensitization. © The Author 2017. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  15. Efficacy of ultrasound-guided transversus abdominis plane block in laparoscopic hysterectomy. Clinical trial.

    PubMed

    Guardabassi, D S; Lupi, S; Agejas, R; Allub, J M; García-Fornari, G

    2017-05-01

    Transversus abdominis plane block is a regional anaesthesia technique that has proven to be effective for postoperative pain reduction in different abdominal surgical procedures. This study evaluated its efficacy on post laparoscopic hysterectomy pain intensity and analgesic consumption. Randomized controlled trial which included 40 patients scheduled for laparoscopic hysterectomy, enrolled in 2 groups: transversus abdominis plane block+systemic analgesia (Group 1; n=20), versus systemic analgesia (Group 2; n=20). Opioid consumption within the first 24 postoperative hours, pain intensity scores at 60min, 2, 8 and 24h after surgery, adverse events related to systemic analgesia and time to hospital discharge were evaluated and registered. We found no differences between both groups in opioid consumption (10mg vs. 7mg; P=.2) and pain scores (NVS) within the first 24 postoperative hours, at 60min (3 vs. 5; P=.65), 120min (0 vs. 2; P=.15), 8 and 24h (0 vs. 0; P>.50) for the last 2 points in time analysed. Adverse events related to medication and time to hospital discharge showed similar results. Adding a transversus abdominis plane block technique to opioid PCA does not seem to improve postoperative pain management in laparoscopic hysterectomy. Patient preparation time and costs could be incremented and complications (although rare) related to the technique could appear. Copyright © 2017 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  16. A high-threshold heat-activated channel in cultured rat dorsal root ganglion neurons resembles TRPV2 and is blocked by gadolinium.

    PubMed

    Leffler, Andreas; Linte, Ramona Madalina; Nau, Carla; Reeh, Peter; Babes, Alexandru

    2007-07-01

    Heat-activated ion channels from the vanilloid-type TRP group (TRPV1-4) seem to be central for heat-sensitivity of nociceptive sensory neurons. Displaying a high-threshold (> 52 degrees C) for activation, TRPV2 was proposed to act as a sensor for intense noxious heat in mammalian sensory neurons. However, although TRPV2 is expressed in a distinct population of thinly myelinated primary afferents, a widespread expression in a variety of neuronal and non-neuronal tissues suggests a more diverse physiological role of TRPV2. In its role as a heat-sensor, TRPV2 has not been thoroughly characterized in terms of biophysical and pharmacological properties. In the present study, we demonstrate that the features of heterologously expressed rat TRPV2 closely resemble those of high-threshold heat-evoked currents in medium- and large-sized capsaicin-insensitive rat dorsal root ganglion (DRG) neurons. Both in TRPV2-expressing human embryonic kidney (HEK)293t cells and in DRGs, high-threshold heat-currents were sensitized by repeated activation and by the TRPV1-3 agonist, 2-aminoethoxydiphenyl borate (2-APB). In addition to a previously described block by ruthenium red, we identified the trivalent cations, lanthanum (La(3+)) and gadolinium (Gd(3+)) as potent blockers of TRPV2. Thus, we present a new pharmacological tool to distinguish between heat responses of TRPV2 and the closely related capsaicin-receptor, TRPV1, which is strongly sensitized by trivalent cations. We demonstrate that self-sensitization of heat-evoked currents through TRPV2 does not require extracellular calcium and that TRPV2 can be activated in cell-free membrane patches in the outside-out configuration. Taken together our results provide new evidence for a role of TRPV2 in mediating high-threshold heat responses in a subpopulation of mammalian sensory neurons.

  17. The nervus terminalis ganglion in Anguilla rostrata: an immunocytochemical and HRP histochemical analysis.

    PubMed

    Grober, M S; Bass, A H; Burd, G; Marchaterre, M A; Segil, N; Scholz, K; Hodgson, T

    1987-12-08

    Immunocytochemistry and retrograde horseradish peroxidase (HRP) transport were used to study the ganglion of the nervus terminalis in the American eel, Anguilla rostrata. Luteinizing hormone releasing hormone (LHRH) like immunoreactivity was found in large, ganglion-like cells located ventromedially at the junction of the telencephalon and olfactory bulb and in fibers within the retina and olfactory epithelium. HRP transport from the retina demonstrated direct connections with both the ipsi- and contralateral populations of these ganglion-like cells. Given the well-documented role of both olfaction and vision during migratory and reproductive phases of the life cycle of eels, the robust nature of a nervus terminalis system in these fish may present a unique opportunity to study the behavioral correlates of structure-function organization in a discrete population of ganglion-like cells.

  18. Protecting retinal ganglion cells.

    PubMed

    Khatib, T Z; Martin, K R

    2017-02-01

    Retinal ganglion cell degeneration underlies several conditions which give rise to significant visual compromise, including glaucoma, hereditary optic neuropathies, ischaemic optic neuropathies, and demyelinating disease. In this review, we discuss the emerging strategies for neuroprotection specifically in the context of glaucoma, including pharmacological neuroprotection, mesenchymal stem cells, and gene therapy approaches. We highlight potential pitfalls that need to be considered when developing these strategies and outline future directions, including the prospects for clinical trials.

  19. Parasitoid wasp sting: a cocktail of GABA, taurine, and beta-alanine opens chloride channels for central synaptic block and transient paralysis of a cockroach host.

    PubMed

    Moore, Eugene L; Haspel, Gal; Libersat, Frederic; Adams, Michael E

    2006-07-01

    The wasp Ampulex compressa injects venom directly into the prothoracic ganglion of its cockroach host to induce a transient paralysis of the front legs. To identify the biochemical basis for this paralysis, we separated venom components according to molecular size and tested fractions for inhibition of synaptic transmission at the cockroach cercal-giant synapse. Only fractions in the low molecular weight range (<2 kDa) caused synaptic block. Dabsylation of venom components and analysis by HPLC and MALDI-TOF-MS revealed high levels of GABA (25 mM), and its receptor agonists beta-alanine (18 mM), and taurine (9 mM) in the active fractions. Each component produces transient block of synaptic transmission at the cercal-giant synapse and block of efferent motor output from the prothoracic ganglion, which mimics effects produced by injection of whole venom. Whole venom evokes picrotoxin-sensitive chloride currents in cockroach central neurons, consistent with a GABAergic action. Together these data demonstrate that Ampulex utilizes GABAergic chloride channel activation as a strategy for central synaptic block to induce transient and focal leg paralysis in its host. Copyright 2006 Wiley Periodicals, Inc.

  20. Clustering is a feature of the spiral ganglion in the basal turn.

    PubMed

    Gacek, Richard R

    2012-01-01

    To demonstrate the organization of the spiral ganglion in the mammalian species. Temporal bone (TB) specimens from man (n = 2), monkey (n = 2), lion (n = 2) and cat (n = 20) were stained, decalcified and dissected according to the Sudan black B method of Rasmussen. These TB specimens were examined under a Zeiss operating microscope and photographed with a Canon 100 camera interfaced with the microscope. Spiral ganglion cells occurred in clusters within Rosenthal's canal in all four species. The location of the clusters was marked by the interface between axon and dendritic bundles as well as groups of ganglion cells. In monkey and man the clusters were more separated than in lion and cat. These observations indicate that the spiral ganglion forms clusters of neurons within Rosenthal's canal at the basal cochlear turn in the mammals investigated here. The formation of clusters may be related to the principles of neurogenesis. Copyright © 2011 S. Karger AG, Basel.

  1. Berberine exerts antioxidant effects via protection of spiral ganglion cells against cytomegalovirus-induced apoptosis.

    PubMed

    Zhuang, Wei; Li, Ting; Wang, Caiji; Shi, Xi; Li, Yalan; Zhang, Shili; Zhao, Zeqi; Dong, Hongyan; Qiao, Yuehua

    2018-06-01

    Cytomegalovirus (CMV) is the leading cause of sensorineural hearing loss (SNHL) in children because of its damage to the cochlea and spiral ganglion cells. Therefore, it has become a top priority to devise new methods to effectively protect spiral ganglion cells from damage. Berberine (BBR) has gained attention for its vast beneficial biological effects through immunomodulation, and its anti-inflammatory and anti-apoptosis properties. However, the effect of BBR on spiral ganglion cells and molecular mechanisms are still unclear. This study aims to investigate whether BBR has an anti-apoptosis effect in CMV-induced apoptosis in cultured spiral ganglion cells and explore the possible mechanism. In this study, TUNEL and MTT assays significantly demonstrated that low doses of BBR did not promote cell apoptosis and they also inhibited the CMV-induced cultured spiral ganglion cell apoptosis. Immunofluorescence and Western blot assays indicated that the anti-apoptosis effect of BBR was related to Nox3. Mitochondrial calcium and Western blot assays revealed that NMDAR1 mediated this anti-apoptosis effect. Our results demonstrated that BBR exerted an anti-apoptosis effect against CMV in cultured spiral ganglion cells, and the mechanism is related to NMDAR1/Nox3-mediated mitochondrial reactive oxygen species (ROS) generation. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. The efficacy of oblique subcostal transversus abdominis plane block in laparoscopic cholecystectomy - a prospective, placebo controlled study.

    PubMed

    Breazu, Caius Mihai; Ciobanu, Lidia; Hadade, Adina; Bartos, Adrian; Mitre, Călin; Mircea, Petru Adrian; Ionescu, Daniela

    2016-04-01

    Pain control after a laparoscopic cholecystectomy can represent a challenge, considering the side effects due to standard analgesia methods. Recently the transversus abdominis plane block (TAP Block) has been used as a part of multimodal analgesia with promising results. The subcostal approach (OSTAP Block), a variant on the TAP block, produces reliable unilateral supraumbilical analgesia. This study evaluated the efficacy of the OSTAP block with bupivacaine in laparoscopic cholecystectomy compared with the placebo OSTAP block. Sixty ASA I/II adult patients listed for elective laparoscopic cholecystectomy were randomly allocated in one of two groups: Group A (OSTAP placebo) received preoperatively bilateral OSTAP block with sterile normal saline and Group B (OSTAP bupivacaine) received bilateral preoperatively OSTAP block with the same volumes of 0.25% bupivacaine. Twenty-four hours postoperative opioid consumption, the dose of opioid required during surgery, opioid dose in the recovery unit (PACU) and PACU length of stay were evaluated. The quality of analgesia was assessed by the Visual Analogue Scale (VAS) at specific interval hours during 24 h, at rest and with movement. The mean intraoperative opioid consumption showed a significant difference between the two groups, (385 ± 72.52 mg in group A vs 173.67 ± 48.60 mg in group B, p < 0.001). The mean 24 h opioid consumption showed a statistically significant difference between groups (32 ± 26.05 mg vs 79 ± 16.68 mg, p < 0.001). PACU length of stay was significantly lower for group B patients compared with group A patients (20.67 ± 11.27 min vs 41.67 ± 12.41 min, p < 0.001). The OSTAP bupivacaine group had a statistically significant lower pain score than the OSTAP placebo group at 0, 2, 4, 6, 12, 24 h, both at rest and with movement. No signs or symptoms of local anaesthetic systemic toxicity or other complications were detected. OSTAP block with bupivacaine 0.25% can provide effective analgesia up to 24

  3. [Efficacy and safety of ultrasound-guided or neurostimulator-guided bilateral axillary brachial plexus block].

    PubMed

    Xu, C S; Zhao, X L; Zhou, H B; Qu, Z J; Yang, Q G; Wang, H J; Wang, G

    2017-10-17

    Objective: To explore the efficacy and safety of bilateral axillary brachial plexus block under the guidance of ultrasound or neurostimulator. Methods: From February 2012 to April 2014, 120 patients undergoing bilateral hand/forearm surgery in Beijing Jishuitan Hospital were enrolled and anaesthetized with bilateral axillary brachial plexus block. All patients were divided into two groups randomly using random number table: the ultrasound-guided group (group U, n =60) and the neurostimulator-guidedgroup (group N, n =60). The block was performed with 0.5% ropivacaine. Patients' age, sex and operation duration were recorded. Moreover, success rate, performance time, onset of sensor and motor block, performance pain, patient satisfaction degree and the incidence of related complications were also documented. Venous samples were collected at selected time points and the total and the plasma concentrations of ropivacaine were analyzed with HPLC. Results: The performance time, the onset of sensor block and the onset of motor block of group U were (8.2±1.5), (14.2± 2.2)and (24.0±3.5)min respectively, which were markedly shorter than those in group N( (14.6±3.9), (19.9±3.8), (28.8±4.2)min, respectively), and the differences were statistically significant( t =11.74, 10.09, 6.73, respectively, all P <0.01). The performance pain score of group N was (25.5± 13.2), which was obviously more serious than group U (31.7± 11.2) and a significant statistical difference was detected ( t =2.856, P <0.05). The patient satisfaction degree of group U was 95.0%, which was significantly higher than group N (83.3%) and a markedly statistical difference was detected (χ(2)=4.227, P <0.05). Fifty min after performance, the total plasma concentration of ropivacaine of group U was(1.76±0.48)mg/L, which was significantly lower than group N (1.88±0.53)mg/L and a significant statistical difference was detected ( t =2.43, P <0.05), while no significant differences were detected at the

  4. Retinal ganglion cell distribution and spatial resolving power in elasmobranchs.

    PubMed

    Lisney, Thomas J; Collin, Shaun P

    2008-01-01

    The total number, distribution and peak density of presumed retinal ganglion cells was assessed in 10 species of elasmobranch (nine species of shark and one species of batoid) using counts of Nissl-stained cells in retinal wholemounts. The species sampled include a number of active, predatory benthopelagic and pelagic sharks that are found in a variety of coastal and oceanic habitats and represent elasmobranch groups for which information of this nature is currently lacking. The topographic distribution of cells was heterogeneous in all species. Two benthic species, the shark Chiloscyllium punctatum and the batoid Taeniura lymma, have a dorsal or dorso-central horizontal streak of increased cell density, whereas the majority of the benthopelagic and pelagic sharks examined exhibit a more concentric pattern of increasing cell density, culminating in a central area centralis of higher cell density located close to the optic nerve head. The exception is the shark Alopias superciliosus, which possesses a ventral horizontal streak. Variation in retinal ganglion cell topography appears to be related to the visual demands of different habitats and lifestyles, as well as the positioning of the eyes in the head. The upper limits of spatial resolving power were calculated for all 10 species, using peak ganglion cell densities and estimates of focal length taken from cryo-sectioned eyes in combination with information from the literature. Spatial resolving power ranged from 2.02 to 10.56 cycles deg(-1), which is in accordance with previous studies. Species with a lower spatial resolving power tend to be benthic and/or coastal species that feed on benthic invertebrates and fishes. Active, benthopelagic and pelagic species from more oceanic habitats which feed on larger, more active prey, possess a higher resolving power. Additionally, ganglion cells in a juvenile of C. punctatum, were retrogradely-labeled from the optic nerve with biotinylated dextran amine (BDA). A comparison

  5. [Met]- and [Leu]enkephalin-like immunoreactive cell bodies and nerve fibres in the coeliac ganglion of the cat.

    PubMed

    Julé, Y; Clerc, N; Niel, J P; Condamin, M

    1986-06-01

    The occurrence and distribution of methionine- and leucine-enkephalin-like immunoreactivity were investigated in the cat coeliac ganglion using either the indirect immunoperoxidase method or the peroxidase-antiperoxidase technique. Several antisera raised to methionine- and leucine-enkephalin were used. Their specificity was assessed by incubating sections of the coeliac ganglion with increasing dilutions of antisera and with antisera saturated with their respective antigen. The present study was performed both in untreated and in colchicine-treated cats. Immunoreactive methionine- and leucine-enkephalin-like cell bodies were only visualized in colchicine-treated cats. Two types of labeled cells were observed. The first type had a size similar to that of unlabeled principal ganglion cells. These labeled cells were numerous and scattered throughout the ganglion; they probably represented enkephalin-containing ganglion cells. The second type of immunoreactive cells were of a much smaller size. They were always gathered in small clusters of about 5-15 cells and were not numerous; they presumably represented enkephalin-containing small intensely fluorescent cells. Immunoreactive nerve fibres were mainly observed in untreated cats and accessorily in colchicine-treated cats. In untreated animals dense networks of methionine- and leucine-enkephalin-like immunoreactive fibres were found in the coeliac ganglion. These fibres had numerous varicosities which often closely surrounded unlabeled principal ganglion cells. In colchicine-treated cats some immunoreactive fibres surrounded labeled principal ganglion cell bodies. The present results establish for the first time the presence of enkephalin-like immunoreactive principal ganglion cells in a mammalian sympathetic prevertebral ganglion. The presence of enkephalin-containing principal ganglion cells, small intensely fluorescent cells and nerve terminals, supports an important role of enkephalins in the integrative synaptic

  6. Diagnostic efficacy of cell block method for vitreoretinal lymphoma.

    PubMed

    Kase, Satoru; Namba, Kenichi; Iwata, Daiju; Mizuuchi, Kazuomi; Kitaichi, Nobuyoshi; Tagawa, Yoshiaki; Okada-Kanno, Hiromi; Matsuno, Yoshihiro; Ishida, Susumu

    2016-03-17

    Vitreoretinal lymphoma (VRL) is a life- and sight-threatening disorder. The aim of this study was to analyze the usefulness of the cell block method for diagnosis of VRL. Sixteen eyes in 12 patients with VRL, and 4 eyes in 4 patients with idiopathic uveitis presenting with vitreous opacity were enrolled in this study. Both undiluted vitreous and diluted fluids were isolated during micro-incision vitrectomy. Cell block specimens were prepared in 19 eyes from diluted fluid containing shredding vitreous. These specimens were then submitted for HE staining as well as immunocytological analyses with antibodies against the B-cell marker CD20, the T-cell marker CD3, and cell proliferation marker Ki67. Conventional smear cytology was applied in 14 eyes with VRL using undiluted vitreous samples. The diagnosis of VRL was made based on the results of cytology, concentrations of interleukin (IL)-10 and IL-6 in undiluted vitreous, and immunoglobulin heavy chain gene rearrangement analysis. Atypical lymphoid cells were identified in 14 out of 15 cell block specimens of VRL (positive rate: 93.3 %), but in 5 out of 14 eyes in conventional smear cytology (positive rate: 35.7 %). Atypical lymphoid cells showed immunoreactivity for CD20 and Ki67. Seven cell block specimens were smear cytology-negative and cell block-positive. The cell block method showed no atypical lymphoid cells in any patient with idiopathic uveitis. Cell block specimens using diluted vitreous fluid demonstrated a high diagnostic sensitivity and a low pseudo-positive rate for the cytological diagnosis of VRL. The cell block method contributed to clear differentiation between VRL and idiopathic uveitis with vitreous opacity.

  7. Protecting retinal ganglion cells

    PubMed Central

    Khatib, T Z; Martin, K R

    2017-01-01

    Retinal ganglion cell degeneration underlies several conditions which give rise to significant visual compromise, including glaucoma, hereditary optic neuropathies, ischaemic optic neuropathies, and demyelinating disease. In this review, we discuss the emerging strategies for neuroprotection specifically in the context of glaucoma, including pharmacological neuroprotection, mesenchymal stem cells, and gene therapy approaches. We highlight potential pitfalls that need to be considered when developing these strategies and outline future directions, including the prospects for clinical trials. PMID:28085136

  8. Features and functions of nonlinear spatial integration by retinal ganglion cells.

    PubMed

    Gollisch, Tim

    2013-11-01

    Ganglion cells in the vertebrate retina integrate visual information over their receptive fields. They do so by pooling presynaptic excitatory inputs from typically many bipolar cells, which themselves collect inputs from several photoreceptors. In addition, inhibitory interactions mediated by horizontal cells and amacrine cells modulate the structure of the receptive field. In many models, this spatial integration is assumed to occur in a linear fashion. Yet, it has long been known that spatial integration by retinal ganglion cells also incurs nonlinear phenomena. Moreover, several recent examples have shown that nonlinear spatial integration is tightly connected to specific visual functions performed by different types of retinal ganglion cells. This work discusses these advances in understanding the role of nonlinear spatial integration and reviews recent efforts to quantitatively study the nature and mechanisms underlying spatial nonlinearities. These new insights point towards a critical role of nonlinearities within ganglion cell receptive fields for capturing responses of the cells to natural and behaviorally relevant visual stimuli. In the long run, nonlinear phenomena of spatial integration may also prove important for implementing the actual neural code of retinal neurons when designing visual prostheses for the eye. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Spontaneous Discharge Patterns in Cochlear Spiral Ganglion Cells Prior to the Onset of Hearing in Cats

    PubMed Central

    Jones, Timothy A.; Leake, Patricia A.; Snyder, Russell L.; Stakhovskaya, Olga; Bonham, Ben

    2008-01-01

    Spontaneous neural activity has been recorded in the auditory nerve of cats as early as 2 days postnatal (P2 ), yet individual auditory neurons do not respond to ambient sound levels below 90–100 dB SPL until about P10. Significant refinement of the central projections from the spiral ganglion to the cochlear nucleus occurs during this neonatal period. This refinement may be dependent on peripheral spontaneous discharge activity. We recorded from single spiral ganglion cells in kittens aged P3 to P9. The spiral ganglion was accessed via the round window through the spiral lamina. A total of 112 ganglion cells were isolated for study in 9 animals. Spike rates in neonates were very low, ranging from 0.06 to 56 sp/s with a mean of 3.09 +/− 8.24 sp/s. Ganglion cells in neonatal kittens exhibited remarkable repetitive spontaneous bursting discharge patterns. The unusual patterns were evident in the large mean interval coefficient of variation (CVi = 2.9 +/−1.6) and burst index of 5.2 +/− 3.5 across ganglion cells. Spontaneous bursting patterns in these neonatal mammals were similar to those reported for cochlear ganglion cells of the embryonic chicken suggesting this may be a general phenomenon that is common across animal classes. Rhythmic spontaneous discharge of retinal ganglion cells has been shown to be important in the development of central retinotopic projections and normal binocular vision (Shatz, 1996, Proc Natl Acad Sci 93). Bursting rhythms in cochlear ganglion cells may play a similar role in the auditory system during pre-hearing periods. PMID:17686914

  10. Cochlear implants and ex vivo BDNF gene therapy protect spiral ganglion neurons.

    PubMed

    Rejali, Darius; Lee, Valerie A; Abrashkin, Karen A; Humayun, Nousheen; Swiderski, Donald L; Raphael, Yehoash

    2007-06-01

    Spiral ganglion neurons often degenerate in the deaf ear, compromising the function of cochlear implants. Cochlear implant function can be improved by good preservation of the spiral ganglion neurons, which are the target of electrical stimulation by the implant. Brain derived neurotrophic factor (BDNF) has previously been shown to enhance spiral ganglion survival in experimentally deafened ears. Providing enhanced levels of BDNF in human ears may be accomplished by one of several different methods. The goal of these experiments was to test a modified design of the cochlear implant electrode that includes a coating of fibroblast cells transduced by a viral vector with a BDNF gene insert. To accomplish this type of ex vivo gene transfer, we transduced guinea pig fibroblasts with an adenovirus with a BDNF gene cassette insert, and determined that these cells secreted BDNF. We then attached BDNF-secreting cells to the cochlear implant electrode via an agarose gel, and implanted the electrode in the scala tympani. We determined that the BDNF expressing electrodes were able to preserve significantly more spiral ganglion neurons in the basal turns of the cochlea after 48 days of implantation when compared to control electrodes. This protective effect decreased in the higher cochlear turns. The data demonstrate the feasibility of combining cochlear implant therapy with ex vivo gene transfer for enhancing spiral ganglion neuron survival.

  11. Pethidine efficacy in achieving the ultrasound-guided oblique subcostal transversus abdominis plane block in laparoscopic cholecystectomy: A prospective study.

    PubMed

    Breazu, Caius Mihai; Ciobanu, Lidia; Bartos, Adrian; Bodea, Raluca; Mircea, Petru Adrian; Ionescu, Daniela

    2017-02-21

    Pethidine is a synthetic opioid with local anesthetic properties. Our goal was to evaluate the analgesic efficacy of pethidine for achieving the ultrasound-guided oblique subcostal transversus abdominis plane (OSTAP) block in laparoscopic cholecystectomy. This prospective, double-blind study included 79 patients of physical status I and II according to American Society of Anesthesiologists, scheduled for elective laparoscopic cholecystectomy. The patients were randomly allocated into three groups, depending on the drug used to achieve preoperative bilateral OSTAP block: 1) OSTAP-Placebo (treated with normal saline); 2) OSTAP-Bupivacaine (treated with 0.25% bupivacaine); and 3) OSTAP-Pethidine (treated with 1% pethidine). The efficacy of pethidine in achieving the OSTAP block was analyzed using visual analog scale (VAS), intraoperative opioid dose, opioid consumption in post anesthesia care unit, and opioid consumption in the first 24 postoperative hours. The pain scores assessed by VAS at 0, 2, 4, 6, 12, and 24 hours were significantly lower in OSTAP-Pethidine than in OSTAP-Placebo group (p < 0.001). The mean intraoperative opioid consumption was significantly lower in OSTAP-Pethidine compared to OSTAP-Placebo group (150 versus 400 mg, p < 0.001), as well as the mean opioid consumption in the first 24 hours (20.4 versus 78 mg, p < 0.001). Comparing VAS assessment between OSTAP-Bupivacaine and OSTAP-Pethidine groups, statistically significant differences were observed only for the immediate postoperative pain assessment (0 hours), where lower values were observed in OSTAP-Pethidine group (p = 0.004). There were no statistically significant differences in the incidence of postoperative nausea and vomiting (p = 0.131) between the groups. The use of 1% pethidine can be an alternative to 0.25% bupivacaine in achieving OSTAP block for laparoscopic cholecystectomy.

  12. Preferential inhibition of Ih in rat trigeminal ganglion neurons by an organic blocker.

    PubMed

    Janigro, D; Martenson, M E; Baumann, T K

    1997-11-15

    The potency and specificity of a novel organic Ih current blocker DK-AH 268 (DK, Boehringer) was studied in cultured rat trigeminal ganglion neurons using whole-cell patch-clamp recording techniques. In neurons current-clamped at the resting potential, the application of 10 microM DK caused a slight hyperpolarization of the membrane potential and a small increase in the threshold for action potential discharge without any major change in the shape of the action potential. In voltage-clamped neurons, DK caused a reduction of a hyperpolarization-activated current. Current subtraction protocols revealed that the time-dependent, hyperpolarization-activated currents blocked by 10 microM DK or external Cs+ (3 mM) had virtually identical activation properties, suggesting that DK and Cs+ caused blockade of the same current, namely Ih. The block of Ih by DK was dose-dependent. At the intermediate and higher concentrations of DK (10 and 100 microM) a decrease in specificity was observed so that time-independent, inwardly rectifying and noninactivating, voltage-gated outward potassium currents were also reduced by DK but to a much lesser extent than the time-dependent, hyperpolarization-activated currents. Blockade of the time-dependent, hyperpolarization-activated currents by DK appeared to be use-dependent since it required hyperpolarization for the effect to take place. Relief of DK block was also aided by membrane hyperpolarization. Since both the time-dependent current blocked by DK and the Cs+-sensitive time-dependent current behaved as Ih, we conclude that 10 microM DK can preferentially reduce Ih without a major effect on other potassium currents. Thus, DK may be a useful agent in the investigation of the function of Ih in neurons.

  13. Intrinsically photosensitive retinal ganglion cells.

    PubMed

    Do, Michael Tri Hoang; Yau, King-Wai

    2010-10-01

    Life on earth is subject to alternating cycles of day and night imposed by the rotation of the earth. Consequently, living things have evolved photodetective systems to synchronize their physiology and behavior with the external light-dark cycle. This form of photodetection is unlike the familiar "image vision," in that the basic information is light or darkness over time, independent of spatial patterns. "Nonimage" vision is probably far more ancient than image vision and is widespread in living species. For mammals, it has long been assumed that the photoreceptors for nonimage vision are also the textbook rods and cones. However, recent years have witnessed the discovery of a small population of retinal ganglion cells in the mammalian eye that express a unique visual pigment called melanopsin. These ganglion cells are intrinsically photosensitive and drive a variety of nonimage visual functions. In addition to being photoreceptors themselves, they also constitute the major conduit for rod and cone signals to the brain for nonimage visual functions such as circadian photoentrainment and the pupillary light reflex. Here we review what is known about these novel mammalian photoreceptors.

  14. TRPC1 is required for survival and proliferation of cochlear spiral ganglion stem/progenitor cells.

    PubMed

    Chen, Hsin-Chien; Wang, Chih-Hung; Shih, Cheng-Ping; Chueh, Sheau-Huei; Liu, Shu-Fan; Chen, Hang-Kang; Lin, Yi-Chun

    2015-12-01

    The present studies were designed to test the hypothesis that canonical transient receptor potential channel 1 (TRPC1) is required for the proliferation of cochlear spiral ganglion stem/progenitor cells (SPCs). TRPC1 were detected and evaluated in postnatal day 1 CBA/CaJ mice pups derived-cochlear spiral ganglion SPCs by reverse transcription-polymerase chain reaction, Western blot, immunocytochemistry, and calcium imaging. The cell viability and proliferation of the spiral ganglion SPCs following si-RNA mediated knockdown of TRPC1 or addition of TRPC channel blocker SKF9635 were compared to controls. In spiral ganglion SPCs, TRPC1 was found to be the most abundantly expressed TRPC subunit and shown to contribute to store-operated calcium entry. Silencing of TRPC1 or addition of TRPC channel blockers significantly decreased the rate of cell proliferation. The results suggest that TRPC1 might serve as an essential molecule in regulating the proliferation of spiral ganglion SPCs. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. A decay of gap junctions associated with ganglion cell differentiation during retinal regeneration of the adult newt.

    PubMed

    Oi, Hanako; Chiba, Chikafumi; Saito, Takehiko

    2003-12-01

    Changes in the gap junctional coupling and maturation of voltage-activated Na(+) currents during regeneration of newt retinas were examined by whole-cell patch-clamping in slice preparations. Progenitor cells in regenerating retinas did not exhibit Na(+) currents but showed prominent electrical and tracer couplings. Cells identified by LY-fills were typically slender. Na(+) currents were detected in premature ganglion cells with round somata in the 'intermediate-II' regenerating retina. No electrical and tracer couplings were observed between these cells. Mature ganglion cells did not exhibit electrical coupling, but showed tracer coupling. On average, the maximum Na(+) current amplitude recorded from premature ganglion cells was roughly 2.5-fold smaller than that of mature ganglion cells. In addition, the activation threshold of the Na(+) current was nearly 11 mV more positive than that of mature cells. We provide morphological and physiological evidence showing that loss of gap junctions between progenitor cells is associated with ganglion cell differentiation during retinal regeneration and that new gap junctions are recreated between mature ganglion cells. Also we provide evidence suggesting that the loss of gap junctions correlates with the appearance of voltage-activated Na(+) currents in ganglion cells.

  16. Accelerated retinal ganglion cell death in mice deficient in the Sigma-1 receptor.

    PubMed

    Mavlyutov, Timur A; Nickells, Robert W; Guo, Lian-Wang

    2011-04-26

    The sigma-1 receptor (σR1), a ligand-operated chaperone, has been inferred to be neuroprotective in previous studies using σR1 ligands. The σR1 specificity of the protective function, however, has yet to be firmly established, due to the existence of non-σR1 targets of the ligands. Here, we used the σR1-knockout mouse (Sigmar1(-/-)) to demonstrate unambiguously the role of the σR1 in protecting the retinal ganglion cells against degeneration after acute damage to the optic nerve. Retinal σR binding sites were labeled with radioiodinated σR ligands and analyzed by autoradiography. Localization of the σR1 was performed by indirect immunofluorescence on frozen retinal sections. Retinal ganglion cell death was induced by acute optic nerve crush in wild-type and Sigmar1(-/-) mice. Surviving cells in the ganglion cell layer were counted on Nissl-stained retinal whole mounts 7 days after the crush surgery. Photoaffinity labeling indicated the presence of the σR1 in the retina, in concentrations equivalent to those in liver tissue. Immunolabeling detected this receptor in cells of both the ganglion cell layer and the photoreceptor cell layer in wild-type retinas. Quantification of cells remaining after optic nerve crush showed that 86.8±7.9% cells remained in the wild-type ganglion cell layer, but only 68.3±3.4% survived in the Sigmar1(-/-), demonstrating a significant difference between the wild-type and the Sigmar1(-/-) in crush-induced ganglion cell loss. Our data indicated faster retinal ganglion cell death in Sigmar1(-/-) than in wild-type mice under the stresses caused by optic nerve crush, providing direct evidence for a role of the σR1 in alleviating retinal degeneration. This conclusion is consistent with the previous pharmacological studies using σR1 agonists. Thus, our study supports the idea that the σR1 is a promising therapeutic target for neurodegenerative retinal diseases, such as glaucoma.

  17. Angioarchitecture of the coeliac sympathetic ganglion complex in the common tree shrew (Tupaia glis)

    PubMed Central

    PROMWIKORN, WARAPORN; THONGPILA, SAKPORN; PRADIDARCHEEP, WISUIT; MINGSAKUL, THAWORN; CHUNHABUNDIT, PANJIT; SOMANA, REON

    1998-01-01

    The angioarchitecture of the coeliac sympathetic ganglion complex (CGC) of the common tree shrew (Tupaia glis) was studied by the vascular corrosion cast technique in conjunction with scanning electron microscopy. The CGC of the tree shrew was found to be a highly vascularised organ. It normally received arterial blood supply from branches of the inferior phrenic, superior suprarenal and inferior suprarenal arteries and of the abdominal aorta. In some animals, its blood supply was also derived from branches of the middle suprarenal arteries, coeliac artery, superior mesenteric artery and lumbar arteries. These arteries penetrated the ganglion at variable points and in slightly different patterns. They gave off peripheral branches to form a subcapsular capillary plexus while their main trunks traversed deeply into the inner part before branching into the densely packed intraganglionic capillary networks. The capillaries merged to form venules before draining into collecting veins at the peripheral region of the ganglion complex. Finally, the veins coursed to the dorsal aspect of the ganglion to drain into the renal and inferior phrenic veins and the inferior vena cava. The capillaries on the coeliac ganglion complex do not possess fenestrations. PMID:9877296

  18. Retinal ganglion cell projections to the hamster suprachiasmatic nucleus, intergeniculate leaflet, and visual midbrain: bifurcation and melanopsin immunoreactivity

    NASA Technical Reports Server (NTRS)

    Morin, Lawrence P.; Blanchard, Jane H.; Provencio, Ignacio

    2003-01-01

    The circadian clock in the suprachiasmatic nucleus (SCN) receives direct retinal input via the retinohypothalamic tract (RHT), and the retinal ganglion cells contributing to this projection may be specialized with respect to direct regulation of the circadian clock. However, some ganglion cells forming the RHT bifurcate, sending axon collaterals to the intergeniculate leaflet (IGL) through which light has secondary access to the circadian clock. The present studies provide a more extensive examination of ganglion cell bifurcation and evaluate whether ganglion cells projecting to several subcortical visual nuclei contain melanopsin, a putative ganglion cell photopigment. The results showed that retinal ganglion cells projecting to the SCN send collaterals to the IGL, olivary pretectal nucleus, and superior colliculus, among other places. Melanopsin-immunoreactive (IR) ganglion cells are present in the hamster retina, and some of these cells project to the SCN, IGL, olivary pretectal nucleus, or superior colliculus. Triple-label analysis showed that melanopsin-IR cells bifurcate and project bilaterally to each SCN, but not to the other visual nuclei evaluated. The melanopsin-IR cells have photoreceptive characteristics optimal for circadian rhythm regulation. However, the presence of moderately widespread bifurcation among ganglion cells projecting to the SCN, and projection by melanopsin-IR cells to locations distinct from the SCN and without known rhythm function, suggest that this ganglion cell type is generalized, rather than specialized, with respect to the conveyance of photic information to the brain. Copyright 2003 Wiley-Liss, Inc.

  19. Muscarinic Acetylcholine Receptor Localization and Activation Effects on Ganglion Response Properties

    PubMed Central

    Renna, Jordan M.; Amthor, Franklin R.; Keyser, Kent T.

    2010-01-01

    Purpose. The activation and blockade of muscarinic acetylcholine receptors (mAChRs) affects retinal ganglion cell light responses and firing rates. This study was undertaken to identify the full complement of mAChRs expressed in the rabbit retina and to assess mAChR distribution and the functional effects of mAChR activation and blockade on retinal response properties. Methods. RT-PCR, Western blot analysis, and immunohistochemistry were used to identify the complement and distribution of mAChRs in the rabbit retina. Extracellular electrophysiology was used to determine the effects of the activation or blockade of mAChRs on ganglion cell response properties. Results. RT-PCR of whole neural retina resulted in the amplification of mRNA transcripts for the m1 to m5 mAChR subtypes. Western blot and immunohistochemical analyses confirmed that all five mAChR subtypes were expressed by subpopulations of bipolar, amacrine, and ganglion cells in the rabbit retina, including subsets of cells in cholinergic and glycinergic circuits. Nonspecific muscarinic activation and blockade resulted in the class-specific modulation of maintained ganglion cell firing rates and light responses. Conclusions. The expression of mAChR subtypes on subsets of bipolar, amacrine, and ganglion cells provides a substrate for both enhancement and suppression of retinal responses via activation by cholinergic agents. Thus, the muscarinic cholinergic system in the retina may contribute to the modulation of complex stimuli. Understanding the distribution and function of mAChRs in the retina has the potential to provide important insights into the visual changes that are caused by decreased ACh in the retinas of Alzheimer's patients and the potential visual effects of anticholinergic treatments for ocular diseases. PMID:20042645

  20. Broad Thorny Ganglion Cells: A Candidate for Visual Pursuit Error Signaling in the Primate Retina

    PubMed Central

    Manookin, Michael B.; Neitz, Jay; Rieke, Fred

    2015-01-01

    Functional analyses exist only for a few of the morphologically described primate ganglion cell types, and their correlates in other mammalian species remain elusive. Here, we recorded light responses of broad thorny cells in the whole-mounted macaque retina. They showed ON-OFF-center light responses that were strongly suppressed by stimulation of the receptive field surround. Spike responses were delayed compared with parasol ganglion cells and other ON-OFF cells, including recursive bistratified ganglion cells and A1 amacrine cells. The receptive field structure was shaped by direct excitatory synaptic input and strong presynaptic and postsynaptic inhibition in both ON and OFF pathways. The cells responded strongly to dark or bright stimuli moving either in or out of the receptive field, independent of the direction of motion. However, they did not show a maintained spike response either to a uniform background or to a drifting plaid pattern. These properties could be ideally suited for guiding movements involved in visual pursuit. The functional characteristics reported here permit the first direct cross-species comparison of putative homologous ganglion cell types. Based on morphological similarities, broad thorny ganglion cells have been proposed to be homologs of rabbit local edge detector ganglion cells, but we now show that the two cells have quite distinct physiological properties. Thus, our data argue against broad thorny cells as the homologs of local edge detector cells. PMID:25834063

  1. Anesthetic Efficacy of Gow-Gates Nerve Block, Inferior Alveolar Nerve Block, and Their Combination in Mandibular Molars with Symptomatic Irreversible Pulpitis: A Prospective, Randomized Clinical Trial.

    PubMed

    Saatchi, Masoud; Shafiee, Maryam; Khademi, Abbasali; Memarzadeh, Bahareh

    2018-03-01

    The purpose of this prospective, randomized clinical trial was to evaluate the anesthetic efficacy of the Gow-Gates nerve block (GGNB), the inferior alveolar nerve block (IANB), and their combination for mandibular molars in patients with symptomatic irreversible pulpitis. One hundred fifty patients diagnosed with symptomatic irreversible pulpitis of a mandibular molar were selected. The patients randomly received 2 GGNB injections, 2 IANB injections, or 1 GGNB injection plus 1 IANB injection of 1.8 mL 2% lidocaine with 1:80,000 epinephrine. Access cavity preparation was initiated 15 minutes after injections. Lip numbness was a requisite for all of the patients. Success was specified as no or mild pain on the basis of Heft-Parker visual analog scale recordings during access cavity preparation or initial instrumentation. Data were analyzed with the chi-square, Kruskal-Wallis, and analysis of variance tests. The success rates of anesthesia were 40%, 44%, and 70% for the GGNB, IANB, and GGNB + IANB groups, respectively. There was no statistically significant difference in the success rate of anesthesia between the GGNB and IANB groups (P > .05). The anesthesia success rate for the GGNB + IANB group was significantly different from those of the GGNB and IANB groups (P < .05). A combination of GGNB and IANB could improve the efficacy of anesthesia in mandibular molars with symptomatic irreversible pulpitis, but it would still require supplemental anesthesia. Further research may be needed to confirm the results of this study. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  2. Causes of variation in BCG vaccine efficacy: examining evidence from the BCG REVAC cluster randomized trial to explore the masking and the blocking hypotheses.

    PubMed

    Barreto, Mauricio L; Pilger, Daniel; Pereira, Susan M; Genser, Bernd; Cruz, Alvaro A; Cunha, Sergio S; Sant'Anna, Clemax; Hijjar, Miguel A; Ichihara, Maria Y; Rodrigues, Laura C

    2014-06-24

    BCG protection varies and in some places (nearest the equator) is low or absent. Understanding this variation can inform the efforts to develop new vaccines against tuberculosis. Two main hypotheses are used to explain this variation: under masking, new vaccines are unlikely to increase protection; under blocking new vaccines have a greater potential to be effective when BCG is not. We conducted a cluster randomized trial to explored the masking and blocking hypotheses by studying BCG vaccine efficacy of neonatal vaccination and when administered for the first or a second (revaccination) time at school age in two sites (Manaus close and Salvador further south from the equator). Seven hundred and sixty three state schools were matched on socio economic characteristics of the neighborhood and 239,934 children were randomized to vaccine (BCG vaccination at school age) or control group. Protection by first BCG vaccination at school age was high in Salvador (34%, 95% CI 7-53%, p=0.017) but low in Manaus (8%, 95% CI t0 39-40%, p=0.686). For revaccination at school age, protection was modest in Salvador (19%, 95% CI 3-33%, p=0.022) and absent in Manaus (1%, 95% CI to 27-23%, p=0.932). Vaccine efficacy for neonatal vaccination was similar in Salvador (40%, 95% CI 22-54%, p<0.001) and Manaus (36%, 95% CI 11-53%, p=0.008). Variation in BCG efficacy was marked when vaccine was given at school age but absent at birth, which points towards blocking as the dominant mechanism. New tuberculosis vaccines that overcome or by pass this blocking effect could confer protection in situations where BCG is not protective. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Diagnostic ability of macular ganglion cell asymmetry for glaucoma.

    PubMed

    Hwang, Young Hoon; Ahn, Sang Il; Ko, Sung Ju

    2015-11-01

    Using spectral-domain optical coherence tomography (OCT), this study aims to investigate the glaucoma diagnostic ability of macular ganglion cell asymmetry analysis. A cross-sectional study was conducted. This study was performed to investigate glaucoma diagnostic ability of macular ganglion cell asymmetry analysis in eyes with various degrees of glaucoma. We enrolled 181 healthy eyes and 265 glaucomatous eyes. Glaucomatous eyes were subdivided into pre-perimetric, early, moderate and advanced-to-severe glaucoma based on visual field test results. For each eye, macular ganglion cell-inner plexiform layer (GCIPL) thickness was measured using OCT. Average GCIPL thickness, GCIPL thicknesses in superior and inferior hemispheres, absolute difference in GCIPL thickness between superior and inferior hemispheres and GCIPL asymmetry index calculated as the absolute value of log10 (inferior hemisphere thickness/superior hemisphere thickness) were analysed. Areas under the receiver operating characteristics curves (AUCs) of GCIPL parameter were calculated and compared. All of the GCIPL parameters showed good glaucoma diagnostic ability (AUCs ≥ 0.817, P < 0.01). AUCs of average, superior and inferior GCIPL thickness increased as the severity of glaucoma increased. GCIPL thickness difference and asymmetry index showed the highest AUCs in early and moderate glaucoma and lower AUCs in pre-perimetric and advanced-to-severe glaucoma. GCIPL thickness difference and asymmetry index showed better glaucoma diagnostic ability than other GCIPL parameters only in early stage of glaucoma (P < 0.05); in other stages, these parameters had similar to or worse glaucoma diagnostic ability than other GCIPL parameters. Macular ganglion cell asymmetry analysis showed good glaucoma diagnostic ability, especially in early-stage glaucoma. However, it has limited usefulness in other stages of glaucoma. © 2015 Royal Australian and New Zealand College of Ophthalmologists.

  4. Accelerated retinal ganglion cell death in mice deficient in the Sigma-1 receptor

    PubMed Central

    Mavlyutov, Timur A.; Nickells, Robert W.

    2011-01-01

    Purpose The sigma-1 receptor (σR1), a ligand-operated chaperone, has been inferred to be neuroprotective in previous studies using σR1 ligands. The σR1 specificity of the protective function, however, has yet to be firmly established, due to the existence of non-σR1 targets of the ligands. Here, we used the σR1-knockout mouse (Sigmar1−/−) to demonstrate unambiguously the role of the σR1 in protecting the retinal ganglion cells against degeneration after acute damage to the optic nerve. Methods Retinal σR binding sites were labeled with radioiodinated σR ligands and analyzed by autoradiography. Localization of the σR1 was performed by indirect immunofluorescence on frozen retinal sections. Retinal ganglion cell death was induced by acute optic nerve crush in wild-type and Sigmar1−/− mice. Surviving cells in the ganglion cell layer were counted on Nissl-stained retinal whole mounts 7 days after the crush surgery. Results Photoaffinity labeling indicated the presence of the σR1 in the retina, in concentrations equivalent to those in liver tissue. Immunolabeling detected this receptor in cells of both the ganglion cell layer and the photoreceptor cell layer in wild-type retinas. Quantification of cells remaining after optic nerve crush showed that 86.8±7.9% cells remained in the wild-type ganglion cell layer, but only 68.3±3.4% survived in the Sigmar1−/−, demonstrating a significant difference between the wild-type and the Sigmar1−/− in crush-induced ganglion cell loss. Conclusions Our data indicated faster retinal ganglion cell death in Sigmar1−/− than in wild-type mice under the stresses caused by optic nerve crush, providing direct evidence for a role of the σR1 in alleviating retinal degeneration. This conclusion is consistent with the previous pharmacological studies using σR1 agonists. Thus, our study supports the idea that the σR1 is a promising therapeutic target for neurodegenerative retinal diseases, such as glaucoma. PMID

  5. Relationship between macular ganglion cell complex thickness and macular outer retinal thickness: a spectral-domain optical coherence tomography study.

    PubMed

    Kita, Yoshiyuki; Kita, Ritsuko; Takeyama, Asuka; Anraku, Ayako; Tomita, Goji; Goldberg, Ivan

    2013-01-01

    To assess the relationship between macular ganglion cell complex and macular outer retinal thicknesses. Case-control study. Forty-two normal eyes and 91 eyes with primary open-angle glaucoma were studied. Spectral-domain optical coherence tomography (RTVue-100) was used to measure the macular ganglion cell complex and macular outer retinal thickness. Ganglion cell complex to outer retinal thickness ratio was also calculated. The relationships between the ganglion cell complex and outer retinal thicknesses and between the ganglion cell complex to outer retinal thickness ratio and outer retinal thickness were evaluated. There was a positive correlation between ganglion cell complex and outer retinal thicknesses in the normal group and the glaucoma group (r = 0.53, P < 0.001 and r = 0.42, P < 0.001, respectively). In that respect, there was no correlation between ganglion cell complex to outer retinal thickness ratio and outer retinal thickness in the both groups (r = -0.07, P = 0.657, and r = 0.04, P = 0.677, respectively). The ganglion cell complex to outer retinal thickness ratio was 55.65% in the normal group, 45.07% in the glaucoma group. This difference was statistically significant. The ganglion cell complex thickness may be affected by outer retinal thickness, and there is individual variation in the outer retinal thickness. Therefore, when determining the ganglion cell complex, it seems necessary to consider the outer retinal thickness as well. We propose the ratio as a suitable parameter to account for individual variations in outer retinal thickness. © 2013 The Authors. Clinical and Experimental Ophthalmology © 2013 Royal Australian and New Zealand College of Ophthalmologists.

  6. Digital Museum of Retinal Ganglion Cells with Dense Anatomy and Physiology.

    PubMed

    Bae, J Alexander; Mu, Shang; Kim, Jinseop S; Turner, Nicholas L; Tartavull, Ignacio; Kemnitz, Nico; Jordan, Chris S; Norton, Alex D; Silversmith, William M; Prentki, Rachel; Sorek, Marissa; David, Celia; Jones, Devon L; Bland, Doug; Sterling, Amy L R; Park, Jungman; Briggman, Kevin L; Seung, H Sebastian

    2018-05-17

    When 3D electron microscopy and calcium imaging are used to investigate the structure and function of neural circuits, the resulting datasets pose new challenges of visualization and interpretation. Here, we present a new kind of digital resource that encompasses almost 400 ganglion cells from a single patch of mouse retina. An online "museum" provides a 3D interactive view of each cell's anatomy, as well as graphs of its visual responses. The resource reveals two aspects of the retina's inner plexiform layer: an arbor segregation principle governing structure along the light axis and a density conservation principle governing structure in the tangential plane. Structure is related to visual function; ganglion cells with arbors near the layer of ganglion cell somas are more sustained in their visual responses on average. Our methods are potentially applicable to dense maps of neuronal anatomy and physiology in other parts of the nervous system. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Efficacy and complications associated with a modified inferior alveolar nerve block technique. A randomized, triple-blind clinical trial

    PubMed Central

    Montserrat-Bosch, Marta; Nogueira-Magalhães, Pedro; Arnabat-Dominguez, Josep; Valmaseda-Castellón, Eduard; Gay-Escoda, Cosme

    2014-01-01

    Objectives: To compare the efficacy and complication rates of two different techniques for inferior alveolar nerve blocks (IANB). Study Design: A randomized, triple-blind clinical trial comprising 109 patients who required lower third molar removal was performed. In the control group, all patients received an IANB using the conventional Halsted technique, whereas in the experimental group, a modified technique using a more inferior injection point was performed. Results: A total of 100 patients were randomized. The modified technique group showed a significantly higher onset time in the lower lip and chin area, and was frequently associated to a lingual electric discharge sensation. Three failures were recorded, 2 of them in the experimental group. No relevant local or systemic complications were registered. Conclusions: Both IANB techniques used in this trial are suitable for lower third molar removal. However, performing an inferior alveolar nerve block in a more inferior position (modified technique) extends the onset time, does not seem to reduce the risk of intravascular injections and might increase the risk of lingual nerve injuries. Key words:Dental anesthesia, inferior alveolar nerve block, lidocaine, third molar, intravascular injection. PMID:24608204

  8. A randomised trial of the analgesic efficacy of ultrasound-guided transversus abdominis plane block after caesarean delivery under general anaesthesia.

    PubMed

    Tan, Terry T; Teoh, Wendy H L; Woo, David C M; Ocampo, Cecilia E; Shah, Mukesh K; Sia, Alex T H

    2012-02-01

    Previous studies examining the efficacy of transversus abdominis plane block after caesarean section have mostly been in parturients under spinal anaesthesia. We postulated that the advantage of performing transversus abdominis plane block after caesarean section might be even more obvious after general anaesthesia, resulting in reduced 24-h consumption of morphine. DESIGN, SETTING, PATIENTS AND INTERVENTIONS: In this single centre, randomised double-blind controlled trial, 40 women who underwent caesarean delivery under general anaesthesia were allocated randomly to receive a transversus abdominis plane block or no block. In those who received the block, 20 ml of levobupivacaine 2.5 mg ml was deposited bilaterally into the transversus abdominis plane under ultrasound guidance using a Sonosite Titan (SonoSite, Bothell, Washington, USA) 7-13 MHz linear transducer at the end of surgery when the patient was still anaesthetised. We recorded patient-controlled intravenous morphine use for 24 h, pain scores at rest and activity, sedation, nausea and vomiting, use of antiemetic medication and overall maternal satisfaction. The primary outcome was 24-h morphine consumption. Patients who received the transversus abdominis plane block used significantly less morphine in 24 h than those in the control group [12.3 (2.6) vs. 31.4 mg (3.1), P<0.001) and had higher satisfaction scores [16 (80%) vs. 5 (25%), P = 0.012). There were no differences between groups in the visual analogue pain scores, sedation level, nausea and vomiting or the use of antiemetic medication. Ultrasound-guided transversus abdominis plane block reduced morphine consumption following caesarean section under general anaesthesia, with increased maternal satisfaction.

  9. Visual Field Defects and Retinal Ganglion Cell Losses in Human Glaucoma Patients

    PubMed Central

    Harwerth, Ronald S.; Quigley, Harry A.

    2007-01-01

    Objective The depth of visual field defects are correlated with retinal ganglion cell densities in experimental glaucoma. This study was to determine whether a similar structure-function relationship holds for human glaucoma. Methods The study was based on retinal ganglion cell densities and visual thresholds of patients with documented glaucoma (Kerrigan-Baumrind, et al.) The data were analyzed by a model that predicted ganglion cell densities from standard clinical perimetry, which were then compared to histologic cell counts. Results The model, without free parameters, produced accurate and relatively precise quantification of ganglion cell densities associated with visual field defects. For 437 sets of data, the unity correlation for predicted vs. measured cell densities had a coefficient of determination of 0.39. The mean absolute deviation of the predicted vs. measured values was 2.59 dB, the mean and SD of the distribution of residual errors of prediction was -0.26 ± 3.22 dB. Conclusions Visual field defects by standard clinical perimetry are proportional to neural losses caused by glaucoma. Clinical Relevance The evidence for quantitative structure-function relationships provides a scientific basis of interpreting glaucomatous neuropathy from visual thresholds and supports the application of standard perimetry to establish the stage of the disease. PMID:16769839

  10. Expression of squid iridescence depends on environmental luminance and peripheral ganglion control.

    PubMed

    Gonzalez-Bellido, P T; Wardill, T J; Buresch, K C; Ulmer, K M; Hanlon, R T

    2014-03-15

    Squid display impressive changes in body coloration that are afforded by two types of dynamic skin elements: structural iridophores (which produce iridescence) and pigmented chromatophores. Both color elements are neurally controlled, but nothing is known about the iridescence circuit, or the environmental cues, that elicit iridescence expression. To tackle this knowledge gap, we performed denervation, electrical stimulation and behavioral experiments using the long-fin squid, Doryteuthis pealeii. We show that while the pigmentary and iridescence circuits originate in the brain, they are wired differently in the periphery: (1) the iridescence signals are routed through a peripheral center called the stellate ganglion and (2) the iridescence motor neurons likely originate within this ganglion (as revealed by nerve fluorescence dye fills). Cutting the inputs to the stellate ganglion that descend from the brain shifts highly reflective iridophores into a transparent state. Taken together, these findings suggest that although brain commands are necessary for expression of iridescence, integration with peripheral information in the stellate ganglion could modulate the final output. We also demonstrate that squid change their iridescence brightness in response to environmental luminance; such changes are robust but slow (minutes to hours). The squid's ability to alter its iridescence levels may improve camouflage under different lighting intensities.

  11. Macroanatomical investigation of the aorticorenal ganglion in 1-day-old infant sheep.

    PubMed

    Klećkowska-Nawrot, J; Kaczyńska, K; Jakubowska, W

    2009-06-01

    The aorticorenal gland belongs to the paired splanchnic ganglion, which is the main component of the coeliac plexus. It lies near the renal artery and suprarenal gland. The research was conducted on 13 1-day-old infant sheep - eight males and five females. Based on the conducted studies, it was concluded that the aorticorenal ganglion is characterized by the variable location in relation to the abdominal aorta, renal artery, caudal vena cava and suprarenal gland (holotopy), the thoracic and lumbar segment of the vertebral column (skeletotopy) (between L(1) and L(3)) and also a different shape (elongated, round, triangular, oval) as well as variable length (the aorticorenal ganglion is longer on the left side of the body; 2.72 mm) and distance from the caudal end of the suprarenal gland (longer on the left side of the body; 8.34 mm). With regard to the sex of the animal, the ganglion is the longest on the left side in ewes (3.02 mm), while in rams it is the longest on the right side (2.68 mm). Regarding the division according to sex, the longest segment was observed on the right side in ewes (9.27 mm), and the shortest segment in rams was also on the right side (6.84 mm).

  12. The efficacy of oblique subcostal transversus abdominis plane block in laparoscopic cholecystectomy – a prospective, placebo controlled study

    PubMed Central

    Breazu, Caius Mihai; Ciobanu, Lidia; Hadade, Adina; Bartos, Adrian; Mitre, Călin; Mircea, Petru Adrian; Ionescu, Daniela

    2016-01-01

    Introduction Pain control after a laparoscopic cholecystectomy can represent a challenge, considering the side effects due to standard analgesia methods. Recently the transversus abdominis plane block (TAP Block) has been used as a part of multimodal analgesia with promising results. The subcostal approach (OSTAP Block), a variant on the TAP block, produces reliable unilateral supraumbilical analgesia. This study evaluated the efficacy of the OSTAP block with bupivacaine in laparoscopic cholecystectomy compared with the placebo OSTAP block. Material and Methods Sixty ASA I/II adult patients listed for elective laparoscopic cholecystectomy were randomly allocated in one of two groups: Group A (OSTAP placebo) received preoperatively bilateral OSTAP block with sterile normal saline and Group B (OSTAP bupivacaine) received bilateral preoperatively OSTAP block with the same volumes of 0.25% bupivacaine. Twenty-four hours postoperative opioid consumption, the dose of opioid required during surgery, opioid dose in the recovery unit (PACU) and PACU length of stay were evaluated. The quality of analgesia was assessed by the Visual Analogue Scale (VAS) at specific interval hours during 24 h, at rest and with movement. Results The mean intraoperative opioid consumption showed a significant difference between the two groups, (385 ± 72.52 mg in group A vs 173.67 ± 48.60 mg in group B, p < 0.001). The mean 24 h opioid consumption showed a statistically significant difference between groups (32 ± 26.05 mg vs 79 ± 16.68 mg, p < 0.001). PACU length of stay was significantly lower for group B patients compared with group A patients (20.67 ± 11.27 min vs 41.67 ± 12.41 min, p < 0.001). The OSTAP bupivacaine group had a statistically significant lower pain score than the OSTAP placebo group at 0, 2, 4, 6, 12, 24 h, both at rest and with movement. No signs or symptoms of local anaesthetic systemic toxicity or other complications were detected. Conclusion OSTAP block with

  13. Painful Pathways Induced by Toll-like Receptor Stimulation of Dorsal Root Ganglion Neurons

    PubMed Central

    Qi, Jia; Buzas, Krisztina; Fan, Huiting; Cohen, Jeffrey I.; Wang, Kening; Mont, Erik; Klinman, Dennis; Oppenheim, Joost J.; Howard, O.M. Zack

    2011-01-01

    We hypothesize that innate immune signals from infectious organisms and/or injured tissues may activate peripheral neuronal pain signals. In this study, we demonstrated that toll-like receptors 3/7/9 (TLRs) are expressed by human dorsal root ganglion neurons (DRGNs) and in cultures of primary mouse DRGNs. Stimulation of murine DRGNs with TLR ligands induced expression and production of proinflammatory chemokines and cytokines CCL5 (RANTES), CXCL10 (IP10), interleukin-1alpha, interleukin-1beta, and prostaglandin E2 (PGE2), which have previously been shown to augment pain. Further, TLR ligands up-regulated the expression of a nociceptive receptor transient receptor potential vanilloid type 1 (TRPV1), and enhanced calcium flux by TRPV1 expressing DRGNs. Using a tumor-induced temperature sensitivity model, we showed that in vivo administration of a TLR9 antagonist, known as a suppressive ODN, blocked tumor-induced temperature sensitivity. Taken together, these data indicate that stimulation of peripheral neurons by TLR ligands can induce nerve pain. PMID:21515789

  14. Retrospective review of the efficacy and safety of repeated pulsed and continuous radiofrequency lesioning of the dorsal root ganglion/segmental nerve for lumbar radicular pain.

    PubMed

    Nagda, Jyotsna V; Davis, Craig W; Bajwa, Zahid H; Simopoulos, Thomas T

    2011-01-01

    Chronic lumbosacral radicular pain is a common source of radiating leg pain seen in pain management patients. These patients are frequently managed conservatively with multiple modalities including medications, physical therapy, and epidural steroid injections. Radiofrequency has been used to treat chronic radicular pain for over 30 years; however, there is a paucity of literature about the safety and efficacy of repeat radiofrequency lesioning. To determine the safety, success rate, and duration of pain relief of repeat pulsed radiofrequency (PRF) and continuous radiofrequency (CRF) lesioning of the dorsal root ganglion (DRG)/ sacral segmental nerves (SN) in patients with chronic lumbosacral radicular pain. Retrospective chart review Outpatient multidisciplinary pain center Medical record review of patients who were treated with pulsed and continuous radiofrequency lesioning of the lumbar dorsal root ganglia and segmental nerves and who reported initial success were evaluated for recurrence of pain and repeat radiofrequency treatment. Responses to subsequent treatments were compared to initial treatments for success rates, average duration of relief, and adverse neurologic side-effects. Retrospective chart review without a control group. Twenty-six women and 24 men were identified who received 50% pain relief or better after PRF and CRF of the lumbar DRG/ sacral SN for lumbosacral radicular pain. The mean age was 62 years (range, 25-86). The mean duration of relief for the 40 patients who had 2 treatments was 4.7 months (range 0-24; Se [standard error] 0.74). Twenty-eight patients had 3 treatments with an average duration of relief of 4.5 months (range 0-19 months; Se 0.74). Twenty patients had 4 treatments with a mean duration of relief of 4.4 months (range 0.5-18; Se 0.95) and 18 patients who had 5 or more treatments received an average duration of relief of 4.3 months (range 0.5-18; Se 1.03). The average duration of relief and success frequency remained

  15. Processing of central and reflex vagal drives by rat cardiac ganglion neurones: an intracellular analysis

    PubMed Central

    McAllen, Robin M; Salo, Lauren M; Paton, Julian F R; Pickering, Anthony E

    2011-01-01

    Abstract Cardiac vagal tone is an important indicator of cardiovascular health, and its loss is an independent risk factor for arrhythmias and mortality. Several studies suggest that this loss of vagal tone can occur at the cardiac ganglion but the factors affecting ganglionic transmissionin vivoare poorly understood. We have employed a novel approach allowing intracellular recordings from functionally connected cardiac vagal ganglion cells in the working heart–brainstem preparation. The atria were stabilisedin situpreserving their central neural connections, and ganglion cells (n = 32) were impaled with sharp microelectrodes. Cardiac ganglion cells with vagal synaptic inputs (spontaneous, n = 10; or electrically evoked from the vagus, n = 3) were identified as principal neurones and showed tonic firing responses to current injected to their somata. Cells lacking vagal inputs (n = 19, presumed interneurones) were quiescent but showed phasic firing responses to depolarising current. In principal cells the ongoing action potentials and EPSPs exhibited respiratory modulation, with peak frequency in post-inspiration. Action potentials arose from unitary EPSPs and autocorrelation of those events showed that each ganglion cell received inputs from a single active preganglionic source. Peripheral chemoreceptor, arterial baroreceptor and diving response activation all evoked high frequency synaptic barrages in these cells, always from the same single preganglionic source. EPSP amplitudes showed frequency dependent depression, leading to more spike failures at shorter inter-event intervals. These findings indicate that rather than integrating convergent inputs, cardiac vagal postganglionic neurones gate preganglionic inputs, so regulating the proportion of central parasympathetic tone that is transmitted on to the heart. PMID:22005679

  16. Recurrent Cubital Tunnel Syndrome Caused by Ganglion: A Report of Nine Cases.

    PubMed

    Komatsu, Masatoshi; Uchiyama, Shigeharu; Kimura, Takumi; Suenaga, Naoki; Hayashi, Masanori; Kato, Hiroyuki

    2018-06-01

    Cubital tunnel syndrome (CuTS) is generally treated successfully by surgery and recurrent cases are rare. This study retrospectively investigated the clinical characteristics of recurrent CuTS caused by ganglion. We evaluated nine patients who were surgically treated for recurrent CuTS caused by ganglion. Age distribution at recurrence ranged from 43 to 79 years. The initial surgery for CuTS had been performed using various methods. The asymptomatic period from initial surgery to recurrence ranged from 22 to 252 months. Clinical, diagnostic imaging, and operative findings during the second surgery were analyzed. All patients were treated by anterior subcutaneous ulnar nerve transposition with ganglion resection and later examined directly within a mean of 71 months after the second surgery. The interval from recurrence to consultation was shorter than two months for eight cases. Chief complaints included numbness with or without pain in the ring and little fingers in all patients and resting pain in the medial elbow in five patients. Elbow osteoarthritis was present in all cases. Although four of 10 ganglia were palpable, ultrasonography and magnetic resonance imaging could identify all ganglia preoperatively. The ulnar nerve typically had become entrapped by the ganglion posteriorly and by fascia, scar tissue, and/or muscle anteriorly. Chief complaints and ulnar nerve function were improved in all patients following revision surgery. The acute onset of numbness with or without intolerable pain in the ring and little fingers after a long-term remission period following initial surgery for CuTS in patients with elbow osteoarthritis appears to be the characteristic clinical profile of recurrent CuTS caused by ganglion. As ganglia are often not palpable, ultrasonography and magnetic resonance imaging are recommended for accurate diagnosis.

  17. Complex distribution patterns of voltage-gated calcium channel α-subunits in the spiral ganglion

    PubMed Central

    Chen, Wei Chun; Xue, Hui Zhong; Hsu, Yun (Lucy); Liu, Qing; Patel, Shail; Davis, Robin L.

    2011-01-01

    As with other elements of the peripheral auditory system, spiral ganglion neurons display specializations that vary as a function of location along the tonotopic axis. Previous work has shown that voltage-gated K+ channels and synaptic proteins show graded changes in their density that confers rapid responsiveness to neurons in the high frequency, basal region of the cochlea and slower, more maintained responsiveness to neurons in the low frequency, apical region of the cochlea. In order to understand how voltage-gated calcium channels (VGCCs) may contribute to these diverse phenotypes, we identified the VGCC α-subunits expressed in the ganglion, investigated aspects of Ca2+-dependent neuronal firing patterns, and mapped the intracellular and intercellular distributions of seven VGCC α-subunits in the spiral ganglion in vitro. Initial experiments with qRT-PCR showed that eight of the ten known VGCC α-subunits were expressed in the ganglion and electrophysiological analysis revealed firing patterns that were consistent with the presence of both LVA and HVA Ca2+ channels. Moreover, we were able to study seven of the α-subunits with immunocytochemistry, and we found that all were present in spiral ganglion neurons, and that three of them were neuron-specific (CaV1.3, CaV2.2, and CaV3.3). Further characterization of neuron-specific α-subunits showed that CaV1.3 and CaV3.3 were tonotopically-distributed, whereas CaV2.2 was uniformly distributed in apical and basal neurons. Multiple VGCC α-subunits were also immunolocalized to Schwann cells, having distinct intracellular localizations, and, significantly, appearing to distinguish putative compact0 (CaV2.3, CaV3.1) from loose (CaV1.2) myelin. Electrophysiological evaluation of spiral ganglion neurons in the presence of TEA revealed Ca2+ plateau potentials with slopes that varied proportionately with the cochlear region from which neurons were isolated. Because afterhyperpolarizations were minimal or absent under

  18. Study of the anesthetic efficacy of inferior alveolar nerve block using articaine in irreversible pulpitis.

    PubMed

    Ahmad, Zeeshan H; Ravikumar, H; Karale, Rupali; Preethanath, R S; Sukumaran, Anil

    2014-01-01

    The purpose of this study was to determine the anesthetic efficacy of inferior alveolar nerve block (IANB) using 4% articaine and 2% lidocaine supplemented with buccal infiltration. Forty five patients, diagnosed with irreversible pulpitis of a mandibular posterior tooth were included in the study. The first group of 15 patients received 2% lidocaine with 1:200000 epinephrine, the second group 2% lidocaine with 1: 80,000 epinephrine and the third group of 15 subjects received 4% articaine with 1:100000 epinephrine. During the access cavity preparation those patients who complained of pain received an additional buccal infiltration. The percentage of subjects who got profound anesthesia and failure to achieve anesthesia were calculated and tabulated using a visual analog scale. The results revealed that 87% of subjects who received 4% Articaine with 1:100,000 epinephrine got satisfactory anesthesia with inferior alveolar nerve block alone. Only 2 (13%) subjects received an additional buccal infiltration and none of the patients failed to obtain complete anesthesia with articaine. In comparison only 40% of subjects got complete anesthesia with 2% lidocaine with 1:200000 and 60% with 2% lidocaine with 1:80,000. It can be concluded that 4% articaine can be used effectively for obtaining profound anesthesia for endodontic procedures in patients with irreversible pulpitis.

  19. A randomised controlled trial investigating the analgesic efficacy of transversus abdominis plane block for adult laparoscopic appendicectomy.

    PubMed

    Tupper-Carey, Darell Alexander; Fathil, Shahridan Mohd; Tan, Yin Kiat Glenn; Kan, Yuk Man; Cheong, Chern Yuen; Siddiqui, Fahad Javaid; Assam, Pryseley Nkouibert

    2017-08-01

    We conducted a single-centre, prospective randomised clinical trial to investigate the analgesic efficacy of transversus abdominis plane (TAP) block in adult patients undergoing laparoscopic appendicectomy. Patients undergoing urgent laparoscopic appendicectomy under general anaesthesia alone (control group) and general anaesthesia supplemented by TAP block (TAP intervention group) were compared. All patients received a multimodal analgesia regime, which included postoperative morphine via a patient-controlled analgesia device. The primary endpoints were morphine consumption at 12 hours and 24 hours postoperatively. Secondary endpoints included pain scores, incidence of nausea and vomiting, and time to hospital discharge. A total of 58 patients were recruited, with 29 patients in each group. Mean postoperative morphine consumption at 12 hours (control group: 11.45 ± 7.64 mg, TAP intervention group: 9.79 ± 8.09 mg; p = 0.4264) and 24 hours (control group: 13.38 ± 8.72 mg, TAP intervention group: 11.31 ± 8.66 mg; p = 0.3686) for the control and TAP intervention groups were not statistically different. Secondary outcomes were also not different between the two groups. Length of stay in the post-anaesthesia care unit was significantly shorter for the TAP intervention group, with a trend toward faster hospital discharge being observed. TAP block, a regional anaesthetic procedure performed immediately prior to skin incision for laparoscopic appendicectomy, did not significantly improve postoperative analgesia outcomes. Copyright: © Singapore Medical Association

  20. Diaphragm-Sparing Nerve Blocks for Shoulder Surgery.

    PubMed

    Tran, De Q H; Elgueta, Maria Francisca; Aliste, Julian; Finlayson, Roderick J

    Shoulder surgery can result in significant postoperative pain. Interscalene brachial plexus blocks (ISBs) constitute the current criterion standard for analgesia but may be contraindicated in patients with pulmonary pathology due to the inherent risk of phrenic nerve block and symptomatic hemidiaphragmatic paralysis. Although ultrasound-guided ISB with small volumes (5 mL), dilute local anesthetic (LA) concentrations, and LA injection 4 mm lateral to the brachial plexus have been shown to reduce the risk of phrenic nerve block, no single intervention can decrease its incidence below 20%. Ultrasound-guided supraclavicular blocks with LA injection posterolateral to the brachial plexus may anesthetize the shoulder without incidental diaphragmatic dysfunction, but further confirmatory trials are required. Ultrasound-guided C7 root blocks also seem to offer an attractive, diaphragm-sparing alternative to ISB. However, additional large-scale studies are needed to confirm their efficacy and to quantify the risk of periforaminal vascular breach. Combined axillary-suprascapular nerve blocks may provide adequate postoperative analgesia for minor shoulder surgery but do not compare favorably to ISB for major surgical procedures. One intriguing solution lies in the combined use of infraclavicular brachial plexus blocks and suprascapular nerve blocks. Theoretically, the infraclavicular approach targets the posterior and lateral cords, thus anesthetizing the axillary nerve (which supplies the anterior and posterior shoulder joint), as well as the subscapular and lateral pectoral nerves (both of which supply the anterior shoulder joint), whereas the suprascapular nerve block anesthetizes the posterior shoulder. Future randomized trials are required to validate the efficacy of combined infraclavicular-suprascapular blocks for shoulder surgery.

  1. Central Projections of Melanopsin-Expressing Retinal Ganglion Cells in the Mouse

    PubMed Central

    HATTAR, SAMER; KUMAR, MONICA; PARK, ALEXANDER; TONG, PATRICK; TUNG, JONATHAN; YAU, KING-WAI; BERSON, DAVID M.

    2010-01-01

    A rare type of ganglion cell in mammalian retina is directly photosensitive. These novel retinal photoreceptors express the photopigment melanopsin. They send axons directly to the suprachiasmatic nucleus (SCN), intergeniculate leaflet (IGL), and olivary pretectal nucleus (OPN), thereby contributing to photic synchronization of circadian rhythms and the pupillary light reflex. Here, we sought to characterize more fully the projections of these cells to the brain. By targeting tau-lacZ to the melanopsin gene locus in mice, ganglion cells that would normally express melanopsin were induced to express, instead, the marker enzyme β-galactosidase. Their axons were visualized by X-gal histochemistry or anti-β-galactosidase immunofluorescence. Established targets were confirmed, including the SCN, IGL, OPN, ventral division of the lateral geniculate nucleus (LGv), and preoptic area, but the overall projections were more widespread than previously recognized. Targets included the lateral nucleus, peri-supraoptic nucleus, and subparaventricular zone of the hypothalamus, medial amygdala, margin of the lateral habenula, posterior limitans nucleus, superior colliculus, and periaqueductal gray. There were also weak projections to the margins of the dorsal lateral geniculate nucleus. Co-staining with the cholera toxin B subunit to label all retinal afferents showed that melanopsin ganglion cells provide most of the retinal input to the SCN, IGL, and lateral habenula and much of that to the OPN, but that other ganglion cells do contribute at least some retinal input to these targets. Staining patterns after monocular enucleation revealed that the projections of these cells are overwhelmingly crossed except for the projection to the SCN, which is bilaterally symmetrical. PMID:16736474

  2. A Learning Model for L/M Specificity in Ganglion Cells

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert J.

    2016-01-01

    An unsupervised learning model for developing LM specific wiring at the ganglion cell level would support the research indicating LM specific wiring at the ganglion cell level (Reid and Shapley, 2002). Removing the contributions to the surround from cells of the same cone type improves the signal-to-noise ratio of the chromatic signals. The unsupervised learning model used is Hebbian associative learning, which strengthens the surround input connections according to the correlation of the output with the input. Since the surround units of the same cone type as the center are redundant with the center, their weights end up disappearing. This process can be thought of as a general mechanism for eliminating unnecessary cells in the nervous system.

  3. An Optic Nerve Crush Injury Murine Model to Study Retinal Ganglion Cell Survival

    PubMed Central

    Tang, Zhongshu; Zhang, Shuihua; Lee, Chunsik; Kumar, Anil; Arjunan, Pachiappan; Li, Yang; Zhang, Fan; Li, Xuri

    2011-01-01

    Injury to the optic nerve can lead to axonal degeneration, followed by a gradual death of retinal ganglion cells (RGCs), which results in irreversible vision loss. Examples of such diseases in human include traumatic optic neuropathy and optic nerve degeneration in glaucoma. It is characterized by typical changes in the optic nerve head, progressive optic nerve degeneration, and loss of retinal ganglion cells, if uncontrolled, leading to vision loss and blindness. The optic nerve crush (ONC) injury mouse model is an important experimental disease model for traumatic optic neuropathy, glaucoma, etc. In this model, the crush injury to the optic nerve leads to gradual retinal ganglion cells apoptosis. This disease model can be used to study the general processes and mechanisms of neuronal death and survival, which is essential for the development of therapeutic measures. In addition, pharmacological and molecular approaches can be used in this model to identify and test potential therapeutic reagents to treat different types of optic neuropathy. Here, we provide a step by step demonstration of (I) Baseline retrograde labeling of retinal ganglion cells (RGCs) at day 1, (II) Optic nerve crush injury at day 4, (III) Harvest the retinae and analyze RGC survival at day 11, and (IV) Representative result. PMID:21540827

  4. Comparison of anesthetic efficacy between lidocaine with and without magnesium sulfate USP 50% for inferior alveolar nerve blocks in patients with symptomatic irreversible pulpitis.

    PubMed

    Shetty, Krishna Prasad; Satish, Sarvepalli Venkata; Kilaru, Krishna Rao; Sardar, Poonam; Luke, Alexander M

    2015-04-01

    The purpose of this prospective, randomized, double-blind, placebo-controlled study was to compare the anesthetic efficacy between lidocaine with and without magnesium sulfate USP 50% for inferior alveolar nerve (IAN) blocks in patients with symptomatic irreversible pulpitis. One hundred patients with symptomatic irreversible pulpitis of mandibular posterior teeth were selected for the study. The patients received 1 mL magnesium sulfate USP 50% or distilled water (placebo) 1 hour before administration of conventional IAN block. Endodontic access cavity preparation was initiated 15 minutes after the IAN block injection. Lip numbness was recorded for all the patients. Success of IAN block was defined as no or mild pain on the visual analogue scale during access cavity preparation and initial instrumentation. The success rate for the IAN block was 58% for magnesium sulfate group and 32% for the placebo group, with statistically significant difference between the 2 groups (P = .016). In mandibular posterior teeth diagnosed with symptomatic irreversible pulpitis, preoperative administration of 1 mL magnesium sulfate USP 50% resulted in statistically significant increase in success of IAN block compared with placebo. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  5. Learning LM Specificity for Ganglion Cells

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert J.

    2015-01-01

    Unsupervised learning models have been proposed based on experience (Ahumada and Mulligan, 1990;Wachtler, Doi, Lee and Sejnowski, 2007) that allow the cortex to develop units with LM specific color opponent receptive fields like the blob cells reported by Hubel and Wiesel on the basis of visual experience. These models used ganglion cells with LM indiscriminate wiring as inputs to the learning mechanism, which was presumed to occur at the cortical level.

  6. Protective effects of brain-derived neurotrophic factor on the noise-damaged cochlear spiral ganglion.

    PubMed

    Zhai, S-Q; Guo, W; Hu, Y-Y; Yu, N; Chen, Q; Wang, J-Z; Fan, M; Yang, W-Y

    2011-05-01

    To explore the protective effects of brain-derived neurotrophic factor on the noise-damaged cochlear spiral ganglion. Recombinant adenovirus brain-derived neurotrophic factor vector, recombinant adenovirus LacZ and artificial perilymph were prepared. Guinea pigs with audiometric auditory brainstem response thresholds of more than 75 dB SPL, measured seven days after four hours of noise exposure at 135 dB SPL, were divided into three groups. Adenovirus brain-derived neurotrophic factor vector, adenovirus LacZ and perilymph were infused into the cochleae of the three groups, variously. Eight weeks later, the cochleae were stained immunohistochemically and the spiral ganglion cells counted. The auditory brainstem response threshold recorded before and seven days after noise exposure did not differ significantly between the three groups. However, eight weeks after cochlear perfusion, the group receiving brain-derived neurotrophic factor had a significantly decreased auditory brainstem response threshold and increased spiral ganglion cell count, compared with the adenovirus LacZ and perilymph groups. When administered via cochlear infusion following noise damage, brain-derived neurotrophic factor appears to improve the auditory threshold, and to have a protective effect on the spiral ganglion cells.

  7. Ocular anatomy, ganglion cell distribution and retinal resolution of a killer whale (Orcinus orca).

    PubMed

    Mass, Alla M; Supin, Alexander Y; Abramov, Andrey V; Mukhametov, Lev M; Rozanova, Elena I

    2013-01-01

    Retinal topography, cell density and sizes of ganglion cells in the killer whale (Orcinus orca) were analyzed in retinal whole mounts stained with cresyl violet. A distinctive feature of the killer whale's retina is the large size of ganglion cells and low cell density compared to terrestrial mammals. The ganglion cell diameter ranged from 8 to 100 µm, with the majority of cells within a range of 20-40 µm. The topographic distribution of ganglion cells displayed two spots of high cell density located in the temporal and nasal quadrants, 20 mm from the optic disk. The high-density areas were connected by a horizontal belt-like area passing below the optic disk of the retina. Peak cell densities in these areas were evaluated. Mean peak cell densities were 334 and 288 cells/mm(2) in the temporal and nasal high-density areas, respectively. With a posterior nodal distance of 19.5 mm, these high-density data predict a retinal resolution of 9.6' (3.1 cycles/deg.) and 12.6' (2.4 cycles/deg.) in the temporal and nasal areas, respectively, in water. Copyright © 2012 S. Karger AG, Basel.

  8. Lithium alters the morphology of neurites regenerating from cultured adult spiral ganglion neurons.

    PubMed

    Shah, S M; Patel, C H; Feng, A S; Kollmar, R

    2013-10-01

    The small-molecule drug lithium (as a monovalent ion) promotes neurite regeneration and functional recovery, is easy to administer, and is approved for human use to treat bipolar disorder. Lithium exerts its neuritogenic effect mainly by inhibiting glycogen synthase kinase 3, a constitutively-active serine/threonine kinase that is regulated by neurotrophin and "wingless-related MMTV integration site" (Wnt) signaling. In spiral ganglion neurons of the cochlea, the effects of lithium and the function of glycogen synthase kinase 3 have not been investigated. We, therefore, set out to test whether lithium modulates neuritogenesis from adult spiral ganglion neurons. Primary cultures of dissociated spiral ganglion neurons from adult mice were exposed to lithium at concentrations between 0 and 12.5 mM. The resulting neurite morphology and growth-cone appearance were measured in detail by using immunofluorescence microscopy and image analysis. We found that lithium altered the morphology of regenerating neurites and their growth cones in a differential, concentration-dependent fashion. Low concentrations of 0.5-2.5 mM (around the half-maximal inhibitory concentration for glycogen synthase kinase 3 and the recommended therapeutic serum concentration for bipolar disorder) enhanced neurite sprouting and branching. A high concentration of 12.5 mM, in contrast, slowed elongation. As the lithium concentration rose from low to high, the microtubules became increasingly disarranged and the growth cones more arborized. Our results demonstrate that lithium selectively stimulates phases of neuritogenesis that are driven by microtubule reorganization. In contrast, most other drugs that have previously been tested on spiral ganglion neurons are reported to inhibit neurite outgrowth or affect only elongation. Lithium sensitivity is a necessary, but not sufficient condition for the involvement of glycogen synthase kinase 3. Our results are, therefore, consistent with, but do not prove

  9. Enkephalin modulation of neural transmission in the cat stellate ganglion: pharmacological actions of exogenous opiates.

    PubMed

    Prosdocimi, M; Finesso, M; Gorio, A

    1986-11-01

    Neural ganglionic transmission was studied in vivo in the cat, using closed chest anesthetized preparations. The right stellate ganglion and its branches were exposed retropleurally and prepared for electrical stimulation of pre- and postganglionic nerve fibers. The axillary artery was cannulated allowing direct administration of drugs in the arterial blood supplying the ganglion. Stimulation of postjunctional receptors could thus be obtained by local administration of selective agents. Local administration of nicotinic, muscarinic or histaminergic agents increased heart rate and blood pressure. Opiates were given either i.v. or locally through the axillary artery: we tested the effects of morphine, Leu-enkephalin (Leu-enk), Met-enkephalin (Met-enk), [D-ala2]-Met-enkephalinamide (DAME) and etorphine. When given locally, Leu-enk (from 10 micrograms), Met-enk (from 20 micrograms), DAME (from 5 micrograms) and etorphine (from 0.2 micrograms) inhibited tachycardia induced by preganglionic stimulation and reduced the amplitude of the compound action potential recorded from the postganglionic nerve. Morphine (10-200 micrograms) had no effect. On the other hand, tachycardia induced by postganglionic nerve stimulation was unaffected by opiates in the same experimental conditions. Intravenous administration of similar doses of opiates had no effect on ganglionic transmission. When tachycardia was induced by chemical stimulation of nicotinic (DMPP), muscarinic (McN-A-343-11) or histamine receptors in the stellate ganglia, opiates were still active in reducing the effect of these chemicals. These data provide evidence that exogenous opiates exert a depressing action on postsynaptic responses of sympathetic ganglia tested in vivo, although an additional action on presynaptic terminals is not excluded. As endogenous opiates are normally present in various sympathetic ganglia, including the stellate ganglion of the cat, it is possible that they play some modulatory role on

  10. Visual pattern recognition based on spatio-temporal patterns of retinal ganglion cells’ activities

    PubMed Central

    Jing, Wei; Liu, Wen-Zhong; Gong, Xin-Wei; Gong, Hai-Qing

    2010-01-01

    Neural information is processed based on integrated activities of relevant neurons. Concerted population activity is one of the important ways for retinal ganglion cells to efficiently organize and process visual information. In the present study, the spike activities of bullfrog retinal ganglion cells in response to three different visual patterns (checker-board, vertical gratings and horizontal gratings) were recorded using multi-electrode arrays. A measurement of subsequence distribution discrepancy (MSDD) was applied to identify the spatio-temporal patterns of retinal ganglion cells’ activities in response to different stimulation patterns. The results show that the population activity patterns were different in response to different stimulation patterns, such difference in activity pattern was consistently detectable even when visual adaptation occurred during repeated experimental trials. Therefore, the stimulus pattern can be reliably discriminated according to the spatio-temporal pattern of the neuronal activities calculated using the MSDD algorithm. PMID:21886670

  11. Advantages of anterior inferior alveolar nerve block with felypressin-propitocaine over conventional epinephrine-lidocaine: an efficacy and safety study.

    PubMed

    Shinzaki, Hazuki; Sunada, Katsuhisa

    2015-06-01

    Conventional anesthetic nerve block injections into the mandibular foramen risk causing nerve damage. This study aimed to compare the efficacy and safety of the anterior technique (AT) of inferior alveolar nerve block using felypressin-propitocaine with a conventional nerve block technique (CT) using epinephrine and lidocaine for anesthesia via the mandibular foramen. Forty healthy university students with no recent dental work were recruited as subjects and assigned to two groups: right side CT or right side AT. Anesthesia was evaluated in terms of success rate, duration of action, and injection pain. These parameters were assessed at the first incisor, premolar, and molar, 60 min after injection. Chi-square and unpaired t-tests were used for statistical comparisons, with a P value of < 0.05 designating significance. The two nerve block techniques generated comparable success rates for the right mandible, with rates of 65% (CT) and 60% (AT) at both the first molar and premolar, and rates of 60% (CT) and 50% (AT) at the lateral incisor. The duration of anesthesia using the CT was 233 ± 37 min, which was approximately 40 min shorter than using the AT. This difference was statistically significant (P < 0.05). Injection pain using the AT was rated as milder compared with the CT. This difference was also statistically significant (P < 0.05). The AT is no less successful than the CT for inducing anesthesia, and has the added benefits of a significantly longer duration of action and significantly less pain.

  12. Anesthetic efficacy and heart rate effects of the intraosseous injection of 3% mepivacaine after an inferior alveolar nerve block.

    PubMed

    Gallatin, E; Stabile, P; Reader, A; Nist, R; Beck, M

    2000-01-01

    The purpose of this study was to determine the anesthetic efficacy and heart rate effects of an intraosseous injection of 3% mepivacaine after an inferior alveolar nerve block. Through use of a repeated-measures design, each of 48 subjects randomly received 2 combinations of injections at 2 separate appointments. The combinations were (1) an inferior alveolar nerve block (with 1.8 mL of 3% mepivacaine) + intraosseous injection with 1.8 mL of 3% mepivacaine and (2) an inferior alveolar nerve (with 1. 8 mL of 3% mepivacaine) + mock intraosseous injection. The first molar was blindly pulp tested at 2-minute cycles for 60 minutes postinjection. Anesthesia was considered successful with 2 consecutive 80 readings. Heart rate (pulse rate) was measured with a pulse oximeter. All subjects had lip numbness with both of the inferior alveolar nerve + intraosseous techniques. Anesthetic success for the first molar was significantly increased for 30 minutes with intraosseous injection of mepivacaine in comparison with the inferior alveolar nerve block alone (mock intraosseous injection). Subjects receiving the intraosseous injection of mepivacaine experienced minimal increases in heart rate. The intraosseous injection of 1.8 mL of 3% mepivacaine, when used to augment an inferior alveolar nerve block, significantly increased anesthetic success for 30 minutes in the first molar. The 3% mepivacaine had a minimal effect on heart rate and would be useful in patients with contraindications to epinephrine use.

  13. Ganglion cell distribution and retinal resolution in the Florida manatee, Trichechus manatus latirostris.

    PubMed

    Mass, Alla M; Ketten, Darlene R; Odell, Daniel K; Supin, Alexander Ya

    2012-01-01

    The topographic organization of retinal ganglion cells was examined in the Florida manatee (Trichechus manatus latirostris) to assess ganglion cell size and distribution and to estimate retinal resolution. The ganglion cell layer of the manatee's retina was comprised primarily of large neurons with broad intercellular spaces. Cell sizes varied from 10 to 60 μm in diameter (mean 24.3 μm). The retinal wholemounts from adult animals measured 446-501 mm(2) in area with total ganglion cell counts of 62,000-81,800 (mean 70,200). The cell density changed across the retina, with the maximum in the area below the optic disc and decreasing toward the retinal edges and in the immediate vicinity of the optic disc. The maximum cell density ranged from 235 to 337 cells per millimeter square in the adult retinae. Two wholemounts obtained from juvenile animals were 271 and 282 mm(2) in area with total cell numbers of 70,900 and 68,700, respectively (mean 69,800), that is, nearly equivalent to those of adults, but juvenile retinae consequently had maximum cell densities that were higher than those of adults: 478 and 491 cells per millimeter square. Calculations indicate a retinal resolution of ∼19' (1.6 cycles per degree) in both adult and juvenile retinae. Copyright © 2011 Wiley Periodicals, Inc.

  14. Periosteal ganglion: a report of three new cases including MRI findings and a review of the literature.

    PubMed

    Okada, K; Unoki, E; Kubota, H; Abe, E; Taniwaki, M; Morita, M; Sato, K

    1996-02-01

    To clarify the clinicopathological features of periosteal ganglion. Three patients with periosteal ganglion were studied clinicopathologically. One patient was selected from the files of our institute and two from a consultation file. All three lesions were located over the medial aspect of the tibia. Plain radiographs showed cortical erosions of varying degrees and mild periosteal reaction of the medial side of the tibia. MR images demonstrated well-circumscribed lesions overlying the cortical bone of the tibia, shown as low-intensity areas on T1-weighted images. On T2-weighted images, lesions were homogeneous, lobulated, and showed a characteristic markedly increased signal intensity. These findings are helpful in making a diagnosis of periosteal ganglion. Each patient had an uneventful clinical course after an excision involving the wall of the ganglion, the adjoining periosteum, and the underlying sclerotic cortical bone.

  15. Spatial resolution, contrast sensitivity, and sensitivity to defocus of chicken retinal ganglion cells in vitro.

    PubMed

    Diedrich, Erich; Schaeffel, Frank

    2009-11-01

    The chicken has been extensively studied as an animal model for myopia because its eye growth is tightly controlled by visual experience. It has been found that the retina controls the axial eye growth rates depending on the amount and the sign of defocus imposed in the projected image. Glucagonergic amacrine cells were discovered that appear to encode for the sign of imposed defocus. It is not clear whether the downstream neurons, the retinal ganglion cells, still have access to this information-and whether it ultimately reaches the brain. We have analyzed the spike rates of chicken retinal ganglion cells in vitro using a microelectrode array. For this purpose, we initially defined spatial resolution and contrast sensitivity in vitro. Two classes of chicken retinal ganglions were found, depending on the linearity of their responses with increasing contrast. Responses generally declined with increasing defocus of the visual stimulus. These responses were well predicted by the modulation transfer function for a diffraction-limited defocused optical system, the first Bessel function. Thus, the studied retinal ganglion cells did not distinguish between a loss of contrast at a given spatial frequency due to reduced contrast of the stimulus pattern or because the pattern was presented out of focus. Furthermore, there was no indication that the retinal ganglion cells responded differently to defocus of either sign, at least for the cells that were recorded in this study.

  16. Distribution of TRPV1 and TRPV2 in the human stellate ganglion and spinal cord.

    PubMed

    Kokubun, Souichi; Sato, Tadasu; Ogawa, Chikara; Kudo, Kai; Goto, Koju; Fujii, Yuki; Shimizu, Yoshinaka; Ichikawa, Hiroyuki

    2015-03-17

    Immunohistochemistry for the transient receptor potential cation channel subfamily V member 1 (TRPV1) and 2 (TRPV2) was performed on the stellate ganglion and spinal cord in human cadavers. In the stellate ganglion, 25.3% and 16.2% of sympathetic neurons contained TRPV1- and TRPV2-immunoreactivity, respectively. The cell size analysis also demonstrated that proportion of TRPV1- or TRPV2-immunoreactive (-IR) neurons among large (>600 μm(2)) sympathetic neurons (TRPV1, 30.7%; TRPV2, 27.0%) was higher than among small (<600 μm(2)) sympathetic neurons (TRPV1, 22.0%; TRPV2, 13.6%). The present study also demonstrated that 10.0% of sympathetic neurons in the stellate ganglion had pericellular TRPV2-IR nerve fibers. Fourteen percent of large neurons and 7.8% of small neurons were surrounded by TRPV2-IR nerve fibers. TRPV2-immunoreactivity was also detected in about 40% of neuronal cell bodies with pericellular TRPV2-IR nerve fibers. In the lateral horn of the human thoracic spinal cord, TRPV2-immunoreactivity was expressed by some neurons and many varicose fibers surrounding TRPV2-immunonegative neurons. TRPV2-IR pericellular fibers in the stellate ganglion may originate from the lateral horn of the spinal cord. There appears to be TRPV1- or TRPV2-IR sympathetic pathway in the human stellate ganglion and spinal cord. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Molecular Responses of the Spiral Ganglion to Aminoglycosides

    ERIC Educational Resources Information Center

    Balaban, Carey D.

    2005-01-01

    Aminoglycosides are toxic to both the inner ear hair cells and the ganglion cells that give rise to the eighth cranial nerve. According to recent studies, these cells have a repertoire of molecular responses to aminoglycoside exposure that engages multiple neuroprotective mechanisms. The responses appear to involve regulation of ionic homeostasis,…

  18. Pulsed Infrared Releases Ca2+ from the Endoplasmic Reticulum of Cultured Spiral Ganglion Neurons.

    PubMed

    Barrett, John N; Rincon, Samantha; Singh, Jayanti; Matthewman, Cristina; Pasos, Julio; Barrett, Ellen F; Rajguru, Suhrud M

    2018-04-18

    We investigated the effects of pulsed infrared radiation (IR, 1863 nm) stimulation on cytosolic [Ca 2+ ] in inner ear spiral ganglion neurons cultured from day 4 postnatal mice and loaded with a fluorescent Ca 2+ indicator (fluo-4, -5F or -5N). IR pulse trains (200 µs, 200-250 Hz, 2-5 s) delivered via an optical fiber coupled to IR source produced a rapid, transient temperature increase of 6-11ºC (above a baseline of 24-30 ºC) and evoked transient increases in both nuclear and cytosolic [Ca 2+ ] of 0.20 - 1.4 µM, with a simultaneous reduction of [Ca 2+ ] in regions containing endoplasmic reticulum (ER). IR-induced increases in cytosolic [Ca 2+ ] continued in medium containing no added Ca 2+ ({plus minus} Ca 2+ buffers) and low [Na + ], indicating that the [Ca 2+ ] increase was mediated by release from intracellular stores. Consistent with this hypothesis, the IR-induced [Ca 2+ ] response was prolonged and eventually blocked by inhibition of ER Ca-ATPase with cyclopiazonic acid, and was also inhibited by a high concentration of ryanodine and by inhibitors of IP 3 -mediated Ca 2+ release (xestospongin C and 2-APB). The thermal sensitivity of the response suggested involvement of warm-sensitive transient receptor potential (TRP) receptors. Immunostaining of the spiral ganglion demonstrated the presence of intracellular TRPV4 and TRPM2, and the IR-induced [Ca 2+ ] increase was inhibited by TRPV4 inhibitors (HC067047 and GSK2193874). These results suggest that the temperature-sensitivity of IR-induced [Ca 2+ ] elevations is conferred by TRP channels on ER membranes, which facilitate Ca 2+ efflux into the cytosol and initiate Ca 2+ -induced Ca 2+ -release via IP 3 and ryanodine receptors.

  19. Analgesic efficacy of ultrasound guided transversus abdominis plane block versus local anesthetic infiltration in adult patients undergoing single incision laparoscopic cholecystectomy: A randomized controlled trial.

    PubMed

    Bava, Ejas P; Ramachandran, Rashmi; Rewari, Vimi; Chandralekha; Bansal, Virinder Kumar; Trikha, Anjan

    2016-01-01

    Transversus abdominis plane (TAP) block has been used to provide intra- and post-operative analgesia with single incision laparoscopic (SIL) bariatric and gynecological surgery with mixed results. Its efficacy in providing analgesia for SIL cholecystectomy (SILC) via the same approach remains unexplored. The primary objective of our study was to compare the efficacy of bilateral TAP block with local anesthetic infiltration for perioperative analgesia in patients undergoing SILC. This was a prospective, randomized, controlled, double-blinded trial performed in a tertiary care hospital. Forty-two patients undergoing SILC were randomized to receive either ultrasound-guided (USG) bilateral mid-axillary TAP blocks with 0.375% ropivacaine or local anesthetic infiltration of the port site. The primary outcome measure was the requirement of morphine in the first 24 h postoperatively. The data were analyzed using t -test, Mann-Whitney test or Chi-square test. The 24 h morphine requirement (mean ± standard deviation) was 34.57 ± 14.64 mg in TAP group and 32.76 ± 14.34 mg in local infiltration group ( P = 0.688). The number of patients requiring intraoperative supplemental fentanyl in TAP group was 8 and in local infiltration group was 16 ( P = 0.028). The visual analog scale scores at rest and on coughing were significantly higher in the local infiltration group in the immediate postoperative period ( P = 0.034 and P = 0.007, respectively). USG bilateral TAP blocks were not effective in decreasing 24 h morphine requirement as compared to local anesthetic infiltration in patients undergoing SILC although it provided some analgesic benefit intraoperatively and in the initial 4 h postoperatively. Hence, the benefits of TAP blocks are not worth the effort and time spent for administering them for this surgery.

  20. Analgesic efficacy of ultrasound guided transversus abdominis plane block versus local anesthetic infiltration in adult patients undergoing single incision laparoscopic cholecystectomy: A randomized controlled trial

    PubMed Central

    Bava, Ejas P.; Ramachandran, Rashmi; Rewari, Vimi; Chandralekha; Bansal, Virinder Kumar; Trikha, Anjan

    2016-01-01

    Background: Transversus abdominis plane (TAP) block has been used to provide intra- and post-operative analgesia with single incision laparoscopic (SIL) bariatric and gynecological surgery with mixed results. Its efficacy in providing analgesia for SIL cholecystectomy (SILC) via the same approach remains unexplored. Aims: The primary objective of our study was to compare the efficacy of bilateral TAP block with local anesthetic infiltration for perioperative analgesia in patients undergoing SILC. Settings and Design: This was a prospective, randomized, controlled, double-blinded trial performed in a tertiary care hospital. Materials and Methods: Forty-two patients undergoing SILC were randomized to receive either ultrasound-guided (USG) bilateral mid-axillary TAP blocks with 0.375% ropivacaine or local anesthetic infiltration of the port site. The primary outcome measure was the requirement of morphine in the first 24 h postoperatively. Statistical Analysis: The data were analyzed using t-test, Mann–Whitney test or Chi-square test. Results: The 24 h morphine requirement (mean ± standard deviation) was 34.57 ± 14.64 mg in TAP group and 32.76 ± 14.34 mg in local infiltration group (P = 0.688). The number of patients requiring intraoperative supplemental fentanyl in TAP group was 8 and in local infiltration group was 16 (P = 0.028). The visual analog scale scores at rest and on coughing were significantly higher in the local infiltration group in the immediate postoperative period (P = 0.034 and P = 0.007, respectively). Conclusion: USG bilateral TAP blocks were not effective in decreasing 24 h morphine requirement as compared to local anesthetic infiltration in patients undergoing SILC although it provided some analgesic benefit intraoperatively and in the initial 4 h postoperatively. Hence, the benefits of TAP blocks are not worth the effort and time spent for administering them for this surgery. PMID:27746552

  1. Efficacy and complications associated with a modified inferior alveolar nerve block technique. A randomized, triple-blind clinical trial.

    PubMed

    Montserrat-Bosch, Marta; Figueiredo, Rui; Nogueira-Magalhães, Pedro; Arnabat-Dominguez, Josep; Valmaseda-Castellón, Eduard; Gay-Escoda, Cosme

    2014-07-01

    To compare the efficacy and complication rates of two different techniques for inferior alveolar nerve blocks (IANB). A randomized, triple-blind clinical trial comprising 109 patients who required lower third molar removal was performed. In the control group, all patients received an IANB using the conventional Halsted technique, whereas in the experimental group, a modified technique using a more inferior injection point was performed. A total of 100 patients were randomized. The modified technique group showed a significantly higher onset time in the lower lip and chin area, and was frequently associated to a lingual electric discharge sensation. Three failures were recorded, 2 of them in the experimental group. No relevant local or systemic complications were registered. Both IANB techniques used in this trial are suitable for lower third molar removal. However, performing an inferior alveolar nerve block in a more inferior position (modified technique) extends the onset time, does not seem to reduce the risk of intravascular injections and might increase the risk of lingual nerve injuries.

  2. Distribution of Injectate and Sensory-Motor Blockade After Adductor Canal Block.

    PubMed

    Gautier, Philippe E; Hadzic, Admir; Lecoq, Jean-Pierre; Brichant, Jean Francois; Kuroda, Maxine M; Vandepitte, Catherine

    2016-01-01

    The analgesic efficacy reported for the adductor canal block may be related to the spread of local anesthetic outside the adductor canal. Fifteen patients undergoing knee surgery received ultrasound-guided injections of local anesthetic at the level of the adductor hiatus. Sensory-motor block and spread of contrast solution were assessed. Sensation was rated as "markedly diminished" or "absent" in the saphenous nerve distribution and "slightly diminished" in the sciatic nerve territory without motor deficits. Contrast solution was found in the popliteal fossa. The spread of injectate to the popliteal fossa may contribute to the analgesic efficacy of adductor canal block.

  3. The spiral ganglion: connecting the peripheral and central auditory systems

    PubMed Central

    Nayagam, Bryony A; Muniak, Michael A; Ryugo, David K

    2011-01-01

    In mammals, the initial bridge between the physical world of sound and perception of that sound is established by neurons of the spiral ganglion. The cell bodies of these neurons give rise to peripheral processes that contact acoustic receptors in the organ of Corti, and the central processes collect together to form the auditory nerve that projects into the brain. In order to better understand hearing at this initial stage, we need to know the following about spiral ganglion neurons: (1) their cell biology including cytoplasmic, cytoskeletal, and membrane properties, (2) their peripheral and central connections including synaptic structure; (3) the nature of their neural signaling; and (4) their capacity for plasticity and rehabilitation. In this report, we will update the progress on these topics and indicate important issues still awaiting resolution. PMID:21530629

  4. The retina of the shovel-nosed ray, Rhinobatos batillum (Rhinobatidae): morphology and quantitative analysis of the ganglion, amacrine and bipolar cell populations.

    PubMed

    Collin, S P

    1988-01-01

    A light microscopy study of the retina of the shovel-nosed ray, Rhinobatos batillum (Rhinobatidae) has revealed a duplex retina with a rod to cone ratio between 4:1 and 6:1. The inner nuclear layer consists of three layers of large horizontal cells, tightly packed, stellate bipolar cells, and up to three substrata of amacrine cells. The collaterals of the many supporting Müller cells project from the inner to the outer limiting membrane and divide the retina into many subunits. The cells of the ganglion cell layer are distributed into two layers, although a large proportion of ganglion cells are also displaced into the inner plexiform and inner nuclear layers. Topographic analysis of the cells in the ganglion cell layer, inner plexiform and inner nuclear layers reveals a number of regional specializations or "areae centrales". Ganglion cells were retrogradely-labelled with cobalt-lysine from the optic nerve, and three sub-populations of neurons characterized on their soma size and position. Small (20-50 microns2), large (80-300 microns2) and giant (greater than 300 microns2) sub-populations of ganglion cells each revealed distinct retinal specializations with peak densities of 3 x 10(3), 1.25 x 10(3) and 1.57 x 10(3) cells per mm2, respectively. Topographical comparison between Nissl-stained and retrogradely-labelled ganglion cell populations have established that a maximum of 20% in the "area centralis", and 75% in unspecialized, peripheral regions of the retina are non-ganglion cells. Out of a total of 210,566 cells in the ganglion cell layer, 49% were found to be non-ganglion cells. Iso-density contour maps of amacrine and bipolar cell distributions also reveal some specializations. These cell concentrations lie in corresponding regions to areas of increased density in the large and giant ganglion cell populations, suggesting some functional association.

  5. Is compensatory hyperhidrosis after thoracic sympathicotomy in palmar hyperhidrosis patients related to the excitability of thoracic sympathetic ganglions?

    PubMed Central

    Chen, Jun-Peng; Peng, A-Jing; Xu, Chen-Hui; Li, Guo-Ying

    2017-01-01

    Background The mechanism of compensatory hyperhidrosis remains unclear. The aim of this study was to explore the relationship between compensatory hyperhidrosis and thoracic sympathetic ganglion excitability to assess the effectiveness of thoracoscopic T4 sympathicotomy for treating palmar hyperhidrosis. Methods Sixty-six cases of T4 sympathetic ganglions were prospectively collected from patients with palmar hyperhidrosis who underwent thoracoscopic T4 sympathicotomy from 2013 to 2016 in our department. The expression levels of choline acetyltransferase (ChAT), vasoactive intestinal peptide (VIP), and synaptophysin were detected using immunohistochemistry. Patients with palmar hyperhidrosis were followed-up for examination of postoperative sweating status. Results Thirty-eight cases (57.6%) of compensatory hyperhidrosis were identified. Mild compensatory hyperhidrosis occurred in 26 patients (39.4%), moderate in 11 (16.7%), and severe in 1 (1.5%). The rate of compensatory hyperhidrosis was higher in patients with axilla hyperhidrosis than those without (76.0% vs. 46.3%, P=0.018). However, the clinical data were similar between the compensatory hyperhidrosis group and the no compensatory hyperhidrosis group. In addition, the ChAT, VIP, and synaptophysin expression levels were not significantly different between the two groups (P values of 0.356, 0.071, and 0.141, respectively). Furthermore, the ChAT, VIP, and synaptophysin expression levels in the mild group were similar to those observed in the moderate/intense group (P values of 0.089, 0.124, and 0.149, respectively). The remission rate was 100% in palmar hyperhidrosis, 48.2% (27/56) in pedal hyperhidrosis, 56.0% (14/25) in axilla hyperhidrosis and 88.9% (16/18) in skin symptoms. No signs of chapped skin on the palms were found. Conclusions There was no significant correlation between compensatory hyperhidrosis and thoracic sympathetic ganglion excitability; however, compensatory hyperhidrosis is more likely to

  6. Effect of duration and severity of migraine on retinal nerve fiber layer, ganglion cell layer, and choroidal thickness.

    PubMed

    Abdellatif, Mona K; Fouad, Mohamed M

    2018-03-01

    To investigate the factors in migraine that have the highest significance on retinal and choroidal layers' thickness. Ninety patients with migraine and 40 age-matched healthy participants were enrolled in this observational, cross-sectional study. After full ophthalmological examination, spectral domain-optical coherence tomography was done for all patients measuring the thickness of ganglion cell layer and retinal nerve fiber layer. Enhanced depth imaging technique was used to measure the choroidal thickness. There was significant thinning in the superior and inferior ganglion cell layers, all retinal nerve fiber layer quadrants, and all choroidal quadrants (except for the central subfield) in migraineurs compared to controls. The duration of migraine was significantly correlated with ganglion cell layer, retinal nerve fiber layer, and all choroidal quadrants, while the severity of migraine was significantly correlated with ganglion cell layer and retinal nerve fiber layer only. Multiregression analysis showed that the duration of migraine is the most important determinant factor of the superior retinal nerve fiber layer quadrant (β = -0.375, p = 0.001) and in all the choroidal quadrants (β = -0.531, -0.692, -0.503, -0.461, -0.564, respectively, p  < 0.001), while severity is the most important determinant factor of inferior, nasal, and temporal retinal nerve fiber layer quadrants (β = -0.256, -0.335, -0.308; p  = 0.036, 0.005, 0.009, respectively) and the inferior ganglion cell layer hemisphere (β = -0.377 and p = 0.001). Ganglion cell layer, retinal nerve fiber layer, and choroidal thickness are significantly thinner in patients with migraine. The severity of migraine has more significant influence in the thinning of ganglion cell layer and retinal nerve fiber layer, while the duration of the disease affected the choroidal thickness more.

  7. Efficacy of paraspinal anesthetic block in patients with chronic pelvic pain refractory to drug therapy: a randomized clinical trial.

    PubMed

    da Rosa, Karen Felix; Amantéa, Vinícius Atrib; dos Santos, Antônio Cardoso; Savaris, Ricardo Francalacci

    2015-03-01

    To determine whether paraspinal block reduces pain scores compared to placebo in women with chronic pelvic pain refractory to drug therapy. Subjects with chronic pelvic pain due to benign conditions and refractory to drug therapy were invited to participate in a randomized, double blind, superiority trial at a tertiary reference center. Subjects were randomly allocated to receive paraspinal anesthetic block with 1% lidocaine without epinephrine or placebo (control). Lidocaine was injected along the spinal process of the painful segment in the supra- and interspinal ligaments using a 25G X 2" needle. Placebo consisted of introduction of the needle in the same segment without injecting any substance. The main outcome measured was the pain score based on a visual analog scale at T0 (baseline), T1 (within 15 min after the procedure) and T2 (one week after the procedure). Data were statistically analyzed by ANOVA and the 95% confidence interval (95%CI). Mean age was similar for both groups, i.e., 51.2 (paraspinal anesthetic block) and 51.8 years (control). A blind examiner measured the degree of pain according to the visual analog scale from 0 (no pain) to 10 (worst pain imaginable). Based on the visual analog scale, the mean pain scores of the paraspinal anesthetic block group at T0, T1 and T2 were 5.50 (SD=2.92; 95%CI 3.84-7.15), 2.72 (SD=2.10; 95%CI 1.53-3.90), and 4.36 (SD=2.37; 95%CI 1.89-6.82), respectively. The difference between T0 and T1 was statistically significant, with p=0.03. Paraspinal anesthetic block had a small effect on visual analog scale pain score immediately after the injections, but no sustained benefit after one week. Further studies are needed to determine the efficacy of paraspinal anesthetic block with different lidocaine doses for the treatment of visceral pain of other causes.

  8. Advantages of anterior inferior alveolar nerve block with felypressin-propitocaine over conventional epinephrine-lidocaine: an efficacy and safety study

    PubMed Central

    Sunada, Katsuhisa

    2015-01-01

    Background Conventional anesthetic nerve block injections into the mandibular foramen risk causing nerve damage. This study aimed to compare the efficacy and safety of the anterior technique (AT) of inferior alveolar nerve block using felypressin-propitocaine with a conventional nerve block technique (CT) using epinephrine and lidocaine for anesthesia via the mandibular foramen. Methods Forty healthy university students with no recent dental work were recruited as subjects and assigned to two groups: right side CT or right side AT. Anesthesia was evaluated in terms of success rate, duration of action, and injection pain. These parameters were assessed at the first incisor, premolar, and molar, 60 min after injection. Chi-square and unpaired t-tests were used for statistical comparisons, with a P value of < 0.05 designating significance. Results The two nerve block techniques generated comparable success rates for the right mandible, with rates of 65% (CT) and 60% (AT) at both the first molar and premolar, and rates of 60% (CT) and 50% (AT) at the lateral incisor. The duration of anesthesia using the CT was 233 ± 37 min, which was approximately 40 min shorter than using the AT. This difference was statistically significant (P < 0.05). Injection pain using the AT was rated as milder compared with the CT. This difference was also statistically significant (P < 0.05). Conclusions The AT is no less successful than the CT for inducing anesthesia, and has the added benefits of a significantly longer duration of action and significantly less pain. PMID:28879260

  9. Clinical value of a self-designed training model for pinpointing and puncturing trigeminal ganglion.

    PubMed

    He, Yu-Quan; He, Shu; Shen, Yun-Xia; Qian, Cheng

    2014-04-01

    OBJECTIVES. A training model was designed for learners and young physicians to polish their skills in clinical practices of pinpointing and puncturing trigeminal ganglion. METHODS. A head model, on both cheeks of which the deep soft tissue was replaced by stuffed organosilicone and sponge while the superficial soft tissue, skin and the trigeminal ganglion were made of organic silicon rubber for an appearance of real human being, was made from a dried skull specimen and epoxy resin. Two physicians who had experiences in puncturing foramen ovale and trigeminal ganglion were selected to test the model, mainly for its appearance, X-ray permeability, handling of the puncture, and closure of the puncture sites. Four inexperienced physicians were selected afterwards to be trained combining Hartel's anterior facial approach with the new method of real-time observation on foramen ovale studied by us. RESULTS. Both appearance and texture of the model were extremely close to those of a real human. The fact that the skin, superficial soft tissue, deep muscles of the cheeks, and the trigeminal ganglion made of organic silicon rubber all had great elasticity resulted in quick closure and sealing of the puncture sites. The head model made of epoxy resin had similar X-ray permeability to a human skull specimen under fluoroscopy. The soft tissue was made of radiolucent material so that the training can be conducted with X-ray guidance. After repeated training, all the four young physicians were able to smoothly and successfully accomplish the puncture. CONCLUSION. This self-made model can substitute for cadaver specimen in training learners and young physicians on foramen ovale and trigeminal ganglion puncture. It is very helpful for fast learning and mastering this interventional operation skill, and the puncture accuracy can be improved significantly with our new method of real-time observation on foramen ovale.

  10. A morphometric analysis of the superior cervical ganglion and its surrounding structures.

    PubMed

    Fazliogullari, Zeliha; Kilic, Cenk; Karabulut, Ahmet Kagan; Yazar, Fatih

    2016-04-01

    The aim of this cadaveric study was to detect the superior cervical ganglion (SCG) in a topographic manner according to vertebrae and to determine the relationship between the vertebrae, mandibular angle and longus colli muscle through morphometric analysis. The present study was performed on 40 SCG of 20 human cadavers (16 males, 4 females). The level of the SCG was determined based on the vertebrae. Ganglion length, width and thickness were detected. Distance to the adjacent vertebra, the mandibular angle and medial side of the longus colli muscle were measured. The results were evaluated statistically. The SCG existing in all cadavers was detected at the C2 vertebra level in 34 cadavers and at the C3 vertebra level in 6 cadavers. The average length, width and thickness of the SCG were 15.18 ± 1.12, 4.62 ± 0.25, and 1.83 ± 0.10 mm, respectively. No statistically significant difference was detected in terms of the distances between the ganglion and anterior tubercle of transverse processes of the vertebrae as well as the mandibular angle on either side. The distance between the SCG and the medial edge of the longus colli muscle was significantly greater on the left side in both men (p < 0.001) and women (p < 0.01). Recognition of morphometric characteristics of the SCG and detection of its location according to adjacent formations may serve as a guide for nerve blockage studies and help surgeons to preserve the ganglion in both anterior and anterolateral cervical approaches.

  11. Pulsed infrared radiation excites cultured neonatal spiral and vestibular ganglion neurons by modulating mitochondrial calcium cycling

    PubMed Central

    Lumbreras, Vicente; Bas, Esperanza; Gupta, Chhavi

    2014-01-01

    Cochlear implants are currently the most effective solution for profound sensorineural hearing loss, and vestibular prostheses are under development to treat bilateral vestibulopathies. Electrical current spread in these neuroprostheses limits channel independence and, in some cases, may impair their performance. In comparison, optical stimuli that are spatially confined may result in a significant functional improvement. Pulsed infrared radiation (IR) has previously been shown to elicit responses in neurons. This study analyzes the response of neonatal rat spiral and vestibular ganglion neurons in vitro to IR (wavelength = 1,863 nm) using Ca2+ imaging. Both types of neurons responded consistently with robust intracellular Ca2+ ([Ca2+]i) transients that matched the low-frequency IR pulses applied (4 ms, 0.25–1 pps). Radiant exposures of ∼637 mJ/cm2 resulted in continual neuronal activation. Temperature or [Ca2+] variations in the media did not alter the IR-evoked transients, ruling out extracellular Ca2+ involvement or primary mediation by thermal effects on the plasma membrane. While blockage of Na+, K+, and Ca2+ plasma membrane channels did not alter the IR-evoked response, blocking of mitochondrial Ca2+ cycling with CGP-37157 or ruthenium red reversibly inhibited the IR-evoked [Ca2+]i transients. Additionally, the magnitude of the IR-evoked transients was dependent on ryanodine and cyclopiazonic acid-dependent Ca2+ release. These results suggest that IR modulation of intracellular calcium cycling contributes to stimulation of spiral and vestibular ganglion neurons. As a whole, the results suggest selective excitation of neurons in the IR beam path and the potential of IR stimulation in future auditory and vestibular prostheses. PMID:24920028

  12. Pulsed infrared radiation excites cultured neonatal spiral and vestibular ganglion neurons by modulating mitochondrial calcium cycling.

    PubMed

    Lumbreras, Vicente; Bas, Esperanza; Gupta, Chhavi; Rajguru, Suhrud M

    2014-09-15

    Cochlear implants are currently the most effective solution for profound sensorineural hearing loss, and vestibular prostheses are under development to treat bilateral vestibulopathies. Electrical current spread in these neuroprostheses limits channel independence and, in some cases, may impair their performance. In comparison, optical stimuli that are spatially confined may result in a significant functional improvement. Pulsed infrared radiation (IR) has previously been shown to elicit responses in neurons. This study analyzes the response of neonatal rat spiral and vestibular ganglion neurons in vitro to IR (wavelength = 1,863 nm) using Ca(2+) imaging. Both types of neurons responded consistently with robust intracellular Ca(2+) ([Ca(2+)]i) transients that matched the low-frequency IR pulses applied (4 ms, 0.25-1 pps). Radiant exposures of ∼637 mJ/cm(2) resulted in continual neuronal activation. Temperature or [Ca(2+)] variations in the media did not alter the IR-evoked transients, ruling out extracellular Ca(2+) involvement or primary mediation by thermal effects on the plasma membrane. While blockage of Na(+), K(+), and Ca(2+) plasma membrane channels did not alter the IR-evoked response, blocking of mitochondrial Ca(2+) cycling with CGP-37157 or ruthenium red reversibly inhibited the IR-evoked [Ca(2+)]i transients. Additionally, the magnitude of the IR-evoked transients was dependent on ryanodine and cyclopiazonic acid-dependent Ca(2+) release. These results suggest that IR modulation of intracellular calcium cycling contributes to stimulation of spiral and vestibular ganglion neurons. As a whole, the results suggest selective excitation of neurons in the IR beam path and the potential of IR stimulation in future auditory and vestibular prostheses. Copyright © 2014 the American Physiological Society.

  13. Changes in ganglion cell physiology during retinal degeneration influence excitability by prosthetic electrodes

    NASA Astrophysics Data System (ADS)

    Cho, Alice; Ratliff, Charles; Sampath, Alapakkam; Weiland, James

    2016-04-01

    Objective. Here we investigate ganglion cell physiology in healthy and degenerating retina to test its influence on threshold to electrical stimulation. Approach. Age-related Macular Degeneration and Retinitis Pigmentosa cause blindness via outer retinal degeneration. Inner retinal pathways that transmit visual information to the central brain remain intact, so direct electrical stimulation from prosthetic devices offers the possibility for visual restoration. Since inner retinal physiology changes during degeneration, we characterize physiological properties and responses to electrical stimulation in retinal ganglion cells (RGCs) of both wild type mice and the rd10 mouse model of retinal degeneration. Main results. Our aggregate results support previous observations that elevated thresholds characterize diseased retinas. However, a physiology-driven classification scheme reveals distinct sub-populations of ganglion cells with thresholds either normal or strongly elevated compared to wild-type. When these populations are combined, only a weakly elevated threshold with large variance is observed. The cells with normal threshold are more depolarized at rest and exhibit periodic oscillations. Significance. During degeneration, physiological changes in RGCs affect the threshold stimulation currents required to evoke action potentials.

  14. Periosteal ganglion: a cause of cortical bone erosion.

    PubMed

    McCarthy, E F; Matz, S; Steiner, G C; Dorfman, H D

    1983-01-01

    Three cases of periosteal ganglia of long bones are presented. These lesions are produced by mucoid degeneration and cyst formation of the periosteum to produce external cortical erosion and reactive periosteal new bone. They are not associated with a soft tissue ganglion or an intraosseous lesion. They may radiologically mimic other periosteal lesions or soft tissue neoplasms which erode bone.

  15. [Ultrasound-guided Rectus Sheath Block vs Transversus Abdominis Plane Block in Children Undergoing Umbilical Hernia Repair].

    PubMed

    Torii, Naoko; Tachibana, Kazuya; Iwasaki, Mitsuo; Takeuchi, Muneyuki; Kinouchi, Keiko

    2016-06-01

    Although many reports describe the usefulness of the rectus sheath block (RSB) in the umbilical hernia repair, the efficacy of the transversus abdominis plane block (TAPB) is rarely reported. The purpose of this study was to compare the efficacy and technique of ultrasound-guided RSB and TAPB in children undergoing umbilical hernia repair. Thirty-four children younger than 12 years of age scheduled for umbilical hernia repair were enrolled in this prospective observer-blinded randomized clinical trial. They were randomly assigned either to RSB group (median age, 3.7 years) or TAPB group (median age, 3.8 years). After the induction of general anesthesia with sevoflurane, nitrous oxide, and oxygen children in both groups received regional anesthesia with 0.3 ml x kg(-1) of 0.25% ropivacaine on each side under ultrasound guidance. Hemodynamic changes at the skin incision, postoperative pain scores and parental satisfaction were recorded. Anesthesiologists rated the quality of ultrasound images and easiness of the block performance. The patients' demographics of the two groups were similar. There were no significant differences in the time needed for the block procedure, quality of ultrasound images and the change of the heart rate and blood pressure at the skin incision between the two groups. Postoperative pain score (immediately, 2 and 4 hours after the operation), need for rescue analgesia and satisfaction of the parents also did not differ. There were no major complications in the patients. TAPB provided comparable perioperative analgesia and easiness of block performance to RSB in the pediatric umbilical hernia repair.

  16. One-day high-fat diet induces inflammation in the nodose ganglion and hypothalamus of mice.

    PubMed

    Waise, T M Zaved; Toshinai, Koji; Naznin, Farhana; NamKoong, Cherl; Md Moin, Abu Saleh; Sakoda, Hideyuki; Nakazato, Masamitsu

    2015-09-04

    A high-fat diet (HFD) induces inflammation in systemic organs including the hypothalamus, resulting in obesity and diabetes. The vagus nerve connects the visceral organs and central nervous system, and the gastric-derived orexigenic peptide ghrelin transmits its starvation signals to the hypothalamus via the vagal afferent nerve. Here we investigated the inflammatory response in vagal afferent neurons and the hypothalamus in mice following one day of HFD feeding. This treatment increased the number of macrophages/microglia in the nodose ganglion and hypothalamus. Furthermore, one-day HFD induced expression of Toll-like receptor 4 in the goblet cells of the colon and upregulated mRNA expressions of the proinflammatory biomarkers Emr1, Iba1, Il6, and Tnfα in the nodose ganglion and hypothalamus. Both subcutaneous administration of ghrelin and celiac vagotomy reduced HFD-induced inflammation in these tissues. HFD intake triggered inflammatory responses in the gut, nodose ganglion, and subsequently in the hypothalamus within 24 h. These findings suggest that the vagal afferent nerve may transfer gut-derived inflammatory signals to the hypothalamus via the nodose ganglion, and that ghrelin may protect against HFD-induced inflammation. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Laminin γ3 plays an important role in retinal lamination, photoreceptor organisation and ganglion cell differentiation.

    PubMed

    Dorgau, Birthe; Felemban, Majed; Sharpe, Alexander; Bauer, Roman; Hallam, Dean; Steel, David H; Lindsay, Susan; Mellough, Carla; Lako, Majlinda

    2018-05-23

    Laminins are heterotrimeric glycoproteins of the extracellular matrix. Eleven different laminin chains have been identified in vertebrates. They are ubiquitously expressed in the human body, with a distinct tissue distribution. Laminin expression in neural retina and their functional role during human retinogenesis is still unknown. This study investigated the laminin expression in human developing and adult retina, showing laminin α1, α5, β1, β2 and γ1 to be predominantly expressed in Bruch's membrane and the inner limiting membrane. Laminin-332 and laminin γ3 expression were mainly observed in the neural retina during retinal histogenesis. These expression patterns were largely conserved in pluripotent stem cell-derived retinal organoids. Blocking of laminin γ3 function in retinal organoids resulted in the disruption of laminar organisation and synapse formation, the loss of photoreceptor organisation and retinal ganglion cells. Our data demonstrate a unique temporal and spatial expression for laminins and reveal a novel role for laminin γ3 during human retinogenesis.

  18. Efficacy of virtual block objects in reducing the lung dose in helical tomotherapy planning for cervical oesophageal cancer: a planning study.

    PubMed

    Ito, Makoto; Shimizu, Hidetoshi; Aoyama, Takahiro; Tachibana, Hiroyuki; Tomita, Natsuo; Makita, Chiyoko; Koide, Yutaro; Kato, Daiki; Ishiguchi, Tsuneo; Kodaira, Takeshi

    2018-04-04

    Intensity-modulated radiotherapy is useful for cervical oesophageal carcinoma (CEC); however, increasing low-dose exposure to the lung may lead to radiation pneumonitis. Nevertheless, an irradiation technique that avoids the lungs has never been examined due to the high difficulty of dose optimization. In this study, we examined the efficacy of helical tomotherapy that can restrict beamlets passing virtual blocks during dose optimization computing (block plan) in reducing the lung dose. Fifteen patients with CEC were analysed. The primary/nodal lesion and prophylactic nodal region with adequate margins were defined as the planning target volume (PTV)-60 Gy and PTV-48 Gy, respectively. Nineteen plans per patient were made and compared (total: 285 plans), including non-block and block plans with several shapes and sizes. The most appropriate block model was semi-circular, 8 cm outside of the tracheal bifurcation, with a significantly lower lung dose compared to that of non-block plans; the mean lung volumes receiving 5 Gy, 10 Gy, 20 Gy, and the mean lung dose were 31.3% vs. 48.0% (p <  0.001), 22.4% vs. 39.4% (p <  0.001), 13.2% vs. 16.0% (p = 0.028), and 7.1 Gy vs. 9.6 Gy (p <  0.001), respectively. Both the block and non-block plans were comparable in terms of the homogeneity and conformity indexes of PTV-60 Gy: 0.05 vs. 0.04 (p = 0.100) and 0.82 vs. 0.85 (p = 0.616), respectively. The maximum dose of the spinal cord planning risk volume increased slightly (49.4 Gy vs. 47.9 Gy, p = 0.002). There was no significant difference in the mean doses to the heart and the thyroid gland. Prolongation of the delivery time was less than 1 min (5.6 min vs. 4.9 min, p = 0.010). The block plan for CEC could significantly reduce the lung dose, with acceptable increment in the spinal dose and a slightly prolonged delivery time.

  19. Block Copolymer Membranes for Efficient Capture of a Chemotherapy Drug

    DOE PAGES

    Chen, X. Chelsea; Oh, Hee Jeung; Yu, Jay F.; ...

    2016-07-23

    In this paper, we introduce the use of block copolymer membranes for an emerging application, “drug capture”. The polymer is incorporated in a new class of biomedical devices, referred to as ChemoFilter, which is an image-guided temporarily deployable endovascular device designed to increase the efficacy of chemotherapy-based cancer treatment. We show that block copolymer membranes consisting of functional sulfonated polystyrene end blocks and a structural polyethylene middle block (SSES) are capable of capturing doxorubicin, a chemotherapy drug. We focus on the relationship between morphology of the membrane in the ChemoFilter device and efficacy of doxorubicin capture measured in vitro. Usingmore » small-angle X-ray scattering and cryogenic scanning transmission electron microscopy, we discovered that rapid doxorubicin capture is associated with the presence of water-rich channels in the lamellar-forming S-SES membranes in aqueous environment.« less

  20. Block Copolymer Membranes for Efficient Capture of a Chemotherapy Drug

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, X. Chelsea; Oh, Hee Jeung; Yu, Jay F.

    In this paper, we introduce the use of block copolymer membranes for an emerging application, “drug capture”. The polymer is incorporated in a new class of biomedical devices, referred to as ChemoFilter, which is an image-guided temporarily deployable endovascular device designed to increase the efficacy of chemotherapy-based cancer treatment. We show that block copolymer membranes consisting of functional sulfonated polystyrene end blocks and a structural polyethylene middle block (SSES) are capable of capturing doxorubicin, a chemotherapy drug. We focus on the relationship between morphology of the membrane in the ChemoFilter device and efficacy of doxorubicin capture measured in vitro. Usingmore » small-angle X-ray scattering and cryogenic scanning transmission electron microscopy, we discovered that rapid doxorubicin capture is associated with the presence of water-rich channels in the lamellar-forming S-SES membranes in aqueous environment.« less

  1. Prazosin, an adrenergic blocking agent inadequate as male contraceptive pill.

    PubMed

    Kjaergaard, N; Kjaergaard, B; Lauritsen, J G

    1988-06-01

    The purpose of this study was to investigate the efficacy and the acceptability of Prazosin as a male contraceptive pill. Acceptable antifertility drugs for men are proving difficult to produce, and the possibility of using pharmacological agents to block selectively or to inhibit normal sperm transport through the male genital tract is an interesting approach. Prazosin administered in doses up to 10 mg/day did not cause azoospermia following ejaculation. In conclusion, we have not been able to confirm either the efficacy or the acceptability of the alpha 1-adrenoceptor antagonist Prazosin as a male contraceptive drug. Homonnai et al. confirmed the fact that phenoxybenzamine blocks ejaculation, but it should be noted that although both drugs are alpha 1-adrenoceptor blocking agents, they are not chemically identical.

  2. Ganglion Cell and Displaced Amacrine Cell Density Distribution in the Retina of the Howler Monkey (Alouatta caraya)

    PubMed Central

    Muniz, José Augusto Pereira Carneiro; de Athaide, Luana Modesto; Gomes, Bruno Duarte; Finlay, Barbara L.; Silveira, Luiz Carlos de Lima

    2014-01-01

    Unlike all other New World (platyrrine) monkeys, both male and female howler monkeys (Alouatta sp.) are obligatory trichromats. In all other platyrrines, only females can be trichromats, while males are always dichromats, as determined by multiple behavioral, electrophysiological, and genetic studies. In addition to obligatory trichromacy, Alouatta has an unusual fovea, with substantially higher peak cone density in the foveal pit than every other diurnal anthropoid monkey (both platyrrhines and catarrhines) and great ape yet examined, including humans. In addition to documenting the general organization of the retinal ganglion cell layer in Alouatta, the distribution of cones is compared to retinal ganglion cells, to explore possible relationships between their atypical trichromacy and foveal specialization. The number and distribution of retinal ganglion cells and displaced amacrine cells were determined in six flat-mounted retinas from five Alouatta caraya. Ganglion cell density peaked at 0.5 mm between the fovea and optic nerve head, reaching 40,700–45,200 cells/mm2. Displaced amacrine cell density distribution peaked between 0.5–1.75 mm from the fovea, reaching mean values between 2,050–3,100 cells/mm2. The mean number of ganglion cells was 1,133,000±79,000 cells and the mean number of displaced amacrine cells was 537,000±61,800 cells, in retinas of mean area 641±62 mm2. Ganglion cell and displaced amacrine cell density distribution in the Alouatta retina was consistent with that observed among several species of diurnal Anthropoidea, both platyrrhines and catarrhines. The principal alteration in the Alouatta retina appears not to be in the number of any retinal cell class, but rather a marked gradient in cone density within the fovea, which could potentially support high chromatic acuity in a restricted central region. PMID:25546077

  3. Chronic cervical radiculopathic pain is associated with increased excitability and hyperpolarization-activated current ( Ih) in large-diameter dorsal root ganglion neurons.

    PubMed

    Liu, Da-Lu; Wang, Xu; Chu, Wen-Guang; Lu, Na; Han, Wen-Juan; Du, Yi-Kang; Hu, San-Jue; Bai, Zhan-Tao; Wu, Sheng-Xi; Xie, Rou-Gang; Luo, Ceng

    2017-01-01

    Cervical radiculopathic pain is a very common symptom that may occur with cervical spondylosis. Mechanical allodynia is often associated with cervical radiculopathic pain and is inadequately treated with current therapies. However, the precise mechanisms underlying cervical radiculopathic pain-associated mechanical allodynia have remained elusive. Compelling evidence from animal models suggests a role of large-diameter dorsal root ganglion neurons and plasticity of spinal circuitry attached with Aβ fibers in mediating neuropathic pain. Whether cervical radiculopathic pain condition induces plastic changes of large-diameter dorsal root ganglion neurons and what mechanisms underlie these changes are yet to be known. With combination of patch-clamp recording, immunohistochemical staining, as well as behavioral surveys, we demonstrated that upon chronic compression of C7/8 dorsal root ganglions, large-diameter cervical dorsal root ganglion neurons exhibited frequent spontaneous firing together with hyperexcitability. Quantitative analysis of hyperpolarization-activated cation current ( I h ) revealed that I h was greatly upregulated in large dorsal root ganglion neurons from cervical radiculopathic pain rats. This increased I h was supported by the enhanced expression of hyperpolarization-activated, cyclic nucleotide-modulated channels subunit 3 in large dorsal root ganglion neurons. Blockade of I h with selective antagonist, ZD7288 was able to eliminate the mechanical allodynia associated with cervical radiculopathic pain. This study sheds new light on the functional plasticity of a specific subset of large-diameter dorsal root ganglion neurons and reveals a novel mechanism that could underlie the mechanical allodynia associated with cervical radiculopathy.

  4. Enkephalin-containing neurons in the inferior mesenteric ganglion projecting to the distal colon of cat: evidence from combined retrograde tracing by fluorescent microspheres and immunohistochemistry.

    PubMed

    Bagnol, D; Jule, Y; Kirchner, G; Cupo, A; Roman, C

    1993-02-01

    Retrograde tracing with rhodamine fluorescent microspheres combined with fluorescein immunolabelling of methionine-enkephalin showed the presence of enkephalin-like material in neurons of the inferior mesenteric ganglion (sympathetic prevertebral ganglion) projecting to the distal colon in cat. Two weeks after injecting the microspheres into the wall of the distal colon, the inferior mesenteric ganglion was dissected out and incubated for 24 hours in a colchicine-containing culture medium in order to facilitate the detection of enkephalins in the soma of ganglion neurons. It was observed that retrogradely labelled ganglion cells contained enkephalin-like immunoreactive material. These ganglion cells corresponded to enkephalin-like postganglionic neurons, the terminals of which were located inside the wall of the distal colon. These enkephalin-like neurons were numerous and scattered throughout the ganglion. Sometimes enkephalin-like immunoreactive fibers, probably originating from spinal preganglionic neurons, ran close to immunoreactive and non-immunoreactive retrogradely labelled ganglion cells. This suggests that enkephalin-like immunoreactive fibers may make synaptic connections with enkephalin-like and non-enkephalin-like postganglionic neurons projecting to the distal colon. The present study establishes for the first time the existence of an enkephalin-like postganglionic pathway to the digestive tract originating from a sympathetic prevertebral ganglion. This finding indicates that the enkephalinergic innervation of the cat digestive tract may have at least two possible sources: (i) the sympathetic prevertebral ganglia; and (ii) the enteric nervous ganglia.

  5. Functional interdependence of neurons in a single canine intrinsic cardiac ganglionated plexus

    PubMed Central

    Thompson, G W; Collier, K; Ardell, J L; Kember, G; Armour, J A

    2000-01-01

    To determine the activity characteristics displayed by different subpopulations of neurons in a single intrinsic cardiac ganglionated plexus, the behaviour and co-ordination of activity generated by neurons in two loci of the right atrial ganglionated plexus (RAGP) were evaluated in 16 anaesthetized dogs during basal states as well as in response to increasing inputs from ventricular sensory neurites. These sub-populations of right atrial neurons received afferent inputs from sensory neurites in both ventricles that were responsive to local mechanical stimuli and the nitric oxide donor nitroprusside. Neurons in at least one RAGP locus were activated by epicardial application of veratridine, bradykinin, the β1-adrenoceptor agonist prenaterol or glutamate. Epicardial application of angiotensin II, the selective β2-adrenoceptor agonist terbutaline and selective α-adrenoceptor agonists elicited inconsistent neuronal responses. The activity generated by both populations of atrial neurons studied over 5 min periods during basal states displayed periodic coupled behaviour (cross-correlation coefficients of activities that reached, on average, 0·88 ± 0·03; range 0·71–1) for 15–30 s periods of time. These periods of coupled activity occurred every 30–50 s during basal states, as well as when neuronal activity was enhanced by chemical activation of their ventricular sensory inputs. These results indicate that neurons throughout one intrinsic cardiac ganglionated plexus receive inputs from mechano- and chemosensory neurites located in both ventricles. That such neurons respond to multiple chemical stimuli, including those liberated from adjacent adrenergic efferent nerve terminals, indicates the complexity of the integrative processing of information that occurs within the intrinsic cardiac nervous system. It is proposed that the interdependent activity displayed by populations of neurons in different regions of one intrinsic cardiac ganglionated plexus

  6. The comparative evaluation of safety and efficacy of unilateral paravertebral block with conventional spinal anaesthesia for inguinal hernia repair

    PubMed Central

    Sinha, Sunil Kumar; Brahmchari, Yudhyavir; Kaur, Manpreet; Jain, Aruna

    2016-01-01

    Background and Aims: Unilateral paravertebral block (PVB) as a sole anaesthetic technique is underutilised even in experienced hands. Hence, this study was undertaken regarding the efficacy and safety of PVB and compared with subarachnoid block (SAB) for inguinal hernia repair procedures. Methods: Sixty-three consenting adult male patients scheduled for unilateral inguinal hernia repair were randomly assigned to receive either PVB or SAB (Group P: PVBs at T10–L2 levels, 5 mL of 0.5% bupivacaine at each segment; Group S: SAB at L3–L4 level with 12.5 mg 0.5% of hyperbaric bupivacaine). Primary objective was to compare duration of post-operative analgesia and time to reach discharge criteria (modified Aldrete scores and modified post-anaesthetic discharge scoring [PADS] scores). Secondary objectives were to compare the block characteristics (time required for performing the block, time to surgical anaesthesia, time to ambulation, time to the first analgesic, total rescue analgesic consumption) and adverse effects. Independent Student's t-test was used for continuous data and Pearson Chi-square test for categorical data. P <0.05 was considered as statistically significant. Results: The duration of post-operative analgesia (min) was 384.57 ± 38.67 in Group P and 194.27 ± 20.30 in Group S (P < 0.05). Modified PADS scores were significantly higher at 4 h and 6 h (P < 0.0001) in Group P. Time to reach the discharge criteria was early in Group P than Group S. Conclusion: PVB provides excellent post-operative analgesic conditions with lesser adverse effects and shorter time to reach the discharge criteria compared to SAB. PMID:27512167

  7. Influence of needle position on lumbar segmental nerve root block selectivity.

    PubMed

    Wolff, André P; Groen, Gerbrand J; Wilder-Smith, Oliver H

    2006-01-01

    In patients with chronic low back pain radiating to the leg, segmental nerve root blocks (SNRBs) are performed to predict surgical outcome and identify the putative symptomatic spinal nerve. Epidural spread may lead to false interpretation, affecting clinical decision making. Systematic fluoroscopic analysis of epidural local anesthetic spread and its relationship to needle tip location has not been published to date. Study aims include assessment of epidural local anesthetic spread and its relationship to needle position during fluoroscopy-assisted blocks. Patients scheduled for L4, L5, and S1 blocks were included in this prospective observational study. Under fluoroscopy and electrostimulation, they received 0.5 mL of a mixture containing lidocaine 5 mg and iohexol 75 mg. X-rays with needle tip and contrast were scored for no epidural spread (grade 0), local spread epidurally (grade 1), or to adjacent nerve roots (grade 2). Sixty-five patients were analyzed for epidural spread, 62 for needle position. Grade 1 epidural spread occurred in 47% of L4 and 28% of L5 blocks and grade 2 spread in 3 blocks (5%; L5 n = 1, S1 n = 2). For lumbar blocks, the needle was most frequently found in the lateral upper half of the intervertebral foramen. Epidural spread occurred more frequently with medial needle positions (P = .06). The findings suggest (P = .06) that the risk of grade 1 and 2 lumbar epidural spread, which results in decreased SNRB selectivity, is greater with medial needle positions in the intervertebral foramen. The variability in anatomic position of the dorsal root ganglion necessitates electrostimulation to guide SNRB in addition to fluoroscopy.

  8. Protective effect of oestradiol in the coeliac ganglion against ovarian apoptotic mechanism on dioestrus.

    PubMed

    Cynthia, Bronzi; Cristina, Daneri Becerra; Adriana, Vega Orozco; Belén, Delsouc María; María, Rastrilla Ana; Marilina, Casais; Zulema, Sosa

    2013-05-01

    The aims of this work were to investigate if oestradiol 10(-8)M in the incubation media of either the ovary alone (OV) or the ganglion compartment of an ex vivo coeliac ganglion-superior ovarian nerve-ovary system (a) modifies the release of ovarian progesterone (P4) and oestradiol (E2) on dioestrus II, and (b) modifies the ovarian gene expression of 3β-HSD and 20α-HSD enzymes and markers of apoptosis. The concentration of ovarian P4 release was measured in both experimental schemes, and ovarian P4 and E2 in the ex vivo system by RIA at different times. The expression of 3β-hydroxysteroid dehydrogenase, 20α-hydroxysteroid dehydrogenase and antiapoptotic bcl-2 and proapoptotic bax by RT-PCR were determined. E2 added in the coeliac ganglion caused an increase in the ovarian release of the P4, E2 and 3β-HSD, while in the ovary incubation alone it decreased P4 and 3β-HSD but increased and 20α-HSD and bax/bcl-2 ratio. It is concluded that through a direct effect on the ovary, E2 promotes luteal regression in DII rats, but the addition of E2 in the coeliac ganglion does not have the same effect. The peripheral nervous system, through the superior ovarian nerve, has a protective effect against the apoptotic mechanism on DII. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. [Effects on survival of shRNA mediated APE/Ref1 gene silencing in rat spiral ganglion cells in oxidative stress].

    PubMed

    Jiang, Zhendong; Zhong, Cheng; Li, Taijun; Xiang, Zhaolan; Zhang, Xueyuan

    2014-02-01

    To investigate the effects of reducing APE/Ref1 expression in the cultures of rat spiral ganglion cells with oxidative damage induced by H(2)O(2). Primary cultured rat spiral ganglion cells were infected with small interfering RNA to APE/Ref1 (Ape1siRNA) for 72 h, followed by treating with H(2)O(2) (0, 10, 25, 50, 100 and 300 µmol/L) for 1 h , and then cultured in normal medium for 24 h. Western blot were used to detect the level of APE/Ref1 protein and phosphorylation of histone protein H2AX in the infected cells. The caspase3 activation was tested by spectrophotometric method . The cell viability was determined by MTT and the apoptosis of spiral ganglion cells was determined by terminal-deoxynucleotidyl transferase mediated nick and labeling (TUNEL). Western blot showed that infection with Ape1siRNA resulted in APE/Ref1 reduced expression in the spiral ganglion cells. Exposing spiral ganglion cultures with reduced expression of APE/Ref1 to H(2)O(2) (50, 100, 300 µmol/L) for 1 h resulted in increasing in the phosphorylation of histone protein H2AX. The reduction in APE/Ref1 significantly reduced cell viability in cultures 24 h after 1 h expression to 50-300 µmol/L H(2)O(2). The apoptosis of cells and caspase 3 activity was detected significantly improved. The induced of APE/Ref1 results in significantly decrease in spiral ganglion cells viability in oxidative stress. The repairing function of APE/Ref1 is necessary for optimal levels of neuronal rat spiral ganglion cells survival.

  10. The quaternary lidocaine derivative QX-314 in combination with bupivacaine for long-lasting nerve block: Efficacy, toxicity, and the optimal formulation in rats.

    PubMed

    Yin, Qinqin; Li, Jun; Zheng, Qingshan; Yang, Xiaolin; Lv, Rong; Ma, Longxiang; Liu, Jin; Zhu, Tao; Zhang, Wensheng

    2017-01-01

    The quaternary lidocaine derivative (QX-314) in combination with bupivacaine can produce long-lasting nerve blocks in vivo, indicating potential clinical application. The aim of the study was to investigate the efficacy, safety, and the optimal formulation of this combination. QX-314 and bupivacaine at different concentration ratios were injected in the vicinity of the sciatic nerve in rats; bupivacaine and saline served as controls (n = 6~10). Rats were inspected for durations of effective sensory and motor nerve blocks, systemic adverse effects, and histological changes of local tissues. Mathematical models were established to reveal drug-interaction, concentration-effect relationships, and the optimal ratio of QX-314 to bupivacaine. 0.2~1.5% QX-314 with 0.03~0.5% bupivacaine produced 5.8~23.8 h of effective nerve block; while 0.5% bupivacaine alone was effective for 4 h. No systemic side effects were observed; local tissue reactions were similar to those caused by 0.5% bupivacaine if QX-314 were used < 1.2%. The weighted modification model was successfully established, which revealed that QX-314 was the main active ingredient while bupivacaine was the synergist. The formulation, 0.9% QX-314 plus 0.5% bupivacaine, resulted in 10.1 ± 0.8 h of effective sensory and motor nerve blocks. The combination of QX-314 and bupivacaine facilitated prolonged sciatic nerve block in rats with a satisfactory safety profile, maximizing the duration of nerve block without clinically important systemic and local tissue toxicity. It may emerge as an alternative approach to post-operative pain treatment.

  11. Melatonin potentiates glycine currents through a PLC/PKC signalling pathway in rat retinal ganglion cells.

    PubMed

    Zhao, Wen-Jie; Zhang, Min; Miao, Yanying; Yang, Xiong-Li; Wang, Zhongfeng

    2010-07-15

    In vertebrate retina, melatonin regulates various physiological functions. In this work we investigated the mechanisms underlying melatonin-induced potentiation of glycine currents in rat retinal ganglion cells (RGCs). Immunofluorescence double labelling showed that rat RGCs were solely immunoreactive to melatonin MT(2) receptors. Melatonin potentiated glycine currents of RGCs, which was reversed by the MT(2) receptor antagonist 4-P-PDOT. The melatonin effect was blocked by intracellular dialysis of GDP-beta-S. Either preincubation with pertussis toxin or application of the phosphatidylcholine (PC)-specific phospholipase C (PLC) inhibitor D609, but not the phosphatidylinositol (PI)-PLC inhibitor U73122, blocked the melatonin effect. The protein kinase C (PKC) activator PMA potentiated the glycine currents and in the presence of PMA melatonin failed to cause further potentiation of the currents, whereas application of the PKC inhibitor bisindolylmaleimide IV abolished the melatonin-induced potentiation. The melatonin effect persisted when [Ca(2+)](i) was chelated by BAPTA, and melatonin induced no increase in [Ca(2+)](i). Neither cAMP-PKA nor cGMP-PKG signalling pathways seemed to be involved because 8-Br-cAMP or 8-Br-cGMP failed to cause potentiation of the glycine currents and both the PKA inhibitor H-89 and the PKG inhibitor KT5823 did not block the melatonin-induced potentiation. In consequence, a distinct PC-PLC/PKC signalling pathway, following the activation of G(i/o)-coupled MT(2) receptors, is most likely responsible for the melatonin-induced potentiation of glycine currents of rat RGCs. Furthermore, in rat retinal slices melatonin potentiated light-evoked glycine receptor-mediated inhibitory postsynaptic currents in RGCs. These results suggest that melatonin, being at higher levels at night, may help animals to detect positive or negative contrast in night vision by modulating inhibitory signals largely mediated by glycinergic amacrine cells in the inner

  12. Melatonin potentiates glycine currents through a PLC/PKC signalling pathway in rat retinal ganglion cells

    PubMed Central

    Zhao, Wen-Jie; Zhang, Min; Miao, Yanying; Yang, Xiong-Li; Wang, Zhongfeng

    2010-01-01

    In vertebrate retina, melatonin regulates various physiological functions. In this work we investigated the mechanisms underlying melatonin-induced potentiation of glycine currents in rat retinal ganglion cells (RGCs). Immunofluorescence double labelling showed that rat RGCs were solely immunoreactive to melatonin MT2 receptors. Melatonin potentiated glycine currents of RGCs, which was reversed by the MT2 receptor antagonist 4-P-PDOT. The melatonin effect was blocked by intracellular dialysis of GDP-β-S. Either preincubation with pertussis toxin or application of the phosphatidylcholine (PC)-specific phospholipase C (PLC) inhibitor D609, but not the phosphatidylinositol (PI)-PLC inhibitor U73122, blocked the melatonin effect. The protein kinase C (PKC) activator PMA potentiated the glycine currents and in the presence of PMA melatonin failed to cause further potentiation of the currents, whereas application of the PKC inhibitor bisindolylmaleimide IV abolished the melatonin-induced potentiation. The melatonin effect persisted when [Ca2+]i was chelated by BAPTA, and melatonin induced no increase in [Ca2+]i. Neither cAMP-PKA nor cGMP-PKG signalling pathways seemed to be involved because 8-Br-cAMP or 8-Br-cGMP failed to cause potentiation of the glycine currents and both the PKA inhibitor H-89 and the PKG inhibitor KT5823 did not block the melatonin-induced potentiation. In consequence, a distinct PC-PLC/PKC signalling pathway, following the activation of Gi/o-coupled MT2 receptors, is most likely responsible for the melatonin-induced potentiation of glycine currents of rat RGCs. Furthermore, in rat retinal slices melatonin potentiated light-evoked glycine receptor-mediated inhibitory postsynaptic currents in RGCs. These results suggest that melatonin, being at higher levels at night, may help animals to detect positive or negative contrast in night vision by modulating inhibitory signals largely mediated by glycinergic amacrine cells in the inner retina. PMID

  13. Intracochlear electrical stimulation suppresses apoptotic signaling in rat spiral ganglion neurons after deafening in vivo.

    PubMed

    Kopelovich, Jonathan C; Cagaanan, Alain P; Miller, Charles A; Abbas, Paul J; Green, Steven H

    2013-11-01

    To establish the intracellular consequences of electrical stimulation to spiral ganglion neurons after deafferentation. Here we use a rat model to determine the effect of both low and high pulse rate acute electrical stimulation on activation of the proapoptotic transcription factor Jun in deafferented spiral ganglion neurons in vivo. Experimental animal study. Hearing research laboratories of the University of Iowa Departments of Biology and Otolaryngology. A single electrode was implanted through the round window of kanamycin-deafened rats at either postnatal day 32 (P32, n = 24) or P60 (n = 22) for 4 hours of stimulation (monopolar, biphasic pulses, amplitude twice electrically evoked auditory brainstem response [eABR] threshold) at either 100 or 5000 Hz. Jun phosphorylation was assayed by immunofluorescence to quantitatively assess the effect of electrical stimulation on proapoptotic signaling. Jun phosphorylation was reliably suppressed by 100 Hz stimuli in deafened cochleae of P32 but not P60 rats. This effect was not significant in the basal cochlear turns. Stimulation frequency may be consequential: 100 Hz was significantly more effective than was 5 kHz stimulation in suppressing phospho-Jun. Suppression of Jun phosphorylation occurs in deafferented spiral ganglion neurons after only 4 hours of electrical stimulation. This finding is consistent with the hypothesis that electrical stimulation can decrease spiral ganglion neuron death after deafferentation.

  14. Biofunctionalized peptide-based hydrogels provide permissive scaffolds to attract neurite outgrowth from spiral ganglion neurons.

    PubMed

    Frick, Claudia; Müller, Marcus; Wank, Ute; Tropitzsch, Anke; Kramer, Benedikt; Senn, Pascal; Rask-Andersen, Helge; Wiesmüller, Karl-Heinz; Löwenheim, Hubert

    2017-01-01

    Cochlear implants (CI) allow for hearing rehabilitation in patients with sensorineural hearing loss or deafness. Restricted CI performance results from the spatial gap between spiral ganglion neurons and the CI, causing current spread that limits spatially restricted stimulation and impairs frequency resolution. This may be substantially improved by guiding peripheral processes of spiral ganglion neurons towards and onto the CI electrode contacts. An injectable, peptide-based hydrogel was developed which may provide a permissive scaffold to facilitate neurite growth towards the CI. To test hydrogel capacity to attract spiral ganglion neurites, neurite outgrowth was quantified in an in vitro model using a custom-designed hydrogel scaffold and PuraMatrix ® . Neurite attachment to native hydrogels is poor, but significantly improved by incorporation of brain-derived neurotrophic factor (BDNF), covalent coupling of the bioactive laminin epitope IKVAV and the incorporation a full length laminin to hydrogel scaffolds. Incorporation of full length laminin protein into a novel custom-designed biofunctionalized hydrogel (IKVAV-GGG-SIINFEKL) allows for neurite outgrowth into the hydrogel scaffold. The study demonstrates that peptide-based hydrogels can be specifically biofunctionalized to provide a permissive scaffold to attract neurite outgrowth from spiral ganglion neurons. Such biomaterials appear suitable to bridge the spatial gap between neurons and the CI. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. A novel model for rapid induction of apoptosis in spiral ganglions of mice.

    PubMed

    Lee, Ji Eun; Nakagawa, Takayuki; Kim, Tae Soo; Iguchi, Fukuichiro; Endo, Tsuyoshi; Dong, Youyi; Yuki, Kazuo; Naito, Yasushi; Lee, Sang Heun; Ito, Juichi

    2003-06-01

    The survival of the spiral ganglion (SG) is a critical issue in preservation of hearing. Research on topics related to this issue requires a mouse experimental model because such a model has advantages including use of genetic information and knockout or "knockin" mice. Thus, the aim of the study was to establish a mouse model for induction of apoptosis of SG neurons with a definite time course. Laboratory study using experimental animals. C57BL/6 mice were used as experimental animals and were subjected to direct application of cisplatin into the inner ear. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay and immunostaining for Neurofilament 200-kD (NF) and peripherin were used for analysis of SG degeneration. In addition, generation of peroxynitrite in affected spiral ganglions was examined by immunostaining for nitrotyrosine. Cellular location of activated caspase-9 and cytochrome-c in dying SG neurons were examined for analysis of cell death pathway. The TUNEL assay and immunohistochemical analysis for NF and peripherin indicated that type I neurons in spiral ganglions were deleted through the apoptotic pathway over time. Spiral ganglion neurons treated with cisplatin exhibited expression of nitrotyrosine, indicating induction of peroxynitrite by cisplatin. In dying SG neurons, expression of activated caspase-9 and translocation of cytochrome-c from mitochondria to cytoplasm were observed, indicating the mitochondrial pathway of apoptosis. The predictable fashion of induction of apoptosis in SG neurons over a well-defined time course in the model in the study will aid studies of the molecular mechanism of cell death and elucidation of a strategy for prevention of SG degeneration.

  16. Femoral Nerve Block versus Adductor Canal Block for Analgesia after Total Knee Arthroplasty.

    PubMed

    Koh, In Jun; Choi, Young Jun; Kim, Man Soo; Koh, Hyun Jung; Kang, Min Sung; In, Yong

    2017-06-01

    Inadequate pain management after total knee arthroplasty (TKA) impedes recovery, increases the risk of postoperative complications, and results in patient dissatisfaction. Although the preemptive use of multimodal measures is currently considered the principle of pain management after TKA, no gold standard pain management protocol has been established. Peripheral nerve blocks have been used as part of a contemporary multimodal approach to pain control after TKA. Femoral nerve block (FNB) has excellent postoperative analgesia and is now a commonly used analgesic modality for TKA pain control. However, FNB leads to quadriceps muscle weakness, which impairs early mobilization and increases the risk of postoperative falls. In this context, emerging evidence suggests that adductor canal block (ACB) facilitates postoperative rehabilitation compared with FNB because it primarily provides a sensory nerve block with sparing of quadriceps strength. However, whether ACB is more appropriate for contemporary pain management after TKA remains controversial. The objective of this study was to review and summarize recent studies regarding practical issues for ACB and comparisons of analgesic efficacy and functional recovery between ACB and FNB in patients who have undergone TKA.

  17. Immediate Nerve Transfer for Treatment of Peroneal Nerve Palsy Secondary to an Intraneural Ganglion: Case Report and Review.

    PubMed

    Ratanshi, Imran; Clark, Tod A; Giuffre, Jennifer L

    2018-05-01

    Intraneural ganglion cysts, which occur within the common peroneal nerve, are a rare cause of foot drop. The current standard of treatment for intraneural ganglion cysts involving the common peroneal nerve involves (1) cyst decompression and (2) ligation of the articular nerve branch to prevent recurrence. Nerve transfers are a time-dependent strategy for recovering ankle dorsiflexion in cases of high peroneal nerve palsy; however, this modality has not been performed for intraneural ganglion cysts involving the common peroneal nerve. We present a case of common peroneal nerve palsy secondary to an intraneural ganglion cyst occurring in a 74-year-old female. The patient presented with a 5-month history of pain in the right common peroneal nerve distribution and foot drop. The patient underwent simultaneous cyst decompression, articular nerve branch ligation, and nerve transfer of the motor branch to flexor hallucis longus to a motor branch of anterior tibialis muscle. At final follow-up, the patient demonstrated complete (M4+) return of ankle dorsiflexion, no pain, no evidence of recurrence and was able to bear weight without the need for orthotic support. Given the minimal donor site morbidity and recovery of ankle dorsiflexion, this report underscores the importance of considering early nerve transfers in cases of high peroneal neuropathy due to an intraneural ganglion cyst.

  18. Sodium channel diversity in the vestibular ganglion: NaV1.5, NaV1.8, and tetrodotoxin-sensitive currents

    PubMed Central

    2016-01-01

    Firing patterns differ between subpopulations of vestibular primary afferent neurons. The role of sodium (NaV) channels in this diversity has not been investigated because NaV currents in rodent vestibular ganglion neurons (VGNs) were reported to be homogeneous, with the voltage dependence and tetrodotoxin (TTX) sensitivity of most neuronal NaV channels. RT-PCR experiments, however, indicated expression of diverse NaV channel subunits in the vestibular ganglion, motivating a closer look. Whole cell recordings from acutely dissociated postnatal VGNs confirmed that nearly all neurons expressed NaV currents that are TTX-sensitive and have activation midpoints between −30 and −40 mV. In addition, however, many VGNs expressed one of two other NaV currents. Some VGNs had a small current with properties consistent with NaV1.5 channels: low TTX sensitivity, sensitivity to divalent cation block, and a relatively negative voltage range, and some VGNs showed NaV1.5-like immunoreactivity. Other VGNs had a current with the properties of NaV1.8 channels: high TTX resistance, slow time course, and a relatively depolarized voltage range. In two NaV1.8 reporter lines, subsets of VGNs were labeled. VGNs with NaV1.8-like TTX-resistant current also differed from other VGNs in the voltage dependence of their TTX-sensitive currents and in the voltage threshold for spiking and action potential shape. Regulated expression of NaV channels in primary afferent neurons is likely to selectively affect firing properties that contribute to the encoding of vestibular stimuli. PMID:26936982

  19. The morphology and classification of α ganglion cells in the rat retinae: a fractal analysis study.

    PubMed

    Jelinek, Herbert F; Ristanović, Dušan; Milošević, Nebojša T

    2011-09-30

    Rat retinal ganglion cells have been proposed to consist of a varying number of subtypes. Dendritic morphology is an essential aspect of classification and a necessary step toward understanding structure-function relationships of retinal ganglion cells. This study aimed at using a heuristic classification procedure in combination with the box-counting analysis to classify the alpha ganglion cells in the rat retinae based on the dendritic branching pattern and to investigate morphological changes with retinal eccentricity. The cells could be divided into two groups: cells with simple dendritic pattern (box dimension lower than 1.390) and cells with complex dendritic pattern (box dimension higher than 1.390) according to their dendritic branching pattern complexity. Both were further divided into two subtypes due to the stratification within the inner plexiform layer. In the present study we have shown that the alpha rat RCGs can be classified further by their dendritic branching complexity and thus extend those of previous reports that fractal analysis can be successfully used in neuronal classification, particularly that the fractal dimension represents a robust and sensitive tool for the classification of retinal ganglion cells. A hypothesis of possible functional significance of our classification scheme is also discussed. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Effects of nano red elemental selenium on sodium currents in rat dorsal root ganglion neurons.

    PubMed

    Yuan, Huijun; Lin, Jiarui; Lan, Tonghan

    2006-01-01

    Nano red elemental selenium (Nano-Se), was demonstrated to be useful in medical and scientific researches. Here, we investigated the effects of Nano-Se on sodium currents on rat dorsal root ganglion neurons (DRG), using the whole-cell patch clamp method. Nano-Se reversibly decrease the I(Na)(TTX-S) in a concentration-dependent, time-dependent and open-channel block manners without affecting I(Na)(TTX-R). It shifted the steady-state activation and inactivation curves for I(Na) to more negative potentials. In the research of recovery from inactivation, the recovery time constant is longer in the present of Nano-Se. Nano-Se had a weaker inhibitory effect on I(Na), compared with marked decrease caused by selenite which indicated that Nano-Se is less neurotoxic than selenite in short-term/large dose treatments and had similar bio availability to sodium selenite. The results of interaction between the effects of Nano-Se and selenite on sodium currents indicated a negative allosteric interaction between the selenite binding site and the Nano-Se binding site or that they have the same competitive binding site.

  1. Nitrergic nerves derived from the pterygopalatine ganglion innervate arteries irrigating the cerebrum but not the cerebellum and brain stem in monkeys.

    PubMed

    Ayajiki, Kazuhide; Kobuchi, Shuhei; Tawa, Masashi; Okamura, Tomio

    2012-01-01

    The functional roles of the nitrergic nerves innervating the monkey cerebral artery were evaluated in a tension-response study examining isolated arteries in vitro and cerebral angiography in vivo. Nicotine produced relaxation of arteries by stimulation of nerve terminals innervating isolated monkey arteries irrigating the cerebrum, cerebellum and brain stem. Relaxation of arteries induced by nicotine was abolished by treatment with N(G)-nitro-L-arginine, a nitric oxide synthase inhibitor, and was restored by addition of L-arginine. Cerebral angiography showed that electrical stimulation of the unilateral greater petrosal nerve, which connects to the pterygopalatine ganglion via the parasympathetic ganglion synapse, produced vasodilatation of the anterior, middle and posterior cerebral arteries in the stimulated side. However, stimulation failed to produce vasodilatation of the superior and anterior-inferior cerebellar arteries and the basilar artery in anesthetized monkeys. Therefore, nitrergic nerves derived from the pterygopalatine ganglion appear to regulate cerebral vasomotor function. In contrast, circulation in the cerebellum and brain stem might be regulated by nitrergic nerves originating not from the pterygopalatine ganglion, but rather from an unknown ganglion (or ganglia).

  2. Efficacy of Ultrasound-Guided Axillary Brachial Plexus Block for Analgesia During Percutaneous Transluminal Angioplasty for Dialysis Access

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiba, Emiko, E-mail: chibaemi23@comet.ocn.ne.jp; Hamamoto, Kohei, E-mail: hkouhei917@gmail.com; Nagashima, Michio, E-mail: nagamic00@gmail.com

    PurposeTo evaluate the efficacy and safety of ultrasound (US)-guided axillary brachial plexus block (ABPB) for analgesia during percutaneous transluminal angioplasty (PTA) for dialysis access.Subjects and MethodsTwenty-one patients who underwent PTA for stenotic dialysis access shunts and who had previous experience of PTA without sedation, analgesia, and anesthesia were included. The access type in all patients was native arteriovenous fistulae in the forearm. Two radiologists performed US-guided ABPB for the radial and musculocutaneous nerves before PTA. The patients’ pain scores were evaluated using a visual analog scale (VAS) after PTA, and these were compared with previous sessions without US-guided ABPB. Themore » patient’s motor/sensory paralysis after PTA was also examined.ResultsThe mean time required to achieve US-guided ABPB was 8 min. The success rate of this procedure was 100 %, and there were no significant complications. All 21 patients reported lower VAS with US-guided ABPB as compared to without the block (p < 0.01). All patients expressed the desire for an ABPB for future PTA sessions, if required. Transient motor paralysis occurred in 8 patients, but resolved in all after 60 min.ConclusionUS-guided ABPB is feasible and effective for analgesia in patients undergoing PTA for stenotic dialysis access sites.Level of EvidenceLevel 4 (case series).« less

  3. Neuroprotection by GH against excitotoxic-induced cell death in retinal ganglion cells.

    PubMed

    Martínez-Moreno, Carlos G; Ávila-Mendoza, José; Wu, Yilun; Arellanes-Licea, Elvira Del Carmen; Louie, Marcela; Luna, Maricela; Arámburo, Carlos; Harvey, Steve

    2016-08-01

    Retinal growth hormone (GH) has been shown to promote cell survival in retinal ganglion cells (RGCs) during developmental waves of apoptosis during chicken embryonic development. The possibility that it might also against excitotoxicity-induced cell death was therefore examined in the present study, which utilized quail-derived QNR/D cells as an in vitro RGC model. QNR/D cell death was induced by glutamate in the presence of BSO (buthionine sulfoxamide) (an enhancer of oxidative stress), but this was significantly reduced (P<0.01) in the presence of exogenous recombinant chicken GH (rcGH). Similarly, QNR/D cells that had been prior transfected with a GH plasmid to overexpress secreted and non-secreted GH. This treatment reduced the number of TUNEL-labeled cells and blocked their release of lactate dehydrogenase (LDH). In a further experiment with dissected neuroretinal explants from ED (embryonic day) 10 embryos, rcGH treatment of the explants also reduced (P<0.01) the number of glutamate-BSO-induced apoptotic cells and blocked the explant release of LDH. This neuroprotective action was likely mediated by increased STAT5 phosphorylation and increased bcl-2 production, as induced by exogenous rcGH treatment and the media from GH-overexpressing QNR/D cells. As rcGH treatment and GH-overexpression cells also increased the content of IGF-1 and IGF-1 mRNA this neuroprotective action of GH is likely to be mediated, at least partially, through an IGF-1 mechanism. This possibility is supported by the fact that the siRNA knockdown of GH or IGF-1 significantly reduced QNR/D cell viability, as did the immunoneutralization of IGF-1. GH is therefore neuroprotective against excitotoxicity-induced RGC cell death by anti-apoptotic actions involving IGF-1 stimulation. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. The quaternary lidocaine derivative QX-314 in combination with bupivacaine for long-lasting nerve block: Efficacy, toxicity, and the optimal formulation in rats

    PubMed Central

    Zheng, Qingshan; Yang, Xiaolin; Lv, Rong; Ma, Longxiang; Liu, Jin; Zhu, Tao; Zhang, Wensheng

    2017-01-01

    Objective The quaternary lidocaine derivative (QX-314) in combination with bupivacaine can produce long-lasting nerve blocks in vivo, indicating potential clinical application. The aim of the study was to investigate the efficacy, safety, and the optimal formulation of this combination. Methods QX-314 and bupivacaine at different concentration ratios were injected in the vicinity of the sciatic nerve in rats; bupivacaine and saline served as controls (n = 6~10). Rats were inspected for durations of effective sensory and motor nerve blocks, systemic adverse effects, and histological changes of local tissues. Mathematical models were established to reveal drug-interaction, concentration-effect relationships, and the optimal ratio of QX-314 to bupivacaine. Results 0.2~1.5% QX-314 with 0.03~0.5% bupivacaine produced 5.8~23.8 h of effective nerve block; while 0.5% bupivacaine alone was effective for 4 h. No systemic side effects were observed; local tissue reactions were similar to those caused by 0.5% bupivacaine if QX-314 were used < 1.2%. The weighted modification model was successfully established, which revealed that QX-314 was the main active ingredient while bupivacaine was the synergist. The formulation, 0.9% QX-314 plus 0.5% bupivacaine, resulted in 10.1 ± 0.8 h of effective sensory and motor nerve blocks. Conclusion The combination of QX-314 and bupivacaine facilitated prolonged sciatic nerve block in rats with a satisfactory safety profile, maximizing the duration of nerve block without clinically important systemic and local tissue toxicity. It may emerge as an alternative approach to post-operative pain treatment. PMID:28334014

  5. Characterization of intravitreally delivered capsid mutant AAV2-Cre vector to induce tissue-specific mutations in murine retinal ganglion cells.

    PubMed

    Langouet-Astrie, Christophe J; Yang, Zhiyong; Polisetti, Sraavya M; Welsbie, Derek S; Hauswirth, William W; Zack, Donald J; Merbs, Shannath L; Enke, Raymond A

    2016-10-01

    Targeted expression of Cre recombinase in murine retinal ganglion cells (RGCs) by viral vector is an effective strategy for creating tissue-specific gene knockouts for investigation of genetic contribution to RGC degeneration associated with optic neuropathies. Here we characterize dosage, efficacy and toxicity for sufficient intravitreal delivery of a capsid mutant Adeno-associated virus 2 (AAV2) vector encoding Cre recombinase. Wild type and Rosa26 (R26) LacZ mice were intravitreally injected with capsid mutant AAV2 viral vectors. Murine eyes were harvested at intervals ranging from 2 weeks to 15 weeks post-injection and were assayed for viral transduction, transgene expression and RGC survival. 10(9) vector genomes (vg) were sufficient for effective in vivo targeting of murine ganglion cell layer (GCL) retinal neurons. Transgene expression was observed as early as 2 weeks post-injection of viral vectors and persisted to 11 weeks. Early expression of Cre had no significant effect on RGC survival, while significant RGC loss was detected beginning 5 weeks post-injection. Early expression of viral Cre recombinase was robust, well-tolerated and predominantly found in GCL neurons suggesting this strategy can be effective in short-term RGC-specific mutation studies in experimental glaucoma models such as optic nerve crush and transection experiments. RGC degeneration with Cre expression for more than 4 weeks suggests that Cre toxicity is a limiting factor for targeted mutation strategies in RGCs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Effects of cholinergic drugs on receptive field properties of rabbit retinal ganglion cells

    PubMed Central

    Ariel, M.; Daw, N. W.

    1982-01-01

    1. Retinal ganglion cells were recorded extracellularly from the rabbit's eye in situ to study the effects of cholinergic drugs on receptive field properties. Physostigmine, an acetylcholinesterase inhibitor, and nicotine increased the spontaneous activity of nearly all retinal ganglion cell types. The effectiveness of physostigmine was roughly correlated with the neurone's inherent level of spontaneous activity. Brisk cells, having high rates of spontaneous firing, showed large increases in their maintained discharge, whereas sluggish cells, with few or no spontaneous spikes, showed small and sometimes transient increases in spontaneous activity during physostigmine. 2. The sensitivity of ganglion cells to spots of optimal size and position did not change substantially during the infusion of physostigmine. However, the responsiveness to light (number of spikes per stimulus above the spontaneous level) increased. This effect occurred with sluggish and more complex cells, rarely with brisk cells. 3. Another effect of physostigmine on sluggish and more complex cells was to make these cells `on—off'. The additional response to the inappropriate change in contrast had a long latency and lacked an initial transient burst. 4. Complex receptive field properties such as orientation sensitivity, radial grating inhibition, speed tuning and size specificity were also examined. These inhibitory properties were still present during infusion of physostigmine and, in most cases, the trigger feature of each cell type remained. 5. These results are consistent with pharmacological results on ACh release from the retina. There appear to be two types of release of ACh, having their most powerful influences on separate classes of cells. One release (transient), occurs at light onset and offset and acts primarily on sluggish and more complex ganglion cells; the other release (tonic) is not light-modulated and acts primarily on brisk cells. A wiring diagram for the ACh cells is

  7. Distinguishing ischaemic optic neuropathy from optic neuritis by ganglion cell analysis.

    PubMed

    Erlich-Malona, Natalie; Mendoza-Santiesteban, Carlos E; Hedges, Thomas R; Patel, Nimesh; Monaco, Caitlin; Cole, Emily

    2016-12-01

    To determine whether a pattern of altitudinal ganglion cell loss, as detected and measured by optical coherence tomography (OCT), can be used to distinguish non-arteritic ischaemic optic neuropathy (NAION) from optic neuritis (ON) during the acute phase, and whether the rate or severity of ganglion cell loss differs between the two diseases. We performed a retrospective, case-control study of 44 patients (50 eyes) with ON or NAION and 44 age-matched controls. Non-arteritic ischaemic optic neuropathy and ON patients had OCT at presentation and four consecutive follow-up visits. Controls had OCT at one point in time. The ganglion cell complex (GCC) was evaluated in the macula, and the retinal nerve fibre layer (RNFL) was evaluated in the peripapillary region. Ganglion cell complex thickness, RNFL thickness and GCC mean superior and inferior hemispheric difference were compared between NAION and ON patients at each time-point using unpaired t-tests and between disease and control subjects at first measurement using paired t-tests. Mean time from onset of symptoms to initial presentation was 10.7 ± 6.6 days in NAION and 11.7 ± 8.6 days in ON (p = 0.67). There was a significantly greater vertical hemispheric difference in GCC thickness in NAION patients than ON patients at all time-points (5.5-10.7 μm versus 3.1-3.6 μm, p = 0.01-0.049). Mean GCC thickness was significantly decreased at less than 2 weeks after onset in NAION compared to age-matched controls (72.1 μm versus 82.1 μm, p < 0.001), as well as in ON compared to age-matched controls (74.3 μm versus 84.5 μm, p < 0.001). Progression and severity of GCC and RNFL loss did not differ significantly between NAION and ON. A quantitative comparison of mean superior and inferior hemispheric GCC thickness with OCT may be used to distinguish NAION from ON. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  8. Ganglion Cell Loss and Age-Related Visual Loss: A Cortical Pooling Analysis

    PubMed Central

    SCHMIDT, LAURA A.; LY-SCHROEDER, EMILY; SWANSON, WILLIAM H.

    2006-01-01

    Purpose To evaluate the ability of the cortical pooling model to predict the effects of random, mild ganglion cell loss, we compared the predictions of the model with the age-related loss and variability in achromatic and chromatic contrast sensitivity. Methods The relative sensitivity to small (0.5°) and large (3.0°) stimuli was compared in older (mean = 67 years, n = 27) and younger (mean = 23 years, n = 32) adults. Contrast sensitivity for modulations along the luminance, equiluminant L-cone, and equiluminant S-cone axes was assessed at the fovea and at four peripheral locations (12°). Results When the stimuli were large, threshold measurements obtained from all participants were reliable and well within the range of modulations along the chromatic axes that could be produced by the phosphors of the CRT. For the large stimuli, neither long- nor short-term variability increased as a function of age. Increasing the size of the stimulus did not decrease the magnitude of the age-related losses when the stimulus was chromatic, and visual losses observed with large chromatic stimuli were not different from those obtained with small achromatic stimuli. Moreover, chromatic contrast sensitivity assessments identified significant visual losses in four individuals who were not identified by achromatic contrast sensitivity assessments and only missed identifying one individual with significant losses in achromatic contrast sensitivity. Conclusions The declines in achromatic and chromatic sensitivity as a function of age (0.4 – 0.7 dB per decade) were similar to those obtained in previous studies of achromatic and chromatic perimetry and are consistent with the loss of retinal ganglion cells reported in histologic studies. The results of this study are consistent with the predictions the cortical pooling model makes for both variability and contrast sensitivity. These findings emphasize that selective visual impairments do not necessarily reflect preferential damage to

  9. Anaesthetic efficacy of 4% articaine mandibular buccal infiltration compared to 2% lignocaine inferior alveolar nerve block in children with irreversible pulpitis.

    PubMed

    Arali, Veena; P, Mytri

    2015-04-01

    Lidocaine is the gold standard anaesthetic solution that has been used since its inception into dentistry till date. Around 80% of failures have been reported when lignocaine has been used for inferior alveolar nerve block in children and adults with irreversible pulpitis. There is a need to use newer drugs which are available which have been reported to be effective like lignocaine, such as articaine. Although articaine has been used in adults, literature supporting its use in children is sparse. The purpose of this study is to compare the anaesthetic efficacy of 4% articaine buccal infiltration and 2% lignocaine inferior alveolar nerve block in children with irreversible pulpitis. It also aims to assess the need for supplemental intrapulpal injections. This study was designed as a randomized double-blind cross over trial comparing the anaesthetic effectiveness of 4% articaine with 1:100,000 epinephrine in buccal infiltration and 2% lignocaine IAN block anaesthesia. The study subject and the pediatric dentist performing the pulpectomy procedures were blinded to the study. A sample size of 40 subjects in the age group of 5-8 y was included in the study. The onset of anaesthesia with 4% articaine was faster as compared to 2% lignocaine. The duration of anaesthesia with articaine infiltration was shorter. The need for supplemental injection in the articaine group was less. Four percent articaine infiltration can be used in children with irreversible pulpitis. It can be used to replace the IAN block in children thereby reducing the post anaesthetic complications like lip biting.

  10. Spatial segregation of adaptation and predictive sensitization in retinal ganglion cells

    PubMed Central

    Kastner, David B.; Baccus, Stephen A.

    2014-01-01

    Sensory systems change their sensitivity based upon recent stimuli to adjust their response range to the range of inputs, and to predict future sensory input. Here we report the presence of retinal ganglion cells that have antagonistic plasticity, showing central adaptation and peripheral sensitization. Ganglion cell responses were captured by a spatiotemporal model with independently adapting excitatory and inhibitory subunits, and sensitization requires GABAergic inhibition. Using a simple theory of signal detection we show that the sensitizing surround conforms to an optimal inference model that continually updates the prior signal probability. This indicates that small receptive field regions have dual functionality—to adapt to the local range of signals, but sensitize based upon the probability of the presence of that signal. Within this framework, we show that sensitization predicts the location of a nearby object, revealing prediction as a new functional role for adapting inhibition in the nervous system. PMID:23932000

  11. Four alpha ganglion cell types in mouse retina: Function, structure, and molecular signatures

    PubMed Central

    Sanes, Joshua R.

    2017-01-01

    The retina communicates with the brain using ≥30 parallel channels, each carried by axons of distinct types of retinal ganglion cells. In every mammalian retina one finds so-called "alpha" ganglion cells (αRGCs), identified by their large cell bodies, stout axons, wide and mono-stratified dendritic fields, and high levels of neurofilament protein. In the mouse, three αRGC types have been described based on responses to light steps: On-sustained, Off-sustained, and Off-transient. Here we employed a transgenic mouse line that labels αRGCs in the live retina, allowing systematic targeted recordings. We characterize the three known types and identify a fourth, with On-transient responses. All four αRGC types share basic aspects of visual signaling, including a large receptive field center, a weak antagonistic surround, and absence of any direction selectivity. They also share a distinctive waveform of the action potential, faster than that of other RGC types. Morphologically, they differ in the level of dendritic stratification within the IPL, which accounts for their response properties. Molecularly, each type has a distinct signature. A comparison across mammals suggests a common theme, in which four large-bodied ganglion cell types split the visual signal into four channels arranged symmetrically with respect to polarity and kinetics. PMID:28753612

  12. The role of RIP3 mediated necroptosis in ouabain-induced spiral ganglion neurons injuries.

    PubMed

    Wang, Xi; Wang, Ye; Ding, Zhong-jia; Yue, Bo; Zhang, Peng-zhi; Chen, Xiao-dong; Chen, Xin; Chen, Jun; Chen, Fu-quan; Chen, Yang; Wang, Ren-feng; Mi, Wen-juan; Lin, Ying; Wang, Jie; Qiu, Jian-hua

    2014-08-22

    Spiral ganglion neuron (SGN) injury is a generally accepted precursor of auditory neuropathy. Receptor-interacting protein 3 (RIP3) has been reported as an important necroptosis pathway mediator that can be blocked by necrostatin-1 (Nec-1). In our study, we sought to identify whether necroptosis participated in SGN injury. Ouabain was applied to establish an SGN injury model. We measured the auditory brain-stem response (ABR) threshold shift as an indicator of the auditory conditions. Positive β3-tubulin immunofluorescence staining indicated the surviving SGNs. RIP3 expression was evaluated using immunofluorescence, quantitative real-time polymerase chain reaction and western blot. SGN injury promoted an increase in RIP3 expression that could be suppressed by application of the necroptosis inhibitor Nec-1. A decreased ABR threshold shift and increased SGN density were observed when Nec-1 was administered with apoptosis inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (Z-VAD). These results demonstrated that necroptosis is an indispensable pathway separately from apoptosis leading to SGN death pathway, in which RIP3 plays an important role. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Strychnine, but not PMBA, inhibits neuronal nicotinic acetylcholine receptors expressed by rabbit retinal ganglion cells.

    PubMed

    Renna, J M; Strang, C E; Amthor, F R; Keyser, K T

    2007-01-01

    Strychnine is considered a selective competitive antagonist of glycine gated Cl- channels (Saitoh et al., 1994) and studies have used strychnine at low micromolar concentrations to study the role of glycine in rabbit retina (Linn, 1998; Protti et al., 2005). However, other studies have shown that strychnine, in the concentrations commonly used, is also a potent competitive antagonist of alpha7 nicotinic acetylcholine receptors (nAChRs; Matsubayashi et al., 1998). We tested the effects of low micromolar concentrations of strychnine and 3-[2'-phosphonomethyl[1,1'-biphenyl]-3-yl] alanine (PMBA), a specific glycine receptor blocker (Saitoh et al., 1994; Hosie et al., 1999) on the activation of both alpha7 nAChRs on retinal ganglion cells and on ganglion cell responses to a light flash. Extracellular recordings were obtained from ganglion cells in an isolated retina/choroid preparation and 500 microM choline was used as an alpha7 agonist (Alkondon et al., 1997). We recorded from brisk sustained and brisk transient OFF cells, many of which have been previously shown to have alpha7 receptors (Strang et al., 2005). Further, we tested the effect of strychnine, PMBA and alpha-bungarotoxin on the binding of tetramethylrhodamine alpha-bungarotoxin in the inner plexiform layer. Our data indicates that strychnine, at doses as low as 1.0 microM, can inhibit the alpha7 nAChR-mediated response to choline, but PMBA at concentrations as high as 0.4 microM does not. Binding studies show strychnine and alpha-bungarotoxin inhibit binding of labeled alpha-bungarotoxin in the IPL. Thus, the effects of strychnine application may be to inhibit glycine receptors expressed by ganglion cell or to inhibit amacrine cell alpha7 nAChRs, both of which would result in an increase in the ganglion cell responses. Further research will be required to disentangle the effects of strychnine previously believed to be caused by a single mechanism of glycine receptor inhibition.

  14. Crocin prevents retinal ischaemia/reperfusion injury-induced apoptosis in retinal ganglion cells through the PI3K/AKT signalling pathway.

    PubMed

    Qi, Yun; Chen, Li; Zhang, Lei; Liu, Wen-Bo; Chen, Xiao-Yan; Yang, Xin-Guang

    2013-02-01

    Crocin is a pharmacologically active component of Crocus sativus L. (saffron) and has been reported to be useful in the treatment of neuronal damage. In the present study, we investigated the neuroprotective effect of crocin on retinal ganglion cells (RGCs) after retinal ischaemia/reperfusion (IR) injury, and our results show that crocin acts through the PI3K/AKT signalling pathway. Retinal IR injury was induced by raising the intraocular pressure of Sprague-Dawley rats to 110 mmHg for 60 min. The neuroprotective effect of crocin was determined by quantifying the surviving RGCs and apoptotic RGCs following IR injury by means of retrograde labelling and TUNEL staining, respectively. The phosphorylated AKT protein level was determined by western blot and immunohistochemical analysis. To determine the extent to which the PI3K/AKT pathway contributes to the neuroprotective effect of crocin, experiments were also performed using the PI3K inhibitor LY294002. Compared with the IR + vehicle group, crocin (50 mg/kg) treatment enhanced RGC survival by approximately 36% and decreased RGC apoptosis by 44% after retinal IR injury. Western blot and immunohistochemical analysis demonstrated that the PI3K/AKT pathway was activated by crocin in the ganglion cell layer after retinal IR injury. Intravitreal injection of LY294002 blocked the neuroprotective effect of crocin on IR-induced RGC death. In conclusion, crocin prevents retinal IR-induced apoptosis of RGCs by activating the PI3K/AKT signalling pathway. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Efficacy and Safety of Ketamine Added to Local Anesthetic in Modified Pectoral Block for Management of Postoperative Pain in Patients Undergoing Modified Radical Mastectomy.

    PubMed

    Othman, Ahmed H; El-Rahman, Ahmad M Abd; El Sherif, Fatma

    2016-01-01

    Breast surgery is an exceedingly common procedure with an increased incidence of acute and chronic pain. Pectoral nerve block is a novel peripheral nerve block alternative to neuro-axial and paravertebral blocks for ambulatory breast surgeries. This study aims to compare the analgesic efficacy and safety of modified Pecs block with ketamine plus bupivacaine versus bupivacaine in patients undergoing breast cancer surgery. A randomized, double-blind, prospective study. Academic medical center. This study is registered at www.clinicaltrials.gov under number: (NCT02620371) after approval by the ethics committee of South Egypt Cancer Institute, Assuit University, Assuit, Egypt. Sixty patients aged 18 - 60 years scheduled for modified radical mastectomy were enrolled and randomly assigned into 2 groups (30 patients each): Control group patients were given ultrasound-guided, Pecs block with 30 mL of 0.25% bupivacaine only. Ketamine group patients were given ultrasound-guided, Pecs block with 30 mL of 0.25% bupivacaine plus ketamine hydrochloride (1 mg/kg). Patients were followed up for 48 hours postoperatively for vital signs, VAS score, first request of rescue analgesia and total morphine consumption, sedation score, and side effects. Ketamine plus bupivacaine in Pecs block compared to bupivacaine alone prolonged the mean time of first request of analgesia (18.25 ± 1.98), (12.56 ± 2.64), respectively (P < 0.001), reduced total morphine consumption (12.50 ± 4.63), (18.86 ± 6.28), respectively (P = 0.016). With no significant difference in hemodynamics, respiratory rate, oxygen saturation, VAS and sedation scores, and side effects observed between the 2 groups (P > 0.05). This study is limited by its sample size. The addition of ketamine to modified Pecs block prolonged the time to first request of analgesia and reduced total opioid consumption without serious side effects in patients who underwent a modified radical mastectomy. Ketamine, bupivacaine, pecs block

  16. Transversus Abdominis Plane Block versus Ilioinguinal/Iliohypogastric Nerve Block with Wound Infiltration for Postoperative Analgesia in Inguinal Hernia Surgery: A Randomized Clinical Trial.

    PubMed

    Sujatha, Chinthavali; Zachariah, Mamie; Ranjan, R V; George, Sagiev Koshy; Ramachandran, T R; Pillai, Anil Radhakrishna

    2017-01-01

    Various analgesic modalities have been used for postoperative analgesia in patients undergoing inguinal hernia surgery. In this randomized clinical trial, we have compared the analgesic efficacy of transversus abdominis plane (TAP) block with that of ilioinguinal/iliohypogastric (IIIH) nerve block with wound infiltration in patients undergoing unilateral open inguinal hernia repair. The primary objective of this study was to compare the efficacy of postoperative analgesia of ultrasound-guided TAP block and IIIH block with wound infiltration (WI) in patients undergoing open inguinal hernia surgery. This was a randomized clinical trial performed in a tertiary care hospital. Sixty patients scheduled for hernia repair were randomized into two groups, Group T and Group I. Postoperatively, under ultrasound guidance, Group T received 20 ml of 0.25% ropivacaine - TAP block and Group I received 10 ml of 0.25% ropivacaine - IIIH block + WI with 10 ml of 0.25% ropivacaine. The primary outcome measure was the time to rescue analgesia in the first 24 h postoperatively. Fentanyl along with diclofenac was given as first rescue analgesic when the patient complained of pain. Statistical comparisons were performed using Student's t -test and Chi-square test. Mean time to rescue analgesia was 5.900 ± 1.881 h and 3.766 ± 1.754 h ( P < 0.001) and the mean pain scores were 5.73 ± 0.784 and 6.03 ± 0.850 for Group TAP and IIIH + WI, respectively. Hemodynamics were stable in both the groups. One-third of the patients received one dose of paracetamol in addition to the rescue analgesic in the first 24 h. There were no complications attributed to the block. As a multimodal analgesic regimen, definitely both TAP block and IIIH block with wound infiltration have a supporting role in providing analgesia in the postoperative period for adult inguinal hernia repair. In this study, ultrasound-guided TAP block provided longer pain control postoperatively than IIIH block with WI after inguinal

  17. Nervus terminalis ganglion of the bonnethead shark (Sphyrna tiburo): evidence for cholinergic and catecholaminergic influence on two cell types distinguished by peptide immunocytochemistry.

    PubMed

    White, J; Meredith, M

    1995-01-16

    The nervus terminalis is a ganglionated vertebrate cranial nerve of unknown function that connects the brain and the peripheral nasal structures. To investigate its function, we have studied nervus terminalis ganglion morphology and physiology in the bonnethead shark (Sphyrna tiburo), where the nerve is particularly prominent. Immunocytochemistry for gonadotropin-releasing hormone (GnRH) and Leu-Pro-Leu-Arg-Phe-NH2 (LPLRFamide) revealed two distinct populations of cells. Both were acetylcholinesterase positive, but LPLR-Famide-immunoreactive cells consistently stained more darkly for acetylcholinesterase activity. Tyrosine hydroxylase immunocytochemistry revealed fibers and terminal-like puncta in the ganglion, primarily in areas containing GnRH-immunoreactive cells. Consistent with the anatomy, in vitro electrophysiological recordings provided evidence for cholinergic and catecholaminergic actions. In extracellular recordings, acetylcholine had a variable effect on baseline ganglion cell activity, whereas norepinephrine consistently reduced activity. Electrical stimulation of the nerve trunks suppressed ganglion activity, as did impulses from the brain in vivo. During electrical suppression, acetylcholine consistently increased activity, and norepinephrine decreased activity. Muscarinic and, to a lesser extent, alpha-adrenergic antagonists both increased activity during the electrical suppression, suggesting involvement of both systems. Intracellular recordings revealed two types of ganglion cells that were distinguishable pharmacologically and physiologically. Some cells were hyperpolarized by cholinergic agonists and unaffected by norepinephrine; these cells did not depolarize with peripheral nerve trunk stimulation. Another group of cells did depolarize with peripheral trunk stimulation; a representative of this group was depolarized by carbachol and hyperpolarized by norepinephrine. These and other data suggest that the bonnethead nervus terminalis ganglion

  18. Effect of relative head position on the anesthetic efficacy of inferior alveolar nerve block during endodontic treatment of patients with irreversible pulpitis.

    PubMed

    Aggarwal, Vivek; Singla, Mamta; Miglani, Sanjay

    2018-02-01

    The purpose of this prospective randomized single-blind clinical trial was to evaluate the effect of tilting the head on the anesthetic efficacy of inferior alveolar nerve block (IANB) in patients with symptomatic irreversible pulpitis. Ninety-two patients were divided into two groups: the first group received IANB and the head was tilted in the direction of the block for 15 min, whereas the second group received IANB and the head was tilted to the opposite side. Access cavity preparation was initiated after 15 min. Success was defined as no pain or faint/weak/mild pain during endodontic access preparation and instrumentation. The anesthetic success rates were analyzed by Pearson chi-square test at 5% significance levels. The same side position and opposite side position yielded 41% and 30% anesthetic success rates, respectively; there was no significant difference between the two sides. Relative head position has no effect on the anesthetic success rate of IANB.

  19. Effect of relative head position on the anesthetic efficacy of inferior alveolar nerve block during endodontic treatment of patients with irreversible pulpitis

    PubMed Central

    2018-01-01

    Background The purpose of this prospective randomized single-blind clinical trial was to evaluate the effect of tilting the head on the anesthetic efficacy of inferior alveolar nerve block (IANB) in patients with symptomatic irreversible pulpitis. Methods Ninety-two patients were divided into two groups: the first group received IANB and the head was tilted in the direction of the block for 15 min, whereas the second group received IANB and the head was tilted to the opposite side. Access cavity preparation was initiated after 15 min. Success was defined as no pain or faint/weak/mild pain during endodontic access preparation and instrumentation. The anesthetic success rates were analyzed by Pearson chi-square test at 5% significance levels. Results The same side position and opposite side position yielded 41% and 30% anesthetic success rates, respectively; there was no significant difference between the two sides. Conclusions Relative head position has no effect on the anesthetic success rate of IANB. PMID:29556558

  20. Effect of Tissue Heterogeneity on the Transmembrane Potential of Type-1 Spiral Ganglion Neurons: A Simulation Study.

    PubMed

    Sriperumbudur, Kiran Kumar; Pau, Hans Wilhelm; van Rienen, Ursula

    2018-03-01

    Electric stimulation of the auditory nerve by cochlear implants has been a successful clinical intervention to treat the sensory neural deafness. In this pathological condition of the cochlea, type-1 spiral ganglion neurons in Rosenthal's canal play a vital role in the action potential initiation. Various morphological studies of the human temporal bones suggest that the spiral ganglion neurons are surrounded by heterogeneous structures formed by a variety of cells and tissues. However, the existing simulation models have not considered the tissue heterogeneity in the Rosenthal's canal while studying the electric field interaction with spiral ganglion neurons. Unlike the existing models, we have implemented the tissue heterogeneity in the Rosenthal's canal using a computationally inexpensive image based method in a two-dimensional finite element model. Our simulation results suggest that the spatial heterogeneity of surrounding tissues influences the electric field distribution in the Rosenthal's canal, and thereby alters the transmembrane potential of the spiral ganglion neurons. In addition to the academic interest, these results are especially useful to understand how the latest tissue regeneration methods such as gene therapy and drug-induced resprouting of peripheral axons, which probably modify the density of the tissues in the Rosenthal's canal, affect the cochlear implant functionality.

  1. The Effect of Transcutaneous Electrical Nerve Stimulation of Sympathetic Ganglions and Acupuncture Points on Distal Blood Flow.

    PubMed

    Kamali, Fahimeh; Mirkhani, Hossein; Nematollahi, Ahmadreza; Heidari, Saeed; Moosavi, Elahesadat; Mohamadi, Marzieh

    2017-04-01

    Transcutaneous electrical nerve stimulation (TENS) is a widely-practiced method to increase blood flow in clinical practice. The best location for stimulation to achieve optimal blood flow has not yet been determined. We compared the effect of TENS application at sympathetic ganglions and acupuncture points on blood flow in the foot of healthy individuals. Seventy-five healthy individuals were randomly assigned to three groups. The first group received cutaneous electrical stimulation at the thoracolumbar sympathetic ganglions. The second group received stimulation at acupuncture points. The third group received stimulation in the mid-calf area as a control group. Blood flow was recorded at time zero as baseline and every 3 minutes after baseline during stimulation, with a laser Doppler flow-meter. Individuals who received sympathetic ganglion stimulation showed significantly greater blood flow than those receiving acupuncture point stimulation or those in the control group (p<0.001). Data analysis revealed that blood flow at different times during stimulation increased significantly from time zero in each group. Therefore, the application of low-frequency TENS at the thoracolumbar sympathetic ganglions was more effective in increasing peripheral blood circulation than stimulation at acupuncture points. Copyright © 2017 Medical Association of Pharmacopuncture Institute. Published by Elsevier B.V. All rights reserved.

  2. Femoral Nerve Block versus Adductor Canal Block for Analgesia after Total Knee Arthroplasty

    PubMed Central

    Koh, In Jun; Choi, Young Jun; Kim, Man Soo; Koh, Hyun Jung; Kang, Min Sung; In, Yong

    2017-01-01

    Inadequate pain management after total knee arthroplasty (TKA) impedes recovery, increases the risk of postoperative complications, and results in patient dissatisfaction. Although the preemptive use of multimodal measures is currently considered the principle of pain management after TKA, no gold standard pain management protocol has been established. Peripheral nerve blocks have been used as part of a contemporary multimodal approach to pain control after TKA. Femoral nerve block (FNB) has excellent postoperative analgesia and is now a commonly used analgesic modality for TKA pain control. However, FNB leads to quadriceps muscle weakness, which impairs early mobilization and increases the risk of postoperative falls. In this context, emerging evidence suggests that adductor canal block (ACB) facilitates postoperative rehabilitation compared with FNB because it primarily provides a sensory nerve block with sparing of quadriceps strength. However, whether ACB is more appropriate for contemporary pain management after TKA remains controversial. The objective of this study was to review and summarize recent studies regarding practical issues for ACB and comparisons of analgesic efficacy and functional recovery between ACB and FNB in patients who have undergone TKA. PMID:28545172

  3. Selective block of late Na+ current by local anaesthetics in rat large sensory neurones

    PubMed Central

    Baker, Mark D

    2000-01-01

    The actions of lignocaine and benzocaine on transient and late Na+ current generated by large diameter (⩾50 μm) adult rat dorsal root ganglion neurones, were studied using patch-clamp techniques.Both drugs blocked whole-cell late Na+ current in a concentration-dependent manner. At 200 ms following the onset of a clamp step from −110 to −40 mV, the apparent K for block of late Na+ current by lignocaine was 57.8±15 μM (mean±s.e.mean, n=4). The value for benzocaine was 24.9±3.3 μM, (mean±s.e.mean, n=3).The effect of lignocaine on transient current, in randomly selected neurones, appeared variable (n=8, half-block from ∼50 to 400 μM). Half-block by benzocaine was not attained, but both whole-cell (n=11) and patch data suggested a high apparent K,>250 μM. Transient current always remained after late current was blocked.The voltage-dependence of residual late current steady-state inactivation was not shifted by 20 μM benzocaine (n=3), whereas 200 μM benzocaine shifted the voltage-dependence of transient current steady-state inactivation by −18.7±5.9 mV (mean±s.e.mean, n=4).In current-clamp, benzocaine (250 μM) could block subthreshold, voltage-dependent inward current, increasing the threshold for eliciting action potentials, without preventing their generation (n=2).Block of late Na+ current by systemic local anaesthetic may play a part in preventing ectopic impulse generation in sensory neurones. PMID:10780966

  4. Vesicular glutamate transporters, VGluT1 and VGluT2, in the trigeminal ganglion neurons of the rat, with special reference to coexpression.

    PubMed

    Li, Jin-Lian; Xiong, Kang-Hui; Dong, Yu-Lin; Fujiyama, Fumino; Kaneko, Takeshi; Mizuno, Noboru

    2003-08-18

    Vesicular glutamate transporters are responsible for glutamate transport into synaptic vesicles. In the present study, we examined immunohistochemically the expression of vesicular glutamate transporters, VGluT1 and VGluT2, in trigeminal ganglion neurons of the rat. Immunohistochemistry for VGluT1 and VGluT2 indicated that more than 80% of trigeminal ganglion neurons express VGluT1 and/or VGluT2 in their cell bodies. It also indicated that large and small trigeminal ganglion neurons express VGluT2 more frequently than VGluT1. Dual immunofluorescence histochemistry for VGluT1 and VGluT2 indicated that trigeminal ganglion neurons express VGluT2 more frequently than VGluT1 and that more than 80% of VGluT-expressing trigeminal ganglion neurons express VGluT1 and VGluT2. Many axon terminals in the superficial layers of the medullary dorsal horn also showed VGluT1 and VGluT2 immunoreactivities. Some of these axon terminals were confirmed to form the central core of the synaptic glomerulus. These results indicated that VGluT1 and VGluT2 are coexpressed in the cell bodies and axon terminals in most trigeminal ganglion neurons. Copyright 2003 Wiley-Liss, Inc.

  5. Retinal ganglion cells in diabetes

    PubMed Central

    Kern, Timothy S; Barber, Alistair J

    2008-01-01

    Diabetic retinopathy has long been recognized as a vascular disease that develops in most patients, and it was believed that the visual dysfunction that develops in some diabetics was due to the vascular lesions used to characterize the disease. It is becoming increasingly clear that neuronal cells of the retina also are affected by diabetes, resulting in dysfunction and even degeneration of some neuronal cells. Retinal ganglion cells (RGCs) are the best studied of the retinal neurons with respect to the effect of diabetes. Although investigations are providing new information about RGCs in diabetes, including therapies to inhibit the neurodegeneration, critical information about the function, anatomy and response properties of these cells is yet needed to understand the relationship between RGC changes and visual dysfunction in diabetes. PMID:18565995

  6. Progranulin deficiency causes the retinal ganglion cell loss during development.

    PubMed

    Kuse, Yoshiki; Tsuruma, Kazuhiro; Mizoguchi, Takahiro; Shimazawa, Masamitsu; Hara, Hideaki

    2017-05-10

    Astrocytes are glial cells that support and protect neurons in the central nervous systems including the retina. Retinal ganglion cells (RGCs) are in contact with the astrocytes and our earlier findings showed the reduction of the number of cells in the ganglion cell layer in adult progranulin deficient mice. In the present study, we focused on the time of activation of the astrocytes and the alterations in the number of RGCs in the retina and optic nerve in progranulin deficient mice. Our findings showed that the number of Brn3a-positive cells was reduced and the expression of glial fibrillary acidic protein (GFAP) was increased in progranulin deficient mice. The progranulin deficient mice had a high expression of GFAP on postnatal day 9 (P9) but not on postnatal day 1. These mice also had a decrease in the number of the Brn3a-positive cells on P9. Taken together, these findings indicate that the absence of progranulin can affect the survival of RGCs subsequent the activation of astrocytes during retinal development.

  7. Spontaneous cell death in the semilunar ganglion during fetal and postnatal life in the ox, sheep, goat and guinea pig.

    PubMed

    Bortolami, R; Lucchi, M L; Callegari, E; De Pasquale, V; Lalatta Costerbosa, G

    1979-07-15

    A massive cell loss occurs in the semilunar ganglion. It is the result of either a casting-off of the semilunar ganglion cells into the cavernous sinus or a transformation of several cells into polyhedral cells with an epithelial-like organization, a process which immediately precedes their further degeneration.

  8. Eliminating Glutamatergic Input onto Horizontal Cells Changes the Dynamic Range and Receptive Field Organization of Mouse Retinal Ganglion Cells.

    PubMed

    Ströh, Sebastian; Puller, Christian; Swirski, Sebastian; Hölzel, Maj-Britt; van der Linde, Lea I S; Segelken, Jasmin; Schultz, Konrad; Block, Christoph; Monyer, Hannah; Willecke, Klaus; Weiler, Reto; Greschner, Martin; Janssen-Bienhold, Ulrike; Dedek, Karin

    2018-02-21

    In the mammalian retina, horizontal cells receive glutamatergic inputs from many rod and cone photoreceptors and return feedback signals to them, thereby changing photoreceptor glutamate release in a light-dependent manner. Horizontal cells also provide feedforward signals to bipolar cells. It is unclear, however, how horizontal cell signals also affect the temporal, spatial, and contrast tuning in retinal output neurons, the ganglion cells. To study this, we generated a genetically modified mouse line in which we eliminated the light dependency of feedback by deleting glutamate receptors from mouse horizontal cells. This genetic modification allowed us to investigate the impact of horizontal cells on ganglion cell signaling independent of the actual mode of feedback in the outer retina and without pharmacological manipulation of signal transmission. In control and genetically modified mice (both sexes), we recorded the light responses of transient OFF-α retinal ganglion cells in the intact retina. Excitatory postsynaptic currents (EPSCs) were reduced and the cells were tuned to lower temporal frequencies and higher contrasts, presumably because photoreceptor output was attenuated. Moreover, receptive fields of recorded cells showed a significantly altered surround structure. Our data thus suggest that horizontal cells are responsible for adjusting the dynamic range of retinal ganglion cells and, together with amacrine cells, contribute to the center/surround organization of ganglion cell receptive fields in the mouse. SIGNIFICANCE STATEMENT Horizontal cells represent a major neuronal class in the mammalian retina and provide lateral feedback and feedforward signals to photoreceptors and bipolar cells, respectively. The mode of signal transmission remains controversial and, moreover, the contribution of horizontal cells to visual processing is still elusive. To address the question of how horizontal cells affect retinal output signals, we recorded the light

  9. Diagnostic accuracy of ganglion cell complex substructures in different stages of primary open-angle glaucoma.

    PubMed

    Elbendary, Amal M; Abd El-Latef, Mohamed Hafez; Elsorogy, Hisham I; Enaam, Kamal M

    2017-08-01

    To evaluate diagnostic accuracy of substructure of ganglion cell complex versus peripapillary nerve fiber layer (NFL) thickness using spectral domain optical coherence tomography (SD-OCT) in different stages of glaucoma. Thirty eyes were normal, 120 were glaucomatous. Glaucomatous eyes were classified into: early glaucoma (46), moderate glaucoma (48), and severe glaucoma (26). Perimetry and SD-OCT were done. Peripapillary NFL thickness, ganglion cell layer (GCL), macular NFL thickness, combined GCL and macular ganglion cell complex (GCC), were recorded. Area under receiver operating characteristic curves (AUCs) was used to verify performance of different OCT parameters. Peripapillary NFL, GCL, and GCC thickness values were significantly different in all stages of glaucoma. All comparisons were significantly different; normal versus early, early versus moderate and moderate versus severe. The best parameters that distinguished normal from early stage were: peripapillary NFL (AUC: 0.90), GCC (AUC: 0.75), early from moderate stage were: peripapillary NFL thickness (AUC: 0.85), GCL (0.81),GCC (0.81), moderate from severe stage were: GCC (AUC:0.95), macular NFL (AUC:0.91), GCL (AUC:0.89), and peripapillary NFL (AUC:0.88). Peripapllary NFL and GCC thinning showed paradoxical course. The most diagnosed parameter in early glaucoma was peripapillary NFL and in severe glaucoma was GCC. In severe glaucoma, macular NFL showed higher diagnostic power than GCL and peripapillary NFL. Ganglion cell complex mapping may provide good alternative to optic disc imaging in advanced glaucoma with poor fixation. Copyright © 2017 Canadian Ophthalmological Society. Published by Elsevier Inc. All rights reserved.

  10. Outcomes of Open Dorsal Wrist Ganglion Excision in Active-Duty Military Personnel.

    PubMed

    Balazs, George C; Donohue, Michael A; Drake, Matthew L; Ipsen, Derek; Nanos, George P; Tintle, Scott M

    2015-09-01

    To examine the most common presenting complaints of active-duty service members with isolated dorsal wrist ganglions and to determine the rate of return to unrestricted duty after open excision. Surgical records at 2 military facilities were screened to identify male and female active duty service members undergoing isolated open excision of dorsal wrist ganglions from January 1, 2006 to January 1, 2014. Electronic medical records and service disability databases were searched to identify the most common presenting symptoms and to determine whether patients returned to unrestricted active duty after surgery. Postoperative outcomes examined were pain persisting greater than 4 weeks after surgery, stiffness requiring formal occupational therapy treatment, surgical wound complications, and recurrence. A total of 125 active duty military personnel (Army, 54; Navy, 43; and Marine Corps, 28) met criteria for inclusion. Mean follow-up was 45 months. Fifteen percent (8 of 54) of the Army personnel were given permanent waivers from performing push-ups owing to persistent pain and stiffness. Pain persisting greater than 4 weeks after surgery was an independent predictor of eventual need for a permanent push-up waiver. The overall recurrence incidence was 9%. No demographic or perioperative factors were associated with recurrence. Patients whose occupation or activities require forceful wrist extension should be counseled on the considerable risk of residual pain and functional limitations that may occur after open dorsal wrist ganglion excision. Therapeutic IV. Published by Elsevier Inc.

  11. Functional expression of ionotropic glutamate receptors in the rabbit retinal ganglion cells.

    PubMed

    Chen, Yin-Peng; Chiao, Chuan-Chin

    2012-01-03

    It has been known that retinal ganglion cells (RGCs) with distinct morphologies have different physiological properties. It was hypothesized that different functions of RGCs may in part result from various expressions of N-methyl-d-aspartate (NMDA), α-amino-3-hydroxyl-5-methyl-isoxazole-4-propinoic acid (AMPA), and kainic acid (KA) receptors on their dendrites. In the present study, we aimed to characterize the functional expression of AMPA and NMDA receptors of morphologically identified RGCs in the wholemount rabbit retina. The agmatine (AGB) activation assay was used to reveal functional expression of ionotropic glutamate receptors after the RGCs were targeted by injecting Neurobiotin. To examine the excitability of these glutamate receptors in an agonist specific manner, the lower concentrations of AMPA (2 μM) and NMDA (100 μM) were chosen to examine G7 (ON-OFF direction selective ganglion cells) and G11 (alpha ganglion cells) types of RGCs. We found that less than 40% of G7 type RGCs had salient AGB activation when incubated with 2 μM AMPA or 100 μM NMDA. The G11 type RGCs also showed similar activation frequencies, except that all of the OFF subtype examined had no AGB permeation under the same AMPA concentration. These results suggest that RGCs with large somata (G7 and G11 types) may express various heterogeneous functional ionotropic glutamate receptors, thus in part rendering their functional diversity. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Nanosecond laser pulse stimulation of spiral ganglion neurons and model cells.

    PubMed

    Rettenmaier, Alexander; Lenarz, Thomas; Reuter, Günter

    2014-04-01

    Optical stimulation of the inner ear has recently attracted attention, suggesting a higher frequency resolution compared to electrical cochlear implants due to its high spatial stimulation selectivity. Although the feasibility of the effect is shown in multiple in vivo experiments, the stimulation mechanism remains open to discussion. Here we investigate in single-cell measurements the reaction of spiral ganglion neurons and model cells to irradiation with a nanosecond-pulsed laser beam over a broad wavelength range from 420 nm up to 1950 nm using the patch clamp technique. Cell reactions were wavelength- and pulse-energy-dependent but too small to elicit action potentials in the investigated spiral ganglion neurons. As the applied radiant exposure was much higher than the reported threshold for in vivo experiments in the same laser regime, we conclude that in a stimulation paradigm with nanosecond-pulses, direct neuronal stimulation is not the main cause of optical cochlea stimulation.

  13. Sciatica and claudication caused by ganglion cyst.

    PubMed

    Yang, Guang; Wen, Xiaoyu; Gong, Yubao; Yang, Chen

    2013-12-15

    Case report. We report a rare case that a ganglion cyst compressed the sciatic nerve and caused sciatica and claudication in a 51-year-old male. Sciatica and claudication commonly occurs in spinal stenosis. To our knowledge, only 4 cases have been reported on sciatica resulting from posterior ganglion cyst of hip. A 51-year-old male had a 2-month history of radiating pain on his right leg. He could only walk 20 to 30 m before stopping and standing to rest for 1 to 3 minutes. Interestingly, he was able to walk longer distances (about 200 m) when walking slowly in small steps, without any rest. He had been treated as a case of lumbar disc herniation, but conservative treatment was ineffective. On buttock examination, a round, hard, and fixative mass was palpated at the exit of the sciatic nerve. MR imaging of hip revealed a multilocular cystic mass located on the posterior aspect of the superior gemellus and obturator internus, compressing the sciatic nerve. On operation, we found that the cyst extended to the superior gemellus and the obturator internus, positioned right at the outlet of the sciatic nerve. At 18 months of follow-up, the patient continued to be symptom free. He returned to comprehensive physical activity with no limitations. For an extraspinal source, a direct compression on the sciatic nerve also resulted in sciatica and claudication. A meticulous physical examination is very important for the differential diagnosis of extraspinal sciatica from spinal sciatica.

  14. Drug discovery for hearing loss: Phenotypic screening of chemical compounds on primary cultures of the spiral ganglion.

    PubMed

    Whitlon, Donna S

    2017-06-01

    In the United States there are, at present, no drugs that are specifically FDA approved to treat hearing loss. Although several clinical trials are ongoing, including one testing D-methionine that is supported by the US Army, none of these trials directly address the effect of noise exposure on cochlear spiral ganglion neurons. We recently published the first report of a systematic chemical compound screen using primary, mammalian spiral ganglion cultures in which we were able to detect a compound and others in its class that increased neurite elongation, a critical step in restoring cochlear synapses after noise induced hearing loss. Here we discuss the issues, both pro and con, that influenced the development of our approach. These considerations may be useful for future compound screens that target the same or other attributes of cochlear spiral ganglion neurons. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Citrus fruit and fabacea secondary metabolites potently and selectively block TRPM3

    PubMed Central

    Straub, I; Mohr, F; Stab, J; Konrad, M; Philipp, SE; Oberwinkler, J; Schaefer, M

    2013-01-01

    Background and Purpose The melastatin-related transient receptor potential TRPM3 is a calcium-permeable nonselective cation channel that can be activated by the neurosteroid pregnenolone sulphate (PregS) and heat. TRPM3-deficient mice show an impaired perception of noxious heat. Hence, drugs inhibiting TRPM3 possibly get in focus of analgesic therapy. Experimental Approach Fluorometric methods were used to identify novel TRPM3-blocking compounds and to characterize their potency and selectivity to block TRPM3 but not other sensory TRP channels. Biophysical properties of the block were assessed using electrophysiological methods. Single cell calcium measurements confirmed the block of endogenously expressed TRPM3 channels in rat and mouse dorsal root ganglion (DRG) neurones. Key Results By screening a compound library, we identified three natural compounds as potent blockers of TRPM3. Naringenin and hesperetin belong to the citrus fruit flavanones, and ononetin is a deoxybenzoin. Eriodictyol, a metabolite of naringenin and hesperetin, was still biologically active as a TRPM3 blocker. The compounds exhibited a marked specificity for recombinant TRPM3 and blocked PregS-induced [Ca2+]i signals in freshly isolated DRG neurones. Conclusion and Implications The data indicate that citrus fruit flavonoids are potent and selective blockers of TRPM3. Their potencies ranged from upper nanomolar to lower micromolar concentrations. Since physiological functions of TRPM3 channels are still poorly defined, the development and validation of potent and selective blockers is expected to contribute to clarifying the role of TRPM3 in vivo. Considering the involvement of TRPM3 in nociception, TRPM3 blockers may represent a novel concept for analgesic treatment. PMID:23190005

  16. Citrus fruit and fabacea secondary metabolites potently and selectively block TRPM3.

    PubMed

    Straub, I; Mohr, F; Stab, J; Konrad, M; Philipp, S E; Oberwinkler, J; Schaefer, M

    2013-04-01

    The melastatin-related transient receptor potential TRPM3 is a calcium-permeable nonselective cation channel that can be activated by the neurosteroid pregnenolone sulphate (PregS) and heat. TRPM3-deficient mice show an impaired perception of noxious heat. Hence, drugs inhibiting TRPM3 possibly get in focus of analgesic therapy. Fluorometric methods were used to identify novel TRPM3-blocking compounds and to characterize their potency and selectivity to block TRPM3 but not other sensory TRP channels. Biophysical properties of the block were assessed using electrophysiological methods. Single cell calcium measurements confirmed the block of endogenously expressed TRPM3 channels in rat and mouse dorsal root ganglion (DRG) neurones. By screening a compound library, we identified three natural compounds as potent blockers of TRPM3. Naringenin and hesperetin belong to the citrus fruit flavanones, and ononetin is a deoxybenzoin. Eriodictyol, a metabolite of naringenin and hesperetin, was still biologically active as a TRPM3 blocker. The compounds exhibited a marked specificity for recombinant TRPM3 and blocked PregS-induced [Ca(2+)]i signals in freshly isolated DRG neurones. The data indicate that citrus fruit flavonoids are potent and selective blockers of TRPM3. Their potencies ranged from upper nanomolar to lower micromolar concentrations. Since physiological functions of TRPM3 channels are still poorly defined, the development and validation of potent and selective blockers is expected to contribute to clarifying the role of TRPM3 in vivo. Considering the involvement of TRPM3 in nociception, TRPM3 blockers may represent a novel concept for analgesic treatment. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  17. Efficacy and Safety of a Lidocaine and Ropivacaine Mixture for Scalp Nerve Block and Local Infiltration Anesthesia in Patients Undergoing Awake Craniotomy.

    PubMed

    Chaki, Tomohiro; Sugino, Shigekazu; Janicki, Piotr K; Ishioka, Yoshiya; Hatakeyama, Yosuke; Hayase, Tomo; Kaneuchi-Yamashita, Miki; Kohri, Naonori; Yamakage, Michiaki

    2016-01-01

    Mixtures of various local anesthetics, such as lidocaine and ropivacaine, have been widely used. However, their efficacy and safety for scalp nerve blocks and local infiltration during awake craniotomy have not been fully elucidated. We prospectively investigated 53 patients who underwent awake craniotomy. Scalp block was performed for the blockade of the supraorbital, supratrochlear, zygomaticotemporal, auriculotemporal, greater occipital, and lesser occipital nerves with a mixture containing equal volumes of 2% lidocaine and 0.75% ropivacaine, including 5 μg/mL of epinephrine. Infiltration anesthesia was applied at the site of skin incision using the same mixture. The study outcomes included changes in heart rate and blood pressure after head pinning and skin incision, and incidence of severe pain on emergence from anesthesia. Total doses and plasma concentrations of lidocaine and ropivacaine were measured at different time points after performing the block. The heart rate and blood pressure after head pinning were marginally, but significantly, increased when compared with baseline values. There were no significant differences in heart rate and blood pressure before and after the skin incision. Nineteen percent of the patients (10/53) complained of incisional pain at emergence from anesthesia. The highest observed blood concentrations of lidocaine and ropivacaine were 1.9±0.9 and 1.1±0.4 μg/mL, respectively. No acute anesthetic toxicity symptom was observed. Scalp block with a mixture of lidocaine and ropivacaine seems to provide effective and safe anesthetic management in patients undergoing awake craniotomy.

  18. The release of acetylcholine from post-ganglionic cell bodies in response to depolarization.

    PubMed Central

    Johnson, D A; Pilar, G

    1980-01-01

    1. Acetylcholine (Ach) release from parasympathetic ganglia cell somata was investigated in denervated avian ciliary ganglia. Three days after the input to the ganglion (the oculomotor nerve) was sectioned, all presynaptic nerve terminals had degenerated. 2. Denervated ganglia were shown to contain endogenous ACh and to be capable of synthesizing [3H]ACh from [3H]choline added to the incubation medium. 3. In response to depolarization induced by incubation in 50 mM-[K+]o, denervated ganglia released [3H]ACh into bath effluents in amounts approximately 15% of the non-denervated contralateral control. This release was shown to be Ca2+ dependent in both intact and denervated ganglia. 4. Antidromic electrical stimulation of ciliary nerves also elicited [3H]ACh release. Nicotine (1 microgram/microliter.) depolarized denervated ciliary ganglion cells and evoked release of the transmitter and this release was antagonized by curare. 5. It is concluded that the ganglionic cell bodies sysnthesized ACh and released the transmitter in response to K+ depolarization, antidromic stimulation and cholinergic agonists, despite the lack of morphological specializations usually associated with stimulus-induced release of neurotransmitter. The evidence suggests the existence of a mechanism of transmitter release which is Ca2+ dependent, probably from a cytoplasmic pool and therefore distinct from the usual vesicular release at the nerve terminal. Images Plate 1 Plate 2 PMID:6247485

  19. Ouabain-Induced Apoptosis in Cochlear Hair Cells and Spiral Ganglion Neurons In Vitro

    PubMed Central

    Fu, Yong; Ding, Dalian; Jiang, Haiyan; Salvi, Richard

    2013-01-01

    Ouabain is a common tool to explore the pathophysiological changes in adult mammalian cochlea in vivo. In prior studies, locally administering ouabain via round window membrane demonstrated that the ototoxic effects of ouabain in vivo varied among mammalian species. Little is known about the ototoxic effects in vitro. Thus, we prepared cochlear organotypic cultures from postnatal day-3 rats and treated these cultures with ouabain at 50, 500, and 1000 μM for different time to elucidate the ototoxic effects of ouabain in vitro and to provide insights that could explain the comparative ototoxic effects of ouabain in vivo. Degeneration of cochlear hair cells and spiral ganglion neurons was evaluated by hair-cell staining and neurofilament labeling, respectively. Annexin V staining was used to detect apoptotic cells. A quantitative RT-PCR apoptosis-focused gene array determined changes in apoptosis-related genes. The results showed that ouabain-induced damage in vitro was dose and time dependent. 500 μM ouabain and 1000 μM ouabain were destructively traumatic to both spiral ganglion neurons and cochlear hair cells in an apoptotic signal-dependent pathway. The major apoptotic pathways in ouabain-induced spiral ganglion neuron apoptosis culminated in the stimulation of the p53 pathway and triggering of apoptosis by a network of proapoptotic signaling pathways. PMID:24228256

  20. Suprascapular nerve block (using bupivacaine and methylprednisolone acetate) in chronic shoulder pain.

    PubMed

    Shanahan, E M; Ahern, M; Smith, M; Wetherall, M; Bresnihan, B; FitzGerald, O

    2003-05-01

    Shoulder pain from inflammatory arthritis and/or degenerative disease is a common cause of morbidity in the community. It is difficult to treat and there are limited data on the efficacy of most interventions. Suprascapular nerve block has shown promise in limited trials in reducing shoulder pain. There have been no large randomised placebo controlled trials examining the efficacy of suprascapular nerve block for shoulder pain in arthritis and/or degenerative disease using pain and disability end points. To perform a randomised, double blind, placebo controlled trial of the efficacy of suprascapular nerve block for shoulder pain in rheumatoid arthritis (RA) and/or degenerative disease of the shoulder. 83 people with chronic shoulder pain from degenerative disease or RA took part in the trial. If a person had two painful shoulders, these were randomised separately. A total of 108 shoulders were randomised. Patients in the group receiving active treatment had a single suprascapular nerve block following the protocol described by Dangoisse et al, while those in the other group received a placebo injection of normal saline administered subcutaneously. The patients were followed up for 12 weeks by an observer who was unaware of the randomisation and reviewed at weeks 1, 4, and 12 after the injection. Pain, disability, and range of movement data were gathered. Clinically and statistically significant improvements in all pain scores, all disability scores, and some range of movement scores in the shoulders receiving suprascapular nerve block compared with those receiving placebo were seen at weeks 1, 4, and 12. There were no significant adverse effects in either group. Suprascapular nerve block is a safe and efficacious treatment for the treatment of shoulder pain in degenerative disease and/or arthritis. It improves pain, disability, and range of movement at the shoulder compared with placebo. It is a useful adjunct treatment for the practising clinician to assist in the

  1. Reinforcement of subarachnoid block by epidural volume effect in lower abdominal surgery: A comparison between fentanyl and tramadol for efficacy and block properties

    PubMed Central

    Mohan, Atiharsh; Singh, Preet Mohinder; Malviya, Deepak; Arya, Sunil Kumar; Singh, Dinesh Kumar

    2012-01-01

    Background: Epidural volume extension (EVE) is claimed to increase the block height and decrease the dose requirement for intrathecal drug. However, almost all studies have been done in obstetric population and none actually compares the effect of additional drugs added to epidural volume. Materials and Methods: Seventy-five (ASA I and II) patients scheduled for lower abdominal surgery were randomly divided into three groups. All groups received intrathecal 10 mg bupivacaine; two groups received additional 10 ml of normal saline epidurally with 25 mg tramadol or 25 mg of fentanyl. Groups were than compared for maximal block height, rate of sensory block regression to T10, and motor block regression to Bromage scale of 0. Time to first analgesia and adverse effects were also compared among the three groups. Materials and Methods: Seventy-five (ASA I and II) patients scheduled for lower abdominal surgery were randomly divided into three groups. All groups received intrathecal 10 mg bupivacaine; two groups received additional 10 ml of normal saline epidurally with 25 mg tramadol or 25 mg of fentanyl. Groups were than compared for maximal block height, rate of sensory block regression to T10, and motor block regression to Bromage scale of 0. Time to first analgesia and adverse effects were also compared among the three groups. Results: Groups with EVE had statistically significant higher block height, with a significant faster regression that the control group. However, both fentanyl and tramadol groups were inseparable in respect to motor or sensory block regression. Fentanyl group had maximal time to first analgesia, followed by tramadol and control groups. Hemodynamic alterations were also more common in EVE groups. Conclusion: EVE can increase the block height significantly, but it seems to be limited only to the physical property of additional volume in epidural space and fentanyl or tramadol do not seem to differ in their ability to alter block properties. PMID

  2. The novel cyclophilin D inhibitor compound 19 protects retinal pigment epithelium cells and retinal ganglion cells from UV radiation.

    PubMed

    Xie, Laiqing; Cheng, Long; Xu, Guoxu; Zhang, Ji; Ji, Xiaoyan; Song, E

    2017-06-10

    Excessive Ultra violet (UV) radiation induces injuries to retinal pigment epithelium (RPE) cells (RPEs) and retinal ganglion cells (RGCs), causing retinal degeneration. Cyclophilin D (Cyp-D)-dependent mitochondrial permeability transition pore (mPTP) opening mediates UV-induced cell death. In this study, we show that a novel Cyp-D inhibitor compound 19 efficiently protected RPEs and RGCs from UV radiation. Compound 19-mediated cytoprotection requires Cyp-D, as it failed to further protect RPEs/RGCs from UV when Cyp-D was silenced by targeted shRNAs. Compound 19 almost blocked UV-induced p53-Cyp-D mitochondrial association, mPTP opening and subsequent cytochrome C release. Further studies showed that compound 19 inhibited UV-induced reactive oxygen species (ROS) production, lipid peroxidation and DNA damage. Together, compound 19 protects RPEs and RGCs from UV radiation, possibly via silencing Cyp-D-regulated intrinsic mitochondrial death pathway. Compound 19 could a lead compound for treating UV-associated retinal degeneration diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Electrical Interaction of Paired Ganglion Cells in the Leech

    PubMed Central

    Eckert, Roger

    1963-01-01

    The two paired giant ganglion cells (PGC's) found in each ganglion of the leech central nervous system fire synchronously in response to certain sensory input. Polarizing current passed into either of these cells is seen to displace the membrane potentials of both cells, the voltage attenuation between the two somata ranging from 2 to 5 times. This attenuation factor remains unchanged when the direction of the polarizing current is reversed, and remains about the same when the other cell of the pair is directly polarized. When one of the PGC's is partially depolarized with outward current, a repetitive train of impulses is generated. Each spike is followed by a spike in the other cell. Occasionally, a small subspike potential is seen in place of a follower spike. This potential appears to differ in shape and time course from synaptic potentials elicited by afferent input to these cells, and appears rather to be an electrotonic potential derived from the prejunctional impulse in the stimulated PGC. It is proposed that transmission between these cells is electrical, being accomplished by a flow of local circuit current across a non-rectifying junction or connection to the spike-initiating region of the other PGC. PMID:19873553

  4. The trophic effect of ouabain on retinal ganglion cells is mediated by IL-1β and TNF-α

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salles von-Held-Ventura, Juliana; Mázala-de-Oliveira, Thalita; Cândida da Rocha Oliveira, Amanda

    Ouabain is a steroid hormone that binds to the enzyme Na{sup +}, K{sup +} – ATPase and stimulates different intracellular pathways controlling growth, proliferation and cell survival. IL-1β and TNF-α are pleiotropic molecules, conventionally regarded as pro-inflammatory cytokines with well-known effects in the immune system. In addition, IL-1β and TNF-α also play important roles in the nervous system including neuroprotective effects. Previous data from our group showed that ouabain treatment is able to induce an increase in retinal ganglion cell survival kept in mixed retinal cell cultures. The aim of this work was to investigate if IL-1β and TNF-α couldmore » be mediating the trophic effect of ouabain on retinal ganglion cells. Our results show that the trophic effect of ouabain on retinal ganglion cell was inhibited by either anti-IL-1β or anti-TNF-α antibodies. In agreement, IL-1β or TNF-α increased the retinal ganglion cells survival in a dose-dependent manner. Accordingly, ouabain treatment induces a temporal release of TNF-α and IL-1β from retinal cell cultures. Interestingly, TNF-α and IL-1β regulate each other intracellular levels. Our results suggest that ouabain treatment triggers the activation of TNF-α and IL-1β signaling pathways leading to an increase in retinal ganglion cell survival. - Highlights: • Pro-inflammatory cytokines regulates the ouabain effect on RGC survival. • Ouabain treatment modulates the intracellular levels of TNF-α and IL-1β. • Ouabain induces the release of TNF-α and IL-1β in retinal cell cultures.« less

  5. Satellite glial cells in the trigeminal ganglion as a determinant of orofacial neuropathic pain

    PubMed Central

    VIT, JEAN-PHILIPPE; JASMIN, LUC; BHARGAVA, ADITI; OHARA, PETER T.

    2008-01-01

    Satellite glial cells (SGCs) tightly envelop the perikarya of primary sensory neurons in peripheral ganglion and are identified by their morphology and the presence of proteins not found in ganglion neurons. These SGC-unique proteins include the inwardly rectifying K+ channel Kir4.1, the connexin-43 (Cx43) subunit of gap junctions, the purinergic receptor P2Y4 and soluble guanylate cyclase. We also present evidence that the small-conductance Ca2+-activated K+ channel SK3 is present only in SGCs and that SGCs divide following nerve injury. All the above proteins are involved, either directly or indirectly, in potassium ion (K+) buffering and, thus, can influence the level of neuronal excitability, which, in turn, has been associated with neuropathic pain conditions. We used in vivo RNA interference to reduce the expression of Cx43 (present only in SGCs) in the rat trigeminal ganglion and show that this results in the development of spontaneous pain behavior. The pain behavior is present only when Cx43 is reduced and returns to normal when Cx43 concentrations are restored. This finding shows that perturbation of a single SGC-specific protein is sufficient to induce pain responses and demonstrates the importance of PNS glial cell activity in the pathophysiology of neuropathic pain. PMID:18568096

  6. Peripheral nerve block in patients with Ehlers-Danlos syndrome, hypermobility type: a case series.

    PubMed

    Neice, Andrew E; Stubblefield, Eryn E; Woodworth, Glenn E; Aziz, Michael F

    2016-09-01

    Ehlers-Danlos syndrome (EDS) is an inherited disease characterized by defects in various collagens or their post translational modification, with an incidence estimated at 1 in 5000. Performance of peripheral nerve block in patients with EDS is controversial, due to easy bruising and hematoma formation after injections as well as reports of reduced block efficacy. The objective of this study was to review the charts of EDS patients who had received peripheral nerve block for any evidence of complications or reduced efficacy. Case series, chart review. Academic medical center. Patients with a confirmed or probable diagnosis of EDS who had received a peripheral nerve block in the last 3 years were identified by searching our institutions electronic medical record system. The patients were classified by their subtype of EDS. Patients with no diagnosed subtype were given a probable subtype based on a chart review of the patient's symptoms. Patient charts were reviewed for any evidence of complications or reduced block efficacy. A total of 21 regional anesthetics, on 16 unique patients were identified, 10 of which had a EDS subtype diagnosis. The majority of these patients had a diagnosis of hypermobility-type EDS. No block complications were noted in any patients. Two block failures requiring repeat block were noted, and four patients reported uncontrolled pain on postoperative day one despite successful placement of a peripheral nerve catheter. Additionally, blocks were performed without incident in patients with classical-type and vascular-type EDS although the number was so small that no conclusions can be drawn about relative safety of regional anesthesia in these groups. This series fails to show an increased risk of complications of peripheral nerve blockade in patients with hypermobility-type EDS. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. A comparison between caudal block versus splash block for postoperative analgesia following inguinal herniorrhaphy in children

    PubMed Central

    Cheon, Jun Kong; Hwang, Kan Taeck; Choi, Bo Yoon

    2011-01-01

    Background We wanted to determine the postoperative analgesic efficacy of preincisional caudal epidural block versus instillation (splash block) following inguinal herniorrhaphy in children. Methods Thirty children (age range: 1-7 years) who were scheduled to undergo inguinal herniorrhaphy were divided into 2 groups: the caudal block group and the splash block group with 15 children in each group. Tracheal intubation was performed. Fifteen children received caudal block with 1.0 ml/kg of 0.25% ropivacaine (Group 1). Caudal block was performed using the loss of resistance method via the sacral hiatus. Fifteen children in Group 2 received local instillation (splash block) in the surgical site with up to 0.4 ml/kg of 0.25% ropivacaine. The patients were observed for 90 minutes in the postanesthesia care unit and then they were transferred to the ward. The pain scores were taken 4 times. We assessed pain using the Faces pain scores. Results There were no significant differences between the groups regarding the pain scores at 10, 30 and 60 minutes upon entering the postanesthesia care unit. The pain scores of Group 1 were slightly lower at the last evaluation point when compared to that of Group 2. One patient in Group 1 required supplemental postoperative intravenous (IV) tramadol, while all the other patients in both groups did not require supplemental IV tramadol. The intraoperative requirement for sevoflurane was decreased in Group 1 as compared to that of Group 2. There were no major complications related to either type of block. Conclusions We conclude that a splash block can have a similar analgesic effect as that of a caudal block for the postoperative herniorrhaphy pain of children. PMID:21602975

  8. A comparison between caudal block versus splash block for postoperative analgesia following inguinal herniorrhaphy in children.

    PubMed

    Cheon, Jun Kong; Park, Cheon Hee; Hwang, Kan Taeck; Choi, Bo Yoon

    2011-04-01

    We wanted to determine the postoperative analgesic efficacy of preincisional caudal epidural block versus instillation (splash block) following inguinal herniorrhaphy in children. THIRTY CHILDREN (AGE RANGE: 1-7 years) who were scheduled to undergo inguinal herniorrhaphy were divided into 2 groups: the caudal block group and the splash block group with 15 children in each group. Tracheal intubation was performed. Fifteen children received caudal block with 1.0 ml/kg of 0.25% ropivacaine (Group 1). Caudal block was performed using the loss of resistance method via the sacral hiatus. Fifteen children in Group 2 received local instillation (splash block) in the surgical site with up to 0.4 ml/kg of 0.25% ropivacaine. The patients were observed for 90 minutes in the postanesthesia care unit and then they were transferred to the ward. The pain scores were taken 4 times. We assessed pain using the Faces pain scores. There were no significant differences between the groups regarding the pain scores at 10, 30 and 60 minutes upon entering the postanesthesia care unit. The pain scores of Group 1 were slightly lower at the last evaluation point when compared to that of Group 2. One patient in Group 1 required supplemental postoperative intravenous (IV) tramadol, while all the other patients in both groups did not require supplemental IV tramadol. The intraoperative requirement for sevoflurane was decreased in Group 1 as compared to that of Group 2. There were no major complications related to either type of block. We conclude that a splash block can have a similar analgesic effect as that of a caudal block for the postoperative herniorrhaphy pain of children.

  9. Localization of laminin B1 mRNA in retinal ganglion cells by in situ hybridization

    PubMed Central

    1990-01-01

    In the nervous system, neuronal migration and axonal growth are dependent on specific interactions with extracellular matrix proteins. During development of the vertebrate retina, ganglion cell axons extend along the internal limiting (basement) membrane and form the optic nerve. Laminin, a major component of basement membranes, is known to be present in the internal limiting membrane, and might be involved in the growth of ganglion cell axons. The identity of the cells that produce retinal laminin, however, has not been established. In the present study, we have used in situ hybridization to localize the sites of laminin B1 mRNA synthesis in the developing mouse retina. Our results show that there are at least two principal sites of laminin B1 mRNA synthesis: (a) the hyaloid vessels and the lens during the period of major axonal outgrowth, and (b) the retinal ganglion cells at later development stages. Muller (glial) cells, the major class of nonneuronal cells in the retina, do not appear to express laminin B1 mRNA either during development or in the adult retina. In Northern blots, we found a single transcript of approximately 6-kb size that encodes the laminin B1 chain in the retina. Moreover, laminin B1 mRNA level was four- to fivefold higher in the postnatal retina compared to that in the adult. Our results show that in addition to nonneuronal cells, retinal ganglion cells also synthesize laminin. The function of laminin in postnatal retinas, however, remains to be elucidated. Nevertheless, our findings raise the possibility that neurons in other parts of the nervous system might also synthesize extracellular matrix proteins. PMID:2351694

  10. Bupivacaine-induced cellular entry of QX-314 and its contribution to differential nerve block

    PubMed Central

    Brenneis, C; Kistner, K; Puopolo, M; Jo, S; Roberson, DP; Sisignano, M; Segal, D; Cobos, EJ; Wainger, BJ; Labocha, S; Ferreirós, N; Hehn, C; Tran, J; Geisslinger, G; Reeh, PW; Bean, BP; Woolf, C J

    2014-01-01

    Background and Purpose: Selective nociceptor fibre block is achieved by introducing the cell membrane impermeant sodium channel blocker lidocaine N-ethyl bromide (QX-314) through transient receptor potential V1 (TRPV1) channels into nociceptors. We screened local anaesthetics for their capacity to activate TRP channels, and characterized the nerve block obtained by combination with QX-314. Experimental Approach: We investigated TRP channel activation in dorsal root ganglion (DRG) neurons by calcium imaging and patch-clamp recordings, and cellular QX-314 uptake by MS. To characterize nerve block, compound action potential (CAP) recordings from isolated nerves and behavioural responses were analysed. Key Results: Of the 12 compounds tested, bupivacaine was the most potent activator of ruthenium red-sensitive calcium entry in DRG neurons and activated heterologously expressed TRPA1 channels. QX-314 permeated through TRPA1 channels and accumulated intracellularly after activation of these channels. Upon sciatic injections, QX-314 markedly prolonged bupivacaine's nociceptive block and also extended (to a lesser degree) its motor block. Bupivacaine's blockade of C-, but not A-fibre, CAPs in sciatic nerves was extended by co-application of QX-314. Surprisingly, however, this action was the same in wild-type, TRPA1-knockout and TRPV1/TRPA1-double knockout mice, suggesting a TRP-channel independent entry pathway. Consistent with this, high doses of bupivacaine promoted a non-selective, cellular uptake of QX-314. Conclusions and Implications: Bupivacaine, combined with QX-314, produced a long-lasting sensory nerve block. This did not require QX-314 permeation through TRPA1, although bupivacaine activated these channels. Regardless of entry pathway, the greatly extended duration of block produced by QX-314 and bupivacaine may be clinically useful. PMID:24117225

  11. Dexmedetomidine as an adjuvant to local anesthetics in brachial plexus blocks

    PubMed Central

    Ping, Yongmei; Ye, Qigang; Wang, Wenwei; Ye, Pingke; You, Zhibin

    2017-01-01

    Abstract Background: Brachial plexus block (BPB) for upper extremity surgery provides superior analgesia, but this advantage is limited by the pharmacological duration of local anesthetics. Dexmedetomidine (DEX) as a local anesthetics adjuvant for BPB has been utilized to prolong the duration of the nerve block in some randomized controlled trials (RCTs) but is far from unanimous in the efficacy and safety of the perineural route. Hence, an updated meta-analysis was conducted to assess the efficacy and safety of DEX as local anesthetic adjuvants on BPB. Methods: A search in electronic databases was conducted to collect the RCTs that investigated the impact of adding DEX to local anesthetics for BPB. Sensory block duration, motor block duration, onset time of sensory and motor block, time to first analgesic request, the common adverse effects were analyzed. Results: Eighteen trails (1014 patients) were included with 515 patients receiving perineural DEX. The addition of DEX prolonged the duration of sensory block (WMD 257 minutes, 95%CI 191.79–322.24, P < 0.001), motor block (WMD 242 minutes, 95%CI 174.94–309.34, P < 0.001), and analgesia (WMD 26 6 minutes, 95%CI 190.75–342.81, P < 0.001). Perineural DEX also increased the risk of bradycardia (OR=8.25, 95%CI 3.95–17.24, P < 0.001), hypotension (OR = 5.62, 95%CI 1.52–20.79, P < 0.01), and somnolence (OR = 19.67, 95%CI 3.94–98.09, P < 0.001). There was a lack of evidence that perineural DEX increased the risk of other adverse events. Conclusions: DEX is a potential anesthetic adjuvant that can facilitate better anesthesia and analgesia when administered in BPB. However, it also increased the risk of bradycardia, hypotension, and somnolence. Further research should focus on the efficacy and safety of the preneural administration of DEX. PMID:28121930

  12. Anesthetic efficacy of the intraosseous injection after an inferior alveolar nerve block.

    PubMed

    Dunbar, D; Reader, A; Nist, R; Beck, M; Meyers, W J

    1996-09-01

    The purpose of this study was to determine the contribution of the intraosseous (IO) injection to the inferior alveolar nerve (IAN) block in human first molars. Using a repeated-measures design, 40 subjects randomly received either a combination IAN block + IO injection (on the distal of the first molar) using 2% lidocaine with 1:100,000 epinephrine or an IAN block+mock IO injection (gingival penetration only) at two successive appointments. The first molar and adjacent teeth, and contralateral canine (+/-controls) were blindly tested with an Analytic Technology pulp tester at 2-min cycles for 60 min. An 80 reading was used as the criterion for pulpal anesthesia. One hundred percent of the subjects had lip numbness with the IAN block. For the first molar, anesthetic success, defined as achieving an 80 reading within 15 min and keeping this reading for 60 min, was 42% with the IAN and 90% with the IAN + IO. Anesthetic failure defined as never achieving two 80 readings during the 60 min was 32% with the IAN and 0% with the IAN + IO. The onset of anesthesia was immediate with the IO injection. Eighty percent of the subjects sampled had a subjective increase in heart rate with the IO injection. The IO injection and postinjection questionnaire recorded low pain ratings.

  13. Frequency-Dependent Activation of Glucose Utilization in the Superior Cervical Ganglion by Electrical Stimulation of Cervical Sympathetic Trunk

    NASA Astrophysics Data System (ADS)

    Yarowsky, Paul; Kadekaro, Massako; Sokoloff, Louis

    1983-07-01

    Electrical stimulation of the distal stump of the transected cervical sympathetic trunk produces a frequency-dependent activation of glucose utilization, measured by the deoxy[14C]glucose method, in the superior cervical ganglion of the urethane-anesthetized rat. The frequency dependence falls between 0-15 Hz; at 20 Hz the activation of glucose utilization is no greater than at 15 Hz. Deafferentation of the superior cervical ganglion by transection of the cervical sympathetic trunk does not diminish the rate of glucose utilization in the ganglion in the urethane-anesthetized rat. These results indicate that the rate of energy metabolism in an innervated neural structure is, at least in part, regulated by the impulse frequency of the electrical input to the structure, and this regulation may be an essential component of the mechanism of the coupling of metabolic activity to functional activity in the nervous system.

  14. A novel astrovirus associated with encephalitis and ganglionitis in domestic sheep.

    PubMed

    Pfaff, F; Schlottau, K; Scholes, S; Courtenay, A; Hoffmann, B; Höper, D; Beer, M

    2017-06-01

    In June 2013, a 4-year-old Welsh Mountain ewe and in March 2014 a 10-day-old lamb of the same breed and the same flock presented progressive neurological signs including depressed sensorium, tremor, and unusual behaviour. Neuropathological examination of the brain and spinal cord detected non-suppurative polioencephalomyelitis and dorsal root ganglionitis, characteristic of a neurotropic viral agent in both sheep. Metagenomic analysis of different tissue samples from both animals identified a novel Ovine Astrovirus (OvAstV). The presence of viral genome in the central nervous system was confirmed by RT-qPCR. Although the cases presented nine months apart, the identified OvAstV shared nearly identical sequences, differing in only three nucleotide positions across the complete genome. Phylogenetic analysis revealed a close relation of OvAstV to neurotropic bovine astroviruses and an enteric OvAstV. In conclusion, these are the first reported cases of astrovirus infection in domestic sheep that were associated with encephalitis and ganglionitis. © 2017 Blackwell Verlag GmbH.

  15. Sphenopalatine (nasal) ganglion: remote effects including "psychosomatic" symptoms, rage reaction, pain, and spasm.

    PubMed

    Ruskin, A P

    1979-08-01

    Many articles implicate the nasal ganglion in the production of remote symptoms and discuss treatment. Symptoms are primarily spastic, involving both visceral and voluntary muscles including muscle spasm in the neck, shoulder, and low back; asthma, hypertension, intestinal spasm; diarrhea, angina pectoris, uterine spasm; intractable hiccup, and many others. All these symptoms appear to have 2 common denominators. They are mediated by the autonomic nervous system and at least in some instances can be "psychosomatic." The sphenopalatine ganglion (SPG) is a major autonomic ganglion located superficially in the pterygopalatine fossa, with major afferent distribution to the entire nasopharynx and important connections with the trigeminal nerve, facial nerve, internal carotid artery plexus of the sympathetic nervous system and, as shown in the rat, direct connection with the anterior pituitary gland. This paper presents arguments supporting the following hypotheses: 1. The SPG probably has a crucial role in lower animals in declenching the reflex responses known collectively as the rage reaction. 2. The SPG is a major point of entry to the autonomic system exposed to pathologic influences and readily accessible for therapeutic influences and readily accessible for therapeutic intervention. 3. A wide variety of symptoms are produced or maintained by alteration in autonomic system tonus and some of these may be affected by intervention on the SPG. 4. The possible relationship of some symptoms and "psychosomatic" conditions to the autonomic nervous system and the rage reaction must be considered.20

  16. Postoperative Analgesic Efficacy of Bilateral Transversus Abdominis Plane Block in Patients Undergoing Midline Colorectal Surgeries Using Ropivacaine: A Randomized, Double-blind, Placebo-controlled Trial.

    PubMed

    Qazi, Nahida; Bhat, Wasim Mohammad; Iqbal, Malik Zaffar; Wani, Anisur Rehman; Gurcoo, Showkat A; Rasool, Sahir

    2017-01-01

    Ultrasound-guided transversus abdominis plane (TAP) block is done as a part of multimodal analgesia for pain relief after abdominal surgeries. This prospective randomized, double-blind, placebo-controlled trial was conducted to evaluate the postoperative analgesic efficacy of bilateral TAP block in patients undergoing midline colorectal surgeries using ropivacaine. Eighty patients scheduled for elective colorectal surgeries involving midline abdominal wall incision under general anesthesia were enrolled in this prospective randomized controlled trial. Group A received TAP block with 20 ml of 0.2% ropivacaine on either side of the abdominal wall, and Group B received 20 ml of normal saline. The time to request for rescue analgesia, total analgesic consumption in 24 h, and satisfaction with the anesthetic technique were assessed. The mean visual analog scale scores at rest and on coughing were higher in control group ( P > 0.05). Time (min) to request for the first rescue analgesia was prolonged in study group compared to control group ( P < 0.001). The total tramadol consumption in 24 h postoperatively was significantly high in control group ( P < 0.001). Nausea/vomiting was more common in control group ( P > 0.05). The level of satisfaction concerning postoperative pain control/anesthetic technique was higher in study group ( P < 0.001). TAP block produces effective and prolonged postoperative analgesia in patients undergoing midline colorectal surgery. It is a technically simple block to perform with a high margin of safety. It produces a considerable reduction in mean intravenous postoperative tramadol requirements, reduction in postoperative pain scores, and increased time to first request for further analgesia, both at rest and on movement.

  17. Postoperative Analgesic Efficacy of Bilateral Transversus Abdominis Plane Block in Patients Undergoing Midline Colorectal Surgeries Using Ropivacaine: A Randomized, Double-blind, Placebo-controlled Trial

    PubMed Central

    Qazi, Nahida; Bhat, Wasim Mohammad; Iqbal, Malik Zaffar; Wani, Anisur Rehman; Gurcoo, Showkat A.; Rasool, Sahir

    2017-01-01

    Background: Ultrasound-guided transversus abdominis plane (TAP) block is done as a part of multimodal analgesia for pain relief after abdominal surgeries. This prospective randomized, double-blind, placebo-controlled trial was conducted to evaluate the postoperative analgesic efficacy of bilateral TAP block in patients undergoing midline colorectal surgeries using ropivacaine. Materials and Methods: Eighty patients scheduled for elective colorectal surgeries involving midline abdominal wall incision under general anesthesia were enrolled in this prospective randomized controlled trial. Group A received TAP block with 20 ml of 0.2% ropivacaine on either side of the abdominal wall, and Group B received 20 ml of normal saline. The time to request for rescue analgesia, total analgesic consumption in 24 h, and satisfaction with the anesthetic technique were assessed. Results: The mean visual analog scale scores at rest and on coughing were higher in control group (P > 0.05). Time (min) to request for the first rescue analgesia was prolonged in study group compared to control group (P < 0.001). The total tramadol consumption in 24 h postoperatively was significantly high in control group (P < 0.001). Nausea/vomiting was more common in control group (P > 0.05). The level of satisfaction concerning postoperative pain control/anesthetic technique was higher in study group (P < 0.001). Conclusion: TAP block produces effective and prolonged postoperative analgesia in patients undergoing midline colorectal surgery. It is a technically simple block to perform with a high margin of safety. It produces a considerable reduction in mean intravenous postoperative tramadol requirements, reduction in postoperative pain scores, and increased time to first request for further analgesia, both at rest and on movement. PMID:28928585

  18. Analgesia before a spinal block for femoral neck fracture: fascia iliaca compartment block.

    PubMed

    Yun, M J; Kim, Y H; Han, M K; Kim, J H; Hwang, J W; Do, S H

    2009-11-01

    In this prospective randomized study, the authors compared the analgesic effect of a fascia iliaca compartment (FIC) block with that of intravenous (i.v.) alfentanil when administered to facilitate positioning for spinal anaesthesia in elderly patients undergoing surgery for a femoral neck fracture. The 40 patients were randomly assigned to one of two groups, namely, the FIC group (fascia iliaca compartment block, n=20) and the IVA group (intravenous analgesia with alfentanil, n=20). Group IVA patients received a bolus dose of i.v. alfentanil 10 microg/kg, followed by a continuous infusion of alfentanil 0.25 microg/kg/min starting 2 min before the spinal block, and group FIC patients received a FIC block with 30 ml of ropivacaine 3.75 mg/ml (112.5 mg) 20 min before the spinal block. Visual analogue pain scale (VAS) scores, time to achieve spinal anaesthesia, quality of patient positioning, and patient acceptance were compared. VAS scores during positioning (mean and range) were lower in the FIC group than in the IVA group [2.0 (1-4) vs. 3.5 (2-6), P=0.001], and the mean (+/- SD) time to achieve spinal anaesthesia was shorter in the FIC group (6.9 +/- 2.7 min vs. 10.8 +/- 5.6 min; P=0.009). Patient acceptance (yes/no) was also better in the FIC group (19/1) than in the IVA group (12/8)(P=0.008). An FIC block is more efficacious than i.v. alfentanil in terms of facilitating the lateral position for spinal anaesthesia in elderly patients undergoing surgery for femoral neck fractures.

  19. "A Tale of Two Planes": Deep Versus Superficial Serratus Plane Block for Postmastectomy Pain Syndrome.

    PubMed

    Piracha, Mohammad M; Thorp, Stephen L; Puttanniah, Vinay; Gulati, Amitabh

    Postmastectomy pain syndrome (PMPS) is a significant burden for breast cancer survivors. Although multiple therapies have been described, an evolving field of serratus anterior plane blocks has been described in this population. We describe the addition of the deep serratus anterior plane block (DSPB) for PMPS. Four patients with history of PMPS underwent DSPB for anterior chest wall pain. A retrospective review of these patients' outcomes was obtained through postprocedure interviews. Three of the patients previously had a superficial serratus anterior plane block, which was not as efficacious as the DSPB. The fourth patient had a superficial serratus anterior plane that was difficult to separate with hydrodissection but had improved pain control with a DSPB. We illustrate 4 patients who have benefitted from a DSPB and describe indications that this block may be more efficacious than a superficial serratus plane block. Further study is recommended to understand the intercostal nerve branches within the lateral and anterior muscular chest wall planes.

  20. Enkephalins in the inferior mesenteric ganglion of the cat and in the area of the lower digestive tract innervated by this ganglion: quantification by radio-immunoassay and characterization by high pressure liquid chromatography.

    PubMed

    Cupo, A; Niel, J P; Miolan, J P; Jule, Y; Jarry, T

    1988-01-01

    Met-enkephalin, Leu-enkephalin and Met-enkephalin-Arg-Gly-Leu were quantified and characterized in the cat inferior mesenteric ganglion and in the area of the lower digestive tract innervated by this ganglion, including the proximal colon, distal colon and internal anal sphincter. In the structures studied, the concentrations of enkephalins expressed as femtomole/mg of wet tissue ranged from 66 to 160 with Met-enkephalin, from 15 to 45 with Leu-enkephalin and from 2 to 12 for Met-enkephalin-arg-gly-leu. In the lower digestive tract, the Met- and Leu-enkephalin content decreased from the proximal colon to the internal anal sphincter. The Met-enkephalin versus Leu-enkephalin ratio of the structures investigated were as follows: inferior mesenteric ganglion 3.2, proximal colon 4.4, distal colon 5, internal and sphincter 4.5. In individual samples of all the structures assayed the results of high pressure liquid chromatography (HPLC) analysis pointed to the presence of authentic Met- and Leu-enkephalin. HPLC analysis could not be carried out on Met-enkephalin-Arg-Gly-Leu due to the very low concentrations of this peptide in all the structures assayed. Our results, combined with those of previous immunohistochemical and physiological studies, support the idea that enkephalins are involved in the nervous control of the motility of the lower digestive tract.

  1. Functional role of NT-3 in synapse regeneration by spiral ganglion neurons on inner hair cells after excitotoxic trauma in vitro

    PubMed Central

    Wang, Qiong; Green, Steven H.

    2011-01-01

    Spiral ganglion neurons (SGNs) are postsynaptic to hair cells and project to the brainstem. The inner hair cell (IHC) to SGN synapse is susceptible to glutamate excitotoxicity and to acoustic trauma, with potentially adverse consequences to long-term SGN survival. We used a cochlear explant culture from P6 rat pups consisting of a portion of organ of Corti maintained intact with the corresponding portion of spiral ganglion to investigate excitotoxic damage to IHC-SGN synapses in vitro. The normal innervation pattern is preserved in vitro. Brief treatment with NMDA and kainate results in loss of IHC–SGN synapses and degeneration of the distal type 1 SGN peripheral axons, mimicking damage to SGN peripheral axons caused by excitotoxicity or noise in vivo. The number of IHC presynaptic ribbons is not significantly altered. Reinnervation of IHCs occurs and regenerating axons remain restricted to the IHC row. However, the number of postsynaptic densities (PSDs) does not fully recover and not all axons regrow to the IHCs. Addition of either NT-3 or BDNF increases axon growth and synaptogenesis. Selective blockade of endogenous NT-3 signaling with TrkC-IgG reduced regeneration of axons and PSDs, but TrkB-IgG, which blocks BDNF, has no such effect, indicating that endogenous NT-3 is necessary for SGN axon growth and synaptogenesis. Remarkably, TrkC-IgG reduced axon growth and synaptogenesis even in the presence of BDNF, indicating that endogenous NT-3 has a distinctive role, not mimicked by BDNF, in promoting SGN axon growth in the organ of Corti and synaptogenesis on IHCs. PMID:21613508

  2. Effects of alpha-lipoic acid on retinal ganglion cells, retinal thicknesses, and VEGF production in an experimental model of diabetes.

    PubMed

    Kan, Emrah; Alici, Ömer; Kan, Elif Kılıç; Ayar, Ahmet

    2017-12-01

    The purpose of the present study was to investigate the effect of alpha-lipoic acid (ALA) on the thicknesses of various retinal layers and on the numbers of retinal ganglion cells and vascular endothelial growth factor levels in experimental diabetic mouse retinas. Twenty-one male BALB/C mice were made diabetic by the intraperitoneal administration of streptozotocin (200 mg/kg). One week after the induction of diabetes, the mice were divided randomly into three groups: control group (non-diabetic mice treated with alpha-lipoic acid, n = 7), diabetic group (diabetic mice without treatment, n = 7), and alpha-lipoic acid treatment group (diabetic mice with alpha-lipoic acid treatment, n = 7). At the end of the 8th week, the thicknesses of the inner nuclear layer (INL), outer nuclear layer (ONL), and full-length retina were measured; also retinal ganglion cells and VEGF expressions were counted on the histological sections of the mouse retinas and compared with each other. The thicknesses of the full-length retina, ONL, and INL were significantly reduced in the diabetic group compared to the control and ALA treatment groups (p = 0.001), whereas the thicknesses of these layers did not show a significant difference between ALA treatment and control groups. The number of ganglion cells in the diabetic group was significantly lower than those in the control and ALA treatment groups (p = 0.001). The VEGF expression was significantly higher in the diabetic group and mostly observed in the ganglion cell and inner nuclear layers compared to the control and ALA treatment groups (p = 0.001). Therefore, the number of ganglion cells and VEGF levels did not show significant differences between the ALA treatment and control groups (p = 0.7). Our results show that alpha-lipoic acid treatment may have an impact on reducing VEGF levels, protecting ganglion cells, and preserving the thicknesses of the inner and outer layers in diabetic mouse retinas.

  3. Slit/Robo Signaling Mediates Spatial Positioning of Spiral Ganglion Neurons during Development of Cochlear Innervation

    PubMed Central

    Wang, Sheng-zhi; Ibrahim, Leena A.; Kim, Young J.; Gibson, Daniel A.; Leung, Haiwen C.; Yuan, Wei; Zhang, Ke K.; Tao, Huizhong W.

    2013-01-01

    During the development of periphery auditory circuits, spiral ganglion neurons (SGNs) extend their neurites to innervate cochlear hair cells (HCs) with their soma aggregated into a cluster spatially segregated from the cochlear sensory epithelium. The molecular mechanisms underlying this spatial patterning remain unclear. In this study, in situ hybridization in the mouse cochlea suggests that Slit2 and its receptor, Robo1/2, exhibit apparently complementary expression patterns in the spiral ganglion and its nearby region, the spiral limbus. In Slit2 and Robo1/2 mutants, the spatial restriction of SGNs was disrupted. Mispositioned SGNs were found to scatter in the space between the cochlear epithelium and the main body of spiral ganglion, and the neurites of mispositioned SGNs were misrouted and failed to innervate HCs. Furthermore, in Robo1/2 mutants, SGNs were displaced toward the cochlear epithelium as an entirety. Examination of different embryonic stages in the mutants revealed that the mispositioning of SGNs was due to a progressive displacement to ectopic locations after their initial normal settlement at an earlier stage. Our results suggest that Slit/Robo signaling imposes a restriction force on SGNs to ensure their precise positioning for correct SGN-HC innervations. PMID:23884932

  4. The blocking action of choline 2:6-xylyl ether bromide on adrenergic nerves

    PubMed Central

    Exley, K. A.

    1957-01-01

    Choline 2:6-xylyl ether bromide (TM 10), given systemically to cats in doses of 5 to 15 mg./kg., abolishes the effects of adrenergic nerve stimulation whilst leaving the reactions of the effector organs to adrenaline unimpaired. The effects of a single dose may take up to one hour to become fully established and last for more than twenty-four hours. Apart from transitory ganglionic blockade, cholinergic autonomic nerves are unaffected even by large doses of TM 10. Doses of TM 10 which produce effective blockade do not impair conduction along adrenergic nerve trunks; the drug must, therefore, act at, or close to, the nerve terminals. TM 10 prevents the output of noradrenaline from the spleen on stimulating the splenic nerves; but, in acute experiments, it does not influence the liberation of pressor amines from the stimulated suprarenals. Examination of some ethers related to TM 10 revealed no correlation between TM 10-like adrenergic blocking activity and local anaesthetic activity. The action of TM 10 on adrenergic nerves does not, therefore, seem to be accounted for by axonal block. ImagesFIG. 8 PMID:13460234

  5. Anesthetic efficacy of the intraosseous injection of 0.9 mL of 2% lidocaine (1:100,000 epinephrine) to augment an inferior alveolar nerve block.

    PubMed

    Reitz, J; Reader, A; Nist, R; Beck, M; Meyers, W J

    1998-11-01

    The purpose of this study was to determine the anesthetic efficacy of an intraosseous injection of 0.9 mL of 2% lidocaine with 1:100,000 epinephrine to augment an inferior alveolar nerve block in mandibular posterior teeth. With the use of a repeated-measures design, each of 38 subjects randomly received one or the other of 2 combinations of injections at 2 separate appointments. The combinations were inferior alveolar nerve block + intraosseous injection (on the distal of the second premolar) through use of 0.9 mL of 2% lidocaine with 1:100,000 epinephrine and inferior alveolar nerve block + mock intraosseous injection. The first molar, second premolar, and second molar were blindly tested with an Analytic Technology pulp tester at 2-minute cycles for 120 minutes postinjection. Anesthesia was considered successful when 2 consecutive 80 readings were obtained. One hundred percent of the subjects had lip numbness with the inferior alveolar nerve block + intraosseous injection combination technique. The respective anesthetic success rates for the inferior alveolar nerve block + mock intraosseous injection combination and the inferior alveolar nerve block + intraosseous injection combination were 60% and 100% for the second premolar, 71% and 95% for the first molar, and 74% and 87% for the second molar. The differences were significant (P < .05) for the second premolar through 50 minutes and for the first molar through 20 minutes. There were no significant (P > .05) differences for the second molar. Sixty-eight percent of the subjects had a subjective increase in heart rate with the intraosseous injection. The results of this study indicate that the supplemental intraosseous injection of 0.9 mL of 2% lidocaine with 1:100,000 epinephrine, given distal to the second premolar, significantly increased the success of pulpal anesthesia in the second premolar (for 50 minutes) and first molar (for 20 minutes) in comparison with the inferior alveolar nerve block alone. The

  6. Electrical receptive fields of retinal ganglion cells: Influence of presynaptic neurons

    PubMed Central

    Apollo, Nicholas V.; Garrett, David J.

    2018-01-01

    Implantable retinal stimulators activate surviving neurons to restore a sense of vision in people who have lost their photoreceptors through degenerative diseases. Complex spatial and temporal interactions occur in the retina during multi-electrode stimulation. Due to these complexities, most existing implants activate only a few electrodes at a time, limiting the repertoire of available stimulation patterns. Measuring the spatiotemporal interactions between electrodes and retinal cells, and incorporating them into a model may lead to improved stimulation algorithms that exploit the interactions. Here, we present a computational model that accurately predicts both the spatial and temporal nonlinear interactions of multi-electrode stimulation of rat retinal ganglion cells (RGCs). The model was verified using in vitro recordings of ON, OFF, and ON-OFF RGCs in response to subretinal multi-electrode stimulation with biphasic pulses at three stimulation frequencies (10, 20, 30 Hz). The model gives an estimate of each cell’s spatiotemporal electrical receptive fields (ERFs); i.e., the pattern of stimulation leading to excitation or suppression in the neuron. All cells had excitatory ERFs and many also had suppressive sub-regions of their ERFs. We show that the nonlinearities in observed responses arise largely from activation of presynaptic interneurons. When synaptic transmission was blocked, the number of sub-regions of the ERF was reduced, usually to a single excitatory ERF. This suggests that direct cell activation can be modeled accurately by a one-dimensional model with linear interactions between electrodes, whereas indirect stimulation due to summated presynaptic responses is nonlinear. PMID:29432411

  7. Photopolymerized microfeatures for directed spiral ganglion neurite and Schwann cell growth.

    PubMed

    Tuft, Bradley W; Li, Shufeng; Xu, Linjing; Clarke, Joseph C; White, Scott P; Guymon, Bradley A; Perez, Krystian X; Hansen, Marlan R; Guymon, C Allan

    2013-01-01

    Cochlear implants (CIs) provide auditory perception to individuals with severe hearing impairment. However, their ability to encode complex auditory stimuli is limited due, in part, to poor spatial resolution caused by electrical current spread in the inner ear. Directing nerve cell processes towards target electrodes may reduce the problematic current spread and improve stimulatory specificity. In this work, photopolymerization was used to fabricate micro- and nano-patterned methacrylate polymers to probe the extent of spiral ganglion neuron (SGN) neurite and Schwann cell (SGSC) contact guidance based on variations in substrate topographical cues. Micropatterned substrates are formed in a rapid, single-step reaction by selectively blocking light with photomasks which have parallel line-space gratings with periodicities of 10-100 μm. Channel amplitudes of 250 nm-10 μm are generated by modulating UV exposure time, light intensity, and photoinitiator concentration. Gradual transitions are observed between ridges and grooves using scanning electron and atomic force microscopy. The transitions stand in contrast to vertical features generated via etching lithographic techniques. Alignment of neural elements increases significantly with increasing feature amplitude and constant periodicity, as well as with decreasing periodicity and constant amplitude. SGN neurite alignment strongly correlates (r = 0.93) with maximum feature slope. Multiple neuronal and glial types orient to the patterns with varying degrees of alignment. This work presents a method to fabricate gradually-sloping micropatterns for cellular contact guidance studies and demonstrates spatial control of inner ear neural elements in response to micro- and nano-scale surface topography. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. PKCepsilon-dependent potentiation of TTX-resistant Nav1.8 current by neurokinin-1 receptor activation in rat dorsal root ganglion neurons.

    PubMed

    Cang, Chun-Lei; Zhang, Hua; Zhang, Yu-Qiu; Zhao, Zhi-Qi

    2009-06-30

    Substance P (SP), which mainly exists in a subtype of small-diameter dorsal root ganglion (DRG) neurons, is an important signal molecule in pain processing in the spinal cord. Our previous results have proved the expression of SP receptor neurokinin-1 (NK-1) on DRG neurons and its interaction with transient receptor potential vanilloid 1 (TRPV1) receptor. In this study we investigated the effect of NK-1 receptor agonist on Na(v)1.8, a tetrodotoxin (TTX)-resistant sodium channel, in rat small-diameter DRG neurons employing whole-cell patch clamp recordings. NK-1 agonist [Sar(9), Met(O2)(11)]-substance P (Sar-SP) significantly enhanced the Na(v)1.8 currents in a subgroup of small-diameter DRG neurons under both the normal and inflammatory situation, and the enhancement was blocked by NK-1 antagonist Win51708 and protein kinase C (PKC) inhibitor bisindolylmaleimide (BIM), but not the protein kinase A (PKA) inhibitor H89. In particular, the inhibitor of PKCepsilon, a PKC isoform, completely blocked this effect. Under current clamp model, Sar-SP reduced the amount of current required to evoke action potentials and increased the firing rate in a subgroup of DRG neurons. These data suggest that activation of NK-1 receptor potentiates Na(v)1.8 sodium current via PKCepsilon-dependent signaling pathway, probably participating in the generation of inflammatory hyperalgesia.

  9. Developmental changes in expression of GABAA receptor-channels in rat intrinsic cardiac ganglion neurones

    PubMed Central

    Fischer, Harald; Harper, Alexander A; Anderson, Colin R; Adams, David J

    2005-01-01

    The effects of γ-aminobutyric acid (GABA) on the electrophysiological properties of intracardiac neurones were investigated in the intracardiac ganglion plexus in situ and in dissociated neurones from neonatal, juvenile and adult rat hearts. Focal application of GABA evoked a depolarizing, excitatory response in both intact and dissociated intracardiac ganglion neurones. Under voltage clamp, both GABA and muscimol elicited inward currents at −60 mV in a concentration-dependent manner. The fast, desensitizing currents were mimicked by the GABAA receptor agonists muscimol and taurine, and inhibited by the GABAA receptor antagonists, bicuculline and picrotoxin. The GABAA0 antagonist (1,2,5,6-tetrahydropyridin-4-yl)methyl phosphonic acid (TPMPA), had no effect on GABA-induced currents, suggesting that GABAA receptor-channels mediate the response. The GABA-evoked current amplitude recorded from dissociated neurones was age dependent whereby the peak current density measured at −100 mV was ∼ 20 times higher for intracardiac neurones obtained from neonatal rats (P2–5) compared with adult rats (P45–49). The decrease in GABA sensitivity occurred during the first two postnatal weeks and coincides with maturation of the sympathetic innervation of the rat heart. Immunohistochemical staining using antibodies against GABA demonstrate the presence of GABA in the intracardiac ganglion plexus of the neonatal rat heart. Taken together, these results suggest that GABA and taurine may act as modulators of neurotransmission and cardiac function in the developing mammalian intrinsic cardiac nervous system. PMID:15731187

  10. Expression and function of system N glutamine transporters (SN1/SN2 or SNAT3/SNAT5) in retinal ganglion cells.

    PubMed

    Umapathy, Nagavedi S; Dun, Ying; Martin, Pamela M; Duplantier, Jennifer N; Roon, Penny; Prasad, Puttur; Smith, Sylvia B; Ganapathy, Vadivel

    2008-11-01

    Glutamine transport is essential for the glutamate-glutamine cycle, which occurs between neurons and glia. System N, consisting of SN1 (SNAT3) and SN2 (SNAT5), is the principal mediator of glutamine transport in retinal Müller cells. Mediators of glutamine transport in retinal ganglion cells were investigated. The relative contributions of various transport systems for glutamine uptake (systems N, A, L, y+L, ASCT, and ATB(0,+)) were examined in RGC-5 cells based on differential features of the individual transport systems. mRNA for the genes encoding members of these transport systems were analyzed by RT-PCR. Based on these data, SN1 and SN2 were analyzed in mouse retina, RGC-5 cells, and primary mouse ganglion cells (GCs) by in situ hybridization (ISH), immunofluorescence (IF), and Western blotting. Three transport systems--N, A, and L--participated in glutamine uptake in RGC-5 cells. System N was the principal contributor; systems A and L contributed considerably less. ISH and IF revealed SN1 and SN2 expression in the ganglion, inner nuclear, and photoreceptor cell layers. SN1 and SN2 colocalized with the ganglion cell marker Thy 1.2 and with the Müller cell marker vimentin, confirming their presence in both retinal cell types. SN1 and SN2 proteins were detected in primary mouse GCs. These findings suggest that in addition to its role in glutamine uptake in retinal glial cells, system N contributes significantly to glutamine uptake in ganglion cells and, hence, contributes to the retinal glutamate-glutamine cycle.

  11. Association Between Regular Cannabis Use and Ganglion Cell Dysfunction.

    PubMed

    Schwitzer, Thomas; Schwan, Raymund; Albuisson, Eliane; Giersch, Anne; Lalanne, Laurence; Angioi-Duprez, Karine; Laprevote, Vincent

    2017-01-01

    Because cannabis use is a major public health concern and cannabis is known to act on central neurotransmission, studying the retinal ganglion cells in individuals who regularly use cannabis is of interest. To determine whether the regular use of cannabis could alter the function of retinal ganglion cells in humans. For this case-control study, individuals who regularly use cannabis, as well as healthy controls, were recruited, and data were collected from February 11 to October 28, 2014. Retinal function was used as a direct marker of brain neurotransmission abnormalities in complex mental phenomena. Amplitude and implicit time of the N95 wave on results of pattern electroretinography. Twenty-eight of the 52 participants were regular cannabis users (24 men and 4 women; median age, 22 years [95% CI, 21-24 years]), and the remaining 24 were controls (20 men and 4 women; median age, 24 years [95% CI, 23-27 years]). There was no difference between groups in terms of age (P = .13) or sex (P = .81). After adjustment for the number of years of education and alcohol use, there was a significant increase for cannabis users of the N95 implicit time on results of pattern electroretinography (median, 98.6 milliseconds [95% CI, 93.4-99.5]) compared with controls (median, 88.4 milliseconds [95% CI, 85.0-91.1]), with 8.4 milliseconds as the median of the differences (95% CI, 4.9-11.5; P < .001, Wald logistic regression). A receiver operating characteristic curve analysis (area under the curve, 0.84 [95% CI, 0.73-0.95]; P < .001) revealed, for a cutoff value of 91.13 milliseconds, a sensitivity of 78.6% (95% CI, 60.5%-89.8%) and a specificity of 75.0% (95% CI, 55.1%-88.0%) for correctly classifying both cannabis users and controls in their corresponding group. The positive predictive value was 78.6% (95% CI, 60.5%-89.8%), and the negative predictive value was 75.0% (95% CI, 55.1%-88.0%). Our results demonstrate a delay in transmission of action potentials by the

  12. Delayed rectifier K channels contribute to contrast adaptation in mammalian retinal ganglion cells

    PubMed Central

    Weick, Michael; Demb, Jonathan B.

    2011-01-01

    SUMMARY Retinal ganglion cells adapt by reducing their sensitivity during periods of high contrast. Contrast adaptation in the firing response depends on both presynaptic and intrinsic mechanisms. Here, we investigated intrinsic mechanisms for contrast adaptation in OFF Alpha ganglion cells in the in vitro guinea pig retina. Using either visual stimulation or current injection, we show that brief depolarization evoked spiking and suppressed firing during subsequent depolarization. The suppression could be explained by Na channel inactivation, as shown in salamander cells. However, brief hyperpolarization in the physiological range (5–10 mV) also suppressed firing during subsequent depolarization. This suppression was sensitive selectively to blockers of delayed-rectifier K channels (KDR). Somatic membrane patches showed TEA-sensitive KDR currents with activation near −25 mV and removal of inactivation at voltages negative to Vrest. Brief periods of hyperpolarization apparently remove KDR inactivation and thereby increase the channel pool available to suppress excitability during subsequent depolarization. PMID:21745646

  13. Atypical fibrosarcomas derived from cutaneous ganglion cell-like cells in 2 domestic Djungarian hamsters (Phodopus sungorus).

    PubMed

    Kondo, Hirotaka; Onuma, Mamoru; Shibuya, Hisashi; Sato, Tsuneo; Abbott, Jeffrey R

    2011-07-01

    Androgen-dependent atypical fibromas are benign tumors derived from ganglion-cell-like cells that are particular to Djungarian hamsters (Phodopus sungorus). Masses excised from 2 hamsters were composed of pleomorphic ganglion cell-like cells supported by small to moderate amounts of collagenous matrix. Intracytoplasmic fibrils were present in silver-stained sections, and immunohistochemistry showed that the cells expressed vimentin, androgen receptor, and, in one case, estrogen receptor α. In contrast to previously reported atypical fibromas, these tumors had features of anaplasia and were locally invasive. We diagnosed the tumors as atypical fibrosarcomas and consider them an unusual malignant counterpart of atypical fibroma. Copyright 2011 by the American Association for Laboratory Animal Science

  14. Adult Human Nasal Mesenchymal-Like Stem Cells Restore Cochlear Spiral Ganglion Neurons After Experimental Lesion

    PubMed Central

    Bas, Esperanza; Van De Water, Thomas R.; Lumbreras, Vicente; Rajguru, Suhrud; Goss, Garrett; Hare, Joshua M.

    2014-01-01

    A loss of sensory hair cells or spiral ganglion neurons from the inner ear causes deafness, affecting millions of people. Currently, there is no effective therapy to repair the inner ear sensory structures in humans. Cochlear implantation can restore input, but only if auditory neurons remain intact. Efforts to develop stem cell-based treatments for deafness have demonstrated progress, most notably utilizing embryonic-derived cells. In an effort to bypass limitations of embryonic or induced pluripotent stem cells that may impede the translation to clinical applications, we sought to utilize an alternative cell source. Here, we show that adult human mesenchymal-like stem cells (MSCs) obtained from nasal tissue can repair spiral ganglion loss in experimentally lesioned cochlear cultures from neonatal rats. Stem cells engraft into gentamicin-lesioned organotypic cultures and orchestrate the restoration of the spiral ganglion neuronal population, involving both direct neuronal differentiation and secondary effects on endogenous cells. As a physiologic assay, nasal MSC-derived cells engrafted into lesioned spiral ganglia demonstrate responses to infrared laser stimulus that are consistent with those typical of excitable cells. The addition of a pharmacologic activator of the canonical Wnt/β-catenin pathway concurrent with stem cell treatment promoted robust neuronal differentiation. The availability of an effective adult autologous cell source for inner ear tissue repair should contribute to efforts to translate cell-based strategies to the clinic. PMID:24172073

  15. GDF15 is elevated in mice following retinal ganglion cell death and in glaucoma patients

    PubMed Central

    Ban, Norimitsu; Siegfried, Carla J.; Lin, Jonathan B.; Shui, Ying-Bo; Sein, Julia; Pita-Thomas, Wolfgang; Sene, Abdoulaye; Santeford, Andrea; Gordon, Mae; Lamb, Rachel; Dong, Zhenyu; Kelly, Shannon C.; Cavalli, Valeria; Yoshino, Jun

    2017-01-01

    Glaucoma is the second leading cause of blindness worldwide. Physicians often use surrogate endpoints to monitor the progression of glaucomatous neurodegeneration. These approaches are limited in their ability to quantify disease severity and progression due to inherent subjectivity, unreliability, and limitations of normative databases. Therefore, there is a critical need to identify specific molecular markers that predict or measure glaucomatous neurodegeneration. Here, we demonstrate that growth differentiation factor 15 (GDF15) is associated with retinal ganglion cell death. Gdf15 expression in the retina is specifically increased after acute injury to retinal ganglion cell axons and in a murine chronic glaucoma model. We also demonstrate that the ganglion cell layer may be one of the sources of secreted GDF15 and that GDF15 diffuses to and can be detected in aqueous humor (AH). In validating these findings in human patients with glaucoma, we find not only that GDF15 is increased in AH of patients with primary open angle glaucoma (POAG), but also that elevated GDF15 levels are significantly associated with worse functional outcomes in glaucoma patients, as measured by visual field testing. Thus, GDF15 maybe a reliable metric of glaucomatous neurodegeneration, although further prospective validation studies will be necessary to determine if GDF15 can be used in clinical practice. PMID:28469085

  16. Blocking herpes simplex virus 2 glycoprotein E immune evasion as an approach to enhance efficacy of a trivalent subunit antigen vaccine for genital herpes.

    PubMed

    Awasthi, Sita; Huang, Jialing; Shaw, Carolyn; Friedman, Harvey M

    2014-08-01

    Herpes simplex virus 2 (HSV-2) subunit antigen vaccines targeting virus entry molecules have failed to prevent genital herpes in human trials. Our approach is to include a virus entry molecule and add antigens that block HSV-2 immune evasion. HSV-2 glycoprotein C (gC2) is an immune evasion molecule that inhibits complement. We previously reported that adding gC2 to gD2 improved vaccine efficacy compared to the efficacy of either antigen alone in mice and guinea pigs. Here we demonstrate that HSV-2 glycoprotein E (gE2) functions as an immune evasion molecule by binding the IgG Fc domain. HSV-2 gE2 is synergistic with gC2 in protecting the virus from antibody and complement neutralization. Antibodies produced by immunization with gE2 blocked gE2-mediated IgG Fc binding and cell-to-cell spread. Mice immunized with gE2 were only partially protected against HSV-2 vaginal challenge in mice; however, when gE2 was added to gC2/gD2 to form a trivalent vaccine, neutralizing antibody titers with and without complement were significantly higher than those produced by gD2 alone. Importantly, the trivalent vaccine protected the dorsal root ganglia (DRG) of 32/33 (97%) mice between days 2 and 7 postchallenge, compared with 27/33 (82%) in the gD2 group. The HSV-2 DNA copy number was significantly lower in mice immunized with the trivalent vaccine than in those immunized with gD2 alone. The extent of DRG protection using the trivalent vaccine was better than what we previously reported for gC2/gD2 immunization. Therefore, gE2 is a candidate antigen for inclusion in a multivalent subunit vaccine that attempts to block HSV-2 immune evasion. Herpes simplex virus is the most common cause of genital ulcer disease worldwide. Infection results in emotional distress for infected individuals and their partners, is life threatening for infants exposed to herpes during childbirth, and greatly increases the risk of individuals acquiring and transmitting HIV infection. A vaccine that prevents

  17. Expression of zinc transporter ZnT7 in mouse superior cervical ganglion

    USDA-ARS?s Scientific Manuscript database

    The superior cervical ganglion (SCG) neurons contain a considerable amount of zinc ions, but little is known about zinc homeostasis in the SCG. It is known that zinc transporter 7 (ZnT7, Slc30a7), a member of the Slc30 ZnT family, is involved in mobilizing zinc ions from the cytoplasm into the Golgi...

  18. Effects of scalp block with bupivacaine versus levobupivacaine on haemodynamic response to head pinning and comparative efficacies in postoperative analgesia: A randomized controlled trial.

    PubMed

    Can, Banu O; Bilgin, Hülya

    2017-04-01

    Objective This study was performed to determine the effects of scalp blocks with bupivacaine versus levobupivacaine on the haemodynamic response during craniotomy and the efficacies and analgesic requirements of these drugs postoperatively. Methods This randomized, prospective, placebo-controlled, double-blind study included 90 patients (age, 18-85 years; American Society of Anesthesiologists physical status, I or II). The patients were randomly divided into three groups: those who received 20 mL of 0.5% bupivacaine (Group B, n = 30), 20 mL of 0.5% levobupivacaine (Group L, n = 30), or saline as a placebo (Group C, n = 30). Scalp blocks were performed 5 min before head pinning. The primary outcome was the mean arterial pressure (MAP), and the secondary outcomes were the heart rate (HR), visual analogue scale (VAS) scores, and additional intraoperative and postoperative drug use. Postoperative pain was evaluated using a 10-cm VAS. Results During head pinning and incision, the MAP and HR were significantly higher in Group C. The additional drug requirement for intraoperative hypertension and tachycardia was significantly higher in Group C. There were no significant differences in MAP, HR, or VAS scores between Groups B and L. Conclusion Both bupivacaine and levobupivacaine can be effectively and safely used for scalp blocks to control haemodynamic responses and postoperative pain.

  19. Efficacy of combined hepatitis B immunoglobulin and hepatitis B vaccine in blocking father-infant transmission of hepatitis B viral infection.

    PubMed

    Cao, L-H; Liu, Z-M; Zhao, P-L; Sun, S-C; Xu, D-B; Shao, M-H; Zhang, J-D

    2015-05-04

    The aim of this study was to examine the efficacy of combined immunization of hepatitis B immunoglobulin (HBIG) and hepatitis B vaccine (HBVac) in blocking father-infant transmission of hepatitis B virus (HBV). Newborns positive at birth for blood HBV sur-face antigen (HBsAg) and/or HBV DNA were selected and immunized with HBIG combination HBVac. At 7 months, HBV markers and HBV DNA of each neonate were measured using electrochemiluminescence with the Cobas-e-411 Automatic Electrochemiluminescence Immuno-assay Analyzer and fluorescence quantitative polymerase chain reaction. Among all 7-month-old subjects, the negative conversion rates of HBV DNA and HBsAg were 48/61 (78.7%) and 19/41 (46.3%), respectively. Therefore, this study demonstrated that prompt combination injection of HBIG and HBVac can protect some of the HBV DNA- and/ or HBsAg-positive newborns from HBV.

  20. Pectoralis-serratus interfascial plane block vs thoracic paravertebral block for unilateral radical mastectomy with axillary evacuation.

    PubMed

    Hetta, Diab Fuad; Rezk, Khalid Mohammed

    2016-11-01

    The aim of this study was to evaluate the analgesic efficacy and safety of pectoralis-serratus interfascial plane block in comparison with thoracic paravertebral block for postmastectomy pain. A prospective randomized controlled study. Tertiary center, university hospital. Sixty-four adult women, American Society of Anesthesiologists physical status classes I, II, and III, scheduled for unilateral modified radical mastectomy with axillary evacuation. Patients were randomized to receive either pectoralis-serratus interfascial plane block, PS group (n=32), or thoracic paravertebral block, PV group (n=32). Twenty-four-hour morphine consumption and the time to rescue analgesic were recorded. The pain intensity evaluated by visual analog scale (VAS) score at 0, 2, 4, 8, 16, and 24hours postoperatively was also recorded. The median (interquartile range) postoperative 24-hour morphine consumption was significantly increased in PS group in comparison to PV group (PS vs PV), 20 mg (16-23 mg) vs 12 mg (10-14 mg) (P<.001). The median postoperative time to first analgesic request was significantly shorter in PS group compared to PV group (PS, 6 hours [5-7 hours], vs PV, 11 hours [9-13 hours]) (P<.001). The intensity of pain was low in both groups in VAS 0, 2, and 4hours postoperatively. However, there was significant reduction in VAS in PV group compared to PS group at 8, 16, and 24hours postoperatively. Pectoralis-serratus interfascial plane block was safe and easy to perform and decreased intensity of postmastectomy pain, but it was inferior to thoracic paravertebral block. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. A comparison of ultrasound-guided interscalene and supraclavicular blocks for post-operative analgesia after shoulder surgery.

    PubMed

    Kim, B G; Han, J U; Song, J H; Yang, C; Lee, B W; Baek, J S

    2017-04-01

    In contrast to interscalene block, there was little information regarding the analgesic efficacy of supraclavicular block for shoulder surgery. This study aimed to compare the analgesic efficacy and side effects of interscalene and supraclavicular blocks for shoulder surgery. Patients scheduled for shoulder surgery were assigned to receive either ultrasound-guided interscalene (n = 25) or supraclavicular block (n = 24) with 20 ml of 0.375% ropivacaine. We assessed the duration of post-operative analgesia as a primary outcome and pain scores, supplemental analgesia, diaphragmatic excursion, motor block, fingertip numbness, side effects, and patient satisfaction as secondary outcomes. The duration of post-operative analgesia was not statistically different between groups: 868 (800-1440) min for supraclavicular block vs. 800 (731-922) min for interscalene block (median difference -85 min, 95% CI, -283 to 3 min, P = 0.095). The incidence of diaphragmatic paresis was significantly lower in the supraclavicular block group compared with that in the interscalene block group, both at 30 min after the block (66.7% vs. 92%, P = 0.021) and in the post-anaesthesia care unit (62.5% vs. 92%, P = 0.024). Motor block was higher in the supraclavicular block group in the post-anaesthesia care unit, however, not at 24 h. Other secondary outcomes were similar for both groups. This study showed no statistically significant difference in the duration of post-operative analgesia between the supraclavicular and interscalene blocks. However, the supraclavicular block was associated with a lower incidence of diaphragmatic paresis compared with that of the interscalene block after shoulder surgery. © 2017 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  2. Chemokine CXCL13 mediates orofacial neuropathic pain via CXCR5/ERK pathway in the trigeminal ganglion of mice.

    PubMed

    Zhang, Qian; Cao, De-Li; Zhang, Zhi-Jun; Jiang, Bao-Chun; Gao, Yong-Jing

    2016-07-11

    Trigeminal nerve damage-induced neuropathic pain is a severely debilitating chronic orofacial pain syndrome. Spinal chemokine CXCL13 and its receptor CXCR5 were recently demonstrated to play a pivotal role in the pathogenesis of spinal nerve ligation-induced neuropathic pain. Whether and how CXCL13/CXCR5 in the trigeminal ganglion (TG) mediates orofacial pain are unknown. The partial infraorbital nerve ligation (pIONL) was used to induce trigeminal neuropathic pain in mice. The expression of ATF3, CXCL13, CXCR5, and phosphorylated extracellular signal-regulated kinase (pERK) in the TG was detected by immunofluorescence staining and western blot. The effect of shRNA targeting on CXCL13 or CXCR5 on pain hypersensitivity was checked by behavioral testing. pIONL induced persistent mechanical allodynia and increased the expression of ATF3, CXCL13, and CXCR5 in the TG. Inhibition of CXCL13 or CXCR5 by shRNA lentivirus attenuated pIONL-induced mechanical allodynia. Additionally, pIONL-induced neuropathic pain and the activation of ERK in the TG were reduced in Cxcr5 (-/-) mice. Furthermore, MEK inhibitor (PD98059) attenuated mechanical allodynia and reduced TNF-α and IL-1β upregulation induced by pIONL. TNF-α inhibitor (Etanercept) and IL-1β inhibitor (Diacerein) attenuated pIONL-induced orofacial pain. Finally, intra-TG injection of CXCL13 induced mechanical allodynia, increased the activation of ERK and the production of TNF-α and IL-1β in the TG of WT mice, but not in Cxcr5 (-/-) mice. Pretreatment with PD98059, Etanercept, or Diacerein partially blocked CXCL13-induced mechanical allodynia, and PD98059 also reduced CXCL13-induced TNF-α and IL-1β upregulation. CXCL13 and CXCR5 contribute to orofacial pain via ERK-mediated proinflammatory cytokines production. Targeting CXCL13/CXCR5/ERK/TNF-α and IL-1β pathway in the trigeminal ganglion may offer effective treatment for orofacial neuropathic pain.

  3. Temporal Evaluation of Neurosensory Complications After Mandibular Third Molar Extraction: Current Problems for Diagnosis and Treatment.

    PubMed

    Akashi, Masaya; Hiraoka, Yujiro; Hasegawa, Takumi; Komori, Takahide

    2016-01-01

    This retrospective study aimed to report the incidence of neurosensory complications after third molar extraction and also to identify current problems and discuss appropriate management of these complications. Patients who underwent extraction of deeply impacted mandibular third molars under general anesthesia were included. The following epidemiological data were retrospectively gathered from medical charts: type of neurosensory complication, treatment for complication, and outcome. A total 369 mandibular third molars were extracted in 210 patients under general anesthesia during this study period. Thirty-one of the 369 teeth (8.4%) in 31 patients had neurosensory complications during the first postoperative week resulting from inferior alveolar nerve damage. Neurosensory complications lasting from 1 to 3 months postoperatively included 17 cases of hypoesthesia and 8 of dysesthesia in 19 patients. Five cases of hypoesthesia and 4 of dysesthesia in 5 patients persisted over 1 year postoperatively. Sixteen of 369 teeth (4.3%) in 16 patients had persistent neurosensory complications after third molar extraction under general anesthesia. Stellate ganglion block was performed in 4 patients. Early initiation of stellate ganglion block (within 2 weeks postoperatively) produced better outcomes than late stellate ganglion block (over 6 months postoperatively). Refractory neurosensory complications after third molar extraction often combine both hypoesthesia and dysesthesia. Current problems in diagnosis and treatment included delayed detection of dysesthesia and the lack of uniform timing of stellate ganglion block. In the future, routinely inquiring about dysesthesia and promptly providing affected patients with information about stellate ganglion block might produce better outcomes.

  4. Temporal Evaluation of Neurosensory Complications After Mandibular Third Molar Extraction: Current Problems for Diagnosis and Treatment

    PubMed Central

    Akashi, Masaya; Hiraoka, Yujiro; Hasegawa, Takumi; Komori, Takahide

    2016-01-01

    Objective: This retrospective study aimed to report the incidence of neurosensory complications after third molar extraction and also to identify current problems and discuss appropriate management of these complications. Method: Patients who underwent extraction of deeply impacted mandibular third molars under general anesthesia were included. The following epidemiological data were retrospectively gathered from medical charts: type of neurosensory complication, treatment for complication, and outcome. Results: A total 369 mandibular third molars were extracted in 210 patients under general anesthesia during this study period. Thirty-one of the 369 teeth (8.4%) in 31 patients had neurosensory complications during the first postoperative week resulting from inferior alveolar nerve damage. Neurosensory complications lasting from 1 to 3 months postoperatively included 17 cases of hypoesthesia and 8 of dysesthesia in 19 patients. Five cases of hypoesthesia and 4 of dysesthesia in 5 patients persisted over 1 year postoperatively. Sixteen of 369 teeth (4.3%) in 16 patients had persistent neurosensory complications after third molar extraction under general anesthesia. Stellate ganglion block was performed in 4 patients. Early initiation of stellate ganglion block (within 2 weeks postoperatively) produced better outcomes than late stellate ganglion block (over 6 months postoperatively). Conclusion: Refractory neurosensory complications after third molar extraction often combine both hypoesthesia and dysesthesia. Current problems in diagnosis and treatment included delayed detection of dysesthesia and the lack of uniform timing of stellate ganglion block. In the future, routinely inquiring about dysesthesia and promptly providing affected patients with information about stellate ganglion block might produce better outcomes. PMID:28217188

  5. Diagnostic Efficacy of Cell Block Immunohistochemistry, Smear Cytology, and Liquid-Based Cytology in Endoscopic Ultrasound-Guided Fine-Needle Aspiration of Pancreatic Lesions: A Single-Institution Experience

    PubMed Central

    Qin, Shan-yu; Zhou, You; Li, Ping; Jiang, Hai-xing

    2014-01-01

    Background The diagnostic efficiency of endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA) cytology varies widely depending on the treatment method of the specimens. The present study aimed to evaluate the diagnostic efficacy of cell block (CB) immunohistochemistry, smear cytology (SC), and liquid-based cytology (LBC) in patients with pancreatic lesions without consulting an on-site cytopathologist. Methods This study prospectively enrolled 72 patients with pancreatic lesions. The EUS-FNA specimens were examined by SC, LBC, and CB immunohistochemistry. The diagnostic efficacy of the 3 methods was then compared. Patients’ final diagnosis was confirmed by surgical resection specimens, diagnostic imaging, and clinical follow-up. Results Our results included 60 malignant and 12 benign pancreatic lesions. The diagnostic sensitivity (90%), negative predictive value (66.7%), and accuracy (91.7%) of CB immunohistochemistry were significantly higher than those of SC (70.0%, 30.0%, and 75.0%, respectively) and LBC (73.3%, 31.6%, and 77.8%, respectively) (all P<0.05). The combination of CB and SC, or CB and LBC, did not significantly increase the efficacy compared to CB immunohistochemistry alone. Conclusion Our findings suggest that in the absence of an on-site cytopathologist, CB immunohistochemistry on EUS-FNA specimens offers a higher diagnostic efficacy in patients with pancreatic lesions than does SC and LBC. PMID:25259861

  6. Novel technique of abdominal wall nerve block for laparoscopic colostomy: Rectus sheath block with transperitoneal approach.

    PubMed

    Nagata, Jun; Watanabe, Jun; Sawatsubashi, Yusuke; Akiyama, Masaki; Arase, Koichi; Minagawa, Noritaka; Torigoe, Takayuki; Hamada, Kotaro; Nakayama, Yoshifumi; Hirata, Keiji

    2017-08-27

    A 62-year-old man who had acute rectal obstruction due to a large rectal cancer is presented. He underwent emergency laparoscopic colostomy. We used the laparoscopic puncture needle to inject analgesia with the novel transperitoneal approach. In this procedure, both ultrasound and laparoscopic images assisted with the accurate injection of analgesic to the correct layer. The combination of laparoscopic visualization and ultrasound imaging ensured infiltration of analgesic into the correct layer without causing damage to the bowel. Twenty-four hours postoperatively, the patient's pain intensity as assessed by the numeric rating scale was 0-1 during coughing, and a continuous intravenous analgesic was not needed. Colostomy is often necessary in colon obstruction. Epidural anesthesia for postoperative pain cannot be used in patients with a coagulation disorder. We report the use of a novel laparoscopic rectus sheath block for colostomy. There has been no literature described about the nerve block with transperitoneal approach. The laparoscopic rectus sheath block was performed safely and had enough analgesic efficacy for postoperative pain. This technique could be considered as an optional anesthetic regimen in acute situations.

  7. Functional Pattern of Increasing Concentrations of Brain-Derived Neurotrophic Factor in Spiral Ganglion: Implications for Research on Cochlear Implants.

    PubMed

    Ramku, Emina; Ramku, Refik; Spanca, Dugagjin; Zhjeqi, Valbona

    2017-04-15

    As previously various studies have suggested application of brain-derived neurotrophic factor (BDNF) may be considered as a promising future therapy for hearing deficits, in particular for the improvement of cochlear neurone loss during cochlear implantation. The present study's aim was to establish the upper threshold of the concentration of BDNF in Naval Medical Research Institute (NMRI) mice spiral ganglion outgrowth. Spiral ganglion explants were prepared from post-natal day 4 (p4) (NMRI) mice of both sexes under the approval and guidelines of the regional council of Hearing Research Institute Tubingen. Spiral ganglion explants were cultured at postnatal days 4 in the presence of different concentrations of BDNF as described under methods. We chose an age of postnatal day (P4) and concentrations of BDNF 0; 6; 12.5; 25 and 50 ƞg/ml. Averaged neurite outgrowth is measured in 4 different cultures that were treated with different concentrations. Results show that with increasing concentrations of BDNF, the neurite density increases. The present finding show evidence that BDNF has a clear incremental effect on the number of neurites of spiral ganglia in the prehearing organ, but less on the neurite length. The upper threshold of exogenous BNDF concentration on spiral ganglion explant is 25 ƞg/ml. This means that concentration beyond this level has no further incremental impact. Therefore our suggestion for hydrogel concentration in NMRA mice in future research should be 25 ƞg/ml.

  8. Comparative expression analysis of POU4F1, POU4F2 and ISL1 in developing mouse cochleovestibular ganglion neurons

    PubMed Central

    Deng, Min; Yang, Hua; Xie, Xiaoling; Liang, Guoqing; Gan, Lin

    2014-01-01

    POU-homeodomain and LIM-homeodomain transcription factors are expressed in developing projection neurons within retina, inner ear, dorsal root ganglion, and trigeminal ganglion, and play synergistic roles in their differentiation and survival. Here, using immunohistochemistry, we present a comparative analysis of the spatiotemporal expression pattern of POU4F1, POU4F2, and ISL1 during the development of cochleovestibular ganglion (CVG) neurons in mouse inner ear. At early stages, when otic neurons are first detected in the otic epithelium (OE) and migrate into periotic mesenchyme to form the CVG, POU4F1 and ISL1 are co-expressed in a majority of the delaminated CVG neurons, which are marked by NEUROD1 expression, but POU4F1 is absent in the otic epithelium. The onset of POU4F2 expression starts after that of POU4F1 and ISL1, and is observed in the NEUROD1-negative, post-mitotic CVG neurons. When the CVG neurons innervate the vestibular and cochlear sensory organs, the expression of POU4F1, POU4F2, and ISL1 continues in both vestibular and spiral ganglion cells. Later in development, POU4F1 expression becomes down-regulated in a majority of spiral ganglion (SG) neurons and more neurons express POU4F2 expression while ISL1 expression is maintained. The differential as well as overlapping expression of POU4F1, POU4F2, and ISL1 combined with previous studies suggests possible functional interaction and regulatory relationship of these transcription factors in the development of inner ear neurons. PMID:24709358

  9. Expression and Function of System N Glutamine Transporters (SN1/SN2 or SNAT3/SNAT5) in Retinal Ganglion Cells

    PubMed Central

    Umapathy, Nagavedi S.; Dun, Ying; Martin, Pamela M.; Duplantier, Jennifer N.; Roon, Penny; Prasad, Puttur; Smith, Sylvia B.; Ganapathy, Vadivel

    2008-01-01

    Purpose Glutamine transport is essential for the glutamate-glutamine cycle, which occurs between neurons and glia. System N, consisting of SN1 (SNAT3) and SN2 (SNAT5), is the principal mediator of glutamine transport in retinal Müller cells. Mediators of glutamine transport in retinal ganglion cells were investigated. Methods The relative contributions of various transport systems for glutamine uptake (systems N, A, L, y+L, ASCT, and ATB0,+) were examined in RGC-5 cells based on differential features of the individual transport systems. mRNA for the genes encoding members of these transport systems were analyzed by RT-PCR. Based on these data, SN1 and SN2 were analyzed in mouse retina, RGC-5 cells, and primary mouse ganglion cells (GCs) by in situ hybridization (ISH), immunofluorescence (IF), and Western blotting. Results Three transport systems—N, A, and L—participated in glutamine uptake in RGC-5 cells. System N was the principal contributor; systems A and L contributed considerably less. ISH and IF revealed SN1 and SN2 expression in the ganglion, inner nuclear, and photoreceptor cell layers. SN1 and SN2 colocalized with the ganglion cell marker Thy 1.2 and with the Müller cell marker vimentin, confirming their presence in both retinal cell types. SN1 and SN2 proteins were detected in primary mouse GCs. Conclusions These findings suggest that in addition to its role in glutamine uptake in retinal glial cells, system N contributes significantly to glutamine uptake in ganglion cells and, hence, contributes to the retinal glutamate-glutamine cycle. PMID:18689705

  10. The Three-Dimensional Culture System with Matrigel and Neurotrophic Factors Preserves the Structure and Function of Spiral Ganglion Neuron In Vitro.

    PubMed

    Sun, Gaoying; Liu, Wenwen; Fan, Zhaomin; Zhang, Daogong; Han, Yuechen; Xu, Lei; Qi, Jieyu; Zhang, Shasha; Gao, Bradley T; Bai, Xiaohui; Li, Jianfeng; Chai, Renjie; Wang, Haibo

    2016-01-01

    Whole organ culture of the spiral ganglion region is a resourceful model system facilitating manipulation and analysis of live sprial ganglion neurons (SGNs). Three-dimensional (3D) cultures have been demonstrated to have many biomedical applications, but the effect of 3D culture in maintaining the SGNs structure and function in explant culture remains uninvestigated. In this study, we used the matrigel to encapsulate the spiral ganglion region isolated from neonatal mice. First, we optimized the matrigel concentration for the 3D culture system and found the 3D culture system protected the SGNs against apoptosis, preserved the structure of spiral ganglion region, and promoted the sprouting and outgrowth of SGNs neurites. Next, we found the 3D culture system promoted growth cone growth as evidenced by a higher average number and a longer average length of filopodia and a larger growth cone area. 3D culture system also significantly elevated the synapse density of SGNs. Last, we found that the 3D culture system combined with neurotrophic factors had accumulated effects in promoting the neurites outgrowth compared with 3D culture or NFs treatment only groups. Together, we conclude that the 3D culture system preserves the structure and function of SGN in explant culture.

  11. Neuroprotective efficacy of aminopropyl carbazoles in a mouse model of Parkinson disease.

    PubMed

    De Jesús-Cortés, Héctor; Xu, Pin; Drawbridge, Jordan; Estill, Sandi Jo; Huntington, Paula; Tran, Stephanie; Britt, Jeremiah; Tesla, Rachel; Morlock, Lorraine; Naidoo, Jacinth; Melito, Lisa M; Wang, Gelin; Williams, Noelle S; Ready, Joseph M; McKnight, Steven L; Pieper, Andrew A

    2012-10-16

    We previously reported the discovery of P7C3, an aminopropyl carbazole having proneurogenic and neuroprotective properties in newborn neural precursor cells of the dentate gyrus. Here, we provide evidence that P7C3 also protects mature neurons in brain regions outside of the hippocampus. P7C3 blocks 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-mediated cell death of dopaminergic neurons in the substantia nigra of adult mice, a model of Parkinson disease (PD). Dose-response studies show that the P7C3 analog P7C3A20 blocks cell death with even greater potency and efficacy, which parallels the relative potency and efficacy of these agents in blocking apoptosis of newborn neural precursor cells of the dentate gyrus. P7C3 and P7C3A20 display similar relative effects in blocking 1-methyl-4-phenylpyridinium (MPP(+))-mediated death of dopaminergic neurons in Caenorhabditis elegans, as well as in preserving C. elegans mobility following MPP(+) exposure. Dimebon, an antihistaminergic drug that is weakly proneurogenic and neuroprotective in the dentate gyrus, confers no protection in either the mouse or the worm models of PD. We further demonstrate that the hippocampal proneurogenic efficacy of eight additional analogs of P7C3 correlates with their protective efficacy in MPTP-mediated neurotoxicity. In vivo screening of P7C3 analogs for proneurogenic efficacy in the hippocampus may thus provide a reliable means of predicting neuroprotective efficacy. We propose that the chemical scaffold represented by P7C3 and P7C3A20 provides a basis for optimizing and advancing pharmacologic agents for the treatment of patients with PD.

  12. Neuroprotective efficacy of aminopropyl carbazoles in a mouse model of Parkinson disease

    PubMed Central

    De Jesús-Cortés, Héctor; Xu, Pin; Drawbridge, Jordan; Estill, Sandi Jo; Huntington, Paula; Tran, Stephanie; Britt, Jeremiah; Tesla, Rachel; Morlock, Lorraine; Naidoo, Jacinth; Melito, Lisa M.; Wang, Gelin; Williams, Noelle S.; Ready, Joseph M.; McKnight, Steven L.; Pieper, Andrew A.

    2012-01-01

    We previously reported the discovery of P7C3, an aminopropyl carbazole having proneurogenic and neuroprotective properties in newborn neural precursor cells of the dentate gyrus. Here, we provide evidence that P7C3 also protects mature neurons in brain regions outside of the hippocampus. P7C3 blocks 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-mediated cell death of dopaminergic neurons in the substantia nigra of adult mice, a model of Parkinson disease (PD). Dose–response studies show that the P7C3 analog P7C3A20 blocks cell death with even greater potency and efficacy, which parallels the relative potency and efficacy of these agents in blocking apoptosis of newborn neural precursor cells of the dentate gyrus. P7C3 and P7C3A20 display similar relative effects in blocking 1-methyl-4-phenylpyridinium (MPP+)-mediated death of dopaminergic neurons in Caenorhabditis elegans, as well as in preserving C. elegans mobility following MPP+ exposure. Dimebon, an antihistaminergic drug that is weakly proneurogenic and neuroprotective in the dentate gyrus, confers no protection in either the mouse or the worm models of PD. We further demonstrate that the hippocampal proneurogenic efficacy of eight additional analogs of P7C3 correlates with their protective efficacy in MPTP-mediated neurotoxicity. In vivo screening of P7C3 analogs for proneurogenic efficacy in the hippocampus may thus provide a reliable means of predicting neuroprotective efficacy. We propose that the chemical scaffold represented by P7C3 and P7C3A20 provides a basis for optimizing and advancing pharmacologic agents for the treatment of patients with PD. PMID:23027934

  13. Combined application of BDNF to the eye and brain enhances ganglion cell survival and function in the cat after optic nerve injury.

    PubMed

    Weber, Arthur J; Viswanáthan, Suresh; Ramanathan, Chidambaram; Harman, Christine D

    2010-01-01

    To determine whether application of BDNF to the eye and brain provides a greater level of neuroprotection after optic nerve injury than treatment of the eye alone. Retinal ganglion cell survival and pattern electroretinographic responses were compared in normal cat eyes and in eyes that received (1) a mild nerve crush and no treatment, (2) a single intravitreal injection of BDNF at the time of the nerve injury, or (3) intravitreal treatment combined with 1 to 2 weeks of continuous delivery of BDNF to the visual cortex, bilaterally. Relative to no treatment, administration of BDNF to the eye alone resulted in a significant increase in ganglion cell survival at both 1 and 2 weeks after nerve crush (1 week, 79% vs. 55%; 2 weeks, 60% vs. 31%). Combined treatment of the eye and visual cortex resulted in a modest additional increase (17%) in ganglion cell survival in the 1-week eyes, a further significant increase (55%) in the 2-week eyes, and ganglion cell survival levels for both that were comparable to normal (92%-93% survival). Pattern ERG responses for all the treated eyes were comparable to normal at 1 week after injury; however, at 2 weeks, only the responses of eyes receiving the combined BDNF treatment remained so. Although treatment of the eye alone with BDNF has a significant impact on ganglion cell survival after optic nerve injury, combined treatment of the eye and brain may represent an even more effective approach and should be considered in the development of future optic neuropathy-related neuroprotection strategies.

  14. G(o) transduces GABAB-receptor modulation of N-type calcium channels in cultured dorsal root ganglion neurons.

    PubMed

    Menon-Johansson, A S; Berrow, N; Dolphin, A C

    1993-11-01

    High-voltage-activated (HVA) calcium channel currents (IBa) were recorded from acutely replated cultured dorsal root ganglion (DRG) neurons. IBa was irreversibly inhibited by 56.9 +/- 2.7% by 1 microM omega-conotoxin-GVIA (omega-CTx-GVIA), whereas the 1,4-dihydropyridine antagonist nicardipine was ineffective. The selective gamma-aminobutyric acidB (GABAB) agonist, (-)-baclofen (50 microM), inhibited the HVA IBa by 30.7 +/- 5.4%. Prior application of omega-CTx-GVIA completely occluded inhibition of the HVA IBa by (-)-baclofen, indicating that in this preparation (-)-baclofen inhibits N-type current. To investigate which G protein subtype was involved, cells were replated in the presence of anti-G protein antisera. Under these conditions the antibodies were shown to enter the cells through transient pores created during the replating procedure. Replating DRGs in the presence of anti-G(o) antiserum, raised against the C-terminal decapeptide of the G alpha o subunit, reduced (-)-baclofen inhibition of the HVA IBa, whereas replating DRGs in the presence of the anti-Gi antiserum did not. Using anti-G alpha o antisera (1:2000) and confocal laser microscopy, G alpha o localisation was investigated in both unreplated and replated neurons. G alpha o immunoreactivity was observed at the plasma membrane, neurites, attachment plaques and perinuclear region, and was particularly pronounced at points of cell-to-cell contact. The plasma membrane G alpha o immunoreactivity was completely blocked by preincubation with the immunising G alpha o undecapeptide (1 microgram.ml-1) for 1 h at 37 degrees C. A similar treatment also blocked recognition of G alpha o in brain membranes on immunoblots.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Organ of Corti explants direct tonotopically graded morphology of spiral ganglion neurons in vitro.

    PubMed

    Smith, Felicia L; Davis, Robin L

    2016-08-01

    The spiral ganglion is a compelling model system to examine how morphological form contributes to sensory function. While the ganglion is composed mainly of a single class of type I neurons that make simple one-to-one connections with inner hair cell sensory receptors, it has an elaborate overall morphological design. Specific features, such as soma size and axon outgrowth, are graded along the spiral contour of the cochlea. To begin to understand the interplay between different regulators of neuronal morphology, we cocultured neuron explants with peripheral target tissues removed from distinct cochlear locations. Interestingly, these "hair cell microisolates" were capable of both increasing and decreasing neuronal somata size, without adversely affecting survival. Moreover, axon characteristics elaborated de novo by the primary afferents in culture were systematically regulated by the sensory endorgan. Apparent peripheral nervous system (PNS)-like and central nervous system (CNS)-like axonal profiles were established in our cocultures allowing an analysis of putative PNS/CNS axon length ratios. As predicted from the in vivo organization, PNS-like axon bundles elaborated by apical cocultures were longer than their basal counterparts and this phenotype was methodically altered when neuron explants were cocultured with microisolates from disparate cochlear regions. Thus, location-dependent signals within the organ of Corti may set the "address" of neurons within the spiral ganglion, allowing them to elaborate the appropriate tonotopically associated morphological features in order to carry out their signaling function. J. Comp. Neurol. 524:2182-2207, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  16. Macular ganglion cell imaging study: glaucoma diagnostic accuracy of spectral-domain optical coherence tomography.

    PubMed

    Jeoung, Jin Wook; Choi, Yun Jeong; Park, Ki Ho; Kim, Dong Myung

    2013-07-01

    We evaluated the diagnostic accuracy of macular ganglion cell-inner plexiform layer (GCIPL) measurements using a high-definition optical coherence tomography (Cirrus HD-OCT) ganglion cell analysis algorithm for detecting early and moderate-to-severe glaucoma. Totals of 119 normal subjects and 306 glaucoma patients (164 patients with early glaucoma and 142 with moderate-to-severe glaucoma) were enrolled from the Macular Ganglion Cell Imaging Study. Macular GCIPL, peripapillary retinal nerve fiber layer (RNFL) thickness, and optic nerve head (ONH) parameters were measured in each subject. Areas under the receiver operating characteristic curves (AUROCs) were calculated and compared. Based on the internal normative database, the sensitivity and specificity for detecting early and moderate-to-severe glaucoma were calculated. There was no statistically significant difference between the AUROCs for the best OCT parameters. For detecting early glaucoma, the sensitivity of the Cirrus GCIPL parameters ranged from 26.8% to 73.2% and that of the Cirrus RNFL parameters ranged from 6.1% to 61.6%. For the early glaucoma group, the best parameter from the GCIPL generally had a higher sensitivity than those of the RNFL and ONH parameters with comparable specificity (P < 0.05, McNemar's test). There were no significant differences between the AUROCs for Cirrus GCIPL, RNFL, and ONH parameters, indicating that these maps have similar diagnostic potentials for glaucoma. The minimum GCIPL showed better glaucoma diagnostic performance than the other parameters at comparable specificities. However, other GCIPL parameters showed performances comparable to those of the RNFL parameters.

  17. Separability of stimulus parameter encoding by on-off directionally selective rabbit retinal ganglion cells

    PubMed Central

    Nowak, Przemyslaw; Dobbins, Allan C.; Gawne, Timothy J.; Grzywacz, Norberto M.

    2011-01-01

    The ganglion cell output of the retina constitutes a bottleneck in sensory processing in that ganglion cells must encode multiple stimulus parameters in their responses. Here we investigate encoding strategies of On-Off directionally selective retinal ganglion cells (On-Off DS RGCs) in rabbits, a class of cells dedicated to representing motion. The exquisite axial discrimination of these cells to preferred vs. null direction motion is well documented: it is invariant with respect to speed, contrast, spatial configuration, spatial frequency, and motion extent. However, these cells have broad direction tuning curves and their responses also vary as a function of other parameters such as speed and contrast. In this study, we examined whether the variation in responses across multiple stimulus parameters is systematic, that is the same for all cells, and separable, such that the response to a stimulus is a product of the effects of each stimulus parameter alone. We extracellularly recorded single On-Off DS RGCs in a superfused eyecup preparation while stimulating them with moving bars. We found that spike count responses of these cells scaled as independent functions of direction, speed, and luminance. Moreover, the speed and luminance functions were common across the whole sample of cells. Based on these findings, we developed a model that accurately predicted responses of On-Off DS RGCs as products of separable functions of direction, speed, and luminance (r = 0.98; P < 0.0001). Such a multiplicatively separable encoding strategy may simplify the decoding of these cells' outputs by the higher visual centers. PMID:21325684

  18. Effects of 4-phenyl butyric acid on high glucose-induced alterations in dorsal root ganglion neurons.

    PubMed

    Sharma, Dilip; Singh, Jitendra Narain; Sharma, Shyam S

    2016-12-02

    Mechanisms and pathways involving in diabetic neuropathy are still not fully understood but can be unified by the process of overproduction of reactive oxygen species (ROS) such as superoxide, endoplasmic reticulum (ER) stress, downstream intracellular signaling pathways and their modulation. Susceptibility of dorsal root ganglion (DRG) to internal/external hyperglycemic environment stress contributes to the pathogenesis and progression of diabetic neuropathy. ER stress leads to abnormal ion channel function, gene expression, transcriptional regulation, metabolism and protein folding. 4-phenyl butyric acid (4-PBA) is a potent and selective chemical chaperone; which may inhibit ER stress. It may be hypothesized that 4-PBA could attenuate via channels in DRG in diabetic neuropathy. Effects of 4-PBA were determined by applying different parameters of oxidative stress, cell viability, apoptosis assays and channel expression in cultured DRG neurons. Hyperglycemia-induced apoptosis in the DRG neuron was inhibited by 4-PBA. Cell viability of DRG neurons was not altered by 4-PBA. Oxidative stress was significantly blocked by the 4-PBA. Sodium channel expression was not altered by the 4-PBA. Our data provide evidence that the hyperglycemia-induced alteration may be reduced by the 4-PBA without altering the sodium channel expression. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Petrosal ganglion: a more complex role than originally imagined.

    PubMed

    Retamal, Mauricio A; Reyes, Edison P; Alcayaga, Julio

    2014-01-01

    The petrosal ganglion (PG) is a peripheral sensory ganglion, composed of pseudomonopolar sensory neurons that innervate the posterior third of the tongue and the carotid sinus and body. According to their electrical properties PG neurons can be ascribed to one of two categories: (i) neurons with action potentials presenting an inflection (hump) on its repolarizing phase and (ii) neurons with fast and brisk action potentials. Although there is some correlation between the electrophysiological properties and the sensory modality of the neurons in some species, no general pattern can be easily recognized. On the other hand, petrosal neurons projecting to the carotid body are activated by several transmitters, with acetylcholine and ATP being the most conspicuous in most species. Petrosal neurons are completely surrounded by a multi-cellular sheet of glial (satellite) cells that prevents the formation of chemical or electrical synapses between neurons. Thus, PG neurons are regarded as mere wires that communicate the periphery (i.e., carotid body) and the central nervous system. However, it has been shown that in other sensory ganglia satellite glial cells and their neighboring neurons can interact, partly by the release of chemical neuro-glio transmitters. This intercellular communication can potentially modulate the excitatory status of sensory neurons and thus the afferent discharge. In this mini review, we will briefly summarize the general properties of PG neurons and the current knowledge about the glial-neuron communication in sensory neurons and how this phenomenon could be important in the chemical sensory processing generated in the carotid body.

  20. Inhibitory Effects of Honokiol on the Voltage-Gated Potassium Channels in Freshly Isolated Mouse Dorsal Root Ganglion Neurons.

    PubMed

    Sheng, Anqi; Zhang, Yan; Li, Guang; Zhang, Guangqin

    2018-02-01

    Voltage-gated potassium (K V ) currents, subdivided into rapidly inactivating A-type currents (I A ) and slowly inactivating delayed rectifier currents (I K ), play a fundamental role in modulating pain by controlling neuronal excitability. The effects of Honokiol (Hon), a natural biphenolic compound derived from Magnolia officinalis, on K V currents were investigated in freshly isolated mouse dorsal root ganglion neurons using the whole-cell patch clamp technique. Results showed that Hon inhibited I A and I K in concentration-dependent manner. The IC 50 values for block of I A and I K were 30.5 and 25.7 µM, respectively. Hon (30 µM) shifted the steady-state activation curves of I A and I K to positive potentials by 17.6 and 16.7 mV, whereas inactivation and recovery from the inactivated state of I A were unaffected. These results suggest that Hon preferentially interacts with the active states of the I A and I K channels, and has no effect on the resting state and inactivated state of the I A channel. Blockade on K + channels by Hon may contribute to its antinociceptive effect, especially anti-inflammatory pain.

  1. Signalling mechanism for somatostatin receptor 5-mediated suppression of AMPA responses in rat retinal ganglion cells.

    PubMed

    Deng, Qin-Qin; Sheng, Wen-Long; Zhang, Gong; Weng, Shi-Jun; Yang, Xiong-Li; Zhong, Yong-Mei

    2016-08-01

    Somatostatin (SRIF) is involved in a variety of physiological functions via the activation of five subtypes of specific receptors (sst1-5). Here, we investigated the effects of SRIF on AMPA receptor (AMPAR)-mediated currents (AMPA currents) in isolated rat retinal ganglion cells (GCs) using patch-clamp techniques. Immunofluorescence double labelling demonstrated the expression of sst5 in rat GCs. Consistent to this, whole cell AMPA currents of GCs were dose-dependently suppressed by SRIF, and the effect was reversed by the sst5 antagonist BIM-23056. Intracellular dialysis of GDP-β-S or pre-incubation with the Gi/o inhibitor pertussis toxin (PTX) abolished the SRIF effect. The SRIF effect was mimicked by the administration of either 8-Br-cAMP or forskolin, but was eliminated by the protein kinase A (PKA) antagonists H-89/KT5720/Rp-cAMP. Moreover, SRIF increased intracellular Ca(2+) levels and did not suppress the AMPA currents when GCs were infused with an intracellular Ca(2+)-free solution or in the presence of ryanodine receptor modulators caffeine/ryanodine. Furthermore, the SRIF effect was eliminated when the activity of calmodulin (CaM), calcineurin and protein phosphatase 1 (PP1) was blocked with W-7, FK-506 and okadaic acid, respectively. SRIF persisted to suppress the AMPA currents when cGMP-protein kinase G (PKG) and phosphatidylinositol (PI)-/phosphatidylcholine (PC)-phospholipase C (PLC) signalling pathways were blocked. In rat flat-mount retinas, SRIF suppressed AMPAR-mediated light-evoked excitatory postsynaptic currents (L-EPSCs) in GCs. We conclude that a distinct Gi/o/cAMP-PKA/ryanodine/Ca(2+)/CaM/calcineurin/PP1 signalling pathway comes into play due to the activation of sst5 to mediate the SRIF effect on GCs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Suprascapular Nerve Entrapment Caused by Protrusion of an Intraosseous Ganglion of the Glenoid into the Spinoglenoid Notch: A Rare Cause of Posterior Shoulder Pain

    PubMed Central

    Terabayashi, Nobuo; Nishimoto, Yutaka; Akiyama, Haruhiko

    2017-01-01

    We describe a case of suprascapular nerve entrapment caused by protrusion of an intraosseous ganglion of the glenoid into the spinoglenoid notch. A 47-year-old man with left shoulder pain developed an intraosseous cyst in the left glenoid, which came into contact with the suprascapular nerve. The area at which the patient experienced spontaneous shoulder pain was innervated by the suprascapular nerve, and 1% xylocaine injection into the spinoglenoid notch under ultrasonographic guidance relieved the pain. Therefore, we concluded that the protrusion of an intraosseous cyst of the glenoid into the spinoglenoid notch was a cause of the pain, and performed curettage. Consequently, the shoulder pain was resolved promptly without suprascapular nerve complications, and the cyst was histologically diagnosed as an intraosseous ganglion. This case demonstrated that the intraosseous ganglion of the glenoid was a benign lesion but could be a cause of suprascapular nerve entrapment syndrome. Curettage is a useful treatment option for a ganglion inside bone and very close to the suprascapular nerve. PMID:28620557

  3. Antiretroviral Agents Effectively Block HIV Replication after Cell-to-Cell Transfer

    PubMed Central

    Permanyer, Marc; Ballana, Ester; Ruiz, Alba; Badia, Roger; Riveira-Munoz, Eva; Gonzalo, Encarna; Clotet, Bonaventura

    2012-01-01

    Cell-to-cell transmission of HIV has been proposed as a mechanism contributing to virus escape to the action of antiretrovirals and a mode of HIV persistence during antiretroviral therapy. Here, cocultures of infected HIV-1 cells with primary CD4+ T cells or lymphoid cells were used to evaluate virus transmission and the effect of known antiretrovirals. Transfer of HIV antigen from infected to uninfected cells was resistant to the reverse transcriptase inhibitors (RTIs) zidovudine (AZT) and tenofovir, but was blocked by the attachment inhibitor IgGb12. However, quantitative measurement of viral DNA production demonstrated that all anti-HIV agents blocked virus replication with similar potency to cell-free virus infections. Cell-free and cell-associated infections were equally sensitive to inhibition of viral replication when HIV-1 long terminal repeat (LTR)-driven green fluorescent protein (GFP) expression in target cells was measured. However, detection of GFP by flow cytometry may incorrectly estimate the efficacy of antiretrovirals in cell-associated virus transmission, due to replication-independent Tat-mediated LTR transactivation as a consequence of cell-to-cell events that did not occur in short-term (48-h) cell-free virus infections. In conclusion, common markers of virus replication may not accurately correlate and measure infectivity or drug efficacy in cell-to-cell virus transmission. When accurately quantified, active drugs blocked proviral DNA and virus replication in cell-to-cell transmission, recapitulating the efficacy of antiretrovirals in cell-free virus infections and in vivo. PMID:22696642

  4. Unmasking of spiral ganglion neuron firing dynamics by membrane potential and neurotrophin-3.

    PubMed

    Crozier, Robert A; Davis, Robin L

    2014-07-16

    Type I spiral ganglion neurons have a unique role relative to other sensory afferents because, as a single population, they must convey the richness, complexity, and precision of auditory information as they shape signals transmitted to the brain. To understand better the sophistication of spiral ganglion response properties, we compared somatic whole-cell current-clamp recordings from basal and apical neurons obtained during the first 2 postnatal weeks from CBA/CaJ mice. We found that during this developmental time period neuron response properties changed from uniformly excitable to differentially plastic. Low-frequency, apical and high-frequency basal neurons at postnatal day 1 (P1)-P3 were predominantly slowly accommodating (SA), firing at low thresholds with little alteration in accommodation response mode induced by changes in resting membrane potential (RMP) or added neurotrophin-3 (NT-3). In contrast, P10-P14 apical and basal neurons were predominately rapidly accommodating (RA), had higher firing thresholds, and responded to elevation of RMP and added NT-3 by transitioning to the SA category without affecting the instantaneous firing rate. Therefore, older neurons appeared to be uniformly less excitable under baseline conditions yet displayed a previously unrecognized capacity to change response modes dynamically within a remarkably stable accommodation framework. Because the soma is interposed in the signal conduction pathway, these specializations can potentially lead to shaping and filtering of the transmitted signal. These results suggest that spiral ganglion neurons possess electrophysiological mechanisms that enable them to adapt their response properties to the characteristics of incoming stimuli and thus have the capacity to encode a wide spectrum of auditory information. Copyright © 2014 the authors 0270-6474/14/349688-15$15.00/0.

  5. Tumor necrosis factor-α stimulation of calcitonin gene-related peptide expression and secretion from rat trigeminal ganglion neurons

    PubMed Central

    Bowen, Elizabeth J.; Schmidt, Thomas W.; Firm, Christina S.; Russo, Andrew F.; Durham, Paul L.

    2006-01-01

    Expression of the neuropeptide calcitonin gene-related peptide (CGRP) in trigeminal ganglion is implicated in neurovascular headaches and temporomandibular joint disorders. Elevation of cytokines contributes to the pathology of these diseases. However, a connection between cytokines and CGRP gene expression in trigeminal ganglion nerves has not been established. We have focused on the effects of the cytokine tumor necrosis factorα (TNFα). TNFR1 receptors were found on the majority of CGRP-containing rat trigeminal ganglion neurons. Treatment of cultures with TNFα stimulated CGRP secretion. In addition, the intracellular signaling intermediate from the TNFR1 receptor, ceramide, caused a similar increase in CGRP release. TNFα caused a coordinate increase in CGRP promoter activity. TNFα treatment activated the transcription factor NF-κB, as well as the Jun N-terminal kinase (JNK) and p38 mitogen-activated protein (MAP) kinase pathways. The importance of TNFα induction of MAP kinase pathways was demonstrated by inhibiting MAP kinases with pharmacological reagents and gene transfer with an adenoviral vector encoding MAP kinase phosphatase-1 (MKP-1). We propose that selective and regulated inhibition of MAP kinases in trigeminal neurons may be therapeutically beneficial for inflammatory disorders involving elevated CGRP levels. PMID:16277606

  6. Ganglion cyst arising from the composite occipito-atlanto-axial joint cavity in a cat.

    PubMed

    Aikawa, T; Sadahiro, S; Nishimura, M; Miyazaki, Y; Shibata, M

    2014-01-01

    A four-year-old, female spayed Domestic Longhaired cat was referred for evaluation with a two month history of initial inability to jump progressing to ambulatory tetraparesis. Magnetic resonance imaging studies demonstrated a cystic lesion arising from the composite occipito-atlanto-axial joint cavity and extending to the region of the occipital bone and the axis. The lesion surrounded the spinal canal, causing moderate dorsal spinal cord compression at the atlanto-occipital joint. A dynamic myelographic study demonstrated attenuation of the dorsal contrast column at the atlanto-occipital joint when the cervical spine was positioned in extension. Partial excision of the cyst capsule by a ventral approach resulted in long-term (64 months) resolution of clinical signs. Histological evaluation was consistent with a ganglion cyst. An intra-spinal ganglion cyst arising from the composite occipito-atlanto-axial joint cavity may be considered as an uncommon differential diagnosis for cats with cervical myelopathy.

  7. Delayed-rectifier K channels contribute to contrast adaptation in mammalian retinal ganglion cells.

    PubMed

    Weick, Michael; Demb, Jonathan B

    2011-07-14

    Retinal ganglion cells adapt by reducing their sensitivity during periods of high contrast. Contrast adaptation in the firing response depends on both presynaptic and intrinsic mechanisms. Here, we investigated intrinsic mechanisms for contrast adaptation in OFF Alpha ganglion cells in the in vitro guinea pig retina. Using either visual stimulation or current injection, we show that brief depolarization evoked spiking and suppressed firing during subsequent depolarization. The suppression could be explained by Na channel inactivation, as shown in salamander cells. However, brief hyperpolarization in the physiological range (5-10 mV) also suppressed firing during subsequent depolarization. This suppression was selectively sensitive to blockers of delayed-rectifier K channels (K(DR)). In somatic membrane patches, we observed tetraethylammonium-sensitive K(DR) currents that activated near -25 mV. Recovery from inactivation occurred at potentials hyperpolarized to V(rest). Brief periods of hyperpolarization apparently remove K(DR) inactivation and thereby increase the channel pool available to suppress excitability during subsequent depolarization. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Activation of the ζ receptor 1 suppresses NMDA responses in rat retinal ganglion cells.

    PubMed

    Zhang, X-J; Liu, L-L; Jiang, S-X; Zhong, Y-M; Yang, X-L

    2011-03-17

    The sigma receptor 1 (σR1) has been shown to modulate the activity of several voltage- and ligand-gated channels. Using patch-clamp techniques in rat retinal slice preparations, we demonstrated that activation of σR1 by SKF10047 (SKF) or PRE-084 suppressed N-methyl-D-aspartate (NMDA) receptor-mediated current responses from both ON and OFF type ganglion cells (GCs), dose-dependently, and the effect could be blocked by the σR1 antagonist BD1047 or the σR antagonist haloperidol. The suppression by SKF of NMDA currents was abolished with pre-incubation of the G protein inhibitor GDP-β-S or the Gi/o activator mastoparan. We further explored the intracellular signaling pathway responsible for the SKF-induced suppression of NMDA responses. Application of either cAMP/the PKA inhibitor Rp-cAMP or cGMP/the PKG inhibitor KT5823 did not change the SKF-induced effect, suggesting the involvement of neither cAMP/PKA nor cGMP/PKG pathway. In contrast, suppression of NMDA responses by SKF was abolished by internal infusion of the phosphatidylinostiol-specific phospholipase C (PLC) inhibitor U73122, but not by the phosphatidylcholine-PLC inhibitor D609. SKF-induced suppression of NMDA responses was dependent on intracellular Ca2+ concentration ([Ca2+]i), as evidenced by the fact that the effect was abolished when [Ca2+]i was buffered with 10 mM BAPTA. The SKF effect was blocked by xestospongin-C/heparin, IP3 receptor antagonists, but unchanged by ryanodine/caffeine, ryanodine receptor modulators. Furthermore, application of protein kinase C inhibitors Bis IV and Gö6976 eliminated the SKF effect. These results suggest that the suppression of NMDA responses of rat retinal GCs caused by the activation of σR1 may be mediated by a distinct [Ca2+]i-dependent PLC-PKC pathway. This effect of SKF could help ameliorate malfunction of GCs caused by excessive stimulation of NMDA receptors under pathological conditions. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights

  9. The Gastric Ganglion of Octopus vulgaris: Preliminary Characterization of Gene- and Putative Neurochemical-Complexity, and the Effect of Aggregata octopiana Digestive Tract Infection on Gene Expression

    PubMed Central

    Baldascino, Elena; Di Cristina, Giulia; Tedesco, Perla; Hobbs, Carl; Shaw, Tanya J.; Ponte, Giovanna; Andrews, Paul L. R.

    2017-01-01

    The gastric ganglion is the largest visceral ganglion in cephalopods. It is connected to the brain and is implicated in regulation of digestive tract functions. Here we have investigated the neurochemical complexity (through in silico gene expression analysis and immunohistochemistry) of the gastric ganglion in Octopus vulgaris and tested whether the expression of a selected number of genes was influenced by the magnitude of digestive tract parasitic infection by Aggregata octopiana. Novel evidence was obtained for putative peptide and non-peptide neurotransmitters in the gastric ganglion: cephalotocin, corticotrophin releasing factor, FMRFamide, gamma amino butyric acid, 5-hydroxytryptamine, molluscan insulin-related peptide 3, peptide PRQFV-amide, and tachykinin–related peptide. Receptors for cholecystokininA and cholecystokininB, and orexin2 were also identified in this context for the first time. We report evidence for acetylcholine, dopamine, noradrenaline, octopamine, small cardioactive peptide related peptide, and receptors for cephalotocin and octopressin, confirming previous publications. The effects of Aggregata observed here extend those previously described by showing effects on the gastric ganglion; in animals with a higher level of infection, genes implicated in inflammation (NFκB, fascin, serpinB10 and the toll-like 3 receptor) increased their relative expression, but TNF-α gene expression was lower as was expression of other genes implicated in oxidative stress (i.e., superoxide dismutase, peroxiredoxin 6, and glutathione peroxidase). Elevated Aggregata levels in the octopuses corresponded to an increase in the expression of the cholecystokininA receptor and the small cardioactive peptide-related peptide. In contrast, we observed decreased relative expression of cephalotocin, dopamine β-hydroxylase, peptide PRQFV-amide, and tachykinin-related peptide genes. A discussion is provided on (i) potential roles of the various molecules in food intake

  10. KYNA analogue SZR72 modifies CFA-induced dural inflammation- regarding expression of pERK1/2 and IL-1β in the rat trigeminal ganglion.

    PubMed

    Lukács, M; Warfvinge, K; Kruse, L S; Tajti, J; Fülöp, F; Toldi, J; Vécsei, L; Edvinsson, L

    2016-12-01

    Neurogenic inflammation has for decades been considered an important part of migraine pathophysiology. In the present study, we asked the question if administration of a novel kynurenic acid analogue (SZR72), precursor of an excitotoxin antagonist and anti-inflammatory substance, can modify the neurogenic inflammatory response in the trigeminal ganglion. Inflammation in the trigeminal ganglion was induced by local dural application of Complete Freunds Adjuvant (CFA). Levels of phosphorylated MAP kinase pERK1/2 and IL-1β expression in V1 region of the trigeminal ganglion were investigated using immunohistochemistry and Western blot. Pretreatment with one dose of SZR72 abolished the CFA-induced pERK1/2 and IL-1β activation in the trigeminal ganglion. No significant change was noted in case of repeated treatment with SZR72 as compared to a single dose. This is the first study that demonstrates that one dose of KYNA analog before application of CFA can give anti-inflammatory response in a model of trigeminal activation, opening a new line for further investigations regarding possible effects of KYNA derivates.

  11. Novel Percutaneous Epicardial Autonomic Modulation in the Canine for Atrial Fibrillation: Results of an Efficacy and Safety Study

    PubMed Central

    Madhavan, Malini; Venkatachalam, K. L.; Swale, Matthew J.; DeSimone, Christopher V.; Gard, Joseph J.; Johnson, Susan B.; Suddendorf, Scott H.; Mikell, Susan B.; Ladewig, Dorothy J.; Nosbush, Toni Grabinger; Danielsen, Andrew J.; Knudson, Mark; Asirvatham, Samuel J.

    2016-01-01

    Background Endocardial ablation of atrial ganglionated plexi (GP) has been described for treatment of atrial fibrillation (AF). Our objective in this study was to develop percutaneous epicardial GP ablation in a canine model using novel energy sources and catheters. Methods Phase 1: The efficacy of several modalities to ablate the GP was tested in an open chest canine model (n=10). Phase 2: Percutaneous epicardial ablation of GP was done in 6 dogs using the most efficacious modality identified in phase 1 using 2 novel catheters. Results Phase 1: DC in varying doses [blocking (7 -12μA), electroporation (300-500μA), ablation (3000- 7500μA)], radiofrequency ablation (25–50 W), ultrasound (1.5MHz), and alcohol (2-5ml) injection were successful at 0/8, 4/12, 5/7, 3/8, 1/5 and 5/7 GP sites. DC (500–5000μA) along with alcohol irrigation was tested in phase 2. Phase 2: Percutaneous epicardial ablation of the right atrium, oblique sinus, vein of Marshall, and transverse sinus GP was successful in 5/6 dogs. One dog died of ventricular fibrillation (VF) during DC ablation at 5000 μA. Programmed stimulation induced AF in 6 dogs pre-ablation and no atrial arrhythmia in 3, flutter in 1 and AF in 1 post-ablation. Heart rate, blood pressure, effective atrial refractory period and local atrial electrogram amplitude did not change significantly post-ablation. Microscopic examination showed elimination of GP, and minimal injury to atrial myocardium. Conclusion Percutaneous epicardial ablation of GP using direct current and novel catheters is safe and feasible and may be used as an adjunct to pulmonary vein isolation in the treatment of atrial fibrillation in order to minimize additional atrial myocardial ablation. PMID:26854009

  12. Increased production of omega-3 fatty acids protects retinal ganglion cells after optic nerve injury in mice.

    PubMed

    Peng, Shanshan; Shi, Zhe; Su, Huanxing; So, Kwok-Fai; Cui, Qi

    2016-07-01

    Injury to the central nervous system causes progressive degeneration of injured axons, leading to loss of the neuronal bodies. Neuronal survival after injury is a prerequisite for successful regeneration of injured axons. In this study, we investigated the effects of increased production of omega-3 fatty acids and elevation of cAMP on retinal ganglion cell (RGC) survival and axonal regeneration after optic nerve (ON) crush injury in adult mice. We found that increased production of omega-3 fatty acids in mice enhanced RGC survival, but not axonal regeneration, over a period of 3 weeks after ON injury. cAMP elevation promoted RGC survival in wild type mice, but no significant difference in cell survival was seen in mice over-producing omega-3 fatty acids and receiving intravitreal injections of CPT-cAMP, suggesting that cAMP elevation protects RGCs after injury but does not potentiate the actions of the omega-3 fatty acids. The observed omega-3 fatty acid-mediated neuroprotection is likely achieved partially through ERK1/2 signaling as inhibition of this pathway by PD98059 hindered, but did not completely block, RGC protection. Our study thus enhances our current understanding of neural repair after CNS injury, including the visual system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Laparoscopic-guided abdominal wall nerve blocks in the pediatric population: a novel technique with comparison to ultrasound-guided blocks and local wound infiltration alone.

    PubMed

    Landmann, Alessandra; Visoiu, Mihaela; Malek, Marcus M

    2018-03-01

    Abdominal wall nerve blocks have been gaining popularity for the treatment of perioperative pain in children. Our aim was to compare a technique of surgeon-performed, laparoscopic abdominal wall nerve blocks to anesthesia-placed, ultrasound-guided abdominal wall nerve blocks and the current standard of local wound infiltration. After institutional review board approval was obtained, a retrospective chart review was performed of pediatric patients treated at a single institution during a 2-year period. Statistics were calculated using analysis of variance with post-hoc Bonferonni t tests for pair-wise comparisons. Included in this study were 380 patients who received ultrasound-guided abdominal wall nerve blocks (n = 125), laparoscopic-guided abdominal wall nerve blocks (n = 88), and local wound infiltration (n = 117). Groups were well matched for age, sex, and weight. There was no significant difference in pain scores within the first 8 hours or narcotic usage between groups. Local wound infiltration demonstrated the shortest overall time required to perform (P < .0001). Patients who received a surgeon-performed abdominal wall nerve block demonstrated a shorter duration of hospital stay when compared to the other groups (P = .02). Our study has demonstrated that laparoscopic-guided abdominal wall nerve blocks show similar efficacy to ultrasound-guided nerve blocks performed by pain management physicians without increasing time in the operating room. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Utility of Cytospin and Cell block Technology in Evaluation of Body Fluids and Urine Samples: A Comparative Study.

    PubMed

    Qamar, Irmeen; Rehman, Suhailur; Mehdi, Ghazala; Maheshwari, Veena; Ansari, Hena A; Chauhan, Sunanda

    2018-01-01

    Cytologic examination of body fluids commonly involves the use of direct or sediment smears, cytocentrifuge preparations, membrane filter preparations, or cell block sections. Cytospin and cell block techniques are extremely useful in improving cell yield of thin serous effusions and urine samples, and ensure high diagnostic efficacy. We studied cytospin preparations and cell block sections prepared from 180 samples of body fluids and urine samples to compare the relative efficiency of cell retrieval, preservation of cell morphology, ease of application of special stains, and diagnostic efficacy. Samples were collected and processed to prepare cytospin smears and cell block sections. We observed that overall, cell yield and preservation of individual cell morphology were better in cytospin preparations as compared to cell blocks, while preservation of architectural pattern was better in cell block sections. The number of suspicious cases also decreased on cell block sections, with increased detection of malignancy. It was difficult to prepare cell blocks from urine samples due to low cellularity. Cytospin technology is a quick, efficient, and cost-effective method of increasing cell yield in hypocellular samples, with better preservation of cell morphology. Cell blocks are better prepared from high cellularity fluids; however, tissue architecture is better studied, with improved rate of diagnosis and decrease in ambiguous results. Numerous sections can be prepared from a small amount of material. Special stains and immunochemical stains can be easily applied to cell blocks. It also provides a source of archival material.

  15. Tumor necrosis factor-alpha stimulation of calcitonin gene-related peptide expression and secretion from rat trigeminal ganglion neurons.

    PubMed

    Bowen, Elizabeth J; Schmidt, Thomas W; Firm, Christina S; Russo, Andrew F; Durham, Paul L

    2006-01-01

    Expression of the neuropeptide calcitonin gene-related peptide (CGRP) in trigeminal ganglion is implicated in neurovascular headaches and temporomandibular joint disorders. Elevation of cytokines contributes to the pathology of these diseases. However, a connection between cytokines and CGRP gene expression in trigeminal ganglion nerves has not been established. We have focused on the effects of the cytokine tumor necrosis factor-alpha (TNF-alpha). TNFR1 receptors were found on the majority of CGRP-containing rat trigeminal ganglion neurons. Treatment of cultures with TNF-alpha stimulated CGRP secretion. In addition, the intracellular signaling intermediate from the TNFR1 receptor, ceramide, caused a similar increase in CGRP release. TNF-alpha caused a coordinate increase in CGRP promoter activity. TNF-alpha treatment activated the transcription factor NF-kappaB, as well as the Jun N-terminal kinase (JNK) and p38 mitogen-activated protein (MAP) kinase pathways. The importance of TNF-alpha induction of MAP kinase pathways was demonstrated by inhibiting MAP kinases with pharmacological reagents and gene transfer with an adenoviral vector encoding MAP kinase phosphatase-1 (MKP-1). We propose that selective and regulated inhibition of MAP kinases in trigeminal neurons may be therapeutically beneficial for inflammatory disorders involving elevated CGRP levels.

  16. Anesthetic efficacy of X-tip intraosseous injection using 2% lidocaine with 1:80,000 epinephrine in patients with irreversible pulpitis after inferior alveolar nerve block: A clinical study.

    PubMed

    Verma, Pushpendra Kumar; Srivastava, Ruchi; Ramesh, Kumar M

    2013-03-01

    The inferior alveolar nerve block (IAN) is the most frequently used mandibular injection technique for achieving local anesthesia in endodontics. Supplemental injections are essential to overcome failure of IAN block in patients with irreversible pulpitis. To evaluate the anesthetic efficacy of X-tip intraosseous injection (2% lidocaine with 1:80,000 epinephrine) in patients with irreversible pulpitis in mandibular posterior teeth when conventional IAN block failed. Thirty emergency patients diagnosed with irreversible pulpitis in a mandibular posterior tooth received an IAN block and experienced moderate to severe pain on endodontic access or initial instrumentation. The X-tip system was used to administer 1.8 ml of 2% lidocaine with 1:80,000 epinephrine. The success of X-tip intraosseous injection was defined as none or mild pain (Heft-Parker visual analogue scale ratings < 54 mm) on endodontic access or initial instrumentation. Ninety-three percent of X-tip injections were successful and 7% were unsuccessful. Discomfort rating for X-tip perforation: 96.66% patients reported none or mild pain, whereas 3.34% reported moderate to severe pain. For discomfort rating during solution deposition, 74.99% patients reported none or mild pain and 24.92% reported moderate to severe pain. Ninety-six percent of the patients had subjective/objective increase in heart rate. Supplemental X-tip intraosseous injection using 2% lignocaine with 1:80,000 epinephrine has a statistically significant influence in achieving pulpal anesthesia in patients with irreversible pulpitis.

  17. Anesthetic efficacy of X-tip intraosseous injection using 2% lidocaine with 1:80,000 epinephrine in patients with irreversible pulpitis after inferior alveolar nerve block: A clinical study

    PubMed Central

    Verma, Pushpendra Kumar; Srivastava, Ruchi; Ramesh, Kumar M

    2013-01-01

    Introduction: The inferior alveolar nerve block (IAN) is the most frequently used mandibular injection technique for achieving local anesthesia in endodontics. Supplemental injections are essential to overcome failure of IAN block in patients with irreversible pulpitis. Aim: To evaluate the anesthetic efficacy of X-tip intraosseous injection (2% lidocaine with 1:80,000 epinephrine) in patients with irreversible pulpitis in mandibular posterior teeth when conventional IAN block failed. Materials and Methods: Thirty emergency patients diagnosed with irreversible pulpitis in a mandibular posterior tooth received an IAN block and experienced moderate to severe pain on endodontic access or initial instrumentation. The X-tip system was used to administer 1.8 ml of 2% lidocaine with 1:80,000 epinephrine. The success of X-tip intraosseous injection was defined as none or mild pain (Heft-Parker visual analogue scale ratings < 54 mm) on endodontic access or initial instrumentation. Results: Ninety-three percent of X-tip injections were successful and 7% were unsuccessful. Discomfort rating for X-tip perforation: 96.66% patients reported none or mild pain, whereas 3.34% reported moderate to severe pain. For discomfort rating during solution deposition, 74.99% patients reported none or mild pain and 24.92% reported moderate to severe pain. Ninety-six percent of the patients had subjective/objective increase in heart rate. Conclusions: Supplemental X-tip intraosseous injection using 2% lignocaine with 1:80,000 epinephrine has a statistically significant influence in achieving pulpal anesthesia in patients with irreversible pulpitis. PMID:23716971

  18. Orexin-A potentiates L-type calcium/barium currents in rat retinal ganglion cells.

    PubMed

    Liu, F; Weng, S-J; Yang, X-L; Zhong, Y-M

    2015-10-01

    Two neuropeptides, orexin-A and orexin-B (also called hypocretin-1 and -2), have been implicated in sleep/wake regulation, feeding behaviors via the activation of two subtypes of G-protein-coupled receptors: orexin 1 and orexin 2 receptors (OX1R and OX2R). While the expression of orexins and orexin receptors is immunohistochemically revealed in retinal neurons, the function of these peptides in the retina is largely unknown. Using whole-cell patch-clamp recordings in rat retinal slices, we demonstrated that orexin-A increased L-type-like barium currents (IBa,L) in ganglion cells (GCs), and the effect was blocked by the selective OX1R antagonist SB334867, but not by the OX2R antagonist TCS OX2 29. The orexin-A effect was abolished by intracellular dialysis of GDP-β-S/GPAnt-2A, a Gq protein inhibitor, suggesting the mediation of Gq. Additionally, during internal dialysis of the phosphatidylinositol (PI)-phospholipase C (PLC) inhibitor U73122, orexin-A did not change the IBa,L of GCs, whereas the orexin-A effect persisted in the presence of the phosphatidylcholine (PC)-PLC inhibitor D609. The orexin-A-induced potentiation was not seen with internal infusion of Ca(2+)-free solution or when inositol 1,4,5-trisphosphate (IP3)-sensitive Ca(2+) release from intracellular stores was blocked by heparin/xestospongins-C. Moreover, the orexin-A effect was mimicked by the protein kinase C (PKC) activator phorbol 12-myristate 13-acetate, but was eliminated when PKC was inhibited by bisindolylmaleimide IV (Bis-IV)/Gö6976. Neither adenosine 3',5'-cyclic monophosphate (cAMP)-protein kinase A (PKA) nor guanosine 3',5'-cyclic monophosphate (cGMP)-protein kinase G (PKG) signaling pathway was likely involved, as orexin-A persisted to potentiate the IBa,L of GCs no matter these two pathways were activated or inhibited. These results suggest that, by activating OX1R, orexin-A potentiates the IBa,L of rat GCs through a distinct Gq/PI-PLC/IP3/Ca(2+)/PKC signaling pathway. Copyright

  19. Reliable, responsive pacemaking and pattern generation with minimal cell numbers: the crustacean cardiac ganglion.

    PubMed

    Cooke, Ian M

    2002-04-01

    Investigations of the electrophysiology of crustacean cardiac ganglia over the last half-century are reviewed for their contributions to elucidating the cellular mechanisms and interactions by which a small (as few as nine cells) neuronal network accomplishes extremely reliable, rhythmical, patterned activation of muscular activity-in this case, beating of the neurogenic heart. This ganglion is thus a model for pacemaking and central pattern generation. Favorable anatomy has permitted voltage- and space-clamp analyses of voltage-dependent ionic currents that endow each neuron with the intrinsic ability to respond with rhythmical, patterned impulse activity to nonpatterned stimulation. The crustacean soma and initial axon segment do not support impulse generation but integrate input from stretch-sensitive dendrites and electrotonic and chemically mediated synapses on axonal processes in neuropils. The soma and initial axon produce a depolarization-activated, calcium-mediated, sustained potential, the "driver potential," so-called because it drives a train of impulses at the "trigger zone" of the axon. Extreme reliability results from redundancy and the electrotonic coupling and synaptic interaction among all the neurons. Complex modulation by central nervous system inputs and by neurohormones to adjust heart pumping to physiological demands has long been demonstrated, but much remains to be learned about the cellular and molecular mechanisms of action. The continuing relevance of the crustacean cardiac ganglion as a relatively simple model for pacemaking and central pattern generation is confirmed by the rapidly widening documentation of intrinsic potentials such as plateau potentials in neurons of all major animal groups. The suite of ionic currents (a slowly inactivating calcium current and various potassium currents, with variations) observed for the crustacean cardiac ganglion have been implicated in or proven to underlie a majority of the intrinsic potentials

  20. Prevention of Excitotoxicity in Primary Retinal Ganglion Cells by (+)-Pentazocine, a Sigma Receptor-1-Specific Ligand

    PubMed Central

    Dun, Ying; Thangaraju, Muthusamy; Prasad, Puttur; Ganapathy, Vadivel; Smith, Sylvia B.

    2013-01-01

    Purpose σRs are non-opioid, non-phencyclidine binding sites with robust neuroprotective properties. Previously, we induced death in the RGC-5 cell line using very high concentrations (1 mM) of the excitatory amino acids glutamate (Glu) and homocysteine (Hcy) and demonstrated that the σR1 ligand (+)-pentazocine ((+)-PTZ) could protect against cell death. The purpose of the present study was to establish a physiologically relevant paradigm for testing the neuroprotective effect of (+)-PTZ in retinal ganglion cells. Methods Primary ganglion cells (1°GCs) were isolated by immunopanning from retinas of 1-day-old mice, maintained in culture for 3 days and then exposed to 10, 20, 25 or 50 µM Glu or 10, 25, 50 or 100 µM Hcy for 6 or 18 h in the presence or absence of (+)-PTZ (0.5, 1, 3 µM). Cell viability was measured using the Live/Dead and ApopTag Fluorescein In Situ Assays. Expression of σR1 was assessed by immunocytochemistry, RT-PCR and western blotting. Morphological appearance of live ganglion cells and their processes was examined over time (0, 3, 6, 18 h) by differential interference contrast (DIC) microscopy following exposure to excitotoxins in the presence or absence of (+)-PTZ. Results 1°GCs showed robust σR1 expression. The cells are exquisitely sensitive to Glu or Hcy toxicity (6 h treatment with 25 or 50 µM Glu or 50 or 100 µM Hcy induced marked cell death). 1°GCs pre-treated 1 h with (+)-PTZ followed by 18 h co-treatment with 25 µM Glu and (+)-PTZ showed a marked decrease in cell death: (25 µM Glu alone: 50%; 25 µM Glu/0.5 µM (+)-PTZ: 38%; 25 µM Glu/1 µM (+)-PTZ: 20%; 25 µM Glu/3 µM (+)-PTZ: 18%). Similar results were obtained with Hcy. σR1 mRNA and protein levels did not change in the presence of the excitotoxins. DIC examination of cells exposed to excitotoxins revealed substantial disruption of neuronal processes; co-treatment with (+)-PTZ revealed marked preservation of these processes. The stereoselective effect of (+)-PTZ for

  1. Efficacy of transversus abdominis plane block with liposomal bupivacaine during open abdominal wall reconstruction.

    PubMed

    Fayezizadeh, Mojtaba; Majumder, Arnab; Neupane, Ruel; Elliott, Heidi L; Novitsky, Yuri W

    2016-09-01

    Transversus abdominis plane block (TAPb) is an analgesic adjunct used for abdominal surgical procedures. Liposomal bupivacaine (LB) demonstrates prolonged analgesic effects, up to 72 hours. We evaluated the analgesic efficacy of TAPb using LB for patients undergoing open abdominal wall reconstruction (AWR). Fifty patients undergoing AWR with TAPb using LB (TAP-group) were compared with a matched historical cohort undergoing AWR without TAPb (control group). Outcome measures included postoperative utilization of morphine equivalents, numerical rating scale pain scores, time to oral narcotics, and length of stay (LOS). Cohorts were matched demographically. No complications were associated with TAPb or LB. TAP-group evidenced significantly reduced narcotic requirements on operative day (9.5 mg vs 16.5 mg, P = .004), postoperative day (POD) 1 (26.7 mg vs 39.5 mg, P = .01) and POD2 (29.6 mg vs 40.7 mg, P = .047) and pain scores on operative day (5.1 vs 7.0, P <.001), POD1 (4.2 vs 5.5, P = .002), and POD2 (3.9 vs 4.8, P = .04). In addition, TAP-group demonstrated significantly shorter time to oral narcotics (2.7 days vs 4.0 days, P <.001) and median LOS (5.2 days vs 6.8 days, P = .004). TAPb with LB demonstrated significant reductions in narcotic consumption and improved pain control. TAPb allowed for earlier discontinuation of intravenous narcotics and shorter LOS. Intraoperative TAPb with LB appears to be an effective adjunct for perioperative analgesia in patients undergoing open AWR. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Efficacy of popliteal block in postoperative pain control after ankle fracture fixation: a prospective randomized study.

    PubMed

    Goldstein, Rachel Y; Montero, Nicole; Jain, Sudheer K; Egol, Kenneth A; Tejwani, Nirmal C

    2012-10-01

    To compare postoperative pain control in patients treated surgically for ankle fractures who receive popliteal blocks with those who received general anesthesia alone. Institutional Review Board approved prospective randomized study. Metropolitan tertiary-care referral center. All patients being treated with open reduction internal fixation for ankle fractures who met inclusion criteria and consented to participate were enrolled. Patients were randomized to receive either general anesthesia (GETA) or intravenous sedation and popliteal block. Patients were assessed for duration of procedure, total time in the operating room, and postoperative pain at 2, 4, 8, 12, 24, and 48 hours after surgery using a visual analog scale. Fifty-one patients agreed to participate in the study. Twenty-five patients received popliteal block, while 26 patients received GETA. There were no anesthesia-related complications. At 2, 4, and 8 hours postoperatively, patients who underwent GETA demonstrated significantly higher pain. At 12 hours, there was no significant difference between the 2 groups with regard to pain control. However, by 24 hours, those who had received popliteal blocks had significantly higher pain with no difference by 48 hours. Popliteal block provides equivalent postoperative pain control to general anesthesia alone in patients undergoing operative fixation of ankle fractures. However, patients who receive popliteal blocks do experience a significant increase in pain between 12 and 24 hours. Recognition of this "rebound pain" with early narcotic administration may allow patients to have more effective postoperative pain control.

  3. Empirical Derivation of Correction Factors for Human Spiral Ganglion Cell Nucleus and Nucleolus Count Units.

    PubMed

    Robert, Mark E; Linthicum, Fred H

    2016-01-01

    Profile count method for estimating cell number in sectioned tissue applies a correction factor for double count (resulting from transection during sectioning) of count units selected to represent the cell. For human spiral ganglion cell counts, we attempted to address apparent confusion between published correction factors for nucleus and nucleolus count units that are identical despite the role of count unit diameter in a commonly used correction factor formula. We examined a portion of human cochlea to empirically derive correction factors for the 2 count units, using 3-dimensional reconstruction software to identify double counts. The Neurotology and House Histological Temporal Bone Laboratory at University of California at Los Angeles. Using a fully sectioned and stained human temporal bone, we identified and generated digital images of sections of the modiolar region of the lower first turn of cochlea, identified count units with a light microscope, labeled them on corresponding digital sections, and used 3-dimensional reconstruction software to identify double-counted count units. For 25 consecutive sections, we determined that double-count correction factors for nucleus count unit (0.91) and nucleolus count unit (0.92) matched the published factors. We discovered that nuclei and, therefore, spiral ganglion cells were undercounted by 6.3% when using nucleolus count units. We determined that correction factors for count units must include an element for undercounting spiral ganglion cells as well as the double-count element. We recommend a correction factor of 0.91 for the nucleus count unit and 0.98 for the nucleolus count unit when using 20-µm sections. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2015.

  4. Nanoparticle optical notch filters

    NASA Astrophysics Data System (ADS)

    Kasinadhuni, Pradeep Kumar

    Developing novel light blocking products involves the design of a nanoparticle optical notch filter, working on the principle of localized surface plasmon resonance (LSPR). These light blocking products can be used in many applications. One such application is to naturally reduce migraine headaches and light sensitivity. Melanopsin ganglion cells present in the retina of the human eye, connect to the suprachiasmatic nucleus (SCN-the body's clock) in the brain, where they participate in the entrainment of the circadian rhythms. As the Melanopsin ganglion cells are involved in triggering the migraine headaches in photophobic patients, it is necessary to block the part of visible spectrum that activates these cells. It is observed from the action potential spectrum of the ganglion cells that they absorb light ranging from 450-500nm (blue-green part) of the visible spectrum with a λmax (peak sensitivity) of around 480nm (blue line). Currently prescribed for migraine patients is the FL-41 coating, which blocks a broad range of wavelengths, including wavelengths associated with melanopsin absorption. The nanoparticle optical notch filter is designed to block light only at 480nm, hence offering an effective prescription for the treatment of migraine headaches.

  5. Muscarinic receptor-mediated excitation of rat intracardiac ganglion neurons.

    PubMed

    Hirayama, Michiko; Ogata, Masanori; Kawamata, Tomoyuki; Ishibashi, Hitoshi

    2015-08-01

    Modulation of the membrane excitability of rat parasympathetic intracardiac ganglion neurons by muscarinic receptors was studied using an amphotericin B-perforated patch-clamp recording configuration. Activation of muscarinic receptors by oxotremorine-M (OxoM) depolarized the membrane, accompanied by repetitive action potentials. OxoM evoked inward currents under voltage-clamp conditions at a holding potential of -60 mV. Removal of extracellular Ca(2+) markedly increased the OxoM-induced current (IOxoM). The inward IOxoM in the absence of extracellular Ca(2+) was fully inhibited by removal of extracellular Na(+), indicating the involvement of non-selective cation channels. The IOxoM was inhibited by organic cation channel antagonists including SKF-96365 and ML-204. The IOxoM was antagonized by muscarinic receptor antagonists with the following potency: 4-DAMP > pirenzepine = darifenacin > methoctramine. Muscarinic toxin 7 (MT-7), a highly selective inhibitor for M1 receptor, produced partial inhibition of the IOxoM. In the presence of MT-7, concentration-inhibition curve of the M3-preferring antagonist darifenacin was shifted to the left. These results suggest the contribution of M1 and M3 receptors to the OxoM response. The IOxoM was inhibited by U-73122, a phospholipase C inhibitor. The membrane-permeable IP3 receptor blocker xestospongin C also inhibited the IOxoM. Furthermore, pretreatment with thapsigargin and BAPTA-AM inhibited the IOxoM, while KN-62, a blocker of Ca(2+)/calmodulin-dependent protein kinase II, had no effect. These results suggest that the activation mechanism involves a PLC pathway, release of Ca(2+) from intracellular Ca(2+) stores and calmodulin. The cation channels activated by muscarinic receptors may play an important role in neuronal membrane depolarization in rat intracardiac ganglion neurons. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Effect of Oral Premedication on the Efficacy of Inferior Alveolar Nerve Block in Patients with Symptomatic Irreversible Pulpitis: A Prospective, Double-Blind, Randomized Controlled Clinical Trial.

    PubMed

    Saha, Suparna Ganguly; Jain, Sohini; Dubey, Sandeep; Kala, Shubham; Misuriya, Abhinav; Kataria, Devendra

    2016-02-01

    It is generally accepted that achieving complete anaesthesia with an Inferior Alveolar Nerve Block (IANB) in mandibular molars with symptomatic irreversible pulpitis is more challenging than for other teeth. Therefore, administration of Non-Steroidal Anti-Inflammatory Agents (NSAIDs) 1 hour prior to anaesthetic administration has been proposed as a means to increase the efficacy of the IANB in such patients. The purpose of this prospective, double-blind, randomized clinical trial was to determine the effect of administration of oral premedication with ketorolac (KETO) and diclofenac potassium (DP) on the efficacy of IANB in patients with irreversible pulpitis. One hundred and fifty patients with irreversible pulpitis were evaluated preoperatively for pain using Heft Parker visual analogue scale, after which they were randomly divided into three groups. The subjects received identical tablets of ketorolac, diclofenac pottasium or cellulose powder (placebo), 1 hour prior to administration of IANB with 2% lidocaine containing 1:200 000 epinephrine. Lip numbness as well as positive and negative responses to cold test were ascertained. Additionally pain score of each patient was recorded during cavity preparation and root canal instrumentation. Success was defined as the absence of pain or mild pain based on the visual analog scale readings. The data was analysed using One-Way Anova, Post-Hoc Tukey pair wise, Paired T - Test and chi-square test. Trial Registery Number is 4722/2015 for this clinical trial study. There were no significant differences with respect to age (p =0.098), gender (p = 0.801) and pre-VAS score (DP-KETO p=0.645, PLAC-KETO p =0.964, PLAC-DP p = 0.801) between the three groups. All patients had subjective lip anaesthesia with the IAN blocks. Patients of all the three groups reported a significant decrease in active pain after local anaesthesia (p< 0.05). The post injection VAS Score was least in group 1 (KETO) followed by group II (DP) & maximum in

  7. Effect of Oral Premedication on the Efficacy of Inferior Alveolar Nerve Block in Patients with Symptomatic Irreversible Pulpitis: A Prospective, Double-Blind, Randomized Controlled Clinical Trial

    PubMed Central

    Saha, Suparna Ganguly; Dubey, Sandeep; Kala, Shubham; Misuriya, Abhinav; Kataria, Devendra

    2016-01-01

    Introduction It is generally accepted that achieving complete anaesthesia with an Inferior Alveolar Nerve Block (IANB) in mandibular molars with symptomatic irreversible pulpitis is more challenging than for other teeth. Therefore, administration of Non-Steroidal Anti-Inflammatory Agents (NSAIDs) 1 hour prior to anaesthetic administration has been proposed as a means to increase the efficacy of the IANB in such patients. Aim The purpose of this prospective, double-blind, randomized clinical trial was to determine the effect of administration of oral premedication with ketorolac (KETO) and diclofenac potassium (DP) on the efficacy of IANB in patients with irreversible pulpitis. Materials and Methods One hundred and fifty patients with irreversible pulpitis were evaluated preoperatively for pain using Heft Parker visual analogue scale, after which they were randomly divided into three groups. The subjects received identical tablets of ketorolac, diclofenac pottasium or cellulose powder (placebo), 1 hour prior to administration of IANB with 2% lidocaine containing 1:200 000 epinephrine. Lip numbness as well as positive and negative responses to cold test were ascertained. Additionally pain score of each patient was recorded during cavity preparation and root canal instrumentation. Success was defined as the absence of pain or mild pain based on the visual analog scale readings. The data was analysed using One-Way Anova, Post-Hoc Tukey pair wise, Paired T – Test and chi-square test. Trial Registery Number is 4722/2015 for this clinical trial study. Results There were no significant differences with respect to age (p =0.098), gender (p = 0.801) and pre-VAS score (DP-KETO p=0.645, PLAC-KETO p =0.964, PLAC-DP p = 0.801) between the three groups. All patients had subjective lip anaesthesia with the IAN blocks. Patients of all the three groups reported a significant decrease in active pain after local anaesthesia (p< 0.05). The post injection VAS Score was least in group

  8. Comparison of Continuous Femoral Nerve Block with and Without Combined Sciatic Nerve Block after Total Hip Arthroplasty: A Prospective Randomized Study.

    PubMed

    Nishio, Shoji; Fukunishi, Shigeo; Fukui, Tomokazu; Fujihara, Yuki; Okahisa, Shohei; Takeda, Yu; Yoshiya, Shinichi

    2017-06-23

    In association with the growing interests in pain management, several modalities to control postoperative pain have been proposed and examined for the efficacy in the recent studies. Various modes of peripheral nerve block have been proposed and the effectiveness and safety have been examined for each of those techniques. We have described our clinical experiences, showing that continuous femoral nerve block could provide a satisfactory analgesic effect after total hip arthroplasty (THA) procedure. In this study, we compared the effectiveness and safety of continuous femoral nerve block with and without sciatic nerve blockade on pain control after THA. Forty patients scheduled for THA were included in the study and randomly divided into 2 groups. Postoperative analgesic measure was continuous femoral nerve block alone, while the identical regimen of continuous femoral nerve block was combined with sciatic nerve block. The amount of postoperative pain was evaluated in the immediate postoperative period, 6 hours, and 12 hours after surgery. Moreover, postoperative complications as well as requirement of supplemental analgesics during the initial 12 hours after surgery were reviewed in the patient record. The obtained study results showed that the supplemental sciatic nerve blockade provided no significant effect on arrival at the postoperative recovery room, while the NRS pain score was significantly reduced by the combined application of sciatic nerve blockade at 6 and 12 hours after surgery. In the investigation of postoperative analgesiarelated complications, no major complication was encountered without significant difference in complication rate between the groups.

  9. Utility of Cytospin and Cell block Technology in Evaluation of Body Fluids and Urine Samples: A Comparative Study

    PubMed Central

    Qamar, Irmeen; Rehman, Suhailur; Mehdi, Ghazala; Maheshwari, Veena; Ansari, Hena A.; Chauhan, Sunanda

    2018-01-01

    Background: Cytologic examination of body fluids commonly involves the use of direct or sediment smears, cytocentrifuge preparations, membrane filter preparations, or cell block sections. Cytospin and cell block techniques are extremely useful in improving cell yield of thin serous effusions and urine samples, and ensure high diagnostic efficacy. Materials and Methods: We studied cytospin preparations and cell block sections prepared from 180 samples of body fluids and urine samples to compare the relative efficiency of cell retrieval, preservation of cell morphology, ease of application of special stains, and diagnostic efficacy. Samples were collected and processed to prepare cytospin smears and cell block sections. Results: We observed that overall, cell yield and preservation of individual cell morphology were better in cytospin preparations as compared to cell blocks, while preservation of architectural pattern was better in cell block sections. The number of suspicious cases also decreased on cell block sections, with increased detection of malignancy. It was difficult to prepare cell blocks from urine samples due to low cellularity. Conclusions: Cytospin technology is a quick, efficient, and cost-effective method of increasing cell yield in hypocellular samples, with better preservation of cell morphology. Cell blocks are better prepared from high cellularity fluids; however, tissue architecture is better studied, with improved rate of diagnosis and decrease in ambiguous results. Numerous sections can be prepared from a small amount of material. Special stains and immunochemical stains can be easily applied to cell blocks. It also provides a source of archival material. PMID:29643653

  10. Gene Therapy for Neuropathic Pain by Silencing of TNF-α Expression with Lentiviral Vectors Targeting the Dorsal Root Ganglion in Mice

    PubMed Central

    Ogawa, Nobuhiro; Kawai, Hiromichi; Terashima, Tomoya; Kojima, Hideto; Oka, Kazuhiro; Chan, Lawrence; Maegawa, Hiroshi

    2014-01-01

    Neuropathic pain can be a debilitating condition. Many types of drugs that have been used to treat neuropathic pain have only limited efficacy. Recent studies indicate that pro-inflammatory mediators including tumor necrosis factor α (TNF-α) are involved in the pathogenesis of neuropathic pain. In the present study, we engineered a gene therapy strategy to relieve neuropathic pain by silencing TNF-α expression in the dorsal root ganglion (DRG) using lentiviral vectors expressing TNF short hairpin RNA1-4 (LV-TNF-shRNA1-4) in mice. First, based on its efficacy in silencing TNF-α in vitro, we selected shRNA3 to construct LV-TNF-shRNA3 for in vivo study. We used L5 spinal nerve transection (SNT) mice as a neuropathic pain model. These animals were found to display up-regulated mRNA expression of activating transcription factor 3 (ATF3) and neuropeptide Y (NPY), injury markers, and interleukin (IL)-6, an inflammatory cytokine in the ipsilateral L5 DRG. Injection of LV-TNF-shRNA3 onto the proximal transected site suppressed significantly the mRNA levels of ATF3, NPY and IL-6, reduced mechanical allodynia and neuronal cell death of DRG neurons. These results suggest that lentiviral-mediated silencing of TNF-α in DRG relieves neuropathic pain and reduces neuronal cell death, and may constitute a novel therapeutic option for neuropathic pain. PMID:24642694

  11. Retinal ganglion cell dendritic fields in old-world monkeys are oriented radially.

    PubMed

    Schall, J D; Perry, V H; Leventhal, A G

    1986-03-12

    We analyzed the dendritic field morphology of 297 ganglion cells from peripheral regions of monkey retina. Most of the dendritic fields were elongated, and there was a significant tendency for the dendritic fields to be oriented radially, i.e., like the spokes of a wheel with the fovea at the hub. An overrepresentation of radial orientations in the peripheral retina of primates might explain why humans are best able to detect stimuli which are oriented radially using peripheral vision.

  12. Involvement of P2X7 receptors in retinal ganglion cell apoptosis induced by activated Müller cells.

    PubMed

    Xue, Bo; Xie, Yuting; Xue, Ying; Hu, Nan; Zhang, Guowei; Guan, Huaijin; Ji, Min

    2016-12-01

    Müller cell reactivation (gliosis) is an early response in glaucomatous retina. Previous studies have demonstrated that activation of P2X 7 receptors results in retinal ganglion cell (RGC) apoptosis. Here, the issues of whether and how activated Müller cells may contribute to RGC apoptosis through P2X 7 receptors were investigated. Either intravitreal injection of (S)-3,5-dihydroxyphenylglycine (DHPG), a group I metabotropic glutamate receptor (mGluR I) agonist, in normal rat retinas, or DHPG treatment of purified cultured rat retinal Müller cells induced an increase in glial fibrillary acidic protein (GFAP) expression, indicative of Müller cell gliosis. In addition, an increase in adenosine triphosphate (ATP) release from purified cultured Müller cells was detected during DHPG treatment (for 10 min to 48 h), which was mediated by the intracellular mGluR5/Gq/PI-PLC/PKC signaling pathway. Intravitreal injection of DHPG mimicked the reduction in the number of fluorogold retrogradely labeled RGCs in chronic ocular hypertension (COH) rats. Treatment with the conditioned culture medium (CM) obtained from the DHPG-activated Müller cell medium induced an increase in the number of TUNEL-positive cells in cultured RGCs, which was mimicked by benzoylbenzoyl adenosine triphosphate (BzATP), a P2X 7 receptor agonist, but was partially blocked by brilliant blue G (BBG), a P2X 7 receptor antagonist. Moreover, the CM treatment of cultured RGCs significantly increased Bax protein level and decreased Bcl-2 protein level, which was also mimicked by BzATP and partially blocked by BBG, respectively. These results suggest that reactivated Müller cells may release excessive ATP, in turn leading to RGC apoptosis through activating P2X 7 receptors in these cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Excitatory synaptic inputs to mouse on-off direction-selective retinal ganglion cells lack direction tuning.

    PubMed

    Park, Silvia J H; Kim, In-Jung; Looger, Loren L; Demb, Jonathan B; Borghuis, Bart G

    2014-03-12

    Direction selectivity represents a fundamental visual computation. In mammalian retina, On-Off direction-selective ganglion cells (DSGCs) respond strongly to motion in a preferred direction and weakly to motion in the opposite, null direction. Electrical recordings suggested three direction-selective (DS) synaptic mechanisms: DS GABA release during null-direction motion from starburst amacrine cells (SACs) and DS acetylcholine and glutamate release during preferred direction motion from SACs and bipolar cells. However, evidence for DS acetylcholine and glutamate release has been inconsistent and at least one bipolar cell type that contacts another DSGC (On-type) lacks DS release. Here, whole-cell recordings in mouse retina showed that cholinergic input to On-Off DSGCs lacked DS, whereas the remaining (glutamatergic) input showed apparent DS. Fluorescence measurements with the glutamate biosensor intensity-based glutamate-sensing fluorescent reporter (iGluSnFR) conditionally expressed in On-Off DSGCs showed that glutamate release in both On- and Off-layer dendrites lacked DS, whereas simultaneously recorded excitatory currents showed apparent DS. With GABA-A receptors blocked, both iGluSnFR signals and excitatory currents lacked DS. Our measurements rule out DS release from bipolar cells onto On-Off DSGCs and support a theoretical model suggesting that apparent DS excitation in voltage-clamp recordings results from inadequate voltage control of DSGC dendrites during null-direction inhibition. SAC GABA release is the apparent sole source of DS input onto On-Off DSGCs.

  14. The site of the 5-hydroxytryptamine receptor on the intramural nervous plexus of the guinea-pig isolated ileum

    PubMed Central

    Brownlee, G.; Johnson, E. S.

    1963-01-01

    Dose/response measurements were made on the guinea-pig isolated ileum with six agonists, acetylcholine, 5-hydroxytryptamine, nicotine, dimethylphenylpiperazinium, choline phenyl ether and histamine. The dose effects were repeated in the presence of each of twelve antagonists and one anticholinesterase. Acetylcholine and histamine were chosen because of their direct mode of action on smooth muscle, nicotine, dimethylphenylpiperazinium and choline phenyl ether were used as examples of drugs that act at the ganglionic acetylcholine receptor. 5-Hydroxytryptamine was the drug investigated. Hyoscine blocked the contractions caused by acetylcholine, 5-hydroxytryptamine and the ganglion-stimulants but left the responses to histamine unchanged. The anticholinesterase N,N'-diisopropylphosphorodiamidic fluoride (mipafox) potentiated all the agonists except histamine. The strength of potentiation decreased in the order 5-hydroxytryptamine, nicotine, dimethylphenylpiperazinium and choline phenyl ether, and acetylcholine. The local anaesthetic procaine inhibited to the same extent contractions elicited by 5-hydroxytryptamine, nicotine, dimethylphenylpiperazinium and choline phenyl ether. These results showed that 5-hydroxytryptamine, like nicotine, choline phenyl ether and dimethylphenylpiperazinium, mediated its response through the nervous plexus. Of those tested 5-hydroxytryptamine was the only specific antagonist to 5-hydroxytryptamine; lysergic acid derivatives produced spasm and prolonged changes in tone; phenoxybenzamine caused non-specific block. The diverse modes of action of a number of ganglion-blocking agents were selectively used. Thus hexamethonium, pentolinium, and nicotine in its competitive phase, blocked contractions due to nicotine, dimethylphenylpiperazinium and choline phenyl ether and left those due to 5-hydroxytryptamine, acetylcholine and histamine unchanged. The depolarizing ganglion-blocking agents, dimethylphenylpiperazinium and nicotine, inhibited the

  15. Efficacy of ultrasound and nerve stimulation guidance in peripheral nerve block: A systematic review and meta-analysis.

    PubMed

    Wang, Zhi-Xue; Zhang, De-Li; Liu, Xin-Wei; Li, Yan; Zhang, Xiao-Xia; Li, Ru-Hong

    2017-09-01

    Evidence was controversial about whether nerve stimulation (NS) can optimize ultrasound guidance (US)-guided nerve blockade for peripheral nerve block. This review aims to explore the effects of the two combined techniques. We searched EMBASE (from 1974 to March 2015), PubMed (from 1966 to Mar 2015), Medline (from 1966 to Mar 2015), the Cochrane Central Register of Controlled Trials and clinicaltrials.gov. Finally, 15 randomized trials were included into analysis involving 1,019 lower limb and 696 upper limb surgery cases. Meta-analysis indicated that, compared with US alone, USNS combination had favorable effects on overall block success rate (risk ratio [RR] 1.17; confidence interval [CI] 1.05 to 1.30, P = 0.004), sensory block success rate (RR 1.56; CI 1.29 to 1.89, P < 0.00001), and block onset time (mean difference [MD] -3.84; CI -5.59 to -2.08, P < 0.0001). USNS guidance had a longer procedure time in both upper and lower limb nerve block (MD 1.67; CI 1.32 to 2.02, P < 0.00001; MD 1.17; CI 0.95 to 1.39, P < 0.00001) and more patients with anesthesia supplementation (RR 2.5; CI 1.02 to 6.13, P = 0.05). USNS guidance trends to result in a shorter block onset time than US alone as well as higher block success rate, but no statistical difference was demonstrated, as more data are required. © 2017 IUBMB Life, 69(9):720-734, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  16. A Comparative Study of Analgesic Efficacy of Intrathecal Buprenorphine with Ultrasound-Guided Transversus Abdominis Plane Block for Postcesarean Delivery Analgesia.

    PubMed

    Marappa, Prakash; Chikkapillappa, Manjunath Abloodu; Chennappa, Nagaraj Mungasuvalli; Pujari, Vinayak Seenappa

    2017-01-01

    Women undergoing cesarean (CS) delivery present a unique set of challenges to the anesthetist in terms of postoperative pain management. This study was conducted to compare the analgesic efficacy of intrathecal buprenorphine (ITB) with ultrasound-guided transversus abdominis plane (TAP) block in post-CS delivery pain. A prospective randomized comparative study of sixty American Society of Anesthesiologists physical status I and II pregnant patients divided into two groups of thirty each as ITB group and TAP block group after satisfying the inclusion criteria. In the present study, demographic data were comparable between both groups. The time to first analgesic request was significantly longer in ITB group (389.67 ± 90.78 min) compared to TAP group (669.17 ± 140.65 min) and was statistically significant, P < 0.001. The mean paracetamol consumption in the first 24 h was higher in the TAP group (3.5 g) compared to the ITB group (1.13 g) and was statistically significant, P < 0.0001, and the mean tramadol consumed in first 24 h was higher in the TAP (46.66 mg) group as compared to the ITB group (16.66 mg) and was statistically significant, P < 0.001. The mean visual analog scale scores assessed at 4, 6, 12, and 24 h was higher in the TAP group and was statistically significant, P < 0.001. Our study showed that patients receiving ITB for post-CS pain management reported longer duration of analgesia, lower pain scores, and lower analgesic consumption during the first 24 h. The benefits of neuraxial opiates are significant and far outweigh the side effects.

  17. Inhibitory masking controls the threshold sensitivity of retinal ganglion cells

    PubMed Central

    Pan, Feng; Toychiev, Abduqodir; Zhang, Yi; Atlasz, Tamas; Ramakrishnan, Hariharasubramanian; Roy, Kaushambi; Völgyi, Béla; Akopian, Abram

    2016-01-01

    Key points Retinal ganglion cells (RGCs) in dark‐adapted retinas show a range of threshold sensitivities spanning ∼3 log units of illuminance.Here, we show that the different threshold sensitivities of RGCs reflect an inhibitory mechanism that masks inputs from certain rod pathways.The masking inhibition is subserved by GABAC receptors, probably on bipolar cell axon terminals.The GABAergic masking inhibition appears independent of dopaminergic circuitry that has been shown also to affect RGC sensitivity.The results indicate a novel mechanism whereby inhibition controls the sensitivity of different cohorts of RGCs. This can limit and thereby ensure that appropriate signals are carried centrally in scotopic conditions when sensitivity rather than acuity is crucial. Abstract The responses of rod photoreceptors, which subserve dim light vision, are carried through the retina by three independent pathways. These pathways carry signals with largely different sensitivities. Retinal ganglion cells (RGCs), the output neurons of the retina, show a wide range of sensitivities in the same dark‐adapted conditions, suggesting a divergence of the rod pathways. However, this organization is not supported by the known synaptic morphology of the retina. Here, we tested an alternative idea that the rod pathways converge onto single RGCs, but inhibitory circuits selectively mask signals so that one pathway predominates. Indeed, we found that application of GABA receptor blockers increased the sensitivity of most RGCs by unmasking rod signals, which were suppressed. Our results indicate that inhibition controls the threshold responses of RGCs under dim ambient light. This mechanism can ensure that appropriate signals cross the bottleneck of the optic nerve in changing stimulus conditions. PMID:27350405

  18. New light for old eyes: comparing melanopsin-mediated non-visual benefits of blue-light and UV-blocking intraocular lenses.

    PubMed

    Schmoll, Conrad; Khan, Ashraf; Aspinall, Peter; Goudie, Colin; Koay, Peter; Tendo, Christelle; Cameron, James; Roe, Jenny; Deary, Ian; Dhillon, Bal

    2014-01-01

    Melanopsin-expressing photosensitive retinal ganglion cells form a blue-light-sensitive non-visual system mediating diverse physiological effects including circadian entrainment and cognitive alertness. Reduced blue wavelength retinal illumination through cataract formation is thought to blunt these responses while cataract surgery and intraocular lens (IOL) implantation have been shown to have beneficial effects on sleep and cognition. We aimed to use the reaction time (RT) task and the Epworth Sleepiness Score (ESS) as a validated objective platform to compare non-visual benefits of UV- and blue-blocking IOLs. Patients were prospectively randomised to receive either a UV- or blue-blocking IOL, performing an RT test and ESS questionnaire before and after surgery. Optical blurring at the second test controlled for visual improvement. Non-operative age-matched controls were recruited for comparison. 80 participants completed the study. Those undergoing first-eye phacoemulsification demonstrated significant improvements in RT over control (p=0.001) and second-eye surgery patients (p=0.03). Moreover, reduced daytime sleepiness was measured by ESS for the first-eye surgery group (p=0.008) but not for the second-eye group (p=0.09). Choice of UV- or blue-blocking IOL made no significant difference to magnitude of cognitive improvement (p=0.272). Phacoemulsification, particularly first-eye surgery, has a strong positive effect on cognition and daytime alertness, regardless of IOL type.

  19. Myelin-induced inhibition in a spiral ganglion organ culture - Approaching a natural environment in vitro.

    PubMed

    Kramer, Benedikt; Tropitzsch, Anke; Müller, Marcus; Löwenheim, Hubert

    2017-08-15

    The performance of a cochlear implant depends on the defined interaction between afferent neurons of the spiral ganglion and the inserted electrode. Neurite outgrowth can be induced by neurotrophins such as brain-derived neurotrophic factor (BDNF) via tropomyosin kinase receptor B (TrkB). However, neurotrophin signaling through the p75 neurotrophin receptor (p75) inhibits neurite outgrowth in the presence of myelin. Organotypic cultures derived from postnatal (P3-5) mice were used to study myelin-induced inhibition in the cochlear spiral ganglion. Neurite outgrowth was analyzed and quantified utilizing an adapted Sholl analysis. Stimulation of neurite outgrowth was quantified after application of BDNF, the selective TrkB agonist 7,8-dihydroxyflavone (7,8-DHF) and a selective inhibitor of the Rho-associated kinase (Y27632), which inhibits the p75 pathway. Myelin-induced inhibition was assessed by application of myelin-associated glycoprotein (MAG-Fc) to stimulate the inhibitory p75 pathway. Inhibition of neurite outgrowth was achieved by the selective TrkB inhibitor K252a. Stimulation of neurite outgrowth was observed after treatment with BDNF, 7,8 DHF and a combination of BDNF and Y27632. The 7,8-DHF-induced growth effects could be inhibited by K252a. Furthermore, inhibition of neurite outgrowth was observed after supplementation with MAG-Fc. Myelin-induced inhibition could be overcome by 7,8-DHF and the combination of BDNF and Y27632. In this study, myelin-induced inhibition of neurite outgrowth was established in a spiral ganglion model. We reveal that 7,8-DHF is a viable novel compound for the stimulation of neurite outgrowth in a myelin-induced inhibitory environment. The combination of TrkB stimulation and ROCK inhibition can be used to overcome myelin inhibition. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Role of dorsal root ganglion K2P1.1 in peripheral nerve injury-induced neuropathic pain

    PubMed Central

    Mao, Qingxiang; Yuan, Jingjing; Xiong, Ming; Wu, Shaogen; Chen, Liyong; Bekker, Alex; Yang, Tiande

    2017-01-01

    Peripheral nerve injury-caused hyperexcitability and abnormal ectopic discharges in the primary sensory neurons of dorsal root ganglion (DRG) play a key role in neuropathic pain development and maintenance. The two-pore domain background potassium (K2P) channels have been identified as key determinants of the resting membrane potential and neuronal excitability. However, whether K2P channels contribute to neuropathic pain is still elusive. We reported here that K2P1.1, the first identified mammalian K2P channel, was highly expressed in mouse DRG and distributed in small-, medium-, and large-sized DRG neurons. Unilateral lumbar (L) 4 spinal nerve ligation led to a significant and time-dependent reduction of K2P1.1 mRNA and protein in the ipsilateral L4 DRG, but not in the contralateral L4 or ipsilateral L3 DRG. Rescuing this reduction through microinjection of adeno-associated virus-DJ expressing full-length K2P1.1 mRNA into the ipsilateral L4 DRG blocked spinal nerve ligation-induced mechanical, thermal, and cold pain hypersensitivities during the development and maintenance periods. This DRG viral microinjection did not affect acute pain and locomotor function. Our findings suggest that K2P1.1 participates in neuropathic pain development and maintenance and may be a potential target in the management of this disorder. PMID:28326939

  1. Citral sensing by Transient [corrected] receptor potential channels in dorsal root ganglion neurons.

    PubMed

    Stotz, Stephanie C; Vriens, Joris; Martyn, Derek; Clardy, Jon; Clapham, David E

    2008-05-07

    Transient receptor potential (TRP) ion channels mediate key aspects of taste, smell, pain, temperature sensation, and pheromone detection. To deepen our understanding of TRP channel physiology, we require more diverse pharmacological tools. Citral, a bioactive component of lemongrass, is commonly used as a taste enhancer, as an odorant in perfumes, and as an insect repellent. Here we report that citral activates TRP channels found in sensory neurons (TRPV1 and TRPV3, TRPM8, and TRPA1), and produces long-lasting inhibition of TRPV1-3 and TRPM8, while transiently blocking TRPV4 and TRPA1. Sustained citral inhibition is independent of internal calcium concentration, but is state-dependent, developing only after TRP channel opening. Citral's actions as a partial agonist are not due to cysteine modification of the channels nor are they a consequence of citral's stereoisoforms. The isolated aldehyde and alcohol cis and trans enantiomers (neral, nerol, geranial, and geraniol) each reproduce citral's actions. In juvenile rat dorsal root ganglion neurons, prolonged citral inhibition of native TRPV1 channels enabled the separation of TRPV2 and TRPV3 currents. We find that TRPV2 and TRPV3 channels are present in a high proportion of these neurons (94% respond to 2-aminoethyldiphenyl borate), consistent with our immunolabeling experiments and previous in situ hybridization studies. The TRPV1 activation requires residues in transmembrane segments two through four of the voltage-sensor domain, a region previously implicated in capsaicin activation of TRPV1 and analogous menthol activation of TRPM8. Citral's broad spectrum and prolonged sensory inhibition may prove more useful than capsaicin for allodynia, itch, or other types of pain involving superficial sensory nerves and skin.

  2. Citral Sensing by TRANSient Receptor Potential Channels in Dorsal Root Ganglion Neurons

    PubMed Central

    Stotz, Stephanie C.; Vriens, Joris; Martyn, Derek; Clardy, Jon; Clapham, David E.

    2008-01-01

    Transient receptor potential (TRP) ion channels mediate key aspects of taste, smell, pain, temperature sensation, and pheromone detection. To deepen our understanding of TRP channel physiology, we require more diverse pharmacological tools. Citral, a bioactive component of lemongrass, is commonly used as a taste enhancer, as an odorant in perfumes, and as an insect repellent. Here we report that citral activates TRP channels found in sensory neurons (TRPV1 and TRPV3, TRPM8, and TRPA1), and produces long-lasting inhibition of TRPV1–3 and TRPM8, while transiently blocking TRPV4 and TRPA1. Sustained citral inhibition is independent of internal calcium concentration, but is state-dependent, developing only after TRP channel opening. Citral's actions as a partial agonist are not due to cysteine modification of the channels nor are they a consequence of citral's stereoisoforms. The isolated aldehyde and alcohol cis and trans enantiomers (neral, nerol, geranial, and geraniol) each reproduce citral's actions. In juvenile rat dorsal root ganglion neurons, prolonged citral inhibition of native TRPV1 channels enabled the separation of TRPV2 and TRPV3 currents. We find that TRPV2 and TRPV3 channels are present in a high proportion of these neurons (94% respond to 2-aminoethyldiphenyl borate), consistent with our immunolabeling experiments and previous in situ hybridization studies. The TRPV1 activation requires residues in transmembrane segments two through four of the voltage-sensor domain, a region previously implicated in capsaicin activation of TRPV1 and analogous menthol activation of TRPM8. Citral's broad spectrum and prolonged sensory inhibition may prove more useful than capsaicin for allodynia, itch, or other types of pain involving superficial sensory nerves and skin. PMID:18461159

  3. Muscarinic modulation of TREK currents in mouse sympathetic superior cervical ganglion neurons.

    PubMed

    Rivas-Ramírez, P; Cadaveira-Mosquera, A; Lamas, J A; Reboreda, A

    2015-07-01

    Muscarinic receptors play a key role in the control of neurotransmission in the autonomic ganglia, which has mainly been ascribed to the regulation of potassium M-currents and voltage-dependent calcium currents. Muscarinic agonists provoke depolarization of the membrane potential and a reduction in spike frequency adaptation in postganglionic neurons, effects that may be explained by M-current inhibition. Here, we report the presence of a riluzole-activated current (IRIL ) that flows through the TREK-2 channels, and that is also inhibited by muscarinic agonists in neurons of the mouse superior cervical ganglion (mSCG). The muscarinic agonist oxotremorine-M (Oxo-M) inhibited the IRIL by 50%, an effect that was abolished by pretreatment with atropine or pirenzepine, but was unaffected in the presence of himbacine. Moreover, these antagonists had similar effects on single-channel TREK-2 currents. IRIL inhibition was unaffected by pretreatment with pertussis toxin. The protein kinase C blocker bisindolylmaleimide did not have an effect, and neither did the inositol triphosphate antagonist 2-aminoethoxydiphenylborane. Nevertheless, the IRIL was markedly attenuated by the phospholipase C (PLC) inhibitor ET-18-OCH3. Finally, the phosphatidylinositol-3-kinase/phosphatidylinositol-4-kinase inhibitor wortmannin strongly attenuated the IRIL , whereas blocking phosphatidylinositol 4,5-bisphosphate (PIP2 ) depletion consistently prevented IRIL inhibition by Oxo-M. These results demonstrate that TREK-2 currents in mSCG neurons are inhibited by muscarinic agonists that activate M1 muscarinic receptors, reducing PIP2 levels via a PLC-dependent pathway. The similarities between the signaling pathways regulating the IRIL and the M-current in the same neurons reflect an important role of this new pathway in the control of autonomic ganglia excitability. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  4. Fabrication of Hyperbranched Block-Statistical Copolymer-Based Prodrug with Dual Sensitivities for Controlled Release.

    PubMed

    Zheng, Luping; Wang, Yunfei; Zhang, Xianshuo; Ma, Liwei; Wang, Baoyan; Ji, Xiangling; Wei, Hua

    2018-01-17

    Dendrimer with hyperbranched structure and multivalent surface is regarded as one of the most promising candidates close to the ideal drug delivery systems, but the clinical translation and scale-up production of dendrimer has been hampered significantly by the synthetic difficulties. Therefore, there is considerable scope for the development of novel hyperbranched polymer that can not only address the drawbacks of dendrimer but maintain its advantages. The reversible addition-fragmentation chain transfer self-condensing vinyl polymerization (RAFT-SCVP) technique has enabled facile preparation of segmented hyperbranched polymer (SHP) by using chain transfer monomer (CTM)-based double-head agent during the past decade. Meanwhile, the design and development of block-statistical copolymers has been proven in our recent studies to be a simple yet effective way to address the extracellular stability vs intracellular high delivery efficacy dilemma. To integrate the advantages of both hyperbranched and block-statistical structures, we herein reported the fabrication of hyperbranched block-statistical copolymer-based prodrug with pH and reduction dual sensitivities using RAFT-SCVP and post-polymerization click coupling. The external homo oligo(ethylene glycol methyl ether methacrylate) (OEGMA) block provides sufficient extracellularly colloidal stability for the nanocarriers by steric hindrance, and the interior OEGMA units incorporated by the statistical copolymerization promote intracellular drug release by facilitating the permeation of GSH and H + for the cleavage of the reduction-responsive disulfide bond and pH-liable carbonate link as well as weakening the hydrophobic encapsulation of drug molecules. The delivery efficacy of the target hyperbranched block-statistical copolymer-based prodrug was evaluated in terms of in vitro drug release and cytotoxicity studies, which confirms both acidic pH and reduction-triggered drug release for inhibiting proliferation of He

  5. Caspases in retinal ganglion cell death and axon regeneration

    PubMed Central

    Thomas, Chloe N; Berry, Martin; Logan, Ann; Blanch, Richard J; Ahmed, Zubair

    2017-01-01

    Retinal ganglion cells (RGC) are terminally differentiated CNS neurons that possess limited endogenous regenerative capacity after injury and thus RGC death causes permanent visual loss. RGC die by caspase-dependent mechanisms, including apoptosis, during development, after ocular injury and in progressive degenerative diseases of the eye and optic nerve, such as glaucoma, anterior ischemic optic neuropathy, diabetic retinopathy and multiple sclerosis. Inhibition of caspases through genetic or pharmacological approaches can arrest the apoptotic cascade and protect a proportion of RGC. Novel findings have also highlighted a pyroptotic role of inflammatory caspases in RGC death. In this review, we discuss the molecular signalling mechanisms of apoptotic and inflammatory caspase responses in RGC specifically, their involvement in RGC degeneration and explore their potential as therapeutic targets. PMID:29675270

  6. Polysensory response characteristics of dorsal root ganglion neurones that may serve sensory functions during myocardial ischaemia.

    PubMed

    Huang, M H; Horackova, M; Negoescu, R M; Wolf, S; Armour, J A

    1996-09-01

    To determine the response characteristics of dorsal root ganglion neurones that may serve sensory functions during myocardial ischaemia. Extracellular recordings were made from 54 spontaneously active and 5 normally quiescent dorsal root ganglion neurones (T2-T5) in 22 anaesthetized open-chest dogs under control conditions and during epicardial mechanical or chemical stimulation and myocardial ischaemia. The activity of 78% of spontaneously active and all quiescent neurones with left ventricular sensory fields was modified by left ventricular ischaemia. Forty-six spontaneously active neurones (85%) were polysensory with respect to mechanical and chemical stimuli. The 5 quiescent neurones responded only to chemical stimuli. Spontaneously active neurones associated with left ventricular mechanosensory endings (37 neurones) generated four different activity patterns in response to similar mechanical stimuli (high or low pressure active, high-low pressure active, high-low pressure inactive). A fifth group generated activity which was not related to chamber dynamics. Adenosine, adenosine 5'-triphosphate, substance P and bradykinin modified 72, 61, 65 and 63% of the spontaneously active neurones, respectively. Maximum local mechanical or chemical stimuli enhanced activity to similar degrees, as did ischaemia. Each ischaemia-sensitive neurone displayed unique activity patterns in response to similar mechanical or chemical stimuli. Most myocardial ischemia-sensitive dorsal root ganglion neurones associated with epicardial neurites sense mechanical and multiple chemical stimuli, a small population sensing only mechanical or chemical stimuli. Activity patterns generated by these neurones depend on their primary sensory characteristics or those of other neurones that may converge on them, as well as the type and magnitude of the stimuli that impinge upon their sensory fields, both normally and during ischaemia.

  7. Topographic specializations of catecholaminergic cells and ganglion cells and distribution of calcium binding proteins in the crepuscular rock cavy (Kerodon rupestris) retina.

    PubMed

    Oliveira, Francisco Gilberto; Nascimento-Júnior, Expedito Silva do; Cavalcante, Judney Cley; Guzen, Fausto Pierdoná; Cavalcante, Jeferson de Souza; Soares, Joacil Germano; Cavalcanti, José Rodolfo Lopes de Paiva; Freitas, Leandro Moura de; Costa, Miriam Stela Maris de Oliveira; Andrade-da-Costa, Belmira Lara da Silveira

    2018-07-01

    The rock cavy (Kerodon rupestris) is a crepuscular Hystricomorpha rodent that has been used in comparative analysis of retinal targets, but its retinal organization remains to be investigated. In order to better characterize its visual system, the present study analyzed neurochemical features related to the topographic organization of catecholaminergic cells and ganglion cells, as well the distribution of calcium-binding proteins in the outer and inner retina. Retinal sections and/or wholemounts were processed using tyrosine hydroxylase (TH), GABA, calbindin, parvalbumin and calretinin immunohistochemistry or Nissl staining. Two types of TH-immunoreactive (TH-IR) cells were found which differ in soma size, dendritic arborization, intensity of TH immunoreactivity and stratification pattern in the inner plexiform layer. The topographic distribution of all TH-IR cells defines a visual streak along the horizontal meridian in the superior retina. The ganglion cells are also distributed in a visual streak and the visual acuity estimated considering their peak density is 4.13 cycles/degree. A subset of TH-IR cells express GABA or calbindin. Calretinin is abundant in most of retinal layers and coexists with calbindin in horizontal cells. Parvalbumin is less abundant and expressed by presumed amacrine cells in the INL and some ganglion cells in the GCL. The topographic distribution of TH-IR cells and ganglion cells in the rock cavy retina indicate a suitable adaptation for using a broad extension of its inferior visual field in aspects that involve resolution, adjustment to ambient light intensity and movement detection without specialized eye movements. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Hyoscine butylbromide potently blocks human nicotinic acetylcholine receptors in SH-SY5Y cells.

    PubMed

    Weiser, Thomas; Just, Stefan

    2009-02-06

    Hyoscine butylbromide (HBB; tradenames: Buscopan/Buscapina is an antispasmodic drug for the treatment of abdominal pain associated with gastrointestinal cramping. As a hyoscine derivative, this compound competitively inhibits muscarinic acetylcholine (ACh) receptors on smooth muscle cells in the gastrointestinal tract. Preliminary investigations suggested that it might also inhibit nicotinic ACh receptors. This study investigated the effect of HBB on nicotinic ACh receptor-mediated membrane currents in SH-SY5Y cells. ACh and nicotine application-induced comparable membrane currents with EC(50) values of 25.9+/-0.6 and 40.1+/-0.4microM, respectively. When coapplied with 100microM ACh, HBB concentration-dependently suppressed currents with an IC(50) value of 0.19+/-0.04microM, and was approximately seven-times more potent than the ganglionic blocker, hexamethonium (IC(50)=1.3+/-0.3microM). Increasing the agonist concentration to 5mM did not affect the amount of block by HBB, which suggests a non-competitive mode of action. These functional in vitro data demonstrate for the first time that HBB blocks neuronal nicotinic ACh receptors in the same concentration range as it inhibits muscarinic ACh receptors. If one hypothesizes that HBB might also affect nicotinic receptors in autonomic neurons in vivo (e. g. in the enteric nervous system), this effect could contribute to its spasmolytic activity.

  9. The Ultrasound-Guided Retroclavicular Block: A Prospective Feasibility Study.

    PubMed

    Charbonneau, Jasmin; Fréchette, Yannick; Sansoucy, Yanick; Echave, Pablo

    2015-01-01

    The aim of this feasibility study was to determine the success rate (sensory and surgical) of the novel retroclavicular block and to thoroughly describe the technique. In addition, needle tip and shaft visibility, needling time, procedural discomfort, motor block success rate, patient satisfaction at 48-hour follow-up, and complications were also recorded. Fifty patients scheduled for distal upper limb surgery received an in-plane, single-shot, ultrasound-guided retroclavicular block with 40 mL of mepivacaine 1.5% with epinephrine 2.5 μg/mL. Block success was defined as a sensory score of 10/10 for the 5 nerves supplying the distal upper limb at 30 minutes. Surgical success, needle visibility, needling time, axillary artery depth, motor block rate, patient discomfort with technique, satisfaction at 48 hours, and complications were also recorded. All blocks were video-recorded and timed for further independent assessment. A chest x-ray was obtained before discharge. Forty-five patients had a total sensory score of 10/10 at 30 minutes (90% success rate). Surgical success rate was 96%. Mean needling time was 3.77 minutes (25th-75th percentiles, 2.90-6.53 minutes) with a mean axillary artery depth of 3.1 ± 0.7 cm. Procedure-related discomfort (mean visual analog scale, 1.9 ± 1.2) was low. Mean 48-hour patient satisfaction rate (9.2 ± 1.1), mean needle tip (Likert scale, 3.0 ± 0.9), and shaft visibility (3.9 ± 0.9) were high. One vascular puncture and two transient paresthesias were recorded. No pneumothorax was revealed by chest x-ray. In this study, the novel retroclavicular block offered a quick, safe, and reliable alternative for distal arm block. Further studies, comparing this approach with the classic infraclavicular block, are required to validate its efficacy, safety, and reliability.

  10. 31 CFR 510.301 - Blocked account; blocked property.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Blocked account; blocked property. 510.301 Section 510.301 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued... Definitions § 510.301 Blocked account; blocked property. The terms blocked account and blocked property shall...

  11. 31 CFR 510.301 - Blocked account; blocked property.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Blocked account; blocked property. 510.301 Section 510.301 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued... Definitions § 510.301 Blocked account; blocked property. The terms blocked account and blocked property shall...

  12. 31 CFR 510.301 - Blocked account; blocked property.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Blocked account; blocked property. 510.301 Section 510.301 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued... Definitions § 510.301 Blocked account; blocked property. The terms blocked account and blocked property shall...

  13. Adrenergic receptors inhibit TRPV1 activity in the dorsal root ganglion neurons of rats.

    PubMed

    Matsushita, Yumi; Manabe, Miki; Kitamura, Naoki; Shibuya, Izumi

    2018-01-01

    Transient receptor potential vanilloid type 1 (TRPV1) is a polymodal receptor channel that responds to multiple types of stimuli, such as heat, acid, mechanical pressure and some vanilloids. Capsaicin is the most commonly used vanilloid to stimulate TRPV1. TRPV1 channels are expressed in dorsal root ganglion neurons that extend to Aδ- and C-fibers and have a role in the transduction of noxious inputs to the skin into the electrical signals of the sensory nerve. Although noradrenergic nervous systems, including the descending antinociceptive system and the sympathetic nervous system, are known to modulate pain sensation, the functional association between TRPV1 and noradrenaline in primary sensory neurons has rarely been examined. In the present study, we examined the effects of noradrenaline on capsaicin-evoked currents in cultured dorsal root ganglion neurons of the rat by the whole-cell voltage clamp method. Noradrenaline at concentrations higher than 0.1 pM significantly reduced the amplitudes of the inward capsaicin currents recorded at -60 mV holding potential. This inhibitory action was reversed by either yohimbine (an α2 antagonist, 10 nM) or propranolol (a β antagonist, 10 nM). The α2 agonists, clonidine (1 pM) and dexmedetomidine (1 pM) inhibited capsaicin currents, and yohimbine (1 nM) reversed the effects of clonidine. The inhibitory action of noradrenaline was not seen in the neurons pretreated with pertussis toxin (100 μg/ml for 24 h) and the neurons dialyzed intracellularly with guanosine 5'- [β-thio] diphosphate (GDPβS, 200 μM), the catalytic subunit of protein kinase A (250 U/ml) or okadaic acid (1 μM). These results suggest that noradrenaline directly acts on dorsal root ganglion neurons to inhibit the activity of TRPV1 depending on the activation of α2-adrenoceptors followed by the inhibition of the adenylate cyclase/cAMP/protein kinase A pathway.

  14. The relationship between neurotrophic factors and CaMKII in the death and survival of retinal ganglion cells.

    PubMed

    Cooper, N G F; Laabich, A; Fan, W; Wang, X

    2008-01-01

    The scientific discourse relating to the causes and treatments for glaucoma are becoming reflective of the need to protect and preserve retinal neurons from degenerative changes, which result from the injurious environment associated with this disease. Knowledge, in particular, of the signal transduction pathways which affect death and survival of the retinal ganglion cells is critical to this discourse and to the development of a suitable neurotherapeutic strategy for this disease. The goal of this chapter is to review what is known of the chief suspects involved in initiating the cell death/survival pathways in these cells, and what still remains to be uncovered. The least controversial aspect of the subject relates to the potential role of neurotrophic factors in the protection of the retinal ganglion cells. On the other hand, the postulated triggers for signaling cell death in glaucoma remain controversial. Certainly, the restricted flow of neurotrophic factors has been cited as one possible trigger. However, the connections between glaucoma and other factors present in the retina, such as glutamate, long held to be a prospective culprit in retinal ganglion cell death are still being questioned. Whatever the outcome of this particular debate, it is clear that the downstream intersections between the cell death and survival pathways should provide important foci for future studies whose goal is to protect retinal neurons, situated as they are, in the stressful environment of a cell destroying disease. The evidence for CaMKII being one of these intersecting points is discussed.

  15. Arched needle technique for inferior alveolar mandibular nerve block.

    PubMed

    Chakranarayan, Ashish; Mukherjee, B

    2013-03-01

    One of the most commonly used local anesthetic techniques in dentistry is the Fischer's technique for the inferior alveolar nerve block. Incidentally this technique also suffers the maximum failure rate of approximately 35-45%. We studied a method of inferior alveolar nerve block by injecting a local anesthetic solution into the pterygomandibular space by arching and changing the approach angle of the conventional technique and estimated its efficacy. The needle after the initial insertion is arched and inserted in a manner that it approaches the medial surface of the ramus at an angle almost perpendicular to it. The technique was applied to 100 patients for mandibular molar extraction and the anesthetic effects were assessed. A success rate of 98% was obtained.

  16. Anaesthetic efficacy of lidocaine/clonidine for inferior alveolar nerve block in patients with irreversible pulpitis.

    PubMed

    Shadmehr, E; Aminozarbian, M G; Akhavan, A; Mahdavian, P; Davoudi, A

    2017-06-01

    This prospective, randomized, double-blind study aimed to compare the efficacy of lidocaine with epinephrine versus lidocaine with clonidine for inferior alveolar nerve block (IANB) and hemodynamic stability (heart rate, systolic blood pressure, diastolic blood pressure and mean arterial pressure) in patients with irreversible pulpitis. One hundred patients with irreversible pulpitis in mandibular molar teeth randomly received 1.8 mL of 2% lidocaine with clonidine (15 μg mL -1 ) or 1.8 mL of 2% lidocaine with epinephrine (12.5 μg mL -1 ), using a conventional IANB technique. Endodontic access cavities were prepared 15 min after solution deposition, and all patients were required to have profound lip numbness. Success was defined as no or mild pain (visual analog scale recording) upon endodontic access cavity preparation or initial canal instrumentation. The hemodynamic parameters were measured before, during and 5, 10 and 30 min after administration. Finally, the collected data were subjected to independent t-test, chi-square and Fisher's exact test using spss software ver.20 at a significant level of 0.05. The success rates for IANB using lidocaine with epinephrine and lidocaine with clonidine solutions were 29% and 59%, respectively. The clonidine group exhibited a significantly higher success rate (P < 0.05). Five minutes after drug administration, systolic blood pressure and heart rate significantly increased in the lidocaine with epinephrine group and insignificantly decreased in lidocaine with clonidine group. For mandibular molars with irreversible pulpitis, addition of clonidine to lidocaine improved the success rate of IANB compared to a standard lidocaine/epinephrine solution. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  17. Comparison of anesthetic efficacy of 4% articaine with 1:100,000 epinephrine and 2% lidocaine with 1:80,000 epinephrine for inferior alveolar nerve block in patients with irreversible pulpitis.

    PubMed

    Sood, Ravi; Hans, Manoj-Kumar; Shetty, Shashit

    2014-12-01

    This study was done to compare the anesthetic efficacy of 4% articaine with 1:100,000 epinephrine with that of 2% lidocaine with 1:80,000 epinephrine during pulpectomy in patients with irreversible pulpitis for inferior alveolar nerve block in mandibular posterior teeth. Patients with irreversible pulpitis referred to the Department of Conservative Dentistry and Endodontics, K.D. Dental College, randomly received a conventional inferior alveolar nerve block containing 1.8 mL of either 4% articaine with 1:100,000 epinephrine or 2% lidocaine with 1:80,000 epinephrine. After the patient's subjective assessment of lip anesthesia, the absence/presence of pulpal anesthesia through electric pulp stimulation was recorded and the absence/presence of pain was recorded through visual analogue scale. The pulpal anesthesia success for articaine (76%) was slightly more than with lidocaine (58%) as measured with pulp tester as well as for the pain reported during the procedure the success rate of articaine (88%) was slightly more than that of lidocaine (82%) although the difference between the two solutions was not statistically significant. Both the local anesthetic solutions had similar effects on patients with irreversible pulpitis when used for inferior alveolar nerve block. Key words:Anesthesia, articaine, lignocaine, pulpitis.

  18. Comparison of anesthetic efficacy of 4% articaine with 1:100,000 epinephrine and 2% lidocaine with 1:80,000 epinephrine for inferior alveolar nerve block in patients with irreversible pulpitis

    PubMed Central

    Sood, Ravi; Shetty, Shashit

    2014-01-01

    Objectives: This study was done to compare the anesthetic efficacy of 4% articaine with 1:100,000 epinephrine with that of 2% lidocaine with 1:80,000 epinephrine during pulpectomy in patients with irreversible pulpitis for inferior alveolar nerve block in mandibular posterior teeth. Material and Methods: Patients with irreversible pulpitis referred to the Department of Conservative Dentistry and Endodontics, K.D. Dental College, randomly received a conventional inferior alveolar nerve block containing 1.8 mL of either 4% articaine with 1:100,000 epinephrine or 2% lidocaine with 1:80,000 epinephrine. After the patient’s subjective assessment of lip anesthesia, the absence/presence of pulpal anesthesia through electric pulp stimulation was recorded and the absence/presence of pain was recorded through visual analogue scale. Results: The pulpal anesthesia success for articaine (76%) was slightly more than with lidocaine (58%) as measured with pulp tester as well as for the pain reported during the procedure the success rate of articaine (88%) was slightly more than that of lidocaine (82%) although the difference between the two solutions was not statistically significant. Conclusions: Both the local anesthetic solutions had similar effects on patients with irreversible pulpitis when used for inferior alveolar nerve block. Key words:Anesthesia, articaine, lignocaine, pulpitis. PMID:25674319

  19. Transversus abdominis plane (TAP) block in laparoscopic colorectal surgery improves postoperative pain management: a meta-analysis.

    PubMed

    Hain, E; Maggiori, L; Prost À la Denise, J; Panis, Y

    2018-04-01

    Transversus abdominis plane (TAP) block is a locoregional anaesthesia technique of growing interest in abdominal surgery. However, its efficacy following laparoscopic colorectal surgery is still debated. This meta-analysis aimed to assess the efficacy of TAP block after laparoscopic colorectal surgery. All comparative studies focusing on TAP block after laparoscopic colorectal surgery have been systematically identified through the MEDLINE database, reviewed and included. Meta-analysis was performed according to the Mantel-Haenszel method for random effects. End-points included postoperative opioid consumption, morbidity, time to first bowel movement and length of hospital stay. A total of 13 studies, including 7 randomized controlled trials, were included, comprising a total of 600 patients who underwent laparoscopic colorectal surgery with TAP block, compared with 762 patients without TAP block. Meta-analysis of these studies showed that TAP block was associated with a significantly reduced postoperative opioid consumption on the first day after surgery [weighted mean difference (WMD) -14.54 (-25.14; -3.94); P = 0.007] and a significantly shorter time to first bowel movement [WMD -0.53 (-0.61; -0.44); P < 0.001] but failed to show any impact on length of hospital stay [WMD -0.32 (-0.83; 0.20); P = 0.23] although no study considered length of stay as its primary outcome. Finally, TAP block was not associated with a significant increase in the postoperative overall complication rate [OR = 0.84 (0.62-1.14); P = 0.27]. Transversus abdominis plane (TAP) block in laparoscopic colorectal surgery improves postoperative opioid consumption and recovery of postoperative digestive function without any significant drawback. Colorectal Disease © 2018 The Association of Coloproctology of Great Britain and Ireland.

  20. Recovery of cat retinal ganglion cell sensitivity following pigment bleaching.

    PubMed Central

    Bonds, A B; Enroth-Cugell, C

    1979-01-01

    1. The threshold illuminance for small spot stimulation of on-centre cat retinal ganglion cells was plotted vs. time after exposure to adapting light sufficiently strong to bleach significant amounts of rhodopsin. 2. When the entire receptive field of an X- or Y-type ganglion cell is bleached by at most 40%, recovery of the cell's rod-system proceeds in two phases: an early relatively fast one during which the response appears transient, and a late, slower one during which responses become more sustained. Log threshold during the later phase is well fit by an exponential in time (tau = 11.5-38 min). 3. After bleaches of 90% of the underlying pigment, threshold is cone-determined for as long as 40 min. Rod threshold continues to decrease for at least 85 min after the bleach. 4. The rate of recovery is slower after strong than after weak bleaches; 10 and 90% bleaches yield time constants for the later phase of 11.5 and 38 min, respectively. This contrasts with an approximate time constant of 11 min for rhodopsin regeneration following any bleach. 5. The relationship between the initial elevation of log rod threshold extrapolated from the fitted exponential curves and the initial amount of pigment bleached is monotonic, but nonlinear. 6. After a bleaching exposure, the maintained discharge is initially very regular. The firing rate first rises, then falls to the pre-bleach level, with more extended time courses of change in firing rate after stronger exposures. The discharge rate is restored before threshold has recovered fully. 7. The change in the response vs. log stimulus relationship after bleaching is described as a shift of the curve to the right, paired with a decrease in slope of the linear segment of the curve. PMID:521963

  1. Anesthetic efficacy and heart rate effects of the intraosseous injection of 1.5% etidocaine (1:200,000 epinephrine) after an inferior alveolar nerve block.

    PubMed

    Stabile, P; Reader, A; Gallatin, E; Beck, M; Weaver, J

    2000-04-01

    The purpose of this study was to determine the anesthetic efficacy and heart rate effects of an intraosseous (IO) injection of 1.5% etidocaine with 1:200,000 epinephrine after an inferior alveolar nerve block. In a repeated-measures designed study, 48 subjects randomly received 2 combinations of injections at 2 separate appointments. The combinations were an inferior alveolar nerve (IAN) block (with 3% mepivacaine) + IO injection with 1.8 mL of 1.5% etidocaine hydrochloride containing 1:200,000 epinephrine, and an IAN + mock IO injection. The first molar was blindly tested with a pulp tester at 2-minute cycles for 60 minutes after the injection. Anesthesia was considered successful when 2 consecutive 80 readings (no subject response) were obtained. Heart rate (pulse rate) was measured with a pulse oximeter. Lip numbness occurred in 100% of the subjects with both the techniques. For the first molar, anesthetic success for the IAN + mock IO and the IAN + IO etidocaine hydrochloride groups, respectively, were 81% and 100%. The differences were significant (P <.05) when the IAN + IO etidocaine hydrochloride technique was compared with the IAN + mock IO. A mean increase in heart rate of 32 beats/min occurred in 90% of the subjects with the IO injection of the etidocaine hydrochloride solution. In 89% of these subjects, the heart rate returned to within 5 beats of baseline values 4 minutes or less after solution deposition. The IO injection of 1.8 mL of 1.5% etidocaine hydrochloride with 1:200,000 epinephrine, when used to augment an inferior alveolar nerve block, significantly increased anesthetic success in the first molar. The majority of subjects receiving the IO injection of the etidocaine hydrochloride solution had a transient increase in heart rate.

  2. Beta Adrenergic Blocking Medications for Aggressive or Self-Injurious Mentally Retarded Persons.

    ERIC Educational Resources Information Center

    Ruedrich, Stephen L.; And Others

    1990-01-01

    Literature is reviewed and a case report is presented concerning blockers of the beta-adrenergic function of the sympathetic nervous system, postulated to have efficacy in treatment of aggressive or self-injurious syndromes in persons with mental retardation. Concerns are raised regarding endorsement of beta-blocking medications before they have…

  3. Charge-balanced biphasic electrical stimulation inhibits neurite extension of spiral ganglion neurons.

    PubMed

    Shen, Na; Liang, Qiong; Liu, Yuehong; Lai, Bin; Li, Wen; Wang, Zhengmin; Li, Shufeng

    2016-06-15

    Intracochlear application of exogenous or transgenic neurotrophins, such as neurotrophin-3 (NT-3) and brain derived neurotrophic factor (BDNF), could promote the resprouting of spiral ganglion neuron (SGN) neurites in deafened animals. These resprouting neurites might reduce the gap between cochlear implant electrodes and their targeting SGNs, allowing for an improvement of spatial resolution of electrical stimulation. This study is to investigate the impact of electrical stimulation employed in CI on the extension of resprouting SGN neurites. We established an in vitro model including the devices delivering charge-balanced biphasic electrical stimulation, and spiral ganglion (SG) dissociated culture treated with BDNF and NT-3. After electrical stimulation with varying durations and intensities, we quantified neurite lengths and Schwann cell densities in SG cultures. Stimulations that were greater than 50μA or longer than 8h significantly decreased SG neurite length. Schwann cell density under 100μA electrical stimulation for 48h was significantly lower compared to that in non-stimulated group. These electrical stimulation-induced decreases of neurite extension and Schwann cell density were attenuated by various types of voltage-dependent calcium channel (VDCC) blockers, or completely prevented by their combination, cadmium or calcium-free medium. Our study suggested that charge-balanced biphasic electrical stimulation inhibited the extension of resprouting SGN neurites and decreased Schwann cell density in vitro. Calcium influx through multiple types of VDCCs was involved in the electrical stimulation-induced inhibition. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Soluble Adenylyl Cyclase Is Required for Retinal Ganglion Cell and Photoreceptor Differentiation

    PubMed Central

    Shaw, Peter X.; Fang, Jiahua; Sang, Alan; Wang, Yan; Kapiloff, Michael S.; Goldberg, Jeffrey L.

    2016-01-01

    Purpose We have previously demonstrated that soluble adenylyl cyclase (sAC) is necessary for retinal ganglion cell (RGC) survival and axon growth. Here, we further investigate the role of sAC in neuronal differentiation during retinal development. Methods Chx10 or Math5 promoter-driven Cre-Lox recombination were used to conditionally delete sAC from early and intermediate retinal progenitor cells during retinal development. We examined cell type–specific markers expressed by retinal cells to estimate their relative numbers and characterize retinal laminar morphology by immunofluorescence in adult and newborn mice. Results Retinal ganglion cell and amacrine cell markers were significantly lower in the retinas of adult Math5cre/sACfl/fl and Chx10cre/sACfl/fl mice than in those of wild-type controls. The effect on RGC development was detectable as early as postnatal day 1 and deleting sAC in either Math5- or Chx10-expressing retinal progenitor cells also reduced nerve fiber layer thickness into adulthood. The thickness of the photoreceptor layer was slightly but statistically significantly decreased in both the newborn Chx10cre/sACfl/fl and Math5cre/sACfl/fl mice, but this reduction and abnormal morphology persisted in the adults in only the Chx10cre/sACfl/fl mice. Conclusions sAC plays an important role in the early retinal development of RGCs as well as in the development of amacrine cells and to a lesser degree photoreceptors. PMID:27679853

  5. Glial interleukin-1β upregulates neuronal sodium channel 1.7 in trigeminal ganglion contributing to temporomandibular joint inflammatory hypernociception in rats.

    PubMed

    Zhang, Peng; Bi, Rui-Yun; Gan, Ye-Hua

    2018-04-20

    The proinflammatory cytokine interleukin-1β (IL-1β) drives pain by inducing the expression of inflammatory mediators; however, its ability to regulate sodium channel 1.7 (Nav1.7), a key driver of temporomandibular joint (TMJ) hypernociception, remains unknown. IL-1β induces cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2). We previously showed that PGE2 upregulated trigeminal ganglionic Nav1.7 expression. Satellite glial cells (SGCs) involve in inflammatory pain through glial cytokines. Therefore, we explored here in the trigeminal ganglion (TG) whether IL-1β upregulated Nav1.7 expression and whether the IL-1β located in the SGCs upregulated Nav1.7 expression in the neurons contributing to TMJ inflammatory hypernociception. We treated rat TG explants with IL-1β with or without inhibitors, including NS398 for COX-2, PF-04418948 for EP2, and H89 and PKI-(6-22)-amide for protein kinase A (PKA), or with adenylate cyclase agonist forskolin, and used real-time PCR, Western blot, and immunohistofluorescence to determine the expressions or locations of Nav1.7, COX-2, cAMP response element-binding protein (CREB) phosphorylation, and IL-1β. We used chromatin immunoprecipitation to examine CREB binding to the Nav1.7 promoter. Finally, we microinjected IL-1β into the TGs or injected complete Freund's adjuvant into TMJs with or without previous microinjection of fluorocitrate, an inhibitor of SGCs activation, into the TGs, and evaluated nociception and gene expressions. Differences between groups were examined by one-way analysis of variance (ANOVA) or independent samples t test. IL-1β upregulated Nav1.7 mRNA and protein expressions in the TG explants, whereas NS398, PF-04418948, H89, or PKI-(6-22)-amide could all block this upregulation, and forskolin could also upregulate Nav1.7 mRNA and protein expressions. IL-1β enhanced CREB binding to the Nav1.7 promoter. Microinjection of IL-1β into the TGs or TMJ inflammation both induced hypernociception of TMJ region

  6. Curcumin Attenuates Staurosporine-Mediated Death of Retinal Ganglion Cells

    PubMed Central

    Burugula, Balabharathi; Ganesh, Bhagyalaxmi S.

    2011-01-01

    Purpose. Staurosporine (SS) causes retinal ganglion cell (RGC) death in vivo, but the underlying mechanisms have been unclear. Since previous studies on RGC-5 cells indicated that SS induces cell death by elevating proteases, this study was undertaken to investigate whether SS induces RGC loss by elevating proteases in the retina, and curcumin prevents SS-mediated death of RGCs. Methods. Transformed mouse retinal ganglion-like cells (RGC-5) were treated with 2.0 μM SS and various doses of curcumin. Two optimal doses of SS (12.5 and 100 nM) and curcumin (2.5 and 10 μM) were injected into the vitreous of C57BL/6 mice. Matrix metalloproteinase (MMP)-9, tissue plasminogen activator (tPA), and urokinase plasminogen activator (uPA) activities were assessed by zymography assays. Viability of RGC-5 cells was assessed by MTT assays. RGC and amacrine cell loss in vivo was assessed by immunostaining with Brn3a and ChAT antibodies, respectively. Frozen retinal cross sections were immunostained for nuclear factor-κB (NF-κB). Results. Staurosporine induced uPA and tPA levels in RGC-5 cells, and MMP-9, uPA, and tPA levels in the retinas and promoted the death of RGC-5 cells in vitro and RGCs and amacrine cells in vivo. In contrast, curcumin attenuated RGC and amacrine cell loss, despite elevated levels of proteases. An NF-κB inhibitory peptide reversed curcumin-mediated protective effect on RGC-5 cells, but did not inhibit protease levels. Curcumin did not inhibit protease levels in vivo, but attenuated RGC and amacrine cell loss by restoring NF-κB expression. Conclusions. The results show that curcumin attenuates RGC and amacrine cell death despite elevated levels of proteases and raises the possibility that it may be used as a plausible adjuvant therapeutic agent to prevent the loss of these cells in retinal degenerative conditions. PMID:21498608

  7. Mechanisms regulating plasminogen activators in transformed retinal ganglion cells

    PubMed Central

    Rock, Nathan; Chintala, Shravan K.

    2008-01-01

    Irreversible loss of retinal ganglion cells (RGCs) is a major clinical issue in glaucoma, but the mechanisms that lead to RGC death are currently unclear. We have previously reported that elevated levels of tissue plasminogen activator (tPA) and urokinase plasminogen activator (uPA) cause the death of RGCs in vivo and transformed retinal ganglion cells (RGC-5) in vitro. Yet, it is unclear how secreted proteases such as tPA and uPA directly cause RGCs' death. In this study, by employing RGC-5 cells, we report that tPA and uPA elicit their direct effect through the low-density lipoprotein-related receptor-1 (LRP-1). We also show that blockade of protease-LRP-1 interaction leads to a compete reduction in autocrine synthesis of tPA and uPA, and prevents protease-mediated death of RGC-5 cells. RGC-5 cells were cultured in serum-free medium and treated with 2.0 uM Staurosporine to induce their differentiation. Neurite outgrowth was observed by a phase contrast microscope and quantified by NeuroJ imaging software. Proteolytic activities of tPA and uPA were determined by zymography assays. Cell viability was determined by MTT assays. Compared to untreated RGC-5 cells, cells treated with Staurosporine differentiated, synthesized and secreted elevated levels of tPA and uPA, and underwent cell death. In contrast, when RGC-5 cells were treated with Staurosporine along with the receptor associated protein (RAP), proteolytic activities of both tPA and uPA were significantly reduced. Under these conditions, a significant number of RGC-5 cells survived and showed increased neurite outgrowth. These results indicate that LRP-1 regulates autocrine synthesis of tPA and uPA in RGC-5 cells and suggest that the use of RAP to antagonize the effect of proteases may be a way to prevent RGC death in glaucoma. PMID:18243176

  8. The effect of hexamethonium on the carotid chemoreceptor response to nicotine and cyanide

    PubMed Central

    Byck, R.

    1961-01-01

    The literature concerning the effects of ganglionic blocking agents on the chemoreceptors is reviewed. Hexamethonium blocks the respiratory response to intracarotid injections of small doses of nicotine in dogs anaesthetized with chloralose, but it does not block the response to sodium cyanide. PMID:13689559

  9. High-dose versus low-dose local anaesthetic for transversus abdominis plane block post-Caesarean delivery analgesia: a meta-analysis.

    PubMed

    Ng, S C; Habib, A S; Sodha, S; Carvalho, B; Sultan, P

    2018-02-01

    The optimal local-anaesthetic (LA) dose for transversus-abdominis-plane (TAP) block is unclear. In this meta-analysis, we aimed to determine whether TAP blocks for Caesarean delivery (CD) with low-dose (LD) LA demonstrated non-inferiority in terms of analgesic efficacy, compared with high-dose (HD) LA. A literature search was performed for randomised controlled trials examining the analgesic efficacy of TAP blocks vs control after CD. The different dosing used in these studies was classified as HD or LD (bupivacaine equivalents >50 or ≤50 mg per block side, respectively). The pooled results of each dose group vs control were indirectly compared using the Q test. The primary outcome was 24 h opioid consumption. Secondary outcomes included 6 and 24 h postoperative pain scores, time to first analgesia, 6 h opioid consumption, opioid-related side-effects, and maternal satisfaction. Fourteen studies consisting of 770 women (389 TAP and 381 control) were included. Compared with controls, the 24 h opioid consumption (milligram morphine equivalents) was lower in HD [mean difference (MD) 95% confidence interval (CI) -22.41 (-38.56, -6.26); P=0.007; I 2 =93%] and LD [MD 95% CI -16.29 (-29.74, -2.84); P=0.02; I 2 =98%] TAP groups. However, no differences were demonstrated between the HD and LD groups (P=0.57). There were also no differences between the HD and LD groups for the 6 h opioid consumption, time to first analgesia, 6 and 24 h pain scores, postoperative nausea and vomiting, pruritus, and maternal satisfaction. Low-dose TAP blocks for Caesarean delivery provide analgesia and opioid-sparing effects comparable with the high-dose blocks. This suggests that lower doses can be used to reduce local anaesthetic toxicity risk without compromising the analgesic efficacy. Copyright © 2017 British Journal of Anaesthesia. Published by Elsevier Ltd. All rights reserved.

  10. Analgesic efficacy of local infiltration analgesia vs. femoral nerve block after anterior cruciate ligament reconstruction: a systematic review and meta-analysis.

    PubMed

    Kirkham, K R; Grape, S; Martin, R; Albrecht, E

    2017-12-01

    Many published reports consider blockade of the femoral nerve distribution the best available analgesic treatment after anterior cruciate ligament reconstruction. However, some argue that an alternative approach of infiltrating local anaesthetic into the surgical site has similar efficacy. The objectives of this meta-analysis were to compare the analgesic and functional outcomes of both treatments following anterior ligament reconstruction. The primary outcomes were pain scores at rest (analogue scale, 0-10) in the early (0-2 postoperative hours), intermediate (3-12 hours) and late postoperative periods (13-24 hours). Secondary outcomes included range of motion, quadriceps muscle strength and complication rates (neurological problems, cardiovascular events, falls and knee infections). Eleven trials, including 628 patients, were identified. Pain scores in the early, intermediate and late postoperative periods were significantly lower in patients who received a femoral nerve block, with mean differences (95%CI) of 1.6 (0.2-2.9), p = 0.02; 1.2 (0.4-1.5), p = 0.002; and 0.7 (0.1-1.4), p = 0.03 respectively. The quality of evidence for our primary outcomes was moderate to high. Regarding functional outcomes, only one trial reported a similar range of motion between groups at 48 postoperative hours. No trial sought to record complications. In conclusion, femoral nerve block provides superior postoperative analgesia after anterior cruciate ligament reconstruction to local infiltration analgesia. The impact of improved analgesia on function remains unclear due to the lack of reporting of functional outcomes in the existing literature. © 2017 The Association of Anaesthetists of Great Britain and Ireland.

  11. 31 CFR 598.301 - Blocked account; blocked property.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Blocked account; blocked property. 598.301 Section 598.301 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued... REGULATIONS General Definitions § 598.301 Blocked account; blocked property. The terms blocked account and...

  12. 31 CFR 598.301 - Blocked account; blocked property.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Blocked account; blocked property. 598.301 Section 598.301 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued... REGULATIONS General Definitions § 598.301 Blocked account; blocked property. The terms blocked account and...

  13. 31 CFR 598.301 - Blocked account; blocked property.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Blocked account; blocked property. 598.301 Section 598.301 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued... REGULATIONS General Definitions § 598.301 Blocked account; blocked property. The terms blocked account and...

  14. 31 CFR 598.301 - Blocked account; blocked property.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Blocked account; blocked property. 598.301 Section 598.301 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued... REGULATIONS General Definitions § 598.301 Blocked account; blocked property. The terms blocked account and...

  15. Comparative evaluation of effect of preoperative oral medication of ibuprofen and ketorolac on anesthetic efficacy of inferior alveolar nerve block with lidocaine in patients with irreversible pulpitis: a prospective, double-blind, randomized clinical trial.

    PubMed

    Aggarwal, Vivek; Singla, Mamta; Kabi, Debipada

    2010-03-01

    Anesthetic efficacy of inferior alveolar nerve block decreases in patients with irreversible pulpitis. It was hypothesized that premedication with nonsteroidal anti-inflammatory drugs might improve the success rates in patients with inflamed pulps. Sixty-nine adult volunteers who were actively experiencing pain participated in this prospective, randomized, double-blind study. The patients were divided into 3 groups on a random basis and were randomly given 1 of the 3 drugs including ibuprofen, ketorolac, and placebo 1 hour before anesthesia. All patients received standard inferior alveolar nerve block of 2% lidocaine with 1:200,000 epinephrine. Endodontic access preparation was initiated after 15 minutes of initial inferior alveolar nerve block. Pain during treatment was recorded by using a Heft Parker visual analog scale. Success was recorded as none or mild pain. Statistical analysis with nonparametric chi2 tests showed that placebo gave 29% success rate. Premedication with ibuprofen gave 27%, and premedication with ketorolac gave 39% success rate. There was no significant difference between the 3 groups. Preoperative administration of ibuprofen or ketorolac has no significant effect on success rate of inferior alveolar nerve block in patients with irreversible pulpitis. Copyright (c) 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  16. Activation of cannabinoid CB1 receptors modulates evoked action potentials in rat retinal ganglion cells.

    PubMed

    Jiang, Shu-Xia; Li, Qian; Wang, Xiao-Han; Li, Fang; Wang, Zhong-Feng

    2013-08-25

    Activation of cannabinoid CB1 receptors (CB1Rs) regulates a variety of physiological functions in the vertebrate retina through modulating various types of ion channels. The aim of the present study was to investigate the effects of this receptor on cell excitability of rat retinal ganglion cells (RGCs) in retinal slices using whole-cell patch-clamp techniques. The results showed that under current-clamped condition perfusing WIN55212-2 (WIN, 5 μmol/L), a CB1R agonist, did not significantly change the spontaneous firing frequency and resting membrane potential of RGCs. In the presence of cocktail synaptic blockers, including excitatory postsynaptic receptor blockers CNQX and D-APV, and inhibitory receptor blockers bicuculline and strychnine, perfusion of WIN (5 μmol/L) hardly changed the frequencies of evoked action potentials by a series of positive current injection (from +10 to +100 pA). Phase-plane plot analysis showed that both average threshold voltage for triggering action potential and delay time to reach threshold voltage were not affected by WIN. However, WIN significantly decreased +dV/dtmax and -dV/dtmax of action potentials, suggestive of reduced rising and descending velocities of action potentials. The effects of WIN were reversed by co-application of SR141716, a CB1R selective antagonist. Moreover, WIN did not influence resting membrane potential of RGCs with synaptic inputs being blocked. These results suggest that activation of CB1Rs may regulate intrinsic excitability of rat RGCs through modulating evoked action potentials.

  17. Efficacy of cancellous block allograft augmentation prior to implant placement in the posterior atrophic mandible.

    PubMed

    Nissan, Joseph; Ghelfan, Oded; Mardinger, Ofer; Calderon, Shlomo; Chaushu, Gavriel

    2011-12-01

    The present study evaluated the outcome of ridge augmentation with cancellous freeze-dried block bone allografts in the posterior atrophic mandible followed by placement of dental implants. A bony deficiency of at least 3 mm, horizontally, vertically, or both, according to computerized tomography (CT) para-axial reconstruction served as inclusion criteria. Implants were inserted after a healing period of 6 months. Bone measurements were taken prior to bone augmentation, during implant placement, and at second-stage surgery. Marginal bone loss and crown-to-implant ratio were also measured. Twenty-nine cancellous allogeneic bone blocks were placed in 21 patients. The mean follow-up was 37 months. Bone block survival rate was 79.3%. Mean horizontal and vertical bone gains were 5.6 and 4.3 mm, respectively. Mean buccal bone resorption was 0.5 mm at implant placement and 0.2 mm at second-stage surgery. A total of 85 implants were placed. Mean bone thickness buccal to the implant neck was 2.5 mm at implant placement and 2.3 mm at second-stage surgery. There was no evidence of vertical bone loss between implant placement and second-stage surgery. Implant survival rate was 95.3%. All patients received a fixed implant-supported prosthesis. At the last follow-up, the mean marginal bone loss was 0.5 mm. The mean crown-to-implant ratio was 0.96. Implant placement in the posterior atrophic mandible following augmentation with cancellous freeze-dried bone block allografts may be regarded as a viable treatment alternative. © 2009 Wiley Periodicals, Inc.

  18. Analgesic efficacy of transversus abdominis plane block in neonates and early infants for colostomy and reversal of colostomy.

    PubMed

    Chen, Chee Kean; Teo, Shu Ching; Phui, Vui Eng; Saman, Mat Ariffin

    2015-01-01

    The application of ultrasound-guided transversus abdominis plane (TAP) block in paediatric population is gaining popularity among anaesthetists. We present a case series of ultrasound-guided TAP block in ten neonate and infants undergoing colostomy and reversal of stoma. Classical TAP as described by Hebbard was carried out and a maximum dosage of 1ml/kg of 0.25% levobupivacaine was injected. Pain score was assessed using Neonatal Infant Pain Scale for 24 hours. In all patients, the block was successful with minimal hemodynamic changes intraoperatively and no additional systemic analgesia was needed intraoperative and immediate postoperatively. Ultrasound-guided TAP block has an important role in providing safe and effective analgesia for colostomy creation and reversal of stoma surgeries in paediatric population.

  19. Characterization of spontaneous excitatory synaptic currents in salamander retinal ganglion cells.

    PubMed Central

    Taylor, W R; Chen, E; Copenhagen, D R

    1995-01-01

    1. Spontaneous excitatory postsynaptic currents (sEPSCs) were recorded under voltage-clamp conditions. Consistent with activation of non-NMDA-type glutamate receptors, the sEPSCs reversed at potentials above 0 mV, were blocked by 1 microM CNQX and prolonged by 2 mM aniracetam. 2. The peak conductance of the averaged sEPSCs (n = 70-400) was 130 +/- 60 pS (mean +/- S.D.; 17 cells, ranging from 70 to 290 pS). Amplitude distributions were skewed towards larger amplitudes. 3. The decay of individual and mean sEPSCs was exponential with a mean time constant (tau d) of 3.75 +/- 0.84 ms (n = 13), which was voltage independent. The 10-90% rise time of the sEPSCs was 1.30 +/- 0.44 ms (n = 13). There was no correlation between sEPSC rise time and tau d suggesting that dendritic filtering alone did not shape the time course of sEPSCs. 4. Light-evoked EPSCs in these retinal ganglion cells are mediated by concomitant activation of NMDA and non-NMDA receptors; however, no NMDA component was discerned in the sEPSCs, even when recording at -96 mV in Mg(2+)-free solutions. The decay time course was not altered by 20 microM AP7, an NMDA antagonist, nor was an NMDA component unmasked by adding glycine or D-serine. These results suggest that NMDA and non-NMDA receptors are not coactivated by a single vesicle of transmitter during spontaneous release, and thus are probably not colocalized in the postsynaptic membrane at the sites of spontaneous release. 5. The sEPSCs were an order of magnitude faster than the non-NMDA receptor-mediated EPSCs evoked by light stimuli, and it is proposed that the EPSC time course is determined largely by the extended time course of release of synaptic vesicles from bipolar cells. The quantal content of a light-evoked non-NMDA receptor-mediated EPSC in an on-off cell is about 200 quanta. Images Figure 6 PMID:7562636

  20. Beyond Darcy's law: The role of phase topology and ganglion dynamics for two-fluid flow

    DOE PAGES

    Armstrong, Ryan T.; McClure, James E.; Berrill, Mark A.; ...

    2016-10-27

    Relative permeability quantifies the ease at which immiscible phases flow through porous rock and is one of the most well known constitutive relationships for petroleum engineers. It however exhibits troubling dependencies on experimental conditions and is not a unique function of phase saturation as commonly accepted in industry practices. The problem lies in the multi-scale nature of the problem where underlying disequilibrium processes create anomalous macroscopic behavior. Here we show that relative permeability rate dependencies are explained by ganglion dynamic flow. We utilize fast X-ray micro-tomography and pore-scale simulations to identify unique flow regimes during the fractional flow of immisciblemore » phases and quantify the contribution of ganglion flux to the overall flux of non-wetting phase. We anticipate our approach to be the starting point for the development of sophisticated multi-scale flow models that directly link pore-scale parameters to macro-scale behavior. Such models will have a major impact on how we recover hydrocarbons from the subsurface, store sequestered CO 2 in geological formations, and remove non-aqueous environmental hazards from the vadose zone.« less

  1. Effects of Icariside II on Corpus Cavernosum and Major Pelvic Ganglion Neuropathy in Streptozotocin-Induced Diabetic Rats

    PubMed Central

    Bai, Guang-Yi; Zhou, Feng; Hui, Yu; Xu, Yong-De; Lei, Hong-En; Pu, Jin-Xian; Xin, Zhong-Cheng

    2014-01-01

    Diabetic erectile dysfunction is associated with penile dorsal nerve bundle neuropathy in the corpus cavernosum and the mechanism is not well understood. We investigated the neuropathy changes in the corpus cavernosum of rats with streptozotocin-induced diabetes and the effects of Icariside II (ICA II) on improving neuropathy. Thirty-six 8-week-old Sprague-Dawley rats were randomly distributed into normal control group, diabetic group and ICA-II treated group. Diabetes was induced by a one-time intraperitoneal injection of streptozotocin (60 mg/kg). Three days later, the diabetic rats were randomly divided into 2 groups including a saline treated placebo group and an ICA II-treated group (5 mg/kg/day, by intragastric administration daily). Twelve weeks later, erectile function was measured by cavernous nerve electrostimulation with real time intracorporal pressure assessment. The penis was harvested for the histological examination (immunofluorescence and immunohistochemical staining) and transmission electron microscopy detecting. Diabetic animals exhibited a decreased density of dorsal nerve bundle in penis. The neurofilament of the dorsal nerve bundle was fragmented in the diabetic rats. There was a decreased expression of nNOS and NGF in the diabetic group. The ICA II group had higher density of dorsal nerve bundle, higher expression of NGF and nNOS in the penis. The pathological change of major pelvic nerve ganglion (including the microstructure by transmission electron microscope and the neurite outgrowth length of major pelvic nerve ganglion tissue cultured in vitro) was greatly attenuated in the ICA II-treated group (p < 0.01). ICA II treatment attenuates the diabetes-related impairment of corpus cavernosum and major pelvic ganglion neuropathy in rats with Streptozotocin-Induced Diabetes. PMID:25517034

  2. A Comparison of Combined Suprascapular and Axillary Nerve Blocks to Interscalene Nerve Block for Analgesia in Arthroscopic Shoulder Surgery: An Equivalence Study.

    PubMed

    Dhir, Shalini; Sondekoppam, Rakesh V; Sharma, Ranjita; Ganapathy, Sugantha; Athwal, George S

    2016-01-01

    The primary objective of this study was to compare the analgesic efficacy of combined suprascapular and axillary nerve block (SSAX) with interscalene block (ISB) after arthroscopic shoulder surgery. Our hypothesis was that ultrasound-guided SSAX would provide postoperative analgesia equivalent to ISB. Sixty adult patients undergoing arthroscopic shoulder surgery received either SSAX or ISB prior to general anesthesia, in a randomized fashion. Pain scores, satisfaction, and adverse effects were recorded in the recovery room, 6 hours, 24 hours, and 7 days after surgery. Combined suprascapular and axillary nerve block provided nonequivalent analgesia when compared with ISB at different time points postoperatively, except on postoperative day 7. Interscalene block had better mean static pain score in the recovery room (ISB 1.80 [95% confidence interval [CI], 1.10-2.50] vs SSAX 5.45 [95% CI, 4.40-6.49; P < 0.001]). At 24 hours, SSAX had better mean static pain score (ISB 6.35 [95% CI, 5.16-7.54] vs SSAX 3.92 [95% CI, 2.52-5.31]; P = 0.01) with similar satisfaction between the groups. Combined suprascapular and axillary nerve block provides nonequivalent analgesia compared with ISB after arthroscopic shoulder surgery. While SSAX provides better quality pain relief at rest and fewer adverse effects at 24 hours, ISB provides better analgesia in the immediate postoperative period. For arthroscopic shoulder surgery, SSAX can be a clinically acceptable analgesic option with different analgesic profile compared with ISB.

  3. Conduction block in the peripheral nervous system in experimental allergic encephalomyelitis

    NASA Astrophysics Data System (ADS)

    Pender, M. P.; Sears, T. A.

    1982-04-01

    Experimental allergic encephalomyelitis (EAE) has been widely studied as a model of multiple sclerosis, a central nervous system (CNS) disease of unknown aetiology. The clinical features of both EAE and multiple sclerosis provide the only guide to the progress and severity of these diseases, and are used to assess the response to treatment. In such comparisons the clinical features of EAE are assumed to be due to lesions in the CNS, but in this disease there is also histological evidence of damage to the peripheral nervous system1-8. However, the functional consequences of such peripheral lesions have been entirely ignored. To examine this we have studied nerve conduction in rabbits with EAE. We report here that most of the large diameter afferent fibres are blocked in the region of the dorsal root ganglion and at the dorsal root entry zone, thus accounting for the loss of tendon jerks and also, through the severe loss of proprioceptive information, the ataxia of these animals. We conclude that whenever clinical comparisons are made between EAE and multiple sclerosis, the pathophysiology associated with the histological damage of the peripheral nervous system must be taken into account.

  4. Older age at diagnosis of Hirschsprung disease decreases risk of postoperative enterocolitis, but resection of additional ganglionated bowel does not.

    PubMed

    Haricharan, Ramanath N; Seo, Jeong-Meen; Kelly, David R; Mroczek-Musulman, Elizabeth C; Aprahamian, Charles J; Morgan, Traci L; Georgeson, Keith E; Harmon, Carroll M; Saito, Jacqueline M; Barnhart, Douglas C

    2008-06-01

    This study was conducted to determine the effect of age at diagnosis and length of ganglionated bowel resected on postoperative Hirschsprung-associated enterocolitis (HAEC). Children who underwent endorectal pull-through (ERPT) between January 1993 and December 2004 were retrospectively reviewed. t Test, analysis of variance, Kaplan-Meier, and Cox's proportional hazards analyses were performed. Fifty-two children with Hirschsprung disease (median age, 25 days; range, 2 days-16 years) were included. Nineteen (37%) had admissions for HAEC. Proportional hazards regression showed that HAEC admissions decreased by 30% with each doubling of age at diagnosis (P = .03) and increased 9-fold when postoperative stricture was present (P < .01), after controlling for type of ERPT, trisomy 21, transition zone level, and preoperative enterocolitis. Thirty-six children, with age at initial operation less than 6 months, were grouped based on length of ganglionated bowel excised (A [5 cm] and B [>5 cm]). No significant difference in the number of HAEC admissions during initial 2 years post-ERPT was seen between groups A (n = 18) and B (n = 18). The study had a power of 0.8 to detect a difference of 1 admission over 2 years. Children diagnosed with Hirschsprung disease at younger ages are at a greater risk for postoperative enterocolitis. Excising a longer margin of ganglionated bowel (>5 cm) does not seem to be beneficial in decreasing HAEC admissions.

  5. Analgesic Effect Of Bilateral Subcostal Tap Block After Laparoscopic Cholecystectomy.

    PubMed

    Khan, Karima Karam; Khan, Robyna Irshad

    2018-01-01

    Pain after laparoscopic cholecystectomy is mild to moderate in intensity. Several modalities are employed for achieving safe and effective postoperative analgesia, the benefits of which adds to the early recovery of the patients. As a part of multimodal analgesia, various approaches of Transversus abdominis plane (TAP) block has been used for management of parietal and incisional components of pain after laparoscopic cholecystectomy. This study was designed to compare the analgesic efficacy of two different approaches of ultrasound guided TAP block, i.e., Subcostal-TAP block technique with ultrasound guided Posterior-TAP block for postoperative pain management in patients undergoing laparoscopic cholecystectomy under general anaesthesia. In this double blinded randomized controlled study, consecutive nonprobability sampling was done and a total of 126 patients admitted for elective laparoscopic cholecystectomy fulfilling the inclusion criteria were selected. After induction of general anaesthesia, patients were randomized through draw method and received either ultrasound guided posterior TAP block with 0.375% bupivacaine (20ml volume) on each side of the abdomen or subcostal TAP block bilaterally with the same. Up to 24 hours postoperatively, static and dynamic numeric rating pain scores were assessed. We found statistically significant difference in mean static pain scores over 24 hours postoperatively in subcostal TAP group, suggesting improved analgesia. However, mean dynamic postoperative pain scores were comparable between the two groups. Whereas, patients in both groups were satisfied with pain management. Ultrasound guided subcostal TAP block provides better postoperative analgesia as compared to the Posterior TAP block in laparoscopic cholecystectomy. Otherwise both of the approaches improve patient outcomes towards early recovery and discharge from hospital.

  6. Effects of a Preschool Mathematics Curriculum: Summative Research on the "Building Blocks" Project

    ERIC Educational Resources Information Center

    Clements, Douglas H.; Sarama, Julie

    2007-01-01

    This study evaluated the efficacy of a preschool mathematics program based on a comprehensive model of developing research-based software and print curricula. Building Blocks, funded by the National Science Foundation, is a curriculum development project focused on creating research-based, technology-enhanced mathematics materials for pre-K…

  7. Retinal Astrocytes and GABAergic Wide-Field Amacrine Cells Express PDGFRα: Connection to Retinal Ganglion Cell Neuroprotection by PDGF-AA.

    PubMed

    Takahama, Shokichi; Adetunji, Modupe O; Zhao, Tantai; Chen, Shan; Li, Wei; Tomarev, Stanislav I

    2017-09-01

    Our previous experiments demonstrated that intravitreal injection of platelet-derived growth factor-AA (PDGF-AA) provides retinal ganglion cell (RGC) neuroprotection in a rodent model of glaucoma. Here we used PDGFRα-enhanced green fluorescent protein (EGFP) mice to identify retinal cells that may be essential for RGC protection by PDGF-AA. PDGFRα-EGFP mice expressing nuclear-targeted EGFP under the control of the PDGFRα promoter were used. Localization of PDGFRα in the neural retina was investigated by confocal imaging of EGFP fluorescence and immunofluorescent labeling with a panel of antibodies recognizing different retinal cell types. Primary cultures of mouse RGCs were produced by immunopanning. Neurobiotin injection of amacrine cells in a flat-mounted retina was used for the identification of EGFP-positive amacrine cells in the inner nuclear layer. In the mouse neural retina, PDGFRα was preferentially localized in the ganglion cell and inner nuclear layers. Immunostaining of the retina demonstrated that astrocytes in the ganglion cell layer and a subpopulation of amacrine cells in the inner nuclear layer express PDGFRα, whereas RGCs (in vivo or in vitro) did not. PDGFRα-positive amacrine cells are likely to be Type 45 gamma-aminobutyric acidergic (GABAergic) wide-field amacrine cells. These data indicate that the neuroprotective effect of PDGF-AA in a rodent model of glaucoma could be mediated by astrocytes and/or a subpopulation of amacrine cells. We suggest that after intravitreal injection of PDGF-AA, these cells secrete factors protecting RGCs.

  8. Spontaneous voltage and current fluctuations in tissue cultured mouse dorsal root ganglion cells.

    PubMed

    Mathers, D A; Barker, J L

    1984-02-13

    Fetal mouse dorsal root ganglion (DRG) neurons were maintained in primary dissociated cell culture for periods of 7 days to 3 months. Intracellular recordings from these cells revealed the presence of spontaneous subthreshold potentials in 101/177 neurons studied. When measured at the resting membrane potential, these spontaneous voltage events took two forms: (a) high frequency potential fluctuations several millivolts in peak-to-peak amplitude and (b) small, discrete hyperpolarizations. Neurons exhibiting either type of event were designated as 'active' DRG cells. No spontaneous potentials were seen in DRG cells hyperpolarized to membrane voltages more negative than -64 +/- 11.5 mV (n = 5 cells). Under voltage-clamp conditions, the subthreshold potentials of active DRG cells were replaced by fluctuations in outward current. The power spectral density, S(f) of these current fluctuations was approximated by an equation of the form S(f) = (S(o)/[1 + (f/fc) alpha] where 2 less than or equal to a less than or equal to 3 and the half-power frequency fc = 11.3 +/- 3.1 Hz at 23 degrees C (n = 17 cells). The spontaneous voltage fluctuations of active DRG cells were abolished in Ca2+-free saline, and of the divalent metal cations Sr2+, Mg2+, Ba2+, Co2+ and Mn2+, only Sr2+ could substitute for Ca2+ in the maintenance of this activity. Tetraethylammonium ions (1-10 mM) reversibly blocked the spontaneous potentials, while caffeine (10 mM) increased the frequency of these events. The spontaneous voltage fluctuations were not dependent on the presence of spinal cord neurons in the culture plate, and they were also observed in cultured DRG cells derived from adult mice.

  9. Allogeneic Transplantation of Müller-Derived Retinal Ganglion Cells Improves Retinal Function in a Feline Model of Ganglion Cell Depletion

    PubMed Central

    Becker, Silke; Eastlake, Karen; Jayaram, Hari; Jones, Megan F.; Brown, Robert A.; McLellan, Gillian J.; Charteris, David G.; Khaw, Peng T.

    2016-01-01

    Human Müller glia with stem cell characteristics (hMGSCs) have been shown to improve retinal function upon transplantation into rat models of retinal ganglion cell (RGC) depletion. However, their translational potential may depend upon successful engraftment and improvement of retinal function in experimental models with anatomical and functional features resembling those of the human eye. We investigated the effect of allogeneic transplantation of feline Müller glia with the ability to differentiate into cells expressing RGC markers, following ablation of RGCs by N-methyl-d-aspartate (NMDA). Unlike previous observations in the rat, transplantation of hMGSC-derived RGCs into the feline vitreous formed aggregates and elicited a severe inflammatory response without improving visual function. In contrast, allogeneic transplantation of feline MGSC (fMGSC)-derived RGCs into the vitrectomized eye improved the scotopic threshold response (STR) of the electroretinogram (ERG). Despite causing functional improvement, the cells did not attach onto the retina and formed aggregates on peripheral vitreous remnants, suggesting that vitreous may constitute a barrier for cell attachment onto the retina. This was confirmed by observations that cellular scaffolds of compressed collagen and enriched preparations of fMGSC-derived RGCs facilitated cell attachment. Although cells did not migrate into the RGC layer or the optic nerve, they significantly improved the STR and the photopic negative response of the ERG, indicative of increased RGC function. These results suggest that MGSCs have a neuroprotective ability that promotes partial recovery of impaired RGC function and indicate that cell attachment onto the retina may be necessary for transplanted cells to confer neuroprotection to the retina. Significance Müller glia with stem cell characteristics are present in the adult human retina, but they do not have regenerative ability. These cells, however, have potential for

  10. Testing block subdivision algorithms on block designs

    NASA Astrophysics Data System (ADS)

    Wiseman, Natalie; Patterson, Zachary

    2016-01-01

    Integrated land use-transportation models predict future transportation demand taking into account how households and firms arrange themselves partly as a function of the transportation system. Recent integrated models require parcels as inputs and produce household and employment predictions at the parcel scale. Block subdivision algorithms automatically generate parcel patterns within blocks. Evaluating block subdivision algorithms is done by way of generating parcels and comparing them to those in a parcel database. Three block subdivision algorithms are evaluated on how closely they reproduce parcels of different block types found in a parcel database from Montreal, Canada. While the authors who developed each of the algorithms have evaluated them, they have used their own metrics and block types to evaluate their own algorithms. This makes it difficult to compare their strengths and weaknesses. The contribution of this paper is in resolving this difficulty with the aim of finding a better algorithm suited to subdividing each block type. The proposed hypothesis is that given the different approaches that block subdivision algorithms take, it's likely that different algorithms are better adapted to subdividing different block types. To test this, a standardized block type classification is used that consists of mutually exclusive and comprehensive categories. A statistical method is used for finding a better algorithm and the probability it will perform well for a given block type. Results suggest the oriented bounding box algorithm performs better for warped non-uniform sites, as well as gridiron and fragmented uniform sites. It also produces more similar parcel areas and widths. The Generalized Parcel Divider 1 algorithm performs better for gridiron non-uniform sites. The Straight Skeleton algorithm performs better for loop and lollipop networks as well as fragmented non-uniform and warped uniform sites. It also produces more similar parcel shapes and patterns.

  11. The efficacy of adding dexamethasone, midazolam, or epinephrine to 0.5% bupivacaine in supraclavicular brachial plexus block.

    PubMed

    El-Baradey, Ghada F; Elshmaa, Nagat S

    2014-11-01

    The aim was to assess the effectiveness of adding either dexamethasone or midazolam in comparison with epinephrine addition to 0.5% bupivacaine in supraclavicular brachial plexus block. This is a prospective randomized controlled observer-blinded study. This study was carried out in Tanta University Hospital on 60 patients of both sexes; American Society of Anesthesiologists physical Status I and II, age range from 18 to 45 years undergo elective surgery to upper limb. All patients were anesthetized with ultrasound guided supraclavicular brachial plexus block and randomly divided into three groups (each group 20 patients) Group E (epinephrine): 30 mL bupivacaine 0.5%with 1:200,000 epinephrine (5 μg/mL). Group D (dexamethasone): 30 mL bupivacaine 0.5% and dexamethasone 8 mg. Group M (midazolam): 30 ml bupivacaine 0.5% and midazolam 50 μg/kg. The primary outcome measures were onset and duration of sensory and motor block and time to first analgesic request. The windows version of SPSS 11.0.1 (SPSS Inc., Chicago, IL, USA) was used for statistical analysis. Data were presented in form of mean ± standard deviation multiple analysis of variance (ANOVA) was used to compare the three groups and Scheffe test was used after ANOVA. Power of significance P < 0.05 was considered to be statistically significant. Onset of sensory and motor block was significantly rapid (P < 0.05) in Groups D and M in comparison with Group E. Time of administration of rescue analgesic, duration of sensory and motor block showed significant increase (P < 0.05) in Group D in comparison with Group M which showed significant increase (P < 0.05) in comparison with Group E. In comparison with epinephrine and midazolam addition of dexamethasone to bupivacaine had rapid onset of block and longer time to first analgesic request with fewer side-effects.

  12. Reduced N-Type Ca2+ Channels in Atrioventricular Ganglion Neurons Are Involved in Ventricular Arrhythmogenesis.

    PubMed

    Zhang, Dongze; Tu, Huiyin; Cao, Liang; Zheng, Hong; Muelleman, Robert L; Wadman, Michael C; Li, Yu-Long

    2018-01-15

    Attenuated cardiac vagal activity is associated with ventricular arrhythmogenesis and related mortality in patients with chronic heart failure. Our recent study has shown that expression of N-type Ca 2+ channel α-subunits (Ca v 2.2-α) and N-type Ca 2+ currents are reduced in intracardiac ganglion neurons from rats with chronic heart failure. Rat intracardiac ganglia are divided into the atrioventricular ganglion (AVG) and sinoatrial ganglion. Ventricular myocardium receives projection of neuronal terminals only from the AVG. In this study we tested whether a decrease in N-type Ca 2+ channels in AVG neurons contributes to ventricular arrhythmogenesis. Lentiviral Ca v 2.2-α shRNA (2 μL, 2×10 7  pfu/mL) or scrambled shRNA was in vivo transfected into rat AVG neurons. Nontransfected sham rats served as controls. Using real-time single-cell polymerase chain reaction and reverse-phase protein array, we found that in vivo transfection of Ca v 2.2-α shRNA decreased expression of Ca v 2.2-α mRNA and protein in rat AVG neurons. Whole-cell patch-clamp data showed that Ca v 2.2-α shRNA reduced N-type Ca 2+ currents and cell excitability in AVG neurons. The data from telemetry electrocardiographic recording demonstrated that 83% (5 out of 6) of conscious rats with Ca v 2.2-α shRNA transfection had premature ventricular contractions ( P <0.05 versus 0% of nontransfected sham rats or scrambled shRNA-transfected rats). Additionally, an index of susceptibility to ventricular arrhythmias, inducibility of ventricular arrhythmias evoked by programmed electrical stimulation, was higher in rats with Ca v 2.2-α shRNA transfection compared with nontransfected sham rats and scrambled shRNA-transfected rats. A decrease in N-type Ca 2+ channels in AVG neurons attenuates vagal control of ventricular myocardium, thereby initiating ventricular arrhythmias. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  13. Transversus abdominal plane block for postoperative analgesia: a systematic review and meta-analysis of randomized-controlled trials.

    PubMed

    Brogi, Etrusca; Kazan, Roy; Cyr, Shantale; Giunta, Francesco; Hemmerling, Thomas M

    2016-10-01

    The transversus abdominal plane (TAP) block has been described as an effective pain control technique after abdominal surgery. We performed a systematic review and meta-analysis of randomized-controlled trials (RCTs) to account for the increasing number of TAP block studies appearing in the literature. The primary outcome we examined was the effect of TAP block on the postoperative pain score at six, 12, and 24 hr. The secondary outcome was 24-hr morphine consumption. We searched the United States National Library of Medicine database, the Excerpta Medica database, and the Cochrane Central Register of Controlled Clinical Studies and identified RCTs focusing on the analgesic efficacy of TAP block compared with a control group [i.e., placebo, epidural analgesia, intrathecal morphine (ITM), and ilioinguinal nerve block after abdominal surgery]. Meta-analyses were performed on postoperative pain scores at rest at six, 12, and 24 hr (visual analogue scale, 0-10) and on 24-hr opioid consumption. In the 51 trials identified, compared with placebo, TAP block reduced the VAS for pain at six hours by 1.4 (95% confidence interval [CI], -1.9 to -0.8; P < 0.001), at 12 hr by 2.0 (95% CI, -2.7 to -1.4; P < 0.001), and at 24 hr by 1.2 (95% CI, -1.6 to -0.8; P < 0.001). Similarly, compared with placebo, TAP block reduced morphine consumption at 24 hr after surgery (mean difference, -14.7 mg; 95% CI, -18.4 to -11.0; P < 0.001). We observed this reduction in pain scores and morphine consumption in the TAP block group after gynecological surgery, appendectomy, inguinal surgery, bariatric surgery, and urological surgery. Nevertheless, separate analysis of the studies comparing ITM with TAP block revealed that ITM seemed to have a greater analgesic efficacy. The TAP block can play an important role in the management of pain after abdominal surgery by reducing both pain scores and 24-hr morphine consumption. It may have particular utility when neuraxial techniques or opioids are

  14. TRPV2 is activated by cannabidiol and mediates CGRP release in cultured rat dorsal root ganglion neurons.

    PubMed

    Qin, Ning; Neeper, Michael P; Liu, Yi; Hutchinson, Tasha L; Lubin, Mary Lou; Flores, Christopher M

    2008-06-11

    Transient receptor potential V2 (TRPV2) has been proposed to be a high-threshold thermosensor. However, further elucidation of the channel properties and physiological role of TRPV2 have been hindered by the lack of selective pharmacological tools as well as by the species-dependent differences in the activation of this channel. In the present study, we have used cell-based calcium mobilization and electrophysiological assays to identify and characterize several novel cannabinoid TRPV2 agonists. Among these, cannabidiol was found to be the most robust and potent (EC(50) = 3.7 microM), followed by Delta(9)-tetrahydrocannabinol (EC(50) = 14 microM) and cannabinol (EC(50) = 77.7 microM). We also demonstrated that cannabidiol evoked a concentration-dependent release of calcitonin gene-related peptide (CGRP) from cultured rat dorsal root ganglion neurons in a cannabinoid receptor- and TRPV1-independent manner. Moreover, the cannabidiol-evoked CGRP release depended on extracellular calcium and was blocked by the nonselective TRP channel blocker, ruthenium red. We further provide evidence through the use of small interfering RNA knockdown and repetitive stimulation studies, to show that cannabidiol-evoked CGRP release is mediated, at least in part, by TRPV2. Together, these data suggest not only that TRPV2 may comprise a mechanism whereby cannabidiol exerts its clinically beneficial effects in vivo, but also that TRPV2 may constitute a viable, new drug target.

  15. Color vision impairment in multiple sclerosis points to retinal ganglion cell damage.

    PubMed

    Lampert, E J; Andorra, M; Torres-Torres, R; Ortiz-Pérez, S; Llufriu, S; Sepúlveda, M; Sola, N; Saiz, A; Sánchez-Dalmau, B; Villoslada, P; Martínez-Lapiscina, Elena H

    2015-11-01

    Multiple Sclerosis (MS) results in color vision impairment regardless of optic neuritis (ON). The exact location of injury remains undefined. The objective of this study is to identify the region leading to dyschromatopsia in MS patients' NON-eyes. We evaluated Spearman correlations between color vision and measures of different regions in the afferent visual pathway in 106 MS patients. Regions with significant correlations were included in logistic regression models to assess their independent role in dyschromatopsia. We evaluated color vision with Hardy-Rand-Rittler plates and retinal damage using Optical Coherence Tomography. We ran SIENAX to measure Normalized Brain Parenchymal Volume (NBPV), FIRST for thalamus volume and Freesurfer for visual cortex areas. We found moderate, significant correlations between color vision and macular retinal nerve fiber layer (rho = 0.289, p = 0.003), ganglion cell complex (GCC = GCIP) (rho = 0.353, p < 0.001), thalamus (rho = 0.361, p < 0.001), and lesion volume within the optic radiations (rho = -0.230, p = 0.030). Only GCC thickness remained significant (p = 0.023) in the logistic regression model. In the final model including lesion load and NBPV as markers of diffuse neuroaxonal damage, GCC remained associated with dyschromatopsia [OR = 0.88 95 % CI (0.80-0.97) p = 0.016]. This association remained significant when we also added sex, age, and disease duration as covariates in the regression model. Dyschromatopsia in NON-eyes is due to damage of retinal ganglion cells (RGC) in MS. Color vision can serve as a marker of RGC damage in MS.

  16. Developmental Profiling of Spiral Ganglion Neurons Reveals Insights into Auditory Circuit Assembly

    PubMed Central

    Lu, Cindy C.; Appler, Jessica M.; Houseman, E. Andres; Goodrich, Lisa V.

    2011-01-01

    The sense of hearing depends on the faithful transmission of sound information from the ear to the brain by spiral ganglion (SG) neurons. However, how SG neurons develop the connections and properties that underlie auditory processing is largely unknown. We catalogued gene expression in mouse SG neurons from embryonic day 12 (E12), when SG neurons first extend projections, up until postnatal day 15 (P15), after the onset of hearing. For comparison, we also analyzed the closely-related vestibular ganglion (VG). Gene ontology analysis confirmed enriched expression of genes associated with gene regulation and neurite outgrowth at early stages, with the SG and VG often expressing different members of the same gene family. At later stages, the neurons transcribe more genes related to mature function, and exhibit a dramatic increase in immune gene expression. Comparisons of the two populations revealed enhanced expression of TGFβ pathway components in SG neurons and established new markers that consistently distinguish auditory and vestibular neurons. Unexpectedly, we found that Gata3, a transcription factor commonly associated with auditory development, is also expressed in VG neurons at early stages. We therefore defined new cohorts of transcription factors and axon guidance molecules that are uniquely expressed in SG neurons and may drive auditory-specific aspects of their differentiation and wiring. We show that one of these molecules, the receptor guanylyl cyclase Npr2, is required for bifurcation of the SG central axon. Hence, our data set provides a useful resource for uncovering the molecular basis of specific auditory circuit assembly events. PMID:21795542

  17. Electronic neuron within a ganglion of a leech (Hirudo medicinalis).

    PubMed

    Aliaga, J; Busca, N; Minces, V; Mindlin, G B; Pando, B; Salles, A; Sczcupak, L

    2003-06-01

    We report the construction of an electronic device that models and replaces a neuron in a midbody ganglion of the leech Hirudo medicinalis. In order to test the behavior of our device, we used a well-characterized synaptic interaction between the mechanosensory, sensitive to pressure, (P) cell and the anteropagoda (because of the action potential shape) (AP) neuron. We alternatively stimulated a P neuron and our device connected to the AP neuron, and studied the response of the latter. The number and timing of the AP spikes were the same when the electronic parameters were properly adjusted. Moreover, after changes in the depolarization of the AP cell, the responses under the stimulation of both the biological neuron and the electronic device vary in a similar manner.

  18. A comparative study to evaluate ultrasound-guided transversus abdominis plane block versus ilioinguinal iliohypogastric nerve block for post-operative analgesia in adult patients undergoing inguinal hernia repair.

    PubMed

    Kamal, Kirti; Jain, Parul; Bansal, Teena; Ahlawat, Geeta

    2018-04-01

    Both transversus abdominis plane (TAP) block and combined ilioinguinal-iliohypogastric (IIN/IHN) blocks are used routinely under ultrasound (USG) guidance for postoperative pain relief in patients undergoing inguinal hernia surgery. This study compares USG guided TAP Vs IIN/IHN block for post-operative analgesic efficacy in adults undergoing inguinal hernia surgery. Sixty adults aged 18 to 60 with American Society of Anesthesiologsts' grade I or II were included. After general anaesthesia, patients in Group I received USG guided unilateral TAP block using 0.75% ropivacaine 3 mg/kg (maximum 25 mL) and those in Group II received IIN/IHN block using 10 mL 0.75% ropivacaine. Postoperative rescue analgesia was with tramadol (intravenous) IV ± diclofenac IV in the first 4 h followed by oral diclofenac subsequently. Total analgesic consumption in the first 24 h was the primary objective, intraoperative haemodynamics, number of attempts and time required for performing the block as well as the postoperative pain scores were also evaluated. Time to first analgesic request was 319.8 ± 115.2 min in Group I and 408 ± 116.4 min in Group II ( P = 0.005). Seven patients (23.33%) in Group I and two (6.67%) in Group II required tramadol in first four hours. No patient in either groups received diclofenac IV. The average dose of tablet diclofenac was 200 ± 35.96 mg in Group I and 172.5 ± 34.96 mg in Group II ( P = 0. 004). USG guided IIN/IHN block reduces the postoperative analgesic requirement compared to USG guided TAP block.

  19. Comparison of the post-operative analgesic effect of paravertebral block, pectoral nerve block and local infiltration in patients undergoing modified radical mastectomy: A randomised double-blind trial.

    PubMed

    Syal, Kartik; Chandel, Ankita

    2017-08-01

    Paravertebral block, pectoral nerve (Pecs) block and wound infiltration are three modalities for post-operative analgesia following breast surgery. This study compares the analgesic efficacy of these techniques for post-operative analgesia. Sixty-five patients with American Society of Anesthesiologists' physical status 1 or 2 undergoing modified radical mastectomy with axillary dissection were recruited for the study. All patients received 21 mL 0.5% bupivacaine with adrenaline in the technique which was performed at the end of the surgery prior to extubation. Patients in Group 1 (local anaesthetic [LA], n = 22) received infiltration at the incision site after surgery, Group 2 patients (paravertebral block [PVB], n = 22) received ultrasound-guided ipsilateral paravertebral block while Group 3 patients [PECT] ( n = 21) received ultrasound-guided ipsilateral Pecs blocks I and II. Patients were evaluated for pain scores at 0, 2, 4, 6, 12 and 24 h, duration of post-operative analgesia and rescue analgesic doses required. Non-normally distributed data were analysed using the Kruskal-Wallis test and Analysis of variance for normal distribution. The post-operative visual analogue scale scores were lower in PVB group compared with others at 0, 2, 4, 12 and 24 h ( P < 0.05). Mean duration of analgesia was significantly prolonged in PVB group ( P < 0.001) with lesser rescue analgesic consumption up to 24 h. Ultrasound-guided paravertebral block reduces post-operative pain scores, prolongs the duration of analgesia and decreases demands for rescue analgesics in the first 24 h of post-operative period compared to ultrasound-guided Pecs block and local infiltration block.

  20. Osthole, a herbal compound, alleviates nucleus pulposus-evoked nociceptive responses through the suppression of overexpression of acid-sensing ion channel 3 (ASIC3) in rat dorsal root ganglion

    PubMed Central

    He, Qiu-Lan; Chen, Yuling; Qin, Jian; Mo, Sui-Lin; Wei, Ming; Zhang, Jin-Jun; Li, Mei-Na; Zou, Xue-Nong; Zhou, Shu-Feng; Chen, Xiao-Wu; Sun, Lai-Bao

    2012-01-01

    Summary Background Osthole (Ost), a natural coumarin derivative, has been shown to inhibit many pro-inflammatory mediators and block voltage-gated Na+ channels. During inflammation, acidosis is an important pain inducer which activates nociceptors by gating depolarizing cationic channels, such as acid-sensing ion channel 3 (ASIC3). The aim of this study was to examine the effects of Ost on nucleus pulposus-evoked nociceptive responses and ASIC3 over-expression in the rat dorsal root ganglion, and to investigate the possible mechanism. Material/Methods Radicular pain was generated with application of nucleus pulposus (NP) to nerve root. Mechanical allodynia was evaluated using von Frey filaments with logarithmically incremental rigidity to calculate the 50% probability thresholds for mechanical paw withdrawal. ASIC3 protein expression in dorsal root ganglions (DRGs) was assessed with Western blot and immunohistochemistry. Membrane potential (MP) shift of DRG neurons induced by ASIC3-sensitive acid (pH6.5) was determined by DiBAC4 (3) fluorescence intensity (F.I.). Results The NP-evoked mechanical hyperalgesia model showed allodynia for 3 weeks, and ASIC3 expression was up-regulated in DRG neurons, reaching peak on Day 7. Epidural administration of Ost induced a remarkable and prolonged antinociceptive effect, accompanied by an inhibition of over-expressed ASIC3 protein and of abnormal shift of MP. Amiloride (Ami), an antagonist of ASIC3, strengthened the antinociceptive effect of Ost. Conclusions Up-regulation of ASIC3 expression may be associated with NP-evoked mechanical hyperalgesia. A single epidural injection of Ost decreased ASIC3 expression in DGR neurons and the pain in the NP-evoked mechanical hyperalgesia model. Osthole may be of great benefit for preventing chronic pain status often seen in lumbar disc herniation (LDH). PMID:22648244

  1. Some effects of long chain polymethylene bisonium salts on junctional transmission in the peripheral nervous system

    PubMed Central

    Barlow, R. B.; Zoller, Anne

    1964-01-01

    A survey has been made of the effects on junctional transmission of the complete series of polymethylene bis-trimethylammonium (BTM) and bis-triethylammonium (BTE) salts from the decamethylene compounds (BTM 10 and BTE 10) to those with twenty-one methylene groups in the chain. These were tested for their ability to cause contracture of the isolated chick biventer cervicis preparation, and for their ability to block the twitch responses of this preparation, those of the rat isolated diaphragm preparation, and those of the cat tibialis anterior preparation. They were also tested for their ability to block transmission in the cat superior cervical ganglion, to block the actions of acetylcholine on the guinea-pig isolated ileum, and for ability to inhibit the hydrolysis of acetylcholine by acetylcholinesterase. Their electrical conductivity has been measured in aqueous solution. Ability to cause contracture of the chick biventer cervicis is confined to the compounds BTM 10 to 15; BTE 10, 11 and 12 have some weak activity but the other BTE compounds, and the BTM compounds with more than fifteen methylene groups, have virtually no activity. In the BTE series both neuromuscular blocking and ganglion-blocking activities increase with chain length up to a maximum in the region of BTE 15 to 17 and then decline. In the BTM series ganglion-blocking activity increases with chain length in much the same way as in the BTE series, though the maximum activity is at a slightly longer chain length. At the neuromuscular junction an increase in chain length beyond BTM 10 leads to a decline in activity but this returns to some extent at longer chain lengths, reaching a second maximum at BTM 18, above which it declines further. At the ganglion BTE 16 is only slightly more active than BTM 16 and about five-times as active as hexamethonium; at the neuromuscular junction in the cat BTE 16 is about five-times as active as BTM 16 and about eight-times as active as (+)-tubocurarine. The

  2. 31 CFR 598.301 - Blocked account; blocked property.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... 598.301 Section 598.301 Money and Finance: Treasury Regulations Relating to Money and Finance... REGULATIONS General Definitions § 598.301 Blocked account; blocked property. The terms blocked account and blocked property mean any account or property subject to § 598.202 held in the name of a specially...

  3. Monoamine uptake inhibitors block alpha7-nAChR-mediated cerebral nitrergic neurogenic vasodilation.

    PubMed

    Long, Cheng; Chen, Mei-Fang; Sarwinski, Susan J; Chen, Po-Yi; Si, Minliang; Hoffer, Barry J; Evans, M Steven; Lee, Tony J F

    2006-07-01

    We have proposed that activation of cerebral perivascular sympathetic alpha7-nicotinic acetylcholine receptors (alpha7-nAChRs) by nicotinic agonists releases norepinephrine, which then acts on parasympathetic nitrergic nerves, resulting in release of nitric oxide and vasodilation. Using patch-clamp electrophysiology, immunohistochemistry, and in vitro tissue bath myography, we tested this axo-axonal interaction hypothesis further by examining whether blocking norepinephrine reuptake enhanced alpha7-nAChR-mediated cerebral nitrergic neurogenic vasodilation. The results indicated that choline- and nicotine-induced alpha7-nAChR-mediated nitrergic neurogenic relaxation in endothelium-denuded isolated porcine basilar artery rings was enhanced by desipramine and imipramine at lower concentrations (0.03-0.1 microM) but inhibited at higher concentrations (0.3-10 microM). In cultured superior cervical ganglion (SCG) neurons of the pig and rat, choline (0.1-30 mM)-evoked inward currents were reversibly blocked by 1-30 microM mecamylamine, 1-30 microM methyllycaconitine, 10-300 nM alpha-bungarotoxin, and 0.1-10 microM desipramine and imipramine, providing electrophysiological evidence for the presence of similar functional alpha7-nAChRs in cerebral perivascular sympathetic neurons of pigs and rats. In alpha7-nAChR-expressing Xenopus oocytes, choline-elicited inward currents were attenuated by alpha-bungarotoxin, imipramine, and desipramine. These monoamine uptake inhibitors appeared to directly block the alpha7-nAChR, resulting in diminished nicotinic agonist-induced cerebral nitrergic vasodilation. The enhanced nitrergic vasodilation by lower concentrations of monoamine uptake inhibitors is likely due to a greater effect on monoamine uptake than on alpha7-nAChR blockade. These results further support the hypothesis of axo-axonal interaction in nitrergic regulation of cerebral vascular tone.

  4. Amitriptyline Activates TrkA to Aid Neuronal Growth and Attenuate Anesthesia-Induced Neurodegeneration in Rat Dorsal Root Ganglion Neurons.

    PubMed

    Zheng, Xiaochun; Chen, Feng; Zheng, Ting; Huang, Fengyi; Chen, Jianghu; Tu, Wenshao

    2016-05-01

    Tricyclic antidepressant amitriptyline (AM) has been shown to exert neurotrophic activity on neurons. We thus explored whether AM may aid the neuronal development and protect anesthesia-induced neuro-injury in young spinal cord dorsal root ganglion (DRG) neurons.The DRG explants were prepared from 1-day-old rats. The effect of AM on aiding DRG neural development was examined by immunohistochemistry at dose-dependent manner. AM-induced changes in gene and protein expressions, and also phosphorylation states of tyrosine kinases receptor A (TrkA) and B (TrkB) in DRG, were examined by quantitative real-time polymerase chain reaction and western blot. The effect of AM on attenuating lidocaine-induced DRG neurodegeneration was examined by immunohistochemistry, and small interfering RNA (siRNA)-mediated TrkA/B down-regulation.Amitriptyline stimulated DRG neuronal development in dose-dependent manner, but exerted toxic effect at concentrations higher than 10 M. AM activated TrkA in DRG through phosphorylation, whereas it had little effect on TrkB-signaling pathway. AM reduced lidocaine-induced DRG neurodegeneration by regenerating neurites and growth cones. Moreover, the neuroprotection of AM on lidocaine-injured neurodegeneration was blocked by siRNA-mediated TrkA down-regulation, but not by TrkB down-regulation.Amitriptyline facilitated neuronal development and had protective effect on lidocaine-induced neurodegeneration, very likely through the activation of TrkA-signaling pathway in DRG.

  5. Amitriptyline Activates TrkA to Aid Neuronal Growth and Attenuate Anesthesia-Induced Neurodegeneration in Rat Dorsal Root Ganglion Neurons

    PubMed Central

    Zheng, Xiaochun; Chen, Feng; Zheng, Ting; Huang, Fengyi; Chen, Jianghu; Tu, Wenshao

    2016-01-01

    Abstract Tricyclic antidepressant amitriptyline (AM) has been shown to exert neurotrophic activity on neurons. We thus explored whether AM may aid the neuronal development and protect anesthesia-induced neuro-injury in young spinal cord dorsal root ganglion (DRG) neurons. The DRG explants were prepared from 1-day-old rats. The effect of AM on aiding DRG neural development was examined by immunohistochemistry at dose-dependent manner. AM-induced changes in gene and protein expressions, and also phosphorylation states of tyrosine kinases receptor A (TrkA) and B (TrkB) in DRG, were examined by quantitative real-time polymerase chain reaction and western blot. The effect of AM on attenuating lidocaine-induced DRG neurodegeneration was examined by immunohistochemistry, and small interfering RNA (siRNA)-mediated TrkA/B down-regulation. Amitriptyline stimulated DRG neuronal development in dose-dependent manner, but exerted toxic effect at concentrations higher than 10 M. AM activated TrkA in DRG through phosphorylation, whereas it had little effect on TrkB-signaling pathway. AM reduced lidocaine-induced DRG neurodegeneration by regenerating neurites and growth cones. Moreover, the neuroprotection of AM on lidocaine-injured neurodegeneration was blocked by siRNA-mediated TrkA down-regulation, but not by TrkB down-regulation. Amitriptyline facilitated neuronal development and had protective effect on lidocaine-induced neurodegeneration, very likely through the activation of TrkA-signaling pathway in DRG. PMID:27149473

  6. Glaucoma Diagnostic Capability of Global and Regional Measurements of Isolated Ganglion Cell Layer and Inner Plexiform Layer.

    PubMed

    Chien, Jason L; Ghassibi, Mark P; Patthanathamrongkasem, Thipnapa; Abumasmah, Ramiz; Rosman, Michael S; Skaat, Alon; Tello, Celso; Liebmann, Jeffrey M; Ritch, Robert; Park, Sung Chul

    2017-03-01

    To compare glaucoma diagnostic capability of global/regional macular layer parameters in different-sized grids. Serial horizontal spectral-domain optical coherence tomography scans of macula were obtained. Automated macular grids with diameters of 3, 3.45, and 6 mm were used. For each grid, 10 parameters (total volume; average thicknesses in 9 regions) were obtained for 5 layers: macular retinal nerve fiber layer (mRNFL), ganglion cell layer (GCL), inner plexiform layer (IPL), ganglion cell-inner plexiform layer (GCIPL; GCL+IPL), and ganglion cell complex (GCC; mRNFL+GCL+IPL). Sixty-nine normal eyes (69 subjects) and 87 glaucomatous eyes (87 patients) were included. For the total volume parameter, the area under the receiver operating characteristic curves (AUCs) in 6-mm grid were larger than the AUCs in 3- and 3.45-mm grids for GCL, GCC, GCIPL, and mRNFL (all P<0.020). For the average thickness parameters, the best AUC in 6-mm grid (T2 region for GCL, IPL, and GCIPL; I2 region for mRNFL and GCC) was greater than the best AUC in 3-mm grid for GCL, GCC, and mRNFL (P<0.045). The AUC of GCL volume (0.920) was similar to those of GCC (0.920) and GCIPL (0.909) volume. The AUC of GCL T2 region thickness (0.942) was similar to those of GCC I2 region (0.942) and GCIPL T2 region (0.934) thickness. Isolated macular GCL appears to be as good as GCC and GCIPL in glaucoma diagnosis, while IPL does not. Larger macular grids may be better at detecting glaucoma. Each layer has a characteristic region with the best glaucoma diagnostic capability.

  7. Synaptic Proteins Are Tonotopically Graded in Postnatal and Adult Type I and Type II Spiral Ganglion Neurons

    PubMed Central

    Flores-Otero, Jacqueline; Davis, Robin L.

    2011-01-01

    Inherent in the design of the mammalian auditory system is the precision necessary to transduce complex sounds and transmit the resulting electrical signals to higher neural centers. Unique specializations in the organ of Corti are required to make this conversion, such that mechanical and electrical properties of hair cell receptors are tailored to their specific role in signal coding. Electrophysiological and immunocytochemical characterizations have shown that this principle also applies to neurons of the spiral ganglion, as evidenced by distinctly different firing features and synaptic protein distributions of neurons that innervate high- and low-frequency regions of the cochlea. However, understanding the fine structure of how these properties are distributed along the cochlear partition and within the type I and type II classes of spiral ganglion neurons is necessary to appreciate their functional significance fully. To address this issue, we assessed the localization of the postsynaptic AMPA receptor subunits GluR2 and GluR3 and the presynaptic protein synaptophysin by using immunocytochemical labeling in both postnatal and adult tissue. We report that these presynaptic and postsynaptic proteins are distributed oppositely in relation to the tonotopic map and that they are equally distributed in each neuronal class, thus having an overall gradation from one end of the cochlea to the other. For synaptophysin, an additional layer of heterogeneity was superimposed orthogonal to the tonotopic axis. The highest anti-synaptophysin antibody levels were observed within neurons located close to the scala tympani compared with those located close to the scala vestibuli. Furthermore, we noted that the protein distribution patterns observed in postnatal preparations were largely retained in adult tissue sections, indicating that these features characterize spiral ganglion neurons in the fully developed ear. PMID:21452215

  8. Complete adult neurogenesis within a Wallerian degenerating nerve expressed as an ectopic ganglion.

    PubMed

    Nakano, Tomonori; Kurimoto, Shigeru; Kato, Shuichi; Asano, Kenichi; Hirata, Takuma; Kiyama, Hiroshi; Hirata, Hitoshi

    2018-06-01

    Neurogenesis in the adult peripheral nervous system remains to be demonstrated. We transplanted embryonic neural stem cells into a Wallerian degenerating nerve graft and observed development of a nodular structure consisting of neurons, glia, and Schwann cells. Histological analysis revealed a structure loosely resembling the spinal cord, including a synaptic network that formed along the neuron. Furthermore, the new axons reinnervated the paralysed muscle, forming both de novo and revived neuromuscular junctions. Reinnervation of the paralysed muscle resulted in significantly greater mean wet muscle weight and muscle fibre cross-sectional area on the cell transplantation side than on the surgical control side (body weight 0.071 ± 0.011% vs. 0.051 ± 0.007%, p = .006; area 355.6 ± 345.2 vs. 114.0 ± 132.0 μm 2 , p < .001). Electrophysiological experiments demonstrated a functional connection between the neurons and muscle; hence, we identified this nodule as an ectopic ganglion. Surprisingly, in green rat experiments, most of these glial cells, but none of the neurons, expressed enhanced green fluorescent protein, suggesting that the cells constituting the ectopic ganglion were derived from both transplanted stem cells and endogenous stem cells. Such adult neurogenesis in a peripheral nerve related to neural stem cell transplantation has not been reported previously, and these results form the basis for a novel regenerative medicine approach in paralysed muscle. Copyright © 2018 John Wiley & Sons, Ltd.

  9. Macular retinal ganglion cell-inner plexiform layer thickness in patients on hydroxychloroquine therapy.

    PubMed

    Lee, Min Gyu; Kim, Sang Jin; Ham, Don-Il; Kang, Se Woong; Kee, Changwon; Lee, Jaejoon; Cha, Hoon-Suk; Koh, Eun-Mi

    2014-11-25

    We evaluated macular ganglion cell-inner plexiform layer (GC-IPL) thickness using spectral-domain optical coherence tomography (SD-OCT) in patients with chronic exposure to hydroxychloroquine (HCQ). This study included 130 subjects, who were divided into three groups: Group 1A, 55 patients with HCQ use ≥5 years; Group 1B, 46 patients with HCQ use <5 years; and Group 2, 29 normal controls. In all patients with exposure to HCQ, fundus examination, automated threshold perimetry, fundus autofluorescence photography, SD-OCT, and GC-IPL thickness measurement using the Cirrus HD-OCT ganglion cell analysis algorithm were performed. Average and minimum macular GC-IPL thickness were compared between subjects groups, and correlations between GC-IPL thickness and duration or total dose of HCQ use were analyzed. Among the 101 patients of Group 1, six patients who showed clinically evident HCQ retinopathy also showed markedly thin macular GC-IPL. In addition, weak but significant negative correlations were observed between the average and minimum GC-IPL thickness of Group 1 patients and cumulative dose of HCQ, even when analyzing without the six patients with HCQ retinopathy. However, when analyzing after exclusion of patients with high cumulative doses (>1000 g), significant correlations were not observed. This study revealed that macular GC-IPL thickness did not show definite correlations with HCQ use. However, some patients, especially with HCQ retinopathy or high cumulative doses, showed thin GC-IPL. Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.

  10. Sonic Hedgehog Has a Dual Effect on the Growth of Retinal Ganglion Axons Depending on Its Concentration

    PubMed Central

    Kolpak, Adrianne; Zhang, Jinhua; Bao, Zheng-Zheng

    2006-01-01

    The stereotypical projection of retinal ganglion cell (RGC) axons to the optic disc has served as a good model system for studying axon guidance. By both in vitro and in vivo experiments, we show that a secreted molecule, Sonic hedgehog (Shh), may play a critical role in the process. It is expressed in a dynamic pattern in the ganglion cell layer with a relatively higher expression in the center of the retina. Through gel culture and stripe assays, we show that Shh has a dual effect on RGC axonal growth, acting as a positive factor at low concentrations and a negative factor at high concentrations. Results from time-lapse video microscopic and stripe assay experiments further suggest that the effects of Shh on axons are not likely attributable to indirect transcriptional regulation by Shh. Overexpression of Shh protein or inhibition of Shh function inside the retina resulted in a complete loss of centrally directed projection of RGC axons, suggesting that precise regulation of Shh level inside the retina is critical for the projection of RGC axons to the optic disc. PMID:15800198

  11. Ultrasound-Guided Selective Versus Conventional Block of the Medial Brachial Cutaneous and the Intercostobrachial Nerves: A Randomized Clinical Trial.

    PubMed

    Magazzeni, Philippe; Jochum, Denis; Iohom, Gabriella; Mekler, Gérard; Albuisson, Eliane; Bouaziz, Hervé

    2018-06-13

    For superficial surgery of anteromedial and posteromedial surfaces of the upper arm, the medial brachial cutaneous nerve (MBCN) and the intercostobrachial nerve (ICBN) must be selectively blocked, in addition to an axillary brachial plexus block. We compared efficacy of ultrasound-guided (USG) versus conventional block of the MBCN and the ICBN. Eighty-four patients, undergoing upper limb surgery, were randomized to receive either USG (n = 42) or conventional (n = 42) block of the MBCN and the ICBN with 1% mepivacaine. Sensory block was evaluated using light-touch on the upper and lower half of the anteromedial and posteromedial surfaces of the upper arm at 5, 10, 15, 20 minutes after nerve blocks. The primary outcome was the proportion of patients who had no sensation in all 4 regions innervated by the MBCN and the ICBN at 20 minutes. Secondary outcomes were onset time of complete anesthesia, volume of local anesthetic, tourniquet tolerance, and quality of ultrasound images. In the USG group, 37 patients (88%) had no sensation at 20 minutes in any of the 4 areas tested versus 8 patients (19%) in the conventional group (P < 0.001). When complete anesthesia was obtained, it occurred within 10 minutes in more than 90% of patients, in both groups. Mean total volumes of local anesthetic used for blocking the MBCN and the ICBN were similar in the 2 groups. Ultrasound images were of good quality in only 20 (47.6%) of 42 patients. Forty-one patients (97.6%) who received USG block were comfortable with the tourniquet versus 16 patients (38.1%) in the conventional group (P < 0.001). Ultrasound guidance improved the efficacy of the MBCN and ICBN blocks. This study was registered at ClinicalTrials.gov, identifier NCT02940847.

  12. Rhythmic ganglion cell activity in bleached and blind adult mouse retinas.

    PubMed

    Menzler, Jacob; Channappa, Lakshmi; Zeck, Guenther

    2014-01-01

    In retinitis pigmentosa--a degenerative disease which often leads to incurable blindness--the loss of photoreceptors deprives the retina from a continuous excitatory input, the so-called dark current. In rodent models of this disease this deprivation leads to oscillatory electrical activity in the remaining circuitry, which is reflected in the rhythmic spiking of retinal ganglion cells (RGCs). It remained unclear, however, if the rhythmic RGC activity is attributed to circuit alterations occurring during photoreceptor degeneration or if rhythmic activity is an intrinsic property of healthy retinal circuitry which is masked by the photoreceptor's dark current. Here we tested these hypotheses by inducing and analysing oscillatory activity in adult healthy (C57/Bl6) and blind mouse retinas (rd10 and rd1). Rhythmic RGC activity in healthy retinas was detected upon partial photoreceptor bleaching using an extracellular high-density multi-transistor-array. The mean fundamental spiking frequency in bleached retinas was 4.3 Hz; close to the RGC rhythm detected in blind rd10 mouse retinas (6.5 Hz). Crosscorrelation analysis of neighbouring wild-type and rd10 RGCs (separation distance <200 µm) reveals synchrony among homologous RGC types and a constant phase shift (∼70 msec) among heterologous cell types (ON versus OFF). The rhythmic RGC spiking in these retinas is driven by a network of presynaptic neurons. The inhibition of glutamatergic ganglion cell input or the inhibition of gap junctional coupling abolished the rhythmic pattern. In rd10 and rd1 retinas the presynaptic network leads to local field potentials, whereas in bleached retinas additional pharmacological disinhibition is required to achieve detectable field potentials. Our results demonstrate that photoreceptor bleaching unmasks oscillatory activity in healthy retinas which shares many features with the functional phenotype detected in rd10 retinas. The quantitative physiological differences advance the

  13. Mesenchymal stromal cell-mediated neuroprotection and functional preservation of retinal ganglion cells in a rodent model of glaucoma.

    PubMed

    Mead, Ben; Hill, Lisa J; Blanch, Richard J; Ward, Kelly; Logan, Ann; Berry, Martin; Leadbeater, Wendy; Scheven, Ben A

    2016-04-01

    Glaucoma is a leading cause of irreversible blindness involving loss of retinal ganglion cells (RGC). Mesenchymal stromal cells (MSC) have shown promise as a paracrine-mediated therapy for compromised neurons. It is, however, unknown whether dental pulp stem cells (DPSC) are effective as a cellular therapy in glaucoma and how their hypothesized influence compares with other more widely researched MSC sources. The present study aimed to compare the efficacy of adipose-derived stem cells, bone marrow-derived MSC (BMSC) and DPSC in preventing the loss of RGC and visual function when transplanted into the vitreous of glaucomatous rodent eyes. Thirty-five days after raised intraocular pressure (IOP) and intravitreal stem cell transplantation, Brn3a(+) RGC numbers, retinal nerve fibre layer thickness (RNFL) and RGC function were evaluated by immunohistochemistry, optical coherence tomography and electroretinography, respectively. Control glaucomatous eyes that were sham-treated with heat-killed DPSC had a significant loss of RGC numbers, RNFL thickness and function compared with intact eyes. BMSC and, to a greater extent, DPSC provided significant protection from RGC loss and RNFL thinning and preserved RGC function. The study supports the use of DPSC as a neuroprotective cellular therapy in retinal degenerative disease such as glaucoma. Copyright © 2016 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  14. Spiral ganglion cell site of excitation I: comparison of scala tympani and intrameatal electrode responses.

    PubMed

    Cartee, Lianne A; Miller, Charles A; van den Honert, Chris

    2006-05-01

    To determine the site of excitation on the spiral ganglion cell in response to electrical stimulation similar to that from a cochlear implant, single-fiber responses to electrical stimuli delivered by an electrode positioned in the scala tympani were compared to responses from stimuli delivered by an electrode placed in the internal auditory meatus. The response to intrameatal stimulation provided a control set of data with a known excitation site, the central axon of the spiral ganglion cell. For both intrameatal and scala tympani stimuli, the responses to single-pulse, summation, and refractory stimulus protocols were recorded. The data demonstrated that summation pulses, as opposed to single pulses, are likely to give the most insightful measures for determination of the site of excitation. Single-fiber summation data for both scala tympani and intrameatally stimulated fibers were analyzed with a clustering algorithm. Combining cluster analysis and additional numerical modeling data, it was hypothesized that the scala tympani responses corresponded to central excitation, peripheral excitation adjacent to the cell body, and peripheral excitation at a site distant from the cell body. Fibers stimulated by an intrameatal electrode demonstrated the greatest range of jitter measurements indicating that greater fiber independence may be achieved with intrameatal stimulation.

  15. Newer regional analgesia interventions (fascial plane blocks) for breast surgeries: Review of literature.

    PubMed

    Garg, Rakesh; Bhan, Swati; Vig, Saurabh

    2018-04-01

    Surgical resection of the primary tumour with axillary dissection is one of the main modalities of breast cancer treatment. Regional blocks have been considered as one of the modalities for effective perioperative pain control. With the advent of ultrasound, newer interventions such as fascial plane blocks have been reported for perioperative analgesia in breast surgeries. Our aim is to review the literature for fascial plane blocks for analgesia in breast surgeries. The research question for initiating the review was 'What are the reported newer regional anaesthesia techniques (fascial plane blocks) for female patients undergoing breast surgery and their analgesic efficacy?.' The participants, intervention, comparisons, outcomes and study design were followed. Due to the paucity of similar studies and heterogeneity, the assessment of bias, systematic review or pooled analysis/meta-analysis was not feasible. Of the 989 manuscripts, the present review included 28 manuscripts inclusive of all types of published manuscripts. 15 manuscripts directly related to the administration of fascial plane blocks for breast surgery across all type of study designs and cases were reviewed for the utility of fascial plane blocks in breast surgeries. Interfascial blocks score over regional anaesthetic techniques such as paravertebral block as they have no risk of sympathetic blockade, intrathecal or epidural spread which may lead to haemodynamic instability and prolonged hospital stay. This review observed that no block effectively covers the whole of breast and axilla, thus a combination of blocks should be used depending on the site of incision and extent of surgical resection.

  16. Single cell RNA sequencing of stem cell-derived retinal ganglion cells.

    PubMed

    Daniszewski, Maciej; Senabouth, Anne; Nguyen, Quan H; Crombie, Duncan E; Lukowski, Samuel W; Kulkarni, Tejal; Sluch, Valentin M; Jabbari, Jafar S; Chamling, Xitiz; Zack, Donald J; Pébay, Alice; Powell, Joseph E; Hewitt, Alex W

    2018-02-13

    We used single cell sequencing technology to characterize the transcriptomes of 1,174 human embryonic stem cell-derived retinal ganglion cells (RGCs) at the single cell level. The human embryonic stem cell line BRN3B-mCherry (A81-H7), was differentiated to RGCs using a guided differentiation approach. Cells were harvested at day 36 and prepared for single cell RNA sequencing. Our data indicates the presence of three distinct subpopulations of cells, with various degrees of maturity. One cluster of 288 cells showed increased expression of genes involved in axon guidance together with semaphorin interactions, cell-extracellular matrix interactions and ECM proteoglycans, suggestive of a more mature RGC phenotype.

  17. Threshold setting by the surround of cat retinal ganglion cells.

    PubMed

    Barlow, H B; Levick, W R

    1976-08-01

    1. The slope of curves relating the log increment threshold to log background luminance in cat retinal ganglion cells is affected by the area and duration of the test stimulus, as it is in human pyschophysical experiments. 2. Using large area, long duration stimuli the slopes average 0-82 and approach close to 1 (Weber's Law) in the steepest cases. Small stimuli gave an average of 0-53 for on-centre units using brief stimuli, and 0-56 for off-centre units, using long stimuli. Slopes under 0-5 (square root law) were not found over an extended range of luminances. 3. On individual units the slope was generally greater for larger and longer test stimulus, but no unit showed the full extent of change from slope of 0-5 to slope of 1. 4. The above differences hold for objective measures of quantum/spike ratio, as well as for thresholds either judged by ear or assessed by calculation. 5. The steeper slope of the curves for large area, long duration test stimuli compared with small, long duration stimuli, is associated with the increased effectiveness of antagonism from the surround at high backgrounds. This change may be less pronounced in off-centre units, one of which (probably transient Y-type) showed no difference of slope, and gave parallel area-threshold curves at widely separated background luminances, confirming the importance of differential surround effectiveness in changing the slope of the curves. 6. In on-centre units, the increased relative effectiveness of the surround is associated with the part of the raised background light that falls on the receptive field centre. 7. It is suggested that the variable surround functions as a zero-offset control that sets the threshold excitation required for generating impulses, and that this is separate from gain-setting adaptive mechanisms. This may be how ganglion cells maintain high incremental sensitivity in spite of a strong maintained excitatory drive that would otherwise cause compressive response non-linearities.

  18. Effects of Two Different Anesthetic Solutions on Injection Pain, Efficacy, and Duration of Soft-Tissue Anesthesia with Inferior Alveolar Nerve Block for Primary Molars.

    PubMed

    Elbay, Ülkü Şermet; Elbay, Mesut; Kaya, Emine; Yıldırım, Sinem

    The purpose of the study was to compare the efficacy, injection pain, duration of soft tissue anesthesia, and postoperative complications of two different anesthetics (2% lidocaine with 1:80,000 epinephrine and 3% plain mepivacaine) in pediatric patients in inferior alveolar nerve block (IANB) administered by a computer-controlled delivery system (CCDS). The study was conducted as a randomized, controlled-crossover, double-blind clinical trial with 60 children requiring bilateral pulpotomy or extraction of primary mandibular molars. A CCDS was used to deliver 3% mepivacaine to 1 primary tooth and 2% lidocaine to the contralateral tooth with an IANB technique. Severity of pain and efficacy of anesthesia were evaluated using the Face, Legs, Activity, Cry, Consolability Scale, and comfort and side effects were assessed using a questionnaire. Data were analyzed using the Mann-Whitney U, Wilcoxon t, and Fisher exact tests. Patients receiving 2% lidocaine experienced significantly less pain during injection than those receiving 3% mepivacaine, and no significant differences were found in the pain scores during treatments or in postoperative complications between the two anesthetics. The mean durations of anesthesia for 3% mepivacaine and 2% lidocaine were 139.68 minutes and 149.10 minutes, respectively. Plain mepivacaine and 2% lidocaine were similarly effective in pulpotomy and the extraction of primary mandibular molars. Although the use of 3% mepivacaine provided a shorter duration of anesthesia than 2% lidocaine, both solutions showed similar results in terms of postoperative complications.

  19. Y-cell receptive field and collicular projection of parasol ganglion cells in macaque monkey retina

    PubMed Central

    Crook, Joanna D.; Peterson, Beth B.; Packer, Orin S.; Robinson, Farrel R.; Troy, John B.; Dacey, Dennis M.

    2009-01-01

    The distinctive parasol ganglion cell of the primate retina transmits a transient, spectrally non-opponent signal to the magnocellular layers of the lateral geniculate nucleus (LGN). Parasol cells show well-recognized parallels with the alpha-Y cell of other mammals, yet two key alpha-Y cell properties, a collateral projection to the superior colliculus and nonlinear spatial summation, have not been clearly established for parasol cells. Here we show by retrograde photodynamic staining that parasol cells project to the superior colliculus. Photostained dendritic trees formed characteristic spatial mosaics and afforded unequivocal identification of the parasol cells among diverse collicular-projecting cell types. Loose-patch recordings were used to demonstrate for all parasol cells a distinct Y-cell receptive field ‘signature’ marked by a non-linear mechanism that responded to contrast-reversing gratings at twice the stimulus temporal frequency (second Fourier harmonic, F2) independent of stimulus spatial phase. The F2 component showed high contrast gain and temporal sensitivity and appeared to originate from a region coextensive with that of the linear receptive field center. The F2 spatial frequency response peaked well beyond the resolution limit of the linear receptive field center, showing a Gaussian center radius of ~15 μm. Blocking inner retinal inhibition elevated the F2 response, suggesting that amacrine circuitry does not generate this non-linearity. Our data are consistent with a pooled-subunit model of the parasol-Y cell receptive field in which summation from an array of transient, partially rectifying cone bipolar cells accounts for both linear and non-linear components of the receptive field. PMID:18971470

  20. Comparison of the post-operative analgesic effect of paravertebral block, pectoral nerve block and local infiltration in patients undergoing modified radical mastectomy: A randomised double-blind trial

    PubMed Central

    Syal, Kartik; Chandel, Ankita

    2017-01-01

    Background and Aims: Paravertebral block, pectoral nerve (Pecs) block and wound infiltration are three modalities for post-operative analgesia following breast surgery. This study compares the analgesic efficacy of these techniques for post-operative analgesia. Methods: Sixty-five patients with American Society of Anesthesiologists’ physical status 1 or 2 undergoing modified radical mastectomy with axillary dissection were recruited for the study. All patients received 21 mL 0.5% bupivacaine with adrenaline in the technique which was performed at the end of the surgery prior to extubation. Patients in Group 1 (local anaesthetic [LA], n = 22) received infiltration at the incision site after surgery, Group 2 patients (paravertebral block [PVB], n = 22) received ultrasound-guided ipsilateral paravertebral block while Group 3 patients [PECT] (n = 21) received ultrasound-guided ipsilateral Pecs blocks I and II. Patients were evaluated for pain scores at 0, 2, 4, 6, 12 and 24 h, duration of post-operative analgesia and rescue analgesic doses required. Non-normally distributed data were analysed using the Kruskal-Wallis test and Analysis of variance for normal distribution. Results: The post-operative visual analogue scale scores were lower in PVB group compared with others at 0, 2, 4, 12 and 24 h (P < 0.05). Mean duration of analgesia was significantly prolonged in PVB group (P < 0.001) with lesser rescue analgesic consumption up to 24 h. Conclusion: Ultrasound-guided paravertebral block reduces post-operative pain scores, prolongs the duration of analgesia and decreases demands for rescue analgesics in the first 24 h of post-operative period compared to ultrasound-guided Pecs block and local infiltration block. PMID:28890559

  1. Pyroglutamic acid promotes survival of retinal ganglion cells after optic nerve injury.

    PubMed

    Oono, Shinichirou; Kurimoto, Takuji; Nakazawa, Toru; Miyoshi, Tomomitsu; Okamoto, Norio; Kashimoto, Ryosuke; Tagami, Yuichi; Ito, Yoshimasa; Mimura, Osamu

    2009-07-01

    To determine whether pyroglutamic acid (PGA) enhances the survival of retinal ganglion cells (RGCs) after optic nerve (ON) transection in vivo and RGCs in culture. The RGCs of rats were retrogradely labeled by Fluorogold (FG)-soaked sponges placed on both superior colliculi. Seven days later, the ON was transected, and PGA was immediately injected into the vitreous. Seven or fourteen days later, the number of FG-labeled RGCs was counted on flat-mounted retinas to obtain the mean densities of FG-labeled RGCs. To determine whether the survival effect of PGA was related to excitatory amino acid transporter (EAAT), L-trans-pyrrolidine-2,4 dicarboxylate (PDC), a nonselective glutamate transport inhibitor, was injected into vitreous with the PGA. In primary retinal cultures, RGCs were identified as cells that were immunopositive to beta III tubulin three days after beginning the culture with and without PDC. The mean density of FG-labeled RGCs was reduced from 2249 +/- 210 to 920 +/- 202 cells/mm(2) (p < 0.001) on day 7 after the ON transection. The mean density RGCs was significantly higher at 1213 +/- 159 cells/mm(2) after 0.5% PGA injection immediately after the ON transaction than eyes injected with the vehicle at 1007 +/- 122 cells/mm(2) (p = 0.035). One percent PGA was the most effective concentration for survival-promoting effects on RGCs, and the mean density of the RGCs was 1464 +/- 102/mm(2) (p < 0.001). Fourteen days after 1% PGA, the mean density of FG-labeled RGCs was significantly higher than that with vehicle (204 +/- 23/mm(2) versus 145 +/- 17 cells/mm(2); p < 0.01). Simultaneous application of 1% PGA and PDC blocked the survival effects of PGA on day 7 after ON transection. The presence of PGA increased the number of beta III tubulin-positive cells. PGA promotes the survival of axotomized RGCs in adult mammalian retinas possibly mediated by the EAATs.

  2. ["Habitual" left branch block alternating with 2 "disguised" bracnch block].

    PubMed

    Lévy, S; Jullien, G; Mathieu, P; Mostefa, S; Gérard, R

    1976-10-01

    Two cases of alternating left bundle branch block and "masquerading block" (with left bundle branch morphology in the stnadard leads and right bundle branch block morphology in the precordial leads) were studied by serial tracings and his bundle electrocardiography. In case 1 "the masquerading" block was associated with a first degree AV block related to a prolongation of HV interval. This case is to our knowledge the first cas of alternating bundle branch block in which his bundle activity was recorded in man. In case 2, the patient had atrial fibrilation and His bundle recordings were performed while differents degrees of left bundle branch block were present: The mechanism of the alternation and the concept of "masquerading" block are discussed. It is suggested that this type of block represents a right bundle branch block associated with severe lesions of the "left system".

  3. Additives to local anesthetics for peripheral nerve blocks: Evidence, limitations, and recommendations.

    PubMed

    Bailard, Neil S; Ortiz, Jaime; Flores, Roland A

    2014-03-01

    The therapeutic rationale, clinical effectiveness, and potential adverse effects of medications used in combination with local anesthetics for peripheral nerve block therapy are reviewed. A wide range of agents have been tested as adjuncts to peripheral nerve blocks, which are commonly performed for regional anesthesia during or after hand or arm surgery, neck or spine surgery, and other procedures. Studies to determine the comparative merits of nerve block adjuncts are complicated by the wide variety of coadministered local anesthetics and sites of administration and by the heterogeneity of primary endpoints. Sodium bicarbonate has been shown to speed the onset of mepivacaine nerve blocks but delay the onset of others. Epinephrine has been shown to prolong sensory nerve blockade and delay systemic uptake of local anesthetics, thus reducing the risk of anesthetic toxicity. Tramadol, buprenorphine, dexamethasone, and clonidine appear to be effective additives in some situations. Midazolam, magnesium, dexmedetomidine, and ketamine cannot be routinely recommended as nerve block additives due to a dearth of supportive data, modest efficacy, and (in the case of ketamine) significant adverse effects. Recent studies suggest that administering additives intravenously or intramuscularly can provide many of the benefits of perineural administration while reducing the potential for neurotoxicity, contamination, and other hazards. Some additives to local anesthetics can hasten the onset of nerve block, prolong block duration, or reduce toxicity. On the other hand, poorly selected or unnecessary additives may not have the desired effect and may even expose patients to unnecessary risks.

  4. PERCUTANEOUS BALLOON COMPRESSION OF GASSERIAN GANGLION FOR THE TREATMENT OF TRIGEMINAL NEURALGIA: AN EXPERIENCE FROM INDIA.

    PubMed

    Agarwal, Anurag; Dhama, Vipin; Manik, Yogesh K; Upadhyaya, M K; Singh, C S; Rastogi, V

    2015-02-01

    Trigeminal neuralgia (TN) is characterized by unilateral, lancinating, paroxysmal pain in the dermatomal distribution area of trigeminal nerve. Percutaneous balloon compression (PBC) of Gasserian ganglion is an effective, comparatively cheaper and simple therapeutic modality for treatment of TN. Compression secondary to PBC selectively injures the large myelinated A-alfa (afferent) fibers that mediate light touch and does not affect A-delta and C-fibres, which carry pain sensation. Balloon compression reduces the sensory neuronal input, thus turning off the trigger to the neuropathic trigeminal pain. In this current case series, we are sharing our experience with PBC of Gasserian Ganglion for the treatment of idiopathic TN in our patients at an academic university-based medical institution in India. During the period of August 2012 to October 2013, a total of twelve PBCs of Gasserian Ganglion were performed in eleven patients suffering from idiopathic TN. There were nine female patients and two male patients with the age range of 35-70 years (median age: 54 years). In all patients cannulation of foramen ovale was done successfully in the first attempt. In eight out of eleven (72.7%) patients ideal 'Pear-shaped' balloon visualization could be achieved. In the remaining three patients (27.3%), inflated balloon was 'Bullet-shaped'. In one patient final placement of Fogarty balloon was not satisfactory and it ruptured during inflation. This case was deferred for one week when it was completed successfully with 'Pear-shaped' balloon inflation. During the follow up period of 1-13 months, there have been no recurrences of TN. Eight out of eleven patients (72.7%) are completely off medicines (carbamazepine and baclofen) and other two patients are stable on very low doses of carbamazepine. All patients have reported marked improvement in quality of life. This case series shows that percutaneous balloon compression is a useful minimally invasive intervention for the

  5. Effect of nitrous oxide on the efficacy of the inferior alveolar nerve block in patients with symptomatic irreversible pulpitis.

    PubMed

    Stanley, William; Drum, Melissa; Nusstein, John; Reader, Al; Beck, Mike

    2012-05-01

    The inferior alveolar nerve (IAN) block does not always result in successful pulpal anesthesia. Anesthetic success rates might be affected by increased anxiety. Nitrous oxide has been shown to have both anxiolytic and analgesic properties. Therefore, the purpose of this prospective, randomized, double-blind, placebo-controlled study was to determine the effect of nitrous oxide on the anesthetic success of the IAN block in patients experiencing symptomatic irreversible pulpitis. One hundred emergency patients diagnosed with symptomatic irreversible pulpitis of a mandibular posterior tooth were enrolled in this study. Each patient was randomly assigned to receive an inhalation regimen of nitrous oxide/oxygen mix or room air/oxygen mix (placebo) 5 minutes before the administration of the IAN block. Endodontic access was begun 15 minutes after completion of the IAN block, and all patients had profound lip numbness. Success was defined as no or mild pain (visual analog scale recordings) on access or instrumentation. The success rate for the IAN block was 50% for the nitrous oxide group and 28% for the placebo group. There was a statistically significant difference between the 2 groups (P = .024). For mandibular teeth diagnosed with symptomatic irreversible pulpitis, administration of 30%-50% nitrous oxide resulted in a statistically significant increase in the success of the IAN block compared with room air/oxygen. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  6. Greater Occipital Nerve Block for Acute Treatment of Migraine Headache: A Large Retrospective Cohort Study.

    PubMed

    Allen, Sorcha M; Mookadam, Farouk; Cha, Stephen S; Freeman, John A; Starling, Amaal J; Mookadam, Martina

    2018-01-01

    Greater occipital nerve (GON) blocks are frequently used to treat migraine headaches, although a paucity of supporting clinical evidence exists. The objective of this study was to assess the efficacy of GON block in acute treatment of migraine headache, with a focus on pain relief. This retrospective cohort study was undertaken between January 2009 and August 2014 and included patients who underwent at least 1 GON block and attended at least 1 follow-up appointment. Change in the 11-point numeric pain rating scale (NPRS) was used to assess the response to GON block. Response was defined as "minimal" (<30% NPRS point reduction), "moderate" (31-50% NPRS point reduction), or "significant" (>50% NPRS point reduction). A total of 562 patients met inclusion criteria; 423 were women (75%). Mean age was 58.6 ± 16.7 years. Of these 562, 459 patients (82%) rated their response to GON block as moderate or significant. No statistically significant relationship existed between previous treatment regimens and response to GON block. GON block was equally effective across the different age and sex groups. Greater occipital block seems to be an effective option for acute management of migraine headache, with promising reductions in pain scores. © Copyright 2018 by the American Board of Family Medicine.

  7. The venom of Ampulex compressa--effects on behaviour and synaptic transmission of cockroaches.

    PubMed

    Piek, T; Hue, B; Lind, A; Mantel, P; van Marle, J; Visser, J H

    1989-01-01

    1. The solitary wasp Ampulex compressa stings a cockroach, Periplaneta americana, twice. 2. The first sting into the ventral thorax results in a transient paralysis. During this paralysis the wasp stings the suboesophageal ganglion, which gradually results in a permanent deactivation. 3. The venom gland is a paired and highly branched organ, with a common ductus venatus. The large lumen is lined with a folded cuticula. No venom reservoir is present. 4. Extract of the venom gland induces a slow contraction of the guinea pig ileum. 5. The agonist present in the venom cannot be identified with a known agonist. 6. Venom gland extract blocks synaptic transmission from the cercal nerve to giant neurons in the sixth abdominal ganglion of the cockroach. 7. The block develops gradually, like the gradual appearance of the effects of the sting into the suboesophageal ganglion on the behaviour of the cockroach.

  8. Kv2 Channel Regulation of Action Potential Repolarization and Firing Patterns in Superior Cervical Ganglion Neurons and Hippocampal CA1 Pyramidal Neurons

    PubMed Central

    Liu, Pin W.

    2014-01-01

    Kv2 family “delayed-rectifier” potassium channels are widely expressed in mammalian neurons. Kv2 channels activate relatively slowly and their contribution to action potential repolarization under physiological conditions has been unclear. We explored the function of Kv2 channels using a Kv2-selective blocker, Guangxitoxin-1E (GxTX-1E). Using acutely isolated neurons, mixed voltage-clamp and current-clamp experiments were done at 37°C to study the physiological kinetics of channel gating and action potentials. In both rat superior cervical ganglion (SCG) neurons and mouse hippocampal CA1 pyramidal neurons, 100 nm GxTX-1E produced near-saturating block of a component of current typically constituting ∼60–80% of the total delayed-rectifier current. GxTX-1E also reduced A-type potassium current (IA), but much more weakly. In SCG neurons, 100 nm GxTX-1E broadened spikes and voltage clamp experiments using action potential waveforms showed that Kv2 channels carry ∼55% of the total outward current during action potential repolarization despite activating relatively late in the spike. In CA1 neurons, 100 nm GxTX-1E broadened spikes evoked from −70 mV, but not −80 mV, likely reflecting a greater role of Kv2 when other potassium channels were partially inactivated at −70 mV. In both CA1 and SCG neurons, inhibition of Kv2 channels produced dramatic depolarization of interspike voltages during repetitive firing. In CA1 neurons and some SCG neurons, this was associated with increased initial firing frequency. In all neurons, inhibition of Kv2 channels depressed maintained firing because neurons entered depolarization block more readily. Therefore, Kv2 channels can either decrease or increase neuronal excitability depending on the time scale of excitation. PMID:24695716

  9. Visual Acuity and the Balance between Receptor Density and Ganglion Cell Receptive Field Overlap.

    DTIC Science & Technology

    1980-07-01

    Physiol. 229:719-731. Cleland, B . G., Dubin, M. W. and Levick , W. R. (1971) Sustained and transient neurones in the cat’s retina and lateral...NOOOIQ.79C-0370 NLASSIFIED IA. EEEEEEEEEEinnuunuuuuuu ’mLuuuu~ 4,0 111 12. 11111IL25 1.4I 111111.6 MICROCOPY RESOLUTION TEST CHART LEVEt 9 70 b *tm...1970; Burke and Hayhow, 1968; Barlow and Levick , 1969). As far as they affect the ganglion cell, these sources of noise are equivalent so they have been

  10. Response of cervicogenic headaches and occipital neuralgia to radiofrequency ablation of the C2 dorsal root ganglion and/or third occipital nerve.

    PubMed

    Hamer, John F; Purath, Traci A

    2014-03-01

    This article investigates the degree and duration of pain relief from cervicogenic headaches or occipital neuralgia following treatment with radiofrequency ablation of the C2 dorsal root ganglion and/or third occipital nerves. It also addresses the procedure's complication rate and patient's willingness to repeat the procedure if severe symptoms recur. This is a single-center retrospective observational study of 40 patients with refractory cervicogenic headaches and or occipital neuralgia. Patients were all referred by a headache specialty clinic for evaluation for radiofrequency ablation of the C2 dorsal root ganglion and/or third occipital nerves. After treatment, patients were followed for a minimum of 6 months to a year. Patient demographics and the results of radiofrequency ablation were recorded on the same day, after 3-4 days, and at 6 months to 1 year following treatment. Thirty-five percent of patients reported 100% pain relief and 70% reported 80% or greater pain relief. The mean duration of improvement is 22.35 weeks. Complication rate was 12-13%. 92.5% of patients reported they would undergo the procedure again if severe symptoms returned. Radiofrequency ablation of the C2 dorsal root ganglion and/or third occipital nerve can provide many months of greater than 50% pain relief in the vast majority of recipients with an expected length of symptom improvement of 5-6 months. © 2014 American Headache Society.

  11. Sugammadex for reversal of neuromuscular block after rapid sequence intubation: a systematic review and economic assessment†

    PubMed Central

    Chambers, D.; Paulden, M.; Paton, F.; Heirs, M.; Duffy, S.; Hunter, J. M.; Sculpher, M.; Woolacott, N.

    2010-01-01

    Summary Sugammadex 16 mg kg−1 can be used for the immediate reversal of neuromuscular block 3 min after administration of rocuronium and could be used in place of succinylcholine for emergency intubation. We have systematically reviewed the efficacy and cost-effectiveness and made an economic assessment of sugammadex for immediate reversal. The economic assessment investigated whether sugammadex appears cost-effective under various assumptions about the value of any reduction in recovery time with sugammadex, the likelihood of a ‘can't intubate, can't ventilate’ (CICV) event, the age of the patient, and the length of the procedure. Three trials were included in the efficacy review. Sugammadex administered 3 or 5 min after rocuronium produced markedly faster recovery than placebo or spontaneous recovery from succinylcholine-induced block. No published economic evaluations were found. Our economic analyses showed that sugammadex appears more cost-effective, where the value of any reduction in recovery time is greater, where the reduction in mortality compared with succinylcholine is greater, and where the patient is younger, for lower probabilities of a CICV event and for long procedures which do not require profound block throughout. Because of the lack of evidence, the value of some parameters remains unknown, which makes it difficult to provide a definitive assessment of the cost-effectiveness of sugammadex in practice. The use of sugammadex in combination with high-dose rocuronium is efficacious. Further research is needed to clarify key parameters in the analysis and to allow a fuller economic assessment. PMID:20937718

  12. The different roles of opioid receptors in the inhibitory effects induced by sacral dorsal root ganglion stimulation on nociceptive and nonnociceptive conditions in cats.

    PubMed

    Wang, Zhaoxia; Liao, Limin; Deng, Han; Li, Xing; Chen, Guoqing; Liao, Xiwen

    2018-06-04

    To examine the roles of opioid receptors in the inhibition of nociceptive and nonnociceptive bladder reflexes by sacral dorsal root ganglion (DRG) stimulation in cats. Hook electrodes were placed in the right S1 and S2 DRG of cats. The bladders were infused with physiologic saline or 0.25% acetic acid (AA). Naloxone (0.1, 0.3, and 1 mg/kg), an opioid receptor antagonist, was administered intravenously. S1 or S2 DRG stimulation was applied before and after administering the drug. Multiple cystometrograms were performed to determine the effects of DRG stimulation and opioid receptors on the micturition reflex under nociceptive and non-nociceptive conditions. AA significantly (P < 0.01) reduced bladder capacity (BC). DRG stimulation at threshold (T) and 1.5 T significantly increased BC of the saline control under nociceptive and non-nociceptive conditions. When saline was infused, naloxone (0.1-1 mg/kg) significantly (P < 0.01) reduced BC; however, naloxone did not change BC during AA irritation. During saline infusion, naloxone (0.3 and 1 mg/kg) partly blocked S1 DRG stimulation-induced inhibition but had only a slight effect on S2 DRG stimulation. During AA infusion, naloxone (0.3 and 1 mg/kg) only partially blocked S1 DRG stimulation at T intensity but not during 1.5 T stimulation. However, no doses of naloxone significantly affected S2 DRG stimulation. Opioid receptors play a role in sacral DRG stimulation on non-nociceptive condition but are not involved in the inhibitory effect of stimulation in nociceptive conditions. © 2018 Wiley Periodicals, Inc.

  13. Changes in NGF and NT-3 protein species in the superior cervical ganglion following axotomy of postganglionic axons.

    PubMed

    Walker, Ryan G; Foster, Andrew; Randolph, Chris L; Isaacson, Lori G

    2009-02-19

    Mature sympathetic neurons in the superior cervical ganglion (SCG) are regulated by target-derived neurotrophins such as nerve growth factor (NGF) and neurotrophin-3 (NT-3). High molecular weight NGF species and mature NT-3 are the predominant NGF and NT-3 protein isoforms in the SCG, yet it is unknown whether the presence of these species is dependent on intact connection with the target tissues. In an attempt to determine the role of peripheral targets in regulating the neurotrophin species found in the SCG, we investigated the NGF and NT-3 protein species present in the SCG following axotomy (transection) or injury of the post-ganglionic axons. Following a 7 day axotomy, the 22-24 kDa NGF species and the mature 14 kDa NT-3 species in the SCG were significantly reduced by 99% and 66% respectively, suggesting that intact connection with the target is necessary for the expression of these protein species. As expected, tyrosine hydroxylase (TH) protein in the SCG was significantly reduced by 80% at 7 days following axotomy. In order to distinguish between the effects of injury and loss of target connectivity, the SCG was examined following compression injury to the post-ganglionic nerves. Following injury, no reduction in the 22-24 kDa NGF or 14 kDa mature NT-3 species was observed in the SCG. TH protein was slightly, yet significantly, decreased in the SCG following injury. The findings of this study suggest that the presence of the 22-24 kDa NGF and mature 14 kDa NT-3 species in the SCG is dependent on connection with peripheral targets and may influence, at least in part, TH protein expression in adult sympathetic neurons.

  14. Synaptology of physiologically identified ganglion cells in the cat retina: a comparison of retinal X- and Y-cells.

    PubMed

    Weber, A J; Stanford, L R

    1994-05-15

    It has long been known that a number of functionally different types of ganglion cells exist in the cat retina, and that each responds differently to visual stimulation. To determine whether the characteristic response properties of different retinal ganglion cell types might reflect differences in the number and distribution of their bipolar and amacrine cell inputs, we compared the percentages and distributions of the synaptic inputs from bipolar and amacrine cells to the entire dendritic arbors of physiologically characterized retinal X- and Y-cells. Sixty-two percent of the synaptic input to the Y-cell was from amacrine cell terminals, while the X-cells received approximately equal amounts of input from amacrine and bipolar cells. We found no significant difference in the distributions of bipolar or amacrine cell inputs to X- and Y-cells, or ON-center and OFF-center cells, either as a function of dendritic branch order or distance from the origin of the dendritic arbor. While, on the basis of these data, we cannot exclude the possibility that the difference in the proportion of bipolar and amacrine cell input contributes to the functional differences between X- and Y-cells, the magnitude of this difference, and the similarity in the distributions of the input from the two afferent cell types, suggest that mechanisms other than a simple predominance of input from amacrine or bipolar cells underlie the differences in their response properties. More likely, perhaps, is that the specific response features of X- and Y-cells originate in differences in the visual responses of the bipolar and amacrine cells that provide their input, or in the complex synaptic arrangements found among amacrine and bipolar cell terminals and the dendrites of specific types of retinal ganglion cells.

  15. Comparative study of the novel and conventional injection approach for inferior alveolar nerve block.

    PubMed

    Boonsiriseth, K; Sirintawat, N; Arunakul, K; Wongsirichat, N

    2013-07-01

    This study aimed to evaluate the efficacy of anesthesia obtained with a novel injection approach for inferior alveolar nerve block compared with the conventional injection approach. 40 patients in good health, randomly received each of two injection approaches of local anesthetic on each side of the mandible at two separate appointments. A sharp probe and an electric pulp tester were used to test anesthesia before injection, after injection when the patients' sensation changed, and 5 min after injection. This study comprised positive aspiration and intravascular injection 5% and neurovascular bundle injection 7.5% in the conventional inferior alveolar nerve block, but without occurrence in the novel injection approach. A visual analog scale (VAS) pain assessment was used during injection and surgery. The significance level used in the statistical analysis was p<0.05. For the novel injection approach compared with the conventional injection approach, no significant difference was found on the subjective onset, objective onset, operation time, duration of anesthesia and VAS pain score during operation, but the VAS pain score during injection was significantly different. The efficacy of inferior alveolar nerve block by the novel injection approach provided adequate anesthesia and caused less pain and greater safety during injection. Copyright © 2012 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  16. Lack of early pattern stimulation prevents normal development of the alpha (Y) retinal ganglion cell population in the cat.

    PubMed

    Burnat, Kalina; Van Der Gucht, Estelle; Waleszczyk, Wioletta J; Kossut, Malgorzata; Arckens, Lutgarde

    2012-08-01

    Binocular deprivation of pattern vision (BD) early in life permanently impairs global motion perception. With the SMI-32 antibody against neurofilament protein (NFP) as a marker of the motion-sensitive Y-cell pathway (Van der Gucht et al. [2001] Cereb. Cortex 17:2805-2819), we analyzed the impact of early BD on the retinal circuitry in adult, perceptually characterized cats (Burnat et al. [2005] Neuroreport 16:751-754). In controls, large retinal ganglion cells exhibited a strong NFP signal in the soma and in the proximal parts of the dendritic arbors. The NFP-immunoreactive dendrites typically branched into sublamina a of the inner plexiform layer (IPL), i.e., the OFF inner plexiform sublamina. In the retina of adult BD cats, however, most of the NFP-immunoreactive ganglion cell dendrites branched throughout the entire IPL. The NFP-immunoreactive cell bodies were less regularly distributed, often appeared in pairs, and had a significantly larger diameter compared with NFP-expressing cells in control retinas. These remarkable differences in the immunoreactivity pattern were typically observed in temporal retina. In conclusion, we show that the anatomical organization typical of premature Y-type retinal ganglion cells persists into adulthood even if normal visual experience follows for years upon an initial 6-month period of BD. Binocular pattern deprivation possibly induces a lifelong OFF functional domination, normally apparent only during development, putting early high-quality vision forward as a premise for proper ON-OFF pathway segregation. These new observations for pattern-deprived animals provide an anatomical basis for the well-described motion perception deficits in congenital cataract patients. Copyright © 2012 Wiley Periodicals, Inc.

  17. Efficacy of Prehospital Analgesia with Fascia Iliaca Compartment Block for Femoral Bone Fractures: A Systematic Review.

    PubMed

    Hards, Marcus; Brewer, Andrew; Bessant, Gareth; Lahiri, Sumitra

    2018-06-01

    -Based Medicine (OCEBM; Oxford, UK). Seven studies involving 699 patients were included (one randomized controlled trial [RCT], four prospective observational studies, one retrospective observational study, and one case report). Pain scores reduced after prehospital FICB across all studies, and some achieved a level of significance to support this. Out of a total of 254 prehospital FICBs, there was a success rate of 90% and only one adverse effect reported. Few studies have investigated the effects of prehospital FICB on patient satisfaction or scene time delays. The FICB is suitable for use in the prehospital environment for the management of femoral fractures. It has few adverse effects and can be performed with a high success rate by practitioners of any background. Studies suggest that FICB is a useful analgesic technique, although further research is required to investigate its effectiveness compared to systemic opioids. HardsM, BrewerA, BessantG, LahiriS. Efficacy of prehospital analgesia with Fascia Iliaca Compartment Block for femoral bone fractures: a systematic review. Prehosp Disaster Med. 2018;33(3):299-307.

  18. [Pharmacology of local anesthetics and clinical aspects of segmental blocking. II. Spinal anesthesia].

    PubMed

    Kozlov, S P; Svetlov, V A; Luk'ianov, M V

    1998-01-01

    Clinical picture of development of segmental blocking after subarachnoidal injection of hyperbaric solutions of 0.75% bupivacaine, 5% ultracaine, and isobaric 0.5% bupivacaine is studied. A total of 152 patients operated on the lower part of the body and the lower limbs were examined under conditions of single, prolonged subarachnoidal, and combined spinal epidural anesthesia. Ultracaine and bupivacaine in different concentrations with different barism provided anesthesia equivalent by the efficacy, depth, and dissemination of sensory block. Segmental blocking with 5% ultracaine was characterized by the shortest latent period (3.14 +/- 0.16 min, p < 0.05) but was no shorter (124.1 +/- 3.37 min) than operative analgesia with 0.75% hyperbaric bupivacaine (120.0 +/- 5.10 min). Isobaric bupivacaine provided the longest effective analgesia (215.0 +/- 45.0 min, p < 0.05). Microcatheter technique improved the safety and control of subarachnoidal anesthesia in comparison with a single injection, and combined spinal epidural anesthesia shortened the latent period of segmental blocking and ensured intraoperative anesthesia and postoperative analgesia at the expense of the epidural component.

  19. Ganglion cell-inner plexiform layer and retinal nerve fibre layer changes within the macula in retinitis pigmentosa: a spectral domain optical coherence tomography study.

    PubMed

    Yoon, Chang Ki; Yu, Hyeong Gon

    2018-03-01

    To investigate how macular ganglion cell-inner plexiform layer (GCIPL) and retinal nerve fibre layer (RNFL) thicknesses within the macula change with retinitis pigmentosa (RP) severity. Spectral domain optical coherence tomography (SD-OCT) was used to examine 177 patients with RP and 177 normal controls. An optical coherence tomography (OCT) line scan was used to grade RP severity. Retinitis pigmentosa (RP) was categorized as more advanced if there was no identifiable inner segment ellipsoid (ISe) band (NISE) and as less advanced if an ISe band could be identified and peripheral loss of ISe was apparent (IISE). Ganglion cell-inner plexiform layer (GCIPL) and RNFL thicknesses were manually measured on OCT images and analysed. Pearson's correlation analyses were used to examine correlations between GCIPL thickness, RNFL thickness, visual acuity (VA) and visual field extent in patients and controls. Ganglion cell-inner plexiform layer (GCIPL) was significantly thicker in IISE than in control eyes (p < 0.001), but significantly thinner in NISE than in IISE eyes (p < 0.001) in both horizontal and vertical OCT scans. Retinal nerve fibre layer (RNFL) was significantly thicker in eyes with IISE and NISE than in control eyes in both horizontal and vertical meridians (all p < 0.001). Ganglion cell-inner plexiform layer (GCIPL) thickness showed a weak positive correlation with vision, and RNFL thickness showed a weak negative correlation with vision and visual field extent. Based on these results, the inner retina, including the GCIPL and RNFL, maintains its gross integrity longer than the photoreceptor layer in RP. Additionally, thickening of the inner retina may have some functional implications in patients with RP. © 2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  20. A Protein Encoded by the Latency-Related Gene of Bovine Herpesvirus 1 Is Expressed in Trigeminal Ganglionic Neurons of Latently Infected Cattle and Interacts with Cyclin-Dependent Kinase 2 during Productive Infection

    PubMed Central

    Jiang, Yunquan; Hossain, Ashfaque; Winkler, Maria Teresa; Holt, Todd; Doster, Alan; Jones, Clinton

    1998-01-01

    Despite productive viral gene expression in the peripheral nervous system during acute infection, the bovine herpesvirus 1 (BHV-1) infection cycle is blocked in sensory ganglionic neurons and consequently latency is established. The only abundant viral transcript expressed during latency is the latency-related (LR) RNA. LR gene products inhibit S-phase entry, and binding of the LR protein (LRP) to cyclin A was hypothesized to block cell cycle progression. This study demonstrates LRP is a nuclear protein which is expressed in neurons of latently infected cattle. Affinity chromatography indicated that LRP interacts with cyclin-dependent kinase 2 (cdk2)-cyclin complexes or cdc2-cyclin complexes in transfected human cells or infected bovine cells. After partial purification using three different columns (DEAE-Sepharose, Econo S, and heparin-agarose), LRP was primarily associated with cdk2-cyclin E complexes, an enzyme which is necessary for G1-to-S-phase cell cycle progression. During acute infection of trigeminal ganglia or following dexamethasone-induced reactivation, BHV-1 induces expression of cyclin A in neurons (L. M. Schang, A. Hossain, and C. Jones, J. Virol. 70:3807–3814, 1996). Expression of S-phase regulatory proteins (cyclin A, for example) leads to neuronal apoptosis. Consequently, we hypothesize that interactions between LRP and cell cycle regulatory proteins promote survival of postmitotic neurons during acute infection and/or reactivation. PMID:9733854

  1. A protein encoded by the latency-related gene of bovine herpesvirus 1 is expressed in trigeminal ganglionic neurons of latently infected cattle and interacts with cyclin-dependent kinase 2 during productive infection.

    PubMed

    Jiang, Y; Hossain, A; Winkler, M T; Holt, T; Doster, A; Jones, C

    1998-10-01

    Despite productive viral gene expression in the peripheral nervous system during acute infection, the bovine herpesvirus 1 (BHV-1) infection cycle is blocked in sensory ganglionic neurons and consequently latency is established. The only abundant viral transcript expressed during latency is the latency-related (LR) RNA. LR gene products inhibit S-phase entry, and binding of the LR protein (LRP) to cyclin A was hypothesized to block cell cycle progression. This study demonstrates LRP is a nuclear protein which is expressed in neurons of latently infected cattle. Affinity chromatography indicated that LRP interacts with cyclin-dependent kinase 2 (cdk2)-cyclin complexes or cdc2-cyclin complexes in transfected human cells or infected bovine cells. After partial purification using three different columns (DEAE-Sepharose, Econo S, and heparin-agarose), LRP was primarily associated with cdk2-cyclin E complexes, an enzyme which is necessary for G1-to-S-phase cell cycle progression. During acute infection of trigeminal ganglia or following dexamethasone-induced reactivation, BHV-1 induces expression of cyclin A in neurons (L. M. Schang, A. Hossain, and C. Jones, J. Virol. 70:3807-3814, 1996). Expression of S-phase regulatory proteins (cyclin A, for example) leads to neuronal apoptosis. Consequently, we hypothesize that interactions between LRP and cell cycle regulatory proteins promote survival of postmitotic neurons during acute infection and/or reactivation.

  2. Metabotropic and ionotropic glutamate receptors regulate calcium channel currents in salamander retinal ganglion cells

    PubMed Central

    Shen, Wen; Slaughter, Malcolm M

    1998-01-01

    Glutamate suppressed high-voltage-activated barium currents (IBa,HVA) in tiger salamander retinal ganglion cells. Both ionotropic (iGluR) and metabotropic (mGluR) receptors contributed to this calcium channel inhibition. Trans-ACPD (1-aminocyclopentane-trans-1S,3R-dicarboxylic acid), a broad-spectrum metabotropic glutamate receptor agonist, suppressed a dihydropyridine-sensitive barium current. Kainate, an ionotropic glutamate receptor agonist, reduced an ω-conotoxin GVIA-sensitive current. The relative effectiveness of selective agonists indicated that the predominant metabotropic receptor was the L-2-amino-4-phosphonobutyrate (l-AP4)-sensitive, group III receptor. This receptor reversed the action of forskolin, but this was not responsible for calcium channel suppression. l-AP4 raised internal calcium concentration. Antagonists of phospholipase C, inositol trisphosphate (IP3) receptors and ryanodine receptors inhibited the action of metabotropic agonists, indicating that group III receptor transduction was linked to this pathway. The action of kainate was partially suppressed by BAPTA, by calmodulin antagonists and by blockers of calmodulin-dependent phosphatase. Suppression by kainate of the calcium channel current was more rapid when calcium was the charge carrier, instead of barium. The results indicate that calcium influx through kainate-sensitive glutamate receptors can activate calmodulin, which stimulates phosphatases that may directly suppress voltage-sensitive calcium channels. Thus, ionotropic and metabotropic glutamate receptors inhibit distinct calcium channels. They could act synergistically, since both increase internal calcium. These pathways provide negative feedback that can reduce calcium influx when ganglion cells are depolarized. PMID:9660896

  3. Differential block of nicotinic synapses on B versus C neurones in sympathetic ganglia of frog by alpha-conotoxins MII and ImI.

    PubMed

    Tavazoie, S F; Tavazoie, M F; McIntosh, J M; Olivera, B M; Yoshikami, D

    1997-03-01

    1. The effects of two new acetylcholine receptor antagonists, alpha-conotoxin MII and alpha-conotoxin ImI, on nicotinic synaptic transmission in the 10th paravertebral sympathetic ganglion of the leopard frog (Rana pipiens) were examined. The preganglionic nerve was electrically stimulated (at low frequency, < or = 1 min-1, to avoid use-dependent changes) while compound action potentials of B and C neurones were monitored from the postganglionic nerve. 2. alpha-Conotoxins MII and ImI, at low micromolar concentrations, reversibly blocked both B and C waves, alpha-Conotoxin MII blocked the C wave more effectively than the B wave, whereas the potency of alpha-conotoxin ImI was opposite that of MII. The observation that nicotinic antagonists can differentially block synaptic transmission of B versus C neurones with opposite selectivities strongly suggests that these neurones possess distinct nicotinic receptors. 3. In addition to fast and slow B waves described by others. C waves with two temporally distinguishable components were present in our recordings. Each alpha-conotoxin affected fast and slow B waves similarly. Likewise, toxins did not discriminate between the two components of C waves. This suggests that all neurones within each major class (B or C) may have the same nicotinic receptors. 4. Synthetic forms of alpha-conotoxins MII and ImI were used in the present study. Their ease of synthesis and their specificities should make these toxins useful probes to investigate the various subtypes of neuronal nicotinic acetylcholine receptors.

  4. Macular Ganglion Cell Imaging Study: Covariate Effects on the Spectral Domain Optical Coherence Tomography for Glaucoma Diagnosis.

    PubMed

    Jeong, Jae Hoon; Choi, Yun Jeong; Park, Ki Ho; Kim, Dong Myung; Jeoung, Jin Wook

    2016-01-01

    To evaluate the effect of multiple covariates on the diagnostic performance of the Cirrus high-definition optical coherence tomography (HD-OCT) for glaucoma detection. A prospective case-control study was performed and included 173 recently diagnosed glaucoma patients and 63 unaffected individuals from the Macular Ganglion Cell Imaging Study. Regression analysis of receiver operating characteristic were conducted to evaluate the influence of age, spherical equivalent, axial length, optic disc size, and visual field index on the macular ganglion cell-inner plexiform layer (GCIPL) and peripapillary retinal nerve fiber layer (RNFL) measurements. Disease severity, as measured by visual field index, had a significant effect on the diagnostic performance of all Cirrus HD-OCT parameters. Age, axial length and optic disc size were significantly associated with diagnostic accuracy of average peripapillary RNFL thickness, whereas axial length had a significant effect on the diagnostic accuracy of average GCIPL thickness. Diagnostic performance of the Cirrus HD-OCT may be more accurate in the advanced stages of glaucoma than at earlier stages. A smaller optic disc size was significantly associated with improved the diagnostic ability of average RNFL thickness measurements; however, GCIPL thickness may be less affected by age and optic disc size.

  5. Epidural block

    MedlinePlus

    ... body. This lessens the pain of contractions during childbirth. An epidural block may also be used to ... extremities. This article focuses on epidural blocks during childbirth. How is the Epidural Given? The block or ...

  6. Safety and Patient Acceptability of Stellate Ganglion Blockade as a Treatment Adjunct for Combat-Related Post-Traumatic Stress Disorder: A Quality Assurance Initiative.

    PubMed

    McLean, Brian

    2015-09-10

     To perform a quality assurance and performance improvement project through review of our single center data on the safety and patient acceptability of the stellate ganglion blockade (SGB) procedure for the relief of symptoms related to chronic post-traumatic stress disorder.  Our interventional pain management service has been offering trials of SGB therapy to assist with the management of the sympathetically mediated anxiety and hyperarousal symptoms of severe and treatment-refractory combat-related PTSD. There have been multiple case series in the literature describing the potential impact of this procedure for PTSD symptom management as well as the safety of image-guided procedures. We wished to ensure that we were performing this procedure safely and that patients were tolerating and accepting of this adjunctive treatment option.  We conducted a review of our quality assurance and performance improvement data over the past 18 months during which we performed 250 stellate ganglion blocks for the management of PTSD symptoms to detect any potential complications or unanticipated side effects.  We also analyzed responses from an anonymous patient de-identified survey collected regarding the comfort and satisfaction associated with the procedure.  We did not identify any immediate post-procedural complications or delayed complications from any of the 250 procedures performed from November 2013 to April 2015. Of the 110 surveys that were returned and tabulated, 100% of the patients surveyed were overall satisfied with our process and with the procedure, 100% said they would recommend the procedure to a friend, and 95% stated that they would be willing to undergo as many repeat procedures as necessary based on little discomfort and tolerable side effects.  Our quality assurance assessment suggests that in our center the SGB procedure for PTSD is a safe, well-tolerated, and acceptable treatment adjunct in the management of

  7. RdgB2 is required for dim-light input into intrinsically photosensitive retinal ganglion cells

    PubMed Central

    Walker, Marquis T.; Rupp, Alan; Elsaesser, Rebecca; Güler, Ali D.; Sheng, Wenlong; Weng, Shijun; Berson, David M.; Hattar, Samer; Montell, Craig

    2015-01-01

    A subset of retinal ganglion cells is intrinsically photosensitive (ipRGCs) and contributes directly to the pupillary light reflex and circadian photoentrainment under bright-light conditions. ipRGCs are also indirectly activated by light through cellular circuits initiated in rods and cones. A mammalian homologue (RdgB2) of a phosphoinositide transfer/exchange protein that functions in Drosophila phototransduction is expressed in the retinal ganglion cell layer. This raised the possibility that RdgB2 might function in the intrinsic light response in ipRGCs, which depends on a cascade reminiscent of Drosophila phototransduction. Here we found that under high light intensities, RdgB2−/− mutant mice showed normal pupillary light responses and circadian photoentrainment. Consistent with this behavioral phenotype, the intrinsic light responses of ipRGCs in RdgB2−/− were indistinguishable from wild-type. In contrast, under low-light conditions, RdgB2−/− mutants displayed defects in both circadian photoentrainment and the pupillary light response. The RdgB2 protein was not expressed in ipRGCs but was in GABAergic amacrine cells, which provided inhibitory feedback onto bipolar cells. We propose that RdgB2 is required in a cellular circuit that transduces light input from rods to bipolar cells that are coupled to GABAergic amacrine cells and ultimately to ipRGCs, thereby enabling ipRGCs to respond to dim light. PMID:26269578

  8. Transversus abdominis plane block in renal allotransplant recipients: A retrospective chart review.

    PubMed

    Gopwani, S R; Rosenblatt, M A

    2016-01-01

    The efficacy of the transversus abdominis plane (TAP) block appears to vary considerably, depending on the surgical procedure and block technique. This study aims to add to the existing literature and provide a more clear understanding of the TAP blocks role as a postoperative analgesic technique, specifically in renal allotransplant recipients. A retrospective chart review was conducted by querying the intraoperative electronic medical record system of a 1200-bed tertiary academic hospital over a 5 months period, and reviewing anesthetic techniques, as well as postoperative morphine equivalent consumption. Fifty renal allotransplant recipients were identified, 13 of whom received TAP blocks while 37 received no regional analgesic technique. All blocks were performed under ultrasound guidance, with 20 mL of 0.25% bupivacaine injected in the transversus abdominis fascial plane under direct visualization. The primary outcome was postoperative morphine equivalent consumption. Morphine consumption was compared with the two-tailed Mann-Whitney U -test. Continuous variables of patient baseline characteristics were analyzed with unpaired t -test and categorical variables with Fischer Exact Test. A P < 0.05 was considered statistically significant. A statistically significant decrease in cumulative morphine consumption was found in the group that received the TAP block at 6 h (2.46 mg vs. 7.27 mg, P = 0.0010), 12 h (3.88 mg vs. 10.20 mg, P = 0.0005), 24 h (6.96 mg vs. 14.75 mg, P = 0.0013), and 48 h (11 mg vs. 20.13 mg, P = 0.0092). The TAP block is a beneficial postoperative analgesic, opiate-sparing technique in renal allotransplant recipients.

  9. Selective labeling of retinal ganglion cells with calcium indicators by retrograde loading in vitro

    PubMed Central

    Behrend, Matthew R.; Ahuja, Ashish K.; Humayun, Mark S.; Weiland, James D.; Chow, Robert H.

    2012-01-01

    Here we present a retrograde loading technique that makes it possible for the first time to rapidly load a calcium indicator in the majority of retinal ganglion cells (RGCs) in salamander retina, and then to observe physiological activity of these dye-loaded cells. Dextran-conjugated calcium indicator, dissolved in water, was applied to the optic nerve stump. Following dye loading, the isolated retina was mounted on a microelectrode array to demonstrate that electrical activity and calcium activity were preserved, as the retina responded to electrical stimuli. PMID:19428523

  10. Comparative Analysis of the Anesthetic Efficacy of 0.5 and 0.75 % Ropivacaine for Inferior Alveolar Nerve Block in Surgical Removal of Impacted Mandibular Third Molars.

    PubMed

    Bhargava, Darpan; Chakravorty, Nupur; Rethish, Elangovan; Deshpande, Ashwini

    2014-12-01

    Ropivacaine belongs to pipecoloxylidide group of local anesthetics. There are reports supporting the use of ropivacaine as a long acting local anesthetic in oral and maxillofacial surgical procedures, with variable data on the concentration that is clinically suitable. A prospective randomized double-blind study protocol was undertaken to assess the efficacy of 0.5 and 0.75 % ropivacaine for inferior alveolar nerve block in surgical extraction of impacted mandibular third molars. A total of 60 procedures were performed, of which thirty patients received 0.5 % and thirty received 0.75 % concentration of the study drug. All the patients in both the study groups reported subjective numbness of lip and tongue. The time of onset was longer for 0.5 % ropivacaine when compared to 0.75 % solution. 90 % of the study patients in 0.5 % ropivacaine group reported pain corresponding to VAS ≥3 during bone guttering and 93.3 % patients reported pain corresponding to VAS >4 during tooth elevation. None of the patients in 0.75 % ropivacaine group reported VAS >3 at any stage of the surgical procedure. The duration of soft tissue anesthesia recorded with 0.75 % ropivacaine was average 287.57 ± 42.0 min. 0.75 % ropivacaine was found suitable for inferior alveolar nerve blocks in surgical extraction of impacted mandibular third molars.

  11. Sympathetic blocks for the treatment of complex regional pain syndrome: A case series.

    PubMed

    Gungor, Semih; Aiyer, Rohit; Baykoca, Buse

    2018-05-01

    To present the successful treatment of complex regional pain syndrome type -1 utilizing sympathetic blocks. Severe pain interfering with activities of daily living and temporary disability secondary to complex regional pain syndrome. Complex regional pain syndrome type-1 with involvement of lower extremity (2 patients), and upper extremity (1 patient). We report the management of 3 patients with diagnosis of complex regional pain syndrome type-1 by early institution of sympathetic blocks for diagnostic and therapeutic purposes. All 3 patients were able to tolerate physical therapy only after adequate pain relief had been achieved with institution of sympathetic blocks. All 3 patients responded very favorably to sympathetic blocks with dramatic reversal of pathology. All patients reported almost complete resolution of pain, symptoms, and signs within 6 months duration after diagnosis of complex regional pain syndrome. All 3 patients were able to wean their pain medications and achieve normal activities of daily living without any significant limitations. All patients were able to return to full-time employment. Treatment options are limited and there is lack of high quality research regarding the efficacy of sympathetic blocks in the treatment of complex regional pain syndrome. As presented in this case series, sympathetic blocks maybe very effective in the treatment of complex regional pain syndrome in a subset of patients. Thus, early institution of sympathetic blocks should be considered in complex regional pain syndrome prior to physical therapy and consideration of more invasive pain management interventions.

  12. US-Guided Femoral and Sciatic Nerve Blocks for Analgesia During Endovenous Laser Ablation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yilmaz, Saim, E-mail: ysaim@akdeniz.edu.tr; Ceken, Kagan; Alimoglu, Emel

    2013-02-15

    Endovenous laser ablation may be associated with significant pain when performed under standard local tumescent anesthesia. The purpose of this study was to investigate the efficacy of femoral and sciatic nerve blocks for analgesia during endovenous ablation in patients with lower extremity venous insufficiency. During a 28-month period, ultrasound-guided femoral or sciatic nerve blocks were performed to provide analgesia during endovenous laser ablation in 506 legs and 307 patients. The femoral block (n = 402) was performed at the level of the inguinal ligament, and the sciatic block at the posterior midthigh (n = 124), by injecting a diluted lidocainemore » solution under ultrasound guidance. After the blocks, endovenous laser ablations and other treatments (phlebectomy or foam sclerotherapy) were performed in the standard fashion. After the procedures, a visual analogue pain scale (1-10) was used for pain assessment. After the blocks, pain scores were 0 or 1 (no pain) in 240 legs, 2 or 3 (uncomfortable) in 225 legs, and 4 or 5 (annoying) in 41 legs. Patients never experienced any pain higher than score 5. The statistical analysis revealed no significant difference between the pain scores of the right leg versus the left leg (p = 0.321) and between the pain scores after the femoral versus sciatic block (p = 0.7). Ultrasound-guided femoral and sciatic nerve blocks may provide considerable reduction of pain during endovenous laser and other treatments, such as ambulatory phlebectomy and foam sclerotherapy. They may make these procedures more comfortable for the patient and easier for the operator.« less

  13. I h and HCN channels in murine spiral ganglion neurons: tonotopic variation, local heterogeneity, and kinetic model.

    PubMed

    Liu, Qing; Manis, Paul B; Davis, Robin L

    2014-08-01

    One of the major contributors to the response profile of neurons in the auditory pathways is the I h current. Its properties such as magnitude, activation, and kinetics not only vary among different types of neurons (Banks et al., J Neurophysiol 70:1420-1432, 1993; Fu et al., J Neurophysiol 78:2235-2245, 1997; Bal and Oertel, J Neurophysiol 84:806-817, 2000; Cao and Oertel, J Neurophysiol 94:821-832, 2005; Rodrigues and Oertel, J Neurophysiol 95:76-87, 2006; Yi et al., J Neurophysiol 103:2532-2543, 2010), but they also display notable diversity in a single population of spiral ganglion neurons (Mo and Davis, J Neurophysiol 78:3019-3027, 1997), the first neural element in the auditory periphery. In this study, we found from somatic recordings that part of the heterogeneity can be attributed to variation along the tonotopic axis because I h in the apical neurons have more positive half-activation voltage levels than basal neurons. Even within a single cochlear region, however, I h current properties are not uniform. To account for this heterogeneity, we provide immunocytochemical evidence for variance in the intracellular density of the hyperpolarization-activated cyclic nucleotide-gated channel α-subunit 1 (HCN1), which mediates I h current. We also observed different combinations of HCN1 and HCN4 α-subunits from cell to cell. Lastly, based on the physiological data, we performed kinetic analysis for the I h current and generated a mathematical model to better understand varied I h on spiral ganglion function. Regardless of whether I h currents are recorded at the nerve terminals (Yi et al., J Neurophysiol 103:2532-2543, 2010) or at the somata of spiral ganglion neurons, they have comparable mean half-activation voltage and induce similar resting membrane potential changes, and thus our model may also provide insights into the impact of I h on synaptic physiology.

  14. Effects of GABA receptor antagonists on thresholds of P23H rat retinal ganglion cells to electrical stimulation of the retina

    NASA Astrophysics Data System (ADS)

    Jensen, Ralph J.; Rizzo, Joseph F., III

    2011-06-01

    An electronic retinal prosthesis may provide useful vision for patients suffering from retinitis pigmentosa (RP). In animal models of RP, the amount of current needed to activate retinal ganglion cells (RGCs) is higher than in normal, healthy retinas. In this study, we sought to reduce the stimulation thresholds of RGCs in a degenerate rat model (P23H-line 1) by blocking GABA receptor mediated inhibition in the retina. We examined the effects of TPMPA, a GABAC receptor antagonist, and SR95531, a GABAA receptor antagonist, on the electrically evoked responses of RGCs to biphasic current pulses delivered to the subretinal surface through a 400 µm diameter electrode. Both TPMPA and SR95531 reduced the stimulation thresholds of ON-center RGCs on average by 15% and 20% respectively. Co-application of the two GABA receptor antagonists had the greatest effect, on average reducing stimulation thresholds by 32%. In addition, co-application of the two GABA receptor antagonists increased the magnitude of the electrically evoked responses on average three-fold. Neither TPMPA nor SR95531, applied alone or in combination, had consistent effects on the stimulation thresholds of OFF-center RGCs. We suggest that the effects of the GABA receptor antagonists on ON-center RGCs may be attributable to blockage of GABA receptors on the axon terminals of ON bipolar cells.

  15. Effect of preoperative medications on the efficacy of inferior alveolar nerve block in patients with irreversible pulpitis: A placebo-controlled clinical study.

    PubMed

    Jena, Amit; Shashirekha, Govind

    2013-03-01

    The purpose of this prospective, randomized, double-blind, placebo-controlled study was to compare the effect of the administration of preoperative ibuprofen, ketorolac, combination of etodolac with paracetamol and combination of aceclofenac with paracetamol versus placebo for the potential increased effectiveness of the inferior alveolar nerve block [IANB] anesthesia. A total of 100 endodontic emergency patients in moderate to severe pain diagnosed with irreversible pulpitis of a mandibular posterior tooth randomly received, in a double-blind manner, either a drug or placebo 30 minutes before the administration of a conventional IANB. Cold testing was done before administration of anesthesia to determine level of pain using Heft-Parker Visual Analogue Scale (VAS) score. Success was defined as no pain or pain (VAS) on access or initial instrumentation. Overall success was 54% for all the groups. Success was highest (70%) for the ketorolac group, 55% for both ibuprofen group and combination of aceclofenac with paracetamol group, 50% for combination of etodolac with paracetamol group, and 40% for the placebo group. Under the conditions of this study, the use of preoperative medication did improve the anesthetic efficacy of IANB for the treatment of teeth diagnosed with irreversible pulpitis but not significantly.

  16. Paracervical Block for Laminaria Insertion Before Second-Trimester Abortion: A Randomized Controlled Trial.

    PubMed

    Soon, Reni; Tschann, Mary; Salcedo, Jennifer; Stevens, Katelyn; Ahn, Hyeong Jun; Kaneshiro, Bliss

    2017-08-01

    To evaluate the efficacy of a paracervical block to decrease pain during osmotic dilator insertion before second-trimester abortion. In this double-blind, randomized trial, 41 women undergoing Laminaria insertion before a second-trimester abortion received either a paracervical block with 18 mL 1% lidocaine and 2 mL sodium bicarbonate or a sham block. Women were between 14 and 23 6/7 weeks of gestation. The primary outcome was pain immediately after insertion of Laminaria. Women assessed their pain on a 100-mm visual analog scale. Secondary outcomes included assessment of pain at other times during the insertion procedure and overall satisfaction with pain control. To detect a 25-mm difference in pain immediately after Laminaria insertion, at an α of 0.05 and 80% power, we aimed to enroll 20 patients in each arm. From May 2015 to December 2015, 20 women received a paracervical block and 21 received a sham block. Groups were similar in demographics, including parity, history of surgical abortion, and number of Laminaria placed. The paracervical block reduced pain after Laminaria insertion (median scores 13 mm [interquartile range 2-39] compared with 54 mm [interquartile range 27-61], P=.01, 95% CI -47.0 to -4.0). Women who received a paracervical block also reported higher satisfaction with overall pain control throughout the entire Laminaria insertion procedure (median scores 95 mm [interquartile range 78-100] compared with 70 mm [interquartile range 44-90], P=.05, 95% CI 0.0-37.0). Paracervical block is effective at reducing the pain of Laminaria insertion. Additionally, a paracervical block increases overall patient satisfaction with pain control during Laminaria placement. ClinicalTrials.gov, NCT02454296.

  17. The production of nitric oxide in the coeliac ganglion modulates the effect of cholinergic neurotransmission on the rat ovary during the preovulatory period.

    PubMed

    Delsouc, María B; Della Vedova, María C; Ramírez, Darío; Delgado, Silvia M; Casais, Marilina

    2018-05-01

    The aim of the present work was to investigate whether the nitric oxide produced by the nitric oxide/nitric oxide synthase (NO/NOS) system present in the coeliac ganglion modulates the effects of cholinergic innervation on oxidative status, steroidogenesis and apoptotic mechanisms that take place in the rat ovary during the first proestrous. An ex vivo Coeliac Ganglion- Superior Ovarian Nerve- Ovary (CG-SON-O) system was used. Cholinergic stimulation of the CG was achieved by 10 -6  M Acetylcholine (Ach). Furthermore, 400 μM Aminoguanidine (AG) - an inhibitor of inducible-NOS was added in the CG compartment in absence and presence of Ach. It was found that Ach in the CG compartment promotes apoptosis in ovarian tissue, probably due to the oxidative stress generated. AG in the CG compartment decreases the release of NO and progesterone, and increases the release of estradiol from the ovary. The CG co-treatment with Ach and AG counteracts the effects of the ganglionic cholinergic agonist on ovarian oxidative stress, increases hormone production and decreases Fas mRNA expression. These results suggest that NO is an endogenous modulator of cholinergic neurotransmission in CG, with implication in ovarian steroidogenesis and the apoptotic mechanisms that take place in the ovary during the preovulatory period in rats. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. PKCɛ mediates substance P inhibition of GABAA receptors-mediated current in rat dorsal root ganglion.

    PubMed

    Li, Li; Zhao, Lei; Wang, Yang; Ma, Ke-tao; Shi, Wen-yan; Wang, Ying-zi; Si, Jun-qiang

    2015-02-01

    The mechanism underlying the modulatory effect of substance P (SP) on GABA-activated response in rat dorsal root ganglion (DRG) neurons was investigated. In freshly dissociated rat DRG neurons, whole-cell patch-clamp technique was used to record GABA-activated current and sharp electrode intracellular recording technique was used to record GABA-induced membrane depolarization. Application of GABA (1-1000 μmol/L) induced an inward current in a concentration-dependent manner in 114 out of 127 DRG neurons (89.8 %) examined with whole-cell patch-clamp recordings. Bath application of GABA (1-1000 μmol/L) evoked a depolarizing response in 236 out of 257 (91.8%) DRG neurons examined with intracellular recordings. Application of SP (0.001-1 μmol/L) suppressed the GABA-activated inward current and membrane depolarization. The inhibitory effects were concentration-dependent and could be blocked by the selective neurokinin 1 (NK1) receptors antagonist spantide but not by L659187 and SR142801 (1 μmol/L, n=7), selective antagonists of NK2 and NK3. The inhibitory effect of SP was significantly reduced by the calcium chelator BAPTA-AM, phospholipase C (PLC) inhibitor U73122, and PKC inhibitor chelerythrine, respectively. The PKA inhibitor H-89 did not affect the SP effect. Remarkably, the inhibitory effect of SP on GABA-activated current was nearly completely removed by a selective PKCε inhibitor epilon-V1-2 but not by safingol and LY333531, selective inhibitors of PKCα and PKCβ. Our results suggest that NK1 receptor mediates SP-induced inhibition of GABA-activated current and membrane depolarization by activating intracellular PLC-Ca²⁺-PKCε cascade. SP might regulate the excitability of peripheral nociceptors through inhibition of the "pre-synaptic inhibition" evoked by GABA, which may explain its role in pain and neurogenic inflammation.

  19. Response profiles of murine spiral ganglion neurons on multi-electrode arrays

    NASA Astrophysics Data System (ADS)

    Hahnewald, Stefan; Tscherter, Anne; Marconi, Emanuele; Streit, Jürg; Widmer, Hans Rudolf; Garnham, Carolyn; Benav, Heval; Mueller, Marcus; Löwenheim, Hubert; Roccio, Marta; Senn, Pascal

    2016-02-01

    Objective. Cochlear implants (CIs) have become the gold standard treatment for deafness. These neuroprosthetic devices feature a linear electrode array, surgically inserted into the cochlea, and function by directly stimulating the auditory neurons located within the spiral ganglion, bypassing lost or not-functioning hair cells. Despite their success, some limitations still remain, including poor frequency resolution and high-energy consumption. In both cases, the anatomical gap between the electrode array and the spiral ganglion neurons (SGNs) is believed to be an important limiting factor. The final goal of the study is to characterize response profiles of SGNs growing in intimate contact with an electrode array, in view of designing novel CI devices and stimulation protocols, featuring a gapless interface with auditory neurons. Approach. We have characterized SGN responses to extracellular stimulation using multi-electrode arrays (MEAs). This setup allows, in our view, to optimize in vitro many of the limiting interface aspects between CIs and SGNs. Main results. Early postnatal mouse SGN explants were analyzed after 6-18 days in culture. Different stimulation protocols were compared with the aim to lower the stimulation threshold and the energy needed to elicit a response. In the best case, a four-fold reduction of the energy was obtained by lengthening the biphasic stimulus from 40 μs to 160 μs. Similarly, quasi monophasic pulses were more effective than biphasic pulses and the insertion of an interphase gap moderately improved efficiency. Finally, the stimulation with an external electrode mounted on a micromanipulator showed that the energy needed to elicit a response could be reduced by a factor of five with decreasing its distance from 40 μm to 0 μm from the auditory neurons. Significance. This study is the first to show electrical activity of SGNs on MEAs. Our findings may help to improve stimulation by and to reduce energy consumption of CIs and

  20. Rhythmic Ganglion Cell Activity in Bleached and Blind Adult Mouse Retinas

    PubMed Central

    Menzler, Jacob; Channappa, Lakshmi; Zeck, Guenther

    2014-01-01

    In retinitis pigmentosa – a degenerative disease which often leads to incurable blindness- the loss of photoreceptors deprives the retina from a continuous excitatory input, the so-called dark current. In rodent models of this disease this deprivation leads to oscillatory electrical activity in the remaining circuitry, which is reflected in the rhythmic spiking of retinal ganglion cells (RGCs). It remained unclear, however, if the rhythmic RGC activity is attributed to circuit alterations occurring during photoreceptor degeneration or if rhythmic activity is an intrinsic property of healthy retinal circuitry which is masked by the photoreceptor’s dark current. Here we tested these hypotheses by inducing and analysing oscillatory activity in adult healthy (C57/Bl6) and blind mouse retinas (rd10 and rd1). Rhythmic RGC activity in healthy retinas was detected upon partial photoreceptor bleaching using an extracellular high-density multi-transistor-array. The mean fundamental spiking frequency in bleached retinas was 4.3 Hz; close to the RGC rhythm detected in blind rd10 mouse retinas (6.5 Hz). Crosscorrelation analysis of neighbouring wild-type and rd10 RGCs (separation distance <200 µm) reveals synchrony among homologous RGC types and a constant phase shift (∼70 msec) among heterologous cell types (ON versus OFF). The rhythmic RGC spiking in these retinas is driven by a network of presynaptic neurons. The inhibition of glutamatergic ganglion cell input or the inhibition of gap junctional coupling abolished the rhythmic pattern. In rd10 and rd1 retinas the presynaptic network leads to local field potentials, whereas in bleached retinas additional pharmacological disinhibition is required to achieve detectable field potentials. Our results demonstrate that photoreceptor bleaching unmasks oscillatory activity in healthy retinas which shares many features with the functional phenotype detected in rd10 retinas. The quantitative physiological differences advance the